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Abstract

Answer Set Programming (ASP) is a purely declarative programming paradigm
based on nonmonotonic reasoning and logic programming. The idea of ASP
is to represent a given computational problem by a logic program such that
its answer sets correspond to solutions, and then, use an answer set solver
to find such solutions. The ASP language is very expressive and allows the
representation of high-complexity problems (i.e., every problem in the second
level of the polynomial hierarchy); unfortunately, the expressive power of the
language comes at the price of an elevated cost of answer set computation. Even
if this fact has initially discouraged the development of ASP system, nowadays
several implementations are available, and the interest for ASP is growing in
the scientific community as well as in the field of industry.

In the last few years, significant technological enhancements have been achie-
ved in the design of computer architectures, with a move towards the adoption
of multi-core microprocessors. As a consequence, Symmetric Multi-Processing
(SMP) has become available even on non-dedicated machines. Indeed, at the
time of writing, the majority of computer systems and even laptops are equipped
with (at least one) dual-core processor. However, in the ASP context, the avail-
able systems were not designed to exploit parallel hardware; thus significant
improvements can be obtained by developing ASP evaluation techniques that
allow the full exploitation of the computational resources offered by modern
hardware architectures.

The evaluation of ASP programs is traditionally carried out in two steps. In
the first step an input program P undergoes the so-called instantiation process,
which produces a program P ′ semantically equivalent to P but not containing
any variable; in turn, P ′ is evaluated by using a backtracking search algorithm
in the second step.

The aim of this thesis is the design and the assessment of a number of par-
allel techniques devised for both steps of the evaluation of ASP programs. In
particular, a three-level parallel instantiation technique is presented for improv-
ing the efficiency of the instantiation process which might become a bottleneck
in common situations, especially when huge input data has to been dealt with.
Moreover, a parallel multi-heuristics search algorithm and a parallel lookahead
technique have been conceived for optimizing the second phase of the evaluation.

The mentioned parallel techniques has been implemented in the state-of-the-
art ASP system DLV. An extensive experimental analysis has been carried out
in order to assess the performance of the implemented prototypes. Experimental
results have confirmed the efficiency of the implementation and the effectiveness
of those techniques.
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Sommario

L’Answer Set Programming (ASP) è un paradigma di programmazione dichiara-
tivo basato sul ragionamento non-monotono e la programmazione logica. L’idea
alla base del ASP è di permettere la rappresentazione di un problema complesso
mediante un programma logico i cui answer set, determinati tramite un ASP
solver, corrispondono alle soluzioni ricercate. Il linguaggio dell’ASP è molto
espressivo, ed infatti, permette di rappresentare problemi di elevata complessità
computazionale (cioè, tutti i problemi appartenenti al secondo livello della ger-
archia polinomiale); ovviamente, la sua elevata espressività si accompagna ad
una elevata complessità del calcolo degli answer set. Anche se questo fatto ha
inizialmente scoraggiato lo sviluppo di sistemi ASP, esistono oggi diverse im-
plementazioni, e l’interesse per l’ASP è in forte crescita tanto nella comunità
scientifica quanto nel campo dell’industria.

Nell’ultimo decennio, gli sviluppi nella produzione del hardware hanno por-
tato al passaggio dal modello a singolo processore a quello multi-processore/
multi-core. Questo ha reso possibile l’adozione di sistemi paralleli di tipo SMP
anche per sistemi non dedicati. Infatti, ad oggi, la quasi totalità dei computer
in produzione, computer portatili compresi, è equipaggiato con almeno un pro-
cessore dual-core.

Nel campo dell’ASP, tuttavia, la maggior parte dei sistemi disponibili è stata
disegnata senza tener in conto la possibilità di usufruire di sistemi multiproces-
sore e non è in grado di sfruttare appieno la potenza computazionale offerta delle
moderne architetture hardware; per questo motivo, significativi miglioramenti
posso essere ottenuti sviluppando tecniche di valutazione parallela di programmi
ASP in grado di trarre vantaggio da tali architetture.

La valutazione di programmi ASP viene tradizionalmente effettuata in due
passi. Il primo passo, chiamato istanziazione , consta in un processo di traduzione
del programma in input P in uno P ′ semanticamente equivalente a P ma privo di
variabili. Tale programma P ′ viene successivamente valutato mediante l’utilizzo
di un algoritmo di backtracking, al fine di produrre le soluzioni di P.

L’obiettivo di questa tesi è lo studio, la progettazione e la valutazione di
tecniche parallele per la valutazione di programmi ASP. Più in dettaglio, pre-
sentiamo una tecnica a tre livelli per l’istanziazione parallela dei programmi, al
fine di migliorare l’efficienza di questa fase della valutazione, che, come è noto,
può diventare un collo di bottiglia specialmente nel caso di input di grandi di-
mensioni. Presentiamo inoltre due tecniche volte a potenziare la seconda fase
della valutazione di programmi ASP: una ricerca parallela multi-euristica ed il
calcolo parallelo dei valori della funzione usata dall’euristica di branching. È
stata inoltre realizzata una implementazione di tutte le tecniche sopra elencate
nel sistema DLV, uno dei sistemi ASP più diffusi allo stato dell’arte.
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I risultati di una esaustiva analisi sperimentale, effettuata al fine di valutare
sul campo le nuove tecniche, hanno confermato sia l’efficienza dell’implementazione
che l’efficacia delle tecniche proposte.
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Chapter 1

Introduction

Answer Set Programming (ASP) [1, 2, 3, 4, 5, 6] is a purely declarative for-
malism for knowledge representation and reasoning rooted in the fields of logic
programming and nonmonotonic reasoning. ASP is a rule-based language, which
allows for both disjunction in the head of rules and nonmonotonic negation in
the body of rules. Problem solving with ASP is a declarative approach, thus, no
procedural information is encoded into an ASP program. More in detail, given
a computational problem P a set of ASP rules P, which is called ASP program,
has to be provided such that the solutions of P correspond to the answer sets
of P.

The language of ASP is characterized by a relatively high expressive power [7,
8], since it allows the representation of all problems belonging to the second level
of the polynomial hierarchy [2].1 This language expressivity is needed for solving
several significant complex problems, such as tasks in AI, in Knowledge Repre-
sentation and Reasoning, etc. (see [10]), that are non-polynomially reducible to
SAT. Unfortunately, the expressive power of the language is associated with an
elevated computational cost of evaluation that makes the implementation of ef-
fective and efficient ASP systems a difficult task. This issue has been addressed
since the birth of ASP, and has initially discouraged the implementation of scal-
able systems. However, after some pioneering work [11, 12], there are nowadays a
number of systems that support ASP and its variants [7, 13, 14, 15, 16, 17, 18].
The availability of efficient systems made ASP profitably exploitable in real-
world applications [19, 20, 21] and, recently, also in industry [22, 23, 24].

The answer set computation engines traditionally operate on a ground trans-
formation of the original program, i.e., a program that does not contain any
variable, but is semantically equivalent to the original input. Therefore, the
computation of ASP programs is commonly carried out as a two-step process.
In the first step, an input program P undergoes the so-called instantiation (or
grounding) process, which produces a ground program P ′ semantically equiva-
lent to P. This task is usually performed starting from the ground information of
P that is exploited for generating new ground rules, and then, iterating this pro-
cess until no new information can be derived. The second step, which amounts
to computing the answer sets of P ′, is performed using a backtracking search
algorithm that generates candidate solutions; those, in turn, undergo a stability

1It is usual for logic-based languages to refer to data complexity [9].

1



2 CHAPTER 1. INTRODUCTION

check that allows the filtering of the actual answer sets. Both the instantiation
and the propositional search phase are complex, i.e., computationally-expensive
tasks [2, 8, 25]), and providing efficient evaluation techniques is crucial for the
development of performant ASP systems.

Concerning the first task, nowadays it is widely recognized that having an
efficient instantiation procedure is crucial for the performance of the entire ASP
system. Many optimization techniques have been proposed for this purpose [26,
27, 28]; nevertheless, the performance of instantiators can be further improved
in many cases, especially when the input data are significantly large (real-world
instances, for example, may count hundreds of thousands of logic facts).

Concerning the propositional search task, a crucial role is played by the
heuristic criteria employed for guiding the backtracking search for answer sets.
The computation of the heuristic values in an answer set solver might be, how-
ever, computational expensive [29], and might become a bottleneck for the over-
all process of answer set computation. Moreover, the choice of the most suitable
heuristics for the program at hand is still a fundamental point since it can deter-
mine a fast traversal of the search space. However, the choice of the heuristics is
usually made at the beginning of the search process and remains a static input
parameter in most modern ASP Solvers. Impressive speedups could be obtained
if the solver can adopt several competing heuristics at the same time.

Nonetheless, the majority of ASP solvers rely on serial algorithms for both
the instantiation and the propositional search; however, the application of par-
allel computation techniques can be fruitfully exploited to increase the perfor-
mances of the solvers in both phases. Note also that, in the last decade, Moore’s
law on the progress of computers computational power has started to fail in the
case of single processor machines. Indeed, the technological enhancement in
computer architecture has moved from increasing the computational power of
single CPUs to the adoption of multiple-core/multi-processor machines. The
advantages of Symmetric Multi-Processing (SMP) [30] are now available also
on non-dedicated machines, whereas, in the past, this parallel computation
paradigm was supported only by expensive servers and workstations. Nowa-
days, the majority of the commercial personal computers and even laptops are
equipped with (at least one) dual-core processor. This means that the benefits
of true parallel processing can be enjoyed also by entry-level systems and PCs.

However, the performance-hungry ASP systems are mainly based on serial
algorithms (especially in the case of the instantiation task) and, thus, are not
able to exploit fully the computational power offered by modern hardware ar-
chitectures.

This thesis addresses this issue, and is about the design and the implementa-
tion of a number of techniques for the parallel evaluation of ASP programs. The
main contribution is related to the instantiation process for which we designed:

1. A three-level parallel evaluation technique, which allows:

• breaking up the input program into independent sub-programs and
computing their instantiation in parallel,

• parallelizing the instantiation of the rules within the sub-programs,

• breaking up the computation of a single rule in order to compute its
instantiation concurrently;
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2. a heuristics for optimizing the workload distribution among processors;

3. a heuristics for granularity control.

Besides the design of the parallel instantiation strategy, we also investigated
possible methods for the exploitation of parallelism during the propositional
search phase, and designed:

4. A multi-heuristics parallel search, which allows the exploration of the
search space concurrently with different heuristic criteria;

5. a parallel lookahead technique, which allows the concurrent computation
of the heuristic function values;

6. a technique for the parallelization of the model checking phase.

These techniques were implemented into the state-of-the-art ASP system
DLV, using a multi-threaded approach, thus obtaining a parallel instantiator
and a parallel model generator.

An extensive experimental analysis were carried out considering problem in-
stances commonly employed for benchmarking ASP systems. More in detail,
a scalability analysis was performed for the parallel instantiator in order to
assess its capability of handling a large amount of input data; and, a set of het-
erogeneous benchmarking problems were used for assessing the parallel model
generator performances and verifying the flexibility of the approach. The ex-
perimental results confirmed the efficacy of the proposed techniques.

The remainder of this thesis is structured as follows: in Chapter 2 the ASP
framework is introduced, including a description of syntax and semantics, and
a discussion of its usage as a tool for knowledge representation; in Chapter 3
we discuss the existing ASP program serial evaluation techniques, in particular,
we detail the ones exploited in the ASP system DLV; the main contribution of
the thesis is presented in Chapter 4, where the parallel instantiation techniques
are presented; then, in Chapter 5, the parallel techniques for the propositional
search phase are described; implementation issues and experimental results are
illustrated in Chapter 6; finally, related works are discussed in Chapter 7 and
conclusions are drawn in Chapter 8.
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Chapter 2

Answer Set Programming

In this chapter we introduce the basics of Answer Set Programming (ASP). The
chapter is structured as follows: in Section 2.1 we describe the syntax of the
language extended with aggregate functions, and in Section 2.2 we present the
semantics; in Section 2.3 we illustrate some relevant subclasses of ASP programs;
finally, in Section 2.4 the usege of ASP as a tool for Knowledge Representation
(KR) is described.

2.1 Syntax

Let V be a set of variables, C be a set of constants, and S be a set of pred-
icates symbols. Hereafter in the remainder of this thesis we assume variables
to be strings starting with uppercase letters and constants to be non-negative
integers or strings starting with lowercase letters. Moreover, predicates are
strings starting with lowercase letters. An arity (non-negative integer) is asso-
ciated with each predicate. Moreover, the language allows the use of built-in
predicates (i.e., predicates with a fixed meaning) for the common arithmetic
operations (i.e., =, ≤, ≥, +, ×, etc.; usually written in infix notation).

A variable or a constant is a term. A standard atom is an expression
p(t1, . . . , tn), where p is a predicate of arity n and t1, . . . , tn are terms. An
atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants.

A set term is either a symbolic set or a ground set. A symbolic set is a pair
{Terms : Conj}, where Terms is a list of terms (variables or constants) and
Conj is a conjunction of standard atoms, that is, Conj is of the form a1, . . . , ak
and each ai (1 ≤ i ≤ k) is a standard atom.

Example 2.1.1. For example, consider the set term

{X :p(X, a), q(X)}.

Assume that we know the ground atoms p(1, a), p(2, a), q(1) and q(2) to be
true.

The set term stands for the set of all the possible values of the variable X
such that the conjunction a(X, a), p(X) is true, i.e., {X |p(X, a) and q(X) are

5



6 CHAPTER 2. ANSWER SET PROGRAMMING

true}. In this case, the possible values are

{X :p(X, a), q(X)} X ∈ {1, 2}.

�

A ground set is a set of pairs of the form 〈consts : conj 〉, where consts is a
list of constants and conj is a conjunction of ground standard atoms.

We define an aggregate function an expression of the form f(S), where S is
a set term, and f is an aggregate function symbol.

Intuitively, an aggregate function can be thought of as a (possibly partial)
function mapping multisets of constants to a constant. Throughout the rest of
the thesis, we will adopt the notation of the DLV system [7] for representing
aggregates.

Example 2.1.2. Below is a list of the most common aggregate function; all
these functions consider the element of the set term as integers.

• #min: The function identifies the minimal term among the elements of
the set term. This function is undefined for the empty set.

• #max: The function identifies the maximal term among the elements of
the set term. This function is undefined for the empty set.

• #count: The function determines the number of elements of the set term.

• #sum: The function determines the sum of the elements of the set term.

• #times, The function determines the product of the elements of the set
term.

• #avg, The function determines the average value of the elements of the
set term. This function is undefined for the empty set.

�

An aggregate atom is a structure of the form f(S) ≺ T , where f(S) is an
aggregate function, ≺ ∈ {<, ≤, >,≥} is a comparison operator, and T is a term
(variable or constant). An aggregate atom f(S) ≺ T is ground if T is a constant
and S is a ground set.

Example 2.1.3. The following are aggregate atoms in DLV notation:

#max{X : p(X,Y ), q(X)} > Z
#max{〈2 : p(2, a), q(2)〉, 〈2 : p(2, b), q(2)〉} > 1

�

A literal is either (i) a standard atom, or (ii) a standard atom preceded by
the negation as failure symbol not, or (iii) an aggregate atom. Complementary
standard literals are of the form a and not a, where a is a standard atom.
For a standard literal ℓ, we denote by ¬.ℓ the complement of ℓ. With a little
abuse of notation, if L is a set of standard literals, we denote with ¬.L the set
{¬.ℓ | ℓ ∈ L}.



2.2. SEMANTICS 7

Example 2.1.4. Example of literals are person(joe), father(joe, john),
not father(joe, joseph), #max{X : age(X,Y ), person(Y )} < 18.

�

A rule r is a construct of the form

a1 ∨ · · · ∨ an :− ℓ1, · · · , ℓm.

where a1 · · · an are standard atoms, ℓ1, . . . , ℓm are literals, n ≥ 0 , and m ≥ 0.
The disjunction a1 ∨ · · · ∨ an is referred to as the head of r, and the conjunction
ℓ1, . . . , ℓm as the body of r. If the body is empty (m = 0) then the rule is called
fact. If the head is empty (n = 0) the the rule is called integrity constraint (or
simply constraint). We denote the set of head atoms by

H(r) = {a1, . . . , an},

and the set of body literals by

B(r) = {ℓ1, . . . , ℓm}.

Moreover, the set of positive standard body literals is denoted by B+(r), the
set of negative standard body literals by B−(r), and the set of aggregate body
literals by BA(r). A rule r is ground if all the literals in H(r) and in B(r) are
ground. A program is a set of rules. A program is ground if all its rules are
ground. Accordingly with the database terminology, a predicate occurring only
in facts is referred to as an EDB predicate, all others as IDB predicates; the set
of facts of P is denoted by EDB(P ).

The variables of a rule can be local or global. A local variable of a rule r is a
variable appearing solely in sets terms of r; otherwise the variable is stated as
global. A rule r is safe if both the following conditions hold: (i) for each global
variable X of r there is a positive standard literal ℓ ∈ B+(r) such that X appears
in ℓ; (ii) each local variable of r appearing in a symbolic set {Terms : Conj}
also appears in Conj . Note that condition (i) is the standard safety condition
adopted in LP to guarantee that the variables are range restricted [31], while
condition (ii) is specific for aggregates. A program is safe if all its rules are safe.

Example 2.1.5. Consider the following rules:

person(X) :− father(X,Y ).
animal(X) ∨ mineral(X):− not plant(X).
p(X) :− q(X,Y, V ), #max{Z : r(Z), a(Z, V )} > Y.
p(X) :− q(X,Y, V ), #sum{Z : r(X), a(X,S)} > Y.

The first rule is safe, while the second is not because it violates condition (i)
due to variable X. The third rule is safe, while the fourth is not because variable
Z violates condition (ii). �

2.2 Semantics

In this section we describe the semantics of ASP programs, which is defined in
terms of the set of its answer Sets. Answers Sets are defined only for ground
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programs. To determine the answer sets of a non-ground program P, the same
undergoes a process known as program instantiation which produces a ground
program P’ semantically equivalent to P. Before describing the instantiation
process we introduce some basic notions.

Given an ASP program P, the universe of P, denoted by UP , is the set of
constants appearing in P. The base of P, denoted by BP , is the set of standard
atoms constructible from predicates of P with constants in UP .

A substitution is a mapping from a set of variables to UP . We define a global
substitution for a rule r a substitution from the set of the global variables of
r to UP ; we define a local substitution for a rule r the substitution from the
set of local variables of r to UP . Given a set term without global variables
S = {Terms :Conj}, the instantiation of S is the following ground set:

inst(S) = {〈σ(Terms) :σ(Conj )〉 | σ is a local substitution for S}.

A ground instance of a rule r is obtained in two steps: First, a global substitution
σ for r is applied, and then every set term S in rσ is replaced by its instantiation
inst(S). The instantiation Ground(P) of a program P is the set of instances of
all the rules in P.

Example 2.2.1. Consider the following program P1:

q(1) :− not p(2, 2). q(2) :− not p(2, 1).
p(2, 2) :− not q(1). p(2, 1) :− not q(2).
t(X) :− q(X), #sum{Y : p(X,Y )} > 1.

The instantiation Ground(P1) of P1 is the following program:

q(1) :− not p(2, 2). q(2) :− not p(2, 1).
p(2, 2) :− not q(1). p(2, 1) :− not q(2).
t(1) :− q(1), #sum{〈1 : p(1, 1)〉, 〈2 : p(1, 2)〉} > 1.
t(2) :− q(2), #sum{〈1 : p(2, 1)〉, 〈2 : p(2, 2)〉} > 1.

�

Given a set X, let 2
X

denote the set of all multisets over elements from X.
The domain of an aggregate function is the set of multisets on which the function
is defined. Without loss of generality, we assume that aggregate functions map
to Z (the set of integers).

Example 2.2.2. Let us look at common domains for the aggregate functions of

Example 2.1.2: #count is defined over 2
UP, #sum and #times over 2

Z
, #min,

#max and #avg over 2
Z
\ {∅}. �

An interpretation I for an ASP program P is a consistent set of standard
ground literals, that is, I ⊆ BP ∪ ¬.BP and I ∩ ¬.I = ∅. We denote by I+ and
I− the set of standard positive and negative literals occurring in I, respectively.
An interpretation can be total or partial: it is total if I+∪¬.I− = BP ; otherwise
I is partial. The set of all the interpretations of P is denoted by IP .

The evaluation of a standard literal ℓ with respect to an interpretation I
results in one of the following alternatives: (i) if ℓ ∈ I, then ℓ is true with
respect to I; (ii) if ¬.ℓ ∈ I, then ℓ is false with respect to I; (iii) otherwise, if
ℓ 6∈ I and ¬.ℓ 6∈ I, then ℓ is undefined with respect to I.
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Set terms, aggregate functions and aggregate literals can be also evaluated
with respect to an interpretation, giving rise to a multiset, a value, and a truth
value, respectively. We first consider a total interpretation I. The evaluation
I(S) of a set term S with respect to I is the multiset I(S) defined as follows:
Let SI = {〈t1, ..., tn〉 | 〈t1, ..., tn :Conj 〉 ∈S and all the atoms in Conj are true
with respect to I}; I(S) is the multiset obtained as the projection of the tuples
of SI on their first constant, that is, I(S) = [t1 | 〈t1, ..., tn〉 ∈ SI ]. The evaluation
I(f(S)) of an aggregate function f(S) with respect to I is the result of the
application of f on I(S).1 If the multiset I(S) is not in the domain of f ,
then I(f(S)) = ⊥ (where ⊥ is a fixed symbol not occurring in P). A ground
aggregate literal ℓ = f(S) ≺ k is true with respect to I if both I(f(S)) 6= ⊥ and
I(f(S)) ≺ k hold; otherwise, ℓ is false.

Example 2.2.3. Let I1 be a total interpretation having I+1 = {p(3), q(2, 3),
q(3, 3), q(4, 3)r(2), r(3)}. Assuming that all variables are local, we can check
that:

• #count{Y : q(X,Y )} < 2 is false; indeed, if S1 is the corresponding
ground set, then SI1

1 = {〈3〉}, I1(S1) = [3] and #count([3]) = 1.

• #count{X,Y : q(X,Y )} < 2 is true; indeed, if S2 is the correspond-
ing ground set, then SI1

2 = {〈2, 3〉, 〈3, 3〉, 〈4, 3〉}, I1(S2) = [2, 3, 4] and
#count([2, 3, 4]) = 3.

• #times{X : q(X,Y ), p(Y )} < 25 is true; indeed, if S3 is the corre-
sponding ground set, then SI1

3 = {〈2〉, 〈3〉, 〈4〉}, I1(S3) = [2, 3, 4] and
#times([2, 3, 4]) = 24.

• #times{Y,X : q(X,Y ), p(Y )} < 24 is false; indeed, if S3 is the corre-
sponding ground set, then SI1

3 = {〈3, 2〉, 〈3, 3〉, 〈4, 3〉}, I1(S3) = [3, 3, 3]
and #times([3, 3, 3]) = 27.

• #sum{X : q(X,Y ), r(X)} <= 5 is true; indeed, if S4 is the corresponding
ground set, then SI1

4 = {〈2, 3〉, 〈3, 3〉}, I1(S4) = [2, 3] and #sum([2, 3]) = 5.

• #sum{X,Y : q(X,Y ), r(Y )} <= 5 is false; indeed, if S5 is the correspond-
ing ground set, then SI1

5 = {〈2, 3〉, 〈3, 3〉, 〈4, 3〉}, I1(S5) = [2, 3, 4] and
#sum([2, 3, 4]) = 9.;

• #min{X,Y : q(X,Y ), r(Y )} <= 5 is true; indeed, if S5 is the correspond-
ing ground set, then SI1

5 = {〈2, 3〉, 〈3, 3〉, 〈4, 3〉}, I1(S5) = [2, 3, 4] and
#min([2, 3, 4]) = 2.;

• #min{X : f(X), h(X)} >= 2 is false; indeed, if S6 is the corresponding
ground set, then SI1

6 = ∅, I1(S6) = ∅, and I1(#min(∅)) = ⊥ (we recall
that ∅ is not in the domain of #min).

�

We now consider a partial interpretation I and refer to an interpretation J
such that I ⊆ J as an extension of I. If a ground aggregate literal ℓ is true
(resp. false) with respect to each total interpretation J extending I, then ℓ is
true (resp. false) with respect to I; otherwise, ℓ is undefined.

1In this thesis, we only consider aggregate functions the value of which is polynomial-time
computable with respect to the input multiset.
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Example 2.2.4. Let S7 be the ground set in the literal ℓ1 = #sum{〈1 :
p(2, 1)〉, 〈2 : p(2, 2)〉} > 1, and consider a partial interpretation I2 = {p(2, 2)}.
Since each total interpretation extending I2 contains either p(2, 1) or not p(2, 1),
we have either I2(S7) = [2] or I2(S7) = [1, 2]. Thus, the application of #sum

yields either 2 > 1 or 3 > 1, and thus ℓ1 is true with respect to I2. �

Remark 1. Observe that our definitions of interpretation and truth values
preserve “knowledge monotonicity”: If an interpretation J extends I (i.e., I ⊆
J), each literal which is true with respect to I is true with respect to J , and
each literal which is false with respect to I is false with respect to J as well.

An interpretation I satisfies a rule r if at least one of the following conditions
is satisfied: (i) H(r) is true with respect to I; (ii) some literal in B(r) is false with
respect to I; (iii) all the atoms in H(r) and some literal in B(r) are undefined
with respect to I. An interpretation M is a model of an ASP program P if
all the rules r in Ground(P) are satisfied with respect to M . A model M for
P is (subset) minimal if no model N for P exists such that N+ ⊂ M+. Note
that, under these definitions, the word interpretation refers to a possibly partial
interpretation, while a model is always a total interpretation.

Example 2.2.5. Consider again the program P1 of Example 2.2.1. Let I3 be
a total interpretation for P1 such that I+3 = {q(2), p(2, 2), t(2)}. Then I3 is a
minimal model of P1. �

Definition 1 ([32]). Given a ground ASP program P and a total interpretation
I, let PI denote the transformed program obtained from P by deleting all rules
in which a body literal is false w.r.t. I. I is an answer set of a program P if it
is a minimal model of Ground(P)I .

The set of all answer sets of a program P will be denoted in the remainder
of this thesis with ANS(P).

Example 2.2.6. Consider the following two programs:

P2: {p(a):−#count{X : p(X)} > 0.}
P3: {p(a):−#count{X : p(X)} < 1.}

then, we have that

Ground(P2) = {p(a):−#count{〈a : p(a)〉} > 0.}
Ground(P3) = {p(a):−#count{〈a : p(a)〉} < 1.}

and two interpretation I1 = {p(a)}, I2 = ∅. Then, Ground(P1)I1 = Ground(P1),
Ground(P1)I2 = ∅, and Ground(P2)I1 = ∅, Ground(P2)I2 = Ground(P2) hold.

I2 is the only answer set of P1 (because I1 is not a minimal model of
Ground(P1)I1), while P2 admits no answer set (I1 is not a minimal model of
Ground(P2)I1 , and I2 is not a model of Ground(P2) = Ground(P2)I2). �

Note that any answer set A of P is also a model of P because Ground(P)A ⊆
Ground(P), and rules in Ground(P) −Ground(P)A are satisfied w.r.t. A.

Another possible characterization is given by the notion of supportedness.
Given an interpretation I for a ground program P, we say that a ground atom
A is supported in I if there exists a supporting rule r in the ground instantiation
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Figure 2.1: Graphs (a) G(P4), and (b) G(P5)

of P such that the body of r is true w.r.t. I and A is the only true atom in the
head of r.

Proposition 2.2.7. [33, 34, 10] If M is an answer set of a program P, then
all atoms in M are supported.

2.3 Relevant Sub-Classes

In this section, we describe relevant syntactic sub-classes of ASP programs. The
definition of dependency graph is given first; then we define the class of stratified
programs, and the class of head-cycle free programs.

Dependency Graph With every ground program P, we associate a directed
graph G(P) = (N,E), called the dependency graph of P, where (i) the nodes in
N are the atoms of P, (ii) there is an arc in E from a node a to a node b iff
there is a rule r in P such that b appears in the head of r and a appears in the
positive body of r.

The graph G(P) singles out the dependencies of the head atoms of a rule r
from the positive atoms in its body. Negative literals cause no arc in G(P).

Example 2.3.1. Consider the following two programs:

P4 = {a ∨ b. c:−a. c:−b.}
P5 = P4 ∪ {d ∨ e:−a. d:−e. e:−d, not b.}

The dependency graph G(P4) is depicted in Figure 2.1 (a), while the dependency
graph G(P5) is depicted in Figure 2.1 (b).

�

Stratified Programs. We introduce now the class of stratified ASP programs.

Definition 2. Functions from ‖ ‖ : BP → {0, 1, . . . } from the ground set of
literal BP to finite ordinals are called level mappings of P.

Level mapping is used now for defining (locally) stratified programs.
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Definition 3. A disjunctive ASP program P is called (locally) stratified [35, 36]
if there is a level mapping‖ ‖s of P such that, for every rule r of Ground(P),

(1) for any l ∈ B+(r), and for any l′ ∈ H(r), ‖ l‖s ≤ ‖ l′‖s;

(2) for any l ∈ B−(r), and for any l′ ∈ H(r), ‖ l‖s < ‖ l′‖s;

(3) for any l, l′ ∈ H(r), ‖ l‖s = ‖ l′‖s.

Example 2.3.2. Consider the following two programs.

P6: p(a) ∨ p(c) :− not q(a). P7: p(a) ∨ p(c) :− not q(b).
p(b) :− not q(b). q(b) :− not q(a).

It is easy to see that program P6 is stratified, while program P7 is not. A suit-
able level mapping for P6 is the following:

‖p(a)‖s = 2 ‖p(b)‖s = 2 ‖p(c)‖s = 2 ‖q(a)‖s = 1 ‖q(b)‖s = 1 ‖q(c)‖s = 1

As for P6 , an admissible level mapping would need to satisfy ‖p(a)‖s < ‖q(b)‖s
and ‖q(b)‖s < ‖p(a)‖s, which is impossible. �

An important property of locally stratified ASP programs is given by the fol-
lowing proposition.

Proposition 2.3.3. [6] A locally stratified normal (non-disjunctive) ASP pro-
grams has at most one answer set.

It is worthwhile noting that the presence of disjunction invalidates Proposi-
tion 2.3.3. Indeed, the program {a ∨ b.} has two answer sets, namely {a} and
{b}.

Head-Cycle Free Programs. Another relevant property of disjunctive ASP
programs is head-cycle freeness (HCF) [37].

The dependency graphs allow us to define HCF programs. [37]. A program
P is HCF iff there is no rule r in P such that two atoms occurring in the head
of r occur in a single cycle of G(P).

Example 2.3.4. The dependency graphs given in Figure 2.1 reveal that pro-
gram P4 of Example 2.3.1 is HCF and that program P5 is not HCF, as rule
d ∨ e:−a contains in its head two atoms belonging to the same cycle of G(P5).
� �

It has been shown that HCF programs are computationally easier than gen-
eral (non-HCF) programs.

Proposition 2.3.5. [37, 2] Deciding whether an atom belongs to some answer
set of a ground HCF program P is NP-complete, while deciding whether an atom
belongs to some answer set of a ground (non-HCF) program P is ΣP

2 -complete.
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2.4 Knowledge Representation

Answer Set Programming is employed as a tool for knowledge representation and
common sense reasoning in several application domains, ranging form classical
deductive databases to artificial intelligence. ASP is particular suitable for
handling incomplete knowledge and non-monotonic reasoning, and allows for
encoding problems in a declarative fashion. Thanks to this approach, writing an
ASP program is as easy as describing the problem domain, while the complexity
of the reasoning task is hidden by using a dedicated ASP system. In addition,
the (optional) separation of a fixed non-ground program from an input database
allows one to obtain uniform solutions over varying instances.

ASP is a powerful formalisms, and allows complex problems to be expressed;
its expressive power captures all problems belonging to the second level of the
polynomial hierarchy (the complexity class ΣP

2 ). This high expressive power
is significantly relevant for approaching hard problems; for example, in solving
planning and diagnosis problems, or, in the field of Artificial Intelligence, for
solving problems not reducible to SAT instances.

ASP allows the encoding of problems in an intuitive and concise fashion
following a “Guess&Check” programming methodology (originally introduced
in [38] and refined in [7]). According to this approach a program P which
encodes a problem P consists of the following parts:

Input Instance: An instance F of the problem P is specified in input using a
database of facts.

Guess Part: A set of disjunctive rules G ⊆ P, referred to as the “guessing
part”, is used the define the search space .

Check Part: The search space is then pruned by the “checking part”, consist-
ing of a set of constraints C ⊆ P which impose some properties to be verified.

Basically, the first two parts of the program, that is, the input instance
and the guessing part, represent the “candidate solutions” to the problem. By
adding the check part those solutions are filtered in order to guarantee that the
answer sets of the resulting program represent exactly the admissible solutions
for the input instance. The following example represents the typical application
of the Guess&Check methodology.

Example 2.4.1. Suppose that we want to partition a set of people into two
groups, but we also know that some pairs of people dislike each other, thus we
have to keep those two in different groups. Assume that the input instance
consists of the following facts:

person(bob). person(eve). dislike(bob, eve).

So as, applying the guess&check methodology, the guess part would model
the possible assignments of persons to groups:

group(P, 1) ∨ group(P, 2) :− person(P ).
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The resulting program (input instance + guess) produces the following an-
swer set:

{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 1)}
{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 2)}
{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 1)}
{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 2)}

However, we want to discard assignments in which people that dislike each other
belong to the same group. To this end, we add the checking part by writing the
following constraint:

:− group(P1, G), group(P2, G), dislike(P1, P2).

Now, adding the constraint to the original program allows us to obtain the
intended answer sets, as the checking part acted as a sort of filter:

{person(bob), person(eve), dislike(bob, eve), group(bob, 1), group(eve, 2)}
{person(bob), person(eve), dislike(bob, eve), group(bob, 2), group(eve, 1)}

�

In the following, we illustrate the use of ASP as a tool for knowledge repre-
sentation by example. More in details, we present a number of problems that
can be naturally encoded using ASP: the first one is a problem taken from clas-
sic deductive database applications; the others are well-known hard problems
that can be solved applying the “Guess&Check” programming style.

Reachability. Given a finite directed graph G = (V,A), we want to compute
all pairs of nodes (a, b) ∈ V × V such that b is reachable from a through a
nonempty sequence of arcs in A. In different terms, the problem amounts to
computing the transitive closure of the relation A.

The input graph is encoded by assuming that A is represented by the binary
predicate arc(X,Y ), where a fact arc(a, b) means that G contains an arc from
a to b, i.e., (a, b) ∈ A; whereas, the set of nodes V is not explicitly represented,
since the nodes appearing in the transitive closure are implicitly given by these
facts.

The following program then defines a predicate reachable(X,Y ) containing
all facts reachable(a, b) such that b is reachable from a through the arcs of the
input graph G:

r1: reachable(X,Y ):−arc(X,Y ).

r2: reachable(X,Y ):−arc(X,U), reachable(U, Y ).

The first rule states that that node Y is reachable from node X if there is an
arc in the graph from X to Y , whereas the second rule represents the transitive
closure by stating that node Y is reachable from node X if there is a node U
such that U is directly reachable from X (there is an arc from X to U) and Y
is reachable from U .
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As an example, consider a graph represented by the following facts:

arc(1, 2). arc(2, 3). arc(3, 4).

The single answer set of the program reported above together with these three
facts program is {reachable(1, 2), reachable(2, 3), reachable(3, 4), reachable(1, 3),
reachable(2, 4), reachable(1, 4), arc(1, 2), arc(2, 3), arc(3, 4)}. The first three re-
ported literals are inferred by exploiting the rule r1, whereas the other literals
containing the predicate reachable are inferred by using rule r2.

Hamiltonian Path. Given a finite directed graph G = (V,A) and a node
a ∈ V of this graph, does there exist a path in G starting at a and passing
through each node in V exactly once?

This is a classical NP-complete problem in graph theory. Suppose that the
graph G is specified by using facts over predicates node (unary) and arc (bi-
nary), and the starting node a is specified by the predicate start (unary). Then,
the following program Php solves the Hamiltonian Path problem:

r1: inPath(X,Y ) ∨ outPath(X,Y ):−arc(X,Y ).

r2: reached(X):−start(X).

r3: reached(X):−reached(Y ), inPath(Y,X).

r4: :−inPath(X,Y ), inPath(X,Y 1), Y <> Y 1.

r5: :−inPath(X,Y ), inPath(X1, Y ), X <> X1.

r6: :−node(X), not reached(X), not start(X).

The disjunctive rule (r1) guesses a subset S of the arcs to be in the path, while
the rest of the program checks whether S constitutes a Hamiltonian Path. Here,
an auxiliary predicate reached is defined, which specifies the set of nodes which
are reached from the starting node. Doing this is very similar to reachability,
but the transitivity is defined over the guessed predicate inPath using rule r3.
Note that reached is completely determined by the guess for inPath, no further
guessing is needed.

In the checking part, the first two constraints (namely, r4 and r5) ensure that
the set of arcs S selected by inPath meets the following requirements, which
any Hamiltonian Path must satisfy: (i) there must not be two arcs starting at
the same node, and (ii) there must not be two arcs ending in the same node.
The third constraint enforces that all nodes in the graph are reached from the
starting node in the subgraph induced by S.

Let us next consider an alternative program P ′
hp, which also solves the Hamil-

tonian Path problem, but intertwines the reachability with the guess:

r1: inPath(X,Y ) ∨ outPath(X,Y ):−reached(X), arc(X,Y ).

r2: inPath(X,Y ) ∨ outPath(X,Y ):−start(X), arc(X,Y ).

r3: reached(X):−inPath(Y,X).

r4: :−inPath(X,Y ), inPath(X,Y 1), Y <> Y 1.

r5: :−inPath(X,Y ), inPath(X1, Y ), X <> X1.

r6: :−node(X), not reached(X), not start(X).
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Here, the two disjunctive rules (r1 and r2), together with the auxiliary rule
r3, guess a subset S of the arcs to be in the path, while the rest of the program
checks whether S constitutes a Hamiltonian Path. Here, reached is defined
in a different way. In fact, inPath is already defined in a way that only arcs
reachable from the starting node will be guessed. The remainder of the checking
part is the same as in Php.

Ramsey Numbers. In the previous example, we have seen how a search
problem can be encoded in an ASP program whose answer sets correspond to
the problem solutions. We now build a program whose answer sets witness that
a property does not hold, i.e., the property at hand holds if and only if the
program has no answer set. We next apply the above programming scheme to
a well-known problem of number and graph theory.

The Ramsey number R(k,m) is the smallest integer n such that, no matter
how we colour the arcs of the complete undirected graph (clique) with n nodes
using two colours, say red and blue, there is a red clique with k nodes (a red
k-clique) or a blue clique with m nodes (a blue m-clique).

Ramsey numbers exist for all pairs of positive integers k and m [39]. We
next show a program Pra that allows us to decide whether a given integer n
is not the Ramsey Number R(3, 4). By varying the input number n, we can
determine R(3, 4), as described below. Let Fra be the collection of facts for
input predicates node and arc encoding a complete graph with n nodes. Pra is
the following program:

r1: blue(X,Y ) ∨ red(X,Y ):−arc(X,Y ).
r2: :− red(X,Y ), red(X,Z), red(Y,Z).
r3: :− blue(X,Y ), blue(X,Z), blue(Y,Z), blue(X,W ), blue(Y,W ),

blue(Z,W ).

Intuitively, the disjunctive rule r1 guesses a colour for each edge. The first
constraint (r2) eliminates the colourings containing a red clique (i.e., a complete
graph) with 3 nodes, and the second constraint (r3) eliminates the colourings
containing a blue clique with 4 nodes. The program Pra ∪ Fra has an answer
set if and only if there is a colouring of the edges of the complete graph on n
nodes containing no size 3 red clique and no size 4 blue clique. Thus, if there
is an answer set for a specific n, then n is not R(3, 4), that is, n < R(3, 4). On
the other hand, if Pra ∪ Fra has no answer set, then n ≥ R(3, 4). Thus, the
smallest n such that no answer set is found is the Ramsey number R(3, 4).

Team Building A project team has to be built from a set of employees ac-
cording to the following specifications

(p1) The team consists of a certain number of employees.

(p2) At least a given number of different skills must be present in the team.

(p3) The sum of the salaries of the employees working in the team must not
exceed the given budget.

(p3) The salary of each individual employee is within a specified limit.
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(p3) The number of women working in the team has to reach at least a given
number.

Suppose that our employees are provided by a number of facts of the form
emp(EmpId,Sex,Skill,Salary); the size of the team, the minimum number of
different skills, the budget, the maximum salary, and the minimum number of
women are specified by the facts nEmp(N), nSkill(N), budget(B), maxSal(M),
and women(W ). We then encode each property pi above by an aggregate atom
Ai , and enforce it by an integrity constraint containing notAi .

r1: in(I) ∨ out(I):−emp(I, Sx, Sk, Sa).
r2: :−nEmp(N), not#count{I : in(I)} = N.
r3: :−nSkill(M), not#count{Sk : emp(I, Sx, Sk, Sa), in(I)} ≥ M.
r4: :−budget(B), not#sum{Sa, I : emp(I, Sx, Sk, Sa), in(I)} ≤ B.
r5: :−maxSal(M), not#max{Sa : emp(I, Sx, Sk, Sa), in(I)} ≤ M.
r6: :−women(W ), not#count{I : emp(I, f, Sk, Sa), in(I)} ≥ W.

Intuitively, the disjunctive rule “guesses” whether an employee is included
in the team or not, while the five constraints correspond one-to-one to the five
requirements p1-p5 . Thanks to the aggregates the translation of the specifica-
tions is surprisingly straightforward. The example highlights the usefulness of
representing both sets and multisets in our language; the latter can be obtained
by specifying more than one variable in V ars of a symbolic set {V ars : Conj}.
For instance, the encoding of p2 requires a set, as we want to count different
skills; two employees in the team having the same skill, should count once w.r.t.
p2 . On the contrary, p3 requires summing the elements of a multiset; if two
employees have the same salary, both salaries should be summed for p3 . This
is obtained by adding the variable I, which uniquely identifies every employee,
to V ars. The valuation of {Sa, I : emp(I, Sx, Sk, Sa), in(I)} yields the set
S = {Sa, I : Sais the salary of employee I in the team}. The sum function is
then applied on the multiset of the first components Sa of the tuples 〈Sa, I〉 in
S.

Strategic Companies In the examples considered so far, the complexity of
the problems is located at most on the first level of the Polynomial Hierarchy
[40] (in NP or co-NP). We next demonstrate that also more complex problems,
located at the second level of the Polynomial Hierarchy, can be encoded in ASP.
To this end, we now consider a knowledge representation problem, inspired by
a common business situation, which is known under the name Strategic Com-
panies [41].

Suppose there is a collection C = {c1, . . . , cm} of companies ci owned by a
holding, a set G = {g1, . . . , gn} of goods, and for each ci we have a set Gi ⊆ G
of goods produced by ci and a set Oi ⊆ C of companies controlling (owning)
ci. Oi is referred to as the controlling set of ci. This control can be thought
of as a majority in shares; companies not in C, which we do not model here,
might have shares in companies as well. Note that, in general, a company might
have more than one controlling set. Let the holding produce all goods in G, i.e.
G =

⋃

ci∈C Gi.
A subset of the companies C ′ ⊆ C is a production-preserving set if the

following conditions hold: (1) The companies in C ′ produce all goods in G,
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i.e.,
⋃

ci∈C′ Gi = G. (2) The companies in C ′ are closed under the controlling
relation, i.e. if Oi ⊆ C ′ for some i = 1, . . . ,m then ci ∈ C ′ must hold.

A subset-minimal set C ′, which is production-preserving, is called a strategic
set. A company ci ∈ C is called strategic, if it belongs to some strategic set of
C.

This notion is relevant when companies should be sold. Indeed, intuitively,
selling any non-strategic company does not reduce the economic power of the
holding. Computing strategic companies is on the second level of the Polynomial
Hierarchy [41].

In the following, we consider a simplified setting as considered in [41], where
each product is produced by at most two companies (for each g ∈ G |{ci |
g ∈ Gi}| ≤ 2) and each company is jointly controlled by at most three other
companies, i.e. |Oi| ≤ 3 for i = 1, . . . ,m. Assume that for a given instance of
Strategic Companies, Fst contains the following facts:

• company(c) for each c ∈ C,

• prod by(g, cj , ck), if {ci | g ∈ Gi} = {cj , ck}, where cj and ck may possibly
coincide,

• contr by(ci, ck, cm, cn), if ci ∈ C and Oi = {ck, cm, cn}, where ck, cm, and
cn are not necessarily distinct.

We next present a program Pst, which characterizes this hard problem using
only two rules:

r1: strat(Y ) ∨ strat(Z):−prod by(X,Y, Z).
r2: strat(W ):−contr by(W,X, Y, Z), strat(X), strat(Y ), strat(Z).

Here strat(X) means that company X is a strategic company. The guessing
part of the program consists of the disjunctive rule r1, and the checking part
consists of the normal rule r2. The program Pst is surprisingly succinct, given
that Strategic Companies is a hard problem.

The program Pst exploits the minimization which is inherent in the semantics
of answer sets for the check whether a candidate set C ′ of companies that
produces all goods and obeys company control is also minimal with respect to
this property.

The guessing rule r1 intuitively selects one of the companies c1 and c2 that
produce some item g, which is described by prod by(g, c1, c2). If there was no
company control information, minimality of answer sets would naturally ensure
that the answer sets of Fst ∪ {r1} correspond to the strategic sets; no further
checking would be needed. However, when control information is available,
the rule r2 checks that no company is sold that would be controlled by other
companies in the strategic set, by simply requesting that this company must be
strategic as well. The minimality of the strategic sets is automatically ensured
by the minimality of answer sets.

The answer sets of Fst ∪ Pst correspond one-to-one to the strategic sets of
the holding described in Fst; a company c is thus strategic iff strat(c) is in some
answer set of Fst ∪ Pst.

An important note here is that the checking “constraint” r2 interferes with
the guessing rule r1: applying r2 may “spoil” the minimal answer set generated
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by r1. For example, suppose the guessing part gives rise to a ground rule

r3: strat(c1) ∨ strat(c2):−prod by(g, c1, c2)

and the fact prod by(g, c1, c2) is given in Fst. Now suppose the rule is
satisfied in the guessing part by making strat(c1) true. If, however, in the
checking part an instance of rule r2 is applied which derives strat(c2), then the
application of the rule r3 to derive strat(c1) is invalidated, as the minimality of
answer sets implies that rule r3 cannot justify the truth of strat(c1), if another
atom in its head is true.
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Chapter 3

Evaluation of Disjunctive

ASP Programs

In the previous chapter we introduced the ASP framework, and described its
usae as a tool for knowledge representation. In this chapter we illustrate the
main algorithms for the evaluation of ASP programs exploited by the state-of-
the-art ASP system DLV; these algorithms are sequential, and feature several
optimization for the evaluation of the programs on a single processor machine.

The evaluation of ASP programs is a two-step process: in the first step the
input program P undergoes the so-called instantiation (or grounding) process,
which produces a program P ′ semantically equivalent to P, but not containing
any variable. The instantiation could be performed by simply applying every
possible substitution of variables; however, several optimizations can be applied
to the process in order to avoid the creation of ground atoms that have no
chance to appear in P ′. The DLV instantiator applies a number of “intelligent
grounding” techniques in order to keep the size of the ground program as small
as possible. In the second step, the grounded program p′ undergoes the model
generation phase, in which answer sets are generated. This process implies the
application of a procedure similar to the DPLL [42], variations of which are
often employed in solving instances of the Satisfability problem. The technique
adopted for ASP programs relies on a classical backtracking algorithm enhanced
with dedicated branching heuristics, which produces a candidate solution. The
candidate models are then checked for stability in order to filter the actual
answer sets.

This chapter is structured as follows: in Section 3.1 we illustrate the instanti-
ation process, and describe the algorithm implemented in DLV; then, in Section
3.2, we describe the model generation basic operations, discuss the heuristics
adopted, and the process of stability check.

3.1 Instantiation

In this section we describe the instantiation phase, and in particular its imple-
mentation in the ASP systems DLV.

Given an input program P, the full instantiation Ground(P) contains all
the ground rules that can be generated applying every possible substitution of

21
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G(P)

Figure 3.1: Dependency Graph.

variables. The DLV instantiator generates a ground instantiation that has the
same answer sets as the full one, but is much smaller in general [7]. Note that
the size of the instantiation is a crucial aspect for efficiency, since the answer
set computation takes an exponential time (in the worst case) in the size of
the ground program received as input (i.e., produced by the instantiator). In
order to generate a small ground program equivalent to P, the DLV instantiator
generates ground instances of rules containing only atoms which can possibly be
derived from P, and thus avoiding the combinatorial explosion that may occur
in the case of a full instantiation [27]. This is obtained by taking into account
some structural information of the input program, concerning the dependencies
among IDB predicates. Such dependencies can be identified by mean of the
Dependency Graph of P (see subsection 2.3).

The graph G(P) induces a subdivision of P into subprograms (also called
modules) allowing for a modular evaluation. We say that a rule r ∈ P defines a
predicate p if p appears in the head of r. For each strongly connected component
(SCC)1 C of G(P), the set of rules defining all the predicates in C is called
module of C and is denoted by Pc.

2

More in detail, a rule r occurring in a module Pc (i.e., defining some predicate
q ∈ C) is said to be recursive if there is a predicate p ∈ C occurring in the
positive body of r; otherwise, r is said to be an exit rule.

Example 3.1.1. Consider the following program P, where a is an EDB predi-
cate:

p(X,Y ) ∨ s(Y ) :− t(X), t(Y ), not q(X,Y ). t(X) :− a(X).
p(X,Y ) :− t(X), q(X,Y ). q(X,Y ) :− p(X,Y ), s(Y ).

Graph G(P) is illustrated in Figure 3.1; the strongly connected components of
G(P) are {s}, {t} and {p, q}. They correspond to the three following modules:

• { p(X,Y ) ∨ s(Y ):−t(X), t(Y ), not q(X,Y ). }

• { t(X):−a(X). }

• { p(X,Y ):−t(X), q(X,Y ). p(X,Y )∨s(Y ):−t(X), t(Y ), not q(X,Y ).
q(X,Y ):−p(X,Y ), s(Y ). }

1We briefly recall here that a strongly connected component of a directed graph is a max-
imal subset of the vertices, such that every vertex is reachable from every other vertex.

2Note that, since integrity constraints are considered as rules with exactly the same head
(which is a special symbol appearing nowhere in the program), they all belong to the same
module.
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Algorithm Instantiate (P; G(P))
Input: a program P, the dependency graph G(P) associated to P
Output: a ground program Π
Var:
S: set of atoms;
C: set of predicates;
Π: set of ground rules;

begin
1. S := EDB(P); Π := ∅;
2. while G(P) 6= ∅ do
3. Remove a SCC C from G(P) without incoming edges;
4. Π := Π ∪ InstantiateComponent(P, C, S);
5. end while
6. return Π;

end;

Figure 3.2: The DLV Instantiation Algorithm.

Moreover, the first and second module do not contain recursive rules, whereas
the third one contains one exit rule, namely p(X,Y ) ∨ s(Y ) :− t(X), t(Y ),
not q(X,Y )., and two recursive rules. �

The dependency graph3 induces a partial ordering among its SCCs, defined
as follows: for any pair of SCCs A,B of G(P), we say that B directly depends
on A (denoted A ≺ B) if there is an arc from a predicate of A to a predicate
of B; and, B depends on A if A≺sB, where ≺s denotes the transitive closure of
relation ≺.

Example 3.1.2. Consider the dependency graph G(P) shown in Figure 3.1; it
is easy to see that component {p, q} depends on components {s} and {t}, while
{s} depends only on {t}. �

This ordering can be exploited to pick out an ordered sequence C1, . . . , Cn

of SCCs of G(P) (which is not unique, in general) such that whenever Cj de-
pends on Ci, Ci precedes represent a partial ordering which can be used to
perform a layered evaluation of the program one module at time so that all
data needed for the instantiation of a module Ci have been already generated
by the instantiation of the modules preceding Ci.

In the following we illustrate in detail the instantiation algorithm based on
the principles discussed above.

The algorithm Instantiate shown in Figure 3.2 takes as input both a program
P to be instantiated and the dependency graph G(P), and outputs a set Π
of ground rules containing only atoms which can possibly be derived from P,
such that ANS(P) = ANS(Π ∪ EDB(P)). As already pointed out, the input
program P is divided into modules corresponding to the SCCs of the dependency
graph G(P). Such modules are evaluated one at a time according to an ordering
induced by the dependency graph. We recall here that this ordering is, in

3It is worth remembering that, according to its definition (see subsection 2.3 in the previous
chapter), the dependency graph does not take into account negative dependencies.
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Function InstantiateComponent (P; C; S)
Input: a program P, a set of predicates C, a set of atoms S
Output: a set of ground rules ΠC

Var:
NS: set of atoms;
∆S: set of atoms;
ΠC : set of ground rules;

begin
1. NS := ∅; ∆S := ∅; ΠC := ∅;
2. for each r ∈ Exit(C,P); do
3. ΠC := ΠC ∪ InstantiateRule(r, S,∆S,NS);
4. end for
5. do
6. ∆S := NS; NS = ∅;
7. for each r ∈ Recursive(C,P); do
8. ΠC := ΠC ∪ InstantiateRule(r, S,∆S,NS);
9. S := S ∪∆S;
10. while NS 6= ∅
11. return ΠC ;

end;

Figure 3.3: The DLV Instantiation Component Procedure.

general, not unique; however, the order in which program modules that do not
depend on each other are instantiated is irrelevant.

The algorithm creates a new set of atoms S that will contain the subset
of the base BP significant for the instantiation. Initially, S = EDB(P), and
Π = ∅. Then, a strongly connected component C, with no incoming edge, is
removed from G(P), and the program module corresponding to C is evaluated by
invoking InstantiateComponent, which returns the set of ground rules obtained
instantiating such module; those rules are then added to the set of ground rules
Π. This ensures that modules are evaluated one at a time so that whenever
C1≺sC2, PC1

is evaluated before PC2
. The Instantiate algorithm runs on until

all the components of G(P) have been evaluated.

Example 3.1.3. Let P be the program of Example 3.1.1. The unique compo-
nent of G(P) having no incoming edges is {t}. Thus the program module Pt is
evaluated first. Then, once {t} has been removed from G(P), {s} becomes the
(unique) component of G(P) having no incoming edge and is therefore taken.
Once {s} has been evaluated and thus removed from G(P),{p, q} is processed
at last, completing the instantiation process. � �

The procedure InstantiateComponent, in turn, takes as input the component
C to be instantiate, the set of atoms S, and performs the instantiation of the
module corresponding C. Firstly, the set of atoms NS and ∆S, which are used
in the instantiation of the recursive rules, and the set of ground rules ΠC are
initialized to ∅. Then, following the instantiation scheme previously described,
the procedure proceeds instantiating the exit rules first, and then the recursive
ones; at the same time, it updates the set S with the atoms occurring in the
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heads of the rules of Π. To this end, each rule r in the program module of C
is processed by calling procedure InstantiateRule. This, given the set of atoms
which are known to be significant up to now, builds all the ground instances
of r, marks as significant the head atoms of the newly generated ground rules,
and return the set of ground rules generated. The instantiation of a rule r is
performed in such a way that only atoms that can possibly be derived from
P are taken into account. In case of exit rules, those atoms are exactly those
contained in the set S. It is worth noting that a disjunctive rule r may appear
in the program modules of two different components. In order to deal with
this, before processing r, InstantiateRule checks whether it has been already
grounded during the instantiation of another component. This ensures that a
rule is actually processed only within one program module.

Concerning recursive rules, they are processed several times according to a
semi-näıve evaluation technique [31], where at each iteration n only the sig-
nificant information derived during iteration n − 1 has to be used. This is
implemented by partitioning significant atoms into three sets: ∆S, S, and NS.
NS is filled with atoms computed during current iteration (say n); ∆S contains
atoms computed during previous iteration (say n− 1); and, S contains the ones
previously computed (up to iteration n− 2). Initially, ∆S and NS are empty,
and the exit rules contained in the program module of C are evaluated by a
single4 call to procedure InstantiateRule; then, the recursive rules are evaluated
(do-while loop). At the beginning of each iteration, NS is assigned to ∆S, i.e.
the new information derived during iteration n is considered as significant infor-
mation for iteration n + 1. Then, InstantiateRule is invoked for each recursive
rule r, and, at the end of each iteration, ∆S is added to S (since it has already
been exploited). The procedure stops whenever no new information has been
derived (i.e. NS = ∅).

Proposition 3.1.4. [43] Let P be an ASP program, and Π be the ground
program generated by the algorithm Instantiate. Then ANS(P) = ANS(Π ∪
EDB(P)) (i.e. P and Π ∪ EDB(P) have the same answer sets).�

Example 3.1.5. Let P be the program of Example 3.1.1. Assume that, initially,
the set of facts is represented by EDB = {a(1), a(2)}; the algorithm depicted
in Figure 3.2 proceeds as follows: the set S is filled in with the content of
EDB, and Π is initialized to ∅; then the instantiation of the program modules
is performed.

The first component to be processed is {t}, because it is the only one which
has no incoming edges. Then, the procedure InstantiateComponent is invoked:
the correspondent program module contains only the exit rule {t(X):−a(X).},
which is instantiated invoking the procedure InstantiateRule. The instantiation
of this rule produce the ground rules

t(1):−a(1). t(2):−a(2).

The set S is updated with the atoms t(1), t(2).
Then, the algorithm proceeds instantiating the component {a}, which is the

only one having no incoming edges; again the corresponding program module
contains only one exit rule, namely {p(X,Y )∨ s(Y ):−t(X), t(Y ), not q(X,Y ).}.

4Since no recursive atom occurs in the body of exit rules, a single call to InstantiateRule
is sufficient for completely evaluating them.
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In this case the procedure InstantiateComponent returns the following ground
rules

p(1, 1) ∨ s(1):−t(1), t(1), not q(1, 1).

p(1, 2) ∨ s(2):−t(1), t(2), not q(1, 2).

p(2, 1) ∨ s(1):−t(2), t(1), not q(2, 1).

p(2, 2) ∨ s(2):−t(2), t(2), not q(2, 2).

The atoms p(1, 1), p(1, 2), p(2, 1), p(2, 2), s(1), s(2) are added to the set S.

Lastly, the component {p, q} can be instantiated; this contains one exit rule
and the two recursive rules {p(X,Y ):−t(X), q(X,Y )., q(X,Y ):−p(X,Y ), s(Y ).}.
As the exit rule has already been instantiated, the invocation of the function
InstantiateRule for this rule has no effect. The instantiation of the recursive
rules, on the other hand, takes two iteration of the seminäıve algorithm. Initially,
the set NS contains all the new predicates introduced by the instantiation of
the exit rule; the content of ∆S is then replaced with the content of NS, and
the first iteration of the semin̈aive is performed which produces the following
ground rules

q(1, 1):−p(1, 1), s(1).

q(2, 1):−p(2, 1), s(1).

q(1, 2):−p(1, 2), s(2).

q(2, 2):−p(2, 2), s(2).

The set NS is {q(1, 1), q(1, 2), q(2, 1), q(2, 2)}. Before the second iteration starts,
the set S is filled with the atoms contained in ∆S; then ∆S is set to the content
of NS, and the second iteration is performed producing the ground rules

p(1, 1):−t(1), q(1, 1).

p(1, 2):−t(1), q(1, 2).

p(2, 1):−t(2), q(2, 1).

p(2, 2):−t(2), q(2, 2).

In this case no new information is derived, that is, all the heads of the ground
rules produces are already contained in S; as a consequence, the seminäıve al-
gorithm ends, and the function InstantiateComponent returns the set of ground
rules that has been produced.

�

3.2 Computation of Answer Sets for Proposi-

tional Programs

In this section, we describe the general algorithm for computing the answer sets
of a propositional program. In particular we refer to the kernel module (called
Model Generator) of the ASP system DLV system[34, 44, 7]; other ASP systems
like Smodels[14] and Clasp [15] employs similar procedures for the evaluation of
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Function: ModelGenerator(I)
Input: An Interpretation I
Output: A boolean (true if I is and Answer Set)
Var:
L: Literal
contradiction: boolean

begin
1. I = DetCons(I);
2. if I = L then (* inconsistency *)
3. return FALSE;
4. endif
5. if no atom is undefined in I then
6. return IsStable(I); (* stability check *)
7. endif
8. L = Select(I);
9. if ModelGenerator(I ∪ {L}) then
10. return TRUE;
11. else
12. return ModelGenerator(I ∪ {not.L});
13. endif

end;

Function: DetCons(I)
Input: An Interpretation I
Output: an extended interpretation
(* Extend I with literals that can be deterministically inferred and or

I becomes the set of all literals L upon inconsistency.
Possible implementations are described in [47, 44, 48]. *)

Figure 3.4: Computation of answer sets in DLV

the programs 5.

The algorithm employed for the generation of the candidate answer sets
is sketched in Figure 3.4. In the sake of clarity the description of the model
generator module is simplified; the actual implementation implies several op-
timizations and complex data structures whose description is out of the scope
of this thesis. Moreover, the actual implementation computes and outputs all
or a fixed number of answer sets rather than just deciding whether answer sets
exist; however, the extension is quite straightforward and would only add details
which are not relevant. Interested readers may find a more detailed description
in [44].

As already stated, the Model Generator algorithm is aimed at producing
some candidate answer sets; each candidate I is then tested by mean of the
function I sStable(I), which checks whether I is a minimal model of the program
PI obtained by applying the GL-transformation w.r.t. I. This operation is
performed by the sub-sequent module called Model Checker, which is discussed
later on in this section.

5Other solvers like Cmodels[45] and ASSAT[46] use a different architecture based on trans-
formations to SAT.
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Initially, the Model Generator function is called with parameter I set to
the empty interpretation; this is because, at the beginning, all the literals are
undefined6. Hereafter, for simplicity we suppose that the input program P
is a global variable of the system. If P has at least one answer set, then the
function returns true and the (total) interpretation I is an answer set; otherwise
it returns false. Notably, the Model Generator is similar to the Davis-Putnam
procedure, whose variants are very commonly employed in the design of SAT
solvers. The function proceeds as follows: first of all, the extension of the
partial interpretation I with those literals that can be deterministically inferred
is performed by calling the function DetCons(I); whenever an inconsistency is
detected, the function returns the set of all all literals L. This function is similar
to a unit propagation procedure employed by SAT solvers, but exploits the
peculiarities of ASP for making further inferences, e.g., it exploits the knowledge
that every answer set is a minimal model [47, 44, 48] .

If DetCons detects an inconsistency, the function ModelGenerator returns
false and a backtracking step is performed; otherwise, a literal L is selected
according to a heuristic criterion (by a call to the Select procedure, see next
section) and ModelGenerator is called on both I ∪ {L} and I ∪ {not.L}. The
literal L corresponds to a branching variable in SAT solvers. And indeed, like
for SAT solvers, the selection of a “good” literal L is crucial for the performance
of a ASP system.

In the following, we describe the framework for evaluating heuristic criteria
as adopted in the DLV system and then describe a number of heuristic criteria
for the selection of the branching literal; then, we discuss how the model checking
is performed by the function isStable.

3.2.1 Evaluation of Heuristic Functions

The Model Generator of DLV can be configured with a number of “dynamic”
heuristic functions; they are “dynamic” in a sense that the heuristic values asso-
ciated to possible choices are determined during the evaluation of the program.
In particular, the heuristic value of a literal L depends on the result of taking
L true as well as false and computing its consequences, respectively. Unfortu-
nately, evaluating the heuristic value of each possible choice it is an expensive
operation; so as, in order to reduce the number of look-aheads, the DLV system
does not evaluate the heuristic value of all undefined literals; rather, it con-
siders only a subset of the undefined literals called possibly-true literals. The
correctness of this strategy has been shown in [34].

Definition 4. (Definition 1 in [29]) (PT literal) Let I be a partial interpre-
tation for the (ground) program P.

A positive Possibly-True (PT) literal of P w.r.t. I is an undefined positive lit-
eral l such that there exists a rule r ∈ P for which all of the following conditions
hold:

1. l is in the head of r: l ∈ H(r);

2. the head of r is not true w.r.t. I: H(r) ∩ I = ∅;

6Note again that the interpretations handled by the Model Generator are partial inter-
pretations where any literal is either one of true, false, or undefined w.r.t. an interpretation
I.
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3. the body of r is true w.r.t. I: B(r) ⊆ I.

A negative PT literal of P w.r.t. I is an undefined negative literal not l such
that there exists a rule r ∈ P for which all of the following conditions hold:

1. not l is in the body of r: not l ∈ B(r);

2. the head of r is not true w.r.t. I: H(r) ∩ I = ∅;

3. the positive body of r is true w.r.t. I: B+(r) ⊆ I;

4. no negative body literal is false w.r.t. I: I ∩ not.B−(r) = ∅.

The set of all PT literals of P w.r.t. I is denoted by PTP(I). �

Example 3.2.1. Consider the following program P

a ∨ b:− c, d.

e:− d, notf.

and let I = {c, d} be an interpretation for P, then PTP(I) = {a, b, not f}.
�

Note that, the set of PT literals is always not strictly smaller than the set of
all the atoms that may be selected. Indeed, it can happen that all the undefined
atoms of a program are PT literals at some point. However, this technique is
very effective when it applies; for example, in the program HAMPATH presented
in Section 2.4 of Chapter 2, at any given stage of the computation, the PTs
are those literals of the form inPath(a, b) or outPath(a, b), where a is a node
already reached from the start (reached(a) is true) and (a, b) is an arc of the
input graph.

The function select shown in Figure 3.5 is used to choose the heuristically
best literal. The function iterates over PT literals (line 2); for each literal A
look-aheads for I ∪ {A} and for I ∪ {not.A} are performed by calling function
DetCons, and results are stored in I+A and I−A ,respectively (lines 3-11). If either
the assumption of A or the assumption of not.A leads to an inconsistency,
then the complementary literal is deterministically added to the interpretation,
calling again DetCons (lines 5,9). Otherwise, A is compared with the previously
best literal L by exploiting an heuristic criterion hC (lines 13-16).

Once all PTs have been considered, the best literal according to the heuris-
tic is returned in the parameter L and then assumed in the ModelGenerator
Function.

We present now a number of heuristic criterion that have been implemented
in DLV in order to determine the comparison operator hC (for a more detailed
description see [29]).

3.2.2 Heuristics

In order to define an heuristics for this framework, it is sufficient to define an
appropriate comparison operator <hC

, which may depend on I+A and/or I−A , or
rather on some values that were collected during the computation of I+A and/or
I−A .
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Function: Select(I);
Input: An interpretation I
Output: A literal L
Var:
L: A Literal
I+A, I

−

A : Interpretation;
begin
1. L := NULL;
2. foreach A ∈ PTP(I) do
3. I+A := DetCons(I ∪ {A}); (* look-ahead for A *)
4. if I+A = L then
5. I := DetCons(I ∪ {not.A});
6. else
7. I−A := DetCons(I ∪ {not.A}); (* look-ahead for not.A *)
8. if I−A = L then
9. I := I ∪ {A};
10. endif
11. endif
12. if I+A 6= L and I−A 6= L then (* no inconsistency has arisen *)
13. if L = NULL then
14. L := A; (* first literal, no comparison *)
15. elseif L <hC

A then (* compare A against L w.r.t. the heuristic *)
16. L := A;
17. endif
18. endif
19. endfor
20. return L;

end;

Figure 3.5: Framework for the selection of the branching literal in DLV

Before describing the heuristics we introduce some general definitions. Given
a literal L, from now we denote with ext(I, L) the interpretation resulting from
the application of a deterministic consequence operator on I ∪ {L}. In DLV,
this amounts to a call to DetCons, i.e. ext(I, L) = DetCons(I ∪L). We usually
assume that ext(I, L) is consistent, otherwise the framework for heuristic evalu-
ation of DLV (see Figure 3.5) deterministically assumes not.L and the heuristic
is not evaluated on L at all. In the following paragraphs we describe some of
the heuristics that may be computed by DLV.

Heuristic h1 This is an extension of the branching rule adopted in the system
SATZ [49] – an efficient SAT solver – to fit ASP settings.

The length of a rule r (w.r.t. an interpretation I), is the number of undefined
literals occurring in r. Let Unsatk(L) denote the number of unsatisfied rules7

of length k w.r.t. ext(I, L), which have a greater length w.r.t. I. In other words,
Unsatk(L) is the number of unsatisfied rules whose length shrinks to k if L is

7Recall that a rule r is satisfied w.r.t. an interpretation J if the body of r is false w.r.t. J
or the head of r is true w.r.t. J .
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assumed and propagated in the interpretation I. The weight w1(L) is:

w1(L) = Σk>1 Unsatk(L) ∗ 5−k

Thus, the weight function w1 prefers literals introducing a higher number of
short unsatisfied rules. Intuitively, the introduction of a high number of short
unsatisfied rules is preferred because it creates more and stronger constraints on
the interpretation so that a contradiction can be found earlier [49]. The weight
of L is combined with the weight of its complement not.L to favour L such
that w1(L) and w1(not.L) are roughly equal, in order to avoid that a possible
failure leads to a very bad state. To this end, as in SATZ, the combined weight
comb-w1(L) of L is defined as follows:

comb-w1(L) = w1(L) ∗ w1(not.L) ∗ 1024 + w1(L) + w1(not.L).

The idea is that for values w1(L) and w1(not.L) which are closer together, the
product is greater than for values which are further apart but have the same
sum. Both constant values 5 and 1024 are the “empirically optimal” value that
have been determined in [49]

Given two literals A and B, heuristic h1 prefers B over A (A <h1 B) if:

1. comb-w1(A) < comb-w1(B) when A 6= not.B;

2. w1(A) < w1(B) when A = not.B.8

Heuristic h2 The second heuristic is inspired by the branching rule of Smodels
[14]. Let |J | denote the number of literals in a (three-valued) interpretation J .
Then, define

w2(L) = |ext(I, L)|.

Since w2 maximizes the size of the resulting interpretation, it minimizes the
literals which are left undefined. Intuitively, this minimizes the size of the re-
maining search space [14] (which is 2u, where u is the number of undefined atoms
w.r.t. ext(I, L)). Similar to Smodels, the heuristic h2 cautiously maximizes the
minimum of w2(L) and w2(not.L). More precisely, the preference relationship
<h2 of h2 is defined as follows. Given two literals A and B:

1. A <h2 B if min(w2(A), w2(not.A)) < min(w2(B), w2(not.B));

2. otherwise, A <h2 B if min(w2(A), w2(not.A)) = min(w2(B), w2(not.B)),
and max(w2(A), w2(not.A)) < max(w2(B), w2(not.B))

Heuristic h4 This is the basic heuristics used in the DLV system.
A peculiar property of answer sets is supportedness, cf. Section 2.3. Since a

ASP system must eventually converge to a supported interpretation, it makes
sense to keep the interpretations “as much supported as possible” during the
intermediate steps of the computation. To this end, the number of Unsup-
portedTrue (UT) atoms is counted, i.e., atoms which are true in the current
interpretation but still miss a supporting rule (further details on UTs can be
found in [47, 44] where they are called must-be-true atoms or MBTs). For

8Note that comb-w1(A) = comb-w1(B) if A = not.B.
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instance, the rule :−not x implies that x must be true in every answer set of
the program; but it does not give a “support” for x. Thus, DetCons derives x
in order to satisfy the rule and adds it to the set UnsupportedTrue. It will be
removed from this set once a supporting rule for x is found (e.g., x ∨ b:−c would
be a supporting rule for x in the interpretation I = {x, not b, c}). Given a literal
L, let UT (L) be the number of UT atoms in ext(I, L). Moreover, let UT2(L)
and UT3(L) be the number of UT atoms occurring, respectively, in the heads of
exactly 2 and 3 unsatisfied rules w.r.t. ext(I, L). Intuitively, these are the most
constrained UTs. Note that a UT atom in the of head only one unsatisfied rule
will cause DetCons to make appropriate derivations in order to turn that rule
into a supporting rule, therefore such atoms will not occur anymore during the
evaluation of the heuristic.

The heuristic h4 of DLV considers UT (L), UT2(L) and UT3(L) in a pri-
oritized way, to favor atoms yielding interpretations with fewer UT/UT2/UT3

atoms (which should more likely lead to a supported model). If all UT counters
are equal, then the heuristic considers the total number Sat(L) of rules which
are satisfied w.r.t. ext(I, L). If also SAT counters are equals, the degree of
supportedness is considered, which is introduced next.

Given a literal L, let True(L) be the number of true non-HCF atoms in
ext(I, L), and let SuppRules(L) be the number of all supporting rules for non-
HCF atoms w.r.t. ext(I, L); let DS be the degree of supportedness of the inter-
pretation intended as the ratio between the number of supporting rules and the
number of true atoms (i.e. DS(L) = SuppRules(L)/True(L)9)

The degree of supportedness is considered to cover the case of non-HCF pro-
grams, for which it is not guaranteed that supported models are answer sets.
Therefore stability check may be performed several time unfruitfully leading to
models which are not answer sets. Unfortunately, stability checking is com-
putationally expensive (co-NP-complete), and may consume a large portion of
the resources needed for computing a answer set. To this aim, the heuristic h4

tries to drive the computation toward supported models with a better chance
of being answer sets, preferring models with a greater degree of supportedness
(the average number of supporting rules for a true atom).

To this end, given a literal L, let UT ′(L) = UT (L) +UT (not.L), UT ′
2(L) =

UT2(L) + UT2(not.L), UT ′
3(L) = UT3(L) + UT3(not.L), Sat′(L) = Sat(L) +

Sat(not.L), and DS′(L) = DS(L) + DS(not.L). Note that heuristic h4 is
“balanced” (i.e. it takes into account both the look-ahead for the branching
literal and its complement).

The preference relationship <h4 of h4 is defined as follows. Given two literals
A and B:

1. A <h4 B if UT ′(A) > UT ′(B);

2. otherwise, A <h4 B if UT ′(A) = UT ′(B) and UT ′
2(A) > UT ′

2(B);

3. otherwise, A <h4 B if UT ′(A) = UT ′(B), UT ′
2(A) = UT ′

2(B) and UT ′
3(A) >

UT ′
3(B);

4. otherwise, A <h4 B if UT ′(A) = UT ′(B), UT ′
2(A) = UT ′

2(B), UT ′
3(A) =

UT ′
3(B) and Sat′(A) < Sat′(B).

9In the implementation, the denominator is increased by 1, in order to avoid possible
divisions by zero.
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5. otherwise, A <h4 B if UT ′(A) = UT ′(B), UT ′
2(A) = UT ′

2(B), UT ′
3(A) =

UT ′
3(B), Sat′(A) = Sat′(B) and DS′(A) < DS′(B).

3.2.3 Model Checking

The goal of model checking is to verify whether a model M is an answer set
for an input program. This task is very hard in general, because checking the
stability of a model is well-known to be a co-NP-complete [2] problem. However,
the task is polynomial [34] for the class of HCF-free programs. To this purpose,
the DLV system adopts a strategy that performs a polynomial time check for
easy problems (HCF); in case of hard problems (non-HCF), an additional check
is carried out by translating the program into a SAT formula and checking
whether it is unsatisfiable.

Before describing this approach, let us consider some preliminary notions.
First of all we define the notions of unfounded set and unfounded-free programs.

Definition 5. (Definition 3.1 in [34]) Le I be a total interpretation for a pro-
gram P. A set X ⊆ BP of ground atoms is an unfounded set for P w.r.t. I
if, for each rule r ∈ Ground(P) such that X ∩ H(r) 6= ∅, at least one of the
following condition holds:

C1. (B+(r) * I) ∨ (B−(r) ∩ I 6= ∅), that is, the body of r is false w.r.t. I.

C2. (B+(r) ∩ I 6= ∅), that is, some positive body literal belongs to X.

C3. (H(r) −X) ∪ I 6= ∅, that is, an atom in the head of r, distinct from the
element in X, is true w.r.t. I.

Example 3.2.2. Let P = {a ∨ b.} and I = {a, b}. Owing to Condition 3, both
{a} and {b} are unfounded set w.r.t. P. �

Based on Definition 5, an interpretation I for a program P is unfounded-free
iff no non-empty subset of I is an unfounded set for P w.r.t. I. Most interesting,
the unfounded-free condition singles out precisely the answer sets as confirmed
by the following proposition.

Proposition 3.2.3. (Theorem 4.6 in [34]) Let M be a model for a program P.
M is an answer set for P iff M is unfounded-free.

Example 3.2.4. Let P = {a ∨ b.}. M1 = {a} is an answer set for P, since there
is no non-empty of M1 which is an unfounded set. As shown in Example 3.2.2,
M2 = {a, b} is not unfounded-free, and therefore it is not an answer set.

�

Let us now define the R operator which is exploited in the stability check.

Definition 6. [50] Let P be a program I an interpretation. Then we define an
operator RP,I as follow

RP,I :2BP → 2BP

X 7→ {a ∈ X| ∀r ∈ Ground(P) with a ∈ H(r)},

B(r) ∩ (¬.I ∪X) 6= ∅ or (H(r) − {a}) ∪ I 6= ∅}

were ¬.I denotes the set of (ground) literals {notl|l ∈ I}.
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Function: isStable(I);
Input: An interpretation I
Output: A boolean true if I is an answer set, false otherwise
Var:
X: set of atoms

begin
1. X := Rω

P,I ;
2. if(X 6= ∅) then
3. if( P is Head-Cycle-Free) then
4. return false;
5. else
6. if(unfoundedFree(I,X) = false) then
7. return false;
8. end if;
9. end if;
10. return true;

end;

Figure 3.6: The isStable function for performing stability checking

It can be easily verified that the operator described above is monotonic.
Indeed, given a set X ⊆ BP , the sequence R0 = X, Rn = RP,I(Rn−1) decreases
monotonically and converges finitely to a limit denoted by Rω

P,I . It has been
shown in [34] that, given a program P and a model M , all the unfounded sets
contained in M are subsets of Rω

P,I

Proposition 3.2.5. [50] Let P be a program (not necessary HCF) and M a
model for P. Then Rω

P,I = ∅ implies that M is unfounded-free w.r.t. P.

Proposition 3.2.6. (Theorem 6.9 in [34]) Let P be an HCF program and M
a total interpretation for it. Than M is unfounded-free iff Rω

P,I = ∅.

Those results suggest that computing the fixpoint of the operator R and
checking whether it is empty it is sufficient for verifying the stability of a model
in the case of HCF programs. For non-HCF programs an additional Co-NP
check is necessary, which is performed by a mapping to UNSAT.

The function isStable described in Figure 3.6 summarizes the behaviour of
the Model Checker module of DLV. The function receives in input a model M
and outputs whether it is an answer set or not. Basically, the fixpoint Rω

P,I of
the operator R is computed; if the empty set is returned then the input model
is an answer set, and the function returns true. Otherwise, if the program is
HCF then the input model is not stable, and the function returns false; and,
in case of non-HCF programs, and additional check is performed calling the
function unfoundedFree (Figure 3.7) that performs a call to an integrated
SAT solver: if the formula is satisfiable, than the model is unstable; otherwise
it is an answer set. The algorithm generateSatFormula depicted in Figure 3.7
describes how the SAT formula is obtained. The algorithm receives in input a
candidate model M , and a set of atoms X, which represent an unfounded set;
this unfounded set is exploited in order reduce the size of the transformation of
P into a SAT instance. First of all the program P is simplified removing useless
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Algorithm: generateSatFormula(M ,X);
Input: An interpretation M , a set of atoms X
Output: A Sat formula
begin
1. ∀r ∈ P delete r from P if B(r) is false w.r.t M ;
2. ∀r ∈ P remove all false atoms (w.r.t. M) from the H(r);
3. ∀r ∈ P delete r from P if H(r) 6⊆ X.
4. ∀r ∈ P remove all negative literals from B(r);
5. ∀r ∈ P remove all literals l from the bodies of r such that l 6∈ X;
6. S := ∅
7. Let P ′ be the program resulting from steps 1–5;
8. for each r a0 ∨ · · · ∨ an:− b0, · · · , bm ∈ P ′ do

S := S ∪ {b0 ∨ · · · ∨ bm:− a0, · · · , an};
9. end for
10. ΓM,X(P) :=

∧
c∈S

c ∧ (
∨

y∈M
y)

11. return ΓM,X(P);
end;

Function: unfoundedFree(I,X);
Input: An interpretation M , a set of atoms X
Output: A boolean true if I is an answer set, false otherwise
begin
1. Γ = generateSatFormula(M,X);
2. if(SAT (Γ)) then return false;
3. else return true;

end;

Figure 3.7: Model checking algorithm for no-HCF programs

rules; every rule r whose body is false or such that H(r) ∪M * X is removed
from P. The remaining rules are then processed removing any body literal
l such that l 6∈ X. Lines 8-10 correspond to the conversion of the obtained
rules in the corresponding SAT clauses. Note that, as stated previously, all
the possible unfounded sets of M are subsets of Rω

P,I , and this latter is also
exploited for simplifying (Line 3 and Line 5) the SAT formula to be evaluated.
The correctness of this algorithm is shown in [50] (Theorem 4.2 and Lemma
5.3).
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Chapter 4

Parallel Grounding

In this chapter we present the main contribution of this thesis, that is, the design
of a strategy for the parallel instantiation of ASP programs. More in detail, this
strategy exploits parallelism in three different points of the instantiation process.
The parallel instantiation process we defined employs techniques preliminary
presented in [51] and integrates them with a novel strategy which has a larger
application field, covering many situations in which the previous techniques do
not apply.

This chapter is structured as follows: in Section 4.1 we provide a general
description of the techniques mentioned above; in Section 4.2 we give a for-
mal definition of the designed algorithm; in Sections 4.3 and 4.4 we discuss the
heuristics employed in the third level of parallelism for partitioning the work-
load, and the heuristics devised for load balancing and granularity control.

4.1 Pushing Parallelism in the Instantiator

In this section we illustrate a three-level concurrent instantiation technique con-
ceived for pushing parallelism into the instantiation process. In particular, par-
allelism is exploited in three different points of the computation in such a way
that they form a chain. The first level of parallelism, the components level allows
the instantiation in parallel subprograms of the program in input induced by the
SCCs of the dependency graph: it is especially useful when handling programs
containing parts that are, somehow, independent. The second one, namely the
rules level, allows the parallel evaluation of rules within a given subprogram: it
is useful when the number of rules in the subprograms is large. The third one,
namely the single rule level, allows the parallel evaluation of each single rule
by partitioning the workload needed to perform its instantiation; it is crucial
for the parallelization of programs with few rules, where the first two levels are
almost not applicable. In the following paragraphs, we discuss separately each
of the three level of parallelism.

Components Level [51]. The first level of parallelism, called Components
Level, consists in dividing the input program P into subprograms, according to
the dependencies among the IDB predicates of P, and by identifying which of
them can be evaluated in parallel.

37
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According to the partial ordering that can is obtained exploiting the de-
pendencies among the SCCs of G(P)(see Section 3.1), the instantiation of the
input program P can be carried out by separately evaluating its modules; if the
evaluation order of the modules respects the mentioned partial ordering then
a small ground program is produced [51]. Indeed, this gives the possibility of
computing ground instances of rules containing only atoms that can possibly be
derived from P (thus, avoiding the combinatorial explosion that can be obtained
by naively considering all the atoms in the Herbrand base).

Intuitively, this partial ordering guarantees that a component A precedes a
component B if the program module corresponding to A has to be evaluated
before the one of B, because the evaluation of A produces data that are needed
for the instantiation of B. Moreover, the partial ordering allows for determining
which modules can be evaluated in parallel. Indeed, if two components A and
B, do not depend on each other, then the instantiation of the corresponding
program modules can be performed simultaneously, because the instantiation of
A does not require the data produced by the instantiation of B and vice versa.
The dependency among components is thus the principle underlying the first
level of parallelism. At this level subprograms can be evaluated in parallel, but
still the evaluation of each subprogram can be further parallelized.

Rules Level [51]. The second level of parallelism, called the Rules Level,
allows the concurrent evaluation of the rules within each module. A rule r
occurring in the module of a component C (i.e., defining some predicate in C)
is said to be recursive if there is a predicate p ∈ C occurring in the positive
body of r; otherwise, r is said to be an exit rule. Rules are evaluated following
a semi-näıve schema [31] and the parallelism is exploited for the evaluation of
both exit and recursive rules. More in detail, for the instantiation of a module
M , first all exit rules are processed in parallel by exploiting the data (ground
atoms) computed during the instantiation of the modules which M depends
on (according to the partial ordering induced by the dependency graph). Only
afterwards, recursive rules are processed in parallel several times by applying a
semi-näıve evaluation technique in which, at each iteration n, the instantiation
of all the recursive rules is performed concurrently and by exploiting only the
significant information derived during iteration n− 1.

Single Rule Level. The first two levels of parallelism are effective when han-
dling large programs. However, when the input program consists of few rules,
their efficacy is drastically reduced, and there are cases where components and
rules parallelism are not exploitable at all. For instance the following program
P encoding the well-known 3-colorability problem:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :− node(X).
(c) :− edge(X,Y ), col(X,C), col(Y,C).

The two levels of parallelism described above have no effects on the evaluation
of P. Indeed, this encoding consists of only two rules which have to be evalu-
ated sequentially, since, intuitively, the instantiation of (r) produces the ground
atoms with predicate col, which are necessary for the evaluation of (c).

For the instantiation of this kind of programs a third level is necessary for
the parallel evaluation of each single rule, which is therefore called Single Rule
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Level.

In the following we present a strategy for parallelizing the evaluation of a rule.
The idea is to partition the extension of a single rule literal (hereafter called
split literal) into a number of subsets. Thus the rule instantiation is divided
into a number of smaller similar tasks each of which considers as extension of
the split literal only one of those subsets. For instance, the evaluation of rule
(c) in the previous example can be performed in parallel by partitioning the
extension of one of its literals, let it be edge, into n subsets, thus obtaining n
instantiation tasks for (c), working with different ground instances of edge. Note
that, in general, several body literals are possible candidates to be split up (for
instance, in the case of (c), col can be split up instead of edge) and the choice of
the most suitable literal to split has to be carefully made, since it may strongly
affect the cost of the instantiation of rules. Indeed, a “bad” split might reduce
or neutralize the benefits of parallelism, thus making the overall time consumed
by the parallel evaluation not optimal (and, in some corner cases, even worse
than the time required to instantiate the original encoding). Note also that, the
partitioning of the extension of the split literal has to be performed at run-time.
Indeed, if the predicate to split is an IDB predicate, as in the case of col, the
partitioning can be made only when the extension of the IDB predicate has
already been computed; in our example, only after the evaluation of rule (r).

Example 4.1.1. In the following is reported a complete example of the appli-
cation of the single rule parallelism for computing in parallel the instantiation of
a rule. Consider the following program P encoding the 3-Colorability problem:

(r) col(X, red) ∨ col(X, yellow) ∨ col(X, green) :− node(X).
(c) :− edge(X,Y ), col(X,C), col(Y,C).

Assume that, after the instantiation of rule r, the extensions of predicate
node and predicate col, are the ones reported in Table 4.1, and that the extension
of the predicate edge is the one reported in Table 4.2.

Suppose now that the heuristics suggests to perform the single rule level of
parallelism for the instantiation of the constraint (c), and suppose that the
extension of predicate edge is split in two. Then, the extension of the predicate
edge is partitioned into two subsets which appear divided by an horizontal
line in Table 4.2. The instantiation of constraint (c) is carried out in parallel
by two separate processes, say p1, and p2, which will consider as extension of
edge, respectively, the two splits depicted in Table 4.2. Process p1 produces the
following ground constraints:

:−edge(a, b), col(a, red), col(b, red).
:−edge(a, b), col(a, yellow), col(b, yellow).
:−edge(a, b), col(a, green), col(b, green).
:−edge(b, c), col(a, red), col(b, red).
:−edge(b, c), col(a, yellow), col(b, yellow).
:−edge(b, c), col(a, green), col(b, green).

whereas, process p2 produces the following ground constraints:
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Predicates extension
1 node(a)
2 node(b)
3 node(c)
4 node(d)
1 col(a, red)
2 col(a, yellow)
3 col(a, green)
4 col(b, red)
5 col(b, yellow)
6 col(b, green)
7 col(c, red)
8 col(c, yellow)
9 col(c, green)
10 col(d, red)
11 col(d, yellow)
12 col(d, green)

Table 4.1: Extension of the predicate node and col.

:−edge(b, d), col(b, red), col(d, red).
:−edge(b, d), col(b, yellow), col(d, yellow).
:−edge(b, d), col(b, green), col(d, green).
:−edge(c, d), col(c, red), col(d, red).
:−edge(c, d), col(c, yellow), col(d, yellow).
:−edge(c, d), col(c, green), col(d, green).

Predicate extension
1 edge(a, b)
2 edge(b, c)
3 edge(b, d)
4 edge(c, d)

Table 4.2: Extension of the predicate edge.

�

4.2 The Algorithms

In this section we present the algorithms for the three levels of parallelism men-
tioned above, which build upon the one presented for serial instantiation in
Section 3.1. The parallel algorithms, detailed in Figure 4.1, and Figure 4.2,
repeatedly apply a pattern similar to the classical producer-consumers prob-
lem. A manager thread (acting as a producer) identifies the tasks that can be
performed in parallel and delegates their instantiation to a number of worker
threads (acting as consumers).
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More in detail, the Components Instantiator procedure (see Fig. 4.1), acting
as a manager, implements the first level of parallelism, that is, the parallel
evaluation of program modules. It receives as input both a program P to be
instantiated and its Dependency Graph G(P); and it outputs a set of ground
rules Π, such that ANS(P) = ANS(Π ∪ EDB(P)). First of all, the algorithm
creates a new set S of atoms that will contain the subset of the base significant
for the instantiation; more in detail, S will contain, for each predicate p in the
program, the extension of p, that is, the set of all the ground atoms having the
predicate name of p (significant for the instantiation).

Initially, S = EDB(P), and Π = ∅. Then, the manager checks whether
some SCC C can be instantiated; in particular, it checks whether there is any
other component C ′ that has not been evaluated yet and such that C depends
on C ′. As soon as a component C is processable, a new thread is created, by a
call to threading function Spawn, running procedure Rules Instantiator.

Procedure Rules Instantiator (see Fig. 4.1), implementing the second level
of parallelism, takes as input, among the others, the component C to be in-
stantiated and the set S; for each atom a belonging to C, and for each rule r
defining a, it computes the ground instances of r containing only atoms that
can possibly be derived from P. At the same time, it updates the set S with the
atoms occurring in the heads of the rules of Π. To this end, each rule r in the
program module of C is processed by calling procedure SingleRule Instantiator.

It is worth noting that exit rules are instantiated by a single call to Sin-
gleRule Instantiator, whereas recursive ones are processed several times accord-
ing to a semi-näıve evaluation technique [31], where at each iteration n only
the significant information derived during iteration n − 1 is used. This is im-
plemented by partitioning significant atoms into three sets: ∆S, S, and NS.
NS is filled with atoms computed during current iteration (say n); ∆S contains
atoms computed during previous iteration (say n− 1); and, S contains the ones
previously computed (up to iteration n− 2).

Initially, ∆S and NS are empty; the exit rules contained in the program
module of C are evaluated and, in particular, one new thread identified by Ir
for each exit rule r, running procedure SingleRule Instantiator, is spawned.
Since the evaluation of recursive rules has to be performed only when the
instantiation of all the exit rules is completed, a synchronization barrier is
exploited. This barrier is encoded (à la POSIX) by several calls to thread-
ing function join with thread forcing Rules Instantiator to wait until all Sin-
gleRule Instantiator threads are done. Then, recursive rules are processed (do-
while loop). At the beginning of each iteration, NS is assigned to ∆S, i.e. the
new information derived during iteration n is considered as significant informa-
tion for iteration n+ 1. Then, for each recursive rule, a new thread is spawned,
running procedure SingleRule Instantiator, which receives as input S and ∆S;
when all threads terminate (second barrier), ∆S is added to S (since it has al-
ready been exploited). The evaluation stops whenever no new information has
been derived (i.e. NS = ∅). Eventually, C is removed from G(P).

The third level of parallelism (see Fig. 4.2), concerning the parallel evaluation
of each single rule, is then implemented by Procedure SingleRule Instantiator,
which given the sets S and ∆S of atoms that are known to be significant up
to now, builds all the ground instances of r and adds them to Π. Initially,
SingleRule Instantiator selects, according to a heuristics for load balancing (see
Section 4.4) the number s of parts into which the evaluation has to be divided;
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Procedure Components Instantiator(P; G(P))
Input: a program P, the dependency graph G(P) associated with P
Output: a ground program Π
Var:
S: set of atoms;
C: set of predicates;
Π: set of ground rules;

begin
1. S = EDB(P); Π := ∅;
2. while G(P) 6= ∅ do
3. take a SCC C from G(P) that does not depend on other SCCs of G(P)
4. Spawn(Rules Instantiator, P, C, S,Π,G(P))
5. end while
6. return Π;

end;

Procedure Rules Instantiator(P; C; S; Π; G(P))
Input: a program P, a set of predicates C, a set of atoms S, a ground program Π,

the dependency graph G(P) associated with P
Var:
∆S, NS: set of atoms;

begin
1. ∆S := ∅; NS := ∅ ;
2. for each r ∈ Exit(C,P) do // evaluation of exit rules
3. Ir = Spawn (SingleRule Instantiator, r, S,∆S,NS,Π);
4. for each r ∈ Exit(C,P) do // synchronization barrier
5. join with thread(Ir);
6. do
7. ∆S := NS; NS := ∅ ;
8. for each r ∈ Recursive(C,P) do // evaluation of recursive rules
9. Ir = Spawn (SingleRule Instantiator, r, S,∆S,NS,Π);
10. for each r ∈ Recursive(C,P) do // synchronization barrier
11. join with thread(Ir);
12. S := S ∪∆S;
13. while NS 6= ∅
14. Remove C from G(P); // to process C only once

end;

Figure 4.1: Components and Rules parallelism

then SingleRule Instantiator heuristically selects a positive literal to split in the
body of r, say L (see Section 4.3). A call to function SplitExtension (Figure 4.2)
partitions the extension of L (stored in S and ∆S) into s equally sized parts,
called splits. In order to avoid useless copies, each split is virtually identified
by means of iterators over S and ∆S, representing ranges of instances. More
in detail, for each split, a VirtualSplit is created containing two iterators over
S (resp. ∆S), namely S begin and S end (resp. ∆S begin and ∆S end), in-
dicating the instances of L from S (resp. ∆S) that belong to the split. Note
that, in general, a split may contain ground atoms from both S and ∆S. Once
the extension of the split literal has been partitioned, then a number of threads
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// A split is virtually identified by four iterators to S and ∆S identifying
ranges of instances.
struct VirtualSplit { iterator〈Atom〉 S begin, S end, ∆S begin, ∆S end; }

Procedure SingleRule Instantiator(r; S; ∆S; NS; Π)
Input: a rule r, sets of atoms S, ∆S, NS, a ground program Π;
Var:
s: integer;
Splits: vector of VirtualSplit;

begin
1. s := numberOfSplits(B(r), S,∆S);
2. SelectLiteralToSplit(L,B(r),s); // according to a heuristics
3. Splits[s];
4. SplitExtension(L, s, S, ∆S, Splits); // distribute extension of L
5. for each sp in Splits
6. Isp = Spawn (InstantiateRule, r, L, sp, S,∆S,NS,Π);
7. for each sp in Splits do // synchronization barrier
8. join with thread(Isp);

end;

Procedure InstantiateRule( r; L; sp; S; ∆S; NS; Π)
Input: a rule r, literal l, a VirtualSplit sp, sets of atoms S, ∆S, NS,
a ground program Π;
/* Given S and ∆S builds all the ground instances of r, adds them to Π,

and add to NS the new head atoms of the generated ground rules.
For L only the ground atoms belonging to the ranges {S Begin,S End} .
and {∆S begin,∆S end} indicated by sp are used .

*/

Figure 4.2: Single Rule parallelism

running procedure InstantiateRule, are spawned. InstantiateRule, given S and
∆S builds all the ground instances of r that can be obtained by considering as
extension of the split literal L only the ground atoms indicated by the iterators
in the virtual split at hand. SingleRule Instantiator terminates (last barrier)
once all splits are evaluated.

The correctness of the algorithm follows from the consideration that, what-
ever the split literal L, the union of the outputs of all the s concurrent In-
stantiateRule procedures is the same as the output produced by a single call to
InstantiateRule working with the entire extension of L (s = 1). Note that, if
the split predicate is recursive, its extension may change at each iteration. This
is considered in our approach by performing different splits of recursive rules at
each iteration. This ensures that at each iteration the virtual splits are updated
according to the actual extension of the literal to split.

In addition, this choice has a relevant side-effect: at each iteration the work-
load is dynamically re-distributed among instantiators, thus inducing a form of
dynamic load balancing in case of the evaluation of recursive rules.
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Procedure SplitExtension(l; n; S; ∆S; V )
Input: a literal l, an integer n, sets of atoms S, ∆S, a vector of VirtualSplit V ;
Var:
size, i, k: integer;
it: iterator〈Atom〉;

begin
1. size:= ⌊ (S.size() + ∆S.size())/ n ⌋;
2. i:= 0; it := S.begin();
3. while i < ⌊S.size()/size⌋ do // possibly, build splits with atoms from S
4. V [i].SetIterators S(it, it+size); it := it + size; i=i+1;
5. end while
6. if it < S.end() then // possibly, build a split mixing S and ∆S atoms
7. V [i].SetIterators S(it, S.end()); it := ∆S.begin();
8. k := size - Size(V [i]);
9. if ∆S.size() < k
10. V [i].SetIterators ∆S (it, ∆S.end()); it = ∆S.end();
11. else
12. V [i].SetIterators ∆S (it, it+k); it = it+k; i = i+1;
13. while i < ⌊(S.size()+∆S.size())/size⌋ do // possibly, from ∆S
14. V [i].SetIterators ∆S (it, it+size); it := it + size; i=i+1;
15. end while
16. if it < ∆S.end() then
17. V [i].SetIterators ∆S (it, ∆S.end());

end

Figure 4.3: Splitting the extension of a literal.

4.3 Selection of the Literal to Split

In this section we discuss the problem of determining the literal to be split.
Indeed, this choice has to be carefully made, since it may strongly affect the cost
of the instantiation of rules. It is well-known that this cost strongly depends
on the order of evaluation of body literals, since computing all the possible
instantiations of a rule is equivalent to computing all the answers of a conjunctive
query joining the extensions of literals of the rule body. However, the choice
of the split literal may influence the time spent on instantiating each split rule,
whatever the join order. In the light of these observations, we have devised a
new heuristics for selecting the split literal given an optimal ordering (which
can be obtained as explained in [27]).

Intuitively, suppose we have a rule r containing n literals in the body in
a given order, and suppose that any body literal allows for the target number
of splits, say s, then: to obtain work for s threads it is sufficient to split the
first literal (whatever the join order); nonetheless, moving forward, say splitting
the third literal, would cause a replicate evaluation of the join of the first two
literals in each split thread possibly increasing parallel time. It is easy to see
that the picture changes if all/some body literal does not allow for the target
number of splits, in this case one should estimate the cost of splitting a literal
different from the first and select the best possible choice.

In the following, we first introduce some metrics for estimating the work
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needed for instantiating a given rule, and then we describe the new heuristics.
In detail, we use the following estimation for determining the size of the joins
of the body literals: given two relations R and S, with one or more common
variables, the size of R ⋊⋉ S can be estimated as follows:

T (R ⋊⋉ S) =
T (R) ·T (S)

∏

X∈var(R)∩var(S) max {V (X,R) , V (X,S)}
(4.1)

where T (R) is the number of tuples in R, and V (X,R) (called selectivity)
is the number of distinct values assumed by the variable X in R. Given an
evaluation order of body literals, one can repeatedly apply this formula to pairs
of body predicates for estimating the size of the join of a body. A more detailed
discussion on this estimation can be found in [31].

Let r be a rule with n body literals L1, L2, . . . , Ln, where Li precedes Lj for
each i < j in a given evaluation order, an estimation of the cost of instantiating
the first k literals in B(r) is:

C(k) =







0 if k < 2
T (L1) · T (L2) if k = 2
C(k − 1) + T (L1 ⋊⋉ · · · ⋊⋉ Lk−1) · T (k) if k > 2

(4.2)

Now, let s be the number of splits to be performed; the following is an
estimation of the work of the instantiation tasks obtained by the split of the
i-th literal Li:

Ci =
C(n) − C(i− 1)

si
+ C(i− 1), 1 ≤ i ≤ n (4.3)

where, si is equal to s (if the extension of Li is sufficiently large) or the maximum
number of splits allowed by Li. Intuitively, if Li is the split literal, the work
of each instantiation task is composed of two parts: a part to be performed
serially, common to all tasks, which consists in the instantiation of the first
i− 1 literals, whose cost is represented by C(i− 1); and the instantiation of the
remaining literals, which is divided among the si tasks, whose cost is represented

by C(n)−C(i−1)
si

. The estimation Ci can be used for determining the split literal,
by choosing the one with minimum cost.

Note that, in the search for the best one, we can skip over each body literal
Lk, with k > j, if Lj allows for s splits since Cj ≤ Ck holds. Indeed, if n = 2,
C1 = C2; while for n ≥ 3, k = j + 1 and sj = sk = s (worst case) we have that

Ck =
C(n) − C(k − 1)

sk
+ C(k − 1) =

C(n) − C(j)

s
+ C(j).

By applying (4.2):

Ck =
C(n) − C(j − 1)

s
−

Q

s
+ C(j − 1) + Q = Cj +

s− 1

s
·Q

where Q = T (L1 ⋊⋉ · · · ⋊⋉ Lj−1) · T (j). Thus, by induction, if Lj allows for
s splits, Cj ≤ Ck, for k > j. Intuitively, this can be explained by considering
that splitting a literal Lk after one allowing for s splits Lj has the effect of
evaluating serially the join of literals between Lk and Lj thus leading to a
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Table 4.3: Number of splits and costs of the instantiation tasks
s s1 s2 s3 s4 C1 C2 C3 C4

5 5 5 5 5 11400 11400 12200 17000
50 20 50 50 50 2850 1140 2120 8000
100 20 50 100 100 2850 1140 1560 7500
500 20 50 500 500 2850 1140 1112 7100

greater evaluation time. Clearly, even a literal L whose extension cannot be
split in s parts can be chosen, provided that L allows for a minor (estimated)
work for each instantiation task. Moreover, if s1 = s (L1 allows for s splits), it
holds that C1 ≤ Ci, for each 1 < i ≤ n; in this case, L1 can be chosen without
computing any cost.

As an example, suppose that we have to instantiate the constraint :−a(X,Y ),
b(Y,Z), c(Z,X), d(V,Z). Suppose also that the extensions of the body literals
are T (a) = 20, T (b) = 50, T (c) = 1000, T (d) = 1000, and that the estimations
of the costs of instantiating the first i literals with 1 ≤ i ≤ 4 are the following:
C(1) = 0, C(2) = 1000, C(3) = 7000, C(4) = 57000. Table 4.3 shows the
estimations Ci of the works of the instantiation tasks obtained by the split of
the i-th literal with 1 ≤ i ≤ 4, by varying the target number s of splits. In
particular, the first column shows the target number of splits, the following four
columns show the maximum number of splits si allowed for each literal, and
the remaining four columns show the costs Ci computed according to the si

values; in bold face we outline, for each target number of splits, the minimal
values of Ci. It can be noted that, in our example, increasing the value of s
corresponds to different choices of the literal to split. Moreover, in each row,
the choice is always restricted to the first i literals, where the ith literal is the
first one allowing for the target number s of splits; indeed, Ci ≤ Ck, for each
k > i. Furthermore, even a literal that does not allow for s splits can be chosen;
this is the case for s = 100, where the chosen literal is b(Y,Z), which allows
for 50 splits. Notice that the choice of the literal to split may be influenced by
the body ordering in some cases, which in turn considerably affects the serial
evaluation time (which is the amount to be divided by parallel evaluation). For
example, all body orderings having d(V,Z) as first literal have d as the chosen
literal, since its extension is sufficiently large to allow the four target numbers
of splits considered. However, if such orderings determine a higher evaluation
cost w.r.t. the body order exploited in the serial evaluation, then the effect
of parallel evaluation could be overshadowed. Thus, we apply the selection of
the literal to split after reordering the body with a strategy that minimizes the
heuristic cost of instantiating the body.

Summarizing, our heuristics consists in determining an ordering of the body
literals exploiting the already assessed technique described in [27] and splitting
the first literal in the body if it allows for the target number of splits (without
computing any cost). Otherwise, the estimations of the costs are determined
and the literal allowing for the minimum one is chosen.
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4.4 Load Balancing and Granularity Control

An advanced parallelization technique has to deal with two important issues that
strongly affect the performance of a real implementation: load balancing and
granularity control. Indeed, if the workload is not uniformly distributed to the
available processors then the benefits of parallelization are not fully obtained;
moreover, if the amount of work assigned to each parallel processing unit is
too small then the (unavoidable) overheads due to creation and scheduling of
parallel tasks might overcome the advantages of parallel evaluation (in corner
cases, adopting a sequential evaluation might be preferable).

As an example, consider the case in which we are running the instantiation
of a rule r on a two processor machine and, by applying the technique for
Single Rule parallelism described above, the instantiation of r is divided into
two smaller tasks, by partitioning the extension of the split predicate of r into
two subsets with, approximatively, the same size. Then, each of the two tasks
will be processed by a thread; and the two threads will possibly run separately on
the two available processors. For limiting the inactivity time of the processors,
it would be desirable that the threads terminate their execution almost at the
same time. Unfortunately, this is not always the case, because subdividing
the extension of the split predicate into equal parts does not ensure that the
workload is equally spread among threads. However, if we consider a larger
number of splits, a further subdivision of the workload would be obtained, and,
the inactivity time would be more likely limited.

Clearly, it is crucial to guarantee that the parallel evaluation of a number
of tasks is not more time-consuming than their serial evaluation (granularity
control); and that an unbalanced workload distribution does not introduce sig-
nificant delays and limits the overall performance (load balancing).

Granularity Control. Our method for granularity control is based on the use
of a heuristic value W(r), which acts as a litmus paper indicating the amount of
work required for evaluating each rule of the program, and so, its “hardness”,
just before its instantiation. W(r) denotes the value C(n) (see Section 4.3), for
each rule r having n body literals.

At the rules level, rather than assigning each rule to a different thread, a
set of rules R is determined and assigned to a thread. R is such that the total
work for instantiating its rules is enough for enjoying the benefits of scheduling
a new thread. In practice, R is constructed by iterating on the rules of the same
component, and stopping if either

∑

r∈R W(r) > wseq or when no further rules
can be added to R, where wseq is an empirically-determined threshold value.
At the single rule level, a rule r is scheduled for parallel instantiation (i.e. its
evaluation can be divided into smaller tasks that can be performed in parallel)
if W(r) > wseq; otherwise, for r the third level of parallelism it is not applied
at all.

Note that, for simplifying the presentation of the algorithms in Section 2.3,
we have not considered the management of the granularity control in the second
level of parallelism, which would have added noisy technical details and made the
description more involved. However, they can be suitably adapted by modifying
procedure Rules Instantiator (see Fig.4.1) in order to build a set of “easy” rules,
and by adding a SetOfRules Instantiator procedure, which instantiates each rule
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in the set. Note also that, granularity control in the third level of parallelism is
obtained by setting the number of splits of a given rule to 1.

Load Balancing. In our approach load balancing exploits different factors.
On the one hand, in the case of the evaluation of recursive rules, a dynamic load
redistribution of the extension of the split literal at each iteration is performed.
On the other hand, the extension of the split literal is divided by a number which
is greater than the number of processors (actually, a multiple of the number of
processors is enough) for exploiting the preemptive multitasking scheduler of the
operating system. Moreover, in case of “very hard” rules, a finer distribution is
performed in the last splits. In particular, when a rule is assessed to be “hard” by
comparing the estimated work (the value W(r) described above) with another
empirically-determined threshold (W(r) > whard), a finer work distribution
(exploiting a unary split size) is performed for the last s− np splits, where s is
the number of splits and np is the number of processors. The intuition here is
that, if a rule is hard to instantiate then it is more likely that its splits are also
hard, and thus an uneven distribution of the splits to the available processors
in the last part of the computation might cause a perceptible loss of efficiency.
Thus, further subdividing the last “hard” splits, may help to distribute the
workload in a finer way in the last part of the computation.



Chapter 5

Parallel Computation of

Answer Sets for

Propositional Programs

In this chapter we describe the design of parallel techniques devised for the
computation of the answer sets.

The propositional answer sets computation engine is an important module
of an ASP system; surely, its functioning is very expensive in terms of computa-
tional resources. In Section 3.2 is described the propositional search algorithm
implemented in the ASP system DLV. This algorithm is serial, and, even if
it employs sophisticated techniques, and effective heuristics, the advantages of
applying parallelism to this phase are still worthy of attention.

This Chapter is structured as follows: in Section 5.1 we introduce the prob-
lem of pushing parallelism into the model generation process; in Section 5.2
we describe the parallel multi-heuristics search we have devised for the ASP
system DLV; in Section 5.3 we present a parallel lookahead technique; finally,
in Section 5.4, we introduce a technique for performing answer set checking in
parallel.

5.1 Parallel techniques for propositional ASP

solvers

In general, the answer set computation is a two-step process: the instantiation
step produces a propositional program which is then the input of a subsequent
propositional search phase which finds the answer sets. More in detail, the
propositional search consists in the generation of candidate solutions (model
generation), which are than checked to verify whether they are answer sets
(model checking).

In this chapter we discuss the issues related to both tasks of the proposi-
tional search process. In particular, we analyse the crucial operations performed
during the computation of the answer sets of propositional programs in order to
point out which of them may particularly benefit from the application of paral-
lelism. In the following we explicitly refer to the propositional search algorithm

49
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employed by the ASP system DLV [34].

First of all, note that practical implementations devised to solve difficult
problems (i.e., NP-Complete or even harder problems), are based on heuristic
criteria that drive the search in order to rapidly reach solutions immersed in
a large search space. As a matter of fact, the heuristics are decisive for the
design of a competitive and performant system. The majority of ASP systems
(including DLV) allows the static selection of a heuristic function when invoking
the solver; this makes the solvers dependent on human supervision. Indeed, a
deep understanding of the problem domain is fundamental for selecting the
most appropriate heuristics for the problem at hand. Knowing the best possible
heuristic criterion in advance is not possible (even if there are approaches based
on machine learning that partially address this issue [52]), but parallelism can
help here allowing for the concurrent involvement of several criteria. Moreover,
the computation of the heuristic values is one of the most expensive tasks of
model generation in the case of look-ahead-based solvers such as DLV. Indeed,
the number of lookahead steps, which suppose the computation of these values,
performed during the search space traversal is quite large (roughly, note that
every branching variable is, in principle, a candidate choice to be looked-ahead
thus the number of calls might be exponential in the size of the input program).
Parallelism can be exploited in this step by performing a concurrent measure of
heuristic values.

The last step of the computation is answer set checking, which amounts to
verifying, given a candidate model, whether it represents an answer set or not.
The stability check is a complex task: in the case of a non-HCF programs it is
Co-NP-complete, whereas for HCF programs it is polynomial time computable.
Concerning the Co-NP task, described in Section 3.2.3, it is traditionally per-
formed translating the input program into an SAT formula and evaluating its
satisfiability with an integrated SAT Solver; the polynomial time check is per-
formed computing the fixpoint of the R operator described in Subsection 3.2.3.
Nonetheless, the number of model checks performed during the propositional
search process is significant, thus exploiting parallelism , which is worthwhile in
both cases.

Given these premises, we designed the following parallel evaluation strategies
for the ASP solver DLV:

• a parallel multi-heuristics search in which a number of search tasks are run
concurrently, each one employing a different heuristics; the fastest among
them computes and outputs the answer set;

• a parallel lookahead technique that allows the concurrent computation of
the heuristic values.

• a parallel model checking strategy including both the parallel computation
of the the fixpoint of the R operator (see Chapter 3), and the use of a
parallel SAT solver in the cases in which model checking is Co-NP.

In the following sections we describe the techniques mentioned before in
detail.
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Function MultiHeuristicsSearch(H)
Input: An array of heuristic function H;
Output: An answer set A or the set of all literals L;
Var:
I: a array of interpretation
A: a thread safe interpretation

begin
1. foreach j < size(H) do
2. I[j] := ∅;
3. Spawn(ModelGenerator, I[j], A, H[j]);
4. wait(someAnswerSetHasBeenFound);
5. broadcast(searchEnd);
6. return A;

end

Figure 5.1: Framework for the parallel multi heuristics search DLV

5.2 Multi-Heuristics Parallel Search Strategy

The heuristics for the selection of the branching literal dramatically affects
the performance of an ASP system; and, obviously, there is no heuristics per-
forming well in all cases, rather one heuristics can be more suitable than an-
other for a given problem typology, or even for a specific problem instance. This
problem may be overcome adopting a parallel strategy for exploring the search
space. To this end, we designed a multi-heuristics search strategy that builds
upon the model generator schema described in Section 3.2. More in details (see
Figure 5.1), we allow the system to run n of instance of answer set computation
engines running n processes (Lines 1-3) executing the function ModelGenerator
depicted in Figure 3.4. Each one of these processes adopts a different branching
criterion among the ones described in Section 3.2.2. To this aim, the Mod-
elGenerator function is modified in order to receive also a heuristic function
in input and a thread safe interpretation. The computation stops when the
first process running modelGenerator finds a solution or determines an incon-
sistency. In particular, the thread safe interpretation is used to store the result
of the multi-heuristics search, and is written only by the thread that terminate
the computation; in case of inconsistency, A becomes the set of all literals L.
Basically, we address the problem of finding a single answer set of the input
program, if it exists. Thus, as soon as a process stops its computation a ter-
minating message is sent to the remaining processes (Line 5), and the function
return the solution. This multi-heuristics parallel search strategy ensures that
the best possible performance for the given problem instance is obtained as long
as enough computational resources are employed. Indeed, the first propositional
search task that finds a solution is the one employing the most suitable heuristic
criterion for the input problem. A prototype of this solver was implemented;
implementation details, and performances will be discussed in Chapter 6.
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Function SelectPar(I,s)
Input: An interpretation I, an integer s;
Output: a literal L;
Var:
L: a literal
id: thread id;
thList: list of thread id;
AS: set of literals;
DetChoices: thread safe set of literals;

begin
1. thList := ∅;
2. DetChoices := ∅;
3. foreach Literal A ∈ PTP(I) do (* spawn lookahead threads *)
4. if AS.size = ⌊ PTP(I)/s ⌋ then
5. AS.add(A);
6. else
7. id = Spawn(Lookahead, I, A, detChoices);
8. thList.add(id);
9. endif
10. foreach thread id thread ∈ thList do (* barrier *)
11. join with thread(thread);
12. I := Propagate(I ∪ detChoices);
13. if I = L then
14. return NULL;
15. endif
16. L := NULL;
17. foreach Literal A ∈ PTP(I) do
18. if L = NULL then
19. L := A; (* first literal, no comparison *)
20. else if L <hC

A then
21. L := A;
22. endif
23. return L;

end

Figure 5.2: The function selectPar for the parallel selection of the branching
literal

5.3 Parallel Lookahead

As described in Chapter 3, the Model Generator computation proceeds by
heuristically selecting a branching literal until the end of the computaion is
reached. The selection is made by comparing the heuristic values computed
in a look-ahead step for each possible choice. In the following we describe a
technique for exploiting parallelism in the look-ahead step.

Our approach builds upon the serial algorithms described in Section 3.2.1.
In particular, Figure 5.2 shows the general procedure for evaluating the heuris-
tically best literal in parallel, and is an enhancement of the function Select
depicted in Figure 3.5. In order to insert our parallel lookahead technique into
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Procedure Lookahead(I;A;detChoices)
Input: An interpretation I, a set of literals AS, thread-safe set of literals detChoices;
begin
1. foreach Literal A ∈ AS do
2. I+A := Propagate(I ∪ {A}); (* look-ahead for A *)
3. if I+A = L
4. detChoices.add(not.A);
5. endif
6. I−A := Propagate(I ∪ {not.A}); (* look-ahead for not.A *)
7. if I−A = L
8. detChoices.add(A);
9. endif
10. if I+A = L ∧ I−A = L then
11. return;
12. endif

end

Figure 5.3: The Lookahead function the parallel evaluation of the heuristic
values

the general ASP computational framework, the algorithm shown in Figure 3.4 is
modified by substituting the invocation of the function Select with the function
SelectPar.

The function SelectPar receives an interpretation I as input, and an integer
s, and proceeds by creating exactly s subsets of size ⌊PTP(I)/s⌋ (lines 4-5) of
the set PTP(I), which contains all the possible choices at a given stage of the
computation. If PTP(I) contains exactly t literals such that t < s, only t subsets
of size 1 will be generated. For each subset AS a thread 1 is spawned running
the function Lookahead (line 7), which performs the lookahead for the all the
literals contained in AS (Figure 5.3). Lines 10-11, refer to the synchronization
that has to be made after all threads finish the computation.

Lookahead threads, either calculate the heuristic values (results are stored
in I+A and I−A) by calling function Propagate for each literal L in AS, or if an
inconsistency is encountered (I+A = L or I−A = L), stores the complement of
the propagated literal in the detChoices set; note that the set detChoices is
shared among threads and has to be implemented by exploiting a thread-safe
collection. If a thread detects an inconsistency it stops the computation, in
order to avoid useless operations (lines 10-12 of function Lookahead). Once all
threads terminate (they all reach the barrier in Line XX), literals in detChoices,
which can be deterministically assumed, are propagated. If an inconsistency
arises at this point, then no literal can be chosen at this level (the assumption
of both A and its complement not.A leads to inconsistency) and the function
Select returns false, in order to cause a backtracking. Otherwise, the best literal
according to a given heuristic criterion hC is selected among the candidate ones
as in the serial version of this algorithm.

1In the description of the thread function calls we adopted here a syntax similar to the one
of lightweight POSIX thread (calls to Spawn and join with thread).
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5.4 Parallel Model Checking

The serial algorithm used for checking the stability of candidate models has
been described in Subsection 3.2.3. Recall that, the stability check is carried out
as a two-step process: the first step is a polynomial time check which amounts
to compute the fixpoint of the R described in Subsection 3.2.3. In the case of
HCF programs, the first step is sufficient for determining the stability of the
model; for non-HCF problems an additional step is necessary.

More in detail, the second step is carried out translating the ASP program
into a SAT formula and testing its unsatisfability (which is a Co-NP-complete
problem). The technique described in Subsection 3.2.3 employs the invocation
of an external SAT solver for the evaluation of the so-obtained formula. This
technique might take advantage of parallelism making use of a modern parallel
sat solver. Nowadays there are a number of efficient implementations which
make use of multi-heuristics [53] approaches as well as parallel tree traversal
technique for the parallel evaluation of the satisfiability of a formula [54]. Since
proving the unsatisfability is a complex (Co-NP complete) problem, we argue
that the use of a parallel SAT solver may produce significant speed up for
checking the stability of non-HCF programs.

We describe now a novel parallel technique for enhancing the first step of the
stability check. The main idea is to design a parallel strategy for the evaluation
the operator R; in particular, a new definition of fixpoint of RS,I is given which
is based on the function FixpointOfR, depicted in Figure 5.4.

Whenever a model check is performed, the FixpointOfR is called instead
of Rω

P,I at line 1 in the procedure in Figure 3.6 of Chapter 3. This function
works under the assumption that a partition of the input program P is made at
the beginning of the propositional search phase, such that n sub-programs are
defined which are indicated with Pi. Basically, a cyclic procedure is performed
until the fixpoint condition is reached; n thread are spawned performing the
fixpoint of the RS,I , such that each thread works on a partition of the program
S = Pi (Lines 2-7), and modify only a local copy of the global set X ( each
thread i modifies XLocal[i]). Afterwards, a synchronization step is executed,
and a check is performed to verify whether at least one of the n XLocal set is
different from the global set X (Lines 10-15); as long as this happens another
iteration has to be performed, with X sets to the intersection of all the XLocal.
The computation stops as soon as all the XLocal sets are set to X (fixpoint
condition), and X is returned.

In the following we show the correctness of the technique.

Proposition 5.4.1. The FixpointOfR procedure is equivalent to the computa-
tion of the fixpoint of the R operator.

Proof. Let consider first a variant of the FixpointOfR function of Figure 5.4,
in which the computation of Rω

S,X (Line 6) is replaced by single application of

the R operator denoted by R1
S,X . The union of all the R1

S,X at the m − th

iteration is equal to Rm
P,X (a serialized execution of all the R1

S,X coincides with
the execution of Rm

P,X), thanks to the synchronization step (Lines 8-9). Thus an
execution of this modified algorithm employing parallelism is equivalent to the
serial execution of Rω

P,X . Now, considering that Rω
S,X ⊆ · · · ⊆ R2

S,X ⊆ R1
S,X ,

and that the application of the R operator can only remove atoms from X,
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Function FixpointOfR(P ,I,n)
Input: A program P , an interpretation I;
Output: a set of atoms X;
Var:
i: an integer
continue: a boolean
S: a sub-program
L: a literal
X:set of atoms
XLocal: an array of set of atoms
id: thread id;
thList: list of thread id;

begin
1. X := I+;
2. do
3. foreach i < n do
4. XLocal[i] := ∅;
5. S := Pi;
6. id := Spawn(Rω

S,X , XLocal[i]);
7. thList.add(id);
8. foreach thread id thread ∈ thList do (* barrier *)
9. join with thread(thread);
10. continue := false;
11. foreach i < n do
12. if X ∩XLocal[i] 6= X
13. continue := true;
14. break;
15. endif
16. if continue
17. X :=

⋂
0<i<n

XLocal[i];
18. endif
19. while continue
20. return X

end

Figure 5.4: Parallel computation of the Rω
P,I operator.

then Rω
S,X removes from X only atoms that would have been removed in a later

iteration by the algorithm employing R1
S,X . Thus, the algorithm of Figure 5.4

is equivalent to the computation Rω
P,X .
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Chapter 6

Experiments and

Implementation

The algorithms devised for parallel grounding and parallel model generation
have been implemented into the ASP system DLV. In this Chapter we discuss
the implementation issues and report the results of the experimental analysis
carried out to assess the performances of the implemented prototypes.

This Chapter is structured as follows: in Section 6.1 we describe the im-
plementation details; in Section 6.2 we report the results of the experimental
analysis carried out for the parallel instantiator, while in section 6.3 we report
the results of the assessment on the parallel model generator.

6.1 Implementation in DLV

The techniques described in Chapter 4–5 have been implemented in the ASP
system DLV. In particular, we came out with two prototypes, each one dealing
with a different phase of the answers set computation, thus obtaining a parallel
instantiator and a parallel model generator. Both them have been implemented
by extending the corresponding module of DLV. The systems are implemented
in the C++ language by exploiting the Linux POSIX Thread API, shipped
with the GCC 4.3.3 compiler. The description of the algorithm reported in
Chapter 4–5 is simplified for presentation reasons; a number of optimization
have been adopted in the real implementation in order to make the most of
parallelism. In the following we sketch the implementation details for both
systems.

6.1.1 Instantiator Implementation

An overview of the system architecture is depicted in Figure 6.1. An input
program P first undergoes the parsing procedure, which maps P into the internal
data structures of DLV. Moreover, the dependency graph associated with the
program is created, and the corresponding program modules identified. Then,
a number of threads are spawned: nc threads working at the components level,

57
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Figure 6.1: System Architecture of the Parallel Instantiator

nr threads working at the rules level, and ns threads working at the single
rule level. Afterwards the master thread, which is responsible for managing the
whole evaluation process, starts the instantiation process. Basically, it exploits
the information on modules dependency to schedule independent components in
the component buffer. The component threads process the components placed
in the component buffer according to the strategy explained in the previous
section. Each rule of the component that has to be processed is pushed into
the rule buffer. Then each component thread waits until all scheduled rules are
instantiated; and, in presence of recursive rules it reiterates the rules scheduling
until the end of the semi-näıve algorithm. When all the rules of a component
are completely instantiated the component thread notifies that the component
has been processed to the master thread that might continue by scheduling the
remaining components (if any) or stop the instantiation. Similarly, rule threads
take the rules to be processed from the rule buffer, notify to the originating
component threads when the rule-instantiation task is concluded. In accordance
with the heuristics described in the previous section each rule instantiator thread
chooses among sequential evaluation or dynamic rewriting. Rewritten rules are
pushed into a third buffer and processed by split threads. Split threads, in turn,
take a split rule from the buffer and call the original rule instantiation procedure
of the DLV system; when the the instantiation task is concluded the originating
rule thread is notified.
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6.1.2 Model Generator Implementation

The parallel model generator takes a ground program P as input and outputs
its answer sets (or one solution in case the multi-heuristics is applied). Con-
cerning the multi-heuristics implementation, a number of thread is spawned at
the beginning of the computation, each of which runs an instance of the serial
propositional search solver instructed to exploit a specific branching heuristic
criterion; in particular, each thread runs the ModelGenerator function described
in Section 3.2. Thus, the main process waits for the threads to terminate their
task; a synchronized global flag variable is used to share the information that
a solution has been found by a concurrent solver thread. As soon as a thread
finds the solution, it acquires a lock, sets the termination flag to true and prints
the answer set. In particular, the termination flag is checked every time a choice
point is reached to determine whether the computation has to continue. Once
every thread terminates the computation is stopped.

The implementation of the parallel lookahead follows the pseudo-code algo-
rithm described in Section 5.3; however, in the real implementation the spawn
and join instructions (lines 7,11) are replaced by an equivalent but more efficient
data structure. Threads are spawned at the beginning of the computation and
are “recycled ” at each invocation of the lookahead procedure to save execution
time. The syntonization is handled by exploiting a task buffer filled by the can-
didate choices to be looked ahead. Note that, in the case that the two parallel
techniques are combined, each model generator has its own task buffer and data
structures for handling the parallel lookahead process.

6.2 Assessment of the Parallel Instantiator

In this section we report the results of the experimental analysis carried
out for assessing the parallel instantiator. First of all we describe benchmarks
problems and data in the next subsection. Then, a description of the results
of the analysis is presented, which is divided into two trunks: first of all, a
discussion on the effect of the third level of parallelism is presented, which
prove the effectiveness of the technique. Then, scalability results of the system
are reported, showing a sub-optimal behavior for the system.

6.2.1 Benchmark Problems and Data

In our experiments, several well-known combinatorial problems as well as real-
world problems are considered. These benchmarks have already been used for
assessing ASP instantiator performance [7, 55, 56]. Many of them are particu-
larly difficult to parallelize due to the compactness of their encodings; note that
concise encodings are quite common given the declarative nature of the ASP lan-
guage which allows to compactly encode even very hard problems. About data,
we considered five instances (where the instantiation time is non-negligible) of
increasing difficulty for each problem, except for the Hamiltonian Path and 3-
Colorability problem, for which generators are available, and we could generate
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several instances of increasing size.1

A detailed description of each benchmark is provided below. Some of the
problems has been already described in Chapter 2; for these problems only a
short description is provided. Moreover, the encoding of some of the benchmark
problems is omitted due to the large number of rules (hundreds, thousands of
rules).

n-Queens. The 8-queens puzzle is the problem of putting eight chess queens
on an 8x8 chessboard so that none of them is able to capture any other using
the standard chess queen’s moves. The n-queens puzzle is the more general
problem of placing n queens on an nxn chessboard (n ≥ 4). The predicate

queens(X,Y )

represents the position of a queen; in particular if queen(X,Y ) is true then there
is a queen at row X and column Y . The encoding of the problem follow the
guess&check paradigm. The disjunctive rule

queen(X, 1) ∨ · · · ∨ queen(X,n) :−#int(X), X > 0.

allows the guess of the position of the queens; then, three constraints are
used in order to verify that the assignment is a solution. In particular the
constraint

:−q(X,Y ), q(Z, Y ), X <> Z.

verifies that no row contains two queens; the constraints

:−q(X,Y ), q(A,B), N = X −A, B = Y + N, N > 0.
:−q(X,Y ), q(A,B), N = X −A, Y = B + N, N > 0.

verifies that no queen can capture another attacking in diagonal. There is no
need to verify that two queen are on the same column because the guess rule
does not allow this possibility. Furthermore, note that the encoding avoid the
explicit representation of the chessboard.

Instances were considered having n ∈ {37, 39, 41, 43, 45}.

Ramsey Numbers. The Ramsey number ramsey(k,m) is the least integer
n such that, no matter how the edges of the complete undirected graph (clique)
with n nodes are colored using two colors, say red and blue, there is a red clique
with k nodes (a red k-clique) or a blue clique with m nodes (a blue m-clique).
The encoding of this problem has already been presented in Section 2.4, and
consists of one rule and two constraints. For the experiments, the problem was
considered of deciding whether, for k = 7, m = 7, and n ∈ {31, 32, 33, 34, 35}, n
is ramsey(k,m).

Clique. A clique in an undirected graph G = (V,E) is a subset of its ver-
tices such that every two vertices in the subset are connected by an edge. We

1Encodings and instances are available at http://www.mat.unical.it/ricca/downloads/

parallelground10.zip.
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considered the problem finding the cliques in a given input graph. The graph is
made up starting from the predicate edge(X,Y ), then rules

edge(X,Y ) :− edge(Y,X).
node(X) :− edge(X,Y ).

are used to set up the graph representation. Then a disjunctive rule is used to
guess a clique

inclique(X) ∨ outclique(X) :− node(X).

where the node(X) is in the clique if inclique(X) is true. Minimality guaranties
that only one between inclique(X) or outclique(X) is true for each answer set.
To verify that all the nodes within a clique are connected a constraint is added

:− inclique(X), inclique(Y ), notedge(X,Y ), X! = Y.

Five graphs of increasing size were considered.

Timetabling. The problem of determining a timetable for some university
lectures which have to be given in a week to some groups of students. The
timetable must respect a number of given constraints concerning availability
of rooms, teachers, and other issues related to the overall organization of the
lectures. We do not provide a description of the encoding of this problem due to
the large number or rules; however it is publicly available online together with
all the other benchmark problem we considered in this thesis. Many instances
were provided by the University of Calabria; they refer to different numbers of
student groups g ∈ {15, 17, 19, 21, 23}.

Sudoku. Given an NxN grid board, where N is a square number N = M2,
fill it with integers from 1 to N so that each row, each column, and each of
the N MxM boxes contains each of the integers from 1 to N exactly once.
Suppose the rows are numbered 1 to N from left to right, and the columns
are numbered 1 to N from top to bottom. The boxes are formed by dividing
the rows from top to bottom every M rows and dividing the columns from left
to right every M columns. Encoding and instances were used for testing the
competitors solvers in the ASP Competition 2009 [56]. We do not provide a
description of the encoding of this problem due to the large number or rules;
however it is publicly available online together with all the other benchmark
problem we considered in this thesis. For assessing our system we considered
the instances {sudoku.in5, sudoku.in6, sudoku.in7, sudoku.in9, sudoku.in10},
where N = 25.

Golomb Ruler. A Golomb ruler is an assignment of marks to integer po-
sitions along a ruler so that no pair of two marks is the same distance from
each other. The number of marks is the order of the ruler. The first mark is
required to be at position 0, the position of the highest mark is the length of the
ruler. The problem is finding the shortest ruler of a given order. Input instances
are described by predicate mark(M) and position(P ) representing marks and
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positions. A fact
nonfree(0).

is added to force a mark to be at position 0. Then, a disjunctive rule is used
to guess the position occupied by a mark

free(P ) ∨ non free(P ) :− position(P ).

In order to verify that exactly N non-free position are guessed the following
rule and constraint are encoded

num(N) :− #count{M : mark(M)} = N.
:− num(N), not #count{P : non free(P )} = N.

To check that no pair of two marks is at the same distance from each other
we compute, for each non-free position P1, the distance with each successive
non-free position P2.

d(P1, D) :− nonfree(P1), nonfree(P2), P1 < P2, D = P2 − P1.

then we discard models in which more than one pair of non-free position have
the same distance.

:− d(P1, D), d(P2, D), P1 < P2.

As long as we are interested in finding the shorter ruler, an optimization part
is added to the encoding. This is done by associating a cost to each non-free
position P and each position left of P

cost(P ):− nonfree(P ).
cost(P1):− cost(P ), P1 = P − 1. : cost(P ).[P :]

The last rule is called weak constraint, and is native DLV construct used for
optimization issues; a description of this construct can be found in []

Encoding and instances have been used for testing the competitors solvers
in the ASP Competition 2009 [56]. Instances are described by a couple (m, p)
where m is the number marks and p is the number of positions: we considered
the values (10, 125), (13, 150), (14, 175),(15, 200) and (15, 225).

Reachability. Given a directed graph G = (V,E), we want to compute
all pairs of nodes (a, b) ∈ V × V (i) such that b is reachable from a through a
nonempty sequence of edges in E. The encoding of this problem has already
been presented in Section 2.4, and consists of one exit rule and a recursive one.
Five trees were generated with a pair (number of levels, number of siblings):
(9,3), (7,5), (14,2), (10,3) and (15,2), respectively.

Food. The problem here is to generate plans for repairing faulty workflows.
That is, starting from a faulty workflow instance, the goal is to provide a comple-
tion of the workflow such that the output of the workflow is correct. Workflows
may comprise many activities. Repair actions are compensation, (re)do and re-
placement of activities. We do not provide a description of the encoding of this
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problem due to the large number or rules; however it is publicly available online
together with all the other benchmark problem we considered in this thesis. A
single instance was provided related to a workflow containing 63 predicates, 56
components and 116 rules.

3-Colorability. This well-known problem asks for an assignment of three
colors to the nodes of a graph, in such a way that adjacent nodes always have dif-
ferent colors. The input graph is represented by a set of predicates edge(X,Y ),
and rules

node(X) derives edge(X,Y ).
node(Y ) derives edge(X,Y ).

are used to single out the nodes of the graph. To guess a possible nodes
coloration the following disjunctive rule is encoded

colored(r,X) ∨ colored(g,X) ∨ colored(b,X) :− node(X).

To verify that all the nodes connected by an edge are assigned to different
colours the following constraint is added

:− edge(X,Y ), colored(C,X), colored(C, Y ).

Concerning instances, a number of simplex graphs were generated with the
Stanford GraphBase library [57], by using the function simplex(n, n,−2, 0,
0, 0, 0), where 80 ≤ n ≤ 250.

Hamiltonian Path. A classical NP-complete problem in graph theory, which
can be expressed as follows: given a directed graph G = (V,E) and a node a ∈ V
of this graph, does there exist a path in G starting at a and passing through
each node in V exactly once. TThe encoding of this problem has already been
presented in Section 2.4, and consists of several rules, one of these is recursive.
Instances were generated, by using a tool by Patrik Simons (cf. [58]), with n
nodes with 1000 ≤ n ≤ 12000.

The machine used for the experiments is a two-processor Intel Xeon “Wood-
crest” (quad core) 3GHz machine with 4MB of L2 Cache and 4GB of RAM,
running Debian GNU Linux 4.0. Since our techniques focus on instantiation,
all the results of the experimental analysis refer only to the instantiation pro-
cess rather than the whole process of computing answer sets; in addition, the
time spent before the grounding stage (parsing) is obviously the same both for
parallel and non-parallel version. In order to obtain more trustworthy results,
each single experiment was repeated five times and the average of performance
measures are reported.

6.2.2 Experimental Results

Effect of Single Rule Parallelism In this section we report the results
of an experimental analysis aimed at comparing the effects of the single rule
parallelism with the first two levels. More in detail, we considered four versions
of the instantiator: (i) serial where parallel techniques are not applied, (ii)
levels1+2 where components and rules parallelism are applied, (iii) level3
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Problem serial levels1+2 level3 levels1+2+3

queen1 4.64 (0.00) 2.19 (0.06) 0.71 (0.01) 0.69 (0.01)
queen2 5.65 (0.00) 3.29 (0.51) 0.89 (0.01) 0.86 (0.02)
queen3 6.83 (0.00) 3.85 (0.50) 1.08 (0.00) 1.03 (0.02)
queen4 8.19 (0.00) 4.50 (0.48) 1.25 (0.01) 1.22 (0.00)
queen5 9.96 (0.00) 4.72 (0.11) 1.45 (0.02) 1.43 (0.01)
ramsey1 258.52 (0.00) 131.61 (0.23) 40.53 (0.21) 36.23 (0.34)
ramsey2 328.68 (0.00) 168.03 (1.38) 51.35 (0.25) 46.09 (0.33)
ramsey3 414.88 (0.00) 211.60 (0.55) 68.49 (0.10) 58.06 (0.20)
ramsey4 518.28 (0.00) 265.58 (2.82) 83.32 (0.24) 75.19 (2.41)
ramsey5 643.65 (0.00) 327.25 (0.79) 103.14 (0.44) 92.28 (0.65)
clique1 16.06 (0.00) 15.88 (0.20) 3.34 (0.04) 2.35 (0.01)
clique2 29.98 (0.00) 29.97 (0.01) 4.41 (0.12) 4.34 (0.07)
clique3 49.11 (0.00) 49.18 (0.05) 7.11 (0.03) 7.09 (0.02)
clique4 78.05 (0.00) 78.70 (0.35) 11.35 (0.14) 11.29 (0.11)
clique5 119.48 (0.00) 118.66 (0.07) 17.08 (0.14) 17.09 (0.16)
timetab1 15.48 (0.00) 7.28 (0.04) 2.35 (0.04) 2.29 (0.01)
timetab2 17.49 (0.00) 8.30 (0.07) 2.61 (0.01) 2.61 (0.02)
timetab3 21.65 (0.00) 10.22 (0.05) 3.22 (0.04) 3.20 (0.01)
timetab4 17.75 (0.00) 8.24 (0.04) 2.61 (0.01) 2.64 (0.05)
timetab5 23.69 (0.00) 11.09 (0.01) 3.52 (0.01) 3.50 (0.03)
sudoku1 5.42 (0.00) 4.15 (0.04) 0.98 (0.01) 0.88 (0.01)
sudoku2 9.87 (0.00) 7.75 (0.01) 1.59 (0.02) 1.51 (0.02)
sudoku3 10.28 (0.00) 8.01 (0.05) 1.62 (0.00) 1.57 (0.01)
sudoku4 10.56 (0.00) 8.38 (0.01) 1.75 (0.02) 1.63 (0.03)
sudoku5 11.08 (0.00) 8.25 (0.04) 1.67 (0.02) 1.63 (0.05)
gol ruler1 6.58 (0.00) 6.32 (0.07) 0.96 (0.01) 0.94 (0.02)
gol ruler2 13.74 (0.00) 12.57 (0.04) 1.87 (0.04) 1.84 (0.09)
gol ruler3 24.13 (0.00) 22.67 (0.05) 3.29 (0.06) 3.25 (0.13)
gol ruler4 40.64 (0.00) 37.50 (0.10) 5.44 (0.21) 5.51 (0.10)
gol ruler5 62.23 (0.00) 59.04 (0.04) 8.32 (0.12) 8.36 (0.17)
reach1 52.21 (0.00) 52.07 (0.07) 8.25 (0.06) 8.28 (0.01)
reach2 147.34 (0.00) 148.34 (0.01) 22.60 (0.16) 22.67 (0.18)
reach3 258.01 (0.00) 240.17 (0.13) 39.59 (0.29) 39.57 (0.44)
reach4 522.09 (0.00) 517.97 (0.59) 77.21 (0.20) 77.52 (0.31)
reach5 1072.00 (0.00) 1069.86 (1.04) 160.66 (0.21) 160.31 (0.25)
Food 684.95 (1.19) 0.18 (0.15) 104.6 (1.01) 0.08 (0.01)

Figure 6.2: Average instantiation times in seconds (standard deviation)

where only the single rule level is applied, and (iv) levels1+2+3 in which all
the three levels are applied. Results are shown in Figures 6.2-6.3-6.4; more in
detail, Figure 6.3-6.4 report the average instantiation times for the Hamiltonian
Path and the 3-Colorability problem, respectively; while the table in Figure 6.2
reports the average instantiation times in seconds for the remaining benchmarks.

More in detail, in Figure 6.2, the first column reports the problem considered,
whereas the next columns report the results for the four instantiators. Looking
at the third column in the table, benchmarks can be classified in three different
groups according to their behavior: the benchmarks in which the first two levels
of parallelism apply, those where these first two levels apply marginally, and
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Figure 6.3: Instantiation times(s) - Hamiltonian Path

those where they do not apply at all. In the first group, we have the n-Queens
problem, Ramsey Numbers, and Timetabling, where levels1+2 is about twice
faster than serial; however, considering that the machine on which we ran
the benchmarks has eight core available, levels1+2 is not able to exploit all
the computational power at hand. The reason, is that the encodings of these
benchmarks either have a small number of rules (n-Queens, Ramsey Numbers),
or they show an intrinsic dependency among components/rules (Timetabling),
that limits the efficacy of the first two levels of parallelism. These considerations
explain also the behavior of the other two groups of benchmarks. More in detail,
for the second group (which contains only Sudoku) a small improvement is
obtained due to few rules which are evaluated in parallel, while the benchmarks
belonging to the third group, whose encodings have very few interdependent
rules (e.g. Reachability), proved hard to parallelize. Looking at the graphs,
Hamiltonian Path and 3-Colorability clearly belongs to the third group, indeed
the lines of serial and levels1+2 overlap.

A special case is the Food problem, showing an impressive performance,
which proved to be a case very easy to parallelize. This behavior can be ex-
plained by a different scheduling of the constraints performed by the serial
version and the levels1+2 one. In particular, this instance is inconsistent (there
is a constraint always violated) and both versions stop the computation as soon
as they recognize this fact. The scheduling performed by the parallel version
allows the identification of this situation before the serial one, since constraints
are evaluated in parallel, while the latter evaluates the inconsistent constraint
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Figure 6.4: Instantiation times(s) - 3-Colorability

later on.

Concerning the behavior of level3, we notice that it always performs very
well (always more than 7.5x faster than serial), and in all cases but Food, it
outperforms levels1+2. Basically, the third level of parallelism applies to every
single rule, and thus it is effective on all problems, even those with very small
encodings. In the case of Food, even if level3 is about 7x faster than serial, it
evaluates rules in the same order than serial thus recognizing the inconsistent
constraint later than levels1+2.

The good news is that the three levels of parallelism always combine (even
in the case of Food). This can be easily seen by looking at the last column
of table and at the two graphs. Note that most of the advantages are due to
the third level of parallelism. Indeed in the graphs, the lines for level3 and
levels1+2+3 overlap, and levels1+2+3 shows only marginal gains w.r.t. level3,
in the benchmarks where levels1+2 applies.

Scalability of the Approach We conducted a scalability analysis on the
instantiator levels1+2+3 which exploits all the three parallelism levels. More-
over, we considered the effects of increasing both the size of the instances and
the number of available processors (from 1 up to 8 CPUs).2 The results of the
analysis are summarized in Table 6.1, Figure 6.6, and Figure 6.8, which report

2Available processors can be disabled (respectively enabled) by running the
bash Linux commands: echo 0 >> /sys/devices/system/cpu/cpu-n/online (resp.
echo 1 >> /sys/devices/system/cpu/cpu-n/online).
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Figure 6.5: Efficiency - Hamiltonian Path

the average instantiation time; in Table 6.2, Figure 6.5, and Figure 6.7, which
report the efficiencies. As before, the graphs show results for Hamiltonian Path
and 3-Colorability, while the results of the remaining problems are reported in
the table. The overall picture is very positive: the performance of the instantia-
tor is very good in all cases and average efficiencies vary between 0.85 and 0.95
when all the available CPUs are enabled. As one would expect, the efficiency
of the system slightly decreases when the number of processors increases –still
remaining at a good level– and rapidly increases going from very small instances
(<2 seconds) to larger ones.

The granularity control mechanism resulted to be effective in the n-Queens
problem, where all the considered instances required less than 10 seconds of
serial execution time. Indeed, the “very easy” disjunctive rule was always
sequentially-evaluated in all the cases. Since the remaining constraints are
strictly determined by the result of the evaluation of the disjunctive rule, the
unavoidable presence of a sequential part limited the final efficiency to a re-
markable 0.9 in the case of 8 processors. A similar scenario can be observed in
the case of Ramsey Numbers, where the positive impact of the load balancing
and granularity control heuristics becomes very evident. In fact, since the en-
coding is composed of few “very easy” disjunctive rules and two “very hard”
constraints, the heuristics selects a sequential evaluation for the rules, and dy-
namically applies the finer distribution of the last splits for the constraints. As
a result, the system produces a well-balanced work subdivision, which allows
steady results to be obtained with an average efficiency greater or almost equal
to 0.9 in all tested configurations. Analogously for Clique, which has a short
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Figure 6.6: Instantiation times - Hamiltonian Path

encoding consisting of only three easy rules, for which granularity control sched-
ules a serial execution, and one “hard” constraint which can be split and thus
evaluated in parallel.

A good performance is also obtained in the case of Reachability. This prob-
lem is made up of only two rules; the first one is caught by granularity control
which schedules its serial execution. The second one is a heavy recursive rule,
that requires several iterations to be grounded. In this case a good load bal-
ancing is obtained thanks to the redistributions applied (with possibly different
split sizes) at each iteration of the semi näıve algorithm.

The instantiator is effective also in Golomb Ruler, Timetabling and Sudoku
where the performance results to be good also thanks to a well-balanced work-
load distribution.

About Food, a super-linear speedup (owing to the first levels of parallelism) is
already evident with two-processors and efficiency peaks when three processors
are enabled, where the execution times becomes negligible. The behaviour of the
system for instances of varying sizes was analysed in more detail in the case of
Hamiltonian Path and 3-Colorability; this was made possible by the availability
of generators.
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Average instantiation time (standard deviation)
Problem serial 2 proc 3 proc 4 proc 5 proc 6 proc 7 proc 8 proc
queen1 4.64 (0.00) 2.53 (0.01) 1.71 (0.01) 1.31 (0.01) 1.07 (0.00) 0.91 (0.01) 0.78 (0.01) 0.69 (0.01)
queen2 5.65 (0.00) 3.11 (0.00) 2.11 (0.01) 1.60 (0.00) 1.31 (0.01) 1.11 (0.01) 0.97 (0.00) 0.86 (0.02)
queen3 6.83 (0.00) 3.79 (0.01) 2.57 (0.01) 1.97 (0.01) 1.60 (0.01) 1.35 (0.02) 1.17 (0.01) 1.03 (0.02)
queen4 8.19 (0.00) 4.54 (0.00) 3.06 (0.01) 2.35 (0.01) 1.90 (0.01) 1.62 (0.02) 1.41 (0.01) 1.22 (0.00)
queen5 9.96 (0.00) 5.57 (0.19) 3.68 (0.01) 2.81 (0.02) 2.26 (0.02) 1.92 (0.00) 1.69 (0.01) 1.43 (0.01)
ramsey1 258.52 (0.00) 131.72 (0.08) 89.04 (0.41) 67.10 (0.46) 55.14 (0.93) 46.62 (0.19) 39.98 (0.12) 36.23 (0.34)
ramsey2 328.68 (0.00) 167.47 (0.16) 112.97 (0.94) 85.90 (0.15) 70.64 (1.74) 58.70 (0.82) 51.21 (0.18) 46.09 (0.33)
ramsey3 414.88 (0.00) 210.98 (0.38) 142.85 (0.68) 108.00 (0.38) 88.13 (0.51) 74.83 (0.22) 65.25 (0.59) 58.06 (0.20)
ramsey4 518.28 (0.00) 264.69 (1.82) 178.67 (2.39) 137.42 (1.89) 111.09 (2.15) 95.27 (2.02) 81.45 (0.45) 75.19 (2.41)
ramsey5 643.65 (0.00) 327.06 (0.36) 222.81 (0.20) 169.37 (0.86) 135.94 (0.17) 115.78 (0.92) 101.21 (1.33) 92.28 (0.65)
clique1 16.06 (0.0) 8.51 (0.13) 5.84 (0.08) 4.45 (0.17) 3.64 (0.04) 3.08(0.1) 2.67 (0.03) 2.35 (0.01)
clique2 29.98 (0.0) 15.92 (0.23) 10.69 (0.18) 8.27 (0.09) 6.77 (0.11) 5.71 (0.10) 4.94 (0.40) 4.34 (0.07)
clique3 49.11 (0.00) 25.81 (0.41) 17.31 (0.06) 13.39 (0.20) 10.92 (0.20) 9.23 (0.02) 7.98 (0.03) 7.09 (0.02)
clique4 78.05 (0.00) 41.68 (0.07) 27.91 (0.28) 21.10 (0.02) 17.33 (0.20) 14.60 (0.04) 12.76 (0.06) 11.29 (0.11)
clique5 119.48 (0.00) 62.87 (0.13) 42.62 (0.15) 32.46 (0.04) 26.14 (0.21) 22.24 (0.00) 19.14 (0.00) 17.09 (0.16)
timetab1 15.48 (0.00) 7.98 (0.10) 5.41 (0.02) 4.16 (0.00) 3.37 (0.00) 2.93 (0.05) 2.59 (0.03) 2.29 (0.01)
timetab2 17.49 (0.00) 9.26 (0.34) 6.30 (0.23) 4.68 (0.01) 3.89 (0.04) 3.41 (0.14) 2.92 (0.04) 2.61 (0.02)
timetab3 21.65 (0.00) 11.12 (0.03) 7.54 (0.02) 5.98 (0.23) 4.84 (0.09) 4.08 (0.05) 3.64 (0.02) 3.20 (0.01)
timetab4 17.75 (0.00) 9.32 (0.36) 6.13 (0.02) 4.75 (0.06) 3.86 (0.02) 3.33 (0.01) 3.01 (0.15) 2.64 (0.05)
timetab5 23.69 (0.00) 12.16 (0.01) 8.28 (0.01) 6.35 (0.02) 5.34 (0.20) 4.47 (0.03) 3.94 (0.03) 3.50 (0.03)
sudoku1 5.42 (0.00) 2.84 (0.01) 2.14 (0.21) 1.54 (0.00) 1.29 (0.02) 1.10 (0.00) 0.98 (0.02) 0.88 (0.01)
sudoku2 9.87 (0.00) 5.09 (0.02) 3.53 (0.02) 2.72 (0.04) 2.25 (0.01) 1.90 (0.02) 1.68 (0.03) 1.51 (0.02)
sudoku3 10.28 (0.00) 5.45 (0.17) 3.63 (0.01) 2.81 (0.02) 2.31 (0.01) 1.96 (0.01) 1.78 (0.00) 1.57 (0.01)
sudoku4 10.56 (0.00) 5.50 (0.03) 3.80 (0.03) 2.92 (0.03) 2.41 (0.02) 2.03 (0.02) 1.81 (0.04) 1.63 (0.03)
sudoku5 11.08 (0.00) 5.52 (0.12) 3.73 (0.01) 2.93 (0.11) 2.35 (0.01) 2.05 (0.04) 1.82 (0.03) 1.63 (0.05)
gol ruler1 6.58 (0.00) 3.34 (0.01) 2.26 (0.00) 1.73 (0.02) 1.42 (0.02) 1.24 (0.02) 1.06 (0.03) 0.94 (0.02)
gol ruler2 13.74 (0.00) 6.63 (0.02) 4.60 (0.18) 3.41 (0.04) 2.86 (0.10) 2.43 (0.04) 2.11 (0.02) 1.84 (0.09)
gol ruler3 24.13 (0.00) 12.11 (0.02) 8.15 (0.06) 6.34 (0.06) 5.06 (0.10) 4.34 (0.17) 3.79 (0.05) 3.25 (0.13)
gol ruler4 40.64 (0.00) 20.27 (0.05) 13.51 (0.11) 10.35 (0.10) 8.64 (0.19) 7.13 (0.25) 6.35 (0.31) 5.51 (0.10)
gol ruler4 62.23 (0.00) 31.54 (0.29) 21.30 (0.16) 16.03 (0.09) 12.95 (0.20) 11.03 (0.27) 9.67 (0.15) 8.36 (0.17)
reach1 52.21 (0.00) 29.52 (0.36) 20.41 (0.25) 15.38 (0.02) 12.73 (0.16) 10.81 (0.03) 9.63 (0.05) 8.28 (0.01)
reach2 147.34 (0.00) 84.93 (0.35) 57.14 (0.07) 43.56 (0.07) 35.16 (0.19) 29.90 (0.02) 26.02 (0.10) 22.67 (0.18)
reach3 258.01 (0.00) 144.36 (0.60) 97.06 (0.39) 74.88 (0.25) 61.05 (0.21) 52.38 (0.09) 45.64 (0.21) 39.57 (0.44)
reach4 522.09 (0.00) 301.44 (0.48) 201.90 (0.47) 153.00 (0.28) 123.83 (0.16) 104.74 (0.54) 90.44 (0.10) 77.52 (0.31))
reach5 1072.00 (0.00) 618.68 (0.71) 412.29 (0.05) 311.96 (0.98) 253.22 (0.98) 213.31 (0.85) 185.08 (0.26) 160.31 (0.25)
Food 684.95 (1.19) 0.22 (0.15) 0.08 (0.01) 0.07 (0.01) 0.06 (0.01) 0.06 (0.00) 0.06 (0.00) 0.08 (0.01)

Table 6.1: Benchmark Results: average instantiation times in seconds (standard deviation)
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Efficiency
Problem 2 proc 3 proc 4 proc 5 proc 6 proc 7 proc 8 proc
queen1 0.98 0.97 0.95 0.93 0.91 0.91 0.90
queen2 0.99 0.97 0.96 0.94 0.92 0.91 0.90
queen3 0.99 0.97 0.95 0.94 0.92 0.91 0.91
queen4 0.99 0.98 0.96 0.95 0.92 0.91 0.92
queen5 0.97 0.97 0.96 0.95 0.93 0.94 0.94
ramsey1 0.98 0.97 0.96 0.94 0.92 0.92 0.89
ramsey2 0.98 0.97 0.96 0.93 0.93 0.92 0.89
ramsey3 0.98 0.97 0.96 0.94 0.92 0.91 0.89
ramsey4 0.98 0.97 0.94 0.93 0.91 0.91 0.86
ramsey5 0.98 0.96 0.95 0.95 0.93 0.91 0.87
clique1 0.94 0.92 0.90 0.88 0.87 0.86 0.85
clique2 0.94 0.93 0.91 0.89 0.88 0.87 0.86
clique3 0.95 0.95 0.92 0.90 0.89 0.88 0.87
clique4 0.94 0.93 0.92 0.90 0.89 0.87 0.86
clique5 0.95 0.93 0.92 0.91 0.90 0.89 0.87
timetab1 0.97 0.95 0.93 0.92 0.88 0.85 0.84
timetab2 0.94 0.93 0.93 0.90 0.85 0.86 0.84
timetab3 0.97 0.96 0.91 0.89 0.88 0.85 0.85
timetab4 0.95 0.97 0.93 0.92 0.89 0.84 0.84
timetab5 0.97 0.95 0.93 0.89 0.88 0.86 0.85
sudoku1 0.95 0.84 0.88 0.84 0.82 0.79 0.77
sudoku2 0.94 0.94 0.91 0.89 0.87 0.83 0.82
sudoku3 0.97 0.93 0.91 0.88 0.87 0.84 0.82
sudoku4 0.96 0.93 0.90 0.88 0.87 0.83 0.81
sudoku5 1.00 0.99 0.95 0.94 0.90 0.87 0.85
gol ruler1 0.99 0.97 0.95 0.93 0.88 0.89 0.88
gol ruler2 1.04 1.00 1.01 0.96 0.94 0.93 0.93
gol ruler3 1.00 0.99 0.95 0.95 0.93 0.91 0.93
gol ruler4 1.00 1.00 0.98 0.94 0.95 0.91 0.92
gol ruler4 0.99 0.97 0.97 0.96 0.94 0.92 0.93
reach1 0.86 0.85 0.85 0.82 0.80 0.77 0.79
reach2 0.87 0.86 0.85 0.84 0.82 0.81 0.81
reach3 0.87 0.87 0.86 0.85 0.82 0.81 0.82
reach4 0.87 0.86 0.85 0.84 0.83 0.82 0.84
reach5 0.87 0.87 0.86 0.85 0.84 0.83 0.84
Food 1556 2853 2446 2283 1902 1630 1223

Table 6.2: Benchmark Results: efficiency

Looking at Figures 6.5 and 6.7, it is evident that the efficiency of the sys-
tem rapidly reaches a good level (ranging from 0.9 up to 1), moving from small
instances (requiring less than 2s) to larger ones, and remains stable (the sur-
faces are basically plateaux). The corresponding gains are visible by looking at
Figures 6.6 and 6.8, where, e.g. an Hamiltonian Path (3-Colorability) instance
is evaluated in 332.78s (965.36s) by the serial system, and requires only 68.26s
(124.70s) with levels1+2+3 with 8-processor enabled.

Summarizing, the parallel instantiator behaved very well in all the consid-
ered instances. It showed superlinear speedups in the case of easy-to-parallelize
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instances and, in the other cases its efficiency rapidly reaches good levels and
remains stable when the sizes of the input problem grow. Importantly, the sys-
tem offers a very good performance already when only two CPUs are enabled
(i.e. for the largest majority of the commercially-available hardware at the time
of this writing), and efficiency remains at a very good level when up to 8 CPUs
are available.

6.3 Assessment of the Parallel Propositional Search

Strategies

In this section we provide a description of the results of the experimental
analysis carried out for assessing the parallel model generator. Benchmarks
problems and data are described first. Then, a picture of the results of the
analysis is presented, which is divided into two trunks: description of the multi-
heuristic system performances is provided first; then, we discuss the effect of the
parallel lookahead technique. Experimental results show that both the parallel
methods can be used for exploiting parallelism for improving the computation
of the answer sets.

6.3.1 Benchmark Problems and Instances

We considered three well-known problems which are usually exploited for eval-
uating Model Generator performances.

3SAT. is a special case of SAT, one of the best researched problems in AI and
frequently used for solving many other problems by translating them to SAT,
solving the SAT problem, and transforming the solution back to the original
domain.

Let Φ be a propositional formula in conjunctive normal form (CNF) Φ =
∧n

i=1(di,1∨di,2∨di,3) where the di,· are literals over propositional variables
x1, . . . , xm.

Φ is satisfiable, iff there exists a consistent conjunction I of literals such
that I |= Φ.

3SAT is a classical NP-complete problem [40] and can be easily represented
in ASP as follows:

For every propositional variable xi (1 ≤ i ≤ m), we add the following rule
which ensures that we either assume that variable xi or its complement nxi is
true: xi ∨ nxi. And for every clause d1 ∨ d2 ∨ d3 in Φ we add the constraint
:−d̄1, d̄2, d̄3. where d̄k (1 ≤ k ≤ 3) is nxj if dk = xj , and d̄k = xj if dk = ¬xj .

The instances for 3SAT were randomly generated by using a tool by Selman
and Kautz [59]. For each size we generated 20 such instances, where we kept the
ratio between the number of clauses and the number of variables at 4.3, which
is near the cross-over point for random 3SAT [60].
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HAMPATH. A classical NP-complete problem in graph theory, which can
be expressed as follows: given a directed graph G = (V,E) and a node a ∈ V
of this graph, does there exist a path in G starting at a and passing through
each node in V exactly once. The encoding of this problem has already been
presented in Section 2.4. The instances for HAMPATH were generated by a tool
by Patrik Simons (cf. [58]). For each problem size n we generated 20 instances,
always assuming node 1 as the starting node.

STRATCOMP. Is the problem of computing companies that are “strate-
gic” according with the following definition [41]. A holding owns companies
C(1), . . . , C(c), each of which produces some goods. Some of these companies
may jointly control another one. Now, some companies should be sold, under
the constraint that all goods can still be produced, and that no company is sold
which would still be controlled by the holding afterwards. A company is strate-
gic, if it belongs to a strategic set, which is a minimal set of companies satisfying
these constraints. The encoding of this problem has already been presented in
Section 2.4. For STRATCOMP, we randomly generated 20 instances for each
problem size n, with n companies and n products.

The first two benchmarks (3SAT and HAMPATH) are well-known NP-
complete problems, while the third (STRATCOMP) is a ΣP

2 -complete problem.
All the considered benchmarks problems have been frequently used to assess
the efficiency of ASP systems (see, e.g., [7, 61]). Since disjunctive ASP can
represent every problem in the second level of the polynomial hierarchy we also
considered the strategic companies problem.

The machine used for the experiments is a multi-processor Intel Xeon “Wood-
crest” (quad core) 3GHz machine with 4MB of L2 Cache and 4GB of RAM,
running Debian GNU Linux 4.0.

We have allowed at most 600 seconds (ten minutes) of execution time for
each instance. , and we set a memory usage limit to 1GB of memory for each
process (by exploiting the ulimit command). The experimentation has been
stopped (for each system) at the size at which some instance exceeded this time
limit. 3.

6.3.2 Experimental Results

The results of our experiments are displayed in the graphs of the Figures from 6.9
to 6.14. For each problem domain we report two graphs, describing the behavior
of the two tested parallel techniques: In both graphs the horizontal axis shows
a parameter representing the size of the instance, while on the vertical axis we
report the running time (expressed in seconds) averaged over the instances of
the same size we ran.

Since our techniques focus on model generation, all the results of the exper-
imental analysis refer only to the process of computing answer sets of ground
programs.

Evaluation of Parallel Lookahead. In order to assess the impact of the
parallel lookahead we considered a number of variants of the same prototype:

3Actually, the memory usage limit had never been exceeded.
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Figure 6.9: Parallel Lookhaead - 3-SAT

• dl.X.satz DLV with lookahead exploiting hsatz and X = [1, 2, 3] threads.

• dl.X.std DLV with lookahead exploiting hstd and X = [1, 2, 3] threads.

The results shown in Figure 6.9, in Figure 6.11 and in Figure 6.13 report the
performance of those variants on the considered instances of 3SAT, HAMPATH
and STRATCOMP, respectively.

Concerning 3SAT, the best heuristics is clearly hsatz, the entire group of
dl.X.satz performed better than dl.X.std group, solving all the generated in-
stances in less time; whereas all the dl.X.std were stopped when considering in-
stances having more than 300 variables. Moreover, it can be noted that dl.2.satz
is the absolute best variant in this domain, and dl.2.std is the best among the
ones exploiting hstd. The lower performance of variants with three workers4 is
due to the larger amount of time spent by threads in synchronization (perhaps
a technological problem of our prototype that can be probably overcome by
improving the implementation).

As far as HAMPATH is concerned, the results are clearly in favor of the
group exploiting the standard heuristics. Here the standard heuristics, which
takes into account peculiar properties of ASP programs, has an edge on the sat-
based one. Indeed, all the dl.X.satz variants were stopped before reaching 100
nodes, while the best versions equipped with standard heuristics could solve
instances having up to 120 nodes. Unfortunately here the effect of parallel

4We tried also variants with more than three workers confirming this statement; results
have been omitted for the sake of readability.
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Figure 6.10: Parallel Multi-Heuristics - 3-SAT

lookahead is overshadowed by an internal optimization of DLV, which considers
as selectable literals only a subset the available ones called PT literals (c.f.r.
[29]), thus reducing the work to be divided among workers; this results in an
emphasized effect of synchronization overhead which still remains acceptable
(<0.9sec).

For STRATCOMP it is evident that the standard heuristics is the best, and
that the effect of parallel lookahead made dl.2.std and dl.3.std to be the best
variants (still dl.2 shows less overhead compared with dl.3), which were capable
to solve instances having up to 290 companies; whereas, the hsatz-based systems
were stopped before reaching 150 companies, and dl.1.std reaches at most 170
companies.

Summarizing, results clearly show that the benefits of parallel lookahead are
maximized when at most two workers are employed, and the technique can bring
interesting speedups on hard instances.

Evaluation of the Multi-Heuristics Approach. The results reported above,
as one can expect, show that there is no heuristics performing well in all cases
(e.g. hsatz is the best for 3SAT, while in the other two domains hstd is the
winner). In order to evaluate the second strategy proposed in this thesis, we
considered a variant implementing the multi-heuristics approach and exploit-
ing the best parallel lookahead settings (named dl2.MultiHeu). We compared
dl2.MultiHeu with the best performer in each domain among the ones consid-
ered before; the result are shown in Figure 6.10, in Figure 6.12 and in Fig-
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Figure 6.11: Parallel Lookhaead - Hamiltonian Path

ure 6.14, which reports the performance of those variants on 3SAT, HAMPATH
and STRATCOMP, respectively.

The picture here is very clear, dl2.MultiHeu is able to move forward the
limit of the the largest instance solved in 10 minutes. Still the synchronization
overhead, paid to stop the concurrent model generators remains evident, but the
dramatic advantage of selecting the best possible criterion per instance allows for
solving larger instances in less time. For instance, dl2.MultiHeu solved instances
with up to 160 nodes in HAMPATH where the competitor stopped at 120 nodes;
and dl2.MultiHeu solved up to 3000 companies vs 2900. The overall performance
leap becomes dramatic when dl2.MultiHeu is compared with the original dl1.std:
300 vs 320 propositional variables for 3SAT; 120 vs 160 nodes for HAMPATH;
and 1700 vs 3000 companies for STRATCOMP.
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Chapter 7

Related Works

Several works about parallel techniques for the evaluation of ASP programs have
been proposed, focusing on both the propositional (model search) phase [62, 63,
64, 65], and the instantiation phase [66, 51]. Similarities and differences with the
work presented in this thesis on parallel instantiation and parallel propositional
search are discussed next.

Concerning the parallelization of the instantiation phase, some preliminary
studies were carried out in [66], as one of the aspects of the attempt to in-
troduce parallelism in non-monotonic reasoning systems. However, there are
crucial differences with our system regarding both the employed technology and
the supported parallelization strategy. Indeed, our system is implemented by
using POSIX threads APIs, and works in a shared memory architecture [30],
while the one described in [66] is actually a Beowulf cluster working in local
memory. Moreover, the parallel instantiation strategy of [66] is applicable only
to a subset of the program rules (those not defining domain predicates), and is,
in general, unable to exploit parallelism fruitfully in the case of programs with a
small number of rules. Importantly, the parallelization strategy of [66] statically
assigns a rule per processing unit; whereas, in our approach, both the extension
of predicates and split sizes are dynamically computed (and updated at different
iterations of the semi-näıve evaluation) while the instantiation process is run-
ning. Note also that our parallelization techniques could be adapted for improv-
ing other ASP instantiators like Lparse [67] and Gringo [68]. Concerning works
related to parallel instantiation, it is worth remembering that, the Single Rule
parallelism employed in our system is related to the copy and constrain tech-
nique for parallelizing the evaluation of deductive databases [69, 70, 71, 72, 73].
In many of the mentioned works (dating back to 90’s), only restricted classes of
Datalog programs are parallelized; whereas, the most general ones (reported in
[70, 72]) are applicable to normal Datalog programs. Clearly, none of them con-
sider the peculiarities of disjunctive programs and unstratified negation. More
in detail, [70] provides the theoretical foundations for the copy and constrain
technique, whereas [72] enhances it in such a way that the network communica-
tion overhead in distributed systems can be minimized. The copy and constrain
technique works as follows: rules are replicated with additional constraints at-
tached to each copy; such constraints are generated by exploiting a hash function
and allow for selecting a subset of the tuples. The obtained restricted rules are
evaluated in parallel. The technique employed in our system shares the idea
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of splitting the instantiation of each rule, but has several differences that allow
for obtaining an effective implementation. Indeed, in [70, 72] copied rules are
generated and statically associated to instantiators according to an hash func-
tion which is independent of the current instance in input. In contrast, in our
technique, the distribution of predicate extensions is performed dynamically,
before assigning the rules to instantiators, by taking into account the “actual”
predicate extensions. In this way, the non-trivial problem [72] of choosing an
hash function that properly distributes the load is completely avoided in our
approach. Moreover, the evaluation of conditions attached to the rule bod-
ies during the instantiation phase would require to modify either the standard
instantiation procedure (for efficiently selecting the tuples from the predicate
extensions according to added constraints) or to incur a possible non negligi-
ble overhead due to their evaluation. Focusing on the heuristics employed on
parallel databases, we mention [73] and [74]. In [73] a heuristics is described
for balancing the distribution of load in the parallel evaluation of PARULEL, a
language similar to Datalog. Here, load balancing is done by a manager server
that records the execution times at each site, and exploits this information for
distributing the load according to predictive dynamic load balancing (PDLB)
protocols that “update and reorganize the distribution of workload at runtime
by modifying the restrictions on versions of the rule program”[73]. In [74] the
proposed heuristics were devised for both minimizing communication costs and
choosing an opportune site for processing sub-queries among various network-
connected database systems. In both cases, the proposed heuristics were devised
and tuned for dealing with data distributed in several sites and their application
to other architectures might be neither viable nor straightforward.

Concerning the parallelization of the propositional search phase, several
studies were carried out in the context of ASP and related fields. Parallel
approaches related to this phase usually exploit a divide-and-conquer scheme.
This scheme works by recursively breaking down the original problem into two
(or more) sub-problems until they become easy enough to be solved directly.
The application of this methodology to backtracking search algorithms is due
to some pioneer work in the distributed tree search [75, 76]; afterwards the ap-
proach was employed also in SAT solving [77, 78, 79]. In the context of ASP
programs, the search space can be broken down creating two search branches
whenever a choice point is reached. More in detail, as soon as a literal L is
chosen, two new search tasks can be initialized one assuming L as true, and
the other assuming ¬L as true; the new search tasks must consider the truth
values of the literals chosen before L (or ¬L) as fixed. In this way, as long as
no possible backtracking can be performed before the choice of L, the technique
allows the splitting of the search space, the partition of which can be searched
in parallel. This general description simplify the approaches adopted in several
previous works (Claspar [63], Parstab [62], Platypus [64] , and [65, 66]). All these
approaches are based a single-heuristics search; our work differs from theirs in
that it adopts a concurrent multi-heuristics search rather than breaking down
the search space of a single-heuristics search. Concerning the application of sev-
eral heuristics to a single search task, the Claspfolio ASP system [80] allows the
dynamic selection of the most appropriate heuristics for the program in input,
using an approach based on machine learning; however no parallelism is applied
here. Approaches similar to the multi-heuristics were carried out in the the field
of constraint satisfaction problems [81] and in the SAT community [53]; both of
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them exploit a number of search tasks employing different competing heuristics
criteria in order to find a solution of the input problem. Concerning the the
parallel lookahead technique, it was firstly introduced in [66], where an ASP sys-
tem based on the sequential system Smodels [67], is presented which featuered
a cluster-based computation. In this thesis we extended their approach to our
framework; moreover we faced the consequences of porting the technique to the
case of multicore/multiprocessor architectures. To the best of our knowledge,
the approach to the parallel answer set checking described in this thesis is novel
and current state-of-the-art ASP systems do not exploit similar techniques.



82 CHAPTER 7. RELATED WORKS



Chapter 8

Conclusion

In this thesis we have presented a number of parallel techniques enhancing the
computation of answer sets. Recall that, the computation of ASP programs is
commonly carried out as a two-step process. The first step, called instantiation
amounts to computing a ground program P ′ semantically equivalent to the
input one. In the second step the answer sets of the propositional program
P ′ are computed by exploiting a backtracking search algorithm endowed with
a stability checking procedure (note that, this latter is a co-NP-complete task
in general). All the above-mentioned steps were subject of investigation in this
thesis, and a number of parallelization strategies were devised, implemented and
assessed.

Instantiation. The main contribution of this thesis is a strategy for the par-
allel instantiation of programs. This strategy applies three levels of parallelism,
in particular: (i) the input program is first decomposed in modules that can be
safely evaluated in parallel without the need for enforcing mutual exclusion in
the main data structures of the system; (ii) the rules of each module are evalu-
ated in parallel according to a parallel semi naif algorithm; (iii) the instantiation
of each single rule of the input program carried out in parallel. Heuristics for
load balancing and granularity control were also designed in order to optimize
the workload distribution among the processors.

Propositional search. In addition to the above-mentioned parallel instanti-
ation strategy, we investigated the problem of pushing parallelism in the eval-
uation of propositional programs. In particular, (a) a multi-heuristics parallel
search was designed that executes in parallel a number of instances of a propo-
sitional search solver, each of which is driven by a different branching heuristic
criterion; whatever the program at hand, the system prints an answer set within
the same time as the best performing static heuristic selection. Moreover, (b) a
technique was designed for parallelizing the computation of heuristic functions
for candidate branching choices in look-ahead-based solvers. Eventually, (c) we
proposed also a parallel model checking approach for exploiting parallelism in
the stability checking procedure.
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Implementation and Experiments. These techniques were implemented in
the state-of-the-art ASP solver DLV. An extensive experimental analysis was
carried out for assessing the implemented prototypes. Experiments confirmed
the efficacy of the proposed techniques for enhancing both the instantiation
process and the propositional search. Indeed, the efficiency of implemented
prototypes rapidly reaches good levels, and superlinear speedups were obtained
in several cases. Importantly, the prototypes offered a very good performance
already when only two CPUs were enabled (i.e. for the largest majority of
the commercially-available hardware at the time of this writing), and efficiency
remains at a very good level when up to 8 CPUs are available.

Summarizing, the techniques presented in this thesis allow the effective ex-
ploitation of parallelism in the evaluation of ASP programs.
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Marek, Miros law Truszczyński, and David S. Warren, editors, The Logic
Programming Paradigm – A 25-Year Perspective, pages 375–398. Springer
Verlag, 1999.

[5] Chitta Baral. Knowledge Representation, Reasoning and Declarative Prob-
lem Solving. Cambridge University Press, 2003.

[6] Michael Gelfond and Nicola Leone. Logic Programming and Knowledge
Representation – the A-Prolog perspective . Artificial Intelligence, 138(1–
2):3–38, 2002.

[7] Nicola Leone, Gerald Pfeifer, Wolfgang Faber, Thomas Eiter, Georg Got-
tlob, Simona Perri, and Francesco Scarcello. The DLV System for Knowl-
edge Representation and Reasoning. ACM Transactions on Computational
Logic, 7(3):499–562, July 2006.

[8] Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov.
Complexity and Expressive Power of Logic Programming. ACM Computing
Surveys, 33(3):374–425, 2001.

[9] Moshe Y. Vardi. Complexity of relational query languages. In Proceedings
of the 14th Symposium on Theory of Computation (STOC), pages 137–146,
1982.

[10] Chitta Baral and Michael Gelfond. Logic Programming and Knowledge
Representation. Journal of Logic Programming, 19/20:73–148, 1994.

85



86 BIBLIOGRAPHY

[11] Colin Bell, Anil Nerode, Raymond T. Ng, and V.S. Subrahmanian. Mixed
Integer Programming Methods for Computing Nonmonotonic Deductive
Databases. Journal of the ACM, 41:1178–1215, 1994.

[12] V.S. Subrahmanian, Dana Nau, and Carlo Vago. WFS + Branch and
Bound = Stable Models. IEEE Transactions on Knowledge and Data En-
gineering, 7(3):362–377, June 1995.
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Schaub. Conflict-driven answer set solving. In Twentieth International
Joint Conference on Artificial Intelligence (IJCAI-07), pages 386–392.
Morgan Kaufmann Publishers, January 2007.

[16] Fangzhen Lin and Yuting Zhao. ASSAT: computing answer sets of a logic
program by SAT solvers. Artificial Intelligence, 157(1–2):115–137, 2004.

[17] Yuliya Lierler and Marco Maratea. Cmodels-2: SAT-based Answer Set
Solver Enhanced to Non-tight Programs. In Vladimir Lifschitz and Ilkka
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