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INTRODUCTION

The elastic properties of solids play a fundamental role in both scientific and

technological fields. Their measurement provides information regarding the forces

exchanged among the atoms or ions that compose a solid, thus helping to

characterise the nature of the links. It also allows us to describe the mechanical

behaviour of the material which is fundamental for the structural design and

experimental stress analysis. Moreover, the possibility of measuring the elastic

constants of materials, fast and accurately, during the manufacturing cycle of a

product could help with quality control. As a result there are many methodologies

for the elastic characterization of materials. Today there is still great interest in

this subject especially in the context of the development of new and more

complex materials for which the classic methods of characterization appear time-

consuming, expensive and, in some cases, unsuitable.

The increasing use of composite and ceramic materials in engineering has

led to the development of new methodologies of characterization. Among these

methodologies, the most promising are those identifying the elastic constants

through a process that minimizes the difference between the dynamic or static

response of the real structure (measured response) and the response of the same

structure predicted by an analytical or numerical model (virtual response). These

methods, known as mixed numerical-experimental techniques (MNET), update

iteratively the values of the elastic constants of material in the model, until the

virtual response (usually, the first natural frequencies in dynamic approaches or

the field of superficial displacements or strains in static approaches) approximates

as closely as possible the real response measured by means of experimental

observations. The values of the constants used in the last iteration are the elastic

properties of the material. The identification of all the elastic constants can take

place simultaneously, with a single experiment and without damaging the

specimen.
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Although such methodologies have been mainly devoted to the elastic

characterization of anisotropic materials, where many elastic parameters are

involved, they can certainly be used for the analysis of isotropic materials where

only two parameters have to be identified. Indeed, many authors proved the

effectiveness of their methodologies by analysing samples of isotropic materials

with conventional geometrical shapes. However, there is no reason to think that

the approach is unsuitable for characterizing specimens of different shape. Such a

possibility could be very useful when the production of proper bulk specimens is

not feasible or when the material sample must not be damaged or processed by a

conventional testing geometry and therefore should be tested as it is.

The aim of the present work is the development of identification procedures

to determine the elastic properties of isotropic and composite materials. The

dissertation has been split into two part: the dynamic approach and the static

approach. Due to the simplicity and the potentiality of the dynamic technique, in

literature there are many works based on it, but, still today no one checked the

feasibility and limits of its application to characterise isotropic plates (a more

simple problem with only two elastic parameters) with geometry different from

the standardised shapes. More specifically, the original contributions of this thesis

to the dynamic field is the development and the application of the MNET to

characterise isotropic plates of irregular shapes and layered materials. In

particular, the Young modulus and Poisson ratio in a FE model of the specimen

are updated until the corresponding first four natural frequencies match the

experimental ones as closely as possible. For this purpose, different optimization

methods and error functions have been compared in order to select the best

combination of them. Furthermore, a numerical approach has been proposed to

see the existence of a minimum in case of plates with a particularly complex

shape. In addition, the dissertation suggests instrumentation and equipment for

developing a cheaper and efficient measuring system. In the present thesis, the

static way for the elastic characterization has been taken into account. As well as

for the dynamic technique, a MNET has been applied to identify the elastic

properties of isotropic or anisotropic materials. In this case, instead of the natural

frequencies, the method makes use of the full-field measurement of the surface

displacements of a plate of generic form under suitable flexural loads. The main

advantage of the present identification method with respect to the traditional
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methodologies used for the characterization of unidirectional laminates is that all

the elastic constants are determined from one static test. The original contributions

of this thesis, in the static field, is the development of a correlation-based method

to find the more suitable load and constrain configurations for any-shaped plates.

This method is of great help in checking the feasibility of a specimen geometries

for solving the elastic inverse problem by the full-field technique.

The thesis is composed of three main parts. The first part (chapters 1 and 2)

gives an introduction to the elastic constant and to the standardised test methods

present in literature. The second part (chapters 3 and 4) is related to the dynamic

characterization; in particular the third chapter presents the theoretic aspects and

the fourth ones provides the experimental validation and the practical aspects of

the technique. The last part (chapter 5 and 6) is related to the static

characterization: the fifth chapter provides a general overview of the proposed

technique while the sixth chapter reports the experimental validation of the

method.
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1 LINEAR ELASTICITY

1.1 The Generalized Hooke’s Law
The stress-strain relation that describes the linear elastic behaviour of a

material can be expressed by matrices. The matrices take the name of compliance

(S) or stiffness (C) matrices. The stiffness matrix is the inverse of the compliance

matrix. The linear elastic stress-strain relation is given by the generalised Hooke’s

law:

σε
εσ

S

C




(1.1)

in which σ and ε represent the engineering stress and strain vector

respectively, expressed in a coordinate system parallel to the principal material

axes. The stiffness matrix is used to find the stress field from the strain field,

while the compliance matrix is used to find the strain field from the stress field.

Since both σ and ε are vector with nine elements, the stiffness matrix S has to be

9×9 elements. This implies the need of 81 parameters to describe a material’s

elastic stress-strain relation. In general, for a three dimensional anisotropic object

the independent constants of the compliance matrix (S) are 21, while the non-zero

elements of the matrices of elasticity are 36 (Gibson, 1994); this is due to the

various symmetry conditions that simplify the equations. Both stresses and strains

are symmetric due to equilibrium of an infinitesimal element, so that there are

only six independent stress components and six independent strain components

(minor symmetry). Furthermore, due to the existence of the strain energy density,

the stiffness and compliance matrices are symmetric (main symmetry).

Fortunately all the materials have some form of symmetry that can reduce the

independent constants that describe the linear elastic behaviour, however, no

known material is completely anisotropic (Gibson, 1994). For example, a
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monoclinic material has one plane of material property symmetry and so the

number of independent moduli is reduced to 13. The orthotropic material has

three orthogonal planes of material property symmetry, and in this case the

number of independent elastic constants is reduced to 9. In this case, if the used

coordinate system is not aligned with the principal material directions (the

directions parallel to the intersection of the three orthogonal symmetry planes) the

elastic matrices have 36 non-zero elements and the materials is called generally

orthotropic. If the used coordinate system is aligned with the principal material

directions (it is called principal or in-axis coordinate system) the elastic matrices

have 12 non-zero elements and the materials is called specially orthotropic. In this

last case the stiffness matrix becomes:





























66

55

44

33

2322

131211

C

0CSYM

00C

000C

000CC

000CCC

C (1.2)

There is another kind of material symmetry that is important in the study of

composites. In most composite materials the fiber-packing arrangement is

statistically random in nature, so that the properties are nearly the same in any

direction perpendicular to the fibers and the materials is called transversely

isotropic. In this last case the stress-strain behaviour can be described by 12

nonzero elastic moduli but only 5 are independent:





























66

66

2322

22

2322

121211

C

0CSYM

00)/2C-(C

000C

000CC

000CCC

C (1.3)

where the 23 plane and all parallel planes are assumed to be planes of

isotropy, and so that C12= C13, C22= C33 and C55= C66 and C44 is a function of the

other constant.
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If the material has an infinite number of symmetry planes, the material is

said to be isotropic. In the case of an isotropic material the stress-strain behaviour

can be described by 12 nonzero elastic moduli where only 2 are independent, in

fact C11= C22= C33, C12= C23= C13, C44=C55= C66=(C11-C12)/2 and the relation becomes:





























)/2C-(C

0)/2C-(CSYM

00)/2C-(C

000C

000CC

000CCC

1211

1211

1211

11

1211

121211

C (1.4)

Table 1.1 reports the elastic coefficients in the stress-strain relationships for

different materials and coordinate system.

Table 1.1 – Summary of the material symmetries.
Material and

coordinate system
Number of nonzero

coefficients
Number of

independent coefficients

Three-dimensional case

Anisotropic 36 21

Generally Orthotropic
(nonprincipal coordinates)

36 9

Specially Orthotropic
(principal coordinates)

12 9

Specially Orthotropic
Transverely isotropic

12 5

Isotropic 12 2

Two-dimensional case

Anisotropic 9 6

Generally Orthotropic
(nonprincipal coordinates)

9 4

Specially Orthotropic
(principal coordinates)

5 4

Isotropic 5 2

Until now three-dimensional cases have been considered. Often some

tension component can be neglected and so a two-dimensional cases can be

obtained. In this case other simplification can be carried out and the matrices of

elasticity become 3x3. If the material is anisotropic, the nonzero elements in the

elastic matrices are 9 while the independent moduli are 6. If the material is
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orthotropic and the off-axis coordinate system is considered, the nonzero elements

are 9, while the independent moduli are 4. If an in-axis coordinate system is

considered the nonzero elements become 5. For isotropic materials there are still 5

non zero elastic constants, but only 2 are independent

1.2 Engineering Constants

1.2.1 Isotropic Materials

In practice, elastic material properties are usually characterised with a set of

engineering constants like generalised Young’s moduli, shear moduli and

Poisson’s ratios instead of the coefficients (Cij or Sij) of the elasticity matrices.

The engineering constants are also widely used in analysis and design because

they are easily defined and interpreted in terms of simple states of stress and strain

(Timoshenko, Gere, 1997).

The assumption of the elasticity leads to the existence of a strain energy (U).

For isotropic materials no preferential directions exist and so the stress-strain

relation is independent of the coordinate system adopted for stress and strain

description; in the elastic case this leads to the dependence of the strain energy

(U) on the invariants (Corradi Dell’Acqua, 1992):

)I,I,I(Ud)(U
ij

ijijij 321

0

 


 (1.5)

with:

)det(I

I

I

IIIIII

IIIIIIIIIIII

IIIIII

ε









3

2

1

(1.6)

where I1, I2 and I3 are the linear, quadratic and cubic invariants, while I, II,

III are the principal strains. In the linear case U has quadratic form, so that cubic

invariant does not exist in the energy expression:

2
2

1 bIaIU  (1.7)

where a and b are the constitutive parameters. Only two parameters are

needed to describe the elastic linear stress-strain relation. The previous equation

often is written using the Lamè constant ( and G):



Chapter 1: Linear elasticity

8

Gb

)G(a

2

2


 

(1.8)

Using Eq. (1.8) and Eq. (1.7) the expression of the strain energy became:

2
2
1 2)2(

2

1
GIIGU   (1.9)

From the definition of the strain energy it is possible to obtain the following

expression:

ij
ij

U







 (1.10)

and so, using Eq. (1.9) and Eq. (1.10) it’s possible to write:

ijij
ij

I
G

I
IG











 21
1 2)2( (1.11)

Unfortunately the Lamè’s constants are not easily defined and interpreted in terms

of simple states of stress and strain. As highlighted, usually, the elastic

coefficients are expressed as a function of the so-called "engineering constants",

which are more easily defined and interpreted in terms of simple states of stress

and strain:

)(2

23

G

G

G
GE















(1.12)

where E is the Young modulus (or modulus of elasticity), is the Poisson

ratio and G is the shear modulus (or modulus of rigidity). Young’s modulus

involves the longitudinal elongation of a material when it is subjected to a tension

or compression test and it is defined as the ratio between the normal stress and the

normal strain. The shear modulus implies the angular distortion undergone by the

material when subjected to pure shear and it is defined as the ratio between the

shear stress and the shear strain. Finally, Poisson’s ratio describes the lateral (or

radial) contraction or expansion of the material when it is subjected to a

longitudinal normal stress and is defined by the ratio between the strain in the

lateral or radial direction and the strain in the longitudinal or axial direction.
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Inverting the Eq. (1.12) it’s possible to obtain:

)1(2

)21)(1(












E
G

E
(1.13)

(1.14)

Often the stress-strain relationship is written in terms of the three moduli E, 

and G but, it should be noted that, only two elastic constants are independent.

1.2.2 Orthotropic Materials

An orthotropic material can be characterised in three orthogonal directions

by twelve engineering constants. Considering a stress state where σii is the only

non-zero stress component, the Young’s modulus in the i-direction is defined as:

321 ,,i,E
ii

ii
i 




(1.15)

while the Poisson’s ratio for transverse strain in the j-direction when the

material is stressed in the i-direction is defined as:

ji,,,j,i,
ii

jj
ij  321




 (1.16)

Note that, as with isotropic materials, a negative sign mast be used in the

definition of Poisson’s ratio.

The shear modulus in the ij-plane is defined as:

313212 ,,ij,G
ij

ij
ij 




(1.17)

considering a stress state where ij is the only non-zero stress component.

Since the engineering constants are defined for uni-axial stress conditions, it

is much easier to express them in terms of compliance than in terms of stiffness.

The combination of the definitions in Eqs. (1.15-1.17) with the strain-stress

relations of an orthotropic material leads to the following compliance matrix:
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















































12

31

23

32

23

1

13

3

32

21

12

3

31

2

21

1

G
1

00000

0
G
1

0000

00
G
1

000

000
E
1

E
ν

E
ν

000
E
ν

E
1

E
ν

000
E
ν

E
ν

E
1

S (1.18)

The matrix shows 12 elastic constant. Due to the symmetry properties, only

9 moduli are independent, in fact it is possible to write:

j

ji

i

ij

EE


 (1.19)

which means that there are only three independent Poisson’s ratios.

1.3 Constraints on the Engineering Constants

The elastic material parameters cannot take any value, they are restricted by

a number of physical limits (Jones, 1999). The considered restrictions are the so-

called thermodynamic constraints which are based on the principle that the total

work done by all the stress components must be positive in order to avoid the

creation of energy. The work done by a stress component is given by the product

of the stress component with the corresponding strain component. The work of the

stress components will only be positive, if the stiffness and compliance matrices

are positive-defined.

1.3.1 Isotropic Materials

To have a positive work from the product of the tension and the longitudinal

elongation, i.e. the Young modulus defined positive, the following inequality is

necessary:

1 (1.20)
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In the same way, if an isotropic material is subject to hydrostatic pressure

(p), the volumetric deformation is:

B

p

)(/E

p
zyx 







213
(1.21)

Where B is the Bulk modulus. To define B>0 the following relation are

necessary:

E > 0

2

1


(1.22)

(1.23)

1.3.2 Orthotropic Materials

The restrictions on the orthotropic material parameters can be established

using the same thermodynamic considerations as in the previous section: the total

work done by all the stress components must be positive in order to avoid the

creation of energy. It is possible to demonstrate (Jones, 1999) that this restriction,

in the plane case, can be expressed by the following inequality:

01

000

2112

1221





G,E,E

(1.24)

Using Eq. (1.19) it is possible to obtain:

1

2
21

2

1
12 E

E
or

E

E
  (1.25)

1.4 Elastic Properties for an Arbitrary Orientation

For plate-like structures, the stress analysis is usually carried out under the

Kirchhoff assumptions. For a structure parallel to the 12-plane, the Kirchhoff

assumptions result in plane stress state (σ3 = 0, τ23 = 0, τ31 = 0). Accepting the

Kirchhoff assumptions, the general strain-stress relation for specially orthotropic

materials reduces to the following in-plane strain-stress relation:
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where the compliance coefficients Sij and the engineering constants are

related to each other by the following equations:
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The lamina stresses in terms of tensor strains are given by:
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where the stiffness coefficients Qij are referred to the plane stress-reduced

stiffness because they are obtained from Cij. They are related to the engineering

constants in the following manner:
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The properties described in Eq. (1.26) are defined in the directions of the

principal material axes. These on-axis properties describe the behaviour of the

material when subjected to a stress field that is aligned with the principal material

axes (1-2), but this behaviour can vary with the orientation of the considered

load. As with isotropic materials, a normal stress induces only normal strains, and

all shear strains are equal to zero. This lack of shear/normal interaction is

observed only for the principal material coordinate system. For any other set of

coordinates the so-called “shear-coupling” effect is present. The off-axis

properties describe the material behaviour when subjected to a stress field with an
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arbitrary orientation (x-y). Consider a load with an arbitrary orientation and a

global axis system x-y which is aligned with the principal directions of this load.

In this local axis system, the stress-strain relation can be expressed as:

     C (1.30)
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where the overbars indicate that the quantities are expressed in local

coordinates (off-axis properties). The transformed stiffness matrix  C contains

the off-axis properties. The off-axis properties can be obtained starting from the

on-axis properties in the following way:

      TQTQ 1 (1.32)

where [T] is the transformation matrix defined as (Tsai and Hahn, 1980):
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T (1.33)

where  is the angle between the x- and 1-axis, as shown in Figure 1.1.

Figure 1.1 - Definition of the orientation angle θ.

Note that, for an arbitrary value of the orientation angle θ, the transformed

compliance matrix has nine non-zero elements. However, the elastic behaviour is

still fully characterized by only four independent material constants.

It is possible to obtain the same relation for the compliance when a global

axis system x-y is considered:
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     S (1.34)
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where the ijS are the components of the transformed lamina compliance matrix

which are defined as follows:
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The lamina engineering constants can also be transformed from the principal

material axes to the off-axes coordinates. For example, the modulus of elasticity

associated whit uniaxial loading along the x direction is defined as:
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where the strain x in the denominator has been found by substituting the

stress condition x≠0, y=y=0. By replacing 11S and using Eq. (1.27) it is possible

to write:
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(1.38)

Similar transformation equations may be found for other off-axis

engineering constants such as vxy and Gxy (Gibson, 1994) replacing the ijS in the

following equations:
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The variation of these properties with lamina orientation for a fiber-

reinforced composite (E1=100 GPa, E2=10 GPa, G12=6 GPa and12=0.3) is shown

graphically in Figure 1.2. As intuitively expected, Ex varies from a maximum at

= 0° to a minimum at  = 90° for this particular material.

Figure 1.2 – Variation of lamina engineering constant with lamina orientation.

The shear-coupling effect has been described previously as the generation

of shear strains by off-axis normal stresses and the generation of normal strains by

off-axis shear stresses. To quantify the degree of shear coupling a dimensionless

shear-coupling ratio may be defined (Halpin, 1984). There are two ways to define

it. For example, when the state of stress is defined as x≠0, y=y=0, the ratio

11

16

S

S

x

xy
xy,x 




 (1.40)

is a measure of the amount of shear strain generated in the xy plane per unit

normal strain along the direction of the applied normal stress x.

Other shear-coupling ratios can be defined for different states of stress. For

example, when the stresses are y≠0, y= x =0, the ratio
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characterizes the normal strain response along the y direction due to a shear

stress in the xy plane.

In the same way, other shear-coupling ratios can be defined as:
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As shown in Figure 1.3, xy,x strongly depends on orientation and has its

maximum value at some intermediate angle.

Figure 1.3 – Variation of the shear-coupling ratios.

1.5 The classical laminated plate theory

In general, the composite materials are manufactured in the form of thin

sheets, called laminae or layers. These sheets present a low stiffness. In order to

increase the stiffness of the component, laminae are bonded together to form a

laminate. In composite manufacturing exist a number of design parameters like:

1. layer materials

2. layer orientation

3. number of layers

4. layer thickness

that give a wide number of solutions for component property design.
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In most applications, the thickness of a laminate is small compared to the

planar dimensions, so that two-dimensional theories can be used to analyse

composite laminates. Two-dimensional theories are obtained from the three-

dimensional elasticity theory by making assumptions concerning the variation of

displacements and/or stresses through thickness of the laminate. The classical

laminated plate theory (CLPT) is an extension of the classical plate theory to

laminated plates. In this theory, the in-plane displacements are assumed to vary

linearly through the thickness and the transverse displacement is assumed to be

constant through the thickness (i.e., transverse normal strain is zero). The classical

laminated plate theory is found to be adequate for most applications where the

thickness of the laminate is two orders of magnitude smaller than the in-plane

dimensions. When the classical laminated plate theory is not applicable, a refined

theory is used. A refinement to the classical laminate theory is provided by the

first-order shear deformation plate theory (FSDT) (Reddy, 1992).

Figure 1.4 – Coordinate system and stress resultants for laminated plate

Although the laminate is made up of multiple laminae, it is assumed that the

individual laminae are perfectly bonded together so as to behave as a unitary,

nonhomogeneous, anisotropic plate. Interfacial slip is not allowed and the

interfacial bonds are not allowed to deform in shear, which means that

displacements across lamina interfaces are assumed to be continuous. These

assumptions mean that the deformation hypothesis from the classical

homogeneous plate theory can be used for the laminated plate. Figure 1.4 defines

the coordinate system to be used in developing the laminated plate analysis. The

xyz coordinate system is assumed to have its origin on the middle surface of the

plate, so that the middle surface lies in the xy plane. The displacements at a point
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in the x, y, z directions are u, v, and w, respectively. The basic assumptions

relevant to the present static analysis are (Gibson, 1994):

1. The plate consists of orthotropic laminae bonded together, with the

principal material axes of the orthotropic laminae oriented along arbitrary

directions with respect to the xy axes;

2. The thickness of the plate, t, is much smaller than the lengths along the

plate edges a and b;

3. The displacements u, v, and w are small compared with the plate thickness.

4. The in-plane strains εx, εy, and γxy are small compared with unity;

5. Transverse shear strains γxz and γyz are negligible;

6. Tangential displacements u and v are linear functions of the z coordinate;

7. The transverse normal strain εz is negligible;

8. Each ply obeys Hooke's law;

9. The plate thickness t is constant;

10. Transverse shear stresses τxz and τyz vanish on the plate surface defined by

z = ±t/2.

Assumption 5 is a result of the assumed state of plane stress in each ply,

whereas assumptions 5 and 6 together define the Kirchhoff deformation

hypothesis that normals to the middle surface remain straight and normal during

deformation. According to the previous assumptions, the displacements can be

expressed as:
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from which it is possible to find the strain:
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where u0, v0 and w0 are the displacements of the middle surface, x is a

bending curvature associated with bending of middle surface in the xz plane and

y is a bending curvature associated with bending of middle surface in the yz

plane. xy is a twisting curvature associated with out-of-plane twisting of the

middle surface which lies in the xy plane before deformation.

Using Eq. (1.45) and Eq. (1.31) it is possible to find the stress along arbitrary

xy axes in the k-th lamina of a laminate:
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From this equation it is possible to note the shear-coupling effect due to the

anisotropic behaviour of the off-axis lamina.

In the laminated plate analysis Eq. (1.46) for lamina stress is of limited

practical use because the curvatures are not generally known and are difficult

to measure. Thus, the midplane strains and curvatures can be related to applied

forces and moments by static equilibrium equations in order to make these

equations more useful. In the laminated plate analysis, however, it is

convenient to use forces and moments per unit length rather than forces and

moments. The forces and moments per unit length shown in Figure 1.4 are also

referred to as stress resultants.

For example, the force per unit length, Nij, and the moment per unit length

Mij are given by:
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where N is the number of layers in the laminate, and (zk,zk+1) are the thickness

coordinates of the bottom and top of the k-th layer.

Using Eq. (1.46) and Eq. (1.47) it is possible to write:
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where the elements of the matrix A, B and D are defined as:
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From Eq. (1.48) it is possible to note that the extensional stiffness matrix A

relates the in-plane forces {N} to the midplane strains {°} and the bending

stiffness matrix D relates the moments {M} to the curvatures {k}. The coupling

stiffness matrix B couples the in-plane forces {N} with the curvatures {k} and the

moments {M} with the midplane strains {°}. A laminate having nonzero Bij will

bend or twist under in-plane loads. Such a laminate will also exhibit midplane

stretching under bending and twisting moment loading. It can be easily shown that

laminate geometric and material property symmetry with respect to the middle

surface leads to the condition that all Bij = 0 and that asymmetry about the middle

surface leads to nonzero Bij. Note that there are two types of coupling: the lamina

shear coupling, that it is a result of anisotropic material behaviour, and the

laminate shear coupling, that it is due to geometric and/or material property

asymmetry with respect to the middle surface and is unrelated to material

anisotropy.

The laminate Force-Deformation equation described by the matrices A, B

and D can be inverted. The inverted equations are described by other three

matrices A’, B’ and D’. When the coefficient of the matrix B’ are zero, A’ is also

used in the derivation of the effective laminate engineering constants:
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Using similar derivation, effective laminate flexural moduli may be

expressed in terms of the flexural compliances (Dij’):
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2 STANDARD TEST METHODS FOR
THE ELASTIC CHARACTERIZATION

OF MATERIALS

2.1 Introduction

The knowledge of the elastic properties of materials is very important for

both structural design and engineering applications and the possibility of

measuring them, fast and accurately and during the production process, could be a

valid improvement for quality control. Because of such importance, the great

number of methodologies developed and presented in the scientific literature is

not surprising. Still today, the argument gives rise to a wide interest among

researchers, especially in the context of the development of new and more

complex materials, for which the classical methods of characterization appear

slow, expensive and not always suitable.

The methods for determining the elastic properties of a materials can be

classified into two big categories: static methods and dynamic methods. Static

methods are generally based on direct measurement of strains and stress

components of a suitable specimen subject to mechanical test (tensile,

compressive, flexural, torsional, etc.). Young and shear moduli are determined

from the slope of the linear region of the stress–strain curve, while Poisson’s ratio

is determined from the ratio between transverse and longitudinal strains of a

specimen loaded by a uniaxial load (Carlsson and Pipes, 1997). The elastic moduli

influence the dynamic behaviour of the material (for example, its mechanical

resonant frequencies or the sound velocity); so that, such properties can be used in

order to characterise a suitable test specimen. Dynamic methods are generally

based on this principles. In the present chapter a review of both the basic static

and dynamic standard test for determining the elastic constant of materials are

discussed.
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2.2 Dynamic procedures

Starting from 1935, when the first dynamic characterization applications

have been carried out, the dynamic technique have grown into valid tools for

measuring the elastic moduli of isotropic materials. In standardised resonant

methods, Young's modulus, shear modulus, and Poisson's ratio can all be

computed from the resonant frequencies of prismatic bars, rods, or slabs. There

are several ASTM standards that cover the determination of elastic properties of

specific materials by measuring resonance frequencies by sonic resonance or by

impulse excitation of vibration. All these test methods may differ from each other

in several areas (e.g., sample size, dimensional tolerances, sample preparation).

The ASTM C848 (“Young’s Modulus, Shear Modulus, and Poisson’s Ratio

For Ceramic Whitewares by Resonance”) allows to obtain the elastic properties of

ceramic materials using the sonic resonance. In fact, this test method measures the

resonance frequencies of test bars of suitable geometry by exciting them at

continuously variable frequencies. Mechanical excitation of the specimen is

provided through a transducer that transforms an initial electrical signal into a

mechanical vibration (see Figure 2.1). Another transducer senses the resulting

mechanical vibrations of the specimen and transforms them into an electrical

signal that can be displayed on the screen of an oscilloscope to detect resonance.

In the end, the resonance frequencies, the dimensions, and the mass of the

specimen are used to calculate Young’s modulus and the shear modulus.

Figure 2.1 – Specimen Positioned for Measurement of Flexural and Torsional Resonance
Frequencies Using “Tweeter” Exciter (extracted from the ASTM C848)

ASTM C1198 describes a test method for determining the dynamic elastic

module of advanced ceramics. It is a clone of two earlier ASTM standards (C848

and C623) and, rather than using the tables and graphs (like in the previous

standards), uses the original equations for relating the elastic constants to the

resonance frequencies. Although recommended sizes for flat and round specimens
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are given, the equations are sufficiently general, so that a wide size range can be

used. The equations include the conventional polynomial correction factors to

reflect the finite specimen thicknesses, but simplified equations are also provided

for instances where the length-to-thickness ratio of the specimens is greater than

20. ASTM standards C1198 and C1259 form the basis for two ASTM standards:

ASTM E1875 (“Standard Test Method for Dynamic Young's Modulus, Shear

Modulus, and Poisson's Ratio by Sonic Resonance”) and ASTM E1876

(“Standard Test Method for Dynamic Young's Modulus, Shear Modulus, and

Poisson's Ratio by Impulse Excitation”). These two standards are identical

versions of C1198 and C1259, which are generic and are not confined to ceramic

materials, but are applicable to all elastic materials. The ASTM standard C1259

allows to derive the elastic properties of homogeneous isotropic materials

measuring the resonant frequencies of beam-shaped specimen with rectangular

cross-section by exciting it mechanically by a singular elastic strike with an

impulse tool (instead of using the sonic resonance as in the C1198 and in the

E1875). A transducer (for example, a contact accelerometer or a non-contacting

microphone) senses the resulting mechanical vibrations of the specimen and

transforms them into electric signals (see Figure 2.2). Specimen supports, impulse

locations, and signal pick-up points are selected to induce and measure specific

modes of the transient vibrations. The signals are analyzed, and the fundamental

resonant frequency is measured.

Figure 2.2 – Block Diagram of Typical Test Apparatus
(extracted from the ASTM C1259)

The appropriate fundamental resonant frequencies, dimensions, and mass of

the specimen are used to calculate dynamic moduli. In particular, the elastic

modulus can be derived from the fundamental out-of-plane flexural vibration

mode using the following equation:
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where b, L, t are the width, the length and the thickness of the beam, while ff is the

fundamental natural frequencies and m is the mass. T1 is a correction factor

defined as:
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The shear modulus can be obtained using the following equation

A

B

bt

mLf
G t




1

4 2

(2.3)

where ft is the torsional vibration frequency, while A and B are given as follows:
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When 20t/L Eq. (2.2) can simplified to the following form:
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Therefore from Eqs. (2.3) and (2.5) is possible to calculate both E and G. If

,t/L 20 the elastic modulus has to be calculated with an estimation of the

Poisson ratio and an iterative procedure.

In the ASTM E1876 there is an annex that covers the evaluation of the

frequencies of disc geometry specimens for the determination of the dynamic

elastic properties of elastic materials at ambient temperatures. With a disc-shaped
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specimen, the Poisson’s ratio is determined using the first two resonant

frequencies. The dynamic Young’s modulus and dynamic shear modulus are then

calculated using the Poisson’s ratio, the experimentally-determined fundamental

resonant frequencies, and the specimen dimensions and mass.

The fundamental equation defining the relationship between the natural

resonant frequency, the material properties, and the specimen dimensions can be

found on the ASTM standards and is defined as:

h

A

r

K
f i

i 2
 (2.7)

where fi is the resonant frequency of interest, Ki is the geometric factor for

that resonant frequency, r is the radius of the disc,  is the density of the disc and

A is the plate constant defined as:
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where t is the disc thickness, E is Young’s modulus and  is the Poisson’s

ratio for the disc material. This is a general equation which is valid for both the

first and the second natural vibrations. Poisson’s ratio can be determined directly

from the experimental values of the first and the second natural resonant

frequency by the use of suitable tables present on the ASTM E1876. The value for

Poisson’s ratio is interpolated from the table using the ratio of the second natural

resonant frequency to the first natural resonant frequency (f2/f1) correlated with the

ratio of the specimen thickness to the specimen radius (t/r). For the Young’s

modulus of a disc, two calculations of E (E1 and E2) are made independently from

the two resonant frequency measurements, and then a final value E is determined

by averaging the two calculated values:
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Unfortunately all these dynamic standards cannot be applied to the

orthotropic materials and an extension seems not easy to carry out. This is due
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mainly to the difficulty of finding a fundamental equation that describes the

dynamic behaviour of these materials.

2.3 Static procedures

Considering the stress state imposed to the specimen, the static methods can

be classified in the following groups:

 Tension Test Methods

 Compressive Test Methods

 Flexure Test Methods

 Shear Test Methods

In theory, to characterise an isotropic material only the stress-strain state in a

point of the sample is necessary; the simplest way to develop this is to test the

sample in tension with a known load and measuring the strain by one or more

strain-gages. The physics of composites testing may appear to be similar to the

physics of testing isotropic materials, but the differences are significant.

Determination of the mechanical behaviour is influenced by several factors that

include metallurgical/material variables, test methods, and the nature of the

applied stresses. The properties of a test sample made of composite materials are

often significantly different in different directions; consequently, special testing

methods may be required (ASM Vol. 21). For example, uniaxial mechanical tests

never produce a pure uniaxial stress state throughout an entire test specimen; three

dimensional stresses always exist at discontinuities and loading points. Many

isotropic materials are created as bulk material and later formed into the end

product. However, most composites are consolidated into the final material form

at the same time that the end product is produced. This can introduce additional

process variations into the basic material.

The tension test is one of the most commonly used tests for evaluating

materials. In its simplest form, the tension test is carried out by gripping opposite

ends of a sample within the load frame of a test machine. A tensile force is

applied by the machine, resulting in the gradual elongation and eventual fracture

of the sample. During this process the force-extension data are monitored and

recorded. When properly conducted, the tension test provides force extension data

that can quantify several important mechanical properties of a material like the
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elastic deformation properties (such as the modulus of elasticity and Poisson's

ratio), the yield strength, the ultimate tensile strength and the ductility properties

(such as elongation). The ASTM E111 describes the method for the determination

of Young’s modulus, tangent modulus, and chord modulus of isotropic materials

by tension test. The tangent modulus is the slope of the stress-strain curve at a

specified value of stress or strain while the chord modulus is the slope of the

chord drawn between any two specified points on the stress-strain curve, below

the elastic limit of the material. These two moduli are used for materials that

follow nonlinear elastic stress-strain behaviour. Furthermore the standards give

the recommendation on the preparation of specimens, the temperature control, the

speed of testing, the alignment of the sample into the test machine etc. In ASTM

E132 the value of Poisson’s ratio is obtained from the longitudinal and the

transverse strains resulting from uniaxial stress only at room temperature. This

test method is limited to specimens of rectangular section and to materials in

which creep is negligible compared to the strain produced immediately upon

loading.

The general concept of tensile properties is very similar for metallic and non-

metallic materials, but there are also some differences in their behaviour and so in

the required test procedures. Ceramics materials are brittle materials that are

extremely sensitive to bending strains, besides the hard surface of ceramics

reduces the effectiveness of frictional gripping devices; so that tension testing of

ceramics requires more attention to alignment and gripping of the sample in the

test machine. The procedure to apply tension testing to monolithic ceramics at

room temperature is described in ASTM standard C1273 (“Test Method for

Tensile Strength of Monolithic Advanced Ceramics at Ambient Temperatures”),

while the standard method for continuous fiber-reinforced advanced ceramics at

ambient temperatures is described in C1275 (“Test Method for Monotonic Tensile

Behaviour of Continuous Fiber-Reinforced Advanced Ceramics with Solid

Rectangular Cross-Section Test Specimens at Ambient Temperature”). Plastic

materials are viscoelastic materials that exhibit time-dependent deformation

during force application and so the tension depend more strongly on the strain rate

and on the temperature. Thus, control of temperature and strain rates are more

critical than for metals. The ASTM standard D638 (“Test Method for Tensile

Properties of Plastics”) describes the tension test for unreinforced and reinforced
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plastic materials and includes the option of determining Poisson’s ratio at room

temperature; for tensile properties of resin-matrix composites reinforced with

oriented continuous or discontinuous high modulus (more than 20GPa) fibers,

tests shall be made in accordance with Test Method D3039/D3039M (“Standard

Test Method for Tensile Properties of Polymer Matrix Composite Materials”).

The standard reports all the recommendations for the specimen design tolerances,

control of test machine-induced misalignment and bending, measurement of

thickness, selection of transducers and calibration of instrumentation, description

of failure modes and the definition of elastic property calculation. The Test

Method ISO 527 is substantially based on ASTM D3039, but this last standard

offers better control of testing details that may cause variability and, for this

reason, is the preferred method. By changing the sample configuration, the tensile

test methods are able to evaluate different material configurations, including

unidirectional laminates, woven materials, and general laminates. However, some

sample-material configuration combinations are less sensitive to specimen

preparation and testing variations than others. Perhaps the most dramatic example

is the unidirectional specimen. Fiber versus load axis misalignment in a 0°

unidirectional specimen, which can occur due to either specimen preparation or

testing problems or both, can reduce strength as much as 30% due to an initial 1°

misalignment (ASM Vol. 21). Furthermore, bonded end tabs can actually cause

premature failure of the sample (even in nonunidirectional case) if not applied and

used properly. The characterization of composite is not easy due to the mentioned

problem and similar issues.

Figure 2.3 – End tabs used in tension test

In each of the previous test methods, a tensile stress is applied to the

specimen through a mechanical shear interface at the ends of the specimen,

normally by either wedge or hydraulic grips. If used, the end tabs are intended to

distribute the load from the grips to the specimen with a minimum of stress

concentration. Tabs should be made from [±45°] or [0/90°] glass/epoxy or woven

fabric composites and they are bonded on each side of the specimen. The load is



Chapter 2: Standard test methods for the elastic characterization of materials

30

transferred into the specimen test section through shear (see Figure 2.3). The

material response is measured in the gage section of the coupon by either strain

gages or extensometers, subsequently determining the elastic material properties.

In Figure 2.4 a typical specimen is reported, while in Table 2.1 the recommended

specimen dimensions are reported.

Figure 2.4 Tension test specimen

Table 2.1 –Tensile specimen geometry recommendations (ASTM D3039)
Fiber

Orientation
Width

Overall
Length Thickness Tab Length

Tab
Thickness

[mm] [mm] [mm] [mm] [mm]

0° unidirectional 15 250 1.0 56 1.5
90° unidirectional 25 175 2.5 25 1.5
balanced and symmetric 25 250 2.5 emery cloth —
random-discontinuous 25 250 2.5 emery cloth —

To characterize the tensile response of unidirectional lamina, 0° and 90°

specimens are employed to determine longitudinal and transverse properties. The

[±45°] laminate tension test measures shear properties of the lamina. If Poisson's

ratio is desired, a 0/90° strain gage rosette should be bonded in the center-gage-

section region of the specimen. The properties obtained from tension tests on

composite materials are effective (average) properties. The test method applies to

unidirectional composites but can also be performed on laminates, woven fabrics,

or discontinuous fiber composites. For asymmetric and/or unbalanced laminates,

extension/bending coupling and extension/shear coupling effects produce

nonuniform stress states in the test section. Obviously, under these conditions,

effective properties cannot be accurately determined from the tensile test.
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The compression test is conducted on composite materials, using appropriate

instrumentation, to determine compressive modulus, Poisson's ratio, ultimate

compressive strength or strain-at-failure. These properties are determined through

the use of test fixturing that is typically designed to be as simple to use and

fabricate as possible, to minimize stress concentrations, to minimize specimen

volume, and to introduce a uniform state of uniaxial stress in the specimen test

section. Several compression test methods emerged during the past twenty years,

and much confusion exists on their relative virtues. The numerous compression

test methods available can be broadly classified into three groups based on load

introduction and specimen design: shear loading, end-loading, and sandwich beam

specimen testing (see Figure 2.5).

a) b) c)

Figure 2.5 - Generic types of compression test methods. (a) Shear loaded. (b) End-
loaded. (c) Sandwich beam (extracted from the ASM Vol. 8)

The measured compression strength for a single material system has been

shown to differ when determined by different test methods. Variation in results

can usually be attributed to fabrication practices, control of fiber alignment,

improper specimen preparation and machining, improper placement of samples in

testing machines, and improper use of test equipment. Sufficient restraint must be

provided to inhibit undesirable failure modes, such as column buckling of the

sample. However, if excessive restraint is used, the resulting failure strengths may

be artificially high. Buckling and kinking of the fibers within the composite are

features regarded as representative for the material and should not be inhibited. To

avoid buckling instability, relatively short gage lengths are necessary, but short

gage lengths generally tend to amplify sensitivities to clamping. Thus, for very

short gage lengths, the apparent compressive strength tends to decrease.
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The ASTM D3410 (“Test Method for Compressive Properties of Polymer

Matrix Composite Materials with Unsupported Gage Section by Shear Loading”)

covers the determination of the in-plane compressive properties of polymer matrix

composite materials reinforced by high-modulus fibers. The composite material

forms are limited to continuous-fiber or discontinuous-fiber reinforced composites

for which the elastic properties are specially orthotropic with respect to the test

direction. This test procedure introduces the compressive force into the specimen

through shear at wedge grip interfaces. Since the compressive load is introduced

in the specimen through shear via tabs, there are stress concentrations in the

regions at the ends of the end tabs at the beginning of the gage section.

Consequently, failures are commonly observed close to the ends of the end tabs,

but, such failures are difficult to avoid and are commonly accepted. In Figure 2.6

an example of common failure modes are reported.

Acceptable Failure Modes Unacceptable Failure Modes

Figure 2.6 - Sketch of the specimen failure (extracted from ASTM D3410)

The ASTM D695 (“Standard Test Method for Compressive Properties of

Rigid Plastics”) covers the determination of the mechanical properties of

unreinforced and reinforced rigid plastics, including high-modulus composites,

when loaded in compression at relatively low uniform rates of straining or

loading. This test procedure introduces the compressive force into the specimen

by end-loading.

The ASTM D6641/D6641M (“Determining the Compressive Properties of

Polymer Matrix Composite Laminates Using a Combined Loading Compression
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(CLC) Test Fixture”) method establishes a procedure for determining the

compressive strength and stiffness properties of polymer matrix composite

materials using a combined loading compression or comparable test fixture. The

compressive force is introduced into the specimen by combined end- and shear-

loading. This test method is applicable to general flat laminates that are balanced

and symmetric and contain at least one 0° ply. Unidirectional (0° ply orientation)

composites can be tested to determine unidirectional composite modulus and

Poisson’s ratio.

The ASTM D5467 (“Compressive Properties of Unidirectional Polymer

Matrix Composites Using a Sandwich Beam”) uses a honeycomb-core sandwich

beam that is loaded in four-point bending, placing the upper face-sheet in

compression (see Figure 2.7). The upper sheet is loaded in compression and is

usually a six-ply unidirectional laminate. The lower face-sheet is typically the

same material, but twice thicker in order to drive failure into the compressive

face-sheet. The two face-sheets are separated by and bonded to a deep honeycomb

core (usually aluminium). Failure of the compressive face-sheet enables

measurement of compression strength, compression modulus, and strain-at-failure

if strain gages or extensometers are employed. This procedure is applicable

primarily to laminates made from prepreg or similar product forms. Other product

forms may require deviations from the test method.

Figure 2.7 - Longitudinal compression sandwich beam test specimen.

ASTM C393 (“Flexural Properties of Flat Sandwich Constructions”) is one

of a series designed to test sandwich constructions, and covers the determination

of the properties of flat, sandwich constructions subjected to flatwise flexure in

the same manner as ASTM D5467. ASTM C393 expands on the properties

measured by ASTM D5467, and provides a methodology to determine the flexural
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and shear stiffness of the entire sandwich, the shear modulus and shear strength of

the core, or the compressive or tensile strength of the facesheets. There are no

limitations on the core or skin materials for this test method.

The Flexure Testing is one of the most commonly used tests for evaluating

ceramics and polymer materials. Bend test eliminates the gripping problems

associated with the tension testing of the specimen. Flexure testing have emerged

because they demand a very simple specimen preparation and testing. The method

is applicable for purposes of material development, and sometimes design.

However, for design purposes, tension testing is generally preferred (ASM Vol.

8). Flexure tests are not recommended for determination of design data because

deformation and failure of the material occur under a combined stress state, and

stress concentrations at loading points and supports may lead to failure. Therefore,

the flexural moduli and strength are combinations of the corresponding tensile and

compressive properties of the material. Flexure tests are most commonly used to

generate flexural modulus and strength for the purpose of quality control. Proper

testing and data reduction may render the test data of more value than just a

quality check. Great care is needed in flexure testing because significant errors

(>5%) can occur from twisting, misalignment, and frictional constraints. Flexure

testing of continuous-fiber, ceramic matrix composites must be viewed with

considerable caution because the failure mode could be tension fracture, shear

fracture, compression failure, or buckling. It is generally limited to unidirectional

materials with the fibers aligned parallel or perpendicular to the beam axis.

a) b)

Figure 2.8 - Scheme of flexure tests: a) Three-point loading. b) Four-point loading.

Flexure testing can be applied using the three-point or four-point methods.

For three-point loading, the strain gage is placed on the tension side centered

directly under the central loading pin. For four-point loading, the strain gage may

be on either the top (compression) or bottom (tension) surface. The flexural stress
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at the specimen surface at beam midspan is calculated from the applied load (P),

the span (L), the specimen width and the specimen thickness (h). The elastic

moduli can be evaluated from the initial slope of the curve obtained by plotting

the stress versus the strain gage readings.

The test methods ASTM C1161 (“Standard Test Method for Flexural

Strength of Advanced Ceramics at Ambient Temperature”) and ASTM C1211

(“Standard Test Method for Flexural Strength of Advanced Ceramics at Elevated

Temperature”) cover the determination of flexural properties of ceramic materials

at ambient and elevated temperature respectively. The European standard test UNI

EN843-1 (“Monolithic Ceramics, Mechanical Properties at Room Temperature”)

is similar to the ASTM C1161. D790 (“Flexural Properties of Unreinforced and

Reinforced Plastics and Electrical Insulating Materials”) and D6272 (“Test

Method for Flexural Properties of Unreinforced and Reinforced Plastics and

Electrical Insulating Materials by Four-Point Bending”) utilize a three and four

point loading system, respectively, for the determination of flexural properties of

unreinforced and reinforced plastics, including high-modulus composites and

electrical insulating materials in the form of rectangular bars. The European

standard test UNI EN14125 (“Fibre-reinforced plastic composites: Determination

of flexural properties”) is equivalent to the ASTM D6272 and ASTM D790.

The shear tests are carried out to determine shear modulus and shear strength

of a material. The response of a composite material subjected to shear is

commonly nonlinear, and full characterization requires the entire stress-strain

curve (ASM Vol.8). The ideal shear test method should provide a region of pure,

uniform shear stress. It is also required that the shear stress and strain can be

straightforwardly evaluated from the applied load and deformation measurements.

The major difficulty in designing shear tests for composite materials is attaining a

uniform state of pure shear stress in the test section. Up to now many shear test

methods have been developed, but more studies are still necessary.

The ASTM E0143 (“Test Method for Shear Modulus at Room

Temperature”) covers the determination of shear modulus of structural materials.

This test method is limited to materials in which creep is negligible compared to

the strain produced immediately upon loading. The cylindrical or tubular test

specimen is loaded by applying an external torque, as to cause a uniform twist

within the gage length. The Shear modulus can be computed by the slope of the
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shear stress-strain curve, which may be derived from the torque value, the

geometry and the angle of twist of the sample. The torsion tube test is especially

suited for in-plane shear testing of filament-wound structural parts, and has been

recognized as an excellent shear test. The specimen, however, is difficult to

fabricate from prepreg and can obviously not be used to test materials in the form

of flat sheets. The ASTM D1043 (“Standard Test Method for Stiffness Properties

of Plastics as a Function of Temperature by Means of a Torsion Test”) test

method covers the determination of the stiffness characteristics of plastics over a

wide temperature range by direct measurement of the apparent modulus of

rigidity.

The test method ASTM D3518/D3518M (“Test Method for In-Plane Shear

Response of Polymer Matrix Composite Materials by Tensile Test of a ±45°

Laminate”) determines the in-plane shear response of polymer matrix composite

materials reinforced by high-modulus fibers. The material and laminate form is

limited to fully balanced and symmetric ±45°materials. A uniaxial tension test of

a ±45° laminate is performed in accordance with test method ASTM D3039.

Using expressions derived from laminated plate theory, the in-plane shear stress in

the material coordinate system is directly calculated from the applied axial load,

and the related shear stress is determined from longitudinal and transverse normal

strain data obtained by transducers. These data are used to create an in-plane shear

stress-shear strain curve and to evaluate the shear moduli. It is not acceptable for

thin specimen.

In the test method ASTM D5379 (“Shear Properties of Composite Materials

by the V-Notched Beam Method”), also called as the Iosipescu shear test, a

material coupon in the form of a rectangular flat strip with symmetrical, centrally

located V-notches is loaded in a mechanical testing machine by the fixture shown

in Figure 2.9. Analysis of the specimen under compressive loading reveals that a

state of relatively uniform shear stress exists in the center of the notched

specimen. The notch makes the distribution more uniform than would be seen

without it. The test can be used to characterise laminated and woven composites.
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Figure 2.9 – Iosipescu shear test: a) Testing configuration. b) Specimen

(extracted from the ASTM D5379)

The ASTM D4255 describes the test known as “rail shear test”. The in-plane

shear properties are determined by imposing edgewise shear loads on the

specimen using a fixture consisting of two pairs of tensile loaded rails (Method A)

or a fixture consisting of three pairs of rails in tension or compression loading

(Method B). Figure 2.10 reports the two load configurations used in the ASTM

standard. Usually the specimen is bolted to the rails, but slippage is common at

increasing loads for some composites. To find the shear moduli the specimens is

instrumented with ±45° strain gage rosettes as indicated in Figure 2.10. For ±45°

angle-ply laminates difficulties may occur because a uniform state of shear is not

attained for this orientation. In this case the Test Method D3518/D 3518M is

recommended.

Figure 2.10 – Rail shear test: a) Two-rail configuration. b) Three-rail configuration.

(extracted from the ASTM D4255)
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In the static tests it’s possible to include the hardness testing. It is a very

common mechanical test applied to materials. Hardness testing is used extensively

in quality control, where data can be collected that relate the mechanical

properties of a given material, its microstructure, and processing methods. Over

the years, many researchers have endeavored to relate hardness values obtained

from mechanical testing to the properties of the material. This has proved to be

difficult because the shape of the indenters, loads, and rate of loading interact with

each material in a different manner.
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3 NUMERICAL-EXPERIMENTAL
METHODOLOGIES FOR THE

MATERIALS CHARACTERIZATION
BY VIBRATIONAL TESTING

3.1 State of the art and focus of the research

Dynamic methods for the elastic characterization of the materials can be

generally classified into two groups: pulse and resonant methods. Pulse

techniques are based on measuring the time-of-flight, that is the time spent for the

ultrasonic pulse to travel through the specimen from the transmitting to the

receiving transducer. The Young and shear moduli of the material can be

calculated from a knowledge of the dimensions and density of the samples and the
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transit time for longitudinal and transversal ultrasonic waves. Resonant methods

consist of making a specimen vibrate mechanically in one or more vibration

resonant modes (sonic and/or ultrasonic). The elastic constants of the material can

then be determined from a knowledge of the vibration modes, natural frequencies,

dimensions and mass of the samples. According to the function of the model used

for the calculation of the natural frequencies, the resonant techniques, present in

literature, can be grouped in analytical approaches, i.e. Rayleigh-Ritz (Deobald,

Gibson, 1988; Lai, Lau, 1993; Pedersen, Frederiksen, 1992; Sol, 1986; De Wilde

et al., 1984, 1986) or Rayleigh (Ayorinde, Gibson, 1993), and numerical

approaches, e.g. finite element method (Fällström, Jonsson, 1991; Alfano et al.,

2007; Hwang, Chang, 2000; Maletta, Pagnotta, 2004; Pedersen, 1989; Qian et al.,

1997; Rikards et al., 2001; Mota Soares et al., 1993). Due to the simplicity and the

inexpensiveness of the vibrational tests, the use and the study of these techniques

is growing. Until today many works, about the elastic characterization of isotropic

and orthotropic materials, have been carried out; the methods differ according to

the optimization methodology and/or experimental technique used to acquire the

dynamic response. Förster (1937) and Ide (1935) have been among the first

reporting about the possibility to determine the elastic constant of a materials by a

vibrational test. They used the Euler beam theory to find the elastic modulus of a

beam-shaped specimen from the first flexural frequency. In 1945 Pickett (Pickett,

1945) made use of the approximate solution of the Timoshenko beam equations

(developed by Goens’) to improve the dynamic elastic characterization of beam-

shaped specimen with rectangular or circular section (Timoshenko, 1970). The

ASTM resonant beam test procedure (ASTM Standard E1875), which

standardised material testing based on analytical vibration models, are established

on the work of Spinner and Teft (Spinner and Teft, 1961); they have completed

Pickett’s work taking into account torsional frequencies to identify the shear

modulus too. Deobald and Gibson (1988) used a Rayleigh-Ritz model on an

orthotropic rectangular plate and measured resonance frequencies to obtain

estimated values for the plate rigidities of composite plates. Furthermore they

have examined a thin plate with different boundary conditions and have showed

as the plate with all boundaries free can obtain better results than that with one or

more clamped edges. Subsequently, Ayorinde and Gibson (1993) made use of the

classical lamination theory and an optimized three-mode Rayleigh formulation to
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obtained the four independent elastic constants (considering free-free boundary

conditions) of two rectangular thin orthotropic plates with two different

orthotropy ratios (E1/E2= 1 and 13) and two plate aspect ratios (width/ length = 1

and 2). Lai and Lau (1993) extended the approach to a generic orthotropic plates.

Fällström and Jonsson (1991) and Fällström (1991) used a real-time TV-

holography system to determine frequencies and shapes of the first five modes of

vibration of plates with free-free boundary conditions. In order to determine all

the five independent elastic constants of transversely isotropic materials, thick

plates are used because the effects of outplane shear modulus are more evident in

these plates. Frederiksen (1995) used single-layer plate theory to analyse the

vibration of thick symmetrically laminated rectangular plates with free-free

boundary conditions: in this type of theory  the three-dimensional elasticity theory

is reduced to a two-dimensional one by replacing the laminated plate by an

equivalent homogeneous anisotropic plate and introducing a global displacement

approximation in the thickness direction. Ayorinde (1995) incorporated the shear

and rotatory inertia effect into the model to obtain the three-dimensional elastic

constants of a completely free orthotropic plate from experimental plate vibration

data. Subsequently Frederiksen (1997) used a numerical model based on a higher-

order shear deformation theory (Reddy, 1984) to identified the elastic constants of

thick orthotropic plates by the consideration of higher mode natural frequencies.

Hwang and Chang (2000) presented a combination method of finite element

analysis and optimum design to obtain the out-of-plane shear modulus by using

less number of higher frequencies. They shown, also, that for aluminium plates

the boundary conditions with all edges free can obtain better results, and seeking

two elastic constants is a fast and accurate way for isotropic materials.

Furthermore they showed that for carbon/epoxy plates the elastic constants have

no clear dependency on the specimen dimensions and the stacking sequences. Sol

(1986) in his PhD thesis has found a relation to maximise the sensitivity of the

natural frequencies of a composite plate to the elastic constants. Subsequently Sol

et al. (1997) presented a Mixed Numerical/Experimental Technique (MNET) for

the nondestructive identification of the stiffness properties of fibre reinforced

composite materials using a Finite Element Analysis (FEA) and an optimization

tools. The method requires the measurement of the first five resonant frequencies

of freely suspended rectangular test plates. Mota Soares et al. (1993) proposed a
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similar method to characterise composite plates using a MNET. In their work they

have formulated the laminate analysis in terms of non-dimensional material

parameters. They showed also the limitations of the model to predict the required

quantities and its range of application and accuracy. Subsequently, Araújo et al.

(2002) proposed a discrete finite element model, associated to an inverse method

using experimental vibration data to carry out the identification of

electromechanical properties in composite plate specimens with surface bonded

piezoelectric patches or layers. Muthurajana et al. (2004) have presented the

determination of elastic constants, through vibration testing, of thin specially

orthotropic plates with free boundary conditions; they have introduced a influence

coefficients evaluated by FEA in order to improve the accuracy of the Rayleigh–

Ritz method. Caillet et al. (2007) proposed a direct elastic characterization

method, it relies on the identification of the first twenty modal shapes and the

natural frequencies of clamped (or supported) rectangular orthotropic plate. In this

case the harmonic vibratory field is measured by nearfield acoustic holography

techniques. In the meantime many authors have proposed different MNET for

elastic characterization of orthotropic rectangular plates using natural frequencies.

The works differ mainly on the optimization tools used in the characterization.

For example, in Maletta and Pagnotta a Genetic Algorithm (GA) has been

proposed while in Rikards et al. (2001), Bledzkia et al. (1999) and Hwang et al.

(2000) a different approach has been used; in these works, instead of direct

minimization of the identification function, experimental design is used, by which

response surfaces of the function to be minimised are obtained. The response

surface approximations are obtained by using information on the behaviour of a

structure in the reference points of the experiment design. In these case the finite-

element modelling of the structure is performed only in the reference points. Qian,

et al. (1997) have presented a work in which they use mode shapes and complex

eigenfrequencies for determining elastic and damping properties of composite. An

original method allowing the direct determination of the flexural stiffness from

natural frequencies and modal shape measurements of plate specimens of any

shape, which does not require initial estimates of the stiffness nor iterative

computations, is proposed in Grediac et al. (Grediac and Paris, 1996a; Grediac et

al., 1996b). This methodology has the disadvantage (differently from the proposed

technique) of requiring complicated techniques to measure the modal shapes.
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Similar methodologies, some already in commerce, have been proposed for small

samples. They are identified with RUS that is the acronym of: Resonant

Ultrasound Spectroscopy (Leisure, Willis, 1997; Migliori, Darling, 1996; Yaoita

et al., 2005). Cubic, spherical or cylindrical specimens can be characterized with

these methods by measuring an elevated number of natural frequencies in the

ultrasonic field.

The main objective of the present research has been the development of a

vibration-based identification procedure to determine the elastic properties of the

materials by test specimens of irregular shape. This technique meet the

requirements to characterise sample of “not-standardised” shape. In fact, all the

mentioned techniques make use of specimen like beams or rectangular plates. In

particular, the work has been focused on the development of an iterative technique

(also known as MNET) to characterise isotropic materials using specimen like

plate of irregular shape; moreover a comparison with direct technique suitable just

for test specimens like rectangular isotropic plates is reported. Moreover the

MNET has been used to characterise a layered materials. Also in this case a

comparison with the direct technique has been reported.

3.2 Methodologies for characterizing isotropic materials

The applicability of a resonant test method depends on a knowledge of the

frequency equations relating the natural frequencies of a suitable test specimen to

the elastic properties of the material of which it is made. These relations can be

obtained by solving a differential equation which generally depends on the

boundary conditions and on the shape of the specimen in a very complicated way.

Theoretical solution are for this reason limited to simple geometry and boundary

conditions. Solution for free edge test specimens like slender bars, rods and

circular plates are recommended in ASTM standards for the elastic

characterization of homogeneous isotropic materials. Approximate solution for

rectangular isotropic plate are given in Alfano and Pagnotta (2007). In the

following this technique will be showed and indicated as “Direct Methods”.

Furthermore, the developed iterative method, indicated as mixed numerical-

experimental techniques, will be presented. This technique is necessary when the
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frequency equation, or an approximate solution, is not known, due to sample

geometry or to the boundary condition.

3.2.1 Direct Methods

A way to determine the elastic constants from frequency measurements,

without iteration or optimization processes consists of using suitable relationships

relating natural frequencies and elastic properties. Alfano and Pagnotta (2007)

made use of FEM calibration to improve the approximate frequency equation,

reported in Warburton (1953), on rectangular thin plates subjected to free

transverse vibration and with free boundary conditions.

A frequency equation suitable for determining the elastic properties of the

plate could be obtained by solving the following differential equation of motion:

0
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where w is the displacement field, D=Eh3/[12(1- is the flexural stiffness of the

plate,  is the density of the material and h is the thickness. Unfortunately, it is not

possible to find a suitable form for the displacement field w that simultaneously

satisfies both the boundary conditions and the differential equation of motion.

Therefore, to seek practical solutions, many researchers have resorted to various

approximate analytical methods. Classical analytical methods have been used in

the past to deal with the flexural vibrations of thin rectangular isotropic plates

with different edge conditions. Warburton (1953) used characteristic beam

vibration functions in Rayleigh’s method in order to obtain, for any boundary

conditions and for each mode of vibration, very useful, simple and approximate

formulae expressing natural frequencies in terms of dimensions of the plate,

density and elastic constants of the material. Such formulae assume the following

form:
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where a is the length of the plate, f is the natural frequency while  is a non-

dimensional factor (the “frequency factor”) that, for a given aspect ratio a/b
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(where b is the width of the plate) depends only on  if one or more edges of the

plate are free. In principle, by inverting Eq. (3.2) one is able to determine the

elastic properties if the natural frequencies, the dimensions and the mass of the

plate are measured. Nevertheless, the accuracy of the frequency values calculated

using Eq. (3.2) is excellent for plates without free edges, otherwise it can decrease

significantly. In order to improve the accuracy of the Warburton formulas Alfano

and Pagnotta (2007) have used a Finite Element Method calibration. In Alfano

and Pagnotta (2007) the case of thin rectangular plates with free edges has been

explored for various modes of flexural vibration and for different a/b ratios. The

values of the frequency factors versus  have been reported in the form of graphs

for different values of a/b (i.e., 1.0, 1.5, 2.0 and 2.5).

Table 3.1 - First four modal shapes for rectangular isotropic steel thin plates with
different aspect ratio a/b (=0.3).

a/b Mode I Mode II Mode III Mode IV

1.0

(1,1) ((0,2) – (2,0)) ((0,2) + (2,0)) (1,2)

1.5c

(1,1) (0,2) (1,2) (2,0)

2.0d

(0,2) (1,1) (1,2) (0,3)

2.5

(0,2) (1,1) (0,3) (1,2)
c: for <0.13 the modal sequence became: (0,2), (1,1), (2,0), (1,2)

d: for <0.24 the modal sequence became: (0,2), (1,1), (0,3), (1,2)

In table 3.1 the first four modes of vibration of a rectangular isotropic steel

thin plate (=0.3) with free edges are illustrated. The values in brackets (i,j)

denote the modal designations by the numbers of nodal lines in the two directions

approximately parallel to the edges of the plate. It is well known that non-parallel

patterns can be observed for a free-edged square plate. In this case, in fact, if i=j

or i-j = ±1; ±3; ±5; ... the normal modes of vibration are of the type (i,j) with

nodal lines approximately parallel to the edges, while, when i-j= ±2; ±4; ±6; ...,
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the normal modes are of the type ((i,j) ± (i,j)), with patterns that do not consist of

lines parallel to the edges of the plate but is the overlapping of two patterns. Note

that the sequence and precise details of mode shapes depend on the particular

values of elastic constants and geometrical dimensions. Nevertheless their

knowledge is of critical concern for the experimental activities (i.e., measurement

of the natural frequencies).

A knowledge of the corrected relations between  and  for each of the first

four modes of vibration allows for the elastic characterization to be carried out:

Poisson’s ratio can be determined by the frequency ratio fi/fj between the

frequencies of two of the first four resonant modes i and j. In fact, as can be

deduced from Eq. (3.2), the frequency ratio fij = fi/fj is equal to the frequency

factors ratio ij = i/j that depends only on . Therefore the Poisson’s ratio can

be obtained simply by solving the equation fij= ij(ij). The variations of with

frequency factor ratios, for all the possible combinations of the first four modes of

vibration of a square plate, are illustrated in Fig. 3.1.

Figure 3.1 - Variation in  with the ratio of the frequency factors for a/b=1

The value of  could be obtained by any of the curves of Figure 3.1 but,

practically, measurement errors on frequencies propagate on frequency ratios and

then on the calculated value of For this reason thesensitivity of  to the

changes in frequency parameter ratio, represented by the slope of the curve

considered, should be taken into account.
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Figure 3.2 - Variation in the frequency factors with  for a/b= 1

The value of  can be used to evaluate i and then the Young’s modulus. The

variation of the frequency factor with the Poisson’s ratio are reported in Figure

3.2. Inverting Eq. (3.2) and introducing the mass m of the specimen, Young’s

modulus can be expressed as
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where fi is one of the two resonant frequencies considered. However, in order to

average the effects of the error in frequency measurement, Young’s modulus

could be determined as the mean of the values obtained using both the natural

frequencies fi and fj, that is Eij=[(Eij)i+(Eij)j]/2.

In the present dissertation a validation of above illustrated technique has

been done (in the next chapter are reported the experimental results). The method

is accurate enough to be used in a procedure for determining the Poisson ratio ()

and Young modulus (E) of isotropic materials. As will be evidenced in the

experimental section, the procedure is very easy and fast to implement. The

negative aspect of the method is the necessity of making a thin rectangular plate

sample with an exact aspect ratio (a/b). In fact, for validating the method an ad

hoc calibration has been necessary for each plate because its aspect ratio is

different from the nominal value (1.0, 1.5, 2.0, 2.5) and a high sensitivity to it has
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been shown by the results. When it is not possible or it is too expensive to obtain a

“standardised sample” (like ASTM shape-sample or thin rectangular plate sample

with exact aspect-ratio) a numerical-experimental technique is preferable.

