• Login
    Mostra Item 
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Fisica - Tesi di Dottorato
    • Mostra Item
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Fisica - Tesi di Dottorato
    • Mostra Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    A comparative study of reconstruction methods for neutron tomography

    Mostra/Apri
    Creato da
    Micieli, Davide
    Carbone, Vincenzo
    Gorini, Giuseppe
    Tassi, Enrico
    Metadata
    Mostra tutti i dati dell'item
    URI
    https://hdl.handle.net/10955/5498
    Descrizione

    Formato

    /
    Dottorato di ricerca in Scienze e Tecnologie Fisiche, Chimiche e dei Materiali, in convenzione con il CNR. XXXI Ciclo; Neutron tomography is a well established technique to non-destructively investigate the inner structure of a wide range of objects. The main disadvantages of this technique are the time-consuming data acquisition, which generally requires several hours, and the low signal to noise ratio of the acquired images. One way for decreasing the total scan time is to reduce the number of radiographs. However, the Filtered Back-Projection, which is the most widely used reconstruction method in neutron tomography, generates low quality images affected by artifacts when the number of projections is limited or the signal to noise ratio of the radiographs is low. This doctoral thesis is focused on the comparative analysis of different reconstruction techniques, aimed at finding the data processing procedures suitable for neutron tomography that shorten the scan time without reduction of the reconstructed image quality. At first the performance of the algebraic reconstruction methods were tested using experimental neutron data and studied as a function of the number of projections and for different setups of the imaging system. The reconstructed images were quantitatively compared in terms of image quality indexes. Subsequently, the recently introduced Neural Network Filtered Back-Projection method was proposed in order to reduce the acquisition time during a neutron tomography experiment. This is the first study which proposes and tests a machine learning based reconstruction method for neutron tomography. The Neural Network Filtered Back-Projection method was quantitatively compared to conventional reconstruction algorithms used in neutron tomography. Finally, we present NeuTomPy, a new Python package for tomographic data processing and reconstruction. NeuTomPy is a cross-platform toolbox ready to work with neutron data. The first release of NeuTomPy includes pre-processing algorithms, a wide range of classical and state-of-the-art reconstruction methods and several image quality indexes, in order to evaluate the reconstruction quality. This software is free and open-source, hence researchers can freely use it and contribute to the project.
    Soggetto
    Imaging; Tomografia a neutroni; Machine learning; Metodi numerici; Metodi di ricostruzione tomografi
    Relazione
    FIS/07;

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV
     

     

    Ricerca

    Esplora perArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV