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ABSTRACT  

Deep Neural Networks (DNNs) are widespread in many applications, including 

computer vision, speech recognition and robotics, thanks to the ability of such models to 

extract information by building a hierarchical representation of knowledge.  

Image processing benefits from the latter behavior by using Convolutional Neural 

Networks (CNNs), which consist of several Convolutional (CONV) layers to extract 

features from inputs at different levels of abstraction. However, CNNs usually require 

billions of computations to reach high accuracy levels. In order to sustain such 

computational load, proper hardware acceleration is needed.  

Field Programmable Gate Arrays (FPGAs) have been shown as promising 

candidates, because they are able to achieve high throughput at limited power dissipation. 

In addition, FPGAs are flexible architectures to accommodate several CNNs’ workloads. 

While the hardware acceleration of conventional CNN models has been widely 

investigated, the interest about more sophisticated tasks is still emerging. The latter 

includes CNNs based on Dilated Convolutions (DCONVs) and Transposed Convolutions 

(TCONVs), which deal with filter and image dilations, respectively. Accordingly, higher 

computational complexity is exhibited by these architectures, thus requiring careful 

hardware management.  

This PhD dissertation deals with the FPGA acceleration of CNNs for Image 

Processing based on DCONVs and TCONVs. Specifically, several designs using both the 

Very High-Speed Integrated Circuits Hardware Description Language (VHDL) and the 

High-Level Synthesis (HLS) are presented. Detailed characterization is discussed, based 

on the evaluation of resources occupation, throughput, power dissipation, as well as the 

impact of data quantization. Overall, the proposed circuits show noticeable energy-

efficiency when compared to several state-of-the-art counterparts. For instance, hardware 
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acceleration of run-time reconfigurable CONVs and TCONVs for super-resolution 

imaging has shown an energy-efficiency of up to 518.5 GOPS/W, by outperforming state-

of-the-art competitors by up to 2.3 times. 
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ABSTRACT (ITALIANO)  

Le reti neurali profonde sono diffuse in diverse applicazioni, tra cui la computer 

vision, il riconoscimento vocale e la robotica, grazie alla loro capacità di estrarre 

informazioni tramite la costruzione di una rappresentazione gerarchica di conoscenza.  

Il processamento di immagini sfrutta questo comportamento attraverso reti neurali 

convoluzionali, che consistono di diversi layers di convoluzione per estrarre 

caratteristiche dagli ingressi a diversi livelli di astrazione. Tuttavia, tali modelli 

richiedono miliardi di calcoli per raggiungere alti livelli di accuratezza. Per sostenere 

questo carico computazionale, un’opportuna accelerazione hardware è necessaria.  

I Field Programmable Gate Array (FPGA) si sono dimostrati candidati promettenti, 

in quanto sono capaci di raggiungere alte prestazioni con limitato consumo di potenza. In 

aggiunta, i FPGAs sono architetture flessibili  e permettono di ospitare diverse 

configurazioni di reti neurali convoluzionali. Mentre l’accelerazione hardware di modelli 

convenzionali è stata ampiamente esaminata, l’interesse verso applicazioni più sofisticate 

è ancora emergente. Queste ultime includono le reti neurali convoluzionali basate su 

convoluzioni dilatate e convoluzioni trasposte, che trattano rispettivamente filtri e 

immagini dilatati. Di conseguenza, esse esibiscono una maggiore complessità 

computazionale, così da richiedere un’attenta gestione dell’hardware. 

Questa tesi di Dottorato di Ricerca tratta l’accelerazione su FPGA di reti neurali 

convoluzionali per il processamento di immagini e basate su convoluzioni dilatate e 

trasposte. Nello specifico, vengono esaminati diversi design, che sfruttano sia il VHDL e 

la sintesi ad alto livello per la descrizione dell’hardware. Una dettagliata caratterizzazione 

è presentata, basata sulla valutazione dell’occupazione delle risorse, delle performance e 

dei consumi di potenza, così come dell’impatto della quantizzazione dei dati. In generale, 
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i circuiti proposti mostrano una considerevole efficienza energetica quando sono 

confrontati con lo stato dell’arte. Per esempio, l’accelerazione hardware di un circuito 

adattabile in tempo reale sia a convoluzioni che a convoluzioni trasposte, per il 

processamento di immagini a super risoluzione, ha mostrato un’efficienza energetica fino 

a 518.5 GOPS/W, performando fino a 2.3 volte meglio rispetto ad altri lavori in 

letteratura.
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1. INTRODUCTION  

1.1. CONTEXT AND MOTIVATIONS 

Nowadays, Deep Learning (DL) is being imposed in many scenarios, including 

computer vision [1], speech recognition [2], game play [3] and robotics [4]. Such 

pervasiveness is motivated by the ability of Deep Neural Networks (DNNs) to mimic the 

brain functionality by building a hierarchical representation of knowledge. This is 

accomplished by the cooperation of several computing modules, named layers, that 

extract features from raw inputs at different levels of abstraction [5].  

Convolutional Neural Networks (CNNs) are powerful DL models that have found 

ground in the above scenarios, especially image processing for computer vision [6]. 

Indeed, they make use of Convolutional (CONV) layers to emulate the human visual 

cortex activity effectively. However, the accuracy power of CNNs usually results in high 

computational complexity: for instance, ImageNet classification over the Visual 

Geometry Group (VGG) network requires up to 15.5 Giga Multiply-Accumulations 

(GMACs), distributed among 16 layers, to reach a 7.4 Top-5 error [7]. Typically, these 

architectures must fit high-performance applications, thus asking for powerful platforms, 

such as Graphics Processing Units (GPUs). The latter are well-recognized to meet low 

latency per single inference, thanks to the intrinsic attitude to parallelize computations. 

Unfortunately, GPUs demand high power dissipation, a not-negligible challenge when 

the aforementioned models are conceived to be run off-the-grid (e.g., Edge Computing 

[8]). 
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As a result, dedicated hardware acceleration of CNNs is gaining increasing interest 

in research [9]. Among different devices, Field Programmable Gate Arrays (FPGAs) are 

showing effective to trade-off speed performance and power dissipation.  

FPGAs offer reconfigurable silicon to accommodate different CNN models using 

the same circuit. Moreover, they benefit of long life cycles (even decades), thus making 

them suitable for critical environments like defense and medicine [10]. As a further nice 

characteristic, since 2011 the FPGA market has witnessed the integration of such 

programmable architectures within complex embedded systems. There, general-purpose 

processors have also been included to enable heterogeneous tasks, by splitting 

computations among straightforward software routines and dedicated acceleration 

circuitries. 

1.2. SCOPE OF THIS WORK AND CONTRIBUTIONS 

Motivated by the above considerations, this work examines proper design 

methodologies to implement CNNs into FPGA architectures. As previously highlighted, 

these models exploit multi-dimensional CONVs that emulate the behavior of the human 

visual system to get information from data. Specifically, CONVs apply learned filters to 

inputs to extract features of interest, by means of Multiply-Accumulations (MACs). Such 

mechanism well works in computer vision, thus endorsing CNNs as a promising 

paradigm to process both images and videos [11].  

Computer vision highly relies on FPGAs, given the availability of efficient logic 

and memory resources to manage computations and buffering, respectively. While the 

FPGA acceleration of conventional CNNs has been widely investigated [12], the interest 

about non-conventional models, referring to Dilated Convolutions (DCONVs) and 

Transposed Convolutions (TCONVs), is still emerging. In contrast to CONVs, which 

directly act over the given inputs, the latter ask for preliminary pre-processing. Typically, 

the latter provide wider representation spaces by means of zeros insertion. As a results, 

redundant computations are introduced. By the hardware perspective, this means higher 

resources requirements, longer execution times and lower power efficiency. 

Consequently, proper optimization policies are mandatory. 
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This dissertation strives to explore alternative ways to face the aforementioned 

challenges. To this aim, two key FPGA design methodologies have been taken into 

account: 

(a) Low-level design for CNNs, by using the Very High Speed Integrated Circuits 

Hardware Description Language (VHDL). 

(b) High-level synthesis (HLS) for CNNs, by means of C++ routines. 

1.2.1. LOW-LEVEL DESIGN FOR CNNS 

Hardware Description Languages, such as VHDL and Verilog, infer the Register-

Transfer Level (RTL) abstraction to a circuit model. Programmable logic can be carefully 

configured to ensure implemented modules being close each other. This results in higher 

speed performance and lower power dissipation, where design constraints are very strict 

(e.g., real-time image/video processing). 

An efficient hardware design of DCONVs was proposed in [13]. We conceived a 

novel buffer architecture to manage multiple DCONV, with different dilation factors, in 

parallel. This module was included into a complete neural network able to perform the 

À-trous Spatial Pyramid Pooling for biomedical image processing purposes. Post-

implementation results, related to the Xilinx Zynq-7020 System-on-Chip (SoC), showed 

limited logic and memory occupation (i.e., 7.3% and 21%, respectively), by dissipating 

only 265 mW at the 181 MHz clock frequency. 

The challenge of efficient implementation of TCONVs was extensively examined 

in [14, 15, 16]. First, we proposed a scalable engine suitable for both low-end and high-

end FPGA-based SoCs, by exploiting both data- and circuit-level parallelism [14]. The 

effectiveness of such architecture is due to a careful use of the on-chip Digital Signal 

Processors (DSPs) and the management of memory transactions to allow the raster-order 

transfer policy for both input and output images. When the Zynq-7045 SoC was taken 

into account, the proposed system was made able to outperform the state-of-the-art 

computational capabilities of ~20%, saving more than 60% of power consumption.   

Considering that TCONVs usually work jointly with conventional CONVs, further 

investigations were carried out to conceive a reconfigurable architecture suitable for both 

of them. As a beginning goal, we proposed a run-time adaptive convolution architecture 

[15]. The latter, able to maximize the utilization of needed resources for each provided 
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configuration, was made capable of supporting a peak throughput of 217.2 Giga 

Operations per Second (GOPS), and reaching the most favorable throughput vs 

parallelism ratio among the competitors. Afterwards, the circuit was also equipped with 

run-time TCONVs support, by conceiving a proper image buffering on-chip [16]. Unlike 

the state-of-the-art counterparts, the referred design avoided complex filters 

reorganization to nullify redundant MACs. As a case-study, the hardware model was used 

to perform the Super-Resolution imaging task within the Xilinx Kintex-410T FPGA. 

Comparisons with previous works showed that the proposed accelerator can save up to 

~63% and ~48% of logic and power, respectively, without compromising the overall 

accuracy. 

1.2.2. HIGH-LEVEL SYNTHESIS FOR CNNS 

TCONV-based CNNs suitable for FPGAs were also proposed by leveraging high-

level C++ routines to instruct the synthesis tool. With respect to low-level VHDL circuits, 

the latter design strategy makes the overall flow faster, by accelerating both verification 

and design space exploration [17]. Furthermore, template structures can be inferred to 

provide parameterizable sketches at design time, thus ensuring reusability in different 

applications. However, the usage of proper directives, named pragmas, is mandatory to 

guarantee an efficient hardware implementation in terms of resources occupation, latency 

and power dissipation.  

The suitability of HLS design was examined in very low-precision DNNs, where 

input data were quantized to limited bit-widths [18]. This because such models, even 

experiencing a slight loss of accuracy, require much lower resources with respect to the 

full-precision counterparts. As a result, this enables the possibility of dataflow 

implementations, where each layer is handed over dedicated logic. In this way, low-level 

controls for run-time reconfigurability are no more required, and proper HLS scripts could 

be enough to meet the design constraints. 

Specifically, the impact of bit-width over TCONV-based models was investigated 

[19, 20, 21]. First, we carried out a high-level study about the effects over accuracy, by 

referring to state-of-the-art DL architectures and considering GPUs as training platforms 

[19]. Specifically, a Convolution Autoencoder, the Deep Convolutional Generative 

Adversarial Network (DCGAN) [22] and the U-Net [23] were evaluated over proper 
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training datasets. Experiments showed that data quantization slightly impacts over 

accuracy in the range 8–5 bit integer, when compared to the 32-bit floating point 

references. This result suggested that the deployment of such models onto FPGAs could 

be promising. 

Indeed, a HLS model of a TCONV engine was presented in [20]. When synthesized 

within a Xilinx Virtex-7 FPGA, the architecture was made capable to process 256×256 

images experiencing a rate of 53 frames-per-second (fps). This work was further 

improved to fit parameterizable TCONV layers for DL [21]. As a case-study, the decoder 

section of the Convolution Autoencoder [19] was implemented within the Zynq-7020 

SoC, by providing a design-space in terms of data precision and parallelism. Results 

showed a limited use of logic and on-chip memory (i.e., ~15% and ~7.5%, respectively), 

at the expense of only ~2.5% accuracy loss varying the precision from 8 to 4 bits. In 

addition, the maximum achievable parallelism provided the accelerator with 3.5× speed-

up with respect to the baseline design. 

1.2.3. THE MEETING POINT OF THESE CONTRIBUTIONS 

While this dissertation presents the low-level design and the high-level synthesis 

within separate sections, the goals to which aspire both the approaches are the same. 

Indeed, efficient FPGA acceleration of CNNs for image processing aims at: 

• Deploying adaptive architectures within the same chip. This can be accomplished by 

either exploiting a control unit that run-time reconfigures the same circuit to manage 

different CONV layers (i.e., the proposed low-level designs), or by providing 

dedicated areas for each layer that cooperate in a dataflow manner (i.e., the high-level 

synthesis investigation). 

• Maximizing the throughput (or minimizing the latency), by carefully using the VHDL 

methodologies (e.g., sequential processes) or by adopting HLS directives to instruct 

the synthesis tool properly. 

• Minimizing the power dissipation, as a consequence of proper design related to the 

previous remarks. 
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1.3. THESIS OUTLINE 

This PhD dissertation is structured as follows: 

❖ Chapter 2 provides a background about DL and CNNs, by emphasizing the 

functionality of DCONVs and TCONVs, main characters of such work, and providing 

examples of image processing tasks. Furthermore, the importance of FPGAs in CNN 

acceleration is motivated, by contextualizing them among other high-performance 

devices, as well as providing relevant state-of-the-art FPGA implementations of 

CNNs. 

❖ Chapter 3 illustrates the novel low-level designs for DCONVs [13] and TCONVs [14, 

15, 16]. For each research work, the proposed circuit, experiments and results are 

discussed. With respect to TCONVs, further clarifications about the adopted 

algorithms are also provided. 

❖ Chapter 4 presents the high-level synthesis of TCONV engines for CNNs [20, 21]. In 

this section, particular attention is provided to the C++ code to make the reader aware 

of the careful writing style to get efficient hardware synthesis. Moreover, given that 

the latter engines have been made suitable for low-precision networks, a thorough 

survey about the quantization approach adopted [19] is provided. 

❖ Chapter 5 draws the conclusion of this PhD research and provides insights to further 

the activity.  

 

Figure 1.1 schematizes the organization of the thesis by means of a mind map, 

where the key research motivations and contributions are reported, as well as their 

position within the dissertation.  

The motivations (Why?) of this PhD Research are motivated in Sections 1.1 and 

2.4. To further confirm the suitability of FPGAs, Section 2.5 provides a background about 

the main related works about CNNs acceleration. However, further works are pointed out 

throughout the whole thesis (“Background” sections within the Chapters 3, 4). 

The contribution (What?) is presented in detail in Chapters 3 and 4, by highlighting 

architectures, designs, and setup for experiments.  

The tools to effectively conceive and complete the designs answer to the “How?” 

question. The theoretical basics are covered in Sections 2.1. 2.2. and 2.3, while the 
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extensive characterization in terms of resources occupation, performance, power is 

discussed in Chapters 3 and 4. 

Finally, the key messages of this Research are summarized in Section 5. 
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2. BACKGROUND  

This chapter firstly provides a background about Deep Learning and Convolutional 

Neural Networks. The role of Dilated Convolutions and Transposed Convolutions is 

emphasized, by illustrating some applications related to image processing. Afterwards, 

the main architectures to accelerate Convolutional Neural Networks are presented, by 

highlighting the importance of FPGAs. Finally, state-of-the-art FPGA accelerators are 

reviewed to present the challenges behind efficient hardware implementations. 

2.1. ARTIFICIAL INTELLIGENCE AND DEEP LEARNING 

Nowadays, one of the key goals of engineering is to equip systems with intelligence, 

in order to either assist humans in everyday activities or to replace them when these 

activities may be performed by machines autonomously. Artificial Intelligence (AI) 

meets the above tasks by using Machine Learning (ML), which provides systems with 

programs able to learn themselves without users’ programming.  

The idea of learning something makes us immediately think about the behavior of 

human brain to connect sparse information to build knowledge. Accordingly, ML inherits 

a sub-field, named brain-inspired computation, which emulates the brain attitude to learn 

and address challenges. 

The human brain exploits billions of elementary computing cells, called neurons, 

to extract and propagate information either internally or towards the rest of the body. 

Several input connections, called dendrites, supply the neuron with data. The latter 

performs computations to produce a result, the activation, which is forwarded to another 
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neuron through a connection named axon. The meeting point between an axon and a 

dendrite is known as synapse.  

Figure 2.1 schematizes the model of the neuron, following the theory of the 

American psychologist Frank Rosenblatt (1958). The input activations 𝑥 =

(𝑥0, 𝑥1, … , 𝑥𝑛−1)  provided by as many axons are preliminary scaled by the weights 𝑤 =

(𝑤0, 𝑤1, … , 𝑤𝑛−1) associated to each synapse. The scaled data 𝑤𝑥 =

(𝑤0𝑥0, 𝑤1𝑥1, … , 𝑤𝑛−1𝑥𝑛−1) are supplied to the neuron core that performs a weighted 

sum, by also adding an extra contribution named bias (b) to calibrate the working point 

of the neuronal cell. Finally, this computation is subjected to a non-linear function f(∙), 

which represents data in a compressed domain. The output yj is forwarded to another 

neuron for further processing. It is worth underlining that weights are responsible for 

learning and they are the only values to be adjusted by brain to improve the knowledge 

acquisition. 

Neural Networks (NNs) are arranged as layers of neurons in order to extract 

complex information from input data. Figure 2.2 illustrates an example NN consisting of 

three layers. The input layer simply forwards the inputs 𝑖 = (𝑖0, 𝑖1, … , 𝑖𝑛−1) to the hidden 

layer, whose neurons are responsible to perform the computations reported in Figure 2.1. 

Finally, the output layer executes the last computations to provide the final results 𝑜 =

(𝑜0, 𝑜1, … , 𝑜𝑛−1).  

Figure 2.1 Schematization of a neuron. 
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In order to carry out their task effectively, NNs usually rely on more than three 

layers: indeed, they may accommodate hundreds of hidden layers. When this occurs, we 

refer to Deep Learning (DL) and the associated NNs are known as Deep Neural Networks 

(DNNs). 

DNNs work through a two-way process. During the training phase, the given DNN 

is in learning mode, where the weights are continuously adjusted within multiple 

iterations. During each iteration, inputs are processed by the DNN by forwarding the 

information across the layers. Weights are updated according to the achieved learning 

level, which is evaluated on the quality of the current outputs: if the results are quite good, 

the weights adjustment is minimal. Conversely, worse results mean higher corrections to 

the weights values. This process is managed through a backpropagation step, which can 

be seen as an optimization problem to manage the direction of the weights distribution. 

At the completion of the training, weights are final. Eventually, the inference phase 

processes new data by using that weights distribution.  

State-of-the-art DNNs exploit millions of learnable weights in order to execute task 

at high accuracy levels. As a result, this demands many computations and high amount 

of storage. For instance, conventional DNNs exploit Fully-Connected (FC) layers in 

which each generated activation comes from the weighted sum of all the input activations 

of the previous layer. In order to alleviate the computational effort of the current layer, it 

is possible to reduce the number of weights to provide each output: the strategy of weight 

sharing allows to generate outputs by using the same group of weights. Convolutional 

Neural Networks (CNNs) are a meaningful example acting in this way, in which inputs 

Figure 2.2 Example of neural network. 
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are arranged as windows of values where the same group of weights, named filters, are 

responsible to meet the desired task. This class of DNNs is the focus of this dissertation 

and it is described in the following Section. 

2.2. CONVOLUTIONAL NEURAL NETWORKS 

Convolutional Neural Networks (CNNs) are DL models able to extract informative 

content from multi-dimensional arrays, which can represent data sequences, images and 

videos. This task is carried out by convolutions that determine features from inputs, both 

at low-level (e.g., edges) and at high-level (e.g., the complex shape of an object).  

Generally speaking, CNNs consist of two main parts: (a) the feature extractor, 

structured as a sequence of Convolution Layers (CONV Layers), and (b) a task-oriented 

section, whose architectural organization differs from model to model. In what follows, 

the attention is focused on CNNs for image processing. Figure 2.3 illustrate a top-level 

example of CNN. 

2.2.1. THE FEATURE EXTRACTOR 

Typically, the very first CONV Layer can receive, as input, either a gray-scale 

image or a RGB frame. These data are organized as IC channels of HI×WI pixels matrices, 

where IC=1 for the gray-scale format and IC=3 for the RGB representation. Proper filters 

perform computations over these data to extract features of interest. Specifically, OC 

filters consisting of IC kernels of KH×KW weights are provided, each responsible to 

Figure 2.3 Example of Convolutional Neural Network. 
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generate a specific feature map (fmap). In the following, it is supposed to work with 

KH=KW=K. Each K×K weights kernel moves around the respective HI×WI  pixels channel, 

in a sliding-window manner, and is subjected to Multiply-Accumulations (MACs). 

Accordingly, each window provides one output pixel. The provisional IC OH×OW output 

matrices are then summed-up in a pixel-wise manner to finally generate just a single 

OH×OW output fmap (ofmap). Finally, it is worth underlining that some models add bias 

offsets to the ofmaps. This process is repeated for all the OC filters, to furnish as many as 

ofmaps. Figure 2.4 illustrates an example when HI=WI=4, K=3, IC=3, OC=1 and the first 

output pixel is produced. Colors highlight both sliding windows and provisional outputs 

interested to. 

 

The subsequent CONV Layers act in the same way, but they only manage fmaps 

instead of images: the main difference between the two representations is that fmaps’ 

pixels contain encoded information from input images, while images represent explicit 

objects/scenes. CONV Layers can be followed by auxiliary units, including non-linear 

activations, normalization and pooling layers. Non-linear activations let CNNs to learn 

complex tasks by breaking linearity provided by CONV Layers. Basically, such functions 

change the representation domain of ofmaps, either by shrinking the content in a given 
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Figure 2.4 Example of CONV Layer when HI=WI=4, K=3, IC=3, OC=1. 
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range (e.g., sigmoid and hyperbolic tangent [24]) or by thresholding the acceptability 

values (e.g., Rectified Linear Unit (ReLU) [25]). Normalization [26] is used to control 

the values distribution of fmaps in order to boost training and provide higher accuracy to 

the model. Finally, pooling [27] aims at reducing the spatial sizes of fmaps to both 

modulate the computational complexity of subsequent layers and infer more robust 

abstraction capability to the neural network. This is accomplished by splitting each fmap 

in small windows and extracting either the maximum value or the average one. 

2.2.2. THE TASK-ORIENTED SECTION 

After the deep feature extraction provided by CONV Layers, the provisional 

outputs are sent to a different section that is responsible of the specific behavior of the 

CNN. For instance, Fully-Connected (FC) Layers can be used for image classification: 

by means of computationally-intensive matrix-matrix multiplications, they progressively 

transform multi-dimensional fmaps into a 1-dimensional array. Proper non-linear 

activations, such as the softmax [28], represent the raw elements of the given array as a 

probability distribution, meaning that each element belongs in (0,1) and their sum is 1. 

Specifically, each value of the array indicates the probability that a given class appears 

within the input image. 

The task-oriented section can also adopt different types of layers to comply with 

other applications. In this regard, Table 2.1 highlights some ways in which the referred 

module can be organized. Some popular CNNs are reported, by summarizing: (1) the 

number of CONV Layers of the feature extractor, (2) the type of task-oriented section, 

and (3) the specific task carried out by the model. 

Table 2.1 Examples of Convolutional Neural Networks 

Model Feature 

extractor 

Task-oriented section Application 

VGG-16 [7] 
13 CONV 

Layers 
3 FC Layers Image classification 

YOLO [29] 
24 CONV 

Layers 
2 FC Layers Object detection 

SegNet [30] 
13 CONV 

Layers 

5 Un-pooling Layers +  

13 CONV Layers 

Semantic 

Segmentation 

FSRCNN 

[31] 

7 CONV 

Layers 
1 TCONV Layer 

Super resolution 

Imaging 

DilatedNet 

[32] 

VGG-16 

based 

Multi-scale context aggregation 

using DCONV Layers 

Semantic 

Segmentation 
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As it can be observed, while models for image classification [7] and object detection 

[29] usually rely on FC Layers to interpret the extracted features, more sophisticated tasks 

require complex architectures. For example, SegNet [30] is responsible to execute 

semantic segmentation by means of an encoder-decoder architecture: the feature 

extractor, also known as encoder, consists of 13 CONV Layers and pooling layers for 

down-sampling. The outputs coming from the encoder must be restored to the original 

sizes. This is accomplished by another module, named decoder, which includes un-

pooling layers for image up-sampling and CONV Layers for learning.  

Image up-sampling can also be self-learned by using Transposed Convolution 

(TCONV) Layers, as happens in the Fast Super-Resolution CNN (FSRCNN) [31]. There, 

the cooperation of an encoder consisting of 7 CONV Layers and a TCONV Layer decoder 

lets an input image to be represented as 2×, 3×, 4× the original sizes. Other models aim 

at extracting relationship between far pixels in order to understand image context 

properties [32]: this can be managed by using Dilated Convolution (DCONV) Layers, 

which dilate the K×K weights to enlarge the sliding windows. Semantic segmentation is 

an example task benefiting of the latter strategy.  

2.3. DILATED AND TRANSPOSED CONVOLUTIONS  

2.3.1. DILATED CONVOLUTIONS 

Dilated Convolutions are also known as à-trous convolutions, since their original 

usage interested the algorithme à trous for the wavelet decomposition [33].  

In contrast to conventional convolutions, the à-trous class preprocesses the generic 

K×K weights kernel to enlarge the sliding window area. This is accomplished by 

introducing a further parameter, named dilation factor R. The latter is responsible of 

inserting R–1 zeros between adjacent weights. In this way, the effective kernel area is 

KE×KE, with KE=K+(K–1)×(R–1). After this dilation, the convolution is performed in the 

straightforward way, by means of MAC computations. Figure 2.5 illustrates an example 

when K=3 and R=2. The square box with the red borders is the current sliding window 

that exhibits KE=5. The orange cells represent the positions in which the actual weights 
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are multiplied by the respective pixels; the remaining cells refer to zeros. The yellow cell 

within the ofmap is the result coming out from the first sliding window MAC. 

 

2.3.2. TRANSPOSED CONVOLUTIONS 

While conventional convolutions typically down-sample data by summarizing each 

sliding window with just one output pixel, transposed convolutions act in the reverse way, 

by providing more information with respect to the inputs. For this reason, sometimes the 

latter are also named deconvolutions1. 

Transposed Convolutions apply a K×K weights kernel over a dilated fmap, where 

the actual pixels are interleaved by S–1 zeros, with S being the stride or up-sampling 

factor. In addition, given P the padding size, K–P–1 further zeros can be placed at the 

boundaries of the fmap. Figure 2.6 shows a transposed convolution that provides a 5×5 

ofmap starting from a 3×3 ifmap. This can be done by setting K=3, S=2 and P=1. In this 

way, the input pixels are spaced each other by one column/row of zeros. In addition, 1 

padding row/column is added at the borders of the dilated ifmap. The green cells within 

the ifmap indicate the positions of the actual input pixels; the square box having red 

borders is the current sliding window, while the orange cell within the ofmap is the current 

output pixel. 

 
1 Deconvolution is an improper term in that mathematical deconvolutions differ significantly from 

transposed convolutions [64]. However, it is often used in literature to refer to Transposed Convolutions 

for simplicity, because the prefix ‘de’ suggests the idea of the opposite process of convolutions: thus, 

recovering a high-resolution image starting from a low-resolution representation. In this dissertation, both 

Transposed Convolutions and Deconvolutions are used to indicate the same algorithm. 
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Figure 2.5 Example of DCONV when K=3, R=2. 
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2.3.3. IMAGE PROCESSING TASKS USING DCONVS AND TCONVS 

DCONVs and TCONVs introduced in this Section may be exploited in different tasks 

related to image processing. 

DCONVs positively impact semantic segmentation, due to the ability of dilated 

filters to strengthen wide-range relationships among pixels, other than avoiding features 

down-sampling through non-learnable pooling layers. For instance, the À-trous Spatial 

Pyramid Pooling [34] (ASPP) is a strategy in which multiple DCONV are performed on 

the same input image, by using ever-more dilated filters, to equip the model with accurate 

pixel-level classification. The Spinal Cord Gray Matter segmentation is an application 

that benefits from the ASPP approach through DCONVs. Figure 2.7 illustrates the top-

level architecture, from [35], which performs the referred task. 
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Figure 2.6 Example of TCONV when K=3, S=2, P=1. 

MACs 

Figure 2.7 Spinal Cord Gray Matter Segmentation CNN [35]. 



BACKGROUND 36 

Light Detection and Ranging (LiDAR) for drivable region segmentation is another 

application that may use DCONVs to improve accuracy but with computational savings. 

For example, the segmentation results reported in Figure 2.8 refers to a piece of work in 

which parallel DCONV with R=1 and R=2 were used [36]. 

TCONVs find ground in tasks where image up-sampling is required. Generative 

Adversarial Networks (GANs) exploited for synthetic image generation adopt stacked 

TCONV Layers to build images, starting from a latent representation of data. The 

generation of bedrooms images was treated in the key work of Deep Convolutional GAN 

(DCGAN) models [22]. Figure 2.9 illustrates some generated samples. 

 

 

Figure 2.8 Drivable region segmentation results related to [36]. 

Figure 2.9 Generated images through the DCGAN model [22]. 
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Super-Resolution imaging is gaining ever-increasing interest due to the 

development of Ultra High Definition (UHD) and Quad High Definition (QHD) imaging. 

The Fast Super-Resolution CNN (FSRCNN) [31] is a model consisting of an encoder of 

stacked CONV Layers, followed by a decoder consisting of one TCONV Layer, which 

up-sample images by 4×, 9×, 16× the original image area. Figure 2.10 shows an example 

of super-resolution, where the original image is up-sampled by adding 9× more pixels, 

and comparing the achieved results in terms of the Peak Signal-To-Noise Ratio (PSNR) 

metric with respect to other super-resolution approaches. This method provides the best 

quality results by the metric viewpoint. 

2.4. EFFECTIVE HARDWARE IMPLEMENTATION OF CNNS 

2.4.1. OVERVIEW OF ARCHITECTURES FOR CNN WORKLOADS 

CNN workloads can be carried out by two classes of architectures: temporal 

architectures and spatial architectures. 

Temporal architectures mainly rely on Central Processing Units (CPUs) and 

Graphics Processing Units (GPUs) to execute models through software routines. CPUs 

adopt Arithmetic Logic Units (ALUs) that exchange data from/to a memory support, but 

they are not able to move information towards homologous ALUs [37]. This severely 

limits the speed performances achieved by CNNs. To address this issue, GPUs exploit 

Figure 2.10 Examples of Super-Resolution images [31]. 
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parallel processing engines that are suitable for computer graphics problems, such as 

image processing. 

However, GPUs consume hundreds of Watt to meet the performance requirements 

of CNN workloads. This challenge may be addressed by spatial architectures [37], 

implemented through dedicated hardware acceleration, in which several Processing 

Engines (PEs) are able to mutually exchange data, other than relying to both centralized 

and distributed memories for provisional buffering purposes. Solutions based on 

Application Specific Integrated Circuits (ASICs) and Field Programmable Gate Arrays 

(FPGAs) are meaningful examples.  

Each ASIC circuit is designed to perform limited tasks using a very specialized 

circuit. Indeed, the designer properly interconnects the needed resources to minimize the 

area occupation, thus providing the best speed-power trade-off. Conversely, FPGAs 

consist of reconfigurable cells that can be hardware programmed, to comply with different 

tasks by using the same architecture. This flexibility ensures wider applicability with 

respect to ASICs, but at the cost of lower performance and higher power dissipation. 

Indeed, despite the attempt of design tools to proper interconnect resources to guarantee 

a successful speed-power compromise, several resources may be unused, thus 

contributing in higher static power consumption. 

Figure 2.11 illustrates the trade-off trend considering the above architectures [38]. 

The horizontal axis reports the speed performance, expressed in terms of Giga Operations 

Per Second (GOPS), while the vertical axis reports the power dissipation in Watt (W). It 

is easy to observe that hardware accelerators show the most favorable compromise. 

Figure 2.11 Trade-off analysis among CPUs, GPUs, ASICs and FPGAs [38].  
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ASICs beat FPGAs in terms of power dissipation, but if we consider the flexibility as a 

further design knob, FPGAs dominate the scenario.  

To further investigate the suitability of FPGAs, we refer to an example scenario that 

evaluates their speed performance and energy efficiency with respect to GPUs. This 

analysis is worthy, considering that CONV Layers occupy about 90% of computation 

time in conventional CNNs [39]. Figure 2.12 refers to matrix multiplications for the 

pruned AlexNet model implemented over different Intel FPGA devices [40]. Experiments 

were also performed on a Titan X GPU, where the dense AlexNet counterpart was 

considered. For what concerns the speed performances, expressed as Tera Operations per 

Seconds (TOP/s), limited FPGA frequencies result in worse results with respect to the 

GPU execution. However, moving towards high-performance devices, the result flips 

over. Conversely, the energy efficiency is always better, even using more conservative 

frequencies. 

 

Overall it can be concluded that FPGAs are the most suitable choice to implement 

in hardware CNNs, since they offer high flexibility, parallelism, as well as noticeable 

trade-off in terms of speed and power, and limited design cost. Table 2.2 compares the 

mentioned features by considering both temporal and spatial devices. Cells with a tick 

indicate that the given property is satisfactory. By a quick glance, it can be easily deduced 

that FPGAs positively meet all the requirements. Among the reported properties, it is 

worth mentioning the impact of design cost. It refers to the time frame between the design 

of the model and its availability on the market. Obviously, CPUs and GPUs exhibit the 

lowest design cost, in that it involves the realization of the software routine only. 

Conversely, the design effort of hardware accelerators is much higher, since it involves 

Figure 2.12 Speed performance and power efficiency comparisons between FPGAs and 

GPUs considering an example model [40]. 
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the conceptualization, realization and implementation of the testing circuit. With respect 

to ASICs, the design cost of FPGAs is much lower, in that it requires the design, synthesis 

and implementation using proper tools, with no physical realization of the chipset.  

Table 2.2 Comparisons of architectures for CNNs 

 CPUs GPUs ASICs FPGAs 

Flexibility     

Parallelism     

Speed     

Power     

Design Cost     

 

2.4.2. FIELD-PROGRAMMABLE GATE ARRAYS 

FPGAs are integrated circuits consisting of reconfigurable logic, other than special 

resources for fast computations and on-chip memorization. In what follows, the 

terminology refers to the AMD Xilinx FPGAs, but with no loss of generality about the 

meaning of the presented resources. Figure 2.13 illustrates a top-level view of a AMD 

Xilinx FPGA [41]. 

Logic fabric mainly consists of Configurable Logic Blocks (CLBs) that are arranged 

as a 2-D matrix within the device. They are interconnected each other by means of 

Figure 2.13 Top-level architecture of a FPGA [41]. 
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programmable interconnects provided by switch matrices. Each CLB contains Slices that, 

in turn, accommodate resources for combinatorial computations and sequential logic, 

namely Look-Up Tables (LUTs) and Flip-Flops (FFs), respectively. The former can be 

used to implement Boolean functions, as well as small Read Only Memories (ROMs) and 

shift-registers. The latter are 1-bit registers. Additionally, slices offer dedicated resources 

to implement efficient carry logic for accumulations. 

Special resources, named Digital Signal Processors (DSPs), are also offered by 

modern FPGAs to perform high-performance Multiply-Accumulations, as well as to 

implement dedicated paradigms such as the Single-Instruction-Multiple-Data (SIMD). 

Furthermore, Blocks of Random Access Memories (BRAMs) are laid out throughout the 

FPGA to offer on-chip storing, as well as the possibility to emulate First-In-First-Out 

(FIFO) buffers. Finally, Input/Output Blocks (IOBs) offer an interface between the given 

FPGA and other peripherals that may be connected to the device to exchange data for 

further processing and control. 

Since 2011, the flexibility of FPGAs has been associated to the simplified design 

effort of general-purpose CPUs to provide users with heterogeneous architectures. The 

latter, also known as FPGA-based Systems-on-Chip (SoCs), consist of two main parts: 

(a) The Programmable Logic (PL) that is the FPGA device.  

(b) The Processing System (PS) that accommodates a general-purpose processor. 

FPGA SoCs may be exploited to implement complex systems, where the 

Hardware/Software Co-Design is mandatory. Indeed, while the PL is responsible to 

accelerate the time-critical section of a system, the PS may be delegated to perform low-

performance sections, as well as to provide the overall control of the architecture. 

2.4.3. LANGUAGES FOR HARDWARE DESIGN 

As previously stated, FPGAs can be hardware programmed. This is accomplished 

by conceiving sketches of code using two possible ways: 

(a) The adoption of Hardware Description Languages (HDL), such as the Very High-

Speed Integrated Circuits HDL (VHDL). The VHDL allows the designer to build a 

hardware model by means of entities. Each entity is described through an architecture 

that explains the functionality of that entity. Different design approaches may be 

exploited to conceive an architecture, ranging from a dataflow style to a behavioral 
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model. While the former explain the computations by means of Boolean logic, the 

latter adopts higher-level constructs, such as processes with conditional statements. 

(b) The use of High-Level Synthesis (HLS). The circuit is modelled by a high-level 

routine, typically in C or C++, which describes the behavior of the architecture. Proper 

directives, named #pragmas, may be exploited to instruct the synthesis tool about 

specific hardware optimizations to be applied (e.g., parallelism, insertion of sequential 

logic for pipelining). 

Both the approaches lead to a Register-Transfer-Level (RTL) representation of the circuit, 

which is later synthesized and implemented by the development tool. At the completion, 

a bitstream is generated and forwarded to the development board for hardware testing. 

2.4.4. METRICS RELATED TO FPGA ACCELERATORS 

In order to easily follow the discussions about the hardware implementation of 

CNNs using FPGAs (especially in Chapters 3 and 4), the main metrics used for evaluation 

are introduced here. 

• Resource utilization or resource occupation. This metric refers to the number of 

LUTs, FFs, BRAMs and DSPs used to implement a given circuit. These values can 

be absolute numbers or percentages. While the former allow comparisons even 

considering different FPGA devices, the latter are suitable for comparisons using the 

same device. 

• Latency. This metric refers to the time needed to execute a given task. For sequential 

circuits, the clock period (Tclk) is the time unit. Accordingly, latency can be expressed 

either as the number of clock cycles or as the absolute time (i.e., clock cycles × Tclk). 

• Clock frequency. It is related to the clock period Tclk, as fclk = 1/ Tclk. It can be used as 

measure of speed performance. 

• Power dissipation or power consumption. This metric refers to the power dissipated 

by the FPGA, and expressed in Watt. Power dissipation mainly consists of dynamic 

power and static power. While the former is related to the switching activity of the 

system at run-time, the latter provides the contribution of leakage components. 

For what concerns the speed performance, some metrics related to the fields of image 

processing and CNNs are also reported: 
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• Operations per Second (OPS). Given a CNN, this metric indicates the number of 

operations that the hardware model is able to carry out in one second.  

The theoretical OPS or peak OPS are related to the computational capability of the 

circuit. To be more specific, if the hardware accelerator is able to perform NOP 

operations in parallel, thus the peak OPS = NOP/ Tclk. 

The effective OPS are specific of the given CNN. Indeed the latter metric is given by 

the ratio between the computational complexity of the model and the execution time. 

Usually, OPS are reported using multiples. In CNNs acceleration, it is usually to refer 

to Giga OPS (GOPS). 

• Frame rate. This metric indicates the number of images processed in one second. In 

fact, it is usually indicated as frames-per-second (fps). 

• Energy efficiency. This metric measures the ratio between the speed performance and 

the power dissipation. Usually, the energy efficiency is measured in GOPS/W or 

fps/W. 

2.4.5. SUMMARY OF FPGAS FEATURES FOR CNNS ACCELERATION 

The analysis reported in this Section highlighted the suitability of FPGAs to 

implement efficient CNN workloads. The following remarks summarize the main 

findings and provide insightful comments about the challenges that will be treated 

throughout this thesis. 

• The FPGA logic mainly consists of reconfigurable cells able to infer flexibility to a 

given design. Specifically, a CNN engine can be conceived to support different 

parameters combinations at run-time. For instance, a CONV Layer can be equipped 

with programmable kernel size. 

• Dedicated high-performance computing resources, named DSPs, can be exploited to 

implement effective computing patterns close to each other to reach high clock 

frequencies. For example, MACs can be executed by tiles of DSPs without relying on 

further carry logic within conventional Slices. 

• On-chip memories can be used to buffer temporary data in order to reduce the 

accesses to an external memory support. This reflects on faster processing time and 

reduced dynamic power dissipation. 
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• State-of-the-art FPGAs are usually integrated within heterogeneous Systems-on-

Chip, where the programmable silicon cooperates with general purpose processors. 

In this way, while the former takes under consideration timing-critical patterns, the 

latter can perform low-throughput computations at the same time. 

2.5. STATE-OF-THE-ART FPGA ACCELERATORS FOR CNNS 

Stimulated by the previous considerations, the deployment of CNNs in FPGA is 

nowadays a key research focus. In the following, some relevant works are briefly 

reviewed.  

Authors in [42] proposed a reconfigurable coprocessor to be adapted to different 

CNNs at run-time. Temporary inputs and outputs are cached using on-chip memories, 

while computations are performed through a 1024 MACs-based convolution engine. 

Thanks to a complex control unit, the given architecture is made able to support up to 

256×256 images and 16×16 filter kernels. The programmable circuit, implemented within 

the Xilinx Virtex-7 XC7VX485T FPGA, exhibits a throughput of 129.7 GOPS when 

executing a 5-layered CNN. However, the given throughput costs 18 W of dynamic power 

consumption by using only the 25.8% of LUTs and the 37% of DSPs for high-

performance computations. It is worth underlining that the above power comes from the 

dc current consumption of the VC707 board, which contains the referred FPGA part 

among other peripherals. 

In order to boost the speed performance, but limiting the resource occupation and 

the power dissipation, the Single-Instruction-Multiple-Data (SIMD) paradigm may be 

exploited in hardware accelerators. For example, it is examined in [43], where DSPs are 

made able to double the number of MACs, by accommodating two multiplications in 

parallel. As a consequence, the buffering resources also manage this intrinsic parallelism. 

The designed circuit is implemented within a complete heterogenous system, where a 

general-purpose processor controls the overall process. 3rd parts circuitries are exploited 

to manage the high-throughput data movement from/to an external memory, using the 

Direct Memory Access (DMA) paradigm. When implemented within the Xilinx 

XC7Z045 part, the proposed system shows a throughput of 425.32 GOPS when 
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accelerating the VGG-16 model. Even using the 97.8% of the available DSPs, the overall 

design consumes only 3.15 W at the 167 MHz clock frequency. 

While the previous pieces of work deal with the deployment of just a run-time 

reconfigurable circuit to implement any layer of a given CNN, the research in [44] 

examined the partition of the FPGA silicon into multiple processors to implement 

dataflow CNN layers using the High-Level Synthesis design flow. Each processor is 

responsible to execute one or more layers belonging to the model under test. The aim is 

to minimize the number of parallel processors, by guaranteeing a proper trade-off in terms 

of resources and speed. The suitability of the proposed strategy was evaluated over 

different models and FPGA parts. When the Xilinx Virtex-7 XC7VX690T FPGA and the 

SqueezeNet model [45] are considered, the system reaches a throughput of 909.7 GOPS, 

with a power dissipation of 7.2 W. 

Hardware implementations dealing with TCONVs aim at avoiding redundant 

computations (i.e., multiplications by zero) due to the dilation of fmaps, either by 

revisiting the conventional algorithm sketched in Section 2.3.2 or by examining 

alternative strategies that lead to the same outputs. The FlexiGAN framework presented 

in [46] reorganizes processing rows to skip zeroed computations. Furthermore, it exploits 

the SIMD paradigm to enable high-performance computational patterns. The equivalent 

circuit, implemented within the Xilinx Virtex UltraScale XCVU13P, benchmarks state-

of-the-art Generative Adversarial Networks (GANs) at the 190 MHz clock frequency.  

Taking into account the different patterns of the actual computations through sliding 

windows, authors in [47] transformed the generic TCONV computations into multiple 

CONV computations, by reorganizing filter kernels. Indeed, wide up-sampling filters 

may be split into smaller sub-filters, before performing TCONVs as multiple 

conventional CONVs running in parallel.  They implemented the equivalent hardware 

engine within a multi-processor architecture to execute the FSRCNN model [31] (Section 

2.3.3). The proposed design choice allowed the system to reach a throughput of up to 

2691 GOPS, by dissipating only 5.4 W using the Xilinx XC7K410T FPGA.  

A completely different strategy was proposed in [48]. There, the Input-Oriented 

Mapping algorithm [49] was used to avoid redundant computations. Such an approach 

multiplies each input pixel by the relative K×K kernel, thus furnishing a block of K×K 

output products. It is worth noting that neighboring input pixels lead to overlapping output 
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blocks. With S being the supported stride, up to K–S overlapping rows and columns must 

be properly managed to provide the correct result. To avoid the overlapping management, 

the reverse looping was exploited. Instead of perform the computations considering the 

input space, the output space is evaluated to determine which input blocks must be used 

to get a specific output value. A GAN network was tested within the Xilinx XC7Z020 

FPGA SoC, by exhibiting a throughput of 2.6 GOPS at the 100 MHz  clock frequency 

and using all the available DSPs slices. 

Uni-OPU [50] is a full software/hardware stack able to provide a uniform 

architecture to support both CONV Layers and TCONV Layers, as well as the nearest-

neighboring up-sampling strategy [51]. The latter acts similarly to TCONVs, but uses 

actual pixels replicas instead of zeros. The referred architecture was integrated within the 

Xilinx XC7Z100 FPGA SoC to accelerate several models, including GANs and the 

FSRCNN at the 200 MHz clock frequency and using the 1987 DSPs (98.37% of the total) 

for high-performance computations. Specifically, when the circuit manages TCONVs, it 

manifests a throughput of 2350 GOPS by consuming only 2.89 W of dynamic power. 

Efficient implementation of DCONV-based neural network were also examined in 

the last years. In [36], the ChipNet architecture was proposed to manage real-time 

drivable region segmentation using a CNN having R=1 and R=2. The circuit was 

implemented within the Xilinx Ultra Scale XCKU115 FPGA. The 350 MHz clock 

frequency and the utilization of the ~56% of DSPs allow the engine to complete the 

processing in about 12.59 ms, outperforming the Nvidia K20 GPU by 13 times, and 

dissipating about 9.7 W of dynamic power. 

In [52], a flexible accelerator was proposed to deal with both DCONV and TCONV 

layers, as well as conventional CONV layers. Authors proposed the sparsity-alike 

processing method to handle the dilation factor of kernels effectively, without wasting 

redundant computations. This strategy comes from the observation that non-zero 

locations within DCONV and TCONV follow a regular pattern, thus being predictable. 

The proposed system, implemented within the Intel Arria 10 SoC, runs at 200 MHz and 

uses only the 36% of DSPs. When the ENet model [53] is accelerated, it exhibits a 

throughput of 200.3 GOPS. 

Table 2.3 summarizes the main features of the state-of-the-art pieces of work 

presented in this Section. For each reference, the table reports the FPGA used, a short 
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heading about the key feature of the design, the implemented CNN, as well as 

performance metrics. 

Table 2.3 Comparisons of performance of state-of-the-art CNN accelerators on FPGAs 

Ref. FPGA Key Feature CNN 
fclk 

[MHz] 
GOPS 

Power 

[W] 
GOPS/W 

[42] XC7VX485T 
Run-time 

reconfigurability 
Custom 150 129.7 18 7.2 

[43] XC7Z045 MACs using SIMD VGG-16 167 425.32 3.15 135 

[44] XC7VX690T 
Multi-processors 

FPGA 
SqueezeNet 170 909.7 7.2 126.3 

[46] XCVU13P 
TCONVs through 

zeros skipping 
GAN 190 NA1 NA NA 

[47] XC7K410T 
Transforming 

TCONVs into CONVs 
FSRCNN 130 2691 5.4 500.2 

[48] XC7Z020 

TCONVs using the 

Input-Oriented 

Mapping 

DCGAN 100 2.6 NA NA 

[50] XC7Z100 

TCONV and Nearest-

Neighboring up-

sampling 

GAN 200 23502 2.89 813.12 

[36] XCKU115 DCONV with R=1,2 ChipNet 350 NA 9.7 NA 

[52] Arria 10 

Adaptive architecture 

for CONV, DCONV, 

TCONV 

ENet 200 200.3 NA NA 

1 NA = Not Available. 2 Related to TCONV layer only. 

 

The background presented in this Section presented relevant state-of-the-art 

FPGA solutions to provide a basic understanding of the challenges related to the hardware 

acceleration of CNNs. Chapters 3 and 4 will provide further background, referring also 

to other architectures for fair comparisons in terms of resource occupation, speed and 

power. 

2.6. SUMMARY 

In this chapter, basic concepts about Deep Learning and Convolutional Neural 

Networks were introduced. Specifically, Dilated Convolutions and Transposed 

Convolutions were briefly presented to provide the proper background for the 

comprehension of the following chapters. Examples of applications for image processing 

were also provided. Then, the main architectures to accelerate CNNs’ workloads were 

discussed, by highlighting the advantages of FPGAs with respect to CPUs, GPUs, and 

ASICs. FPGAs, indeed, show the most favorable trade-off in terms of resource 
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occupation, speed, power and flexibility to manage effectively different CNNs’ 

configurations using the same circuit.  

The hardware design methodologies, as well as the metrics used for evaluation were 

discussed, in order to facilitate the understanding of Chapters 3 and 4. Finally, some state-

of-the-art FPGA accelerators were reviewed, by summarizing the design strategies and 

the key experimental results. 
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3. LOW-LEVEL DESIGN FOR 

CONVOLUTIONAL NEURAL NETWORKS  

This chapter presents the design of several FPGA-based accelerators for CNNs, 

made compliant with DCONVs and TCONVs, and using the VHDL as Hardware 

Description Language. The integration of the referred engines within heterogeneous 

embedded systems is also discussed, in order to analyze real-life use cases. For each novel 

architecture, the characterization in terms of resources utilization, speed performance and 

power dissipation is provided, as well as proper comparisons with state-of-the-art FPGA 

accelerators.  

3.1.  HARDWARE ACCELERATION OF MULTI-RATE DILATED 

CONVOLUTIONS 

3.1.1. BACKGROUND 

As stated in Chapter 2, conventional CNNs combine both CONV and FC Layers to 

meet image classification. Specifically, the spatial resolution of the intermediate fmaps 

produced over the network is progressively reduced and a one-dimensional array is 

produced as the final output. However this computational flow does not comply with 

pixel-level classification (i.e., semantic segmentation). In fact, the latter requires robust 

spatial information and lower abstraction to perform dense predictions. To address this 

issue, the FC Layers are replaced with CONV Layers only [54]. The networks obtained 

in this way, known as Fully Convolutional Networks (FCNs), are able to output prediction 

maps instead of one-dimensional arrays. To strengthen the localization accuracy of 

different Regions-of-Interest (ROI), DCONV Layers can be exploited.  
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The latter, also known as à-trous convolutions, limit the abstraction of features by 

using up-sampled filters that keep the data resolution unchanged over consecutive layers. 

Moreover, DCONVs at different dilation factors R can be performed jointly to build 

relationship with ever more far pixels, as stated by the À-trous Spatial Pyramid Pooling 

(ASPP) approach [34] (introduced in Section 2.3.3). However, the à-trous convolutions 

required by the latter constitute a speed bottleneck that makes the use of efficient 

hardware accelerators desirable to reduce the execution time. Unfortunately, although the 

number of operations required to perform dilated convolutions with a K×K kernel does 

not vary with R, the hardware accelerators validated for traditional CNNs cannot be 

trivially adapted to the ASPP. Indeed, other than the management of computations, data 

buffering must be properly treated. For this reason, new designs have been recently 

proposed [36, 55, 56]. 

Drivable region segmentation using the Light Detection And Ranging (LiDAR) 

strategy is performed by the accelerator presented in [36]. The latter executes both 

conventional and dilated convolutions, with R=2, and takes advantage of high parallelism 

to achieve real-time performances. Autoregressive deep CNNs are executed using the 

architecture [55], whereas 1D DCONVs are equipped with data reuse and batching to 

manage temporal correlations in [56]. Considering the peculiarities of the referred 

proposals, it can be concluded that none of them is suitable to completely support the 

ASPP approach for image segmentation. Indeed, on the one hand, the architectures 

proposed in [55, 56] are conceived to perform 1D dilated convolutions and do not provide 

either the adequate computational capabilities or the appropriate data buffering 

architectures to move towards the 2D scenario. On the other hand, the design 

demonstrated in [36] supports only the dilation rate R=2 that is quite low for certain 

applications, such as biomedical imaging, that could require dilation rates up to R=24 

[35]. 

3.1.2. THE PROPOSED ARCHITECTURE 

The top-level architecture of our proposed Dilated Convolution Engine (DCE) [13] 

is illustrated in Figure 3.1. The à-trous Buffer reads data belonging to the generic ifmap 

as inputs and arranges different dilated convolution windows in parallel. Meanwhile, the 

Weights Buffer furnishes as many as kernel weights. The Convolution Core is fed by the 
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referred data and executes the required MACs. In order to produce the generic ofmap, the 

results obtained for the current ifmap must be accumulated to those obtained for the 

previous ones. The unit BRAMs for Accumulations exploits on-chip memories to both 

store the current results and to resume them for subsequent accumulations among the 

different fmaps’ channels. All these operations are orchestrated by the Control Unit and 

repeated until the last ifmap is processed. When this event occurs, the module ReLUs infer 

the homonymous non-linearity to the provisional outputs, thus providing the final 

Rofmaps values. According to the ASPP method, ifmaps are also subjected to the Global 

Average Pooling [57] through the homonymous Pooler. 

 

The à-trous Buffer arranges inputs into M separate K×K dilated windows, each 

supporting a specific dilation rate, with M set at design time. Figure 3.2(a) schematize the 

latter when M=4. There, KEM is the actual size of the maximum window given by KEM = 

K+(K–1)×(RM–1), with RM being the maximum supported dilation factor. Specifically, 

the referred figure refers to KEM = 49 considering K=3 and RM=24. Inputs directly supply 

the Sliding Windowed Buffer as a stream of data. The latter consists of a register file, 

which accommodates up to KEM×KEM pixels, and KEM–1 First-In First-Out memories 

(FIFOs) that locally store W–KEM data, with W being the width of each ifmap. Finally, the 

Zero-Padding module properly manages the border values taking into account that each 

dilated window may require a different padding size. Figure 3.2(b) details the VHDL 

description of the generic dilated window using parametric constructs, which ensures the 

correct arrangement of multiple windows of pixels through few code lines, other than the 

possibility to reuse this piece of code within other designs having different requirements 

in terms of kernel size and/or dilation factors. Specifically, this piece of code consists of 

Figure 3.1 The proposed Dilated Convolution Engine (DCE). 
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a for generate loop, through which the body is replicated M times (i.e., the RATE_WIDTH 

parameter), by providing as many windows of inputs for processing. The multi-

dimensional array win_int collects the actual inputs provided by the dilated win_in array. 

The array parameter R contains all the supported dilation factors. The cells taken into 

account are expressed by the instances on the right, and following the patterns reported 

in Figure 3.2(a). 

 

Figure 3.2 (a) The à-trous Buffer for M=4; (b) The VHDL code of the generic dilated 

window using parametric constructs.  

(a) 

(b) 
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The Convolution Core processes M sliding windows in parallel using as many as 

MACKS units through cascaded DSP slices. For instance, Figure 3.3 illustrates the MACKS 

engine when K=3, KS=K2=9. It is worth underlining that the module MAC9 is designed to 

efficiently exploit also the fast dedicated interconnections available on-chip to meet high-

performance requirements [58]. 

With the input data and the kernel coefficients being x- and y-bit wide, respectively, 

the generic convolution produces a z-bit result, with 𝑧 = 𝑥 + 𝑦 + ⌈log2(𝐾 × 𝐾)⌉. To 

limit the on-chip memory usage, each result is quantized to x-bit. Homologous results 

coming from the different dilated convolutions are packed within a single (M×x)-bit word 

and locally stored within the BRAMs for Accumulations. Finally, the module ReLUs 

rectifies the M values by using simple multiplexing logic. 

 

The novel DCE was purposely designed to comply with the fourth generation of the 

Advanced eXtensible Interface (AXI4) protocol [59]. The latter makes the circuit able to 

manage inputs and outputs as streams, other than being equipped with configuration 

registers that can be accessed by the general-purpose processor to configure the unit at 

run-time (e.g., start/stop of computations, beginning of new inputs to be processed). This 

capability is provided through the Control Unit visible in Figure 3.1 that manages the data 

transfers and orchestrates all the auxiliary operations required during the overall 

computation. While the ifmaps, the kernel coefficients, and the final Rofmaps are 

Figure 3.3 The MAC9 module for K=3. 
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transferred by AXI4-Stream transactions, the Gavg is managed by the AXI4-Lite 

interface.  

3.1.3. EXPERIMENTAL RESULTS 

As a case study, the proposed DCE was specialized to accelerate a model for 

biomedical image segmentation [35] reported in Figure 3.4. This neural network 

processes 32 200×200 ifmaps. The dashed box highlights the ASPP Layer, where all the 

units run in parallel. To support it, the DCE was configured with x=y=8, M=4 and R=6, 

12, 18, 24. Validation tests were performed on the FPGA-based SoC shown in Figure 3.5 

and implemented within the Xilinx XC7Z020 device [58]. There, the DMA units (third 

party cores) were used to upload both the ifmaps and the kernel coefficients from the 

external DDR memory and to stream them towards the DCE. 

 

 

Figure 3.4 The deep CNN model referenced as a case study. 

Figure 3.5 The referred embedded system architecture. 
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In turn, the latter moves the computed Rofmap towards the DMAs, which store the 

received results within the DDR memory. The software routine executed by the 

Processing System (PS) configures the DMAs by means of AXI4-Lite transactions.  

Table 3.1 reports the post-implementation characterization in terms of (a) the model 

configuration (i.e., ifmap sizes, number of input channels NC, number of ifmaps processed 

in parallel Pf, M and R as previously defined); (b) the design type (i.e., characterization 

of the single DCE as a standalone (SA) unit, characterization of the complete embedded 

system (ES)); (c) input arrays format (i.e., one-dimensional or bi-dimensional); (d) 

resource occupation (i.e., number of LUTs, FFs, BRAMs and DSPs used); (e) achieved 

clock frequency; (f) power dissipation in Watt. Figure 3.6 illustrates the percentage 

changes with respect to the counterparts. Even though a direct comparison with [55] and 

[56] is not feasible, since they process 1D data, the referred table would provide the reader 

with the “big picture”. It is worth underlining that [36] and [55] are characterized as SA. 

Furthermore, the highly parallel architecture demonstrated in [36] was developed using 

the high-end Xilinx UltraScale platform [60], running at 350 MHz running with a latency 

of 0.036ms to provide couples of ofmaps. However, the maximum dilation rate supported 

is R=2 and the auxiliary modules responsible for the communication protocol are not 

taken into account either in terms of resources requirements or in terms of speed 

performances. The amounts of LUTs, FFs, BRAMs and DSPs required by the novel DCE 

are ~9.9×, ~14×, ~42×, and ~73× lower than [36]. This is motivated by the high input 

parallelism of [36] (i.e., 64 inputs in parallel), as well as the management of padding 

which requires several memory locations pre-loaded with zeros to emulate the behavior 

of borders. When compared to [55], the proposed DCE uses ~70× and ~13× less BRAMs 

and DSPs, but ~2.3× and ~5.6× more LUTs and FFs, respectively. Indeed, since [55] 

deals with 1-D data, it heavily exploits buffers for queue caches management to meet the 

data reuse requirement. 

Despite the usage of the low-end Xilinx Zynq-7000 platform [58], our DCE exhibits 

a remarkable computational capability. Indeed, it runs at 181 MHz and processes the 

generic ifmap with the dilation rates 6, 12, 18 and 24 in only 0.25ms. Moreover, the very 

limited use of the available resources limits the power consumption to just ~265 mW. 

When compared to its all-software counterpart that runs on the 666.67 MHz dual-core 
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ARM processor within the SoC, the novel DCE exhibits a 648× speed-up. Indeed, 324 

ms are needed to run the whole ASPP core by software. 

 

 

Table 3.1 also shows that the contribution of the auxiliary circuitry responsible for 

the communication protocol does not significantly affect the overall performances of the 

Table 3.1 Characterization of the proposed DCONV accelerator and state-of-the-art 

comparisons. 

Ref. Device 

Data structure, 

Parallelism 

Dilation Rates 

Design Data 

Resources Utilization 
Frequency 

[MHz] 

Power 

[W] 
LUTs FFs BRAMs DSPs 

New XC7Z020 

ifmap size 200×200 

NC=32, Pf =1, 

M=4, R=6, 12, 18, 24 

ES 2D 8745 8264 38.5 42 150 1.7681 

New XC7Z020 

ifmap size 200×200 

NC=32, Pf =1, 

M=4, R=6, 12, 18, 24 

SA 2D 3854 2363 36.5 42 181 0.265 

[36] XCKU115 

ifmap size 64×180 

NC=64, Pf=64, 

M=2, R=1, 2 

SA 2D 38082 33530 1543 3072 350 12.594 

[55] XCVU13P - SA 1D 1669 425 2580 540 150 23 

[56] XC7Z020 - ES 1D 47489 26942 120 192 80 - 

1Also the contribution of the Processing System is included. 

Figure 3.6 Percentage change comparisons: resources, frequency, power. 

New State-of-the-art 
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whole ES. In fact, the maximum running frequency is reduced by only ~17% with respect 

to the SA implementation.  In comparison with [56], apart the ~2.2× higher running 

frequency, the proposed ES exhibits much lower resources utilization. 

Finally, it was estimated that, without significantly increasing the resources 

requirement reported in Table 3.1, the proposed ES is able to execute the entire 

biomedical imaging CNN model within a time ~244× lower than the pure software routine 

run by the ARM processor. Table 3.2 illustrates this performance estimation. The case 

Full HW reports the estimation when all the layers of the model [35] are performed by 

the FPGA. The case HW+SW refers to the case in which the ASPP only is accelerated by 

the FPGA. Finally, the case Full SW reports the estimation related to the full model 

executed on the general-purpose processor. 

In order to evaluate the scalability of the proposed solution, the resources trend, 

varying both the ifmaps and the kernel sizes, was evaluated considering the XC7Z030 

device [58] as benchmarking platform. Figure 3.7 shows that the number of DSPs, logic 

LUTs and FFs mainly depends on the kernel size. This is because the wider the kernel 

size, the wider the size of the à-trous Buffer, therefore the higher the number of registers 

as FFs. In addition, wider kernels mean more MACs to be performed by DSPs.  

The amount of occupied BRAMs depends only on the ifmap size. Indeed, the 

module BRAMs for Accumulations adopts these on-chip storage resources to temporarily 

buffer provisional results, which depend in turn on the sizes of input images. Finally, the 

number of LUTs used as memory varies almost equally versus both the ifmap and the 

kernel sizes.  

Table 3.2 Estimation of the execution time of the model [35]. 

Layers 

 

Full HW  

[ms] 

HW+SW  

[ms] 

Full SW  

[ms] 

 

CONV 3×3, R=1 (×2) 

 
0.50 80.00 (SW) 80.00 

CONV 3×3, R=2 (×2) 

 
0.50 80.00 (SW) 80.00 

ASPP (×2) 

 
0.50 0.50 (HW) 324.00 

CONV 1×1 (×2) 

 
0.50 4.00 (SW) 4.00 

Total 2.00 164.50 488.00 
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3.2. DESIGN OF AN EFFICIENT DECONVOLUTION ENGINE FOR 

FPGA-BASED SYSTEMS-ON-CHIP 

3.2.1. BACKGROUND 

Image segmentation [61], as well as object generation [62] and high-resolution 

imaging [63], can be interested by a cooperation between conventional CONV Layers 

and TCONV Layers (or Deconvolution Layers). In such a scenario, while conventional 

CONVs act like a down-sampler to compact the most relevant features, deconvolutions 

aim at predicting new values in order to furnish up-sampled outputs. Despite this 

difference, the key computations are performed similarly. Indeed, deconvolutions are 

nothing but CONVs executed on padded and strided inputs [64].  

In the last years, the hardware acceleration of deconvolutional neural networks has 

gained ever more attention with the aim to minimize the number of redundant 

computations carried out by padding and striding (i.e., multiplications by zero). As an 

example, the conventional algorithm introduced in Chapter 2 was exploited in the 

FlexiGAN framework [46] to execute Generative Adversarial Networks (GANs) [65]. To 

Figure 3.7 Analysis of resource utilization. 
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avoid redundant computations, data and filters are properly reorganized. As a drawback, 

this leads to unbalanced workloads, thus making additional control logic necessary and 

severely limiting the achievable overall performances.  

The efficient design strategy presented in [50] overcame the above issues by 

performing a kernel conversion to calculate all the pre-addable weight combinations. 

Thus, a new set of filters is applied to the ifmaps to perform conventional convolutions. 

Such a strategy drastically reduces the computational complexity and introduces 

noticeable speed-up either over other FPGA accelerators or over GPU platforms. 

Authors in [48] presented a design based on a completely different technique [49]. 

Specifically, each input pixel is multiplied by the respective K×K kernel, thus furnishing 

a window of K×K output products. It is worth underlining that neighboring input pixels 

can lead to overlapping output windows. In fact, considering the stride S, up to K–S 

overlapping rows and columns must be properly managed to provide the final results. 

Unfortunately, the referred architecture does not manage the latter effectively. Indeed, in 

order to recognize no-overlapping blocks, it applies the reverse looping strategy that 

requires the computation of input coordinates at each filtering step, with penalties in terms 

of computational complexity and speed performance. 

The accelerator proposed in [66] was purposely conceived to handle semantic 

segmentation, by means of a complex architecture to manage convolutions and 

deconvolutions separately. However, due to its hardware resources requirements, it is not 

suitable for low-end FPGA-based SoCs. In addition, while multiplications are performed 

efficiently, by only using DSPs, the additions required for row/columns overlaps are 

executed by means of configurable logic resources, thus limiting the clock frequency. 

This structure was further improved in [67], where both convolutions and deconvolutions 

are joined in just one engine to perform remote segmentation. The computing core 

consists of a MAC unit that operates in a serial manner, and supporting high level of 

parallelism for both fmaps and filters. Unfortunately, due to its high hardware resources 

requirements, this accelerator can be actually exploited only within high-end FPGA-

based SoCs. Moreover, it is not a suitable solution to achieve the highest speed. Indeed, 

it requires up to 4 clock cycles to furnish each output pixel from a deconvolution, 

depending on how many overlapping pixels must be managed. 
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The solution presented in [68] deals with both 2D and 3D deconvolutions. A 

compression scheme was introduced to manage sparse activations and filter in order to 

reduce the computational redundancy. However, this strategy requires data to be encoded 

in coordinate format. This task involves the calculation of the output coordinates of each 

pixel, thus limiting the feasibility in continuous streaming-based heterogeneous 

embedded systems.  

The proposals of [69, 70] exploited the effective Winograd algorithm to deploy 

Deconvolution Layers for GANs. Indeed, this method transforms CONVs into element-

wise multiplications implemented by additions and shift operations. Despite the 

remarkable speed performances, also thanks to high parallelism, the Winograd algorithm 

introduces area and power overheads due to the pre- and post-processing operations to 

transform data back and forth the Winograd domain. 

3.2.2. THE PROPOSED ARCHITECTURE 

Among the several approaches previously discussed, we refer to the Input-Oriented 

Mapping (IOM) [49]. This algorithmic strategy considers a H×W ifmap and a K×K filter 

kernel, and takes into account the stride S as the up-sampling factor, which provides the 

ratio between the sizes of the final output image with respect to those of the original input 

image. The following conceptual steps are performed: 

▪ the generic input pixel I(i,j) is multiplied by the kernel and the resulting block of K×K 

products is properly arranged within the ofmap space by occupying the K×K area 

starting at the position (i×S,j×S).  

▪ Neighboring blocks, obtained from adjacent input pixels, have K–S overlapping 

rows/columns, which must be summed up.  

▪ Finally, P pixels on the ofmap borders are cropped, thus generating a HO×WO ofmap, 

with HO=S×(H–1)+K–2P and WO=S×(W–1)+K–2P. 
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The example depicted in Figure 3.8 shows an example that considers a 3×3 ifmap 

by using K=3, S=2 and P=1. For instance, the orange pixel I(0,0) within the ifmap leads 

to the 3×3 orange block of pixels starting at the location (0,0) within the intermediate 

ofmap. Similarly, by the red pixel I(1,1) within the ifmap, the 3×3 red block starting at 

the location (2,2) in the intermediate ofmap is obtained. And so on for all the other pixels. 

The overlapping pixels within neighboring blocks in the intermediate ofmap are summed 

up, as happens to the pink pixel in the location (2,2). Finally, a 1-wide border (i.e., the 

grey border in the figure) is cropped to provide the final ofmap. 

The top-level architecture of the novel accelerator [14], named Deconvolution 

Layer Processing Element (DLPE), is depicted in Figure 3.9. It is able to process TN 

ifmaps (if0, …, ifTN-1) and TM filter kernels in parallel, thus providing TM ofmaps (of0, …, 

ofTM-1) at the same time. The engine also meets pixel-level parallelism. Indeed, the DLPE 

can receive PN pixels from each ifmap and can furnish PM results belonging to each ofmap 

in parallel, with PM=S×S×PN. It is worth underlining that TN, TM, PN, PM are set at design 

time. 

The novel FPGA accelerator was conceived supposing that both ifmaps and kernels 

are stored within an external memory. These data can be uploaded and streamed towards 

the DLPE by means of auxiliary circuitries, such as the Direct Memory Access (DMA) 

and the Video DMA (VDMA) modules. While the F-bit pixels of the ifmaps are streamed-

Figure 3.8 The adopted deconvolution approach. 

Figure 3.9 The top-level architecture of the Deconvolution Layer Processing Element. 
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in directly to the Deconvolution Engine (DE), the N-bit kernels coefficients are 

preliminarily locally stored within the Kernel Buffer and then provided to the DE, which 

is the core unit of the design. The Accumulation Logic (AL) adopts fast adder trees to 

accumulate the provisional results produced at the various computational steps and 

collected within on-chip memory resources until the last step is performed and the final 

ofmaps are generated. Indeed, the data parallelism parameters TN and TM strictly depend 

on the resources availability within the specific device chosen as the realization platform. 

Accordingly, when the number NC of ifmaps and/or the number NF of kernels to be 

processed are greater than TN and TM, respectively, the overall computation is completed 

within multiple steps. The latter, as well as the overall operations, are properly 

orchestrated by the Finite State Machine (FSM) unit, which also makes the accelerator 

AXI4 [59] compliant. Specifically, it takes care of managing the activities related to data 

transfers, including the AXI4-Stream transactions through which the kernels coefficients 

and the ifmaps are moved. 

The Kernel Buffer, depicted in Figure 3.10, consists of a register file that stores 

K×K×TM×TN N-bit coefficients. During each clock cycle, the buffer is fed by the 

homologous coefficients (i.e., located at the same spatial positions) related to the TN 

ifmaps if0, …, ifTN-1 and packed within one TN×N-bit word. Therefore, all the coefficients 

are provided to the DE within just K×K×TM clock cycles. The Separate & Route logic 

properly dispatches the coefficients to the DE. The latter is the computational element of 

the DLPE and, as shown in Figure 3.11, it consists of TM×TN Deconvolution Units (DUs) 

that work in parallel. At each clock cycle, the generic 𝐷𝑈𝑜𝑢𝑡
𝑖𝑛  receives PN adjacent input 

pixels I(i,j), I(i,j+1), …, I(i,j+PN-1) from the ifmap ifin, with in=0, …, TN-1, and performs 

the deconvolution with the relative K×K kernel 𝐶𝑜𝑢𝑡
𝑖𝑛  as required to compute the ofmap 

ofout, with out=0, …, TM-1. The input pixels are multiplied in parallel by the coefficients 

of the kernel and PN blocks of K×K products are computed at the same time. 

Figure 3.10 The Kernel Buffer. 
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Each DU was structured, as depicted in Figure 3.12, to manage efficiently the 

overlapping rows/columns between the neighboring blocks of products. Indeed, each DU 

consists of the K modules Rowx, with x=0, …, K-1, each using an appropriate number of 

DSPs, depending on the supported parallelism. In addition, to guarantee the proper time 

alignment of the overlapping products, First-In-First-Out (FIFO) Buffers are exploited. 

 

To better explain how the generic DU performs deconvolutions, let us consider, as 

an example, the kernel size K=5, the stride S=2 and PN=4. In this case, x ranges from 0 to 

4 and five modules Rowx are required, each one, as reported in Figure 3.13, consisting of 

20 DSPs. The latter are named dy, with d=0, …, 3 and y ranging from 0 to 4, to indicate 

that they multiply the input pixel I(i,j+d) by the kernel coefficient C(x,y). The additional 

Figure 3.11 The architecture of the novel Deconvolution Engine. 

Figure 3.12 The structure of the generic DU. 
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DSPs x0, …, x7 are required only within the modules Row0, Row1 and Row2 to manage 

the overlapping rows. Conversely, the S×PN results computed by Row3 and Row4 are 

directly provided by the DSPs 00, 01, 10, 11, 20, 21, 30 and 31. All the multiplications 

and the additions performed by the generic DU are summarized in Figure 3.14 that also 

shows, for each entry, the related row and column indices within the intermediate ofmap. 

Since K–S=3, as highlighted by colored entries, each block of products computed by the 

DU has three columns and three rows overlapped with neighboring blocks. 

 
Figure 3.13 The architecture of the module Rowx for PN=4, K=5, S=2. 
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Figure 3.14 The operations performed by the generic DU when PN=4, K=5, S=2. 



LOW-LEVEL DESIGN FOR CONVOLUTIONAL NEURAL NETWORKS 66 

It can be noticed that several kinds of overlapping products must be managed. The 

products related to the PN adjacent input pixels, currently received by the DU, have the 

row index equal to i and the column index ranging between j and j+3. These products are 

reported in Figure 3.14 with black characters and their overlaps are managed through the 

red interconnections visible in Figure 3.13. Conversely, the products with red characters 

are computed at the next clock cycle, when the DU is receiving the next PN adjacent 

pixels, i.e. I(i,j+4), …, I(i,j+7), as inputs. The column overlaps related to these products 

are managed through the blue interconnections in Figure 3.13 to transfer the delayed 

outputs produced by the DSPs 32, 33 and 34 towards the DSPs 00, 01 and 02, 

respectively. Finally, the products with blue characters involve the pixels I(i+1,j), …, 

I(i+1,j+3), which belong to the (i+1)-th row of the current ifmap. To receive these pixels 

as input, the DU waits until all the pixels of the i-th row are processed. As previously 

stated, appropriate Buffers are exploited to guarantee the proper time alignment of these 

overlapping products. In the referred example, they are required at the output of the three 

modules Row2, Row3 and Row4. These overlapping products are managed within the 

modules Row0, Row1 and Row2 through the DSPs x0, …, x7 and the green 

interconnections depicted in Figure 3.13. Thanks to the fully pipelined architecture, after 

the initial latency, each DU furnishes S× S×PN deconvolved pixels at every clock cycle. 

These deconvolved pixels are reported in the white entries of Figure 3.14 as provided by 

the modules Row0 and Row1. 

Resources requirements, latency and throughput rate of the DE depend on the 

ifmaps size H×W, as well as on K, S, TN, TM and PN. In the generic scenario, each DU 

needs [K×K+S×(K-S)]×PN DSP slices to perform multiplications and to sum the 

overlapping neighboring products that are time aligned through S×(K–S)×PN Row 

Buffers, each being ⌈
𝑆×(𝑊−1)+𝐾

𝑆×𝑃𝑁
⌉ − 2 wide. The novel DE was designed also considering 

the management of border pixels. This is a key aspect, since it affects the data flow of the 

input streams. In fact, each of the TM×TN DUs, which operate in parallel, receives its own 

ifmap in the raster order. At the end of each row, the DE stops the incoming stream of 

pixels for ⌈
𝑆×(𝑊−1)+𝐾

𝑆×𝑃𝑁
⌉ −

𝑊

𝑃𝑁
 clock cycles. During this time, the zero padding is applied 

through a proper multiplexing logic directly controlled by the FSM that also manages the 

AXI4 protocol signals. At the end of the current step, the DE provides ⌈
𝑆×(𝐻−1)+𝐾

𝑆
⌉ − 𝐻 
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padding rows, before acquiring the next group of ifmaps to perform the subsequent 

computational step. 

 

As previously stated, each DU furnishes TM×TN blocks of S×S×PN pixels. The 

homologous pixels within these blocks are accumulated to compose an intermediate 

ofmap. In turn, the intermediate ofmaps are accumulated step-by-step to each other until 

the DLPE provides the final result. The Accumulation Logic (AL) acts in this way and it 

is represented in Figure 3.15(a). The Route module receives blocks of deconvolved pixels 

from the DUs and sends them to S×S×TM×PN adder trees, considering that each group of 

TN homologous data must supply the same Adder Tree. The latter adopts DSPs to execute 

accumulations. The intermediate ofmaps are temporarily stored within local Simple Dual 

Port RAMs (SDPRAMs). They are resumed later to be accumulated with the intermediate 

ofmaps produced at the next step. During the last computational step, the final 

Figure 3.15 The Accumulation Logic (a) the architecture; (b) the ofmap arrangement for 

PN=4 and S=2.  
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deconvolved pixels are generated. The Quantize&Group module quantizes the final 

deconvolved pixels to F-bit values and properly arranges them into packed words to be 

processed by the next layer, as required by the referenced model. These words are stored 

within the Output Buffer Memory to be then moved to the external DDR memory. In the 

meantime, a bank of Multiplexers drives SDPRAMs with zeros. In this way, the 

SDPRAMs are prepared for the next deconvolution task without wasting additional 

initialization time. 

The example depicted in Figure 3.15(b) shows one 6×24 ofmap produced with S=2 

and PN=4. Different colors are used to highlight the pixels furnished in parallel at a certain 

clock cycle, as well as the different numbers refer to the clock cycle in which those pixels 

are provided. So that, as an example, all the pixels located at the magenta entries are 

furnished at the 4th clock cycle. To ensure that the final ofmap is stored within the external 

DDR in the raster order, each block of pixels can be arranged in two words, each 

containing the pixels within the same row. Hence, in the example, the Quantize&Group 

module would furnish two 2×PN×F-bit words at every clock cycle. In general, this 

module packs the final deconvolved pixels within TM×S words, each being S×PN×F-bit 

wide. Taking into account the example of Figure 3.15(b), and supposing TM=2 and F=16, 

this means that the Quantize&Group unit packs the output pixels within 4 words, each 

being 128-bit wide. 

3.2.3. EXPERIMENTAL RESULTS 

Parametric VHDL constructs allowed the novel hardware accelerator to be 

customized to different operating conditions and high computational speeds to be 

achieved by carefully using the available resources. The circuit was designed and 

characterized using the Vivado Design Suite (v.2019.2) [71]. For purposes of comparison 

with existing competitors, the DLPE accelerated the DCGAN neural network [22]. To 

this aim, it was accommodated with the FPGA-based embedded system of Figure 3.16. 

Even though only implementations within Xilinx devices are detailed in the following, 

virtually any other devices family can be used for purposes of prototyping. The 

Programmable Logic (PL) accommodates the DLPE and all the auxiliary circuitry 

required to manage the data transfers from/to the external DDR memory, as ruled by the 

AXI4 communication protocols [59]. As detailed in the legend of Figure 3.16, different 



LOW-LEVEL DESIGN FOR CONVOLUTIONAL NEURAL NETWORKS 69 

colors are used to distinguish connections supporting memory-mapped transactions from 

data streams. 

The supported parallelism level is dictated by TM, TN, PM and PN, which are properly 

set in accordance with the amount of resources available within the specific device chosen 

as the target implementation platform. As an example, using the low-end XC7Z020 Zynq 

device [58], with TM and TN being set to 2 and 3, respectively, PM=4 and PN=1 can be 

used. This means that 
 𝐹

 𝑀
 pairs of ofmaps are computed, each within 

 𝑐

 𝑁
+ 1 

computational steps. For what concerns the other modules within the PL: 1) the DMA 

[72] is responsible for uploading the kernels coefficients; 2) the VDMAs [73] are 

responsible for resuming and storing the ifmaps and the ofmaps; 3) the AXIS Combiner 

[74] synchronizes the parallel input data within a single data stream, then fed to the DLPE; 

4) eventually, the AXIS Broadcaster [74] separates the output pixels received in parallel 

from the DLPE depending on the ofmap they belong to. It is worth noting that the adopted 

data transfer policy allows the ofmaps to be directly arranged within the DDR memory in 

the raster order. Therefore, subsequent cascaded deconvolutional layers can process them, 

without requiring either complex management of the memory address space or expensive 

data reorganization. 

 

Figure 3.17 clarifies the computational flow of the DLPE with regards to the whole 

embedded system. During the first step, the processor configures the DMA to specify 

which off-chip memory area must be accessed to read a block of K×K×TM kernel 

coefficients. These coefficients are then streamed-in towards the DLPE to be stored 

within the Kernel Buffer. Meanwhile, the processor instructs the VDMAs to transfer 

Figure 3.16 The referred embedded system architecture. 
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H×W×TN ifmaps from the off-chip memory into the DLPE. After a starting latency, the 

latter will produce the intermediate TM ofmaps to be temporarily stored on-chip for further 

accumulations. The above operations are repeated for all the subsequent steps, until the 

last one is executed. Thus, the VDMAs are configured to transfer the final quantized TM 

ofmaps to the external memory. 

 

Table 3.3 presents the characterization of the proposed architecture using both low- 

and high-end devices for fair comparisons with state-of-the-art counterparts. The analysis 

reports: the supported parallelism (TM, TN, PM and PN), the kernel size (K) and the stride 

(S); the resources requirements; the running frequency; the number of giga operations 

performed per second (GOPS); and, finally, the dynamic power consumption. In addition, 

while the designs presented in [68, 69, 50] are standalone units (SUs), those demonstrated 

in [48, 75, 70] are embedded systems (ESs). For this reason, several SU and ES versions 

of the design here presented were implemented. Obviously, in comparison with the SU 

implementations, due to the auxiliary modules used to manage data transfers from/to the 

external DDR memory, the ES implementations occupy more LUTs, FFs and on-chip 

BRAMs, other than an increased dynamic power dissipation. Figures 3.18-3.19 report the 

percentage changes with the counterparts to easily follow the discussion.  

The SU architectures presented in [68, 50] use K=3 and S=1 at high parallelism. 

Nevertheless, the design presented here, though it exploits a lower parallelism and 

operates with K=5 and S=2, which are more complex to manage, at a parity of the device 

used, reduces the amount of occupied LUTs, FFs, and DSPs by ~86%, ~90% and ~43% 

Figure 3.17 The computational flow of the whole architecture. 
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with respect to [50]. Furthermore, it occupies 20× less BRAMs and reaches a 1.5× higher 

running frequency. When operating with TM=2, TN=4, PM=16, PN=4, K=3 and S=1, the 

resources requirements are further reduced and the consumed dynamic power is more 

than 45% lower than [50]. Similarly, when implemented within the high-end 

XC7VX690T device [76], the proposed design saves a significant amount of occupied 

resources with respect to [68]. 

 

Another consideration is about the high parallelism exploited in [68, 69, 50] at the 

ifmaps parallelism TN. Indeed, ad-hoc memory managements are necessary to allow either 

64 or 128 homologous pixels belonging to as many ifmaps to be accessed at the same 

time. To sustain this data access strategy, the designs presented in [68, 50] need 

Table 3.3 Characterization of the proposed architecture for deconvolutions and state-of-

the-art comparisons. 

 
Device/ 

(Design, Precision) 

TM, TN 

PM, PN 

 K, S  

LUTs FFs BRAMs 

[Mb] 

DSPs Freq. 

[MHz] 

GOPS Dyn.  

Power  

[W] 

New 
XC7Z020 

(SU, 16b fix-p) 

2, 3 

4, 1  

5, 2  

2.9k 

(5.5%) 

 

4.3k 

(4.1%) 

 

0.84 

(17.1%) 

 

210 

(95.5%) 

 

200 72 0.42 

New 
XC7Z045 

(SU, 16b fix-p) 

2, 4  

8, 2 

5, 2 

6.4k 

(2.9%) 

 

9.6k 

(2.2%) 

0.84 

(4.4%) 

560 

(62.2%) 

250 240 1.14 

New 
XC7Z100 

(SU, 16b fix-p) 

2, 4 

16, 4 

5, 2 

15.5k 

(5.6%) 

22.9k 

(4.1%) 

0.84 

(3.2%) 

1120 

(55.5%) 

300 

 

576 

 

2.62 

New 
XC7VX690T 

(SU, 16b fix-p) 

2, 3 

32, 8  

5, 2 

23.2k 

(5.4%) 

34.4k 

(4%) 

0.84 

(1.6%) 

1680 

(46.7%) 

320 921.6 4.1 

[69] 
XC7VX485T 

(SU, 32b float-p) 

4, 128 

1, 1 

5, 2 

142.7k  

(47%) 

151.4k  

(24.9%) 

9.14  

(25.2%) 

2560  

(91.4%) 

100 NA NA 

[68] 
XC7VX690T 

(SU, 16b fix-p) 

2, 64  

8, 1 

3, 1 

304.2k 

(70.2%) 

602.7k 

(69.6%) 

25.03 

(48.4%) 

2304 

(64%) 

200 1578 NA 

[50] 
XC7Z100 

(SU, 16b fix-p) 

64, 64 

1, 1  

3, 1  

117.9k  

(42.5%) 

247.2k  

(44.5%) 

17.4  

(65.5%) 

1987  

(98.4%) 

200 NA 2.89 

New 
XC7Z020 

(ES, 16b fix-p) 

2, 3 

4, 1 

5, 2  

12.8k 

(24.6%) 

 

17.7k 

(17.1%) 

1.49 

(30.4%) 

 

210 

(95.5%) 

150 54 1.73 

New 
XC7Z045 

(ES, 16b fix-p) 

2, 4 

8, 2  

5, 2 

16.3k 

(7.5%) 

23k 

(5.3%) 

1.86 

(9.7%) 

560 

(62.2%) 

167 

 

160.3 

 

2.3 

 

[48] 
XC7Z020 

(ES, 12b fix-p) 

NA, NA 

1, 1 

NA, NA 

25.5k 

(48%) 

30.9k 

(29%) 

2.35 

(48%) 

220 

(100%) 

100 2.6 NA 

[75] 
XC7Z045 

(ES, 16b fix-p) 

NA, NA 

1, 1 

5, 2 

161.8k 

(74%) 

148.6k 

(34%) 

15.3 

(80%) 

810 

(90%) 

150 

 

NA NA 

[70] 
XC7Z045 

(ES, 16b fix-p) 

2, 2  

4, 4 

5, 2 

196.7k  

(90%) 

NA 10.9  

(57%) 

603  

(67%) 

167 133.8 5.8 

1 NA = Not Available. 
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Figure 3.18 Percentage change comparisons (SU): resources, frequency. 

New State-of-the-art 

Figure 3.19 Percentage change comparisons (ES): resources, frequency. 

New State-of-the-art 
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considerable usage of on-chip BRAMs. However, this approach limits the scalability 

towards low-end devices at reasonable speed performance. Conversely, in order to keep 

data transfer to/from the external memory regular, as happens with the simple raster scan 

order, the novel accelerator exploits pixel-level parallelism. This is a key feature to 

strengthen the feasibility towards low-end chips. Similar considerations arise for the 

accelerator demonstrated in [69]. However, the latter supports the 32-bit floating-point 

representation, which certainly leads to an overall quality higher than all the other 

solutions.  

Among the ES implementations, that based on the reverse looping approach [48] is 

the slowest one due to the addressing of pixels. At the parity of the implementation device 

platform, the ES presented here occupies ~49.8% less LUTs, ~42.7% less FFs, 1.6× less 

BRAMs and ~5% less DSPs. In addition, it is ~20.7× faster and achieves a density 

efficiency, evaluated as the ratio GOPS/DSPs, ~21.7× higher.  

The architecture here discussed also exhibits advantages with respect to [75, 70]. 

The significant reduction of occupied resources is due to the more efficient architecture 

of the generic DU. In fact, the separate analysis, purposely performed varying K and S, 

demonstrated that the proposed DU always minimizes the amount of occupied LUTs and 

FFs. This happens because, unlike the accelerator in [75], DSPs are exploited to perform 

both multiplications and additions. Finally, among the ES implementations, the design 

presented in [70] is certainly the most competitive in terms of speed performance. 

However, the novel ES exhibits a computational capability ~19.5% higher, it occupies 

~12× less LUTs, ~5.8× less BRAMs and ~7% less DSPs, and consumes ~60% less power. 

As previously stated, the computational capability supportable by the proposed 

accelerator depends on the specific realization platform. In fact, it is mainly dictated by 

the amount of required DSPs that, in turn, depends on the kernel size and the stride. 

However, the same amount of DSPs can be exploited differently to implement different 

configurations of the novel DLPE, depending on the parameters TM, TN, S, PM and PN. 

Establishing which configuration is the most appropriate for a specific operating 

environment is essential to implement the resources in the most efficient way. To this 

aim, different design spaces can be explored by varying the above parameters. For 

instance, the design space exploration reported in Figure 3.20 was carried out by 

considering the XC7Z020 device [58] as the target, thus setting the maximum number of 
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available DSPs to 220. The behavior of the proposed accelerator has been examined for 

various kernel sizes K and parallelism factors TM and TN with S=2, PM=4 and PN=1. In 

this condition, two scenarios were analyzed: in the Case1, TM=2 and TN=3 are maintained 

unchanged to establish the maximum supportable K; conversely in Case2, also TN varies 

between 24 and 6, while TM=1. In addition, for each K the maximum TN was considered 

(e.g., with K=2, thus TN=24). The number of DSPs used in the two referred cases by the 

DE and the AL versus K are indicated. As expected, in the first case the wider the kernel 

size, the higher the number of DSP slices required by the DE. Conversely, the red line 

shows that the number of DSPs used to implement the fast adder trees within the AL 

module is maintained constant to 24, since this value only depends on the parallelism and 

the stride. The above results show that, in such a case, the maximum kernel size 

supportable with 220 DSPs is K=5. This is the solution previously referenced in Table 3.3 

for both the SU and ES designs implemented within the XC7Z020 device [58].   

Results collected for the second analyzed scenario prove that, in order to comply 

with the amount of DSPs on-chip available, as the kernel size increases, the parallelism 

must decline. Obviously, as clearly shown by the blue line, the lower the parallelism, the 

lower the number of DSPs used for accumulations.  

 

Finally, referring to the XC7Z020 device [58], the execution time of the ES 

implementation here proposed was compared to a pure software design run by the 666 

MHz ARM-Cortex Processor available on-chip. When executing the most complex 

deconvolution layer involved in the selected DCGAN model [22], the embedded system 

Figure 3.20 Design space exploration within the XC7Z020 device at S=2. 
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is more than 1000× faster than the all-software implementation. Indeed, the software 

execution requires ~620 ms, while the FPGA execution takes ~0.6 ms. 

Overall, the main benefits of the proposed design can be summarized as follows: 

• The FPGA accelerator is scalable, thus being suitable to accelerate deconvolutions 

within different CNNs. 

• The novel architecture exploits both data- and circuit-level parallelism. As a results, 

both low-end and high-end FPGAs may be used to meet power- and performance-

constrained environments, respectively. 

• DSPs are fully exploited to perform efficient MACs. Accordingly, competitive speed 

performances with respect to the state-of-the art are achieved with reduced logic 

resources requirements and power consumption. 

• The proposed hardware accelerator complies with the AXI4 protocol [59] and, 

therefore, it can be easily accommodated within SoCs based on FPGAs. Furthermore, 

input and output streams are read and written from/to an external memory through the 

raster-order transfer policy; the latter allows data packets to be moved concurrently, 

thus positively impacting the latency. 

3.3. RUN-TIME RECONFIGURABILITY OF CONVOLUTION 

ENGINES FOR FPGAS. 

3.3.1. BACKGROUND 

In the last years, relevant endeavors were undertaken to equip FPGA-based 

accelerators for CNNs with run-time adaptability in terms of the supported kernel size, 

stride and image size [77, 42, 78, 79, 80, 44, 81]. Considering that state-of-the-art models 

frequently use 3×3 kernels, the convolution engine proposed in [77] combines multiple 

3×3 basic blocks to manage different kernel sizes. Unfortunately, this approach causes a 

non-negligible resource underutilization. Just to cite an example, four 3×3 blocks are used 

to support 5×5 CONVs, with ~30.5% of redundant computing engines.  

Authors in [42] proposed an uniform 4×256 MAC array proposed to address the 

above cited issue. In particular, it was made able to support up to 16×16 CONVs and 

256×256 fmaps’ size with a noticeable scalability. However, the management of both 
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ifmaps and coefficients buffering requires a quite complex auxiliary control logic, thus 

affecting the resources requirements significantly. 

The reconfigurable architecture presented in [78] allows to execute 3×3, 5×5 and 

7×7 convolutions (i.e., varying the kernel size K) with a very high utilization of the 

implemented resources. However, since this design was mainly tailored for high-end 

powerful platforms, it allows high speed performance at the cost of high power 

dissipation. 

Reconfigurable structures based on systolic arrays [79] reach low execution times, 

but they suffer of buffering requirements to accommodate data batches, thus showing a 

relatively high energy dissipation.  

The circuit adopted in [80] to accelerate the YOLO model [82] implements only 

1×1 and 3×3 kernels at the stride S=1. Moreover, even though the adopted parallelism 

makes this strategy devoted to high-end devices, it achieves limited peak throughput.  

In [44], Multiple Convolutional Layer Processors (M-CLP) are used to perform 

cascaded CONVs in parallel. Given that faster CLPs stay in idle until slower ones end 

their computations, this approach cannot utilize the resources as efficiently as possible.  

Finally, the Adaptive and Hierarchical CNN proposed in [81] uses resources much 

more efficiently by exploiting the partial reconfiguration of FPGAs, but the 

reconfiguration time (i.e., tens of milliseconds) significantly reduces the actual 

throughput.  

The work presented in this Section introduces an innovative efficient adaptive 

convolution architecture [15] that, in contrast with its direct competitors [77, 42, 78, 79, 

80, 44, 81], can support both odd and even kernel sizes by combining non-uniform 

computational blocks. Thanks to this approach, for a given CNN model, the proposed 

hardware accelerator guarantees either a higher utilization of the implemented resources 

to be achieved or a cheaper implementation platform to be used. Furthermore, the 

possibility of also managing even-sized kernels makes the approach proposed here 

suitable for CNN models that use TCONV Layers. Specifically, the proposed 

Reconfigurable Convolution Processing Element (RCPE) is made able to be run-time 

reconfigured to support the following set of parameters: 

• The kernel size K, which can assume the values K = 1, 3, 4, 5, 7, 9. 

• Square ifmaps, consisting of up to 224×224 pixels. 
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• Stride S=1, 2. 

3.3.2. THE PROPOSED ARCHITECTURE 

The top-level architecture of the RCPE is depicted in Figure 3.21. The included 

table reports the run-time adaptive parameters, with the respective ranges. The unit 

complies with the Advanced eXtensible Interface (AXI4) [59] to be integrated within 

FPGA-based embedded systems. The Configuration & Control Unit (CCU) receives the 

protocol signals and proper control signals that allow self-adapting the computation to 

different fmaps’ size, kernel sizes and strides. According to the actual set of 

reconfigurable parameters, the ifmap Buffer (IFB) is supplied by multiple ifmaps and 

arranges proper convolution windows. Meanwhile, the Weights Buffer (WB) stores the 

needed filters. Then, the Compute Unit (CU) performs several convolutions in parallel by 

using multiple Convolution Engines (CEs). Eventually, the ofmap Buffers (OFBs) store 

these intermediate results and perform accumulations to compose the final ofmaps.  

 

Figure 3.21 The top-level architecture of the proposed Reconfigurable Convolution 

Processing Element. 

Run-time adaptive parameters Range 

Kernel size K 1, 3, 4, 5, 7, 9 

Stride S 1, 2 

Input size fmap size Up to 224×224 
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Figure 3.22 illustrates the IFB unit. It consists of three parts: the KM×KM Register 

Matrix, the Line Shift Buffer and the Padding Unit. It is worth underlining that KM depends 

on the maximum supported kernel size. Specifically, we adopted KM=10. Due to the 

multiplexing logic interleaving the KM×KM registers of the Register Matrix, the IFB can 

arrange input pixels within different convolution windows: (a) one 9×9 window, (b) one 

7×7 window, (c) three 5×5 windows, and (d) eight 3×3 windows. The top leftmost 

registers are responsible for storing TM input pixels, each of them belonging to a different 

channel, whereas the others shift the incoming data and make them available for the 

subsequent processing. The rightmost registers are also responsible for transmitting pixels 

to the Line Shift Buffer. The latter is made of embedded Block RAMs, working as KM–1 

First-In-First-Out memories fmap_size–K wide, which temporarily stores pixels, thus 

providing expected input data to the leftmost registers of the Register Matrix. Finally, the 

Padding Unit performs proper zero-padding over the composed windows. Such a module 

consists of KM×KM banks of multiplexers, which furnish either the current pixels or zero 

in the case of padding. Two counters, that indicate the position of the current anchor point 

within the fmap, manage the selectors of the multiplexers.  

The CU includes TN CEs, with TN being the number of ofmaps provided in parallel. 

According to the windows provided by the IFB, each CE is able to execute up to TM 

convolutions and accumulates the homologous results to provide a provisional ofmap 

Figure 3.22 Example schematic of the ifmap Buffer when KM=10. 
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value. Among the possible non-uniformly sized tiles solutions, we chose the CE 

architecture illustrated in Figure 3.23(a), in that it well fits the Zynq target platforms [58] 

because uses almost completely the available DSPs.  

 

Figure 3.23 (a) The reconfigurable Convolution Engine. (b) VHDL code for DSPs 

belonging to Type-A PEs. 

(a) 

(b) 
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The CE consists of two types of Processing Elements (PEs): the MAC units, 

indicated as type-A PEs (PE-As), and the simple adders, named type-B PEs (PE-Bs). Both 

PE types are carefully implemented by means of the embedded DSP slices, assuring that 

critical signals are routed through fast dedicated interconnections and adaptive paths 

between PEs are properly activated by the current K. Figure 3.23(b) reports a sketch of 

VHDL code dealing with the interconnection of DSP slices within the generic PE-A. The 

parametric constructs allows the given code to be reused for any PE-A configuration. The 

DSPs’ computations are reported into the main for loop, where the array mults refers to 

the multiplication stage of each DSP, while the array pint refers to the accumulation stage. 

The VHDL code allows the DSPs to use the internal pipeline stages. This is accomplished 

by using a process that is sensitive to the clock signal clk. Each register is equipped with 

reset rst and clock enable ce. 

Overall, the referred CE is made of 81 PE-As and 18 PE-Bs that allow performing 

different types of convolutions: (a) eight 3×3 convolutions, (b) three 5×5 convolutions, 

(c) 5×4, 4×5, 4×4 convolutions, (d) eight 1×1 convolutions. Each of the configurations 

(a)-(d) refers to computations performed in parallel. Pipeline stages, depicted in grey, and 

the Extra Pipe Stages+Muxes unit ensure the parallel results provided in the various 

configurations by the PE-As/PE-Bs tiles to be correctly time aligned. The latter unit also 

selects data for the subsequent accumulations. In fact, the last 7 PE-Bs employed in the 

Tiles for Accumulations module sum either the eight 3×3 results, indicated as 3×3 ̲ rx 

(with x=0,…,7), or the three 5×5 results, indicated as 5×5 ̲ ry (with y=0,…,2). 

Furthermore, this set of accumulators can be exploited to provide other types of 

convolution results: both the 5×5_r0 and the 5×5_r1 can be accumulated by the Tile 13 

to comply with a 7×7 convolution. Alternatively, the 5×5_r0, the 5×4 and 4×5 outputs, 

and the 4×4 result can be supplied to the Tile 14 to compose a 9×9 convolution output.  

Finally, the TN OFBs receive the results from the TN CEs and accumulate them to 

the homologous results produced at the previous steps. These provisional results are 

stored within simple dual-port BRAMs adapted to the current ofmaps size. The OFBs also 

take care of managing the stride S. Indeed, when S=1, all the incoming results are stored 

within the BRAMs. Conversely, when S=2, BRAMs store ¼ of the outputs. 
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3.3.3. EXPERIMENTAL RESULTS 

The proposed RCPE was integrated within the heterogeneous Embedded System 

(ES) depicted in Figure 3.24. The Processing System (PS) configures and controls the 

custom circuits implemented within the Programmable Logic (PL) that hosts the RCPE 

and the Direct Memory Access (DMA) units.  

 

The latter are responsible for data transferring from/to an external DDR memory. 

The fmaps DMAs provide the RCPE with up to TM input pixels at a time and, at the 

completion of the entire processing, they move the TN output pixels towards the external 

storage resource. Meanwhile, the Weights DMAs provide the needed filters for each 

convolutional step. The DMA units and the RCPE receive configuration signals from the 

PS by means of AXI4-Lite transactions [59]. 

The Xilinx Zynq 7020 and 7045 SoCs [58] were used to implemented the referred 

system. Table 3.4 summarizes the results obtained by the comparison with several state-

of-the-art counterparts. The resource utilization, the clock frequency and the power 

consumption, as well as the supported kernel sizes and strides, the maximum achievable 

parallelism (TMmax×TNmax) and the data precision are reported. In addition, the throughput, 

expressed in terms of both the peak and the effective Giga Operations per Second 

(GOPS), and the CONVs execution time related to different CNN models are highlighted. 

In this regard, it must be noted that, while the effective GOPS depend on the specific 

CNN model, the peak GOPS rely on the computational capability of the implemented 

architecture. Figures 3.25-3.26 illustrate the main percentage changes with competitors. 

The cheapest version of the proposed design, implemented within the low-end 

Zynq-7020 device [58], uses 8-bit data and performs up to 8×2 parallel convolutions at 

the 118 MHz running frequency. At a parity of the supported data precision, this design 

Figure 3.24 The referred embedded system architecture. 
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shows appreciable advantages in terms of the resource utilization and the power 

consumption over the competitors [77, 78, 79]. In fact, the new reconfigurable 

architecture, purposely designed to maximize the portion of the global computational load 

sustained by DSPs slices, saves up to ~87%, ~84.1% and ~91.3% of Look-Up Tables 

(LUTs), Flip-Flops (FFs) and Block RAMs (BRAMs), respectively. Among the 

compared 8-bit designs, at the parity of the neural network model, those described in [77, 

78] exhibit better effective-throughput/parallelism ratio. This is because, while the design 

in [77] significantly relies on a clock frequency ~1.8× higher, that proposed in [78] is 

based on a more powerful platform that, in turn, offers more DSPs and consumes more 

energy.  However, [77, 78] support much less kernel sizes and strides configuration, thus 

limiting their flexibility.  

 

Table 3.4 Characterization of the proposed architecture for run-time adaptive convolutions 

and state-of-the-art comparisons. 

Ref. [77] [78] [79] New 

Device 7Z020 ZU9EG 7Z035 7Z020 

LUTs 29867 49022 75241 9772 

FFs 35489 85340 91444 14544 

BRAMs [Mb] 3 13  10.97 1.13 

DSPs 190 1048 758 200 

Freq. [MHz] 214 195 100 118 

Peak GOPS - 350.4 - 42.7 

Precision 8-bit  8-bit  8-bit  8-bit  

K (S) 1,3,5(1) 3,5,7(1) 1,3,5,7 (1,2) 1,3,4,5,7,9 (1,2) 

Par. TMmax×TNmax 16×2 8×8 - 8×2 

Power [W] 3.50 4.80 3.44 1.98 

CNN  VGG16 VGG16 TinyYOLO1 VGG16 YOLO2
 TinyYOLO2 VGGS 

Eff. GOPS 84.3 214 125 32 17.1 19.7 28.6 

Eff.GOPS/Par. 2.63 3.34 - 2.00 1.07 1.23 1.79 

GOPS/DSP 0.444 0.204 0.165 0.160 0.086 0.099 0.143 

Time [ms] 364 140 53 958.3 325.5 79.5 241.9 

 
Ref. [77] [42] [80] [44] New 

Device 7Z045 7VX485T ZU9EG 7VX690T 7Z045 

LUTs 182616 78318 95136 133854 28743 

FFs 127653 96929 90589 161411 57775 

BRAMs [Mb] 17.09 12.5 8.63 19.48 7.49 

DSPs 780 1034 609 3494 800 

Freq. [MHz] 150 150 300 170 150 

Peak GOPS - 300.0 289 - 217.2 

Precision 16-bit  18-bit  16-bit  16-bit  16-bit  

K (S) 1,3,5(1) ≤16(1) 1,3 (1) 1,3,7 (1,2) 1,3,4,5,7,9 (1,2) 

Par.TMmax×TNmax 64×2 - 8×64 5×256 8×8 

Power [W] 9.63 18 11.80 7.20 2.75 

CNN  VGG16 Custom YOLO1 SqueezeNet VGG16 YOLO2 TinyYOLO2 VGGS 

Eff. GOPS 187.8 129.7 102 909.7 153.6 82.3 91.9 140.7 

Eff.GOPS/Par. 1.47 - 0.19 0.71 2.40 1.29 1.44 2.19 

GOPS/DSP 0.241 0.125 0.167 0.260 0.192 0.103 0.115 0.176 

Time [ms] 163 0.3 288 0.8 199.8 67.8 17 49.2 
1416×416 input images  2224×224 input images. 
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Figure 3.25 Percentage change comparisons (7Z020 impl.): resources, frequency, power. 

