• Login
    Mostra Item 
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato
    • Mostra Item
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato
    • Mostra Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Metodi di fusione dei dati per sistemi di assistenza alla guida

    Mostra/Apri
    Tesi Dottorato Lupia Marco.pdf (25.55Mb)
    Creato da
    Lupia, Marco
    Palopoli, Luigi
    Casavola, Alessandro
    Metadata
    Mostra tutti i dati dell'item
    URI
    http://hdl.handle.net/10955/1177
    http://dx.doi.org/10.13126/UNICAL.IT/DOTTORATI/1177
    Descrizione

    Formato

    /
    Dottorato di Ricerca in Ingegneria dei Sistemi e Informatica, Ciclo XXIV, a.a. 2012; Questo documento riporta tutta l'attivit a svolta durante il corso di dottora- to riguardo lo studio, l'applicazione e la sperimentazione di metodi di Data Fusion nell'ambito dei sistemi avanzati di assistenza alla guida per il miglio- ramento delle prestazioni e dell'a dabilit a. In linea di principio, sembra ra- gionevole a ermare che combinando in modo ottimale le informazioni proveni- enti da pi u sensori e possibile progettare e realizzare un sistema meno sensibile alle variazioni ambientali e a possibili errori di misura dovuti alla presenza di outliers. Tuttavia, dal punto di vista pratico i costi aggiuntivi che si devono sostenere, sia in termini di hardware necessario alla raccolta dei dati dai sen- sori addizionali che per la necessit a di disporre di sistemi di calcolo pi u potenti, potrebbero non essere giusti cati se i miglioramenti ottenuti nelle situazioni pi u probabili e pi u realistiche di utilizzo sono modesti. Il presente documento o re, innanzitutto, una panoramica su vari algoritmi di visione arti ciale utilizzati per il riconoscimento della segnaletica orizzon- tale e per la stima del tempo di invasione (tTLC). Quest'ultimo parametro gioca un ruolo determinante nell'avvertimento tempestivo del conducente in caso di superamento dei limiti della carreggiata. I vari algoritmi sono stati testati in varie condizioni di guida, valutandone le prestazioni conseguibili e il carico computazionale richiesto. Segue un'analisi dello stato dell'arte dei metodi e delle tecniche di Data Fu- sion pi u promettenti e che che meglio si prestano a migliorare l'accuratezza del calcolo della stima del tempo di invasione ttlc grazie alla disponibilit a di altri sensori oltre alla telecamera. Speci catamente, si sono confrontati i vari meto- di e algoritmi di Data Fusion, particolarizzati rispetto a vari modelli matem- atici della vettura e ai sensori disponibili, valutando le loro prestazioni in situ- azioni tipiche di guida e soprattutto rispetto all'errore percentuale di stima del tempo di invasione ttlc ottenuto, valutando anche il carico computazionale corrispondente. Gli algoritmi pi u promettenti sono stati implementati su piattaforma embedded.Questo documento riporta tutta l'attivit a svolta durante il corso di dottora- to riguardo lo studio, l'applicazione e la sperimentazione di metodi di Data Fusion nell'ambito dei sistemi avanzati di assistenza alla guida per il miglio- ramento delle prestazioni e dell'a dabilit a. In linea di principio, sembra ra- gionevole a ermare che combinando in modo ottimale le informazioni proveni- enti da pi u sensori e possibile progettare e realizzare un sistema meno sensibile alle variazioni ambientali e a possibili errori di misura dovuti alla presenza di outliers. Tuttavia, dal punto di vista pratico i costi aggiuntivi che si devono sostenere, sia in termini di hardware necessario alla raccolta dei dati dai sen- sori addizionali che per la necessit a di disporre di sistemi di calcolo pi u potenti, potrebbero non essere giusti cati se i miglioramenti ottenuti nelle situazioni pi u probabili e pi u realistiche di utilizzo sono modesti. Il presente documento o re, innanzitutto, una panoramica su vari algoritmi di visione arti ciale utilizzati per il riconoscimento della segnaletica orizzon- tale e per la stima del tempo di invasione (tTLC). Quest'ultimo parametro gioca un ruolo determinante nell'avvertimento tempestivo del conducente in caso di superamento dei limiti della carreggiata. I vari algoritmi sono stati testati in varie condizioni di guida, valutandone le prestazioni conseguibili e il carico computazionale richiesto. Segue un'analisi dello stato dell'arte dei metodi e delle tecniche di Data Fu- sion pi u promettenti e che che meglio si prestano a migliorare l'accuratezza del calcolo della stima del tempo di invasione ttlc grazie alla disponibilit a di altri sensori oltre alla telecamera. Speci catamente, si sono confrontati i vari meto- di e algoritmi di Data Fusion, particolarizzati rispetto a vari modelli matem- atici della vettura e ai sensori disponibili, valutando le loro prestazioni in situ- azioni tipiche di guida e soprattutto rispetto all'errore percentuale di stima del tempo di invasione ttlc ottenuto, valutando anche il carico computazionale corrispondente. Gli algoritmi pi u promettenti sono stati implementati su piattaforma embedded.; Università della Calabria
    Soggetto
    Ingegneria dei sistemi; Sicurezza; Autoveicoli; Algoritmi
    Relazione
    ING-INF/04;

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV
     

     

    Ricerca

    Esplora perArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV