• Login
    Mostra Item 
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato
    • Mostra Item
    •   Unical - archivio istituzionale delle tesi di dottorato
    • Tesi di Dottorato
    • Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica - Tesi di Dottorato
    • Mostra Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    An active learning Approach based on learning models' parameters exploitation

    Mostra/Apri
    (1.194Mb)
    Creato da
    Scala, Francesco
    Flesca, Sergio
    Metadata
    Mostra tutti i dati dell'item
    URI
    https://hdl.handle.net/10955/5618
    Descrizione

    Formato

    /
    Universit a della Calabria Dipartimento di Ingegneria Informatica, Modellistica, Elettronica e Sistemistica Dottorato di ricerca in Information and Communication technologies. Ciclo XXXV; Arti cial Intelligence (AI) techniques and in particular Machine and Deep Learning (ML and DL), have been widely adopted to enhance various aspects of human life. ML algorithms can be categorized into four main types: Supervised Learning, Unsupervised Learning, Semi-supervised Learning, and Reinforcement Learning. A signi cant challenge in these techniques is the requirement for su cient labeled data for training. Active Learning (AL) is a machine learning framework that addresses this issue by selecting instances to be labeled in a smart way to optimize model training, i.e., AL reduces labeling time and leads to better-performing models by dynamically selecting the most representative samples to be labeled during the training phase. AL was proven to be e ective in di erent scenarios and its choice of querying a label depends on the cost and gain of obtaining the information. In this thesis, are presented two novel approaches for active learning in meta-learning models. The proposed methods, called LAL-IGradV and LAL-IGradV-VAE, select instances to be labeled using an estimate of their impact on the current classi er. This is achieved by evaluating the importance of previously labeled instances in training the classi cation model and training another model that estimates the importance of unlabeled instances. The approaches can be instantiated with any classi er that is trainable through gradient descent optimization, and in this study, is provided a formulation using a deep neural network. These approaches have not been thoroughly investigated in previous learning-to-active-learn methods and experimental results demonstrate its promising performance in scenarios where there are only a limited number of initially labeled instances. 2
    Relazione
    ING-INF/02;

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV
     

     

    Ricerca

    Esplora perArchivi & CollezioniData di pubblicazioneAutoriTitoliSoggettiQuesta CollezioneData di pubblicazioneAutoriTitoliSoggetti

    My Account

    LoginRegistrazione

    Policy e regolamenti
    Copyright © Università della Calabria - Sistema Bibliotecario di Ateneo - Servizio Automazione Biblioteche | DSpace 6.3
    Contattaci
    Theme by 
    @mire NV