

RIASSUNTO

La presente Tesi di Dottorato affronta lo studio delle tematiche relative al

Project Management e al Project Scheduling sotto incertezza.

Il problema affrontato, che riveste un ruolo di notevole importanza sia dal punto

di vista scientifico che dal punto di vista pratico, consiste nella determinazione

di un piano temporale delle attività cositituenti un progetto (schedula), che tenga

nel contempo conto della disponibilità limitata di risorse e della minimizzazione

del tempo totale di completamento del progetto stesso (makespan).

La schedula di progetto definita sulla base di dati deterministici può essere

soggetta a numerosi cambiamenti, in ragione del fatto che molteplici fonti di

incertezza investono l’intero ciclo di vita del progetto.

La presente tesi si propone di fornire una serie di strumenti quantitativi, basati

essenzialmente su framework della programmzaione stocastica, in grado di

supportare la fase di pianificazione temporale di progetti soggetti ad incertezza.

Nonostante il notevole interesse pratico ed applicativo della tematica affrontata,

la letteratura scientifica riguardante il project scheduling sotto incertezza è

ancora in fase embrionale. In particolare, risulta evidente la mancanza di una

caratterizzazione probabilistica esplicita dell’incertezza e, come conseguenza,

non vi è traccia di connesione di tale letteratura con l’ampio spettro di tecniche e

metodi propri della branca della programmazione matematica sotto incertezza

nota come programmazione stocastica.

La presente tesi offre un contributo innovativo in tale direzione, e si colloca

pertanto nel quadro internazionale come il primo tentativo di affrontare la

tematica del projet scheduling sotto incertezza con il framework della

programmazione stocastica.

 Nell’intraprendere lo studio di questa tematica nel Capitolo 3 si è ipotizzato che

le risorse fossero comunque disponibili quando richieste, al fine di semplificare

il problema e concentrare l’attenzione sulla gestione dell’incertezza.

In particolare il capitolo affronta il problema della caratterizzazione della

funzione di distribuzione del makespan del progetto che, in condizioni di

incertezza, può essere rappresentato da una variabile casuale con forma e

caratteristiche non note.

Partendo dall’ipotesi che le durate delle attività costituenti il progetto siano

variabili aleatorie la cui funzione di densità sia nota o possa essere stimata, sono

stati proposti due metodi esatti per la soluzione del problema descritto.

L’efficienza dei due metodi propsti è stata poi testata su una batteria di problemi

test tratti dalla letteratura e opportunamente modificati per tener conto

dell’incertezza.

La ricerca svolta ha come caratteristiche distintive il superamento

dell’approccio basato sul valore atteso su cui ad esempio il noto PERT si basa,

contestualmente con l’introduzione di un’ottica avversa al rischio che ben si

adatta alla gestione dei progetti in ambiti fortemente dinamici e competitivi.

Inoltre, in modo originale rispetto alla letteratura, si è rilassata l’ipotesi di

indipendenza delle durate delle attività, rappresentate come variabili aleatorie

dipendenti con funzione di distribuzione discreta. L’originalità e la rilevanza dei

risultati ottenuti è confermata dalla pubblicazione dei risultati della ricerca su

rivista internazionale (Evaluating project completion time in project networks

with discrete random activity durations- Computers & Operations Research

36(2009) 2716—2722).

Consolidati i concetti e le tecniche appresi in questa prima fase di studio, si è

generalizzato il problema aggiungendo i vincoli sulle risorse.

Il problema in esame, noto in letteratura come Resource Constrained Project

Scheduling problem –RCPSp- è stato oggetto di numerosi studi, finalizzati sia

alla risoluzione del problema, nella sua versione deterministica.

Lo studio del problema in condizioni di incertezza (Robust Project scheduling)

ha portato alla definizione di approcci per la determinazione di schedule robuste,

capaci cioè di assorbire gli effetti di eventuali “disruptions”, ossia di eventi

capaci di modificare la durata e/o l’assorbimento di risorse delle attività del

progetto. Con il termine “robustezza della soluzione” o “stabilità della schedula”

ci si riferisce alla differenza tra la schedula di base e la schedula che si è

effettivamente realizzata. Tale differenza rappresenta una misura della

performance dell’algoritmo usato per la definizione della schedula di base:

l’obiettivo da perseguire è in questo caso non la minimizzazione del makespan

bensì la generazione di una soluzione che non venga deteriorata dal verificarsi

di eventuali “disruptions” o eventi imprevisti.

Diversamente dai contributi presenti in letteratura, nel Capitolo 4 la robustezza

della schedula è introdotta nel modello sotto forma di vincolo probabilistico,

piuttosto che come misura da effettuare a posteriori con l’ausilio di tecniche di

simulazione.

Per la risoluzione di tale problema è stata proposta una metodologia euristica

che ha quale punto di forza l’uso di un modello che integra le comuni euristiche

per lo scheduling dei progetti con strumenti propri della programmazione

stocastic. La metodologia proposta si pone come un’efficiente strumento di

pianificazione da affiancare alle tradizionali procedure di pianificazione

temporale dei progetti.

La validazione del modello proposto è stata operata attraverso un’ampia fase di

sperimentazione, considerando quale misura di robustezza il “livello di

confidenza” della schedula reale, cioè la probabilità che il makespan

programmato rimanga tale almeno in misura pari a tale livello.

I risultati della ricerca hanno portato alla stesura di un articolo sottoposto a

revisione internazionale ed attualmente in fase di terza revisione (A heuristic

approach for resource constrained project scheduling with uncertain activity

durations-sottomesso a Computers and Operations Research).

Infine, il Capitolo 5 presenta un caso reale di applicazione delle metodologie

definite per la risoluzione dei problemi prima descritti, un progetto riguardante

la costruzione di residenze per studenti universitari. L’obiettivo perseguito è

consistito nella validazione di tale metodologia quale strumento efficace di

pianificazione e gestione dell’incertezza nei progetti di costruzioni civili ed edili.

La metodologia quantitativa applicata, è stata definita con l’obiettivo di ottenere

una schedula quanto meno sensibile alle inevitabili perturbazioni nello

svolgimento delle attività del progetto. L’applicazione di tale metodologia si è

avvalsa di un DSS che ha permesso di identificare, analizzare e quantificare

l'affidabilità della schedula definita e l'impatto su di essa di possibili eventi

inattesi.

Siffatta metodologia si è quindi dimostrata più efficiente di quelle

deterministiche comunemente usate, nello sfruttare le informazioni disponibili

per fornire una pianificazione delle attività in condizioni di incertezza. Il valore

aggiunto apportato da tale metodologia consiste nel rappresentare uno strumento

in grado di supportare i manager nello sviluppo di una pianificazione delle

attività progettuali efficace e realistica oltre a poter essere utilizzato come linea

guida per il controllo e il monitoraggio dell’andamento del progetto. La ricerca

condotta in questo Capitolo, ha portato alla stesura di un articolo accettato con

revisioni minori in una rivista internazionale (A methodology for dealing with

uncertainty in constructions projects-Engineering Computations).

Index

Chapter 1 ___ 9

Introduction ___ 9

1.1. The Resource Constrained Project Scheduling Problem –RCPSP- ________ 10

1.2. Uncertainty in project scheduling _________________________________ 10

1.3. Proactive VS Reactive project scheduling ___________________________ 11

Chapter 2 __ 13

Definitions and Problem Formulation _______________________________ 13

2.1. Project representations ___ 13

2.1.1. Project network ___ 14

2.1.2. Project Schedule __ 15

2.1.2.1. Baseline schedule _______________________________________ 16

2.1.2.2. Realized schedule _______________________________________ 16

2.1.3. Resource usage and representations __________________________ 16

2.1.3.1. Resource profile __ 17

2.1.3.2. Resource flow network___________________________________ 17

2.2. Robustness types and measures __________________________________ 19

2.2.1. Solution robustness or schedule stability ______________________ 20

2.2.2. Quality robustness __ 20

Chapter 3 __ 22

Project Scheduling Under Uncertainty Of Networks With Discrete Random

Activity Durations ___ 22

3.1. State of the Art __ 23

3.2. Model Proposal ___ 23

3.3. Solution Methods __ 26

3.4. Computational Result __ 31

Chapter 4 __ 40

Resource Constrained Project Scheduling Under Uncertainty ____________ 40

4.1. Overview of the problem __ 40

4.2. Stochastic project scheduling with robustness constraints _____________ 43

4.2.1. Notation and problem description ____________________________ 43

4.2.2. The heuristic procedure ____________________________________ 45

4.2.3. Generating activities completion times ________________________ 47

4.2.4. Solving the joint probabilistically constrained problem ___________ 50

4.3. Computational Experiments _____________________________________ 51

4.3.1. Benchmark approaches ____________________________________ 51

4.3.2. Computational results______________________________________ 52

4.3.3. Analysis of results ___ 54

4.3.3.1. Discrete distribution _____________________________________ 55

4.3.3.2. Continuous distribution __________________________________ 61

4.4. Conclusions __ 63

Chapter 5 __ 69

A real application: Robust Project Scheduling in Construction Industry ____ 69

5.1. Introduction __ 70

5.2. Dealing with uncertainty in construction projects ____________________ 72

5.3. Empirical illustration of RAH: a real case study ______________________ 76

5.4. Analysys of Results ___ 79

5.5. Conclusions __ 81

Appendix A __ 83

Appendix B___ 84

Appendix C ___ 86

Bibliography__ 87

List Of Figures and Tables

Table 1-1: Different methods for schedule generation under uncertainty 11

Figure 2-1: Example Project Network .. 15

Figure 2-2: A minimum duration schedule ... 15

Figure 2-3: Resource profile for example project .. 17

Figure 2-4: Resource flow network for the example project ... 18

Figure 2-5: Resource profile with resource allocation ... 19

Table 3-1: Test Problem Characteristics ... 31

Figure 3-1: Makespan-Reliability Trade-Off ... 33

Figure 3-2: Running time (in sec.) of AllPEA for the test problem j306 −10 as a function of

the number of scenarios .. 33

Figure 3-3: Running time (in sec.) of SLPA for the test problem j306 −10 as a function of

the number of scenarios .. 34

Figure 3-4: Influence of the order strength on AllPEA running time.................................... 35

Figure 3-5: Influence of the order strength on SLPA running time 35

Figure 3-6: Computational time of AllPEA on different test problems 35

Figure 3-7: Computational time of SLPA on different test problems 36

Figure 3-8: Computational time trade-off between AllPEA and SLPA for test problem j1201

− 1 ... 37

Figure 3-9: Computational time trade-off between AllPEA and SLPA for test problem j601 –

1.. 38

Figure 3-10: Computational time trade-off between AllPEA and SLPA for test problem N2,

α = 0.99. ... 38

Figure 4-1: Toy example ... 48

Figure 4-2: Resulting schedule ... 49

Figure 4-3: values versus Tavg trade-off ... 56

Figure 4-4: values versus TPCP trade-off ... 56

file:///C:/Documents%20and%20Settings/pintoer/Desktop/copia%20di%20sicurezza/Tesi%20Dottorato_v1.0.docx%23_Toc277067990

Figure 0-1: Expected makespan for varying values-30 nodes-Discrete

case………………57....53

Figure 0-6: Expected makespan for varying values-60 nodes-Discrete

case………………57....53

Figure 0-7: Expected makespan for varying values-90 nodes-Discrete

case………………57....54

Figure 0-8: Expected makespan components for varying values-30 nodes-Discrete

case………………57...

55

Figure 4.9: Davg for varying values-30 nodes-Discrete case………………………………………….55

Figure 4.10: Davg for varying values-60 nodes-Discrete case……………………………………….56

Figure 4.11: Davg for varying values-90 nodes-Discrete case……………………………………….56

Figure 4.12: Expected makespan for varying values-30 nodes-Continuous case…….……57

Figure 4.13: Expected makespan for varying values-60 nodes-Continuous case…….……57

Figure 4.14: Expected makespan for varying values90 nodes-Continuous case………..…57

Figure 4.15: TPCP for varying values-60 nodes-Continuous case…………………………………..59

Figure 4.16: TPCP for varying values-30 nodes-Continuous case…………………………………..59

Figure 4.17: TPCP for varying values-60 nodes-Continuous case…………………………………..59

Figure 4.17: TPCP for varying values-60 nodes-Continuous case…………………………………..60

Table 4-1: Results on 30 nodes test problems with discrete duration variability 64

Table 4-2: Results on 60 nodes test problems with discrete duration variability 65

Table 4-3: Results on 90 nodes test problems with discrete duration variability 66

Table 4-4: Results on 30 nodes test problems with continuous duration variability 66

Table 4-5: Results on 60 nodes test problems with continuous duration variability 67

Table 4-6: Results on 90 nodes test problems with continuous duration variability 67

Table 4-7: Average, minimum and maximum number of variables and constraints

per iteration ... 68

Figure 5.1. Typical RAH iteration .. 74

Figura 5.2. Project network .. 77

Table 5-1: Activities ID, number, details, duration and resource requirement 78

Chapter 1

Introduction

The growing interest in the field of project management is confirmed by

many new theories, techniques and computer applications designed to

support project managers in achieving their objectives. Within project

management, project scheduling aims to generate a feasible baseline

schedule specifying, for each activity, the precedence and resource

feasible start times used as a baseline for project execution. Baseline

schedule helps manager to visualize project evolution, giving a starting

point for both internal and external planning and communication.

Careful project scheduling has been shown to be a key factor to improve

the success rate of the project. A recent study by Maes et al. (2000) has

found that inferior planning is the third reason of company failure in the

Belgian construction industry. This struggles researchers to further develop

new project scheduling methods.

After the concepts of project management and project scheduling have

been introduced, in the next section the standard problems in project

scheduling will be shortly presented followed by a brief introduction of

concepts of stable project scheduling.

1.1. The Resource Constrained Project Scheduling
Problem –RCPSP-

The Resource Constrained Project Scheduling problem aims at minimizing

the duration of a project subject to precedence and resource constrains in a

deterministic environment. Precedence constrains are assumed belonging

to the best-known type of precedence relationships, the finish-start zero-lag

relationship. Subject to such type of constrains, each activity is forced to

start when all its predecessors have been completed. As far as resources

are concerned, we limit our dissertation on renewable resource constraints,

assuming resources available on a period-by-period basis and for which

only the total resource use in each time period is constrained for each

resource type.

Many exact and heuristic algorithms have been described in the literature

to construct workable baseline schedules that solve the deterministic

RCPSp, that has been shown to be NP-Hard in a strong sense. For

extensive overviews we refer to Herroelen et al. (1998), Kolisch & Padman

(1999), Kolisch & Hartmann (1999), Brucker et al. (1999) and

Demeulemeester & Herroelen (2002).

1.2. Uncertainty in project scheduling

In a real life context, project execution is subject to a considerable

uncertainty. Uncertainty can originate from multiple source: resources can

become temporarily unavailable (Lambrechts et al. 2007,2008) and Drezet

2005), activities may have to be inserted or dropped (Artigues & Roubellat

2000), due dates may change, activities may take longer or less long than

original expected, etc. As a consequence, although usefulness of baseline

schedule is unquestionable, project will never execute exactly as it was

planned due to uncertainty. The common practice of dealing with these

uncertainties by taking deterministic averages of the estimated parameters

might lead to serious fallacies (Elmaghraby 2005).

When duration of activities is assumed stochastic, we move to the field of

stochastic RCPSp. A solution for the stochastic RCPSP needs to define the

appropriate reactive action for every possible disruptive event during

project execution, given the current state of the project and the a priori

knowledge of future activity distributions. Möhring et al. (1984, 1985) call

such a reactive way of generating a solution a scheduling policy or

scheduling strategy: a policy makes dynamic scheduling decisions during

project execution at stochastic decision points, usually corresponding to the

completion times of activities. In pure dynamic scheduling (Stork 2001), the

use of schedules is even eliminated altogether.

The absence of a schedule has some consequences from an economic

point of view. The baseline schedule (pre-schedule, predictive schedule)

namely serves a number of important functions (Aytug et al. 2005), Mehta

& Uzsoy 1998), such as facilitating resource allocation, providing a basis for

planning external activities (i.e. contracts with subcontractors) and

visualizing future work for employees. The baseline schedule needs to be

sought before the beginning of the project as a prediction of how the project

is expected to unfold. It has been observed, (Yang 1996), that using the

baseline schedule together with a dispatching rule, i.e. proactive-reactive

scheduling detailed in the following paragraph, often leads to a lower

expected makespan than pure dynamic scheduling procedures. The

following table distinguishes between three basic approaches for the

development of a baseline schedule (Herroelen & Leus 2005).

Baseline schedule During project execution

(i) No baseline schedule

(ii) Baseline scheduling with no

anticipation of variability

(iii) Baseline scheduling with anticipation

of variability

(i) Dynamic scheduling (scheduling policies)

(ii) Reactive scheduling

(iii) Proactive (robust) scheduling

Table 1-1: Different methods for schedule generation under uncertainty

1.3. Proactive VS Reactive project scheduling

In general, there are two approaches to deal with uncertainty in a

scheduling environment (Davenport and Beck 2002; Herroelen & Leus

2005): proactive and reactive scheduling.

Proactive scheduling constructs a predictive schedule that accounts for

statistical knowledge of uncertainty. The consideration of uncertainty

information is used to make the predictive schedule more robust, i.e.,

insensitive to disruptions. Reactive scheduling involves revising or

reoptimizing a schedule when an unexpected event occurs. At one

extreme, reactive scheduling may not be based on a predictive schedule at

all: allocation and scheduling decisions take place dynamically in order to

account for disruptions as they occur. A less extreme approach is to

reschedule when schedule breakage occurs, either by completely

regenerating a new schedule or by repairing an existing predictive schedule

to take into account the current state of the system.

It should be observed that a proactive technique will always require a

reactive component to deal with schedule disruptions that cannot be

absorbed by the baseline schedule. The number of interventions of the

reactive component is inversely proportional to the robustness of the

predictive baseline schedule. Many different types of robustness have been

identified in the literature.

In the next chapter, notations and definitions will be provided to formally

describe the problem that will be tackled in the remaining chapters.

Chapter 2

Definitions and Problem
Formulation

In this chapter, a definition of the proactive project scheduling problem is

given. Section 2.1 introduces project representations that help us in

illustrating the procedures that will be proposed in later chapters.

Afterwards, we propose a rigorous definition of the concepts of quality and

solution robustness, which both will be main issues throughout this thesis

(Section 2.2).

2.1. Project representations

A project consists of a number of events and activities or tasks that have to

be performed in accordance with a set of precedence and resource

constraints. The deterministic expected duration of activity j will be

expressed as dj, while in an uncertain scheduling environment, the

stochastic activity durations will be denoted by dj. The activity-dependent

weights used in this dissertation represent the marginal cost of starting

the activity j later or earlier than planned in the baseline schedule. Once a

project schedule has been negotiated, constructed and announced to all

stakeholders, modifying this schedule comes at a certain penalty cost. This

cost corresponds to the importance of on-time performance of a task to

avoid internal and external stability costs. Internal stability costs for the

organization may include unforeseen storage costs, extra organizational

costs or just a cost that expresses the dissatisfaction of employees with

schedule nervousness. Costs related to (renegotiating) agreements with

subcontractors, penalty clauses, goodwill damages, etc. are examples of

stability costs that are external to the organization.

2.1.1. Project network

A project network is a graphical representation of the events, activities and

precedence relations of the project. A network is a directed graph G = (N,A),

consisting of a set of nodes N={0,..,N} and a set of arcs A. The transitive

closure of a graph G = (N,A) is a graph TG = (N, TA) which contains an

edge from i to j whenever there is a directed path from i to j in the original

graph. The main focus of the project network is the representation of the

precedence relationships between the activities of the project.

There are two network notation schemes commonly used in project

scheduling. The activity-on-arc (AoA) representation uses the set of nodes

N to represent events and the set of arcs A to represent the activities, while

in the activity-on-node (AoN) notation scheme, the set N denotes the

activities and the set A represents the precedence relationships. The arcs

TA of the transitive closure TG = (N, TA) represent in this case all direct and

transitive precedence relationships in the original network. Now we

introduce a project that will be used as our vehicle for definition and

problem formulation. Let consider a project consisting of 10 activities

(activity 0 and activity 9 are dummy activities representing the project start

and finish) subject to finish-start, zero-lag precedence constraints and a

single renewable resource constraint. The single renewable resource is

assumed to have a constant per period availability a of 10 units. Expected

activity durations dj , activity weights wj and resource requirements are also

given. Figure 2.1 denotes the AoN project network for the project described

in Table 2.1.

Figure 2-1: Example Project Network

2.1.2. Project Schedule

A schedule S is defined in project scheduling as a list S = (s0, s1, . . . , sn) of

intended start times sj ≥ 0 for all activities j N. A Gantt chart (introduced by

H. Gantt in 1910) provides a typical graphical schedule representation by

drawing the activities on a time axis.

A schedule is called feasible if the assigned activity start times respect the

constraints imposed on the problem. In deterministic project scheduling, a

feasible schedule is a sufficient representation of a solution.

Figure 2-2: A minimum duration schedule

Figure 2.2 depicts a solution schedule for the example network presented.

2.1.2.1. Baseline schedule

A baseline schedule (pre-schedule or predictive schedule) is a list of activity

start times generated under the assumption of a static and deterministic

environment that is used as a baseline during actual project execution.

A baseline schedule is generated before the actual start of the project (time

0) and will consequently be referred to as S0.

It serves a number of important functions (Aytug et al. (2005), Mehta &

Uzsoy (1998), Wu et al. (1993)). One of them is to provide visibility within

the organization of the time windows that are reserved for executing

activities in order to reflect the requirements for the key staff, equipment

and other resources. The baseline schedule is also the starting point for

communication and coordination with external entities in the company’s

inbound and outbound supply chain: it constitutes the basis for agreements

with suppliers and subcontractors (e.g. for planning external activities such

as material procurement and preventive maintenance), as well as for

commitments to customers (delivery dates).

2.1.2.2. Realized schedule

A realized schedule ST is a list of actually realized activity start times ST that

is generated once complete information of the project is gained.

The proactive-reactive scheduling decisions made during project execution

influence the actually obtained realized schedule ST. In a stochastic

environment, the realized schedule will thus typically be unknown before

the project completion time T. We will refer to this stochastic schedule by ST.

2.1.3. Resource usage and representations

In resource-constrained project scheduling, project activities require

resources to guarantee their execution. Multiple resource categories exist

(Blazewicz et al. 1986) but in this thesis (as in the RCPSP), we will limit our

scope to renewable resources that are available on a period-by-period

basis and for which only the total resource use in each time period is

constrained for each resource type.

Every activity j requires an integer per period amount rjk of one or more

renewable resource types k (k = 1, 2, ...,K) during its execution. The

renewable resources have a constant per period availability ak. The

resource constraints can thus be written as:

in which Pt denotes the set of activities that are active at time t.

The network (see Section 2.1.1) and schedule (see Section 2.1.2)

representations of the project do not visualize the resource allocation.

Hence, additional resource-based project representations are introduced in

this section.

2.1.3.1. Resource profile

A resource profile is an extension of a Gantt chart that additionally indicates

the variation in resource requirement of a single renewable resource type

over time for each activity. Resource requirements and availability are

denoted on the Y-axis. Each resource type requires its own resource

profile. The resource profile for the single renewable resource type

corresponding to the minimum duration schedule of Figure 2.2 is given in

Figure 2.3.

Figure 2-3: Resource profile for example project

2.1.3.2. Resource flow network

Artigues et al. (2003) define resource flow networks (or transportation

networks) to identify the amount of resources transported from the end of

one activity to the beginning of another activity after scheduling has taken

place. fijk denotes the amount of resources of type k, flowing from activity i

to activity j. The resource flow network is a network with the same nodes N

as the original project network, but with arcs connecting two nodes if there

is a resource flow between the corresponding activities, i.e.

We define R as the set of flow carrying arcs in the resource flow network.

The resource arcs in R may induce extra temporal constraints to the

project. We remark that a schedule may allow for different ways of

allocating the resources so that the same schedule may give rise to

different resource flow networks. Not every feasible resource allocation

implies an equal amount of stability.

Relying on the one-pass algorithm of Artigues et al. (2003) to compose a

resource flow network for the schedule of Figure 2.2, results in the resource

flow network G = (N,R) presented in Figure 2.4. Activity 8, for example, has

a per period resource requirement of six units. It uses three resource units

released by its predecessor activity 5, two units passed on by activity 7 and

one unit released by activity 6. The arcs (1,3); (3,7); (6,8), (7,6) and (7,8)

represent extra precedence relations that were not present in the original

network. The arc (7,9) was present in A, but is not drawn in Figure 2.4

because there is no resource flow from 7 to 9.

Figure 2-4: Resource flow network for the example project

In the following figure, -Figure 2.5-, the resource profile of Figure 2.3 is

reported to illustrate the use of the individual resource units along the

horizontal bands. This project representation includes both the resource

profile and the resource flow network and will thus become our preferred

representation in the remainder of this dissertation if there is only one

resource type, as is the case in the example network.

Figure 2-5: Resource profile with resource allocation

2.2. Robustness types and measures

In Chapter 1, the concept of schedule robustness was mentioned as a

schedule’s insensitivity to disruptions that may occur during project

execution. Many different types of robustness have been identified in the

literature, calling for rigorous robustness definitions and the use of proper

robustness measures. Two often used types of single robustness measures

have been distinguished: solution and quality robustness (Sörensen (2001),

Herroelen & Leus (2005)). The main difference between quality robustness

and solution robustness is that in the former case, it is the quality of the

solution that is not allowed to change. This quality is usually measured in

terms of makespan or due date performance.

In the latter case, it is the solution itself that is not allowed to change.

2.2.1. Solution robustness or schedule stability

Solution robustness or schedule stability refers to the difference between

the baseline schedule and the realized schedule. The difference or distance

(S0, ST) between the baseline schedule S0 and the realized schedule ST for a

given execution scenario can be measured as the number of disrupted

activities, the difference between the planned and realized activity start

times, and other different ways.

For example, the difference can be measured by the weighted sum of the

absolute deviation between the planned and realized activity start times:

where denotes the planned starting time of activity j in the baseline

schedule S0, denotes the actual starting time of activity j in the realized

schedule ST , and the weights wj represent the disruption cost of activity j

per time unit, i.e. the non-negative cost per unit time overrun or underrun

on the start time of activity j.

In a stochastic environment, the realized activity starting times are

stochastic variables for which the actual realized values for a given

execution scenario depend on the disruptions and the applied reactive

policy. The objective of the proactive-reactive scheduling procedure is then

to minimize:

with E denoting the expectation operator, i.e. to minimize the weighted sum

of the expected absolute difference between the planned and the realized

activity start times.

2.2.2. Quality robustness

Quality robustness refers to the insensitivity of some deterministic objective

value of the baseline schedule to distortions. The goal is to generate a

solution for which the objective function value does not deteriorate when

disruptions occur. Contrary to solution robustness, quality robustness is not

concerned with the solution itself, only with its value on the performance

metric. It is measured in terms of the value of some objective function z.

In a project setting, commonly used objective functions are project duration

(makespan), project earliness and tardiness, project cost, net present

value,etc.

When stochastic data are available, quality robustness can be measured by

considering the expected value of the objective function, such as the

expected makespan E [Cmax], the classical objective function used in

stochastic resource-constrained project scheduling (Stork 2001).

It is logical to use the service level as a quality robustness measure, i.e. to

maximize P(z ≤ z), the probability that the objective function value of the

realized schedule stays within a certain threshold z. For the makespan

objective, we want to maximize the probability that the project completion

time does not exceed the project due date n), where

is a stochastic variable that denotes the starting time of the dummy end

activity in the realized schedule. We will refer to this measure as the timely

project completion probability (TPCP). It should be observed that also the

analytic evaluation of this measure is very troublesome in the presence of

ample resource availabilities. In the next chapter we introduce a new

heuristic approach with the aim to evaluate project completion time with

discrete random activity durations.

Chapter 3

Project Scheduling Under
Uncertainty Of Networks With
Discrete Random Activity
Durations

In real projects, defining a good schedule on the basis of deterministic

processing times is usually inadequate, because these times are only

estimates and are susceptible to unpredictable changes. Deterministic

models for project scheduling suffer from the fact that they assume

complete information and neglect random influences, that occur during

project execution. A typical consequence is the underestimation of the

project duration as frequently observed in practice, even in the absence of

resource constraints.

In this chapter a method for obtaining relevant information about the project

makespan for scheduling models, with dependent random processing time

available in the form of scenarios and in the absence of resource

constraints is presented.

3.1. State of the Art

As previously discussed, real projects are subject to considerable

uncertainty due to a number of possible sources. Resources may become

unavailable, activities duration may experience some delay, new activities

may be incorporated in the project or other activities may be even deleted.

Amongst the full range of sources of significant uncertainty associated with

any given project (Atkinson et al. 2006), an obvious aspect of uncertainty

concerns estimates of potential variability of activity duration. In this

context, our choice involves modeling processing times of activities as

random variables. A very traditional issue with respect to stochastic

networks is the derivation of the distribution or quantiles of the project

completion time. This issue may be valuable in project management,

particularly at the time of bidding, and has been the subject of investigation

within both academia and industry. A great deal of research has been

carried out on methodologies for estimating project time distributions. Due

to the inherent difficulty of this task, two main distinct methodologies have

been applied, that is the simulation approach (Van Slyke (1963), Sullivan &

Hayya (1980), Herrera (2006), Shih (2005)) and the analytical approach

(Dodin (1985), Hagstrom, (1990)).

Other approaches focus on approximating either the expected completion

time value (Fulkerson 1962) or the probability for completing the project

within a given deadline (Soroush 1994) as tightly as possible. A

comprehensive review of most of the earliest references is presented in

(Elmaghraby 1989). For more recent results the reader is referred to Yao

and Chu (2007) and references therein. Hagstrom (1988) showed that the

problem of computing the probability that a project finishes by a given time,

when activities durations are discrete, independent random variables, is

NP-complete.

3.2. Model Proposal

We now present an efficient method to find quantiles of the distribution

function when activities durations are dependent discrete random variables,

or when a suitable discretization in the form of scenarios is available for

continuous dependent random variables. The output can be used by a

contractor to assess its capabilities to meet the contractual requirement

before bidding and to quantify the risks involved in the schedule.

In this case, the specification of a project is assumed to be given in activity-

on-arc (AoA) notation by a connected, directed acyclic graph G(N,A)

(referred to as project network), in which N is the set of nodes, representing

network “events”, and A is the set of arcs, representing network activities.

We assume that there is a single start node 0 and a single terminal node n.

When the durations of all the activities are constants, project managers

may easily calculate the project completion time by the well-known critical

path method. Let denote by

the set of paths from the node 0 to the node n in G(N,A). The project

makespan can obviously be defined as

where represents the length of the path from node 0 to node n.

Suppose now that we want to estimate the project duration that will not be

exceed with probability at least α, that is, we want to estimate the α-quantile

of the makespan distribution function. This information can be obtained

through the solution of the following problem:

 (1)

 (2)

 (3)

where represents the start time of event i and is the random variable

associated to the length of the path from the start node 0 to the terminal

node n. We consider the starting time of node 0 equal to zero.

The - quantiles of the makespan represents a project duration that, with a

probability α, will not be exceeded. In fact, the joint probabilistic constraints

assures that

with probability at least α.

This definition allows to address the decision-makers risk aversion,

ensuring that the project’s operations are unaffected by major delays with a

high level of probability.

It is well known that the expectation criterion of the classical PERT model

(Malcolm et al. 1959) is most appropriate for a risk-neutral decision maker.

We trivially observe that reasoning on the basis of averages always results

in an underestimate of the expected duration of the project and leads to a

probability of exceeding the due date of the project near to 50%. Criticism

against the use of averages has been raised in (Elmaghraby 2005), where

a demonstration that gross errors can be made using the average as

optimization criterion is reported.

In order to account for possible risk averseness we use the joint

probabilistic constraints (2). Such conservatism should be invoked when

large potential gains and losses are associated with individual decisions

(Schuyler 2001).

It is worth while observing that the use of individual probabilistic constraints

is not suitable for this problem, since will normally be dependent even if

the random arc weights are independent, because of common arcs.

Therefore, we consider a formulation with joint probabilistic constraints

involving dependent random right-hand side variables. This probabilistic

constrained framework is well suited for this kind of problem and it is

particularly useful when the penalty for the project to be completed late is

very high or simply is not easily quantifiable. The use of chance constrained

programming methods to examine some statistical properties of stochastic

networks, is not completely new.

Charnes et al. (1964) considered the following chance constrained model

to characterize the distribution of total project completion time:

 (4)

 (5)

 (6)

However we notice that the chance constraints paradigm is used,

regardless the dependency among activities and paths, and in addition,

since the stochastic precedence constraints are written in terms of the

starting time of the preceding events, a dynamic problem is established, for

which the use of a static stochastic programming problem should be

prevented.

The developed model differs from other approaches proposed in the

literature in several aspects.

• The methodology does not require any hypothesis on the distribution

function of the activities durations. We only assume that a probability

density function has been specified for each activity time and that a suitable

discretization is available. Different distributions can be used to model

different activity times.

• Our model overcomes the limitation of stochastic independence among

activities times. Often activities durations are correlated trough the common

usage of resources or precedence relations.

• Our model overcomes the limitation of stochastic independence among

the paths of the network. Paths are in fact correlated via common activities

and the correlation is treated explicitly in the use of joint probabilistic

constraints

• Unlike sensitivity analysis, we can account for the effects of simultaneous

changes to multiple activity times.

• In the proposed model, by varying the reliability threshold, decision

makers might acquire information about different alternatives and might

choose the maximum probability of violating the project due date which is

allowed to be tolerated.

Finally, we would like to remark that the probabilistic paradigm is one of the

most powerful prescriptive methodologies for decision makers, in that

represents the global probability of violation of the constraints. Clearly, the

most appropriate paradigm for project scheduling models under uncertainty

is highly dependent on the specific project at hand.

3.3. Solution Methods

We consider a finite set of scenarios S = {1, . . . , |S|}, with associated

probability ps, s = 1, . . . , |S|. Let us suppose that each edge (i, j)

 (i, j) has a vector of weights realizations . This

not only renders the probabilistic problem tractable, but also allows the

original data to be used without manipulations, since the variability in

activity durations are indeed most often discrete.

Relevant information based on past experience may be useful in this

context. In other words, the actual probability distribution that applies during

project execution is not known beforehand, and the discrete input scenarios

form the best approximation available. Discrete scenarios have been used

with similar motivations in (Herroelen & Leus, 2004 B).

Problem (1-3) can be reformulated as follows:

 (7)

 (8)

 (9)

 (10)

 (11)

where the notation stands for the length of the path from node 0 to

node n in scenario s and is an indicator variable, which forces the

constraints (8) to be satisfied if = 1 and allows the violation if = 0.

Constraint (9) ensures the fulfillment of the constraints (8) for those

scenarios, whose cumulative probability is greater than α.

We observe that, given the particular structure of the problem, it can be

rewritten as:

 (12)

 (13)

 (14)

 (15)

 (16)

The length of the maximum path can thus be viewed as a one-dimensional

random variable z, with probability distribution function

for which there is only one α-efficient point defined by

Prékopa (1995).

In the foregoing, we highlight how this model can be tackled from a

computational point of view. The algorithm briefly described above, in the

sequel referred to as Scenario Longest Path Algorithm (SLPA, for short),

entails two main stages. In the first stage, for each scenario s = 1 . . . |S|, the

longest path from node 0 to node n in the project network G(N,A) is

determined.

Let the |S| dimensional set of the longest paths in each

scenario. Afterwards, the solution vector is arranged in increasing order of

length. Let with

be such ordered set. The optimal solution is where is the

smallest index such that

.

From the discussion above, it is easy to verify that the computational

complexity of the overall procedure is O(|S||N |) + O(|S|log|S|) + O(|S|).

It can be seen that if we consider edge weights independent random

variables, the number of scenarios increases exponentially with the number

of activities in the project network. In real contexts, however, the activities

durations are often correlated leading to a reduction in the number of

realizations to be considered. When the number of scenarios is huge, it is

likely that the procedure would become cumbersome.

Thus, we present a second algorithm, namely the All Paths Enumeration

Algorithm (AllPEA, for short), based on the explicit enumeration of all the

paths in the network. After having determined all the paths in the network,

the following mixed integer linear programming problem has to be solved:

 (17)

 (18)

 (19)

 (20)

 (21)

The problem (17)-(21) has |S| integer variables and a number of constraints

equal to the number of paths in the network times the number of scenarios,

plus one (i.e., the knapsack constraint (19)).

The path enumeration approach relies on the definition of a search tree.

In particular, branches refer to the decisions of extending a given partial

path, whereas nodes refer to partial paths . We denote with T the set of

partial paths to be further extended.

At the top of the search tree (level 0) there is only one partial path

composed by the start node. Thus, nodes at level 1 refer to at most |N|−1

partial paths, each defined as the extension of the initial partial path with a

node adjacent to the start node. It is worthwhile noting that as a natural

consequence of the topological order of project networks the search tree is

generated in a way to guarantee that partial paths corresponding to nodes

are all different.

In the following, the basic scheme of the proposed approach is reported.

Step 0 (Initialization Phase). Set T = {0}, where 0 denotes the start node of

the network and k = 0.

Step 1 (Termination Check). Check the list T. If it is empty, STOP. Otherwise,

extract a partial path , delete it from T and go to Step 2.

Step 2 (Path Extension Phase). Let be the last node of the partial path

. For all nodes , extend the partial path and store it in a

newly created partial path. Set k := k + 1 and insert in T. Go to Step 1.

All paths in a precedence constrained directed acyclic graph can only

use nodes between 0 and since nodes are topologically numbered and

an arc might exist only if . Therefore, the number of paths

ending in j, denoted as P[j] is bounded by . At node n, in the

worst case .

Theorem 3.1 The proposed algorithm finds all the paths in a project

network in a finite number of iterations, and this number is bounded above

by .

Proof. Since the project network is acyclic, the number of paths generated

and explored in the search tree is finite.

The number of paths in the considered graph can be computed exactly by

dynamic programming through the following recursive formula:

where P[j] is the number of distinct paths, connecting the start node 0 to j

and P[1] is assumed to be equal to one.

In a precedence directed acyclic graph, all paths connecting node 0 to node

j, can only includes nodes between 0 and j, since nodes are topologically

numbered and an arc might exist only if i < j. Therefore, the value

of P[j] is bounded by

At node n, in the worst case

.

Exploiting the recursive dependence of each P[i] on nodes which are prior

to i (in topological order), and with some mathematical manipulations

(reported in the Appendix A), we come up with the following bound:

 Clearly, if the network is complete in a topological order

sense (no arcs are allowed if they destroy the topological order), this bound

gives the exact number of paths in the network.

The choice between the two solution methods is likely to depend on the

number of scenarios considered and on the network complexity. Several

considerations can be taken into account such as the network density and

the number of arcs and nodes.

A trivial observation could be that the path enumeration, required by the

second solution method, can be overwhelming from a computational point

of view for medium sized project networks. It is interesting to see that its

practical performance is indeed very good, and, surprisingly, the most time

consuming part of the algorithm is the solution of the mixed integer

programming problem (17)-(21).

On the contrary, when the number of scenarios becomes huge, the

evaluation of the longest path in each scenario may result computationally

cumbersome.

We will illustrate the practical behavior of both SLPA and AllPEA in the next

section.

Test Problem N° of Nodes N° of Arcs OS

j309–7 30 47 0.11

j306–10 30 47 0.11

j301–1 30 48 0.11

j3037–4 30 67 0.15

j601–1 60 93 0.05

j607–10 60 93 0.05

j6048–9 60 131 0.07

j6030–10 60 112 0.06

j9047–7 90 138 0.03

j909–7 90 137 0.03

j901–1 90 137 0.03

j9035–9 90 194 0.05

j1209–8 120 183 0.03

j12042–10 120 258 0.04

j1201–1 120 183 0.03

j12033–9 120 220 0.03

Table 3-1: Test Problem Characteristics

3.4. Computational Result

To assess the performance of the proposed solution approaches, described

in Section 4, computational experiments have been carried out on a set of

benchmark problems randomly selected from the project scheduling

problem library PSPLIB (Kolisch & Sprecher 1997) and on two large-size

instances (N1 : |N | = 200; |A| = 400, N2 : |N | = 300; |A| = 600), randomly

generated by using the forward network generator recently proposed in

(Guerriero & Talarico 2007).

The characteristics of the test problems, taken from PSPLIB, are shown in

Table 1, in which for each instance the number of nodes, the number of

arcs and the order strength (i.e., OS) are reported. The order strength

measures the number of precedence relationships relative to the size of a

project. According to Cooper (1976) the order strength of a project is

defined as the number of precedence relationships divided by the

maximum number of possible precedence relationships in a project (OS =

2|N |/(|A|(|A| − 1)).

The set of problems consists of four problem types including 30, 60, 90 and

120 nodes. Activity durations are chosen as realizations of a discrete

uniform random variable over the range [1, 10]. The number of scenarios S

was varied in the set {20, 30, 50, 75, 100, 200, 300, 400, 500, 600, 700,

800, 900, 1000}.

Finally, each instance has been solved for different values of the probability

(i.e., reliability) level: 0.8, 0.85, 0.9, 0.95, 0.975, 0.99. The computational

experiments have been carried out on a AMD Athlon processor at 1.79

GHz.

The algorithms were coded in AIMMS 3.7 (Bisschop & Roelofs 2007) and

CPLEX 10.1 (Ilog, 2006) was used as ILP solver.

We have carried out a large number of experiments: about 10000 instances

of the model have been solved, reaching in all the cases the optimal

solution in an exact way. A detailed accounting of the numerical results is

available in (Bruni et al. 2007).

In what follows, we report only the experiments useful to illustrate the

validity of the proposed model and the effectiveness of the developed

solution approaches.

A first set of experiments has been carried out with the aim of assessing

the variation of the project makespan with respect to the

probability/reliability level. In particular, in Figure 3.1, we report the

makespan values of four test problems (i.e., j309 − 7, j601 − 1, j901 − 1 and

j1209 − 8) with 20 scenarios, versus the probability level. We observe that

the makespan increases when α increases.

This is an expected behaviour because with increasing values of α we

adopt a more conservative point of view hedging against more disruptions

scenarios.

We notice that the worst case makespan can be worked out by considering

a reliability level α=1. In practice, risk-averse project managers may

consider to limit the probability of the project of being late to a small value

allowing a risk probability around 1 − α= 20%.

Figure 3-1: Makespan-Reliability Trade-Off

We observe that, very often, little variations in project completion date

correspond to relevant gains in terms of reliability. For instance, for the test

problem j901 − 1 considering a project due date of 97 rather than 94 would

ensure an increase in the reliability level from 0.8 to 0.95. That is, the due

date could be delayed with a probability at most equal to 0.05. Similar

trends have been observed for all other test problems. As evident, the

proposed approach may assist project managers in searching for

schedules with acceptable makespan performance experimenting the most

appropriate α value.

Figure 3-2: Running time (in sec.) of AllPEA for the test problem j306 −10 as a function of the number of

scenarios

Figure 3-3: Running time (in sec.) of SLPA for the test problem j306 −10 as a function of the number of

scenarios

As far as the computational effort is concerned, we have investigated the

running time sensibility to various parameters, considered in the

experimental phase.

In particular, in Figure 3.2, we report the execution time (in seconds) of All-

PEA when solving the test problem j306 − 10 as a function of the number of

scenarios for different reliability levels. Similarly, Figure 3.3 shows the

computational time required by SLPA on solving the same instance.

It is worth noting that the path enumeration phase requires a constant

amount of time, for all the considered scenario cardinalities. Thus, the

exponential behaviour of the running time of AllPEA (see Figure 3.2) is

mainly due to the computational effort required to solve the mixed integer

problem (17)- (21). As far as the running overhead of SLPA is concerned,

the computational results indicate also in this case an exponential trend,

but with less variability amongst different reliability levels (see Figure 3.3).

In order to assess the influence of the network OS on the running time of

the proposed algorithms, we have compared the execution time for the test

problems j301 − 1,OS = 0.11 and j3037 − 4,OS = 0.15, both with 30 nodes,

for a reliability level of α= 0.8.

Figures 3.4 and 3.5 highlight the related results for AllPEA and SLPA,

respectively. From these two figures, it is evident that lower OS levels make

the problems more difficult to solve, especially for increasing number of

scenarios.

We would like to remark that this trend is more evident for AllPEA. Indeed,

a project with a lower order strength has more precedence restrictions

among its activities and therefore, the number of paths to be enumerated is

larger.

Figure 3-4: Influence of the order strength on AllPEA running time

Figure 3-5: Influence of the order strength on SLPA running time

Figure 3-6: Computational time of AllPEA on different test problems

Clearly, the network size (i.e., the number of nodes) plays also a crucial

role in the practical efficiency of the proposed solution approaches. In order

to illustrate this aspect, in Figure 3.6 we report the running time of AllPEA,

for a probability level of 0.9 and a number of scenarios less than 200, when

solving the test problems j306 − 10, j6030 − 10, j901 − 1 and j12042 − 10.

The computational results of Figure 3.6 underline that the execution time of

the algorithm increases with the number of nodes of the project network, as

expected. However, we notice that the time needed to solve all but one of

the instances are comparable. This may indicate that a threshold size for

the problem to become substantially more difficult is 120 nodes. We would

like to remark that even for this instance, the solution time does not exceed

12 seconds. This leaves room for application on even larger instances.

Figure 3-7: Computational time of SLPA on different test problems

Figure 3.7 shows the SLPA computational time for the same test problems.

Interestingly, this procedure seems to be less sensitive to the project

network dimension. As already observed, a relevant part of the

computational time spent by AllPEA is required by the search of all paths of

the network, which is exponential in the number of nodes. Finally, we

observe that, depending on the project network characteristics, one method

may outperform the other. The choice of the most efficient solution

approach depends on several factors. To have an idea, let us to consider

the two test problems j9047−4 and j909−7. Even though the number of

nodes is fixed to 90, and the arcs cardinalities are comparable, the number

of paths in the two networks is very different (321 versus 58). Hence, as

expected in this case the procedure AllPEA will be computationally more

demanding when solving j9047−4. In order to conclude which is the most

efficient algorithm, we should compare AllPEA and SLPA over a significant

range of complexity measures. Unfortunately, complexity measures are not

always useful to explain and predict the time to solve the problem optimally.

To support this observation, we remark that the number of paths actually

present in a network drastically affect the solution time. This is evident

considering that AllPEA running times for the biggest networks N1 and N2

(with 260 and 380 paths, respectively) are comparable with those of test

problems j9047−4 and j9035−9 (with 321 and 381 paths, respectively).

Despite these warnings, some conclusions can be drawn on the basis of

the numerical results collected. With respect to the comparison between

the two solution methods, there is some evidence on the superiority of

SLPA over AllPEA at least when the number of scenarios is limited. Indeed,

when the number of scenarios is low enough, SLPA outperforms AllPEA;

the opposite situation is observed when the scenario cardinality exceeds a

certain threshold. This threshold depends on the problem at hand.

For instance, Figure 3.8 shows the trade-off between the two procedures

for the test problem j1201−1 for α = 0.9. We observe that for a scenario

cardinality below 100, SLPA is more efficient than AllPEA. When the

number of scenarios rises above 100, an opposite behaviour emerges, as

AllPEA becomes more efficient than SLPA.

Figure 3-8: Computational time trade-off between AllPEA and SLPA for test problem j1201 − 1

Figure 3.9 is constructed in a similar way as Figure 3.8 for a different test

with 60 nodes (i.e., test problem j601−1), but now the threshold scenario

cardinality is around 600. Thus, it seems that for smaller networks SLPA

performs better notwithstanding the quite high number of scenarios.

Nonetheless, it is worth noting that the solution time for the two procedures

is quite similar, at least for a scenarios cardinality below the threshold level.

Figure 3-9: Computational time trade-off between AllPEA and SLPA for test problem j601 – 1

Figure 3-10: Computational time trade-off between AllPEA and SLPA for test problem N2, α = 0.99.

We observe that also for the network N2 with a substantially larger number

of nodes, the threshold on the number of scenarios is around 650, similarly

to the network with 60 nodes (see 3.10). We may regard this indicator as

somewhat misleading. However, we should note that this problem instance

has a very limited number of paths, which makes the path enumeration

phase very efficient in practice. It is worth noting that for some of the

instances examined, it is not evident a superiority of one solution method

against the other, at least for the number of scenarios considered. For the

largest size instances, we report the computational results in Fig. 3.11-3.14.

It is worthwhile to remark that these problem instances can be considered

quite suitable in order to simulate a real world situation and validate the

behaviour of the proposed model. In fact, a cardinality of 600 for project

activities is meaningful related to the typical dimension of a medium term

project. Our experiments showed that AllPEA is robust in relation to the

number of activities, but, conversely, is highly dependent on the number of

paths in the networks. We notice, in fact, that AllPEA running times are

higher for the test N1 which has less activities, but more paths than N2. It is

worth observing that the computational efforts of the proposed solution

methods are not very high, solution times varying over the range [0−400]

seconds. Henceforth, the computational results indicate that the procedures

are effective even for networks with hundred of activities. On the other

hand, the running times drastically increase with the number of scenarios.

In this respect, it is worth noting that our model is robust in relation to the

number of scenarios used. In fact, in almost all the cases, the makespan

found using only 20 scenarios is only a bit different (2% on average) from

the makespan evaluated over 1000 scenarios. Nevertheless, we observe

that in the case of considering thousand of scenarios, parallel computing

could play a crucial role, and this represents the main goal for future

development.

Chapter 4

Resource Constrained
Project Scheduling Under
Uncertainty

In this chapter, we study the resource constrained project scheduling

problem under uncertainty. Project activities are assumed to have known

deterministic renewable resource requirements and uncertain durations,

described by random variables with a known probability distribution

function. We propose a joint chance constraints programming approach to

tackle the problem under study, presenting a heuristic algorithm in which

the buffering mechanism is guided by probabilistic information.

4.1. Overview of the problem

The resource constrained project scheduling problem (RCPSP) consists in

minimizing the duration of a project, subject to zero-lag finish-start

precedence and resource constraints. In its deterministic version, the

RCPSP assumes complete information on the resource usage and

activities duration, and determines a feasible baseline schedule, i.e. a list of

activity starting times, minimizing the makespan value. A solution for this

problem is a baseline schedule which specifies, for each activity, the

planned starting times. Notwithstanding its importance, the planned

baseline schedule may have little, if some value, in real contexts since

project execution may be subject to severe uncertainty and then may

undergo several types of disruptions as described in the previous

paragraphs. Extensions of the RCPSP, involving the minimization of the

expected makespan of a project with stochastic activity durations, have

been investigated within the stochastic project scheduling literature. The

methodologies for stochastic project scheduling basically view the project

scheduling problem as a multi-stage decision process, in which the

objective is to minimize the expected project duration subject to zero-lag

finish-start precedence and renewable resource constraints. Since the

problem is rather involved and an optimal solution is unlikely to be found,

scheduling policies (Igelmund & Radermacher (1983), Mohring & Stork

(2000), Stork (2000)) and heuristic procedures (Ballestin (2007), Golenko-

Ginzburg & Gonik (1998), Golenko-Ginzburg & Gonik (1997), Tsai &

Gemmil (1998)) have been used for defining which activities to start at

random decision points through time, based on the observed past and the

a-priori knowledge about the processing time distributions.

Beside this important research area, the field of proactive (robust) project

scheduling literature has received outstanding attention in the last years. It

entails to incorporate some knowledge of the uncertainty in the decision-

making stage, with the aim to generate predictive schedules that are in

some sense robust (i.e. insensitive) to future adverse events.

Van De Vonder et al. (2005), (2006) propose the so-called resource flow-

dependent float factor heuristic (RFDFF) to obtain a precedence and

resource feasible schedule, using information coming from the resource

flow network (Artigues et al., 2003) in the calculation of the so called activity

dependent float factor (Leus (2003)). In Van de Vonder et al. (2007),

several predictive reactive resource constrained project scheduling

procedures are evaluated under the composite objective of maximizing

both the schedule stability and the timely project completion probability. For

an extensive review of research in this field, the reader is referred to

Herroelen and Leus (2004b), (2005). Within this research stream, and

when abstraction of resource usage is made, we mention the works

Herroelen and Leus (2004a), Rabbani et al. (2007), Tavares et al. (1998).

When resource availability constraints are considered, Leus and Herroelen

(2004), Deblaere et al. (2007) and Lambrechts et al.(2007) and (2008)

assuming the availability of a feasible baseline schedule, proposed exact

and approximate formulations of the robust resource allocation problem.

Within the stochastic programming context, a two-stage integer linear

stochastic model has been proposed in Zhu et al. (2007). Target times are

determined in the first stage followed by the development of a detailed

project schedule in the second stage. The two-stage stochastic model aims

at minimizing the cost of project completion and expected penalty incurred

by deviating from the specified values. Only one non-renewable resource

(the budget) is constrained in the model. A path based two-stage integer

programming approach together with a tailored solution methodology based

on decomposition has been recently proposed by Klerides &

Hadjiconstantinou (2010) for the stochastic discrete time-cost trade-off

problem.

The more difficult case involving multiple renewable resources has not

been investigated yet in the stochastic programming setting.

This chapter addresses the case of RCPSP with renewable resources and

uncertain activities durations represented by independent random variables

with known cumulative probability distribution function. The objective is to

build a precedence and resource feasible baseline schedule with minimum

makespan able to tolerate a certain degree of uncertainty during execution

and to absorb dynamic variations in activities durations (we shall refer in

the following to this capability as stability or robustness). Our ultimate aim is

to develop a project scheduling procedure capable of combining schedule

stability and makespan performance. There are a number of different

metrics for assessing robustness and stability of a schedule in literature.

We adopt as a measure of stability the probability that schedule decisions

do not change during execution. In particular, through the use of joint

probabilistic constraints, we try to find a schedule that is expected to be

respected with a high level of probability. The use of joint probabilistic

constraints within the stochastic scheduling problem represents an

innovative element of our approach. In effect, at the best of our knowledge,

none of the methods proposed in the literature considers joint probabilistic

constraints. Indeed, very few research papers explicitly consider

probabilistic information in solution methods. We should mention here, the

work of Van de Vonder et al. (2008) where the virtual activity duration

extension (VADE) heuristic and the starting time criticality (STC) heuristic

are introduced to include time buffers in a given schedule while a

predefined project due date remains respected. While VADE heuristic relies

on the standard deviation of the duration of an activity in order to compute a

modified duration, STC heuristic tries to combine information on activity

weights and on the probability that activity cannot be started at its

scheduled starting time.

Our work differs from the cited paper in some important aspects. First of all,

we consider the stochastic programming framework and, in particular, the

probabilistic paradigm in the form of joint probabilistic constraints. This

powerful tool allows us to relax the assumption, common in the literature,

that only one activity at a time disturbs the starting time of a successor

activity, rather limiting the joint probability of disruption of the preceding

activities to a given probability level. In addition, we do not start from an

initial deterministic unbuffered schedule in which to insert time buffers,

although starting from an unbuffered schedule is a very common practice

amongst practitioners and researchers. Last, but not least, our point of view

is rather new in the literature on predictive stable scheduling procedures

where the objective function commonly used (see for instance Leus, 2003)

is the so called stability cost function, defined as the weighted sum of the

expected absolute deviation between the actually realized activity start

times and the planned activity start times. We observe that this objective

function is not known a priori, unless a range of execution scenarios

(referred to as the training set) are simulated by drawing different actual

activities durations from the described distribution functions. In addition, it is

not difficult to see that the exact quantification of the deviation between

planned and actual starting times heavily depends on the reactive

procedure adopted.

The remainder of the chapter is organized as follows. In paragraph 4.2 we

describe our scheduling methodology for generating robust baseline

schedules.

Paragraph 4.3 is devoted to the presentation of computational experiments

and conclusions are given in paragraph 4.4.

4.2. Stochastic project scheduling with robustness
constraints

4.2.1. Notation and problem description

We assume that the activity network of a resource-constrained project in

activity-on-node representation is given by a directed acyclic graph G =(N,

A). Each node in the set N = {0, . . . , n + 1} corresponds to a single project

activity and each arc in the set A corresponds to a precedence relation

between each pair of activities (Wiest & Levy, 1977). The activities 0 and

n+1 are the dummy start and the dummy end activity, respectively.

For each activity denotes the set of successor activities of j

 and indicate the latest starting time and the latest finish time of j,

respectively.

We assume the presence of a set of K renewable resources with a per-

period availability . Each activity has to be processed without

interruptions, requiring a constant amount of resource for each

renewable resource type k, k = 1 . . . ,K. We assume that the duration of an

activity is represented by a stochastic variable and that the vector of

durations is distributed according to a joint probability distribution that

follows a known distribution defined on a given probability space

equipped with an algebra F and with a probability measure . Then, the

random vector of starting times can be denoted with

and the associated random vector of

completion times with . In uncertain

environments, especially from a practical point of view, project managers

are mainly interested in the generation of a proactive schedule (i.e a vector

of proactive starting times and finish times

with a quality that does not degrade during execution with respect to future

perturbations. The vector can be interpreted as the mapping of random

activity durations into a vector of resource and precedence feasible starting

times performed according to a function referred as policy. If

we introduce an additional variable

representing deviation between the actual and the planned starting time for

activity j, a natural question is how to construct an anticipative project

execution policy and a vector of predictive starting and completion times

that attempt to limit the risk of such deviation. Two classical approaches are

used in stochastic programming to deal with deviations. Unit penalty costs

can be assigned for each individual deviation, and the resulting expected

penalty cost can be minimized, or alternatively, one may specify a model in

which we accept deviations with a certain probability.

In project scheduling problems, when it is not easy to quantify the penalty

associated with a schedule disruption, a risk based perspective could be

preferred. Therefore, in this chapter, we adopt this point of view.

From a mathematical standpoint risk, averse constraints can be formulated

using the theory of joint probabilistic constraints. More formally, in our

setting a schedule is deemed robust if it fulfills the following constraint:

 = with a low value of the risk parameter .

Stating it differently, a schedule is robust if it exhibits a low probability of

disruption. It is easy to recognize that the topic addressed in this chapter is

closely related to the topic of solution stability addressed in Van de Vonder

et al. (2005), also refereed as solution robustness. Whilst robustness has

been considered in the literature mainly as an objective function to be

minimized, in our work we introduce a robustness constraint, in the form of

probabilistic constraints.

The stochastic RCPSP, as investigated in the present chapter, can be

formally stated as follows: for a given resource-constrained project, with

known activity duration distributions, construct a proactive schedule, with

predictive starting times satisfying (1), that attempts to minimize the

project makespan

It is worth noting that the model tries to handle what is called the

stability/makespan trade-off, by accounting for solution stability through the

use of joint probabilistic constraints, whereas the objective function

mathematically translates the makespan minimization. In order to tackle

this complex combinatorial stochastic problem, we develop a heuristic

procedure that we shall present hereafter.

4.2.2. The heuristic procedure

As mentioned before, we are interested in determining a policy and a

vector of predictive starting times such that the makespan of the schedule

is minimized and the risk of disruption is limited from above in probability by

the parameter .

A scheduling policy under uncertainty may be seen as a stochastic dynamic

decision process that defines which activities to start at certain decision

points t, based on the knowledge of the observed past up to t and the

statistical distributions of activities durations. A decision point occurs either

at the beginning of the project, or when at least one of the running activities

is completed, until the last activity is scheduled.

Our heuristic approach is based on a stage-wise approximation of the full

complex stochastic dynamic problem relying on the decoupling of the

dynamic from the stochastic aspect of the problem.

In particular, the dynamicity of the problem is treated at a higher level,

viewing the project as a sequence of decisions on resources allocation

whereas the probabilistic aspect is tackled at decision points. At each

decision point, a resource feasible partial schedule is built and suitable

proactive starting and completion times are set by means of an anticipative

stochastic model that accounts for future uncertainty. Since the policy we

use can be viewed as a stochastic dynamic version of the parallel schedule

generation scheme, it is easy to verify that the partial schedule constructed

is feasible with respect to precedence and resource constraints.

A detailed description of the proposed stochastic dynamic generation

scheme (SDGS) heuristic is given in what follows. Let denote with: g the

iteration counter;

o the decision time associated to the iteration g;

o the set of activities which are active at ;

o the set of activities whose predecessors at time have been

completed;

o a subset of comprising activities that will start at time ;

o) the residual resource availability at time ;

o a priority rule.

An algorithmic description of the SDGS heuristic is given below.

--

Scheme of the SDGS heuristic

Initialization

Set g := 0, := {0}, := { }, := { }, := 0,) := , k = 1, . . . ,K

Choice a priority rule

Repeat until all the activities have been scheduled:

• Compute Repeat until it is not possible to select activities:

Step 1. Use the priority rule to select a new activity to be

scheduled

Step 2. If j is such that _ 0 then

) :=

Determine the proactive completion times

taking into account constraint (1)

Else

Go to Step 1.

End If

End Repeat

• Set the next decision point as follows:

g := g + 1

End Repeat

--

4.2.3. Generating activities completion times

While the dynamic aspect of the problem is tackled at decision points by

the scheduling policy presented above, the stochasticity should be taken

into account in the determination of proactive starting and completion times.

In our problem, predictive starting and completion times should fulfill at

each decision point the stability constraint (1).

We recall that at each decision point , our decisions concern the

appropriate proactive completion times of activities in Sg since the starting

times of activities are set as , where represents a

completion time of one previously scheduled activity. As a reminder we

note that these decisions should ensure the satisfaction of the stability

constraint (1). We now observe that potentially any activity in could

cause a disruption among its successor, as far as its completion time

represents the new decision point at which an unscheduled activity j should

set its starting time .

We further notice that at the time we take decisions we do not know which

activities would be scheduled in the next stage, nor what will be the next

decision point.

Therefore, at a generic instant the probability of not causing

a disruption in the schedule in the future is the probability that for any

activity currently under execution the condition is

verified.

Now, we may conclude that the problem boils down in appropriately setting

completion times by solving at each decision point the following problem

with joint chance constraints:

 (3)

 (4)

Where Mpar represents the makespan of the partial schedule built

considering activities and . Here joint

chance constraints are imposed to set the completion time of the activities,

at each decision point, in such a way that the probability of not disrupting

the schedule in the future is at least (1 −) (i.e. the risk of disruption is at

most). We emphasize that completion times of the activities in \

have been set appropriately at a previous decision point.

In order to show how the heuristic works, we consider the toy example

reported in Figure 4.1, with only five activities plus the two dummy activities

0 and 6. It is assumed that only one resource is required to execute the

activities (i.e., k = 1) and the resource consumptions are:

. In addition, activities durations follow a Poisson

distribution with mean 1 for activities 1, 2, 3 and 0.5 for activities 4 and 5.

The activities have been ordered by the rule as follows: < 1, 2, 3, 4, 5 >.

0

1

2

3

4

5 6

Figure 4-1: Toy example

After the dummy activity 0 has been scheduled activities 1, 2, 3 can be

scheduled at time since they do not cause any resource

conflict. Therefore . Problem (2)-(4) is then invoked and

completion times and are appropriately set. The next decision

point . At that time, activity 4 is an eligible activity and there are

sufficient resources units available, so it is started at time . For activity 5

no sufficient resource units are available. Therefore and problem

(2)-(4) reduces to a problem with a single chance constraint. The next

decision point . At this time activity 5 is started.

The resulting feasible schedule is depicted in Figure 4.2.

Figure 4-2: Resulting schedule

disruption probability of activity 4 depends on the disruption probability of

activities 1 and 2, whereas it is not influenced by the completion time of

activity 3. By imposing a threshold risk parameter of our heuristic

set completion times of activities 1, 2, 3 in such a way that:

thus limiting the disruption probability of activity 4. We should point out that

if, at least in principle, separate chance constraints can be used to deal with

uncertain durations, the solution provided by the corresponding model may

in some context be considered inappropriate. In fact, imposing a small

probability of disruption for each activity does not assure a small

joint probability for all .

In our example, the probability that activity 4 cannot be started at its

scheduled starting time depends on the probability of the event that

predecessors activities 1 and 2 disturb its planned starting time.

If chance constraints would have been used with = 0.2, the probability of

disrupting activity 4 would have been 1−(1−0.2)*(1−0.2)=0.36,

notwithstanding the fact that the probability of having each activity disrupted

is less than 0.2.

It is worth observing that, although at each decision point we accept the risk

of a disruption with probability , we cannot impose a limit on the probability

of not completing the whole project on time. However, we may express the

timely project completion probability as a function of the number of decision

points performed by the algorithm. A crude lower bound for the probability

of project to be completed on time is where G is an upper bound on

the number of iterations.

4.2.4. Solving the joint probabilistically constrained problem

The SDGS heuristic involves the repeated solution of model (2)-(4). In the

following, we show how to derive a deterministic equivalent formulation, in

the case of independent random variables. Under the independence

assumption among the random variables , the probabilistic constraints

(4) can be rewritten as

 (5).

Denoting with) the marginal probability distribution function of the

random variable , and with a variable substitution ,

constraints (5) can be stated equivalently as

and by taking logarithms:

 (Jagannathan, 1974; Miller & Wagner, 1965). Since the logarithm is an

increasing function and , this transformation is legitimate.

Furthermore, for log–concave distribution functions, convexity of the

constraints is preserved. The class of log–concave random variables

includes several commonly used probability distributions as for example the

Uniform, Normal, Exponential and many others (see Prékopa, 1995,

Dentcheva et al. 1998). We observe that also in the case of discrete

distributions, problems with joint probabilistic constraints can be reduced to

deterministic equivalent problems. For more details, the interested readers

are referred to Dentcheva et al. (1998) (In Appendix B the transformation is

detailed for illustrative purposes).

Therefore, depending on the nature continuous or discrete of the random

variables involved in the problem at hand, the deterministic equivalent

problem takes the form of a nonlinear continuous problem or a linear

integer problem.

4.3. Computational Experiments

This section is devoted to the presentation and the discussion of the

computational experiments carried out with the SDGS heuristic. The

numerical tests have been designed to evaluate the performance of the

SDGS heuristic in comparison with a set of benchmark heuristics that we

shall present in the next paragraph.

4.3.1. Benchmark approaches

In order to assess the performance of the proposed SDGS heuristic, we

have considered for comparison a set of scheduling procedures based on

the use of separate chance constraints. More specifically, both parallel

schedule generation schemes (PSGS) and serial schedule generation

schemes (SSGS) have been designed by replacing deterministic durations

by their -quantile counterparts . We should remark

that this is equivalent of using separate chance constraints within classical

schedule generation heuristics for the deterministic RCPSP. The following

static priority rules for generating the priority list have been tested.

• (MaxC): The MaxC rule orders the activities by decreasing value of

their total resource requirement .

• (MinC): The MinC rule orders the activities by increasing value of

their total resource requirement .

• (MaxD*C) The MaxD*C rule orders the activities by decreasing value of

 with defined as above.

• (MinD) The MinD rule orders the activities by increasing value of

• (LST) The LST rule orders the activities by increasing value of their latest

starting time as described in Kolisch & Hartmann (1999).

• (LFT) The LFT orders the activities by increasing value of their latest finish

time as described in Davis & Patterson (1975).

• (MTS) The MTS orders the activities by decreasing value of the number of

their successors, that is | | as described in Alvarez-Valdes & Tamarit

(1989).

Whilst the last three rules have been taken from the literature (Kolisch &

Hartmann, 1999), the other rules have been proposed by the authors.

Moreover, we have considered the STC (Van de Vonder et al., 2008) and

the RFDFF heuristic (Van de Vonder et al., 2006).

4.3.2. Computational results

The computational experiments have been performed on a PC Pentium III,

667 MHz, 256 MB of RAM. All procedures were coded in AIMMS language

(Bisschop & Roelofs, 2007) and the subproblems solved with Cplex 10.1

(ILOG CPLEX 6.5: Users Manual, 1999) and Conopt (Drud, 1996).

Algorithms 1-4 are the PSGS with the first four priority rules, algorithms 5-8

are the SSGS with the same priority rules, algorithms from 9 to 11 are

PSGS with the rules LST, LFT and MTS, respectively. The SDGS heuristic

procedure has been executed considering the four priority rules MaxC,

MinC, MaxD*C and MinD (algorithms A-D) since they behave the best. The

STC and RFDFF heuristics algorithms consider a deterministic project due

date and start from a minimum makespan schedule in which time buffers

are inserted in order to protect against anticipated disruptions. The

unbuffered baseline schedule required by the STC and RFDFF heuristics

has been obtained by applying procedure 4 (PSGS heuristic with MinD

rule) with different ǫ values (this choice has been motivated by the fact that

SDGS heuristic is a stochastic version of the PSGS) whereas the project

due date has been set equal to the average makespan obtained by

procedures A-D. With this setting, the comparison turns out to be fair in

terms of resulting makespan.

The instability weights have been considered equal to one for all the

activities, except for the final one for which the weight has been set equal to

as suggested in Van de Vonder et al., 2008. This particular setting reflects

the fact that in our heuristic the probabilistic constraints are imposed on all

the activities with the same value for the risk parameter which, in turn

implies that all the activities are considered equally important. Furthermore,

since the objective of our heuristic is the makespan minimization, the

weight of the last activity has been set to 10 in order to give more emphasis

on the project makespan (in this respect it could be beneficial to recall that

the weight of the dummy end activity denotes the cost of delaying the

project completion beyond a predefined deterministic project due date). For

the STC heuristic the stability cost improvement has been evaluated on a

training set of 100 scenarios.

All the scheduling procedures have been executed for 5 values of namely

{0.2, 0.15, 0.1, 0.05, 0.01}.

The computational experiments have been carried out on a set of

benchmark problems selected from the project scheduling problem library

PSPLIB (Kolisch and Sprecher, 1997), available at http

://129.187.106.231/psplib/,including 30, 60 and 90 nodes, leading to a total

of 2550 runs.

For all the instances, two types of distribution have been tested in order to

assess the effectiveness of the proposed approach with both continuous

and discrete distributions.

In particular, for the continuous case, we have assumed that real activity

duration is a uniform random variable U(0.75d, 2.85d), where d has been

set equal to the deterministic duration and for the discrete case, we have

considered a Poisson distribution with mean d. Activity durations are

assumed to be independent.

Extensive simulation has been used to evaluate all procedures on

robustness measures and computational efficiency. For every network

instance, 1000 scenarios have been simulated by drawing different actual

activity durations from the described distribution functions. Using these

simulated activity durations, the realized schedule is constructed by

applying the following reactive procedure. An activity list is obtained by

ordering the activities in increasing order of their starting times in the

proactive schedule.

Ties are broken by increasing activity number. Relying on this activity list, a

parallel schedule generation scheme builds a schedule based on the actual

activity durations. We opted for the railway execution mode (Deblaere et

al., 2007) never starting activities earlier than their prescheduled start time

in the baseline schedule. Actually, this type of constraint is inherent to

course scheduling, sports timetabling, railway and airline scheduling, or

when activity execution cannot start before the necessary resources have

been delivered.

4.3.3. Analysis of results

Rather than showing the complete set of the numerical results, fully

reported in Beraldi et al. 2007, we give in Tables 4.1-4.6, for each

procedure, the average results calculated over all networks and executions.

The quality has been evaluated by the following a posteriori measures of

stability: average tardiness (Tavg), average timely project completion

probability (TPCP), average disruption probability over all networks and

executions (Davg). Also the predictive makespan (Mak) has been reported

enabling a fair comparison amongst the different algorithms.

In the next subsection we will present our results for the discrete and

the continuous case. Here we shall briefly comment on the computational

times since they are rather low and do not constitute a bottleneck for the

algorithms execution. In particular, the CPU time is very limited for

algorithms 1-11, given the simple schedule construction procedures based

on the parallel and serial schedule generation scheme. Also procedures A-

D are competitive in terms of timely performance, with CPU times varying

from 0 to a couple of seconds. The execution times of procedures A-D, is

slightly higher than the computational time of STC and RFDFF only for 90

nodes networks and discrete distribution. This is due to the extra effort

required for solving, at each decision point, the integer linear deterministic

equivalent of the probabilistic model. For the continuous case, the

computational requirements for SDGS and the STC and RFDFF heuristics

are roughly similar, although the model to be solved within the SDGS

heuristic is a nonlinear continuous model.

In order to give an idea of the size of the probabilistic problems solved

within the SDGS heuristic, Table 7 reports the average, minimum and maxi-

mum number of variables and constraints involved in the solution of

problem (2)-(4) at each iteration of the SDGS heuristic for both the discrete

and the continuous case. For the sake of completeness also the average

number of iterations performed is reported. As evident a higher number of

variables and constraints characterizes the integer deterministic equivalent

problems related to discrete random variables.

4.3.3.1. Discrete distribution

In this section, we comment on computational results obtained for the

discrete case. A detailed accounting of the numerical results is reported in

Tables 4.1-4.3.

A first set of numerical experiments has been carried out with the aim of

assessing the variation of the performance measures of our SDGS

algorithm as a function of the risk level (measured by).

We report in Figures 4.3 and 4.4 the Tavg and the TPCP for different

values, for the 30 nodes test problems. As we can observe in Figure 1,

the average tardiness decreases with . This is an expected result since for

decreasing value of we impose a more prudent project manager’s position

imposing a higher risk aversion level. Mathematically speaking, as the

value of decreases, probabilistic constraints are somehow more binding

and the schedule is more robust, since it is less exposed to disruptions.

The opposite trend can be observed in Figure 4.4 for the TPCP which

increases for decreasing values.

 Figure 4-3: values versus Tavg trade-off

A second set of experiment has been carried out to compare the

performance of the SDGS with respect to the benchmark approaches

presented in Section 4.3.1. In particular, we shall present hereafter a

graphical comparison on the basis of the expected makespan EXPMAK,

(obtained as the sum of the predictive makespan Mak plus the expected

tardiness Tavg) and the average probability of disruption Davg.

Figures 4.5, 4.6 and 4.7 show the EXPMAK for the 30, 60 and 90 nodes

networks respectively. Average values have been reported for the

procedures A-D (named SDGS) and 1-11 (named OTHERS). The STC

heuristic has been included in the graph whereas the RFDFF heuristic has

been excluded from the comparison since it is always largely outperformed,

as evident from Tables 4.1-4.3.

Figure 4-4: values versus TPCP trade-off

The reader may notice a seemingly strange trend in the results. In effect,

the expected makespan seems to have a non-monotone behaviour, with a

decreasing slope up to the minimum and an increasing or constant slope

afterwards. This behaviour is more evident for the 30 nodes networks, and

in general it is relevant for algorithms from 1 to 11 and for the STC in the

case with 90 nodes. This unforeseen descendant behaviour of the

expected makespan is due to the influence of two opposing forces that are

in effect. As depicted in Figure 4.8, on the one hand there is a predictive

makespan (Mak) whose value increases as decreases, and on the other

hand the expected tardiness (Tavg) that drastically reduces as long as the

risk we are willing to bear decreases.

Figure 4-5: Expected makespan for varying values-30 nodes-Discrete case

 Figure 4-6: Expected makespan for varying values-60 nodes-Discrete case

It is immediately clear from Figures 4.5, 4.6 and 4.7 that the expected

makespan of SDGS is in general smaller than that of STC, but the same is

not thoroughly true for procedures 1-11. It is worth observing, in fact, that

there is an intersection between the continuous line of procedures 1-11 and

the dashed line of SDGS for between 0.05 and 0.1. Therefore, for relevant

risk levels (between [0.05, 0.2]) SDGS should be preferred in terms of

EXPMAK.

An opposite behaviour emerges for lower risk levels. In practice, risk-

averse project managers, for budget restrictions, may accept to bear some

risk to avoid unnecessary extra costs. Therefore, the range [0.05, 0.2]

constitutes a meaningful choice for moderately risk averse project

managers.

Figure 4-7: Expected makespan for varying values-90 nodes-Discrete case

Figures 4.9, 4.10 and 4.11 investigate the comparative performance of the

algorithms in terms of Davg. We may observe that SDGS exhibits the best

performance with very low Davg, especially for large networks, as evident

in Figure 9. This claim is supported by the consideration that the Davg gap

between SDGS and STC algorithms increases with the dimension of the

network. With respect to the comparison between this two algorithms, there

is some evidence on the superiority of SDGS over STC for the stability

measures considered up to this point. This superiority is also supported by

the Tavg values which can be unacceptably high for both the STC heuristic

and the others benchmark heuristics considered. For instance in Table 4.3

we can observe that the Tavg of the benchmark heuristics is on average

more than one order of magnitude higher than the Tavg of SDGS.

Figure 4.8: Expected makespan components for varying values-30 nodes-
Discrete case

In effect, an apposite behaviour can be observed for the TPCP for which

it is evident the superiority of the STC over all the algorithms considered.

We would like to remark that in the worst case, the TPCP of the STC

heuristic doubles the TPCP of the SDGS.

Figure 4.9: Davg for varying values-30 nodes-Discrete case

Nonetheless, we observe that there is no unitary evidence on the

superiority of STC over procedures 1-11. In fact, we observe that for

values higher than 0.075 (which represents approximately the intersection

point in Figures 4.9 and 4.10) STC behaves worse than procedures 1-11,

whereas the opposite is true for values below 0.075. This suggests that

there is a golden value for the risk parameter that could guide the manager

in the choice of the appropriate heuristic to use.

Figure 4.10: Davg for varying values-60 nodes-Discrete case

If solution stability is deemed of utmost importance, the best choice seems

to be the SDGS heuristic. This heuristic guarantees very good stability

performance in terms of disruption probability. If, on the contrary, the

sensitivity of the schedule performance in terms of the objective value is the

criterion to pursuit, we observe that nice results are obtained for ≥ 0.01 by

the STC heuristic with high TPCP and also acceptable stability indicators.

When the project manager is very conservative and risk averse (≤ 0.05)

an attractive alternative especially for large instances can be constituted by

procedures 1-11 that offer a good comprise between computational time

and solution quality. However, above this risk level they fall inevitably in

solutions of substantially lower quality.

Figure 4.11: Davg for varying values-90 nodes-Discrete case

As a marginal note, we point out that the performances of the algorithms 1-

11 are barely indistinguishable and depend on the ordering criterion

adopted. Unfortunately, there is no unitary evidence of one criterion over

the others.

As far as the RFDFF is concerned, we observe that notwithstanding the

unbuffered schedule fed into RFDFF depends on the value considered,

the results obtained are almost the same whatever the risk aversion of the

decision maker is. This behaviour can be due to the right-justification

mechanism, which insert buffers in front of the activities in order to make

the schedule solution robust.

4.3.3.2. Continuous distribution

Tables 4.4, 4.5, and 4.6 summarise the results for the continuous

distribution function. Some conclusions can be drawn on the basis of the

numerical results collected.

Figure 4.12: Expected makespan for varying values-30 nodes-Continuous case

Figure 4.13: Expected makespan for varying values-60 nodes-Continuous case

As before, we show in Figures 4.12, 4.13 and 4.14 the EXPMAK for the 30,

60 and 90 nodes networks respectively. We observe that the general trend

is similar to the one observed for the discrete case, albeit with some

differences. We notice that the performance in terms of EXPMAK of the

benchmark heuristics (excluding as before the RFDFF) is now comparable

to the performance of the SDGS, at least for the 30 and 60 nodes networks.

Figure 4.14: Expected makespan for varying values-90 nodes-Continuous case

As already observed in the discrete case, also in this case procedures 1-11

outperforms SDGS and STC in the expected makespan for values

between 0.1 and 0.15.

We further observe that in this case, STC outperforms SDGS for values

above 0.1 for the 30 nodes network and above 0.15 for the 60 nodes

network.

The EXPMAK of the STC for the network with 90 nodes is on the contrary

quite high. This worsening in the EXPMAK is compensated by an higher

TPCP for the SDGS, as evident from Figure 4.15. Indeed, also in the others

test problems considered, the SDGS heuristic shows TPCP value closer to

the STC values than in the discrete case (see Tables 4.4, 4.5 and 4.6).

Figure 4.15: TPCP for varying values-60 nodes-Continuous case

Figure 4.16: Davg for varying values-30 nodes-Continuous case

Figure 4.17: Davg for varying values-60 nodes-Continuous case

Figure 4.18: Davg for varying values-90 nodes-Continuous case

As a byproduct, we observe that the STC heuristic seems to be less

sensible to the variation of the risk value, with Davg quite high, especially if

compared with the SDGS values. This behaviour can be observed in

Figures 4.16, 4.17 and 4.18. It is also worth noting that the Davg of the

SDGS heuristic is very low, falling down to zero for small values.

4.4. Conclusions

We proposed a joint chance constrained model for project scheduling

problem with robustness constraints and developed a heuristic procedure

for its solution. The heuristic exploits probabilistic information on random

activities duration within the framework of joint probabilistic constraints.

Table 4-1: Results on 30 nodes test problems with discrete duration variability

In the proposed algorithm, the temporal aspect of the problem is treated at

a higher level, whereas the probabilistic aspect is tackled at decision points,

when activities are supplied by available resources. The scheduling

approach can be tailored to reflect the level of risk that an individual

decision maker is willing to bear in uncertain environments.

We illustrated the favorable performance of the model and demonstrated

that a rigorous treatment of uncertainty might lead to better uncertainty

hedging.

Table 4-2: Results on 60 nodes test problems with discrete duration variability

 Table 4-3: Results on 90 nodes test problems with discrete duration variability

 Table 4-4: Results on 30 nodes test problems with continuous duration variability

Table 4-5: Results on 60 nodes test problems with continuous duration variability

Table 4-6: Results on 90 nodes test problems with continuous duration variability

Table 4-7: Average, minimum and maximum number of variables and constraints per iteration

Chapter 5

A real application: Robust
Project Scheduling in
Construction Industry

This chapter addresses the problem of scheduling under uncertainty in

construction projects. The existing methods for determining a project

schedule are based on assumption of complete knowledge of project

parameters. But in reality there is uncertainty in construction projects,

deriving from a multitude of context-dependent sources and often provided

as outcome of a risk analysis process. Thus classical deterministic analysis

might provide a schedule which is not sufficiently protected against possible

disruptions. A quantitative methodology is developed for planning

construction projects under uncertainty aimed at determining a reliable

resource feasible project schedule by taking into account the available

probabilistic information to produce solutions that are less sensitive to

perturbations that occur on line. To provide evidence on the potential of the

developed approach, a validation phase on a real construction project is

carried out. The project behavior under several scenarios is evaluated by

using a simulation approach.

5.1. Introduction

Construction projects are usually characterized by high complexity. Several

factors determine this feature: a great number of activities has to be

performed in order to achieve project completion, a variety of resources,

both material and human, are necessary to perform activities, and therefore

great capital investments have to be managed. An efficient scheduling

phase is crucial in order to ensure that the project is completed on time and

within budget. In this respect, a detailed baseline project schedule plays a

crucial role: as widely recognized in (Metha & Uzsoy 1998) and in (Möhring

& Stork 2000) it supports project managers in monitoring the work

progress, facilitating resource allocation and providing a basis for managing

external activities, such as relations with contractors.

In construction industry, baseline schedule generation is usually performed

by using different scheduling techniques, like, for instance, PERT (Malcolm

et al. 1959) and CPM (Wiest & Levy 1977), embedded in most computer

software packages developed for construction project management. The

main drawback of these time-oriented scheduling techniques is the

assumption of unlimited availability of resources for each project activity

(Nkasu 1994).

In real construction projects, many problems arise when activities require

resources that are available only in limited quantities making resource

allocation indispensable in the generation of realistic baseline project

schedules (Kim & Garza 2005). As a matter of fact, ignoring resource

considerations in the scheduling phase of the project will lead to extremely

poor schedule performance (Just & Murphy 1994). Woodworth and

Shanahan in (Woodworth & Shanahan 1998) have shown that schedules

based on time-oriented networks are exceeded by an average of around

38%.

Moreover, the complex dynamic and uncertain environment in which

construction projects have to be performed highlights the need for effective

planning and scheduling tools. Since the early sixties better tools and

techniques to asses project risks were developed to assist project

managers. ((Camps 1996), (Chapman & Ward 1997), (Guildford 1998),

(Simister 1994)).

After a proper risk assessment program has quantified the impact of

potential risks involved in the project at hand on individual activities

duration a risk response method must be set (Zhu et al. 2005). We can

distinguish among different approaches to deal with uncertainty in a

scheduling environment. Hayes et al. (1986) and Marshall (1988) provide

good introductions to the subject. Here we mention the work of Vaziri et al.

(2007) that propose a dynamic control policies in the form of planned

resource allocation to project activities exploiting also the impact of

resource allocation on uncertain durations. Park & Mora (2004), use a

simulation-based buffering strategy to generate a robust construction plan

that protects against uncertainties. Schatteman et al. (2008) develop an

integrated methodology that consists into two phases. First, individual

project activities uncertainty is estimated identifying and quantifying the risk

by grouping activities with similar risk profiles. Then, in the second phase,

this input is used for generating a robust baseline schedule by introducing

time buffers in a precedence and resource feasible project schedule.

The underlying assumption in most of these risk management techniques is

that the uncertainty can be quantified using statistical analysis, given that

past information is available regarding both the probability of undesired

events and the effect of such events on the project.

Regrettably, this assumption may also be violated and therefore in that

case we cannot resume to probability theory.

When the type of uncertainty encountered in construction projects does not

fit the axiomatic basis of probability theory, fuzzy set-based methods (Zeng

et al. 2007) or possibility theory (Mohamed & McCowan, 2001) may be

used.

 Another non-statistical approach for analyzing the risk associated with

highly uncertain project scheduling based on the info-gap theory is reported

in Ben-Haim (2006) and Regev et al. (2006).

Our work takes place in the former group of models, where probabilistic

uncertainty is assumed.

We describe a methodology for planning resource constrained construction

projects in real contexts using uncertainty estimation of project activities to

generate a baseline schedule which is protected against disruptions .

In particular, under the assumption that activities durations may be

represented by random variables, we present an iterative algorithm based

on the theory of joint chance constraints embedded within a friendly user

interface to generate a reliable schedule that is protected against uncertain

events with a certain probability.

The remainder of the chapter is organized as follows. The following

paragraph introduces problem assumptions and notations and presents

the scheduling methodology for generating baseline schedules in uncertain

environments. Paragraph 5.3 is devoted to the presentation of the

application of the methodology to a real case study. Results are analyzed in

paragraph 5.4 and conclusions are given in paragraph 5.5.

5.2. Dealing with uncertainty in construction projects

After having identified the risks and their potential impact on activities

duration, it is possible to define a suitable strategy to face the risk. The

project scheduling system we propose try to cope with uncertainty by taking

into account the available probabilistic information to produce solutions that

are less sensitive to perturbations that occur on line and relies on the

generation of a robust project baseline schedule that is sufficiently

protected against distortions that may occur during actual project execution.

Hereafter, robustness will be referred as the capability to hedge against

uncertain events, by starting activities as originally planned, avoiding extra

cost and time overrun.

 In order to be self-contained and for the sake of clarity, we briefly introduce

some notation for the resource-constrained project scheduling problem

(RCPSp), consisting in minimizing the duration of a project, subject to the

finish-start, zero-lag precedence constraints and the resource constraints.

A detailed notation list is reported in the appendix C.

Let us consider a project represented by a directed acyclic graph G = (N,A)

characterized by an activities set N = (1..n) and a precedence relations set

A where if and only if activity j can start only

after activity i is finished. Let 0 be the dummy activity representing the

project start, n be the dummy activity corresponding to the project

conclusion and be the deterministic duration associated with each

activity i. Uncertain activities duration are represented by random variables

 , with known cumulative probability distribution functions .

Let us denote by K the set of renewable resources and let be the

constant per period availability of resource type k, k = 1..., K. We assume

that each activity has to be processed without interruptions requiring

a constant amount of resource , for each renewable resource.

 The classic optimization problem in project networks is finding a feasible

schedule such that the project completion time is minimized.

The resource constraints make the problem substantially more difficult and

usually require, to be expressed, the use of binary variables (Pritsker,

1969). A conceptual decision model (Christofides et al., 1987) may be

used instead.

The scheduling procedure we propose (in the sequel referred as Resource

Allocation Heuristic-RAH for short-) constructs a robust baseline schedule

through a stepwise increase of a partial schedule in which a proper

resource allocation is performed by solving a joint chance constrained

problem. More specifically, at each iteration g of the algorithm is associated

a decision point in which scheduling decisions are made by means of an

anticipative stochastic model setting proactive starting and completion

times. In this way a resource feasible schedule is built incrementally by

successive decision points until all the activities have been scheduled.

Let us define for each time point as the set of activities that can start

at time point and as the set containing all activities which can be

precedence feasibly started at (we call these activities eligible). If

contains more than one element a competition has to be arranged to

choose the optimal subset of activities that can be supplied by the residual

resource availability at time namely . The most competitive

activities are then chosen to start at and therefore included in the set .

Since none of the eligible activities can still be started without violating the

resource constraints, a new decision point is set at the earliest completion

time of the activities that are in progress.

An algorithmic description of RAH is given in Figure 5.1.

Figure 5.1. Typical RAH iteration

At each decision point decisions concerning which activities, belonging to

 , can start are made on the basis of the solution of the following

stochastic problem.

 (1)

 (2)

 (3)

 (4)

 (5)

 NO

 NO

STOP: the baseline project schedule has
been generated

YES

Check: Are there activities to be scheduled?

Compute the residual resource availability
at tg , rk(tg); Compute Eg

Decide which activities belonging to Eg
should start at tg
Include these activities into the set Sg
 Iteration counter g := g+1
Set the new decision point tg as the
minimum completion times of activities in
progress

Initialization
Iteration counter g :=0
Time counter tg:=0
Sg := {0}

where the decision variables are completion times and binary

variables which take value one if activity i can be feasibly

scheduled and zero otherwise. Only the most competitive activities in term

of the objective function are actually scheduled and their associated β

variables take value one. We point out that the formulation set the

completion time of an activity i only if the activity is included in the set

 through a Big-M formulation with parameter M.

The objective function tries to balance two conflicting objectives weighted

through the parameter , the resource and the time allocation decisions.

Therefore, whilst the first term of the objective function tries to maximize the

resource consumption at each decision point, the second term aims at

reducing the makespan of the partial schedule built up to moment . The

parameter , is adjusted dynamically in order to find a good balance

between the two conflicting objectives. We should notice that our model

assumes, as common in the scheduling literature, that resources will be

wasted if not used. We should point out that the subset of activities

included in minimizes the waste of resources tanks to the first term of

the objective function.

Constraints (2) set the makespan of the sub-schedule built at as the

maximum of the completion times of actually scheduled activities. The

completion times of the scheduled activities is set by means of constraints

(3) in such a way that the joint probability of not delaying subsequent

activities is at least . The use of joint probabilistic constraints (Miller and

Wagner, 1965) is rather original in the literature.

 Constraints (4) ensure that the subset of activities to start concurrently at

time respects the residual resources availability at time .

Problem (1)–(5) has to be solved at each decision point, when at least

more than one activity is ready to be operated and the residual available

amount of resources is not zero.

The proposed RAH can be viewed as a particular parallel schedule

generation scheme (SGS) (Kolisch and Hartmann, 2006) in which, rather

than using a priority rule for deciding the set of activities to be included in

the partial schedule, the solution of a stochastic problem is used.

The RAH has been then embedded in a user friendly tool for project

scheduling under uncertainty. In practical terms, the only action required to

managers is to define the project breakdown structure and store project

data such as activity number, ID and resource requirement, precedence

relations among activities, resource availability. Once the data are

uploaded on the system, the baseline schedule is automatically generated,

and if desired, the simulation phase performed. A screenshot of the

graphical interface developed for our tool is reported in Figure 4.3.

5.3. Empirical illustration of RAH: a real case study

 In this section, we document the application of our approach on a real

project for construction of students’ apartments at the University of

Calabria, Italy. Such project consists of 43 activities; the first and the last

one are dummy activities representing the starting and the ending time of

the project respectively. The project network is reported in Figure 5.2, while

id, number, expected duration and labour requirement of activities are

reported in Table 5.1.

Figura 5.2. Project network

S
T

A
R

T

A
1

B
1

A
2

B
2

C
1

C
2

B
3

C
3E

F D

G
H

I
J

K
2

L
2

K
1

L
1

N
O

P
Q

M

R

Y
1

T
U

V
Z

A
D

A
E

A
F

A
B

A
C

X
W

Y
2

S

A
G

E
N

D

A
A

Activities
ID

Activities
number

Activities description

Expected
activities
duration

(days)

Resource
requirement

 per day

START 1 DUMMY START 0 0

A1 2 Building yard delimitation 10 7

A2 3
Building yard resource

preparation
20 7

B1 4 Excavation works 16 5

B2 5 Grading 16 5

B3 6 Site preparation 18 5

C1 7 Basement foundations 16 6

C2 8 Footings 16 6

C3 9 Foundation walls 18 6

D 10 Crawl space 50 6

E 11 First floor 100 6

F 12 Second floor 75 6

G 13 Third floor 75 6

H 14 Fourth floor 50 6

I 15 Fifth floor 50 6

J 16 Roofing 45 23

K1 17 Exterior wall 90 6

K2 18 Exterior wall 30 6

L1 19 Interior wall 70 6

Table 5-1: Activities ID, number, details, duration and resource requirement

We used the initial project network developed by the project team and their

activity time estimates as input. Afterwards the project managers

considered two risks to be important: errors in execution and poor weather

conditions. Estimates of an optimistic, a pessimistic and a most likely

estimate of activities duration were obtained from the project management

team during an interview session and compared with the historical data of

similar construction projects completed at the University of Calabria. A

triangular distribution has then been used for characterizing the

randomness of activities duration.

5.4. Analysis of Results

In a first experiment we have analyzed the effectiveness of the proposed

scheduling procedure in hedging against uncertainty. In particular, we

generated two different schedules.

A protected schedule for the UNICAL project constructed by using the

scheduling mechanism implemented in the RAH in which the probability

level α was set to 0.95, that is, we expect with a probability at least 0.95

that the project delivery date will met (we expect a so called timely project

completion probability- TPCP for short-of 0.95) and an unprotected

deterministic schedule generated by the project managers on the basis of

their own experience and with the support of a quantitative tools for the

solution of resource constrained project scheduling problems.

Then, managers estimated project completion time taking into account

external/internal critical factors such as weather conditions, manpower and

resources availability, most-likely durations of activities.

In order to perform an a posteriori analysis we tested the two schedules in

a simulation phase, in which a number of possible project realizations,

called scenarios, were simulated and a reactive scheduling procedure was

applied for each scenario, opting for never starting activities earlier than

their prescheduled start time in the baseline schedule.

The schedule generated by managers sets a completely unrealistic

planned project delivery date of about 1250 days, with a probability around

50% to be exceeded. Having a TPCP=0.5 can be very unsatisfactory

especially for construction projects for which very high penalties are usually

associated to heavy due date violations and schedule breakages. Such

observation underlines the crucial value of an accurate planning phase and,

as a byproduct, the inadequacy of traditional scheduling procedures in

facing uncertainty.

The schedule generated by the proposed approach imposing in the RAH a

reliability level of 0.95 results in a planned project delivery date of 1517 with

a TPCP equal to 0.96. A second analysis has been carried out with the

aim of comparing the methodology against a total of 14 scheduling

procedures. To assess the performance of RAH we used as benchmark

heuristics the above mentioned SGSs considering, instead of the

deterministic durations, the α-fractiles of activities duration. We shall refer to

these heuristics in the following as parallel separate chance-constraints

based heuristic (PSCCBH) and serial separate chance-constraints based

heuristic (SSCCBH). Regardless the schedule generation scheme applied,

the resulting schedule depends on the ordering criterion adopted.

In order to generate the priority list, we used several static priority rules

taken from the literature. We tested the ‘LST’ rule (Kolisch et al. 1995)

(activities are ordered by increasing value of their latest starting time), the

‘LFT’ rule (David and Patterson, 1975) (activities are ordered by increasing

value of their latest finish time) and the ‘MTS’ rule (Alvarez-Valdes and

Tamarit, 1989) (activities are ordered by decreasing value of the number of

their successors).

Furthermore, we have proposed some new rules for the problem at hand.

In particular the ‘MinC’ rule orders activities by increasing value of their

resource requirement; the ‘MinD’ rule sorts activities by increasing value of

their α-fractile, the ‘MaxC’ rule orders activities by decreasing value of their

resource requirement and, the last one, ‘MaxD*C’ rule orders activities by

decreasing value of their α-duration*resource requirement.

We have also compared our algorithm with the approaches present in the

scientific literature closer to our work; that is the starting time criticality

(STC) (Van de Vonder et al. 2008) and the resource flow dependent float

factor (RFDFF) heuristics (Van De Vonder et al. 2006).

We have tested all the algorithms, but the RFDFF and the STC heuristics,

for the following values {0.8; 0.85; 0.9; 0.95; 0.99}. For the sake of clarity,

although RFDFF and STC heuristics construct exactly the same schedule

whatever the risk averseness of the decision maker (i.e. for all the α

values), we have reported the related results for all the probability levels

tested. The following measures were used to assess the performance of

the baseline schedules obtained: average tardiness (TAVG), average

timely project completion probability (TPCP), average number of jobs

whose starting time in the actual schedule differs from the baseline

schedule (#del) and CPU time in seconds (time) on a PC Pentium III, 667

MHz, 256 MB RAM.

The tardiness of activity i represents the difference between its actual

completion time and the planned one in the baseline schedule. It is evident

that if a penalty is due for each extra period required to execute an activity,

tardiness represents an important measure of performance for scheduling

in construction project.

Table 5.2 shows the results collected for each approach.

As evident RAH ranks best among the heuristics. The performances of the

PSCCBH and the SSCCBH are clearly indistinguishable, and depend on

the ordering criterion adopted.

Unfortunately, there is no unitary evidence of one criterion over the others.

For these heuristics, the number of activities whose actual starting time

exceeds the planned starting time (reported in the column #del) is quite

satisfactory, especially for increasing values.

With the aim of assessing the variation of the performances of the various

heuristics tested with respect to the probability level , we show in Figure

5.4 the tardiness, and in Figure 5.5 the TPCP for different values. In both

cases, the average performance over PSCCBHs has been considered for

comparison. The tardiness of the STC and RFDFF heuristics has not been

reported in Figure 5.4, since it is very high. As evident, the schedule

performances get worse with decreasing values. This result is expected,

since there is clearly a correlation between the schedule robustness and

the values of .

As far as the computational effort is concerned, we observe that PSCCBH

and SSCCBH are very efficient. This is due to the simple schedule

construction procedures, based on the parallel and serial schedule

generation schemes. On the contrary, the computational time of RAH is

quite huge. This is due to the extra effort required for solving, at each

decision point, the probabilistic model.

5.5. Conclusions

This chapter presents an approach for efficient scheduling of construction

project problem under uncertainty. We provide a tool equipped with a

simulation module for an a posteriori assessment of the schedule

performance able to support managers in developing a workable and

realistic project schedule. The generated baseline schedule serves in this

phase as a guideline for project control and monitoring.

Managers have been provided with a tool with a graphical interface and

very easy to use, capable to quantify the risk associated to a baseline

schedule and to support their experience in the planning phase of the

project. Furthermore, managers can consider a more realistic delivery

date when take part in a call in which it is preferable that the starting time of

activities and the ending time of the project will be kept fixed in time as

much as possible.

Appendix A

Proof of Theorem 3.1.

Appendix B

Let us consider the following probabilistic constraints to be solved at a

generic decision point :

Since the values have to satisfy the above constraint, it is evident that

 where represents the quantile of the marginal

distribution , that is the smallest integer value such that

. In the case of log–concave marginal distribution, it is possible to

rewrite in a 0 − 1 formulation. If is a known upper bound, can

be written as .

where are binary variables. Therefore, the probabilistic constraints can

be rewritten as:

where and

. Let us consider, for instance, a problem of the type (2)-(4) with

joint probabilistic constraint involving two activities, namely 1 and 2. Let

us suppose that and follow a Poisson distribution with mean 2

and 1, respectively, and . Let also introduce two integer vectors

and

where

 s the quantile of the distribution function of the random variable

, is an upper bound on the value of (i.e. 1-quantile of the

distribution function of the random variable). Analogue meanings have

and .

Therefore, the joint probabilistic constraints can be transformed in the

following mixed integer problem.

-

where, for instance –

If we instead suppose that and follow a Uniform distribution

, respectively, and the joint probabilistic

constraints in problem can be transformed in the following nonlinear

problem.

 +

Appendix C

Notation list

SET AND INDEXES:

N= (1..n) set of activities indexed by i,j.

A= {(i, j) : i, j N} set of precedence relations.

G = (N,A) compound set representing the project network as a directed acyclic graph.

K set of renewable resources indexed by k.

t time index.

 set of activities scheduled at decision point tg.

 set of all eligible activities which can be precedence feasibly started at

PARAMETERS

 decision point.

 deterministic duration associated to the activity i.

id̂ random variable representing uncertain duration of activity i.

idF ˆ

 cumulative probability distribution function of the random variable id̂ .

rik constant amount of resource k required by activity i.

rk(tg) residual resource availability at time tg for resource k.

M positive big value.

γ parameter adjusted dynamically.

VARIABLES

ci completion time of the activity i.

βi binary variable taking value one if activity i can be feasibly scheduled and zero

otherwise.

C makespan of the partial schedule built at tg.

Bibliography

Alvarez-Valdes, R. & Tamarit, J.M. 1989. Heuristic algorithms for resource
constrained project scheduling: A review and an empirical analysis, in: R.
Slowinski, J. Weglarz (eds.), Advances in project scheduling, Elsevier,
Amsterdam, 113-134.

Atkinson, R., Crawford, L. & Ward, S. (2006). Fundamental uncertainties in
projects and the scope of project management. International Journal of
Project Management, 24, pp 687-698.

Aytug, H., Lawley, M., McKay, K., Mohan, S. & Uzsoy, R. (2005). Executing
production schedules in the face of uncertainties: A review and some future
directions. European Journal of Operational Research, 161(1), pp 86–110.

Artigues, C., Michelon, P. & Reusser, S. (2003). Insertion techniques for
static and dynamic resource-constrained project scheduling. European
Journal of Operational Research, 149(2), pp 249–267.

Artigues, C. & Roubellat, F. (2000). A polynomial activity insertion algorithm
in a multi-resource schedule with cumulative constraints and multiple
modes. European Journal of Operational Research, 127, pp 294–316.

Ballestin, F. (2007). When it is worthwhile to work with the stochastic
RCPSP?. Journal of Scheduling, 10, pp 153-166.

Beraldi, P., Bruni, M.E., Guerriero, F., Pinto, E. (2007) Heuristic procedures
for the robust project scheduling problem, Technical Report, ParCoLab,
DEIS, University of Calabria.

Bisschop, J. & Roelofs, M. (2007). AIMMS. 3.7 User’s guide. Paragon
Decision Technology B.V., The Netherlands.

Blazewicz, J., Cellary, W., Slowinski, R. & Weglarz, J. (1986). Scheduling
under resource constraints - deterministic models. Annals of Operations
Research, 7, pp 1–359.

Brucker, P., Drexl, A., Möhring, R., Neumann, K. & Pesch, E. (1999).
Resource-constrained project scheduling: notation, classification, models
and methods. European Journal of Operational Research, 112, pp 3–41.

Bruni, M. E., Guerriero, F. & Pinto, E. (2007). Solution Approaches to Find
the α-critical path in Project Networks. Technical Report, ParCoLab, DEIS,
University of Calabria.

Camps, J.A, (1996). Simple steps help minimize costs risks in project
management, Oil and Gas Journal, 94 (4), pp 32-36.

Chapman, C.B., Ward S. Project Risk Management: Processes,
Techniques and Insights, Wiley and Sons (1997).

Charnes, A., Cooper, W.W. & Thompson, G.L. (1964). Critical Path
Analyses via Chance Constrained and Stochastic Programming.
Operations Research, 12(3), pp 460–470.

Cooper, D.F. (1976). Heuristics for scheduling resource-constrained
projects: An experimental investigation. Management Science, 22(11), pp
1186–1194.

CPLEX, ILOG CPLEX 6.5: Users Manual, CPLEX Optimization, Inc., Incline
Village, NV, 1999.

Christofides, N., Alvarez-Valdes, R. & J.M. Tamarit (1987). Project
scheduling with resource constraints: a branch and bound approach.
European Journal of Operational Research, ,29, pp 262–273.

Davenport, A. & Beck, J. (2002). A survey of techniques for scheduling with
uncertainty. Unpublished manuscript.

David, E. & Patterson, J. (1975). A comparison of heuristic and optimum
solutions in resource-constrained project scheduling. Management
Science, 21 (8), pp 944-955.

Deblaere, F., Demeulemeester, E., Herroelen, W. & Van de Vonder, S.
(2007). Robust Resource Allocation Decisions in Resource-Constrained
Projects. Decision Sciences, 38, pp 1-37.

Demeulemeester, E. & Herroelen, W. (2002). Project scheduling - A
research handbook. Vol. 49 of International Series in Operations Research
& Management Science. Kluwer Academic Publishers, Boston.

Dentcheva, D., Prékopa, A., Ruszczy´nski, A. (1998). On stochastic integer
programming under probabilistic constraints. RUTCOR-Rutgers Center for
Operations Research RRR 29-98, Rutgers University, 640 Bartholomew
Road Piscataway, New Jersey 08854-8003, USA, 1998

Drezet, L. (2005). Résolution d’un problème de gestion de projets sous
contraintes de resources humaines: de l’approche pr´edictive l’approche
réactive. PhD thesis. Université Francois Rabelais Tours.

Dodin, B. (1985). Bounding the Project Completion Time of PERT
Network.Operations Research, 33, pp 862–865.

Drud, A. S. CONOPT: A System for Large Scale Nonlinear Optimization,
Reference Manual for CONOPT Subroutine Library, 69p, ARKI Consulting
and Development A/S, Bagsvaerd, Denmark (1996).

Elmaghraby, S.E. (1989). The estimation of some network parameters in
PERT model of activity network: Review and critique, in: R Slowinski, J
Weglarz (Eds.), Advances in Project Scheduling, Part III, Elsevier,
Amsterdam, pp 371- 432.

Elmaghraby, S. (2005). On the fallacy of averages in project risk
management. European Journal of Operational Research, 165(2), pp 307–
313.

Fulkerson, D.R. (1962). Expected Critical Path Lengths in PERT
Networks.Operations Research, 10(6), pp 808–817.

Goel, V., Grossmann, I.E. (2006). A class of stochastic programs with
decision dependent uncertainty. Mathematical Programming, 108 (2), pp
355-394.

Golenko-Ginzburg, D. & Gonik, A. (1997). Stochastic network project
cheduling with non-consumable limited resources. International Journal of
Production Economics, 48, pp 29-37.

Golenko-Ginzburg, D. & Gonik, A. (1998). A heuristic for network project
scheduling with random activity durations depending on the resource
allocation. International Journal on Production Economics, 55, pp 149-162.

Gordon, J. & Tulip, A. (1997). Resource scheduling. International Journal of
Project Management, 15 (6), pp 359-70.

Guerriero, F. & Talarico, L. (2007). A Solution Approach to Find the Critical
Path in a Time-Constrained Activity Network. Technical Report, ParCoLab,
DEIS, University of Calabria, July 2007.

Guildford, W.S. (1998). Practical Risk Assesment for project management,
International journal of project management, 16 (2),pp 130-131.

Hagstrom, J.M. (1988). Computational complexity of PERT problems.
Networks, 18, pp 139–147.

Hagstrom, J.M. (1990). Computing the Probability Distribution of Project
Duration in a PERT Network. Networks, 20, pp 231-244.

Hayes, R.W., Perry, J.G. Thompson, P.A. & Willmer, G. (1986). Risk
management in engineering construction, Thomas Telford, London.

Herrera, L. (2006). Stochastic Critical Path. Proceeding of the 2006 Cristal
Ball User Conference.

Herroelen, W., De Reyck, B. & Demeulemeester, E. (1998). Resource
constrained scheduling: a survey of recent developments. Computers and
Operations Research, 25, pp 279-302.

Herroelen, W. & Leus, R. (2004a). The construction of stable project
baseline schedules. European Journal of Operational Research, 156, pp
550-565.

Herroelen, W. & Leus, R. (2004b). Robust and reactive project scheduling:
a review and classification of procedures. International Journal of
production Research, 42(8), pp 1599-1620.

Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty—
Survey and research potentials. European Journal of Operational
Research, 165, pp 289-306.

Igelmund, G. & Radermacher, F.J. (1983). Algorithmic approaches to
preselective strategies for stochastic scheduling problems. Networks, 13,
pp 29-48.

Jagannathan, R. (1974). Chance-Constrained Programming with Joint
Constraints. Operations Research, 22 (2), pp 358–372.

Just, M.R. & Murphy, J.P. (1994). The effect of resource constraints on
project schedules, Transaction of AACE International, Morgantown.

Kim, K. & Garza, M.J. (2005). Evaluation of the resource-constrained
critical path method algorithms, Journal of Construction Engineering and
Management, (131) 5, pp 522-532.

Klerides,e. and Hadjiconstantinou, E. (2010). A decomposition-based
stochastic programming approach for the project scheduling problem under
time/cost trade-off settings and uncertain durations. Computers and
Operations Research, in press DOI: doi:10.1016/j.cor.2010.03.002.

Kolisch, R. & Hartmann, S. (1999). Heuristic algorithms for solving the
resource-constrained project scheduling problem: classification and
computational analysis. Kluwer Academic Publishers. In Weglarz J.: Project
scheduling: recent models, algorithms and applications.

Kolisch, R. & Hartmann, S. (2006). Experimental investigation of heuristics
for resource-constrained project scheduling: an update., European Journal
of Operational Research, 174 (1), pp 23-37.

Kolisch, R. & Padman, R. (1999). An integrated survey of deterministic
project scheduling. Omega, 49, pp 249–272.

Kolisch, R., Sprecher, A. & Drexl, A. (1995). Characterization and
generation of a general class of resource constrained project scheduling
problems. Management Science, 41 (10), pp 1693-1703.

Kolisch, R. & Sprecher, A. (1997). PSPLIB - a project scheduling problem
library. European Journal of Operational Research, 96, pp 205-216.

Lambrechts, O., Demeulemeester, E. and Herroelen, W. (2007). A tabu
search procedure for developing robust predictive project schedules.
International Journal of Production Economics, 111 (2), pp 496–508.

Lambrechts, O., Demeulemeester, E. and Herroelen, W. (2008). Proactive
and reactive strategies for resource-constrained project scheduling with
uncertain resource availabilities. Journal of Scheduling, 11 (2), 121–136.

Leus, R. (2003). The generation of stable project plans. Ph.D. Thesis,
Department of Applied Economics, Katholieke Universiteit Leuven,
Belgium.

Leus, R. & Herroelen, W. (2004). Stability and resource allocation in project
planning. IIE Transactions, 36, pp 667-682.

Malcolm, D..G, Roseboom, J.H., Clark, C.E. & Fazar, W. (1959.)
Application of a Technique for Research and Development Program
Evaluation. Operations Research, 7(5), pp 656–669.

Maes, J., Vandoren, C., Sels, L. & Roodhooft, F. (2000). Onderzoek naar
oorzaken van faillissementen van kleine en middelgrote
bouwondernemingen. Unpublished manuscript, CTEO Leuven.

Marshall, H.E. (1988). Techniques for treating uncertainty and risk in the
economic evaluation of building investments, US Department of
Commerce, Washington DC.

Mehta, S. & Uzsoy, R. (1998). Predictive scheduling of a job shop subject
to breakdowns. IEEE Transactions on Robotics and Automation, 14, pp
365–378.

Miller, B. & Wagner, H. (1965). Chance constrained programming with joint
constraints. Operations Research, 13 (6), pp 930-945.

Mohamed, S., & McCowan, A. (2001). Modelling project investment
decisions under uncertainty using possibility theory. IJPM, 19, pp 231-241.

Möhring, R., Radermacher, F. & Weiss, G. (1984). Stochastic scheduling
problems I - Set strategies. Zeitschrift f¨ur Operations Research, 28, pp
193– 260.

Möhring, R., Radermacher, F. & Weiss, G. (1985). Stochastic scheduling
problems II - General strategies. Zeitschrift f¨ur Operations Research, 29,
pp 65–104.

Möhring, R.H. & Stork, F. (2000). Linear preselective policies for stochastic
project scheduling. Mathematical Methods of Operations Research, 52, pp
501-515.

Nkasu, MM. (1994). COMSARS: a computer-sequencing approach to
multiresource-constrained scheduling -part 1: deterministic networks,
International Journal of Project Management 12 (3), pp 183-92.

Park M. & Peña-Mora, F. (2004). Reliability Buffering for Construction
Projects, Journal of Construction Engineering & Management, 130 (5), pp
626-637.

Prékopa, A. (1995). Stochastic Programming. Kluwer Scientific Publisher,
Boston.

Pritsker, A., Watters, L. & Wolfe, P. (1969). Multiproject scheduling with
limited resources: A zero–one programming approach. Management
Science, 16, pp 93–107.

Rabbani, M., Fatemi Ghomi, S.M.T., Jolai, F. & Lahiji, N.S. (2007). A new
heuristic for resource-constrained project scheduling in stochastic networks
using critical chain concept. European Journal of Operational Research,
176, pp 794-808.

Regev, S., Shtub, A & Ben-Haim, Y. (2006). Managing project risks as
knowledge gaps, Project Management Journal, 37 (5), pp 17-25.

Schuyler, J. (2001). Risk and Decision Analysis in Projects. Project
Management Institute.

Schatteman, D. Herroelen, W. & Van de Vonder,S. (2008). A. Boone, A
methodology for integrated risk management and proactive scheduling of
construction projects, Journal of Construction Engineering & Management,
134 (11), 885-895.

Shih, N.H. (2005). Estimating completion-time distribution in stochastic
activity networks. Journal of the Operational Research Society, 56, pp 744-
749.

Simister, S.J. (1994). Usage and benefits of project risk analysis and
management, International Journal of Project Management, 12 (1) 5-10.

Sörensen, K. (2001). Tabu searching for robust solutions. Proceedings of
the 4th Metaheuristics International Conference.

Soroush, H.M. (1994). The Most Critical Path in a PERT Network. The
Journal of Operational Research society 45(3), pp 287–300.

Stork, F. (2000). Branch-and-bound algorithms for stochastic resource-
constrained project scheduling, Research Report. 702/2000. Technische
Universitat Berlin

Stork, F. (2001). Stochastic Resource-Constrained Project Scheduling.
PhD thesis. Technical University of Berlin, School of Mathematics and
Natural Sciences.

Sullivan, R.H. & Hayya, J.C. (1980). A Comparison of the Method of
Bounding Distribution (MBD) and Monte Carlo Simulation for Analyzing
Stochastic Acyclic Networks. Operations Research, 28, pp 614–617.

Tavares, L.V., Ferreira, J.A.A. & Coelho, J.S. (1998). On the optimal
management of project risk. European Journal of Operational Research
107, pp 451-469.

Tsai, Y.W. & Gemmil, D.D. (1998). Using tabu search to schedule activities
of stochastic resource-constrained projects. European Journal of
Operational Research 111, pp 129-141.

Van de Vonder, S., Demeulemeester, E., Herroelen, W. & Leus, R. (2005).
The use of buffers in project management:The trade-off between stability
and makespan. International Journal of Production Economics, 97, pp 227-
240.

Van De Vonder, S., Demeulemeester, E., Herroelen,W. & Leus, R. (2006).
The trade-off between stability and makespan in resource-constrained
project scheduling, International Journal of Production Research, 44(2), pp
215-236.

Van de Vonder,S., Demeulemeester, E. & Herroelen,W. (2007). A
classification of predictive-reactive project scheduling procedures. Journal
of Scheduling, 10, pp 195-207.

Van de Vonder,S., Demeulemeester, E. & Herroelen, W. (2008). Proactive
heuristic procedures for robust project scheduling: An experimental
analysis. European Journal of Operational Research, 189, pp 723-733.

Van Slyke, R.M. (1963). Monte Carlo Methods and the PERT Problem.
Operations Research, 11, pp 849–860.

Vaziri, K. Carr P. G. & Nozick, L. (2007). Project Planning for Construction
under Uncertainty with Limited Resources, Journal of Construction
Engineering & Management, 133 (4) ,pp 268-276 .

Wang, J. (2005). Constraint-based schedule repair for product development
projects with time-limited constraints. International Journal of Production
Economics, 95, 399-414.

Wiest, J.D. & Levy, F. K. (1977). A Management Guide to PERT/CPM with
GERT/PDM/DCPM and Other Networks, Prentice-Hall, New Jersey.

Woodworth, B.M. & Shanahan, S. (1998). Identifying the critical sequence
in a resource-constrained project, International Journal of Project
Management 6 (2), pp 89-96.

Wu, S., Storer, H. & Chang, P.C. (1993). One-machine rescheduling
heuristics with efficiency and stability as criteria. Computers and Operations
Research, 20, pp 1–14.

Zeng, J. Min A. & Smith, N. J. (2007). Application of a fuzzy based
decision making methodology to construction project risk assessment
International Journal of Project Management, 25,pp 589-600

Zhu, G., Bard, J.F. & Yu, G. (2005). Disruption management for resource-
constrained project scheduling. Journal of the Operational Research
Society, 56, pp 365-381.

Zhu, G., Bard, J.F. & Yu, J.F. (2007). A two-stage stochastic programming
approach for project planning with uncertain activity durations. Journal of
Scheduling 10, pp 167-180.

Yakov Ben-Haim, Info-gap Decision Theory: Decisions Under Severe
Uncertainty, 2nd edition, Academic Press, London (2006).

Yang, K.K. (1996). Effects of erroneous estimation of activity durations on
scheduling and dispatching a single project. Decision Sciences, 27(2), pp
255–290.

Yao, M.J. & Chu, W. M. (2007). A new approximation algorithm for
obtaining the probability distribution function for project completion time.
Computers and Mathematics with Applications, 54, pp 282–295.

http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=ASCERL&possible1=Vaziri%2C+Kabeh&possible1zone=author&maxdisp=25&smode=strresults&aqs=true
http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=ASCERL&possible1=Carr%2C+Paul+G.&possible1zone=author&maxdisp=25&smode=strresults&aqs=true