New1-7Z020 State-of-the-art 

Figure 3.26 Percentage change comparisons (7Z045 impl.): resources, frequency, power. 

New2-7Z045 State-of-the-art 
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Moving towards the most powerful implementation within the Zynq-7045 SoC 

[58], the novel accelerator performs up to 8×8 parallel convolutions and, compared to the 

16- and 18-bit counterparts [77, 42, 80, 44], it exhibits the most favorable effective-

throughput/parallelism ratio. This behavior is further confirmed if the above ratio is 

correlated to the dissipated power. When the VGG-16 [7] and the YOLO [82] models are 

taken into account, the proposed architecture achieves an effective throughput only ~1.2× 

lower than that reported by [77] and [80], despite the halved parallelism and clock 

frequency, respectively. 

The architectures introduced in [42, 44] reach, in turn, the highest flexibility and 

the most relevant parallelism. However, such results require a noticeable amount of DSPs, 

actually among the highest among the competitors. 

Finally, it is worth underlining the behavior of the proposed 16-bit architecture 

when the VGG-S model [83] is inferred to. The latter consists of CONVs at different K, 

ranging from 3 to 7, and S, ranging from 1 to 2. In such a case, the effective throughput 

reaches 140.7 GOPS, thus confirming the performance efficiency of the proposed 

adaptive scheme. 

3.4. TOWARDS A RECONFIGURABLE ARCHITECTURE FOR 

CONVOLUTIONS AND TRANSPOSED CONVOLUTIONS 

3.4.1. BACKGROUND 

Typically, neural networks involved in image up-sampling tasks follow an encoder-

decoder structure. The encoder consists of a stack of CONV Layers, which progressively 

down-sample the fmaps to abstract the features’ extraction. Proper up-sampling layers 

constitute the decoder in order to recover the original sizes of features to provide the 

output images. 

Super Resolution (SR) imaging (introduced in Section 2.3.3) is a well-recognized 

example that has become crucial in several applications, such as video surveillance, 

medical diagnosis, remote sensing. CNN-based SR algorithms typically adopt TCONV 

layers to up-sample images [31] that, with their computational complexity up to 6.75× 

higher than CONV Layers, represent the most critical component of the CNNs [47]. In 

addition, in comparison with CONVs, TCONV Layers require more complex strategies 
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to access the data memory, and make skipping operations necessary to manage the 

incoming pixels properly [14]. In order to overcome the aforementioned issues, besides 

the alternatives discussed in Section 3.2, other solutions were proposed to transform 

TCONV into CONV layers by pre-processing either the input data or the filters 

coefficients [47]. Starting from an analysis of the IOM method [49], and with the 

objective of avoiding overlapping on input activations, the computational scheme 

proposed in [47, 84, 85, 86] performs an inverse mapping on the filter coefficients. More 

specifically, the proposed Transform Deconvolution into Convolution (TDC) approach 

converts each filter of a TCONV into SD×SD smaller sub-filters according to the relative 

position of the original input activations within the up-sampled ifmap, where SD is the 

stride of the TCONV. Due to this splitting strategy, several locations within the sub-filters 

contain zero values, thus causing unbalanced computations. Furthermore, the specific 

configuration (i.e., size and number of the sub-filters) depends on SD. Therefore, the 

splitting process has to be performed offline and the pre-processed filters must be stored 

on-chip, thus limiting the possibility of reconfiguring at run-time the architecture to 

accelerate different CNN models. 

As observed in [84], when the zero-TCONV approach is used, the filter coefficients 

that are being multiplied by zero activations can be removed by decomposing filters into 

additional sub-blocks. Also for this decomposition algorithm, the filters must be pre-

processed offline. Moreover, in order to remove unbalanced computations, an overall 

logic more complex than [47] is required in that sub-filters are not regular in size and 

require proper control. 

To manage both TCONV and CONV operations, hardware designs proposed in [85, 

86] decompose filters into smaller sub-blocks with different dimensions, according with 

the values of the filter size k and SD; then to avoid filter reversal and zero padding on the 

borders, they apply a variant of the Winograd algorithm. In such a case, unconventional 

computational modules, suitable to implement operations involved in the Winograd 

transformation (like inverse transformation of matrices), are required.  

To overcome all the aforementioned issues, we conceived a novel hardware-

oriented algorithm [16] made able to convert TCONV into CONV Layers efficiently, 

without the requirement of any pre-processing step. The given architecture, designed 

using parametric VHDL, can be adapted at design time to support different configurations 
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of parallelism and input sizes. Functional parameters of CONVs/TCONVs can be adapted 

at run-time by means of the control logic. 

3.4.2. THE PROPOSED HARDWARE-ORIENTED ALGORITHM 

In contrast to [47, 84, 85, 86], which manipulate the k×k filter coefficients to form 

smaller sub-blocks (thus introducing the necessity of offline elaborations to arrange 

weights in different sub-filters), the proposed algorithmic strategy applies an 

unconventional remapping directly on the incoming ifmaps values. From the hardware 

perspective, this means that: (1) the process occurs online and the pre-processing is not 

required, and (2) the result of the proposed algorithm can be provided as soon as it is 

produced, thus avoiding additional times and buffering/computing resources.  As a further 

advantage, the incoming ifmaps are not actually up-sampled, but they are processed as if 

they were up-sampled with the conventional TCONV approach with zeros insertion. 

In order to achieve high-speed performances and to prevent redundant 

multiplications by zero, the proposed method is on-purpose made able to furnish SD×SD 

results in parallel for each computed ofmap. The steps illustrated in Figure 3.27(a) are 

performed to process the KC×KC window of activations, with 𝐾𝐶 = ⌈
𝑘+𝑆𝐷−1

𝑆𝐷
⌉. The generic 

sliding window received as input, with the first (i.e., the top left) activation of the window 

being Ii,j (with i=0,…,Hi–1and j=0,…,Wi–1), is remapped within a k×k window; then 

element-wise multiplications are performed between the remapped window and the k×k 

filter, followed by accumulations to produce SD×SD parallel results. The main innovation 

introduced with respect to the conventional approach and methods based on filter 

decomposition [47, 84, 85, 86] is the remapping of the KC×KC input activations within 

the sliding window RI. The latter is formed as illustrated in Figure 3.27(b) that also shows 

the local row and column indices m and n, both varying from 0 to k–1. The remapped 

window is obtained by applying the following basic rules:    

▪ the first activation Ii,j is assigned to the local position (0,0) within the up-sampled 

window RI and no more replicated;  

▪ the activations having the row index equal to i are replicated SD times horizontally;  

▪ the activations having the column index equal to j are replicated SD times vertically; 
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▪ the activations having the row and column indices varying, respectively, from i+1 to 

i+KC-2 and from j+1 to j+KC-2, are replicated SD times vertically and SD times 

horizontally, thus forming SD×SD sub-windows; 

▪ if (𝑘 − 1) 𝑚𝑜𝑑 𝑆𝐷 = 0, the activations having the row index equal to KC – 1 are 

replicated SD times horizontally (this is the case illustrated in Figure 3.27(b)), 

otherwise they are replicated (𝑘 − 1) 𝑚𝑜𝑑 𝑆𝐷 times; 

▪ if (𝑘 − 1) 𝑚𝑜𝑑 𝑆𝐷 = 0, the activations having the column index equal to KC – 1 are 

replicated SD times vertically (this is the case illustrated in Figure 3.27(b)), otherwise 

they are replicated (𝑘 − 1) 𝑚𝑜𝑑 𝑆𝐷 times. 

 

The elements of the remapped window, obtained as above explained, are multiplied 

by the homologous filter coefficients Wm,n that do not require any type of rearrangement. 

Then, the computed k×k products PPm,n are properly accumulated to finally provide the 

SD×SD parallel results 𝑂𝑖×𝑆𝐷+𝑝,𝑗×𝑆𝐷+𝑞, with p and q varying from 0 to SD–1. To take into 

account the up-sampling factor SD, the generic result 𝑂𝑖×𝑆𝐷+𝑝,𝑗×𝑆𝐷+𝑞 must be computed 

by accumulating KC×KC products PPmm,nn picked up starting from the location 

𝑚𝑚 = 𝑖 × 𝑆𝐷, 𝑛𝑛 = 𝑗 × 𝑆𝐷 and going on as in a chessboard with horizontal and vertical 

jumps of SD positions (i.e., with stride SD). However, it is worth noting that some jumps 

Figure 3.27 The novel algorithm (a) the computational steps involved, (b) the remapping 

strategy. 

 

 0 1 …           SD SD+1 … 2×SD … (KC-2)×SD+1 … k-1=(KC-1)×SD 

0  Ii,j Ii,j+1 … Ii,j+1 Ii,j+2 … Ii,j+2  Ii,j+KC–1 … Ii,j+KC–1 

1  Ii+1,j Ii+1,j+1 … Ii+1,j+1 Ii+1,j+2 … …  Ii+1,j+KC–1 … Ii+1,j+KC–1 
 …

          …
 

SD Ii+1,j Ii+1,j+1 … Ii+1,j+1 Ii+1,j+2 … Ii+1,j+2  Ii+1,j+KC–1 … Ii+1,j+KC–1 

SD+1 Ii+2,j Ii+2,j+1 … Ii+2,j+1 Ii+2,j+2 … Ii+2,j+2  Ii+2, j+KC–1  Ii+2, j+KC–1 
 …

 

         …
 

2×SD Ii+2,j Ii+2,j+1 … Ii+2,j+1 Ii+2,j+2 … Ii+2,j+2  Ii+2, j+KC–1  Ii+2, j+KC–1 

 …
 

         …
 

(KC-2)×SD+1 Ii+KC–1,j Ii+KC–1,j+1 … Ii+KC–1,j+1 Ii+KC–1,j+2 … Ii+KC–1,j+2  Ii+KC–1,j+KC–1 … Ii+KC–1, j+KC–1 
 …

 

         …
 

k-1=(KC-1)×SD Ii+KC–1,j Ii+KC–1,j+1 … Ii+KC–1,j+1 Ii+KC–1,j+2 … Ii+KC–1,j+2  Ii+KC–1, j+KC–1 … Ii+KC–1, j+KC–1 

 

  m 
 n 

Step 1 
Remap the KC×KC 
window into a k×k 

window (with KC ≤ k) 

 

Step 2 
Element-wise  

matrix 
multiplication 

Step 3 
Chessboard 

accumulations  

KC×KC input activations SD×SD results 

(a) 

(b) 
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lead to values of mm and/or nn exceeding k, thus indexing unavailable products. Actually, 

referring to the ifmap currently processed as if it were up-sampled with the conventional 

approach, it is easy to verify that these missing products correspond to multiplications by 

zero. Therefore, they do not contribute to the accumulate operations and can be simply 

ignored. As a consequence, the results computed with the proposed strategy have the same 

values provided by the conventional approach [64]. However, the method proposed here 

completely avoids multiplications by zero and filter partitioning.  

It is important observing that the remapping strategy here proposed is a different 

point of view of the methods based on filters decomposition [47, 84, 85, 86]. Indeed, 

while the latter re-arrange filter coefficients to perform proper element-wise 

multiplications, the former re-arrange input activations. However, the proposed strategy 

is more efficient from the hardware perspective, because it allows online computations 

and does not require complex architectures to manage the remapping.       

 

To better explain the novel computational scheme, let us consider the example in 

Figure 3.28 that refers to k=9, SD=2 and KC=5. In this case, the local row and column 

indices m and n vary from 0 to 8. Therefore, for each input pixel Ii,j, the above explained 

basic rules lead to the remapped 9×9 window visible in Figure 3.28(a), where the 5×5 

elements of the original sliding window are highlighted in blue. It can be observed that 

the remapped window collects all the data needed to compute the results 

𝑂𝑖×𝑆𝐷+𝑝,𝑗×𝑆𝐷+𝑞 contemporaneously, with the indices p and q, used to locate the produced 

results within the ofmap, ranging between 0 and 1. Indeed, since SD=2, the 

results 𝑂𝑖×2,𝑗×2, 𝑂𝑖×2,𝑗×2+1, 𝑂𝑖×2+1,𝑗×2 and 𝑂𝑖×2+1,𝑗×2+1 are computed as given in (1). 

Figure 3.28 Example of computation with k = 9, SD = 2 and KC=5: (a) the remapped window 

RI; (b) the filter W. 
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As expected, the results 𝑂𝑖×2+𝑝,𝑗×2+𝑞, corresponding to p and/or q greater than zero, 

are obtained by accumulating less than KC×KC products and the missing products are 

simply ignored, since they are related to multiplications by zero. 

 

The computations described above are repeated for each pixel of the ifmap and, at 

the completion, the Hi×Wi groups of SD×SD results obtained in this way are arranged in 

the ofmap as illustrated in Figure 3.29. There, different colors are used to highlight each 

group of SD×SD results computed in parallel.  

It is worth noting that, when SD is 1, KC is equal to k and the sliding window does 

not require remapping operations; in such a case, the proposed algorithm performs a 

standard CONV. With the input volume consisting of M ifmaps, all the computations 

(1) 

Figure 3.29 The arrangement of the computed results within the generic ofmap. 

… 
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described above must be repeated M times. The M intermediate ofmaps computed in this 

way are summed up to populate the volume of the expected N ofmaps. 

3.4.3. THE PROPOSED ARCHITECTURE 

The novel method above presented to convert TCONVs into CONVs was employed 

within a reconfigurable hardware structure purposely designed to perform both CONVs 

and TCONVs by run-time adapting itself to different operating modes.  

In order to achieve high computational speeds, the proposed hardware accelerator 

exploits a certain level of parallelism. In the following, it is shown that TM ifmaps and TN 

filters are processed at a time, with TM and TN varying at run-time in accordance with the 

current operation mode, the kernel size k and the up-sampling factor SD. Anyway, for the 

operations of the generic layer to be completed, regardless of whether it is a CONV or a 

TCONV layer, ⌈
 

 𝑀
⌉ × ⌈

 

 𝑁
⌉ steps are required.  

The top-level architecture of the proposed hardware is shown in Figure 3.30. It 

consists of the Computational Module (CM) and the Finite State Machine (FSM). The 

former receives as inputs TM ifmaps and TN filters, each consisting of TM kernels collecting 

k×k coefficients, and provides TN ofmaps at a time. Conversely, the FSM is supplied with 

the input configuration, which sets the required operating mode (indicating whether 

CONVs or TCONVs must be performed), the kernel size k, the fmap sizes and the window 

size KC, and furnishes proper control/configuration signals to the CM. Specifically, the 

FSM: 1) run-time configures the proposed hardware accelerator, thus ensuring that TM 

and TN change as required by each layer; 2) scans the computational steps. 

 

Figure 3.30 The top-level architecture of the proposed hardware accelerator. 
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The CM splits the incoming TN filters into R groups and employs as many 

CONV/TCONV Units (CTCUs). Each CTCU, depending on the received control and 

configuration signals, arranges data in proper sliding windows and executes either 

CONVs or TCONVs by processing the TM ifmaps and its own ⌈
 𝑁

𝑅
⌉ filters. The results 

provided by the CTCUs are then dispatched to the subsequent modules passing through 

the Routing Logic purposely designed to take into account that the supported operating 

modes lead to different data-flows. In fact, depending on whether CONVs or TCONVs 

are performed, the intermediate results related to the current TM input channels must be 

accumulated by the proper Adder Trees (ATs). Then, data must be routed either to the 

ofmaps Buffers, which happens when the computation of the current TN ofmaps is not yet 

completed, or, vice versa, to the Parametric Rectified Linear Units (PReLUs) that 

implement the homonymous linear rectification method [87]. 

 

The generic CTCU is structured as depicted in Figure 3.31. The ifmaps Buffer (IFB) 

and the Weights Buffer (WB) collect, respectively, the NA-bit pixels of the incoming TM 

ifmaps and the NW-bit coefficients of the received ⌈
 𝑁

𝑅
⌉ filters. In particular, the IFB circuit 

is responsible for arranging the KC×KC sized sliding windows that will be processed 

through the proposed algorithm and is based on the architecture proposed in our previous 

work [15] and described in Section 3.3.2. When TCONVs are executed, the Remap Unit 

(RU) performs the first step of the proposed approach. It implements the novel logic 

discussed in Section 3.4.2 to remap the TM KC×KC sliding windows into as many k×k 

windows. The ⌈
 𝑁

𝑅
⌉ CONV/TCONV Engines (CTCEs) execute the element-wise 

multiplications and the accumulations required by Steps 2 and 3 of the proposed 

approach; they receive  the TM remapped windows and the filters coefficients as arranged, 

Figure 3.31 The architecture of the CONV/TCONV Unit. 
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in the meantime, by the WB. When CONVs are executed with kernel sizes greater than 

1, the RU is bypassed, thus the IFB and WB feed directly the CTCE. In the case of 1×1 

CONVs, both the IFB and the RU are bypassed, thus inputting the ifmaps directly to the 

CTCE.   

Within the CTCE, multiplications and accumulation are performed, respectively, 

through two different pipeline sub-circuits, here named Type-A (TA) and Type-B (TB), 

following a similar approach as that described in Section 3.3.2. Indeed, each tile consists 

of several Processing Elements (PEs). The PEs inside the TAs execute MACs, whereas 

the PEs within the TBs perform accumulations between two operands. Figure 3.32 

illustrates examples of a TA having 4 PEs and a TB consisting of 2 PEs.  

 

In order to provide a flexible architecture, suitable to perform both CONVs and 

TCONVs at different operating conditions, the CTCE uses several TA and TB circuits, 

which are connected to each other by multiplexers. The latter allow to activate a specific 

path within the CTCE, depending on the currently processed kernel size. Taking into 

account that, at the parity of the kernel size, the TCONVs are more complex than CONVs, 

the employed sub-circuits TAs and TBs have been organized to meet the computational 

capability required by TCONVs in the worst case, thus intrinsically being able to satisfy 

also the computational requirements of CONVs. Figure 3.33 illustrates the design of the 

CTCE by reporting one of the configurations actually tested. Depending on which 

operation must be currently performed (i.e., CONVs or TCONVs) and based on the filter 

size k, the auxiliary multiplexing logic also depicted in Figure 3.33 coordinates the 

cooperation between TAs and TBs and guarantees that the different supported operations 

Figure 3.32 Examples of (a) TA with 4 PEs and (b) TB with 2 PEs. 
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are performed correctly. The gray boxes represent the pipeline stages that, being deep as 

indicated by the reported numbers, time-align the performed computations.  

By the TCONV viewpoint, the circuit in Figure 3.33 complies with a 9×9 kernel at 

SD=2. In this regard, 13 TAs and 8 TBs are properly arranged to accomplish Steps 2 and 

3 of the proposed method. The TAs, consisting of 81 PEs, exploit as many as multipliers 

to execute the element-wise matrix multiplication (step 2). Accumulators internal to the 

TAs, in conjunction with the 12 PEs provided by the TBs, execute the chessboard 

accumulations (step 3) to furnish the parallel results as in (1). In Figure 3.33, the SD× SD 

parallel outputs are labelled as 5×5_r0, 5×4_r, 4×5_r and 4×4_r, respectively. 

Subsequently, the external module ATs for TCONVs sums the referred outputs to the 

homologous results furnished by the other CTCEs operating in parallel. Other than the 

Figure 3.33 An example of the computations performed by CTCE when k is up to 9 and 

SD = 2. The kernel size k can assumes the values 1, 3, 4, 5, 7, 9. 
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9×9 TCONV, the referred TAs and TBs can be used to perform different CONVs, 

considering the same circuit of Figure 3.33: 

▪ twelve 1×1 CONVs, whose results are 1×1_ru, with u= 0, …,11; 

▪ nine 3×3 CONVs, with the furnished results being 3×3_rx, with x=0,…,8; 

▪ three 5×5 CONVs, whose results are 5×5_ry, with y=0,…,2; 

▪ one 7×7 CONV; in this case the results 5×5_r0 and the 5×5_r1 are added by the ex-

ternal module ATs for CONVs; 

▪ one 9×9 CONV; in such a case the results 5×5_r0, the 5×4_r, 4×5_r and 4×4_r are 

summed up by the external module ATs for CONVs.  

Finally, it is worth noting that, in order to make the above-described CTCE able to 

support different up-sampling factors, just a few and simple modifications are required 

either on the viable paths or on the compositions of the sub-circuits TAs and TBs. 

3.4.4. EXPERIMENTAL RESULTS 

As a case study, the super-resolution imaging was referred to and the proposed 

approach was adopted to accelerate the popular FSRCNN model [31]. To this purpose, 

the hardware architecture described in Section 3.4.3 was tailored to comply with the 

configurations summarized, layer by layer, in Table 3.5. It is worth noting that how many 

instances of the CTCU module are used (i.e., the value of the parameter R set at design 

time) is established at design time to achieve a better trade-off between speed 

performances and area occupancy. For the referred case study, R=12 was chosen since it 

well complies with the requirements of the overall network model and allows reducing 

the inference time by more than 90% with respect to the case in which R=1. Indeed, while 

the configuration R=1 takes ~58.6 ms, the parallelized counterpart requires only ~5.2 ms. 

Table 3.4 also reports the parameter PN that indicates how many output values are 

computed in parallel for each of the TN furnished ofmaps. When the TCONV layer is 

executed, PN  is equal to SD×SD, with SD being set to 2, 3 or 4, as established at design 

time. The parameters M, N, k are elaborated by the FSM that: 1) run-time configures the 

proposed hardware accelerator, thus ensuring that TM and TN change properly as required 

by each layer; 2) scans the various computational steps, by determining in which cycles 

data must be read or not, as well as at which time outputs can be delivered. 
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The novel accelerator exploits fixed-point arithmetic with activations and filters 

quantized, respectively, to 16 and 10 bits. Such a choice, which arises from a preliminary 

analysis conducted to evaluate the impact of different quantization levels on the quality 

of reconstructed images, allows to improve the area occupancy by 60% and 18% with 

respect to 32- and 16-bits fixed-point versions, respectively, with limited effects on the 

quality of the reconstructed images. Three different versions of the novel accelerator, each 

performing the TCONV layer with a specific up-sampling factor, were designed. 

Implementation results, obtained utilizing the Xilinx XC7K410T [88] and XCZU9EG 

FPGA [60] devices and the Vivado Design Suite (v.2019.2) [71], are collected in Table 

3.6. There, data collected are related to: (a) the amount of occupied LUTs, FFs, BRAMs 

and DSPs; (b) the power consumption, estimated through the Switching Activity Values 

File (SAIF) that, referring to several benchmark images, has taken into account the real 

activities of all nodes within the analyzed circuit; (c) the performance, evaluated across 

different metrics, such as the maximum running frequency and the Giga Operations per 

Second (GOPS), which is the ratio between the overall computational complexity of the 

referred model and the inference time; (d) the energy efficiency (GOPS/W), which is 

defined as the ratio between the GOPS and the power consumption. Figures 3.34-3.36 

report the relevant percentage changes, with respect to counterparts, in terms of resource 

utilization, clock frequency and energy efficiency. 

Table 3.5 The run-time configurations of the novel hardware accelerator for adaptive 

CONVs/TCONVs related to the FSRCNN.  

Layer Op Mode M N k SD TM TN PN 

1 CONV 1 56 5 1 1 3×R 1 

2 CONV 56 12 1 1 56 R1 1 

3 CONV 12 12 3 1 9 R 1 

4 CONV 12 12 3 1 9 R 1 

5 CONV 12 12 3 1 9 R 1 

6 CONV 12 12 3 1 9 R 1 

7 CONV 12 56 1 1 12 3×R 1 

8 TCONV 56 1 9 2 or 3 or 4 R 1 4 or 9 or 16 
1 R is set at design time. 
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Table 3.6 also summarizes the implementation characteristics of representative 

state-of-the-art FPGA-based designs that, being devoted to the acceleration of CNNs for 

the SR imaging, were selected as the direct competitors, even though they refer to 

somewhat different models from the original FSRCNN presented in [31]. While the 

designs proposed here were characterized referring to the whole model reported in Table 

3.4, thus performing four cascaded CONV layers with k=3 (i.e., the layers 3, 4, 5, and 6), 

the accelerators presented in [47, 86, 89] refer to simplified models and perform only one 

CONV layer with k=3. As a further simplification, to relieve the computational load, the 

design described in [89] replaces the TCONV with an Efficient Sub-Pixel CONV 

(ESPCN) layer that provides up-sampled ofmaps through a periodic shuffling. 

Conversely, the reconfigurable design presented in [84] refers to the original FSRCNN 

Table 3.6 Characterization of the novel hardware accelerator for adaptive CONVs/TCONVs 

and state-of-the-art comparisons. 