3.2.2 Mixed numerical-experimental techniques

Recently, mixed numerical -experimental techniques for the characterization

of both isotropic and anisotropic materials have received a lot of attention. In

these techniques, unknown material parameters (elastic constant) in a numerical

model of the specimen are updated until the dynamic response (generally, the

values of the first natural frequencies) matches the experimental observations as

closely as possible. The values of the parameters used in the last computation are

the results of the identification procedure and yield the elastic properties. In

principle, the approach makes possible to identify all the elastic constants

simultaneously from a single experiment without damaging the specimen. In any

case, a limit of applicability of all the above mentioned methodologies is the

geometry of the specimens. The possibility of characterizing specimens with

irregular geometries could be of remarkable usefulness in both industrial and

scientific fields. Today, the availability of several commercial finite element

codes able to carry out, quickly and accurately, the dynamic analysis of complex

structures makes possible to extend the field of applicability of the methodologies

to plate with contours of any shape.

The identification of the elastic moduli of a material is an inverse problem

and, therefore, it can be formulated and resolved as a typical optimization problem

(Liu, Han, 2003). In particular, the procedure proposed in the present dissertation

allows to identify the elastic moduli minimizing an error function ( defined as

the difference between the numerically determined resonance frequencies of a free

plate and the real one measured experimentally. The values of the resonant

frequencies of free plates with the same geometry, dimensions and material

density depend, in fact, exclusively on the elastic moduli of the material. As

regarding isotropic material, the resonant frequencies depend just on two elastic

moduli (Young’s modulus and Poisson’s ratio ), so that φ = φ (E, ν). Therefore,

the identification of E and ν can be carried out, by searching among a set of

possible solutions for the one that, introduced in a model able to predict the
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dynamic behaviour of the modelled plate, gives resonant frequencies as near as

possible to the resonant frequencies of the real plate.

3.2.2.1 MNET formulation

A flow diagram is reported in Figure 3.3 showing the procedure for the

elastic characterization of a material. The procedure has been developed on a

personal computer in MATLAB® environment and recalls the finite element code

MSC/NastranTM for the dynamic analysis of the plate. In input, the procedure

requires material density, real resonant frequencies and the finite element model

of the plate. All these data can be obtained by means a measurement process

carried out in a preliminary experimental phase where the measurement of

material density, resonance frequencies, shape and thickness of the plate under

examination are performed. Among the various commercial codes available for

constructing a finite element model of the plate from the measured geometric

dimensions, in the work presented here, the pre and post processor MSC/PatranTM

has been used.

At the start, the process calculates the error function corresponding to each

initial solution (trial values of the elastic constants). The type of minimization

process employed determines the number of such solutions. It can vary from a

minimum of one solution for the more traditional algorithms to an entire

population of solutions for non conventional algorithms like the genetic

algorithms. The values of the trial solutions can be imposed arbitrarily by the user

based on his own experience or can be chosen randomly.

During the pre-processing stage, the values of the elastic constants are

included (by modifying the MAT1 bulk data entry which defines the isotropic

stress-strain relationship) inside the input file of NastranTM code which contains

the topology of the model. After that, the normal modal analysis for predicting

modal frequencies of the plates has been carried out by using “Solution 103”,

neglecting the damping and using the method of extraction of Lanczos. In the

post-processing stage, the desired first non-zero natural frequencies extracted

from the output file of results are stored (the first six rigid body modes for the free

edge condition have zero frequency). Moreover, all the files generated from the

FEM code are removed in order to release the memory of the computer.
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Figure 3.3 - Flow-chart of the MNET formulation.

At this point, using the experimental data, the value of the error function is

calculated and saved, then the cycle restarts with a new solution. Finally, a

convergence test is performed. This test could consist in controlling if, after a

fixed number of successive iterations, the differences between the values of both

elastic constants remain inside a prefixed range. When, such a condition is

verified, the best solution is reached and the procedure is stopped.

3.2.2.2 The error function

In an optimization procedure a correct selection of the error function is of

fundamental importance. Finding the minimum is faster and more accurate if it is

unique and easy to identify inside the domain of existence of the function. The

type of considered function influences the choice of the procedure to be used for

the minimum identification. Among the wide variety of potential error functions,

in the following, attention has been focused on some of the more commonly used

error functions. In equations (3.4)-(3.7), the expressions of the examined functions

are reported. Among these, the well known norms L1 and L2 (Liu, Han, 2003), in

Eq. (3.4) and Eq. (3.7), can be recognised. They represent, respectively, the sum

of the absolute values of the errors and the sum of the squares of the errors. In
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those equations, if is the i-th resonant frequency measured during the vibrational

test, if is the i-th frequency calculated with the theoretical model, and n is the

number of the modes used in order to define the error function. The functions 2
and 3 instead, represent the square root of the sum of the absolute values of the

relative errors and the square root of the sum of the squares of the relative errors,

respectively. They proffer the interesting characteristic of reducing the influence

of the greater errors in the experimental measures of the higher frequencies.
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Figure 3.4 reports the graphs of Eqs. (3.4) - (3.7) versus E and  (for an

aluminium square thin plate with E = 70.0 GPa, ν = 0.33, side l = 100 mm and

thickness h = 1 mm), obtained considering the first four frequencies of resonance.

Note that into the figure the error function is divided by its maximum value ( max )

and so it is dimensionless. The graphs have been reconstructed using the results of

an extended series of finite element analysis.

The choice of the most suitable error function depends on a compromise

between high convergence speed and accuracy. With regards to the number of

natural frequencies to use in the equations of the error function, note that in order

to avoid indeterminate or ill-conditioned problems that would make the inverse

problem insoluble, a number of frequencies equal to or greater than the number of

the unknowns of the problem has to be used.
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Figure 3.4 - A comparison of different error functions.

In Figure 3.5a the contour plot of the function 3 3max for n=1 (the first

resonant frequency for a square plate) is reported. The condition of minimum, in

this case, leads undoubtedly to a situation in which the solution is indeterminate.

That situation changes when one of the two elastic constants is known. Although,

a similar behaviour is verified for many other frequencies, it cannot,

unfortunately, be generalized to all frequencies. For example, Figure 3.5b

illustrates the contour plot of the error function for the eighth frequency. In this

case, the value of E can be identified if the value of  is known, but it is not

possible to identify unequivocally if E is known.

Figure 3.5 - Contour plot of 3 3max with n=1: a) first frequency; b) eighth frequency.

In conclusion, the choice of the vibration mode to be considered in the error

function is essential to solving the inverse problem. From the above observations,
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it is possible to conclude that for estimating both the elastic constants two

resonant frequencies have to be known, and also that such a condition would not

be sufficient if the vibration modes are not well chosen.

For example, in Figure 3.6a the variation in the ratio 3 3max calculated

using the first two frequencies (n=2) is reported. It can be seen that the

minimization of such a ratio is an ill-conditioned problem, while the variation in

the same ratio calculated using the first and the third resonant frequencies (see

Figure 3.6b) presents a unique minimum identifying only one well distinguished

solution.

Figure 3.6 - Contour plot of 3 3max with n=2:

a) first and second frequencies; b) first and third frequencies.

In order to avoid the situations illustrated above, that if not recognized could

lead to solutions that are completely wrong, a number of resonant frequencies

always larger than or equal to the number of unknowns is recommended.

The results of an extensive series of numerical analyses, carried out on

isotropic plates of various shape and dimension, have shown that a minimum of

four frequencies (generally, the first four) have to be used to accurately determine

the two unknown elastic moduli. Table 3.2 and Table 3.3 reports the contour plot

of the error function for different geometry of plates. Same variations have been

observed even when considering a number of frequencies greater than four (e.g.

n=10). Moreover, negligible variations have been noted when the resonance

frequencies are not taken in sequence. That can be very useful, especially when,

because of experimental difficulties, the measured values of some frequencies are

not available or are unreliable and must be excluded.
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Table 3.2 - Contour plot of the error functions (3 3max ) for different plates.

Plates n=2 n=10
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Table 3.3 - Contour plot of the error functions (3 3max ) for different plates.

Plates n=2 n=10
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The proposed procedure can be successfully applied even to pierced plates.

Apart the thin ring, all the functions have, in fact, a well distinguished minimum.

Thin ring represents an exception. In that case, the error function is practically

insensitive to the Poisson ratio if four frequencies are take into account, and

therefore this plate is not well suited for the determination of both the elastic

constants. If this or similar cases are not recognized, unreliable or completely

wrong results can be obtained. Thus, in suspect cases, it is always recommended

to carefully examine the variation in the error function before starting a material

characterization process.

The method works well also when the frequencies of two modes are very

close or coincide or even when two couples of very close frequencies are

encountered (as, for example, in the case of the rectangular plate with length to

width ratio equal to 1.5), and no correspondence with modal shape order seems

necessary. However, in some cases (like in this last plate) it could happen that the

error function presents a local minimum in addition to global minimum and, if the

initial guess point is not wisely chosen, the “classical” optimization methods can

fail, getting trapped at the local minimum. To overcome the problem, the user

could run the procedure more times starting from different guess points or/and

take a number of frequencies greater than four. A better approach could be to

choose four not sequential suitable frequencies to remove the local minimum.

Alternatively, a different optimization method could be used (genetic algorithms

are suitable).

3.2.2.3 Selection of the error function and minimization method

If the error function is defined properly, the procedure for the identification

of the elastic constants can be, in principle, achieved by using any of the many

methods for finding the absolute minimum value of a two variable function.

Comparing their efficiency in terms of the rapidity with which the solution is

reached, the more suitable method can be chosen. In Table 3.4, the convergence

speeds of the procedure achieved using different minimization methods and error

functions are compared. The results reported in that table have been obtained from

the analysis of a thin square plate with the same dimensions and elastic properties

as the plate considered in the previous section. Similar results have also been
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obtained for other geometries. In each case, the first four resonant frequencies

obtained numerically in a preliminary phase (for the vibrational modes and the

relative frequencies see Table 3.5) have been assumed.

Table 3.4 - Comparison of the number of FEM code runs.

Optimization method Error function

1 2 3 4

Simplex 63 * 60 64

Gradient * * 164 *

Least-squares - - - 21

Genetic Algorithm 441 630 469 351

(* attainment of convergence depends on the initial attempt solution)

Convergence speed is inversely proportional to the number of times that the

FEM code runs until the difference between the values in the calculated elastic

constants and the nominal ones is less than 0.1%. The following methods of

minimization have been employed: simplex method (Nelder and Mead algorithm),

gradient method (Broyden-Fletcher-Goldfarb-Shanno algorithm), the least-squares

method (according to Gauss-Newton), a genetic algorithm (see Appendix B). The

procedure calls the first three methods through the library functions of MATLAB:

"fminsearch", "fminunc", and "lsqnonlin" (optimization toolbox of MATLAB).

For the same minimization method and error function, the number of

iterations for converging to a solution depends on the trial solution. Therefore, in

order to take this into account, for every case, a series of analyses has been carried

out assuming different trial solutions (solutions have been chosen inside a

rectangular region of the elastic domain of ± 25% of the value of each elastic

constant) and in Table 3.4 the mean numbers of iterations are reported. In the case

of the genetic algorithm, various initial populations have been considered, each

constituted from individuals randomly extracted inside a rectangular region of the

elastic domain of ± 25% of each elastic constant value. Also in this case, the

number reported in the table is the average of the FEA for converging to the

solution.
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Table 3.5 - Modal shapes and resonant frequencies of some of the examined plates.

Square Rectangular Triangular Irregular

1600 element
Quad8

2400 element
Quad8

1200 element
Quad8

2535 element
Quad8

f1: 325.7 Hz f1: 216.1 Hz f1: 845.5 Hz f1: 476.4 Hz

f2: 477.2 Hz f2: 233.5 Hz f2: 873.2 Hz f2: 677.9 Hz

f3: 604.7 Hz f3: 500.3 Hz f3: 873.9 Hz f3: 871.4 Hz

f4: 846.2 Hz f4: 548.4 Hz f4: 2075.9 Hz f4: 1193.7 Hz

From Table 3.4 the least-squares method appears the fastest (requiring an

average of 21 iterations); it must be noted that it is usable only in conjunction with

the function error 4. Simplex and gradient methods follow. These methods can

be, in theory, used with any type of error function if it does not present local

minima, otherwise the convergence largely depends on the trial solution. The

genetic algorithm (an ARGA, Adaptive Range Genetic Algorithm, working with

populations of 20 individuals: Pagnotta, Stigliano, 2006) always finds the



Chapter 3: Methodologies for the materials characterization by vibrational testing

61

solution, whatever the error function, confirming the main feature of this type of

optimization method that consists in being able to find the global minimum even

when the function has more local minima. Unfortunately, it has the drawback of

requiring a very low convergence speed compared with the other methodologies

and therefore it is not competitive for solving a problem with two unknowns.

It is necessary to underline that, although the results of Table 3.4 indicate

that for reaching the highest convergence speed the least-squares method coupled

to the function 4 have to be used, ulterior analyses (discussed in the next

section), taking into account the influence of the measurement errors, have shown

that the simplex method coupled with 3 can represent a valid alternative.

3.2.2.4 Numerical application and sensitivity analysis

The effectiveness of the procedure has been verified numerically, simulating

the process of elastic characterization for a wide number of thin plates with

various geometries, shapes, dimensions and materials. In the first stage, every

plate has been modelled, meshed and then numerically processed for the

calculation of the first four resonant frequencies. Successively, using experimental

data, simulated by the values of the resonant frequencies previously calculated,

the identification process has been carried out. In Table 3.5, some of the tested

typologies (square, rectangular, triangular and irregular plate) are illustrated.

Every plate has been meshed using eight node quadrangular elements of

NASTRAN library and the number of elements used is reported in the table. In

the same table, the first four vibrational modes and the resonant frequencies of

each plate are also indicated. Such results have been obtained considering

aluminium plates having the following elastic properties E = 70.0 GPa; ν = 0.33,

material density ρ = 2.7 g/cm3, and thickness t = 1 mm.

The material characterization process has been carried out using both least-

squares and simplex methods, assuming the following trial values for the elastic

constants E = 80 GPa, ν = 0.30. In all the cases the solution has been reached,

within a margin of error of 0.1%, in less than 50 iterations.

In order to investigate the influence of the experimental errors affecting the

measured frequencies on the solution, a series of numerical tests has been carried

out. The uncertainties of the solutions have been estimated analysing samples of
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20 series of "experimental measurements”. Each series included the values of the

first four frequencies. The value of each single experimental frequency has been

obtained by extracting a real number from a normal distribution with a mean

value equal to the value of the calculated frequency and standard deviation equal

to a prefixed percentage of the calculated frequency.

In Table 3.6 - Table 3.8 the mean values and standard deviations of the

normal distributions of the results, for every examined plate and for the three

levels of noise, 0.5%, 1.0% and 1.5%, respectively, are reported. In particular, the

results obtained by the least-squares method and by the simplex method coupled

to the objective function 1 and 3 are reported in the tables. Despite the fact that

from the tests carried out without measurement errors (Table 3.4) the least-squares

method turned out to be the fastest, the tests in the presence of errors has shown

negligible differences between the convergence speeds of the two solution

methods (on average about 45 iterations against the 42 iterations of the simplex

method, the tests being stopped after five successive iterations without any

improvement in the solution).

An analysis of data reported in Table 3.6-Table 3.8 indicates that the

solutions obtained with both methods are stable and sufficiently accurate for the

examined noise levels. The observation of the error function contour also shows,

in all the cases, a noticeable sensitivity of the Poisson ratio to the experimental

errors.

Table 3.6 - Sensitivity analysis results obtained by the simplex method using 1

Gaussian
Noise

Plates

Square Rectangular Triangular Irregular

0.0% (σx%)
E 70.0 (0.0%) 70.0 (0.0%) 70.0 (0.0%) 70.0 (0.0%)

 0.330 (0.0%) 0.330 (0.0%) 0.330 (0.0%) 0.330 (0.0%)

0.5% (σx%)
E 70.0 (0.6%) 69.9 (0.5%) 69.9 (0.6%) 69.9 (0.6%)

 0.331 (2.3%) 0.329 (3.8%) 0.331 (3.8%) 0.327 (4.5%)

1.0% (σx%)
E 70.1 (1.1%) 69.6 (1.2%) 70.0 (1.4%) 70.0 (1.3%)

 0.332 (4.0%) 0.325 (6.5%) 0.332 (8.2%) 0.333 (10.2%)

1.5% (σx%)
E 70.4 (1.4%) 70.0 (1.3%) 70.0 (1.7%) 70.0 (1.9%)

 0.329 (6.3%) 0.327 (12.8%) 0.322 (11.5%) 0.333 (14.6%)
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Table 3.7 - Sensitivity analysis results obtained by the simplex method using 3

Gaussian
Noise

Plates

Square Rectangular Triangular Irregular

0.0% (σx%)
E 70.0 (0.0%) 70.0 (0.0%) 70.0 (0.0%) 70.0 (0.0%)

 0.330 (0.0%) 0.330 (0.0%) 0.330 (0.0%) 0.330 (0.0%)

0.5% (σx%)
E 70.0 (0.5%) 70.0 (0.5%) 70.0 (0.5%) 70.1 (0.5%)

 0.331 (2.2%) 0.332 (3.8%) 0.329 (2.7%) 0.331 (2.3%)

1.0% (σx%)
E 70.1 (1.1%) 70.1 (1.1%) 69.9 (1.2%) 70.2 (0.9%)

 0.332 (4.1%) 0.325 (6.6%) 0.328 (8.1%) 0.329 (4.6%)

1.5% (σx%)
E 70.2 (1.3%) 69.4 (1.6%) 70.2 (1.6%) 70.0 (1.6%)

 0.329 (6.2%) 0.325 (8.5%) 0.333 (10.3%) 0.333 (7.0%)

Table 3.8 - Sensitivity analysis results obtained by the least-squares method

Gaussian
Noise

Plates

Square Rectangular Triangular Irregular

0.0% (σx%)
E 70.0 (0.0%) 70.0 (0.0%) 70.0 (0.0%) 70.0 (0.0%)

 0.330 (0.0%) 0.330 (0.0%) 0.330 (0.0%) 0.330 (0.0%)

0.5% (σx%)
E 70.0 (0.8%) 70.0 (0.5 %) 69.9 (0.7%) 70.1 (0.6%)

 0.330 (2.4%) 0.327 (4.4%) 0.327 (3.6%) 0.331 (2.8%)

1.0% (σx%)
E 70.3 (1.1%) 69.7 (1.5%) 69.8 (1.5%) 70.1 (1.1%)

 0.330 (4.6%) 0.323 (5.4%) 0.326 (9.7%) 0.333 (5.9%)

1.5% (σx%)
E 70.1 (1.9%) 70.0 (1.3%) 70.5 (1.7%) 69.5 (2.0%)

 0.331(6.4%) 0.330 (12.9%) 0.339 (12.4%) 0.338 (6.5%)

Table 3.9 - Effect of the number of frequencies on the sensitivity in square plate

Gaussian
Noise

Number of frequencies

n=4 n=10

0.0% (σx%)
E 70.0 (0.0%) 70.0 (0.0%)

 0.330 (0.0%) 0.330 (0.0%)

0.5% (σx%)
E 70.0 (0.5%) 70.0 (0.3%)

 0.331 (2.2%) 0.329 (2.3%)

1.0% (σx%)
E 70.1 (1.1%) 70.0 (0.8%)

 0.332 (4.1%) 0.328 (3.7%)

1.5% (σx%)
E 70.2 (1.3%) 69.8 (1.1%)

 0.329 (6.2%) 0.329(5.5%)
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Although the simplex method coupled to the objective function 3 obtained

results slightly more accurate than the least-squares method, it can, however, be

concluded that, in general, both methods are suitable for the elastic

characterization of a material. The results of the simplex method coupled to the

objective function 2 are not reported because the attainment of convergence

depends on the initial attempt solution.

In Table 3.9 the results of the numerical simulations carried out on a square

plate using four and ten frequencies to compute the objective function 3 are

reported. The results indicate that a number of ten frequencies gives better results

in terms of standard deviation, this is due to the error compenzation on all the

frequencies. A number of four frequencies gives good results too. In experimental

stage a high number of frequencies is preferred, but often it is not easy to acquire

all the desired frequencies.

3.3 Methodologies for characterizing orthotropic materials

As it was show in the first chapter the behaviour of an orthotropic thin plate

can be described by four independent elastic moduli (E11, E22, G12 and 12). For

the elastic characterization of composites materials the same procedure used for

isotropic materials can be carried out. Obviously, more natural frequencies are

needed to have a well-posed problem. In literature more authors have proposed

methods for identifying the elastic moduli using this procedure. Unfortunately,

some problems exist in the sensitivity of the natural frequencies to all the elastic

moduli. In fact, such methodology can only yield good results if the experimental

data (the natural frequencies for the proposed methodology) change significantly

for a variations of each of the elastic moduli. For instance, the bending and torsion

frequencies are sensitive to a variation of Young’s and shear moduli respectively;

but these frequencies are insensitive to changes of Poisson’s ratio. This constant

describes the lateral contraction (or expansion) of the material when it is subjected

to a longitudinal normal stress. Therefore, to achieve a high sensitivity to

Poisson’s ratio a mode that has a deformation component in both x and y

directions needs to be used. In order to obtain modes that are appreciable sensitive

to the Poisson ratio, rectangular plate-shaped specimens with a particular length to
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width ratio have to be used (Sol, 1986).  In order to give a tool to find the optimal

aspect ratio of the sample, in terms of Poisson’s ratio sensitivity, the following

equation has been proposed:

4

1

2

E

E

width

length
 (3.8)

The equation can be obtained matching the resonant frequencies of the first

flexural mode in the x- and y-direction. A plate whose length-to-width ratio

complies with (3.8) is called “Poisson plate” due to the high Poisson ratio

sensitivity. It must be noted that the aspect ratio of the tested plate depends on the

parameters to be determined and so that if a new material has to be characterised a

previous evaluation of the elastic moduli needs to carry out. From these

consideration, it’s possible to deduce that the elastic characterization of

orthotropic plates of any shape using only the natural frequencies seems to be

arduous.

3.4 Methodologies for characterizing layered material

Today the use of ceramic and/or metallic coatings as protective layers to

improve the surface properties of substrate materials is growing. The basic

properties of a coated system, for instance the adhesion strength or its thermo-

mechanical behaviour, mainly depend on the elastic modulus. Therefore, coatings

development demands an efficient, reliable and convenient technology for its

measurement. Up to now, there is an extensive literature on the identification of

the elastic properties of layered materials; the most widespread methods are based

on conventional quasi-static tests. These are based on the direct measurement of

strains undergone by suitable coated specimens subjected to mechanical loads, i.e.

tensile, bending or torsion tests. In particular, specimens are gradually loaded and

the deformation is measured at various load levels, then the elastic properties are

deduced by means of suitable equations (Mencik, 1996). In the case of free-

standing coatings the conventional standards for monolithic materials can also be

used (ASTM E132; ASTM E111; ASTM E143; ASTM C1273; ASTM C1161).

Another noteworthy static procedure is represented by indentation (Mencik,

1996; Oliver and Pharr, 1992). It allows to determine the modified Young’s
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modulus, i.e. E/(1-2), of a sample from the analysis of the initial part of the

unloading curve obtained with a spherical indenter in the elastic range. The elastic

modulus in the out of plane direction is then obtained assuming a value of the

Poisson ratio a priori. Alternative static methodologies have been recently

proposed. For instance, in Furgiuele et al. (1997), Pagnotta (2007) and Bruno et

al. (2002) the Young’s modulus and Poisson ratio are determined from the

analysis of the surface displacement field of suitable specimens subjected to static

loads. These procedures have been demonstrated on metallic as well as on ceramic

specimens. Even if the indentation and the static techniques are currently used in

order to obtain the elastic properties of layered materials (Kim and Kweon, 1999;

Beghini et al., 2001a, b; Chudoba et al., 2002; Antunes et al., 2007; Liu and

Wang, 2007), they are cumbersome and, therefore, too tedious for a routine

application in production. As an alternative, the use of dynamic test methods has

increased in the last decades. In particular, resonant methods are currently

widespread (Atri et al., 1999; D’evelyn and Taniguchi, 1999; D'evelyn and

Zgonc, 1997; Radovic and Lara-Curzio, 2004; Radovic et al., 2004; Schmidt et

al., 2005). In particular, frequencies measurement is achieved by continuous

variable excitation, generally of sinusoidal or random stationary type, or by

Impulse Excitation Technique (IET). IET has the advantage of being simple, fast

and accurate and requires inexpensive experimental equipment and can certainly

be used for rapid production process monitoring. In addition, it allows to

determine the in-plane elastic moduli subjecting the specimen to lower strains so

that they are measured nearly at the origin of the stress-strain curve and fracture is

prevented. In the following a “direct method” and the proposed mixed numerical-

experimental techniques used to characterise layered samples by natural

frequencies are described. In particular the direct method is an extension of the

Förster’s formulation, while the MNET is an extension of the procedure proposed

for isotropic materials.

3.4.1 Analytical Method

The methodologies described in paragraph 3.2.1 are not suited for layered

materials. For this class of materials the resonant method has been extended in

Chiu and Case (1991). Starting from the well known Bernoulli-Euler equation,

which describes the transverse (i.e. flexural) motion of a homogeneous isotropic
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linear elastic beam, they have founded an implicit form for the frequency

equation. In particular, considering a bi-layered sample (see Figure 3.7) with free

end conditions and neglecting shear and rotary inertia effects, a frequency

equation suitable for the elastic characterization can be written as follows:
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where k1 is a constant equal to k1=4.73004/L, Ei represents the in-plane

elastic modulus, Ai is the cross sectional area, i the mass density, Ii the second

moment of area of the cross section with respect to the neutral axis, L is the length

of the composite beam while the subscript c and s refer to the coating and the

substrate, respectively.

Figure 3.7. Schematic representation of a bi-material beam.

The in-plane elastic modulus of the coating can be obtained using Eq.(3.9).

As it is in implicit form an iterative procedure should be used, however, in the

present work, the function Solve available in the software package Mathematica

(Wolfram, 2006) has been used to obtain an explicit form:







































242

2262

4234

242

3223

))(235344

))994580(10(1.492(

))(235344(248645994580

)(0.4732

2.03.02.0

sscc1

csscssc

sscc1ssscs

ssccc1

scsscsscs

4c

ρhρhLf

hhhhhEh

ρhρhLfhEhhE

ρhhρhLf

hhEhhEhhE

L

1
E

(3.10)

From the equation it is possible to see that, in order to find the coating

Young’s modulus, the property of the substrate have to be known. This is the

main drawback of the technique. Moreover it is not possible to find Poisson’s

ratio by this equation because only the Young modulus affect the flexural
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frequencies. To find Poisson’s ratio a Mixed Numerical-Experimental Technique

is necessary.

3.4.2 Assessment of the MNET for characterizing layered

materials

In the case of layered beam-like samples there are no equations available that

connect both the elastic moduli to frequencies. In the present dissertation, the

possibility of using MNET to take into account also the Poisson ratio has been

investigated. The procedure implemented for characterizing layered materials is

the same of that for the isotropic materials; in fact only a change of the FE model

was necessary. Also for these procedure, in order to find the elastic moduli of the

coating materials the elastic moduli of the substrate materials have to be known.

3.4.2.1 Error function and sensitivity analysis

As for isotropic materials, the inverse problem for layered materials is very

sensitive to the choice of the error function. For this case, the error function (3)

described in Eq. (3.6) has been used. In Figure 3.8 the contour plots of the error

function 3, adimensionalized by the maximum value versus E-ν calculated

considering the first frequency (a) or the first and the second frequencies (b) of a

layered beam are reported.

a) b)
Figure 3.8 - Contour plot of 3 3max of layered beam considering:

a) first frequency; b) first and second frequencies.

For the numerical simulations, the following model parameters have been

used: L=100 mm, B=25 mm, hs=4 mm, hc=0.4, Es=210 GPa, Ec=27 GPa ,s=0.30,
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c=0.22, s= 7.8 Kg/dm3, c=5.4 Kg/dm3. If the Poisson’s ratio (or the shear

modulus) is requested, a minimum of two frequencies is necessary. In fact, as it is

possible to see from Figure 3.8, only the Young modulus can be found by the first

frequency (if the Poisson’s ratio is fixed a priori or if approximated results are

allowed).

a) b)

Figure 3.9 - Contour plot of 3 3max of layered beam:

a) 3 versus E- b) 3 versus E-G function.

In Figure 3.9 the contour plots of the error function 3 3max versus E-ν (a)

and versus E-G (b) calculated considering the first four frequencies of a layered

beam are reported while the first four natural modal shapes and resonant

frequencies of the examined beam are reported in Table 3.10.

Table 3.10 - Modal shapes and resonant frequencies of the examined beam (free-free
condition).

f1: 2101.0 Hz f2: 4859.8 Hz

f3: 5749.3 Hz f4: 9993.3 Hz

In coated beams the sensibility of the frequencies to Poisson’s ratio is low.

The Young’s and shear moduli have bigger influence on the first two frequencies
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(flexural and torsional respectively). In an iterative process, the use of the

Young’s and shear moduli makes the problem well-conditioned. As for isotropic

plates, to decrease the experimental noise, four frequencies are preferred to two.

The effectiveness of the procedure has been verified numerically, by

simulating the process of elastic characterization for a layered sample. The

characterization process has been carried out only for the coating properties; the

substrate moduli have been taken as known values. In the first stage, the sample

has been modelled, meshed and then numerically processed for the calculation of

the first four resonant frequencies. Successively, using the same finite element

model and the values of the resonant frequencies previously calculated as

simulated experimental data, the identification process has been carried out. To

simulate the experimental errors, three level of Gaussian noise (0.5%, 1.0% and

1.5%) have been added to the numerical frequencies. The sample has been

meshed using twenty node CHEXA elements of NASTRAN library. Such results

have been obtained considering two layered beam having the same properties

used in the previous analysis. The material characterization process has been

carried out using the simplex method, assuming the following trial values for the

elastic constants: Ec=50 GPa, c=0.3 or Gc=16 GPa. In order to show the

sensitivity of the optimization to the elastic parameters two series of analyses have

been carried out; in the first series the Young’s modulus and Poisson’s ratio have

been considered unknown values of the iterative process, in the second one the

shear modulus has been considered instead of the Poisson’s ratio.

Table 3.11 Sensitivity analysis results obtained using 3
Gaussian

Noise
1st series 2nd series

Optimization variables Optimization variables
Ec [GPa] c Ec [GPa] Gc [GPa]

0.0%
40.0 0.220 40.0 16.0

σx% 0.0% 0.0% 0.0% 0.0%

0.5%
40.2 0.210 39.6 16.7

σx% 9.0% 30.3% 8.2% 8.4%

1.0%
39.5 0.220 38.9 15.9

σx% 13.5% 45.6% 16.7% 16.7%

1.5%
38.5 0.218 40.5 15.5

σx% 18.7% 51.3% 18.9% 22.3%
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In Table 3.11 the mean values and mean standard deviations of the normal

distributions of the results for the two series, for the three levels of noise, 0.5%,

1.0% and 1.5%, respectively, are reported.

Table 3.12 – Comparison of the sensitivity to experimental noise for different sample

2nd series 3rd series 4th series

Es 210.0 GPa 70.0 GPa 210.0 GPa

hs 4.000 mm 4.000 mm 1.000 mm

Ec/Es 0.19 0.57 0.19

hs/hc 11.4 11.4 2.9

Gaussian
Noise

Ec

[GPa]
Gc

[GPa]
Ec

[GPa]
Gc

[GPa]
Ec

[GPa]
Gc

[GPa]

0.0%
40.0 16.0 16.0 16.0 40.0 16.0

σx% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

0.5%
39.6 16.7 39.5 16.4 40.3 16.3

σx% 8.2% 8.4% 4.7% 4.5% 2.3% 2.7%

1.0%
38.9 15.9 38.4 16.0 38.8 16.1

σx% 16.7% 16.7% 8.0% 6.1% 6.5% 3.6%

1.5%
40.5 15.5 41.3 15.9 39.6 16.1

σx% 18.9% 22.3% 9.4% 9.7% 8.0% 5.9%

The results obtained by the simplex method coupled to the objective function

3 showed a high sensitivity of the technique to the optimization variables. This is

due to the high impact that the shear modulus has on the second frequencies. This

problem is very high in beam-like sample. To have a higher sensitivity to the

Poisson’s ratio a lower Young’s modulus ratio (Es/Ec) or lower thickness ratio

(hs/hc) are more desirable. This can be confirmed by Table 3.12, where the mean

and the standard deviation of the elastic moduli obtained on two series of  twenty

tests carried out on different layered samples are reported (in order to compare

with the previous results the second series is also reported in the table). The third

series of simulations has been carried out considering the same geometry

described for the second series but using a lower Young’s moduli ratio; while in

the fourth series of simulations the same Young’s moduli ratio and a lower

thickness ratio of the second series have been taken into account.

3.5 Conclusions

The proposed identification procedure allows the elastic properties of

isotropic materials to be easily determined. In particular, the Young modulus and

Poisson ratio in a FE model of the specimen are updated until the corresponding
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first four natural frequencies match the experimental ones as closely as possible.

To this aim, different optimization methods and error functions have been

compared in order to select the combination which provides the shortest solution

times. The best performance has been obtained coupling the square root of the

sum of the squares error function with the simplex method. Numerical

simulations, carried out on a series of typical and atypical shaped plates models,

have proven the effectiveness of the proposed approach. Moreover, the robustness

of the identification process with respect to measurement noise has been also

assessed. It has been observed that the sensitivity of the Young modulus to

experimental errors in frequency measurement is negligible, no matter the shape

of the plate. On the contrary, the sensitivity of the Poisson ratio to experimental

errors is strongly influenced by the shape under investigation. Therefore, in order

to avoid an incorrect estimation of the Poisson ratio in case of plates with a

particularly complex shape, it is always recommended to previously verify the

sensitivity. It is worth noting, that the usefulness of the proposed procedure can be

fully exploited when the production of proper bulk specimens is not feasible or

when the material sample to be tested cannot be damaged or processed to a

conventional testing geometry (e.g. reduced machinability or high cost, etc.) and

thus should be tested as is. Finally, numerical simulations have permitted to

confirm the feasibility of using the dynamic technique to characterise the layered

materials. The iterative method permits to find both the elastic moduli of the

coating differently from the analytical methods by which only the Young modulus

is carried out. The technique had shown a high sensitivity to the optimization

variables and sample parameters like the thickness ratio and Young’s moduli

ratio. Unfortunately the technique presents some drawbacks. First of all, there is

the computational time for the FEA, which may be reduced using cluster of

computer or multi-processor computer.
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4 EXPERIMENTAL VALIDATION OF
THE DYNAMIC TECHNIQUE

4.1 Introduction

The dynamic characterization procedure has been successfully validated in a

numerical way in the previous section. This chapter presents some experimental

test-cases carried out on samples of different materials and shapes. The

experimental-tests are intended to validate the proposed technique in an

experimental way. The results have been compared with that obtained with other

techniques (dynamic and static) carried out on the same samples. For layered

materials there are problems in validation of the procedure due to inexistence of

standardised methods for it, and so a comparison with values found in literature

has been done.
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4.2 Elastic constant identification of isotropic plate

In order to verify the effectiveness of the proposed procedure and to carry

out a useful cross-check with the results provided by other methodologies, several

test plates with different aspect ratios (i.e. a/b) (Alfano et al., 2006a, 2006b, 2007;

Deobald et al., 1988; Hwang et al., 2000; Bruno et al., 2006 ) and different shapes

(Bruno et al., 2008) examined in literature have been considered. For plates of

irregular shape a cheaper procedure for size and shape measurement of the

samples is proposed, and, in the end, a comparison with values available in

literature for the same material has been done.

4.2.1 Validation of the direct technique

In the present dissertation the direct procedure for determining the elastic

properties of isotropic rectangular plates, described in the previous chapter, has

been assessed using cold rolled aluminium alloy (6082-T6) thin plate samples.

The length (a) and the width (b) of the plates, reported in Table 4.1, have been

measured using a standard caliper while the thicknesses (t) have been determined

by averaging a series of measurements carried out with a digital millesimal

micrometer in various points of the sheet. Standard deviations for a, b and t

measurements were never higher than 0.02%, 0.02% and 0.2%, respectively. The

density of the material is calculated averaging the values of the ratio m/V, where

m is the mass of the plate measured with a centesimal digital balance and V is the

volume of the plate determined using the geometric data.

Table 4.1 – Dimensions, masses and acquired frequencies of the specimens
Length,

a
(mm)

Width,
b

(mm)

Aspect ratio, a/b Thickness,
t

(mm)

Mass,
m
(g)

Frequencies [Hz]

nominal actual* I II III IV

101.42 101.37 1.000
1.000
(0.0%)

0.936 25.85 298.7 437.1 555.4 775.4

151.50 101.18 1.500
1.497
(0.2%)

0.940 38.71 199.9 217.9 463.5 506.1

201.55 101.16 2.000
1.992
(0.4%)

0.939 51.57 121.2 149.9 330.3 339.9

250.52 101.39 2.500
2.471
(1.2%)

0.937 63.93 78.8 118.2 219.5 254.6

* the number in bracket represents the difference with respect to the nominal value



Chapter 4: Experimental validation of the dynamic techniques

80

The resonant frequencies have been measured by the impulsive excitation

technique (see Figure 4.1). The apparatus comprised a microphone with a passing

band from 80 to 20000 Hz, and a sound card with a sampling frequency of 44.100

kHz (microphones and sound cards of this type are commercially available at low

cost). A suitable dedicated software has been implemented in MATLABTM

environment for analysing and processing the signal to identify the natural

frequencies. A series of procedures have been developed by the MATLABTM

function library. The first procedure carries out the function of spectrum analyzer,

acquires the digitalised signals (8 or 16 bit) coming from the receiver and operates

the transformation from the time domain to the frequency domain by a Fast

Fourier Transform (FFT) algorithm. A second procedure allows the identification

of the natural frequencies by searching, within the frequency spectrum, for the

frequency values corresponding to a peak of amplitude greater than the threshold

defined by the user. In order to obtain a resolution of less than 0.5 Hz, acquisition

times greater than 3s have been assumed. To attenuate the effect of the

background noise and highlight the peaks of the frequency spectrum of the signal,

the average of several surveys impacting the plate at several points has been

analysed. Tests carried out with the microphone placed at different distances from

the surface (in a range between 5 and 20 millimetres), confirmed that the variation

of frequencies due to acoustic stiffness is negligible.

Figure 4.1 Equipment for resonant frequencies measurement

Using the measured natural frequencies and the test procedure described in

the previous chapter it is possible to carry out the elastic characterization of the

plate. For this purpose, one can choose a graphic or a numerical (with tables)

approach. In the present dissertation the elastic properties have been calculated
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using the second approach. In particular, suitable tables obtained by means of

FEA calculations (following the procedure reported in Alfano and Pagnotta, 2007)

have been used in MATLAB® that performs numerical interpolation. In Appendix

C the algorithm, developed in MATLAB® environment is reported. A study has

been done for each model to determine the mesh density at which values of the

first 6 resonant frequencies converge (for mesh property see the next section).

Damping has been neglected in the model because of its negligible influence on

the natural frequencies and the normal modal analyses have been carried out by

using Solution 103 and the Lanczos extraction method available in the FEA code

(Sitton, 1997).

Table 4.2 - Values obtained for Young’s modulus and Poisson’s ratio
a/b 1.0 1.5 2.0 2.5



31
0.338
( - ) 42

0.300
(-4.9%) 21

0.321
(3.0%) 21

0.336
(9.1%)

32
0.328
( - ) 32

0.372
(1.9%) 31

0.297
(3.8%) 41

0.305
(11.2%)

43
0.338
( - ) 41

0.333
(-0.8%) 42

0.345
(2.5%) 32

0.350
(7.7%)

0.335±0.09% 0.335±0.42% 0.321±2.50% 0.330±1.88%

E(GPa)

E32
70.0
( - )

E32
72.2

(0.2%)
E21

69.0
(0.3%)

E21
69.4

(1.0%)

E31
70.8
( - )

E42
72.0

(0.1%)
E31

69.2
(0.3%)

E41
69.6

(1.0%)

E43
70.0
( - )

E41
70.8

(-0.4%)
E42

70.1
(0.2%)

E32
70.1

(0.7%)

70.3±0.22% 71.7±0.17% 69.4±0.83% 69.7±0.53%

The number in bracket represents the difference with respect to the
elastic properties obtained using “nominal table sets”

However, in order to obtain the elastic properties, the sensitivity of ν to the

changes in frequency, factor ratio, represented from the slope of the curve

considered, should be taken into account; in particular, it plays a very important

role in choosing suitable frequency ratios λ(h,k)/λ(l,j) to compute ν. Relatively flatter

curves propagate the experimental errors on frequency measurements less and are

recommended. The values of Poisson’s ratio and Young’s modulus obtained using

the chosen frequency ratios are shown in Table 4.2 with the associated combined

expanded uncertainty calculated with a confidence level of 95% (International

Organization for Standardization, 1995). In particular νij represents Poisson’s ratio

calculated using the frequency ratio fi/fj, while Eij is the average of the two values
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calculated by means of Eq. 3.3 using (νij, fi) and (νij, fj), respectively. The elastic

properties reported herein have been calculated using table sets developed ad hoc

for each of the actual aspect ratio (namely, the “actual table sets”). The differences

between these values and those obtained using the “nominal table sets” are

reported in brackets.

As it can be seen, the reliability of the results is good, the overall

uncertainties associated with the measurement of the elastic properties are low;

furthermore, the differences due to the use of nominal table sets instead of the

actual ones should not be neglected. A proper numerical calibration is

recommended when the aspect ratio differs from the nominal value, especially for

larger values of a/b.

The same plates have been also analysed by the mixed numerical-

experimental technique, described in the previous chapter, and the results are

reported in the next section.

4.2.2 Validation of the iterative technique

4.2.2.1 Description of the identification process

The first step of the identification process consist on the measurement of

size, shape, mass and resonant frequencies of the plate (see Figure 4.2). This can

be efficiently carried out by an expert technician in a suitable laboratory equipped

with sophisticated and expensive instruments, but, such measurements can also be

carried out, easily and without significant repercussions on the results, with

ordinary and relatively inexpensive equipments. For example, the shape and the

size of the plate, can be measured by a caliper, if the shape is regular, or by CMM

(Coordinate Measuring Machine) if the shape is irregular but it can be measured

also with a resolution of less than 0.02 mm by a common digital scanner

connected to a personal computer. For this purpose, the contour of the plate is

drawn by superimposing a series of splines on the image of the plate acquired by a

scanner and the coordinates of the contour points exported in a format that can be

directly read by a mesh generator program. Some commercial graphical software

(for example, CorelDrawTM, Gimp, PhotoShopTM and others) allow this to be

done. Regarding the plate thickness measurement, instruments of high accuracy
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such as digital micrometers with a resolution of 0.001 mm can be used (thickness

measurement is always more critical than in-plane size measurement, since

bending stiffnesses depend on the cube of the thickness). If the plate has uniform

thickness, a spot measurement, in theory, would be enough but, in practice, it is

always more reliable to determine the thickness by averaging several

measurements carried out at different locations of the plate. Generally, the mass of

the plate is not critical data for the calculation of the frequencies, so that a digital

scale with a resolution of one-hundredth of a gram is sufficient.

Figure 4.2 The identification process

Finally, for detecting the resonant frequencies, the simple and inexpensive

impulsive excitation technique can be used. The experimental equipment is

formed (see Figure 4.1) by a rigid frame, two elastic bands, a microphone to pick

up the specimen response and a personal computer provided with a sound card.

The plate is suspended in air with the two elastic bands fastened to the rigid

frame. The exciting impulse is imparted repeatedly in various points by lightly

hitting the plate with an impulser whose size and geometry depend on the size and

the weight of the specimen and on the force required to induce vibrations. The

dynamic response of the plate is detected by the microphone and sent in the form
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of an electrical signal to the PC sound card. The signal is then analyzed and

processed by dedicated software that identifies the values of the natural

frequencies of vibration. Such software must operate as a spectrum analyzer,

acquiring the digitalised signals coming from the receiver and operating the

transformation from time domain to frequency domain by a Fast Fourier

Transform (FFT) algorithm. Finally, the resonant frequencies must be identified.

Such a procedure can be implemented in any environment (for example:

LabViewTM, MATLABTM, etc.) using the proper library functions.

The second step of the identification process is the numerical stage (see

Figure 4.2). In this phase the construction of the finite element model of the plate

from the points acquired by digital scanner is carried out. The operation can be

carried out with any of the commercial codes currently available for modelling

and meshing a structural component (MSC/PatranTM, HypermeshTM and others).

The only requirement is the compatibility with the FEM solver used.

After that, the minimization process can start to identify the elastic moduli.

This operation is carried out by a dedicated algorithm that can be implemented in

any programming languages provided that this language can run the FEM solver

and manipulate its input and output files. If a proper finite element code is not

available, the resonant frequencies can be calculated by running a commercial

FEM solver (for example: MSC/NASTRANTM, ANSYSTM, ABAQUSTM, etc.).

The considered error function influences the choice of the optimization procedure

and so is crucial in terms of solution time and accuracy. The robustness of the

identification process with respect to noise measurement has been also assessed in

the previous chapter. Taking into account the numerical results, the best error

function in terms of solution time and accuracy is the following:
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4.2.2.2 Application and validation of the iterative technique

In order to show its effectiveness, the procedure has been applied first to four

rectangular aluminium plates with different aspect ratio (these results have been

compared with those obtained by applying the direct method), and to four

differently shaped plates: a triangular aluminium plate, a thick circular steel plate
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and two aluminium plates with irregular contours, one of which is drilled. The

results obtained on the circular plate have been compared with that obtained by

the ASTM standards method (ASTM E1876-01). In addition, the comparison with

results found in literature on different materials are reported.

The aluminium plates have been all obtained from the same sheet. The thick

circular plate machined from a steel bar (38NiCrMo4K) has a thickness of 6.027

mm. The plate dimensions have been chosen so that the resonant frequencies fall

within the bandwidth of the microphone.

To create the FE model, the images of the plates have been acquired by an

ordinary scanner (HP ScanJet 4400c) interfaced with a personal computer

(Pentium 4 2.8 GHz). Using the software CorelDrawTM the contours of each

image have been outlined by superimposing a series of splines on them. The

construction of the finite element models of the plates has been carried out

starting from the coordinate data of the acquired contour points. Such points have

been provided to MSC/PATRANTM software which has been used first to model

and then to mesh the plate. The finite element models and the contours of the

plates are illustrated in Table 4.3 and Table 4.4. In Table 4.5 the plate and FEM

properties are reported.
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Table 4.3 - Contours and FEM of the plates

Plate data Finite element model
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Table 4.4 - Contours and FEM of the plates

Plate data Finite element models
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Table 4.5 - Dimensions, masses and mesh property of the specimens

Shape a/b* Density
[g/mm3]

Mass
[g]

Thickness
[mm]

Number
of FE

FE
Type

Rectangular

1.0 2.69·10-3 25.85 0.936 1600 Quad8

1.5 2.69 10-3 38.71 0.940 2400 Quad8

2.0 2.69 10-3 51.57 0.939 3200 Quad8

2.5 2.69 10-3 63.93 0.937 4000 Quad8

Triangular - 2.69 10-3 18.86 0.938 1200 Quad8

Irregular - 2.69 10-3 29.31 0.937 1480 Quad8

Irregular and drilled - 2.69 10-3 26.60 0.938 4460 Quad8

Circular - 7.76 10-3 819.67 6.027 9602 Hex20

* nominal aspect ratio a/b;

The numerical procedure for the elastic identification has been implemented

on a personal computer by using MATLABTM. The algorithm calls the finite

element solver MSC/NASTRANTM for the dynamic analysis of the meshed model

(see Figure 4.3). The simplex method (algorithm of Nelder and Mead) has been

assumed as optimization method and has been called from the algorithm by the

library function "fminsearch". The trial values for the elastic constants were

included in the NASTRANTM input file which contains the topology of the FEM

model for each iteration by using the MAT1 card which identifies the material

properties. The modal analysis for predicting the resonant frequencies of the

plates has been carried out using Solution 103, including the correction of

transverse shear and rotary inertia effects, neglecting the damping and using the

extraction method of Lanczos. In the post-processing stage, the desired first non-

zero resonant frequencies have been saved (the first six modes for the free edge

condition have zero frequency). Moreover, all the files generated from the FEM

code were removed in order to release the memory of the computer. The error

function described in equation (4.1) with N=4 has been assumed. The

convergence test consists of controlling if, after a fixed number of successive

iterations, the values of both elastic constants undergoing variation remain inside

a prefixed tolerance. When, such a condition is verified the best solution is

reached and the procedure is stopped.
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Figure 4.3 Optimization procedure

The results of the identification tests carried out on the aluminium specimens

are reported in Table 4.6. The discrepancies among the identified values are due,

certainly, to the many sources of error affecting the identification process.

Classification of the sources of error and evaluation of the effects of each of these

on the solutions is somewhat arduous.

Table 4.6 – Elastic moduli of the aluminium plates obtained by MNET
Before annealing After annealing

Shape a/b*  [GPa]   [GPa]

Rectangular

1.0 0.339 69.2 0.332 70.5

1.5 0.351 68.8 0.325 71.3

2.0 0.369 69.1 0.329 69.9

2.5 0.319 68.8 0.328 70.1

Triangular - 0.337 70.3 0.326 71.3

Irregular - 0.359 71.1 0.336 72.3

Irregular and drilled - 0.342 70.6 0.344 70.0

Mean values - 0.345 69.7 0.331 70.8

Standard deviation - 4.7% 1.4% 2.0% 1.3%

* nominal aspect ratio a/b;
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The errors mainly derive from the attempt to approximate the physical

phenomenon by a mathematical model. In particular, in the identification process,

the frequency calculation is carried out using an idealization of the real physical

problem. As a result the real plate and the real test conditions can differ from the

idealized models and this must be taken into account.

The plate vibration model, for example, is based on a theory that assumes

small deformations and linear elastic behaviour of the material. In addition,

damping is neglected and the plate is assumed to vibrate in vacuum with all edges

free. In reality such conditions cannot be completely respected. When the

impulsive excitation technique is used, a way to obtain a good approximation of

the hypothesis of small deformations might consist in inducing low impact forces

for causing small vibration amplitudes of the plate. The assumption of lack of

damping is tolerable if materials exhibiting very low values of damping are

examined. Metallic materials fall in such a category. In these cases, possible

frequency shifts are, generally, negligible. Free boundary conditions can be

accurately simulated locating support or suspension points along the nodal lines.

If the latter are dubious or unknown for a mode of vibration, the location of the

supports might be incorrect and affect the values of the related frequency.

Generally, frequency values increase if there is additional stiffness. It must be

stressed that, if the plate is suspended in air with wires, long wires reduce the

stiffness but also increase the additional mass. Thus, if long but relatively light

wires with respect to the mass of the plate are used, the influence of the

suspension on the natural frequencies of the plate can be assumed to be negligible.

In addition, the finite element method gives approximated solutions with a

level of accuracy depending on various factors: the mesh density, the type of

theory used for the correction of transverse shear and rotary inertia effects, the

type of eigenvalue extraction techniques employed, etc. Current commercial FEM

codes provide a large number of possibilities for obtaining very reliable solutions

with negligible errors in the calculation.

With regard to the plate model, it is assumed to be made of homogeneous

and isotropic material and with geometry and nominal sizes which reproduce the

real specimen with a high degree of accuracy. Dishomogeneities and anisotropies

of the material affect the resonant frequencies and, if their presence is not

recognized, they can lead to unreliable identified solutions. Moreover, the
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dimensions of the model may not correspond perfectly to those of the real plate.

Differences depend on the accuracy of the measurement system. For the sake of

modelling simplicity, it is always preferable that the plate model is plane.

Unfortunately, due to the fabrication process, real specimens can be inflected.

Since even slight curvature could appreciably affect the values of the measured

natural frequencies, they would always have to be avoided in the specimens.

The accuracy of measurements of the resonant frequencies is also affected

by environmental noise and the resolution of the measurement system. In order to

reduce the influence of the noise, the acoustic signal should not be acquired before

the hammer strikes. In addition, the identification of the resonant frequencies

would have to be carried out from an analysis of the frequency spectrum of the

average of the plate responses, acquired in a series of tests performed at different

impact points. Higher frequency spectrum resolutions could be obtained using

long acquisition times of the signal and a zero-padding technique. However, the

sensitivity analysis of the measurement errors, reported in previous section (and

also in Pagnotta and Stigliano, 2008), where the effects of random noise on

frequency measurements have been numerically simulated, have shown a very

good stability of the solution even when the simulated noise was significant.

Among the causes disturbing the identification process, the effects of the

cold rolling and cutting operations undergone by the specimens during the

manufacturing processes are critical and difficult to control. Residual stresses and

curvatures induced by these processes could cause the significant scattering

(4.7%) observed in the Poisson ratio values reported in Table 4.6. To investigate

the effects of cold working, the aluminium specimens have been first subjected to

a typical annealing treatment (Davis, 1998) and then tested again. The results

obtained before and after the treatment are compared in Table 4.6. As can be

observed, the scattering in the Poisson ratio values is reduced significantly (1.3%

as against 4.7%), after the thermal treatment, while no variation is observed on the

value of the Young modulus. The reliability of such results is confirmed by the

good agreement between their average values with the values obtained testing the

same material by a static approach (Bruno et al., 2008) reported in Table 4.7. In

the same table the results of the investigation carried out on the circular steel plate

are reported. In particular, a comparison with the results obtained testing the same
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material according to the procedures recommended by the ASTM standard

(E1876-01) is reported. Also in this case the agreement is very good.

Table 4.7. - Comparison with the results obtained by other techniques
Method  E [GPA]

Aluminium
Irregular Plate

Present 0.336 72.3
Static (Bruno et al., 2008) 0.343 71.5

Steel
Circular Plate

Present 0.281 205.5

ASTM (E1876-01) 0.287 205.5

The effectiveness of the optimization methodology is well validated by the

agreement (see Table 4.8) in the values of the measured frequencies after the

thermal treatment and those calculated using the results of Table 4.6 and Table

4.7. It can be observed that the maximum percentage difference is less than 0,5%.

This result confirms the effectiveness of the optimization algorithm.

Table 4.8 - Comparison of the calculated f i
n

and the measured f i
e

frequencies

Shape a/b* Mode (Hz)
I II III IV

Rectangular

1.0
f i
n 297.3 437.5 555.5 774.7

f i
e 298.7 437.1 555.4 775.4

ei (%) 0.5% -0.1% 0.0% 0.1%

1.5
f i
n 199.3 219.0 463.3 505.6

f i
e 199.9 217.9 463.5 506.1

ei (%) 0.3% -0.5% 0.0% 0.1%

2.0
f i
n 120.6 149.4 331.7 340.7

f i
e 121.2 149.9 330.3 339.9

ei (%) 0.5% 0.3% -0.4% -0.2%

2.5
f i
n 78.5 117.7 220.1 256.1

f i
e 78.8 118.2 219.5 254.6

ei (%) 0.4% 0.4% -0.3% -0.6%

Triangular -
f i
n 544.4 986.1 1422.9 1663.3

f i
e 545.0 986.7 1422.5 1662.4

ei (%) 0.1% 0.1% 0.0% -0.1%

Irregular -
f i
n 249.9 323.6 383.4 610.9

f i
e 250.3 323.7 382.9 609.4

ei (%) 0.1% 0.0% -0.1% -0.2%

Irregular and drilled
-

-

f i
n 286.0 373.4 472.9 737.2

f i
e

285.8 373.1 472.8 738.1
ei (%) 0.1% 0.1% 0.0% -0.1%

Circular
-

-

f i
n 1427.2 1427.2 2363.1 3274.4

f i
e 1426.6 1426.6 2363.4 3280.2

ei (%) 0.0% 0.0% 0.0% -0.2%
* nominal aspect ratio a/b;
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An additional validation has been done using experimental data found in

literature. Material type, dimensions, masses and natural frequencies of the plates

are reported in Table 4.9. Specimens S1-S2-S3 are aluminum, steel and CVD

(Chemical Vapor Deposition) diamond square plates respectively. The natural

frequencies of the plates have been measured using the impulse excitation

technique.

Specimen S1 has been originally analyzed in Deobald and Gibson (1988)

with a procedure suitable for orthotropic materials and, subsequently, in Alfano

and Pagnotta (2006a) and Hwang and Chang (2000) using two different test

methodologies. In particular, in Alfano and Pagnotta (2006a ) the direct method

showed in the previous section has been used; in Hwang and Chang (2000) an

iterative procedure has been proposed in which up to ten resonant frequencies are

given as input in order to obtain the elastic properties of both isotropic and

orthotropic thin plates. In Alfano and Pagnotta (2006b, 2007) specimen S2-S3

have been analyzed. The specimen S3 has been also examined in Bruno et al.

(2006) by means of full field measurements of the out-of-plane displacements,

detected on the upper surface of the specimen in two biaxial bending tests.

Table 4.9 - Dimensions, masses and natural frequencies of the tested specimens

Sample* Width Length Thickness Mass f1 f2 f3 f4

a [mm] b [mm] h [mm] m [g] [Hz] [Hz] [Hz] [Hz]

S1 [1] 254.00 254.00 3.16 564.7 156.7 232.5 300.4 411.7

S2
[2]

101.10 101.10 0.945 73.74 315.0 458.0 563.0 813.0

S3 50.00 50.00 0.400 3.41 1608.0 2274.0 2412.0 3989.0
*S1: Al2024-T6; S2: Steel 38NiCrMo4K; S3: CVD-diamond;
[1]: Deobald and Gibson, 1988; [2]: Alfano and Pagnotta, 2006b, 2007

In order to implement the identification algorithm outlined in the previous

section, 2-D finite element models have been developed. The number of elements

chosen for the plate are: 40×40. Damping has been neglected in the model

because of its negligible influence on the natural frequencies and the normal

modal analyses have been carried out by using Solution 103 and the Lanczos

extraction method available in the FEA code.
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The results obtained are reported in Table 4.10: these are the mean values

obtained using different starting guess points; the dispersion is negligible and

convergence has been reached, on average, after about 60 runs of the FEA code.

Table 4.10 – Elastic moduli obtained with the present procedure and comparison
with the results reported in literature

Method  E [GPA]

S1

Present 0.364 71
Alfano and Pagnotta, 2006a (1) 0.363 71
Deobald and Gibson, 1988 (2) 0.361 70
Hwang and Chang, 2000 (2) 0.356 73

S2
Present 0.287 207
Alfano and Pagnotta, 2007 (1) 0.289 209

S3
Present 0.083 691
Alfano and Pagnotta, 2007 (1) 0.078 693
Bruno et al., 2006 0.083 626

(1)
average of the values obtained using different couples of frequencies according to the procedure proposed

(2)
average of the Young moduli in the principal directions (i.e. E1 and E2)

The results obtained for S1 have been compared with those reported in

Alfano and Pagnotta (2006a), Hwang and Chang (2000), Deobald and Gibson

(1988). An excellent agreement among the results is observed (the relative errors

are less than 2.8%). Also the results for steel are in good agreement with those

obtained with other techniques. The results for CVD diamond present some

difference with other technique, in particular for Poisson’s ratio they are in

agreement with that obtained in Bruno et al. (2006) while for Young’s modulus

are more close to the results of Alfano and Pagnotta (2007).

4.3 Elastic constant identification of layered material

In order to show the real applicability of the approach for layered materials,

a real case has been studied. Steel plates (Fe-360) coated by plasma spray with

ceria yttria co-stabilized zirconia (CYSZ) have been tested.

In order to improve the resistance against corrosion, wear and fatigue of

mechanical components at high temperature, metallic as well as non metallic

coatings are currently really widespread. In the last decades, thermal barrier

coatings has been often the purpose of air plasma sprayed yttria stabilized zirconia

(YSZ). It is used in stationary turbines of power plants and aircraft engines to

improve thermal efficiency trough an increase of the inlet temperature. However,

the drawback of YSZ is the tetragonal to martensitic transformation occurring at
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high temperatures, which induces a disastrous volume expansion (from 3 to 5%)

and the consequent fracture of the coating. In order to tackle this problem, new

alternative materials have been proposed. In particular, it has been observed that

the addition of ceria to tetragonal zirconia allows to obtain CYSZ which presents

a higher phase stability than YSZ and is particularly promising for technical

demanding applications.

Ceramic coatings deposition is mostly accomplished by Air Plasma Spray

(APS) process. In a burner, a gas streaming through a high energy electric arc is

changed into plasma with temperatures higher than 1000oC. These temperatures

are sufficient for melting any materials, so the individual components, fed into the

burner in the form of powder, are melted and driven by the plasma gas to impact

with high velocity on the substrate. Thus, with APS the bonding between the

substrate and the coating materials is achieved mechanically by high pressure. The

rapid solidification of impacted molten droplets gives a highly heterogeneous

microstructure consisting of irregular thin lamellae known as ‘splats’. This feature

has a severe impact on the elastic response of the APS deposit and in particular on

the Young modulus (Siebert et al., 1999; Kim and Kweon, 1999). As the basic

properties of a coated system, for instance the adhesion strength or its thermo-

mechanical behavior, mainly depend on the elastic modulus, it follows that APS

CYSZ development demands an efficient, reliable and convenient methodology

for its measurement.

Plasma spraying of the samples used for the experimental validation, has

been carried out using a Sulzer Metco APS system, equipped with a F4-MB

plasma torch (Sultzer Metco AG, Switzerland) mounted on an industrial robot.

The feedstock is the commercial Metco 205NS (ZrO2-25CeO2-2.5Y2O3).

4.3.1 Application of the analytical formulation

Static test methods have proven to be powerful and effective for material

characterization and, in addition, allow coatings to be tested in the same

conditions as those encountered in real components. However, unlike dense

ceramics, the final microstructure of plasma sprayed deposits is characterized by

inter-lamellar pores and intra-lamellar cracks and this has a severe impact on the

mechanical properties as they induce an anisotropic behaviour. In particular, inter-
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lamellar cracks affect the in-plane elastic modulus, whereas the out of plane

elastic modulus is affected by the intra-lamellar cracks (Kim and Kweon, 1999).

As a consequence, it is necessary to consider the measurement direction when

determining the elastic modulus of the deposit or comparing the results of

different techniques. For instance, it has been demonstrated that the elastic

modulus of the APS coatings determined by Nano-Indentation is different with

respect to Bending Test (Kim and Kweon, 1999). Bending Test works at the

macroscopic level and provides the in-plane elastic modulus from the tangent of

the stress-strain curve of coated samples. Owing to splat boundary sliding and

propagation of cracks, inelastic deformations occur during testing and, as a

consequence, the results of Bending Tests are affected by this non linear stress-

strain behaviour. Nano-Indentation probes the microstructure at the splat level, i.e.

the microscopic scale, and, owing to the limited test volume, the resulting elastic

modulus is nearly that of the splat itself. Therefore, it usually exhibits higher

values with respect to the in-plane direction (usually up to 20 times higher) and

this effect is more pronounced in ceramics than in metals coatings (Kroupa and J.

Plesek, 2002). Even if Nano-Indentation and Bending Tests are currently used in

order to obtain the elastic properties of plasma deposits, they are too tedious for a

routine and cost-effective application in production. As an alternative, the use of

dynamic test methods, in particular the resonant methods, has increased in the last

decades. In Beghini et al. (2001a, 2001b) a comparison and a critical analysis, on

the basis of the error propagation theory, of four-point bending tests and the

resonance technique used for measuring the elastic properties of coatings have

been presented.

From the experimental point of view, it is advisable to choose free ends

condition, because it is easier to reproduce and affects less frequency

measurements if compared, for instance, with clamped configurations. In order to

simplify the identification procedure, the bond coat has been not applied.

Nevertheless, the adhesion between coating and substrate was excellent. Other

authors showed that the elastic modulus of the coating does not depend on coating

thickness (Lauwagie, 2005). For each specimen a deposit thickness approximately

equal to 350 μm has been chosen. So, the tests have been carried out on nominally

identical coated samples whose dimensions are reported in Table 4.11. Thickness

measurement is always critical for the quality of the results. Therefore, a digital
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micrometer with a resolution of 0.001 mm has been used. For all the other length

measurements a standard caliper with a resolution of 0.02 mm has been used.

The mass density of the steel substrates has been determined from the plate

volume and mass. These last has been measured by a precision digital balance

which is accurate to 0.01g. The mass density of the coating is that specified by the

manufacturer (www.sulzermetco.com).

Table 4.11 - Geometrical and mass properties of coatings and substrates

Specimen Density Length
L

[mm]

Width
B

[mm]

Thickness

subs. s

[g/cm3]
coat. c

[g/cm3]
subs. hs

[mm]
coat. hc

[mm]

P1
x 7.77 5.40 100.43 25.07 4.052 0.353

)(xu 0.01 0.01 0.03 0.01 0.004 0.012

P2
x 7.77 5.40 100.43 25.08 4.050 0.350

)(xu 0.01 0.01 0.04 0.01 0.001 0.011

P3
x 7.78 5.40 100.53 25.08 3.986 0.362

)(xu 0.02 0.01 0.01 0.02 0.012 0.017

P4
x 7.78 5.40 100.55 25.09 4.021 0.357

)(xu 0.01 0.01 0.05 0.01 0.004 0.019

P5
x 7.78 5.40 99.73 24.92 4.027 0.367

)(xu 0.01 0.01 0.03 0.01 0.003 0.014

x : mean value of n measurements;

)(xu : standard uncertainty (International Organization for Standardization);

The procedure adopted for elastic characterization requires specimens with

all the edges free in order to accommodate the boundary conditions prescribed

from ASTM standards. Therefore, each sample has been supported on direct

contact supports. The supports have been made of soft material (e.g., cotton pad,

soft sponge) and had a minimal area in contact with the specimen. They have been

placed in locations that allow the plate to oscillate without significant limitation in

the desired mode (see Figure 4.4). Impact excitation has been imparted lightly

hitting the beam in the horizontal plane and the resulting vibration has been

picked up using a microphone placed near the surface of the sample under

examination. The dynamic response detected by the microphone has been then

analyzed and processed to identify the fundamental natural frequency. Each

measurement was carried out by considering an acquisition time equal to 10s.

Using a sampling frequency equal to 44100Hz, a resolution equal to f = 1/t =

0.1 Hz was achieved. No significant deviations have been observed among the

values of repeated measurements. In order to mitigate the environmental noise and

www.sulzermetco.com
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to better illustrate the peaks of the frequency spectrum, the average signal

obtained by impacting the plate three times has been analyzed.

Figure 4.4 Schematization of the test set-up

The elastic properties of the substrates have been determined before plasma

spraying. In particular Table 4.12 reports the fundamental natural frequency of

each substrates before coating deposition (f1s). This last, together with the

geometrical dimension and the mass density of the material (see Table 4.11),

allows to determine the Young’s modulus, following the procedures and the

recommendation of the ASTM standards for the elastic characterization of

isotropic materials (E1876-01 Standard Test Method).

Table 4.12 - Fundamental natural frequency and Young’s modulus of the samples

f1s

[Hz]

Es

x

[GPa]
)(xu

[GPa]
)(xU

(95%)
P1 2110.1 205.04 0.70 1.81

P2 2108.3 204.93 0.26 0.73

P3 2104.5 212.13 1.90 4.87

P4 2107.1 208.92 0.70 1.71

P5 2148.9 209.95 0.51 1.24

x : mean of the value calculated from n measurements;
)(xu : standard uncertainty (International Organization for Standardization);

U(x): combined standard uncertainty (coverage factor k=t95, t is the t-student distribution)

The results present a reduced scatter and are in agreement with the common

values reported for steel. The effect of the thermal spraying process on substrates
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has been also investigated. In particular, the elastic modulus has been measured

after a direct exposure to the plasma torch, using the same spraying parameters.

No significant influence has been observed.

Table 4.13 presents the fundamental frequency of coated samples (f1sc),

which introduced in Eq. (3.10) and considering the geometrical and mass

properties reported in Table 4.11, allows to obtain the elastic modulus of the

coatings.

Table 4.13 - Fundamental natural frequency and Young’s modulus of the coating

f1sc

[Hz]

Ec

x

[GPa]
)(xu

[GPa]
)(xU

(95%)
P1 2109.7 33.01 1.93 4.25

P2 2107.6 32.62 1.16 2.28

P3 2092.0 25.10 4.53 11.09

P4 2094.7 25.50 2.20 4.50

P5 2134.1 23.41 1.52 3.14

x : mean of the value calculated from n measurements;
)(xu : standard uncertainty (International Organization for Standardization);

U(x): combined standard uncertainty (coverage factor k=t95, t is the t-student distribution)

The Young’s modulus of the coating, Ec, presents a relatively large scatter

and this could be addressed mainly to the measurement error in determining the

thickness, tc, and in principle, also to specimen curvature that follows to the

deposition process. To this aim, it is worth noting that thermal spraying process

usually leads to samples affected by residual thermal stresses. Within the context

of linear-elastic classical beam theory, the residual thermal stresses do not lead to

any changes in the elastic response. Nevertheless, they may induce a curvature of

the specimen thereby leading to a geometrical stiffening and to a variation in the

fundamental natural frequency with respect to the corresponding undeformed

configuration. It has been demonstrated in Lauwagie (2005) that the resonant

frequencies of plate-shaped specimens are very sensitive to this out-of-plane

deformation, while beam-shaped specimens are less sensitive to it. However, in

the present study, the small differences among the thermal expansion between

coating and substrate, as well as the higher stiffness which the latter presents

compared to the coating, prevent large specimen curvature. Therefore it is

possible to conclude that thermal stresses have a negligible influence on the
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measurement of the fundamental frequency and, thus, on the obtained values of

the elastic modulus.

The results obtained for the Young’s modulus of the coating are in

agreement with the values reported in Lauwagie (2005) for coatings of similar

composition (E=24.1 ± 6.33 GPa, G = 12.6 ± 6.76 GPa,  = 0.010 ± 0.610, 95%,

d.o.f.=8). In this last case a yttria-stabilised zirconia (8YSZ) coating has been

characterized by using nine samples simultaneously.

4.3.2 Application and validation of the iterative technique

As highlighted in the previous chapter, no equations are available in layered

samples case that connect both the elastic moduli to frequencies and a MNET

technique has to be used to find also the Poisson ratio of the coating materials.

The procedure adopted as optimization process is the same of the one used for

isotropic materials. Also in this case, first the elastic moduli of the substrate has

been found and after the elastic characterization has been carried out on the

coating layer. Even if two frequencies are enough, a number of four frequencies

are preferred to decrease the effect of the experimental noise and to have a well-

conditioned problem. For this purpose, the same procedure adopted for plates of

irregular shape has been adopted (see Figure 4.1). The samples have been

suspended in air with two elastic bands fastened to the rigid frame. The exciting

impulse has been imparted repeatedly in various points by lightly hitting the

sample with an impulser. The frequencies acquired before and after the coating

deposition are reported in Table 4.14.

For the elastic identification procedure the same algorithm used for isotropic

materials has been adopted. The error function described in equation (4.1) with

N=4 has been assumed. A study has been done to determine the mesh density at

which values of the first 6 resonant frequencies converge. The samples have been

meshed using 50×15×4 Hex20 elements for the substrate layer and 50×15×2

Hex20 elements for the coating layer. The results of the identification tests carried

out on the substrate layer and on the coating layer are reported in Table 4.15.
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Table 4.14 - Natural frequencies of the samples, before (fs) and after (fsc) the coating
process

Shape Mode (Hz)
I II III IV

P1
fs 2110.1 4880.0 5780.1 10038.7

fsc 2109.7 4876.8 5785.4 10047.0

P2
fs 2108.3 4876.5 5778.1 10039.5

fsc 2107.6 4878.8 5779.4 10042.0

P3
fs 2104.5 4859.9 5766.6 10006.0

fsc 2092.0 4833.8 5724.4 9946.9

P4
fs 2107.1 4860.8 5773.3 10007.0

fsc 2094.7 4832.7 5736.6 9949.9

P5
fs 2148.9 4963.3 5887.0 10217.0

fsc 2134.1 4931.6 5840.9 10144.4

Table 4.15 - Values obtained for Young’s modulus and Poisson’s ratio
Substrate Coating

Es [GPa] Gs [GPa] s Ec [GPa] Gc [GPa] c

P1 204.40 79.99 0.278 41.17 16.37 0.257

P2 204.26 80.00 0.277 40.71 17.19 0.184

P3 211.08 82.28 0.283 33.87 14.16 0.196

P4 208.08 80.89 0.286 33.42 14.28 0.170

P5 209.02 81.73 0.279 28.40 13.05 0.088

From the results, reported in Table 4.15 it’s possible to see the discrepancies

among the identified values obtained by the analytical formlation and that

obtained by the MNET for the coating layer (differences are more than 20%). This

is mainly due to different models used in frequency computation. In MNET a

discrete numerical model (FEM) has been used as approximation of the

continuum while in the direct procedure an analytical formula has been used.

Furthermore, it is to highlight that in the analytical formulation (see Eq. 3.10) the

shear and rotary inertia effects have been neglected. For the substrate layer the

ASTM standard method has been applied, and so little difference between the

results have been obtained (less than 0.5%), in fact in ASTM standards method

(E1876-01) the shear and rotary inertia effects have been take into account by a

correction factor. Due to low sensitivity, a high dispersion has been obtained in

Poisson’s ratio value.
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4.4 Conclusions

The feasibility of using an iterative procedure for determining the elastic

properties of any-shaped thin (and moderately thick) isotropic plates which are

also drilled has been experimentally and successfully assessed. The results have

been compared with those obtained by different approaches and also with those

reported in literature and the agreement is quite good. With such a procedure the

identification of the Young modulus and Poisson ratio is carried out

simultaneously, not destructively, in a single test. The measurement system is

simple, inexpensive and fast. Furthermore it is contactless and could permit the

characterization of materials at high temperature. The solution time typically

depends on the selected trial values. This requires some minutes using a common

PC, but this time can be consistently reduced if the finite element calculus is

carried out directly inside the identification algorithm. Finally an experimental

validation tests of the MNET showed that the procedure can also be applied for

the identification of the elastic properties of each layer of layered materials.

Unfortunately the procedure seems not suitable for orthotropic plates of any

shape. Other problems can arise when the impulse excitation technique is applied

on high damping materials, in this case to measure the natural frequencies the

resonant technique is necessary and so that more expensive equipment are

required.
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5 NUMERICAL-EXPERIMENTAL
METHODOLOGIES FOR THE

MATERIALS CHARACTERIZATION
BY STATIC TESTING

5.1 Introduction

As composite materials become more usually used, the need for a reliable

method to nondestructively measure the material stiffness properties is becoming

decisive for ensuring a reliable level of performance in both design and

application. It is well known that traditional static (or quasi static) test procedures

are expensive and time-consuming (Carlsson and Pipes, 1997). At least three

separate tests are required to measure the four elastic constants describing the

linear-elastic stress-strain relationship of thin unidirectional laminates. A simple

test procedure consists in performing on three strain-gauged specimens a tensile



Chapter 5: Methodologies for the materials characterization by static testing

106

test, by orienting their principal axis at 0°, 45°, and 90° with respect to the loading

direction. The analysis of the results obtained by testing the 0° and 90° specimens

provides E1, E2, 12, and 21, while G12 is obtained by the 45° specimen.

Unfortunately, the measurement of G12 is not so easy and accurate as for the other

parameters. This limited applicability encouraged the development of several

methods for the identification of the shear modulus (rail shear, picture-frame

shear, off-axis tensile shear and Iosipescu shear tests are, just, some examples).

Consequently the development of methodologies using a single specimen for

measuring all the in-plane elastic constants could prove very advantageous.

Orthotropic half-plane specimens have been proposed in Prabhakaran and

Chermahini (1984), for whom an analytical solution for the strain and stress fields

exists, consequently pointwise measurement with strain gauges can lead to the

determination of the unknown parameters. When no analytical solution is

available, inverse procedures based on updating the finite element models have

been developed, either in the case of a reduced number of measurements (Wang

and Kam, 2000) or in the case of whole-field data. This last case could occur

when data (strain or displacement fields) are measured onto the surface of the

specimen with an optical method. Several types of specimen and tests have been

used as documented by the literature on the subject: open-hole uniaxial tensile

tests (Molimard et al., 2005), in-plane loaded rectangular plate (Genovese et al.,

2004), circular disk under diametrical compression (Wang et al., 2005; Hild and

Roux, 2006), cruciform perforated specimens under biaxial tests (Lecompte et al.,

2007), through-hole biaxially loaded plate (Cardénas-Garcia et al., 2005).

However, the idea of determining the elastic constants of a material by the

displacement fields undergone by a specimen has been well exploited in the past.

Starting from the pioneers (Cornu, 1869; Timoshenko and Goodier, 1970), many

authors, encouraged by the diffusion of the coherent light sources, developed a

large number of static (Jones and Bijl, 1974; Archbold et al., 1978; Zhu, 1996;

Ganesian, 1989; Grédiac and Vautrin, 1993; Gascon and Salazar, 1996; Furgiuele

et al., 1997; Apalkov et al., 1999; Bruno et al., 2002a,b, 2006a,b; Bruno and

Poggialini, 2005; Grédiac et al., 2006) or dynamic techniques (Fällström and

Jonsson, 1991; Fällström et al., 1996; Grédiac et al., 1998; Gaul et al., 1999).

In the present thesis an inverse method, which combines finite element

analysis and genetic algorithms (GAs) to identify the elastic properties of
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isotropic or anisotropic materials by full-field measurement of the surface

displacements of a plate of generic form under suitable flexural loads is presented.

As for the dynamic technique, described in the previous chapters, an optimization

process updates the elastic constants in a finite element model so that the outputs

from the numerical analysis fit the experimental data. In this way, the unknown

parameters can be identified simultaneously in a single test and without damaging

the structure (Bruno et al., 2008). In this chapter theoretical aspects of the

methodology and numerical simulations for testing the accuracy and sensitivity of

the method are presented.

5.2 Problem formulation

The displacement field of a loaded body depends on the entity of the load,

the coordinates of the loaded point considered, the constraints and the geometry of

the body and, obviously, the elastic properties of the material. As for the dynamic

behavior, if the analytical solution, that connect the displacement field to the

elastic constants of the adopted loading configuration is attainable, the elastic

moduli of the material could be determined, provided that the applied loads are

previously measured or properly imposed. On the contrary if a reliable theoretical

solution does not exist, a numerical solution becomes necessary and so a mixed

numerical-experimental techniques has to be applied. Inverse procedures based on

the updating of numerical models could be suitable for this purpose. When this

approach is used for static characterization, the numerical displacement field of

the specimen under test is correlated with the experimental observations

performed on the real specimen. The unknown parameters (elastic constants) of

the material in the numerical model are updated until the mechanical behaviour

(displacements) matches the experimental observations as closely as possible. The

values of the parameters used in the numerical model in the last computation are

the results of the characterization procedure and they yield the elastic properties of

the specimen. In principle, this approach enable the identification of all the elastic

properties simultaneously from a single experiment and without damaging the

structure. The elastic characterization becomes an optimization process and the

elastic moduli are estimated by minimising an error function (, and so, as in

dynamic field, the choice of it is very important. Note that it is not always easy to
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minimize the error function (, especially in the case of orthotropic materials.

Therefore the right choice of minimization procedure is fundamental. In any case,

it is desirable to use a robust and reliable optimization procedure able to converge

to the target values of elastic properties regardless of load type, initial guess

values, boundary conditions etc.

5.2.1 Error function and minimization method

Genetic algorithms (GAs) are able to find the global optimum even for ill-

conditioned functions. Therefore, they appear to be highly suitable for the

characterization of anisotropic materials for which the error function is a highly

non-smooth function and gradient-based optimization methods would not work

well (Mitchell M., 1999). Based on probabilistic rules, GAs use the process of

natural selection by imitating the concept of survival of the fittest. Due to the way

the GA explores the region of interest, it avoids getting trapped at a particular

local minimum and locates the global optimum. GAs, unlike the gradient-based

method, do not require initial estimates, but instead work within a suitable set of

bounds that can often be rather broad and can just affect the number of iterations

to reach the solution. For these reasons in the recent years many researchers have

used GAs for the elastic characterization of materials (Balasubramaniam, Rao,

1998; Cunha et al., 1999; Liu et al., 2002; Maletta, Pagnotta, 2004).

The first step of the GA is the creation of a population of individuals (initial

population) randomly chosen from a set of potential solutions of the problem.

Each individual, formed by two (isotropic material) or four (orthotropic material)

elastic constants, is subjected to the evaluation of the fitness (based on a given

error function). Then, a selection process permits those individuals of superior

fitness to reproduce and create a new population, which combines the desirable

characteristics of the old population. The reproduction is generally based on two

operators: crossover and mutation. The new population then replaces the old one

and the process restarts. New generations of solutions are created through the

genetic manipulation, and this iterative process is repeated for a fixed number of

generations or for a fixed number of analyses until there is no improvement in the

best solution.
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Figure 5.1 The identification process

The diagram of the GA used for the identification of the elastic constants is

shown in Figure 5.1. It differs from that used in dynamic technique with regards

to an adaptive range module (Oyama et al., 2001.) that has been added to explore

the search space more efficiently. The algorithm has been developed on a personal

computer in MatLab environment. It applies the numerical code MSC/NASTRAN

to carry out the static analysis. To take the proper set of elastic constants into

account, for each design of the population, in the “NASTRAN pre-processor”

stage, the MSC/NASTRAN input file (“*.bdf”) is adjusted by modifying the

MAT1, MAT8 or MAT9 bulk data entry, defining isotropic and two or three

dimensional orthotropic stress-strain relationships, respectively. Then the real

static analysis is carried out. In the post-processing stage, by using the

displacement field extracted from the NASTRAN result file, for each design, the

error function () is evaluated. After that, both the fitness and the relative elastic

constants are saved, all the FEM output files are removed to release the computer

memory and the cycle restarts. The fitness processor begins to operate at the end

of the processing of the population arranging the fitness values of the population

in decreasing order and checking the convergence criteria. If the convergence

criteria are not reached, the most suitable solutions are selected and then

processed by means of the genetic operators to create the new population. The GA
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has been provided with an adaptive range procedure by which the entire

population is regenerated every M (with M>1) generations. Then, three additional

steps have been incorporated into the structure of the algorithm. In the first step,

every M generations, the top half (the fittest individuals) of the previous

generation is collected as a group; for each elastic constant the average (group)

and standard deviation (group) of this group is calculated, then a new average and

standard deviation for each elastic constants are obtained updating the previous

values according to the following equations:

new = old + group - old 

new = old + group -  old 
(5.1)

where  and are relaxation factors that provide robustness during the

range adaptation. In the second step, a new search range (lmin, lmax) for each elastic

constant is calculated using average and standard deviation computed in the

previous step by the following equations

lmin =  new - new

lmax = new + new

(5.2)

where  (1≤≤10) is a measure of the overlapping between the group and

the new generation. In the final step, all but two individuals in the population are

generated randomly according to the new range. The new population is completed

including the two fittest individuals of the old population. A proportional selection

scheme has been adopted for the reproduction of the child generation and two

procedures (arithmetical and replacing types) used to carry out the crossover

operation. In order to speed up the evolution and to improve the convergence

performance of the GA a mutation and elitism selection have also been

introduced. Greater details on these operators can be found in Appendix B. The

values of the parameters involved (population size, probability of mutation and

crossover, etc.), selected on the basis of systematic trials, are reported in Table

5.1.

Table 5.1 – GA parameters
Population size 120 M 35

Crossover probability 80%  0.5
Mutation probability 5%  10
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Among the wide variety of potential error functions, in the present static

technique, the following fitness has been used:





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i

e
i

n
i ww

1

 (5.3)

which is calculated by summing the absolute value of the difference

calculated between the numerical wi
n and the experimental wi

e out-of-plane

displacements. The parameter N represents the total number of the data acquired

experimentally. The functions 2 and 3 (relative error functions) showed in the

dynamic section, instead, cannot be used because indeterminate expression could

happen due to motionless points (point with zero displacement).

5.3 Optimization of loading and constraining configuration

In the last three decades coherent optics has provided several interferometric

techniques which enable the full-field surface displacement of an object to be

determined with an accuracy of a few tens of nanometers without any contact with

the investigated surface (Cloud Gary, 1995.). The amount of data that optical

interferometric whole-field methods provide is much greater than the number of

the unknowns to be estimated. This fact makes the elastic characterization an

over-posed inverse problem and its solution can be easily obtained when the

problem is well-posed. For this reason, great care needs to be taken in choosing

the geometry and the way of loading and constraining the specimen (Pagnotta,

2007). The resulting interferometric fringe pattern must contain sufficient

information for determining all the unknown parameters quickly and

unequivocally. Besides, to reduce the effects of noise that inevitably disturb the

displacement field on the solution, it must also be sufficiently sensitive to the

variation in each elastic parameter.

In the present dissertation, a method is proposed enabling the choice of an

appropriate configuration which provides a fringe pattern satisfying the above

requirements, without carrying out any experimental tests. The procedure could be

of great help in carrying out the elastic characterization of both isotropic and

anisotropic materials. To illustrate how the procedure works a simple example

will be shown. Figure 5.2 shows a schematization of square isotropic plate that
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has to be characterised. The locations of the three support points P1, P2 and P3 are

completely defined by the lengths l1 and l2 with respect to a rectangular coordinate

system, 0xyz, with the origin located at the centre of the plate and the axes

parallel to the edges of the plate.

Figure 5.2 - Loading configuration used to identify
the best location for the load by the correlation index

The first step of the identification process is to generate a “suitable”

superficial displacement field by which the Young modulus E and Poisson ratio ν

of the material composing the plate can be conveniently determined by an

iterative procedure such as that mentioned above. A simple way to deform the

plate is by using a flexural load, for example, by a force F acting normally to its

upper surface (see Figure 5.2). The main problem, in choice of constrain

configuration, is to recognize if one displacement field is more suitable than

another for elastic characterization. In other words, a method able to estimate how

well-posed the problem is needed. The method has to find the best load position

on the surface of the plate to obtain the optimal displacement field.

For example, assume that the field of the out-of-plane components of the

displacements undergone by the upper surface of the plate is measured by an

interferometric technique. For isotropic materials, the displacement (W) is a

function of E and ν, i.e., W=W(E, ν). An index of the suitability of the

displacement field can be obtained by evaluating the degree of statistical

correlation between the variation in the displacement field due to an increment of

E, WE=[W(E+E, ν) - W(E, ν)] and the variation in the displacement field due to
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an increment of ν, Wν =[W(E, ν+ ν) - W(E, ν)]. Such an index is the correlation

coefficient calculated as

 





WW

E
E ss

W,Wcov
r

E 


 (5.4)

where  W,Wcov E  is the covariance between the two displacement

fields EW and W , while
EWs and

Ws are the relative standard deviations.

When 1Er , the displacement field contains sufficient information for

identifying both the elastic constants unequivocally. The lower is the value of the

coefficient of correlation the better defined the problem.

Evidently, the value of Er depends on the location of the force. The optimal

location is the one which corresponds to the lowest correlation index. In Figure

5.3, the map of the absolute values of the correlation coefficient is reported for the

case of a square plate supported as in Figure 5.2.

Figure 5.3 - Correlation index map of an isotropic material

The correlation coefficient has been calculated for different locations of the

force by an algorithm written in MatLab environment. The area around each

location has been coloured with a grey level proportional to the corresponding

value of the calculated correlation coefficient (ranging from black for Er =0 to

white for Er =1).
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The structural analyses for predicting the displacement fields have been

carried out using the general-purpose finite element code MSC/NASTRAN. l1 and

l2 are 23 mm and 13 mm, respectively. The dimension l and the thickness h of the

plate are 50 mm and 1 mm, respectively, while the force applied is 1 N. A

convergence study has been undertaken to determine the mesh density of the 2-D

model of the plate by varying the mesh density in the plane directions. It was

discretized into 2500 (50x50) quadratic four node QUAD elements. The analyses

have been carried out on a steel plate (E=205 GPa, ν =0.3) by considering all the

2601 nodes of the mesh. E and  were equal to 10 % of E and ν, respectively.

However, a deeper analysis showed that the value of the correlation coefficient

does not depend on the value of E and has a weak dependence on ν.

To better understand the map reported in Figure 5.3 two particular load

conditions can be considered. In the first condition, the downward force is applied

to the plate at point A of coordinates xF=4 mm and yF=-1 mm. The analysis of the

displacement field gives
Er =0.001 for this configuration; the lowest value of the

correlation index corresponds to this location. As discussed, in such

circumstances, the inverse problem should be very well-posed and the information

contained in the displacement field are more than sufficient to identify the two

elastic constants. In the second loading condition the force is applied at point B of

coordinates xF=8 mm and yF=-16 mm where the highest value of the correlation

index ( Er =0.95) has been obtained. The value indicates that the information

contained in the superficial displacement field is sufficient to identify the elastic

constants unequivocally because Er is less than one. However it is also a warning

that the problem is not very well-posed.

The consideration above can be validated and better explained by Figure 5.4,

where the error functions defined as in equation (5.3), in the two load

configurations are reported. The assumed reference values in this cases are E=205

GPa and ν=0.3. As expected, from Figure 5.4 a), where the contour plot of the

first configuration is reported, it can be clearly seen that  has only a very well

defined minimum. Such a minimum is very easy to identify by any conventional

or non conventional optimization procedures suitable for minimizing a two

parameter function. They will converge very rapidly to the solution because the

minimum is very well defined. From Figure 5.4 b), where the contour plot of the
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second load configuration is reported, it can be observed that, also in this case, the

objective function presents only one minimum. However, in contrast to the first

case, it is not well defined and is difficult to identify from the neighbouring

points. In such a situation, the elastic identification could be difficult. The

convergence rate depends on the type of used minimization process.

a) b)
Figure 5.4 - Error function contour plot:

a) loading condition A; b) loading condition B

With regard to the sensitivity of the error function to a variation in ν and E, it

must be stressed that, when experimental errors affect the measure of the

displacement field, a high sensitivity ensures accurate solutions. Obviously, the

sensitivity depends on the geometry, constraining and loading conditions of the

specimen and on the kind of measured component of the displacement. From

Figure 5.4, it can be seen that, in the case under examination, the sensitivity of the

error function to a variation in ν is much lower than its sensitivity to a variation in

E. As a consequence, the errors in the measured displacements propagate on ν

more than E.

In summary, when isotropic materials must be characterized, fast and

accurate solutions are obtained if the force is applied inside the dark areas of the
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correlation map reported in Figure 5.3. When, for some reasons, this condition

cannot be satisfied, the solutions are reached more slowly and can be less

accurate.

The procedure for the identification of the elastic constants by

interferometric data can also be extended to orthotropic materials like composite

laminates. If thin plates are considered, the number of elastic constants to be

identified increases to four: E1, E2, ν12 and G12. The error function can become a

highly non-smooth multivariable function and if the inverse problem is not well-

posed the time for its minimization is too long or, even worse, a solution is never

reached. The use of a methodology based on the displacement correlation is of

great help in such situations. For this purpose, the mean (rave) of the absolute

values of the following correlation coefficients
21EEr ,

121Er ,
122Er ,

121GEr ,
122GEr ,

1212Gr is assumed as correlation index. The values of such coefficients are

determined, one by one, in the same way as previously described in the case of

isotropic materials.

The procedure has been applied to different unidirectional laminates with the

principal axes parallel to the coordinate axes and constrained as illustrated in

Figure 5.2. The properties of the material used to compute the correlation index

are reported in Table 5.2. E1and E2 are the longitudinal and transverse Young's

moduli, respectively, 12, is the major Poisson's ratio and G12 the in-plane shear

modulus. The subscripts 1 and 2 indicate the material directions, where 1 is the

fiber direction and 2 is the direction transversal to the fiber direction. Fiber

orientation is defined with respect to the x-axis. The generic unidirectional layer is

assumed as homogeneous and transversally isotropic with respect to the fiber

direction.

Table 5.2 –Material properties
Material E1 [GPa] E2 [GPa] ν12 G12 [GPa]
Aluminium 70.0 70.0 0.33 26.3

Carbon/Epoxy (C/E) 134.0 8.9 0.24 7.0

Glassy/Epoxy (G/E) 38.6 8.3 0.26 4.14

Pitch/Epoxy (P/E) 462.0 6.2 0.31 5.58

In contrast to what happened in the case of isotropic material, the shape of

the map of the correlation index turned out to depend on the values of the elastic

constants. A consequence of this is that the optimal position of the force depends
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on the kind of material and, therefore, it is not possible to establish it a priori

unless an approximate estimate of the elastic properties is available. A way to

solve this problem is to analyse the map obtained averaging the correlation index

maps of different materials. In Figure 5.5 the average of a number of maps

(carbon steel, carbon/epoxy, glass/epoxy, pitch-epoxy, and aluminium) is

reported. From the figure it can be seen that point C of coordinates xF=6 mm and

yF=18 mm is the point with the minimal correlation index (rave=0.25). It has also

been verified that a negligible standard deviation corresponds to this point.

Therefore, the application of the force at this point is preferable to any other point.

As will be shown in the following section, when the force is applied to a different

location the inverse problem becomes too ill-posed and the time required for the

identification unacceptable. In this case, to ensure fine solutions from the

superficial displacement field, the used optimizer must find a global minimum

even for ill-conditioned functions with numerous local minima.

Figure 5.5 - Map of average correlation index for an orthotropic material

Unfortunately this configuration is suitable for solving the problem with two

unknowns, but it is not very appropriate for solving the problem with four

unknowns due to the practical experimental difficulty of applying the load at the

location which corresponds to the lowest rave. In fact this point is close to the line

that connect two support points and so that it is not easy to predict the direction of

the third constrain point.

An alternative configuration which also solves the problems with four

unknowns properly is reported in Figure 5.6. This configuration requires loading
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and constraining conditions similar to those of the previous configuration, but

which are easier to set up.

Figure 5.6 - Loading configuration used for orthotropic laminates

The square plate is simple supported on three points P1, P2 and P3 lying on

the corners of an isosceles triangle. By considering a rectangular coordinate

system Oxyz with the origin at the centre of the plate and the axes parallel to the

edges of the plate, the locations of the three support points are completely defined

by means of the length a, that eventually could be related to the edge l of the plate

(a = 23×l/50 mm, in this case). A concentrated force loads the plate transversally.

The location of the force on the surface could be defined by the analysis of the

correlation maps.

In Figure 5.7 the map relative to an aluminium plate is reported to show the

behaviour of the isotropic materials with this constrain configuration.

Figure 5.7 - Aluminium correlation index map
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In addition, little difference has been observed among the maps of

unidirectional thin laminates of different materials. In Table 5.3, for example, the

maps of the correlation index of three different laminates with fibers parallel to

the x-axis ( = 0°) are illustrated.

Table 5.3 – Correlation index maps of unidirectional laminates
[0°] Thin unidirectional laminates

Carbon/Epoxy Glass/Epoxy Pitch/Epoxy

0.5

0.45

0.4

0.35

0.30

0.25

0.20

0.15

0.1

In all the cases, the distributions of the correlation index are characterized by

low-level values and common areas can be distinguished, where the correlation

index is minimal. Such areas can be more easily identified by observing the mean

and the standard deviation of all the maps reported in Table 5.4.

Table 5.4 – Mean and standard deviation of the correlation maps
of unidirectional laminates and isotropic plates

[0°] Thin unidirectional laminates
Mean Standard deviation

From such figures an area can be identified, around point C of coordinates

xF = l/25 mm and yF = 7×l/25 mm, characterized by the lower values of the

mean correlation index (rave ≤ 0.14) and with a negligible standard deviation

(sr ≤ 0.05). This area represents one of the best locations for the application

of the force to profitably characterize both isotropic and unidirectional laminates.
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Table 5.5 – Mean value and standard deviation of the correlation maps
of unidirectional laminates and isotropic plates

[90°] Thin unidirectional laminates
Mean Standard deviation

It is important to underline that when the fibers are oriented parallel to the y-

axis ( = 90°) the values of the correlation index are generally higher than those

obtained in laminates with the 0° orientation (see in Table 5.5 the mean map). As

a consequence this last orientation ( =0°) is certainly preferable for a faster and

more accurate characterization.

Table 5.6 – Correlation maps of thin multidirectional laminates

Carbon/Epoxy Glass/Epoxy Pitch/Epoxy

[0
0 , 9

00 ] s

0.5

0.45

0.4

0.35

0.30

0.25

0.20

0.15

0.1

[0
0 , 6

00 ,-
60

°]
s 0.5

0.45

0.4

0.35

0.30

0.25

0.20

0.15

0.1

[±
 1

50 ] s

0.5

0.45

0.4

0.35

0.30

0.25

0.20

0.15

0.1

To investigate the limits of the proposed approach some multidirectional

laminates have been also analysed. In Table 5.6, the correlation index maps
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related to three of the simplest thin multidirectional laminates, a cross-ply

laminate [0°, 90°]s, an angle-ply laminate [±15°]s and a quasi-isotropic Pi/3

laminate [0°, 60°, -60°]s, respectively, are shown. It can be observed that the

correct point of application of the load depends on the type of laminate and

point C is no longer suitable and so the technique has shown a poor

applicability for multidirectional laminates characterization.

5.3.1 Plates of different shape

As in dynamic field, in the present dissertation, the feasibility of applying the

present static technique to specimens with geometries different from those

indicated above has been studied.

Table 5.7 reports the mean maps of the correlation coefficients for different

shapes of the specimen obtained by considering a suitable number of either

isotropic or orthotropic materials. In the first column of the table the shape of the

specimen is schematically represented: the location of the support points are

emphasized by the small squares, while the small circle represents the point of the

application of the load, which is varied in the numerical simulation in order to

evaluate the correlation maps. These maps are reported in the second column, for

an isotropic material, and in the third column, for an orthotropic material. To

highlight the good load location in correlation maps for orthotropic materials a

different gray scale limits have been adopted ([0.0÷0.8] instead of [0.0÷0.5] used

in the previous tables).

As it has been emphasised above, the darker is the area of the correlation

maps, the lower is the degree of correlation and better is the choice for the point

of application of the load. As it can be noticed by observing these maps and the

maps reported in Table 5.4 for the orthotropic material, an acceptable level for the

correlation index is obtained only for the square shaped plate, since for the other

shapes the index never assumes values lower than 0.3. Finally it must be pointed

out that in the first column, the portion of the specimen necessary to apply the

procedure is delimited by a dashed closed line.

It is important to highlight that, even if for the orthotropic materials only the

square plate showed a good correlation index value, for isotropic materials the



Chapter 5: Methodologies for the materials characterization by static testing

122

technique can be applied to plates with irregular shape and the point C (xF = l/25

mm and yF = 7×l/25 mm) seems to be the best load position in all the samples.

Table 5.7 – Maps of the correlation index
Geometry Two constants Four constants

5.4 Numerical application and sensitivity analysis

The effectiveness and the robustness of the procedure with respect to the

effects of measurement noise have been tested by means of several numerical

simulations. First, the component of the displacement along the direction normal

to the upper surface of the plate has been calculated at each node of the mesh and

the resulting displacement field has been used in substitution of the experimental

data. Then, the GA, using a part or the whole nodal displacement field, identified

the elastic constants. A comparison between the results and the values of the
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elastic properties used to simulate the experimental displacement field, allowed to

refine the procedure and verify its accuracy.

Table 5.8 – Computer-simulated fringe patterns
Aluminium Carbon/Epoxy Glass/Epoxy Pitch/Epoxy

- [0°] [0°] [0°]

C/E
[90°] [0°,90°]s Pi/3 [±15°]s

The contours of the computer-simulated displacement field (fringe patterns

obtained, for example, by an interferometric technique with a sensitivity of 0.266

m/fringe) due to a load force equal to 0.45 N are reported, for each square plate,

in Table 5.8. The mean values of the number of executions of the FEM code to

converge to the solution, with an error less than 0.1%, are reported for each case

in Table 5.9. The bounds on parameters have been set at approximately 100%

from the true values. For each case three GA runs have been performed.

Obviously, in case of aluminium plate, even if fine results can be obtained solving

for four unknowns, the identification of only two elastic constants is

recommended because requires shorter execution times.

Table 5.9 – Number of FEM runs for each material

Material Fibers
orientation

Number of
parameter

FEA number
executions

Aluminium -
2 380
4 4721

Glass/Epoxy [0°] 4 4002
Pitch/Epoxy [0°] 4 7861

Carbon/Epoxy

[0°] 4 4171
[90°] 4 *
Pi/3 4 *

[0°,90°]s 4 *
[±15°]s 4 *

* After 20000 runs convergence was not reached
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The stability of the inverse procedure has been checked by using simulated

measurements with Gaussian noise. In particular, a vector of random numbers has

been generated from a Gaussian distribution with the mean w set to zero and

standard deviation sw equal to a percentage of the sensitivity of the interferometric

technique. sw can be defined as 0.266 pcnlv where pcnlv is the value to control the

level of noise contamination. For example, pcnlv = 0.5 means a 50% noise level; in

terms of fringe order this noise level is equivalent to half fringe. The Gaussian

noise has been directly added to the computer-generated fringe patterns.

Table 5.10 – Computer-simulated fringe patterns with noise
Carbon/Epoxy [0°] Glass/Epoxy [0°] Pitch/Epoxy [0°]

N
oi

se
 F

re
e

15
%

 N
oi

se
30

%
 N

oi
se

In Table 5.10, the fringe patterns affected by two levels of noise, 15% and

30%, respectively, are illustrated for the cases of carbon-epoxy plate, glass-epoxy

plate and pitch-epoxy plate, respectively. For each case, three GA runs have been

performed. The GA has been stopped if no improvements have been obtained

after 35 generations.

The mean values of material properties obtained by the identification

procedure are reported in Table 5.11. It has been found that the solutions are very

stable and accurate not only for the noise-free case, but also for the other noise

levels examined.
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Table 5.11 – Results for the thin laminates based on computer-simulated responses

Material Elastic
Constant

Noise free 15% Noise 30% Noise

x sx% x sx% x sx%

[0°]
Carbon/Epoxy

E1 [GPa] 134 0.0 133.6 0.3 134.7 0.6
E2 [GPa] 8.9 0.0 8.9 0.0 8.9 0.0

12 0.24 0.0 0.24 0.2 0.24 1.0
G12 [GPa] 7.0 0.0 7.0 0.0 7.0 0.1

[0°]
Glass/Epoxy

E1 [GPa] 38.6 0.0 38.6 0.2 38.6 0.2
E2 [GPa] 8.3 0.0 8.3 0.0 8.3 0.0

12 0.26 0.0 0.26 0.0 0.26 0.2
G12 [GPa] 4.1 0.0 4.1 0.0 4.1 0.0

[0°]
Pitch/Epoxy

E1 [GPa] 462.0 0.0 463.2 1.1 462.1 2.3
E2 [GPa] 6.2 0.0 6.2 0.0 6.2 0.0

12 0.31 0.0 0.31 4.4 0.31 5.4
G12 [GPa] 5.6 0.0 5.6 0.0 5.6 0.1

5.5 Conclusion

The feasibility of using an inverse procedure for determining the elastic

constants of composite and isotropic materials from the full-field measurement of

the surface displacements of any-shaped plates laminates under flexural loads has

been tested. A correlation-based method has been proposed to find more suitable

load and constrain configurations for any-shaped plates. It must be pointed out

that the square plate allows to increase the convergence rate of the identification

procedure, and obtaining a more stable behaviour in the presence of experimental

noise. However, the correlation-based method is of great help in testing the

flexibility of other specimen geometries for solving the elastic inverse problem. A

real-coded adaptive range GA has been adopted to develop an optimization

process by which the elastic constants are identified by updating their values in a

numerical model until the calculated displacements fit on the experimental ones as

accurately as possible. The procedure has proved to be suitable for the elastic

identification of unidirectional laminates but less appropriate for multidirectional

ones. The main advantage of the present identification method with respect to the

traditional methodologies for the characterization of unidirectional laminates is

that all elastic constants are determined from one static test by using a plate

sample. Thus, the material is not destroyed by cutting samples in order to

determine different elastic constants. The robustness of the procedure with respect

to the effects of measurement noise has been investigated by adding Gauss noise

to the simulated displacement field.
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6 EXPERIMENTAL VALIDATION OF
THE STATIC TECHNIQUE

6.1 Introduction

In order to validate the effectiveness of the proposed procedure and to

carry out a cross-check with the results provided by the dynamic technique,

some experimental tests have been executed on isotropic and orthotropic plates.

In particular, two aluminium plates and a Graphite/PEEK plate of different

shapes have been tested. The results have been compared with those obtained

with other techniques. The tests have been carried out using the information

obtained by the numerical simulations and the correlation-based method

showed in previous chapter.
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6.2 Identification process

The steps of the mixed numerical-experimental technique are the same of

those showed for the dynamic technique. First of all, the operator has to carry

out the experimental procedure, like the measurement of size, shape of the

sample and displacement field (see Figure 6.1). As it has been shown in

previous sections, the shape measurement can be efficiently carried out by a

common digital scanner connected to a personal computer. After that, an image

processor software can be used to export the picture into a mesh generator

program. For detecting the experimental displacement of the loaded plate an

optical technique can be used. In the present dissertation a speckle

interferometric technique has been used.

Figure 6.1 The identification process

After the experimental stage, the operator can identify the elastic moduli

by the minimization process. This operation is carried out by a dedicated

algorithm that can be implemented in any of the more common programming

languages in which the FEM solver is managed by its input and output files.

Previously the importance of the choice of the error function has been

highlighted. It is crucial in terms of solution time and accuracy. In the
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numerical study, it has been shown that in the static characterization the

following error function can be used:





N

i

e
i

n
i ww

1

 (6.1)

The numerical procedure for orthotropic materials is the same of that used

for the isotropic materials; only a difference in computational time, due to

larger number of unknown parameters to characterise, exists.

6.3 Experimental validation

In order to test the effectiveness and the repeatability of the procedure,

this has been applied on two specimens of different shape and material. Figure

6.2 reports the dimensions and the shapes of the specimens: one square

specimen has been cut from a unidirectional graphite reinforced PEEK panel,

while the irregular shape specimen have been cut from a cold rolled sheet of

aluminium alloy 6082-T6, which has been also used to validate the dynamic

technique.

Figure 6.2 - The geometry and the acquired area (shaded) of the specimens
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All the specimens have been painted, on the observed side, by a non

depolarizing metallic spray paint. The edges of the square plate have been

measured by a standard digital calliper with a resolution equal to 10 m, while

the irregular contours of the other specimen have been acquired by a common

digital scanner.

With regards to the measurement of the thickness, an averaging over a

number of measurements in different points has been carried out; these

measurements have been performed by a digital micrometer with a resolution of

a 1 m.

Figure 6.3 - Sketch of the experimental apparatus

The main components of the whole apparatus, which has been used for the

experimentations, are shown in the sketch of Figure 6.3. The apparatus has been

assembled on an optical bench supported by pneumatic vibration isolators. The

light source is a COHERENT 2W Nd-Yag Model Verdi operating in single line

mode at the wavelength =532 nm. The laser beam is filtered and expanded and

the resulting spherical wavefront is divided by a beamsplitter into two equal

intensity beams. The specimen and the reference surfaces are horizontal and are

illuminated and observed by a 45° oriented mirror with the respect of the

propagation direction of the beams. The scattered speckle wavefronts interfere

at the image plane of the CCD of the TV camera. The camera is interfaced with

a general purpose computer image processing system where the real time fringe
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patterns are generated by the subtraction of digitalized images. Essentially, the

optical setup constitutes a speckle interferometer, based on the Michelson

design, for measuring the out-of-plane component of displacements. A picture

of the optical layout is reported in Figure 6.4.

Figure 6.4 - Optical layout

The specimen is placed in the loading device, as shown in Figure 6.5a),

and loaded according to the loading configuration reported in Figure 6.6. The

length a has been assumed equal to 23 mm and the coordinates of the loading

point are xF=5 mm and yF=3 mm.

a) b)

Figure 6.5 - The loading device: (a) the loading fixture and the aluminium plate;
(b) the spheres used for reproducing punctual constraints and load
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Figure 6.6 - The loading configuration used

As it the previous section shown, this load configuration is appropriate to

characterise orthotropic square plates as well isotropic plates of any shape. This

can be demonstrate by Figure 6.7 where the correlation map obtained for the

irregular plate is reported. In Figure 6.7, point C represent the load position.

Figure 6.7 - Aluminium correlation map for
the irregular shape specimen

The force is applied by a small sphere of 2.3 mm diameter interposed

between the lower surface of the specimen and a support plate mounted on a

strain gauged load cell, by which the load is measured with a resolution of 10-3

N. Three small spheres of the same diameter support the specimen on the upper

surface. These spheres are glued on two parallel rectangular aluminium bars

which are rigidly connected to each other at their ends by two thin circular bars,

as shown in Figure 6.5b). For a correct and repeatable location of the support
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points, a suitable kinematic device has been properly designed and clamped at

one end of the fixture. It allows to remove the fixture and subsequently to

reposition it in the same location with interferometric accuracy.

The amplitude of the load is controlled by adding sample weights on a

plate fixed at the other end of the fixture. A strain gauged load cell connected to

an HBM amplifier has been used to measure the force applied to the plate (see

Figure 6.5b). To test the repeatability of the experimental tests, different load

levels have been employed, inside the range of values producing a pattern with

a suitable number of fringes (from 0.3 N to 0.7 N and from 0.7 N to 1.15 N for

the aluminium and composite plates, respectively).

Most of the surface of the specimen (50x44 mm2) can be observed

between the two rectangular bars of the fixture by the CCD camera. The out-of-

plane displacements are measured with a sensitivity equal to/2, which can be

increased if the phase variations due to the displacements are measured by

applying a phase-shifting procedure. A four step algorithm has been applied by

a proper Virtual Instrument (VI) implemented in National Instruments

LabViewTM environment, in order to obtain the phase at each pixel of the visible

part of the specimen. The technique requires that four speckle patterns must be

captured by the CCD camera sequentially. Each frame is shifted by the same

amount of phase with respect to the previous one. The phase shift between two

successive frames is equal to /4; in practice, this change in phase is obtained

by translating the reference surface along the vertical axis of an amount equal

to/8.

The light intensity at the kth pixel varies according to the following

relation:

)cos( kamk iii   (6.2)

where im, ia and  are the mean intensity, the modulation and the phase,

respectively, that is the parameters to be determined, while k is the known

shift introduced by the phase-shifting procedure. The unknowns can be

calculated locally at each pixel of the image by solving the system of linear

equations obtained by writing as many equations as the number of steps (at

least three). The phase is then calculated from the light intensity measured at
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different steps. If a four equispaced /4 step algorithm is adopted the phase is

calculated according to the following relation:

31

24arctan
II

II




 (6.3)

where Ii is the light intensity of the i-th step.

The phase-shifting procedure is entirely performed by a personal

computer interfaced by a standard RS232 serial port with the amplifier of a PZT

actuator, able to move the reference surface with nanometric accuracy. In fact,

by means of the implemented virtual instrument, it is possible to move the

actuator and to acquire, by a CCD camera, the speckle intensity patterns

scattered from the surface under test. By the virtual instrument is also possible

to unwrap the phase maps by proper algorithms able to work in presence of

severe noise.

A 2D finite element model is developed for each plate, paying attention

that a node of the mesh falls in proximity, or eventually exactly at the location,

of each support and loading point; the position of these points are traced on the

painted side of the specimen before the beginning of the measurement sessions.

Then, they are acquired together with the boundary of the plate and the

obtained coordinates are used for defining the position of the nodes to be

constrained and loaded. Quadratic four node elements (CQUAD4) have been

used (2500 elements for the square plate and 7600 elements for the generic

shape plate) and the effects of the transverse shear deformation has been

considered in the analysis. The meshes are reported in Figure 6.8.

For characterising the material, the specimen must be introduced in the

loading fixture by carefully controlling that the three points marked on the

upper surface of the plate overlap as accurately as possible with the three

support spheres of the loading fixture. If this fact is respected, the real loading

and constraining condition coincides with the simulated one. Any definite area

on the FEM model corresponds to an area observed by the camera and the

measured displacement can be readily associated at each node of the mesh. The

lack of alignment between the loading fixture and the plate could imply large

errors in the solution.
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Figure 6.8 - The meshes created for the numerical analysis of the specimens

Typical phase maps are shown in Figure 6.9. In the optical arrangement,

the sensitivity vector was normal to the surface of the specimen, with a module

equal to half of the wavelength of the light source (532 nm); this means that

between two adjacent fringes there is a difference in out-of-plane displacement

equal to 266 nm. As it can be seen, fringes are very noisy due to the intrinsic

noise of the speckle techniques.

Aluminium  irregular plate
Load 0.488 N

Graphite/PEEK plate
Load 0.733 N

Figure 6.9 - Experimental data for the two specimens

Many tests have been carried out on the plates for different load levels

with the aim of verifying the repeatability and the accuracy of the procedure. At

each time, the specimen has been removed from the fixture and then

repositioned and, for each test, the procedure has been applied several times.

The unavoidable rigid body motion of the specimen due to the compliance

of the fixture, consisting in a rigid translation along z-axis and two rigid
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rotations about the x- and y-axis, affects drastically the fringe patterns, leading

to an inability to properly identify the elastic constants. In order to calculate and

hence compensate these unwanted effects the fitness of the genetic algorithm

has been modified. Such a change is based on the fact that difference between

the measured We(x,y) and the numerically calculated Wn(x,y) out-of-plane

displacements of the plate, except for the measurement noise and the different

elastic constants assumed in the numerical simulations, can be approximated in

the space Oxyz by the plane W(x,y) whose equation can be written as:

321 pypxp)y,x(W  (6.4)

where the coefficients (p1, p2, p3) describe analytically the average plane

calculated on the experimental data which represents, at the end of the

optimization process, the overall rigid body motion. Then, the fitness could be

defined as:

  WWW ne  (6.5)

Therefore the coefficients pi can be found by solving the following over-

determined system of equations by applying the least mean square method:
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where (xi, yi) are the coordinates of the i-th node. In a compact form, eq.

(6.6) can be rewritten as:

    wpM  (6.7)

where [M] and {w} are the coefficient matrix and the known vector of the

over-determined equation system, respectively. By defining the matrix [C] as

follows:

      IMMC   (6.8)
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in which the superscript + indicates the pseudoinverse of [M], and [I] is the

identity matrix. Finally the fitness is evaluated as:

  wC (6.9)

Table 6.1 and Table 6.2 report the elastic moduli values of the examined

specimens. Since aluminium is an isotropic material, the identification of only

two elastic constants is enough. However, in order to investigate the capability

of the genetic algorithm to identify the anisotropy of the material, the elastic

constants have been also evaluated by the four constants algorithm. The results

are accurate even if four elastic constants are determined.

Table 6.1 – Elastic moduli obtained on aluminium irregular plate

Load
[N]

Four unknowns Two unknowns
E1

[GPa]
E2

[GPa] 12
G12

[GPa]
E

[GPa] 

0.359 71.0 71.3 0.344 25.5 72.0 0.335

0.359 71.3 70.3 0.331 25.8 71.9 0.340

0.374 70.9 70.5 0.344 26.1 74.8 0.340

0.370 71.7 71.3 0.354 25.3 71.2 0.340

0.488 72.5 71.5 0.333 25.1 72.1 0.331

0.492 72.8 71.8 0.337 25.0 71.4 0.341

0.500 70.4 71.7 0.352 25.3 70.2 0.354

0.730 68.5 72.0 0.345 25.7 71.0 0.343

0.741 69.7 71.3 0.346 25.1 70.5 0.351

0.742 71.2 71.4 0.353 26.1 69.9 0.357
x  71.0 71.3 0.344 25.5 71.5 0.343
sx 1.8% 0.8% 2.4% 1.6% 1.9% 2.4%

Table 6.2 – Elastic moduli obtained on Graphite/PEEK square plate
Load
[N]

E1

[GPa]
E2

[GPa] 12
G12

[GPa]
0.722 136.7 10.9 0.255 6.4

0.722 138.1 10.9 0.262 6.3

0.733 136.7 10.9 0.317 6.3

0.734 136.5 10.9 0.269 6.2

0.734 141.9 10.8 0.267 6.2

1.096 137.7 10.9 0.274 6.2

1.097 132.5 10.9 0.264 6.2

1.097 132.5 10.9 0.264 6.2

1.099 140.8 10.9 0.256 6.3

1.465 142.6 10.9 0.283 6.3

x  137.6 10.9 0.271 6.2

sx 2.5% 0.3% 6.7% 1.1%
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In Table 6.3 the mean value of the elastic constants obtained by the

proposed technique are compared with those obtained on the same specimen by

a dynamic test. The good agreement of the results obtained by the two different

approaches confirms the validity of the procedure. Table 6.3 reports also the

mean value obtained on the composite specimen, that is compared with those

obtained by the ASTM standard (ASTM D3039M) on sample of the same

materials; also for this material a high repeatability and a good agreement for E1

with the results obtained by the ASTM standard can be observed. For the other

elastic moduli a larger differences have been obtained. In particular difference

of 22%, 23% and -11% have been achieved for E2, 12 and G12 respectively.

Unfortunately, the ASTM standards gives a reference repeatability value of

2.7% for Young’s modulus and no reference value for the other constant.

Furthermore no reference value are given for the bias because no acceptable

reference standard exists.

Table 6.3 – Mean value of the elastic moduli obtained with the present procedure
and comparison with other technique

Sample Method E1

[GPa]
E2

[GPa] 12
G12

[GPa]

Aluminium
Irregular plate

Present (2 constants) 71.5 71.5 0.343

Present (4 constants) 71.0 71.3 0.344 25.5

Dynamic test (iterative) (1) 72.3 72.3 0.336

Graphite/PEEK
Square plate

Present (4 constants) 137.6 10.9 0.271 6.2

ASTM 134.0 8.9 0.240 7.0
(1): Pagnotta and Stigliano, 2008.

Figure 6.9 reports the experimental data without any manipulation, while,

Figure 6.10 reports the phase maps for the specimens: in the first row there are

the phase maps relative to the aluminium specimens, in the second row those

relative to the composite specimen. In particular Figure 6.10a) reports the phase

maps which would be obtained if the out-of-plane displacement field matches

exactly that obtained numerically. Figure 6.10b) shows the rigid body motion

analytically described by eq.(6.4) and found by the application of the genetic

algorithm when the fitness is calculated by eq.(6.9). Finally, Figure 6.10c)

reports the experimental data obtained by subtracting the rigid body motion

evaluated by the characterization procedure from the original data. It must be

noticed the high similarity between the numerical data (Figure 6.10a)) and the

experimental data without the rigid body motion (Figure 6.10c)).
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Figure 6.10 - Experimental and numerical data for the specimens: (a) phase maps
obtained by numerical displacement fields; (b) rigid body motion evaluated by the

genetic algorithm; (c) experimental data without rigid body motion

6.4 Conclusion

The feasibility of using the displacement field of a properly loaded plate in

an iterative procedure for determining the elastic properties of isotropic and

orthotropic materials has been experimentally and successfully assessed. The

displacement fields have been measured with a speckle interferometer based on

Michelson design. The results obtained have been compared with those

reported with other techniques and the agreement is quite good. With such a

procedure, the identification of the elastic moduli is carried out simultaneously,

not destructively, in a single test. The main drawback of the present technique

is the equipment cost; in fact it is more expensive than that used for dynamic

characterization.
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CONCLUSION

It was shown that traditional characterization procedures, based on static

loading of standardized test specimens, are usually tedious and expensive to be

applied. Moreover, these tests often yield unsatisfactory results. On the other

hand, fast, accurate and inexpensive tests for determining all the elastic moduli by

using a single experimental test are sought. In the present dissertation simple test

procedures to determine the elastic properties of isotropic and composite samples

have been developed. The aim of the present dissertation has been focalized on

developing a rapid and inexpensive test to characterise all the elastic moduli using

a single dynamic or static experimental test. The procedures proposed herein are

often referred to  Mixed Numerical Experimental Technique (MNET). They are

based on an optimization procedure which minimizes the difference between

numerical data (e.g. the natural frequencies of vibration or displacement field

evaluated by a standard FEM code) and experimental data. Phase-shifting speckle

interferometry has been employed to detect the out-of-plane displacement field of

a portion of the observed surface of the specimen, while a Impulse Excitation

Technique (IET) has been adopted  to obtain the natural frequencies of the

specimen.

The common thread in the two proposed characterization procedures is that

the determination of material constants is regarded as an inverse problem. In

particular, it has been shown that for isotropic materials the optimization problem

can be solved using a standard algorithm (e.g. gradient-based methods). However,

for an increasing number of unknown parameters (i.e. composite materials) a

Genetic Algorithm (GA) was adopted. In addition, a comparative analysis of

different error functions has been carried out using an ad hoc graphical method.

Furthermore, the robustness of the identification procedure against experimental

noise has been numerically assessed. In such a way, it was possible to select an

error function which provided an increased convergence rate and a reasonable

accuracy of the results. In particular, for dynamic and static characterization the
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square root of the sum of the squares of the relative errors and the sum of the

absolute values of the errors have been chosen respectively.

For dynamic characterization a number of natural frequencies equal to the

number of unknown values have to be used but it is not enough if the frequencies

are not well chosen. To solve this problem and to average the noise of

experimental measurement a number equal to the double of the unknown values is

advisable. Furthermore, the proposed method does not require modal shapes

measurement, nor modal indices are required because frequencies are correlated

simply by their number in a sequential order of magnitude. The dynamic method

showed a high potentiality to determine the elastic properties of any-shaped (also

drilled) isotropic plates. With such a procedure the identification of the elastic

moduli is carried out simultaneously, not destructively, in a single test. The

measurement system is simple, inexpensive and fast. Furthermore it is contactless

and permits the characterization of materials at high temperature. Moreover, this

method is applicable to orthotropic plates as well as laminated plates, but it

presents some drawbacks. It has been shown that Poisson’s ratio and the

transverse shear modulus are not so sensitive, with regard to the eigenfrequencies,

as the other parameters. Other problems can arise when the IET is applied on high

damping materials: in this case a resonant method is necessary, and then more

expensive equipment are required. However, the cost of the device necessary to

carry out the dynamic characterization (pc provided with a sound card and a

microphone) is very low compared to the cost of the device used in static

technique (laser, optical component, optical bench and so on). Obviously these

costs may be reduced, for instance, by using a  low cost portable device working

with laser diodes. Also for the proposed static technique, all the elastic constants

are determined from one static test by using a plate sample; this is the main

advantage with respect to the traditional methodologies used for the

characterization of unidirectional laminates. It has been shown that great care is to

be taken in choosing the geometry of the specimen and the way of loading and

constraining it. For this purpose, a correlation-based method has been proposed to

find more suitable load and constrain configurations for any-shaped plates. It has

been found that the square plate increases the convergence rate of the

identification procedure, and has more stable behaviour in the presence of

experimental noise. Moreover, the correlation-based method is of great help in



Conclusion

146

testing the flexibility of other specimen geometries for solving the elastic inverse

problem. It has been shown that the technique is able to identify the elastic

constants of isotopic plate of any-shape without significant repercussion on the

accuracy of the results. Moreover, the robustness of the procedure with respect to

the effects of measurement noise has been investigated by adding Gauss noise to

the input displacement field. However, the procedure proved to be suitable for the

elastic identification of unidirectional laminates but less appropriate for

multidirectional ones or for specimen geometry far from the square plate. As for

the other static techniques, great care is needed for loading and constraining the

specimens. In order to eliminate the rigid displacement present into the row data

coming from speckle technique a numerical procedure has been carried out and

successfully tested in numerical and experimental way. The major drawbacks for

both the procedures proposed is, obviously, the computational costs of the

optimization processes. However, these disadvantages might become less critical

in the future with the advancement of computer technology. A possible future

development could be the application of neural network. In fact, once the

geometry of the specimen is defined, after a numerical training, it is possible to

find the relation between the displacement (or the natural frequencies) of the

sample and its elastic moduli.
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APPENDIX A: MATLAB CODE TO
ACQUIRE NATURAL FREQUENCIES

In order to acquire the natural frequencies of the sample a GUI (Graphical User

Interfaces) has been developed in Matlab™ environment. The GUI allows to

acquire by a microphone the audio signal coming from the impacted sample. After

that, a fast Fourier transform (FFT) is carried out, thanks to the Matlab function

“fft()”. By the definition of the range search, the sill amplitude search (the green

line in Figure A.1) and the high-pass filter value, the GUI finds automatically the

peaks corresponding to the natural frequencies. Figure A.1 reports the front panel

of the GUI, while below the Matlab code is reported.

Figure A.1 – Front panel of the GUI.

function varargout = AcquisizioneFreq(varargin)
% Main program
gui_Singleton = 1;
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gui_State = struct('gui_Name',       mfilename, ...
'gui_Singleton',  gui_Singleton, ...
'gui_OpeningFcn', @AcquisizioneFreq_OpeningFcn, ...
'gui_OutputFcn',  @AcquisizioneFreq_OutputFcn, ...
'gui_LayoutFcn',  [] , ...
'gui_Callback',   []);

if nargin && ischar(varargin{1})
gui_State.gui_Callback = str2func(varargin{1});

end
if nargout

[varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else

gui_mainfcn(gui_State, varargin{:});
end
% End initialization code

function AcquisizioneFreq_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
handles.output = hObject;
handles.soglia=70;
set(handles.Sill, 'String', int2str(handles.soglia));
handles.filtroPassaAlto=70; % high pass filter
set(handles.Sill, 'String', int2str(handles.filtroPassaAlto));
handles.min=50;
set(handles.MinPlot, 'String', int2str(handles.min));
handles.max=5000;
set(handles.MaxPlot, 'String', int2str(handles.max));
handles.duration=3;
set(handles.edit_Duration, 'String', int2str(handles.duration));
handles.IntervalloDiRicerca=50;
set(handles.edit_RangeSearch, 'String', int2str(handles.IntervalloDiRicerca));
handles.zeri_prec=5;
handles.zeri_suc=handles.zeri_prec; % zero paved
set(handles.edit_ZeroPadding, 'String', int2str(handles.zeri_suc));
set(handles.radiobutton1_Trigger,'Value',1);
handles.Trigger=get(handles.radiobutton1_Trigger,'Value');
handles.sogliaTrigger=0.15;
set(handles.axes10,'Visible','off');
handles.plottaFase=0;
set(handles.checkbox_Phase,'Value',0);
set(handles.text21_phase,'Visible','off');
handles.canc=0;
guidata(hObject, handles);

function varargout = AcquisizioneFreq_OutputFcn(hObject, eventdata, handles)
varargout{1} = handles.output;

function [fMAX]=trovaMassimiDalloSpettro(y,IntervalloDiRicerca,soglia,filtroPassaAlto)
dim_y=size(y,1);
salita=1; Max_relativo=y(2,:);Max_assoluto=y(2,:);
scritto=1;
indice=1;
for i=3:dim_y

prova2=y(i,:);prova1=y(i-1,:);
if y(i-1,2)>y(i,2) & y(i-1,2)>soglia & salita==1

Max_relativo=y(i-1,:);
salita=0; scritto=0;

elseif y(i-1,2)<y(i,2)
salita=1;

end
if salita==0 & Max_relativo(1,2)>Max_assoluto(1,2) & scritto==0

mailto:@AcquisizioneFreq_OpeningFcn
mailto:@AcquisizioneFreq_OutputFcn
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Max_assoluto=Max_relativo;
elseif Max_assoluto(1,1)+IntervalloDiRicerca<y(i,1) & scritto==0

if Max_assoluto(1,1)>filtroPassaAlto
fMAX(indice)=Max_assoluto(1,1);
indice=indice+1;

end
scritto=1;
Max_assoluto(1,2)=0;

end
if scritto==0 & i==dim_y

if Max_assoluto(1,1)>filtroPassaAlto
fMAX(indice)=Max_assoluto(1,1);
indice=indice+1;

end
scritto=1;
Max_assoluto(1,2)=0;

end
end

function pushbutton1_START_Callback(hObject, eventdata, handles)
guidata(hObject,handles)
set(handles.edit_Duration,'Enable','off');
set(handles.edit_ZeroPadding,'Enable','off');
set(handles.text_note,'String','Waiting For Trigger')
handles.SampleRate=44000;
clc
RisultatoIn_dB=0;
%============== end input ==================
AI = analoginput('winsound');
chan = addchannel(AI,1); % Add channels -- Add one channel to AI.
set(AI,'SampleRate',handles.SampleRate);
handles.ActualRate = get(AI,'SampleRate');
set(AI,'SamplesPerTrigger',handles.duration*handles.ActualRate)
handles.blocksize = get(AI,'SamplesPerTrigger');
handles.Fs = handles.ActualRate;
% The trigger executes when a signal with a negative slope passing through
... 0.2.volts is detected on channel 1. set(ai,'TriggerChannel',ch)
if handles.Trigger

set(AI,'TriggerType','Software');set(AI,'TriggerCondition','Falling');
set(AI,'TriggerConditionValue',handles.sogliaTrigger);set(AI,'TriggerChannel',chan);
set(AI,'Timeout',10);start(AI)

else
set(AI,'TriggerType','Manual');start(AI);trigger(AI)

end
data = getdata(AI);
set(handles.text_note,'String','Acquisizione')
data_zeri_prec=zeros(44100*handles.zeri_prec,1)+1e-17;
data_zeri_suc=zeros(44100*handles.zeri_suc,1)+1e-17;
handles.data=[data_zeri_prec;data;data_zeri_suc];
handles.blocksize=handles.blocksize+44100*handles.zeri_prec+44100*handles.zeri_suc;
set(handles.text_note,'String','Acquisizione Terminata')

%=========== FFT average ===
try

set(handles.numProveTxt, 'String', int2str(handles.numProve+1));
catch

set(handles.numProveTxt, 'String','1');
end
handles.numProve=str2num(get(handles.numProveTxt, 'String'));
delete(AI)
clear AI
handles.canc=1;
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guidata(hObject,handles)
Calcola_FFT(hObject,handles)

function Calcola_FFT(hObject,handles)
%=========== avaluate FFT ================
popup_sel_index = get(handles.popupmenu_Windowing, 'Value');
dimensioneData=size(handles.data,1);
switch popup_sel_index

case 1
w=1;

case 2
w = hann(dimensioneData);

case 3
w = blackman(dimensioneData);

case 4
w = hamming(dimensioneData);

case 5
w = flattopwin(dimensioneData);

end
handles.data_wind=handles.data.*w;
xfft = abs(fft(handles.data_wind));
% Avoid taking the log of 0.
index = find(xfft == 0);
xfft(index) = 1e-17;
mag = (xfft);
size(mag);
handles.mag = mag(1:floor(handles.blocksize/2));
f = (0:length(handles.mag)-1)*handles.Fs/handles.blocksize;
handles.f = f(:);
handles.y=[handles.f,handles.mag];
try handles.mag_n=handles.mag+handles.mag_n;
catch  handles.mag_n=handles.mag; end
guidata(hObject,handles)
calcolaMax(hObject,handles)

function calcolaMax(hObject,handles)
handles.y_ave=[handles.y(:,1),handles.mag_n/handles.numProve];
handles.media=handles.mag_n/handles.numProve;
try
[handles.fMax]=trovaMassimiDalloSpettro(handles.y_ave,handles.IntervalloDiRicerca,handles.so
glia,handles.filtroPassaAlto);

fMax = handles.fMax;
catch

set(handles.text_note,'String','Colpire+Forte')
end

try f1=fMax(1,1);catch f1=1;end;
try f2=fMax(2);catch f2=1;end;
try f3=fMax(3);catch f3=1;end;
try f4=fMax(4);catch f4=1;end;
try f5=fMax(5);catch f5=1;end;
try f6=fMax(6);catch f6=1;end;
handles.f4Freq=[f1 f2 f3 f4 f5 f6]';
guidata(hObject,handles)
plotta(hObject,handles)

function plotta(hObject,handles)
handles.rangePlott=[handles.min handles.max];
axes(handles.axes3); %Acquired signal Plot

cla;
plot(handles.data_wind);
set(handles.axes3,'XTick',[]);
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axes(handles.axes5); %FFT plot
cla;
plot(handles.f,handles.mag);
xlim(handles.axes5,handles.rangePlott);

risoluzione=handles.f(2,1);
f1=handles.f4Freq(1); f2=handles.f4Freq(2); f3=handles.f4Freq(3);
f4=handles.f4Freq(4);f5=handles.f4Freq(5);
set(handles.edit_Freq,'String',{[num2str(f1,'%8.2f'),'  Hz'],[num2str(f2,'%8.2f'),'

Hz'],[num2str(f3,'%8.2f'),'  Hz'],...
[num2str(f4,'%8.2f'),'  Hz'],[num2str(f5,'%8.2f'),'  Hz'],[num2str(risoluzione,'%8.4f'),'

Hz'],num2str(handles.ActualRate)})
if handles.plottaFase

axes(handles.axes10);
cla;
fase=angle(fft(handles.data_wind));
plot(handles.f,fase(1:size(handles.f)));
xlim(handles.axes10,handles.rangePlott);

else
axes(handles.axes6);
cla;
plot(handles.f,handles.media,'-r');
hold on;
MatSoglia=zeros(size(handles.f))+handles.soglia;
plot(handles.f,MatSoglia,'-g');
hold off
xlim(handles.axes6,handles.rangePlott);

end

function edit1_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function Remove_Callback(hObject, eventdata, handles)
if handles.canc
handles.mag_n=handles.mag_n-handles.mag;
set(handles.numProveTxt, 'String', int2str(handles.numProve-1));
handles.numProve=handles.numProve-1;
handles.canc=0;
set(handles.text_note,'String','Acquisizione Rimossa')
guidata(hObject,handles)
calcolaMax(hObject,handles)
axes(handles.axes5);
cla;
end

function HighPass_Callback(hObject, eventdata, handles)
handles.filtroPassaAlto=str2num(get(handles.HighPass, 'String'));
guidata(hObject,handles);
calcolaMax(hObject,handles);

function HighPass_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function Sill_Callback(hObject, eventdata, handles)
handles.soglia=str2num(get(handles.Sill, 'String'));50;
guidata(hObject,handles);
calcolaMax(hObject,handles);
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function Sill_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function edit_Duration_Callback(hObject, eventdata, handles)
handles.duration=str2num(get(handles.edit_Duration, 'String'));
guidata(hObject,handles);

function edit_Duration_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function MinPlot_Callback(hObject, eventdata, handles)
handles.min=str2num(get(handles.MinPlot, 'String'));
guidata(hObject,handles);
plotta(hObject,handles);

function MinPlot_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function MaxPlot_Callback(hObject, eventdata, handles)
handles.max=str2num(get(handles.MaxPlot, 'String'));
guidata(hObject,handles);
plotta(hObject,handles);

function MaxPlot_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function edit_ZeroPadding_Callback(hObject, eventdata, handles)
handles.zeri_prec=str2num(get(handles.edit_ZeroPadding, 'String'));
handles.zeri_suc=handles.zeri_prec;
guidata(hObject,handles);

function edit_ZeroPadding_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function edit_RangeSearch_Callback(hObject, eventdata, handles)
handles.IntervalloDiRicerca=str2num(get(handles.edit_RangeSearch, 'String'));
guidata(hObject,handles);
calcolaMax(hObject,handles);

function edit_RangeSearch_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function edit_SillTrigger_Callback(hObject, eventdata, handles)
handles.sogliaTrigger=str2num(get(handles.edit_SillTrigger, 'String'));
guidata(hObject,handles);

function edit_SillTrigger_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))
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set(hObject,'BackgroundColor','white');
end

function radiobutton1_Trigger_Callback(hObject, eventdata, handles)
handles.Trigger=get(handles.radiobutton1_Trigger, 'Value');
if handles.Trigger

set(handles.edit_SillTrigger,'Visible','on');
set(handles.text_SillTrigger,'Visible','on');

else
set(handles.edit_SillTrigger,'Visible','off');
set(handles.text_SillTrigger,'Visible','off');

end
guidata(hObject,handles);

function edit_Freq_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function checkbox_Phase_Callback(hObject, eventdata, handles)
handles.plottaFase=get(handles.checkbox_Phase, 'Value');
if handles.plottaFase

set(handles.axes10,'Visible','on');
set(handles.text21_phase,'Visible','on');
set(handles.axes6,'Visible','off');
axes(handles.axes6);
cla;

else
axes(handles.axes10);
cla;
set(handles.axes10,'Visible','off');
set(handles.text21_phase,'Visible','off');
set(handles.axes6,'Visible','on');

end
plotta(hObject,handles)
guidata(hObject,handles);

function pushbutton_Restart_Callback(hObject, eventdata, handles)
set(handles.edit_Duration,'Enable','on');
set(handles.edit_ZeroPadding,'Enable','on');
set(handles.popupmenu_Windowing,'Enable','on');
set(handles.numProveTxt, 'String', '0');
handles.numProve=0;
handles.mag_n={}; handles.mag={}; handles.y_ave={}; handles.y={};
handles.fMax={};handles.f4Freq={};handles.media={};handles.data={};
handles.data_wind={};handles.f={};handles.y={};
axes(handles.axes3);cla;
axes(handles.axes5);cla;
axes(handles.axes6);cla;
guidata(hObject,handles);

function popupmenu_Windowing_Callback(hObject, eventdata, handles)
if handles.canc
Calcola_FFT(hObject,handles)
end

function popupmenu_Windowing_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end



Appendix A: Matlab code to acquire natural frequencies

154

function edit11_nameFile_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end

function pushbutton_Save_Callback(hObject, eventdata, handles)
fid=fopen(get(handles.edit11_nameFile,'String'), 'wt');
fprintf(fid,'%6.4f%',handles.f4Freq(1));
try fprintf(fid,'\n'); fprintf(fid,'%6.4f%',handles.f4Freq(2)); end
try fprintf(fid,'\n'); fprintf(fid,'%6.4f%',handles.f4Freq(3)); end
try fprintf(fid,'\n'); fprintf(fid,'%6.4f%',handles.f4Freq(4)); end
try fprintf(fid,'\n'); fprintf(fid,'%6.4f%',handles.f4Freq(5)); end
try fprintf(fid,'\n'); fprintf(fid,'%6.4f%',handles.f4Freq(6)); end
fprintf(fid,'\n');
try fprintf(fid,'\n'); fprintf(fid,'%s%6.4f%','Resolution = ',handles.f(2,1)); end
fprintf(fid,'\n'); fprintf(fid,'%s%s','Time = ',datestr(clock));
set(handles.text_note,'String',['Saved in ',get(handles.edit11_nameFile,'String')]);
% fprintf(fid,'\n');
% fprintf(fid,'\n'); fprintf(fid,'%s','freq [Hz]   Ampl');
% try
%     for dim=1:size(handles.f)
%         fprintf(fid,'\n'); fprintf(fid,'%s',mat2str(handles.f(dim)));
%         fprintf(fid,'%s%s','     ',mat2str(handles.media(dim)));
%     end
% end
fclose(fid);
set(handles.edit12,'String',mat2str(handles.f4Freq(1)));
guidata(hObject,handles);

function figure1_CloseRequestFcn(hObject, eventdata, handles)
delete(hObject);

function edit12_CreateFcn(hObject, eventdata, handles)
if ispc && isequal(get(hObject,'BackgroundColor'), get(0,'defaultUicontrolBackgroundColor'))

set(hObject,'BackgroundColor','white');
end
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APPENDIX B: GENETIC
ALGORITHM CODE

Often, due to the number of unknown parameters or to the presence of local

optimums, the minimization problem is not easy to carry out by the standard

optimization algorithms and so a Genetic Algorithm (GA) may be used. GA is a

stochastic method for solving optimization problems that is based on natural

selection. It repeatedly modifies a population of individual solutions. At each step,

the genetic algorithm selects individuals, in a random way, from the current

population to be parents and uses them to produce the children for the next

generation. The new populations "evolves" toward an optimal solution by the

evolution functions (crossover and mutation). A proportional selection scheme has

been adopted for the reproduction of the child generation and two procedures have

been used to carry out the crossover operation. In the first procedure the crossover

used is arithmetical. Two parents, randomly chosen (pondered by fitness) are

crossed and two new individual children are generated. Two children vectors c1

and c2 are obtained  by a linear combination of two parent vectors p1 and p2 as

follows:

212

211

1

1

pp)(c

p)(pc






(B.1)

where  is a random number in the range [0,1]. In the second procedure, the

cross-over is done by randomly choosing one or more positions on the solution

vector and replacing the corresponding components of p1 in p2 and vice versa. For

the choice of the parents the Roulette Wheel (or fitness proportional) method has

been adopted. This method chooses parents by simulating a roulette wheel, in



Appendix B: Genetic Algorithm Code

156

which the area of the section of the wheel, corresponding to an individual, is

proportional to the individual’s expectation and so is inversely proportional to the

individual’s fitness. In order to speed up the evolution a mutation has also been

introduced: when the offspring are produced, some of the elastic constant sets are

mutated by adding a quantity r·i, where r is a random number in the range [-1,1]

and i is an initially fixed quantity, to one or more components. The choice of the

mutated components is again random. To ensure that fit individuals are not lost

due to change, elitism selection has been also applied, so the best individuals of

the current generation are replicated in the next generation. As mentioned the GA

has been provided with an adaptive range procedure by which the entire

population is regenerated every M generations, in this case the algorithm is called

ARGA (Adaptive Range Genetic Algorithm) ARGA permits to improve the

convergence performance of the GA. This property can be comprehended

observing Figures B.1 a) and b) where the distributions of Poisson’s ratio in the

optimization process for the AG and ARGA are reported. In the ARGA case the

search range is more close to the solution and so it avoids unnecessary FEA. The

points located out of range are due to the mutation function.

a) b)

Figure B.1 - Distribution of the unknown parameters value in: a) GA b) ARGA

The ARGA has been developed in Matlab™ environment. In the following the

algorithm code is reported. It uses the general-purpose numerical code MSC-

Nastran™ to carry out the finite element analysis (FEA). Table B.1 reports an

example of Nastran™ input file used in the FEA. Note that the “referenced

material records” is written into “material.bdf” that is an ASCII file modified in

automatic way by the Matlab code.
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Table B.1 – Extract of the Nastran™ input file “Laminato_simmetrico.bdf”.
Section Function Nastran™ code

Executive
Control

Analysis
definition

SOL 101
CEND

Case
Control

Subcase
definition

SET 2 = 154 THRU 2447,2448
SEALL = ALL
SUPER = ALL
TITLE = MSC.Nastran job created on 30-Jan-06 at 16:07:40
ECHO = NONE
SUBCASE 1

SUBTITLE=Default
SPC = 2
LOAD = 2
DISPLACEMENT(SORT1,REAL)=2

Analysis
parameters
definition

BEGIN BULK
PARAM    POST    0
PARAM   PRTMAXIM YES

Bulk
Data

Element
properties
definition

PCOMP    1                                       0. 0.      SYM
1       .25          0.      YES     1       .25          0.      YES
1       .25          0.      YES     1       .25          0.      YES

Elements
definition

CQUAD4   1       1       1       2       53      52
CQUAD4   2 1       2       3       54      53

...

CQUAD4   2500    1       2549    2550    2601    2600
Referenced

material
records

INCLUDE 'material.bdf'

Nodes of the
model

GRID     1 -25. -25.     0.
GRID     2 -24. -25. 0.

...

GRID     2601           25.     25.      0.

Loads and
constraints

SPCADD   2       1       3
LOAD     2      1.      1.       1
SPC1     1       23      105     151
SPC1     3       13      2474
FORCE    1       1459    0      1.114    0. 0. -1.

function [gen, individuo_finale, pop_finale] = ARGA(esatti, dimPop, iterazioni, num_elit,
num_cross, num_mut, M);
% main function
maxCanali=4; %NumberOfNastranChannelUsed
t=cputime;
%%%   Card For Numerical Simulation   %%%  %%%  %%%  %%% %%%
% esatti1=esatti;
% lambda=0.0005;
% fattore_moltipl=1/sqrt(3);
% media=0;
% fattore_divisore=1;
% DeltaErrore=(fattore_moltipl*(lambda/4)/fattore_divisore);
% errore=media+DeltaErrore*rand(1, 2601);
% esatti=esatti+esatti.*errore;
% errore=0+sqrt(0.05)*randn(1, 2601);
% mean((esatti-esatti1)/esatti1*100)
%%%  %%%  %%%  %%%  %%%  %%%  %%%  %%%  %%%  %%%  %%%
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%SearchRange
E1_min=60;
E1_max= 90;
E2_min= 60;
E2_max= 90;
ni_min=0.200;
ni_max=0.400;
G_min=2;
G_max=50;
analisi=0; % #FEA
%FirstGenerationCreation
[Pop, analisi] = prima_generazione_new(dimPop, esatti, E1_min, E1_max, E2_min, E2_max,
ni_min, ni_max, G_min, G_max, analisi, maxCanali);
Pop=sortrows(Pop, 5);
best_pop=Pop(1:num_elit, :);
migliore=best_pop(1, :)
gen=1;
Storia(gen, 1)=gen;
Storia(gen, 2)=migliore(1, 5);
Storia(gen, 3)=mean(Pop(:, 5));
Storia(gen, 4)=migliore(1, 6);
Storia(gen, 5)=migliore(1, 7);
Storia(gen, 6)=migliore(1, 8);
Storia(gen, 7)=migliore(1, 9);
Storia(gen, 8)=analisi;
temp=int2str(gen);
filename=['C:\MATLAB6p5\work\soluzioni\generazione_', temp]; %SaveFirstGen
save(filename, 'Pop', 'migliore', 'Storia');
while(gen<iterazioni+1)

if (gen>40 & Storia(gen, 2)==Storia(gen-35, 2)) %StopCondition
break

else
if rem(gen, M)

analisi=0;
%SuccessiveGenerationCration

[new_pop, analisi] = new_generazione(best_pop, Pop, num_mut, num_cross, E1_min, E1_max,
E2_min, E2_max,   ni_min, ni_max, G_min, G_max, esatti, analisi, maxCanali);

Pop=new_pop;
best_pop=Pop(1:num_elit, :);
migliore=best_pop(1, :)
gen=gen+1;
Storia(gen, 1)=gen;
Storia(gen, 2)=migliore(1, 5);
Storia(gen, 3)=mean(Pop(:, 5));
Storia(gen, 4)=migliore(1, 6);
Storia(gen, 5)=migliore(1, 7);
Storia(gen, 6)=migliore(1, 8);
Storia(gen, 7)=migliore(1, 9);
Storia(gen, 8)=analisi;
temp=int2str(gen);
filename=['C:\MATLAB6p5\work\soluzioni\generazione_', temp];
save(filename, 'Pop', 'migliore', 'Storia');
%PlotOfTheResults
close
subplot(2, 2, 1);plot(Storia(:, 1), Storia(:, 2), 'r-', Storia(:, 1), Storia(:, 3), 'b-');
subplot(2, 2, [2, 4]); plot(Storia(:, 1), Storia(:, 4), 'r-', Storia(:, 1), Storia(:, 5), 'b-', Storia(:, 1),

Storia(:, 6), 'k-', Storia(:, 1), Storia(:, 7), 'g-');
legend('E1', 'E2', 'ni', 'G')
subplot(2, 2, 3);text(.01, .9, [' %E1= ', num2str(100*Storia(gen, 4), 3), '   %E2= ',

num2str(100*Storia(gen, 5), 3)])
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text(.01, .8, [' %Ni= ', num2str(100*Storia(gen, 6), 3), '   %G= ', num2str(100*Storia(gen, 7),
3)])

text(.01, .7, ['FitPop= ', num2str(Storia(gen, 3), 3), ' FitMigl= ', num2str(Storia(gen, 2), 3)])
text(.01, .5, '-----------Limiti----------- ----min max popolazione--------')
text(.01, .4, [' E1 Max/min=  ', num2str(E1_min, 3), ' <-> ', num2str(E1_max, 3), ' min=',

num2str(round(min(Pop(:, 1))*1000)/1000), ' max=', num2str(round(max(Pop(:, 1))*1000)/1000)])
text(.01, .3, [' E2 Max/min=  ', num2str(E2_min, 3), ' <-> ', num2str(E2_max, 3), ' min=',

num2str(round(min(Pop(:, 2))*1000)/1000), ' max=', num2str(round(max(Pop(:, 2))*1000)/1000)])
text(.01, .2, [' Ni12 Max/min= ', num2str(ni_min, 3), ' <-> ', num2str(ni_max, 3), ' min=',

num2str(round(min(Pop(:, 3))*1000)/1000), ' max=', num2str(round(max(Pop(:, 3))*1000)/1000)])
text(.01, .1, [' G12 Max/min= ', num2str(G_min, 3), ' <-> ', num2str(G_max, 3), ' min=',

num2str(round(min(Pop(:, 4))*1000)/1000), ' max=',num2str(round(max(Pop(:, 4))*1000)/1000)]);
else

%ARGA Implementation
if gen==M

%VarianceAndAverageValuesComputationOfTheFirstGeneration
[mE1p, sE1p] = primaMedia(Pop, 1);
[mE2p, sE2p] = primaMedia(Pop, 2);
[mNip, sNip] = primaMedia(Pop, 3);
[mGp, sGp] = primaMedia(Pop, 4);

else
%VarianceAndAverageValuesComputationOfTheSuccessiveGeneration
[mE1new, sE1new] = Media_new(Pop, 1, mE1p, sE1p);
[mE2new, sE2new] = Media_new(Pop, 2, mE2p, sE2p);
[mNinew, sNinew] = Media_new(Pop, 3, mNip, sNip);
[mGnew, sGnew] = Media_new(Pop, 4, mGp, sGp);
mE1p=mE1new;
mE2p=mE2new;
mNip=mNinew;
mGp=mGnew;
sE1p=sE1new;
sE2p=sE2new;
sNip=sNinew;
sGp=sGnew;

end
k=10; %GainOfTheARGA
if gen>60, k=9; end
if gen>100, k=7;end
if gen>160, k=4;end
if gen>180, k=2;end
if sE1p<.25, sE1p=0.25;end
if sE2p<.25, sE2p=0.25;end
if sNip<.008, sNip=0.008;end
if sGp<.25, sGp=0.25;end
%%%  New Range Definition  %%%  %%%  %%%  %%%
E1_min=mE1p-k*sE1p;
E1_max=mE1p+k*sE1p;

E2_min=mE2p-k*sE2p;
E2_max=mE2p+k*sE2p;
ni_min=mNip-k*sNip;
ni_max=mNip+k*sNip;
G_min=mGp-k*sGp;
G_max=mGp+k*sGp;

temp=int2str(gen);
%%%  %%%  %%%  %%%  %%%  %%%  %%%  %%%  %%%
filename=['C:\MATLAB6p5\work\soluzioni\media_', temp];
save(filename, 'E1_min', 'E1_max', 'E2_min', 'E2_max', 'ni_min', 'ni_max', 'G_min', 'G_max',

'sE1p', 'sE2p', 'sNip', 'sGp', 'mE1p', 'mE2p', 'mNip', 'mGp');
Migliori2=Pop(1, :);
analisi=0;
%NewGenerationCreation
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[new_pop, analisi] = prima_generazione_new(dimPop-1, esatti, E1_min, E1_max, E2_min,
E2_max, ni_min, ni_max, G_min, G_max, analisi, maxCanali);

Pop=[Migliori2;new_pop];
Pop=sortrows(Pop, 5);
best_pop=Pop(1:num_elit, :);
migliore=best_pop(1, :)
gen=gen+1;
Storia(gen, 1)=gen;
Storia(gen, 2)=migliore(1, 5);
Storia(gen, 3)=mean(Pop(:, 5));
Storia(gen, 4)=migliore(1, 6);
Storia(gen, 5)=migliore(1, 7);
Storia(gen, 6)=migliore(1, 8);
Storia(gen, 7)=migliore(1, 9);
Storia(gen, 8)=analisi;
temp=int2str(gen);
filename=['C:\MATLAB6p5\work\soluzioni\generazione_', temp];
save(filename, 'Pop', 'migliore', 'Storia');
%PlotOfTheResults
close
subplot(2, 2, 1);plot(Storia(:, 1), Storia(:, 2), 'r-', Storia(:, 1), Storia(:, 3), 'b-');
subplot(2, 2, [2, 4]); plot(Storia(:, 1), Storia(:, 4), 'r-', Storia(:, 1), Storia(:, 5), 'b-', Storia(:, 1),

Storia(:, 6), 'k-', Storia(:, 1), Storia(:, 7), 'g-');
legend('E1', 'E2', 'ni', 'G')
subplot(2, 2, 3);text(.01, .9, [' %E1= ', num2str(100*Storia(gen, 4), 3), '   %E2= ',

num2str(100*Storia(gen, 5), 3)])
text(.01, .8, [' %Ni= ', num2str(100*Storia(gen, 6), 3), '   %G= ', num2str(100*Storia(gen, 7),

3)])
text(.01, .7, ['FitPop= ', num2str(Storia(gen, 3), 3), ' FitMigl= ', num2str(Storia(gen, 2), 3)])
text(.01, .5, '-----------Limiti----------- ----min max popolazione--------')
text(.01, .4, [' E1 Max/min=  ', num2str(E1_min, 3), ' <-> ', num2str(E1_max, 3), '   min=',

num2str(round(min(Pop(:, 1))*1000)/1000), ' max=', num2str(round(max(Pop(:, 1))*1000)/1000)])
text(.01, .3, [' E2 Max/min=  ', num2str(E2_min, 3), ' <-> ', num2str(E2_max, 3), '   min=',

num2str(round(min(Pop(:, 2))*1000)/1000), ' max=', num2str(round(max(Pop(:, 2))*1000)/1000)])
text(.01, .2, [' Ni12 Max/min= ', num2str(ni_min, 3), ' <-> ', num2str(ni_max, 3), '   min=',

num2str(round(min(Pop(:, 3))*1000)/1000), ' max=', num2str(round(max(Pop(:, 3))*1000)/1000)])
text(.01, .1, [' G12 Max/min= ', num2str(G_min, 3), ' <-> ', num2str(G_max, 3), '   min=',

num2str(round(min(Pop(:, 4))*1000)/1000),' max=', num2str(round(max(Pop(:, 4))*1000)/1000)]);
end

end
end
individuo_finale=migliore;
pop_finale=Pop;
x=cputime;
tempoEsecuzione=x-t

function [Pop, analisi] = prima_generazione(dimPop, esatti, E1_min, E1_max, E2_min,
E2_max, ni_min, ni_max, G_min, G_max, analisi, canaliMax)
t=cputime;
n_analisi=dimPop;
analisi_inviata=1;
indice=1;
Pop=zeros(dimPop, 12);
vettore_analisi=zeros(8, canaliMax);
%implementation of multi-channel analysis
while indice<dimPop+1

vettore_analisi(1, :)=vettore_analisi(1, :)*2;
if analisi_inviata==1

E1= E1_min +(E1_max-E1_min) * rand(1);
E2= E2_min +(E2_max-E2_min) * rand(1);
ni=ni_min +(ni_max-ni_min) * rand(1);
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G=G_min +(G_max-G_min) * rand(1);
E1=E1*1000;E1=round(E1)/1000;
E2=E2*1000;E2=round(E2)/1000;
ni=round(ni*1000)/1000;
G=G*1000;G=round(G)/1000;

end
for i=1:canaliMax

if vettore_analisi(1, i)==0 & n_analisi
call_nastran(E1, E2, ni, G, i); %CallSolverAndStartFEA
vettore_analisi(:, i)=[1;E1;E2;ni;G;0;0;0];
analisi_inviata=1;
n_analisi=n_analisi-1;
analisi=analisi+1;
break

end
end
pause(1)
%FEAResultsReading
for i=1:canaliMax

fileName=['dir C:\SUPPORT\ANALISI', int2str(i), '\SIMULAZIONE\*.ASG >null'];
if vettore_analisi(1, i)>8 & dos(fileName)==1
Pop(indice, :)=crea_individuo(vettore_analisi(:, i), i, esatti);
indice=indice+1;
vettore_analisi(1, i)=0;

end
end
end
x=cputime;
tempoEsecuzione=x-t

function [fileName] = call_nastran(E1, E2, ni, G, canale)
%StartTheFEAOnChannel "canale"
fileName=['C:\SUPPORT\ANALISI', int2str(canale), '\materiale', int2str(canale), '.bdf'];
matcard(fileName, E1, E2, ni, G); %WriteTheConstantValueIntoMAT8Card
fileName2=['erase /q /a:a ', 'C:\SUPPORT\ANALISI', int2str(canale), '\SIMULAZIONE\', '*.*'];
dos(fileName2);
fileName3=['C:\SUPPORT\ANALISI', int2str(canale), '\nastran.bat >null'];
dos(fileName3); %CallNastran

function[] = matcard(filename, E1, E2, ni, G)
%WriteTheConstantValueIntoMAT8Card

E1=E1*1000;E1=round(E1);
E2=E2*1000;E2=round(E2);
ni=round(ni*1000)/1000;
G=G*1000;G=round(G);
fid = fopen(filename, 'wt');
fprintf(fid, '%s%4.f%s%4.f%s%4.3g%s%4.f%s', 'MAT8, 1, ', E1, '., ', E2, '., ', ni, ', ', G, '.');
fclose(fid);

function [individuo] = crea_individuo(vettore_analisi, canale, esatti)
%read the results of the FEA in "canale" folder and evaluate the fitness
fileName=['C:\SUPPORT\ANALISI', int2str(canale), '\SIMULAZIONE\Laminato_simmetrico',
int2str(canale), '.f06'];
[spostamenti, r] = spost_piastra(fileName, 2295);
load('matPinv_conf2_areaSperimentale_44x50.mat');
% load the cooridnate points for rigid displacements elimination procedure
X=matCoord*matPInversa-eye(2295, 2295); %2295 are the point acquired
val=sum((X*(spostamenti-esatti)').^2)*10^9; % fitness evaluation
E1p=vettore_analisi(2);
E2p=vettore_analisi(3);
nip=vettore_analisi(4);
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Gp=vettore_analisi(5);
load('costanti')
perc_E1=(E1p-E1)/E1;
perc_E2=(E2p-E2)/E2;
perc_ni=(nip-ni)/ni;
perc_G=(Gp-G)/G;
individuo=[E1p E2p nip Gp val perc_E1 perc_E2 perc_ni perc_G vettore_analisi(6)
vettore_analisi(7) vettore_analisi(8)];

function[spostamenti, r] = spost_piastra(file_name, nodi)
% read displacements from the output Nastran file (*.f06 file)
fid=fopen(file_name, 'r');
stop=1;
resto=rem(nodi, 50);
iterazioni=fix(nodi/50)+1;

while (feof(fid)==0&stop)
tline=fgetl(fid);
[a, b] = size(tline);
if (b==82)

for(j=1:iterazioni)
for(i=1:3)
tline=fgetl(fid);

end
for i=1:50
if j==iterazioni&i==resto
r=parse2(tline);
tline=fgetl(fid);
t=[r(5,1) r(5,2) r(5,3) r(5,4) r(5,5) r(5,6) r(5,7) r(5,8) r(5,9) r(5,10) r(5,11) r(5,12) r(5,13)];
dispi(i, j)=str2double(t);
break

else
r=parse2(tline);
tline=fgetl(fid);
t=[r(5,1) r(5,2) r(5,3) r(5,4) r(5,5) r(5,6) r(5,7) r(5,8) r(5,9) r(5,10) r(5,11) r(5,12) r(5,13)];
dispi(i, j)=str2double(t);

end
end
for(i=1:4)
tline=fgetl(fid);
end

end
break

end
end
fclose('all');

function [x] = parse2(inStr)
%StringToVector function
sz=size(inStr); strLen=sz(2); x=blanks(strLen); wordCount=0; last=0; a=0;
for i=1:strLen,
if inStr(i) == ' '
last=i; a=0;

else
if a ==0
wordCount = wordCount + 1;
x(wordCount, i-last)=inStr(i);
a=1;

else
x(wordCount, i-last)=inStr(i);

end
end



Appendix B: Genetic Algorithm Code

163

end

function [nuova, analisi] = new_generazione(best_matr, Pop_matr, num_mut, num_cross,
E1_min, E1_max, E2_min, E2_max, ni_min, ni_max, G_min, G_max, esatti, analisi,
CanaliMax);
% create a new generation
dim_figli=(size(Pop_matr, 1)-size(best_matr, 1))
dim_mutati=num_mut;
dim_accoppiati=num_cross;
[crossover_matr, analisi] = crossover(dim_accoppiati, Pop_matr, esatti, analisi, CanaliMax,
E1_min, E1_max, E2_min, E2_max, ni_min, ni_max, G_min, G_max, best_matr);
mutazione_=1
[mutati_matr, analisi] = mutazione(dim_mutati, Pop_matr, esatti, E1_min, E1_max, E2_min,
E2_max, ni_min, ni_max, G_min, G_max, analisi, CanaliMax);
nuova=[best_matr;crossover_matr;mutati_matr];
nuova=sortrows(nuova, 5);

