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Introduction

Semiconductor materials are employed in different fields, e.g. electronical an

microelectronical devices, laser, solar cells. In particular, in microelectronics

they have a wide range of applications, including computers, telecomunica-

tions, etc.

The most commonly used material for these applications is silicon. There are

several examples in literature about the description of its physical properties.

Moreover, mathematical models have been developed in order to describe the

physical properties that characterize the transport phenomena in this semi-

conductor. However, since silicon devices operate in a low power range, under

current development there are research activities related to technologies and

power devices which take into consideration new materials, more appropriate

for these applications. In this setting compound semiconductors have found

wide use. One of the first compound semiconductor to be used was Gallium

arsenide (GaAs), employed, for instance, for infrared LED, lasers or solar

cells.

The advantages of GaAs with respect to Si are that it has a higher satura-

tion electron velocity and a higher mobility, and therefore it is important for

devices functioning at frequencies higher than 250GHz.

Recently wider bandgap semiconductors, like Gallium nitride (GaN) and Sil-

icon carbide (SiC), have also attracted great interest, since they have a high

breakdown field, a low thermal generation rate, and a good thermal con-

ductivity and stability. These properties are useful for high power and high

temperature devices.
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As a consequence there is an increasing demand of models which can accu-

rately forecast the performance of these devices, analyzing the main physical

processes involved in these new materials.

From an industrial point of view, the importance of these models is mainly

due to the fact that simulations give the possibility of saving on production

costs.

For compound semiconductors, in literature can be found Monte Carlo mod-

els [19][29][30], but there is a certain lack of macroscopical models, which are

computationally less expensive and then useful for computer aided design

(CAD)[20].

The aim of this work is exactly the development of hydrodynamical models

for charge transport in compound semiconductors.

These models can be obtained starting from the semiclassical kinetic de-

scription of charge transport, taking into account the band structure of the

semiconductors of interest. Specifically, one has to consider a number of

populations of charge carriers equal to the number of valleys (in the band

structure of the material) where the carriers involved in the conductivity

live. The state of each carrier population can be described by a distribu-

tion function, whose time evolution is determined by a Boltzmann transport

equation [11][15][31]. The Poisson equation for the self-consistent electric

field is coupled to the Boltzmann equation. The Boltzmann equation is

an integro-differential equation which needs to be solved numerically. Since

Monte Carlo model and finite difference schemes are computationally very ex-

pensive [31][42], hydrodynamical models have been introduced. These mod-

els, starting from Bolzmann equation, consider a certain number of moments

of the distribution function, obtained multiplying the distribution function

by a weight function and integrating over the first Brillouin zone [11]. The

weight functions are usually chosen in such a way that they give rise to physi-

cally meaningful moments, such as, for example, density, mean velocity, mean

energy, etc.

The set of evolution equations related to the moments, which are obtained
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from the Boltzmann equation by integration, is a not closed system since the

number of unknowns is higher than the number of equations.

In the past, the closure of these hydrodynamical models has been obtained

with ad hoc closure relations, sometimes containing parameters without any

physical justification [40]. For this reason, alternative methods have been re-

searched, which are based on first physical principles. One of the most used

among these is the maximum entropy principle [23][32][36][37][41], which is

based on the fact that, if one has a certain amount of information about a

physical system, the least biased distribution functions, which can be used

for evaluating the unknown moments, are those extremizing the entropy of

the system, under the constraint that they reproduce the known information.

This thesis consists of four chapters. In order to better understand the deriva-

tion of the models, in the first two chapters we present very briefly some basic

concepts of semiconductor physics and charge transport theory.

In particular Chapter 1 starts from the definition of crystals and lattices, con-

tinuing with the derivation and the description of the energy band structure

of crystals, which allows the introduction of conduction and valence bands.

On the basis of width of the gap between these two bands, materials are then

classified into insulators, conductors and semiconductors. The chapter ends

with the introduction of the main analytic approximations employed for the

carrier energy in the valleys and of the concepts of lattice vibrations and

phonons, these latters being fundamental for the charge transport descrip-

tion.

In Chapter 2 we derive the Boltzmann equation for electrons, first without

collisions, then taking into account the main scattering processes, which can

be described by means of suitable collision operators. In fact, we present

the main mechanisms of interaction that can occur between electrons and

phonons, and electrons and impurities. In conclusion the moments method

is introduced together with the closure method based on the maximum en-

tropy principle.

In the last two chapters we describe the two hydrodynamical models re-
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spectively developed in [9] and [26]. The objective of both chapters is the

construction of macroscopic models which are able to describe the charge

transport in a generic compound semiconductor material. In fact the models

are constructed in such a way that they can be applied to any semiconductor

material with few adjustments, once the physical parameters of the material

and the number of valleys in the conduction bands have been identified. In

Chapter 3 we present an isotropic model, while in Chapter 4 an anisotropic

one. All the main scattering mechanisms are considered in these models, i.e.

charge interaction with acoustical and polar optical phonons and impurities

as regards the intravalley scattering, and with non polar optical phonons for

the intervalley processes.

In semiconductors, the charges which give the most contribution to conduc-

tion are the electrons that occupy states around the minima of the lower

conduction bands and the holes around the maxima of the higher valence

bands. It is then important to construct models which make use of the best

possible approximations for the energy dispersion relations for these charges.

In Chapter 3, we consider isotropic energy dispersion relations. The approx-

imation is spherical and non parabolic. In this chapter we show numerical

results for bulk GaN and 4H-SiC. The obtained results are in good agreement

with those found in literature, based on kinetic models.

However for highly anisotropic semiconductors, better approximations are

needed.

In Chapter 4, for this reason, we make use of more general energy disper-

sion relations, employing an ellipsoidal approximation. This approximation

is useful to describe charge transport in semiconductors for which electron

masses along the principal axes are consistently different, implying different

carrier drift velocities along different directions. At the end of the chapter

we show the results of numerical simulation for bulk 4H-SiC and 6H-SiC,

that are, also in this case, in good agreement with those found in literature.

The model presented in this chapter can be considered as an improvement

of the previous one, described in Chapter 3. In fact several comparisons are
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made between the isotropic model and the anisotropic one for the case of

bulk 4H-SiC. The differences which are found for the valley occupancies, the

total mean energy and above all the total drift velocity show the importance

of taking into account the anisotropy.
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Chapter 1

Semiconductor physics

1.1 Crystal Structures

1.1.1 Crystals and lattices

Definition 1 Crystals are solids in which atoms are arranged in ordered

patterns. Ideal crystals are translation invariant. Defining three vectors a1,a2

and a3 not lying in the same plane, the crystal remains identical if translated

by a vector

T = n1a1 + n2a2 + n3a3, (1.1)

with n1,n2 and n3 are any three relative integers [1].

Along with translations, there are also other symmetry operations found in

crystals. For instance they can be rotations, reflections, rotaryreflections and

inversions. The space group of a crystal is defined as the set of all its sym-

metry operations.

Definition 2 The translation vectors in (1.1) define a set of points called

”Bravais lattice” or simply ”lattice”. The parallelepiped formed by the vectors

a1,a2 and a3 is a primitive unit cell. The lattice in (1.1) can be also called
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”direct lattice”, so that it can be distinguished from the ”reciprocal lattice” [1].

There is no unique way of choosing a primitive cell. The most common

choice is that of the Wigner-Seitz cell, which keeps the symmetry of the Bra-

vais lattice.

Definition 3 The Wigner-Seitz primitive cell of a lattice is formed by all

points closer to one of the lattice points than to any other [1].

1.1.2 Reciprocal lattice

The concept of reciprocal lattice has a fondamental role in the theory of

solid state. Let a1, a2, a3 be unit vectors of a direct lattice, we can asso-

ciate to these vectors, the corresponding three unit vectors b1,b2,b3 for the

reciprocal lattice, defined by

b1 = 2π
a2 × a3

Vc
,b2 = 2π

a3 × a1

Vc
,b3 = 2π

a1 × a2

Vc
,

where Vc = a1 · a2 × a3 is the volume of the unit cell of the direct lattice. It

follows immediately that between the unit vectors of the direct lattice and

those of the reciprocal lattice the following condition holds:

ai · bj = 2πδij, i = 1, 2, 3, (1.2)

where δij is the Kronecker delta symbol:

δij = 0, i 6= j,

δij = 1, i = j.
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Noting that the reciprocal lattice is a Bravais lattice, it is possible to derive

its reciprocal lattice. Of course this is the original direct lattice.

The set of all vectors in the reciprocal lattice satisfies the relation

eiT·G = 1,

for T = n1a1+n2a2+n3a3 in the direct lattice andG = m1b1+m2b2+m3b3

in the reciprocal lattice, being T ·G given by

T ·G = 2π(n1m1 + n2m2 + n3m3).

The volume, in reciprocal space, of the reciprocal lattice primitive cell, is

the analogous of that of the direct lattice, using now the unit vectors of the

reciprocal lattice and employing the formula for the vector triple product:

b1 · b2 × b3 =

(
2π

Vc

)3

(a2 × a3) · [(a3 × a1)× (a1 × a2)] =
(2π)3

Vc
.

Definition 4 The first Brillouin zone of a lattice is formed by all points of

the reciprocal space closer to one of the points of the reciprocal lattice than

to any other [2].

So, the first Brillouin zone (BZ) is the Wigner-Seitz cell of the reciprocal

lattice.

1.2 The Schroedinger equation for external

electrons

Electron transport in semiconductors deals with the behaviour of electrons,

which can move inside the crystal, under the application of external forces.

Therefore a fundamental problem is to determine the states available to the

electrons in the crystal and their energies. This is a multiparticle prob-

lem which, in principle, requires the solution of a Schroedinger equation

10



Hψ = Eψ, where the Hamiltonian H and the wave function ψ depend on the

coordinates of all particles.

We start considering a system composed by N nuclei with masses MI and

charges ZIe, I = 1, ..., N and n electrons with mass m and charge -e. We

indicate by RI the position coordinate of the I-th nucleum, and by ri the

coordinate of the i-th electron. The wave function of electrons and nuclei is

of the form ψ(r,R, t), where R ≡ (R1, ..., RN ) and r ≡ (r1, ..., rn).

We now consider the Schroedinger equation:

H(r,R)ψ(r,R) = Eψ(r,R). (1.3)

The Hamiltonian can be written as:

H = Te + TN + Vee + VNN + VeN (1.4)

where

Te = −
∑n

i=1
~
2

2m
∇2
i is the electron kinetic energy operator

TN = −∑N

I=1
~2

2MI
∇2
I is the nuclear kinetic energy operator

Vee =
1
2

∑
i,j i 6=j

e2

|ri−rj | is the electron-electron potential operator

VNN = 1
2

∑
I,J I 6=J

ZIZJe
2

|RI−RJ | is the nuclear-nuclear interaction potential opera-

tor

VeN =
∑

I,J
ZIe

2

|ri−RI | is the electron-nuclear interaction potential operator.

An equation of the form (1.3) with Hamiltonian (1.4), obviously cannot be

solved analitically and so approximations are needed.

We make then use of the Born-Oppenheimer approximation [3][5].

First of all it must be said that electrons are thousand times lighter than

nuclei, and so they can be considered as particles that follow the nuclear mo-

tion adiabatically. Hence the adiabatic method can be applied to equation

(1.3) separating the function ψ(r,R) in the product of two functions:

ψ(r,R) = φ(r,R)θ(R) (1.5)

where φ and θ are respectively elecronic and nuclear wave fuctions the former

being parametrized by the nuclear positions.
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Substituting (1.5) into (1.3) and using the approximation∇Iθ(R)≫ ∇Iφ(x,R),

which is another consequence of the difference in masses between electrons

and nuclei, and dividing by θ(R)φ(r,R) we have:

Te
φ(R, r)

φ(R, r)
+ Vee + VeN = E − TN

θ(R)

θ(R)
− VNN (1.6)

The three terms at the left hand side can be considered as a function of

R, say En(R), so:

Te
φ(R, r)

φ(R, r)
+ Vee + VeN = En(R). (1.7)

Moreover, from the definition of E , in correspondence of each eigenvalue En
of (1.7) one has

TN
θ(R)

θ(R)
+ VNN + En(R) = E. (1.8)

This yields a set of two coupled equations, (1.7) and (1.8), the first one

is an electronic eigenvalue equation, the second one is a nuclear eigenvalue

equation. The term En(R), the electron energy, gives a contribution to the
potential for nuclei motion.

Equation (1.7) cannot be solved exactly, so further approximations are made,

supposing that the electron wave function can be written as the antysim-

metrized product of functions of a single electron. In this approximation, so

called Hartree-Fock, one obtains the following equations

HHF (ri)ψi(ri) = Eiψi(ri),

where HHF is the Hartree-Fock Hamiltonian, see [3]. Supposing in addition

that the Hamiltonian does not depend on the particular state ψi, the above

set of N dependent equations reduce to the single particle equation:

H(r)ψ(r) = Eψ(r)

with

H(r) =
p2

2m
+ U(r),
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where U is the mean potential of the crystal on each electron which takes

into account the effect of the nuclei, of the core electrons and of all the other

external electrons. In principle the solution of this equation is an answer to

the problem we started with in this section.

1.3 The periodic potential and Bloch’s theo-

rem

We now consider an electron in a potential U(r) satisfying the periodicity

condition:

U(r+R) = U(r) (1.9)

for all vectors R in the direct lattice.

This means that the potential is periodic with the same periodicity of the

direct lattice, i.e. is translation invariant with respect to the lattice.

Now, let us consider the Schroedinger equation for a single electron in a

periodic potential. This equation has the form

Hψ =

(
− ~

2

2m
∇2 + U(r)

)
ψ = Eψ. (1.10)

The solution of this equation depends on the potential. If the potential U has

the periodicity (1.9), the stationary states of Bloch electrons, i.e., of those

electrons which satisfy equation (1.10), have a very important property:

Theorem 1 Bloch’s Theorem.

The eigenstates ψ of the one-electron Hamiltonian (1.10) , where U(r+R) =

U(r) for all R in a Bravais lattice, can be chosen to have the form of the

product of a plane wave with a function with the periodicity of the Bravais

lattice:

ψ(r) = eik·ru(r), (1.11)

where

u(r+R) = u(r) (1.12)
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for all R in the Bravais lattice [2].

(1.11) are called Bloch waves.

Another way of stating Bloch’s theorem is:

ψ(r+R) = eik·Rψ(r). (1.13)

This follows immediately from equations (1.11) e (1.12).

Proof

Let us define a translation operator:

TRψ = ψ(r+R) (1.14)

Using the hypothesis (1.9) and the definition (1.14) it can be proved that H

and TR commute, in fact the Laplacian operator is translation invariant and

the potential is periodic. It means that for each ψ we have

TRHψ = HTRψ.

Also any two translation operators commute. It follows that the set of op-

erators consisting of the Hamiltonian and the translation operators forms

a set of commuting operators. From a theorem of quantum mechanics the

eigenstates of H can be chosen to be also eigenstates of translation operators.

Therefore, H and TR admit a common set of eigenstates:

Hψ = Eψ

TRψ = c(R)ψ.

Since the translation operators commute and

TRTR′ = TR+R′ ; (1.15)

we have that for the eigenvalues c(R) of the translation operators the prop-

erty

c(R+R′) = c(R)c(R′) (1.16)
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holds, where R is a vector in the Bravais lattice, having the form

R = n1a1 + n2a2 + n3a3,

with ai, i = 1, 2, 3 three primitive vectors.

We can always write c(ai) in the form:

c(ai) = e2πixi

by a suitable choice of the xi, which in general are complex numbers. Using

(1.16) it follows:

c(R) = e2πi(n1x1+n2x2+n3x3) (1.17)

Defining k = x1b1 + x2b2 + x3b3, with bi i = 1, 2, 3, satisfing (1.2), we have

k ·R = 2π(n1x1 + n2x2 + n3x3), then (1.17) is equivalent to

c(R) = eik·R.

In conclusion we have

TRψ = ψ(r+R) = c(R) = eik·Rψ.

1.4 Semiclassical dynamics

An electron in a superposition of Bloch states (wavepacket) strongly peaked

around a value k0 changes its position and wave-vector (also named crystal

momentum) under the effect of an external electric field. By using standard

results in quantum mechanics [1], it can be proved that the electric field

is ”sufficiently” slow varying in space the semiclassical approximation holds

according to which electrons can be considered as classical particles whose

motion is governed by the following equations
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r = vnk =
1

~
∇kEn(k), (1.18)

~k = −qE, (1.19)

with r the electron position and E the electric field.

1.5 Energy bands and group velocity

In principle we can solve equation (1.10) for each different value of k in the

first Brillouin zone, obtaining the eigenvalues En(k) of the states correspond-
ing to the vector k.

En(k) represents the total energy, kinetic and potential, of an electron in the
Bloch eigenstate ψn(k). The functions En(k) are called energy bands and

identify the energetic levels that can be occupied by electrons in a lattice.

Energy bands can intersect each other or can be separated by gaps, called

energy band gaps. In energy gaps there appear forbidden energies that can-

not be reached by electrons moving in the crystal.

From the Planck-Einstein relation, for each k, En(k) is related to a frequency

ω(k) =
1

~
En(k).

Therefore, the n-th energy band En(k) can be considered as the dispersion

relation of a wavepacket, given by overlapping Bloch waves, whose’s corre-

sponding group velocity is

vn(k) =
1

~
En(k).

1.6 Energy bands and material classification

1.6.1 Band occupation

An energy band can be empty, partially filled or completely filled of electrons.

If a band is completely filled it cannot conduct. In fact being the Schroedinger
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equation invariant under a time reversal transformation, in each band, for

each state k there exists a state −k such that

E(k) = E(−k).

It also holds:

v(k) =
1

~
∇kE(k) = −

1

~
∇kE(−k) = −v(−k),

since, being the function E even, its gradient, which is related to the electron
group velocity, is odd. So we have

∑

k∈BZ
k = 0,

∑

k∈BZ
v(k) = 0.

Now applying a constant, uniform, electric field, electrons in a completely

filled band move as described in the previous section and those exiting from

one side of the BZ reenter from the opposite side in such a way that the total

occupation is analtered and no charge current is generated.

At zero temperature electrons occupy available states starting from the band

with the lowest energy. When the last band occupied is completely filled it is

called valence band, while the lowest empty band is called conduction band.

The gap between these two bands is the energy gap.

At temperatures higher than zero, a certain number of electrons, by ther-

mal excitation, will move to the conduction band leaving an equal number

of empty states in the valence band. Electrons in the conduction band, by

the effect of an external electric field, can then move to the higher empty

states, and so participate to conduction. Also the empty states left by these

electrons in the valence band participate to conduction, because they are

available states electrons in valence band can move to. These empty states

can be considered as occupied by positively charged particles moving in the

direction opposite to that of electrons. These fictitious particles are called

holes. While at equilibrium electrons tend to occupy states with lower en-

ergy, holes tend to occupy states with higher energy.
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Therefore, we can say that a material conductivity is due to electrons in the

states near to the lowest energy minima in conduction bands and to holes

near the highest energy maxima in valence bands.

1.6.2 Fermi - Dirac distribution

In equilibrium conditions the probability of occupation of an electronic state

in a semiconductor is given by the Fermi-Dirac distribution:

f(E) = 1

e

(

E−µ
kBT

)

+ 1
, (1.20)

where kB is the Boltzmann costant, T is the absolute temperature and µ is

the chemical potential. This probability depends only on the energy of the

state. The Fermi-Dirac distribution is not related to a particular physical

system, in fact each system of fermions, i.e. particles that cannot occupy the

same state, satisfies (1.20).

From (1.20) it follows that the probability of occupation of a state with en-

ergy E = µ is 1
2
. This value is called Fermi energy (EF ).

1.6.3 Insulators, conductors, semiconductors

The classification of materials as insulators, conductors and semiconductors

can be obtained considering the width of the energy gap:

• if the gap, at zero temperature, between the valence and the conduction

band is much higher than kBT , where T is the room temperature,

the conduction band remains almost empty also at room temperature

because the thermal energy can drive only few electrons from one band

to the other. Such a material, in absence of impurities, is an insulator

(Figure 1.1).
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Figure 1.1: Bands and Fermi-Dirac distribution functions in insulators, semi-

conductors and conductors. The occupied states are represented by coloured

circles, the empty states by not coloured ones [1].

• If at zero temperature the valence band is completely filled and the

conduction band is empty and their energy gap can be compared with

kBT , some electrons are driven to the conduction band by thermal

energy. Such a material is called a semiconductor (Figure 1.1).

• If at zero temperature the last occupied band is not completely filled

or if the gap between the conduction and the valence band is zero, the

material is a conductor (Figure 1.1).

1.6.4 Doped semiconductors

Doping is useful to increase a semiconductor conductivity. It consists of the

increasing of the number of electrons or holes by adding to the semiconduc-

tor the so called impurities. If the result is the increasing of the number

of electrons in the conduction band the impurities are called donors, while
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if the doping produces an increase of holes the impurities are called accep-

tors. These impurities are ionized, because their atoms donate or accept an

electron, so that they can be positively or negatively charged. From ion-

ized donors we have free electrons in a semiconductor, that is called a doped

semiconductor of n type. Ionized acceptors yield instead free holes in a semi-

conductor, in this case called doped semiconductor of p type.

1.7 Band approximation

Generally energy bands as functions of the wave vector k can be found only

numerically, therefore it is often necessary to consider a simple analytical ap-

proximations. We consider the regions around the minima of the conduction

band, called valleys, or around the maxima of the valence band, also called

valleys. We start taking into account the parabolic approximation, in which

the conduction band is a paraboloid around the energy minimum of each

valley. In this case the function E(k) is approximated by a quadratic form,
that can be one of the following:

E(k) = ~
2k2

2m
; (spherical bands) (1.21)

E(k) = ~
2

2

[
k21
m1

+
k22
m2

+
k23
m3

]
; (ellipsoidal bands) (1.22)

E(k) = ak2[1∓ g(θ, ψ)]. (warped bands) (1.23)

In the above equations, k is measured from the bottom (top) of the band

as well as E .
In the first equation the band is locally isotropic around the minimum (max-

imum). In this case bands have spherical equienergetic surfaces with mass

m (Figure 1.2). The second equation represents the anisotropic case consid-

ering a band with ellipsoidal isoenergetic surfaces. 1/m1, 1/m2 and 1/m3

are the three eigenvalues of the inverse effective mass tensor defined as

20



Figure 1.2: Surfaces for spherical, ellipsoidal and warped bands [1]

M−1
ij := ~

−2 ∂2E
∂ki∂kj

. When using ellipsoidal bands one can consider a trasfor-

mation from ellissoids to spheres, given by:

k̃i =

√
m∗

m∗
i

ki

with m∗ = 3
√
m∗

1m
∗
2m

∗
3 i = 1, 2, 3. This is called the Herring-Vogt transfor-

mation and it can be useful to make calculations more simple. In the third

equation warped equienergetic surfaces are considered, which are used for

holes in valence bands (Figure 1.2). The valence band is warped around its

minima because of anisotropy, the expression of the function g can be found

in [1].

If we now consider the case in which the values of k are away from the minima

of the conduction band or from the maxima of the valence band, the above

expression are no more valid. Therefore, a more accurate approximation is

needed:

E(1 + αE) = γ(k),

where α is called nonparabolicity parameter and γ(k) can assume one of the

forms in (1.21)-(1.23).

In the nonparabolic approximation, also called Kane approximation, the

group velocity is given by

v =
1

~
∇kE =

~k

m(1 + 2αE) .
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1.8 Lattice vibrations and phonons

Since a crystal is an elastic medium, elastodynamic waves can propagate in

it. There can by two types of elastodynamic waves: the acoustical waves

and the optical ones. These waves are generated from displacement of atoms

from their equilibrium position, which produces a perturbation of the peri-

odic potential of the lattice.

This displacement, in certain semiconductors, can be coupled with a rear-

rangement of the charges in the atoms [4]. In these cases we have the so

called piezoelectric effect, in which electric fields are produced by stresses

and deformations. These fields yield the polar interaction, while the non

polar interaction is given, as said, by the potential generated by atoms dis-

placement.

To describe elastodynamic waves is necessary a study from the quantum me-

chanics point of view. The quantization of the elastodynamic field yields to

the concept of phonons, which can be considered as the analogous to pho-

tons for the magnetic waves. Of course there can be acoustical and optical

phonons.

Equilibrium phonon occupation number is given by the Bose-Einstein distri-

bution [3]

N(~ω) =
1

e
~ω

kBTL
−1

where ω is the phonon frequency and TL the lattice temperature.

A complete description of electron-phonon interaction requires the second

quantization and goes well beyond the scope of this thesis.

In the Born approximation [1], this interaction reduces to two elementary

scattering processes: the absorption and the emission of a phonon, which

will be discussed with greater details in the next chapter.
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Chapter 2

Electronic interactions and

Boltzmann equation

2.1 The distribution function

Let us consider a gas of N particles.

Definition 5 If f(x,v,t) is a one particle distribution function,

f(x,v, t)dxdv

is the number of particles with positions in the volume dx around x and

velocities in dv around v, at time t [24].

Then, the normalization condition of the distribution function can be written

as [1] ∫

V

dx

∫

R3

dvf(x,v, t) = N.

where V is the space region occupied by the gas.

In the case of electrons in crystals, we consider the distribution function

f(x,k, t) for a single particle, where the variable t ∈ R
+ is the time, x ∈ Ω is

the position in the crystal, Ω is the volume of the crystal and k is the wave

number defined in the first Brillouin zone B.
In such a case

f(x,k, t)dxdk

23



is the number of electrons in dxdk and normalization condition is
∫

Ω

dx

∫

B
dkf(x,k, t) = N,

where N is the number of electrons in the conduction band in the sample

volume Ω.

2.2 The Boltzmann equation

2.2.1 The Boltzmann equation without collisions

The purpose is to find the kinetic equation govering the time evolution of

the electron distribution function1.

For now we suppose that equations (1.18)-(1.19) give a complete description

of the electron dinamics. This means that we are neglecting the effect of

collisions between electrons themselves and with phonons.

All the electrons that at the time t = 0 are in the volume dx0dk0 centered

in the point (x0,k0), will move with the same trajectory satisfing equations

(1.18)-(1.19). Therefore at the time t those electrons will be in the volume

dxdk centered in the point (x(t),k(t)). This implies that

f(x(t),k(t), t)dxdk = f(x0,k0, 0)dx0dk0. (2.1)

Moreover according to the Liouville theorem [7], the volume element in the

phase space (x,k) is conserved during the motion, i.e. dxdk = dx0dk0.

Therefore equation (2.1) becomes

f(x(t),k(t), t) = f(x0,k0, 0). (2.2)

Differentiating with respect to time equation (2.2) and applying the chain

rule for differerentiation we obtain:

∂f

∂t
+
dx

dt
· ∇xf +

dk

dt
· ∇kf = 0

1We are neglecting holes and considering n-type devices in which conduction is essen-

tially due to electrons.
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Reminding that (x(t),k(t)) is solution of (1.18)-(1.19), the last equation

writes:

∂f

∂t
+ v(k) · ∇xf −

q

~
E · ∇kf = 0 (2.3)

Equation (2.3) is called the Vlasov equation or the collisionless Boltzmann

equation and is valid at any t and for each couple of values (x,k).

2.2.2 The Boltzmann equation with collisions

The Boltzmann equation (2.3) derived in the previous section gives the con-

servation of the number of electrons in the volume dxdk. Let δ(dN) denote

the variation of the particle number in the above volume in the time interval

dt:

δ(dN) = dN(x(t+ dt), t+ dt,k(t+ dt))− dN(x,k) (2.4)

where

dN(x,k, t) = f(x,k, t)dxdk (2.5)

is the number of electrons in the volume dxdk at time t [4]. If there are no

collisions, δ(dN) = 0, otherwise if collisions occur, δ(dN) 6= 0.

We can write

δ(dN) = δ(dN)in − δ(dN)out, (2.6)

since because of the scatterings there will be particles entering the volume,

thus originating the gain term δ(dN)in and particles leaving it, giving rise to

the loss term δ(dN)out.

We define P (k′,k)dk′dt as the probability that after a collision an electron

moves from the state k′ to the state k. To find the value of δ(dN)in we then

need to integrate over all possible values of k′ in the first Brillouin zone. In

order not to contraddict the Pauli exclusion principle [1], we also need to

multiply the previous quantity by (1− 4π3f(x, t,k))2, i.e. by the probability

24π3f is the occupation number of the state [1]
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that the final state is empty. So doing we obtain:

δ(dN)in =

(∫

B
P (k′,k)dN(x,k′)

)
(1− 4π3f(x, t,k)dk′dt

and, analogously,

δ(dN)out =

(∫

B
(1− 4π3f(x, t,k′))P (k,k′)dk′

)
dN(x,k)dt.

Substituting the last two equations in (2.6), using definitions (2.4) and (2.5),

reminding the Liouville theorem, and letting dt go to zero, we have

∂f

∂t
+ v · ∇xf +

q

~
E · ∇kf = C(x, t,k), (2.7)

C(x,k, t) =
∫

B
P (k′,k)f ′(1− 4π3f)− P (k,k′)f(1− 4π3f ′)dk′

where f := f(x,k, t) and f ′ := f(x,k′, t). C(f) is called the collision operator
and depends on the scattering mechanisms occurring in the semiconductor,

because these give the expressions for the various P (k,k′).

In fact in C(f) there appears a sum over all types of collisions.

Equation (2.7) is called the Boltzmann equation with collisions and represents

the Boltzmann equation for charge transport in semiconductors. The first

term at the right hand side represents a gain, of the number of carriers in

(x,k), while the second term represents a loss.

In the semiclassical description, the Boltzmann equation is coupled to the

Poisson equation for the electrostatic potential:

∇x · E = −∆φ = q

ǫ
[N+(x, t)−N−(x, t) + n(x, t)− p(x, t)]

where φ is the electric potential, ǫ is the dielectric constant, depending on the

material, and n(x, t), p(x, t), N+(x, t), N−(x, t), are the density of electrons,

holes, acceptor dopants and donor dopants respectively.
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2.3 Electronic interactions

2.3.1 Scattering mechanisms

As said, the displacement of atoms from their equilibrium position, due to

lattice vibrations, yields a perturbation of the periodic potential of the lattice,

which is source of scattering.

In a many valley model, electronic scattering can be classified into two classes:

• intravalley, if electron after the collision remains in the same valley as

before;

• intervalley, if the electron after the collision is brought into another

valley.

There are several types of collision mechanisms that can be classified as

follows. Electrons can interact with:

• phonons, producing an absorbtion or emission of a phonon. Of course

we need to consider both acoustical and optical phonons.

• Impurities, whose effect is relevant at low temperature, when phonons

are less effective.

• Other electrons, whose effect is relevant at high electron concentrations.

For each kind of collision, the principle of detailed balance holds [1]:

P (k′,k) = P (k,k′)e
−E(k)−E(k

′)
kBTL ,

which assures that in equilibrium the collision term vanishes.

In order to study electron transitions between two Bloch states, it is conve-

nient to consider the system as separated into the electron of interest and

the rest of the crystal. By doing so, the Hamiltonian can be written as

H = He +Hc +H ′.
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HereHe is the electron Hamiltonian (1.10), whileHc is the Hamiltonian of the

rest of the crystal and H ′ is the perturbation Hamiltonian, which describes

the interaction between the two systems. Therefore the Hamiltonian of the

unperturbed system is given by

H = He +Hc

and its eigenstates can be written as direct products of the form

|k, c〉 = |k〉 |c〉

where |k〉 and |c〉 represent the unperturbed states of the electron and the

crystal respectively.

The transition probability from the state |k, c〉 to the state |k′, c′〉 is given
by the Fermi golden rule [1]

P (k, c,k′, c′) =
V

4π2~
|〈k′, c′|H ′ |k, c〉|2 δ(E(k′, c′)− E(k, c)), (2.8)

with V the volume of the crystal, E(k, c) the unperturbed energy of the state
|k, c〉.
H ′ acts on the electron coordinate r and on the variables y which describe

the state of the crystal.

Expanding H ′ in Fourier series one has

H ′(r,y) =
1√
V

∑

ξ

[
A(ξ,y)eiξ·r +A∗(ξ,y)eiξ·r

]
, (2.9)

with ξ wave vector of the reciprocal space, andA∗ the adjoint ofA. Consider-
ing for now only the first addend of the last expression, the term 〈k′, c′|H ′ |k, c〉
in (2.8) becomes

〈k′, c′|H ′ |k, c〉 = 1√
V

∑

ξ

〈c′ |A(ξ,y)| c〉
∫

V

ψ∗k′(r)e
iξrψk(r)dr

where ψk(r) are the Bloch eigenfunctions given by (1.11).

The integral I at the right hand side of the last formula can be decomposed
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in the sum of integrals over the cells of the direct lattice. These integrals are

all equal to

I =
∑

j

ei(k−k
′+ξ)·Rj

∫
u∗k′(r

′)uk(r
′)ei(k−k

′+ξ)·r′dr′.

where Rj are the vectors of the direct lattice which locate the cells.

Moreover ∑

j

ei(k−k
′+ξ)·Rj = δG,k−k′+ξN

where N is the number of cells in the crystal, and G is a vector of the

reciprocal lattice which is null in the intravalley scatterings. The transitions

in which G = 0 are called normal or non-umklapp or N-processes, while if

G 6= 0 they are called umklapp or U-processes. The Kronecher δ expresses

the conservation of the crystal momentum up to G. Finally, considering in a

similar way also the second addend in (2.9), the transition rate (2.8) becomes

P (k, c;k′, c′) =
1

4π2~

∣∣∣∣∣
∑

ξ

〈c′ |A(ξ,y)| c〉
∣∣∣∣∣

2

G(k,k′,G)δ(E(k′, c′)− E(k, c)).

(2.10)

Here G is the overlap integral, given by

G(k,k′,G) =
∣∣∣∣N
∫
u∗k(r

′)uk(r
′)ei(G·r)dr

∣∣∣∣
2

.

2.3.2 Electron-Phonon scattering-Deformation poten-

tial

Now we want to apply the results of the last section to the interaction be-

tween electrons and phonons. In absence of polarization fields, only the de-

formation of the lattice needs to be considered. In this case the perturbation

Hamiltonian is given by

H ′ =
∑

ij

Eij
∂yi
∂rj

, (2.11)

where the ∂yi
∂rj

represent the deformation of the crystal due to vibrations,

and Eij is the deformation potential tensor costant, which depends on the
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material.

In the continuous medium approximation, y, indicating the displacement of

the atoms, can be written in terms of the phonon creation and annihilation

operators [1], a∗−ξ and a−ξ, as follows

y(r) =
∑

ξ,l

eξl

(
~

2ρV ωl(ξ)

) 1
2 {
aξl + a∗−ξl

}
eiξ·r

where ρ is the density of the crystal, eξl is the polarization vector and ωl(ξ)

is the phonon angular frequency.

Employing the last expression, the Hamiltonian in (2.11) becomes

H ′ =
∑

ij

Eij
∑

ξl

[eξl]iiξj

(
~

2ρV ω(ξ)

) 1
2 {
aξl + a∗−ξl

}
eiξ·r.

This is an explicit forn of the Fourier transform indicated in (2.9). Only two

terms containing the creation and annihilation operators give a contribution

in the sum over ξ in (2.10) [1]. These terms correspond to the emission or

the absorption of a phonon. In the first case a phonon with wave vector ξ

and energy ~ω is absorbed by an electron of wave vector k and energy E(k).
Therefore the wave vector and the energy of the electron after interaction

satisfy the following conditions:

k′ +G = k+ ξ,

E(k′) = E(k) + ~ω.

In the second case, an electron with wave vector k and energy E(k) emits a
phonon of wave vector ξ and energy ~ω, and its final wave vector and energy

are given by

k′ +G = k− ξ,

E(k′) = E(k) + ~ω.

From the above results, the transition probability per unit time from the
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state k to the state k′ reads

P (k,k′) =
1

8π2ωl(ξ)

[
Nξl

Nξl + 1

]
G
∣∣∣∣∣
∑

ij

Eijξj[eξl]i

∣∣∣∣∣

2

δ[E(k′)− E(k)∓ ~ωl(ξ)],

(2.12)

where Nξl and Nξl + 1 refer to absorption and emission, respectively.

2.3.3 Main electron-phonon scattering mechanisms

In this section the main scattering phenomena are presented.

• Intravalley scattering by acoustic phonons is usually considered

as an elastic process. In this case the phonon polulation Nξ is approx-

imated by [1]

Nξ =
1

e~ξvs/kBT − 1
≈ kBT

~ξvs
− 1

2

The expression for the scattering probability given by (2.12) becomes:

P (ac)(k,k′) =
ξE2

1

8π2ρv2s

[
kBTL
~ξvs

∓ 1

2

]
δ(E(k′)− E(k))

where kB is the Boltzmann constant, TL is the lattice temperature, and

vs is the sound velocity. The tensor Eij in this case has a diagonal form

with equal diagonal elements and therefore is treated as a constant E1.

Moreover the overlap integral G is constant and therefore included in

E1.

In the elastic approximation there are no differences between final states

coming from absorption or emission processes, then the probabilities

per unit time can be summed, to yield

P (ac)(k,k′) = K(ac)δ(E(k′)− E(k)),

where K(ac) =
kBTLE

2
1

4π2~ρv2s
.

Since it is not direction dependent the acoustic scattering is an isotropic

process.
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• Scattering by polar optical phonon is present in compound semi-

conductors and is an inelastic process. It gives rise to an intravalley

transition whose scattering rate can be found with a procedure which

is shown in [1] and is given by:

P (p)(k,k′) =
K(p)

|k− k′|2 G(k,k
′)

[
N (p)

N (p) + 1

]
δ(E ′ − E ∓ ~ω(p)),

where K(p) = q2ω(p)

8π2

(
1
ǫ∞
− 1

ǫs

)
. N (np) is the polar optical phonon occu-

pation number, ǫ∞ is the high frequency dielectric constant, ǫs is the

material permittivity. In this expression there appears the overlap inte-

gral G, which for materials which have the minimum of the conduction

band at the center of the Brillouin zone, is given by [10]

G(k,k’) = (aa′ + cc′cosβ)

with

a =

√
1 + αE
1 + 2αE , a′ =

√
1 + αE ′
1 + 2αE ′ ,

c =

√
αE

1 + 2αE , c′ =

√
αE ′

1 + 2αE ′ ,

and β the angle between k and k′.

• Scattering by non polar optical phonons. In this case the scatter-

ing rate can also be written, by an extension of the deformation theory,

starting from (2.12) and replacing E2
1ξ

2 by a squared optical coupling

constant (DtK)
2 can also include the overlap integral. This scattering

mechanism is an intervalley process and transition probability is finally

given by:

P
(np)
0 (kA,k

′
B) = K(np)

0 ZAB

[
N (np)

N (np) + 1

]
δ(E ′B − EA −∆AB ∓ ~ω

(np)
0 ),

where K(np)
0 = (DtK)2

8π2ρω
(np)
0

, A and B are the valleys involved in the tran-

sition, ~ω
(np)
0 is the optical phonon energy, ∆AB = E (0)

A − E (0)
B is the
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difference between the energy minima of the valleys, ZAB is the num-

ber of equivalent final valleys B as seen from the initial valley A.

2.3.4 Impurity scattering

Interactions between electrons and impurities are scattering processes of elec-

trons by perturbations of the periodic potential due to the presence of im-

purities. At low impurity concentration, a scattering of an electron by one

impurity can be considered as independent from other impurities.

It is an elastic mechanism of interaction whose transition rate reads:

P (im)(k,k′) =
K(im)

[|k− k′|2 + λ2]2
δ(E ′ − E),

where λ =
√

NDq2

ǫskBTL
, with ND ionized impurity density, is the inverse of the

Debye length, and K(im) = Z2ND q4

4π~ǫ2s
with Z impurity charge number.

2.4 Moments method

The Boltzmann equation is an integro-differential equation in the seven in-

dipendent variables (x,k, t). Numerically this equation can be solved by

the Monte Carlo method or finite difference schemes, which are accurate but

computationally very expensive. For this reason, hydrodynamical models are

introduced by using the moments method, described in the following.

We can consider macroscopical quantities that give some of the information

included in the distribution function and can be expressed as integrals of the

distribution function multiplied by a weight function ψ of the wave vector

k. These quantities are known as moments of the distribution function. A

moment of the distribution function with respect to the weight ψ = ψ(k) is

expressed as:

Mψ(x, t) =

∫

B
ψ(k)f(x,k, t)dk.
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Some of the moments have a direct physical meaning. For example, we can

use 1, v(k), E(k), E(k)v(k), to which correspond the following macroscopic
quantities [9]

n =M1, electron density

V = 1
n
Mv, electron mean velocity

W = 1
n
ME , electron mean energy

S = 1
n
MEv, electron mean energy flux.

We now want to find the evolution equations for the moments [6].