Accelerator New New [47] [84] [86] [89] 

FPGA Device XCK410T XCZU9EG XCK410T XCVU095 XCZU9EG XCVU9P 

FSRCNN(x,y,z,w) (56,12,4,9) (56,12,4,9) (25,5,1,7) (56,12,4,8) (32,5,1,9) (32,5,1,-)2 

Variable k,SD Yes, No Yes, No No, Yes Yes1, Yes No, No No, No 

Supported SD 2, 3, 4 2, 3, 4 2, 3, 4 2, 3, 4 2 2 

#bits (activations, 

 filters) 
(16, 10) (16, 10) (13, 13) (16, 8) (16, 16) (14, 10) 

R
es

o
u

rc
es

 

LUTs 

SD=2 63.1k 60.6k 

167k 42k 

168.6k 

- 

- 

94k 

- 

- 

SD=3 56.9k 54.6k 

SD=4 77.2k 74.4k 

FFs 

SD=2 101.2k 101.2k 

158k 20k 

NA 

- 

- 

19k 

- 

- 

SD=3 85.5k 85.5k 

SD=4 122.8k 122.8k 

BRAMs 

[Mb] 

SD=2 14.3 12 

7.2 4.85 

10.9 

- 

- 

0.4 

- 

- 

SD=3 14.3 12 

SD=4 18.6 15.5 

DSPs 

SD=2 1212 1212 

1512 576 

746 

- 

- 

2146 

- 

- 

SD=3 1140 1140 

SD=4 1296 1296 

P
er

fo
rm

a
n

ce
 

Freq. 

[MHz] 
 227 250 

 

130 

 

 

200 

 

 

200 

 

 

200 

 

GOPS 

SD=2 654.3 720.6 780 605. 6 795.2 3 541.4 4 

SD=3 1223.5 1347.5 1576.3 1086.1 - - 

SD=4 2022.2 2227 2691 1868.8 - - 

 
Power 

[W] 

SD=2 

SD=3 

SD=4 

3.6 

3.5 

3.9 

3.8 

3.85 

4 

5.4 

- 

- 

3.71 

- 

- 

NA 

- 

- 

6.9 

- 

- 

E
ff

. GOPS/ 

W 

SD=2 181.8 189.6 144.9 163. 7 NA 78.5 

SD=3 349.6 350 293 293.5 - - 

SD=4 518.5 556.8 500.2 505.1 - - 
1 The CONV kernel sizes range from 1×1 to 4×4.    
2 The TCONV layer is replaced with an ESPCN layer. 
3 Calculated considering the 120.4 frames per second declared in [86]. 
4 Calculated considering the 60 frames per second declared in [89]. 
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Figure 3.35 Percentage change comparisons (S=3, XCK410T): resources, frequency, 

energy efficiency. 

New State-of-the-art 

Figure 3.34 Percentage change comparisons (S=2, XCK410T): resources, frequency, 

energy efficiency. 

New State-of-the-art 
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model, but it performs CONVs with kernels sizes ranging from 1×1 to 4×4 and changes 

the TCONV kernel size from 9×9 to 8×8.  

In order to point out the main differences between the network models accelerated 

by the compared designs, they are referenced in Table 3.6 as FSRCNN(x,y,z,w). There, x, 

y, z and w are, respectively, the number of ofmaps outputted by the first CONV layer, the 

number of ofmaps furnished by the subsequent CONV layers, the last excepted, the 

number of cascaded CONV layers with kernel size k=3, and the TCONV kernel size. 

 By examining the results summarized in Table 3.6, it can be observed that the 

proposed accelerators lead to lower power consumptions, though referring to the most 

complex CNN model, due to their particularly efficient flexible architecture. The power 

savings achieved with respect to [47] and [89] come from the capability of the proposed 

designs of run-time adapting themselves to different CONV kernel sizes. Without such a 

capability, the implementations characterized in [47, 86, 89] must employ a different ad-

hoc architecture for each layer, thus negatively affecting the power consumption and the 

resources requirements.  

Figure 3.36 Percentage change comparisons (S=4, XCK410T): resources, frequency, 

energy efficiency. 

New State-of-the-art 
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In comparison to [47], the proposed XCK410T-based implementations save more 

than 53.8% LUTs, 22.3% FFs and 14.3% DSPs, and improve the energy efficiency by up 

to 25.5%, which is also the result of avoiding multiplications with sparse filters as re-

quired by the referred counterpart. These advantages are obtained even though the CNN 

model referenced in the novel designs is quite more complex.  

The design demonstrated in [84] is particularly efficient in terms of occupied 

hardware resources. However, the novel accelerators implemented on the XCZU9EG 

chip consume ~3% less power and achieve up to ~16% higher GOPS, although they 

perform CONVs and TCONVs with greater kernel sizes and coefficients bit width.  

The accelerator presented in [86] sacrifices a certain amount of hardware resources 

to deeply pipeline the circuit, thus reaching the highest GOPS. However, such an 

advantage is obtained costs more LUTs, as a consequence of the Winograd algorithm 

implementation: indeed, at a parity of implementation chip and SD, [86] performs ~9.5% 

more GOPS, but the amount of occupied LUTs is ~2.8 times higher.    

Finally, from Table 3.6 it can be seen that, despite the simplifications introduced to 

reduce the computational complexity of the referred CNN model, at a parity of the up-

sampling factor SD=2, the design proposed in [89] occupies ~48.9% and ~77% more 

LUTs and DSPs than the novel accelerator targeting the XCK410T chip. Furthermore, 

this proposal exhibits considerably improved speed performances and power 

consumption, which lead to an energy efficiency ~2.3 times higher.  

For the sake of a fair analysis, the FSRCNN models above referenced were 

compared also in terms of the quality achieved at different up-sampling factors.  

Software routines modelling the proposed accelerators were written to process the 

popular Set-5 [90], Set-14 [91] and B100 [92] datasets and to evaluate the Peak Signal to 

Noise Ratio (PSNR) and the Structural Similarity Index Measure (SSIM) [93]. Table 3.7 

clearly shows that the strategy here adopted to transform TCONVs into CONVs does not 

affect the quality of reconstructed images. Indeed, in most of the analyzed cases, slightly 

improved PSNR and SSIM are achieved with respect to [47, 84, 89]. The competitor [86] 

is not included in the comparison because the quality metrics furnished in the original 

paper are related to quite different datasets.  
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Finally, Figure 3.37 shows a sample image from the Set-5 dataset that was up-

sampled by using the proposed approach at SD=2. As expected, details are well re-

constructed and, in this case, the achieved PSNR is 31.48 dB.   

   

 

3.5. SUMMARY 

Several VHDL-based implementations of convolution-based layers for deep 

learning were presented in this chapter. 

A novel DCONV engine supporting the existing ASPP approach was proposed to 

accelerate CNN models for semantic segmentation. When realized within the Xilinx 

Zynq-7000 XCZ7020 SoC device, the novel hardware accelerator achieves the 181 MHz 

running frequency, occupies just 7.3%, 2.2%, 26.1% and 21% of the on-chip LUTs, FFs, 

Table 3.7 Quality results of the novel hardware accelerator for adaptive CONVs/TCONVs 

and state-of-the-art comparisons. 

  New [47] [84] [89] 

Dataset SD PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Set-5 2 35.68 0.9459 36.40 0.9527 35.85 NA 36.42 0.9529 

Set-14 2 31.34 0.8650 32.21 0.9047 NA NA 32.27 0.9045 

B100 2 30.28 0.8765 31.15 0.8858 NA NA 31.18 0.8859 

Set-5 3 32.52 0.8816 32.48 0.9043 32.03 NA NA NA 

Set-14 3 29.04 0.7975 29.03 0.8146 NA NA NA NA 

B100 3 28.27 0.7854 28.25 0.7808 NA NA NA NA 

Set-5 4 30.6 0.8577 30.17 0.8532 29.48 NA NA NA 

Set-14 4 27.52 0.7480 27.24 0.7414 NA NA NA NA 

B100 4 26.90 0.7135 26.71 0.7041 NA NA NA NA 

 

Figure 3.37 Sample result obtained with SD=2: (a) the original image; (b) the reconstructed 

image. 
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DSPs and BRAMs and dissipates only 265 mW. Purposely performed tests showed that 

this engine efficiently scales with the sizes of feature maps and kernels. 

To address redundant computations in conventional deconvolution layers, an 

effective parametric architecture using the IOM strategy was proposed and examined over 

both low- and high-end devices by adequately scaling the adopted parallelism. When 

exploited to accelerate the DCGAN model within the Xilinx Zynq XC7Z020 SoC device, 

it reaches 72 GOPS, by dissipating 500mW at a frequency of f=200MHz. Thanks to the 

increased parallelism exploitable, more than 900 GOPS can be executed when the high-

end Virtex-7 XC7VX690T device is used as the implementation platform. Moreover, in 

comparison with state-of-the-art competitors implemented within the Zynq XC7Z045 

device, the system proposed here reaches a computational capability up to ~20% higher 

and saves more than ~60% and ~80% of power consumption and logic resources, 

respectively, using ~5.7× less on-chip memories. 

The reconfigurable architecture for CONV Layers discussed in Section 3.3, able to 

run-time adapt itself to different kernels, strides and fmap sizes, dissipates only ~2.75 W 

at the 150 MHz running frequency and occupies ~13.1%, ~13.2%, ~39% and ~88.9% of 

the available LUTs, FFs, BRAMs and DSPs, respectively, when the mid-end XC7Z045 

device is used as the evaluation platform. When compared to several state-of-the-art 

counterparts, it exhibits the lowest resource requirement and power consumption with the 

most favorable effective-throughput/parallelism ratio. 

Finally, an efficient hardware-oriented algorithm to accelerate both CONVs and 

TCONVs was presented in order to simplify the data acquisition policy for both the layer 

types. The proposed strategy was validated using a reconfigurable hardware accelerator 

purposely designed to adapt itself to different operating modes set at run-time. When 

characterized using the Xilinx XC7K410T FPGA device, it achieves a throughput of up 

to 2022.2 GOPS and, in comparison with state-of-the-art competitors, it reaches an energy 

efficiency up to 2.3× higher, without compromising the overall accuracy. 
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4. HIGH-LEVEL SYNTHESIS FOR 

CONVOLUTIONAL NEURAL NETWORKS  

This chapter focuses the attention on the design of accelerators for TCONV-based 

CNNs using the High-Level Synthesis (HLS) paradigm. The latter design flow, indeed, 

has proven successful to implement in hardware quantized CNNs for image processing. 

However, research about quantized CNNs using TCONV Layers is still under-explored. 

First, a preliminary analysis about the impact of bit-width over the accuracy of state-

of-the-art models is provided. These experiments, performed on GPUs, can be thought as 

a feasibility study to determine how deep quantization can be for later management on 

FPGAs. Afterwards, proper case-studies of FPGA-based hardware implementations are 

presented, through a characterization in terms of resources, latency and power that is 

constrained over proper design-space exploration.  

4.1. ACCURACY ANALYSIS OF QUANTIZED NEURAL 

NETWORKS USING TRANSPOSED CONVOLUTIONS 

4.1.1. BACKGROUND 

As stated in Section 2.4, hardware architectures that overcome CPUs and GPUs in 

terms of performance-per-Watt are imposing themselves forcefully. This is particularly 

true in those environments that benefit from high performance and low power (e.g., Edge 

Computing [94]). FPGAs are representative examples of hardware platforms to 

accommodate DL workloads by trading-off speed performances, accuracy, area, and 

power consumption [95]. However, these architectures may be relatively small to 

accommodate wide models for high-quality image processing. As a consequence, 
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compression techniques are mandatory, including filters pruning [96], knowledge 

distillation [97] and data quantization [18]. The latter has proven to be effective to deal 

with NNs using FC Layers and conventional CNNs for classification when considering 

FPGAs as the target platform, by exhibiting negligible loss of accuracy even after 

significant compression [98, 99, 100]. 

In addition, more sophisticated models dealing with TCONV-based image up-

sampling could strongly benefit from a reduced precision of activations and weights to 

meet a reasonable trade-off in terms of area, speed and power. Nevertheless, to the best 

of our knowledge, the effects caused by the quantization of TCONVs are still 

underexplored. For instance, authors in [67] evaluated remote sensing image 

segmentation using the compressed U-Net [23], where data were quantized to 8 bits. 

Super resolution imaging was examined in [16], where 16-bit activations and 10-bit 

weights were exploited. A thorough analysis of deep quantized generative networks was 

proposed in [101], where authors observed that good quality could be maintained even 

using very low-precision filters. Collaborative inference was evaluated in [102], where a 

single autoencoder was used within deep neural networks to minimize the overall latency 

through both weight-sharing and dynamic quantization down to 2 bits.  

The aim of this section is to provide a systematic evaluation of the effects achieved 

by trading-off accuracy and deep quantization of several TCONV-based neural networks 

[19]. This preliminary investigation is needed to verify the suitability of implementing 

very deep quantized models on FPGAs. 

Three applications were considered:  

▪ image compression/decompression supported by an autoencoder architecture; 

▪ image generation performed through the Deep Convolutional Generative Adversarial 

Network (DCGAN) [22]; 

▪ image segmentation performed by the U-Net [23].  

Specifically, the achieved accuracy was evaluated using subjective visual 

inspection as well as objective analytical metrics, including the Peak Signal-To-Noise 

Ratio (PSNR), the Inception Score (IS) [103], the Fréchet Inception Distance (FID) [104] 

and the mean Intersection over Union (mIoU). The neural networks were trained over 

widely used public datasets: MNIST [105], Fashion-MNIST [106], CIFAR-10 [107], 

CelebA [108], Oxford-IIIT Pet [109] and Cityscapes [110]. 
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After a brief review about the adopted quantization approach, the CNNs used as 

case-studies as well as the accuracy metrics are presented. Then, the experiments are 

discussed in detail. 

4.1.2. THE QUANTIZATION METHOD 

Quantization [111] is a compression technique that transforms 32-bit floating point 

data into low-precision fixed-point words. DL can use quantization either during or after 

training. The former scenario is known as Quantization-Aware Training (QAT), while 

the latter is the Post-Training Quantization (PTQ) approach. Both the strategies can be 

used to compress: (a) the pixels of the input images, (b) the trainable weights, and (c) the 

non-linear activations provided by each layer. The experiments that will be later presented 

in Section 4.1 refer to the quantization of the weights and the activations. 

Among different high-level framework to investigate the behavior of DL models, 

PyTorch [112] has proven successful for simplicity, flexibility and the dynamic 

management of computational graphs. Brevitas [113] is a research library from Xilinx 

that can be used within PyTorch to simulate QNNs suitable for hardware implementation 

and adopting the QAT approach.  

 

In Brevitas, each quantized layer inherits the conventional 32-bit floating point 

class, which is linked to a quantizer. As schematized in Figure 4.1, the Quantized Layer 

Class quantizes the incoming tensors to integers, and translates them to a dequantized 

format, compliant with the related full-precision layer. Among different quantization 

strategies, this work refers to the uniform affine quantization defined in (1): 

Figure 4.1 Block diagram of the generic Brevitas-based Quantized Layer class. 
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𝑄𝑢𝑎𝑛𝑡(𝑣) = 𝑠𝑐𝑎𝑙𝑒 × 𝑟𝑜𝑢𝑛𝑑 ( clamp

𝑚𝑖𝑛,𝑚𝑎𝑥
(

𝑣

𝑠𝑐𝑎𝑙𝑒
)) 

 

(1) 

 

At the beginning, the generic 32-bit floating point value v is scaled by a proper scale 

factor, computed from backpropagated statistics of the input tensors. The latter considers 

both the actual values range of the input tensor and the domain provided by the given bit-

width (i.e., the top and the bottom bounds). Then, the scaled value x is clamped according 

to (2) where, in the case of signed number representation, min = –2N–1+1, max = +2N–1–1, 

and N is the bit-width. It is worth underlining that min is chosen as –2N–1+1 instead of 

min=–2N–1 for symmetry purposes. 

 
clamp(𝑥)
𝑚𝑖𝑛,𝑚𝑎𝑥

= {
𝑚𝑖𝑛 𝑥 < 𝑚𝑖𝑛
𝑥 𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑚𝑎𝑥

𝑚𝑎𝑥 𝑥 > 𝑚𝑎𝑥
 

 

(2) 

 

Finally, the nearest-integer rounding provides the discretized integer value. In order 

to make it compliant with the generic 32-bit conventional PyTorch class, the latter is 

represented in a dequantized format, obtained by multiplying the quantized tensor by the 

scale factor. 

4.1.3. THE QUANTIZED NEURAL NETWORKS USED AS CASE-STUDIES 

The first QNN model considered is the Convolution Autoencoder (CA) and depicted 

in Figure 4.2. The encoder processes ch input channels, with ch varying according to the 

colors channels of the given dataset (i.e., ch=1 for gray-scale images; ch=3 for RGB 

images), by means of two 3×3 CONV Layers, each followed by the ReLU as non-linear 

activation [25], and a Max Pooling Layer (MaxPool) that infers down-sampling to the 

incoming fmaps. Conversely, the decoder consists of two 3×3 TCONV Layers, with the 

up-sampling factor S=2, that progressively quadruple the size of the fmaps. ReLU [25] 

and Sigmoid [24] equip the decoder with the non-linearity.  

 
Figure 4.2 The Convolution Autoencoder. 
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Figure 4.3 depicts the second analyzed model: the DCGAN architecture [22], 

responsible for adversarial learning through the competitive generator and discriminator 

portions. The former provides ch channels by means of four 4×4 TCONV Layer that infer 

informative content to data distribution and up-sample fmaps to the desired resolution. 

The generator exploits ReLU and Tanh [24] to introduce non-linearity, and Batch 

Normalization (BN) to achieve more stable training [26]. On the contrary, the 

discriminator progressively down-samples fmaps and extracts features of interest by 

means of strided CONVs (with stride=2) followed by either LeakyReLU [114] or 

Sigmoid activations [24].  

 

The encoder-decoder U-Net architecture [23], chosen as the third analyzed model, 

is depicted in Figure 4.4. The encoder consists of a sequence of down-sampling blocks, 

each made of a stack of CONV Layer, BN, ReLU and MaxPool, which progressively 

abstract the features representation. The decoder progressively recovers the resolution of 

data by exploiting TCONV Layers that also strengthen the localization ability [23]. 

Figure 4.3 The Deep Convolutional Generative Adversarial Network [22]. 
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4.1.4. THE DATASETS 

As previously stated, in order to consider a wide range of operating conditions, the 

experiments were conducted using the datasets MNIST [105], Fashion-MNIST [106], 

CIFAR-10 [107], CelebA [108], Oxford-IIIT Pet [109], and a tiny version of Cityscapes 

[110]. MNIST collects 28×28 grayscale images of handwritten digits: 60,000 of them are 

used for training, whereas 10,000 for validation. The Fashion-MNIST uses Zalando’s 

clothes images and follows the same structure of MNIST. The CIFAR-10 dataset is made 

of 60,000 32×32 pictures, representing RGB objects that belong to 10 classes. The Large-

scale CelebFaces Attributes dataset (CelebA) is made of 202,599 images representing 

human faces. The Oxford-IIIT Pet dataset consists of more than 7,000 images showing 

cats and dogs breeds. The tiny version of the Cityscapes dataset collects 3475 256×512 

images related to street scenes. 

The CA was trained over the dataset MNIST, Fashion-MNIST and CIFAR-10. 

MNIST, CIFAR-10 and CelebA were used to train the DCGAN network. Finally, U-Net 

performed semantic segmentation over the Oxford-IIIT Pet and Cityscapes datasets. 

4.1.5. THE ACCURACY METRICS 

The accuracy achieved by the above described QNNs was evaluated through 

subjective and analytical quality metrics. Visual inspection (VI) was selected as the 

subjective metric, by allowing:  

▪ to judge the similarity of reconstructed images for image decompression. 

Figure 4.4 The U-Net architecture. 
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▪ to recognize the verisimilitude of DCGAN generated images;  

▪ to establish if segmented images are split into easily identifiable regions, when the U-

Net model is considered. 

However, subjective evaluation is not able to determine: (a) the exact similarity 

level between the original image and the decompressed one, (b) the variety of a huge 

generated dataset of images using GAN models, (c) the segmentation accuracy of each 

image (i.e., the correct classification of each pixel). To address the latter issues, analytical 

metrics were used. They include the Peak Signal-To-Noise Ratio (PSNR), the Inception 

Score (IS) [103], the Fréchet Inception Distance (FID) [104], and the mean Intersection 

over Union IoU (mIoU).  

The PSNR is an index of similarity, measured in decibel (dB) and derived by the 

comparison of two images. It is consists of the logarithm of the ratio between the 

maximum pixel value and the cumulative mean square error between the compared 

images. The higher the PSNR, the better the similarity.  

The Inception Score (IS) and the Fréchet Inception Distance (FID) are used to 

evaluate the quality of synthetic images and the variety of the represented classes for the 

DCGAN model. The IS exploits the GoogleNet Inception Network [115], trained over 

the ImageNet dataset [116], to classify the generated dataset from the DCGAN. The 

overall classification provides a probability distribution, called marginal distribution, 

which indicates both the accuracy of the synthetic images and the variety of the dataset. 

The higher the IS the better the task carried out by the DCGAN. The FID metric provides 

a further element of evaluation with respect to the IS: indeed, it is able to determine the 

similarity between the generated dataset and the original dataset used for the adversarial 

learning. Low values of FID mean strong image generation. 

The Intersection over Union (IoU) measures the similarity between the segmented 

class predicted by a QNN model and a ground-truth, by computing the ratio between the 

overlapping area and the union area. While the former is the area that the prediction and 

the ground-truth have in common, the latter is the area encompassed by both. The mean 

IoU (mIoU) averages the IoU over all the segmented classes and its domain is the range 

(0, 1). The higher the mIoU, the better the similarity. 
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4.1.6. TRAINING SETTINGS 

The Convolution Autoencoder (CA) was trained over 100 epochs, using batches of 

64 elements, the Mean Square Error as loss function and Adam as optimizer at a learning 

rate equal to 0.001. Both the activations and the weights were quantized at the same bit-

width. Experiments were conducted using the NVIDIA Tesla T4 GPU [117] within the 

Google Colaboratory [118] environment. 

According to MNIST, the DCGAN was trained over 30 epochs, using batches of 

128 elements, the Cross Entropy as loss function and Adam as optimizer (learning rate 

0.0002, β1=0.5, β2=0.999). To avoid overconfidence, label smoothing was exploited, thus 

penalizing the labels by 10%. In this case, data and weights were quantized to bit-widths 

ranging between 3 and 8. To train the DCGAN over CIFAR-10 and CelebA, 100 and 30 

epochs were performed, respectively, with the same settings used for MNIST and in the 

range 8-4 bits. CelebA images were resized to 64×64 tiles for batch uniformity and 

quicker training. Also in this case, the NVIDIA Tesla T4 GPU [117] was used as the 

training platform. 

U-Net was trained over 100 epochs, using batches of 16 elements, the Cross 

Entropy as loss function and Adam as optimizer, with the learning rate set to 0.001 and 

0.01 for the Oxford-IIIT Pet and Cityscapes datasets, respectively. Oxford-IIIT Pet 

images were resized to 64×64 tiles, whereas Cityscapes images were center-cropped to 

128×128 frames. Experiments were conducted using the NVIDIA Tesla K80 GPU [119] 

and the bit-width range was spanned in the range 8-2 bit. 

4.1.7. VISUAL INSPECTION RESULTS 

The VI analysis of the CA tests the ability of the autoencoder to capture the essence 

of the input images, by examining how well the outputs are similar to inputs. According 

to the results, quantization between 8 and 4 bits provides acceptable accuracies. 

Sample images, from MNIST and Fashion-MNIST experiments, are reported in 

Figure 4.5 and show how coarser is the image reconstruction achieved using 3 bits and 

how many details are lost, especially when the Fashion-MNIST dataset is referred to. To 

further validate the VI, 10,000 images provided by the CA were provided to the LeNet-5 

classifier [120] to determine the classification behavior. The LeNet-5 classifier was also 
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used to infer results over the ground-truth (GT) dataset, thus providing a baseline for 

comparisons.  

 

Figure 4.5 Samples of reconstructed images from MNIST and Fashion-MNIST. For each 

scenario, the top images refer to the original dataset, while the bottom ones are extracted 

from the CA. 

Figure 4.6 Average deviation of classes distribution w.r.t. the classification of the ground-

truth test. Baseline: LeNet-5 over MNIST (Fashion-MNIST) with accuracy 99% (90%). 
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For the 10 classes, the average percentage change of the occurrences with respect 

to the baseline is reported in Figure 4.6 at the different bit-widths. The trend clearly shows 

that lower quantized bit-widths make the deviation even more evident, given that the 

quantized TCONV Layers increase the number of misclassified images.  

Finally, it is worth underlining that CIFAR-10 was not considered for VI due to the 

poor resolution of its 32×32 RGB images.  

The VI analysis of DCGAN shows that, when trained over MNIST, the model 

exhibits satisfactory generation for the range 8-5 bits. Conversely, when the 4-bit 

quantization is exploited, though fake images represent digits quite well, the generator 

provides limited classes, thus incurring in the training failure named mode collapse [121]. 

Lower quantization (i.e., 3-bit) introduces extra noise that corrupts the informative 

content of each image.  

 

Figure 4.7 (a) The classes distribution of the synthetic MNIST datasets over the bit-width 

range. GT refers to the ground-truth dataset. (b) Example of generation of the digit ‘2’ at 

different bit-widths. 
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In order to analyze the quality of the fake images, the synthetic 10,000 digits dataset 

generated by DCGAN was classified by LeNet-5. Figure 4.7(a) illustrates the classes 

distribution in comparison to that related to the ground-truth dataset. It can be noticed that 

quantization below 4 bits causes failures to get some classes. In addition, from sample 

images reported in Figure 4.7(b), it can be observed that 3-bit precision adds noise to 

images thus making the represented digit no longer understandable.  

When the more complex CelebA dataset is referred to, the acceptable quantized bit-

width ranges between 8 and 6. The sample synthetic images reported in Figure 4.8 show 

that the 5-bit quantization causes training failure.  

 

Finally, VI indicates that the segmented masks generated by the U-Net for the 

Oxford-IIIT Pet and for the Cityscapes dataset achieve acceptable prediction for 

quantized bit-widths in the ranges 8-2 and 8-3, respectively. Figure 4.9 illustrates 

examples of segmented masks obtained at 2- and 3-bit quantization. 

 

Figure 4.8 Example images from the synthetic CelebA at (a) 6 bits and (b) 5 bits. 

(a)         (b) 

Figure 4.9 Example of predictions using U-Net (a) from the Oxford-IIIT Pet dataset at 2 

bits, and (b) from Cityscapes at 3 bits. 
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4.1.8. OBJECTIVE ANALYSIS 

The output images obtained by the CA were compared to the ground-truths in terms 

of PSNR for objective analysis: the PSNR values computed at the end of the training steps 

were averaged over the validate batch. 

 

Figure 4.10 shows how the PSNR varies versus the bit-width for the three datasets 

in two scenarios. In the case of the full quantized model, while the PSNR achieved for 

the Fashion-MNIST and CIFAR-10 datasets slightly decreases when the quantized bit-

width moves from 8 to 5 bits, for the MNIST dataset the PSNR oscillates till the 4-bit 

quantization. Then, a significant decrease initiates at the 3-bit quantization, with a 17.71% 

decay with respect to the previous value. Similar is the behavior when only the TCONV 

Layers are quantized to bit-widths higher than the sweet-spot. At lower bit-widths, 

quantizing only the decoder improves the accuracy. As an example, considering MNIST, 

Figure 4.10 Accuracy of the convolution autoencoder vs the bit-width range over (a) 

MNIST, (b) Fashion-MNIST and (c) CIFAR-10, considering the full quantized model as 

well as the quantization of TCONV Layers only. 

(a) (b) 

(c) 
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the 3-bit quantization of the entire CA leads to a PSNR ~14.8% lower than that obtained 

by quantizing only the TCONV Layers.  

The effectiveness of quantization is confirmed by the 32-bit floating point CA. 

Indeed, the PSNR values of 21.82 dB, 20.83 dB and 21.59 dB obtained for MNIST, 

Fashion-MNIST and CIFAR-10, respectively, are very close to the highest PSNR 

exhibited by the quantized model.  

The synthetic datasets generated by DCGAN over CIFAR-10 and CelebA were 

characterized in terms of IS and FID. While the latter was examined for both the 

considered datasets, the former was evaluated only for CIFAR-10, due to its lack of 

meaning for CelebA [122]. Figure 4.11 reports the analytical metrics trend considering 

the experimented bit-widths. Taking into account that, when adopting the 32-bit floating 

point representation, the DCGAN reaches IS=6.64 and FID=34.41 for CIFAR-10, and 

FID=66.28 for CelebA, the results plotted show a sweet-spot at 5-bit for CIFAR-10, 

whereas the accuracy achieved for CelebA is acceptable only at the 8- and 7-bit 

quantization.  

 

Figure 4.12 shows the accuracy evaluation for the U-Net model. It can be observed 

that, for bit-widths in the range 8-3, the accuracy reached by the full quantized model is 

quite similar to that achieved by quantizing only the TCONV Layers. In particular, Figure 

4.12(a) shows a sweet-spot at the 2-bit quantization, which causes the mIoU to vary by 

1.76%, in the case of the fully quantized model, and by –0.98%, when only TCONV 

Layers are quantized, with respect to the previous value. Furthermore, as visible in 

Figure 4.11 The DCGAN accuracy: (a) IS of CIFAR-10 and (b) FID of both CIFAR-10 

and CelebA experiments. 

(a) (b) 
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Figures 4.12(b) and 4.12(c), for the Cityscapes dataset, lower mIoU values are achieved. 

This is mainly due to the more complex scenes into the images and the higher number of 

classes to be predicted. Indeed, while the Pet dataset refers to binary segmentation (i.e., 

foreground/background), experiments using Cityscapes examine 12 classes. Figures 

4.12(b) and 4.12(c) also show how the mIoU varies versus the quantized bit-width and 

considering the training set and the test set, respectively. The full quantized U-Net model 

reaches the major gap between 3- and 2-bit quantization, with a decay of about 31.91%, 

for the training set, and 14.37%, for the test set. With the quantization of TCONV Layers 

only, the gap below the 3-bit quantization becomes less evident: –9.22% and –2.03% for 

the training and test datasets, respectively.  

 

Figure 4.12 Accuracy of the U-Net vs the bit-width range over (a) Oxford-IIIT Pet, (b) 

Cityscapes-training set and (c) Cityscapes-test set, considering the full quantized model as 

well as the quantization of TCONV Layers only. 

(a) (b) 

(c) 
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As a further analysis, the accuracy achieved by the full quantized U-Net model was 

evaluated varying the epochs considered for training. This is useful to understand how 

many epochs are needed to lead the model to converge. Figure 4.13 illustrates the 

behavior of the Cityscapes (test set) training. After about 40 epochs, the model reaches 

the maximum mIoU, which is practically the same for bit-widths in the range 8-4 bits. 

The 3-bit model requires more training, up to 100 epochs, to approach accuracy values 

comparable to those reached with higher bit-widths.  

Also in this case, the effectiveness of the examined quantization is confirmed by 

the results obtained with the 32-bit floating point U-Net model: mIoU=0.88 for Oxford-

IIIT Pet, mIoU=0.81 for Cityscapes (training set), and mIoU=0.53 for Cityscapes (test 

set). 

4.1.9. OVERALL OVERVIEW OF THE EXPERIMENTS 

Table 4.1 provides a final overview of the experiments, by highlighting: the referred 

models and applications; the quantized layers; the datasets; the accuracy, expressed in 

terms of both VI and analytical metrics. For what concerns the VI, the numbers indicates 

the minimum bit-width that guarantees acceptable accuracy. Conversely, the value 

provided for the analytical metrics is related to the measure at the minimum bit-width that 

ensures acceptable accuracy. 

Figure 4.13 The accuracy trend of the full quantized model vs the epochs over Cityscapes 

(test set) at different bit-widths.   
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Experiments related to the CA showed that quantization down to 5 bits may be 

performed by satisfying both VI and the PSNR. However, the 4-bit implementation is 

also successful when VI evaluates MNIST and Fashion-MNIST decompression. DCGAN 

results are worse. RGB images from CIFAR-10 and CelebA satisfy the range 7-6 bits 

overall. MNIST generation behaves well even below, down to 5 bit, but considering the 

VI only. Image segmentation through the U-Net model provides the most meaningful 

results. Indeed, quantization down to 3 bits satisfy both the Oxford-IIIT Pet and the 

Cityscapes dataset and considering both the VI and the mIoU metric.  

The diagram in Figure 4.14 provides a more intuitive way to interpret all the results. 

For each experiment (i.e., image decompression, image generation, image segmentation), 

the green cells indicate that, at the given bit-width, the test satisfy all the datasets 

considered. Conversely, the light-green cells indicate that some datasets are not satisfied 

Table 4.1 Overview of the accuracy evaluation of TCONV-based QNNs. 

Model 

Application 

Quantized 

Layers 
Dataset 

Accuracy 

Visual 

Inspection 
Analytical metrics 

CA 

Image 

compression/ 

decompression 

All 

MNIST 4b PSNR=21.23 dB (4b) 

Fashion-

MNIST 
4b PSNR=20.16 dB (5b) 

CIFAR-10 -- PSNR=21.70 dB (5b) 

DCGAN 

Image generation 

Generator 

only 

MNIST 5b -- 

CIFAR-10 -- 
IS=6.12 (6b) 

FID=42.27 (6b) 

CelebA 6b FID=85.80 (7b) 

U-Net 

Image 

segmentation 

All 

Oxford- 

IIIT Pet 
2b mIoU=0.87 (3b) 

Cityscapes 3b mIoU=0.76 (3b) 

 

Figure 4.14 Summary diagram: accuracy levels vs bit-width. 
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for the given bit-width. Finally, red cells indicate that the given bit-width does not satisfy 

any dataset. Overall, it can be concluded that the impact of bit-width over the accuracy of 

TCONV-based model is successful in the range 8-5 bits. 

4.2. C++ DESIGN OF A PLATFORM-INDEPENDENT TRANSPOSED 

CONVOLUTION LAYER 

4.2.1. BACKGROUND  

As previously stated, the accuracy evaluation of TCONV-based QNNs, presented 

in the previous Section, was a feasibility study to move towards the design and evaluation 

on FPGAs. The successful results, which had highlighted that deep quantization infers 

good accuracy to the examined models, were the jumping-off point for hardware 

implementation. Indeed, even though quantization leads to some loss of accuracy, by 

sacrificing a given number of bits to represent activations and weights, this makes CNNs 

architectures able to: (1) use limited memory to store the weights; (2) use lower resources 

and, thus, less power to perform MACs; (3) accordingly, replicate several times each 

MAC core to improve the throughput. 

In addition, considering that TCONV acceleration using FPGAs was examined at 

relatively high bit-widths, proper effort towards lower precision is mandatory to follow 

the technology scaling. Among the state-of-the-art solutions, the FlexiGAN architecture 

[46] performs TCONV Layers based on conventional zero-insertion strategy. The 

architecture uses 16-bit data to benchmark GAN models and run over a high-end Xilinx 

Virtex UltraScale device [76]. Acceleration of super-resolution networks was analyzed in 

[47, 16], by transforming transposed convolutions into conventional convolutions by 

either filters or fmaps re-organization. While the former [47] complies with the 13-bit 

data format for both weights and pixels, the latter [16] manages 16-bit fmaps and 10-bit 

filters. High-performance parts, including the Kintex-7 [88] and Zynq UltraScale [60] 

were used to reach satisfactory performances. 

The IOM strategy was examined in [48, 66] to perform image generation and 

segmentation. While the former [48] exploits the 12-bit data format on the low-end Zynq-

7020 [58], the latter [66] adopts the Zynq-7045 [58] at the 32-bit precision. The lowest 
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bit-width is reached by Uni-OPU [50] that exploits the high-end Zynq-7100 [58] to 

benchmark models at 8-bit. 

Unlike the referred works, which either conceived just a single accelerator to 

execute multiple TCONV Layers or used high-precision data to meet acceptable 

accuracies, the architecture proposed in the following Section refers to a circuit that can 

be integrated into dataflow hardware models, consisting of stacked accelerators of 

TCONV layers, where quantization is tunable even below 8 bits.  

4.2.2. THE PROPOSED DESIGN 

This Section presents the design of the novel TCONV Layer, starting from a C++ 

description. This is the starting point for a lower-level implementation, by using the HLS. 

Indeed, the C++ model is translated into the RTL abstraction, before being synthesized 

and implemented on FPGAs. The use of HLS allows the TCONV Layer to be configured 

at design time, by selecting both functional and non-functional parameters, including the 

kernel size K, the up-sampling factor S, the image sizes, the parallelism and the bit-width 

of both weights and activations. As a result, it can be used to emulate the functionality of 

different TCONV Layers and using both low-end and high-end FPGAs, according to the 

resources constraints, as well as the expected performances and energy efficiency. 

The proposed TCONV Layer is modelled using the high-level C++ method 

TranspConvLayer. Algorithm 4.1 shows the pseudo-code, while Figure 4.15 illustrates 

the top-level scheme, to clarify the way in which the inputs are supplied. Indeed, the 

TranspConvLayer function is equivalent to an architecture able to process TIC ifmaps in 

parallel. A further parameter, TOC, manages the number of ofmaps generated in parallel. 

Weights and biases are defined as static arrays to be stored on-chip offline. Given OC as 

the number of ofmap channels and established that the equivalent hardware can generate 

TOC ofmaps at a time, OC/TOC steps (line 1) are needed to complete the processing of the 

current layer. Within each step, the IC ifmaps are subjected to as many TCONVs to 

generate a group of TOC ofmaps. IC/TIC+1 sub-steps (line 2) are used to generate the each 

group of ofmaps.  

During the former IC/TIC sub-steps (if condition of line 3), after having loaded from 

on-chip memories the current weights (curr_w) and biases (curr_b) (line 4), each sub-

step executes the IOM algorithm [49]. This is accomplished by the TranspConvIOM 
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software procedure (line 5), which reads one input activation (in_act) and generates S×S 

output activations (out_act) per cycle, other than being supplied by the current weights 

stored on-chip. During the extra ‘+1’ step (from else condition in line 6), biases 

accumulations, quantization and output data movement are performed. 

 

Algorithm 4.1: The pseudo-code of the TranspConvLayer function 

Inputs: Stream of TIC ifmaps,  

             OC×IC×K×K weights,  

             OC biases 

Output: Stream of TOC ofmaps 

1: for oc=0 to OC/TOC –1 do 

2:   for ic=0 to IC/TIC do 

3:     if ic < IC/TIC then 

4:       Load weights curr_w and biases curr_b; 

5:       TranspConvIOM(curr_w, in_act, out_act); 

6:     else 

7:       for iter=0 to HO*WO–1 do 

8:         #pragma HLS PIPELINE II=1 

9:         Read the provisional TOC activations and add biases; 

10:         Quantize and move the final TOC activations out as stream; 

11:       end for 

12:     end if 

13:   end for 

14: end for 

 

TranspConv 

Layer 

TIC  

TOC ifmaps 

Weights 

ofmaps 

TOC 

Figure 4.15 The inputs and outputs of the TranspConvLayer, when TIC=2, TOC=2. 
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Algorithm 4.2: The pseudo-code of the TranspConvIOM 

Inputs: Stream of TIC ifmaps’ activations in_act,  

             TOC×TIC×K×K weights curr_w,  

Output: Stream of TOC×S×S ofmaps’ activations out_act 

1: for hi=0 to HI–1 do 

2:  for wi=0 to WI–1 do 

3:  #pragma HLS PIPELINE II=1 

4:  inAct = in_act.read(); 

5:  for toc=0 to TOC –1 do 

6:   for tic=0 to TIC–1 do 

7:    for kr=0 to K–1 do 

8:     for kc=0 to K–1 do 

9:      if kc < K–S then 

10:       if wi=0 then 

11:        outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*curr_w(toc,tic,kr,kc);  

12:       else 

13:        outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*curr_w(toc,tic,kr,kc)+ColBuff(toc,tic,kr,kc); 

14:       end if 

15:      else  

16:       outCol(toc,tic,kr,kc) = inAct(tic*N+N–1:tic*N)*curr_w(toc,tic,kr,kc);  

17:      end if 

18:      if kc ≥ S then  

19:       ColBuff(toc,tic,kr,kc–S) = outCol(toc,tic,kr,kc); 

20:      end if 

21:      if kr < K–S then 

22:       if kc < S then 

23:        if hi=0 then 

24:         outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc); 

25:        else 

26:         outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc)+RowBuff(toc,tic,wi,kr,kc); 

27:        end if 

28:       end if 

29:       else  

30:        outRow(toc,tic,kr,kc) = outCol(toc,tic,kr,kc); 

31:       end if 

32:       if kr ≥ S then 

33:        if kc < S then 

34:         RowBuff(toc,tic,wi,kr–S,kc) = outRow(toc,tic,kr,kc); 

35:        end if 

36:       end if 

37:       if tic=0 then 

38:        outAcc(toc,kr,kc) = outRow(toc,tic,kr,kc); 

39:       else 

40:        outAcc(toc,kr,kc) += outRow(toc,tic,kr,kc); 

41:       end if 

42:      end for (lines 8-6) 

43:      Accumulate results of steps ic and ic–1 and store on-chip as out_act. 

44:     end for (lines 5,  2-1) 
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Algorithm 4.2 details the pseudo-code of the TranspConvIOM method. In order to 

equip the model with pipelining and parallelism capabilities, the #pragma HLS 

PIPELINE is exploited (line 3). The latter ensures a concurrent execution of the 

underlying instructions, by allowing reading a new valid input each II clock cycles, with 

II being the Initiation Interval. The code refers to II=1, meaning that the equivalent circuit 

will be able to receive new inputs per each new clock cycle. Following the previous 

remark, the TIC input activations are multiplied by the respective weights, thus producing 

windows of provisional outputs. For each cycle, the first K–S columns of the current 

TOC×TIC windows must be accumulated to the last  K–S columns of the windows produced 

in the previous cycle. This column overlapping is managed within lines 9-20. There, the 

outCol 4D array collects the actual multiply-accumulations, while ColBuff is responsible 

to temporarily store the pixels that must be accumulated in the following clock cycle to 

comply with the referred overlap. Similarly, the row overlap is handled by means of the 

outRow and the RowBuff multi-dimensional arrays (lines 21-36). It is worth underlining 

that, with respect to ColBuff, RowBuff is characterized by an additional dimension. 

Indeed, it has to store all the provisional results, related to the current input image row, 

which must be accumulated to the results later furnished by the next image row.  

Afterwards, taking into account that multiple ifmaps are processed in parallel, the 

TIC results are accumulated in a pixel-wise manner (lines 37-41). Finally, the results 

provided during the current ic sub-step are accumulated to those generated during the step 

ic–1 (line 43).  

For each group of TIC input activations, TOC×S×S outputs are provided at the same 

time, as a consequence of the IOM algorithm which manages outputs as windows instead 

of single pixels. The latter behavior ensures the improvement of the output throughput by 

a factor S2, however it unbalances the ratio between the input and the output throughputs 

of the proposed TCONV Layer. This is the reason behind the +1 step reported from line 

6 of Algorithm 4.1. During this piece of time, the outputs are read from the output buffer 

outBuff as a stream of TOC pixels at a time, instead of TOC×S×S. Biases accumulation is 

also performed during this extra-step. 

The referred outBuff is a 3D array: the first dimension indicates the number TOC of 

ofmaps generated in parallel; the second dimension refers to the up-sampling factor S; the 

third dimension represents the area of the generic ifmap and equal to HI×WI. In other 
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words, we can suppose this array as TOC banks of S memories, each being HI×WI wide. 

For each cycle, the generic bank is responsible to accommodate the S×S results, provided 

by the IOM TCONV, into the S memories. This is accomplished by placing rows of S 

pixels into each memory cell. At the completion of the generation of the parallel ofmaps, 

a proper control logic is used to read the stored pixels as TOC outputs per cycle, using the 

raster-order policy to provide them to either an external memory resource or a subsequent 

computing layer. This is realized by managing proper memory pointers, namely buff_idx 

and cell_idx that indicates, respectively, which memory of the bank and which specific 

cell are under analysis. 

 

To better understand the behavior of the outBuff, we refer to the example in Figure 

4.16, where a 3×3 ifmap is used to generate a 6×6 ofmap (at S=2). We suppose that TOC=1. 

Accordingly, one bank of S=2 memories, each being 3×3-wide, is exploited. The generic 

memory cell hosts S=2 adjacent output pixels. The numbers indicated in each cell refer 

to the spatial position of those pixels within the generic ofmap. The control logic follows 

that numbering strategy to output TOC=1 data per clock cycle. During the first clock cycle 

 

I0 I1 I2 

I3 I4 I5 

I6 I7 I8 

 

O0 O1 O2 O3 O4 O5 

O6 O7 O8 O9 O10 O11 

O12 O13 O14 O15 O16 O17 

O18 O19 O20 O21 O22 O23 

O24 O25 O26 O27 O28 O29 

O30 O31 O32 O33 O34 O35 

 

0 O1 O0 

1 O3 O2 

2 O5 O4 

3 O13 O12 

4 O15 O14 

5 O17 O16 

6 O25 O24 

7 O27 O26 

8 O29 O28 

             Memory#0 

0 O7 O6 

1 O9 O8 

2 O11 O10 

3 O19 O18 

4 O21 O20 

5 O23 O22 

6 O31 O30 

7 O33 O32 

8 O35 O34 

                     Memory#1 

buff_idx 

cell_idx 

3×3 ifmap 
6×6 ofmap 

Figure 4.16 Example of outBuff to store a 6×6 ofmap generated from a 3×3 ifmap. 
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of the reading step, buff_idx=0 and cell_idx=0. This state is preserved for two cycles, in 

order to get the first two pixels stored within the Memory#0. During the third and fourth 

cycles, cell_idx=1 and the pixels O2,O3 are read. The fifth and the sixth cycles are 

interested by the reading of pixels O4,O5 by pointing cell_idx=2. Afterwards, the cell_idx 

value is wound back by WI–1=2 positions, buff_idx=1, and the pixels O6-O11 are read 

following the previous increment strategy. Thus, the Memory#0 leads the process again 

considering the subsequent cells (cell_idx = 3 to 5), and so on for the remaining values, 

in a ping-pong manner. 

4.2.3. PARAMETRIC ANALYSIS 

The C++ TCONV Layer was conceived as a parametric template able to adapt itself, 

at design time, to different configurations. These are managed by the filer size K, the up-

sampling factor S, the image sizes, as well as the bit-width N and the parallelism through 

the parameters  TIC and TOC.  

This layer was translated into the RTL abstraction, using Vivado HLS v2019.2, 

where the design was also synthesized and implemented in hardware using the XC7Z020 

part [58] at the fixed clock frequency f=100 MHz. 

In order to evaluate the impact of the specific TCONV parameters, Table 4.2 

illustrates their impact over both the resource occupation and the speed throughput, 

expressed as the number of frames-per-second (fps). Furthermore, Figure 4.17 shows the 

referred trends through plots: (1) bar-charts for the resource utilization, expressed as 

percentages related to the XC7Z020 part; (2) lines for the throughput (fps). 

The impact of the up-sampling factor S was evaluated considering the kernel size 

K=9, used for super-resolution imaging tasks [31]. Considering that the sizes of ofmaps 

directly depend on the referred variable (i.e., the higher S, the wider the ofmap area), it 

can be noticed that the number of BRAMs grows by a factor 3.6 when moving from S=2 

to S=4. As expected, the higher the ofmaps sizes, the lower the throughput, which exhibits 

a decrease of 3.2 times throughout the whole examined range. 
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Table 4.2 TCONV Layer parametric analysis varying K, S, and the image sizes. 

Fixed 

Parameters 

Variable 

Parameter 

Resources Throughput 

[fps] 
LUTs FFs 

BRAMs 

(18K) 
DSPs 

N=8, HI=WI=32, 

K=9,TIC=2,TOC=2 

S=2 13091 7163 9 220 18348 

S=3 13234 7124 19 220 9433 

S=4 13106 6929 33 220 5649 

N=8, HI=WI=32, 

S=2,TIC=2,TOC=2 

K=3 598 408 8 36 19342 

K=4 912 649 8 64 19267 

K=5 1245 836 8 100 19120 

K=7 1821 1111 9 196 18761 

K=9 13091 7163 9 220 18348 

N=8,K=4,S=2, 

TIC=2,TOC=2 

HI=WI=8 940 617 4 64 255102 

HI=WI=16 899 633 4 64 74074 

HI=WI=32 912 649 8 64 19267 

HI=WI=64 756 395 48 64 4854 

HI=WI=128 922 421 128 64 1219 

 

Figure 4.17 Parametric analysis of the TCONV layer (a) varying S, (b) varying K. 
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The computing resources (i.e., LUTs and DSPs) are strongly influenced by the 

kernel size K. This is due to the use of #pragma HLS PIPELINE that completely unrolls 

the loops related to the multiplications between the given input pixels and the respective 

filters to meet the II=1 requirement. Accordingly, the higher the filter size, the higher the 

number of replicas to parallelize the computations. The throughput is weakly affected by 

K. Indeed, only the fast filters’ loading step constitutes an extra contribution to the overall 

latency. Specifically, when moving from K = 3 to K = 9, the fps metric shows a negligible 

~5.1% loss. 

Conversely, the throughput exhibits a relevant dependence on the image sizes 

HI×WI. This is due to the use of even-more wider ifmaps and, in turn, to the generation 

of ofmaps. whose area grows with the product between HI,WI and S. For what concerns 

the on-chip memories, their usage dominates the scenario for HI,WI ≥ 64. Below, the 

synthesizer alternates the use of the latter with the employment of logic to infer memory 

for both overlapping and temporary output storage.  

4.2.4. STATE-OF-THE-ART COMPARISONS 

For purposes of comparisons with state-of-the-art FPGA-based TCONV 

accelerators, the proposed C++ template was used to implement proper engines following 

the configuration parameters of the competitors [123, 14, 50]. Furthermore, given the 

platform-independency provided by the HLS, the architecture was implemented 

considering both the low-end XC7Z020 part and the high-end XC7Z100 FPGA [58]. 

Figure 4.17 (cont.) Parametric analysis of the TCONV layer (c) varying HI (WI). 
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Table 4.3 illustrates the characterization in terms of: (a) the specific configuration (i.e., 

bit-width, kernel size K and stride S), (b) resource occupation, (c) achieved clock 

frequency, (d) throughput expressed as the number of Giga Outputs per Second (Gout/s), 

(e) power dissipation in Watt, and (f) the energy efficiency as the ratio between the Gout/s 

and the power. The main percentage changes are reported in Figure 4.18. 

 

Table 4.3 Characterization of the HLS TCONV Layer and state-of-the-art comparisons. 

 New New New [123] [14] [14] [50] 

Device XC7Z020 XC7Z020 XC7Z100 XC7Z020 XC7Z020 XC7Z100 XC7Z100 

Bit-width 16 16 16 16 16 16 16 

K,S 3,2 5,2 5,2 3,2 5,2 5,2 3,2 

LUTs 2.52k 2.99k 11.71k 3.82k 2.90k 15.50k 115.2k 

FFs 0.82k 1.41k 10.04k 5.09k 4.30k 22.90k 241.4k 

BRAMs 

[Mb] 
1.69 1.40 4.52 0.45 0.84 0.84 17.38 

DSPs 144 200 800 29 210 1120 1987 

Freq. 

[MHz] 
125 125 200 125 200 300 200 

Gout/s 3.90 1.95 6.25 1.95 1.56 9.37 12.5 

Power 

[W] 
0.29 0.36 1.53 0.09 0.42 2.62 2.89 

Gout/s/W 13.45 5.42 4.08 20.97 3.71 3.58 4.33 

Best performance in bold at the parity of device and K, S. 

Figure 4.18 Percentage change comparisons: resources, frequency, energy efficiency.  

New State-of-the-art 



HIGH-LEVEL SYNTHESIS FOR CONVOLUTIONAL NEURAL NETWORKS 128 

The circuit having K=3 was implemented within the XC7Z020 FPGA at the 16-bit 

precision to be compared with the direct counterpart [123]. The proposed solution doubles 

the speed throughput of [123], thanks to the parallelism capability supported. However, 

the overall energy efficiency is  ~36% lower due to the higher power dissipation. This is 

mainly due to the fact that the latter adopts an approximation strategy that minimizes the 

number of TCONVs, by replacing some of them with simple averages. Accordingly, the 

generic model accelerated may suffer from a detrimental impact on accuracy.  

The same FPGA was used to test the configuration with K=5 for fair comparison 

with [14]. It is worth underlining that both the accelerators adopt the IOM strategy for 

TCONV computations. However, the latter [14] is designed by using VHDL templates to 

maximize the performance. Despite this, the novel engine exhibits a ~25% higher 

throughput at a ~37.5% lower frequency. 

The implementation within the XC7Z100 part shows competitiveness with the 

design [14, 50]. The proposed solution is only ~5.8% less energy-efficient, but using 

~89.8%, ~95.8%, ~59.7%, ~74% less LUTs, FFs, DSPs and BRAMs, respectively. When 

compared with [14], our circuit shows an efficiency ~12.3% higher but suffering from a 

1.5 times lower performance, due to the lower frequency. 

Overall, the proposed design has proven to be competitive with respect to state-of-

the-art, thus suggesting that a careful high-level design by a proper use of #pragmas may 

lead to efficient hardware implementation.   

4.3. TOWARDS A DATAFLOW ARCHITECTURE OF STACKED 

TRANSPOSED CONVOLUTION LAYERS: THE CASE-STUDY 

OF A DECODER FOR IMAGE DECOMPRESSION 

Considering that low bit-widths result in lower area occupation to manage a single 

TCONV Layer, a dataflow architecture consisting of stacked layers can be used to avoid 

frequent off-chip communications to move data, thus positively affecting both speed and 

power. Stimulated by the impressive results in low-precision Fully-Connected NNs and 

conventional CNNs [18, 100], we examined the hardware implementation of a simple 

two-layered decoder [21], based on the accuracy trend of our previous study [19]. To 

emulate a real-life scenario, we accommodated it into a complete embedded system. A 
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detailed design-space exploration of both resources and latency under the bit-width and 

the parallelism constraints is presented, as well as the suitability of a careful HLS design 

by means of a proper usage of #pragmas. 

4.3.1. THE PROPOSED DESIGN 

The TCONV-based Decoder (TCD) accelerator complies with the 

TranspConvDecoder method, reported in Algorithm 4.3, which calls the instances of 

TranspConvLayer and TranspConvLayerReLU. The former is nothing but the high-level 

model introduced in the previous section, while the latter is also equipped with ReLU 

non-linearity [25].  

The specific composition of the neural network under examination is as follows: 

(1) the first layer processes 4 ifmaps using 16 filters, each consisting of 4×3×3 weights, 

thus producing 16 ofmaps; (2) the second layer processes the previous 16 fmaps using 

16×3×3 weights to produce the final ofmap. For each layer, the up-sampling factor is S=2, 

thus the decoder generates a final 32×32 ofmap starting from 8×8 ifmaps. 

The behavior of the equivalent hardware architecture is reported in Figure 4.15, 

using a timing diagram. For each layer, hereby labelled as L1 and L2, each yellow box 

indicates one of the IC/TIC steps to compute TOC provisional ofmaps. The generic orange 

box refers to the extra step to move the final TOC ofmaps to the subsequent layer for further 

computations, and following the reading policy as depicted in Figure 4.19. Thanks to the 

use of proper #pragmas, both function- and task-level parallelism were enabled to limit 

the overall latency. The #pragma HLS DATAFLOW permits the circuit to overlap the 

execution of consecutive TCONV Layers, while #pragma HLS PIPELINE inherits the 

#pragma HLS UNROLL to perform the related computations in parallel, thus allowing 

consecutive reading of new data per cycle. Indeed, as reported in the bottom sketch of 

Figure 4.15, where the second yellow box of L2 is magnified, all the steps associated to 

Algorithm 4.3: The pseudo-code of the TranspConvDecoder function 

Input: inStream of TIC ifmaps 

Output: outStream of TOC ofmaps 

1: #pragma HLS INTERFACE axis port=inStream 

2: #pragma HLS INTERFACE axis port=outStream 

3: #pragma HLS DATAFLOW 

4: TranspConvLayerReLU (inStream, L1Stream); 

5: TranspConvLayer (L1Stream, outStream); 
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the IOM are pipelined, meaning that the i-th+1 step can begin as soon as the first valid 

data from the i-th step is available.  

In order to be cooperate effectively with other accelerators, The TCD unit is 

interfaced using the AXI4-Stream specification [59], which enables high-speed data 

streaming. The #pragma HLS INTERFACE axis allows the custom accelerator to be 

provided with that infrastructure, as reported in Algorithm 4.3, where both inputs and 

outputs are equipped with this interface.  

4.3.2. ANALYSIS OF THE EFFECTIVENESS OF #PRAGMAS 

In order to evaluate the effectiveness of the use of #pragmas, an extensive design-

space exploration was carried out. Resource occupation and latency of different 

configurations were analyzed, by varying the bit-width and the parallelism parameters. 

For each specific configuration, both the baseline design and the optimized design were 

implemented. The former makes use of a limited number of high-level directives, needed 

to ensure the correct synthesis and behavior of the model. The latter add other #pragmas 

in order to boost the performance, thus heavily exploiting parallelism. All the used 

#pragmas are summarized in Table 4.4, with an explanation of their meaning and the way 

they are used for the specific architecture.  

 

Figure 4.19 Timing diagram describing the behavior of the proposed TCONV-based 

decoder. 
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The bit-width range was spanned between 8 and 4 bits, considering that this is the 

overall acceptability range from our previous study [19]. Specifically, the decoder trained 

over MNIST [105] well perform down to 4 bits, while its effectiveness is limited to at 

most 5 bits for Fashion-MNIST [106]. Also in this case, the XC7Z020 [58] was 

considered as the target platform. Considering the resource availability, the parallelism 

configurations (TIC,TOC) = (1,1), (2,2), (2,4) were examined. 

Table 4.4 Detail of the used #pragmas for the TCONV-based decoder. 

#pragma Baseline Optimized 

HLS ARRAY_PARTITION 

It partitions a multi-dimensional array into 

multiple sub-arrays. 

 

Used for the output buffer only, to allow the 

circuit to proper store the TOC×S×S pixels 

provided each cycle. 

Not 

Used 

Used for filters and biases to be 

accessed simultaneously by as 

many computing elements. 

Used for row overlap buffers 

according to the Input-Oriented 

Mapping Algorithm. 

HLS RESOURCE 

It specifies the type of resource to be used 

to implement a given variable. 

Not 

Used 

Used to implement the output 

buffer as a simple dual-port 

memory. 

HLS PIPELINE 

It provides pipelining capabilities to the 

referred function or loop. Thus, new 

inputs can be processed every II clock 

cycles, with II being the initiation interval. 

It inherits the #pragma HLS UNROLL 

(see below). 

Not 

Used 

Used to read each new cycle 

(II=1): 

• Weights and biases; 

• ifmaps. 

Used to manage the timing of 

data export from the output 

buffers. 

HLS UNROLL 

It transforms loops by creating several 

copies of the body to infer parallelism. 

Not 

Used 

Used to unroll loops for data 

acquisition, computations and 

buffering. It is directly provided 

by the #pragma HLS PIPELINE. 

HLS INTERFACE 

It specifies which interfaces must be used 

by I/O ports. 

Used to equip both input and output ports of 

the hardware engine with the AXI4-Stream 

Interface. 

HLS DATAFLOW 

It specifies the task-level parallelism to 

improve the concurrency of C++ 

functions. 

Used to manage the relationship between the 

two layers of the decoder. It is needed to 

ensure the correct functionality of data 

transfer using streams when functions are 

cascaded, as reported in the HLS guide. 

[128]. 
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Figure 4.20 illustrates the trade-off trend between resource occupation and latency. 

The former is expressed as the average percentage over the available resources (i.e., 

LUTs, FFs, BRAMs and DSPs). For visualization purposes, both the axes are expressed 

in base-10 logarithmic scale. Each point represents a specific configuration. There, each 

label indicates the design type (baseline as ‘b’, optimized as ‘o’), the bit-width N and the 

TOC factor. For instance, o62 refers to the optimized design with bit-width N=6 and output 

parallelism factor TOC=2. Green points refers to the bit-width configurations that satisfy 

the accuracy analysis for both MNIST and Fashion-MNIST datasets, while red points fail 

in meeting Fashion-MNIST quality requirements. 

The key message is that two main regions can be identified within the plot: on the 

right, the baseline designs are placed, whereas on the left the optimized counterparts can 

be found. By the viewpoint of latency, proper usage of #pragmas to infer parallelism 

Figure 4.20 Trade-off analysis related to the HLS TCONV-based decoder. 
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results in a considerable improvement, reaching up to 3 orders of magnitude. Obviously, 

lower latency means higher resources requirements. However, considering the worst case 

configuration o84, the average utilization is limited to 16%.  

 

Figure 4.21 helps the reader to better interpret the results related to the baseline 

designs. While the latency variation among the different configuration is very limited, the 

occupation delta among the different implementations is more noticeable. Considering 

the bit-width, it can be observed that higher values of N mean higher occupation due to 

the wider multipliers/adders to be used. In addition, higher TOC reflects in higher 

occupation, as expected. Finally, it is worth observing that the configuration b41 requires 

the lowest amount of resources, while the configurations b64, b54, b44 employ the lowest 

amount of clock cycles to complete the computations. 

Figure 4.21 Detail of trade-off analysis of the baseline TCONV-based decoder. 
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4.3.3. CHARACTERIZATION OF THE EMBEDDED SYSTEM 

Considering the remarkable behavior of the optimized version of the TCD 

accelerator, its behavior was tested within a real-life scenario, by embedding it into the 

system depicted in Figure 4.22. Here, The Programmable Logic section accommodates 

the custom TCD unit and the Direct Memory Access (DMA) unit. The latter acts as a 

bridge between the TCD accelerator and the external memory to move data bursts. A 

general-purpose processor is the main unit of the Processing System section whose task 

is to configure the DMA to fulfill its functions. Furthermore, a Memory Controller 

manages the communication between the DMA and the external memory. In order to 

exchange both informative content and configurations, the embedded system here 

presented is equipped with the fourth generation of the Advanced eXtensible Interface 

(AXI4) [59]. The TCD unit is interfaced to the DMA through the AXI4-Stream 

specification. The DMA, other than accommodating the same streaming interface to 

communicate with the TCD, also presents the AXI4-Full specification to manage 

memory-mapped transactions of data bursts. This is needed to enable the correct exchange 

of data with the external memory, through the Memory Controller. The DMA receives 

configuration signals by the general-purpose processor using the AXI4-Lite Interface, 

which handles single memory-mapped transactions.  

The TCD accelerator was designed using the Xilinx Vivado HLS tool (v2019.2), 

while the whole embedded system was built through the Xilinx Vivado tool. The circuit 

Figure 4.22 The embedded system accommodating the TCONV-based decoder. 
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was tested using the Digilent Pynq-Z1 board [124]. It accommodates the Xilinx XC7Z020 

SoC [58], which consists of both a 650MHz dual-core Cortex-A9 Processor and an Artix-

7 FPGA section. The referred board is also equipped with a 512 MB DDR3 memory. The 

clock frequency of the Programmable Logic was set to f=100 MHz.  

The design-space exploration carried out considered the bit-width range analyzed 

in the previous sub-section (i.e., 8-4 bits), while the parallelism was spanned between the 

rolled configuration (TIC,TOC) = (1,1) and the configuration (TIC,TOC) = (4,4). The latter 

has been shown as the most critical scenario for the DSPs usage, reaching the ~87% of 

their utilization.  

Figure 4.23 Resource utilization trends varying the bit-width N and the parallelism factors 

TIC and TOC: (a) LUTs; (b) DSPs. 

(a) 

(b) 
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Figure 4.23 illustrates the trend of resources varying the mentioned parameters. For 

each bar graph, 4 groups are represented, each referring to a specific (TIC,TOC) 

configuration. Each group consists of 5 adjacent bars related to the bit-width range. In 

order to discuss the impact of the bit-width N, let us consider the example scenario 

(TIC,TOC) = (2,4). It is expected that fewer resources should correspond to lower values of 

N. This because as the bit-width is reduced, also the data-width decreases. However, 

LUTs occupation follows the opposite trend in the range 8-6 bits. Logic occupies ~35% 

more area moving from 8 to 7 bits, and a further ~12% increase towards the 6-bit 

configuration. This counterintuitive behavior is justified by examining the DSPs trend. In 

fact, when N is reduced from 8 to 6 bits, the DSPs usage shows a huge 95% decrease. 

This means that, by lowering N, the synthesizer assigns multiplications and additions to 

Figure 4.23 (cont.) Resource utilization trends varying the bit-width N and the parallelism 

factors TIC and TOC: (c) FFs; (d) BRAMs. 

(c) 

(d) 
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LUTs instead of DSPs. When the 6-4 bits range is considered, the theoretical trend is met, 

in that the DSPs occupation is kept constant. Thus, the lower N, the lower the logic area. 

FFs confirm the LUTs trend, in that they are mainly involved in pipelining contiguous 

combinatorial paths.  

BRAMs occupation does not vary with N. This behavior can be explained by 

considering the C++ coding style. In general, memories are managed through arrays. The 

#pragma HLS ARRAY_PARTITION directive helps the synthesizer to proper translate 

such high-level structures into memory elements, by partitioning the given array into sub-

arrays corresponding to as many hardware resources. The referred partition took into 

account the TOC parameter and the up-sampling factor S, without constraining over N. 

When the bars are examined as groups, proper considerations about the parallelism 

influence can be extrapolated. All the resources show a growth as the (TIC,TOC) couples 

assume higher values, in that the generic computing unit is replicated as many times. 

BRAMs trend confirms the previous considerations. Since their usage is related to the 

output parallelism, higher TOC means higher memory occupation. This observation is 

further confirmed when the configuration (2,4) and (4,4) are compared. In this scenario, 

since the input parallelism parameter only varies, the memory area is the same.  

Finally, the contribution of the TCD accelerator only was evaluated. While DSPs 

do not present any difference when compared to the embedded system, in that they are 

completely used within the custom unit, it is worth reporting the percentage fraction of 

the remaining resources. Indeed, LUTs, FFs and BRAMs occupy the ~48%, ~34% and 

~45% of the embedded system, respectively, by averaging all the implemented 

configurations.  

To calculate the latency, the Integrated Logic Analyzer (ILA) IP [125] was 

accommodated within the referred embedded system to examine the actual waveforms. 

Two types of analyses were carried out: (1) the latency of both the TCD unit and the 

DMA; (2) the impact of the TCD unit only. The former was accomplished by triggering 

the control signals of the AXI4-Full Interface of the DMA. Conversely, the latter 

considered the AXI4-Stream signals of the custom accelerator.  
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Figure 4.24 depicts the contribution of both the TCD unit and the DMA, when the 

bit-width and the parallelism are varied in the defined range. N does not influence the 

execution time because the architecture takes the same time to perform transposed 

convolutions at different bit-widths. The (TIC,TOC) couples affect the latency. When the 

parallelism is not inferred, the circuit takes ~107 μs to complete its tasks. Increasing the 

parallelism up to the (4,4) configuration leads the circuit to be 3.5× faster. Taking into 

account the scenario N=4, Figure 4.25 compares the latency of the TCD only and the extra 

contribution required by the DMA. For all the parallelism configurations, the delta is only 

~3 μs, thus occupying the ~7% of the overall latency on average. This means that the 

DMA transactions infer a negligible extra contribution, thus confirming the suitability of 

this family of embedded systems to accelerate tasks like those related to CNNs. 

 

Figure 4.24 Latency trend varying the bit-width N and the parallelism factor TIC and TOC. 

Figure 4.25 Latency variation between the embedded system and the contribution of the 

TCONV-based decoder only. 
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4.4. DATAFLOW ACCELERATION OF GENERATIVE 

ADVERSARIAL NETWORKS 

In order to further investigate the behavior of dataflow architectures 

accommodating TCONV Layers, the generator of the DCGAN network [22] was taken 

into account. Specifically, considering the accuracy analysis conducted in our previous 

study [19], we implemented in hardware the architecture for MNIST image generation at 

5-bit precision. Algorithm 4.4 illustrates the top-level pseudocode.  

The DCGAN function receives, as input, a 1×1×100 latent vector to be modelled as 

an output image by the whole network. The learned filters are completely stored on-chip, 

thus avoiding frequent loading from off-chip resources. The ProjectReshape method is 

the first layer that processes the given inputs: it consists of a TCONV Layer at S=1, which 

manages 256 filters of 4×4×100 weights. The second and the third layers are TCONV 

Layers equipped with ReLU non-linearity [25], which use 128 and 64 filters, respectively, 

with K=4 and S=2. Finally, the last TCONV Layer provides the resulting 32×32 output 

image by processing the input fmaps with one 64×4×4 filter. 

With respect to the decoder analyzed in the previous Section, the DCGAN requires 

internal fmaps’ reuse to comply with layers that use more than one 3D filter. Indeed, due 

to the streaming behavior of the architecture, pixels are generated once and consumed by 

the next computing resource as soon as possible. As a consequence, a buffer at the 

interface between two layers, of which the latter adopts more than one 3D filter, is 

mandatory. This is the meaning of the DataBuffer function reported in Algorithm 4.4 and 

placed between the layers 1-2 (line 5) and 2-3 (line 7). No extra buffering is needed 

Algorithm 4.4: The pseudo-code of the DCGAN function 

Input: latent vector inStream 

Output: generated image outStream 

1: #pragma HLS INTERFACE axis port=inStream 

2: #pragma HLS INTERFACE axis port=outStream 

3: #pragma HLS DATAFLOW 

4: ProjectReshape (inStream, L1Stream); 

5: DataBuffer (L1Stream, L1Stream_buff); 

6: TranspConvLayerReLU (L1Stream_buff, L2Stream); 

7: DataBuffer (L2Stream, L2Stream_buff); 

8: TranspConvLayerReLU (L2Stream_buff, L3Stream); 

9: TranspConvLayer (L3Stream, outStream); 
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between layers 3-4, in that the latter uses just one 3D filter to provide the output image, 

thus reading the incoming values, from the third layer, once. 

4.4.1. CHARACTERIZATION  

By using the HLS tool, the C++ parametric template was translated into the RTL 

abstraction and implemented using the XC7Z045 part for purposes of characterization 

and comparisons with previous works. Table 4.5 illustrates the results in terms of (a) bit-

width; (b) resource occupation in terms of LUTs, FFs, BRAMs and DSPs; (c) achieved 

clock frequency and throughput as the number of frames-per-second (fps); (d) power 

consumption in Watt; (e) energy-efficiency as the ratio between the throughput and the 

power. 

Three different parallelism configurations were analyzed, to examine the impact of 

the latter parameter on the accuracy. Specifically, the TOC array reported in Table 4.5 

indicates the output parallelism configurations of each layer (equivalently, the input 

parallelism configurations of the next layer). 

 

As expected, the higher the parallelism, the better the speed performances. When 

the baseline configuration (i.e., without parallelism) is compared to the most parallelized 

counterpart, a speed improvement of 4.6 times is experienced. The slightly higher power 

dissipation allows the optimized circuit to double the energy-efficiency.  

Also in this case, the #pragma HLS PIPELINE used to both infer pipelining and 

parallelism permits an overall better performance at the expense of higher area 

Table 4.5 Characterization of the HLS DCGAN model. 

TOC configuration (1,1,1,1) (2,2,2,1) (2,4,2,1) 

Device XC7Z045 XC7Z045 XC7Z045 

Bit-width 5 5 5 

LUTs 8.62k 16.88k 22.40k 

FFs 10.96k 21.77k 25.08k 

BRAMs [Mb] 6.68 6.89 7.03 

DSPs 0 1 1 

Freq. [MHz] 167 167 167 

fps 52 196 240 

Power [W] 0.34 0.59 0.74 

Energy Efficiency 

[fps/W] 
152.94 332.20 324.32 
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occupation. However, while the logic increases up to more than 22k LUTs, the on-chip 

memory usage is practically steady around 7 Mb. This is due to the fact that BRAMs are 

heavily exploited to store the needed filters, while the extra amount for provisional data 

buffering is negligible. In addition, considering the limited bit-width through which both 

activations and weights are represented, it is worth observing that computations are 

performed using LUTs, without the requirement of DSPs. 

Finally, the configuration TOC = (2,4,2,1) was compared to state-of-the-art 

counterparts, as reported in Table 4.6. Figure 4.26 also reports the percentage changes 

with respect to the state-of-the-art. When compared to the architecture presented in [126], 

the proposed accelerator shows a remarkable 7.3× improvement in terms of energy 

efficiency, even at 1.7× lower throughput. The power saving is motivated by the fact that 

the novel engine accommodates all the needed TCONV Layers on chip, as well as the 

required filter weights, thus limiting the off-chip memory accesses. In addition, the data 

treatment at 5-bit shrinks the area occupation for computations significantly; indeed, the 

16-bit counterpart hugely adopts DSPs, while the referred design practically nullifies their 

usage. It is also worth underlining that the achieved fps of [126] are further improved by 

the 300 MHz clock frequency, thanks to the high-performance Alveo U200 device [127] 

took under consideration.  

The architecture presented in [70], even implemented using the same FPGA, is 

22.9% slower while running at the same frequency. The higher usage of resources to 

comply with the transformation steps of Winograd-based TCONVs makes the engine 10 

times less energy-efficient with respect to the proposed 5-bit competitor. 

The high-end Virtex-7 690 T FPGA accommodates the DCGAN accelerator [68] at 

the 16-bit precision. The latter clearly exhibits the best throughput among the counterparts 

but at expense of a considerable amount of resources, by requiring 13.26×, 23.47×, 3.56× 

more LUTs, FFs, on-chip BRAMs, respectively. Furthermore, to meet the 1.21 ms 

latency, the 64% of the available DSPs is required. 
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Table 4.6 State-of-the-art comparisons of FPGA-based DCGAN model. 

 New [126] [70] [68] 

Device XC7Z045 XCU200 XC7Z045 XC7VX690T 

Bit-width 5 16 16 16 

LUTs 22.40k 483k 196.7k 297.12k 

FFs 25.08k 726k - 588.62k 

BRAMs [Mb] 7.03 77 10.9 25.03 

DSPs 1 2176 603 2304 

Freq. [MHz] 167 300 167 200 

fps 240 400 185 826 

Power [W] 0.74 9 5.8 - 

 fps/W 324.32 44.44 31.89 - 

Best energy efficiency in bold. 

Figure 4.26 Percentage change comparisons: resources, throughput, energy efficiency.  

New State-of-the-art 
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4.5. SUMMARY 

In this Chapter, the impact of quantization over QNNs using TCONV Layer was 

presented. First, a high-level analysis of PyTorch-based models (dealing with image 

decompression, synthetic objects generation and semantic segmentation) was carried out, 

showing the range 8-5 bits integer ensures appreciable quality results with respect to 32-

bit floating point counterparts. The investigation took under consideration the visual 

inspection as well as proper analytical metrics for objective evaluation. 

Stimulated by the above results, a TCONV based engine using C++ was presented 

and hardware implemented in FPGA using the High-Level Synthesis. The parametric and 

platform-independent design allowed a design-space exploration varying the filter size, 

the up-sampling factor and the size of images, showing limited resource occupation at 

thousands of frames-per-second. For example, when images are up-sampled with S=4, 

the equivalent circuit requires the 24.6%, 6.5%, 11.8% of LUTs, FFs, BRAMs, 

respectively, by processing about 5.6K frames per second. 

The proposed architecture was accommodated into dataflow architectures (enabled 

by C++ pragmas) for image decompression and image generation. The former experiment 

highlighted that proper usage of HLS #pragmas may ensure low latency with relatively 

limited area occupation. The latter implemented the DCGAN model and demonstrated 

remarkable speed at the highest energy-efficiency with respect to state-of-the-art 

counterparts. 

Overall, careful HLS design could ensure satisfactory trade-off in terms of area, 

speed and power consumption. 
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5. CONCLUSIONS  

5.1. SUMMARY AND CONTRIBUTIONS 

The pervasiveness of Deep Learning (DL) is a fact in many domains [1, 2, 3, 4]. Image 

Processing particularly benefits from CNNs that mimic the human visual cortex. 

However, ever-more increasing effort is needed to offer hardware architectures able to 

follow the accuracy trend exhibited by complex CNNs, which demand billions of MACs. 

As highlighted in Chapter 2, among several solutions, FPGAs are showing as one of the 

most promising candidates to accommodate high-performance CNN models that excel in 

energy-efficiency [12].  

In addition, FPGAs are characterized by the following properties: 

▪ Flexibility, offered by a sea of reconfigurable cells, and able to equip convolutions 

with run-time reconfigurability of both their own parameters (e.g., filter size), as well 

as the management of image sizes. 

▪ High-performance Multiply-Accumulations, carried out by dedicated DSPs that are 

interconnected each other either by high-speed routing interconnections or by fabric 

tracks to reach the other types of resources. 

▪ On-chip buffering, to limit power-hungry external accesses to off-chip memories.  

▪ Embedded integration, to cooperate with general-purpose processors, by meeting the 

Hardware-Software Co-Design requirements useful to split complex algorithms by 

parallel running multiple sections. 

These features allow effective implementation of CNNs by either (a) deploying 

accelerators to be run-time adapted to different configurations, or (b) fitting a complete 
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model on-chip, based on dataflow processing, and being preliminary subjected to 

compression to meet the resources constraints [100]. 

This PhD research has investigated the suitability of particular convolution-based 

algorithms, namely DCONVs and TCONVs, to be effectively designed on FPGAs. Both 

low-level languages (i.e., the VHDL) and the use of HLS were adopted to showcase their 

effectiveness to hardware implement CNNs. 

In Chapter 3, the design of VHDL-based circuits [13, 14, 15, 16] has provided 

meaningful results in terms of resources occupation and achieved clock frequency. The 

320 MHz clock frequency was achieved by the hardware implementation of a TCONV 

Layer, based on the Input-Oriented Mapping strategy, within the XC7VX690T FPGA, 

thus meeting a throughput close to 1 TOPS, and using only the 5.4% of logic and less 

than the 50% of the available DSPs resources. As a further example, high energy-efficient 

super-resolution imaging is carried out by the adaptive CONV/TCONV architecture, 

reaching up to 518.5 GOPS/W and outperforming the art by up to 2.3 times. 

Considering the suitability of HLS to deal with compressed neural networks, 

Chapter 4 presented the hardware implementation of case-studies dealing with deep 

quantization [19, 20, 21] and referring to image decompression and image generation. 

The former has shown that a careful use of #pragmas directives may allow the 

implementation of low-latency circuits, by outperforming baseline configurations by up 

to 3 orders of magnitude. Energy-efficient image generation is the second key message 

of the referred chapter, in that the equivalent DCGAN accelerator has shown 

improvement of at least 7.3 times with respect to state-of-the-art, also motivated by the 

5-bit quantization that has allowed the whole parameters to be stored on-chip, without 

requiring frequent accesses from/to an external memory support. 

5.2. FUTURE WORK 

The aim of hardware design is not only to provide small, fast and cheap circuits to 

the community, but also to conceive simple frameworks to infer a generic algorithm with 

the minimum effort, thus making them suitable to users that may not have specific 

hardware skills. To this aim, as a future work, we would like to include the HLS of the 

proposed TCONV Layer within the Xilinx FINN Framework [18]. This full stack project 
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helps deep learning designers to build a generic FPGA-based accelerator for DNNs’ 

inference by starting from a high-level PyTorch-based model. Accordingly, with no 

concerns about low-level aspects, an optimized architecture could be available in a limited 

piece of time, ensuring high-performances at low-power.
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