function [acc_comb_matr, analisi] = crossover(dim_accoppiati, Pop_matr, esatti, analisi,
maxCanali, E1_min, E1_max, E2_min, E2_max, ni_min, ni_max, G_min, G_max,
best_matr)
%crossover function
indici_processati=[0 0];
esistenti=best_matr;
indice=1;
analisi_inviata=1;
vettore_analisi=zeros(8, maxCanali); %vettore_analisi(1, k)==0 --> the channel is free
%arithmetical crossover
accoppiati_matr=zeros(round((dim_accoppiati/2)), 12);
n_analisi=round(size(accoppiati_matr, 1)/2);
termina=0;
DeltaAccoppia=160;
while indice<round(dim_accoppiati/2)+1 | sum(vettore_analisi(1, :))>0

vettore_analisi(1, :)=vettore_analisi(1, :)*2;
if analisi_inviata==1 & n_analisi

analisi_inviata=0;
prescelti=selezione_indici(Pop_matr, indici_processati);
indici_processati=[indici_processati;prescelti];
r=rand(1);

end
if r<=1%0.6

% start FEA
for j=1:maxCanali/2

i=j*2-1;
if vettore_analisi(1, i)==0 & n_analisi
[vettore_analisi(2, i) vettore_analisi(2, i+1) vettore_analisi(3, i) vettore_analisi(3, i+1)

vettore_analisi(4, i) vettore_analisi(4, i+1) vettore_analisi(5, i) vettore_analisi(5, i+1)] =
accoppia(Pop_matr(prescelti(1, 1), :), Pop_matr(prescelti(1, 2), :), i, i+1, E1_min, E1_max,
E2_min, E2_max, ni_min, ni_max, G_min, G_max, DeltaAccoppia);

vettore_analisi(1, [i i+1])=1;
vettore_analisi(6, [i i+1])=1;
vettore_analisi(7, [i i+1])=prescelti(1, 1);
vettore_analisi(8, [i i+1])=prescelti(1, 2);
analisi_inviata=1;
n_analisi=n_analisi-1;
analisi=analisi+2;
break

end
end

else
accoppiati_matr(indice, :)=Pop_matr(prescelti(1, 1), :);
indice=indice+1;
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accoppiati_matr(indice, :)=Pop_matr(prescelti(1, 2), :);
indice=indice+1;
analisi_inviata=1;
n_analisi=n_analisi-1;r=0;
indici_prescelti=prescelti;

end
pause(1)
%read results
for j=1:maxCanali/2

i=j*2-1;
fileName1=['dir C:\SUPPORT\ANALISI', int2str(i), '\SIMULAZIONE\*.ASG >null'];
fileName2=['dir C:\SUPPORT\ANALISI', int2str(i+1), '\SIMULAZIONE\*.ASG >null'];
if vettore_analisi(1, i)>7 & dos(fileName1)==1 & dos(fileName2)==1

figlio1=crea_individuo(vettore_analisi(:, i), i, esatti);
figlio2=crea_individuo(vettore_analisi(:, i+1), i+1, esatti);
famiglia=[figlio1;figlio2;Pop_matr(vettore_analisi(7, i), :);Pop_matr(vettore_analisi(8, i), :)];
accoppiati_matr(indice, :)=famiglia(1, :);
esistenti=[best_matr;accoppiati_matr];
indice=indice+1;
accoppiati_matr(indice, :)=famiglia(2, :);
indice=indice+1;
esistenti=[best_matr;accoppiati_matr];
vettore_analisi(1, [i i+1])=0;

end
end

end
indici_processati1=indici_processati;
%
%replacing crossover
indici_processati=[0 0];
indice=1;termina=0;
analisi_inviata=1;
vettore_analisi=zeros(8, maxCanali); %vettore_analisi(1, k)==0 --> the channel is free
combinati_matr=zeros(round((dim_accoppiati/2)), 12);
n_analisi=round(size(accoppiati_matr, 1)/2);
while indice<round(dim_accoppiati/2)+1 | sum(vettore_analisi(1, :))>0

vettore_analisi(1, :)=vettore_analisi(1, :)*2;
if analisi_inviata==1 & n_analisi

analisi_inviata=0;
prescelti=selezione_indici(Pop_matr, indici_processati);
indici_processati=[indici_processati;prescelti];
r=rand(1);

end
if r<=1

%start FEA
for j=1:maxCanali/2

i=j*2-1;
if vettore_analisi(1, i)==0 & n_analisi
[vettore_analisi(2, i) vettore_analisi(2, i+1) vettore_analisi(3, i) vettore_analisi(3, i+1)

vettore_analisi(4, i) vettore_analisi(4, i+1) vettore_analisi(5, i) vettore_analisi(5, i+1)] =
combina(Pop_matr(prescelti(1, 1), :), Pop_matr(prescelti(1, 2), :), i, i+1);

vettore_analisi(1, [i i+1])=1;
vettore_analisi(6, [i i+1])=2;
vettore_analisi(7, [i i+1])=prescelti(1, 1);
vettore_analisi(8, [i i+1])=prescelti(1, 2);
analisi_inviata=1;
n_analisi=n_analisi-1;
analisi=analisi+2;
break

end
end
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else
combinati_matr(indice, :)=Pop_matr(prescelti(1, 1), :);
indice=indice+1;
combinati_matr(indice, :)=Pop_matr(prescelti(1, 2), :);
indice=indice+1;
analisi_inviata=1;
n_analisi=n_analisi-1;r=0;

end
pause(1)

%read
for j=1:maxCanali/2

i=j*2-1;
fileName1=['dir C:\SUPPORT\ANALISI', int2str(i), '\SIMULAZIONE\*.ASG >null'];
fileName2=['dir C:\SUPPORT\ANALISI', int2str(i+1), '\SIMULAZIONE\*.ASG >null'];
if vettore_analisi(1, i)>7 & dos(fileName1)==1 & dos(fileName2)==1

figlio1=crea_individuo(vettore_analisi(:, i), i, esatti);
figlio2=crea_individuo(vettore_analisi(:, i+1), i+1, esatti);
famiglia=[figlio1;figlio2;Pop_matr(vettore_analisi(7,i),:);Pop_matr(vettore_analisi(8,i+1),:)];
combinati_matr(indice,:)=famiglia(1,:);
esistenti=[best_matr;combinati_matr;accoppiati_matr];
indice=indice+1;
combinati_matr(indice,:)=famiglia(2,:);
indice=indice+1;
esistenti=[best_matr;accoppiati_matr;combinati_matr];
vettore_analisi(1, [i i+1])=0;

end
end

end
acc_comb_matr=[accoppiati_matr;combinati_matr];

function [E1_figl1, E1_figl2, E2_figl1, E2_figl2, ni_figl1, ni_figl2, G_figl1, G_figl2] =
accoppia(padre, madre, canale1, canale2, E1_min, E1_max, E2_min, E2_max, ni_min,
ni_max, G_min, G_max, DeltaAccoppia)
%arithmetical crossover
a=rand(1); b=rand(1); r=(b-0.5)/DeltaAccoppia;
E1_figl1=(padre(1, 1)*a+madre(1, 1)*(1-a)-r*(padre(1, 1)+madre(1, 1))/2);
E1_figl2=(padre(1, 1)*(1-a)+madre(1, 1)*a-r*(padre(1, 1)+madre(1, 1))/2);
c=rand(1); d=rand(1); r1=(d-0.5)/DeltaAccoppia;
ni_figl1=(padre(1, 3)*c+madre(1, 3)*(1-c)-r1*(padre(1, 3)+madre(1, 3))/2);
ni_figl2=(padre(1, 3)*(1-c)+madre(1, 3)*c-r1*(padre(1, 3)+madre(1, 3))/2);
e=rand(1); f=rand(1); r2=(f-0.5)/DeltaAccoppia;
E2_figl1=(padre(1, 2)*e+madre(1, 2)*(1-e)-r2*(padre(1, 2)+madre(1, 2))/2);
E2_figl2=(padre(1, 2)*(1-e)+madre(1, 2)*e-r2*(padre(1, 2)+madre(1, 2))/2);
g=rand(1); h=rand(1); r3=(h-0.5)/DeltaAccoppia;
G_figl1=(padre(1, 4)*g+madre(1, 4)*(1-g)-r3*(padre(1, 4)+madre(1, 4))/2);
G_figl2=(padre(1, 4)*(1-g)+madre(1, 4)*g-r3*(padre(1, 4)+madre(1, 4))/2);
% range evaluation first child
if E1_figl1<E1_min, E1_figl1=E1_min; end
if E1_figl1>E1_max, E1_figl1=E1_max; end
if E2_figl1<E2_min, E2_figl1=E2_min; end
if E2_figl1>E2_max, E2_figl1=E2_max; end
if ni_figl1<ni_min, ni_figl1=ni_min; end
if ni_figl1>ni_max, ni_figl1=ni_max; end
if G_figl1<G_min, G_figl1=G_min; end
if G_figl1>G_max, G_figl1=G_max; end
% range evaluation second child
if E1_figl2<E1_min, E1_figl2=E1_min; end
if E1_figl2>E1_max, E1_figl2=E1_max; end
if E2_figl2<E2_min, E2_figl2=E2_min; end
if E2_figl2>E2_max, E2_figl2=E2_max; end
if ni_figl2<ni_min, ni_figl2=ni_min; end
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if ni_figl2>ni_max, ni_figl2=ni_max; end
if G_figl2<G_min, G_figl2=G_min; end
if G_figl2>G_max, G_figl2=G_max; end
% preparation of the Nastran input file and start the FEA
E1_figl1=E1_figl1*1000;E1_figl1=round(E1_figl1)/1000;
E2_figl1=E2_figl1*1000;E2_figl1=round(E2_figl1)/1000;
ni_figl1=round(ni_figl1*1000)/1000;
G_figl1=G_figl1*1000;G_figl1=round(G_figl1)/1000;
E1_figl2=E1_figl2*1000;E1_figl2=round(E1_figl2)/1000;
E2_figl2=E2_figl2*1000;E2_figl2=round(E2_figl2)/1000;
ni_figl2=round(ni_figl2*1000)/1000;
G_figl2=G_figl2*1000;G_figl2=round(G_figl2)/1000;
fileName=['C:\SUPPORT\ANALISI', int2str(canale1), '\materiale', int2str(canale1), '.bdf'];
matcard(fileName, E1_figl1, E2_figl1, ni_figl1, G_figl1);
fileName2=['erase /q /a:a ', 'C:\SUPPORT\ANALISI', int2str(canale1), '\SIMULAZIONE\', '*.*'];
dos(fileName2);
fileName3=['C:\SUPPORT\ANALISI', int2str(canale1), '\nastran.bat >null'];
dos(fileName3); pause(3)
fileName=['C:\SUPPORT\ANALISI', int2str(canale2), '\materiale', int2str(canale2), '.bdf'];
matcard(fileName, E1_figl2, E2_figl2, ni_figl2, G_figl2);
fileName2=['erase /q /a:a ', 'C:\SUPPORT\ANALISI', int2str(canale2), '\SIMULAZIONE\', '*.*'];
dos(fileName2);
fileName3=['C:\SUPPORT\ANALISI', int2str(canale2), '\nastran.bat >null'];
dos(fileName3);

function [E1_figl1, E1_figl2, E2_figl1, E2_figl2, ni_figl1, ni_figl2, G_figl1, G_figl2] =
combina(padre, madre, canale1, canale2)
%replacing crossover funtion
figlio1_temp=padre;
figlio2_temp=madre;
r=rand(1);
if r<=0.66

cost= round(1+ 3*rand(1));
figlio1_temp(1, cost)=madre(1, cost);
figlio2_temp(1, cost)=padre(1, cost);

else
cost1=round(1+ 3*rand(1));
cost2=round(1+ 3*rand(1));
while cost1==cost2

cost2=round(1+ 3*rand(1));
end
figlio1_temp(1, cost1)=madre(1, cost1);
figlio1_temp(1, cost2)=madre(1, cost2);
figlio2_temp(1, cost1)=padre(1, cost1);
figlio2_temp(1, cost2)=padre(1, cost2);

end
E1_figl1=figlio1_temp(1, 1); E1_figl2=figlio2_temp(1, 1);
E2_figl1=figlio1_temp(1, 2); E2_figl2=figlio2_temp(1, 2);
ni_figl1=figlio1_temp(1, 3); ni_figl2=figlio2_temp(1, 3);
G_figl1=figlio1_temp(1, 4); G_figl2=figlio2_temp(1, 4);
E1_figl1=E1_figl1*1000;E1_figl1=round(E1_figl1)/1000;
E2_figl1=E2_figl1*1000;E2_figl1=round(E2_figl1)/1000;
ni_figl1=round(ni_figl1*1000)/1000;
G_figl1=G_figl1*1000;G_figl1=round(G_figl1)/1000;
E1_figl2=E1_figl2*1000;E1_figl2=round(E1_figl2)/1000;
E2_figl2=E2_figl2*1000;E2_figl2=round(E2_figl2)/1000;
ni_figl2=round(ni_figl2*1000)/1000;
G_figl2=G_figl2*1000;G_figl2=round(G_figl2)/1000;
% preparation of the Nastran input file and start the FEA
fileName=['C:\SUPPORT\ANALISI', int2str(canale1), '\materiale', int2str(canale1), '.bdf'];
matcard_2(fileName, E1_figl1, E2_figl1, ni_figl1, G_figl1);
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fileName2=['erase /q /a:a ', 'C:\SUPPORT\ANALISI', int2str(canale1), '\SIMULAZIONE\', '*.*'];
dos(fileName2);
fileName3=['C:\SUPPORT\ANALISI', int2str(canale1), '\nastran.bat >null'];
dos(fileName3);
pause(2)
fileName=['C:\SUPPORT\ANALISI', int2str(canale2), '\materiale', int2str(canale2), '.bdf'];
matcard_2(fileName, E1_figl2, E2_figl2, ni_figl2, G_figl2);
fileName2=['erase /q /a:a ', 'C:\SUPPORT\ANALISI', int2str(canale2), '\SIMULAZIONE\', '*.*'];
dos(fileName2);
fileName3=['C:\SUPPORT\ANALISI', int2str(canale2), '\nastran.bat >null'];
dos(fileName3);

function[mutati_matr, analisi] =mutazione(dim_mutati, Pop_matr, esatti, E1_min, E1_max,
E2_min, E2_max, ni_min, ni_max, G_min, G_max, analisi, maxCanali)
%mutation function
indice=1;
analisi_inviata=1;
vettore_analisi=zeros(8, maxCanali); %vettore_analisi(1, k)==0 --> the channel is free
mutati_matr=zeros(dim_mutati, 12);
n_analisi=round(dim_mutati);
t=0;
while indice<dim_mutati+1

vettore_analisi(1, :)=vettore_analisi(1, :)*2;
if analisi_inviata==1 & n_analisi

analisi_inviata=0;
c=1+(size(Pop_matr, 1)-1)*rand(1);
indice_c=round(c);
fitness=Pop_matr(indice_c, 5)*10;
if fitness<0.1

m=.1
var_ni=Pop_matr(indice_c, 3)*.15;
var_E1=Pop_matr(indice_c, 1)*.015;
var_E2=Pop_matr(indice_c, 2)*.015;
var_G=Pop_matr(indice_c, 4)*.015;

elseif fitness<5
m=5
var_ni=Pop_matr(indice_c, 3)*.3;
var_E1=Pop_matr(indice_c, 1)*.06;
var_E2=Pop_matr(indice_c, 2)*.06;
var_G=Pop_matr(indice_c, 4)*.06;

elseif fitness<10
m=10
var_ni=Pop_matr(indice_c, 3)*.5;
var_E1=Pop_matr(indice_c, 1)*.14;
var_E2=Pop_matr(indice_c, 2)*.14;
var_G=Pop_matr(indice_c, 4)*.14;

else
var_ni=Pop_matr(indice_c, 3)*.6;
var_E1=Pop_matr(indice_c, 1)*.3;
var_E2=Pop_matr(indice_c, 2)*.3;
var_G=Pop_matr(indice_c, 4)*.3;

end
r=rand(1);

end
if r<=0.9

for i=1:maxCanali
if vettore_analisi(1, i)==0 & n_analisi
[vettore_analisi(2, i) vettore_analisi(3, i) vettore_analisi(4, i) vettore_analisi(5, i)] =

muta(Pop_matr(indice_c, :), E1_min, E1_max, E2_min, E2_max, ni_min, ni_max, G_min,
G_max, var_E1, var_E2, var_ni, var_G, i);

vettore_analisi(1, i)=1;
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vettore_analisi(6, i)=3;
vettore_analisi(7, i)=indice_c;
vettore_analisi(8, i)=0;
analisi_inviata=1;
n_analisi=n_analisi-1;
analisi=analisi+1;
break

end
end

else
mutati_matr(indice, :)=Pop_matr(indice_c, :);
indice=indice+1;
analisi_inviata=1;
n_analisi=n_analisi-1;r=0;

end
pause(1)
%read FEA results
for i=1:maxCanali

fileName=['dir C:\SUPPORT\ANALISI', int2str(i), '\SIMULAZIONE\*.ASG >null'];
if vettore_analisi(1, i)>6 & dos(fileName)==1

figlio1=crea_individuo(vettore_analisi(:, i), i, esatti);
figlio2=Pop_matr(indice_c, :);
famiglia=[figlio1;figlio2];
famiglia=sortrows(famiglia, 5);
ran=rand(1);
if ran>.5

mutati_matr(indice, :)=famiglia(1, :);
else

mutati_matr(indice, :)=figlio1;
end
indice=indice+1;
vettore_analisi(1, i)=0;

end
end

end
sum(vettore_analisi(1, :))

function [E1, E2, ni, G] = muta(individuo, E1_min, E1_max, E2_min, E2_max, ni_min,
ni_max, G_min, G_max, var_E1, var_E2, var_ni, var_G, canale);
%mutation subfunction
E1=individuo(1, 1);E2=individuo(1, 2);ni=individuo(1, 3);G=individuo(1, 4);
r=rand(1);soglia=.5; vettore_estratti=[1 1 1 1];
n_geni_da_mutare=1+round(3*rand(1));
for i=1:n_geni_da_mutare

x=1/sum(vettore_estratti);
a=vettore_estratti(1, 1)*x; b=a+vettore_estratti(1, 2)*x;
c=b+vettore_estratti(1, 3)*x; d=c+vettore_estratti(1, 4)*x; y=rand(1);
if y<=a

dE1=(-1+2*rand(1))*var_E1
E1=individuo(1, 1)+dE1;

if E1<E1_min & r>soglia
E1=E1_min; end

if E1>E1_max & r>soglia
E1=E1_max; end

vettore_estratti(1, 1)=0;
elseif a<y & y<=b

dE2=(-1+2*rand(1))*var_E2
E2=individuo(1, 2)+dE2;

if E2<E2_min & r>soglia
E2=E2_min; end

if E2>E2_max & r>soglia



Appendix B: Genetic Algorithm Code

169

E2=E2_max; end
vettore_estratti(1, 2)=0;

elseif b<y & y<=c
dni=(-1+2*rand(1))*var_ni
ni=individuo(1, 3)+dni;

if ni<ni_min & r>soglia
ni=ni_min;  end

if ni>ni_max & r>soglia
ni=ni_max;  end

vettore_estratti(1, 3)=0;
elseif c<y & y<=d

dG=(-1+2*rand(1))*var_G
G=individuo(1, 4)+dG;

if G<G_min & r>soglia
G=G_min;   end

if G>G_max & r>soglia
G=G_max;   end

vettore_estratti(1, 4)=0;
end

end
E1=E1*1000;E1=abs(round(E1)/1000); E2=E2*1000;E2=abs(round(E2)/1000);
ni=abs(round(ni*1000)/1000); G=G*1000;G=abs(round(G)/1000);
fileName=['C:\SUPPORT\ANALISI', int2str(canale), '\materiale', int2str(canale), '.bdf'];
matcard_2(fileName, E1, E2, ni, G);
fileName2=['erase /q /a:a ', 'C:\SUPPORT\ANALISI', int2str(canale), '\SIMULAZIONE\', '*.*'];
dos(fileName2);
fileName3=['C:\SUPPORT\ANALISI', int2str(canale), '\nastran.bat >null'];
dos(fileName3);

function[indici] = index_selection(Pop_matr, indici_processati)
%parents index selection for crossover
int=[0.5 0.5];

while int
p=rand(1);
if p<=0.5
a=1+(round((size(Pop_matr, 1))/3)-1)*rand(1); indice_a=round(a);

elseif p>0.5 & p<=0.8
a=(1+round((size(Pop_matr,1))/3))+(size(Pop_matr,1)-round((2*size(Pop_matr,1))/3)-

1)*rand(1);
indice_a=round(a);

else
a=(round((2*size(Pop_matr,1))/3))+(size(Pop_matr,1)-round((2*size(Pop_matr, 1))/3))*rand(1);
indice_a=round(a);

end
p1=rand(1);
if p1<=0.5
b=1+(round((size(Pop_matr, 1))/3)-1)*rand(1); indice_b=round(b);

elseif p1>0.5 & p1<=0.8
b=(1+round((size(Pop_matr,1))/3))+(size(Pop_matr,1)-round((2*size(Pop_matr,1))/3)-

1)*rand(1);
indice_b=round(b);

else
b=(round((2*size(Pop_matr,1))/3))+(size(Pop_matr,1)-round((2*size(Pop_matr,1))/3))*rand(1);
indice_b=round(b);

end
if indice_a==indice_b

if indice_a >=2, indice_b=indice_a-1;
else indice_b=indice_a+1; end

end
int=intersect(indici_processati, [indice_a, indice_b], 'rows');

end



Appendix B: Genetic Algorithm Code

170

indici=[indice_a, indice_b];

function [mnew, snew] = Media_new(Pop, costante, mp, sp);
% average and standard deviation evaluation for ARGA implementation
dimPop=size(Pop, 1)
sample=Pop(1:dimPop/2, :);
msample=mean(sample(:, costante));
ssample=std(sample(:, costante));
mnew=mp+.5*(msample-mp);
snew=abs(sp+.5*(ssample-sp));

Batch file “Nastan.bat”:
c:\msc\bin\nastranw.exe jid=support\laminato_simmetrico.dat out=support\SIMULAZIONE

In order to use the ARGA in the dynamic characterization the “crea_individuo”

has been modified while, in order to read the natural frequencies from the Nastran

output file, the “get_frequency“ function has been developed.  In the following the

code of the two procedure used are reported.

function [individuo] = crea_individuo(vettore_analisi, canale, esatti)
%read the results of the FEA in "canale" folder and evaluate the fitness
fileName=['C:\SUPPORT\ANALISI', int2str(canale), '\SIMULAZIONE\Laminato_simmetrico',
int2str(canale), '.f06'];
[Numerical_Freq] = get_frequency (fileName);
val =sqrt(sum(((Numerical _Freq-esatti)./ esatti).^2)); % fitness evaluation
E1p=vettore_analisi(2);
E2p=vettore_analisi(3);
nip=vettore_analisi(4);
Gp=vettore_analisi(5);
load('costanti')
perc_E1=(E1p-E1)/E1;
perc_E2=(E2p-E2)/E2;
perc_ni=(nip-ni)/ni;
perc_G=(Gp-G)/G;
individuo=[E1p E2p nip Gp val perc_E1 perc_E2 perc_ni perc_G vettore_analisi(6)
vettore_analisi(7) vettore_analisi(8)];

function  [v_freq]=get_frequency(fileName)
% read frequencies from “fileName" Output file.
freq=4;
v_freq=zeros(freq,1);
fid=fopen(fileName,'r');
stop=1; indice=1;
while (feof(fid)==0&stop)

tline=fgetl(fid);
if strcmp(tline,'   MODE    EXTRACTION      EIGENVALUE            RADIANS

CYCLES            GENERALIZED         GENERALIZED')
tline=fgetl(fid);
for i=1:freq%3

tline=fgetl(fid);
r=parse(tline);
t=[r(5,1) r(5,2) r(5,3) r(5,4) r(5,5) r(5,6) r(5,7) r(5,8) r(5,9) r(5,10) r(5,11) r(5,12)];

freq=str2double(t);
v_freq(indice,1)=freq;

indice=indice+1;
end
break
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end

end
fclose('all');
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APPENDIX C: INTERPOLATION
PROCEDURE

In order to assess the direct procedure for determining the elastic properties of

isotropic rectangular plates an interpolation tables function has been carried out.

The code makes use of calibrated tables to carry out the Young’s modulus and

Poisson’s ratio by the definition of the aspect ratio (a/b), the mass, the thickness

and the frequencies of the rectangular plates. In order to have an automatic

characterization procedure, the following function has been used inside the

Matlab code showed in Appendix A. In this way, it is possible to have a tool to

characterise the rectangular samples in a very fast way.

function [E1_1, E1_2, E1_3, E1_4, E2_1, E2_2, E2_3, E2_4, E3_1, E3_2, E3_3, E3_4, ni1, ni2,
ni3, ErrorVector, ratio_vector] = calcoloCostanti(f1, f2, f3, f4, mass, thickness, width, ab)
ErrorVector=[1 1 1]; %it is used to verify the frequency ratio
ni_rif=0.32; %it is used in the plates with a/b ratio equal to 1.5 or 2.0
load('tabelle.mat'); %load the tables obtained by means of FEA calculations
switch ab

case 1,       A_origin=ab_1;   'ab= 1'
case 1.5,     A_origin=ab_1_5; 'ab= 1.5'
case 2,       A_origin=ab_2;   'ab= 2'
case 2.5,     A_origin=ab_2_5; 'ab= 2.5'
case 1.4973,  A_origin=A_n2;   'piastra N2'
case 1.9924,  A_origin=A_n3;   'piastra N3'
case 2.4709,  A_origin=A_n4;   'piastra N4'
case 1.4934,  A_origin=A_n6;   'piastra N6'
case 1.9852,  A_origin=A_n7;   'piastra N7'
case 2.4654,  A_origin=A_n8;   'piastra N8'

end
vet_freq=[f1,f2,f3,f4]';
A=A_origin;
%%%%%definition of the suitable frequency ratios %%%%%
%%%  ab=1
if (ab>0.95 & ab<1.05);

ratio_vector=[3,1,3,2,4,3]';ordine_lambda_freq=[1,2,3,4];
segno_6=+1; segno_7=+1;segno_8=-1;

end
%%%  ab=1.5
if (ab<1.6 & ab>1.4 );

segno_6=+1; segno_7=-1;    segno_8=+1;
if  ni_rif<0.12

ratio_vector=[3,1,4,1,3,2]';
ordine_lambda_freq=[1,2,3,4];

else
ratio_vector=[4,2,3,2,4,1]';
ordine_lambda_freq=[2,1,4,3];
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end
end
%%%   ab=2
if (ab<2.2 & ab>1.8 );

segno_6=-1; segno_7=-1;    segno_8=+1;
if  ni_rif<0.23

ratio_vector=[2,1,4,1,3,2]';
ordine_lambda_freq=[1,2,3,4];

else
ratio_vector=[2,1,3,1,4,2]';
ordine_lambda_freq=[1,2,4,3];

end
end
%%%  ab=2.5
if (ab>2.3 & ab<2.7);

ratio_vector=[2,1,4,1,3,2]'; ordine_lambda_freq=[1,2,3,4];
segno_6=-1; segno_7=-1;    segno_8=+1;

end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
fr1_1=vet_freq(ratio_vector(1));   fr1_2=vet_freq(ratio_vector(2));
fr2_1=vet_freq(ratio_vector(3));   fr2_2=vet_freq(ratio_vector(4));
fr3_1=vet_freq(ratio_vector(5));   fr3_2=vet_freq(ratio_vector(6));
KnownValue1=fr1_1/fr1_2;
KnownValue2=fr2_1/fr2_2;
KnownValue3=fr3_1/fr3_2;  %1.0607
%%%%%  find Poisson's ratio (from the first frequency ratio) %%%%%%%%%
A=A_origin;
ColNota=6;  ColIncognita=1; KnownValue=KnownValue1;
if KnownValue>max(A(:,ColNota)) | KnownValue<min(A(:,ColNota));

ErrorVector(1,1)=0;('range 1 Superato'),
KnownValue=mean([max(A(:,ColNota)),min(A(:,ColNota))]);

end
ia=find( segno_6*A(:,ColNota)>segno_6*KnownValue );ia=ia(1,1);
%%%interpolation to find hk from fhk

x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
ni1=y;
%%%find Eh and Ek

%%find L1 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==1))+1; KnownValue=ni1;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L1=y;
E1_1=48/pi^2*(f1/L1)^2*(mass*width^2*(1-ni1^2))/thickness^3*1e-9*ab;
%%find L2 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==2))+1; KnownValue=ni1;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita); x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L2=y;
E1_2=48/pi^2*(f2/L2)^2*(mass*width^2*(1-ni1^2))/thickness^3*1e-9*ab;
%%find L3 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==3))+1; KnownValue=ni1;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L3=y;
E1_3=48/pi^2*(f3/L3)^2*(mass*width^2*(1-ni1^2))/thickness^3*1e-9*ab;
%%find L4 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==4))+1; KnownValue=ni1;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L4=y;
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E1_4=48/pi^2*(f4/L4)^2*(mass*width^2*(1-ni1^2))/thickness^3*1e-9*ab;
%%%%%  find Poisson's ratio (from the second frequency ratio) %%%%%%%%%
ColNota=7;  ColIncognita=1; KnownValue=KnownValue2;
if KnownValue>max(A(:,ColNota)) | KnownValue<min(A(:,ColNota));

ErrorVector(1,2)=0; ('range 2 Superato'),
KnownValue=mean([max(A(:,ColNota)),min(A(:,ColNota))]);

end
ia=find( segno_7*A(:,ColNota)>segno_7*KnownValue ); ia=ia(1,1);
%%%interpolation to find iij from fij

x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita); x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
ni2=y;
%%%find Ei and Ej

ni_new=ni2;
%find L1 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==1))+1; KnownValue=ni_new;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L1=y;
E2_1=48/pi^2*(f1/L1)^2*(mass*width^2*(1-ni_new^2))/thickness^3*1e-9*ab;
%%find L2 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==2))+1; KnownValue=ni_new;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L2=y;
E2_2=48/pi^2*(f2/L2)^2*(mass*width^2*(1-ni_new^2))/thickness^3*1e-9*ab;
%%find L3 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==3))+1; KnownValue=ni_new;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue; y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L3=y;
E2_3=48/pi^2*(f3/L3)^2*(mass*width^2*(1-ni_new^2))/thickness^3*1e-9*ab;
%%find L4 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==4))+1; KnownValue=ni_new;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L4=y;
E2_4=48/pi^2*(f4/L4)^2*(mass*width^2*(1-ni_new^2))/thickness^3*1e-9*ab;
%%%%%  find Poisson's ratio (from the third frequency ratio) %%%%%%%%%
A=A_origin;
ColNota=8;  ColIncognita=1; KnownValue=KnownValue3;
if KnownValue>max(A(:,ColNota)) | KnownValue<min(A(:,ColNota))

ErrorVector(1,3)=0; ('range 3 Superato')
KnownValue=mean([max(A(:,ColNota)),min(A(:,ColNota))]);

end
ia=find( segno_8*A(:,ColNota)>segno_8*KnownValue );ia=ia(1,1);
%%%interpolation to find jk from fjk

x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue; y=(y1-y2)/(x2-x1)*(x2-x)+y2;
ni3=y;
%%%Find Ej e Ek

ni_new=ni3;
%find L1 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==1))+1; KnownValue=ni_new;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L1=y;
E3_1=48/pi^2*(f1/L1)^2*(mass*width^2*(1-ni_new^2))/thickness^3*1e-9*ab;
%find L2 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==2))+1; KnownValue=ni_new;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
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y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L2=y;
E3_2=48/pi^2*(f2/L2)^2*(mass*width^2*(1-ni_new^2))/thickness^3*1e-9*ab;
%find L3 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==3))+1; KnownValue=ni_new;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L3=y;
E3_3=48/pi^2*(f3/L3)^2*(mass*width^2*(1-ni_new^2))/thickness^3*1e-9*ab;
%find L4 by interpolation
ColNota=1; ColIncognita=(find(ordine_lambda_freq==4))+1; KnownValue=ni_new;
x1=A(ia,ColNota); y1=A(ia,ColIncognita); x2=A(ia-1,ColNota);
y2=A(ia-1,ColIncognita);  x=KnownValue;     y=(y1-y2)/(x2-x1)*(x2-x)+y2;
L4=y;
E3_4=48/pi^2*(f4/L4)^2*(mass*width^2*(1-ni_new^2))/thickness^3*1e-9*ab;
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