Starting from Boltzmann equation

∂f

∂t
+ v · ∇xf −

q

~
E · ∇kf = C[f ] (2.13)

and choosing a certain weight function ψ we want to find an equation for

Mψ. In order to do this we need to multiply equation (2.13) by ψ and to

integrate over the Brillouin zone B. We obtain:

∫

B
ψ
∂f

∂t
dk+

∫

B
ψv · ∇xfdk−

q

~
E ·
∫

B
ψ∇kfdk =

∫

B
ψC[f]dk. (2.14)

The first term at the left hand side in the last equation can be expressed as
∫

B
ψ
∂f

∂t
dk =

∂

∂t

∫

B
ψfdk =

∂Mψ

∂t
,

while for the second term we have
∫

B
ψv · ∇xfdk = ∇k ·

∫

B
ψkfdk = ∇x ·Mψv.

The third term can be written as

− q
~
E ·
∫

B
ψ∇kfdk =

q

~
E ·
∫

B
(∇kψf)dk = qE ·M 1

~
∇kψ

,

where we have used the Gauss theorem and the periodicity of the integrand

with respect to the Brillouin zone.

As regards the last term at the right hand side we define:

Cψ :=
∫

B
ψC[f ]dk.
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Thus equation (2.14) becomes

∂Mψ

∂t
+∇x ·Mψv + qE ·M 1

~
∇xψ

= Cψ, (2.15)

The last expression is the equation for the moment Mψ.

We note that in this equation there appear moments different from Mψ.

Adding equations for these other moments is not a solution to close the sys-

tem, because so doing other unknown moments will be introduced.

Furthermore we don’t have constitutive equations for the production terms.

To obtain a closed system, then, we start choosing a finite number of mo-

ments. Let these moments beMψ1 , ...,MψK
, related to the weights ψ1, ..., ψK .

These moments of course satisfy the system of n equations,

∂Mψi

∂t
+∇x ·Mψiv + qE ·M 1

h
∇kψi

= Cψi
, i = 1, ..., K.

We need to express the quantities

Mψiv, M 1
h
∇kψi

, Cψi
i = 1, ..., K

as functions of the moments Mψ1 , ...,MψK
chosen to describe the state of

the system. This is the so called closure problem. In the past several hy-

drodynamical models have been introduced with ad hoc closure relations,

without any physical justification. For this reason closure methods, based

on first principles, have been researched. Among these methods there is the

maximum entropy principle, which will be presented in the next section.

2.5 Maximum entropy principle

In this section a method to solve the closure problem is described.

We fix the weights ψi, i = 1, ..., K and we consider the equations for the

corresponding moments (2.15). This amounts to choose as main unknowns

the following moments:

M1 :=Mψ1 , ...,Mψk
:=MK . (2.16)
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We want to express the other moments appearing in the system of evo-

lution equations as functions of the main unknowns (2.16). All these terms

we want to find can be expressed as integrals in which there appears the

distribution function f, that is solution of the Boltzmann equation. We don’t

know how this function looks like, but we need a function that depends on

the fixed unknowns: fclos = fclos(x,k, t;M1, ...,MK). With a function like

that we can calculate the constitutive relations:

M clos
ψiv

(M1, ...,MK) =

∫

B
ψivfclosdk,

M clos
1
~
∇kψi

(M1, ...,MK) =

∫

B

1

~
∇kψifclosdk,

Cclos
ψi

(M1, ...,MK) =

∫

B
ψiC[fclos]dk.

and use the closure relations.

In order to be coherent with the information we have, the following rela-

tions must hold:

∫

B
ψifclosdk =Mi, i = 1, ..., K. (2.17)

Hence, choosing an appropriate closure distribution function fclos, we obtain

from (2.15) a closed system for M1, ...,MK :

∂Mi

∂t
+∇x ·M clos

ψv + qE ·M clos
1
~
∇xψ

= Cclosψ , i = 1, ..., K. (2.18)

Now the problem is how to choose the distribution function.

A first condition, as said, is that such function has to satisfy (2.17).

From the H-theorem [8], we know that exists a function S (f ), related to the

opposite of the entropy of the system, which has the property that cannot

increase with time, but only decrease. Therefore, for the closure purpose, this

property suggests to choose the distribution function for which the function

S is minimal, i.e. the entropy is maximal. This idea is called Maximum

Entropy Principle [6][11][34][35] and has origins in information theory [33].

The function S(f ) can be written as:
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S(f) =

∫

B
S(f)dk, S(f) = f(log4π3f− 1). (2.19)

Using the above functional, the problem we want to solve can be summa-

rized as follows:

To find the distribution function f for which S(f) has its minimum, among

all distribution functions for which (2.17) holds .

This constrained problem can be solved by using the Lagrange multipliers

λi, i = 1, ..., n. In fact, solving the previous problem is equivalent to:

find a distribution function f and the Lagrange multipliers λ1, ..., λK for

which the function

S̃(f, λ1, ..., λK) := S(f) +
K∑

i=1

λi

(∫

B
ψifdk−Mi

)
(2.20)

has its minimum.

Then we need to differentiate expression (2.20). We first rewrite S̃ in the

form:

S̃(f, λ1, ..., λK) =

∫

B

(
S(f) +

K∑

i=1

λiψif

)
dk−

K∑

i=1

λiMi.

We can now calculate the functional derivative of S̃ with respect to f, ob-

taining:

∂S̃

∂f
[δf] =

∫

B
(S′(f) +

K∑

i=1

λiψi)δfdk. (2.21)

Differentiating S̃(f) with respect to the λi, from the expression (2.20), we

have:

∂S̃(f)

∂λi
=

∫

B
ψifdk−Mi. (2.22)
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Putting the expressions (2.21) and (2.22) equal to zero, we obtain the con-

ditions:

S ′(f) +
K∑

i=1

λiψi = 0, (2.23)

∫

B
ψifdk−Mi = 0, i = 1, ..., K. (2.24)

Since S(f) = f(log4π3f−f), then S ′(f) = logf, so the first equation in (2.24)

becomes:

log4π3f+
K∑

i=1

λiψi = 0,

from which

f = exp

(
−

K∑

i=1

λiψi

)
, (2.25)

having redifined the Lagrange multipliers.

From the last expression we have the distribution function that we need to

solve the problem (2.20). Eventually we need to express Lagrange multipliers

as functions of the chosen unknowns M1, ...,MK . To do this it is sufficient

to solve system (2.17).

Finally we have what we call fMEP , where MEP stands forMaximum Entropy

Principle:

fMEP = exp

(
−

K∑

i=1

λiψi

)
(2.26)

with the Lagrange multipliers that solve the system

∫

B
ψiexp

(
−

K∑

i=1

λiψi

)
=Mi, i = 1, ..., K. (2.27)

Using fMEP we obtain a closed system of moments equations:

∂Mi

∂t
+∇x ·MMEP

ψiv
+ qE ·MMEP

1
~
∇xψ

= CMEP
ψ , i = 1, ..., K. (2.28)
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with

MMEP
ψiv

(M1, ...,MK) =

∫

B
ψivfMEPdk,

MMEP
1
~
∇kψi

(M1, ...,MK) =

∫

B

1

~
∇kψifMEPdk,

CMEP
ψi

(M1, ...,MK) =

∫

B
ψiC[fMEP ]dk,

where the maximum entropy function fMEP is given by (2.26) and (2.27).

This system is known as a hydrodynamical model for semiconductors based

on the maximum entropy principle.
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Chapter 3

An isotropic hydrodynamical

model for compound

semiconductors

3.1 Analytic approximation of the band struc-

ture

In this chapter we present a multivalley isotropic hydrodynamical model,

by which it is possible to describe charge transport in a generic compound

semiconductor.

In the following, for simplicity, only conduction bands are considered, but an

analogous procedure can be done for valence bands.

As said, the main contribution to charge transport is given by those electrons

which occupy states around the absolute minimum of the lowest conduction

band, and at high fields also by those electrons which lie in states around the

satellite minima in the lowest conduction bands, which are closest in energy

to the absolute minimum. The dispersion relations in the neighbors of these

minima, which are called valleys, are analitically approximated by ellipsoidal,
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non parabolic expressions of the form (see section 1.7):

EA(kA) [1 + αA EA(kA)] =
~
2

2

[
((kA)1)

2

(m∗
A)1

+
((kA)2)

2

(m∗
A)2

+
((kA)3)

2

(m∗
A)3

]
, (3.1)

where the index A represents the valley that is taken into consideration,

EA is the electron energy in the A-th valley, measured from the bottom of

the valley, kA is the electron quasi-wave vector referred, for each valley, to

the minimum of the valley, αA is the non-parabolicity factor and (mA)
−1
i

i = 1, 2, 3 are the eigenvalues of inverse effective-mass tensor of the A-th

valley.

Making use of the Herring-Vogt transformation

k∗i =

√
m∗

(m∗
A)i

ki

with m∗ = (m∗
1m

∗
2m

∗
3)

1
3 density of states mass, the volume element in the

k-space can be written as

dk =
m∗√2m∗

~3
N (E , α)dEdΩ, N (E , α) :=

√
E(1 + αE)(1 + 2αE),

where dΩ is the solid angle element and we have dropped the valley index for

simplicity. In this chapter we will make use of the isotropic approximation,

which considers m∗ as unique mass in any direction.

In this case, being the electron velocity given by

v =
1

~
∇kE . (3.2)

k, and v have the same direction, that is

ki =

√
2m∗

~

√
E(1 + αE)ni, vi =

√
2

m∗

√
E(1 + αE)
(1 + 2αE) ni,

with n unit vector.

41



3.2 Hydrodynamical model

Conduction electrons are described as made of different populations, one for

each valley. Thus, at a kinetic level, the electron state is represented by the

distribution functions fA(x,k, t), where the index A identifies the considered

valley.

The Boltzmann equations, which govern the time evolution of these functions,

and which were introduced in the previous chapter, are here rewritten with

an explicit reference to valleys:

∂fA(x,k, t)

∂t
+ v · ∇xfA −

q

~
E · ∇kfA=C[fA] +

∑

B 6=A
CAB[fA, fB], (3.3)

∇x · (ǫsE) = q [N−(x, t)− n(x, t)] , A,B = 1, 2, . . .(3.4)

the last equation being the Poisson equation for the self-consistent electric

field to which the Boltzmann equations are coupled. In this case, the electron

density n is given by

n =
∑

A

∫

R3

fA(x,k, t)dk,

and ǫs indicates the dielectric constant of the semiconductor.

Comparing (3.4) with the expression reported in Chapter 2 we note that

two terms are missing. This happens because we are neglecting holes and

considering n-type devices. On the right-hand side of (3.3) there appear the

collision operators, which can be divided into two classes: the first, denoted

with C represents intravalley transitions, while the second one, corresponding
to the terms CAB, refers to intervalley transitions.
As regards the first class, the collision operator in the non-degenerate ap-

proximation reads

CA[f ] =
∫

R3

[P (k′,k)f(k′)− P (k,k′)f(k)] dk′, (3.5)

while the collision operators of the second class have the form

CA,B[fA, fB] =

∫

R3

[PBA(k
′,k) f ′B − PAB(k,k

′) fA] dk
′ (3.6)
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where A and B are different valleys.

The scattering mechanisms considered here, with their related scattering

rates, are those presented in section 2.3: acoustic scattering, polar optical

phonon scattering and impurity scattering as regards intravalley transition,

and non polar optical phonon scattering for intervalley transitions.

To all these processes, in the intervalley case, a first order correction to non-

polar optical scattering rate must be added, which has the form

P
(np)
1 (kA,k

′
B) = K(np)

1 |kA + k0
A − k′B − k0

B|2ZAB
[

N (np)

N (np) + 1

]

×δ(E ′B − EA −∆AB ∓ ~ω
(np)
1 ), (3.7)

with A 6= B, and K(np)
1 = (D1)2

8π2ρω
(np)
1

. D1 and ω
(np)
1 respectively are the first-

order intervalley deformation potential and phonon frequency. k0
A and k0

B

are the centers of the A-th valley and of the B-th one, respectively. In order

to find an approximation of the Boltzmann equations, the moments method

needs now to be applied. Once the weights 1, v(k), E(k), E(k)v(k) have been
chosen and after multiplying the distribution functions by these weights, and

integrating as in Chapter 2, the following moments are defined

n =M1, electron density

V = 1
n
Mv, electron mean velocity

W = 1
n
ME , electron mean energy

S = 1
n
MEv, electron mean energy flux,

one set for each valley, and their evolution equations consist of the following

set of balance equations

∂nA
∂t

+
∂(nA V

j
A)

∂xj
= nA CnA

, (3.8)

∂(nA V
i
A)

∂t
+
∂(nA F

(0)ij
A )

∂xj
+ q Ej nAG

(0)ij
A = nA C

i
VA
, i = 1, 2, 3, (3.9)

∂(nAWA)

∂t
+
∂(nA S

j
A)

∂xj
+ q Ej nAV

j
A = nACWA

, (3.10)

∂(nA S
i
A)

∂t
+
∂(nA F

(1)ij
A )

∂xj
+ q Ej nAG

(1)ij
A = nA C

i
SA
, i = 1, 2, 3, (3.11)
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where

CnA
=

1

nA

∫ (
C[fA] +

∑

B 6=A

CAB[fA, fB]
)
dk is the density production,

F
(0)ij
A =

1

nA

∫
viAv

j
AfAdk is the velocity flux,

G
(0)ij
A =

1

nA

∫
1

~

∂viA
∂kj

fAdk,

C i
VA

=
1

nA

∫
viA

(
C[fA] +

∑

B 6=A

CAB[fA, fB]
)
dk is the velocity production,

CWA
=

1

nA

∫
EA(k)

(
C[fA] +

∑

B 6=A

CAB[fA, fB]
)
dk is the energy production,

F
(1)ij
A =

1

nA

∫
EA(k)viAvjAfAdk is the flux of the energy flux, (3.12)

G
(1)ij
A =

1

nA

∫
1

~

∂(EAviA)
∂kj

fAdk,

C i
SA
=
1

nA

∫
EAviA

(
C[fA]+

∑

B 6=A

CAB[fA,fB]
)
dk is the energy flux production.

The system of equations (3.8)-(3.11) is not closed, since the number of un-

knowns is greater than the number of equations. In fact in this system there

appear the fluxes F
(0)ij
A , G

(0)ij
A , F

(1)ij
A , G

(1)ij
A and the production terms CnA

,

C i
VA
, CWA

, C i
SA
, that need to be expressed as functions of the variables nA,

VA, WA, and SA.

3.3 Closure by the maximum entropy princi-

ple

To get closure relations for the above system, we will make use of the maxi-

mum entropy principle.

According to this principle, already discussed in section 2.5, if a finite num-

ber of moments is known, then the distribution functions fMEP
A , which can
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be used for evaluating the unknown moments, correspond to the extremum

of the entropy functional, under the costraints that those function reproduce

the known moments

MA
ψ =

∫

R3

ψ(k)fMEP
A dk, ψ = 1,v, E , Ev. (3.13)

Here the maximum entropy distribution functions fMEP
A and the moments

MA
ψ are written as depending on the index A, which represents the particular

valley taken into consideration.

Since the phonon gas is considered as a thermal bath at constant temperature

TL, the Helmholtz free energy is a Liapunov functional [21] for the Boltzmann

Poisson system, and it can be shown that the deriving optimization problem

is equivalent to extremizing only the electron component of the entropy,

under the condition that the average energy is one of the constraints. If the

electron gas is sufficiently dilute, we can take the expression of the entropy

obtained as limiting case of that arising in the Fermi statistics, then the

entropy functional reads

S = −kB
∑

A

∫

R3

(
fA log

fA
y
− fA

)
dk, y =

2

(2π)3
.

Hence, appropriate distribution functions which extremize S under the con-

straints (3.13) have to be found. As said, in order to solve this constrained

extremum problem, we need to make use of the Lagrangian multipliers. So

doing we obtain the following maximum entropy distribution functions

fMEP
A = exp

[
−

(

λA + λAV · v +
(

λAW + λAS · v
)

EA
)]

, A = 1, 2 . . .

To close the equations, the Lagrange multipliers have to be expressed in

terms of the fundamental variables, therefore the last expressions have to be

substituted in (3.13). However an analytic inversion is impossible and a nu-

merical one is not useful for numerical simulations of electron devices, because

it needs to be performed at each time evolution of the state variables [14].

Therefore, only approximate expressions, under certain physical assumptions,
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can be obtained. Using the same approach as in [11][15][16][17][38], we as-

sume a small anisotropy of the distribution functions. Starting from the fact

that the equilibrium state distribution functions are isotropic, i.e.

fMEP
A = exp[−(λA + λAWE)],

we suppose that the anisotropy of the fMEP
A remain small also out of the equi-

librium. This can be done by introducing a small parameter of anisotropy

δ, assuming distribution functions to be analytic in δ and expanding them

around δ up to the first order. Considering the representation theorems for

isotropic functions, it follows that λA and λAW are of zero order in δ, while

λAv and λAS are of the first order in δ.

Therefore, so doing, the resulting approximate maximum entropy distribu-

tion functions read

fMEP
A ≈ exp

[

−λA − λAW EA
] [

1− δ
(

λAV · v + λAS · vEA
)]

+ o(δ). (3.14)

In order to obtain the closure relations for the system (3.8)-(3.11) we consider

only terms up to the first order in δ, then we can write

fMEP
A ≈ exp

[

−λA − λAW EA
] [

1−
(

λAV · v + λAS · vEA
)]

. (3.15)

Using these functions, the constraint relations can be inverted almost analit-

ically.

Specifically, the equations to invert are the following

nA =

∫

ℜ3

fMEP
A dk, (3.16)

VA =
1

nA

∫

ℜ3

vA(kA)f
MEP
A dk, (3.17)

WA =
1

nA

∫

ℜ3

E(kA)fMEP
A dk, (3.18)

SA =
1

nA

∫

ℜ3

E(kA)vA(kA)fMEP
A dk, (3.19)
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where the fMEP
A are given by (3.15).

For the densities and the energies we find

n =
4πm∗√2m∗

~3
exp (−λ)

∫

R3

exp (−λWE)N (E , α)dE ,

W =
4πm∗√2m∗

~3 n
exp (−λ)

∫

R3

exp (−λWE)EN (E , α)dE ,

and defining

d0(λW , α) :=
∫

R3 exp−(λWE)N (E , α)dE = exp(
λW
2α

)

2λW
√
α
K2(

λW
2α
)

and

dn(λW , α) := (−1)n ∂
∂λW

d0(λW , α),

where K2 is the modified Bessel function of the second kind, one has

λ = −log
(

~
3n

4 πm∗
√
2m∗d0

)

,

λW = g−1(W,α),

where g−1 is the inverse function of d1(λW ,α)
d0(λW ,α)

.

For the vector multipliers we obtain

λVi = b11(W,α)Vi + b12(W,α)Si, λSi
= b12(W,α)Vi + b22(W,α)Si.

The bij are the elements of the matrixB, which is the inverse of the symmetric

matrix A of elements

aij = −
2

3m∗
pi+j−2
d0

,

with pn = pn(W,α) :=
∫

R3

[E(1+αE)]
3
2

1+2αE En exp (−λWE) dE . The matrix B is

symmetric, which reminds us of the Onsager relations [22].

Once the Lagrange multipliers are expressed as functions of the fundamental

variables, the following step is to evalute the unknown moments present in

the system (3.8)-(3.11), i.e. to get the closure relations for the fluxes and the

production terms.

Closure relations for the fluxes. It is easy to show that
(

F(0)

F(1)

)
=

2

3m∗d0

(
p0

p1

)
I,
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with I the identity, and

(
G(0)

G(1)

)
=

1

m∗d0

[∫ (
1− 4

3
α E(1+αE)

(1+2αE)2

E + 2
3
E(1+αE)
(1+2αE)2

)
exp (−λWE)

√
E (1 + αE)dE

]
I.

Closure relations for the production terms

• Acoustic phonon scattering. Since the scattering is intravalley and

elastic, the only non-zero production terms are those relative to the

velocities and the energy fluxes. After some calculations in which we

employ the following formula for angular integrals over the unit sphere

S2

∫

S2

ni1 · · ·nik dΩ =

{
0 if k is odd
4π
k+1

δ(i1i2 · · · δik−1ik) if k is even,

we find
(
C

(ac)
V

C
(ac)
S

)
= Q(ac)B

(
V

S

)
,

where Q(ac) is the matrix of elements

q
(ac)
ij (W,α) =

8π
√
2m∗

3~3d0

(i+ j)!

λ1+i+jW

[
1 + 2α(i+ j + 1)λ−1W

+α2(i+ j + 2)(i+ j + 1)λ−2W
]
.

• Polar optical phonon scattering. In this case the calculations are

more involved, and make use also of the detailed balance principle,

which here we rewrite in the general form valid for intervalley scattering

too

PAB(k
′
B,kA) = PAB(kA,k

′
B) exp

(
−EA − E

′
B +∆AB

kBTL

)
. (3.20)
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For the density and the energy production terms we have

C(p)
n = 0,

C
(p)
W = −2πm

∗ω(p)

√
2m∗ d0

N (p)K(p)

∫ ∞

0

exp (−λWE)

×
(

e
−~ω(p)

(

λW− 1
kBTL

)

− 1

)

[

H2(E , E+, α)H3(E , E+, α)

+ αH4(E , E+, α)

(

1 + α
H1(E , α)+H1(E+, α)

4H2(E , E+, α)

)]

dE ,

where E+ := E + ~ω(p), and the functions Hi, i = 1, . . . , 4 are reported

in Appendix A. As regards the production terms for the velocities and

the energy fluxes, their expressions are similar to those of the previous

case, with the elements of the matrix Q(ac) this time given by

q
(ac)
ij = −2

√
2π N (p)K(p)

3~
√
m∗d0

∫ ∞

0





e
−~ω(p)

(

λW− 1
kBTL

)

E i−1(E+)j−1+E j−1(E+)i−1

2(1 + 2αE)(1 + 2αE+)

×H2

(

H4 + α
H4 (H1(E , α) +H1(E+, α))

H2

+
α2

12

H5(E , E+, α)

H2
2

)

−





e
−~ω(p)

(

λW− 1
kBTL

)

H1(E+, α)(E+)i+j−2

(1 + 2αE+)2
+
H1(E , α)E i+j−2
(1 + 2αE)2





√

H2

×
(
√
H2H3 + α

H4√
H2

+
α2

4

(H1(E , α) +H1(E+, α))H4

H
3
2
2

)]
e−λW E dE ,

where the function H5 is also reported in Appendix A.

• Impurity scattering. The elements of the matrix Q(ac) are given by

q
(ac)
ij =

√
2π~

12(m∗)
3
2d0
K(im)

∫ ∞

0

e−λW EE (i+j−1)H6(E) (1 + αE) dE ,

with H6 again given in Appendix A.

• Non-polar phonon scattering. We will consider both zeroth and the

first order contributions to the intervalley scattering. For the density
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and the energy production terms at the zero-order we find

(
nAC

(np),0
nA

nAC
(np),0
WA

)
=
8πZAB(m

∗
Am

∗
B)

3
2√

2~3
N (np)K(np)

0

{
nB

(m∗
B)

3
2dB0

×
[
e
−λBW∆+

AB+
ǫ
(np)
0

kBTL

∫ ∞

0

(
1

E + a−AB

)
e−λ

B
W (E+a

−
AB)

× H
(0)
7 (E , a−AB,∆+

AB, αA, αB)dE + e−λ
B
W∆−AB

∫ ∞

0

(
1

E + a+AB

)

× e−λ
B
W (E+a

+
AB)H

(0)
7 (E , a+AB,∆−AB, αA, αB)dE

]
− nA

(m∗
A)

3
2dA0

×
[∫ ∞

0

(
1

E + a−AB

)
e−λ

A
W (E+a

−
AB)H

(0)
7 (E , a−AB,∆+

AB, αA, αB)dE

+e
ǫ
(np)
0

kBTL

∫ ∞

0

(
1

E + a+AB

)
e−λ

A
W (E+a

+
AB)

× H
(0)
7 (E , a+AB,∆−AB, αA, αB)dE

]}
,

where dA0 = d0(λ
A
W , αA), ǫ

(np)
0 = ~ω

(np)
0 , ∆±AB = ∆AB ± ǫ

(np)
0 ,

a±AB = max(0,−∆AB ± ǫ
(np)
0 ), and the function H

(0)
7 can be found in

Appendix A.

In the last expression the two positive terms depend on the energy in

the valley B and are gain terms, corresponding to the absorption and

the emission of a phonon respectively. The negative terms depend on

the energy in the valley A and are loss terms.

For this scattering mechanism the elements of the matrices Q
(np),0
AB read

q
(np),0
ij, AB =

16π(m∗
B)

3
2 ZAB

3
√
2~3m∗

Ad
A
0

N (np)K(np)
0

∫ ∞

0

[
(

E + a−AB
)i+j−2

×e−λAW (E+a−AB)H
(0)
8 (E , a−AB,∆+

AB, αA, αB) +
(

E + a+AB
)i+j−2

×e−λAW (E+a
+
AB)+

ǫ
(np)
0

kBTLH
(0)
8 (E , a+AB,∆−AB, αA, αB)

]

dE ,

where the function H
(0)
8 is reported in Appendix A. As regards the

first order production terms, if the valleys are centered at the same
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k-point, nothing changes from the zero order ones, with the exception

of K(np)
0 , ǫ

(np)
0 , H

(0)
7 , and H

(0)
8 that have to be respectively replaced by

K(np)
1 , ǫ

(np)
1 , H

(1)
7 , and H

(1)
8 . The functions H

(1)
7 , and H

(1)
8 can be found

in Appendix A. Moreover the terms relative to the velocities and the

energy fluxes depend also on the velocities and the energy fluxes of the

other valleys through the sum
∑

B 6=A =Q
(np),1
AB BB

(
VA

SA

)
, where the

matrices Q
(np),1
AB have elements

q
(np),1
ij, AB =

32π
√
2(m∗

A)
3
2 ZAB

9~5dB0
N (np)K(np)

1

[
e

ǫ
(np)
1

kBTL

∫ ∞

0

e−λ
A
W (E+∆

+
AB+a

−
AB)

×
(

E+a−AB
)i−1(E +∆+

AB + a−AB
)j−1

H9(E , a−AB,∆+
AB, αA, αB)

+
(

E + a+AB
)i−1(E +∆−AB + a+AB

)j−1
e−λ

A
W (E+∆−AB+a+AB)

×H9(E , a+AB,∆−AB, αA, αB)
]

dE ,

where H9 is in Appendix A.

3.4 Numerical simulations of GaN and SiC

In this section we present the results of numerical simulations regarding the

case of bulk Gallium nitride (GaN) and Silicon carbide (SiC).

These two compound semiconductors are of great interest since they have

a high breakdown field, a low thermal generation rate, and a good thermal

conductivity and stability. For all these properties, these materials are very

useful for high power and high temperature devices.

Bulk GaN. The model we used is that described in the previous sections.

We consider the three valley conduction band used in [12] for wurtzite GaN

(Figure 3.1). The parameters that have been used for the three valleys are

reported in Table 3.1.

We take into account all the scattering mechanisms described before, except

the first order intervalley interaction. The material parameters are listed in

Table 3.2.
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Figure 3.1: Analitycal band structure for wurtzite GaN [12].

Table 3.1: Parameters of the band structure of GaN and SiC
Material GaN SiC

Conduction band valley Γ1 Γ2 L-M M,1st c.b. M,2nd c.b.

Effective mass 0.21me me me 0.38me 0.56me

Valley energy minimum (eV) 0 1.9 2.1 0 0.14

Nonparabolicity factor (eV −1) 0.189 0.065 0.029 0.117 0.058

Number of equivalent valleys 1 1 6 3 3

If the initial velocities and energy fluxes are taken parallel to the electric

field and the total electron density is considered equal to the donor concentra-

tion, the moment system becomes an ordinary differential equation system,

where time is the only independent variable. Moreover, the Poisson equation

is solved taking the total electron population equal to the doping concentra-

tion at all times, and the electrostatic potential with a linear profile between

the two boundary values. If we choose the x-axis along the direction of the
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Table 3.2: Bulk material parameters

GaN SiC Units

ρ 6.15 3.2
(

g

cm3

)

ǫs 8.9 9.7 ǫ

ǫ∞ 5.35 6.5 ǫ

vs 6560 13730 (m/s)

Ξd 8.3 15 (eV)

~ω(p) 92 120 (meV)

E (np)
0 92 85.4 (meV)

E (np)
1 - 33.2 (meV)

DtK 1× 109 7× 108
(

eV
cm

)

D1 - 5 (eV)

electric field, the moment system reduces to

dnA
dt

= nACnA
(WA) +

∑

B 6=A
nBCnA

(WB), (3.21)

d

dt
(nA(VA)x)+ qExnA(G

(0)
A )xx=nAc

A
11(WA)(VA)x + nAc

A
12(WA)(SA)x, (3.22)

dWa

dt
+ qExnA(VA)x = nACWA

(WA) +
∑

B 6=A
nBCWA

(WB), (3.23)

d

dt
(nA(SA)x)+ qExnA(G

(1)
A )xx=nAc

A
21(WA)(VA)x + nAc

A
22(WA)(SA)x, (3.24)

where all the terms relative to the density and the energy productions have

been summed into the first addenda in the equations (3.21) and (3.23), with

the exception of the gain terms of the intervalley scattering, which depend on

the energy in the other valleys involved in the scattering and are represented

by the sums at left-hand sides of the equations. The integrals with respect

to the microscopic energy, which appear in the fluxes and in the production

terms, are numerically computed for a discrete number of values in a suitable

range of the macroscopic energy, and after this stepwise linear interpolation
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is used to approximate them in all the range. The system is numerically

solved by a 4-th order Runge-Kutta method for sixty values of the applied

electric field going from 10−3V/µm to 100V/µm.

The results are shown in Figures 3.2-3.5. They present all the main char-

acteristics of GaN. The total velocity, Figure 3.4, increases with the electric

field until it reaches a value of about 3.4 × 107cm/s at a threshold value of

about 17 V/µm, which is in excellent agreement with [12]. The saturation

velocity is instead higher and around 1.8 × 107cm/s. The negative differ-

ential effect which can be seen in the Figure 3.4 is typical of the presence

of the intervalley processes that, at high fields, increase the occupation of

the upper, higher effective mass valleys, as can be seen in Figure 3.2. In-

stead at low fields, up to 2 − 3V/µm, the behavior of the average velocity

is high-slope linear. A low slope region follows (particularly for low doping,

ND = 1015/cm3, see the dashed curve), and at higher fields, before reaching

the threshold value, there is a positive inflection [13] in the slope.
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Figure 3.2: Valley occupancies vs the applied electric field.

As regards the valley occupancy, there is a first inversion between the Γ1
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Figure 3.5: Valley energies and total average energy vs the applied electric

field.

and the Γ2 populations, and at higher fields there are two further inversions

and at the end the most populated valleys are the 6 equivalent L-M ones.

In Figure 3.5 we represent the behavior of the total mean energy. We notice

the high slope at 10 − 35V/µm, which corresponds to the rapid transfer of

electrons from the Γ1 to the Γ2 and L-M valleys, in agreement with the results

in [12].

Bulk SiC A procedure similar to that used for GaN has been applied also to

the 4H-SiC polytype, which is the least anisotropic among the SiC polytypes.

There are several results in literature about its band structure. Here we use

those in [18] (Figure 3.6) .

The valleys around the minima at the symmetry points M of the low-

est two conduction bands are considered. Because of the crystal symmetries

there are 3 equivalent M points, therefore the total number of valleys, taken

into account, is 6, and their parameters are reported in Table 3.2 . As regards

the scattering mechanisms, we have considered also the first order intervalley

interaction, which produces an enhancement of the population of the higher
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Figure 3.6: 4H-SiC bulk band structure.

valleys. The results are shown in Figures 3.7-3.10. In these figures, the label

”with correction” means that also the first order correction to intervalley

interactions is considered.

The behaviour of the total velocity is in good agreement with that in [25].

In literature we have not found results on the inversion of the electron pop-

ulations in SiC, which is shown in Figure 3.7.

An improvement of these results by using ellipsoidal nonparabolic bands is

the aim of the next chapter.
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Figure 3.7: Valley occupancies vs the applied electric field.

Figure 3.8: Valley velocities vs the applied electric field.
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Figure 3.9: Total velocity vs the applied electric field.

Figure 3.10: Valley energies and total average vs the applied electric field.
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Chapter 4

An anisotropic hydrodynamical

model for compound

semiconductors

4.1 Analytic approximation of the band struc-

ture

In the previous chapter we presented a macroscopic model which is able to

describe the behavior of compound semiconductor materials. In that model,

a spherical analytical approximation was used for the energy dispersion re-

lationships in the neighbors of the lowest minima of the conduction bands.

For highly anisotropic semiconductors better approximations are needed.

In this chapter we will make use of a more generalized energy dispersion re-

lation, employing an ellipsoidal approximation, which was used in [26]. The

ellipsoidal approximation is very useful for the description of carrier trans-

port in semiconductors for which electron masses along the principal axes are

consistently different, implying different carrier drift velocities along different

directions.

In particular, the non parabolic anisotropic dispersion relation taken into
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account has the following form [27]

E
A
(k

A
) =

~
2|k

A
|2

2me

γ
A
(E

A
)ψ−1

A
(n

A
), (4.1)

where EA, kA, have, for each valley, the same meaning as in the previous

chapter, and γ
A
(E

A
.) are generic non parabolicity factors. The index A runs

over the considered valleys, and n
A
is defined by n

A
:=

k
A

|k
A
| . For electrons,

in the ellipsoidal approximation, the dependence of ψA on n
A
is given by

ψ−1
A

=
((n

A
)1)

2

(m∗
A
)1

+
((n

A
)2)

2

(m∗
A
)2

+
((n

A
)3)

2

(m∗
A
)3

,

where (m∗
A
)−1i , i = 1, 2, 3, are the diagonal elements (eigenvalues) of the

inverse effective mass tensor of the A-th valley, multiplied by me, referred to

an orthonormal basis of the tensor.

Analogously for holes, one has

ψ−1
A

= |A
A
| ∓

√

B2
A
+
C2

A

4

(

sin4 ϑ sin2 2ϕ+ sin2 2ϑ
)

,

in the case of warped bands, with φ and θ respectively azimuthal and polar

angle of n
A
with respect to the main cristallographic axes. AA, BA and

CA, which depend on the specific material, are the inverse valence band

parameters.

Each valley in the analytic approximation is extended to all R3 and the

volume element in the k-space can be written as

dk =
me

√
2me

~3

√

E
γ5(E)

(

γ(E)− E γ̇ (E)
)

ψ
3
2 (ϕ, θ)dEdΩ,

where the dot stays for derivative with respect to the argument of the func-

tion, and dΩ is the solid angle element. The charge velocity, given again

by the quantum mechanichal formula (3.2), has the following expression in

terms of the energy and the angular variables

vi =
~

2me

γ
2
(E)

γ(E)− E γ̇ (E) li,
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where

li :=
∂

∂ki
(|k|2 ψ−1) = g(E)ηi(ϕ, θ)ni,

g :=
2
√
2me E

~
√

γ(E)
,

ηi :=

√
ψ

m∗
i

.

As in the previous chapter, also in this case, for the sake of simplicity, we will

consider only the case in which conductivity is essentially due to electrons.

4.2 Hydrodynamical model

We consider again the Boltzmann-Poisson system given by equations (3.3)

and (3.4) which describe the charge transport through the time evolution of

the distribution functions fA(x,k, t). In these equations the collision terms

at the right hand side are those in expressions (3.5) and (3.6), referring to

the intravalley and intervalley interactions, in fact the scattering processes

taken into consideration are those reported in Chapter 2.

Considering as usual the weights 1,v(k), E(k),v(k)E(k), we obtain the mo-
ments n, V, W and S, as reported in Chapter 2, for which equations (3.8)-

(3.11) hold.

We have, also in this case, a set of equations that is not closed and we need

then to apply the maximum entropy principle to close this system.

4.3 Closure by maximum entropy principle

Using the same procedure as in the previous chapter, the maximum entropy

principle will again be applied to obtain a closed system. Taking into con-

sideration the maximum entropy distribution functions (3.15) the purpose is

that of inverting the constraints (3.16)-(3.19). Since, in general, the angular

integration cannot be performed analitically when ellipsoidal approximations

are used for the energy dispersion relations, computations are more involved
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than those in [9], reported in the previous chapter.

First of all is useful to introduce a property that is employed for the calcu-

lations in this section.

Property 1 If σ(n) is an integrable even function of its argument then

∫

S2

σ(n)ni dΩ = 0,

∫

S2

σ(n)ni nj dΩ = 0, i, j = 1, 2, 3.

∫

S2

σ(n)ni nj nk dΩ = 0, ∀ i, j, k = 1, 2, 3,

where S2 is the unit sphere surface.

As regards the inversion of the constraints, the results are reported in the

following.

From the scalar constraints, the densities and the energies are given by

n =
me

√
2meJ0
~3

e
−λ

d0(λW ),

nW =
me

√
2meJ0
~3

e
−λ

d1(λW ),

where

dn(λW ) :=

∫ ∞

0

En exp(−λWE)
√

E
γ5(E)

(

γ(E)− E γ̇ (E)
)

dE ,

and

J0 :=

∫

S2

ψ
3
2dΩ.

Thus one has

λ = −log
(

~
3n

me

√
2me J0 d0

)

(4.2)

λW = h−1(W ), (4.3)

where h−1 is the inverse function of h, given by

h(λ
W
) :=

d1(λW )

d0(λW )
.
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Hereafter, λW will always be regarded as a function of W .

For the vector Lagrange multipliers, one has

λVi = J−11, i

[

b11(W )Vi + b12(W )Si
]

, (4.4)

λSi
= J−11, i

[

b12(W )Vi + b22(W )Si
]

. (4.5)

In the last equations J1, i, i = 1, 2, 3 is defined by

J1, i :=

∫

S2

ψ
3
2 η2i n

2
i dΩ,

the bij are the elements of the matrix B, which is the inverse of the symmetric

matrix A of elements

aij=−
~
2

4m2
e J0

pi+j−2
d0

, i, j = 1, 2,

with

pn=pn(W ) :=

∫

ℜ3

En+ 1
2

α(E)− Eα̇ (E) α
3
2 (E)g2(E) e−λW EdE .

As a consequence, also the matrix B is symmetric.

In this case, differently from the isotropic approximation, the relations (4.4)

and (4.5) depend on the directions, since in their expressions appears the

terms J1, i, which in the anisotropic case vary with i = 1, 2, 3.

Once obtained expressions (4.2) and (4.3) for the scalar multipliers, (4.4)

and (4.5) for vector ones, the Lagrange multipliers are expressed in terms of

the fundamental variables. Therefore we are in condition to obtain closure

relations for the fluxes and the production terms.

Closure relations for the fluxes. As regards the constitutive equations for the

fluxes, one has
(
F

(0)
ij

F
(1)
ij

)
=

~
2 J1,i

4m2
eJ0 d0

(
p0

p1

)
δij, (4.6)

where δij is the Kronecker delta symbol, and

G
(0)
ij =

~

(2me)
3
2J0 d0

[ ~ J1,i√
2me

G1,0(W ) + (J3,i − J2,i)G2,0(W )
]
δij, (4.7)
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G
(1)
ij =

~

(2me)
3
2J0 d0

[ ~ J1,i√
2me

G1,1(W )+(J3,i−J2,i)G2,1(W )+
~ J1,i√
2me

G3,0(W )
]

δij .

(4.8)

Here

G1,n(W ) :=

∫ ∞

0

En
√

E
γ(E) g(E) β̇ (E) exp (−λW

E) dE

G2,n(W ) :=

∫ ∞

0

En g(E) exp (−λ
W
E) dE ,

G3,n(W ) :=

∫ ∞

0

En
√

E
γ(E) g(E) β(E) exp (−λW

E) dE ,

J2 ,i :=

∫

S2

(ηi − 2
∂ηi
∂ni

)n2
iψ dΩ,

J3 ,i :=

∫

S2

(ηi − 2
∑

j

∂ηi
∂n2

j

n2
j n

2
i )ψ dΩ,

with β := γ2

γ−E γ̇ g.

Closure relations for the production terms.

• Acoustic phonon scattering. As said, since this scattering process

is intravalley and approximately elastic, the only non-zero production

terms are those relative to the velocities and the energy fluxes. The

results of the calculations yield

(
C

(ac)
V

C
(ac)
S

)
= Q(ac)

(
V

S

)
, (4.9)

where Q(ac) is the matrix of elements

q
(ac)
ij (W ) =

1

2
√
2me~d0

K(ac)

∫ ∞

0

E i+j−1 g
2(E)
γ(E) exp (−λW

E) dE . (4.10)

It can be noted that the contribution of the acoustic scattering is

isotropic. This is due to the approximation used.
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• Polar optical phonon scattering. For the polar optical scattering

the calculations are even more complicated than in the isotropic case.

First of all it is not possible to separate angular integration from the

energy integration because of the presence of the overlap factor G. Some
assumptions on this factor are then needed. We assume that it depends

on the carrier energies, E and E ′, and on the motion directions, n and

n′, through k and k′, before and after the scattering.

The first assumption is the following

Assumption 1 We will assume that G can depend on n and n′ only

through the scalar product n ·n′, even functions of ni and n
′
i, i = 1, 2, 3,

and also through nz − n′z, as long as this latter dependence is even too.

This assumption is satisfied by the expression of G used by Fawcett

et al [10], which is reported in Chapter 2, and also by the expression

proposed by Nilsson et al. [28], which will be used in this chapter and

which has the form

G(k,k′) = 1− (a01 + a02 sinχ)
[

1− exp [−(b01 + b02 sinχ)|q|2
]

, (4.11)

where q = ∓(k′ − k) is the phonon quasi-wave vector and χ :=

arccos qz|q| , while the constants a01, a02, b01, and b02 can be found in

table 4.1.

Assumption 1 implies the following properties

Table 4.1: Parameter values used in the overlap model

Parameter Value

a01 0.873

a02 0.0268

b01 4.989×10−7 µm2

b02 -4.250 ×10−7 µm2
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Property 2 The function

G s,p(E , E ′,n) : =

∫

S2

G(k,k′)
E

γ(E)ψ(n) +
E ′

γ(E ′)ψ(n
′)− 2

√

EE ′
γ(E)γ(E ′)ψ(n)ψ(n

′)n · n′

×ψ 3
2 (n′) dΩ′

is even with respect to ni, i = 1, 2, 3.

Property 3 The functions

G v,p
i (E , E ′,n) : =

∫

S2

G(k,k′)
E

γ(E)ψ(n) +
E ′

γ(E ′)ψ(n
′)− 2

√

EE ′
γ(E)γ(E ′)ψ(n)ψ(n

′)n · n′

×ψ 3
2 (n′) ηi(n

′)n′idΩ
′, i = 1, 2, 3

are odd with respect to ni and even with respect to nj, j 6= i, i, j =

1, 2, 3.

The function G s,p(E , E ′,n) takes into account the angular integration
of the core term G(k,k′)

|k−k′|2 , appearing in the expression of P
(p)(k,k′), given

in Chapter 2. The function G v,p
i (E , E ′,n) shows up in the angular inte-

gration of the term G(k,k′)
|k−k′|2vi(k). Then, the second angular integration,

that with respect to the direction n, which is needed for the evaluation

of the production terms can be simplified by using Property 1. We also

use the detailed balance principle, already employed in the previous

chapter and given by expression (3.20).

After these assumptions, for the density and energy production terms

we find

C(p)
n = 0,

C
(p)
W =

√
me ω

(p)

√
2 J0 d0

N (p)K(p) n

∫ ∞

0

(

∫

S2

G s,p(E , E+,n)ψ
3
2 (n) dΩ

)

×H11(E)H11(E+)

[

1− e
−~ω(p)

(

λW− 1
k
B

TL

)
]

× exp (−λWE) dE ,

67



where E+ := E + ~ω(p), while the function H11 is reported in Appendix

B.

As regards the production terms for velocities and energy fluxes, this

time the contribution is anisotropic and given by

(
C

(p)
Vi

C
(p)
Si

)
= J−11,i Q

(p)B

(
Vi

Si

)
, (4.12)

where Q(p) is the matrix of elements

q
(p)
ij =

~

4me

√
2meJ0 d0

N (p)K(p)

∫ ∞

0

[
H12, i(E , E+)E i+j−1

+H13, i(E , E+)(E+)i+j−1 −H14, i(E , E+)

(
e
~ω(p)

(

1
k
B

TL
−λW

)

×E i−1(E+)j−1 + (E+)i−1E j−1
)]

e−λW EdE .

The functions H12, i, H13, i, and H14, i, i = 1, 2, 3, are reported in Ap-

pendix B.

• Impurity scattering. In this case the procedure used is very similar to

that employed for the polar optical scattering. In fact, for the functions

G s,im(x,n) :=

∫

S2

G(k,k′)ψ 3
2 (n′)

[
2me E
~2 α(E)

(
ψ(n) + ψ(n′)− 2

√
ψ(n)ψ(n′) n · n′

)
+ λ2

D

]2dΩ
′,

G v,im
i (x,n) : =

∫

S2

G(k,k′)ψ 3
2 (n′)

[
2me E
~2 α(E)

(
ψ(n) + ψ(n′)− 2

√
ψ(n)ψ(n′) n · n′

)
+ λ2

D

]2

×ηi(n)n′idΩ′, ı = 1, 2, 3.

the Properties 2 and 3 hold.

These functions are used in the angular integration of G(k,k′)
[|k−k′|2+λ2

D
]
2 and

G(k,k′)
[|k−k′|2+λ2

D
]
2vi(k).

Since this scattering process is elastic, we have E ′ = E , and then a
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simplification can be made if compared with polar optical scattering.

For the production terms relative to the velocities and the energy fluxes,

the elements of the matrix Q(im) are given by

q
(im)
ij =

K(im)

2
√
2me ~ J0 d0

∫ ∞

0

E (i+j−2) g2(x)

α(x)
H15(E)e−λW E dE , (4.13)

with H15 given in Appendix B.

• Non-polar optical phonon scattering. In this case the results are

obtained after long and involved calculations. As regards the density

and the energy production terms, we find

(
C

(np)
n
A

C
(np)
W

A

)
=
∑

B 6=A

√
2Z

AB
(me)

3
2 JA0 J

B
0

~3
N (np)K(np)

{
n

B

JB0 d
B
0

×
[
e
−λBW∆+

AB
+ ε(np)

k
B

TL

∫ ∞

0

(
1

E + a−
AB

)
e−λ

B
W (E+a−AB

)

×H16,AB(E , a−AB
,∆+

AB
)dE + e−λ

B
W∆−

AB

∫ ∞

0

(
E + a+

AB

)
e−λ

B
W (E+a+AB

)

×H16,AB(E , a+AB
,∆−

AB
)dE
]
− n

A

JA0 d
A
0

[∫ ∞

0

(
1

E + a−
AB

)
e−λ

A
W (E+a−AB

)

×H16,AB(E , a−AB
,∆+

AB
)dE + e

ε(np)

k
B

TL

∫ ∞

0

(
1

E + a+
AB

)
e−λ

A
W (E+a+AB

)

×H16,AB(E , a+AB
,∆−

AB
)dE ,

]}
,

where

dA0 = d0(λ
A
W ),

ε(np) = ~ω(np),

∆±
AB

= ∆
AB
± ε(np),

a±
AB

= max(0,−∆
AB
± ε(np)),

and the function H16,AB can be found in Appendix B.
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In the previous expression there are two positive terms and two neg-

ative ones. The positive terms are gain terms, corresponding to the

absorption and the emission of a phonon respectively. These terms

depend, through λBW on the macroscopic energy in the valley B. The

negative terms, are instead loss terms and they depend on the macro-

scopic energy in the valley A.

As regards the vector production terms, they are similar to those of

acoustic scattering. In this case the elements of the matrices Q(np)
AB

are

given by

q
(np)
ij, AB =

JB0 ZAB

2 ~
√
2me JA0 d

A
0

N (np)K(np)

∫ ∞

0

[

(

E + a−
AB

)i+j−2
e−λ

A
W (E+a−AB

)

×H17, B(E , a−AB
,∆+

AB
) +

(

E + a+
AB

)i+j−2
e
−λAW (E+a+AB

)+ ε(np)

k
B

TL

×H17, B(E , a+AB
,∆−

AB
)
]

dE , (4.14)

where the function H17, B can be found in Appendix B.

In conclusion we report a Property which can be applied to drop the

numerical computation time of the polar optical phonon and impurity

terms by a factor of eight.

Property 4 If ν(n,n′) is an integrable function on S2×S2, such that

– ν(−n,−n′) = ν(n,n′),

– ν(−nx,−ny, nz, n′x, n′y, n′z) = ν(nx, ny, nz, n
′
x, n

′
y, n

′
z),

– ν(−nx, ny, nz, n′x, n′y, n′z) = ν(nx, ny, nz, n
′
x, n

′
y, n

′
z),

then
∫

S2×S2

ν(n,n′) dΩ dΩ′ = 8

∫

Q1×S2

ν(n,n′) dΩ dΩ′,

where Q1 is the portion of the unit sphere surface which lies in the first

octant of R3.

The integrands for the production terms of the polar optical phonon

and impurity scattering satisfy the hypotheses under which Property 4

holds.
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4.4 Numerical simulations of bulk 4H-SiC and

6H-SiC

Silicon carbide is an important semiconductor material, because of its high

saturation velocity, large thermal conductivity, high breakdown voltages and

high Schottky barriers. These properties are very important at high temper-

atures, at high frequency and for high power devices.

In the previous chapter were showed some results for 4H-SiC, produced

Figure 4.1: Hexagonal lattice

employing a model where an isotropic dispersion relation is used (we indi-

cate this model as IB model). Here those results are compared with the

new ones, obtained using a model that takes into account the anisotropic

dispersion relations (in the following indicated as AB model). The aim is

to show that the AB model is more appropriate to describe the behavior of

anisotropic semiconductors, because the dependence of the drift velocity and

the average energy on the applied the electric field strongly changes accord-

ing to the direction of the latter. Among these anisotropic semiconductors
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Table 4.2: Parameters of the band structure of 4H-SiC and 6H-SiC
Material 4H-SiC 6H-SiC

Conduction band valley M, 1st c.b. M, 2nd c.b L, 1st c.b. L, 2st c.b.

Effective masses (me) 0.29, 0.58, 0.33 0.90, 0.58, 0.33 0.22, 0.90, 1.43 0.22, 0.90, 1.43

Valley energy minimum (eV) 0 0.14 0 0

α (eV−1) 0.117 0.058 0.039 0.039

Number of equivalent valleys 3 3 3 3

two hexagonal polytypes of silicon carbide, whose lattice is shown in Figure

4.1, are taken into consideration for simulations.

Bulk 4H-SiC

As in the previous chapter, for the band structure of 4H-SiC we have con-

sidered the results in [18]. Then the total number of valleys is again 6: 3 at

the equivalent M points for each of the two lowest conduction bands. The

parameters are those reported in Table 4.2.

In this table the masses along the principal directions M-K, M-Γ and

M-L are reported and are indicated respectively with x, y and z. me is

the free electron mass, and ǫ0 the vacuum permittivity. In the bulk case,

taking homogenoeous initial conditions, with initial velocities and energy

fluxes equal to zero, the moment system, as seen, becomes a set of ordinary

differential equations, where time is the only independent variable. The

Poisson equation is, in this case, solved taking the total electron population

equal to the doping concentration, and the electrostatic potential with linear

profile between the two boundaries, while the moment system reduces to

dn
A

dt
= n

A
Cn

A
(WA) +

∑

B 6=A
n

B
Cn

A
(WB), (4.15)

d

dt
(n

A
V

A
) + qE · n

A
G(0)

A
= n

A
cA11(WA

)V
A
+ n

A
cA12(WA

)S
A
, (4.16)

d

dt
(n

A
W

A
) + qE · n

A
V

A
= n

A
CW

A
(WA) +

∑

B 6=A
n

B
Cn

A
(WB), (4.17)

d

dt
(n

A
S

A
) + qqE · n

A
G(1)

A
= n

A
cA21(WA

)V
A
+ n

A
cA,i22 (WA

)S
A
, (4.18)
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where the indices A and B run over the valleys. All scattering mechanisms

presentend in Chapter 2 are taken into account. The material parameters

are reported in Table 4.3, following the data in [25]. Into the first addenda

of the equations (4.15) and (4.17) are summed all the terms relative to the

density and the energy productions, except the gain terms of the intervalley

scattering, which depend on the energy of the other valleys, different from A,

involved in the scattering and are represented by the sums at the right-hand

sides of the equations. The production terms are numerically computed for

a discrete number of values in a suitable range of the macroscopic energies

and the values of interest during the numerical computation of the solution

to the system (3.21-4.18) are evaluated by a stepwise linear interpolation.

The computation of the production terms relative to the scattering with the

polar optical phonons and with the impurities is very expensive, however

these computations are done once for all and can be used for all kinds of de-

vices. In particular, for the angular integration a suitable numerical method

has been exploited, which has been tested verifying that, if the masses are

equal, the results of the isotropic model are recovered. The ODE system

is numerically solved by a 4-th order Runge-Kutta method for sixty values

of the applied electric field going in modulus from 10−3 V/µm to 100V/µm.

Three directions of the field are considered, that is the principal directions

of one of the three equivalent M-valleys.

The results are shown in Figures 4.2-4.5. All the main characteristics of 4H-

SiC are qualitatively and quantitatively well described. At low fields, up to

4÷ 5V/µm, the behavior of the total average velocity, which is defined as

V =
1

n

∑

A

n
A
V

A
,

is high-slope linear, and the velocity reaches its maxima, which are about

2.04 × 107, 1.94 × 107 and 2.42 × 107cm/s respectively in the x, y and z

direction, at about the fields 40, 40 and 32 V/µm. Considering this fact and

inspecting Figure 4.3 it appears clear that taking into account the anisotropy

of the energy dispersion relations is very important. In fact the differences
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according to the direction of the electric field are relevant.

Also as regards the behavior of the valley occupancies, as shown in Figure

4.2, there are differences between the IB and AB model. In this case the

population inversion occurs at a lower electric field than in the isotropic

case. Furthermore, there is a remarkable discrepancy, as shown in Figure

4.4, between the predictions of the two models in the behavior of the total

mean energy, which is given by

W =
1

n

∑

A

n
A

(

W
A
+ E (0)

A
− E (0)

1

)

.

This might be due also to the different overlap factor which has been used

in this chapter as can be deduced from the fact that relevant differences in

the energy production terms are present only for the polar optical scattering,

see Figure 4.6-4.7. As regards the production terms for the velocities and

the energy fluxes, the main differences can be found in the polar optical and

impurity scattering which are anisotropic and for which the overlap factor is

used, while for the acoustic and non polar optical scattering the differences

are irrelevant, see Figures 4.11-4.14. At last in Figure 4.5, we show how the

behavior of the drift velocity varies at different doping concentrations, and

the model manages to capture the non-monotonicity with increasing impurity

concentration typical of SiC.

6H-Bulk SiC

Also in this case for the band structure we have used the results in [18]. In

particular we have considered the minima of the two lowest conduction bands

to occur at the L symmetry point and used a number of equivalent valleys

equal to three. Therefore also in this case the total number of valleys is 6,

and furthermore the two lowest conduction bands are degenerate around L.

The parameters are reported in Table 4.2, where in particular the masses

along the principal directions L-H, L-A and L-M can be found. The results

are shown in Figures 4.17-4.19 and are qualitatively analogous to those for

4H-SiC, therefore the same comments remain valid also in this case. For a

better comparison with the experimental values found by von Muench [39],
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Figure 4.2: 4H-SiC. Valley occupancy vs the applied electric field directed

along M-K. ND = 1019/cm3

in Figure 4.17 we have highlighted by squares the velocities corresponding to

the values of the electric field reported in [25]. Eventually Figure 4.20-4.21

shows that, as known, the anisotropy of 4H-SiC is lower than that of 6H-SiC.

Table 4.3: Bulk material parameters

ρ ǫs ǫ∞ vs Ξd ~ω(p)
~ω(np) DtK

4H-SiC 3.2 9.7 6.5 13730 15 120 85.4 7× 108

6H-SiC 3.2 9.66 6.5 13730 17.5 120 85.4 6×108
Units g

cm3 ǫ0 ǫ0 m/s eV meV meV meV
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Figure 4.9: 4H-SiC. Polar optical scattering. Velocity and energy flux pro-

duction terms (higher valley).
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Figure 4.10: 4H-SiC. Polar optical scattering. Velocity and energy flux pro-

duction terms (lower valley).
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Figure 4.11: 4H-SiC. Acoustic scattering. Velocity and energy flux produc-

tion terms (higher valley).
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Figure 4.12: 4H-SiC. Acoustic scattering. Velocity and energy flux produc-

tion terms (lower valley).
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Figure 4.13: 4H-SiC. Non-polar optical scattering. Velocity and energy flux

production terms (higher valley).
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Figure 4.14: 4H-SiC. Non-polar optical scattering. Velocity and energy flux

production terms (lower valley).
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Figure 4.15: 4H-SiC. Impurity scattering. Velocity and energy flux produc-

tion terms (higher valley)
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Figure 4.16: 4H-SiC. Impurity scattering. Velocity and energy flux produc-

tion terms (lower valley).
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Figure 4.19: 6H-SiC. Total average energy (measured from the bottom of the

first c.b.) vs the applied electric field along the three principal axes.
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Figure 4.21: 6H-SiC, total velocity vs the applied electric field directed along
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Appendix A

In this section we report the functions which appear in the various produc-

tion terms in Chapter 3.

H1(E , α) = E(1 + αE),

H2(E1, E2, α) = (1 + αE1)(1 + αE2),

H3(E1, E2, α) = ln

√
H1(E1,α)+

√
H1(E2,α)

∣

∣

∣

√
H1(E1,α)−

√
H1(E2,α)

∣

∣

∣

,

H4(E1, E2, α) = [(H1(E1, α) +H1(E2, α))H3(E1, E2, α)− 2
√

E1E2H2(E1, E2, α)],

H5(E1, E2, α) = 3(H1(E1, α)+H1(E2, α))3H3(E1, E2, α)−8[E1E2H2(E1, E2, α)]
3
2−

6(h1(E1, α) +H1(E2, α))2
√

E1E2H2(E1, E2, α),

H6(E , α,m) =
ln
[

1+ 8m
~2β2

H1(E,α)
]

− 8mH1(E,α)

~2β2+8mH1(E,α)

1+αE ,

H0
7 (E , a,∆, α1, α2) =

√

H1(E + a, α1)H1(E + a+∆, α2)[1 + 2α1(E + a)] ×
[1 + 2α2(E + a+∆)],

H0
8 (E , a,∆, α1, α2) =

1+2α2(E+a+∆)
[1+2α1(E+a)]

√

H1(E + a, α1)3H1(E + a+∆, α2),

H1
7 (E , a,∆, α1, α2,m1,m2) = [m1H1(E + a, α1) + m2H1(E + a + ∆, α2)] ×

H0
7 (E , a,∆, α1, α2),
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H1
8 (E , a,∆, α1, α2,m1,m2) = [m1H1(E + a, α1) + m2H1(E + a + ∆, α2)] ×

H0
8 (E , a,∆, α1, α2),

H9(E , a,∆, α1, α2) = [H1(E + a, α1)H1(E + a+∆, α2)]
3
2 .
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Appendix B

In this section we report the functions which appear in the various production

terms in Chapter 4.

H11(x) :=
√
x
γ(x)− x γ̇(x)

γ(x)
5
2

,

H12, i(x, y) :=
g2(x)H1(y)

γ(x)H1(x)

∫

S2

G s,p(x, y,n)η2i (n)n
2
i ψ

3
2 (n) dΩ,

H13, i(x, y) := e
~ω(p)

(

1
k
B

TL
−λW

)

g2(y)H1(x)

γ(y)H1(y)

∫

S2

G s,p(y, x,n)η2i (n)n
2
i ψ

3
2 (n) dΩ,

H14, i(x, y) :=
g(x) g(y)

√

γ(x) γ(y)

√
x y

∫

S2

G v,p
i (x, y,n)ηi(n)ni ψ

3
2 (n) dΩ,

H15(x) :=

∫

S2

[

G s,im(x,n) η2i (n)n
2
i ψ

3
2 (n)−G v,im

i (x,n) ηi(n)ni ψ
3
2 (n)

]

dΩ,

H16,AB(x, y, z) := H1,A(x+ y)H1,B(x+ y + z),

H17,B(x, y, z) :=
8me (x+ y)2

~2
H1,B(x+ y + z)
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Sintesi del lavoro di tesi

I materiali semiconduttori sono impiegati in diversi campi, quali ad esempio i

dispositivi elettronici e microelettronici, i laser e le celle solari. In particolare

in microelettronica hanno un vasto campo di applicazione, che include, ad

esempio, i computer, le telecomunicazioni, ecc.

Il silicio è il materiale più comunemente usato per le applicazioni in microelet-

tronica. Esistono molti esempi in letteratura riguardanti la descrizione delle

sue proprietà fisiche. Inoltre sono stati sviluppati modelli matematici per

riprodurre le proprietà fisiche che caratterizzano i fenomeni di trasporto in

questo semiconduttore. Poichè però i comuni dispositivi al silicio operano in

un range di potenze basso, sono in continuo sviluppo attività di ricerca rela-

tive a tecnologie e dispositivi di potenza che considerano materiali innovativi

adatti alle suddette applicazioni. In questo scenario hanno trovato largo uso

i semiconduttori composti. Fra i semiconduttori composti, uno dei primi ad

essere utilizzato è stato il GaAs, per esempio nei LED a infrarossi, nei laser

e nelle celle solari. Il vantaggio del GaAs rispetto al Si è che ha una velocità

di saturazione degli elettroni più elevata e una più alta mobilità, e quindi è

importante per il funzionamento a frequenze più alte di 250 GHz.

Recentemente semiconduttori con bandgap più ampi, come GaN e SiC, hanno

attratto un grande interesse poichè hanno un elevato campo di breakdown,

un basso tasso di generazione termica, e una buona conducibilità e stabilità

termica. Queste proprietà sono utili per dispositivi ad alta potenza e alta

temperatura.

Negli ultimi anni c’è quindi una crescente richiesta di modelli di simulazione
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che prevedano accuratamente le performance dei dispositivi, analizzando i

processi fisici coinvolti in questi nuovi materiali.

L’impiego di questi modelli risulta strategico anche da un punto di vista

industriale, in quanto le simulazioni fatte utilizzando questi modelli permet-

tono di risparmiare sui costi di produzione. Per tutti questi semiconduttori

ci sono dei modelli Monte Carlo, ma c’è una certa carenza di modelli macro-

scopici, computazionalmente meno dispendiosi.

Lo scopo di questo lavoro è appunto lo sviluppo di modelli idrodinamici per

il trasporto di cariche nei semiconduttori composti.

Questi modelli possono essere ottenuti a partire dalla descrizione cinetica

del trasporto di cariche, tenendo conto della struttura a bande del parti-

colare semiconduttore considerato. Nello specifico, bisogna considerare un

numero di popolazioni di portatori di carica pari al numero di valli vicine

presenti nella struttura a bande del materiale. Lo stato di ogni popolazione

di portatori di carica può essere descritto da una equazione del trasporto

di Boltzmann, a cui è accoppiata l’equazione di Poisson per il potenziale

elettrico autoconsistente. L’equazione di Boltzmann è un’equazione integro-

differenziale che deve essere risolta numericamente. Poichè i modelli Monte

Carlo e gli schemi alle differenze finite sono computazionalmente molto dis-

pendiosi, sono stati introdotti i modelli idrodinamici. Questi modelli, par-

tendo dall’equazione di Boltzmann, considerano un certo numero di momenti

della funzione di distribuzione, ottenuti moltiplicando la funzione di dis-

tribuzione per una opportuna funzione peso e integrando sulla prima zona di

Brillouin. Le funzioni peso, di solito, vengono scelte in modo che abbiano un

significato fisico, come ad esempio la densità, la velocità media, ecc.

L’insieme delle equazioni di evoluzione legate ai momenti ottenuti dall’ in-

tegrazione dell’equazione di Boltzmann, non è un sistema chiuso, poichè il

numero di incognite è maggiore del numero di equazioni.

In passato, la chiusura di questi modelli idrodinamici era ottenuta con re-

lazioni di chiusura ad hoc, carenti di giustificazioni fisiche consistenti. Per

questa ragione sono stati cercati metodi di chiusura alternativi, basati su
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principi primi. Tra questi vi è il principio di massima entropia. Questo

principio afferma che, se è noto un dato numero di momenti, le funzioni di

distribuzione, che possono essere usate per valutare i momenti non noti, sono

quelle che massimizzano l’entropia del sistema, sotto il vincolo che riprodu-

cano i momenti noti.

Questa tesi è composta da quattro capitoli. Per meglio comprendere la

derivazione dei modelli, nei primi due capitoli sono brevemente presentati

i concetti base della fisica dei semiconduttori e della teoria del trasporto di

cariche.

In particolare il capitolo 1 inizia con le definizioni di reticoli e cristalli, pro-

seguendo con la derivazione e la descrizione della struttura a bande di en-

ergia del cristallo, che permette di introdurre le bande di conduzione e di

valenza. Dall’ampiezza del gap tra queste due bande, è possibile classificare

i materiali in isolanti, conduttori e semiconduttori. Il capitolo si conclude

con l’introduzione delle principali approssimazioni analitiche impiegate per

l’energia dei portatori di carica nelle valli e con i concetti di vibrazioni reti-

colari e fononi, questi ultimi fondamentali per la descrizione del trasporto di

cariche.

Nel capitolo 2 viene derivata l’equazione di Boltzmann per gli elettroni, dap-

prima in assenza di collisioni, poi tenendo conto dei principali processi di

scattering, che possono essere descritti tramite l’operatore di collisione. Ven-

gono infatti presentati i principali meccanismi di interazione tra elettroni e

fononi e tra elettroni e impurezze. A conclusione del capitolo vengono in-

trodotti il metodo dei momenti ed il metodo di chiusura basato sul principio

di massima entropia.

Negli ultimi due capitoli sono descritti due modelli idrodinamici, svilup-

pati rispettivamente in [9] e in [26]. L’obiettivo di entrambi i capitoli è

la costruzione di modelli macroscopici in grado di descrivere il trasporto di

cariche in un generico semiconduttore composto. Infatti questi modelli sono

costruiti in modo da poter essere applicati ad un qualsiasi materiale semi-

conduttore con poche modifiche, una volta identificati i parametri fisici del
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materiale e il numero di valli nelle bande di conduzione. Nel capitolo 3 viene

presentato un modello isotropo, mentre nel capitolo 4 uno anisotropo. Questi

modelli considerano i principali meccanismi di scattering nei semiconduttori

polari, cioè le interazioni delle cariche con i fononi acustici, ottici polari e

impurezze per quanto riguarda gli scattering intravalle, e con i fononi ottici

non polari per i processi intervalle.

Nei semiconduttori, le cariche che contribuiscono maggiormente alla con-

duzione sono gli elettroni che occupano gli stati attorno ai minimi delle bande

di conduzione più basse e le lacune attorno ai massimi delle bande di con-

duzione più alte. E’ quindi di fondamentale importanza costruire modelli che

utilizzino le migliori approssimazioni possibili per le relazioni di dispersione

dell’energia per queste cariche. Nel capitolo 3 è considerata una relazione di

dispersione isotropa. L’approssimazione è sferica e non parabolica. In questo

capitolo sono mostrati i risultati delle simulazioni numeriche per i casi del

GaN e del 4H-SiC. I risultati ottenuti sono in buon accordo con quelli pre-

senti in letteratura, basati su modelli cinetici.

Per semiconduttori altamente anisotropi sono comunque necessarie approssi-

mazioni migliori.

Per questo motivo, nel capitolo 4 è impiegata una relazione di dispersione

dell’energia piú generale, considerando l’approssimazione ellissoidale. Questa

approssimazione è utile per descrivere il trasporto di cariche nei semicon-

duttori in cui le masse degli elettroni lungo gli assi principali sono molto

differenti, implicando diverse velocità di drift degli elettroni lungo direzioni

diverse. Alla fine del capitolo, sono mostrati i risultati delle simulazioni nu-

meriche per il 4H-SiC e per il 6H-SiC. Anche in questo caso i risultati sono

in buon accordo con quelli presenti in letteratura. Il modello presentato

in questo capitolo può essere considerato un miglioramento del precedente,

descritto nel capitolo 3. I due modelli, isotropo e anisotropo, sono stati

infatti confrontati per il caso del 4H-SiC. L’importanza di tenere in consi-

derazione l’anisotropia è mostrata dalle differenze trovate per quanto riguarda

l’occupazione delle valli, l’energia media totale e soprattutto la velocità di
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drift totale.

98


