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ABSTRACT 
 
 

 
 

 
For the serviceability analysis of civil engineering structures under 

human induced vibrations, a correct modelling of the pedestrian-structure 
interaction is needed. The proposed approach consists in thinking the human 
body as a Single Degree of Freedom oscillator: the force transmitted to the 
floor is the restoring force of this oscillator [1, 2]. In rigid floor conditions, such 
an oscillator must be able to reproduce two experimentally observed 
phenomena: (i) the time-history of lateral force can be approximated by a 
periodic signal with a “natural” frequency related with the single pedestrian 
characteristics; (ii) the motion of a pedestrian is self-sustained, in the sense that 
the pedestrian produces by itself the energy needed to walk. 

Accounting for these aspects, a modified Van der Pol (MVdP) oscillator is 
proposed here to represent the lateral pedestrian force. The suitable form of its 
nonlinear restoring force is inferred from experimental data concerning a 
sample of twelve pedestrians. The experimental and model lateral forces show 
an excellent agreement. 

For a laterally moving floor, the MVdP oscillator representing a 
pedestrian becomes non-autonomous. It is well-known that self-sustained 
oscillators in the non-autonomous regime are characterized by the so-called 
entrainment phenomenon. It means that under certain conditions, the vibration 
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frequency switches from the ”natural” value to that of the external force: the 
response frequency is entrained by the excitation frequency. According to the 
physical interpretation considered here, the entrainment corresponds to the 
situation where the pedestrian changes its natural walking frequency and 
synchronizes with the floor oscillation frequency. The steady response of the 
MVdP oscillator subjected to a harmonic excitation is discussed in terms of 
non-dimensional amplitude response curves, obtained using the harmonic 
balance method truncated at the first harmonic. The model predictions are 
compared with some experimental results concerning pedestrians available in 
the literature and a good agreement is obtained. These topics are detailed in 
this thesis and also in the companion papers [3, 4] and in the report [5]. 
 
 
 
 
 
 
Keywords: pedestrian lateral force, self-sustained oscillator, modified Van der Pol  

oscillator,  frequency entrainment. 
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Chapter 1 
 
 
 
 

Introduction 
 
 
 
 
 

The increased use of large span floors within buildings and of light and 
streamlined footbridges around the world as well as the increasing number of 
full-crowded stadium during concerts or matches have emphasized the 
incidence of human induced vibration problems in the design of civil 
engineering structures. Famous examples of such phenomena can be found in 
newspapers and in scientific literature. One was during the 1985 Bruce 
Springsteen concert in the Ullevi Stadium of Göteborg (Sweden), where the 
rhythmic movement (vertical jumping) of tens of thousands of people was 
close to causing a structural collapse. Another was during the opening day of 
the Millennium Footbridge in London, where due to people crossing, the south 
span had been moving laterally through an amplitude of about 50 mm at 0.8 
Hz and the center span about 75 mm at 1 Hz approximately. In both cases, the 
stadium and the footbridge were closed to public for two years in order to 
remedy these vibration problems.  

 Other situations, similar to the Millennium Footbridge with unexpected 
large lateral vibrations, occurred in 1999 on the Solférino footbridge in Paris [6] 
and, more recently, the same behavior has been detected on the “Pedro and 
Ines footbridge” in Coimbra, Portugal, during the tests carried out before the 
opening of the structure [7].  

Most of problems are caused by feet impacts which generate a nearly 
periodic force with a frequency close to the natural frequency of the floor or 
the structure in contact with feet: a resonance phenomenon is activated. In the 
case of footbridges, when the first mode of lateral vibration falls in the same 
frequency range of the pedestrians' walking frequency (this was the case for 
the Millennium Footbridge in London and the Solférino Footbridge in Paris), 
the amplitude of the structural oscillations increases and pedestrians are 
forced to change their way of walking when the oscillation amplitude is large 
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enough. A certain percentage of pedestrians changes the walking frequency, 
synchronizing the rhythm of the walk with that of the bridge deck oscillation. 
This phenomenon of structure-pedestrian synchronization has been often 
experimentally detected and has been analyzed in several studies [6, 8-14]. 
Recently, [15] proposed a model for the evaluation of the crowd lateral force 
accounting for the “saturation” phenomenon, i.e. the fact that the 
synchronization cannot occur when the footbridge oscillation amplitude 
becomes too large, since pedestrians stop walking; see also [13]. 

In order to correctly model the pedestrian-structure interaction, a good 
understanding of the pedestrian walking phenomenon is needed. The first 
phase of analysis should concern the basic case of a pedestrian walking on a 
rigid floor: an extensive review of the scientific literature concerning this 
situation is reported in [16]. The main information that can be extracted from 
the literature is that the walking force on a rigid floor is nearly periodic [17- 
19]. Hence, the lateral (and vertical and longitudinal) component of the force 
exerted by a pedestrian on the floor can be represented by their Fourier series 
[16, 20]. In this thesis, it is often pointed out that the amplitude of the first 
superharmonics is not negligible in comparison with that of the fundamental 
component. The experimental analysis discussed here confirms this 
experimental finding. Moreover, a suitable definition of phase difference 
between the fundamental harmonic and each superharmonic is given, in order 
to clarify the experimental data interpretation. It is also proposed a “physical” 
interpretation for the first of the these phase differences, between the 
fundamental harmonic and the third superharmonics. 

The human body is a complex dynamic system. Several more or less 
complicated approaches can be used to model such a system for rigid floor 
conditions; see for instance [21, 22]. Since our objective is the modelling of the 
lateral walking force component, a simpler approach is discussed here: the 
human body is thought as a Single Degree of Freedom (SDoF) dynamic system 
fulfilling some fundamental requirements observed from experimental results: 
(i) its mass is equal to the pedestrian mass; (ii) the time-history of lateral force 
is an approximately periodic signal with a fundamental frequency close to 0.8-
1 Hz; (iii) the amplitude of the first five odd superharmonics is not negligible. 
The presence of superharmonics indicates that the SDoF oscillator must be 
nonlinear; (iv) the motion of pedestrians is “self-sustained”, i.e. he produces 
the energy needed to sustain its walk.  
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A modified Van der Pol (MVdP) model fulfils all previous requirements: 
like the standard Van der Pol (VdP) model, it is nonlinear and self-sustained, 
i.e. it possesses a stable limit cycle [23]. The suitable form of the model, i.e. the 
number and maximum power of the polynomial terms constituting the 
restoring force, is discussed in [1] and presented here. Moreover, the model 
parameters are identified from experimental data concerning a sample of 
twelve pedestrians walking on a rigid floor. Numerical and experimental 
results are discussed and compared. 

According to this approach, the motion of the floor introduces an external 
excitation on the self-sustained oscillator representing the walker, that 
becomes non-autonomous. The last part of this thesis concerns the analysis of 
this situation. One of the most important properties of non-autonomous self-
sustained oscillators is that they may have an entrained response [24], i.e. a 
response characterized by the same frequency as that of the excitation. The 
entrained response of the MVdP model has never been analyzed, even if 
analogous results are well-known for the standard Van der Pol model and for 
the Rayleigh model [23, 25]. Actually, an entrained response represents a 
pedestrian synchronized with the moving floor, even if its natural frequency is 
different. This interpretation explains the practical interest of the research of an 
approximated analytical solution of the MVdP oscillator in the non-autonomous 
regime. The particular case of a harmonic excitation is considered, because a 
floor lateral motion at constant frequency and amplitude is a simple 
experimental condition, easy to obtain using a shake table where pedestrians 
are asked to walk. This experimental situation is studied e.g. in [26]. A similar 
situation is obtained when pedestrians walk on a treadmill placed on a shake 
table [27, 28]. In addition, an harmonic excitation is the natural assumption 
required to apply the harmonic balance method. 

After the Introduction, in Chapter II the general equation of motion of a 
SDoF oscillator schematically representing a pedestrian is given. Then, the 
main results of the experimental analysis performed on a set of twelve 
pedestrians on a rigid floor are presented. These outcomes are used to define 
the suitable restoring force of a self-sustained SDoF model able to reproduce 
the experiments. The parameters of this model are then identified and model 
predictions are finally compared with experimental results. Chapter III deals 
with the analysis of the moving floor case. The response amplitude equation for 
the MVdP oscillator is derived using the harmonic balance method. Then, the 
response curves at constant excitation frequency are compared with some 
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experimental results concerning pedestrians walking on a shake table. Chapter 
IV recall the main relationships defining the amplitude of its stationary 
entrained response to a harmonic excitation. The main theoretical goal of this 
Chapter is the stability analysis of these responses. Then, the pedestrian-floor 
synchronization is discussed. Finally the last Chapter presents the conclusions. 
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Chapter 2 
 
 
 
 

Modelling the lateral pedestrian force on a  rigid 
floor by a self-sustained oscillator 

 
 
 
 
 

For the serviceability analysis of civil engineering structures under 
human induced vibrations, a correct modelling of the pedestrian-structure 
interaction is needed. The first phase of this modelling must concern the force 
applied by a pedestrian walking on a rigid floor: the present Chapter deals 
with the lateral component of this force. The approach proposed here consists 
in thinking the human body as a Single Degree of Freedom oscillator: the force 
transmitted to the floor is the restoring force of this oscillator. Such an 
oscillator must be able to reproduce two experimentally observed phenomena: 
(i) the time-history of lateral force can be approximated by a periodic signal 
and the amplitude of the first five odd superharmonics is not negligible; (ii) the 
motion of a pedestrian is self-sustained, in the sense that the pedestrian 
produces by itself the energy needed to walk. Taking into account these 
aspects, a modified Van der Pol (self-sustained) oscillator is proposed here to 
represent the lateral pedestrian force. A suitable form of its nonlinear restoring 
force is inferred from experimental data concerning a sample of twelve 
pedestrians. The experimental and model lateral forces show a good 
agreement. 
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2.1. Introduction 

Several recently built footbridges have shown to be sensitive to the human 
induced vibration, e.g. the Millennium Footbridge in London, the Solférino 
Footbridge and the Simone de Beauvoir Footbridge in Paris. The causes of this 
phenomenon may be described as follows: the crowd walking on a footbridge 
imposes to the structure a dynamic lateral excitation at a frequency close to 1 
Hz. When the first mode of lateral vibration of the footbridge falls in the same 
frequency range, a resonance phenomenon is activated. Hence, the oscillation 
amplitude increases and, provided that the oscillation amplitude becomes 
large enough, pedestrians change their way of walking, synchronizing their 
frequency with that of the bridge deck. This synchronization phenomenon has 
been often experimentally detected and has been analyzed in several studies, 
e.g. [6, 8 - 16]. 

In order to correctly model the pedestrian-structure interaction, a good 
understanding of the pedestrian walking mechanisms is needed. The first 
phase of this analysis must concern the basic case of a pedestrian walking on a 
rigid floor. The main information that can be extracted from the literature is 
that the walking force on a rigid floor is nearly periodic [17- 19]. Hence, the 
vertical, lateral and longitudinal components of the force exerted by a 
pedestrian on the floor can be represented by their Fourier series [16, 20]. In 
this thesis, it is often pointed out that the amplitude of the first harmonics is not 
negligible in front of that of the fundamental component. However, most of 
these experimental studies underestimate the importance of the phase 
information. This aspect will be discussed in this Chapter. 

The human body is a complex dynamic system, but the modelling of the 
lateral force exchanged by the feet with the floor could be based, as a first trial, 
on the use of a single degree of freedom (SDoF) oscillator. Such an oscillator 
should be able to reproduce two experimentally observed phenomena: (i) the 
lateral force is quasi-periodic, with fundamental frequency close to one Hertz 
and where the first 4-5 odd super-harmonics are not negligible. This implies 
that the SDoF oscillator must be nonlinear; (ii) the motion of a pedestrian is 
“self-sustained”, in the sense that the pedestrian behaves like a system 
producing by itself the energy needed to walk. In order to represent these 
properties of the pedestrian lateral force, we propose here the use of a 
modified Van der Pol (VdP) model: like the standard VdP model, it is 
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nonlinear and self-sustained, i.e. it possesses a stable limit cycle in the phase 
plane [23].  

After the Introduction, the general equation of motion of a SDoF oscillator 
schematically representing a pedestrian is given. Then, in Section 2.3, the main 
results of the experimental analysis performed on a set of twelve pedestrians 
are presented. These outcomes are used in Section 2.4 to define the suitable 
restoring force of a self-sustained SDoF model able to reproduce the 
experiments. The parameters of this model are identified according to a 
procedure discussed in Subsection 2.5.1 and results are presented in 
Subsection 2.5.2. 
 
 
 
 

2.2. The pedestrian as a single mass oscillator 

A pedestrian is a complex system composed of several interacting parts. To 
precisely model its behaviour under different "working" conditions, i.e. 
walking, running, bouncing, horizontal body swaying, etc., is a challenging 
task. As already said in the introduction, an interesting approach is based on 
the multi-body dynamics [21, 22], where each main part of the human body is 
represented by a rigid body connected with the other parts. In view of the 
stability analysis of a footbridge under the crowd load, simpler approaches 
have been used in several past studies [29-31]. In most of them, the single 
pedestrian is modeled as a discrete mass m subjected to the inertial forces and 
to the force of interaction with the bridge floor. The same approach based on a 
SDoF system representing a pedestrian is used here; see Fig. 2.1. 
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Figure 2.1: Scheme of the SDoF system representing the lateral motion of a pedestrian. 

 
 

The equilibrium in an inertial reference of all the forces acting on m reads 
 

     absm t t mu F g  (2.1) 

 
where the superposed dot indicates the (partial) time-differentiation; m is the 
pedestrian mass; F=[Fx, Fy, Fz] is the contact force between the pedestrian and 
the bridge deck; g is the gravity acceleration vector; üabs(t) is the absolute 
acceleration of the mass m, accounting for both the motion of the floor and the 
relative acceleration ü(t) between m and the floor. The expression of üabs(t) in 
the general case is complex, since it depends on both the deck movement 
U(x,t), with x=[x, y, z]T the generic Lagrangian co-ordinate of a deck point, and 
the pedestrian motion, composed by its trajectory on the bridge floor and by 
the oscillations u(t)=[ux(t), uy(t), uz(t)]T relative to the floor. However, we 
consider here the case of a rigid horizontal floor and constant walking speed 
on a straight trajectory. Under these assumptions, one has üabs(t)=ü(t). 
Moreover, only the lateral oscillations of m are analyzed in this thesis: 
supposing that the x-axis is parallel to the straight trajectory, the lateral 
direction is parallel to the y-axis. Projecting (2.1) in this direction, one has 
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     y 0ymu t F t  (2.2) 

 
This relationship shows that when Fy(t) is known from measurements, the 
motion uy(t) of the mass m can be derived. The next Section will concern this 
analysis of experimental data collected from tests on a sample of twelve 
pedestrians walking on a rigid floor. A model for the force F can be defined as 
follows: 
 

  ,F F u u  (2.3) 

 
i.e. F is thought as the restoring force of a three degrees-of-freedom dynamic 
system, and it depends on the displacements and velocities relative to the floor. 
Projecting (2.3) in the y-direction under the same simplifying assumptions 
discussed above, one has 
 

    y y , , , , ,x y z x y zF F u u u u u u  (2.4) 

 
where Fy depends on all the x, y, and z components of the displacements and 
velocities around the mean trajectory. Hence, this general expression accounts 
for a coupling between the different components. However, it is supposed 
here that this coupling is negligible, i.e. 
 

  y y ,y yF F u u  

 
This leads to a single degree-of-freedom oscillator defined by the following 
dynamics equation (see also Fig. 2.1): 
 

        y , 0y y ymu t F u t u t  (2.5) 

 
In order to have a self-sustained oscillator, Fy must have some special 
characteristics, i.e. the solution uy(t) of the autonomous system (2.5) must have 
a stable periodic orbit in the phase plane [23]. A classical example of this kind 
of behaviour is given by the Van der Pol oscillator 
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   
  
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y 0 2 2
0 0

, ; , ,
2 1

y y

y y y

F u u
u u u

m
 (2.6) 

 
where 0 is the circular frequency of the underlying linear system, >0 and 
>0 are associated with the nonlinear damping term. The data analysis of 
Section 2.3 will show that the classical VdP model (2.6) is not general enough 
for well representing the walker lateral behaviour. For this reason a different 
self-sustained model is proposed in Section 2.4 and its parameters are 
identified in Section 2.5. 
 
 
 
 

2.3. The lateral force of a single pedestrian on rigid floor: 
experimental results 

This Section is dedicated to the analysis of the experimental data provided 
by the Research Center of Decathlon in Villeneuve d'Ascq (France) concerning 
twelve pedestrians. The mass of pedestrians varies from 64 kg to 96 kg; see 
Table 2.1. They are numbered according to the increasing mass order. The 
lateral force of each walker has been measured at four different walking 
speeds: vx=3.75 km/h, vx=4.5 km/h, vx=5.25 km/h, vx=6.0 km/h. All walking 
conditions were realized on a treadmill dynamometer equipped with four 
force transducers, allowing to determine the ground reaction forces exerted 
under each foot [32].  
 
 

Pedestrian  1 2 3 4 5 6 7 8 9 10 11 12 
m (kg)  64 66 68 68 71 71 71 73 74 74 78 96 
H (cm)  175 174 163 177 189 178 186 185 186 183 180 179 

Table 2.1 – Mass and height of the twelve pedestrians involved in the tests performed at the  
Decathlon Research Center. 

 
 
The nominal walking speed vx associated with each measure is the velocity of 
the treadmill during the test. The sampling time step is Δt=0.005 s, while the 
number of recorded force values is N=6000, corresponding to a signal length 
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tN=(N-1)Δt=29.995 s. The sets of the discrete instants and frequencies are then 
defined as {t}n=tn=(n-1)Δt and {f}m=fm=(m-1)Δf, respectively. The frequency 
increment is Δf=1/(N Δt)=0.0333 Hz. The recorded signals for pedestrian "8" at 
four different walking speeds are reported in Fig. 2.2. Hereafter, the main 
results will be illustrated with reference to the pedestrian "8". For all the other 
pedestrians, only a summary of the main results is given. For the complete 
data analysis, the reader is referred to [33]. 
 
 

 
Figure 2.2: Pedestrian “8”: time-history of the lateral force for four different walking speeds. 
Experiment (continuous line) vs. Fourier Series (dashed line) according to Eq.(2.10). 

 
 
When a pedestrian walks on a rigid floor, along a straight trajectory and with 
constant speed, the force Fy(t) exerted on the floor is approximately periodic. 
This statement has been discussed by several investigators, e.g. [17-18]. Under 
this assumption, the measured force signal Fy(t) can be approximated by its 
Fourier series (see the Appendix A): 
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where f1 is the pacing or fundamental walking lateral frequency; Ck>0 and k  
(-,] are the harmonic amplitudes and phases, respectively. Note that for a 
given periodic signal, the phases k depend on the initial time. Hence, their 
values are not physically significant. However, it is always possible to define a 

suitable translation of the time scale such that  0= -  t t t with 2f1t0-1=0. In this 

situation, one can write 
  

      




       0
, , 0 1 1,

1

: cos 2
2y per y per k k

k

C
F t F t t C kf t  (2.8) 

 
with the phase “differences” defined as follows 
 

Δ1,k:= k - k 1,          for   k ≥ 1 
 
These quantities are an intrinsic property of a periodic signal. Hereafter, the 
tilde associated with the translated time-scale will be omitted for the sake of 
simplicity. 
The recorded signals have been first analyzed by the Fast Fourier Transform 
(FFT), in order to find the fundamental frequency and to have an estimation of 
the relative amplitude between the different harmonics. The definition used 
here for the FFT reads 
 

   
  

  



 
2

1 1

1

2ˆ
N i m n

N
y y

n

F m F n e
N

                for m=1,…, N  (2.9) 

 

where N t  is the length of the largest time-interval of the recorded signal 
containing an integer number of periods. According to (2.9), 

    ˆ ˆ: 1y m yF f F m . The factor 2 /N  introduced in (2.9) leads to define a 

complex quantity ŷF , measured in Newtons, whose modulus is directly 

comparable to the Fourier series coefficients Ck. The plots of the modulus of ŷF  

for the lateral walking force of pedestrian “8” at several walking speeds are 
given in Fig. 2.3. The Nyquist frequency is equal to fNy=1/(2Δt)=100 Hz, but, 
for the sake of clarity, the plot is represented up to f=20 Hz. As a matter of fact, 
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this analysis shows that the first odd harmonics up to that of order 9 are non 
negligible for all walking speeds. This confirms analogous findings of other 
authors, e.g. [20]. More in detail, for the pedestrian “8”, the peaks having 
amplitude greater than 3-4 N are those of the harmonics of order 1, 3, 5, 7, 9. 
The harmonics 11 and 13 and the even harmonics always have smaller 
amplitude. The mean value of the walking force Fy, estimated from 

 ˆ 1 /2yF m  is also small in general. Similar results have been found for the 

other eleven pedestrians. 
 
 

 
Figure 2.3: FFT modulus of the lateral walking force of pedestrian “8”. 

 
 
In summary of this study, it is assumed that the lateral force can be 
approximated as a periodic signal with zero mean limited to its odd harmonics 
from the order 1 to 9: 
 

      


 
max

, 2 1 1 1,2 1
1

cos 2 2 1
k

y per k k
k

F t C k f t  (2.10) 
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with kmax=5. Assuming that Eq. (2.2) holds, one has an estimation of the 
experimental acceleration of m by the following expression 
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m m
 (2.11) 

 
from which the analytical expressions of the lateral velocity and displacement 
can be easily found: 
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 (2.12) 

 
The frequencies and amplitudes of the first odd harmonics computed using 
(2.9) are collected in Table 2.2. The fundamental frequency estimation obtained 
from the FFT is retained, while the amplitudes C2k-1 and phase differences 
Δ1,2k-1 are computed by a Fourier series analysis. The results of Table 2.3 are 
obtained. The frequencies and amplitudes are similar to those computed by 
the FFT. The measured force and the periodic approximation are compared in 
Fig. 2.2. 
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 3.75 km/h 4.5 km/h 5.25 km/h 6.0 km/h 

f1 [Hz] 0.77 0.87 0.941 0.943 
f3 [Hz] 2.31 2.61 2.82 2.83 
f5 [Hz] 3.85 4.34 4.70 4.72 
f7 [Hz] 5.39 6.08 6.59 6.60 
f9 [Hz] 6.93 7.82 8.47 8.56 

   1ŷF f N  38.96 34.88 41.01 42.26 

   3ŷF f N  21.75 21.45 26.26 29.17 

   5ŷF f N  10.74 11.7 14.28 11.99 

   7ŷF f N  8.00 10.54 11.47 7.97 

   9ŷF f N  5.25 6.85 8.40 4.55 

Table 2.2 – FFT of the lateral force of pedestrian “8”. Frequencies and amplitudes of the odd 
harmonics from order 1 to 9. 

 
 

 3.75 km/h 4.5 km/h 5.25 km/h 6.0 km/h 

f1 [Hz] 0.77 0.87 0.941 0.943 
C1 [N] 39.10 34.91 41.08 42.28 
C3 [N] 21.16 21.59 26.19 29.37 
C5 [N] 9.25 11.73 13.70 12.26 
C7 [N] 5.76 10.79 10.69 8.32 
C9 [N] 3.04 7.38 7.17 3.68 

Δ1,3 [rad] 2.47 2.42 2.92 2.66 

Δ1,5 [rad] -1.48 -1.56 -0.52 -0.66 

Δ1,7 [rad] 1.12 0.92 2.28 2.19 

Δ1,9 [rad] -1.87 -2.71 -0.98 -0.97 

Table 2.3 – Pedestrian “8”, Fourier series analysis: amplitudes and phase differences of the 
odd harmonics from order 1 to 9, at different walking speeds. The fundamental frequencies 
are estimated by the FFT. 
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Figure 2.4: Frequencies and maximum displacement amplitudes for all pedestrians. 
Pedestrians are numbered according to the increasing mass order. Missing points correspond 
to non available experimental data. 

 
 
Fig. 2.4 shows the fundamental walking frequencies and the lateral 
displacement amplitudes for all pedestrians. The values of the amplitudes C1 
and C3 and of the phase differences Δ1,3 are depicted in Fig. 2.5. Table 2.4 
collects the corresponding averages. 
 
 
 
 
 
 
 
 
 
 



Modelling the lateral pedestrian force on a rigid floor  
by a self-sustained oscillator. 

 

- 17 - 

 

 
 3.75 km/h 4.5 km/h 5.25 km/h 6.0 km/h 

f1 [Hz] 0.848 0.919 0.975 1.033 
C1 [N] 40.29 41.20 41.79 39.33 
C3 [N] 17.37 19.11 22.06 21.41 
C5 [N] 6.38 6.55 9.45 8.64 
C7 [N] 3.51 2.79 5.15 5.26 
C9 [N] 2.36 1.43 2.78 2.23 

Δ1,3 [rad] -2.91 -3.04 3.10 2.92 

Δ1,5 [rad] 0.41 0.34 -0.08 -0.45 

Δ1,7 [rad] -2.62 -2.39 3.10 2.77 

Δ1,9 [rad] 0.71 1.23 -0.02 -0.31 

Table 2.4 – Average values on the set of twelve pedestrians of the walking frequency, the 
amplitudes and phase differences for the first five odd harmonics of the lateral force. 

 
 
The displacement amplitudes of Fig. 2.4, as well as the displacement and 
velocity curves of Figs. 2.6 and 2.7 are computed using (2.10), (2.11) and (2.12). 
The displacement amplitude is about 1.8 cm, while the velocity amplitude is 
about 0.15 m/s. These values are very close to those measured by other 
authors; e.g. [34]. Moreover, observe that periodic orbits in the phase plots of 
Figs. 2.6e and 2.7e are characterized by a maximum velocity amplitude in the 
second and fourth quadrant. The phase plots are also depicted for all 
pedestrians and all walking speeds (Fig. 2.8): at a given speed, the orbit shape 
can change from one pedestrian to the other. These variations can be mainly 
attributed to the value of Δ1,3, as it is explained in the next Section. One can 
also notice that for increasing walking speeds, the amplitude of the lateral 
displacement and velocity decreases: a greater walking speed is accompanied 
by a smaller lateral oscillation. The measurements of [34] confirm this result. 
The three-dimensional plots in Figs. 2.6f and 2.7f show the lateral force as a 
function of displacements and velocity using the harmonics up to 9th order. 
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Figure 2.5: Fourier series amplitudes C1, C3 and phase differences Δ1,3 of the lateral force for 
all pedestrians. Missing points correspond to non available experimental data. 
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Figure 2.6: Lateral oscillation of the pedestrian “8” (walking speed 4.5 km/h). Fourier series 
results. (a) Time history of pedestrian-induced lateral force; (b) time history of lateral 
displacement and (c) velocity; (d) modulus of the FFT of the lateral force; (e) limit cycle in the 
phase-plane and (f) lateral force as a function of displacement and velocity. 
 

 
Figure 2.7: Lateral oscillation of the pedestrian “8” (walking speed 6.0 km/h). Fourier series 
results. (a) Time history of pedestrian-induced lateral force; (b) time history of lateral 
displacement and (c) velocity; (d) modulus of the FFT of the lateral force; (e) limit cycle in the 
phase-plane and (f) lateral force as a function of displacement and velocity. 
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Figure 2.8: Phase plots for all pedestrians. 

 
 
 
 

2.4. A modified Van Der Pol model for the lateral pedestrian 
force 

In the first part of this Section, a modified Van der Pol (MVdP) oscillator is 
proposed and then analyzed by a perturbation technique. The conditions such 
that this oscillator is self-sustained are found. Then, an approximated 
expression of its periodic orbit is derived, as well as the conditions on its 
parameters ensuring its existence and stability. The stability analysis is made 
for small values of the parameter , related to the nonlinear part of the model 
restoring force (see Eq. (2.13)). As it is recalled by [23], the study of this 
particular case often gives an important insight into the solution also for non-
small . Moreover, a brief discussion about the size and shape of the periodic 
orbit is done, as well as about the relationship between the Fourier coefficients 
characterizing the periodic restoring force along the orbit and the parameters 
of the MVdP. 

Supposing that a SDoF self-sustained oscillator is an acceptable model 
for representing the lateral movement of the human body during walking, the 
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problem is then the choice of such a model. One of the simplest models is the 
classical Van der Pol oscillator, characterized by the restoring force expression 
(2.6). However, as it is proven at the end of this Section, this standard model is 
not general enough to provide an accurate approximation of all the 
experimental data. For this reason, a modification of the VdP model is 
proposed, defined by the following restoring force: 
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 (2.13) 

 

with 0>0. Notice that  0, ; , , ,y yh u u      defines a nonlinear damping term 

and that  00,0; , , , 0h      . This model has two additional parameters,  

and , with respect to the standard VdP model. These parameters are 
associated with two cubically nonlinear terms; the first one given by a 
displacement times a squared velocity, the second one proportional to a cubic 
velocity. These new terms, together with the classical one proportional to , 
define the most general form of a cubic polynomial nonlinear damping. 
Recalling Eq. (2.5), the dynamics equation for the case of an autonomous 
system with the restoring force (2.13) reads 
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with the initial conditions   00y yu u  and   00y yu v . If ==0 and >0, the 

standard Van der Pol oscillator is retrieved, while ==0 and >0 leads to the 
Rayleigh's oscillator [23]. The periodic orbits of these two models are plotted in 
Fig. 2.9. 
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Figure 2.9: The different shapes of the limit cycles for the Van der Pol and Rayleigh's models: 

yx u , 1/yy u   , where 1  is the pulsation of the autonomous oscillator. Parameter values: 

=0.15, 0=1 and =1 for the Van der Pol model; =0.1, 0=1 and =1/3 for the Rayleigh's 
model. 

 
 
Let us assume that (2.14) has a periodic solution uy=uy(t) with period equal to 
T=2 /0, where  depends on the model parameters and is to be computed. 
Instead of solving Eq. (2.14), the new time-scale is introduced, according to a 
standard perturbation approach: 
 

    1 1 0with :t  (2.15) 

 
where 1 is the (still unknown) natural circular frequency of the oscillator 
(2.14). Hence, one has 
 

       

       

0 0

0 0

/

0 /
0

1

y y t y y t

y y y y
t t

u t u u u t

du t du du du t

dt d d dt

   

   

 

 


  

 

 

  

  

 

 
 (2.16) 
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and replacing these relationships in (2.14) leads to a differential equation with 
periodic solutions of period 2: 
 

   
   

   
 

 
 

   
       

   



   
            


 


   
  




22
2 2 2

2 2 1 0

0
: 0 , 0

y y y y
y y y

y
y

d u du du du
u u u

d d d d

du
Initial Conditions u a

d

 (2.17) 

 
where a is unknown and depends on the model parameters. Notice that the 
initial velocity is supposed equal to zero. A solution for (2.17) can be found by 
a perturbation technique, in the limit of small  (see the Appendix B for 
details): 
 

     

 
   

 

 
   

 

 
              

      
   

   
   

    
   

           
 

    


  

 


 

 

     

 
    

 
 
  

+

-
+



2 2
1 0

2
1/2 5/2

1/2 5/2

2
5/2

1 1
3 3

2 3 17
3 2 3

2 7
; cos

3 3

3 cos 3 3 3sin sin 3
2 3

y

O O

a O

u

O
 

(2.18) 

 
This solution can be represented in the phase plane, with the coordinates 
x()=ũy() and y()=dũy()/dt. The corresponding polar coordinates read 
 

            2 2 , arctan ,R x y x y           (2.19) 
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Figure 2.10: Convention for the cartesian and polar coordinates in the phase plane. 

 
 
The first equation in (2.18) shows the influence of the parameter  in the 
expression of the natural circular frequency 1 : it introduces a correction of 0  

at the first order in  which is absent in the classical Van der Pol and Rayleigh 
models.  

The convention on the sign of   is illustrated in Fig. 2.10. Observe that the 

function arctan(x,y) used in (2.19) depends on two arguments and provides  -
values in the interval (-,]. This function is implemented in all standard 
symbolic math software’s. Conversely, the basic definition arctan(y/x) would 

lead to  (-/2,/2], which is not acceptable for the present analysis. From 

(2.19), it is possible to derive R  as a function of  ; see Eq. (2.47) in the 
Appendix B. Then, the minima, maxima and points of inflexion of the radius 
are computed from the condition 
 

 
 

          2
3/2

4
sin cos 3 sin 3 0

3

dR

d

        
  


    



 
  

  (2.20) 

 

Neglecting the second order terms O(²), Eq. (2.20) leads to 0   or   or 

 tan 3


 



  , which corresponds to six solutions: 
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 arctan , 0,1,..., 5
3k k k
        (2.21) 

 
These values give some information about the shape of the periodic orbit. For 
instance, assuming >0 and ==0 (classical VdP oscillator), it can be easily 
proven that the radius is maximum when displacements and velocities have 

the same sign. In detail, at the first order in , R  is maximum for /3   

and 2 /3   . If >0 and ==0 (Rayleigh's model), the maxima correspond 

to /3    and 2 /3  ; see also the example of Fig. 2.9. 

Turning back to the non-normalized variables, an estimation of the 
displacement and velocity is obtained from (2.15), (2.16) and (2.18): 
 

 
 

   

 
 

   

01/2

0 01/2

2
cos

3

2
sin

3

y

y

u t t

du t
t

dt

 
 

  
 

 


  


 

 
 Let us now compute the restoring force along the periodic orbit: 
 

 
   

   
0

2 2
2 2
02 2

1 0 1 3 0 3cos cos 3 ...

y y
y

t

d u t d u
F t m m

dt d

C t C t
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
 



   


 
     

  

    



 

 
At the first order in , the Fourier coefficients of the first two odd harmonics 
read 
 

   
 

 
 

 

2 2
1 0 1/2 5/2

2 2
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   

  
 

 

 
      

 
 



 (2.22) 

 
Moreover, the phase difference Δ1,3 is equal to 
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 
     

      

1,3 3 1

2 2 2 2 2
2

2 2

3 arctan ,

3 9 13 15 7

4 3

     

        
 

    

      

    
 

  
 (2.23) 

 
The arctan function is still dependent on two arguments. Observe that at the 
order zero in , only C1 and Δ1,3 are non-zero. For the classical Van der Pol 
model, one has C3/C1=9/4+O(³) and Δ1,3=-/2+3/4+O(³). Hence, for 
small , the phase difference Δ1,3 is equal to -/2. When the experimental 
value is far from -/2, the classical VdP model is not adequate for representing 
the measured lateral force. This is the case for several pedestrians of the 
sample analyzed here. Finally, observe that the zero-order value of Δ1,3 in 

(2.23) and the angle 0  in (2.21), associated with the position of stationary 

points of the radius R , are orthogonal. This highlights the relationship 
between the phase difference Δ1,3 and the shape of the limit cycle. 
 
 
 
 

2.4.1. Existence and stability of the periodic orbit 

In the previous Section, a perturbation technique has been used to find an 
approximate expression of the periodic orbit characterizing the MVdP model. 
However, it is necessary to prove that this periodic orbit (or limit cycle) is 
stable.  Therefore, a stability analysis of the model (2.14) is done in order to 
find the associated constraints on the values of model parameters. This 
analysis in performed for small values of the parameter , related to linear and 
the nonlinear damping terms of the model restoring force (see Eq. (2.13)). The 
standard procedure reported in [23] is applied. By definition, the total 
mechanical energy   of a mechanical system is the sum of the potential and 
kinetic energies, indicated as K  and V , respectively. Therefore, the variation 

of  t  between two generic instants 0t  and t  reads: 

 

           

         
0 0 0

2 2 2 2 2
0 0 0

1 1
2 2

:

y y y y

t t K t K t V t V t

m u t u t m u t u t

     

    
 (2.24) 
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In order to simplify the notation, and without loosing generality, it is 
supposed t0=0. Since we are considering an autonomous system (Eqs. (2.5) and 
(2.13)), the difference (2.24) can be written as follows: 
 

          0
0

0 2 , ; , , ,
t

y y yt m h u t u t u t dt           (2.25) 

 
By definition, on the limit cycle of a self-sustained oscillator, the total energy 
returns to its original value after one period 0≤t≤T, i.e. 
 

          0
0

0 2 , ; , , , 0
T

y y yT m h u t u t u t dt           (2.26) 

 
Now observe that the linearized equation, i.e. Eq. (2.14) with =0, has solutions 
of the form 
 

       0 0 0cos , sinlin lin
y yu t a t u t a t          (2.27) 

 
For ||«1, the limit cycle of (2.14), if it exists, is expected to be close to one of 
the orbits defined by a certain value of a in (2.27). Without loss of generality, 
one can set =0 and a>0. Hence, on the limit cycle of the nonlinear system 
(2.14), for some values of a, one has uy(t)acos(0t) and T2/0. Using these 
expressions, the variation of the total mechanical energy along one period is 
approximated by 
 

        
02 /

0 0 0 0 0
0

2 cos , sin ; , , , sing a ma h a t a t t dt
 

            

 

 
The function g(a) for the model defined by (2.14) reads 
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Imposing g(a)=0, one obtains the constant a (see also the second equation in 
(2.18)) 
 

 0 1/2

2
3

a a
 

 


 (2.28) 

 
One can see that +3>0 is needed for the existence of the solution. Moreover, 
if the limit cycle is stable, along spiral paths close and interior to the limit cycle 
(a<a0), one has g(a)>0, i.e. the total energy increases, while for exterior paths 
g(a)<0. Hence, the necessary condition of stability of the limit cycle writes 
 

 
0

08
' 0 0 0

3a a

m
g a

  
       


 

 
In summary, the following conditions are needed for the oscillator (2.14) to 
have a stable periodic orbit, i.e. it is self-sustained: 
 

0, 3 0      (2.29) 

 
 
 
 

 

2.4.2. Energy analysis 

In this Subsection, the energy difference expression (2.25) is analyzed in 
more detail, with reference to the MVdP model (2.13)-(2.14). Four 
contributions can be distinguished, i.e. 

 

                     0 :t t t t t t             

  
where 
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 

 
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 
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















 (2.30) 

 

The first term of  t  is always non-negative, due to the first condition in 

(2.29), i.e. >0: it represents the energy “produced” by the oscillator, i.e. the 
internal energy source of the system. The second and fourth terms have a 
constant sign. They are always non-positive, provided that 
 

0 0 0 0and or and        (2.31) 

 
Therefore, under one of the assumptions (2.31), the corresponding energy 
terms represent some dissipation phenomena.  and  cannot be 
simultaneously zero due to the second inequality in (2.29). Finally, when ≥0, 

the sign of the term    t  is positive when displacements and velocities 

have the same sign, negative otherwise. The opposite situation occurs when 
≤0. The sum of the four energy contributions (2.30) is not zero at every time 

t . However, it is zero at the end of every cycle: the energy produced is equal 
to the energy dissipated after one cycle, i.e. the system is able to self-sustain its 
motion. 
Both assumptions (2.31) are not necessary, but are sufficient to ensure the 
existence of the limit cycle. Stability is guaranteed when it is also supposed 
that >0. Moreover, (2.31) allows a clear energetic interpretation of the model, 
in the sense that it is possible to know a priori which terms represent energy 
dissipation and which ones represent an energy source. For these reasons, 
(2.31) is used for the parameters identification of the following Section. 
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2.5. Identification of the MVdP parameters from experimental 
data of the lateral pedestrian force 

 
 
 

2.5.1. Procedure 

In this Subsection, an identification procedure of the parameters of the 
restoring force (2.13) of the MVdP model is proposed, accounting for the 
parameter constraints discussed above. The identification is based on the 
periodic signal obtained from the experimental lateral force of a pedestrian. 
For the purpose of the identification, it is convenient to rewrite the restoring 
force (2.13) in the form: 

 

 
 

     



    2 2 3
1 2 3 4 5

1 2 3 4 5

, ;

with , , , ,

y y y y y y y y y y y

T

F F u u a u a u a u u a u u a u

a a a a a

a

a
 (2.32) 

 
The parameters collected in the vector a are related to the MVdP parameters 
according to the following identities: 
 

2
1 0 2 0 3 0 4 5

0

2
, 2 , 2 , 2 ,

m
a m a m a m a m a

        


       (2.33) 

 
The mass m is assumed known. Then, the optimal parameter value a* is 
computed by a constrained minimization procedure: 
 

  




 
  

 
 

2
( ) ( ) ( )
, , ,a

1

1
* arg min , ;

2

idN
i i i

y per y y per y perS
i

F F u ua a  (2.34) 

 

where     ( )
, , 1i

y per y perF F i t  are computed by the Fourier series (2.10) 

approximating the experimental walking force. Likewise, 

    ( )
, , 1i

y per y peru u i t  and      ( )
, , 1i

y per y peru u i t  are the periodic 

displacements and velocities, defined by (2.12). The time step Δt is equal to the 
time step of experimental data and Nid is the number of points used for the 
identification procedure, corresponding to one period. The optimization 
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constraints are given in (2.29), with the additional (trivial) assumption 0>0. 
However, as it has been discussed in the previous Section, instead of the 
second inequality in (2.29), conditions (2.31) are imposed. Hence, using (2.33), 
the optimization constraints written on the parameters ai are summarized as 
follows: 
 

1 20, 0a a   (2.35) 

 
and 
 

   3 5 3 50 and 0 or 0 and 0a a a a  (2.36) 

 
As a result, the definition of the set S introduced in (2.34) becomes 
 

  5
1 2 3 4 5 1 2 3 5, , , , : 0, 0, 0 0TS a a a a a a a a and a       (2.37) 

 
The expressions (2.34) and (2.37) define a constrained linear optimization 
problem. After the identification of the optimal parameters, the strict 
inequalities in (2.35) and (2.36) are checked. In all the cases analyzed in this 
Chapter, the linear identification directly leads to parameters fulfilling these 
strict inequalities. Finally, the model parameters are deduced from the 
identified vector a*: 
 

** * * * * *
*31 2 1 4 1 1

0 5* * * *
1 2 2 2

1
, , , ,

2
aa a a a a a

a
m a m a a m m a

              

 
 
 
 

2.5.2. Results 

The parameters for the pedestrian “8” identified using the previous least 
square procedure are given in Table 2.5. A comparison between the periodic-
experimental lateral force and the identified force reveals a very good 
agreement, as illustrated in Figs. 2.11 and 2.12 at two different walking speeds. 
Fig. 2.13 shows for the same pedestrian the time-history during a walking step 



Modelling the lateral pedestrian force on a rigid floor  
by a self-sustained oscillator. 

 

- 32 - 

 

(left-and-right) of the energy terms defined in (2.30). We recall that    has 
the physical meaning of energy produced to sustain the motion. 
 
 

 3.75 km/h 4.5 km/h 5.25 km/h 6.0 km/h 

0 [rad/s] 4.00 4.28 4.39 4.57 
 0.42 0.72 0.47 0.24 

 [m-2] 48.79 1151.05 3144.24 0 
  [m-2] 4164.20 6949.97 11559.79 18097.17 
   [m-2] 1583.01 2655.22 1869.23 2818.99 

R 1.00 0.98 0.99 0.99 

Table 2.5 – MVdP model: the identified parameters associated with pedestrian “8”. 

 
 

 
Figure 2.11: Lateral oscillation of pedestrian “8”; vx=4.5 km/h. Identified (dotted line) vs. 
Fourier series (continuous line) results. (a) Time history of the lateral force; (b) time history of 
lateral displacement and (c) velocity; (d) modulus of the FFT of the lateral force; (e) limit cycle 
in the phase-plane and (f) lateral force as a function of displacements and velocities. 
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Figure 2.12: Lateral oscillation of pedestrian “8”; vx=6.0 km/h. Identified (dotted line) vs. 
Fourier series (continuous line) results. (a) Time history of the lateral force; (b) time history of 
lateral displacement and (c) velocity; (d) modulus of the FFT of the lateral force; (e) limit cycle 
in the phase-plane and (f) lateral force as a function of displacements and velocities. 
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Figure 2.13: Identified MVdP model for pedestrian “8”. Time-evolution during a walking step 
of the energy terms associated with the nonlinear damping. The continuous thin line indicates 
the energy produced to sustain the oscillation. 

 
 
Fig. 2.14 shows that 0 for a given pedestrian increases when the walking 
speed increases. The product  also has a quite regular behaviour, since it is 
directly related to the walking frequency 1=0, according to Eq. (2.18). The 
parameter  varies for different walking speeds and from one pedestrian to the 
other, but it is almost always less than the 0.7. Accounting for the energetic 

interpretation that can be associated with  and    (Eq. (2.30)), a more 
regular behaviour of this parameter might be found by introducing into the 
identification procedure an additional constraint based on the measurement of 
the metabolic cost of the walk. However, this kind of measurements could be 
efficiently used only for a model representing the motion of the pedestrian 
center of gravity in the three directions, not only the lateral one, since the 
metabolic cost is a global index. This is beyond the purposes of the present 
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work. The third subplot of Fig. 2.14 shows that 2/(+3)1/2 has limited 
variations from one pedestrian to the others. This can be explained using 
(2.28), indicating the relationship between 2/(+3)1/2 and the lateral 
displacement amplitude. The experimental and identified amplitudes C1 and 
C3 as well as the phase differences Δ1,3 are compared in Fig. 2.15 for all 
pedestrians and all walking speeds. The correlation coefficient R between the 
experimental and identified force curves gives a global measure of the quality 
of the identification: it is very close to one in all cases analyzed here; see Fig. 
2.16. 
 
 

 
Figure 2.14: Identified parameters of the MVdP model for the twelve pedestrians. Missing 
points correspond to non available experimental data. 
 
 



Modelling the lateral pedestrian force on a rigid floor  
by a self-sustained oscillator. 

 

- 36 - 

 

 
Figure 2.15: Comparison between the Fourier series computed from experimental lateral force 
data (continuous line) and from the force associated with the identified MVdP models (dotted 
line). The comparison concerns the amplitudes C1 and C3 and phase differences Δ1,3. 
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Figure 2.16: Correlation R between the lateral force computed by the Fourier series and the 
one associated with the identified MVdP model. 

 
 
 
 

2.6. Conclusions 

In this Chapter an exhaustive experimental analysis of the lateral walking 
force on a rigid floor has been presented. The importance of the phase 
differences between the Fourier harmonics in the series representing the 
periodic approximation of the force has been highlighted. Then, the use of a 
self-sustained autonomous SDoF oscillator has been proposed for modelling 
the lateral motion of the center of gravity of a pedestrian walking on a rigid 
floor: the nonlinear restoring force of this oscillator represents the lateral 
walking force. It has been shown by the analysis of experimental data that the 
modified version of the classical Van der Pol model proposed here provides a 
good fitting between the model behaviour and the periodic force extracted 
from experiments. The synchronization which may occur when a pedestrian 
walks on a moving floor is analyzed in the next Chapters. However, it is well-
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known that forced self-sustained oscillators may have the so-called frequency 
locking effect, i.e. the synchronization between the oscillator response and the 
external excitation.  

The application of the same approach for the vertical and longitudinal 
components of the walking force is also under study. 
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Chapter 3 
 
 
 
 

A modified Van der Pol oscillator for modelling 
the lateral pedestrian force on a moving floor.  

Part I: response curves 
 
 
 
 
 

This Chapter presents a model for the lateral oscillation of a pedestrian 
walking on a laterally moving floor. The basic assumption is that the lateral 
dynamics of a pedestrian can be modeled by a single-degree-of-freedom self-
sustained oscillator. Using the terminology of non-linear dynamics, an 
autonomous self-sustained oscillator is characterized by a stable limit cycle, 
driven with a certain natural frequency. This property reproduces the intrinsic 
nature of the walking phenomenon: the pedestrian produces by itself the 
energy needed to walk, i.e. it self-sustains its motion. The previous Chapter 
showed that a suitable form for the restoring force of such an oscillator 
corresponds to a modified Van der Pol (MVdP) model and the associated 
parameters have been identified in the autonomous (rigid floor) case for a 
group of twelve pedestrians. The MVdP oscillator is analyzed here in the non-
autonomous case, when the  so-called frequency entrainment effect may occur. It 
means that under certain conditions, the response frequency switches from the 
natural value to that of the external excitation. According to the physical 
interpretation considered here, the entrainment corresponds to the situation 
where the pedestrian changes its natural walking frequency and synchronizes 
with the floor oscillation frequency. In this Chapter, the steady entrained 
response of the MVdP model subjected to a harmonic excitation is discussed in 
terms of response amplitude curves, obtained using the harmonic balance 
method truncated at the first harmonic. Experimental results, available in the 
literature, concerning pedestrians walking a shake table are compared with the 
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model predictions and a good agreement is obtained. The stability of the 
entrained response is analyzed in the next Chapter. 

 
 
 
  

3.1. Introduction 

In the non-linear dynamics literature, the so-called self-sustained oscillators 
are well-known and they possess some properties that seem to be well suited 
for a pertinent modelling of the pedestrian behavior. For this reason, in the 
previous Chapter has been proposed to represent the lateral oscillation of a 
pedestrian walking on a rigid floor by an autonomous self-sustained oscillator (see 
also [2, 5, 35]). This oscillator is named modified Van der Pol (MVdP) model, 
because it has been obtained by adding two polynomial terms of order three to 
the nonlinear damping of the classical Van der Pol model [23]. The moving floor 
case, analyzed here, corresponds to a non-autonomous MVdP oscillator. 
In certain situations, it is useful to replace a self-sustained oscillator with a 
simpler dynamic model, based on the so-called phase equation [24]. Roughly 
speaking, the response of a self-sustained oscillator can be described in terms 
of amplitude and angle variable. If the amplitude is supposed constant, then 
the angle variable suffices to describe the oscillation. In this case, the so-called 
total phase, strictly related to the angle variable [24, 36], governs the system 
evolution by a suitable equation of phase. This idea has been used in [30] and 
[31] for modelling the crowd behavior: each pedestrian is represented by a 
phase equation. The time-derivative of the phase represents the instantaneous 
walking frequency. By definition, this approach neglects the amplitude 
variations of the pedestrian oscillations. However, several experimental tests, 
e.g. [27], show that the variations of the lateral oscillation amplitude of 
pedestrians are not negligible. In this respect, Macdonald [37] has recently 
suggested the use of a model for the pedestrian lateral oscillation where only 
the amplitude variations are accounted for and no frequency modulation due 
to the external excitation is considered. The modified Van der Pol (MVdP) 
model proposed here accounts for both phase and amplitude variations due to 
external excitation. 

One of the most important properties of non-autonomous self-sustained 
oscillators is that they may have an entrained response [24], i.e. a response 
characterized by the same frequency as that of the excitation. The amplitude of 
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the entrained response of the MVdP model is analyzed in this Chapter 
following a procedure similar to that used in [23, 25] for the standard Van der 
Pol model an Rayleigh model. The stability analysis is discussed in the next 
Chapter. Differently from the standard Van der Pol model, the MVdP 
oscillator is non-isochronous [24, 38, 39].  
Actually, an entrained response represents a pedestrian synchronized with the 
moving floor, even if its natural frequency is different. With a less precise 
terminology, it can be said that the walker synchronizes its frequency with that 
of the floor. The term synchronization should be used when two of more 
coupled self-sustained oscillators with different natural frequencies move at 
the same frequency, while the entrainment concerns an oscillator that assumes 
the same frequency than that of an external agency. Both terms will be used 
here indifferently, as it is usually done in the applications concerning the 
pedestrian-floor interaction. The particular case of a harmonic excitation is 
considered because, on one hand, it is the natural assumption required to 
apply the harmonic balance method and, on the other hand, because a floor 
lateral motion at constant frequency and amplitude is a simple experimental 
condition, easy to obtain using a shake table where pedestrians are asked to 
walk. This experimental situation is studied e.g. in [26]. A similar situation is 
obtained when pedestrians walk on a treadmill placed on a shake table (see 
e.g. [27, 28]): in this Chapter it is shown that the MVdP model is able to 
reproduce a well-known experimental result concerning pedestrians, viz. the 
almost linear relationship between the floor motion amplitude and the 
amplitude of the lateral force [9, 27]. 

After the Introduction, the MVdP model is presented in Section 3.2. 
Section 3.3 concerns the determination of the response amplitude equation for 
the MVdP oscillator using the harmonic balance method. Then, the response 
curves at constant excitation amplitude are represented in Subsection 3.3.1 
using the suitable non-dimensional parameters. Section 3.4 presents a 
discussion about the response curves at constant excitation frequency: they are 
compared with some experimental results known from literature. The last 
Section presents some conclusions and describes the main topics treated in the 
next Chapter. 
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3.2. Models for the lateral pedestrian force 
 
 
 

3.2.1. The Modified Van der Pol model 

In the previous Chapter, the modified Van der Pol (MVdP) oscillator (2.14) 
has been used to represent the lateral oscillations of pedestrians during 
walking on a rigid floor [1, 2, 35]: 

 
22

2 2
0 02 2

0 0

2 1 0y y y y
y y y

d u du du du
u u u

dt dt dt dt
   
 

  
          

 (3.1) 

 
where uy is the lateral displacement of the center of mass of the pedestrian; 0 
is the natural frequency of the underlying linear oscillator, , ,  and δ are 
coefficients associated with the nonlinear damping term, which allows the self-
sustaining mechanism responsible of perpetual periodic oscillation in the 
autonomous case. The oscillator (3.1) is self-sustained, viz. it has a stable limit 
cycle, when >0 and +3δ>0. The parameter identification made in the 
previous Chapter has been performed by imposing the stronger conditions 
>0 and δ≥0 or ≥0 and δ>0. Using this assumption, a very good fitting of 
experimental results in the rigid floor regime has been obtained. In the limit of 
small  values, the amplitude of the limit cycle reads uy,max 2/√(β+3δ), while 
the natural frequency is 
 

1 0 1
3

 
 

 
  

  

 
The details about this oscillator and its application to the modelling of the 
lateral pedestrian oscillations on a rigid floor are discussed in the previous 
Chapter. 
The main aim of the present Chapter is to study the response of the MVdP 
oscillator (3.1) under a harmonic external force, representing a periodic floor 
motion, with an amplitude small enough to avoid the loss of the lateral 
stability of the walker. In general, the coupled system constituted by a 
pedestrian modelled according to Eq. (3.1) and a laterally vibrating structure 
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thought as a single degree-of-freedom system, can be written as follows (see 
also Fig. 3.1): 
 

2
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y y y
y y

d U dU du
U F u

dt dt M dt

d u du d U
m F u m

dt dt dt

  
  

    
  


       

 (3.2) 

 
where 
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dt dt dt dt
 (3.3) 

 
is the restoring force the MVdP oscillator; Uy is the horizontal displacement of 
the structure, M is modal mass of the structure for the considered lateral mode; 
s and s are the modal damping ratio and circular frequency, respectively; uy 
is the lateral displacement of the center of mass of the pedestrian with respect to 
the structure (the floor); m is the pedestrian mass. Observe that Eqs. (3.2) do not 
take into account the mode shape effect [5]. In this Chapter, the coupled 
pedestrian-structure behaviour represented by Eq. (3.2) will not be considered. 
A simpler situation is rather analyzed, where the floor lateral motion is 
supposed known and harmonic with displacement amplitude Ad>0 and with 
frequency  (see Fig. 3.1b) 
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 

 
2

2cos cosy
y d acc

d U t
U t A t A t

dt
      (3.4) 

 
where Aacc:=Ad² is the floor acceleration amplitude. Hence, the second 
equation in (3.2) becomes 
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 (3.5) 

 
Eq. (3.5) defines a harmonically excited (non-autonomous) MVdP oscillator. 
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Figure 3.1: (a) Scheme of the Two-Degrees-of-Freedom system representing the coupled lateral 
motion of a pedestrian and the deck of a footbridge. (b) Single-degree-of-freedom oscillator 
representing a pedestrian on a floor undergoing a harmonic motion. 

 
 
 
 

3.2.2. The model of Hof and coworkers 

For comparison purposes, we briefly introduce another model for the 
lateral motion of pedestrians. Having in mind an inverted pendulum scheme 
undergoing small oscillations, Hof et al. [40] and Macdonald [37] discussed the 
following model: 
 

 
2 2

2 2
y y

y

d u d Ug
u u

dt L dt
     (3.6) 

 
where g is the gravity acceleration, L is the distance between the contact point 
of a foot on the floor and the center of gravity of the pedestrian;  u t  is the 

instantaneous position of the center of pression of the lateral force on the floor. 
According to measurements made for normal walking conditions [40], the time 
function  u t  has a fast variation during the time intervals where both feet are 

simultaneously in contact with the ground and the center of pression of the 
force applied on the ground migrates from one foot to the other. Moreover, 
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during each single foot contact phase,  u t  is almost constant. In the limit case 

where the simultaneous contact occurs only during an infinitesimal time 
interval,  u t  is a piecewise constant function with jumps equal to the lateral 

distance between the contact points of the feet with the floor. This distance, 
indicated here as max2u , is around equal to 10 cm during normal walking on a 

rigid floor [41]. A possible choice for u  is proposed in [37] and [41]: 
 

       1,
/

y k
y k crit k k

u t
u t u t b with t t t
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

 (3.7) 

 
where tk=k(2/1) with k=0,1,2,... are the instants of discontinuity of  u t ; 1 is 

the frequency of the lateral oscillations and bcrit 16 mm is the so-called 
stability margin. The sign of the term with bcrit changes from left to right steps. 
Eq. (3.7) can be seen as a control law associated with the lateral stability 
strategy of a pedestrian. By using Eq. (3.6), it is possible to explicitly compute 
the drift of the average position of the pedestrian with respect to a target 
straight trajectory, since uy and u  are measured with respect to a generic 
reference. However, if uy and u  are measured with respect to the average 
trajectory supposed known, they are positive on the right (left) of the reference 
axis and negative in the opposite case. For a regular symmetric walking, one 
has max maxu u u   , where maxu  is the maximum lateral half-distance between 

the feet during walking. 
By comparing (3.6) and (3.2)2, one obtains the expression of the instantaneous 
position of the center of pression predicted by the MVdP oscillator: 
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Eq. (3.8) shows that the MVdP oscillator postulates a position of the center of 
pression u  which is not a piecewise constant function of time. A detailed 
analysis of the behaviour of the MVdP model in terms of predictions of the 
center of pression position is beyond the purposes of this thesis. Work is 
progress about this topic. 
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3.3. Modified Van der Pol model: harmonic balance and 
amplitude equation in the non-autonomous regime 

In this Section, the analysis of the periodic solution of Eq. (3.5) having 
frequency equal to that of the excitation, is presented. Actually, the non-
autonomous MVdP oscillator (3.5) is quite general: if ==0 the Rayleigh 
oscillator is retrieved, while ==0 leads to the standard Van der Pol oscillator. 
The non-autonomous Van der Pol and Rayleigh oscillators have been studied 
in textbooks (e.g. [23, 25]). A more complex analysis of the Rayleigh model is 
presented in [42], where an external force with two periodic components is 
considered. One also observes that the term depending on  is analogous to the 
inertia hardening term mentioned in [43, 44, 45]. However, in the oscillator 
discussed by those authors, this nonlinear term is always accompanied by a 
second one: it is not possible to distinguish the contributions of each one, as it 
should be done for our purposes.  
A stationary solution of the form 
 

   : cosyu t R t    (3.9) 

 
is postulated. Eq. (3.9) indicates that the oscillator/pedestrian has the same 
frequency as the moving floor, where R is the amplitude of the displacement 
measured with respect to the structure and  is the phase difference between 

this displacement and 2 2/yd U dt , i.e. minus the acceleration of the floor. The 

research of an approximated solution of the form (3.9) corresponds to solve Eq. 
(3.5) by using the Harmonic Balance (HB) method with expansion limited to 
the first harmonic [45]. The advantages and drawbacks of this method, in 
particular in comparison with the multiple scales method, are discussed e.g. in 
[44, 46]. Instead of directly solving Eq. (3.5) with the assumption (3.9), the new 
time-scale 
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is introduced. By replacing Eq. (3.10) in Eq. (3.5), one obtains 
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where the dot indicates the differentiation with respect to the time-scale  and 
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Analogously, the periodic solution (3.9) becomes 
 

   : cosw R t     (3.13) 

 
According to HB method, the expression (3.13) is replaced into Eq. (3.11). After 
some trigonometric simplifications, one has: 
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Neglecting third order harmonic components and equating to zero both sinus 
and cosinus terms, one obtains the following algebraic equations: 
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Due to the assumptions on the sign of parameters discussed above, one has 
+3>0. Moreover,   is supposed close enough to 1, in order to have 

23 0   . Therefore, by introducing the following quantities 
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where R0 has the meaning of reference response amplitude and  is a 
normalized form of the parameter , three normalized variables can be 
defined: 
 

2

2
0 0 0 0

1 1
, ,d accA AR

r
R R R

  
   


   

 
   (3.16) 

 
where r is a non-dimensional response amplitude,  is a non-dimensional 
external acceleration amplitude and is a non-dimensional difference 
(detuning) between the floor frequency  and the frequency 0 of the 
underlying linear system associated with the MVdP oscillator. By substituting 
Eqs. (3.15) and (3.16) into Eq. (3.14), one gets 
 

   

   

2

2

cos

1 sin

r r

r r

   

 

   


 
 (3.17) 

 

By solving these equations for  cos   and  sin   and then using the identity 

   2 2sin cos 1   , one easily obtains 

 

   2 22 2 2 2 21 0r r r r        (3.18) 

 
Eq. (3.18) states that the squared normalized amplitude z=r² is a root of a 
polynomial of order 3, provided that ,  and  are fixed. Once r² is known, the 
value of  can be determined by means of the expression 
 

 
2

2

1
tan

r
r


 



 

 (3.19) 

 
obtained from (3.17). One notices that both the standard Van der Pol and 
Rayleigh oscillators are represented by Eqs. (3.18)-(3.19) with =0. The 
additional term associated , which is in turn related to the coefficient , 
introduces a non-isochronous behaviour [24]. Eq. (3.18) can also be thought as 
the steady-state solution of the following complex-valued equation depending 
on the three non-dimensional parameters ,  and : 
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    21 1
da

i a i a a
d

  

      (3.20) 

 

where ia re   and   is a generic normalized time-variable, equal to (/2) in 

the specific case considered here (see also [24]). A similar expression is 
analyzed in [38]: 
 

    21 1
da

i a i a a
d

  

      (3.21) 

 
There are still three non-dimensional parameters, but one of them is different 
from those used in Eq. (3.20). Another analogous expression is investigated in 
[39]: 
 

    21
da

i a i a a
d

  

      (3.22) 

 
where the normalization is still different. The analyses of the steady solutions 
of (3.21) and (3.22) presented in [38] and [39], respectively, are somehow 
complementary, due to the different choice of the normalized parameters. Eq. 
(3.20) represents a third complementary viewpoint on the same equation and 
very few analyses of it can be found in the literature. For this reason, and 
without forgetting the final application to the pedestrian modelling, a detailed 
study of Eq. (3.18), giving the amplitude of the steady solutions of Eq. (3.20), is 
presented hereinafter. The stability of these solutions will be discussed in the 
next Chapter. 
 
 
 
 

3.3.1. Response curves  - r² 

Eq. (3.18) involves four quantities: the normalized amplitude r of the steady 
response of the non-autonomous self-sustained oscillator (3.5) and three non-
dimensional parameters ,  and . It follows that the system response may be 
represented in several ways, for instance in a bidimensional plot  - r², with 
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fixed  and  values, or by assuming constant values of  and  and plotting r 
vs. , etc. In the next Chapter, a representation of the type  - r will be 
discussed; however, instead of directly consider the non-dimensional 
quantities, two associated dimensional variables will be analyzed. 

In this Subsection, the -r² representation is analyzed. It generalizes 
analogous well-known plots concerning the standard Van der Pol and 
Rayleigh models; see e.g. [23]. For the sake of clarity, and accounting for the 
novelty of the model (3.5) as well as its interest for the pedestrian behaviour 
modelling, a quite detailed analysis is presented, even if some of the notions 
discussed hereafter are known from textbooks, e.g. [23], with reference to 
simpler models used for other applications. In order to simplify the notation, 
Eq. (3.18) is rewritten by using the variable z=r²: 
 

       2 3 2 2 2
, , : 1 2 1 1 0p z z z z               (3.23) 

 
Due to the definition of z, only real and positive roots of p,,(z) are admissible. 
Two examples of response curves  - z plotted using Eq. (3.23) are shown in 
Fig. 3.2.  Fig. 3.2a concerns the isochronous case =0, associated with the 
classical models of Van der Pol and Rayleigh, while Fig. 3.2b illustrates a 
particular non-isochronous case, with =2. 
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Figure 3.2: Response curves of the MVdP oscillator for the (a) isochronous case (=0) and (b) 
non-isochronous case (example with =2). The curves show the real and positive solutions of 
Eq. (3.18). Dotted line: =0.15, dashed line: =0.35, solid line: =1.0. 

 
 
In both Figures, one observes that for given  and  values, either one or three 
real and positive roots of p,,(z) may exist. More in detail, using the Descartes’ 
sign rule, it can be proven that if the second coefficient of the polynomial (3.23) 
is null, i.e. if 1+=0, then p,,(z) has one real positive root and two complex 
conjugate roots for any  value. Fig. 3.2b illustrates the vertical line 
corresponding to 1+=0, for the case =2. If 1+<0, there is one real positive 
root for all , while the two other roots are either negative or complex 
conjugate. One can conclude that when 1+≤0, there is only one admissible 
(i.e. real and positive) root of the polynomial p,,(z). Conversely, when 
 

1 0   (3.24) 
 
the situation is more difficult. The polynomial (3.23) admits either three real 
positive roots or one real positive and two complex conjugate roots. The 
transition between these two situations occurs when there is one real positive 
root plus another real positive root with multiplicity equal to two. This 
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threshold corresponds to the locus of points where the derivative of p,,(z) is 
equal to zero [47]: 
 

     , 2 2 23 1 4 1 1 0
dp z

z z
dz
            (3.25) 

 
For a given  value, Eq. (3.25) represents a conic in the  - z half-plane (z>0) 
independent from the external excitation parameter . 
Let us consider the general expression of a conic, that reads 
 

2 2
1 2 3 4 5 6 0c z c z c c z c c         (3.26) 

 
with at least one of the coefficients c1, c2 and c3 different from zero. By 

comparing Eqs. (3.25) and (3.26), one has  2
1 3 1c   , 2 4c   , 3 1c  , 

4 4c   , 5 0c  , 6 1c  . It is evident that the nature of this conic change with 

the value of . Three cases may occur: 
 

(i)       C22-4C1C3<0  ||<√3. Eqs. (3.25)-(3.26) represent an ellipse;  

(ii)       C22-4C1C3>0  ||>√3. Eqs. (3.25)-(3.26) represent a hyperbola; 

(iii) C22-4C1C3=0   =±√3. Eqs. (3.25)-(3.26) represent a parabola. 
 

These three cases are schematically illustrated in Fig. 3.3b, c, d. In addition, 
Fig. 3.3a concerns the simple isochronous case =0. The other lines plotted in 
the same figure are related to the nature (nodes, spirals, etc.) and stability of 
the equilibrium points. These topics will be discussed in the next Chapter. 
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Figure 3.3: Response curves of the MVdP oscillator (dotted lines) and conics associated with 
the condition (3.25) (solid lines). The other straight lines are related with the stability of the 
response. 

 
 
An illustration of the meaning of Eq. (3.25) and how it is related to the 
multiplicity of the roots of p,,(z) is given in Figs. 3.4 and 3.5. The polynomial 
p,,(z) is represented for 1    and 1.4492   , and for five different 
values of , ′<Q<′′<P<′′′, indicated in the figures. Notice that the 
modification of  induces vertical translations of the curve in Fig. 3.4, but it 
does not affect the abscissas zP and zQ of the points of zero-slope, where Eq. 
3.25 is fulfilled. With reference to the numerical values of the Figure, Eq. (3.25) 
leads to zP 0.42934 and zQ 1.2035. The corresponding points P and Q, 
belonging to the conic defined by Eq. (3.25), are indicated in Fig. 3.5. 
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Figure 3.4: Plot of the polynomial p(z), Eq. (3.23), for  = 1,  = 1.4492 and five -values. 

 

 
Figure 3.5 : Response curves of the MVdP oscillator (Eq. (3.18)) for  = 1 and with five 
different -values. The vertical line corresponds to  = 1.4492, while the dashed ellipse is 
associated with the condition (3.25). 
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When =′,  , , 'p z    has one real positive root z1′<zP (see Fig. 3.4). The 

corresponding point 1′ in Fig. 3.5, having coordinates  1', z , is outside the 

region bounded by the conic (3.25). When =′′, there are three real positive 
roots of  , , ''p z   , associated with the points 1′′, 2′′ and 3′′ indicated in Fig. 3.4. 

One is inside the conic, while the others are outside. In the intermediate case 
=Q, the polynomial (3.23) has three real positive roots and two of them 
coincide and are equal to z=zQ. The value Q 0.35 used in Figs. 3.4-3.5 has 
been found by replacing the numerical value of zQ,    and   in Eq. (3.23). 
When =′′′,  , , '''p z   has one real positive root z3′′′>zQ. When =P, the 

situation is analogous to that of the case =Q. In summary, for given  and  
values, the polynomial (3.23) has three real and distinct positive solutions 
when 

 

   , ,Q P         (3.27) 

 
On the boundaries of this interval two of the three real positive solutions 
coincide, while outside the interval there is only one real positive solution. 
Looking at Figs. 3.3 and 3.5, one notices that there is one (or two) special 
point(s) where the tangent to the conic (3.25) is vertical, i.e. where P and Q 
degenerate into a single point. If the conic is an ellipse, there are two points, 
called A’ and A. There is only one point in the other cases. The coordinates of 
A and/or A’ can be computed by imposing that the polynomial (3.23) has three 
real repeated roots [47]: 
 

   
2

, 2
2 6 1 4 4 0

d p z
z

dz
         (3.28) 

 
This leads to 
 

2

2 1
3 1

z







 (3.29) 

 
Then, in order to impose that the points belong to the conic, Eq. (3.29) is 
replaced into (3.25): 
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   2 2 23 8 1 3 0         (3.30) 

 
The solution of Eq. (3.30) is found considering the cases (i), (ii) and (iii) defined 
above: 
 

(i) ||<√3. The polynomial (3.30) has a couple of real roots 
 

'

3 1 3 1
3 3A A

  
 

 
  

 
 (3.31) 

 

Both values of  in (3.31) satisfy the inequality (3.24), i.e. 1+A’>0 and 
1+A>0. It means that both solutions are admissible and this is 
consistent with the fact that the conic is an ellipse. The coordinates zA′ 
and zA can be computed by replacing (3.31) into Eq. (3.29). Finally, the 
corresponding values of  are obtained from (3.23) (see Table 3.1). 

 
(ii) ||>√3. The polynomial (3.30) still has the couple of real roots 

 

'

3 1 3 1
3 3A A

  
 
 

  
 

 (3.32) 

 
However, in this case the sign of the inequality between A and A’ is 
inverted and only one of the  values in (3.32) fulfils (3.24), depending 
on the sign of . The other one must be discarded. This is consistent 
with the hyperbolic shape of the conic. The final coordinates are 
collected in Table 3.1. 

 
(iii) =±√3. Eq. (3.30) becomes of first order in the variable  and the 

solution reads 
 

' ' '

3 1 2

3 3 3 3

3 1 2

3 3 3 3

3 , ,

3 , ,

A A A

A A A

z

z

  

  

    

     
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where zA′, zA have been calculated from (3.29) and then A′,A from 
(3.23). For a given value of , only one solution exists and this means 
that only one limit point exists. This is consistent with the fact that the 
conic is a parabola (recall Fig. 3.3c). In both cases (=±√3), the inequality 
(3.24) is fulfilled. 
 
 

  2z r     0   

3,    A: 
2

3 3
 1 3

3






 
 

2

3

8 3 1
9 3








 

3,    A: 
1
3

 3
3

  2
3 3

 

3,   
A’: 

 

A: 

2
3 3

 

2
3 3

 

3 1
3







 

3 1
3






 

 
2

3

8 3 1
9 3








 

 
2

3

8 3 1
9 3








 

3,   A’: 
1
3

 3
3

 2
3 3

 

3,   A’: 
2

3 3
 1 3

3



 


 

 
2

3

8 3 1
9 3








 

Table 3.1 : Coordinates (z; ; ) of the points where the conic (3.25) has vertical tangent. 

 
 

The coordinates of A and A′ can be also found by an alternative procedure, 
related to a different representation of the conic (3.25), obtained by replacing 
Eq. (3.25) into (3.23) and eliminating the variable z: 
 

                           - - - -
2 222 4 2 2 2 3 3 227 1 4 60 36 36 1 4 4 1 0  (3.33) 

 
A detailed analysis of this expression is made in the next Chapter. 
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3.3.2. Analytical vs. numerical results 

A comparison between numerical simulation results and analytical 
response amplitudes predicted by Eq. (3.18) or, equivalently, by Eq. (3.23) is 
reported in Fig. 3.6. The points associated with the numerical solution are 
plotted for the cases where the entrained periodic response exists, i.e. it is 
stable. It has been obtained by solving Eq. (3.5) by means of the solver ODE45 
implemented in Matlab and then computing the amplitude of the first 
harmonic of the periodic response. The numerical simulations have been 
performed with the parameters 0=1 rad/s, =2=0.05, =1 m-2, =1 m-2. The 
non-dimensional parameter  is constant (=1), while three values of  are 
considered (=0.35, =1.5, =2.5). As a result, for each fixed  value, the 
remaining parameters , Aacc and  needed for numerical integration of Eq. 
(3.5) are computed using (3.12) and (3.16) and the identity Aacc=²Ad. Fig. 3.6 
shows that there is a good agreement between numerical and analytical 
results. Actually, the good approximation obtained in this example concerns 
values of z=r² less than 2.5, while  is less than 2.5 and  is small. The accuracy 
of analytical predictions diminishes for higher values of these quantities and of 
the modulus of . 

 

 
Figure 3.6 : Response curves of the MVdP oscillator (Eq.(3.18)) for = 1. Comparison between 
numerical and analytical results for three different  -values. 
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3.4. Force amplitude curves at constant frequency 

In this Section, another interpretation of Eq. (3.18) is discussed. Instead of 
using non-dimensional parameters and variables, dimensional quantities are 
considered, pointing out their physical meaning associated with the 
application of the pedestrian walking on a floor with a lateral harmonic 
motion. The main goal is to find an explicit expression of the amplitude of the 
periodic lateral force C1,dyn applied on the floor by a walker assuming 
entrained conditions, as a function of the floor vibration amplitude Ad at a 
given constant frequency . Accounting for Eqs. (3.2), (3.4) and (3.9), the lateral 
force applied by the walker on the moving floor is given by 

 

   
     

 
 

    

 

    

     

  

    
             

2 2 2
2

2 2 2

2 2

, cos

cos cos

y y y y
y y y d

d

du t d U t d u t d u t
F t F u t m m A t

dt dt dt dt

m A t R t

 (3.34) 

 
Using some well-known trigonometric identities, one has 
 

         

 

2 2 2

1, 1,

cos cos sin sin

: cos

y d

dyn dyn

F t m A R t m R t

C t

      

 

        

 
 

 
Hence, the squared force amplitude is given by 
 

      2 2 22 2
1, cos sindyn dC m A R R            

 
After some algebra and using (3.17)1 as well as the non-dimensional quantities 
,  and r defined by (3.15) and (3.16), one has 
 

 
2

2 2 2 20
1, 0 0 2dynC m R r r r

   
 

      
 

 

 
Recalling that  is related to r, and  by Eq. (3.18), one easily obtains 
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      
2

2 22 2 2 2 2 2 2 20 0
1, 0 1 2dynC m R r r r r r r r

     
 

         
 

 

 
It is now possible to define a parametric plot (Ad(z), C1,dyn(z)) with the 
parameter z=r²>0: 
  

       

        

     
 

     
 

    

       





     

2 20 0
0 0

2
2 22 0 0

1, 0

1

1 2

d

dyn

A z R z R z z z z

C z m R z z z z z z z
 (3.35) 

 
Fig. 3.7 shows this parametric plot in the particular case of pedestrian “2”, 
having natural walking frequency of 0.873 Hz and natural oscillation 
amplitude in the lateral direction of about 13.3 mm (see Fig. 2.4, case of 
longitudinal speed vx=3.75 km/h). The corresponding identified model 
parameters read: 0=4.60 rad/s, =1.107, =4785 m-2, =7416 m-2, =3426 m-2, 
m=69.4 kg. We recall that these parameters have been identified in rigid floor 
conditions. Moreover, the frequency of the ground motion is assumed equal to 
=2 0.75=4.712 rad/s. It can be observed that the curve has a first branch, 
between the origin and P (vertical tangent), a second branch between P and Q 
and the third branch for higher z values. The condition defining the points 
with vertical tangent is dAd(z)=0, where 
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It can be noticed that this condition is identical to (3.25). The stability of each 
branch is discussed in Chapter 4.  
An interesting property of this curve is that it becomes an almost straight line 
for high values of z (and of Ad and C1,dyn). A similar behaviour has been 
experimentally observed by several independent investigators, e.g. [9, 27]. A 
limit analysis for z→∞ leads to the value of the constant slope of this straight 
line. Let us differentiate the second equation in (3.35):  
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Hence, the slope at the limit z→∞ becomes: 
 

 
 

1, 2lim dyn

z
d

dC z
m

dA z



  (3.36) 

 
On one hand, this simple result offers a model-based interpretation of the 
experimental outcomes: for a sinusoidal lateral motion of the floor at fixed 
frequency , the amplitude C1,dyn of the lateral force increases proportionally to 
the amplitude Ad of the floor displacement and the constant of proportionality 
depends on the pedestrian mass and on the (constant) frequency. On the other 
hand, this confirms that the linear approximation of experimental data is 
reasonable. Notice that the limit (3.36) depends on the pedestrian mass, but 
does not depend on any of the other model parameters. 
Finally, observe that the usual representation of experimental results is done 
by a plot of the so-called participation factor C1,dyn/(mg) as a function of Ad. In 
this case the limit slope becomes independent from the pedestrian mass: 
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A more detailed comparison between analytical and numerical model 
predictions and experimental results is given hereafter. 

 

 

 

 

 



A modified Van der Pol oscillator for modelling the lateral pedestrian force on a 
moving floor. Part I: response curves. 

 

- 62 - 

 

 
Figure 3.7: Pedestrian “2” - vx=3.75 km/h. Parametric plot of the amplitude of the lateral 
pedestrian force vs. the floor oscillation amplitude. The branch PQ is unstable. 

 
 
 
 

3.4.1. Analytical vs. numerical results 

In this Subsection, numerical and analytical plots of the relationship Ad-
C1,dyn are compared, in order to check the error associated with the analytical 
solution based on the harmonic balance method. The numerical integration of 
Eq. (3.5) is performed by means of the ODE45 algorithm implemented in 
Matlab. Then, the amplitude of the first harmonic of the entrained periodic 
response is computed by a standard FFT algorithm: this is the numerical 
counterpart of C1,dyn defined in Eq. (3.35)2. The parameters assumed for the 
example of Fig. 3.8 are the same used in the previous Fig. 3.7, associated with 
the so-called pedestrian “2” (case of longitudinal speed vx=3.75 km/h). The 
subplots (a) and (b) of Fig. 3.8 concern the case of a floor frequency of 0.75 and 
of 1 Hz, respectively. One observes that the error between analytical 
approximation and numerical results is larger when the floor frequency is 



A modified Van der Pol oscillator for modelling the lateral pedestrian force on a 
moving floor. Part I: response curves. 

 

- 63 - 

 

higher. The same situation can be seen in Fig. 3.9, concerning pedestrian “1” 
(vx=3.75 km/h) characterized by the parameters 0=4.68 rad/s, =0.275, =0, 
=52852 m-2, =8803 m-2, m=68.6 kg corresponding to a natural walking 
frequency of 0.877 Hz and a natural oscillation amplitude of about 9.6 mm [see 
Fig. 2.4]. 
The plot of numerical results begins after the point Q, where the synchronized 
solution (3.9) is stable [4]. For pedestrian “2”, the onset of synchronization 
occurs for an amplitude of the floor motion of about 6 mm when the floor 
frequency is 0.75 Hz and about 1.5 mm when the floor frequency is 1 Hz. For 
pedestrian “1” (Fig. 3.9), the synchronization begins at a floor oscillation 
amplitude of about 2.5 mm, with a frequency of 0.75 Hz and at the smaller 
amplitude of about 1 mm when the frequency is 1.0 Hz. We recall that the 
natural frequency of both pedestrians is close to 0.875 Hz. 
 
 

 
Figure 3.8: Pedestrian “2” - vx=3.75 km/h. Dynamic Load Factor vs. floor displacement 
amplitude at constant floor frequency: (a) 0.75 Hz and (b) 1.0 Hz. Comparison between 
analytical and experimental results. 
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Figure 3.9: Pedestrian “1” - vx=3.75 km/h. Dynamic Load Factor vs. floor displacement 
amplitude at constant floor frequency: (a) 0.75 Hz and (b) 1.0 Hz. Comparison between 
analytical and experimental results. 

 
 
It is also possible to compare the behaviour of the models associated with 
pedestrians “2” and “1” at a given external frequency. At 0.75 Hz, the 
synchronization of pedestrian “1” begins before than for pedestrian “2”, at an 
amplitude of the floor motion of 2.5 mm for the former and 6 mm for the latter 
(Fig. 3.8a vs. Fig. 3.9a). The same effect occurs at 1.0 Hz, with threshold 
amplitudes of 1.0 mm and 1.5 mm, respectively. This different behaviour is due 
to the fact that pedestrian “1” has a natural oscillation amplitude smaller than 
the pedestrian “2” (9.6 mm vs. 13.3 mm): this makes it more sensitive to the 
floor motion. 
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3.4.2. Numerical vs. experimental results 

In the previous Subsection, it has been shown by some examples that the 
error between analytical and numerical solutions is not always small. Hence, 
in order to make a comparison with the experimental results available in the 
literature [9, 27, 28], the model behaviour is represented by the numerical 
simulations. Actually, this comparison is significant if the model predictions 
and the experiments concern the same pedestrian. Moreover, the experiment 
should be realized in both rigid and moving floor conditions for each 
individual. Unfortunately, these data are not available in the literature. For this 
reason, the numerical results of Fig. 3.10 have been obtained by considering 
models with parameters identified from measurements on pedestrians 
walking on a rigid floor (see Chapter 2), while the experimental points concern 
the moving floor regime and are taken from the articles mentioned in the 
legend of the Figure. Obviously, the walkers involved in these two 
experimental campaigns were not the same. In addition, the experimental 
force amplitudes normalized with the pedestrian weight, reported in the 
diagrams of published articles [9, 27, 28] are referred to both synchronized and 
non-synchronized pedestrians and it is difficult to know, for every single 
subject, if there was synchronization or not during the force measurement. 
Conversely, the stable branches obtained from the numerical simulations 
concern, by definition, synchronized pedestrians only. It is therefore very 
difficult to directly compare the experiment and the model results. 
Nonetheless, even accounting for all the intrinsic limits of this comparison, it 
can be noticed from Fig. 3.10 that there is a rather good agreement between 
model predictions and experiments. The parameters used for the numerical 
simulations corresponds to pedestrian “2” and pedestrian “1”, introduced 
above. As a matter of fact, the model leads to larger force amplitudes when the 
floor vibration frequency  is larger (recall that the analytical solution has a 
limit slope proportional to 2). Conversely, the available experimental results 
show that the force amplitude is substantially independent from the floor 
frequency. This difference might be related to the fact that the experimental 
force amplitudes concern both synchronized and non-synchronized 
pedestrians, while model predictions only concern synchronized pedestrians. 
    In summary, with the available information, the modified Van der Pol 
oscillator (3.5) gives a proper representation of test results. In addition, it gives 
an insightful physical interpretation of the experimentally detected 



A modified Van der Pol oscillator for modelling the lateral pedestrian force on a 
moving floor. Part I: response curves. 

 

- 66 - 

 

phenomenon of the approximately linear variation of the lateral force 
amplitude as function of the floor oscillation amplitude. A further comparison 
of the model with experimental results from a larger database is in progress. 
 
 

 
Figure 3.10: Dynamic Load Factor vs. floor displacement amplitude at constant floor 
frequency: (a) 0.75 Hz and (b) 1.0 Hz. Comparison between numerical results (pedestrians “1” 
and ”2”, vx=3.75 km/h) and experimental results (from the articles cited in the legend). 

 
 
 
 

3.5. Conclusions 

In this Chapter, an approach where the lateral pedestrian oscillations are 
modelled by a suitable self-sustained oscillator is presented. This oscillator is 
an extension of the classical Van der Pol model. In the simplest situation of 
autonomous oscillations (rigid floor) this modified Van der Pol (MVdP) 
oscillator gives a very good representation of the experimental behaviour (see 
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Chapter 2). The non-autonomous case is analyzed here. Both a theoretical 
analysis and a comparison with experimental results concerning the 
pedestrian behaviour are presented. In detail, the response of the MVdP 
oscillator under a harmonic external force associated with the floor motion is 
analytically evaluated by the harmonic balance method. An approximated 
expression of the amplitude of the periodic entrained solution is derived and 
compared with numerical results. Then, the model predictions are compared 
with experimental results coming from the literature, and a rather good 
agreement is obtained. The theoretical and applied aspects concerning the 
stability of the solutions of the MVdP oscillator are discussed in the next 
Chapter. 
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Chapter 4 
 
 
 
 

A modified Van der Pol oscillator for modelling 
the lateral pedestrian force on a moving floor.  

Part II: stability and synchronization 
 
 
 
 
 
The modified Van der Pol (MVdP) oscillator has been proposed in Chapter 2  
to model the lateral oscillations of a pedestrian walking on a rigid floor and it 
has been shown that in this case it gives a good representation of experimental 
results. The case of a pedestrian walking on a floor with harmonic lateral motion 
is treated in this Chapter (as in Chapter 3). The MVdP oscillator is analyzed in 
Chapter 3 in terms of amplitude of the entrained response, i.e. a response 
having the same frequency as that of the given periodic excitation, while the 
main goal of the present Chapter is the stability analysis of the entrained 
response. Some theoretical results, mainly related with the subject of the forced 
response of non-isochronous oscillators, are discussed. Then, these theoretical 
notions are applied to the pedestrian modelling problem: the conditions 
allowing stability of the solution are used to compute the percentages of 
pedestrians of a given population that can synchronize their walk with a given 
periodic floor motion. These model predictions are compared with 
experimental results concerning pedestrians walking on a shake table. 
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4.1. Introduction 

In this Chapter, the MVdP oscillator is studied in the non-autonomous case, 
modelling the oscillations of a pedestrian walking on a moving floor. The 
curves describing the amplitude of stationary entrained solutions have been 
determined in Chapter 3 by the harmonic balance method. The stability of 
these solutions is discussed in this Chapter. According to the physical 
interpretation of interest here, an entrained (or synchronized) solution 
indicates that the pedestrian walks at the same frequency as that of the floor. 
We recall that the term synchronization should be used when two or more 
coupled self-sustained oscillators oscillate at the same frequency due to the 
reciprocal interaction, while the term entrainment indicates the synchronization 
of an oscillator with an external agency [23]. We will indifferently use both 
terms, even if the most pertinent is entrainment. The stability of the entrained 
solution indicates that the synchronized walking can actually take place and 
can be preserved also after some small perturbation. Vice versa, an unstable 
entrained solution indicates that a small perturbation induces the loss of the 
synchronized walking: in practice, unstable entrained solutions cannot take 
place. 

Both theoretical and applied aspects are investigated. The stability 
domain is defined in terms of non-dimensional parameters and variables. 
These non-dimensional quantities are ”naturally” derived from the MVdP 
oscillator definition and are different from those used in similar analyses, like 
e.g. [38, 39]. Moreover, a comparison between numerical and analytically 
estimated stability domains is made. The differences are illustrated by some 
examples. Then, it is shown how these theoretical results concerning stability 
can be used to predict the percentages of pedestrians of a given population 
that may synchronize their walking frequency with that of a periodic floor 
motion. It is proven that the possibility of synchronization is correlated with 
the amplitude and frequency of the floor oscillation and with the characteristic 
of the single pedestrian, represented by a MVdP oscillator with identified 
parameters. The comparison with experimental results available in the 
literature [9, 27] is briefly discussed. 

After the Introduction, Sections 4.2  recall the definition of the MVdP 
oscillator and the main relationships defining the amplitude of its stationary 
entrained response to a harmonic excitation. Section 4.3 concerns the stability 
analysis of these responses, i.e. the main theoretical goal of this Chapter. Then, 
the use of these notions for the application of the pedestrian-floor 
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synchronization is discussed in Section 4.4. The conclusions give a summary of 
the main results. 

 
 
 
 

4.2. Summary of the proposed model 

The self-sustained oscillator chosen to represent the lateral oscillations of a 
pedestrian is the modified Van der Pol (MVdP) model proposed in Chapter 2. 
If the mode shape effect is neglected [5], the coupling between this oscillator 
and one of the lateral modes of a structure is represented by the following 
system (see also Figure 3.1a): 
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is the restoring force the MVdP oscillator. The oscillator defined by Eqs. (4.1)2 
and (4.2) is self-sustained, viz. it has a stable periodic orbit, when >0 and 
+3>0 [1].  
Like in Chapter 3, the coupled pedestrian-structure behaviour modelled by the 
system (4.1) is not considered. A simpler situation is rather analyzed, where 
the floor lateral motion is supposed known and harmonic with displacement 
amplitude Ad>0 and with frequency : 
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(4.3) 
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where Aacc:=Ad² is the floor acceleration amplitude. Hence the second 
equation in (4.1) becomes 
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Eq. (4.4) represents a pedestrian walking on a floor undergoing lateral 
harmonic oscillations; see also Figure 3.1b. This condition can be easily 
obtained in a laboratory test, asking pedestrians to walk on a treadmill placed 
on a shake table [27]. The solutions of Eq. (4.4) are supposed of the form 
 

   : cosyu t R t    (4.5) 

 
According to Eq. (4.5), uy(t) has constant amplitude and frequency and is 
synchronyzed with the external excitation frequency. A solution of this kind 
represents a pedestrian synchronized with the floor. 
We observe that in the autonomous case, i.e. when Aacc = 0, the natural 
oscillations of the MVdP oscillator along its limit cycle can be represented by 
an expression like (4.5), where, in the limit of small , it holds 

2 / 3R   ,  is arbitrary and  is equal to: 
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4.2.1. Normalization, fixed points, amplitude equation 

In Chapter 3, the fixed points of Eq. (4.4) have been derived using the 
harmonic balance method and an analytical expression for R and  of Eq. (4.5) 
has been found. For the sake of clarity, the procedure developed in Chapter 3 
is briefly recalled. First, the time-scale 

 

0t   (4.7) 
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is introduced and this leads to an alternative expression of Eq. (4.4): 
 

                2 2

2
0

1 cosaccA
w w w w w w w           


           (4.8) 

 
where the dot indicates the derivative with respect to  and 
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The periodic solution (4.5) becomes 
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Then, the following quantities are introduced 
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where 3 0    and   is assumed close enough to 1 to guarantee that 

23 0   ; R0 has the meaning of reference response amplitude and  is a 

normalized form of the parameter  of Eq. (4.4). Then, let us set 
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where r is a non-dimensional response amplitude,  is a non-dimensional 
external acceleration amplitude and  is a non-dimensional "detuning" 
between the external frequency  and the frequency 0 of the underlying 
linear system associated with the MVdP oscillator. It has been proven in 
Chapter 3 that the harmonic balance method applied to Eq. (4.8) leads to the 
following expression for the non-dimensional response amplitude r at a fixed 
point: 
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   2 22 2 2 2 21 0r r r r        (4.13) 

  
Eq. (4.13) is an implicit relationship between r and the frequency detuning , 
with and additional dependence on the external excitation amplitude  and on 
the parameter . Moreover, Eq. (4.13) extends the analogous equation 
associated with the standard Van der Pol model or the Rayleigh model, 
corresponding to ==0. When the parameter  defined by Eq. (4.11) is non-
zero, the MVdP oscillator (4.4) is non-isochronous, according to the definition 
given, for instance, in [24]. An expressions similar to the amplitude equation 
(4.13) has been discussed, among others, in [38, 39], with a different choice of 
the non-dimensional parameters, related to the different nature of the 
associated physical problem. 
Let us rewrite (4.13) by using the squared amplitude z=r²: 
 

       2 3 2 2 2
, , : 1 2 1 1 0p z z z z               (4.14) 

 
Eq. (4.14) states that the squared normalized amplitude z=r² is a root of a 
polynomial of order 3. Due to the definition of z, only real and positive roots of 
the polynomial p,,(z) are admissible. In Chapter 3, different graphical 
representations of the roots z of Eq. (4.14) have been discussed. Here, we are 
rather interested in the stability analysis of these solutions having normalized 
amplitude r. This study is made in the next Section. 
 
 
 
 

4.3. Local stability of the entrained steady response 

  In this Section, we analyze the local stability of the solution (4.10) of Eq. 
(4.8) by considering a small perturbation v(), according to a procedure similar 
to that presented in [44]. The perturbed solution reads 
 

     cos vw R t       (4.15) 

 
Only the "first type" of stability is investigated [44]. This corresponds to 
assume that the perturbation v() can be approximated by a harmonic 
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expression with the same fundamental frequency and truncated at the same 
order than the assumed response (4.10): 
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By replacing (4.15) and (4.16) in Eq. (4.8), it is possible to derive the following 
relationship (see the Appendix C for the details): 
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By setting 
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where b1c and b1s are constant, the eigenproblem (M-κI)b=0 is derived. 
According the standard procedure [23], the stability is related to the 
eigenvalues κ1,2 of the matrix M, which are solutions of the characteristic 
equation κ²-k tr(M)+detM=0, where "tr" and "det" are the trace and determinant 
operators. The stability requires that the real part of the eigenvalues is 
negative. This means that the two following conditions must hold: 
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    21 2 0p tr rM  (4.19) 

 
The negative determinant characterizes saddles, for all values of p. When the 
determinant is positive, the fixed points may be stable or unstable, according 
to the sign of the trace p and they are nodes or spirals, according to the sign of 
the discriminant 
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The conditions q=0, p=0 and=0 define curves associated with a change of 
stability and/or nature of the fixed points, i.e. the steady solutions. It is 
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possible to represent these transition curves in the ν-r² plane and in the ν- 
plane. In the next two Subsections, both approaches are considered. 
 
 
 
 

4.3.1. Representation in the ν-r² plane 

Let us begin with the condition q=0. By using the definition of q given in 
(4.18) and setting z=r², one has: 
 

   2 2 2: 0 3 1 4 1 1 0SB q z z           (4.21) 

 
It can be easily proven that (4.21) is identical to the condition dp,,(z)/dz=0 
where p,,(z) is the polynomial given in Eq. (4.14). This condition defines the 
conic in the -z plane where p,,(z) has three real positive roots and two of 
them are repeated. In Chapter 3, it has been shown that this conic can be an 
ellipse (||<√3), a parabola (=±√3) or a hyperbolae (||>√3); see also Figure 
4.1.  The points in the (-z) plane inside the conic correspond to q<0. Therefore, 
they are saddles. The equilibrium points outside the conic (q>0) and having the 
discriminant >0 are nodes. For this reason, the conic is called saddle-node 
bifurcation BS. Moreover, one has 
 

1
: 0

2HB p z    (4.22) 

 
i.e. the condition p=trM=0 defines a horizontal line in the -z plane. This line 
intersects the conic BS. However, since inside the conic the equilibria are 
saddles independently from the sign of p, the part of this line lying inside BS 
does not change the nature of equilibria and it can be canceled out. 
Conversely, outside BS the sign of p affects the stability of the fixed points: the 
two horizontal half-lines associated with (4.22) separate stable from unstable 
fixed points and define the so-called Hopf bifurcation BH. The stable region 
(p<0) corresponds to z>1/2 (Fig. 4.1). 
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Figure 4.1: Response curves and stability regions of the MVdP oscillator. Dotted lines: 
response amplitude curves associated with Eq. (4.14). Continuous lines: conic associated with 
the saddle-node bifurcation (4.21). Dashed-dotted lines: Hopf bifurcation (4.22). Dashed lines: 
nodes-spirals bifurcation (4.23). 

 
 
The transition between nodes and spirals is defined by the condition Δ=0 (Eq. 
(4.20)). Four cases are distinguished, according to the  value. For each case, 
the transition is defined by a couple of half-lines BN issuing from the origin of 
the -z plane (recall that z≥0): 
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(4.23) 

 
The condition Δ<0, associated with spirals, is fulfilled for <₁ and >₂ (see 
Figure 4.1). The intersections between BS, BH and BN define the points O and 
O′. By solving a system formed by Eqs. (4.21) and (4.22), one has the (,z) 
coordinates of these points; see Table 4.1. It is easy to check that BN also passes 
through the same points. Then, the corresponding  values are determined 
inserting (,z) into Eq. (4.14). Other important points are those where the 
tangent to the conic BS is vertical, like the points A and A′ of Fig. 4.1. Instead of 
studying these points in the -z plane, like it has been made in Chapter 3, the 
alternative - representation is preferred. The details are reported in the 
following Section. 
 
 

 2z r     0   

O’ 
1
2

 21
1

2
     2

21
1 1

2 2
     

O 1
2

 21
1

2
     2

21
1 1

2 2
     

Table 4.1 : Coordinates (z; ; ) of the points O and O’, at the intersection of BS, BH and BN. 

 
 



A modified Van der Pol oscillator for modelling the lateral pedestrian force on a 
moving floor. Part II: stability and synchronization. 

 

- 79 - 

 

4.3.2. Representation in the ν- plane 

In this Subsection, a representation of the curves BS, BH and BN in the - 
plane is considered. The expression of each curve is obtained by replacing the 
corresponding definition, i.e. (4.21), (4.22) or (4.23), into Eq. (4.14) and 
eliminating the variable z. By this procedure, the expression associated with BS 
reads: 
 

                               
2 222 4 2 2 2 3 3 227 1 4 60 36 36 1 4 4 1 0  (4.24) 

 
Observe that Eq. (4.24) can be rewritten under the form of the second order 
polynomial a1x²+a2x+a3=0 in the variable x=², having the coefficients 
 

   22
1 1 27 1a a      

    2 2 3 3
2 2 , 4 60 36 36 1 4a a                 

     22 2
3 3 , 4 1a a          

 

The two real and positive roots are indicated by  2 ,Q    and  2 ,P   . Their 

square roots read: 
 

 
 

        
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        

2
2 2 1 3

1

2
2 2 1 3

1

1
, , , 4 , 0
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1
, , , 4 , 0

2
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P

a a a a
a

a a a a
a

         


         


    

    
 (4.25) 

 
According to (4.25), for a given  one has Q(,)<P(,). The plot of P and 
Q as functions of , for fixed , gives the upper and bottom branches of the 
saddle-node bifurcation, respectively (see Figs. 4.2, 4.3, 4.4 and 4.5). The -
values associated with the cusps A and A′ at a given  derive from the 

condition 2
2 1 34a a a  (see Table 4.2). Moreover, at these points one has 

    2 2
2 1, / 2Q P a a        and  this leads to the coordinates  of the cusps 

reported in the last column of Table 4.2. The corresponding amplitudes z=r² 
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are finally derived by using Eq. (4.21). The  -  representation of the Hopf 
bifurcation BH is obtained by replacing Eq. (4.22) into Eq. (4.14). This leads to: 
 

   21 1 1
8 2 2

,H        with  <O’, or  >O (4.26) 

 
Moreover, by replacing Eq. (4.23) in Eq. (4.14), one obtains the node-spiral 
bifurcations BN. The explicit expressions are not reported for brevity. 
In the -z plane, there are two common points between the Hopf bifurcation 
BH and the saddle-node bifurcation BS, viz. O and/or O′ (see Fig. 4.1). In the -
 plane, the curves BH and BS are tangent at the same points (Figs. 4.2, 4.3, 4.4 
and 4.5). Moreover, in this plane BH and BS intersect at two other points, B and 
B′. In order to find their coordinates, one needs to replace Eq. (4.26) into (4.24). 
This leads to the following equation: 
 

   22 2 4 3 2 21
64

3 8 4 1 3 8 14 40 16 5 0                  (4.27) 

 

The first factor is null when 21
2

1     , i.e. at the points O and O′. The 

roots of the second factor define the abscissas of B and B′: 
 

    
    

2 2 2
'

2 2 2

1
4

1
4

5 1 5

5 1 5

B

B

    

    

    

    
 

 
The corresponding  coordinates are easily obtained by replacing the -values 
in Eq. (4.26): 
 

  
  

2
3 2 2

'

2
3 2 2

1
4

1
4

1
1 3 1 5

2 2
1

1 3 1 5
2 2

B

B

    

    

     

     
 

 
As it is said for an analogous situation in [38], an important particular case 
occurs when  is such that the points A, O and B converge in a unique 
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bifurcation point of codimension 3. This particular  value can be computed 
by imposing the equality O=A, with the values taken from Tables 4.1 and 4.2, 
respectively. This leads to 
 

3 /3, 0 and 1/ 6A O B A O B               

 
Likewise, the points O′, A′ and B′ coincide when 
 

 ' ' ' ' ' '3 /3, 0 and 1/ 6A O B A O B              

 
The values =±√3/3 bound the so-called small isochronicity region [24]. The 
curves defining the different kinds of bifurcations have been defined.  
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Figure 4.2: Bifurcations portraits of the MVdP oscillator in the parameter plane (, ). Case 
=0. Global view and detail of the zone around the right cusp A of the saddle-node bifurcation 
BS. 
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Figure 4.3: Bifurcations portraits of the MVdP oscillator in the parameter plane (, ). Case 
=0.5. 
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Figure 4.4: Bifurcations portraits of the MVdP oscillator in the parameter plane (, ). Case 
=1. Global view and (a) detail of the zone around the left cusp of BS; (b) detail of the zone 
inside BS where the branches of the node-spiral bifurcation BN intersect; (c) detail of the zone 
around the right cusp of BS. 
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Figure 4.5: Bifurcations portraits of the MVdP oscillator in the parameter plane (, ). Case 
=2. 
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Table 4.2 : Coordinates z and (, ) of the cusp points of the saddle-node bifurcation BS. 
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Let us now analyze the regions of the - plane delimited by these curves. 
Three types of regions are distinguished: 
 

 Type I regions: outside the saddle-node bifurcation BS (Eq. (4.24)) and 
such that >H(,) (Eq. (4.26)). 

 Type II regions: inside the saddle-node bifurcation BS (Eq. (4.24)). 

 Type III regions: outside the saddle-node bifurcation BS (Eq. (4.24)) and 
such that 0<<H(,) (Eq. (4.26)). 
 

Each point (, ) of the regions of type II (for given ), is associated with three 
solutions of the form (4.5)-(4.10), i.e. three values of the squared non-
dimensional amplitude z=r². Conversely, each point of the regions I and III is 
associated with one solution. The number of sub-regions and the nature and 
stability of the associated solution(s) varies with the value of the parameter . 
Let us analyze the following cases: 
 

(a) =0 (see Figure 4.2 and Table 4.3). This situation corresponds to the 
standard Van der Pol and/or Rayleigh oscillators. It is the so-called 
isochronous case [24]. There are two regions of type I, where each point 
(, ) is associated with a stable node (I₁) or a stable spiral (I₂). In both 
regions, the entrained solution (Eq. (4.5) or (4.10)) is stable. The region 
III is characterized by an unstable spiral. Therefore, the entrained 
solution is not stable. The transition from I₂ and III occurs via the Hopf 
bifurcation (4.26). In the four regions of type II, each point is associated 
with a saddle and two other solutions, whereof at least one is stable 
(Table 4.3). In summary, in the regions I and II a stable entrained 
solution exists, while in the region III the entrained solution is unstable. 
The upper bounds of the region III are the lower branch of BS (=Q) 
and BH, that intersect at the point B for positive  and at B′ for negative 
. 

(b) 0<||≤√3/3. In this case, the region II is “stretched” with respect to the 
basic isochronous case =0, with a consequent loss of symmetry with 
respect to the -axis. The bifurcation diagram remains substantially 
unchanged, with the exception of the new region III₁, associated with 
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an unstable node; see the first column of Table 4.4 and, for the 
particular case =0.5, Fig. 4.3. 

(c) √3/3<||<√3. With respect to the case (b), three new regions of type II 
appear (see Table 4.4 and, for the particular case =1, Fig. 4.4). The 
regions II₆ and II₇ are characterized by three unstable solutions. For 
positive , the left branch of the Hopf bifurcation is tangent to the lower 
branch Q of the saddle-node bifurcation at O′, while in the cases (a) and 
(b) it is tangent to the upper branch P. The unstable domain, 
constituted by the regions II₆, II₇, III and III₁, is still delimited by the 
curves BS (=Q) and BH, but the relevant intersection point for negative 
 is O′, instead of B′. An analogous situation occurs for negative , for 
points O and B. 

(d) ||≥√3. In this case, the regions II₃ and II₄ become open, and the cusp 
A′ no longer exists (see Figure 4.5, for the case =2). The new region II₈ 
appears: it contains points associated with three solutions, one of which 
is stable (Table 4.4). The other regions are the same as in the case (c). 

 
 

Region I1 I2 II1 II2 II3 II4 III 

P <0 <0 <0, (-), >0 <0, (-), >0 <0, (-), <0 <0, (-), <0 >0 
Q >0 >0 >0, <0, >0 >0, <0, >0 >0, <0, >0 >0, <0, >0 >0 

 >0 <0 >0, >0, >0 >0, >0, <0 >0, >0, <0 >0, >0, >0 <0 
 s.n. s.s. s.n., sd., u.n. s.n., sd., u.s. s.n., sd., s.s. s.n., sd., s.n. u.s. 

Table 4.3 : Description of the fixed points in the different regions of the bifurcation diagrams. 
First part. (s.n.=stable node; s.s.= stable spiral; sd.= saddle; u.n.= unstable node; u.s.=unstable 
spiral). 

 
 

Region III1 II5 II6 II7 II8 

p >0 <0, (-), >0 >0, (-), >0 >0, (-), >0 <0, (-), >0 
q >0 >0, <0, >0 >0, <0, >0 >0, <0, >0 >0, <0, >0 
 >0 <0, >0, >0 <0, >0, >0 >0, >0, >0 >0, >0, <0 
 u.n. s.s., sd., u.n. u.s., sd., u.n. u.n., sd., u.n. s.s., sd., u.s. 

Table 4.4 : Description of the fixed points in the different regions of the bifurcation diagrams. 
Second part. (s.n.=stable node; s.s.= stable spiral; sd.= saddle; u.n.= unstable node; 
u.s.=unstable spiral). 
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Collecting the conditions corresponding to the four cases, i.e. for all , it is 
possible to distinguish the regions where there is at least a solution of the form 
(4.10) which is stable, viz. synchronization occurs, and the regions where 
synchronization is not possible. A summary of these conditions is given in 
Table 4.5. This Table defines a three-dimensional stability domain in the space 
(, , ). Accounting for the previous discussion, the transition between stable 
and unstable domains occurs either via the Hopf bifurcation (=H) or via the 
bottom branch of the saddle-node bifurcation (=Q). The graphical 
representation of this boundary as a surface in the space (, , ) is given in 
Figure 4.6, where the stability region is over the surface. Actually, the 
representation is made with a translated -axis, i.e. (-, , ). 
 
 

  < -√3/3 || ≤ √3/3  > √3/3 

≥H  when  ≤ B’  ≤ B’  ≤ O’ 
≥Q  when B’ ≤  ≤ O B’ ≤  ≤ B O’ ≤  ≤ B 
≥H  when  ≥ O  ≥ B  ≥ B 

Table 4.5 : Inequalities defining the stability domain for the entrained solutions (4.5)-(4.10) of 
the non-utonomous MVdP oscillator (4.4), according to the analytical approximation based on 
the harmonic balance method. Q = Q (, ) and H = H (, ) are defined by Eqs. (4.25) and 
(4.26), respectively. 
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Figure 4.6: Surface representing the lower boundary of the stability domain, according to the 
analytical approximation defined in Table 4.5. Each point over the surface represents a 
pedestrian synchronized with the harmonically moving floor. 

 
 
The domains described above are related with the local stability of the solution 
(4.5). However, it is well-known that some non-local bifurcations also exist for 
systems like Eq. (4.13); see e.g. [24]. The study of non-local bifurcations for the 
MVdP oscillator is beyond the purposes of this Chapter. One also observes 
that the transition between stable and unstable spirals across the Hopf 
bifurcation does not occur suddenly: around an unstable spiral defined by the 
coordinates (x1=Rcosθ, x2=Rsinθ), a limit cycle always raises [23]. If the spiral of 
coordinates (x1, x2) is close to the Hopf bifurcation, this limit cycle is small and 
does not envelope the origin of the plane (x1, x2): in this case the frequency of 
the solution uy (Eq. (4.5)) is still that of the external force, but the amplitude is 
modulated, i.e. uy is not of the form predicted by Eq. (4.5). This situation is 
sometimes called "nearly synchronous" regime [24]. When the spiral is far 
enough from the Hopf bifurcation, the limit cycle around the spiral also 
envelops the origin of the plane (x1, x2) and the frequency of the solution 
becomes different from that of the excitation and synchronization is 
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completely lost. For simplicity, these two situations are not distinguished in 
this Chapter and they are both considered as non-synchronized. 
 
 
 
 

4.4. The use of the stability domain for predicting the 
pedestrian synchronization 

In this Section, the theoretical notions previously discussed are used to 
interpret experimental results about the lateral oscillations of pedestrians 
walking on a moving floor. Several studies have been performed in this 
situation. In particular, in [9, 27] experimental results on a shake table with 
harmonic motion are discussed and some percentages of synchronized 
pedestrians are found. The main goal here is to show that the MVdP oscillator 
(4.4) gives a sound representation of experimental results of this kind. 

 
 
 

 

4.4.1. Analytical viewpoint: a 3D normalized synchronization 
domain 

Let us suppose in this Subsection that the analytical approximation of the 
synchronization domain (Table 4.5) is very close to the exact domain. If this is 
the case, a simple procedure can be suggested for evaluating the percentage of 
pedestrians that synchronize with the harmonically moving floor. According to 
the definition (4.4) of the MVdP oscillator, a pedestrian is represented by the 
five parameters , 0, ,  and , while the harmonic floor motion is 
represented by two parameters, i.e. the acceleration amplitude Aacc and the 
pulsation . Hence, there are seven "physical" parameters. Nonetheless, it is 
possible to use Eqs. (4.11) and (4.12) to reduce to three the number of (non-
dimensional) parameters necessary and sufficient to represent a pedestrian 
walking on a floor with a given harmonic motion: 
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These parameters can be thought as the coordinates of a point in the 3D (, , 
) space. In the same space, the synchronization domain has been defined by 
the conditions collected in Table 4.5 and it has been represented in Fig. 4.6, 
with the translation  →  - . When the point is outside this domain, i.e. it is 
under the surface plotted in Fig. 4.6, synchronization cannot occur. 
Conversely, when the point is inside this domain, the synchronization of the 
pedestrian with the floor is possible. For instance, Fig. 4.6 shows twelve points, 
corresponding to twelve pedestrians (see Chapter 2, test with nominal 
longitudinal speed vx=4.5 km/h) on a laterally moving floor with Aacc=0.15 
m/s² and f=/2=0.75 Hz. The ratio between the number of points over the 
surface and the total number of points gives the synchronization percentage. 
Looking at Fig. 4.6, one notices that when =0 the synchronization domain 
touches the axis  - =0 (see the Appendix D). This indicates that also for very 
small excitations, synchronization is possible provided that the difference  -  
is close enough to zero. In terms of dimensional parameters, =0 entails Aacc=0 
by means of the third identity in (4.28): it is the rigid floor condition. 
Moreover, it can be proven that, in terms of dimensional parameters,  - =0 
corresponds to =1 (see the Appendix D), where 1 is the walking frequency 
of the pedestrian on a rigid floor; see Eq. (4.6). Hence, synchronization is 
possible even for small excitation amplitudes, provided that the excitation 
frequency  is very close to 1. Conversely, if the difference  -  is large, the 
synchronization occurs only when the excitation amplitude  is large. 
According to this interpretation, it makes no sense to speak about an absolute 
threshold value of the excitation amplitude acting on a single pedestrian, 
without referring to the detuning  - , correlated with the frequency difference 
 - 1. Fig. 4.6 as well as Figs. 4.3 - 4.5 show that for a given non-zero  value, 
the lower boundary of the stability/synchronization domain is not an even 
function of  - . Therefore, the sign and not only the amplitude of the frequency 
detuning is important. If >0, the tendency to have synchronization is greater 
when the floor frequency is larger than the pedestrian natural frequency (-
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1>0 ֞  ->0). This asymmetric behaviour is correlated with the term 
proportional to  in the MVdP oscillator, that is in turn proportional to . The 
model identification presented in Chapter 2 shows that the identified values of 
 are always positive and that this parameter is essential to have a good fitting 
of experimental lateral forces in rigid floor regime. Concerning the test results 
available in the literature for the moving floor regime (e.g. [9, 27]), it is actually 
not easy to extract some information about the synchronization behaviour of 
each single pedestrian for different frequency detunings. The measurement 
results are often given under the form of percentages of synchronization, 
without referring to the single individual. For this reason, it is not easy to 
detect this asymmetric synchronization effect. Further experimental analyses 
might help to get a better understanding of this aspect. 
 
 
 
 

4.4.2. Analytical vs. numerical synchronization domain 

The analytical approximation of the stability domain presented in the 
previous Subsection is insightful, since it shows an essential characteristic of 
the synchronization behaviour: only three normalized parameters suffice, as a 
first approximation, to represent the seven physical parameters describing a 
pedestrian walking on a harmonically moving floor. However, the assumption 
made at the beginning of the previous Subsection is not always fulfilled. 
Actually, Eqs. (4.21), (4.22), (4.23) and the relationships of Table 4.5 defining 
the analytical approximation of the stability domain have been obtained 
supposing that the solution of the forced MVdP model is of the form (4.5)-
(4.10), where superharmonics components of the response are neglected. 
Hence, this analytical representation has to be used with caution. In order to 
avoid an important effect of the higher harmonics, the amplitude of the force 
has to be small. For the same reason, the parameters  and  related to the 
nonlinear damping and the frequency detuning   should be small [23]. In 
addition, it should not be forgotten that this domain concerns the 1:1 
synchronization only [24]. 
Accounting for these remarks, a comparison between analytical predictions 
and numerical results is presented in Figs. 4.7, 4.8 and 4.9. Three cases are 
considered: (a) =0; (b) =0.5; and (c) =1. Each point in these figures gives the 
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numerical estimation of the boundary of the stability domain for a given  
value. It has been obtained doing several numerical simulations at a given 
value of  and modifying the  value. In detail, Eq. (4.4) is solved with the 
parameters =0.15, =1, =1, 0=1; the excitation frequency  is computed 
using the second identity in (4.28) for the given  value, while  is computed 
for the given  value (constant in each Figure) using the first relationship in 
(4.28). Finally, Aacc is modified according to the third identity in (4.28) in order 
to modify the  value. For small  values, the computed response is not 
synchronized (like in the example of Fig. 4.10a).  By increasing , this 
behaviour changes at the transition across the stability domain and a solution 
with constant amplitude and frequency  appears (like in the example of Fig. 
4.10b). The transition value of , together with the given , defines one point. 
As it can be seen from Figs. 4.7, 4.8 and 4.9, the difference between analytical 
and numerical results is not always small, above all for the highest values of  
and . For this reason, only the numerical results are used for the comparison 
of the model predictions with the experimental results (see the following 
Subsection). 
 

 
Figure 4.7: Comparison between the analytical and numerical estimations of the boundary of 
the stability domain of the MVdP oscillator. Case  = 0. 
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Figure 4.8: Comparison between the analytical and numerical estimations of the boundary of 
the stability domain of the MVdP oscillator. Case  = 0.5. 
 

 
Figure 4.9: Comparison between the analytical and numerical estimations of the boundary of 
the stability domain of the MVdP oscillator. Case  = 1. 
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Figure 4.10: Time-evolution of the displacements of the center of mass of pedestrian “2” (vx = 
3.75 km/h) in the case of (a) non-entrained oscillation (Aacc=0.05 m/s2, /(2)=1 Hz) and (b) 
entrained oscillation (Aacc=0.15 m/s2, /(2)=1 Hz). uy : relative displacement; Uy + uy : absolute 
displacement; Uy : shake table displacement. 

 
 
 
 

4.4.3. Percentages of synchronization for a group of pedestrians 

We consider here two populations of twelve pedestrians, represented by 
two groups of twelve MVdP oscillators. The parameters defining these 
pedestrians have been identified from rigid floor walking tests [see Chapter 2]. 
Actually, the pedestrians of the first population were asked to walk on a 
treadmill with a nominal speed vx=3.75 km/h . Each pedestrian has a natural 
walking frequency corresponding to this longitudinal speed. The average of 
the natural frequencies of this group is 0.848 Hz with a standard deviation of 
0.055 Hz. The same pedestrians were also asked to walk at the nominal speed 
vx=4.5 km/h. The average frequency in this case is 0.923 Hz with a standard 
deviation of 0.053 Hz.  
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For each oscillator/pedestrian a numerical simulation is made with an 
periodic excitation corresponding to a floor motion with given acceleration 
amplitude Aacc and frequency . The response is computed considering zero 
initial conditions: if a steady response with constant amplitude and frequency 
equal to  is reached after a transient (see Fig. 4.10b), then the 
oscillator/pedestrian is considered synchronized with the floor. It is non-
synchronized in the opposite case (see Fig. 4.10a). The plots of Fig. 4.10 
concern the pedestrian “2” (case of longitudinal speed vx=3.75 km/h), having 
natural walking frequency of 0.873 Hz. The corresponding model parameters 
(identified in rigid floor conditions) read: 0=4.60 rad/s, =1.107, =4785 m-2, 
=7416 m-2, =3426 m-2, m=69.4 kg. 

Table 4.6 concerns the first population and shows the percentages of 
synchronized pedestrians for several amplitudes and frequencies of the floor 
motion. Table 4.7 concerns the second population, characterized by a slightly 
higher averaged frequency. It can be seen that the highest percentages of 
synchronization occur for the highest floor acceleration amplitudes and for 
floor frequencies close to the average value of the population. This dependence 
of the synchronization percentages on the floor motion amplitude and 
frequency is analogous to that obtained from the tests discussed in [9] and [27], 
realized with different populations of pedestrians walking on a shake table 
with harmonic lateral motion. 
 
 

                  f [Hz] 
 

Acc [m/s2] 

 
0.5 

 
0.75 

 
1.0 

 
1.25 

 

0.05 0/12 5/12 1/12 0/12  
0.15 0/12 12/12 7/12 0/12  
0.30 9/12 12/12 12/12 3/12  

Table 4.6 : Percentages of synchronized pedestrians in a population of twelve people. The 
average of the natural walking frequencies of all pedestrians is 

1f  = 0.848 Hz with a standard 

deviation of 0.055 Hz. 
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                  f [Hz] 
 

Acc [m/s2] 

 
0.5 

 
0.75 

 
1.0 

 
1.25 

 

0.05 0/12 0/12 5/12 0/12  
0.15 0/12 10/12 11/12 0/12  
0.30 9/12 12/12 12/12 7/12  

Table 4.7 : Percentages of synchronized pedestrians in a population of twelve people. The 
average of the natural walking frequencies of all pedestrians is 

1f  = 0.923 Hz with a standard 

deviation of 0.053 Hz. 

 
 
 
 

4.5. Conclusions 

In this Chapter, the modified Van der Pol (MVdP) oscillator defined in 
Chapter 2 is studied in the non-autonomous regime. The analysis mainly 
concerns the local stability of steady entrained solutions, i.e. the periodic 
solutions having the same frequency as the imposed harmonic excitation. 
These results supplement those of the Chapter 3, where the amplitude of the 
entrained solutions was computed without evaluating the stability. The 
stability domain of the MVdP oscillator found by an analytical procedure is 
compared with numerical simulations results. Then, these theoretical notions 
are used to estimate the percentage of pedestrians synchronized with a floor 
undergoing a given periodic motion. The proposed procedure provides an 
effective way of interpreting the results of synchronization percentages 
obtained by tests where pedestrians walk on a shake table undergoing 
harmonic oscillations. 
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Chapter 5 
 
 
 
 

Conclusions 
 
 
 
 

 
In this thesis, an exhaustive experimental analysis of the lateral walking 

force on a rigid floor has been presented. The importance of the phase 
differences between the Fourier harmonics in the series representing the 
periodic approximation of the force has been highlighted. Then, the use of a 
self-sustained autonomous SDoF oscillator has been proposed for modelling 
the lateral motion of the center of gravity of a pedestrian walking on a rigid 
floor: the nonlinear restoring force of this oscillator represents the lateral 
walking force. It has been proven from the analysis of experimental data that a 
modified version of the classical Van der Pol model provides a very good 
fitting between the model behaviour and the periodic force extracted from 
experiments. 

When the floor is moving (non-autonomous MVdP oscillator), both a 
theoretical analysis and a comparison with experimental results concerning 
the pedestrian behaviour are presented. In detail, the response of the modified 
Van der Pol (MVdP) oscillator under a harmonic external force associated with 
the floor motion is analytically evaluated by the harmonic balance method. An 
approximated expression of the amplitude of the periodic entrained solution is 
derived and compared with numerical results. Then, the model predictions are 
compared with experimental results coming from the literature, and a good 
agreement is obtained. 

Once the behaviour of the single pedestrian/oscillator in known, a set 
of several non-autonomous MVdP oscillators can be considered in order to 
represent the total lateral force of a crowd on a moving floor. These analyses 
will be addressed in future work. 
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Chapter 6 
 
 
 

Appendix 
 
 
 
 

A. Fourier series coefficients 

By definition, a periodic signal Fy(t) can be written as follows: 
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Equivalently, one can write 
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Observe that the function arctan(x,y) provides k-values in the interval (-, ] 
(or equivalently, in the interval [0, 2)), because it takes into account the sign 
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of both arguments x and y. Moreover, k is zero on the positive x-axis and 
increases in the counter-clockwise direction. 
 
 
 
 

B. Perturbation analysis of the MVdP model 

According to a standard perturbation method, one assumes ||1ا and the 
solution of (2.14) is supposed of the form 
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with the initial conditions 
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Replacing these expressions in (2.17) and then writing out the equations up to 
the first order of , one obtains 
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The solution of the first equation reads 
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   ,0 0 cosyu a   (2.42) 

 
where a0 is unknown. This expression can be substituted in the second 
equation of (2.41). Then, the r.h.s. terms proportional to cos(τ) and to sin(τ) are 
imposed to be zero, in order to remove the so-called "secular terms". These two 
conditions lead to the computation of a0 and ρ1: 
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Observe that the condition +3 >0 must be satisfied for the existence of this 
solution. Moreover, 1 is zero when =0, i.e. for both the Van der Pol and 
Rayleigh's models. It is now possible to compute the solution of the first order 

equation  ,1yu  . An analogous procedure leads to a1, 2 and  ,2yu   and 

higher order terms. In summary, up to the first order term, one has 
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The last expression can be derived with respect to , in order to get the 

normalized velocity 
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The convention on the sign of  is illustrated in Fig. 2.10. At the first order, 
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From (2.46), one has that     at the zero order. Hence, the radius can be 

written as function of the angle  : 
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C.  Perturbation of the steady solution  

It has been shown in Chapter 3 that by replacing the periodic solution (4.10) in 
Eq. (4.8), one obtains the following equilibrium equations: 
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Moreover, by inserting the expression (4.15) of the perturbed solution into the 
equation (4.8), one obtains 
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(4.30) 

The external excitation term related to Aacc does not appear in Eq. (4.30), since 
it cancels out together with the terms fulfilling the equilibrium equations 
(4.29). The third order harmonics have also been neglected, according to the 
harmonic balance method and to the assumption (4.16). The linearization of 
(4.30) leads to 
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 (4.31) 

 
We recall the definition (4.16) and make a Van der Pol transformation between 

the variables  v,v  and (B1c, B1s): 
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1 1
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
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     (4.32) 

 
with the compatibility condition 
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   1 1sin coss cB B          (4.33) 

 
This identity is obtained imposing that the velocity defined in (4.32)₂ is equal 
to the velocity computed by differentiating Eq. (4.32)₁. The acceleration, 
obtained by differentiating (4.32)₂, reads: 
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1 1 1 1v sin cos cos sins c s cB B B B  (4.34) 

 
By replacing (4.32) and (4.34) in Eq. (4.31) and after some trigonometric 
development, one has 
 

       

         
      

   

           

           

         

       

      

       

     

    

         

     

    

   

2 2
1 1 1 1

2 2 2
1

2 2 2
1

2 2
1

1 1 1
2 2 4

1 1
2 4

3
4

sin cos cos sin

sin cos sin sin

cos sin cos

cos cos

s c s c

s

c

s

B B B B

B R R

B R R

B R R     
        

     

              

  

       



  

      

2 2

2 2 2 2
1

1 3
2 4

1 1 9
4 2 4

sin cos

sin sin cos sin

0

c

R

B R R R

 
where the third harmonic components have been neglected like in the 
previous expressions. This equation and the compatibility condition (4.33) 
constitute a system of two first order equations which can be rewritten, after 
some developments, as follows: 
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The even superharmonics have been neglected. By using the normalized 
parameters and variables defined by (4.11) and (4.12), one obtains the 
equivalent system: 
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The corresponding matrix form is given in (4.17). 
Observe that the perturbation v(τ) given in Eq. (4.16) could be defined in an 
alternative way: 
 

   1 1: cosyu t R     (4.36) 

 
with 
 

1 1,R R         

 
where  and  are small perturbations of the response amplitude and phase, 
respectively. Hence, Eq. (4.36) becomes 
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The assumption that  is small has been used to develop in Taylor series cos() 
and sin(). Finally, 
 

      v cos sinR            (4.37) 

 
By comparing (4.16) and (4.37), it can be concluded that 

 

 1 1andc sB B R     
(4.37) 

 
By replacing Eq. (4.38) in Eq. (4.35), one has 
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
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The trace and determinant of the matrix are identical to those of M defined in 
(4.17). 
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D.  The condition  =   

According to the conditions listed in Table 4.5, only the boundary BS 
(=Q(,)) of the stability domain can fulfil the condition =0. Hence, using 
Eq. (4.25) and setting Q(,)=0, one obtains =. The physical meaning of the 
condition = can be explained by rewriting it in terms of non-normalized 
variables. For the sake of simplicity, this is done in the case where the 
parameter  associated with the nonlinear terms of the MVdP oscillator 
representing a pedestrian (Eq. (4.4)) is very small and assuming that  is very 
close to the frequency 0 of the underlying linear system: 
 

 
0

1 with 1s s
 


       (4.39) 

 
In this case, the definition of  given in Eq. (4.12) leads to: 
 

s   (4.40) 
 
Under the same assumptions, the parameter  defined in Eq. (4.11) becomes 
=/(+3). By using this expression of  and the identity =, Eq. (4.40) 
entails 
 

3
s


 

 


 (4.41) 

 
It follows from Eq. (4.39) 
 

0 11 :
3

  
 

 
    

 (4.42) 

 
i.e. the non-normalized counterpart of the condition = is =1, where 1 is 
the natural frequency of the autonomous MVdP oscillator (see Chapter 2). The 
approximated expression (4.42) the natural frequency 1 can be found by 
means of a suitable perturbation technique applied on the MVdP in the 
autonomous case (see Chapter 2). Due to the assumptions 0>0, >0 and using 
Eqs. (4.39)-(4.42), it can be also proven that ->0 implies >1 and vice versa. 
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