• Login
    Mostra Item 
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato
    • Mostra Item
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato
    • Mostra Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Heterogeneous FPGA-based Embedded Systems for Vision IoT Applications

    Mostra/Apri
    (4.000Mb)
    Creato da
    Spagnolo, Fanny
    Crupi, Felice
    Perri, Stefania
    Corsonello, Pasquale
    Metadata
    Mostra tutti i dati dell'item
    URI
    https://hdl.handle.net/10955/5559
    Descrizione

    Formato

    /
    UNIVERSITA’ DELLA CALABRIA Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica Dottorato di Ricerca in Information and Communications Technologies CICLO XXXII; Embedded sensor devices provided by processing capabilities are opening novel and exciting opportunities in the era of edge-computing Internet-of-Things (IoT). The workload decentralization leads to a plenty of benefits, including better reactivity and reliability and reduced data transfer costs. These advantages have a strong impact especially in the visual IoT field, for which the large bandwidth required by visual data is one of the most critical challenges. However, bringing vision technologies into smart nodes is not a trivial task, because of the stringent energy and performance requirements, in addition to the need of cost-effective and compact processing units. Heterogeneous architectures may represent the key to address these necessities. Among possible heterogeneous platforms, those based on reconfigurable devices such as Field Programmable Gate Arrays (FPGAs) show a high adaptability to a variety of workloads, which is an important goal for edge-computing. Therefore, their deployment in disparate IoT applications, ranging from video surveillance to autonomous driving, is emerging as a promising solution. This dissertation proposes a study on the suitability of modern heterogeneous FPGA System-on-Chips (SoCs) to implement embedded smart vision sensor nodes. To this purpose, several computer vision algorithms aimed to extract synthetic data from raw input frames have been analysed, and novel hardware-oriented solutions have been proposed to deploy them on heterogeneous SoCs. In all the presented cases, ranging from stereo vision to connected component analysis and deep learning, speed performances and/or energy efficiency are considerably improved with respect to state-of-the-art solutions. As an example, the proposed heterogeneous architecture for convolutional neural networks achieves a power efficiency up to 89.5% higher than competitive prior works, demonstrating its suitability in the scenario of energy-constrained and real-time IoT.
    Soggetto
    Heterogeneous FPGA; Computer vision; Embedded computing for IoTL; Low-power design; High-performance architectures
    Relazione
    ING-INF/01;

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV
     

     

    Ricerca

    Esplora perArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV