CHAPTER 1
1.1 INTRODUCTION1
1.1.1 Aim of the work
1.2 MTDNA VARIABILITY AND AGING4
1.2.1 Mitochondrial theory of aging4
1.2.2 Mitochondrial structure and function
1.2.3 The influence of mitochondrial structure and function on aging and longevity10
1.2.4 Mitochondrial genome and aging13
1.2.4.1 Genome structure13
1.2.4.2 Mitochondrial genetics15
1.2.4.3 mtDNA variability, aging and age-related diseases19
1.2.4.4 Mitochondria-nucleus cross talk and aging22
1.3 VARIABILITY OF NUCLEAR DNA AND AGING26
1.3.1 INS/IGF1 pathways28
1.3.2 Caloric restriction, and longevity
1.3.3 Cellular and systemic response to damage
1.3.4 Lipoprotein genes and longevity
1.3.5 Cell cycle regulation and longevity
1.3.6 Telomere length maintenance
CHAPTER 2
2.1 The analysis of mitochondrial DNA variability in a large sample of ultranonagenarians
across Europe allows a reappraisal of the mtDNA correlation with longevity: a GEHA
Project Study
CHAPTER 3
3.1 The interaction between Mitochondrial DNA and APOE variability in a large sample of
ultranonagenarians across Europe: a GEHA Project Study129
CHAPTER 4
4.1 Two-stage case-control association study of candidate genes and human longevity 145

CHAPTER 1

1.1 INTRODUCTION

In the last two decades there has been an increasing interest in human aging and its genetic basis. In the first instance, this might be explained by the increased number of elderly subjects in the developed countries, due to the ameliorated life condition (Kannisto, 1994). But to live longer implies higher healthcare costs necessary to treat the aging-related diseases that at present amount to approximately 20% of total healthcare costs. The mitigation of these costs, that may increase in the next years, seems necessary and the only way to realize this intent is to guarantee a healthy aging.

Aging is a complex trait characterized by the interaction between environmental, genetic and epigenetic factors (Capri M et al, 2006). Certainly, over the last centuries environmental conditions have had an important role in the radical change in life expectancy; on the other hand, genetic factors have also a large influence on the rate and the quality of aging (Perls et al, 2000, 2002; Herndon et al, 2002; Kirkwood and Finch, 2002; Kirkwood, 2005; Lescai et al, 2009a, b). In particular twin studies reported that the percentage of the variation in human life span which can be attributed to genetic differences among individuals ranges from 22% to 33% (McGue et al, 1993; Ljungquist et al, 1998; Bishop and Guarente, 2007;).

Longevity, defined as survival beyond the specie-specific average age of death (De Benedicis and Franceschi, 2006), is a phenotypic expression of successful aging. Although longevity is not sufficient for describing a successful aging process because, for example, it provides little information about functioning and quality of life, it is the most considered and the most simple phenotype to study. In this frame, association studies on long-lived subjects or centenarian, together with functional studies, contributed to identify the specific genes that influence variation in human

lifespan, and highlight genotypes that can predispose individuals to an increased or decreased risk of reaching extreme old age in a healthy status.

In the last years, the technological progress occurring have made possible the identification of genetic determinants of aging and longevity. Twin studies, large scale linkage studies on long-lived families, case-control association studies on candidate gene, longitudinal studies and studies in model organisms agree in detection of a common 'core' of genes belonging to different metabolic pathways and defence systems and shared by all the species studied (Kenyon, 2005; Christensen et al, 2006; Chung et al, 2010). All these studies indicate that aging is the result of the decline, that cause a less efficient conservation, mobilization and use of nutrients, and a worse ability to respond to external and internal stress.

1.1.1 Aim of the work

The intent of the present thesis is to highlight some genetic variants that influence this phenotype. In particular, in my PhD researches I have studied the variability of both mitochondrial and nuclear DNA in relation to aging and longevity. In the following chapters I'm describing the state of art of the well known interaction between DNA variability (mitochondrial and nuclear) and aging and longevity. Then, I report the results of the studies conducted during my PhD appointment, which are described in three manuscripts. The first and the second manuscripts have as their topic mitochondrial DNA variability. In particular, in the first manuscript we propose an analysis of the whole sequences of mtDNA to evaluate if mtDNA point mutations or group of mutations occurring in different haplogroups are involved in longevity; it is titled "*The analysis of mitochondrial DNA variability in a large sample of ultranonagenarians across Europe allows a reappraisal of the mtDNA correlation with longevity: a GEHA Project Study*" and has been submitted to the "Hamerican Journal of Human Genetics. The second manuscript is titled "*The interaction between*

Mitochondrial DNA and APOE variability in a large sample of ultranonagenarians across Europe: a GEHA Project Study" and it is submitted to "Age". In this work we analyze the interaction between the mtDNA variability and variability of nuclear genes such as mitochondrial haplogroups and APOE gene variability. The third manuscript titled "Two-stage case-control association study of candidate genes and human longevity", which is submitted to "Age" is focused on the nuclear DNA variability. Exactly, in this work we have conducted a multilocus analysis on hundreds of Single Nucleotide Polymorphisms (SNPs) located in candidate genes to individuate variables associated to human longevity.

1.2 MTDNA VARIABILITY AND AGING

1.2.1 Mitochondrial theory of aging

Over the years more than 300 aging theories have been postulated, but an universally accepted definition of the process of aging doesn't exist (Vina et al, 2007). A common opinion is to consider aging as an inevitable result of accumulation in an organism of occasional injuries. Among the several theories proposed, the oldest and most accredited is the Harman "Free radical theory" (Harman D, 1956). According to this theory aging is promoted by ROS (Reactive Oxygen Species) that, over the time, lead to cellular damage, including injure to DNA, proteins, and cellular membranes. Although several enzymes (NADPH oxidase family, enzymes of the lipid metabolism in peroxisomes, and several other cytosolic enzymes including cyclooxygenase, ecc) contribute to the ROS production, the 90% of ROS present in the organisms is due to the activity of the mitochondrial respiratory chain (Balaban et al, 2005). In this frame, in 1972 Harman (Harman, 1972) proposed a new version of the "Free radical theory" where mitochondria assume a central role in the aging process. Afterwards, in 1980 Miguel and co-workers proposed the "mitochondrial theory of aging" based on the exclusive role of mitochondria in the aging process (Miquel et al, 1980). However, mitochondria are not only the principal producers of ROS, but they are also the first targets. It is supposed that the mitochondrial accumulation of damage, and in particular the mtDNA impairment, is one of the most important factors in determining age-related cellular decline (Kirkwood, 2005) (Fig.1).

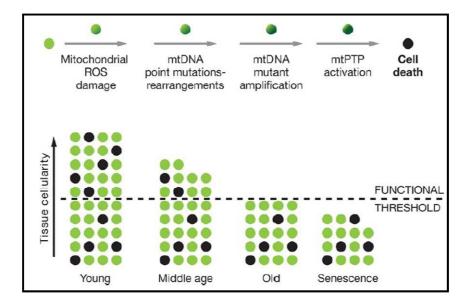


Figura 1. Mitochondrial role in the energetic life and death of a cell

The diagram represents the loss of cells in a tissue over the life. The minimum number of cells for the tissue to function normally is indicated by the dashed line (modified from Wallace, 2005).

During the last decades, a number of experimental evidences supported the hypothesis of oxidative damage accumulation as a cause of aging. It was found that levels of oxidated lipids, proteins and DNA increased with age (Van Remmen and Richardson, 2001). This is in line with several other literature data indicating that mitochondria of aged animals produce more ROS than mitochondria of younger one (Sohal et al, 1990), and that the introduction in young rat cells of mitochondria isolated from fibroblasts of aged rats cause premature aging (Corbisier and Remacle, 1990). Another evidence derives from an experimental work in which a reduction in mitochondrial ROS production was observed in animals with a controlled dietetic condition called caloric restriction, characterized by a reduced food intake that cause an increase in lifespan (this will be better explained in the next sections) (Sohal et al, 1994).

However, apart from the central role in ROS production, mitochondria carry out many crucial activities for cell survival and, as a consequence, for aging and longevity (Passarino et al, 2010). Thus, the next session will describe the structural and functional mitochondrial characteristics, with a particular attention to the peculiar features of mtDNA.

1.2.2 Mitochondrial structure and function

Structure

Structurally, the mitochondrion is a membrane-enclosed organelle ranging from 1–10 micrometers in size (Henze and Martin, 2003). As shown in Fig.2, mitochondria contain both an inner and an outer membrane, leading to the formation of two aqueous compartments, the matrix and the intermembrane space, where several specialized functions take place. Each compartment, having a specific function, cooperate to carry out all mitochondrial functions.

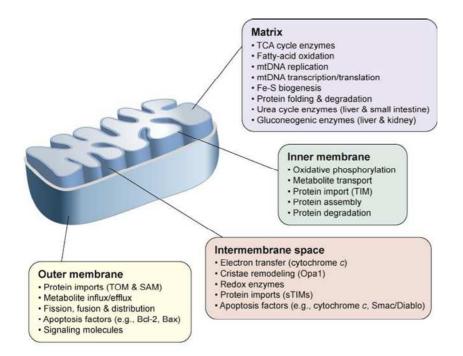


Figura 2. Mitochondrial structure and functions.

The compartment-specific processes and proteins are described in the colored boxes. Abbreviations: Bax, Bcl-2-associated X protein; Bcl-2, B-cell lymphoma protein 2; Opa1, Optic atrophy 1; SAM, Sorting and Assembly Machinery; sTIMs, small TIM proteins; TIM, Translocase of the mitochondrial Inner Membrane; TOM, Translocase of the mitochondrial Outer Membrane (modified from Ryan and Hoogenraad, 2007).

The outer membrane allows exchange of metabolites between the cytoplasm and intermembrane space through passive exchange and protein imports (TOM-Transporter Outer Membrane and SAM-Sorting and Assembly Machinery). Furthermore it takes a central role in apoptosis and in signal transduction (Ryan and Hoogenraad, 2007).

The intermembrane space contains some proteins, principally implicated in electron transfer and apoptosis. Its most prominent member is cytochrome c, which in normal cells is involved both in respiration and in apoptotic induction. In addition, other potential pro-apoptotic factors are present as well as a variety of small proteins that contain cofactors or are disulfide bound (Koehler et al, 2006; Webb et al, 2006).

The inner membrane, delimiting the mitochondrial matrix, is protein rich and it has specific transporters inside, demonstrating a highly controlled permeability. Moreover, proteic complex are located across the inner membrane where ETC (Electron Transport Chain) take place (Arco et al, 2005).

The mitochondrial matrix contains various enzymes involved in metabolic processes: oxidation of fatty acids and tricarboxylic acid cycle, Fe-S biogenesis, and heme synthesis. The matrix also harbors a number of copies of mtDNA and the protein machinery involved in its maintenance and replication as well as components involved in transcription/translation.

Mitochondria are not static organelles: they come under structural modification and turn-over. These complex events, known as mitochondrial dynamics, allow the recruitment of mitochondria to cellular sites where they are needed. To maintain a healthy population of mitochondria, there is in mammalian cells a continuous turn-over: the damaged organelles are eliminated and new mitochondria are generated through processes called mitophagy and biogenesis. The regulation of these complex mechanisms require more than 1000 genes (located in mitochondrial and nuclear genome), and imply the alteration of the transcription of more than 20% of cellular proteins (Lopez-

Lluch et al, 2008). The dynamicity of mitochondria emerge also because the number and the size of these organelles vary in the different tissues: some cells have only a single mitochondrion, whereas others can contain several thousand mitochondria; this is principally due to cellular metabolic demands and health status. Moreover, mitochondria are continuously in movement throughout the cells and undergo fusion and fission modifying the inner membrane surface to readily satisfy energy requirements (Ono et al, 2001; Bereiter-Hahn and Voth, 1994). Finally, it has been clearly documented that in mitochondria ultrastructural change occur in response to environmental stimulation (Bertoni-Freddari et al, 1993, 2007).

Functions

Mitochondria play an important role in cell metabolism: they are the organelles where Oxidative Phosphorylation (OXPHOS) takes place, and occupies a key position in apoptosis regulation, heat production, calcium homeostasis, and cellular differentiation. However the two functions principally involved in aging and longevity are the oxidative phosphorilation and the apoptosis.

The main mitochondrial function is the production of energy through Oxidative Phosphorilation (OXPHOS). This metabolic pathway, that through the oxidation of nutrients produces energy stored as adenosine triphosphate (ATP) molecules, counts 80 proteins that form five complexes: NADH dehydrogenase (complex I), succinate dehydrogenase (complex II), ubiquinone cytochrome c oxidoreductase (complex III), cytochrome oxidase (complex IV), and, finally, F1Fo-ATP synthase (complex V).

The OXPHOS consists of two steps: 1) a series of redox reactions along four complexes (I–IV) that through the transfer of H⁺ ions (protons) across the electron transfer chain (ETC) creates an electrochemical gradient ($\Delta\Psi$) and 2) the ATP formation by the F1Fo-ATP synthase (complex V), that uses this electrochemical gradient to generate chemical energy (ATP). In detail, electrons are donated to complex I from NADH+ or to complex II via succinate, and passed to coenzymeQ (CoQ) to give ubisemiquinone (CoQH) and then ubiquinol (CoQH2). Electrons are then donated to complex III, which transfers the electrons to cytochrome c, and, eventually, to complex IV. Finally, they are moved to 1/2 O2 to give H2O. The energy released along the pathway is used to pump protons across the mitochondrial inner membrane, creating the transmembrane electrochemical gradient. Complex V uses the energy stored in the $\Delta\Psi$ to condense ADP and Pi to make ATP. ATP is then carried to cytosol and exchanged with ADP.

Another important mitochondrial function is the regulation of apoptosis. This is a fundamental cellular mechanism in order to remodel organisms during development or get rid of damaged or unnecessary cells. The apoptotic cell death can be triggered by external signals detected by cell surface membrane proteins, or alternatively by mitochondrial signals. The initiation of the mitochondrial path for apoptosis is mainly regulated by the opening of a non-specific channel that is located on the inner membrane of mitochondria: the mitochondrial permeability transition pore (mtPTP) (Green et al, 1998; Chipuk et al, 2006). The opening of this pore leads to a dramatic collapse of the transmembrane $\Delta\Psi$. This event causes the swelling of the inner membrane, and then the disruption of the outer membrane, with a consequent release of the pro-apoptotic molecules enclosed in the inner membrane space, such as cytochrome c, apoptosis inducing factor (AIF), Smac/Diablo, and several pro-caspases (Hengartner, 2000; Caroppi et al, 2009). In the cytosol, cytochrome c, together with others factors (Apaf-1 and ATP) activates the caspases 9 and 3 that disrupt the cytosol. In succession, AIF moves into the nucleus and disrupts the DNA.

The opening of mtPTP can be stimulated by: a) the mitochondrial uptake of excessive Ca2+, b) an increase of the oxidative stress, c) a decrease of the mitochondrial membrane potential, d) a decrease of the intra-mitochondrial ATP concentration (Wallace DC, 2005). It is intuitively evident that an efficient apoptosis machinery would eliminate unwanted cells.

1.2.3 The influence of mitochondrial structure and function on aging and longevity

The importance of mitochondrial functions are underlined by the dynamicity of these organelles that change in size and shape to satisfy cellular needs in the different physiological states. It is obvious that a so crucial mechanism of regulation for cell activities have also an essential role in aging and longevity. One example of this is given by the work of Kissova and colleagues (Kissova et al, 2004), that suggest an efficient mitophagy is essential to attain longevity. In fact, in yeast the deletion of the mitochondrial protein Uth1p was found to lead to a selective defect in mitophagy and to a shortened lifespan in yeast during nutrient deprivation. Moreover, in recent years, studies show that mitochondria turn over may be considerably influenced by the physiological status of tissues and organs. For example physical activity promote mitochondrial biogenesis; on the contrary, physiological aging is characterized by a reduction of mitochondrial biogenesis (Holloszy, 2004), and degradation (Terman et al, 2007), causing a reduction of mitochondrial turnover that, as consequence, lead to the accumulation of oxidized components lipids, proteins and DNA. Also the modification of ultrastructural features is related to aging. In fact, it was observed that in old rats less mitochondria are present than in young rats, but to compensate for the numeric loss of organelles, there is an increase in mitochondrial size (which is presumed to increase the potential area for respiration). Comparing the data from young and old rats, the outcome of these balanced changes is a constancy in the overall volume fraction of cytoplasm (volume density) occupied by mitochondria (Bertoni-Freddari et al. 1993, 2007).

Furthermore, several studies have shown how the state of the mitochondrial network morphology influences a variety of other cellular functions: mitochondrial proliferation (Möpert et al, 2009), propagation of signals such as those of energy deficiency (Chan 2006), apoptotic events (Suen et al, 2008), and cell differentiation (Park et al, 2001). All these cellular functions are involved in both cell survival and death; thus, it appears clear how impairments in mitochondrial dynamics affect

pathological conditions such as neurodegeneration (Chen and Chan 2009), type 2 diabetes (Molina et al, 2009), as well as normal aging (Lòpez-Lluch et al, 2008).

As previously mentioned, mitochondria play important activities essential for cell survival. So, also the regulation of mitochondrial functions results particularly correlated to the phenotypes under discussion.

In the energy production process, if the principal result of OXPHOS is the production of ATP molecules, mitochondrial respiration generates ROS as by-product. In physiological conditions a small percentage of electrons may prematurely reduce oxygen, forming toxic product such as superoxide, and peroxyl radical. If these molecules are present in a small percentage, they are neutralized by the scavenger molecules present in cells, but if they are present in a higher percentage they can cause oxidative stress. Because the diffusion capability of most ROS is limited by their lipid solubility the main harmful effects are exerted on mitochondrial molecules, contributing to the decline in mitochondrial function and, as a consequence, to aging process.

ROS may damage lipids, proteins and nucleic acids.

ROS may act on molecules directly by peroxidation or indirectly through the production of highly reactive aldehydes. In the direct action, ROS acts "stealing" electrons: this causes the production of radical molecules. In turn, these molecules, that are not very stable, react with other molecules causing a "chain reaction mechanism". In the indirect mechanism, of action the production of highly reactive aldehydes play a central role. One example of reactive aldehydes is the 4-hydroxy-2,3-transnonenale (4HNE) aldehyde, one of the main products of lipid peroxidation. It causes a variety of harmful effects on the molecules with which it comes into contact.

The action of ROS on phospholipids of mitochondrial inner and outer membranes cause, principally, the decreases of their fluidity. Since the function of these membrane plays a critical role especially in the regulation of some mitochondrial proteins such as cytochrome oxidase and adenine

nucleotide translocase (ANT) (Paradies et al, 1998), it is clear that membrane's oxidation may have very harmful effect on mitochondrial functions.

The effect of ROS on proteins lead to structural and functional changes (abnormal aggregation, degradation, loss of function, etc.). Damage to mitochondrial proteins, especially those present in the inner mitochondrial membrane, are the direct result of oxidative stress or the consequence of lipid peroxidation. Several enzymes of the electron transport chain, such as ATPase and ANT, are particularly susceptible to oxidative stress inactivation, and the principal consequence observed is a decrease in OXPHOS efficiency (Le Bras et al, 2005).

Because of the proximity with ROS production, and the lack of protective structure, such as histone proteins, the mtDNA is the primary target of ROS. The oxidative damage to mtDNA may be detected through the presence of some indicators; an example is the presence of 8-hydroxy-2-deoxyguanosine which is the most abundant among the products of nucleotides oxidation (Chomyn and Attardi, 2003). The accumulation of mtDNA damage may be dangerous for the cells, modifying the efficiency of mitochondrial function directly controlled by this genome, especially OXPHOS.

The importance of apoptosis in aging is documented by several studies that show as the reduction in number of myocytes (Kajstura et al, 1996), skeletal muscle (Dirks and Leeuwenburgh, 2002) and T-cells (Phelouzat et al, 1997) is the result of apoptotic cell death (Higami and Shimokawa, 2000). It is clear that the modulation of apoptosis results to be a decisive process in determining a balance between healthy versus senescent cells and tissues. In fact, a low level of apoptosis is probably deleterious for tissues and organs, because it leads to the accumulation of damages, but it might be useful for attaining longevity, even though in this cause an accumulation of damaged cells and consequent frailty is expected in oldest-olds (Rose et al, 2002). In line with this assumption is the observation that lymphocytes from very old people and centenarians are quite resistant to apoptosis

when compared with similar cells from young individuals (Salvioli et al, 2001). Moreover, the apoptotic process is doubly correlated with aging, because it is influenced also by ROS production (Kroemer and Reed, 2000): ROS damaging mitochondrial structure increases mitochondrial Ca2+ and consequently activates apoptosis (Lemasters et al, 2009).

1.2.4 Mitochondrial genome and aging

1.2.4.1 Genome structure

During the last decades, along with the importance of mitochondrial function, also the relevance of the mitochondrial genome is progressively emerging. Mitochondria are the only cellular organelles, in addition to nucleus and chloroplasts of plant cells, to possess their own genome. It is located in the matrix and might be present in one or more copies per mitochondrion.

Mitochondrial DNA is a circular double-strand genome 16,569 bp long (Anderson et al, 1981), composed of two strands, a heavy strand (H), rich in G and a lightweight strand (L) rich in C. It has a compact structure, where introns are not present, the intergenic sequences are few in number and short, and overlapping genes are present. It has been tightly conserved for more than half a billion years, coding in every multicellular animal so far investigated for 37 genes. 2 genes code for ribosomal RNA (rRNA), 22 for transport RNA (tRNA), and the remaining 13 genes code for all structural subunits of oxidative phosphorylation enzyme complexes. They include 7 out 46 of the complex I polypeptides (NADH dehydrogenase), ND1-6 and NDL 4, cytochrome b, which is one of the 11 proteins of complex III, 3 (COI-III) out 13 proteins of complex IV (cytochrome oxidase) and 2 (ATP 6 and 8) out the 16 proteins of complex V (ATP synthase) (Fig. 3).

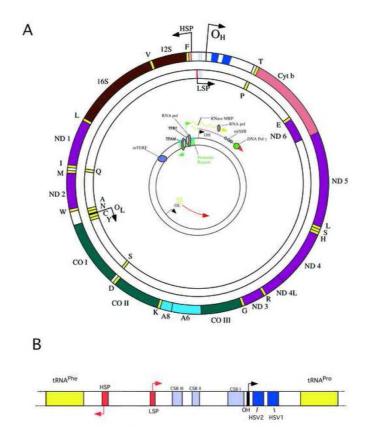


Figure 3. Structure and expression of the human mitochondrial DNA. The panel A represent the mitochondrial genome showing 13 protein coding genes as well as 2 rRNA- and 22 tRNA-coding genes. Genes coding for subunits of different complex are shown by different colors. The origins of replication for the H- and L- (OH and OL) strands are also shown. It also shows the binding sites for the mitochondrial RNA polymerase, the mitochondrial transcription factor TFAM, the RNA processing enzyme RNAse MRP and the transcription termination factor mTERF. In panel B the structure of the regulatory D-loop region is shown two hypervariable regions (HSV1 and HSV2) commonly used for evolutionary studies. Modified by Diaz and Moraesa, 2008.

The "displacement-loop" (D-loop), also defined as the mitochondrial regulatory region, is a noncoding sequence which regulates mtDNA's replication and transcription. It contains the promoters of the H and L strands (PH and PL), four binding sites for mitochondrial transcription factor A (mtTFA), three blocks of conserved sequences (CSB I, II, III), the origin of H strand replication (OH) and the termination associated sequences (TAS).

The mtDNA transcription and replication take place inside the organelle (Kasamatsu et al, 1973; Montoya et al, 1983; Clayton, 1987) although many proteins involved in these processes are encoded from nuclear DNA (nDNA). Among others the subunits of mitochondrial DNA polymerase γ (POLG), mitochondrial RNA polymerase components, mitochondrial transcription

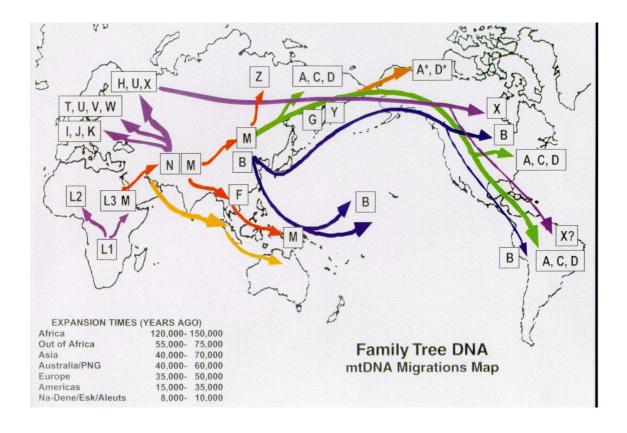
14

factor (mtTFA), mitochondrial ribosomal proteins, elongation factors and metabolic enzymes are coded by nDNA.

1.2.4.2 Mitochondrial genetics

Mitochondrial DNA shows a series of peculiar characteristics that differ from nuclear genome.

One of these characteristics is the relatively high mutation-fixation rate with respect to nuclear genome (Brown et al, 1979; Torroni et al, 2006; Wallace, 2007). Among the reasons that explain the presence of these peculiar feature are included: mtDNA limited repair ability, loss of histones and physical association with the mitochondrial inner membrane where damaging reactive oxygen species are generated (Pinz and Bogenhagen, 1998).


A second characteristic of mtDNA is its mode of inheritance. It is transmitted only maternally through the oocyte cytoplasm (asexual reproduction). In fact, the few mitochondria from the sperm cell that could enter the oocyte during fertilization are actively eliminated by an ubiquitin-dependent mechanism (Sutovsky et al, 2000). Through this way of transmission mtDNA escapes recombination and it is transmitted unaltered from mothers to children.

Finally, the cells are polyploid with respect to mtDNA: most mammalian cells contain hundreds of mitochondria and, in turn, each mitochondrion contains several (2–10) copies of mtDNA (Wiesner et al, 1992). If all mtDNA copies are identical, we have a condition known as homoplasmy, but if mtDNA copies are not identical, we have a condition known as heteroplasmy. At cell division mitochondria and their genomes are randomly distributed to daughter cells and hence, starting from a given heteroplasmic situation, different levels of heteroplasmy up to homoplasmy can arise in different cell lineages.

The uniparental mode of inheritance and the elevated mutation rate, have led to the presence in human populations of mtDNA lineages evolved independently from each other by sequential accumulation of mutations. Consequently, mutations which occurred ten thousands of years ago are nowadays present in high frequency, and are population- and continent-specific. This individual haplotypes may be grouped through phylogenetic analysis in groups, called haplogroups, sharing a specific set of mutation (Torroni and Wallace, 1994; Wallace, 1994; Passarino et al, 1998; Richards et al, 2000, 1996; Torroni et al, 2006, 1996; Kivisild et al, 2006; Underhill and Kivisild 2007).

The classification of mtDNA haplogroups was based on information obtained from RFLP analysis of the coding region and from the nucleotide sequence of the control region (Torroni et al, 1996). Today, thanks to the deep knowledge of mtDNA sequence, it is ever more frequent the identification of haplogroups through the analysis of complete sequence or of the d-loop sequence.

The first mtDNA haplogroups, discovered in Native Americans, were named A, B, C, and D (Torroni et al, 1993). Subsequently, detected haplogroups were designated using other letters of the alphabet, and subcluster with a running number (Ballinger et al, 1992; Torroni et al, 1996). By now, all letters of the alphabet, except O (although once proposed), have been used. The main identified haplogroups are divided between the three major ethnic groups: Africans (L₁, L₂, L₃), Asians (C, D, G, E, A, B, F,) and Europeans (H, U, T, I, J, K, V, W, X) (Torroni et al. 1994, 1996) (Fig 4), that cover almost the totality of human population.

Figure 4 Mitochondrial haplogroups distribution around the world. In this image are indicated the principal mitochondrial haplogroups localization. The arrows indicate the direction of homo sapiens migrations. Modified from Bryan Syke's book: The Seven Daughters of Eve.

For example, the nine Europe haplogroups cover more than 95% of mtDNA of all subjects (Wallace 2007; Torroni et al. 2006, 1996). The philogenetics of haplogroups is complex and multiple subclade exist. For example Haplogroup U comprises phylogenetically different subhaplogroups such as U1, U2, U3, U4, and U5, the oldest subclade, U6, U7, U8, U9, and K (Achilli et al, 2005). Also the prevalent European haplogroup H, that cover 30%-50% of the population, comprises numerous sub-haplogroups (H1- H21) that have very different spatial frequency patterns in European regions (Achilli et al, 2004). Among the sub-haplogroups, H1 and H2 have been identified in a sample of Finns (Finnilä et al, 2001). Based on mtDNA complete sequences, two further sub-haplogroups were described by Herrnstadt and coworkers (Herrnstadt et al, 2002): H3, the next most common sub-haplogroup after H1, and the rare H4. Moreover, Quintàns and colleagues (Quintàns et al, 2004) further identified H5, H6, and H7. Additional sub-haplogroups (H16-21) have been recently proposed (Roostalu et al, 2006).

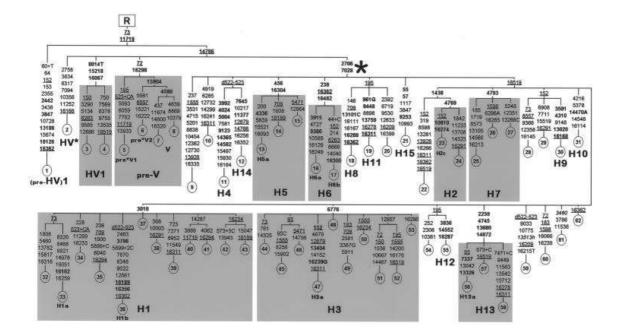


Figura 5 It encompasses 62 entire myna sequences, all mutations relative to the root of R, and 15 sub-haplogrouos (H1-15) identified by Achilli et al, 2004.

Studies about mtDNA variability in the past decades were considered useful principally for the reconstruction of human population history. That is possible because each lineage shares the most ancient mutations, and distinguish itself from others for the presence of more recent ones, probably risen during the last glaciations, when the groups of humans were isolated from each other. The analysis of the phylogenetic relationships among haplogroups allowed some interesting inferences about the origin of human beings: *Homo sapiens* appeared in Africa about 120.000-150.000 years ago, and only 55.000-75.000 years ago he migrated first in middle east, and then in the other country regions (Figure 4) (Cavalli Sforza et al, 1994; Torroni et al, 1996; Quintana-Murci et al. 1999; Macaulay et al 1999; Richards et al, 2000; Underhill et al, 2001; Kivisild et al. 2006; Olivieri et al. 2006).

In the last two decades the interest of medical scientists on mtDNA is greatly increased (for a review see Wallace and Fan 2009; Dimauro 2011) as result of the discovery of various mitochondrial mutations leading to degenerative disorders that mainly affect the nervous and muscular systems (Wallace et al. 1988 a, b; Zeviani et al. 1988; Schon et al. 1994). Over the years

18

other mitochondrial diseases have been identified, such as mitochondrial encephalomyopathy, lactic acidosis (a condition however that can also be due to pharmacological treatment of infectious diseases), myoclonic epilepsy, raggedred fibers disease (MERRF), stroke-like symptoms (MELAS), Leber's hereditary optic neuropathy (LHON) (Vilkki et al, 1989; Lestienne and Bataillé 1994; Chinnery et al, 2000; for a review see Wallace 2005; Dimauro 2010).

Successively, studies have shown that also human haplogroups are qualitatively different from each other, due to their defining mutations. For instance, two European haplogroups, H and T which displayed a significant difference in the activity of complexes I and IV of OXPHOS (Ruiz Pesini et al, 2000), leading to a worse motility of sperms for haplogroup T carriers. From this evidence of different haplogroup energetic efficiency, recently confirmed by in vitro studies (Gómez-Durán et, 2010), has grown the belief that haplogroups can play an important role in predisposing to disorders. Some examples of mtDNA haplogroups associated with particular diseases are: Wolfram syndrome, also known as DIDMOAD syndrome (diabetes insipidus, diabetes mellitus, optic atrophy and deafness), as well as to LHON (Hofmann et al. 1997; Torroni et al. 1997; Barrett et al. 2000; Hudson et al. 2007).

Apart from the correlation with human disease, the polymorphic variations of mtDNA are involved in determining the inter-individual susceptibility to a number of complex traits, either pathological (such as ophtalmolog- ical disorders, cardiovascular diseases, cancer, dementias) or physiological such as aging (Wallace 2001; Rose et al, 2002; Santoro et al, 2006; Zeviani and Carelli 2007).

1.2.4.3 mtDNA variability, aging and age-related diseases

With aging mitochondria progressively lose their functionality. In fact, in aged tissues, a decrease in the number of mitochondrial DNA (mtDNA) copies is observed (Barazzoni et al, 2000) and an

accumulation of mtDNA large deletions and point mutations (Cortopassi et al, 1992, Michikawa et al, 1999). These damages mainly originate from the impairment of respiratory function causing a reduction in ATP production and an increase in ROS production. Today it is well established that the enhanced production of ROS, accompanied by a decreased activity of free radical-scavenging enzymes, is the principal cause of the age-associated decline (Di Mauro et al, 2002). As previously mentioned, ROS attack organelle constituents by oxidizing them, and mtDNA is one of the principal targets. ROS have a mutagenic effect on DNA and the accumulation of mutations lead to the production of less efficient OXPHOS subunits (Drouet et al, 1999; Fannin et al, 1999; Terzioglu and Larsson 2007), exacerbating the production of ROS that, in turn, aggravates the decay of the organelle. This "vicious cycle" is at the basis of the aging process. Many studies on animal models have demonstrated how ROS are responsible for mitochondrial decay of aged tissues: in vitro studies have shown that an increased ROS production, induced pharmacologically, amplify mtDNA impairment in fibroblasts (Esposito et al, 1999). Moreover, it is also observed that the administration of antioxidant compounds (acetyl cysteine, GSH, vitamin C) is able to attenuate the age-related mtDNA damage (Melov et al, 2000; Figueiredo et al, 2008, 2009). Other studies have shown as the accumulation of mtDNA somatic mutations results to be correlated with aging phenotypes: high levels of both point mutations and large-scale deletions of mtDNA induce in animal models many features of premature aging. This is the case of mice expressing a proofreading-deficient version of the catalytic subunit of mtDNA polymerase (PolgA), and of the so-called "mutator mice" (Trifunovic et al, 2004; Kujoth et al, 2005; Edgar et al, 2009). Some studies have also highlighted the correlation between the presence of mtDNA mutations and an increase in ROS production: for example mice with an increased lifespan show a decreased damage to mtDNA and increased mitochondrial resistance to ROS damage (Schriner et al, 2005). But this connection is still debated because in other studies high mutation rate in mtDNA was not associated with increased oxidative damage to macromolecules (Trifunovic et al, 2005).

Human studies have been focused on mutations that define mitochondrial haplogroups, mutations well characterized and, for this reason, more simple to study.

In one of the first association studies, the Asian haplogroup D, which is characterized by mutations present in protein subunits belonging to OXPHOS complex I, is overrepresented in Japanese centenarians (Tanaka et al, 1998, 2000). In line with this finding, it was observed that in northern Italians haplogroup J, is by far more frequent among centenarians than among younger controls (De Benedictis et al, 1999), suggesting a haplogroup-specific effect on rate and quality of aging. Further support for this results has been confirmed by additional studies in northern Irish (Ross et al, 2001), and in Finns (Niemi et al, 2003),but not in southern Italians (Dato et al, 2004). Previously, a study conducted by Torroni e colleagues (Torroni et al, 1997), revealed that the mutations causing LHON were much more likely to cause the disease if they occurred on molecules belonging to haplogroup J, presumptively because of the genetic background of the J haplogroup. In fact, it is characterized by missense mutations falling in ND1 and ND5 subunits of the OXPHOS complex I (4216C, 13708A), by the 5633T-7476T-15812A haplotype that has been related to a predisposition to the Alzheimer's disease, and by the 3010A mutation falling in a very conserved region of the rRNA gene 16S, and previously associated to many complex diseases (Rose et al, 2002).

From this data it seems that the same group of mutations can induce longevity or diseases. It seems that Haplogroup J, because of the presence of missense mutations in complex I genes, have a low efficiency of OXPHOS, putting the cell in a vulnerable situation. From a hand a low production of ATP, may be detrimental for the cell, especially in presence of a certain environmental or genetic condition, like the presence of a further mutation. It is the example of LHON mutations occurring in molecules belonging to haplogroup J. On the other hand a low OXPHOS efficiency, often associated with a higher production of ROS, may be beneficial for the cell if associated with other environmental or genetic condition. For example, when the increased ROS production induce a tissue-specific over expression of nuclear genes coding for detoxifying enzymes (Esposito et al,

1999), the cell may benefit from a lower presence of ROS, that may result in a more healthy aging (Rose et al, 2001).

The primary role occupied by mitochondria in energy production and calorie uptake is also at the basis of several age-related diseases, in which was observed mt DNA impairment (mtDNA somatic alterations and rearrangements) (Wallace 2001, 2005). But also in these cases the low efficiency of OXPHOS and the consequent production of ROS may be modulated by other environmental conditions like physical activity. For example, the availability of calories and the absence of muscular exercise, largely diffused in human western societies, provoke a reduction of ATP production, and an increase of heat and ROS production (Wallace 2005; Hepple 2009). The accumulation of the problems associated with this "well being" combination, together with mtDNA mutations, either inherited or acquired with aging, has important effects on the onset of many age-related diseases as Type II Diabetes (Wilson et al, 2004), cardiac and coronary diseases (Das et al, 1989; Corral-Debrinski et al, 1992), neurodegenerative diseases (Alzheimer Disease, Parkinson Disease, etc.) (Zeviani and Carelli 2007), and cancer (Wallace 2005).

All these intricate events shed light on the complexity of the aging process, in which the effect of mtDNA inter-individual variability on mitochondrial-related phenomena may be attained either directly, or by interaction with the nuclear genome, and it may be modulated by environmental circumstances (Rose et al, 2002).

1.2.4.4 Mitochondria-nucleus cross talk and aging

mtDNA inherited variability doesn't operate on human phenotypes independently of nuclear variability. One of the first evidence is the observation that when OXPHOS is temporarily reduced and levels of ROS are increased, a higher transcription of nuclear genes coding for detoxifying

enzymes occurs in order to get rid of ROS (Esposito et al, 1999). Today it is well known that mtDNA works in strict connection with the nuclear genome, and all the processes involving the mitochondrion, are regulated both by proteins coded in nuclear and mitochondrial genomes. Many studies, dealing with the so called nucleus–mitochondria cross talk, show that a correct communication between mtDNA and nDNA is an essential process in cell biology (Garesse et al, 2001).

One method to better discriminate how the mitochondrial and cellular functionality are due to mitochondrial or nuclear variation is the cybrid technology, engineered cells where the mitochondria are completely deplete of their DNA and new mitochondria are introduced into the cells by using platelets obtained from blood donors (King and Attardi, 1989). The presence of cells with the same nuclear genome and different mtDNA, is a good chance to understand how the polymorphic variation of mtDNA affects mitochondria and cells health.

In the last years the idea that the combined effect of nuclear and mitochondrial DNA are often stronger than mtDNA main effects became stronger, leading the scientist to talk of nuclear-mitochondrial epistatic effects (Tranah, 2011). Some evidences exist about the importance of nuclear-mitochondrial cross talk on complex traits like aging and age-related diseases in animal models (Rand et al, 2006) like in humans (Rose et al, 2002), and their epistastic effect may explain why some mtDNA mutations have very different phenotypic effects in different individuals.

One of first studies about the interaction between the two genomes, was conducted by De Benedictis and collegues (2000) about a possible interaction between the mtDNA inherited variants and a polymorphic site of tyrosine hydroxylase (THO) gene, implicated in stress-response. The polymorphism under study is a microsatellite, that has a role in the regulation of transcription the THO, as demonstrated by in vitro studies (Meloni et al, 1998). This study indicated that U haplogroup was over-represented in centenarians carrying the THO genotype unfavorable to longevity (homozygosity for long alleles of the HUMTH01-STR) (De Benedictis et al, 1998).

23

An in vitro experiment that confirm the importance of the nuclear mitochondrial cross talk in stressresponse was carried out by Bellizzi and collegues (2006) on expression levels of cytokines and cytokine receptors in cybrids cells. In fact the transcription patterns of some are specifically modulated by the variability of the mtDNA under stress conditions (interleukin-6) and also at basal conditions (interleukin-1 β and tumor necrosis factor receptor 2).

Another support to the influence of nucleus-mitochondria cross talk on aging and age-related diseases are given by the results obtained by studying a large group of patients affected by sporadic Alzheimer's disease. Carrieri and colleagues (Carrieri et al, 2001), in a case-control study, have demonstrated, in the Italian population, some mtDNA haplogroups, K and U, seem to neutralize the deleterious effect of the ɛ4 allele, a variant of APOE, a nuclear stress-responder gene. Unfortunately, other studies conducted in different populations (Tuscany: Mancuso et al, 2007; Eastern European population: Maruszak et al, 2009), haven't confirmed the idea that the mitochondrial mtDNA variability and the APOE gene alleles interact in the modulation of some complex traits such as the Alzheimer Disease (AD), suggesting that this interaction may be population specific.

Other evidences are given by studies on different complex phenotype like: maternally inherited deafness, LHON. For the development of the maternally inherited deafness associated with the A1555G mutation in the mitochondrial 12S ribosomal RNA (rRNA) gene additional environmental or genetic changes are required, as identified in aminoglycosides or nuclear modifier genes (Bykhovskaya et al., 2000; 2004a; 2004b; Bindu et al, 2008). The LHON is caused by missense mutations in mtDNA, but a recent study has shown that also a nuclear LHON susceptibility locus on chromosome Xq25–27.2 exist (Shankar et al, 2008).

Lastly, another case of interaction between nuclear and mitochondrial genomes is shown by somatic mutations, non-randomly distributed along the mitochondrial genome and with different rate of accumulation in different tissues. These mutations seem to vary according to the inherited

24

mitochondrial genome (Gadaleta et al, 1999; Wang et al, 2001; Tanaka et al, 2000), but are also influenced by nuclear genome (Rose et al, 2010, 2007; Attardi, 2002).

In conclusion, it is possible to contend that a complex interplay among mtDNA inherited variation, nDNA inherited variation, and stochastic accumulation of DNA damages probably affects rate and quality of aging.

1.3 VARIABILITY OF NUCLEAR DNA AND AGING

Aging is driven by diverse molecular pathways and biochemical events; in fact, studies have shown that during the aging process the intensity of the main cell signaling pathways change dramatically, especially in presence of age-related diseases (Carlson and al, 2008). In this context, it is clear that aging is not controlled by few individual genes, but rather by many genes belonging to key signaling pathways, that many studies have demonstrated to be well-conserved in different species from yeast to humans (Kim, 2007).

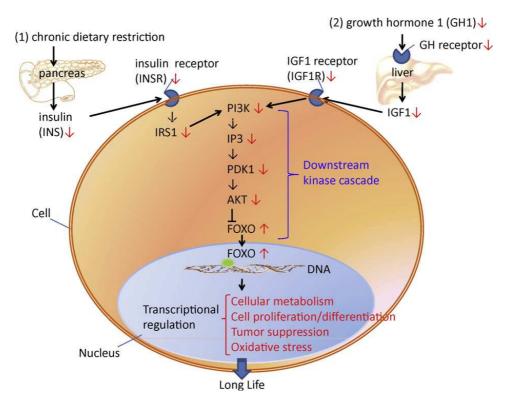
Thus, the study of the major cell signaling pathways and their specific mechanisms of transduction have occupied a central role for the detection of genetic factors involved in aging and longevity. In humans, studies aimed to genetic dissection of complex traits (and of longevity in particular) are very difficult to conduct. Linkage analysis is the traditional means of genetic mapping in humans. But in the case of longevity studies it is often difficult to use because of the scarce availability of multi-generational DNA from long-lived individuals. The best model for the study of human longevity are centenarians, who have avoided or survived the most important pathologies that affect old people, causing morbidity and mortality. However, despite the increasing number of old people, centenarians are still few (Franceschi and Bonafè, 2003). The most commonly used studies for the individuation of genetic factor of longevity are linkage analysis, case controls studies and longitudinal studies (Cristensen et al, 2006; Wheeler and Kim, 2011).

The candidate-gene association studies have the advantage to detect also the variants with small effects by comparing the genotypes of centenarians at specific loci with those of younger cohorts. Some limits of this kind of studies are that a biological knowledge of the phenomenon under study is required, that it may suffer for population stratification, and that it is often difficult to define an appropriate control group.

In longitudinal studies a cohort of individuals is followed over time, avoiding in this way the problems about the selection of controls. However, although this methodological approach provides a powerful opportunity to study the determinants of survival in advanced age, for longevity studies exist some logistic difficulties, first of all the necessity to recruit thousands of people to conduct a study on 200 centenarians.

All these studies have given more consistent results, but the only two genes associated with human longevity that have been replicated in multiple populations are FOXO3A and APOE (Corder et al, 1993; Kervinen et al, 1994; Schachter et al, 1994; Willcox et al, 2008; Anselmi et al, 2009; Flachsbart et al, 2009; Li et al, 2009; Pawlikowska et al, 2009), suggesting a population specific effect.

More useful results have given the studies on animal models, where it is possible the identification of molecular mechanisms that regulate a healthy lifespan through in vivo experiment. In fact, the possibility to induce mutation in various genes belonging to integrated molecular pathways has given the chance to characterize genes that dramatically increase or reduce life span. In particular, mutations in genes affecting endocrine signaling, stress response, metabolism, or telomeres, have been reported to increase lifespans of several model organisms (Kenyon, 2005; Fontana et al, 2010).


According to the data obtained from humans and animal models, several biological genes and related pathways have been identified as being involved in affecting lifespan, although the underlying mechanisms involved in the aging process are not completely understood. The intent of the following paragraph is to summarize the main pathways and biological mechanism associated with aging and longevity.

27

1.3.1 INS/IGF1 pathways

Experimental evidence is accumulating that aging is hormonally regulated by the evolutionarily conserved insulin/IGF-1 signalling (IIS) pathway (Kenyon, 2005; Bartke, 2008).

This IIS pathways is the first discovered to affect aging and longevity and it is also the most prominent and thus far best studied (Kenyon, 2005; Cohen and Dillin, 2008). It involves a cascade of phosphorylation events that include phosphatidylinositol 3-kinase (PI3K)/AKT/pyruvate dehydrogenase kinase (PDK) which regulates the nuclear translocation and activity of FOXO (a forkhead transcription factor) protein (Fig. 6) (Christensen et al, 2006).

Figura 6. The Insulin/IGF1 pathway involves a cascade of phosphorylation events that ultimately regulate the translocation and activity of FOXO proteins, leading to a change in lifespan; the activation of this pathway may be induced by exogenous stimulation (e.g., diet) or growth hormone, that induce the secretion of insulin into the plasma, and the production of IGF-1. Modified from Chung et al 2010.

In particular mutations that cause a decrease in IIS downstream cascade activity were found to extend lifespan (Cohen and Dillin, 2008). Other transcription factors that are inhibitors of IIS signaling, able to extend life-span are HSF-1 (the heat-shock transcription factor) and SKN-1 (a Nrf-like xenobiotic- response factor) (Lin et al, 1997; Brunet et al, 2004; Tullet et al, 2008).

Mutations in IIS components affect lifespan in all model organisms studied (Kuningas et al, 2008). In *C. elegans*, one of the first genes identified was Daf-2 which encodes for the insulin receptor-like gene involved in insulin signaling; mutations in this gene cause a significant increase in lifespan (Kimura et al, 1997). Following this finding, also mutations in AGE-1 gene, homologous to the mammalian phosphatidylinositol-3-OH kinase catalytic subunits, which are located downstream of the IR and IGF-1R, cause an increase in lifespan (Morris et al, 1996). Moreover, expression studies have shown how the inhibition of IIS cause changes in gene expression of several transcription factors such as DAF-16 (a FOXO transcription factor), the heat-shock transcription factor HSF-1, and SKN-1 (a Nrf-like xenobiotic-response factor) (Tullet et al, 2008) that, as previously mentioned, controls IIS pathways.

For *D. melanogaster* the increase in lifespan was observed in presence of mutations in insulin-like receptor (InR) or in its substrate (chico), and in flies with ablated insulin-producing cells (Giannakou & Partridge, 2007). It has been also shown that the inhibition of insulin/IGF-1 signalling or the increase of FOXO (the orthologue of DAF-16 in *Drosophila*) activity have as a consequence a lifespan increase.

Mammals are more complex: they present separate receptors for insulin (IR) and IGF-1 (IGF-1R) (Navarro et al., 1999); however, all the experimental evidence to date collected in mouse models shows that reduced IIS can extend lifespan also in mammals. In the mouse model, the complete disruption of the IR gene causes many pathological phenotype (insulin resistance, diabetes, etc.), but doesn't influence lifespan extension (Okamoto and Accili, 2003). Also tissue-specific IR knockout mouse models doesn't show beneficial effect for lifespan except that for fat-specific IR knockout mice (FIRKO) which in addiction shows reduced fat mass (Okamoto and Accili, 2003).

29

The IGF-1 branch acts through the growth-hormone-releasing hormone, growth hormone (GH) and IGF-1; mice mutated for the IGF-1 receptor suggest a direct role for reduced IGF-1 signalling in mammalian longevity: in fact, Igf1r +/- females exhibit a long-lived phenotype (Holzenberger et al, 2003). Moreover, a deficiency in GH and the disruption of GH receptor, causes reduced fertility but extends lifespan (Brown-Borg et al, 1996; Bartke et al, 2001). In mice, another gene able to modulate aging and life span is the *Klotho* gene, which encodes a hormone known to inhibit IIS; in fact, mice deficient for this hormone show an acceleration of aging and age-ralated diseases (Kuroo et al, 1997), on the contrary over-expression of *Klotho* results in IIS inhibition and increased lifespan (Kurosu et al, 2005).

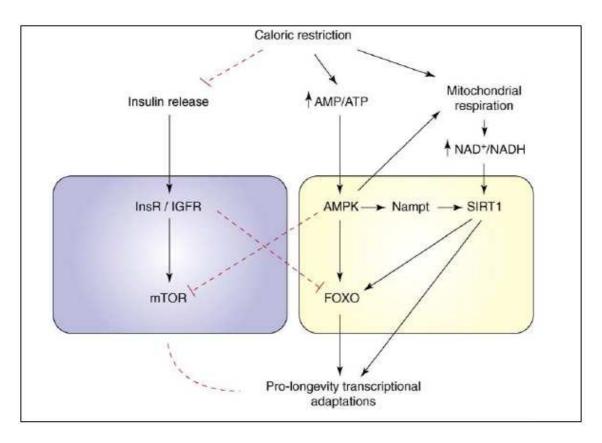
In humans, the data collected by case/control association studies, reveal a modulation of human lifespan, but not in a magnitude that would come close to what is seen by analogous defects in some of the model organisms.

The influence of IIS on longevity is highlighted by the evidence that longlived subjects, such as centenarians, have decreased plasma IGF-1 levels and preserved insulin action (Paolisso et al, 1997). This result was confirmed in a number of genetic association studies; for example polymorphisms in the IGF-1R locus, able to lower plasma IGF-1 levels, are significantly more represented among Italian centenarians (Bonafe et al, 2003). Moreover, in Dutch population a polymorphism in the GH1 gene is associated with longevity, and a combined effect of variation at the GH1, IGF-1 and IRS1 loci is also suggested as associated with reduced IIS signalling on human longevity (van Heemst et al, 2005). Genetic association studies have revealed other second messengers of IIS associated with human longevity: INSR, AKT, FOXO1A and FOXO3A (Chung et al, 2010).

1.3.2 Caloric restriction, and longevity

Caloric restriction (CR) is usually defined as a moderate (normally 20–40%) reduction in caloric intake compared with an ad libitum diet, without malnutrition (Piper and Bartke, 2008). The initial

evidence of the influence of this dietary regime on longevity was observed in rats (McCay et al, 1989). Subsequently similar evidences that CR increases maximum lifespan up to 50% has been reported for yeast, rotifers, spiders, worms, flies, fish, mice and rats (Koubova and Guarente, 2003). In humans, very preliminary evidence based on surrogate measures show how CR exerts similar adaptive responses as in laboratory animals, reducing the risk of developing age-associated pathological complications (Holloszy and Fontana, 2007). Then is no doubt that CR modulates longevity and that, from an evolutionary point of view, it represents an adaptation to food scarcity exempt from doubt (Harrison et al, 1989; Holliday, 1989); but the mechanisms that underliethis phenomenon is not completely understood. The class of proteins primarly correlated to CR are sirtuins.


The Sirtuins represent an evolutionarily conserved family of silent information regulator 2 (Sir2) gene, and are NAD+-dependent protein deacetylases, that if overexpressed extend lifespan in yeast, worms and flies (Kenyon, 2005); moreover genetic studies have suggested that at least one member of the SIRT family is involved in human lifespan regulation (Rose et al, 2003; Bellizzi et al, 2005). These proteins could contribute to longevity influencing the activity of various transcription factors and co-regulators (Bordone and Guarente, 2005). For this reason Sirtuins were heralded as the "master controllers of a regulatory system for aging" because not only do they modify hormonal networks (e.g. IIS pathways), inflammation (e.g. inhibition of NFKB) and other genes associated with longevity (e.g. p53, FOXO), but they may also provide a link between diet, longevity and epigenetic regulation (Sinclair and Guarente, 2006; Martin et al, 2007).

Many experimental evidence on animal models report the implication of this class of proteins in CR.

In yeast Sir2 gene seems to be essential to mediate lifespan extension in CR: in fact, where the gene coding for Sir2 was deleted the reduction in glucose was unable to increase lifespan (Lin et al, 2000). Also in *D. melanogaster* CR efficiently extends lifespan and increases Sir2 mRNA (Clancy et al, 2001; Rogina et al, 2002). In *C. elegans* is Sir-2.1, one of the four Sir genes, seems to regulate

lifespan under a restricted feeding regime (Wood et al, 2004). In mammals, there are seven Sir2 homologues (SIRT1-7), of which SIRT1 is the most closely related to Sir2 (Frye, 2000). SIRT1, that has been associated with glucose and fat metabolism, stress resistance and cell survival (Haigis & Guarente, 2006), is related to CR. In fact SIRT1 protein levels are increased in response to CR in many key metabolic tissues (Chen et al, 2008), and mice lacking SIRT1 are metabolically inefficient and, importantly, the longevity response to CR is blunted (Boily et al, 2008).

Although many studies demonstrated that Sir2/SIRT1 is necessary for CR, not all the studies point in that direction. The scenery seems more complex: some experiments suggest that the beneficial effect of CR might be a consequence of the balance of more signaling networks rather than being defined by single elements. For example, CR might not only be sensed by SIRT1 as a change in the NAD+/NADH ratio but also by AMPK as a change in the AMP/ATP ratio. In turn, AMPK can regulate mitochondrial respiration, which can positively regulate SIRT1. Both AMPK and SIRT1 can impact the activity of FOXO transcription factors, which also have been extensively linked to the regulation of metabolism and longevity. Additionally, CR promotes the downregulation of insulin-derived signals, a candidate longevity pathway, which also interacts with FOXO transcription factors (Cantò and Auwerx, 2009) (Figure 7).

Figure 7 Integrative view of mammalian signaling pathways involved in regulating the effects of caloric restriction (CR). CR, caloric restriction; SIRT1, silent information regulator T1; AMPK, AMP-activated protein kinase; FOXO, forkhead box O1. Modified by Cantò and Auwerx, 2009.

1.3.3 Cellular and systemic response to damage

Aging is due to a progressive accumulation of damage in macromolecules, and as a consequence in tissues, that cause the disruption of physiological function. Efficient defensive and reparatory systems, that are essential for survival, were developed during evolution. The cellular response to damage may be observed at different levels: macromolecular, cellular and systemic.

At molecular level antioxidant defenses such as catalase and superoxide dismutase (SOD) enzymes help to prevent cellular damage caused by oxidative stress. However, their association with longevity results controversial (Hekimi, 2006; Kuningas et al, 2008). In fact in *D. melanogaster* genes encoding catalase and superoxide dismutase (SOD) showed to influence lifespan (Orr and Sohal, 1994), but additional experiment showed that the results may be straightly influenced by genetic background of all lines (Orr and Sohal, 2003). Also in mammals, where one catalase and

three SOD are present, there are contrasting results. The disruption of the SOD2 gene is lethal (Li et al, 1995; Melov et al, 1998), and the overexpression of SOD2 leads to increased lifespan (Hu et al., 2007), but mice heterozygous for SOD2, that have high levels of DNA oxidation in multiple organs, didn't show decline in lifespan and acceleration in aging (Van Remmen et al, 2003). However, all these data illustrate the existence of a balance between the production of free radicals and of antioxidative enzymes. In humans, genetic variations in antioxidant genes were shown to be associated with normal cognitive aging, cancer risk, etc., but not with mortality (Kachiwala et al, 2005; Taufer et al, 2005; Liu et al, 2004; De Benedictis et al, 1998). Likewise, no associations between genetic variants in the catalase gene and mortality have been found (Christiansen et al, 2004).

When DNA, proteins and membranes are damaged, mechanisms of repair evolutionarily conserved (Eisen and Hanawalt, 1999) occur. However, there are many studies which have demonstrated the detrimental effects of impaired repair systems on lifespan, but only few have demonstrated beneficial effects of increased repair capacity. In *D. melanogaster* the correlation between repair systems and longevity was detected: the absence of the excision repair gene mei-41 reduces lifespan, and the presence of extra copies of the gene significantly increases lifespan (Symphorien and Woodruff, 2003). Likewise, over-expression of protein carboxyl methyltransferase (PCMT), which is another protein repair enzyme, is correlated with enhanced longevity in a temperature dependent manner (Chavous et al, 2001). In mammals studies on homologues of these genes, and on other DNA repair enzyme have shown the correlation with various pathological phenotype, but hasn't shown an unambiguous association with aging and longevity (Pascucci et al, 2011).

At cellular level one example of defense mechanism is the tumor suppressor gene p53 that eliminates damaged cells through apoptosis or cell-cycle arrest. In aged tissue p53 is less expressed (Feng et al, 2007), causing the accumulation of mutations in individual cells during the life that may promote cancer formation (Tyner et al, 2002).

At systemic levels, the mechanism of defense from external pathogenic agents are immune response and inflammation. And, in effect, association studies have shown how the genes that take part in these two processes (TNF- α , IL-6, IL-1 cluster, and IL-10), may contribute to human longevity (Franceschi et al, 2005).

Moreover, every day organisms are exposed to many hydrophobic compound present in food and in environment, that are often toxic. To cope with these hydrophobic toxic substances two different strategies are possible: one is to conjugate them enzymatically with cofactors (glutathione, glucuronate, or sulfat) making this substance more hydrophilic and detoxified; the other strategy is to recognize hydrophobic compounds as they pass through the plasma membrane and to excrete them directly out of the cells (Ueda, 2011). Defects on the enzyme that carried out these important functions are related to various diseases (Vasieva, 2011; Polimanti et al, 2011; Ueda, 2011). In particular, some of these genes (of GST family) turned out to be associated also with aging markers (telomeres shortening, respiratory function, hand grip strength reduction, and cognitive decline) (Starr et al, 2008).

1.3.4 Lipoprotein genes and longevity

The best-known example of a potential longevity gene has an important role in regulating lipoproteins: apolipoprotein E (APOE) gene that is also known to be related to susceptibility to agerelated diseases, as well as being a recognized risk factor for coronary heart disease and Alzheimer's disease (Kolovou et al, 2004, 2002). Since coronary heart disease and Alzheimer's disease are common in the elderly, increasing genetic association studies revealed that APOE is an important genetic variable in regulation of human longevity (Christensen et al, 2006; Wilson et al, 1996; Rubinsztein and Easton, 1999; Smith, 2002). It has various isoforms, which are encoded by different alleles (ϵ 2, ϵ 3 and ϵ 4) and interact differently with specific lipoprotein receptors that alter circulating levels of cholesterols. As previously mentioned, ϵ 4 allele results negatively associated with longevity (Schachter et al, 1994). In contrast to other candidate genes, cross-sectional studies of APOE allele frequency differences between age groups have been remarkably consistent. Although APOE ϵ 4 frequency varies considerably between populations of younger adults (about 25% among Finns, 17–20% among Danes and about 10% among French, Italians and Japanese), in all these populations the frequency among centenarians is about half these values (Christensen et al, 2006). At the contrary, APOE ϵ 2 allele shows an increased frequency at older ages in different populations (Louhija et al, 1994; Blanché et al, 2001; Frisoni et al, 2001; Seripa et al, 2006).

Between the other APO genes, polymorphic variant have also been reported associated with longevity in different populations (Pepe et al, 1998; De Benedictis et al, 1997; Anisimov et al, 2001; Atzmon et al, 2006). An example is APOC3, a major component of very LDLs and a minor component of HDL, that results associated with survival longevity in Ashkenazi Jewish. In particular, APOC3 -641CC genotypes were more frequent among long-living individuals. In addition this genotype results to be correlated also with a lower prevalence of hypertension and greater insulin sensitivity (Atzmon et al, 2006).

PON1 gene codify for a paraoxonase, an enzyme that hydrolyzes lipoperoxides and various toxic metabolites (Draganov et al, 2005). PON1 is synthesized in the liver and secreted into the blood, where it is associated exclusively with high density lipoproteins (HDLs). For its role and its localization it is considered to be a protective factor against oxidative modification of LDL, assuming a potential role in the prevention of the atherosclerotic process (Draganov et al, 2005). Many studies have been conducted an association between PON1 variants and human longevity, and because of the association individuated in some populations was not replicated in all studies, it is possible that the effects observed are population-specific (Rea et al, 2004; Lescai et al, 2009b; Caliebe et al, 2010).

1.3.5 Cell cycle regulation and longevity

In the history of aging research, there has been the idea that the life-long sequence of age associated events might be controlled by a sort of "clock." This idea of "the aging clock" was first proposed by Arthur Everitt in Australia in 1973 (Everitt et al, 1973). However, only recent studies have demonstrated that circadian clock proteins may be involved in DNA repair and in regulating accumulation of cellular ROS, thus making them plausible actors in the aging processes (Antoch et al, 2010). In particular, the connection between aging and circadian rhythm was provided by the phenotypes of Bmal1-deficient mice and Per1/2-deficient mice, that show the pathological features typical of aged mice (Kondratov et al, 2006; Lee, 2005). Moreover, it has been demonstrated that SIRT1, the master controllers of a regulatory system for aging, regulates the amplitude and the duration of circadian gene expression through the interaction and the deacetylation of key circadian clock regulators, such as BMAL1 (or ARNTL-aryl hydrocarbon receptor nuclear translocator-like) and PER2 (period homolog 2) (Asher et al, 2008; Nakahata et al, 2008).

The importance of the molecular clock machinery is also underlined by the fact that it is one of the most powerful modifiers of metabolism (Green et al, 2008; Ramsey et al, 2007). An example is provided by the homozygous Clock mutant mice that exhibit the metabolic syndrome (Turek et al 2005).

All these findings suggest that a connection exist between physiological rhythmicity, metabolism and aging, and that SIRT1 might function at a central interface connecting these fundamental biological events. A key molecule in this events may be NAD (Imai, 2010) that from an hand have been shown to directly modulate activity of circadian clock proteins (Eckel-Mahan and Sassone-Corsi, 2009), and on the other hand is essential for SIRT activity.

37

1.3.6 Telomere length maintenance

Many studies have shown how the process of aging is mitigated by the maintenance of telomeres (chromosome ends, composed by TAGGG tandem repeats), and this results in a life span extension. Early evidence about the biological importance of telomeres shortening was given by the observation of telomere shortening in primary human cells culture: when telomere erosion reaches a critical point, cells cease to proliferate and undergo senescence or apoptosis (Harley et al, 1990; Allsopp et al, 1992; Wright and Shay, 1992; Counter, 1996).

Only recently, studies on peripheral white blood cells have demonstrated the correlation with lifespan extension: in fact, although telomere length is inversely correlated with increasing age (Njajou et al, 2007; Kimura et al, 2008; Njajou et al, 2009), healthy centenarians possessed significantly longer telomeres than their unhealthy counterparts (Terry et al, 2008). Studies on twins have given a big support to this finding. In fact, analyses of Swedish twins demonstrated that telomere length at advanced age is a biomarker that predicts survival beyond the impact of early familial environment and genetic factors (Bakaysa et al, 2007). By contrast, in Danish population, the co-twin with the shorter telomeres died first, suggesting that telomere length is not only a biomarker of aging, but also a determinant of lifespan (Kimura et al, 2007).

Thus, in the elderly it is possible to use telomere length as a biomarker of disease risk (like as cognitive decline) and progression as well as mortality (Devore et al, 2011).

The mechanism of telomeres length regulation is complex, and many proteins are involved in telomere maintenance, including the telomerase complex in proliferating cells and other capping proteins involved in protection of chromosome termini (Cohen et al, 2007; Palm and de Lange 2008).

In the last years experiments have provided solid evidence supporting a role for telomerase activation in longevity: for example in mice an over-expression of telomerase reverse transcriptase (TERT) in various tissues resulted in an extension of maximum lifespan of up to 10% and a low incidence of age-related diseases, although this caused a higher incidence of both induced and spontaneous tumors, causing increased mortality in the first year of life (González-Suárez et al, 2001). These studies indicate that activation of telomerase provides anti-aging activity in mammals. In humans evidence demonstrate that telomere length has heritability estimates ranging from 44 to 80% (Slagboom et al, 1994; Andrew et al, 2006). Hovewer, only a few studies have been conducted about the correlation of telomerase genes and longevity. An example is the work of Atzmon and collegues that demonstated how a common telomerase reverse transcriptase haplotype is associated with longer telomeres in Ashkenazi centenarians and their offspring, confirming that human telomerase is involved in lifespan determination for longevity (Atzmon et al, 2010).

BIBLIOGRAFIA

Achilli A, Rengo C, Battaglia V, Pala M, Olivieri A, Fornarino S, Magri C, Scozzari R, Babudri N, Santachiara-Benerecetti AS, Bandelt HJ, Semino O, Torroni A (2005). *Saami and Berbers-an unexpected mitochondrial DNA link*. Am J Hum Genet 76(5):883-6.

Achilli A, Rengo C, Magri C, Battaglia V, Olivieri A, Scozzari R, Cruciani F, Zeviani M, Briem E, Carelli V, Moral P, Dugoujon JM, Roostalu U, Loogväli EL, Kivisild T, Bandelt HJ, Richards M, Villems R, Santachiara-Benerecetti AS, Semino O, Torroni A (2004). *The molecular dissection of mtDNA haplogroup H confirms that the Franco-Cantabrian glacial refuge was a major source for the European gene pool.* Am J Hum Genet 75(5):910-8.

Allsopp RC, Vaziri H, Patterson C, Goldstein S, Younglai EV, Futcher AB, Greider, CW, and Harley CB (1992). *Telomere length predicts replicative capacity of human fibroblasts*. Proc. Natl. Acad. Sci. USA 89, 10114–10118

Anderson S, Bankier AT, Barrell BG, de Bruijn MH, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, Schreier PH, Smith AJ, Staden R, Young IG (1981). *Sequence and organization of the human mitochondrial genome*. Nature 290:457–465.

Andrew T, Aviv A, Falchi M, Surdulescu GL, Gardner JP, Lu X, Kimura M, Kato BS, Valdes AM, Spector TD (2006). *Mapping genetic loci that determine leukocyte telomere length in a large sample of unselected female sibling pairs*. Am J Hum Genet 78(3):480–486.

Anisimov SV, Volkova MV, Lenskaya LV, Khavinson VK, Solovieva DV, Schwartz EI (2001). Ageassociated accumulation of the apolipoprotein C-III gene T-455C polymorphism C allele in a Russian population. J Gerontol A Biol Sci Med Sci 56(1):B27-32.

Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA (2009). Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenation Res 12(2):95-104.

Antoch MP, Kondratov RV (2010). *Circadian proteins and genotoxic stress response*. Circ Res 106(1):68-78.

Arco AD, Satrústegui J (2005). New mitochondrial carriers: an overview. Cell Mol Life Sci 62(19-20):2204-27.

Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Mostoslavsky R, Alt FW, Schibler U (2008). SIRT1 *regulates circadian clock gene expression through PER2 deacetylation*. Cell. 134(2):317-28.

Attardi G, Enriquez JA, Cabezas-Herrera J (2002). *Inter-mitochondrial complementation of mtDNA mutations and nuclear context*. Nat Genet. 30(4):360.

Atzmon G, Rincon M, Schechter CB, Shuldiner AR, Lipton RB, Bergman A, Barzilai N (2006). *Lipoprotein genotype and conserved pathway for exceptional longevity in humans.* PLoS Biol 4(4):e113.

Bakaysa S L, Mucci L A, Slagboom PE, Boomsma DI, McClearn GE, Johansson B, Pedersen NL (2007). *Telomere length predicts survival independent of genetic influences*. Aging Cell. 6:769–774.

Balaban RS, Nemoto S, Finkel T (2005). Mitochondria, oxidants, and aging. Cell 120(4):483-95.

Ballinger SW, Shoffner JM, Hedaya EV, Trounce I, Polak MA, Koontz DA, Wallace DC (1992). *Maternally transmitted diabetes and deafness associated with a 10.4 kb mitochondrial DNA deletion*. Nat Genet 1(1):11-5.

Barazzoni R, Short KR, Nair KS (2000). *Effects of aging on mitochondrial DNA copy number and cytochrome c oxidase gene expression in rat skeletal muscle, liver, and heart.* J Biol Chem. 275(5):3343-7.

Barrett TG, Scott-Brown M, Seller A, Bednarz A, Poulton K, Poulton J (2000). *The mitochondrial genome in Wolfram syndrome*. J Med Genet 37:463–466.

Bartke A (2008). Insulin and aging. Cell Cycle 7(21):3338-43.

Bartke A, Coschigano K, Kopchick J, Chandrashekar V, Mattison J, Kinney B, Hauck S (2001). *Genes that prolong life: relationships of growthhormoneand growthto aging and life span.* J Gerontol A Biol Sci Med Sci 56(8):B340-9.

Bellizzi D, Cavalcante P, Taverna D, Rose G, Passarino G, Salvioli S, Franceschi C, De Benedictis G (2006). *Gene expression of cytokines and cytokine receptors is modulated by the common variability of the mitochondrial DNA in cybrid cell lines.* Genes Cells 11(8):883-91.

Bellizzi D, Rose G, Cavalcante P, Covello G, Dato S, De Rango F, Greco V, Maggiolini M, Feraco E, Mari V, Franceschi C, Passarino G, De Benedictis G (2005). *A novel VNTR enhancer within the SIRT3 gene, a human homologue of SIR2, is associated with survival at oldest ages.* Genomics 85(2):258-63.

Bereiter-Hahn J, Voth M (1994). *Dynamics of mitochondria in living cells: shape changes, dislocation, fusion, and fission of mitochondria*. Microsc Res Technol 27:198–219.

Bertoni-Freddari C, Fattoretti P, Casoli T, Spagna C, Meier- Ruge W, Ulrich J (1993). *Morphological plasticity of synaptic mitochondria during aging*. Brain Res 628:193–200.

Bertoni-Freddari C, Fattoretti P, Giorgetti B, Grossi Y, Balietti M, Casoli T, Di Stefano G, Perretta G (2007). *Synaptic and mitochondrial morphometry provides structural correlates of successful brain aging*. Ann N Y Acad Sci 1097:51-3.

Bindu LH, Reddy PP (2008). *Genetics of aminoglycoside-induced and prelingual non-syndromic mitochondrial hearing impairment: a review*. Int J Audiol 47(11):702-7.

Bishop NA, Guarente L (2007). *Genetic links between diet and lifespan: shared mechanisms from yeast to humans*. Nat Rev Genet 8(11):835-44.

Blanché H, Cabanne L, Sahbatou M, Thomas G (2001). A study of French centenarians: are ACE and APOE associated with longevity? C R Acad Sci III 324(2):129-35.

Boily G, Seifert EL, Bevilacqua L, He XH, Sabourin G, Estey C, Moffat C, Crawford S, Saliba S, Jardine K, Xuan J, Evans M, Harper ME, McBurney MW (2008). *SirT1 regulates energy metabolism and response to caloric restriction in mice*. PLoS One 3(3):e1759.

Bonafè M, Barbieri M, Marchegiani F, Olivieri F, Ragno E, Giampieri C, Mugianesi E, Centurelli M, Franceschi C, Paolisso G (2003). *Polymorphic variants of insulin-like growth factor I (IGF-I) receptor and phosphoinositide 3-kinase genes affect IGF-I plasma levels and human longevity: cues for an evolutionarily conserved mechanism of life span control.* J Clin Endocrinol Metab 88(7):3299-304.

Bordone L, Guarente L (2005). *Calorie restriction, SIRT1 and metabolism: understanding longevity*. Nat Rev Mol Cell Biol 6(4):298-305.

Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996). *Dwarf mice and the ageing process*. Nature 384(6604):33.

Brown WM, George M, Wilson AC (1979). Rapid evolution of animal mitochondrial DNA. Proc Nat Acad Sci (USA), 764:1967-1971.

Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004). *Stressdependent regulation of FOXO transcription factors by the SIRT1 deacetylase*. Science 303(5666):2011-5.

Bykhovskaya Y, Estivill X, Taylor K, Hang T, Hamon M, Casano RA, Yang H, Rotter JI, Shohat M, Fischel-Ghodsian N (2000). *Candidate locus for a nuclear modifier gene for maternally inherited deafness*. Am J Hum Genet 66(6):1905-10.

Bykhovskaya Y, Mengesha E, Wang D, Yang H, Estivill X, Shohat M, Fischel-Ghodsian N (2004a). *Human mitochondrial transcription factor B1 as a modifier gene for hearing loss associated with the mitochondrial A1555G mutation*. Mol Genet Metab 82(1):27-32.

Bykhovskaya Y, Mengesha E, Wang D, Yang H, Estivill X, Shohat M, Fischel-Ghodsian N (2004b). *Phenotype of non-syndromic deafness associated with the mitochondrial A1555G mutation is modulated by mitochondrial RNA modifying enzymes MTO1 and GTPBP3.* Mol Genet Metab 83(3):199-206.

Caliebe A, Kleindorp R, Blanché H, Christiansen L, Puca AA, Rea IM, Slagboom E, Flachsbart F, Christensen K, Rimbach G, Schreiber S, Nebel A (2010). *No or only population-specific effect of PON1 on human longevity: a comprehensive meta-analysis.* Ageing Res Rev 9(3):238-44.

Cantó C, Auwerx J (2009). *Caloric restriction, SIRT1 and longevity*. Trends Endocrinol Metab 20(7):325-31.

Capri M, Salvioli S, Sevini F, Valensin S, Celani L, Monti D, Pawelec G, De Benedictis G, Gonos ES, Franceschi C (2006). *The genetics of human longevity*. Ann N Y Acad Sci 1067:252-63.

Carlson ME, Silva HS, Conboy IM (2008). *Aging of signal transduction pathways, and pathology*. Exp Cell Res 314(9):1951-61.

Caroppi P, Sinibaldi F, Fiorucci L, Santucci R (2009). *Apoptosis and human diseases: mitochondrion damage and lethal role of released cytochrome C as proapoptotic protein*. Curr Med Chem 16:4058–4065.

Carrieri G, Bonafè M, De Luca M, Rose G, Varcasia O, Bruni A, Maletta R, Nacmias B, Sorbi S, Corsonello F, Feraco E, Andreev KA, Yashin A, Franceschi C, De Benedictis G (2001). *Mitochondrial DNA haplogroups and APOEe4 allele are non-independent variables in sporadic Alzheimer's disease*. Hum Genet 108(3):194-8.

Cavalli-Sforza LL, Menozzi P, Piazza A (1994). *The History and Geography of human genes*. Princeton University Press, Princeton.

Chan DC (2006). *Mitochondria: dynamic organelles in disease, aging, and development*. Cell 125:1241–1252.

Chavous DA, Jackson FR, O'Connor CM (2001). *Extension of the Drosophila lifespan by overexpression of a protein repair methyltransferase*. Proc Natl Acad Sci U S A 98(26):14814-8.

Chen D, Bruno J, Easlon E, Lin SJ, Cheng HL, Alt FW, Guarente L. (2008) *Tissue-specific regulation of SIRT1 by calorie restriction*. Genes Dev 22(13):1753-7.

Chen H, Chan DC (2009). *Mitochondrial dynamics—fusion, fission, movement, and mitophagy-in neurodegenerative diseases.* Hum Mol Genet 18(R2):R169-76.

Chinnery PF, Johnson MA, Wardell TM, Singh-Kler R, Hayes C, Brown DT, Taylor RW, Bindoff LA, Turnbull DM (2000). *The epidemiology of pathogenic mitochondrial DNA mutations*. Ann Neurol 48(2):188-93.

Chipuk JE, Bouchier-Hayes L, Green DR (2006). *Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario.* Cell Death Diff 13(8):1396-402.

Chomyn A, Attardi G (2003). *MtDNA mutations in aging and apoptosis*. Biochem Biophys Res Commun 304(3):519-29.

Christensen K, Johnson TE, Vaupel JW (2006). *The quest for genetic determinants of human longevity: challenges and insights.* Nat Rev Genet 7(6):436-48.

Christiansen L, Petersen HC, Bathum L, Frederiksen H, McGue M, Christensen K (2004). *The catalase - 262C/T promoter polymorphism and aging phenotypes*. J Gerontol A Biol Sci Med Sci 59(9):B886-9.

Chung WH, Dao RL, Chen LK, Hung SI (2010). *The role of genetic variants in human longevity*. Ageing Res Rev 9 Suppl 1:S67-78.

Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001). *Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein.* Science 292(5514):104-6.

Clayton DA (1987). *Nuclear gene products that function in mitochondrial DNA replication*. Philos Trans R Soc Lond B Biol Sci 317(1187):473-82.

Cohen E, Dillin A (2008). *The insulin paradox: aging, proteotoxicity and neurode-generation*. Nat Rev Neurosci 9(10):759-67.

Cohen SB, Graham ME, Lovrecz GO, Bache N, Robinson PJ, Reddel RR (2007). *Protein composition of catalytically active human telomerase from immortal cells*. Science 315(5820):1850–3.

Corbisier P, Remacle J (1990). Involvement of mitochondria in cell degeneration. Eur J Cell Biol 51(1):173-82.

Corder EH, Saunders AM, Strittmatter WJ, Schmechel DE, Gaskell PC, Small GW, Roses AD, Haines JL, Pericak-Vance MA (1993). *Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer's disease in late onset families*. Science 261(5123):921-3.

Cortopassi GA, Shibata D, Soong NW, Arnheim N (1992). A pattern of accumulation of a somatic deletion of mitochondrial DNA in aging human tissues. Proc Natl Acad Sci U S A. 89(16):7370-4.

Corral-Debrinski M, Shoffner JM, Lott MT, Wallace DC (1992). Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat Res 275(3-6):169-180.

Counter CM (1996). The roles of telomeres and telomerase in cell life span. Mutat. Res. 366, 45-63.

Das DK, George A, Liu XK, Rao PS (1989). Detection of hydroxyl radical in the mitochondria of ischemic-reperfused myocardium by trapping with salicylate. Biochem Biophys Res Commun 165(3):1004-9.

Dato S, Passarino G, Rose G, Altomare K, Bellizzi D, Mari V, Feraco E, Franceschi C, De Benedictis G (2004). *Association of the mitochondrial DNA haplogroup J with longevity is population specific*. Eur J Hum Genet 12(12):1080-2.

De Benedictis G, Franceschi C (2006). *The unusual genetics of human longevity*. Sci Aging Knowledge Environ 2006(10):pe20.

De Benedictis G, Carrieri G, Garasto S, Rose G, Varcasia O, Bonafe M, Franceschi C, Jazwinski SM (2000). *Does a retrograde response in human aging and longevity exist?* Exp Gerontol 35(6-7):795-801.

De Benedictis G, Rose G, Carrieri G, De Luca M, Falcone E, Passarino G, Bonafe M, Monti D, Baggio G, Bertolini S, Mari D, Mattace R, Franceschi C (1999). *Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans*. FASEB J. 13(12):1532-6.

De Benedictis G, Carotenuto L, Carrieri G, De Luca M, Falcone E, Rose G, Cavalcanti S, Corsonello F, Feraco E, Baggio G, Bertolini S, Mari D, Mattace R., Yashin AI, Bonafe M, Franceschi C (1998). *Gene/Longevity association studies at four autosomal loci (REN, THO, PARP, SOD2).* Eur J Hum Genet 6(6):534-41.

De Benedictis G, Falcone E, Rose G, Ruffolo R, Spadafora P, Baggio G, Bertolini S, Mari D, Mattace R, Monti D, Morellini M, Sansoni P, Franceschi C (1997). *DNA multiallelic systems reveal gene/longevity associations not detected by diallelic systems. The APOB locus.* Hum Genet 99(3):312–8.

Devore EE, Prescott J, De Vivo I, Grodstein F (2011). *Relative telomere length and cognitive decline in the Nurses' Health Study*. Neurosci Lett 492(1):15–18.

Diaz F, Moraes CT (2008). Mitochondrial biogenesis and turnover. Cell Calcium. 44(1):24-35.

Dimauro S (2011). A history of mitochondrial diseases. J Inherit Metab Dis 34(2):261-76.

DiMauro S, Tanji K, Bonilla E, Pallotti F, Schon EA (2002). *Mitochondrial abnormalities in muscle and other aging cells: classification, causes, and effects.* Muscle Nerve. 26(5):597-607.

Draganov DI, Teiber JF, Speelman A, Osawa Y, Sunahara R, La Du BN (2005). *Human paraoxonases* (*PON1, PON2, and PON3*) are lactonases with overlapping and distinct substrate specificities. J Lipid Res 46(6):1239-47.

Dirks A, Leeuwenburgh C (2002). *Apoptosis in skeletal muscle with aging*. Am J Physiol Regul Integr Comp Physiol. 282:R519–R527.

Eckel-Mahan K, Sassone-Corsi P (2009). *Metabolism control by the circadian clock and vice versa*. Nat Struct Mol Biol 16(5):462-7.

Edgar D, Shabalina I, Camara Y, Wredenberg A, Calvaruso MA, Nijtmans L, Nedergaard J, Cannon B, Larsson NG, Trifunovic A (2009). *Random point mutations with major effects on protein-coding genes are the driving force behind premature aging in mtDNA mutator mice*. Cell Metab 10(2):131–8.

Eisen JA, Hanawalt PC (1999). A phylogenomic study of DNA repair genes, proteins, and processes. Mutat Res 435(3):171-213.

Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999). *Mitochondrial disease in mouse results in increased oxidative stress*. Proc Natl Acad Sci USA 96(9):4820-5.

Everitt AV (1973). *The hypothalamic-pituitary control of ageing and age-related pathology*. Exp Gerontol 8(5):265-77.

Esposito LA, Melov S, Panov A, Cottrell BA, Wallace DC (1999). *Mitochondrial disease in mouse results in increased oxidative stress*. Proc Natl Acad Sci U S A. 96(9):4820-5.

Fannin SW, Lesnefsky EJ, Slabe TJ, Hassan MO, Hoppel CL (1999). *Aging selectively decreases oxidative capacity in rat heart interfibrillar mitochondria*. Arch Biochem Biophys. 372(2):399-407.

Feng Z, Hu W, Teresky AK, Hernando E, Cordon-Cardo C, Levine AJ (2007). *Declining p53 function in the aging process: a possible mechanism for the increased tumor incidence in older populations*. Proc Natl Acad Sci USA 104(42):16633–8.

Figueiredo PA, Ferreira RM, Appell HJ, Duarte JA (2008). *Age-induced morphological, biochemical, and functional alterations in isolated mitochondria from murine skeletal muscle*. J Gerontol A Biol Sci Med Sci 63(4):350–9.

Figueiredo PA, Powers SK, Ferreira RM, Appell HJ, Duarte JA (2009). *Aging impairs skeletal muscle mitochondrial bioenergetic function*. J Gerontol A Biol Sci Med Sci 64(1):21–33.

Finnilä S, Lehtonen MS, Majamaa K (2001). *Phylogenetic network for European mtDNA*. Am J Hum Genet 68(6):1475-84.

Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A (2009). *Association of FOXO3A variation with human longevity confirmed in German centenarians*. Proc. Natl Acad. Sci. USA 106(8):2700–5.

Fontana L, Partridge L, Longo VD (2010). *Extending healthy life span-from yeast to humans*. Science 328(5976):321-6.

Franceschi C, Olivieri F, Marchegiani F, Cardelli M, Cavallone L, Capri M, Salvioli S, Valensin S, De Benedictis G, Di Iorio A, Caruso C, Paolisso G, Monti D (2005). *Genes involved in immune response/inflammation, IGF1/insulin pathway and response to oxidative stress play a major role in the genetics of human longevity: the lesson of centenarians.* Mech Ageing Dev 126(2):351-61.

Franceschi C, Bonafè M (2003). *Centenarians as a model for healthy aging*. Biochem Soc Trans 31(2):457-61.

Frisoni GB, Louhija J, Geroldi C, Trabucchi M (2001). *Longevity and the epsilon 2 allele of apolipoprotein E: the Finnish Centenarians Study.* J Gerontol A Biol Sci Med Sci 56(2):M75-8.

Frye RA (2000). *Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins*. Biochem Biophys Res Commun 273(2):793-8.

Gadaleta MN, Kadenbach B, Lezza AMS, Reith A, Cantatore P, Boffoli D, S. Papa, et al. (Eds.). *Aged-linked changes in the genotype and phenotype of mitochondria*. Frontiers in Cellular Bionergetics Plenum Press, New York, 1999, pp. 693–727.

Garesse R, Vallejo CG (2001). Animal mitochondrial biogenesis and function: a regulatory cross-talk between two genomes. Gene 263(1-2):1-16.

Giannakou ME, Partridge L (2007). *Role of insulin-like signalling in Drosophila lifespan*. Trends Biochem Sci 32(4):180–8.

Gómez-Durán A, Pacheu-Grau D, López-Gallardo E, Díez-Sánchez C, Montoya J, López-Pérez MJ, Ruiz-Pesini E (2010). Unmasking the causes of multifactorial disorders: OXPHOS differences between mitochondrial haplogroups. Hum Mol Genet. 19(17):3343-53.

González-Suárez E, Samper E, Ramírez A, Flores JM, Martín- Caballero J, Jorcano JL, Blasco MA (2001). Increased epidermal tumors and increased skin wound healing in transgenic mice overexpressing the catalytic subunit of telomerase, mTERT, in basal keratinocytes. EMBO J 20(11):2619-30.

Green CB, Takahashi JS, Bass J (2008). The meter of metabolism. Cell 134(5):728-42.

Green DR, Reed JC (1998). Mitochondria and apoptosis. Science 281(5381):1309-12.

Haigis MC, Guarente LP (2006). *Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction*. Genes Dev 20(21):2913-21.

Harley CB, Futcher AB, and Greider CW (1990). *Telomeres shorten during ageing of human fibroblasts*. Nature 345, 458–460.

Harman D (1956). *Aging: a theory based on free radical and radiation chemistry*. J Gerontol 11(3):298–300.

Harman D (1972). The biologic clock: the mitochondria? J Am Geriatr Soc 20(4):145-7.

Harrison DE, Archer JR (1989). Natural selection for extended longevity from food restriction. Growth Dev Aging 53(1-2):3.

Hekimi S (2006). How genetic analysis tests theories of animal aging. Nat Genet 38(9):985-91.

Hengartner MO (2000). The biochemistry of apoptosis. Nature 407(6805):770-6.

Henze K, Martin W (2003). Evolutionary biology: essence of mitochondria. Nature 426(6963):127-8.

Hepple RT (2009). Why eating less keeps mitochondria working in aged skeletal muscle. Exerc Sport Sci Rev 37(1):23-8.

Herndon LA, Schmeissner PJ, Dudaronek JM, Brown PA, Listner KM, Sakano Y, Paupard MC, Hall DH, Driscoll M (2002). *Stochastic and genetic factors influence tissue-specific decline in ageing C. elegans*. Nature 419(6909):808-14.

Herrnstadt C, Elson JL, Fahy E, Preston G, Turnbull DM, Anderson C, Ghosh SS, Olefsky JM, Beal MF, Davis RE, Howell N (2002). *Reduced-median-network analysis of complete mitochondrial DNA coding-region sequences for the major African, Asian, and European haplogroups.* Am J Hum Genet 70(5):1152-71.

Higami Y, Shimokawa I (2000). Apoptosis in the aging process. Cell Tissue Res. 301:125–132.

Hofmann S, Bezold R, Jaksch M, Obermaier-Kusser B, Mertens S, Kaufhold P, Rabl W, Hecker W, Gerbitz K (1997). *Wolfram (DIDMOAD) syndrome and Leber hereditary optic neuropathy (LHON) are associated with distinct mitochondrial DNA haplotypes.* Genomics 39(1):8-18.

Holliday R (1989). Food, reproduction and longevity: is the extended lifespan of calorie-restricted animals an evolutionary adaptation? Bioessays 10(4):125-7.

Holloszy JO (2004). Adaptations of skeletal muscle mitochondria to endurance exercise: a personal perspective. Exerc Sport Sci Rev 32(2):41-3.

Holloszy JO, Fontana L (2007). Caloric restriction in humans. Exp Gerontol 42(8):709-12.

Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003). *IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice*. Nature 421(6919):182-7.

Hu D, Cao P, Thiels E, Chu CT, Wu GY, Oury TD, Klann E (2007). *Hippocampal long-term potentiation, memory, and longevity in mice that overexpress mitochondrial superoxide dismutase*. Neurobiol Learn Mem 87(3):372-84. Hudson G, Carelli V, Spruijt L, Gerards M, Mowbray C, Achilli A, Pyle A, Elson J, Howell N, La Morgia C, Valentino ML, Huoponen K, Savontaus ML, Nikoskelai- nen E, Sadun AA, Salomao SR, Belfort R Jr, Griffiths P, Man PY, de Coo RF, Horvath R, Zeviani M, Smeets HJ, Torroni A, Chinnery PF (2007). *Clinical expression of Leber hereditary optic neuropathy is affected by the mitochondrial DNA-haplogroup background*. Am J Hum Genet 81(2):228-33.

Imai S (2010). "Clocks" in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim Biophys Acta 1804(8):1584-90.

Kachiwala SJ, Harris SE, Wright AF, Hayward C, Starr JM, Whalley LJ, Deary IJ (2005). *Genetic influences on oxidative stress and their association with normal cognitive ageing*. Neurosci Lett 386(2):116-20.

Kajstura J, Cheng W, Sarangarajan R, Li P, Li B, Nitahara JA, Chapnick S, Reiss K, Olivetti G, Anversa P (1996). *Necrotic and apoptotic myocyte cell death in the aging heart of Fisher 344 rats*. Am J Physiol 271:H1215–H1228.

Kannisto V (1994). Development of Oldest-Old Mortality, 1950-1990: Evidence from 28 Developed Countries. Odense University Press, Odense, Denmark.

Kasamatsu H, Vinograd J (1973). *Unidirectionality of replication in mouse mitochondrial DNA*. Nat New Biol 241(108):103-5.

Kenyon C (2005). The plasticity of aging: insights from long-lived mutants. Cell 120(4):449-60.

Kervinen K, Savolainen MJ, Salokannel J, Hynninen A, Heikkinen J, Ehnholm C, Koistinen MJ, Kesaniemi YA (1994). *Apolipoprotein E and B polymorphisms–longevity factors assessed in nonagenarians*. Atherosclerosis 105(1):89-95.

Kim SK (2007). *Common aging pathways in worms, flies, mice and humans*. J Exp Biol 210(Pt 9):1607-12.

Kimura KD, Tissenbaum HA, Liu Y, Ruvkun G (1997). *Daf-2, an insulin receptor like gene that regulates longevity and diapause in Caenorhabditis elegans.* Science 277(5328):942–6.

Kimura M, Barbieri M, Gardner JP, Skurnick J, Cao X, van Riel N, Rizzo MR, Paoliso G, Aviv A (2007). *Leukocytes of exceptionally old persons display ultra-short telomeres*. Am J Physiol Regul Integr Comp Physiol 293(6):R2210-7.

Kimura M, Cherkas LF, Kato BS, Demissie S, Hjelmborg JB, Brimacombe M, Cupples A, Hunkin JL, Gardner JP, Lu X, Cao X, Sastrasinh M, Province MA, Hunt SC, Christensen K, Levy D, Spector TD, Aviv

A (2008). *Offspring's leukocyte telomere length, paternal age, and telomere elongation in sperm.* PLoS Genet 4(2):e37.

King MP, Attardi G (1989). *Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation*. Science 246(4929):500-3.

Kirkwood TB (2005). Understanding the odd science of aging. Cell. 120(4):437-47.

Kirkwood TB, Finch CE (2002). Ageing: the old worm turns more slowly. Nature 419(6909):794-5.

Kissova I, Deffieu M, Manon S, Camougrand N (2004). *Uth1p is involved in the autophagic degradation of mitochondria*. J Biol Chem 279(37):39068–74.

Kivisild T, Shen P, Wall DP, Do B, Sung R, Davis K, Passarino G, Underhill PA, Scharfe C, Torroni A, Scozzari R, Modiano D, Coppa A, de Knijff P, Feldman M, Cavalli-Sforza LL, Oefner PJ (2006). *The role of selection in the evolution of human mitochondrial genomes*. Genetics 172(1):373-87.

Koehler CM, Beverly KN, Leverich EP (2006). *Redox pathways of the mitochondrion*. Antioxid Redox Signal 8(5-6):813–22.

Kolovou G, Yiannakouris N, Hatzivassiliou M, Malakos J, Daskalova D, Hatzigeorgiou G, Cariolou MA, Cokkinos DV (2002). Association of apolipoprotein E polymorphism with myocardial infarction in Greek patients with coronary artery disease. Curr Med Res Opin 18(3):118-24.

Kolovou GD, Anagnostopoulou KK, Cokkinos DV (2004). *Apolipoprotein epsilon4 homozygosity and essential hypertension*. South Med J 97(10):1022.

Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP (2006). *Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock.* Genes Dev 20(14):1868-73.

Koubova J, Guarente L (2003). How does calorie restriction work? Genes Dev 17(3):313-21.

Kroemer G, Reed JC (2000). Mitochondrial control of cell death. Nat Med 6(5):513–9.

Kujoth GC, Hiona A, Pugh TD, Someya S, Panzer K, Wo- hlgemuth SE, Hofer T, Seo AY, Sullivan R, Jobling WA, Morrow JD, Van Remmen H, Sedivy JM, Yamasoba T, Tanokura M, Weindruch R,

Kuningas M, Mooijaart SP, van Heemst D, Zwaan BJ, Slagboom PE, Westendorp RGJ (2008). *Genes* encoding longevity: from model organisms to humans. Aging Cell 7(2):270–80.

Kuro-o M, Matsumura Y, Aizawa H, Kawaguchi H, Suga T, Utsugi T, Ohyama Y, Kurabayashi M, Kaname T, Kume E, Iwasaki H, Iida A, Shiraki-Iida T, Nishikawa S, Nagai R, Nabeshima YI (1997). *Mutation of the mouse klotho gene leads to a syndrome resembling ageing*. Nature 390(6655):45–51.

Kurosu H, Yamamoto M, Clark JD, Pastor JV, Nandi A, Gurnani P, McGuinness OP, Chikuda H, Yamaguchi M, Kawaguchi H, Shimomura I, Takayama Y, Herz J, Kahn CR, Rosenblatt KP, Kuro-o M (2005). *Suppression of aging in mice by the hormone Klotho*. Science 309(5742):1829–33.

Le Bras M, Clément MV, Pervaiz S, Brenner C (2005). *Reactive oxygen species and the mitochondrial signaling pathway of cell death*. Histol Histopathol 20(1):205-19.

Lee CC (2005). The circadian clock and tumor suppression by mammalian period genes. Methods Enzymol 393:852-61.

Lemasters JJ, Theruvath TP, Zhong Z, Nieminen AL (2009). *Mitochondrial calcium and the permeability transition in cell death*. Biochim Biophys Acta 1787(11):1395-401.

Lescai F, Blanché H, Nebel A, Beekman M, Sahbatou M, Flachsbart F, Slagboom E, Schreiber S, Sorbi S, Passarino G, Franceschi C (2009a). *Human longevity and 11p15.5: a study in 1321 centenarians*. Eur J Hum Genet 17(11):1515-9.

Lescai F, Marchegiani F, Franceschi C (2009b). *PON1 is a longevity gene: results of a meta-analysis*. Ageing Res Rev 8(4):277-84.

Lestienne P, Bataille N (1994). *Mitochondrial DNA alterations and genetic diseases: a review*. Biomed Pharmacother 48(5-6):199–214.

Li Y, Huang TT, Carlson EJ, Melov S, Ursell PC, Olson JL, Noble LJ, Yoshimura MP, Berger C, Chan PH, Wallace DC, Epstein CJ (1995). *Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase*. Nat Genet 11(4):376–81.

Li Y, Wang WJ, Cao H, Lu J, Wu C, Hu FY, Guo J, Zhao L, Yang F, Zhang YX, Li W, Zheng GY, Cui H, Chen X, Zhu Z, He H, Dong B, Mo X, Zeng Y, Tian XL (2009). *Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations*. Hum Mol Genet 18(24):4897–904.

Lin K, Dorman JB, Rodan A, Kenyon C (1997). DAF-16: an HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278(5341):1319-22.

Lin SJ, Defossez PA, Guarente L (2000). *Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae*. Science 289(5487):2126–8.

Liu G, Zhou W, Park S, Wang LI, Miller DP, Wain JC, Lynch TJ, Su L, Christiani DC (2004). *The SOD2* Val/Val genotype enhances the risk of nonsmall cell lung carcinoma by p53 and XRCC1 polymorphisms. Cancer 101(12):2802–8.

Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL (1998). *The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry*. J Gerontol A Biol Sci Med Sci. 53(6):M441-6.

Lòpez-Lluch G, Irusta PM, Navas P, de Cabo R (2008). *Mitochondrial biogenesis and healthy aging*. Exp Gerontol 43(9):813–9.

Louhija J, Miettinen HE, Kontula K, Tikkanen MJ, Miettinen TA, Tilvis RS (1994). Aging and genetic variation of plasma apolipoproteins. Relative loss of the apolipoprotein E4 phenotype in centenarians. Arterioscler Thromb 14(7):1084–9.

Macaulay V, Richards M, Hickey E, Vega E, Cruciani F, Guida V, Scozzari R, Bonne-Tamir B, Sykes B, Torroni A (1999). *The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs*. Am J Hum Genet 64(1):232–49.

Mancuso M, Nardini M, Micheli D, Rocchi A, Nesti C, Giglioli NJ, Petrozzi L, Rossi C, Ceravolo R, Bacci A, Choub A, Ricci G, Tognoni G, Manca ML, Siciliano G, Murri L (2007). *Lack of association between mtDNA haplogroups and Alzheimer's disease in Tuscany*. Neurol Sci. 28(3):142-7.

Martin GM, Bergman A, Barzilai N (2007). *Genetic determinants of human health span and lifespan:* progress and new opportunities. PLoS Genet 3(7):e125.

Maruszak A, Canter JA, Styczyńska M, Zekanowski C, Barcikowska M (2009). *Mitochondrial haplogroup H and Alzheimer's disease--is there a connection?* Neurobiol Aging. 30(11):1749-55.

McCay CM, Crowell MF, Maynard LA (1989). *The effect of retarded growth upon the length of life span and upon the ultimate body size*. Nutrition 5(3):155-71; discussion 172.

McGue M, Vaupel JW, Holm N, Harvald B (1993). Longevity is moderately heritable in a sample of Danish twins born 1870-1880. J Gerontol 48(6):B237-44.

Meloni R, Albanese V, Ravassard P, Treilhou F, Mallet J (1998). A tetranucleotide polymorphic microsatellite, located in the first intron of the tyrosine hydroxylase gene, acts as a transcription regulatory element in vitro. Hum Mol Genet 7(3):423–8.

Melov S, Ravenscroft J, Malik S, Gill MS, Walker DW, Clayton PE, Wallace DC, Malfroy B, Doctrow SR, Lithgow GJ (2000). *Extension of life-span with superoxide dismutase/catalase mimetics*. Science 289(5484):1567-9.

Melov S, Schneider JA, Day BJ, Hinerfeld D, Coskun P, Mirra SS, Crapo JD, Wallace DC (1998). A novel neurological phenotype in mice lacking mitochondrial manganese superoxide dismutase. Nat Genet 18(2):159–63.

Michikawa Y, Mazzucchelli F, Bresolin N, Scarlato G, Attardi G (1999). Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science. 286(5440):774-9.

Miquel J, Economos AC, Fleming J, Johnson JE Jr (1980). *Mitochondrial role in cell aging*. Exp Gerontol 15(6):575-91.

Molina AJ, Wikstrom JD, Stiles L, Las G, Mohamed H, Elorza A, Walzer G, Twig G, Katz S, Corkey BE, Shirihai OS (2009). *Mitochondrial networking protects beta-cells from nutrient-induced apoptosis*. Diabetes 58(10):2303–15.

Montoya J, Gaines GL, Attardi G (1983). *The pattern of transcription of the human mitochondrial rRNA* genes reveals two overlapping transcription units. Cell 34(1):151-9.

Montoya J, Gaines GL, Attardi G (1983). *The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units.* Cell 34(1):151-9.

Möpert K, Hajek P, Frank S, Chen C, Kaufmann J, Santel A (2009). *Loss of Drp1 function alters OPA1* processing and changes mitochondrial membrane organization. Exp Cell Res 15(13):2165–80.

Morris JZ, Tissenbaum HA, Ruvkun G (1996). *A phosphatidylinositol-3-OH kinase family member regulating longevity and diapause in Caenorhabditis elegans*. Nature 382(6591):536-9.

Nakahata Y, Kaluzova M, Grimaldi B, Sahar S, Hirayama J, Chen D, Guarente LP, Sassone-Corsi P (2008). *The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control.* Cell 134(2):329–40.

Navarro I, Leibush B, Moon TW, Plisetskaya EM, Banos N, Mendez E, Planas JV, Gutierrez J (1999). *Insulin, insulin-like growth factor-I (IGF-I) and glucagon: the evolution of their receptors.* Comp Biochem Physiol B Biochem Mol Biol 122(2):137–53.

Niemi AK, Hervonen A, Hurme M, Karhunen PJ, Jylhä M, Majamaa K (2003). *Mitochondrial DNA polymorphisms associated with longevity in a Finnish population*. Hum Genet 112(1):29–33.

Njajou OT, Cawthon RM, Damcott CM, Wu SH, Ott S, Garant MJ, Blackburn EH, Mitchell BD, Shuldiner AR, Hsueh WC (2007). *Telomere length is paternally inherited and is associated with parental lifespan*. Proc Natl Acad Sci U S A 104(29):12135–9.

Njajou OT, Hsueh WC, Blackburn EH, Newman AB, Wu SH, Li R, Simonsick EM, Harris TM, Cummings SR, Cawthon RM; Health ABC study (2009). *Association between telomere length, specific causes of death, and years of healthy life in health, aging, and body composition, a populationbased cohort study*. J Gerontol A Biol Sci Med Sci 64(8):860–4.

Okamoto H, Accili D (2003). In vivo mutagenesis of the insulin receptor. J Biol Chem 278(31):28359-62.

Olivieri A, Achilli A, Pala M, Battaglia V, Fornarino S, Al-Zahery N, Scozzari R, Cruciani F, Behar DM, Dugoujon JM, Coudray C, Santachiara-Benerecetti AS, Semino O, Bandelt HJ, Torroni A (2006). *The mtDNA legacy of the Levantine early Upper Palaeolithic in Africa*. Science 314(5806):1767–70.

Ono T, Isobe K, Nakada K, Hayashi JI (2001). *Human cells are protected from mitochondrial dysfunction by complementation of DNA products in fused mitochondria*. Nat Genet 28(3):272-5.

Orr WC, Sohal RS (2003). *Does overexpression of Cu,Zn-SOD extend life span in Drosophila melanogaster*? Exp Gerontol 38(3):227–30.

Orr WC, Sohal RS (1994). *Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster*. Science 263(5150):1128–30.

Palm W, de Lange T (2008). How shelterin protects mammalian telomeres. Annu Rev Genet 42:301-34.

Paolisso G, Ammendola S, Del Buono A, Gambardella A, Riondino M, Tagliamonte MR, Rizzo MR, Carella C, Varricchio M (1997). Serum levels of insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 in healthy centenarians: relationship with plasma leptin and lipid concentrations, insulin action, and cognitive function. J Clin Endocrinol Metab 82(7):2204-9.

Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1998). *Peroxidative damage to cardiac mitochondria: cytochrome oxidase and cardiolipin alterations*. FEBS Lett 424(3):155-8.

Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001). *Perinuclear, perigranular and subplasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport.* EMBO J 20(8):1863-74.

Pascucci B, D'Errico M, Parlanti E, Giovannini S, Dogliotti E (2011). *Role of nucleotide excision repair proteins in oxidative DNA damage repair: an updating.* Biochemistry (Mosc). 76(1):4-15.

Passarino G, Rose G, Bellizzi D (2010). *Mitochondrial function, mitochondrial DNA and ageing: a reappraisal*. Biogerontology 11(5):575-88.

Passarino G, Semino O, Quintana-Murci L, Excoffier L, Hammer M, Santachiara-Benerecetti AS (1998). Different genetic components in the Ethiopian population, identified by mtDNA and Y-chromosome polymorphisms. Am J Hum Genet 62(2):420–34.

Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh WC, Reiner AP, Psaty BM, Atzmon G, Barzilai N, Cummings SR, Browner WS, Kwok PY, Ziv E; Study of Osteoporotic Fractures (2009). *Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity*. Aging Cell 8(4):460–72.

Pepe G, Di Perna V, Resta F, Lovecchio M, Chimienti G, Colacicco AM, Capurso A (1998). *In search of a biological pattern for human longevity: impact of apo A-IV genetic polymorphisms on lipoproteins and the hyper-Lp(a) in centenarians*. Atherosclerosis 137(2):407–17.

Perls T, Shea-Drinkwater M, Bowen-Flynn J, Ridge SB, Kang S, Joyce E, Daly M, Brewster SJ, Kunkel L, Puca A (2000). *Exceptional familial clustering for extreme longevity in humans*. Am Geriatr Soc 48(11):1483-5.

Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunkel L, Puca A (2002). *Life-long sustained mortality advantage of siblings of centenarians*. Proc Natl Acad Sci U S A 99(12):8442-7.

Phelouzat MA, Laforge T, Arbogast A, Quadri RA, Boutet S, Proust JJ (1997). Susceptibility to apoptosis of T lym- phocytes from elderly human is associated with increased in vivo expression of functional Fas receptors. Mech Ageing Dev. 96:35–46.

Pinz KG, Bogenhagen DF (1998). *Efficient repair of abasic sites in DNA by mitochondrial enzymes*. Mol Cell Biol 18(3):1257–65.

Piper MD, Bartke A (2008). Diet and aging. Cell Metab 8(2):99-104.

Polimanti R, Piacentini S, Fuciarelli M (2011). *HapMap-based study of human soluble glutathione Stransferase enzymes: the role of natural selection in shaping the single nucleotide polymorphism diversity of xenobiotic-metabolizing genes.* Pharmacogenet Genomics 21(10):665-72.

Quintana-Murci L, Semino O, Bandelt HJ, Passarino G, McElreavey K, Santachiara-Benerecetti AS (1999). *Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa*. Nat Genet 23(4):437–41

Quintáns B, Alvarez-Iglesias V, Salas A, Phillips C, Lareu MV, Carracedo A (2004). *Typing of mitochondrial DNA coding region SNPs of forensic and anthropological interest using SNaPshot minisequencing*. Forensic Sci Int 140(2-3):251-7.

Ramsey KM, Marcheva B, Kohsaka A, Bass J (2007). *The clockwork of metabolism*. Annu Rev Nutr 27:219–40.

Rand DM, Fry A, Sheldahl L (2006). *Nuclear-mitochondrial epistasis and drosophila aging: introgression of Drosophila simulans mtDNA modifies longevity in D. melanogaster nuclear backgrounds.* Genetics 172(1):329–41. Rea IM, McKeown PP, McMaster D, Young IS, Patterson C, Savage MJ, Belton C, Marchegiani F, Olivieri F, Bonafe M, Franceschi C (2004). *Paraoxonase polymorphisms PON1 192 and 55 and longevity in Italian centenarians and Irish nonagenarians. A pooled analysis. Exp.* Gerontol 39(4):629–35.

Richards M, Côrte-Real H, Forster P, Macaulay V, Wilkinson-Herbots H, Demaine A, Papiha S, Hedges R, Bandelt HJ, Sykes B (1996). *Paleolithic and neolithic lineages in the European mitochondrial gene pool*. Am J Hum Genet 59(1):185–203.

Richards M, Macaulay V, Hickey E, Vega E, Sykes B, Guida V, Rengo C, Sellitto D, Cruciani F, Kivisild T, Villems R, Thomas M, Rychkov S, Rychkov O, Rychkov Y, Go⁻⁻Ige M, Dimitrov D, Hill E, Bradley D, Romano V, Calì F, Vona G, Demaine A, Papiha S, Triantaphyllidis C, Ste- fanescu G, Hatina J, Belledi M, Di Rienzo A, Novelletto A, Oppenheim A, Nørby S, Al-Zaheri N, Santachiara-Benerecetti S, Scozzari R, Torroni A, Bandelt HJ (2000). *Tracing European founder lineages in the Near Eastern mtDNA pool*. Am J Hum Genetics 67(5):1251-76.

Rogina B, Helfand SL, Frankel S (2002). *Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction*. Science 298(5599):1745.

Roostalu U, Kutuev I, Loogväli EL, Metspalu E, Tambets K, Reidla M, Khusnutdinova EK, Usanga E, Kivisild T, Villems R (2007). *Origin and expansion of haplogroup H, the dominant human mitochondrial DNA lineage in West Eurasia: the Near Eastern and Caucasian perspective*. Mol Biol Evol 24(2):436-48.

Rose G, Romeo G, Dato S, Crocco P, Bruni AC, Hervonen A, Majamaa K, Sevini F, Franceschi C, Passarino G; GEnetics of Healthy Ageing Project Consortium (2010). *Somatic point mutations in mtDNA control region are influenced by genetic background and associated with healthy aging: a GEHA study*. PLoS One 5(10):e13395.

Rose G, Passarino G, Scornaienchi V, Romeo G, Dato S, Bellizzi D, Mari V, Feraco E, Maletta R, Bruni A, Franceschi C, De Benedictis G (2007). *The mitochondrial DNA control region shows genetically correlated levels of heteroplasmy in leukocytes of centenarians and their offspring*. BMC Genomics. 8:293.

Rose G, Dato S, Altomare K, Bellizzi D, Garasto S, Greco V, Passarino G, Feraco E, Mari V, Barbi C, Bonafe M, Franceschi C, Tan Q, Boiko S, Yashin AI, De Benedictis G (2003). *Variability of the SIRT3 gene, human silent information regulator Sir2 homologue, and survivorship in the elderly*. Exp Gerontol 38(10):1065–1070.

Rose G, Passarino G, Franceschi C, De Benedictis G (2002). *The variability of the mitochondrial genome in human aging: a key for life and death?* Int J Biochem Cell Biol 34(11):1449–60.

Rose G, Passarino G, Carrieri G, Altomare K, Greco V, Bertolini S, Bonafè M, Franceschi C, De Benedictis G (2001). *Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians*. Eur J Hum Genet. 9:701-7.

Ross OA, McCormack R, Curran MD, Duguid AR, Barnett YA, Rea IM, Middleton D (2001). *Mitochondrial DNA polymorphism: its role in longevity of the Irish population.* Exp Gerontol 36(7):1161–78.

Rubinsztein DC, Easton DF (1999). Apolipoprotein E genetic variation and Alzheimer's disease. a metaanalysis. Dement Geriatr Cogn Disord 10(3):199–209.

Ruiz Pesini E, Lapena AC, Diez-Sanchez AC, Perez-Martos A, Montoya J, Alvarez E, Diaz M, Urries A, Montoro L, Lopez-Perez MJ, Enriquez JA (2000). *Human mtDNA haplogroups associated with huge or reduced spermatozoa motility*. Am J Hum Genet 67(3):682–96.

Ryan MT, Hoogenraad NJ (2007). *Mitochondrial-nuclear communications*. Annu Rev Biochem 76:701-22.Salvioli S, Bonafe M, Capri M, Monti D, Franceschi C (2001). *Mitochondria, aging and longevity--a new perspective*. FEBS Lett 492(1-2)9–13.

Santoro A, Salvioli S, Raule N, Capri M, Sevini F, Valensin S, Monti D, Bellizzi D, Passarino G, Rose G, De Benedictis G, Franceschi C (2006). *Mitochondrial DNA involvement in human longevity*. Biochim Biophys Acta 1757(9-10):1388–99.

Schächter F, Faure-Delanef L, Guenot F, Rouger H, Froguel P, Lesueur-Ginot L, Daniel C (1994). *Genetic associations with human longevity at the APOE and ACE loci*. Nat Genet 6(1):29–32.

Schon EA, Hirano M, Di Mauro S (1994). *Mitochondrial encephalomyopathies: clinical and molecular analysis.* J Bioenerg Biomembr 26(3):291–9.

Schriner SE, Linford NJ, Martin GM, Treuting P, Ogburn CE, Emond M, Coskun PE, Ladiges W, Wolf N, Van Remmen H, Wallace DC, Rabinovitch PS (2005). *Extension of murine life span by overexpression of catalase targeted to mitochondria*. Science 308(5730):1909–11.

Seripa D, Franceschi M, Matera MG, Panza F, Kehoe PG et al (2006). *Sex differences in the association of apolipoprotein E and angiotensin-converting enzyme gene polymorphisms with healthy aging and longevity: a populationbased study from Southern Italy.* J Gerontol A Biol Sci Med Sci 61(9):918–23.

Shankar SP, Fingert JH, Carelli V, Valentino ML, King TM, Daiger SP, Salomao SR, Berezovsky A, Belfort Jr R, Braun TA, Sheffield VC, Sadun AA, Stone EM (2008). *Evidence for a novel x-linked modifier locus for leber hereditary optic neuropathy*. Ophthalmic Genet 29(1):17–24.

Sinclair DA, Guarente L (2006). Unlocking the secrets of longevity genes. Sci Am 294(3):48–51, 54-7.

Slagboom PE, Droog S, Boomsma DI (1994). *Genetic determination of telomere size in humans: a twin study of three age groups*. Am J Hum Genet 55(5):876–882.

Smith JD (2002). Apolipoproteins and aging: emerging mechanisms. Ageing Res Rev 1(3):345-65.

Sohal RS, Agarwal S, Candas M, Forster MJ, Lal H (1994). *Effect of age and caloric restriction on DNA oxidative damage in different tissues of C57BL/6 mice*. Mech Ageing Dev 76(2-3):215-24.

Sohal RS, Sohal BH, Brunk UT (1990). Relationship between antioxidant defenses and longevity in different mammalian species. Mech Ageing Dev. 53(3):217-27.

Starr JM, Fox H, Harris SE, Deary IJ, Whalley LJ (2008). *GSTz1 genotype and cognitive ability*. Psychiatr Genet 18(4):211-2.

Suen DF, Norris KL, Youle RJ (2008). *Mitochondrial dynamics and apoptosis*. Genes Dev 22(12):1577–90.

Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (2000). *Ubiquitinated* sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 63(2):582–90.

Symphorien S, Woodruff RC (2003). *Effect of DNA repair on aging of transgenic Drosophila melanogaster: I. mei-41 locus.* J Gerontol A Biol Sci Med Sci 58(9):B782–7.

Tanaka M, Gong J, Zhang J, Yamada Y, Borgeld HJ, Yagi K (2000). *Mitochondrial genotype associated* with longevity and its inhibitory effect on mutagenesis. Mech Ageing Dev 116(2-3):65–76.

Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K (1998). *Mitochondrial genotype associated with longevity*. Lancet 351(9097):185-6.

Taufer M, Peres A, de Andrade VM, de Oliveira G, Sa G, do Canto ME, dos Santos AR, Bauer ME, da Cruz IB (2005). *Is the Val16Ala manganese superoxide dismutase polymorphism associated with the aging process?* J Gerontol A Biol Sci Med Sci 60(4):432–8.

Terman A, Gustafsson B, Brunk UT (2007). Autophagy, organelles and ageing. J Pathol 211(2):134-43.

Terry DF, Nolan VG, Andersen SL, Perls TT, Cawthon R (2008). *Association of longer telomeres with better health in centenarians*. J Gerontol A Biol Sci Med Sci 63(8):809–12.

Terzioglu M, Larsson NG (2007). *Mitochondrial dysfunction in mammalian ageing*. Novartis Found Symp. 287:197-208; discussion 208-13.

Torroni A, Achilli A, Macaulay V, Richards M, Bandelt HJ (2006). *Harvesting the fruit of the human mtDNA tree*. Trends Genet 22(6):339–45.

Torroni A, Petrozzi M, D'Urbano L, Sellitto D, Zeviani M, Carrara F, Carducci C, Leuzzi V, Carelli V, Barboni P, De Negri A, Scozzari R (1997). *Haplotype and phylogenetic analyses suggest that one Europeanspecific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484.* Am J Hum Genet 60(5):1107–21.

Torroni A, Huoponen K, Francalacci P, Petrozzi M, Morelli L, Scozzari R, Obinu D, Savontaus ML, Wallace DC (1996). *Classification of European mtDNAs from an analysis of three European populations*. Genetics 144(4):1835-50.

Torroni A, Wallace DC (1994). *Mitochondrial DNA variation in human populations and implications for detection of mitochondrial DNA mutations of pathological significance*. J Bioenerg Biomembr 26(3):261-71.

Torroni A, Sukernik RI, Schurr TG, Starikorskaya YB, Cabell MF, Crawford MH, Comuzzie AG, Wallace DC (1993). *mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans*. Am J Hum Genet. 53(3):591-608.

Tranah GJ (2011). *Mitochondrial-nuclear epistasis: implications for human aging and longevity*. Ageing Res Rev 10(2):238-52.

Trifunovic A, Hansson A, Wredenberg A, Rovio AT, Dufour E, Khvorostov I, Spelbrink JN, Wibom R, Jacobs HT, Larsson NG (2005). *Somatic mtDNA mutations cause aging phenotypes without affecting reactive oxygen species production*. Proc Natl Acad Sci USA 102(50):17993–8.

Trifunovic A, Wredenberg A, Falkenberg M, Spelbrink JN, Rovio AT, Bruder CE, Bohlooly-Y M, Gidlöf S, Oldfors A, Wibom R, Törnell J, Jacobs HT, Larsson NG (2004). *Premature ageing in mice expressing defective mitochondrial DNA polymerase*. Nature 429(6960):417–23.

Tullet JM, Hertweck M, An JH, Baker J, Hwang JY, Liu S, Oliveira RP, Baumeister R, Blackwell TK (2008). *Direct inhibition of the longevity-promoting factor SKN-1 by insulin-like signaling in C. elegans*. Cell 132(6):1025–38.

Turek FW, Joshu C, Kohsaka A, Lin E, Ivanova G, McDearmon E, Laposky A, Losee-Olson S, Easton A, Jensen DR, Eckel RH, Takahashi JS, Bass J (2005). Obesity *and metabolic syndrome in circadian Clock mutant mice*. Science 308(5724):1043–45.

Tyner SD, Venkatachalam S, Choi J, Jones S, Ghebranious N, Igelmann H, Lu X, Soron G, Cooper B, Brayton C, Hee Park S, Thompson T, Karsenty G, Bradley A, Donehower LA (2002). *p53 mice that display early ageing associated phenotypes*. Nature 415(6867):45–53.

Ueda K (2011). ABC proteins protect the human body and maintain optimal health. Biosci Biotechnol Biochem 75(3):401-9.

Underhill PA, Kivisild T (2007). Use of y chromosome and mitochondrial DNA population structure in tracing human migrations. Annu Rev Genet 41:539–64.

Underhill PA, Passarino G, Lin AA, Shen P, Mirazón Lahr M, Foley RA, Oefner PJ, Cavalli-Sforza LL (2001). *The phylogeography of Y chromosome binary haplotypes and the origins of modern human populations*. Ann Hum Genet.65(Pt 1):43-62.

van Heemst D, Beekman M, Mooijaart SP, Heijmans BT, Brandt BW, Zwaan BJ, Slagboom PE, Westendorp RG (2005). *Reduced insulin/ IGF-1 signalling and human longevity*. Aging Cell 4(2):79–85.

Van Remmen H, Ikeno Y, Hamilton M, Pahlavani M, Wolf N, Thorpe SR, Alderson NL, Baynes JW, Epstein CJ, Huang TT, Nelson J, Strong R, Richardson A (2003). *Life-long reduction in MnSOD activity results in increased DNA damage and higher incidence of cancer but does not accelerate aging*. Physiol Genomics 16(1):29–37.

Van Remmen H, Richardson A (2001). *Oxidative damage to mitochondria and aging*. Exp Gerontol 36(7):957-68.

Vasieva O (2011). The many faces of glutathione transferase pi. Curr Mol Med 11(2):129-39.

Vilkki J, Savontaus ML, Kalimo H, Nikoskelainen EK (1989). *Mitochondrial DNA polymorphism in Finnish families with Leber's hereditary optic neuroretinopathy*. Hum Genet 82(3):208–12.

Viña J, Borrás C, Miquel J (2007). Theories of ageing. IUBMB Life. 59(4-5):249-54.

Wallace DC, Fan W (2009). *The pathophysiology of mitochondrial disease as modeled in the mouse*. Genes Dev 23(15):1714–36.

Wallace DC (2007). Why do we still have a maternally inherited mitochondrial DNA? Insights from evolutionary medicine. Annu Rev Biochem 76:781–821.

Wallace DC (2005). A Mitochondrial Paradigm of Metabolic and Degenerative Diseases, Aging, and Cancer: a Dawn for Evolutionary Medicine. Annu Rev Gen 39:359–407.

Wallace DC (2001). Mouse models for mitochondrial disease. Am J Med Genet 106(1):71-93.

Wallace DC (1994). *Mitochondrial DNA sequence variation in human evolution and disease*. Proc Natl Acad Sci U S A 91(19):8739-46.

Wallace DC, Singh G, Lott MT, Hodge JA, Schurr TG, Lezza AM, Elsas LJ 2nd, Nikoskelainen EK (1988a). *Mitochondrial DNA mutation associated with Leber's hereditary optic neuropathy*. Science. 242(4884):1427-30.

Wallace DC, Zheng XX, Lott MT, Shoffner JM, Hodge JA, Kelley RI, Epstein CM, Hopkins LC (1988b). *Familial mitochondrial encephalomyopathy (MERRF): genetic, pathophysiological, and biochemical characterization of a mitochondrial DNA disease.* Cell 55(4):601–10.

Wang Y, Michikawa Y, Mallidis C, Woodhouse L, Yarasheski KE, Miller CA, Askanas V, Engel WK, Bhasin S, Attardi G (2001). *Muscle-specific mutations accumulate with aging in critical human mtDNA control sites for replication*. Proc Natl Acad Sci USA 98(7):4022–7.

Webb CT, Gorman MA, Lazarou M, Ryan MT, Gulbis JM (2006). *Crystal structure of the mitochondrial chaperone TIM9.10 reveals a six-bladed alpha-propeller*. Mol Cell 21(1):123–33

Wheeler HE, Kim SK (2011). *Genetics and genomics of human ageing*. Philos Trans R Soc Lond B Biol Sci 366(1561):43-50.

Willcox BJ et al (2008). *FOXO3A genotype is strongly associated with human longevity*. Proc Natl Acad Sci USA 105(37):13987–92.

Wilson FH, Hariri A, Farhi A, Zhao H, Petersen KF, Toka HR, Nelson-Williams C, Raja KM, Kashgarian M, Shulman GI, Scheinman SJ, Lifton RP (2004). *A cluster of metabolic defects caused by mutation in a mitochondrial tRNA*. Science 306 (5699):1190–4.

Wilson PWF, Schaefer EJ, Larson MG, Ordovas JM (1996). *Apolipoprotein E alleles and risk of coronary disease. A meta-analysis.* Arterioscler Thromb Vasc Biol 16(10):1250-5.

Wood JG, Rogina B, Lavu S, Howitz K, Helfand SL, Tatar M, Sinclair D (2004). *Sirtuin activators mimic caloric restriction and delay ageing in metazoans*. Nature 430(7000):686–9.

Wright WE, and Shay JW (1992). *The two-stage mechanism controlling cellular senescence and immortalization*. Exp. Gerontol. 27 383–389.

Zeviani M, Carelli V (2007). Mitochondrial disorders. Curr Opin Neurol 20(5):564-71.

Zeviani M, Moraes CT, DiMauro S, Nakase H, Bonilla E, Schon EA, Rowland LP (1988). *Deletions of mitochondrial DNA in Kearns-Sayre syndrome*. Neurology 38(9):1339–46.

CHAPTER 2

2.1 The analysis of mitochondrial DNA variability in a large sample of ultranonagenarians across Europe allows a reappraisal of the mtDNA correlation with longevity: a GEHA Project Study

Nicola Raule¹*, Federica Sevini¹*, Shengting Li², Annalaura Barbieri¹, Federica Tallaro³, Laura Lomartire¹, Dario Vianello¹, Vladyslav Bezrukov⁴, Hélené Blanché⁵, Antti Hervonen⁶, Kaare Christensen⁷, Luca Deiana⁸, Efsthatios Gonos⁹, Tom B. L. Kirkwood¹⁰, Peter Kristensen¹¹, Alberta Leon¹², Pier Giuseppe Pelicci¹³, Michel Poulain¹⁴, Irene M. Rea¹⁵, Josè Remacle¹⁶, Jean Marie Robine¹⁷, Stefan Schreiber¹⁸, Ewa Sikora¹⁹, P. Eline Slagboom²⁰, Liana Spazzafumo²¹, M. Antonietta Stazi²², Olivier Toussaint²³, James W. Vaupel²⁴, Giuseppina Rose, Jukka Moilanen²⁵, Kari Majamaa²⁵, Markus Perola²⁶, Lars Bolund², Huanming Yang², Giuseppe Passarino³, Claudio Franceschi¹

1. Department of Experimental Pathology, University of Bologna, Bologna, Italy; 2. Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China; 3. Department of Cell Biology, University of Calabria, Rende Italy; 4. Institute of Gerontology, Kiev, Ucraine; 5. Centre Polymorphisme Humaine, Fondation Jean Dausset, Paris, France; 6. University of Tampere, Tampere Finland; 7. Institute of Public Health, University of Southern Denmark, Odense, Denmark; 8. University of Sassari, Sassari, Italy; 9. National Hellenic Research Foundation, Athens, Greece; 10. School of Clinical Medical Sciences, Gerontology "Henry Wellcome," University of Newcastle upon Tyne, Newcastle upon Tyne, UK; 11.University of Aarhus, Aarhus, Denmark; 12. Research & Innovation Soc.Coop. a r.l., Padova, Italy, 13. IFOM—Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy; 14. Research Centre of Demographic Management for Public Administrations, UCL—GéDAP, Louvain-la-Neuve, Belgium; 15. The Queen's University Belfast, Belfast, U K; 16. Eppendorf Array Technologies, SA—EAT Research and Development, Namur, Belgium; 17. University of Montpellier, Val d'Aurelle Cancer Research Center, Montpellier, France; 18. Kiel Center for Functional Genomics, University Hospital Schleswig Holstein, Kiel, Germany; 19. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; 20. Leiden University Medical Centre, Leiden, the Netherlands; 21. INRCA—Italian National Research Centre on Aging, Ancona, Italy; 22. Istituto Superiore di Sanità, Rome, Italy; 23. Facultés Universitaire Notre Dame de la Paix, Namur, Belgium; 24. Max Planck Institute for Demographic Research, Rostock, Germany; 25. University of Oulu, Oulu, Finland; 26. National Public Health Institute, Helsinki, Finland.

*These Authors equally contributed to the study.

Astract

The involvement of mitochondrial function in the aging process has been widely studied from different standpoints. In this frame, many studies have suggested that mitochondrial DNA variability affects the quality of aging and longevity. In particular, some specific groups of haplotypes, (such as haplogroup J in Europe and D in Asia) sharing mutations in the subunits of the OXPHOS complex I, turned out to be more frequent in centenarians than in younger controls. However, J haplogroup was also found to predispose to Leber Disease. In addition, new surveys in a number of populations did not confirm the association between J haplogroup and longevity. In order to reappraise the correlation between mtDNA variability and longevity, we took advantage of the large GEHA recruitment, which has carried out an unprecedented collection 2200 ultranonagenarians and an equal number of younger controls across Europe. The samples, have been categorized by high resolution haplogroup classification, while about 1300 mtDNA molecules from 650 nonagenarians and an equal number of controls have been completely sequenced. The large sample size and the extensive molecular analyses allowed to better clarify the correlation between mtDNA mutations and longevity. In addition they allowed to highlight the importance of the complete mtDNA sequences as it allows to evaluate the effects rare and repeated mutations which are not fully appreciated when haplogroup analysis is carried out.

Introduction

The research on mitochondrial biology has demonstrated the central role played by the mitochondrion in a number of complex traits, including ageing and numerous degenerative diseases. This is basically due to the crucial role of mitochondrion in the energetic balance of the cell. In fact, mitochondria are the organelles where Oxidative Phosphorylation (OXPHOS) takes places, and this implies that mitochondria have a central position between energy uptake (that is food uptake and metabolism) and energy production. As a consequence of this, mitochondria are also involved in a number of crucial cellular processes such as heat production, apoptosis regulation, cellular differentiation, but especially in the production and the regulation of one of the most important byproduct of the cellular metabolism: the Reactive Oxigen Species (ROS) (Passarino et al. 2010; Wallace 2010). Many studies have addressed the role played by the variability of mitochondrial DNA in modulating the individual variability in these processes and, consequently on the susceptibility to the different phenotypes influenced by mitochondrial activity (Montiel-Sosa et al. 2006; Niemi et al. 2003; Santoro et al. 2006; Wallace 2005; van der Walt et al. 2003; Rose et al. 2002; Ross et al. 2001; Ruiz-Pesini et al. 2000; De Benedictis et al. 1999; Ivanova and Lepage 1998; Brown et al. 1997). These studies have mainly been managed by taking advantage of the haplogroup classification of mtDNA molecules, which has been carried out by population geneticists, due to the non recombinant nature of mtDNA. This has allowed to find out that haplogroup J, which is diffused over Europe and Near East, might be beneficial to longevity, as it has been found more frequently in centenarians than in relevant younger controls in northern Italians (De Benedictis et al. 1999) in Irish (Ross et al. 2001) and in Finns (Niemi et al. 2003). On the other hand, the same haplogroup J has been found to be strongly associated with LHON (Leber's Hereditary Optic Neuropathy), as it increases the penetrance of some specific mutations which are significantly less harmful when present in different haplogroups (Man et al. 2004; Brown et al. 1997; Torroni et al. 1997). It was then proposed that the mutations defining the J haplogroup (falling in the protein subunits of OXPHOS complex I) lower the OXPHOS activity, putting the cell in a vulnerable situation where a further mutation (such as the LHON mutations) would be more likely to be harmful. But, if the nuclear response stimulated by the higher ROS production is adequate, the low OXPHOS efficiency may become advantageous and lead to a lower presence of ROS, and this would result in a more healthy ageing (Rose et al. 2001). In this case, then, the final phenotype (Leber Neuropathy, normal lifespan or longevity) depends on the interaction among mtDNA, nuclear genome and environment. Similarly, the Asian haplogroup D (which is characterized by mutations affecting Complex I as haplogroup J), has been found overrepresented in Japanese centenarians (Tanaka et al. 2000; Tanaka et al. 1998). However, different studies have failed to find any association between mtDNA and longevity (Pinos et al, 2011; Dato et al, 2004), suggesting that the possible effect of mtDNA on longevity might be population specific, but also that such effect might be very low and then a very numerous sample is necessary in order to have the necessary statistical power to observe such effect.

In this study we present the results of a very large study, where more than 2200 subjects older than 90 years, recruited in the frame of the GEHA project and coming from most of the European populations, have been compared to a similar number of younger controls matched for sex and geographic origins. In this study we also present data on complete sequencing of a subgroup of GEHA samples (650 ultra nonagenarians and a comparable number of controls, coming from Denmark, Finland, southern Italy and Greece), tested to find out if recurrent mutations may influence longevity without being detected by haplogroup analysis or if different mutations accumulate in some specific genes.

Materials and Methods

Sampling

Samples were collected in the frame of the GEHA research project (2004-2010) in 11

European Countries. Each Institution providing blood samples received the approval from its own ethical committees and all the recruited subjects provided written informed consent for the use of their phenotypic and genetic data in studies on human ageing (Skytthe et al. 2011).

DNA was recovered from fresh blood by automated and standardized protocol in order to guarantee quality and concentration uniformity among samples. The GEHA Partner in charge of the DNA extraction (KTL - Helsinki, Finland) provided 4 μ g of genomic DNA for mtDNA variability analysis.

A total of 4,239 samples were available for mitochondrial haplogroups classification and for exploring the possible association between mtDNA inherited sequence variation and longevity.

Samples were distributed among ultra nonagenarians (90+) and younger controls as in Table 1. The control group was comparable for sex and ethnicity to the 90+ group. The number of available samples for each recruitment centre is reported in Table 1S (Supplementary materials).

mtDNA Sequence Variation Screening

From the 4,239 total samples, 1,292 (637 nonagenarians and 655 controls) were selected for complete sequencing in order to analyze the differences between Northern and Southern European populations in the whole DNA molecule. In the remaining 2,947 samples (1,449 nonagenarians and 1,498 controls) the mtDNA subhaplogroup was determined in order to verify possible haplogroups association with longevity and to compare haplogroups distribution among different European countries.

The complete sequencing was performed using two different protocols previously compared for results reliability by testing the same samples. A total of 125 sequences (109 calabrians and 16 greeks) were produced using the MitoALL Resequencing kit (Applera, Foster City, CA) introducing four alternative primer pairs in order to improve the amplification rate (Table 2S). Each amplification step was followed by the purification with EXOSAPit (U.S. Biochemical,Cleveland,Ohio). The sequencing reaction was conducted using the BigDye kit version 3.1 (Applera) and M13 universal primers (forward and reverse), followed by purification of the sequences by using ethanol precipitation. Electropherograms were analyzed with SeqScape version 2.5 software (Applera) which allows to assembly all the 46 fragments belonging to the sample and to align and compare the obtained consensus sequence with the revised Cambridge Reference Sequence (rCRS, NCBI: NC_012920.1 gi:251831 106) (Andrews et al. 1999). Sequences were manually verified for phantom mutations by reads of both strands, by two independent operators.

The remaining samples were sequenced in Beijing Genomics Institute (BGI) as previously described (Wang et al. 2008).

The definition of mtDNA subhaplogroups in the remaining 2947 samples was conducted by resequencing the D-loop region from nucleotide position (np) 16024 to np 576 followed by RFLP analysis in specific coding region traits as previously described (Torroni et al. 1996).

For the haplogroups and subhaplogroups assignment we have followed the Phylotree nomenclature (van Oven et al. 2009; www.phylotree.org). Considering the number of samples to classify we have developed a custom tree search algorithm that, coupled with a highly-efficient SNP discovery pipeline, is able to find the haplogroup that better matches the sample mutational motifs, starting from the raw sequence in FastA format (manuscript in preparation).

Statistical analysis

R statistical software was used for all statistical analyses.

MtDNA subhaplogroups and relevant frequencies were stratified by gender and were compared between 90+ subjects and their ethnically-matched controls using the χ^2 with Pearson correction or Fisher-exact test. The comparison of frequencies in 90+ cases and younger controls of each mtDNA subhaplogroup has been computed by applying Pearson's Chi-squared test with Yates' continuity correction. Tests for statistical significance were two-sided with = 0.05; we performed also a logistic regression to generate odds ratio (OR) with their associated 95% confidence intervals (CI), to assess odds of carrying each mtDNA haplogroups in cases compared with controls.

A non-metric MDS was performed separately on both 90+ subjects and controls. This analysis was implemented in the Sammon function in MASS library of R program.

Results

Haplogroup analysis.

The different mtDNA haplogroups found in cases and controls, with frequencies, standard errors and relative references for the European population, are summarized in Table 2. Table 3a and 3b report the summary of observed haplogroups for males and females, which are also graphically reported in Fig.1. Statistically significant differences were observed in males for haplogroups J2 (p=0.0214) and H1 (p=0.0427). More in details, the higher frequency of haplogroup J2 in male controls is attributable to an increase in subcluster J2a (p=0.017), even though the same trend was observed for J2b.

Fig. 2 reports a MDS for each group of cases and controls. The analysis shows a geographic pattern with northern European countries quite separated from southern Europeans. Interestingly, we observe that northern European cases are more scattered with respect to the relevant controls.

Sequence analysis

We first compared all complete sequences with the reference sequence (rCRS). Then we counted for each position the number of subjects mutated with respect to the reference. Fig 1S (a,b and c) reports a summary of all the mutations (subdivided by population), and it highlights the differences between cases and controls. Tables 3S (A, B and C) reports in details the mutations with a significant frequency difference between cases and controls in each population.

We then focused on non synonymous mutations by evaluating the presence of such mutations in genes belonging to the different mitochondrial complex. In supplementary Table 4S (A, B and C)

we report the possible effect of each observed mutation, as estimated by PolyPhen (http://genetics.bwh.harvard.edu/pph/).

When we considered the subunits of Complex I (ND 1-6 and ND4L), all the three populations show a significant difference between cases and controls. But if in Danish and southern European populations there is a higher frequency of non synonymous mutations in controls than in cases (respectively p=0,01 in Danmark and p< 0,0001 in south Europe), in Finnish we observe the opposite situation (p=0,005) (Fig. 3).

In complex 3 (Cyt b) Danish and Southern European population show a significant higher frequency of mutations in controls than in cases (p=0,004 in Danmark and p=0,042 in South Europe).

In complex 4 (COI-III) all the populations show a higher frequency of mutation in controls than in cases (p<0,0001 in Denmark and p<0,0001 in Finland). The difference is not significant only in Southern European population, probably due to the low sample size.

In complex 5 (ATPase 6 and 8) a different frequency of mutations is present in the southern European population (p=0,002) while in the other two population the mutation frequency does not differ between cases and controls.

We have then analyzed the difference of mutation frequency between cases and controls gene by gene. Within the subunits of complex I, Danish and South European populations show a higher occurrence of mutations in controls than in cases in the ND5 gene (p=0,003 in Denmark p=0,007 in South Europe). The Finnish population show instead a significant higher frequency in controls than in cases in ND6 gene (p=0,048) (Fig.4). As to complex IV, the genes belonging to this complex show in all the populations a higher frequency of mutations in controls than in cases with a significative difference for COI in Danish (p=0,00006) and in Finnish (p=0,014) (Fig. 5). A

different mutation frequency is present in southern European population for ATP6 gene (p=0,002) (Fig.6)

The analysis of the whole tRNA sequences shows no significant differences (data not shown). The further analysis of each tRNA was carried out by pooling the data of all the three populations due to the small length of each tRNA. The most significant differences were found for tRNA Leu (p=0,035), tRNA Trp (p<0,001), tRNA Arg (p=0,031), tRNA Thr (p<0,001) and tRNA Pro (p=0,002) (Fig. 7).

The analysis of rRNAs did not show any significant differences between cases and controls.

Table 4, shows the frequency in cases and controls, of mutations which have been previously reported to be associated to degenerative diseases. It is interesting to see that in most cases these mutations are not absent in cases and in some cases are more frequent in cases than in controls.

Finally it is worth mentioning that synonymous mutations did not highlight significant results, taking into account the number of comparisons.

Discussion.

Previous analysis on the correlation between mitochondrial DNA variability and longevity has given interesting but contradictory results. In fact, mutations linked to haplogroup J, mainly falling in the subunits of the OXPHOS complex I seemed to be associated to longevity in different populations (De Benedictis et al. 1999; Ross et al. 2001; Niemi et al. 2003), suggesting the hypothesis that mutations in these proteins may lower OXPHOS activity and consequently ROS production contrasting the oxidative related aging process. On the other hand, the same haplogroup J turned out to be not associated with longevity in other population (Pinos et al. 2011; Dato et al. 2004) and, what is more, it has been consistently found in different studies to be associated to a

degenarative disease such as the LHON disease (Man et al, 2004; Brown et al. 1997; Torroni et al. 1997). These further findings, suggested that lower OXPHOS, in some cases, either environmental or genetic due to the occurrence of additional mutations, may be detrimental.

The present study, by taking advantage of the large GEHA sampling of European ultranonagenarians with sex and age matched controls, has tried to shed a light in this contradictory scenario. The unprecedented number of samples collected and analyzed makes these result very relevant in the longevity and mtDNA world; furthermore the specific attention dedicated to the recruitment process in order to avoid sampling bias is proved by Table 2.

The analysis of haplogroups has shown that haplogroups H1 and J2 are associated with longevity. Interestingly, the association of haplogroup J2 shows an opposite trend with respect to previous studies (Dominguez-Garrido et al. 2009; Niemi et al. 2003). In fact, J2 turned out to be less frequent in cases than in controls.

This result is in line with the result obtained by sequence analysis. In fact, Complex I, the most affected region from mutations characterizing haplogroup J, turned out to have more mutations in cases than in controls in Finns (in line with the hypothesis that mutations in these subunits may be beneficial for longevity), but it showed more mutations in controls than in cases in Danish and in Southern Europeans (in line with the opposite hypothesis that mutations in the subunits of complex I may be detrimental for longevity). The results, both statistically significant, confirm the idea that the mutations which may modulate the efficiency of complex I do affect ageing, but they might be beneficial or deleterious possibly due to external factors or to additional genetic factors.

Studies on LHON mutations, have shown that the penetrance of these mutations is greatly increased if mutations on complex III occur together with those occurring in the subunits of complex I and defining J haplogroups (Carelli et al. 2006). In fact, we noticed that Danes and Southern Europeans which show higher frequency of complex I mutations in controls with respect to sibs also show a higher frequency of complex III mutations in controls with respect to sibs. By contrast in Finns, where we observed higher frequency of complex I mutations in sibs with respect to controls, no differences could be detected between sibs and controls as to mutations in complex III subunits. We then investigated if the different results obtained in our different samples could be due to different distribution of the simultaneous presence of mutations in subunits of complex I and III. As most of the samples showed at least one mutation in both complex I and III, for each sample we counted the subjects where we observed two or more mutations in the subunits of both complex I and complex III. Table 6 reports the results obtained. Indeed we observed that, when the controls are considered, both Danes and southern Europeans show higher frequency of the simultaneous presence of two mutations in complex I and III than Finns (p=0,004 and p=0,0008 respectively). This is not observed in long lived subjects, due to the demographic selection of this feature.

We believe this result may be of great interest as it might explain why J haplogroup is associated to longevity in some area but not in others. In the populations where J sub-haplogroups with additional mutations in complex III are more frequent we may expect to find no association between J and longevity.

The analysis of complete sequences also shows a significant result that had never been highlighted by haplogroup analysis. In fact, in the mtDNA sequences encoding for the subunits of complex 4, we observe a higher frequency of mutations in controls than in cases. This has been consistently observed in all the populations we examined. The analysis of the most updated literature suggested that only very rare haplotypes are characterized by mutations falling in Complex IV sequences (H15, H1f, N22, U8b). This may explain why previous analyses were unable to spot a correlation between the variability of Complex IV sequence and longevity. This result, indicate that variability of CO genes, especially COI, are detrimental for longevity, possibly because they alter OXPHOS by making it less efficient and raising OXPHOS production. In addition this result suggest that complete sequencing may highlight some effects of mtDNA variability that cannot be captured by DNA haplogroup classification. The complexity of the correlation between mtDNA variability and longevity is also highlighted by the analysis of the variability falling in tRNA sequences, and also by the mutations that previous studies have consistently shown to be associated with degenerative diseases. For instance the 4336 mutation, falling in the tRNA^{gln}, has been found to be more frequent in AD patients than in controls by a number of studies between 1993 and 2010 (Santoro et al. 2010; Brown et al. 1996; Hutchin et al. 1995; Shoffner et al. 1993). We found this mutation to be twice as frequent in controls than in nonagenarians. Other supposed deleterious mutations have been found to be quite frequent in nonagenarians (Table 4). Similarly, mutations in tRNA, which have been found to be largely correlated with degenerative diseases have been observed to frequently occur in nonagenarians and for a number of tRNAs even more frequently than in controls. In particular, it is of note the result obtained for the tRNA^{thr}, which has significantly more mutations in cases than in controls. In fact, many mutations on this tRNA have been reported to be associated with a number of diseases (Table 5) (Scaglia and Wong 2008; Howell 1999).

These results support the idea that certain mtDNA inherited mutations could induce longevity or disease according to the individual-specific genetic background as well as to stochastic events (Rose et. al 2001). In this frame, it might be important to mention the studies on the import of tRNA into mitochondria. Although for mammals this has been proved only for tRNA^{gln} (Rubio et al. 2008), it is possible that also other tRNA undergo a similar phenomenon (Schneider 2011 and references therein), and then mutations on tRNA could be beneficial or detrimental according to the efficiency of the import process. The coincidence that the 4336 mutation, which has been largely studied for predisposing to AD and which we found twice as frequent in long lived than in controls, falls in the one tRNA which has been proved to be imported into mammalian mitochondria is very intriguing and suggests further studies.

On the whole our study has allowed a reappraisal of the correlation between mtDNA variability and longevity. It has shown that complete sequencing and analysis of complete variability can highlight correlations between mtDNA variability and a phenotype (longevity) which escape haplogroup analysis. In fact, complete sequence analysis allows to appreciate the effects of rare or repeated mutations which are not accounted for in haplogroup analysis. In addition we have better highlighted the beneficial effects on longevity of mutations in the subunits of OXPHOS complex I and the detrimental effects of mutations in subunits of complex III (also in presence of mutations in complex I) and IV. In addition we have highlighted the positive effects of mutations in tRNA genes, which had previously been found to be associated to a number of disorders. This suggests that tRNA mutations can be either positive or negative according to other factors, certainly including nuclear genome response.

References:

Andrews R.M., Kubacka I., Chinnery P.F., Lightowlers R.N., Turnbull D.M., Howell N. (1999). Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA. Nat. Genet. 23, 147.

Brown M.D., Sun F., Wallace D.C. (1997). Clustering of Caucasian Leber hereditary optic neuropathy patients containing the 11778 or 14484 mutations on an mtDNA lineage. Am. J. Hum. Genet. 60, 381–387.

Brown M.D., Shoffner J.M., Kim Y.L., Jun A.S., Graham B.H., Cabell M.F., Gurley D.S., Wallace D.C. (1996). Mitochondrial DNA sequence analysis of four Alzheimer's and Parkinson's disease patients. Am. J. Med. Genet. 61, 283-9.

Carelli V., Achilli A., Valentino M.L., Rengo C., Semino O., Pala M., Olivieri A., Mattiazzi M., Pallotti F., Carrara F. et al. (2006). Haplogroup effects and recombination of mitochondrial DNA: novel clues from the analysis of Leber hereditary optic neuropathy pedigrees. Am. J. Hum. Genet. 78, 564-74.

Dato S., Passarino G., Rose G., Altomare K., Bellizzi D., Mari V., Feraco E., Franceschi C., De Benedictis G. (2004). Association of the mitochondrial DNA haplogroup J with longevity is population specific. Eur. J. Hum. Genet. 12, 1080-2.

De Benedictis G., Rose G., Carrieri G., De Luca M., Falcone E., Passarino G., Bonafe M., Monti D., Baggio G., Bertolini S. et al. (1999). Mitochondrial DNA inherited variants are associated with successful aging and longevity in humans. FASEB J. 13, 1532-6.

Domínguez-Garrido E., Martínez-Redondo D., Martín-Ruiz C., Gómez-Durán A., Ruiz-Pesini E., Madero P., Tamparillas M., Montoya J., von Zglinicki T., Díez-Sánchez C. et al. (2009) Association of mitochondrial haplogroup J and mtDNA oxidative damage in two different North Spain elderly populations. Biogerontology. 10, 435-42.

Howell N. (1999). Human mitochondrial diseases: answering questions and questioning answers. Int. Rev. Cytol. 186, 49–116.

Hutchin T., Cortopassi G. (1995). A mitochondrial DNA clone is associated with increased risk for Alzheimer disease. Proc. Natl. Acad. Sci. USA. 92, 6892-5.

Ivanova R., Lepage V. (1998). Mitochondrial genotype associated with French Caucasian centenarians. Gerontology 44, 349.

Man P.Y., Howell N., Mackey D.A., Nørby S., Rosenberg T., Turnbull D.M., Chinnery P.F. (2004). Mitochondrial DNA haplogroup distribution within Leber hereditary optic neuropathy pedigrees. J. Med. Genet. 41, e41.

Montiel-Sosa F., Ruiz-Pesini E., Enríquez J.A., Marcuello A., Díez-Sánchez C., Montoya J., Wallace D.C., López-Pérez M.J. (2006). Differences of sperm motility in mitochondrial DNA haplogroup U sublineages. Gene 368, 21-7.

Niemi A.K., Hervonen A., Hurme M., Karhunen P.J., Jylhä M., Majamaa K. (2003). Mitochondrial DNA polymorphisms associated with longevity in a Finnish population. Hum. Genet. 112, 29-33.

Passarino G., Rose G., Bellizzi D. (2010). Mitochondrial function, mitochondrial DNA and ageing: a reappraisal. Biogerontology. 11, 575-88.

Pinós T., Nogales-Gadea G., Ruiz J.R., Rodríguez-Romo G., Santiago-Dorrego C., Fiuza-Luces C., Gómez-Gallego F., Cano-Nieto A., Garatachea N., Morán M. et al. (2011). Are mitochondrial haplogroups associated with extreme longevity? A study on a Spanish cohort. Age, ahead of print.

Rose G., Passarino G., Franceschi C., De Benedictis G. (2002) The variability of the mitochondrial genome in human aging: a key for life and death? Int. J. Biochem. Cell Biol. 34, 1449-60.

Rose G., Passarino G., Carrieri G., Altomare K., Greco V., Bertolini S., Bonafè M., Franceschi C., De Benedictis G. (2001). Paradoxes in longevity: sequence analysis of mtDNA haplogroup J in centenarians. Eur. J. Hum. Genet. 9, 701-7.

Ross O.A., McCormack R., Curran M.D., Duguid R.A., Barnett Y.A., Rea I.M, Middleton D. (2001). Mitochondrial DNA polymorphism: its role in longevity of the Irish population. Exp. Gerontol. 36, 1161-78.

Rubio M.A., Rinehart J.J., Krett B., Duvezin-Caubet S., Reichert A.S., Söll D., Alfonzo J.D. (2008). Mammalian mitochondria have the innate ability to import tRNAs by a mechanism distinct from protein import. Proc. Natl. Acad. Sci. USA. 105, 9186-91.

Ruiz-Pesini E., Lapeña A.C., Díez-Sánchez C., Pérez-Martos A., Montoya J., Alvarez E., Díaz M., Urriés A., Montoro L., López-Pérez M.J., et al. (2000). Human mtDNA haplogroups associated with high or reduced spermatozoa motility. Am. J. Hum. Genet. 67, 682-96.

Santoro A., Balbi V., Balducci E., Pirazzini C., Rosini F., Tavano F., Achilli A., Siviero P., Minicuci N., Bellavista E., et al. (2010). Evidence for sub-haplogroup h5 of mitochondrial DNA as a risk factor for late onset Alzheimer's disease. PLoS One. 5, e12037.

Santoro A., Salvioli S., Raule N., Capri M., Sevini F., Valensin S., Monti D., Bellizzi D., Passarino G., Rose G., et al. (2006). Mitochondrial DNA involvement in human longevity. Biochim. Biophys. Acta. 1757, 1388-99.

Scaglia F., Wong L.J. (2008). Human mitochondrial transfer RNAs: role of pathogenic mutation in disease. Muscle Nerve. 37, 150-71.

Schneider A. (2011). Mitochondrial tRNA import and its consequences for mitochondrial translation. Annu. Rev. Biochem. 80, 1033-53.

Shoffner J.M., Brown M.D., Torroni A., Lott M.T., Cabell M.F., Mirra S.S., Beal M.F., Yang C.C., Gearing M., Salvo R., et al. (1993). Mitochondrial DNA variants observed in Alzheimer disease and Parkinson disease patients. Genomics. 17, 171-84.

Skytthe A., Valensin S., Jeune B., Cevenini E., Balard F., Beekman M., Bezrukov V., Blanche H., Bolund L., Broczek K., et al. (2011). Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project. Exp. Gerontol. 46, 934-945.

Tanaka M., Gong J., Zhang J., Yamada Y., Borgeld H.J., Yagi K. (2000). Mitochondrial genotype associated with longevity and its inhibitory effect on mutagenesis. Mech. Ageing Dev. 116, 65-76.

Tanaka M., Gong J.S., Zhang J., Yoneda M., Yagi K. (1998). Mitochondrial genotype associated with longevity. Lancet. 351, 185-6.

Torroni A., Petrozzi M., D'Urbano L., Sellitto D., Zeviani M., Carrara F., Carducci C., Leuzzi V., Carelli V., Barboni P., et al. (1997). Haplotype and phylogenetic analyses suggest that one European-specific mtDNA background plays a role in the expression of Leber hereditary optic neuropathy by increasing the penetrance of the primary mutations 11778 and 14484. Am. J. Hum Genet. 60, 1107-21.

Torroni A., Huoponen K., Francalacci P., Petrozzi M., Morelli L., Scozzari R., Obinu D., Savontaus M.L., Wallace D.C. (1996). Classification of European mtDNAs from an analysis of three European populations. Genetics. 144, 1835-50.

van der Walt J.M., Nicodemus K.K., Martin E.R., Scott W.K., Nance M.A., Watts R.L., Hubble J.P., Haines J.L., Koller W.C., Lyons K., et al. (2003). Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am. J. Hum. Genet. 72, 804-11.

van Oven M., Kayser M. (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum. Mutat. 30, E386-94.

Wallace D.C. (2010). Mitochondrial DNA mutations in disease and aging. Environ. Mol. Mutagen. 51, 440-50.

Wallace D.C. (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu. Rev. Genet. 39, 359–40.

Wang J., Wang W., Li R., Li Y., Tian G., Goodman L., Fan W., Zhang J., Li J., Zhang J., et al. (2008). The diploid genome sequence of an Asian individual. Nature. 456, 60-5.

	Males (N	= 1,327)	Females (N = 2,912)		
	90 + (%)	Controls (%)	90 + (%)	Controls (%)	
Ν	628 (47)	699 (53)	1,458 (50)	1,454 (50)	
Mean Age	$94,1\pm2,5$	$61,7\pm6,2$	$94,5\pm2,6$	$61,7\pm6,2$	
Age range	89-103	43-79	88-107	49-83	

Table 1: Sample distribution and general characteristics of the study participants.

Table 2. mtDNA Haplogroups distribution in GEHA samples. Haplogroups and subhaplogroups with frequencies higher than 1.5% are reported. OTHER includes N1a, N1b, N1c,N9a, A4, D5, C1d, M1, L1b1.

		Cont	rols (n=	2153)	90-	+ (n=208	86)		Reference
sub- haplogre		Ν	%	SE	N	%	SE	%	Literature
HV*		1042	48.40	.0108	1052	50.43	.0109	50.4-54.1	Richards et al. 2000
HV0	*	68	3.16	.0038	83	3.98	.0043		
H*		924	42.92	.0107	927	44.44	.0109	44.5-48.2	Richards et al. 2000
	H1	325	15.10	.0077	292	14.00	.0076	19.0	Brandstatter et al. 2006
	H2	23	1.07	.0022	42	2.01	.0031	1.5	Brandstatter et al. 2006
	H3	85	3.95	.0042	71	3.40	.0040	2.2	Brandstatter et al. 2006
	H5	63	2.93	.0036	68	3.26	.0039	4.8	Brandstatter et al. 2006
	H6	47	2.18	.0031	52	2.49	.0034	2.9	Brandstatter et al. 2006
I		44	2.04	.0030	46	2.21	.0032	1.6-2.7	Richards et al. 2000
J		210	9.75	.0064	183	8.50	.0060	8.3-10.4	Richards et al. 2000
	J 1	153	7.11	.0055	144	6.90	.0056		
	J2	57	2.65	.0035	39	1.87	.0030		
K		161	7.48	.0057	137	3.98	.0054	4.9-6.6	Richards et al. 2000
	K1	140	6.50	.0053	117	5.61	.0050		
Т		211	9.80	.0064	223	10.69	.0068	7.2-9.2	Richards et al. 2000
	T1	53	2.46	.0033	43	2.06	.0000		
	T2	152	7.06	.0055	174	8.34	.0061		
U		313	14.54	.0076	272	13.04	.0074	20.1-23.2	Richards et al. 2000
	U2	39	1.81	.0029	38	1.82	.0029		
	U4	48	2.23	.0032	34	1.63	.0028		
	U5a	109	5.06	.0047	90	4.31	.0044		
	U5b	56	2.60	.0034	51	2.44	.0034		
W		39	1.81	.0029	51	2.44	.0034	1.5-2.5	Richards et al. 2000
X		41	1.90	.0029	42	2.01	.0031	1.2-2.0	Richards et al. 2000
OTHE	ER	92	5.53	.0049	80	5.08	.0048		

Table 3A. Haplogroups distribution in males. SE= Standard Error. Sub-haplogroups with frequencies lower than 1.5% were grouped. HV0* includes HV0a, OTHER includes K, K2, T, R0, R0a, R1, R2, HV1, HV2, N1a, N1b, N1c,N9a, A4, D5, C1d, M1, L1b1, with frequencies lower than 1.5%.

Males (N=1327)

Wates (14–1527)									
	Cont	trols (N	I= 699)	90	+ (N=6	28)			
	Ν	%	SE	Ν	%	SE			
HV*	347	49.6	.0189	318	50.6	.0200			
HV0*	24	3.4	.0069	24	3.8	.0077			
H *	306	43.8	.0188	280	44.6	.0198			
H1	108	15.5	.0137	75	11.9	.0129			
H2	11	1.6	.0047	10	1.6	.0050			
H3	16	2.3	.0057	18	2.9	.0067			
Н5	20	2.9	.0063	24	3.8	.0077			
H6	16	2.3	.0057	19	3.0	.0068			
Ι	13	1.9	.0051	7	1.1	.0042			
J1	44	6.3	.0092	40	6.4	.0097			
J2	22	3.1	.0066	6	1.0	.0039			
K1	46	6.6	.0094	47	7.5	.0105			
T1	11	1.6	.0047	11	1.8	.0052			
T2	54	7.7	.0101	46	7.3	.0104			
U	20	2.9	.0063	21	3.3	.0072			
U2	13	1.9	.0051	12	1.9	.0055			
U4	13	1.9	.0051	13	2.1	.0057			
U5a	30	4.3	.0077	24	3.8	.0077			
U5b	17	2.4	.0058	18	2.9	.0067			
W	16	2.3	.0057	13	2.1	.0057			
Χ	19	2.7	.0062	18	2.9	.0067			
OTHER	34	4.9	.0081	34	5.4	.0090			

Table 3B. Haplogroups distribution in females. SE=Standard Error; Sub-haplogroups with frequencies lower than 1.5% were grouped. HV0* includes HV0a, OTHER includes K, K2, T, R0, R0a, R1, R2, HV1, HV2, N1a, N1b, N1c,N9a, A4, D5, C1d, M1, L1b1, with frequencies lower than 1.5%.

Females (N = 2912)								
	Cont	rols (N=	= 1454)	Cases (N= 1458)				
	Ν	%	SE	Ν	%	SE		
HV*	695	47.8	.0131	734	50.3	.0131		
HV0*	44	3.0	.0045	59	4.0	.0052		
H *	618	42.5	.0130	647	44.4	.0130		
H1	217	14.9	.0093	217	14.9	.0093		
H2	12	0.8	.0024	32	2.2	.0038		
Н3	69	4.7	.0056	53	3.6	.0049		
Н5	43	3.0	.0044	44	3.0	.0045		
H6	31	2.1	.0038	33	2.3	.0039		
Ι	31	2.1	.0038	39	2.7	.0042		
J1	109	7.5	.0069	104	7.1	.0067		
J2	35	2.4	.0040	33	2.3	.0039		
K1	94	6.5	.0064	70	4.8	.0056		
T1	42	2.9	.0044	32	2.2	.0038		
T2	98	6.7	.0066	128	8.8	.0074		
U	41	2.8	.0043	38	2.6	.0042		
U2	26	1.8	.0035	26	1.8	.0035		
U4	35	2.4	.0040	21	1.4	.0031		
U5a	79	5.4	.0059	66	4.5	.0054		
U5b	39	2.7	.0042	33	2.3	.0039		
W	23	1.6	.0033	38	2.6	.0042		
X	22	1.5	.0032	24	1.6	.0033		
OTHER	85	5.8	.0062	72	4.9	.0057		

	_						
		Con	trols	Cas	Cases		
position	mutation type	N.	%	N.	%	region	disease
827	'A/G'	1	1,39	0	0,00	12 S	Deafness MTRNR1 DEAF
961	T/C	1	0,19	5	0,99	12S	Deafness
1005	'T/C'	1	1,39	0	0,00	12 S	Deafness MTRNR1 DEAF
1438	A/G	499	95,95	469	92,66	12 S	Diabetes Mellitus
1555	A/G	0	0,00	3	0,60	12 S	Deafness
3196	G/A	1	0,19	0	0,00	16S	Alzheimer & Parkinson Disease
3308	'T/C'	1	1,39	0	0,00	ND1	Encephalomyopathy, MELAS
3460	G/T	0	0,00	1	0,20	ND1	LHON
3796	A/G	2	0,39	5	0,79	ND1	Dystonia
4295	A/G	9	1,73	4	0,79	TI	Maternaly Inherited Hypertrophic Cardiomyopathy
4336	T/C	5	0,96	10	1,79	TQ	Alzheimer & Parkinson Disease
5460	G/A	32	5,01	30	5,36	ND2	Alzheimer & Parkinson Disease
5628	'T/C'	1	1,39	0	0,00	tRNA A	Mitochondrial Myopathy, CPEO MTTA CPEO
5843	A/G	1	0,19	0	0,00	TY	Mitochondrial Myopathy Cytopathy
6489	C/A	4	0,77	1	0,20	CO1	Epilepsy
7444	G/A	4	0,77	4	0,79	CO1	Deafness-Sensory Neural Hearing Loss
8108	A/G	0	0,00	1	0,20	CO1	Deafness-Sensory Neural Hearing Loss
8302	'A/G'	0	0,00	1	1,39	tRNA k	MTTK Encephalopathy
8993	T/C	1	0,19	0	0,00	ATP6	Leigh Syndrome
10044	A/G	7	1,35	3	0,60	TG	Encephalomyopathy Gastrointestinal Reflux and Sudden Infant Death Syndrome
11084	A/G	1	0,19	0	0,00	ND4	Encephalomyopathy, MELAS

Table 4. mtDNA rare mutations associated to diseases and their distribution in cases and controls.

12026	A/G	0	0,00	1	0,20	ND4	Diabetes Mellitus
12192	G/A	0	0,00	2	0,40	TH	Maternally Inherited Cardiomyopathy
12308	A/G	140	23,31	105	18,45	TL2	Mitochondrial Myopathy, CPEO
15497	G/A	2	0,39	1	0,20	CYTB	MM, Execise Intolerance
15498	G/A	0	0,00	2	0,40	CYTB	Hypertrophic Cardiomyopathy
15924	A/G	13	2,50	22	4,37	TT	Mitochondrial Myopathy Lethal Infantile Mitochondrial Myopathy
15940	T/-	1	0,19	1	0,20	TT	Mitochondrial Myopathy

Location	Disease	Mutation
tRNA Thr	DEAF helper mut.	T15908C
tRNA Thr	Encephalomyopathy	G15915A
tRNA Thr	Lethal Infantile Mitochondrial Myopathy	A15923G
tRNA Thr	Lethal Infantile Mitochondrial Myopathy	A15924G
tRNA Thr	Multiple Sclerosis/DEAF1555 increased penetrance	G15927A
tRNA Thr	Multiple Sclerosis	G15928A
tRNA Thr	Dopaminergic nerve cell deat (PD)	G15950A
tRNA Thr	LHON modulator	A15951G

Table 5. mtDNA mutations in tRNAthr genes associated to disease.

Population (n. total sample)	n. sample	%
Danmark controls (394)	150	38,07
Finland controls (125)	30	24,00
South Europe controls (72)	34	47,22
Danmark cases (377)	125	33,16
Finland cases (127)	42	33,07
South Europe cases (72)	22	30,56

Table 6. Samples with almost 2 mutation in complex I and III.

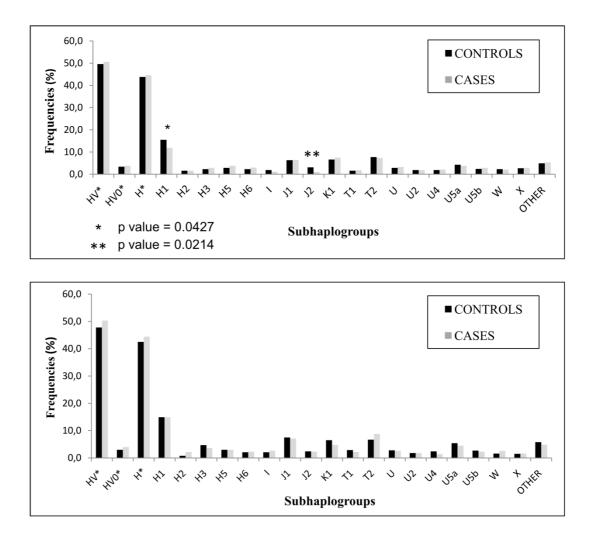
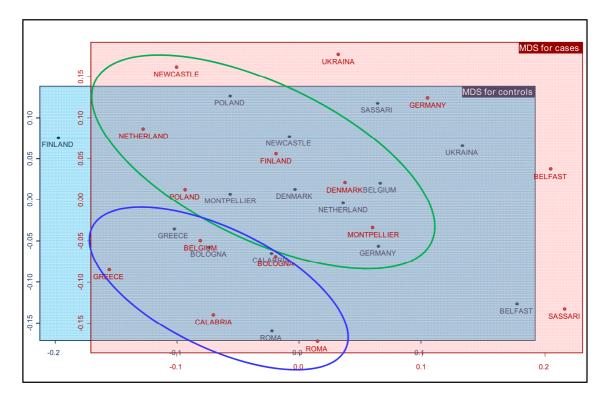
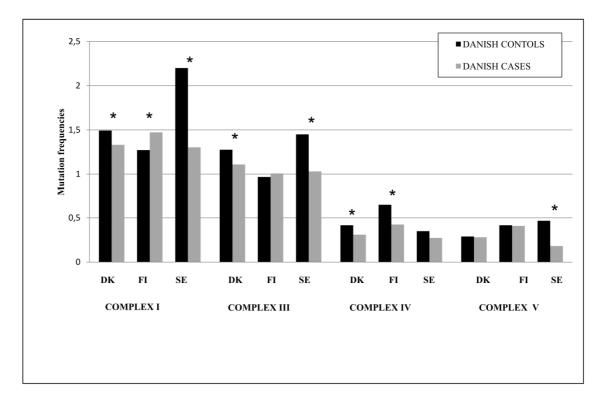
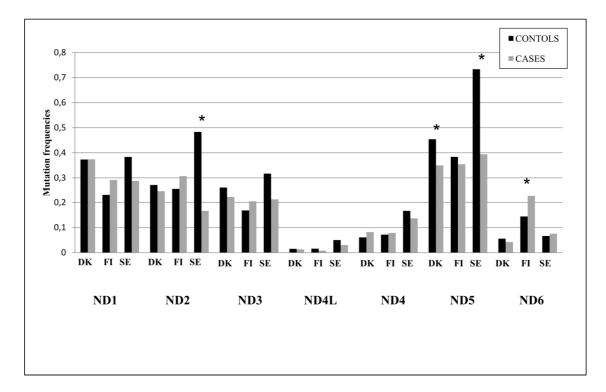
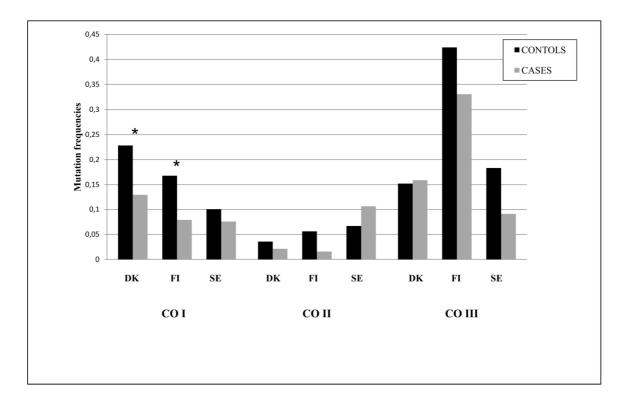


Figure 1 Haplogroups distribution in male (upper table) and female (inferior table).


Figure 2 Multidimensional Scaling (MDS) for cases and controls.

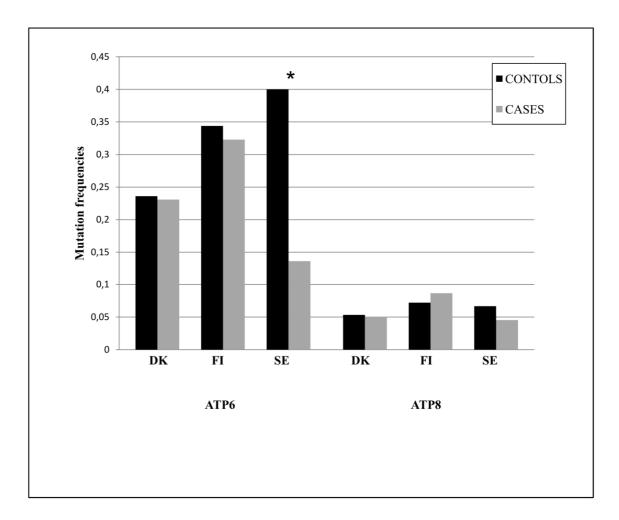

Figure 3 Non synonimous mutation frequencies in cases and controls in complexes I-V. * indicate statistic significative differences between case and controls (p<0,05).

Figure 4 Non synonimous mutation frequencies in complex I genes. * indicate statistic significative differences between case and controls (p<0,05).

Figure 5 Non synonimous mutation frequencies in complex IV genes. * indicate statistic significative differences between case and controls (p<0,05).

Figure 8 Non synonimous mutation frequencies in complex V genes. * indicate statistic significative differences between case and controls (p<0,05).

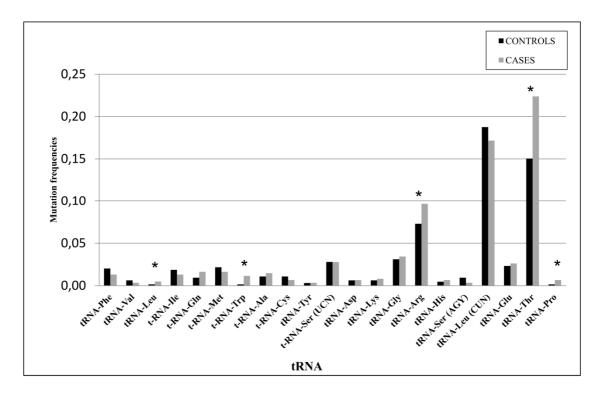


Figure 79 tRNA mutation's frequencies (all samples).

* indicate statistic significative differences between case and controls (p<0,05).

Recruitment center	Country	No. 90+	No. younger controls
Belfast	Northern Ireland	64	64
Louvain	Belgium	80	88
Bologna	Italy	213	214
Kiel	Germany	94	96
Tampere	Finland	153	145
Montpellier	France	274	275
Newcastle	UK	99	100
Odense	Denmark	428	441
Leiden	Netherland	162	167
Warsaw	Poland	129	132
Roma	Italy	75	75
Sassari	Italy	47	52
Kiev	Ukraina	49	49
Calabria	Italy	125	152
Athens	Greece	94	103
Total		2,086	2,153

 Table 1S: Distribution of cases and controls in each country.

	Forward	Reverse
Primer 41b	5'- CTG CTT CTT CTC ACA	5'- TAG GTA GGA GTA GCG
Primer 410	TGA-3'	TG-3'
Primer 43b	5'- ATC AAT TGG CTT CCT	5'- GGC ATC CAT ATA GTC
Primer 450	AGG-3'	ACT-3'
Primer 44b	5'- CCT TAT CTG CTT CCT	5'-GGG TGC TAT AGG GTA
Primer 440	AGT-3'	AAT -3'
Primer 45b	5'- ATT TTG ACT ACC ACA	5'-ATA TGT GTT GGA GAT
rimer 450	ACT CA-3'	TGA GA -3'

Table 2S: Modified primer pairs for the complete resequencing (M13 tag is not reported).

Position	Region	Controls (N= 394)	Cases (N= 377)	OR	P- value
73	Control-Region	232	182	0,652	0,003
150	Control-Region	36	18	0,499	0,020
195	Control-Region	79	52	0,638	0,021
263	Control-Region	5	16	3,448	0,017
389	Control-Region	5	15	3,223	0,025
524	Control-Region	12	3	0,255	0,036
930	rRNA	10	24	2,611	0,012
2706	rRNA	224	187	0,747	0,044
3480	ND1	35	19	0,544	0,039
4580	ND2	10	22	2,380	0,026
4769	ND2	14	26	2,010	0,040
7768	CO2	12	3	0,255	0,036
8860	ATP6	5	15	3,223	0,025
10550	ND4L	34	18	0,531	0,035
11299	ND4	33	18	0,549	0,047
11467	ND4	87	55	0,603	0,008
11719	ND4	211	167	0,690	0,010
12308	tRNA	86	59	0,664	0,029
12372	ND5	87	59	0,655	0,023
14167	ND6	35	19	0,544	0,039
14766	СҮВ	210	160	0,646	0,003
14798	СҮВ	75	47	0,606	0,013
15326	СҮВ	6	16	2,866	0,030
15904	tRNA	10	23	2,495	0,018
16224	Control-Region	34	18	0,531	0,035
16304	Control-Region	20	36	1,974	0,019

Table 3S a. List of the mtDNA mutations with the most significant differences between cases and controls in Danes.

Position	Region	Controls (N. 125)	Cases (N. 127)	OR	P-value
72	Control-Region	15	3	0,178	0,007
185	Control-Region	1	8	8,305	0,048
462	Control-Region	1	7	7,207	0,067
524	Control-Region	2	10	5,247	0,035
1888	rRNA	2	8	4,128	0,077
4580	ND2	14	4	0,258	0,020
5936	CO1	7	1	0,134	0,062
6776	CO1	11	3	0,251	0,037
8697	ATP6	2	8	4,128	0,077
8705	ATP6	10	2	0,184	0,031
11251	ND4	7	16	2,429	0,060
12705	ND5	8	16	2,107	0,100
12811	ND5	9	3	0,312	0,086
13708	ND5	5	12	2,503	0,094
14182	ND6	9	18	2,128	0,079
14793	CYB	14	4	0,258	0,020
15452	CYB	7	17	2,604	0,041
15884	CYB	6	1	0,158	0,090
15904	tRNA	15	4	0,239	0,013
16189	Control-Region	19	34	2,039	0,026
16192	Control-Region	15	6	0,364	0,043
16193	Control-Region	3	9	3,099	0,096
16256	Control-Region	14	4	0,258	0,020
16298	Control-Region	16	4	0,222	0,009
16526	Control-Region	7	1	0,134	0,062

Table 3S b. List of the mtDNA mutations with the most significant differences between cases and controls in Finns.

Position	Region	Controls (N. 72)	Cases (N. 72)	OR	P-value
73	Control-Region	43	34	0,604	0,134
1811	rRNA	12	5	0,374	0,079
2706	rRNA	49	37	0,496	0,043
7028	CO1	48	36	0,500	0,044
11719	ND4	43	31	0,510	0,047
14766	СҮВ	44	32	0,509	0,046
15607	СҮВ	8	3	0,348	0,131
16189	Control-Region	11	19	1,987	0,104

Table 3S c. List of the mtDNA mutations with the most significant differences between cases and controls in Southern European Population.

Position	Mutation	Cont rols	Cases	Amino acid substitution	Substitution effect	Prediction data
ND1						
3335	'T/C'	1	1	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
3337	'G/A'	0	2	V-M	benign	
3338	'T/C'	1	1	V-A	benign	
3350	'T/C'	0	4	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
3355	'A/G'	3	1	M-V	benign	
3388	'C/A'	0	1	L-M	possibly damaging	PSIC score difference: 1.515
3394	'T/C'	11	4	Y-H	benign	
3398	'T/C'	0	2	M-T	benign	
3434	'A/G'	1	0	Y-C	benign	
3460	'G/T'	0	1	A-S	benign	
3487	'C/A'	0	1	L-M	benign	
3496	'G/A'	1	1	A-T	benign	
3505	'A/G'	4	6	T-A	benign	
3511	'A/G'	0	1	T-A	benign	
3565	'A/G'	0	1	T-A	benign	
3613	'C/A'	1	0	L-M	benign	
3616	'T/G'	1	0	F-V	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
3617	'T/G'	1	0	F-C	benign	
3626	'C/T'	0	1	A-V	benign	
3644	'T/C'	0	2	V-A	benign	
3745	'G/A'	0	3	A-T	benign	
3746	'C/T'	1	0	A-L	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
3760	'T/G'	1	0	S-A	benign	
3796	'A/G'	0	3	T-A	benign	
3803	'T/C'	0	1	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1

Table 4S a. PolyPhen prediction of functional effect of the observed mtDNA mutations in Danish.

		r				
3890	'G/T'	1	0	R-L	possibly damaging	PSIC score difference: 1.847
3892	'A/T'	1	0	T-S	benign	
3991	'A/G'	0	1	T-A	benign	
3992	'C/T'	12	9	T-M	benign	
4024	'A/G'	7	4	T-A	benign	
4025	'C/T'	0	1	T-M	benign	
4029	'C/A'	0	1	I-M	benign	
4216	'T/C'	97	87	Y-H	benign	
4232	'T/C'	2	0	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
4246	'A/C'	0	1	I-L	benign	
ND2				•		
4491	'G/A'	4	1	V-I	benign	
4543	'A/G'	1	0	H-R	Improper substitution in the transmembrane region	PHAT matrix element difference: -4
4544	'C/G'	1	0	H-Q	benign	
4561	'T/C'	3	4	V-A	benign	
4629	'G/A'	0	1	E-K	probably damaging	PSIC score difference: 2.243
4639	'T/C'	1	2	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
4640	'C/A'	1	1	I-M	benign	
4732	'A/G'	5	2	N-S	benign	
4763	'C/A'	1	1	I-M	benign	
4767	'A/G'	1	0	M-V	benign	
4824	'A/G'	5	1	T-A	benign	
4917	'A/G'	37	46	N-D	benign	
4920	'G/A'	1	0	V-M	benign	
4924	'G/C'	0	1	S-N	benign	
4924	'G/A'	5	1	S-T	benign	
4960	'C/T'	1	0	A-V	benign	
5046	'G/A'	4	6	V-I	benign	
5095	'T/C'	1	1	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
5262	'G/A'	1	0	A-T	benign	
5263	'C/T'	2	1	A-V	benign	
5277	'T/C'	4	1	F-L	benign	

5290	'A/G'	1	0	N-S	benign	
5302	'T/C'	1	0	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
5307	'A/G'	1	0	T-A	benign	
5310	'A/G'	0	1	I-V	benign	
5319	'A/G'	1	1	T-S	benign	
5322	'A/C'	1	1	I-L	benign	
5367	'A/G'	1	0	T-A	benign	
5427	'A/G'	1	0	T-A	benign	
5437	'C/T'	0	1	T-I	benign	
5440	'C/T'	1	0	P-L	benign	
5460	'G/A'	20	18	A-T	benign	
CO1				•		
5913	'G/A'	7	4	D-M	benign	
5935	'A/T'	1	0	N-I	probably damaging	PSIC score difference: 3.231
5936	'C/A'	20	10	N-K	probably damaging	PSIC score difference: 2.556
6019	'C/G'	1	0	A-G	benign	
6024	'C/A'	1	0	L-M	benign	
6025	'T/A'	1	0	L-Q	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
6027	'G/A'	1	0	G-S	benign	
6040	'A/G'	0	2	N-S	benign	
6253	'T/C'	1	5	M-T	benign	
6261	'G/A'	2	3	A-T	benign	
6345	'T/C'	0	1	F-L	benign	
6366	'G/A'	1	0	V-I	benign	
6436	'A/C'	2	0	Q-P	benign	
6439	'A/C'	1	0	Y-S	Disruption of ligand binding site	PSIC score difference: 1.099 ligand name: THR distance: 2.846 Å
6445	'C/A'	3	0	T-K	Hydrophobicity change at buried site	PSIC score difference: 1.759 normed accessibility: 0.00 hydrophobicity change: 3.57

6445 6447	'C/T' 'C/T'	2	1	T-M P-S	Hydrophobicity change at buried site Improper substitution in the transmembrane	PSIC score difference: 0.938 normed accessibility: 0.00 hydrophobicity change: 1.02 PHAT matrix element difference: -3
6448	'C/A'	7	1	P-H	region Improper substitution in the transmembrane region	PHAT matrix element difference: -6
6465	'G/A'	0	5	V-I	benign	
6489	'C/A'	4	1	L-I	benign	
6546	'C/T'	1	1	L-F	benign	
6762	'G/C'	1	0	V-L	benign	
6909	'G/C'	1	0	A-P	benign	
6915	'G/A'	2	0	V-M	benign	
6996	'A/G'	1	0	I-V	benign	
7021	'T/G'	0	1	V-G	probably damaging	PSIC score difference: 2.839
7023	'G/A'	0	1	V-M	benign	
7024	'T/G'	1	0	V-G	possibly damaging	PHAT matrix element difference: -2
7041	'G/A'	0	1	V-I	benign	
7059	'G/C'	0	1	V-L	benign	
7060	'T/C'	3	0	V-A	benign	
7063	'T/A'	2	2	F-Y	benign	
7063	'T/G'	0	1	F-C	benign	
7101	'T/C'	1	0	F-L	benign	
7119	'G/A'	1	1	D-N	benign	
7149	'A/G'	0	1	I-V	benign	
7245	'A/G'	1	0	T-A	Hydrophobicity change at buried site	PSIC score difference: 0.719 normed accessibility: 0.00 hydrophobicity change: 1.08
7269	'G/A'	1	1	V-M	benign	6
7270	'T/C'	1	1	V-A	benign	
7299	'A/G'	1	1	M-V	benign	

	r			1		
7372	'T/C'	1	0	M-T	benign	
7419	'G/T'	1	0	E-Ter		
7419	'G/C'	3	0	E-Q	benign	
7420	'A/T'	1	0	E-V	benign	
7444	'G/A'	3	3	Ter-K		
CO2	I			1		
7598	'G/A'	2	0	A-T	benign	
7604	'G/A'	3	0	V-M	benign	
7694	'C/A'	1	0	L-M	benign	
7724	'A/G'	0	1	T-A	benign	
7754	'G/A'	1	0	D-N	benign	
7763	'G/T'	0	1	E-Ter		
7775	'G/A'	1	0	V-I	benign	
7805	'G/A'	2	1	V-I	benign	
7853	'G/A'	0	2	V-I	benign	
7941	'A/G'	2	0	N-S	benign	
7979	'G/A'	1	0	D-N	benign	
8022	'T/C'	1	0	I-T	benign	
8108	'A/G'	0	1	I-V	benign	
8256	'T/C'	0	2	V-A	benign	
ATP8	1/0	Ű	-	, ,,,	oomgii	
8388	'T/C'	1	1	V-A	benign	
8393	'C/T'	2	1	P-S	Improper substitution in the transmembrane	PHAT matrix element difference: -3
8417	'C/G'	0	1	L-V	region benign	
8432	'A/C'	0	1	I-L	benign	
8448	'T/C'	6	4	M-T	benign	
8462	'T/C'	0	1	Y-H	benign	
8472	'C/T'	1	0	P-L	probably damaging	PSIC score difference: 2.434
8483	'A/G'	0	1	K-E	possibly damaging	PSIC score difference: 1.735
8492	'A/G'	1	1	K-E	benign	
8504	'T/C'	1	0	Y-H	benign	
8519	'G/A'	1	1	E-K	benign	
8535	'A/T'	0	1	K-M	probably damaging	PSIC score difference: 2.191
8558	'C/T'	3	3	P-S	probably damaging	PSIC score difference: 2.506
8567	'T/C'	2	2	S-P	possibly damaging	PSIC score difference: 1.924

8572	'G/C'	3	1	Ter-Y		
ATP6						
8535	A/T	0	1	E-D	possibly damaging	PSIC score difference: 1.594
8545	G/A	0	1	A-T	benign	
8557	G/A	8	3	A-T	benign	
8558	C/T	3	3	A-V	benign	
8567	T/C	2	2	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
8572	G/A	1	2	G-S	benign	
8572	G/C	3	1	G-A	benign	
8573	'G/A'	2	2	G-D	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
8584	'G/A'	1	0	A-T	benign	
8602	'T/C'	0	4	F-L	benign	
8604	'T/A'	0	1	F-L	benign	
8616	'G/T'	0	4	L-F	benign	
8618	'T/C'	0	2	I-T	benign	
8648	'G/C'	0	1	R-P	benign	
8684	'C/T'	0	1	T-I	benign	
8696	'T/C'	0	1	M-T	possibly damaging	PSIC score difference: 1.594
8701	'A/G'	1	1	T-A	benign	
8705	'T/C'	5	2	M-T	benign	
8752	'A/G'	1	0	I-V	benign	
8762	'T/C'	0	1	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
8765	'C/T'	1	1	A-V	benign	
8794	'C/T'	5	1	H-Y	benign	
8839	'G/A'	2	0	A-T	benign	
8843	'T/C'	0	2	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
8857	'G/A'	1	0	G-S	benign	
8860	'A/G'	5	15	T-A	benign	
8869	'A/G'	1	2	M-V	benign	
8870	'T/C'	1	0	M-T	benign	

0001	IT / CI		-		· · · · ·	
8881	'T/G'	0	1	S-A	benign	
8887	'A/G'	1	1	I-V	benign	
8902	'G/A'	1	0	A-T	benign	
8944	'A/G'	0	1	M-V	benign	
8950	'G/A'	0	1	V-I	benign	
8993	T/C	1	0	L-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -5
9007	'A/G'	0	1	T-A	possibly damaging	PSIC score difference: 1.501
9038	'T/C'	1	1	M-T	benign	
9052	'A/G'	1	0	S-G	benign	
9053	'G/A'	3	0	S-N	benign	
9055	'G/A'	34	19	A-T	benign	
9070	'T/G'	1	0	S-A	benign	
9073	'A/G'	1	0	T-A	benign	
9098	'T/C'	1	2	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
9098	'T/G'	0	2	I-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
9116	'T/C'	0	1	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
9145	'G/A'	1	3	A-T	benign	
9151	'A/G'	1	0	I-V	benign	
9181	'A/G'	2	0	S-G	benign	
9196	'G/A'	1	0	D-M	probably damaging	PSIC score difference: 2.148
CO3						
9210	'A/G'	0	2	T-A	benign	
9300	'G/A'	0	1	A-T	benign	
9325	'T/C'	0	1	M-T	benign	
9438	'G/A'	0	1	G-S	benign	
9469	'C/T'	0	2	T-I	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
9477	'G/A'	35	22	V-I	benign	
9500	'C/G'	0	1	F-L	benign	
9591	'G/A'	1	0	V-I	benign	
	<u> </u>		Ŭ Ŭ		~~~~ <u>~</u>	

9612	'G/A'	1	0	V-M	benign	
9664	'A/G'	0	3	E-G	benign	
9667	'A/G'	4	4	N-S	benign	
9670	'A/G'	2	0	N-S	benign	
9682	'T/C'	1	0	M-T	benign	
9741	'T/C'	1	0	S-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
9756	'T/G'	0	1	S-A	benign	
9783	'T/A'	1	1	Y-N	probably damaging	PSIC score difference: 3.213
9784	'A/C'	1	1	Y-S	probably damaging	PSIC score difference: 3.174
9790	'C/T'	4	4	S-L	probably damaging	PSIC score difference: 2.277
9804	'G/A'	2	2	A-T	benign	
9843	'A/G'	1	0	T-A	benign	
9857	'C/G'	1	0	I-M	benign	
9866	'C/G'	0	2	I-M	benign	
9887	'T/C'	0	2	F-S	probably damaging	PSIC score difference: 2.951
9912	'G/C'	0	1	E-Q	Disruption of ligand binding site	PSIC score difference: 1.856 ligand name: ZN distance: 2.102 Å
9913	'A/C'	0	1	E-A	Disruption of ligand binding site	PSIC score difference: 2.402 ligand name: ZN distance: 2.102 Å
9915	'G/T'	0	2	A-T	possibly damaging	PSIC score difference: 1.960
9921	'G/A'	1	2	A-T	benign	
9948	'G/A'	1	1	V-I	benign	
9966	'G/A'	2	2	V-I	benign	
ND3						
10084	'T/C'	1	1	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
10111	'T/A'	0	2	M-K	Improper	PHAT matrix

					substitution in the transmembrane region	element difference: -6
10116	'A/G'	0	1	I-V	benign	
10188	'A/G'	0	1	M-V	benign	
10192	'C/T'	6	11	S-F	possibly damaging	PSIC score difference: 1.534
10243	'T/C'	1	0	F-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
10336	'T/C'	1	1	L-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
10370	'T/G'	1	0	Y-Ter		
10398	'A/G'	92	67	T-A	benign	
10399	'C/G'	1	0	T-S	benign	
ND4L		1 1				
10506	'A/G'	2	1	T-A	benign	
10554	'T/G'	0	1	S-A	benign	
10555	'C/G'	0	1	S-C	benign	
10609	'T/C'	1	0	M-T	benign	
10750	'A/G'	3	2	N-S	benign	
ND4					•	
10799	'C/G'	0	1	L-V	benign	
10863	'G/A'	1	0	S-N	benign	
10877	'C/G'	0	1	L-V	benign	
10877	'C/A'	2	3	L-M	benign	
10878	'T/C'	2	0	L-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -5
10878	'T/G'	0	1	L-R	Improper substitution in the transmembrane region	PHAT matrix element difference: -6
10907	'T/C'	1	0	F-L	benign	
10919	'C/T'	0	1	P-S	benign	
10920	'C/T'	0	2	P-L	benign	
10922	'A/C'	0	1	T-P	benign	
10922	'A/G'	0	1	T-A	possibly damaging	PSIC score difference: 1.604
10923	'C/T'	0	1	T-I	benign	
10997	'A/C'	0	1	S-R	Improper substitution in the transmembrane	PHAT matrix element difference: -6

					region	
11016	'G/A'	2	2	S-N	benign	
11025	'T/C'	1	0	L-P	benign	
11031	'G/A'	0	1	R-Q	benign	
11037	'A/C'	0	1	K-T	probably damaging	PSIC score difference: 2.047
11038	'A/C'	0	1	K-N	possibly damaging	PSIC score difference: 1.822
11039	'C/T'	0	1	L-F	benign	
11040	'T/C'	0	1	L-P	possibly damaging	PSIC score difference: 1.646
11084	'A/G'	1	0	T-A	benign	
11150	'G/A'	0	1	A-T	benign	
11204	'T/C'	0	1	F-L	benign	
11253	'T/C'	5	3	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
11498	'A/C'	1	0	T-P	probably damaging	PSIC score difference: 2.007
11501	'C/T'	1	0	L-F	benign	
11615	'A/C'	1	0	I-L	benign	
11619	'C/A'	1	0	A-E	Improper substitution in the transmembrane region	PHAT matrix element difference: -5
11696	'G/A'	0	1	V-I	benign	
12020	'C/T'	1	1	H-Y	benign	
12021	'A/C'	1	0	H-P	benign	
12032	'A/G'	0	1	N-D	benign	
12037	'A/T'	1	0	M-I	benign	
12054	'G/C'	1	0	R-P	probably damaging	PSIC score difference: 2.992
12056	'G/A'	1	0	E-K	probably damaging	PSIC score difference: 2.194
12063	'C/T'	0	1	T-Y	benign	
ND5		I		L		
12337	'A/G'	1	0	M-V	benign	
12341	'C/T'	0	2	T-I	benign	
12346	'C/T'	3	0	H-Y	benign	
12358	'A/G'	2	3	T-A	benign	

12397	'A/G'	1	3	T-A	benign	
12406	'G/A'	1	1	V-I	benign	
12454	'G/A'	0	2	V-I	benign	
12491	'C/T'	0	1	T-M	benign	
12509	'A/G'	0	1	D-G	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
12557	'C/T'	1	4	T-I	benign	
12599	'T/C'	1	0	M-T	benign	
12634	'A/G'	3	0	I-V	benign	
12674	'A/G'	0	1	N-S	benign	
12684	'G/C'	1	0	Q-H	benign	
12730	'G/A'	1	0	V-I	benign	
12775	'G/A'	3	0	V-M	benign	
12776	'T/A'	0	1	V-E	Improper substitution in the transmembrane region	PHAT matrix element difference: -5
12811	'T/C'	1	0	Y-H	benign	
12903	'T/A'	0	1	F-L	benign	
12907	'C/A'	0	1	L-M	benign	
12927	'C/A'	0	1	D-E	benign	
12937	'A/G'	1	3	M-V	benign	
13063	'G/A'	0	1	V-I	benign	
13094	'T/G'	0	1	V-G	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
13102	'G/A'	1	0	G-Ter		
13105	'A/C'	6	1	I-L	benign	
13105	'A/G'	3	5	I-V	benign	
13129	'C/A'	1	0	P-T	probably damaging	PSIC score difference: 2.626
13135	'G/A'	3	0	A-T	benign	
13145	'G/A'	4	6	S-N	benign	
13204	'G/A'	1	0	V-I	benign	
13327	'A/G'	0	1	T-A	benign	
13528	'A/G'	1	1	T-A	benign	
13564	'T/C'	0	1	S-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
13565	'C/T'	1	1	S-F	Improper substitution in the transmembrane	PHAT matrix element difference: -2

					region	
13581	'T/C'	2	1	A-R	Improper substitution in the transmembrane region	PHAT matrix element difference: -6
13630	'A/G'	2	0	T-A	benign	
13637	'A/G'	8	2	Q-R	benign	
13681	'A/G'	0	1	T-A	benign	
13708	'G/A'	68	47	A-T	benign	
13711	'G/A'	1	0	A-T	benign	
13729	'G/A'	0	1	G-Ter		
13759	'G/A'	8	6	A-T	benign	
13780	'A/G'	6	9	I-V	benign	
13784	'C/T'	1	0	P-L	Improper substitution in the transmembrane region	PHAT matrix element difference: -5
13879	'T/C'	9	4	S-P	benign	
13928	'G/C'	3	1	S-T	benign	
13933	'A/G'	1	2	T-A	benign	
13934	'C/T'	7	4	T-M	benign	
13948	'C/T'	1	1	P-S	possibly damaging	PSIC score difference: 1.571
13958	'G/C'	1	0	G-A	benign	
13966	'A/G'	10	7	T-A	benign	
13967	'C/T'	6	2	T-M	benign	
14002	'A/G'	3	1	T-A	benign	
14071	'A/G'	1	0	T-A	benign	
ND6						
14163	'C/T'	1	0	A-S	benign	
14180	'T/C'	1	1	Y-C	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
14198	'G/A'	0	1	T-M	benign	
14221	'T/C'	1	0	W-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -6
14249	'G/A'	0	2	A-V	benign	
14258	'G/A'	0	1	P-L	benign	
14318	'T/C'	1	0	N-S	benign	
14319	'T/C'	0	1	N-D	benign	
14325	'T/C'	1	1	N-D	benign	
14405	'A/G'	2	1	V-A	benign	
14502	'T/C'	2	3	I-V	benign	
14552	'A/G'	1	0	V-A	benign	

14562	'C/T'	0	1	V-I	benign	
14570	'C/T'	1	0	S-N	benign	
14582	'A/G'	8	4	V-A	benign	
14625	'C/A'	1	0	V-L	benign	
14640	'A/T'	1	0	L-M	benign	
14646	'C/G'	1	0	V-L	benign	
Cytb						
14748	'T/G'	0	1	M-Ter		
14750	'A/C'	0	1	T-P	possibly damaging	PSIC score difference: 1.946
14751	'C/A'	0	1	T-N	benign	
14759	'C/A'	2	3	R-S	Disruption of ligand binding site	PSIC score difference: 2.448 ligand name: CDL distance: 2.681 Å
14760	'G/A'	0	1	R-H	Disruption of ligand binding site	PSIC score difference: 2.311 ligand name: CDL distance: 2.681 Å
14762	'A/G'	3	4	K-E	benign	
14763	'A/G'	1	2	K-Ter	benign	
14766	'C/T'	210	160	T-I	benign	
14793	'A/G'	24	20	H-R	benign	
14798	'T/C'	75	47	F-L	benign	
14819	'T/C'	0	1	T-K	benign	
14831	'G/A'	0	1	A-T	benign	
14871	'T/C'	0	1	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
14954	'A/G'	1	0	T-A	benign	
14963	'G/C'	1	0	V-L	possibly damaging	PSIC score difference: 1.720
15014	'T/C'	0	1	F-L	benign	
15047	'G/A'	1	0	G-S	benign	
15110	'G/A'	1	1	A-T	benign	
15159	'T/C'	0	2	M-T	benign	
15164	'T/C'	0	1	F-L	benign	
	'A/G'	1	16	T-A	benign	

· · · · · · · · · · · · · · · · · · ·						
15257	'G/A'	17	10	D-N	benign	
15287	'T/C'	2	0	F-L	benign	
15314	'G/A'	0	1	A-T	benign	
15315	'C/T'	0	1	A-V	benign	
15326	'A/G'	6	16	T-A	benign	
15381	'C/T'	0	1	T-I	benign	
15449	'T/C'	1	0	F-L	benign	
15450	'T/C'	1	0	F-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
15452	'C/A'	97	86	L-I	benign	
15479	'T/C'	0	2	F-L	benign	
15497	'G/A'	2	1	G-S	benign	
15498	'G/A'	0	2	G-D	possibly damaging	PSIC score difference: 1.695
15542	'C/T'	1	0	P-S	benign	
15608	'C/G'	1	0	L-V	benign	
15609	'T/G'	2	0	L-R	Improper substitution in the transmembrane region	PHAT matrix element difference: -6
15617	'G/A'	0	1	V-I	benign	
15618	'T/C'	1	0	V-A	benign	
15672	'T/C'	1	0	M-T	benign	
15693	'T/C'	9	6	M-T	benign	
15701	'C/T'	0	1	P-S	probably damaging	PSIC score difference: 2.731
15719	'T/C'	0	1	Y-H	benign	
15758	'A/G'	3	3	I-V	benign	
15773	'G/A'	1	1	V-M	benign	
15804	'T/C'	3	1	V-A	benign	
15812	'G/A'	3	5	V-M	benign	
15813	'T/C'	3	1	V-A	benign	
15884	'G/C'	4	6	A-P	benign	
15884	'G/A'	9	7	A-P	benign	

Position	Mutation	Controls	Cases	Amino acid substitution	Substitution effect	Prediction data
ND1				•		
3394	'T/C'	1	2	Y-H	benign	
3398	'T/C'	1	0	M-T	possibly damaging	PSIC score: 2,231
3434	'A/G'	0	2	Y-C	benign	
3505	'A/G'	5	9	T-A	benign	
3547	'A/C'	1	0	I-V	benign	
3644	'T/C'	1	0	V-A	benign	
3736	'G/A'	1	0	V-I	benign	
3796	'A/G'	2	1	T-A	benign	
3992	'C/T'	3	3	T-M	benign	
4024	'A/G'	3	3	T-A	benign	
4093	'A/G'	0	1	T-A	benign	
4216	'T/C'	10	16	Y-H	benign	
4243	'A/C'	1	0	S-R	functional effect, functional site, transmembrane Improper substitution in the transmembrane region	PHAT matrix element difference: -6
ND2		_				
4491	'G/A'	0	1	V-I	benign	
4561 4639	'T/C'	6	2	V-A I-T	benign Improper substitution in the transmembrane region	PHAT matrix element difference: -1
4659	'G/A'	0	1	A-T	benign	
4732	'A/G'	1	2	N-S	benign	
4812	'G/C'	1	0	V-L	benign	
4917	'A/G'	2	7	N-D	benign	
5046	'G/A'	5	8	V-I	benign	
5074	'T/C'	0	1	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
5145	'A/C'	1	0	T-R	possibly damaging	PSIC score difference: 1.816

Table 4S b. PolyPhen prediction of functional effect of the observed mtDNA mutationsin Finland.

'C/A'	0	1	L-M	benign	
'C/T'	1	1	P-L	benign	
'C/G'	0	1	S-C	benign	
'C/T'	6	2	A-V	benign	
'A/G'	0	1	I-V	benign	
'A/G'	1	0	T-S	benign	
'A/T'	0	1	T-A	benign	
'G/A'	6	9	A-T	-	
'T/G'	1	0	I-S	Improper substitution in the transmembrane	PHAT matrix element difference: -2
'A/T'	3	0	N-I	probably damaging	PSIC score difference: 3.231
'C/A'	7	1	N-K	probably damaging	PSIC score difference: 2.556
'A/C'	1	0	N-H	probably damaging	PSIC score difference: 2.331
'G/A'	0	1	A-T	benign	
'G/A'	1	0	A-T	benign	
'G/A'	1	0	A-T	benign	
'C/T'	0	1	P-S	benign	
'G/A'	1	1	V-I	benign	
'G/A'	1	0	V-I	benign	
'T/G'	1	0	V-G	possibly damaging	PHAT matrix element difference: -2
'T/C'	1	0	F-L	benign	
'T/C'	3	4	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
'T/C'	0	1	Y-H	benign	
'G/A'	1	1	Ter-K	-	
				•	
'A/G'	0	1	I-V	benign	
'A/T'	1	0	Q-L	2.2.3: functional effect, functional site, ligand binding Disruption of ligand binding	PSIC score difference: 2.934 ligand name: PEK distance: 2.520 Å
	'C/T' 'C/G' 'A/G' 'A/G' 'A/G' 'A/T' 'G/A' 'T/G' 'A/T' 'C/A' 'G/A' 'G/A' 'G/A' 'G/A' 'G/A' 'G/A' 'G/A' 'G/A' 'C/T' 'G/A' 'C/T' 'G/A' 'C/T' 'G/A' 'C/T' 'G/A' 'C/T' 'G/A'	'C/T' 1 'C/G' 0 'C/T' 6 'A/G' 1 'A/G' 1 'A/G' 6 'A/T' 0 'G/A' 6 'T/G' 1 'A/T' 3 'C/A' 7 'A/C' 1 'G/A' 1 'T/C' 1 'T/C' 3 'T/C' 3 'T/C' 0 'G/A' 1 'T/C' 0 'G/A' 1 'T/C' 0 'A/G' 0	'C/T' 1 1 'C/G' 0 1 'C/T' 6 2 'A/G' 0 1 'A/G' 1 0 'A/G' 1 0 'A/G' 6 9 'A/T' 0 1 'G/A' 6 9 T/G' 1 0 'A/T' 3 0 'C/A' 7 1 'A/C' 1 0 'G/A' 0 1 'G/A' 1 0 'T/C' 1 0 T/C' 1 0 T/C' 1 0 T/C' 3 4 'T/C' 0 1 'A/G' 0 1 'A/G' <td< td=""><td>'C/T' 1 1 P-L 'C/G' 0 1 S-C 'C/T' 6 2 A-V 'A/G' 0 1 I-V 'A/G' 1 0 T-S 'A/T' 0 1 T-A 'G/A' 6 9 A-T T/G' 1 0 I-S 'A/T' 3 0 N-I 'C/A' 7 1 N-K 'A/C' 1 0 A-T 'G/A' 0 1 A-T 'G/A' 1 0 N-H 'G/A' 1 0 A-T 'G/A' 1 0 V-I 'T/C' 1 0 V-I 'T/C' 3 4 I-T 'T/C' 0 1 I-V</td></td<> <td>C/T 1 P-L benign C/G' 0 1 S-C benign 'A/G' 0 1 I-V benign 'A/G' 1 0 T-S benign 'A/G' 1 0 T-S benign 'A/G' 1 0 T-S benign 'A/G' 1 0 T-A benign 'A/G' 6 9 A-T benign 'A/G' 1 0 I-S benign 'T/G' 1 0 I-S benign 'T/G' 1 0 I-S probably 'A/T' 3 0 N-I probably damaging 'A/C' 1 N-K probably 'A/C' 1 0 N-H probably damaging 'G/A' 0 1 A-T 'G/A' 0 1 A-T benign 'G/A' 1</td>	'C/T' 1 1 P-L 'C/G' 0 1 S-C 'C/T' 6 2 A-V 'A/G' 0 1 I-V 'A/G' 1 0 T-S 'A/T' 0 1 T-A 'G/A' 6 9 A-T T/G' 1 0 I-S 'A/T' 3 0 N-I 'C/A' 7 1 N-K 'A/C' 1 0 A-T 'G/A' 0 1 A-T 'G/A' 1 0 N-H 'G/A' 1 0 A-T 'G/A' 1 0 V-I 'T/C' 1 0 V-I 'T/C' 3 4 I-T 'T/C' 0 1 I-V	C/T 1 P-L benign C/G' 0 1 S-C benign 'A/G' 0 1 I-V benign 'A/G' 1 0 T-S benign 'A/G' 1 0 T-S benign 'A/G' 1 0 T-S benign 'A/G' 1 0 T-A benign 'A/G' 6 9 A-T benign 'A/G' 1 0 I-S benign 'T/G' 1 0 I-S benign 'T/G' 1 0 I-S probably 'A/T' 3 0 N-I probably damaging 'A/C' 1 N-K probably 'A/C' 1 0 N-H probably damaging 'G/A' 0 1 A-T 'G/A' 0 1 A-T benign 'G/A' 1

7805	'G/A'	0	1	V-I	benign	
7853	'G/A'	2	0	V-I	benign	
8126	C/A	4	0	Q-K	probably damaging	PSIC score difference: 2.440
ATP8			<u> </u>			L
8393	'C/T'	0	2	P-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
8417	'C/G'	0	1	L-V	benign	
8418	'T/G'	0	1	L-R	Improper substitution in the transmembrane region	PHAT matrix element difference: -6
8426	'T/C'	1	0	F-L	benign	
8448	'T/C'	1	2	M-T	benign	
8532	'C/A'	1	0	T-K	probably damaging	PSIC score difference: 2.171
8534	'A/G'	1	0	K-E	possibly damaging	PSIC score difference: 1.741
8535	'A/G'	1	0	K-Ter	Х	
8537	A/G	1	0	I-V	benign	
8559	'C/T'	0	1	P-L	probably damaging	PSIC score difference: 2.956
8564	'C/A'	0	1	Q-K	probably damaging	PSIC score difference: 2.029
8565	'A/C'	0	1	Q-P	probably damaging	PSIC score difference: 2.421
8572	'G/C'	3	0	Ter-Y	Х	
ATP6					X	
8532	C/A	1	0	N-K	benign	
8533	G/C	1	0	E-Q	benign	
8534	A/G	1	0	E-G	possibly damaging	PSIC score difference: 1.893
8537	A/G	1	1	N-S	benign	
8563	A/C	0	1	T-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -4
8564	C/A	0	1	T-K	Improper substitution in	PHAT matrix element

					the	difference: -6
					transmembrane	unterence0
					region	
					Improper	
0.570		2	0	C D	substitution in	PHAT matrix
8572	G/C	3	0	G-R	the transmembrane	element difference: -5
					region	unterence3
8616	'G/C'	1	0	L-F	benign	
8616	'G/T'	1	1	L-F	benign	
8651	'T/C'	0	1	L-P	benign	
8659	'A/G'	0	2	T-A	benign	
8684	'C/T'	1	0	T-I	benign	
8701	'A/G'	0	1	T-A	benign	
8705	'T/C'	10	2	M-T	benign	
8723	'G/A'	0	5	R-Q	benign	
8764	'G/A'	0	1	A-T	benign	
8765	'C/T'	0	1	A-V	benign	
8812	'A/G'	0	4	T-A	benign	
8833	'G/A'	0	1	A-T	benign	
8842	'A/G'	1	0	I-V	benign	
					Improper	
00.40	IT (CI	0		I T	substitution in	PHAT matrix
8843	'T/C'	0	1	I-T	the transmembrane	element difference: -1
					region	difference: -1
8860	'A/G'	0	2	T-A	benign	
8869	'A/G'	6	2	M-V	benign	
8887	'A/G'	0	2	I-V	benign	
8902	'G/A'	0	1	A-T	benign	
8923	'A/G'	1	3	T-A	probably damaging	PSIC score difference: 2.259
9053	'G/A'	1	2	S-N	benign	2.237
9055	'G/A'	12	7	A-T	benign	
9058	'A/G'	1	0	T-A	benign	
9088	'T/C'	1	0	S-P	benign	
CO3					0	I
						PSIC score
						difference:
0011	1.1.100	~		** =	Disruption of	1.699
9214	'A/G'	0	1	H-R	ligand binding	ligand name: CD
					site	distance: 2.180
						Å
9300	'G/A'	0	1	A-T	benign	
9391	'C/T'	2	1	T-M	benign	
9477	'G/A'	24	23	V-I	benign	
9478	'T/C'	0	1	V-A	benign	

9480	'T/C'	1	0	F-L	benign	
9500	'C/G'	0	2	F-L	benign	
9612	'G/A'	2	2	V-M	benign	
9667	'A/G'	5	4	N-S	benign	
9736	'A/C'	0	1	Q-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
9738	'G/A'	4	0	A-T	benign	
9777	'G/A'	0	1	G-S	benign	
9783	'T/A'	2	0	Y-N	probably damaging	PSIC score difference: 3.213
9784	'A/C'	2	0	Y-S	probably damaging	PSIC score difference: 3.174
9790	'C/T'	3	0	S-L	probably damaging	PSIC score difference: 2.277
9804	'G/A'	0	1	A-T	benign	
9825	'C/G'	0	1	H-D	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
9856	'T/G'	2	0	I-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
9857	'C/G'	2	0	I-M	benign	
9895	'A/C'	1	0	K-T	benign	
9903	'T/C'	3	2	F-L	possibly damaging	PSIC score difference: 1.625
9921	'G/C'	0	1	A-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
ND3						
10068	'G/T'	0	1	A-S	benign	
10084	'T/C'	2	0	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
10086	'A/G'	2	2	N-D	benign	
10111	'T/A'	0	4	M-K	Improper substitution in the	PHAT matrix element difference: -6

					· 1	
					transmembrane	
					region	
					Improper	
10227		2	1	τŢ	substitution in	PHAT matrix
10237	'T/C'	2	1	I-T	the	element
					transmembrane	difference: -1
10207		0	1	NY 17	region	
10307	'C/T'	0	1	N-K	benign	
10398	'A/G'	15	17	T-A	benign	
ND4L						
10644	'G/A'	1	0	V-M	benign	
10654	'C/T'	1	1	A-V	benign	
ND4						
						PSIC score
10805	'T/G'	0	1	W-G	probably	difference:
10005	1/0	Ū	1	W G	damaging	3.844
10877	'C/G'	1	0	L-V	benign	51011
10922	'A/T'	1	0	T-S	benign	
10722	11/1	1	0	1-5	Improper	
					substitution in	PHAT matrix
11099	'G/A'	0	1	E-K	the	element
11077	0/A	0	1	L-IX	transmembrane	difference: -4
					region	unrerence+
						PSIC score
11126	'G/A'	0	1	E-K	probably	difference:
		-			damaging	2.194
					Improper	
					substitution in	PHAT matrix
11253	'T/C'	0	3	I-T	the	element
					transmembrane	difference: -1
					region	
					Improper	
					substitution in	PHAT matrix
11436	'C/A'	0	1	A-D	the	element
					transmembrane	difference: -5
					region	
					Improper	
			_		substitution in	PHAT matrix
11589	'T/C'	1	0	L-P	the	element
					transmembrane	difference: -5
					region	DOIO
11500		1	0	ת ת	probably	PSIC score
11592	'G/C'	1	0	R-P	damaging	difference:
12017	'A/C'	1	0	T-P		2.908
		1 0	0		benign	
12026	'A/G'	0	1	I-V	benign	DEIC
10125		Δ	1	0.37	possibly	PSIC score
12135	'C/A'	0	1	S-Y	damaging	difference:
ND5						1.985
12358	'A/G'	0	1	T-A	honion	
					benign	
12397	'A/G'	0	1	T-A	benign	

12406	'G/A'	2	0	V-I	benign	
12557	'C/T'	0	1	T-I	benign	
12580	'C/G'	1	0	L-V	benign	
12613	'G/A'	2	2	A-T	benign	
12613	'G/C'	1	0	A-P	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
12622	'G/A'	1	0	V-I	benign	
12739	'A/G'	1	0	N-D	benign	
12803	'G/C'	0	1	S-T	benign	
12811	'T/C'	9	3	Y-H	benign	
12814	'G/A'	0	1	A-T	benign	
12893	'T/G'	1	0	L-W	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
12928	'C/G'	1	0	P-A	benign	
13105	'A/G'	1	0	I-V	benign	
13105	'A/C'	3	1	I-L	benign	
13135	'G/A'	0	1	A-T	benign	
13144	'A/C'	0	1	S-R	benign	
13145	'G/A'	3	1	S-N	benign	
13637	'A/G'	1	2	Q-R	benign	
13651	'A/G'	1	0	T-A	benign	
13681	'A/G'	0	1	T-A	benign	
13708	'G/A'	5	12	A-T	benign	
13759	'G/A'	1	3	A-T	benign	
13762	'T/G'	1	1	S-A	benign	
13780	'A/G'	1	3	I-V	benign	
13928	'G/C'	4	0	S-T	benign	
13933	'A/G'	0	1	T-A	benign	
13934	'C/T'	0	3	T-M	benign	
13953	'T/G'	1	0	Y-Ter		
13966	'A/G'	2	3	T-A	benign	
13967	'C/T'	1	1	T-M	benign	
14062	'A/G'	4	0	I-V	benign	
ND6			_	`	6	
14180	'T/C'	1	1	Y-C	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
14233	'A/G'	2	6	D-E	benign	
14325	'T/C'	1	0	N-Y	benign	

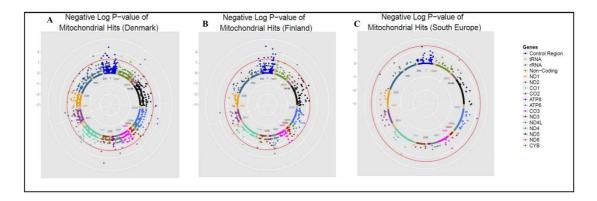
14550	'T/C'	2	0	I-V	benign	
14577	'T/G'	0	1	I-L	benign	
14582	'A/G'	3	3	V-A	benign	
Cytb	11/0	5	5	• 11	beingn	
14759	'C/A'	1	0	R-S	Disruption of ligand binding site	PSIC score difference: 2.448 ligand name: CDL distance: 2.681 Å
14760	'G/A'	1	1	R-H	Disruption of ligand binding site	PSIC score difference: 2.311 ligand name: CDL distance: 2.681 Å
14762	'A/G'	1	3	K-E	benign	
14763	'A/G'	0	1	K-Ter		
14766	'C/T'	55	65	T-I	benign	
14775	'T/C'	0	1	L-P	benign	
14793	'A/G'	14	4	H-R	benign	
14798	'T/C'	11	13	F-L	benign	
14817	'C/T'	1	0	P-L	probably damaging	PSIC score difference: 3.181
14828	'T/C'	0	1	S-P	probably damaging	PSIC score difference: 2.233
15077	'G/A'	0	1	E-K	benign	
15213	'T/C'	1	0	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
15218	'A/G'	6	3	T-A	benign	
15257	'G/A'	5	3	D-N	benign	
15314	'G/A'	1	0	A-T	benign	
15326	'A/G'	0	3	T-A	benign	
15452	'C/A'	7	17	L-I	benign	
15459	'C/T'	0	1	S-F	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
15693	'T/C'	0	1	M-T	benign	
15758	'A/G'	0	2	I-V	benign	
15773	'G/A'	1	0	V-M	benign	
15812	'G/A'	2	0	V-M	benign	

15831	'T/G'	0	1	I-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
15852	'T/C'	3	0	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
15884	'G/C'	5	9	A-P	benign	
15884	'G/A'	6	1	A-T	benign	

Position	Mutatio n	Control s	Cases	Amino acid substitution	Substitution effect	Prediction data
ND1	1	1		I		L
3308	'T/C'	1	0	M-T probably damaging		PSIC score difference: 2.775
3335	'T/C'	0	2	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
3388	'C/A'	0	1	L-M	possibly damaging	PSIC score difference: 1.515
3505	'A/G'	2	0	T-A	benign	
3547	'A/G'	1	0	I-V	benign	
3796	'A/G'	0	1	T-A	benign	
3992	'C/T'	1	1	T-M	benign	
4021	'A/T'	0	1	T-S	benign	
4024	'A/G'	0	1	T-A	benign	
4136	'A/G'	0	1	Y-C	benign	
4216	'T/C'	17	11	Y-H	benign	
4243	'A/G'	1	0	S-G	benign	
ND2						
4491	'G/A'	0	1	V-I	benign	
4561	'T/C'	2	0	V-A	benign	
4596	'G/A'	1	0	V-I	benign	
4639	'T/C'	2	0	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
4640	'C/A'	1	0	I-M	benign	
4732	'A/G'	0	1	N-S	benign	
4917	'A/G'	8	4	N-D	benign	
4924	'G/A'	1	0	S-N	benign	
4936	'C/T'	1	0	T-I	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
4960	'C/T'	1	1	A-V	benign	
5046	'G/A'	3	0	V-I	benign	
5263	'C/T'	2	1	A-V	benign	

Table 4S c. PolyPhen prediction of functional effect of the observed mtDNA mutations

 in South Europe


CO1						
					probably	PSIC score
6054	'G/T'	0	1	D-Y	probably damaging	difference: 2.239
6340	'C/T'	0	1	T-I	benign	
6366	'G/A'	1	1	V-I	benign	
6423	'C/G'	1	0	P-A	benign	
7146	'A/G'	1	0	T-A	benign	
7270	'T/C'	1	0	V-A	benign	
7299	'A/G'	1	0	M-V	benign	
7389	'T/C'	1	0	Y-H	benign	
CO2						
7598	'G/A'	1	0	A-T	benign	
7650	'C/T'	0	1	T-I	benign	
7680	'T/C'	0	1	F-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
7941	'A/G'	1	0	N-S	benign	
7958	'C/T'	0	1	P-S	benign	
7979	'G/A'	0	1	D-N	benign	
8058	'A/G'	0	1	D-G	Contact with functional site, indirect effect	PSIC score difference: 2.636 functional site: HIS 161B distance: 2.624 Å
8261	'A/G'	1	0	T-A	possibly damaging	PSIC score difference: 1.559
ATP8			т т			1
8393	'C/T'	1	1	P-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -3
8426	'T/C'	1	0	F-L	benign	
8472	'C/T'	1	1	P-L	probably damaging	PSIC score difference: 2.434
8496	'T/C'	0	1	M-T	benign	
8519	'G/A'	1	0	E-K	benign	
ATP6						1
8572	'G/A'	1	0	G-S	benign	
8578	'C/T'	1	0	P-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -3

8642	'A/G'	1	0	N-S	benign	
8653	'A/G'	1	0	I-S I-V	benign	
8684	'C/T'	1	0	T-I	benign	
8701	'A/G'	4	2	T-A	benign	
8701	'A/G'	4 0	1	N-S	6	
8836	'A/G'	1	1	M-V	benign	
8857	'G/A'	1	0	G-S	benign	
8860	'A/G'	0	0	T-A	benign	
8869	'A/G'	2	0	M-V	-	
8887	'A/G'	1	0	Ivi-v I-V	benign	
000/	A/U	1	0	1- V	benign Improper	
8939	'T/C'	0	1	I-T	substitution in the transmembrane region	PHAT matrix element difference: -1
8950	'G/A'	1	0	V-I	benign	
9041	'A/G'	1	0	H-R	Improper substitution in the transmembrane region	PHAT matrix element difference: -4
9055	'G/A'	4	4	A-T	benign	
9070	'T/G'	2	0	S-A	benign	
9196	'G/A'	2	0	D-N	benign	
CO3			1		- 1	1
9300	'G/A'	2	1	A-T	benign	
9336	'A/G'	1	0	M-V	benign	
9477	'G/A'	3	2	V-I	benign	
9531	'A/G'	1	0	T-A	benign	
9756	'T/G'	4	0	S-A	benign	
9804	'G/A'	0	1	A-T	benign	
9840	'T/A'	0	1	S-T	benign	
9921	'G/A'	0	1	A-T	benign	
ND3						
10086	'A/G'	0	1	N-D	benign	
10112	'A/T'	0	1	M-I	benign	
10336	'T/C'	1	0	L-S	Improper substitution in the transmembrane region	PHAT matrix element difference: -2
10398	'A/G'	18	13	T-A	benign	
ND4L						
10506	'A/G'	1	1	T-A	benign	
10609	'T/C'	1	0	M-T	benign	
10680	'G/A'	1	0	A-T	benign	
10687	'T/G'	0	1	V-G	Improper substitution in	PHAT matrix element

					.1	1:00 0
					the	difference: -2
					transmembrane	
					region	
ND4		0		* * *		
10784	'A/G'	0	1	I-V	benign	
10907	'T/C'	2	0	F-L	benign	
10922	'A/G'	1	2	T-A	benign	
11016	'G/A'	0	2	S-N	benign	
11069	'A/G'	1	0	I-V	benign	
11204	'T/C'	0	1	F-L	benign	
11253	'T/C'	1	0	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
11447	'G/A'	0	1	V-M	benign	
11582	'A/G'	0	1	I-V	benign	
11752	'C/G'	2	0	N-K	probably damaging	PSIC score difference: 2.650
11936	'C/G'	1	0	L-V	benign	
12017	'A/G'	1	0	T-A	benign	
12084	'C/T'	0	1	S-F	benign	
12135	'C/A'	1	0	S-Y	possibly damaging	PSIC score difference: 1.985
ND5						
12376	'T/G'	1	0	S-A	benign	
12403	'C/T'	2	1	L-F	benign	
12490	'A/G'	1	0	T-C	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
12557	'C/T'	0	1	T-I	benign	
12562	'C/G'	4	1	L-V	benign	
12634	'A/G'	2	1	I-V	benign	
12663	'C/A'	1	0	N-K	benign	
12841	'A/G'	1	0	I-V	benign	
12923	'G/T'	1	0	W-L	probably damaging	PSIC score difference: 2.733
12950	'A/C'	2	1	N-T	benign	
13105	'A/G'	1	0	I-V	benign	
13135	'G/A'	3	0	A-T	benign	
13145	'G/A'	2	0	S-N	benign	
13350	'A/C'	0	1	M-I	benign	
13351	'C/A'	1	0	L-M	benign	1

		[DCIC
13525	'G/A'	1	0	E-K	probably damaging	PSIC score difference: 2.143
13630	'A/G'	0	1	T-A	benign	2.145
13708	'G/A'	9	7	A-T	benign	
13711	'G/A'	0	1	A-T	benign	
13768	'T/C'	1	0	F-L	benign	
13780	'A/G'	1	1	I-V	benign	
13789	'T/C'	1	0	Y-H	benign	
13834	'A/G'	0	1	T-A	benign	
13880	'C/A'	1	0	S-Y	benign	
13934	'C/T'	2	1	T-M	benign	
13942	'A/G'	1	0	T-A	benign	
13943	'C/T'	0	1	T-M	benign	
13966	'A/G'	3	6	T-A	benign	
ND6						
14178	'T/C'	1	0	I-V	benign	
					Improper	
		_			substitution in	PHAT matrix
14180	'T/G'	0	1	Y-S	the	element
					transmembrane region	difference: -2
					Improper	
					substitution in	PHAT matrix
14180	'T/C'	1	0	Y-C	the	element
					transmembrane	difference: -1
					region	
14258	'G/A'	1	0	P-L	benign	
14394	'C/T'	0	1	V-M	benign	
14552	'A/G'	0	1	V-A	benign	
14582	'A/G'	0	1	V-A	benign	
14634	'T/C'	1	0	M-V	benign	
14655	'G/T'	0	1	L-M	benign	
Cyt B	'A/G'	2	0	T-A	hanian	
14750 14766	A/G 'C/T'	44	0 32	T-A T-I	benign benign	
14769	'A/G'	1	0	N-S	benign	
14709	'A/G'	2	1	H-R	benign	
14793	T/C'	9	6	F-L	Ű,	
14798	'G/A'	9 0	2	A-T	benign	
14631	U/A	0	2	A-1	benign Improper	
					substitution in	PHAT matrix
14856	'T/C'	1	0	L-P	the	element
					transmembrane	difference: -5
					region	
14870	'A/G'	0	1	I-V	benign	
14927	'A/G'	1	1	T-A	benign	
14979	'T/C'	0	1	I-T	Improper substitution in	PHAT matrix
					substitution in	element

					the transmembrane	difference: -1
				region		
15218	'A/G'	1	1	T-A	benign	
15257	'G/A'	1	3	D-N	benign	
15326	'A/G'	1	1	T-A	benign	
15452	'C/A'	15	11	L-I	benign	
15456	'T/G'	0	1	L-R	Improper substitution in the transmembrane region	PHAT matrix element difference: -6
15467	'A/G'	0	1	T-A	benign	
15506	'G/A'	1	0	D-N	possibly damaging	PSIC score difference: 1.968
15519	'T/C'	0	1	L-P	benign	
15657	'T/C'	1	0	I-T	Improper substitution in the transmembrane region	PHAT matrix element difference: -1
15693	'T/C'	3	1	M-T	benign	
15734	'G/A'	1	1	A-T	benign	
15789	'C/T'	1	0	Q-H	benign	
15812	'G/A'	0	1	V-M	benign	
15884	'G/A'	0	2	A-P	benign	
15884	'G/C'	2	0	A-T	benign	

Figure 1S Differences in the frequency of each observed mtDNA mutations, represented as negative logaritm of the p-value, between cases and controls in Denmark (A), Finland (B); South Europe (C). The red circle represent the significative threshold (-logp 0.05).

CHAPTER 3

3.1 The interaction between Mitochondrial DNA and APOE variability in a large sample of ultranonagenarians across Europe: a GEHA Project Study.

Federica Sevini¹*, Almut Nebel²*, Federica Tallaro³, Nicola Raule¹, Annalaura Barbieri¹, Laura Lomartire¹, Dario Vianello¹, Shengting Li⁴, Vladyslav Bezrukov⁵, Hélené Blanché⁶, Antti Hervonen⁷, Kaare Christensen⁸, Luca Deiana⁹, Efsthatios Gonos¹⁰, Tom B. L. Kirkwood¹¹, Peter Kristensen¹², Alberta Leon¹³, Pier Giuseppe Pelicci¹⁴, Michel Poulain¹⁵, Irene M. Rea¹⁶, Josè Remacle¹⁷, Jean Marie Robine¹⁸, Ewa Sikora¹⁹, P. Eline Slagboom²⁰, Liana Spazzafumo²¹, M. Antonietta Stazi²², Olivier Toussaint²³, James W. Vaupel²⁴, Alberto Montesanto³, Giuseppina Rose³, Jukka Moilanen²⁵, Kari Majamaa²⁵, Markus Perola²⁶, Lars Bolund⁴, Huanming Yang⁴, Stefan Schreiber², Giuseppe Passarino³, Claudio Franceschi¹

1. Department of Experimental Pathology, University of Bologna, Bologna, Italy; 2. Kiel Center for Functional Genomics, University Hospital Schleswig Holstein, Kiel, Germany; 3. Department of Cell Biology, University of Calabria, Rende Italy; 4. Beijing Genomics Institute, Chinese Academy of Sciences, Beijing, China; 5. Institute of Gerontology, Kiev, Ucraine; 6. Centre Polymorphisme Humaine, Fondation Jean Dausset, Paris, France; 7. University of Tampere, Tampere Finland; 8. Institute of Public Health, University of Southern Denmark, Odense, Denmark; 9. University of Sassari, Sassari, Italy; 10. National Hellenic Research Foundation, Athens, Greece; 11. School of Clinical Medical Sciences, Gerontology "Henry Wellcome," University of Newcastle upon Tyne, Newcastle upon Tyne, UK; 12.University of Aarhus, Aarhus, Denmark; 13. Research & Innovation Soc.Coop. a r.l., Padova, Italy, 14. IFOM— Fondazione Istituto FIRC di Oncologia Molecolare, Milano, Italy; 15. Research Centre of Demographic Management for Public Administrations, UCL—GéDAP, Louvain-laNeuve, Belgium; 16. The Queen's University Belfast, Belfast, U K; 16. Eppendorf Array Technologies, SA—EAT Research and Development, Namur, Belgium; 17. University of Montpellier, Val d'Aurelle Cancer Research Center, Montpellier, France; 19. Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; 20. Leiden University Medical Centre, Leiden, the Netherlands; 21. INRCA—Italian National Research Centre on Aging, Ancona, Italy; 22. Istituto Superiore di Sanità, Rome, Italy; 23. Facultés Universitaire Notre Dame de la Paix, Namur, Belgium; 24. Max Planck Institute for Demographic Research, Rostock, Germany; 25. University of Oulu, Oulu, Finland; 26. National Public Health Institute, Helsinki, Finland.

*These Authors equally contributed to the study.

Abstract

The interaction between mitochondrial DNA variability and nuclear variability is one of the main issues in the research on mitochondrial biology. In this frame, the effect of the interaction between mtDNA variability and the variability of nuclear genes on longevity has been widely studied. We availed of a large recruitment project, the GEHA project, to analyze the interaction between mitochondrial DNA variability and APOE. The large sample size and the distribution of samples across the European countries, allowed us to highlight the interaction between mitochondrial DNA haplogroup U and APOE ε 4 allele, but also the interaction between this "allele combination" and the environmental conditions.

Introduction

The research on healthy aging and longevity, which is enormously increased in the last decade, has demonstrated the central role played by the variability of mitochondrial DNA (Passarino et al. 2010; Castri et al. 2009; Santoro et al. 2006; Rose et al 2002; Tanaka 1998) and by the variability of APOE (Drenos and Kirkwood 2010; Ang et al. 2008; Christensen et al. 2006; Smith 2002) in determining individual aging phenotype and individual chance to attain longevity. Many reports have also suggested that these complex phenotypes are influenced by the interaction between different genetic factors. In particular, the interaction between mitochondrial DNA variability and nuclear variability has been highlighted as crucial in determining the efficiency of the interaction between the two genomes and then the efficiency of a number of process (such as OXPHOS, metabolism, apoptosis and many others) which are essential for the cell life and in particular for preserving the cell from the age related decline (Tranah et al. 2011). In this frame, the interaction between APOE and mitochondrial DNA variability has been reported to influence the individual chance to be affected by Alzheimer Disease, one the major age related diseases correlated to the decline of the nervous system. In fact, mtDNA haplogroup U was reported to neutralize the effect of APOE allele ɛ4, which are widely known as risk factor for AD (Carrieri et al. 2001). The relative low frequency of these two variants (APOE and mtDNA haplogroup U) has made difficult to follow up on this observation and, for instance, to highlight the effect of this interaction on longevity as it would have required very large samples.

In this study we present the results of a very large study, where mitochondrial DNA and APOE variability have been studied in more than 1950 subjects older than 90 years, recruited in the frame of the GEHA project and coming from most of the European populations, and compared to a similar number of younger controls matched

for sex and geographic origins (1985 nonagenarians and 2036 controls). This has allowed to extensively reconsider the interaction between these two systems and the interaction between their variability, environment and genetic background of different populations. In fact, both mitochondrial DNA variability and APOE variability, which are differently distributed in different populations and in particular across European populations, have been reported to have been shaped by environmental conditions (Finch 2010; Kivisild et al. 2006; Singh et al 2006; Elson et al. 2004; Ruiz-Pesini et al. 2004; Mishmar et al. 2003; Moilanen and Majamaa 2003; Cann et al. 1984; Gerdes et al 2003; Lucotte et al 1997).

Materials and Methods

Sampling

Samples were collected in the frame of the GEHA research project (2004-2010) in 11 European Countries. Each Institution providing blood samples received the approval from its own ethical committees and all the recruited subjects provided written informed consent for the use of their phenotypic and genetic data in studies on human ageing (Skytthe et al. 2011).

DNA was recovered from fresh blood by automated and standardized protocol in order to guarantee quality and concentration uniformity among samples. The GEHA Partner in charge of the DNA extraction (KTL - Helsinki, Finland) provided 4 μ g of genomic DNA for mtDNA variability analysis.

DNA analysis

The definition of mtDNA subhaplogroups was conducted by resequencing the

D-loop region from nucleotide position (np) 16024 to np 576 followed by RFLP analysis in specific coding region traits as previously described (Raule et al Ms. Submitted, see chapter 2 of this thesis).

APO E variability was assessed by PCR amplification and RFLP digestion according to standardized protocol (Carrieri et al. 2001).

Results

Table 1. reports the distribution of APOE alleles in each population. Table 2 reports the distribution of mtDNA haplogroups in the different populations.

Fig. 1 shows the significance of the different distribution of APOE allele ϵ 4 in nonagenarians and controls in each population. This allows to figure out the effect of this allele on the chance to attain longevity in different populations. No significant differences between nonagenarians and controls were observed for mtDNA haplogroups.

Fig.2 shows the influence of haplogroup U on the significance of the different distribution of APOE allele $\varepsilon 4$ in nonagenarians and controls. In fact it compares, for each population, the OR of the differences between nonagenarians and controls observed in subjects with U and non U mtDNA molecules. Interestingly, in almost all cases the negative effect of APOE $\varepsilon 4$ is diminished by the presence of haplogroup U. The only exceptions were in Denmark, Germany and Finland.

In Fig. 3 we summarized the information given in Fig.2 by pooling together the population where the presence of U decreased the negative effect of APO ϵ 4 and the populations where this was not observed. We see that indeed the presence of

haplogroup U cancels the negative effect of APOE ϵ 4 in most of the European populations we sampled. This is not observed in Danes, Germans and Finns.

Discussion.

In the last decades many evidences accumulated which show that a number of common polymorphisms affect longevity and age related phenotypes. Each polymorphisms has shown to exerts a little or even a very little effect on these phenotypes and this makes difficult to study such effect as it requires very big samples. The picture gets even more complicated by the fact that most of the polymorphisms exert population specific effects and by the interactions between polymorphisms occurring at different loci. It becomes then necessary that observed associations, are replicated in very large samples, possibly comparing different populations (De Benedictis and Franceschi 2006; Salvioli et al. 2006). In this constext, the GEHA sample, which has been recruited in the framework of a European project gathering labs from most of the European countries, represents an unprecedented resource. In fact it includes 15 samples from different European areas and gathers more than 2200 ultranonagenarian sibships and an equal number of geographic matched younger controls. In the present study we took advantage of such sample in order to test the described interaction between mtDNA variability and APOE variability, with haplogroup U which was reported to be protective with respect to the AD risk allele APOE ε 4 (Carrieri et al. 2001).

Our results show that indeed in most of the European populations APOE ϵ 4 is an important "risk" allele for survival to 90 years and over, but for the carriers of haplogroup U allele APO ϵ 4 is a neutral allele. On the other hand this observation does not holds up if we consider German, Danish and Finnish populations. In fact, within

these populations, APOE $\varepsilon 4$ is a risk allele for both U carriers and for the general population. It might be worth noticing in this frame, that the results does not change if we considers the different Haplogroup U subgroups instead of the whole haplogroup. The results are even more striking if we consider that Germans, Danes and Finns are the populations where both APOE and haplogroup U are more frequent than elsewhere. If the high frequency of haplogroup U is thought to be due to genetic drift (Soares et al. 2010; Achilli et al. 2005; Torroni et al. 2001), the high frequency of APO $\varepsilon 4$ has been reported to be likely due to the advantage this allele may give in environments with poor day light (Huebbe et al. 2011). This might suggest that APOE $\varepsilon 4$ is part of complex pathways meant to play a crucial role in the survival of Nordic populations and that this does not allow the supposed effect of haplogroup U molecules to interfere.

On the whole, although our results do not allow to understand the molecular basis of the interaction between mtDNA variability and APOE variability, they confirm that there is a positive interaction between APOE ε 4 and haplogroup U, as previously suggested. In addition they show that this interaction is population specific and that it does not occur in some of the populations with the highest frequency of APOE ε 4 and which have been reported to have an advantage from the high frequency of this allele due to the advantage it gives in environments with poor day light.

These results suggest that the demographic selection occurring after the age of 65 years is influenced by the combination of the different alleles at different loci and by their interaction with the environment. It might be intriguing to compare this to the classical "fitness landscapes metaphore" introduced by S Wright to explain the interaction between genes and environment to explain natural selection: "allelic combinations" hold different positions in the "fitness landscapes" according to the external environment and other external forces as drift or migration (Wright 1932; Beerenwinkel et al. 2007).

Obviously, demographic selection, unlike natural selection, does not affects the

population gene pool but only the gene pool of the aging population.

References:

Achilli A, Rengo C, Battaglia V, Pala M, Olivieri A, Fornarino S, Magri C, Scozzari R, Babudri N, Santachiara-Benerecetti AS, Bandelt HJ, Semino O, Torroni A (2005) Saami and Berbers-an unexpected mitochondrial DNA link. Am J Hum Genet. 76(5):883-6.

Ang LS, Cruz RP, Hendel A, Granville DJ (2008) Apolipoprotein E, an important player in longevity and age-related diseases. Exp Gerontol. 43(7):615-22.

Beerenwinkel N, Pachter L, Sturmfels B, Elena SF, Lenski RE (2007) Analysis of epistatic interactions and fitness landscapes using a new geometric approach. BMC Evol Biol. 7:60.

Cann, R. L., W. M. Brown and A. C. Wilson (1984) Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106: 479–499.

Carrieri G, Bonafè M, De Luca M, Rose G, Varcasia O, Bruni A, Maletta R, Nacmias B, Sorbi S, Corsonello F, Feraco E, Andreev KF, Yashin AI, Franceschi C, De Benedictis G (2001) Mitochondrial DNA haplogroups and APOE4 allele are non-independent variables in sporadic Alzheimer's disease. Hum Genet 108(3):194-8.

Castri L, Melendez-Obando M, Villegas-Palma R, Barrantes R, Raventos H, Pereira R, Luiselli D, Pettener D, Madrigal L (2009) Mitochondrial polymorphisms are associated both with increased and decreased longevity. Hum Hered 67(3):147-53.

Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7(6):436-48.

De Benedictis G, Franceschi C (2006) The unusual genetics of human longevity. Sci Aging Knowledge Environ 2006(10):pe20.

Drenos F, Kirkwood TBL (2010) Selection on alleles affecting Human Longevity and late-life disease: the example of Apolipoprotein E. Plos One 5(4):e10022.

Elson JL, Turnbull DM and Howell N (2004) Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am J Hum Genet 74: 229–238.

Finch CE (2010) Evolution in Health and Medicine Sackler Colloquium: evolution of the human lifespan and diseases of aging: roles of infection, inflammation, and nutrition. Proc Natl Acad Sci USA 107(Suppl. 1): 1718–1724

Gerdes LU (2003) The common polymorphism of apolipo- protein E: geographical aspects and new pathophysiological relations. Clin ChemLabMed 41:628 – 631

Huebbe P, Nebel A, Siegert S, Moehring J, Boesch-Saadatmandi C, Most E, Pallauf J, Egert S, Müller MJ, Schreiber S, Nöthlings U, Rimbach G (2011) APOE £4 is associated with higher vitamin D levels in targeted replacement mice and humans. FASEB J 25(9):3262-70.

Kivisild T, Shen P, Wall DP, Do B, Sung R, Davis K, Passarino G, Underhill PA, Scharfe C, Torroni A, Scozzari R, Modiano D, Coppa A, de Knijff P, Feldman M, Cavalli-Sforza LL,

Oefner PJ (2006) The role of selection in the evolution of human mitochondrial genomes. Genetics 172(1):373-87.

Lucotte, G., Loirat, F., and Hazout, S (1997) Pattern of gradient of apolipoprotein E allele *4 frequencies in western Europe. Hum Biol 69, 253–262

Mishmar D, Ruiz-Pesini E, Golik P, Macaulay V, Clark AG, Hosseini S, Brandon M, Easley K, Chen E, Brown MD, Sukernik RI, Olckers A, Wallace DC (2003) Natural selection shaped regional mtDNA variation in humans. Proc Natl Acad Sci USA 100(1):171-6.

Moilanen JS, Majamaa K (2003) Phylogenetic network and physicochemical properties of nonsynonymous mutations in the protein-coding genes of human mitochondrial DNA. Mol Biol Evol 20(8):1195-210.

Passarino G, Rose G, Bellizzi D (2010) Mitochondrial function, mitochondrial DNA and ageing: a reappraisal. Biogerontology 11(5):575-88.

Rose G, Passarino G, Franceschi C, De Benedictis G (2002) The variability of the mitochondrial genome in human aging: a key for life and death? Int J Biochem Cell Biol 34:1449–11460

Ruiz-Pesini E, Mishmar D, Brandon M, Procaccio V, Wallace DC (2004) Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303: 223–226.

Salvioli S, Olivieri F, Marchegiani F, Cardelli M, Santoro A, Bellavista E, Mishto M, Invidia L, Capri M, Valensin S, Sevini F, Cevenini E, Celani L, Lescai F, Gonos E, Caruso C, Paolisso G, De Benedictis G, Monti D, Franceschi C (2006) Genes, ageing and longevity in humans: problems, advantages and perspectives. Free Radic Res 40(12):1303-23.

Santoro A, Salvioli S, Raule N, Capri M, Sevini F, Valensin S, Monti D, Bellizzi D, Passarino G, Rose G, De Benedictis G, Franceschi C (2006) Mitochondrial DNA involvement in human longevity. Biochim Biophys Acta 1757(9-10):1388-99.

Singh PP, Singh M, and Mastana SS (2006) APOE distribution in world populations with new data from India and the UK. Ann Hum Biol 33:279-308

Skytthe A, Valensin S, Jeune B, Cevenini E, Balard F, Beekman M, Bezrukov V, Blanche H, Bolund L, Broczek K, Carru C, Christensen K, Christiansen L, Collerton JC, Cotichini R, de Craen AJ, Dato S, Davies K, De Benedictis G, Deiana L, Flachsbart F, Gampe J, Gilbault C, Gonos ES, Haimes E, Hervonen A, Hurme MA, Janiszewska D, Jylhä M, Kirkwood TB, Kristensen P, Laiho P, Leon A, Marchisio A, Masciulli R, Nebel A, Passarino G, Pelicci G, Peltonen L, Perola M, Poulain M, Rea IM, Remacle J, Robine JM, Schreiber S, Scurti M, Sevini F, Sikora E, Skouteri A, Slagboom PE, Spazzafumo L, Stazi MA, Toccaceli V, Toussaint O, Törnwall O, Vaupel JW, Voutetakis K, Franceschi C; for the GEHA consortium (2011) Design, recruitment, logistics, and data management of the GEHA (Genetics of Healthy Ageing) project. Exp Gerontol 46(11):934-945.

Smith JD (2002) Apolipoproteins and aging: emerging mechanisms. Ageing Res Rev 1: 345–365.

Soares P, Achilli A, Semino O, Davies W, Macaulay V, Bandelt HJ, Torroni A, Richards MB (2010) The archaeogenetics of Europe. Curr Biol 20(4):R174-83.

Tanaka M, Gong JS, Zhang J, Yoneda M, Yagi K (1998) Mitochondrial genotype associated with longevity. Lancet 351:185–186

Torroni A, Bandelt HJ, Macaulay V, Richards M, Cruciani F, Rengo C, Martinez-Cabrera V, Villems R, Kivisild T, Metspalu E, Parik J, Tolk HV, Tambets K, Forster P, Karger B, Francalacci P, Rudan P, Janicijevic B, Rickards O, Savontaus ML, Huoponen K, Laitinen V,

Koivumäki S, Sykes B, Hickey E, Novelletto A, Moral P, Sellitto D, Coppa A, Al-Zaheri N, Santachiara-Benerecetti AS, Semino O, Scozzari R (2001) A signal, from human mtDNA, of postglacial recolonization in Europe. Am J Hum Genet 69(4):844-52.

Tranah GJ (2011) Mitochondrial-nuclear epistasis: implications for human aging and longevity. Ageing Res Rev 10(2):238-52.

Wright S (1932) The roles of mutation, inbreeding, crossbreeding, and selection in evolution. In Proceedings of the Sixth International Congress on Genetics, pp. 355–366.

COUNTRIES (N. of sample)	$\epsilon 2 + \epsilon 2$	$\epsilon 2 + \epsilon 3$	$\epsilon 2 + \epsilon 4$	$\epsilon 3 + \epsilon 3$	$\epsilon 4 + \epsilon 3$	$\epsilon 4 + \epsilon 4$
BELFAST (127)	0	20	1	80	25	1
BELGIUM (152)	1	30	5	92	23	1
BOLOGNA (409)	2	52	2	307	45	1
CALABRIA (229)	1	32	3	172	20	1
DENMARK (844)	4	138	21	495	176	10
FINLAND (291)	2	29	6	181	66	7
GERMANY (181)	4	29	5	106	34	3
GREECE (179)	0	24	2	135	18	0
MONTPELLIER (527)	4	83	8	340	85	7
NETHERLAND (323)	2	53	7	206	50	5
NEWCASTLE (193)	0	32	6	116	38	1
POLAND (246)	1	32	0	179	33	1
ROMA (140)	0	19	2	102	17	0
SASSARI (89)	0	3	0	76	10	0
UKRAINA (91)	0	14	1	65	10	1

Table 1 Distribution of APOE alleles in the different countries.

COUNTRIES (N. of sample)	Н	HV	Ι	J	K	Т	U	W	X	OTHER
BELFAST (127)	65	11	1	14	14	9	11	2	0	0
BELGIUM (152)	66	5	2	15	14	19	17	7	2	5
BOLOGNA (409)	179	30	5	29	29	43	58	7	17	12
CALABRIA (229)	95	12	8	22	22	18	26	6	9	11
DENMARK (844)	389	12	18	107	53	92	102	11	14	46
FINLAND (291)	133	4	3	19	18	11	56	14	5	28
GERMANY (181)	71	17	7	20	16	13	29	5	1	2
GREECE (179)	73	15	3	12	14	21	25	6	4	6
MONTPELLIER (527)	249	46	10	42	32	52	70	5	8	13
NETHERLAND (323)	134	20	9	24	33	43	44	7	7	2
NEWCASTLE (193)	75	14	8	24	12	28	23	4	3	2
POLAND (246)	101	24	6	22	7	28	45	5	3	5
ROMA (140)	60	15	3	9	9	22	13	0	4	5
SASSARI (89)	42	7	0	9	4	7	13	2	1	4
UKRAINA (91)	44	3	3	9	10	6	13	2	1	0

Table 2 Distribution of mtDNA haplogroups in the different populations.

Figure 10 Odds ratio and confidence interval (95%) for APOE allele ε 4 distribution in nonagenarians and controls in the different population.

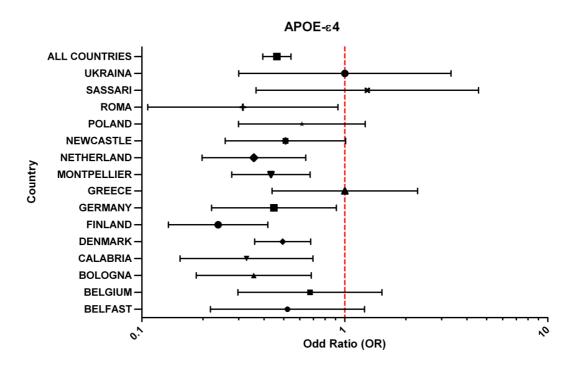
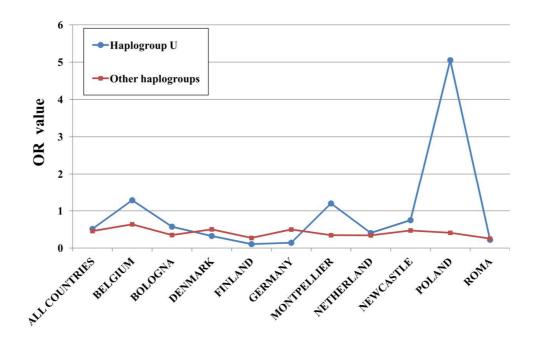
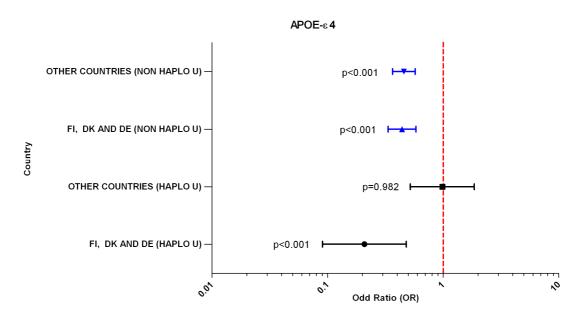




Figure 2 Odds ratio value for APOE ϵ 4 allele carriers in subjects with U and non U mtDNA molecules in each country.

Figure 3 Odds ratio and confidence interval (95%) for APOE allele ɛ4 carriers in subjects with U and non U mtDNA molecules in groups of populations pooled according to Figure 2.

CHAPTER 4

4.1 Two-stage case-control association study of candidate genes and human longevity.

Di Cianni F,¹ Campa D², Tallaro F¹, Rizzato C², Barale R,³, Passarino G¹, Canzian F², Gemignani F³, Montesanto A¹, Landi S.³, Rose G¹*.

1 Department of Cell Biology, University of Calabria, Rende, Italy

2 DKFZ, Heidelberg, Germany.

3 Department of Biology, University of Pisa, Pisa Italy

*Corresponding Author

Giuseppina Rose

Department of Cell Biology

University of Calabria

87036 Rende

Italy

Tel. + 390984492931

Fax +390984492911

Email pinarose@unical.it

Abstract

Human lifespan is determined in part by genetic factors. The pathways that regulate energy homeostasis, the mechanisms of damage repair, and the signaling response to internal environmental changes or external signals have been shown to be critical in modulating lifespan of model organisms and humans. We performed a two-stage case-control study in two samples from Calabria (Italy) to identify variants that contribute to survival at very old ages. Singlenucleotide polymorphisms (SNPs) were selected from genes encoding components of several metabolic pathways with known or supposed biological relevance to aging and longevity. In stage 1, 317 SNPs in 105 genes were analyzed in 78 cases (subjects older than 90 years) and 71 controls. In stage 2, 29 candidate SNPs identified in stage 1 (nominal p-value<0.15) were analyzed in an independent sample composed by 288 cases and 554 controls(subjects younger than 90 years). Two SNPs, rs282070 on intron 1 of MAP3K7 gene, and rs2111699 on intron 1 of GSTZ1 gene, were significantly associated with survival at advance age after adjustment for multiple testing in stage 2 ($P = 4.72 \times 10^{-4}$ and 0.001 respectively). Interestingly, both genes are implicated in the cellular response to internal and external environmental changes, thus playing a crucial role in the inflammation processes that accompany aging. Our data, confirm that longlived subjects are endowed with genetic variants that allow them to optimize these cellular responses, and to better deal with environmental and internal stresses.

Key words: longevity; two-stage analysis; single-nucleotide polymorphisms;

Introduction

Over the past decades developed societies have experienced a gradual increase in life expectancy which sharply increased the percentage of elderly people in the population, and, at the same time, increased the number of subjects which are not autonomous and are affected by invalidating pathologies (Vaupel, 2010). Since this has important implications, especially from a social point of view, there is at present a considerable interest in understanding how individuals achieve a long and healthy life.

The determinants of human lifespan are multifactorial: environmental conditions (education, socio-economic status, and lifestyle choices such as diet, smoking habits, etc.), and the individual genetic make-up are the main factors responsible of the age-related changes in cell and tissue structure and function, that, inexorably, lead the organism to a condition of greater susceptibility and vulnerability to disease, and, ultimately, to death.

Family-based studies demonstrated the existence of a strong familial and genetic component of longevity. Indeed, parents, siblings and offspring of long-lived subjects have a significant survival advantage and a higher probability to have been or to became long-lived (Gudmundsson et al. 2000; Kerber et al. 2001; Cournil and Kirkwood 2001; Perls et al. 2000; Perls et al. 2002; Schoenmaker et al. 2006; Willcox et al. 2006). Moreover, they have a lower incidence of age related diseases and a higher degree of physical functioning and autonomy, when compared to appropriate selected controls (Terry et al. 2003; Terry et al. 2004; Atzmon et al. 2006). Studies comparing life span in twins have found that approximately 25% of the overall variation in human lifespan can be attributed to genetic factors (Herskind et al. 1996; Ljungquist et al. 1998; Skytthe et al. 2003), which become more relevant at advanced ages (Hjelmborg et al. 2006).

In the past several years, there has been a surge of activity aimed at unraveling the genetic processes that play key roles in aging and lifespan. Specific mutations in single genes (age-1,

daf2, sir2, methusela, p66) that extend or decrease lifespan in nematode worms (C. elegans), fruit flies (Drosophila), and mice, have revealed evolutionary, often interconnected, conserved pathways for aging which are related to nutritional sensing, stress response signalling, and DNA repair/maintenance (Kenyon 2010; Fontana et al. 2010). The insulin/insulin-like growth factor-I (IGF-I) signalling pathway, and downstream effectors such as the foxhead box O group (FoxO) family, the sirtuin family, the target of rapamycin (TOR) kinase, are perhaps the best studied pathway involved in aging and longevity.

Research in human longevity mainly focused on the orthologues of such candidate loci. Genetic association studies of centenarians or long-lived subjects, as well as functional studies, have been successful in identifying specific genes that influence variation in human lifespan, and in highlighting genotypes that can increase or decrease the individual probability to reach advanced age. Several reviews are now available that summarize and analyze gene variants associated with long life in humans (Christensen et al. 2006; Bonafè and Olivieri 2009; Chung et al. 2010; Slagboom et al. 2011). Particular striking examples include GH/IGF-1/Insulin signalling (*GHR*, *IGF1R*, *FOXO3A*), antioxidant (*SOD1*, *SOD2*, *PON1*, *FOXO3A*), inflammatory (*IL6*, *CETP*, *Klotho*) pathways, silencing genes (*SIRT1 and SIRT3*), elements of lipid metabolism (*APOE*, *APOB*, *ACE*, *APOC3*), to cite some of them.

Until recently, almost all gene-longevity association studies have focused on a single or few candidate genes. However, given the complexity of the longevity trait, single-locus methods may not be suitable, since it is likely that loci contribute to the trait by their epistatic interaction with other genes, while main effects of the individual loci may be small or absent. Thus, approaches have been developed that take into account that complex traits can be caused by an intricate pattern of genetic variants. Recent technological improvements in genotyping technology have made whole genome genotyping (> 100,000 SNPs) more accessible. Indeed, genome-wide association studies (GWAS) are at present widely used to find genetic variants contributing to variation in human lifespan (Puca et al. 2001; Lunetta et al. 2007; Newman et al. 2010; Walter et al. 2011; Deelen et al. 2011; Nebel et al. 2011; Malovini et al. 2011). Along

with GWAS, studies that consider candidate biochemical pathway consisting of many genes biologically related, and a minimal number of "tagging" SNPs that efficiently captures all the common genetic variation in the assayed genomic region, are also being routinely used (Nebel et al. 2009; Pawlikowska et al. 2009; Flachsbart et al. 2010). Taken together, these studies highlighted that the variation of several genes contribute to human longevity, although replication has often failed in independent studies in different populations. Exceptions are the APOE and FOXO3A genes, (Deelen et al. 2011; Nebel et al. 2011; Willcox et al. 2008; Anselmi et al. 2009; Flachsbart et al. 2009; Li et al. 2009). The lack of replication may be due to statistical limitations of large-scale association studies that require a large number of long-lived or centenarian subjects for adequate power. In addition, replication may be hampered by the fact that longevity genes can be population-specific (De Benedictis and Franceschi 2006).

In the last years, two-stage study designs have been proposed as an efficient means of addressing these challenges. In a typical two-stage design for association study, a first sample (stage 1) is used to test a large number of SNPs and only those showing some hint of association are subsequently re-tested in a second sample (stage 2), thus reducing the number of association tests. The second sample may be considered as a replication study (Zuo et al. 2006; Satagopan et al. 2003; Satagopan et al. 2004; Thomas et al. 2004; Skol et al. 2007; Zheng et al. 2008).

Here, using a two-stage approach, we performed a targeted investigation of selected genes involved in longevity pathways (DNA repair, apoptosis and cell cycles regulation, metabolism of xenobiotics, insulin /IGF-1, neuromodulation). Altogether, we tested 317 single nucleotide polymorphisms (SNPs) in 105 candidate genes for association with the longevity phenotype in two samples from South Italy for a total 366 long-lived (nonagenarians and centenarians) and 625 younger subjects.

Materials and Methods

Sample

Our initial sample (stage 1) was recruited between 1994 and 1997 in Calabria (southern Italy) and included a sample of 149 unrelated subjects of which 78 were considered as cases (\geq 90 years; mean age 97.4 ±3.2 years, 36 males and 42 females) and 71 as controls (< 90 years; mean age 70.0 ± 9.9 years, 39 males and 32 females). The replication study (stage 2) consisted of 288 cases (\geq 90 years; mean age 93.7 ± 4.0 years, 125 males and 163 females) and 554 controls (< 90 years; mean age 58.3 ± 20.0 years, 277 males and 277 females) recruited subsequently between 2005 and 2008, also in Calabria. Study participants, their parents, and grandparents were all born in Calabria, as ascertained from population registers.

Younger subjects were contacted through general physicians. Subjects older than 90 years were identified by screening of population registers in different municipalities distributed across the entire Calabria region. Subjects who were eligible for the study were contacted and asked for participating in the study. A written informed consent was obtained from all participants before enrolling in the study. The healthy status was ascertained by medical visit carried out by a geriatrician who also administered a structured questionnaire validated at European level. The questionnaire was aimed to the collection of socio-demographic information, evaluation of physical and cognitive status, medications, and information on common diseases occurred in the past. Subjects with dementia and/or neurologic disorders were not included. At the time of the visit, peripheral venous blood samples were also obtained. White blood cells (WBC) from blood buffy coats were used as source of DNA.

Candidate gene and SNP selection

Candidate genes were chosen from genetic pathways related to DNA repair, apoptosis and cell cycles regulation, metabolism of xenobiotics, insulin/IGF-1. The selection was based on their

biological relevance, and on published reports indicating their involvement in aging and longevity in either model organisms or humans. Using keywords as "aging AND longevity", "human aging", "human longevity", "aging AND model organism", a range of online databases were employed including pubmed (http://www.ncbi.nlm.nih.gov/pubmed/), GenAge (http://genomics.senescence.info/genes)/. Additionally, pathway analysis tools, such as "Biocarta" and "Kegg" were used for identification of pathway-specific genes.

The chromosomal region encompassing the candidate genes were identified through the databases http://www.ncbi.nlm.nih.gov/ (gene and mapview), http://www.ensembl.org/index.html. The gene region was defined as the region from up to 5Kb upstream of the translation start site to up to 5Kb downstream of the translation stop site, allowing no overlap with the neighboring genes. In the choice of candidate SNPs we availed of different online databases (es: http://www.ncbi.nlm.nih.gov/projects/SNP; http://www.ensembl.org/index.html; http://www.hapmap.org/cgi-perl/gbrowse/hapmap).

SNPs selection was based on the following criteria: minor allele frequency (MAF) > 10% in caucasian, coding SNPs and SNPs having potential functional impact (non-synonymous SNPs, SNPs located in potential regulatory region), SNPs previously identified in relevant association studies. Tagging SNPs were selected with the use of the Tagger program within Haploview (http://www.broad.mit.edu/mpg/haploview/; http://www.broad.mit.edu/mpg/tagger/; de Bakker et al., 2005), using pairwise tagging with a minimum r2 of 0.8.

In total 105 genes composing the above mentioned pathways, and 317 SNPs were identified. The complete list of genes, SNPs and other relevant information is provided in Supplementary Table S1

Genotyping

Genotyping of samples in stage 1 was carried out using a microarray technique based on the arrayed primer extension (APEX) (Kurg et al. 2000).

Genotyping of samples in stage 2 was carried out using an allele-specific PCR-based KASPar SNP genotyping system (KBiosciences, Hoddesdon, UK) (Cuppen 2007).

Genotyping quality control procedures consisted of inclusion of duplicates, and inclusion of both positive and negative (water blanks) controls in each assay reaction.

Quality-control

After genotype calling, in order to check errors at genotypic level, the dataset was subjected to a battery of quality-control (QC) tests. In particular, SNPs were excluded if they had (1) a significant deviation from Hardy-Weinberg equilibrium (HWE, p<0.001) in the control group, (2) a missing frequency (MiF) higher than 20%, and (3) a frequency of rare allele (MAF) <1%.

Statistical analyses

Single SNP analysis

Two different genetic association tests were adopted in the present study. In stage 1 the chisquare test was used to assess the association between the variability of the analysed polymorphisms and human longevity, while in the stage 2 the *MAX* test was used (Freidlin et al.2002; Zang et al.2010) As it regards the stage 1 association analysis, before to apply the chisquare test, each genotypic variable was first coded with respect dominant, recessive and heterozygote disadvantage/advantage model. For each of these models the corresponding chisquare value was obtained. The maximum of these three chi-square values (χ^2_{MAX}) was used as a measure of association between the polymorphism and the analyzed phenotype:

 $\chi^2_{MAX} = max(\chi^2_{DOM}, \chi^2_{REC}, \chi^2_{HET})$

where χ^2_{DOM} , $\chi^2_{\text{REC AND}} \chi^2_{\text{HET}}$ represent the three chi-square statistics assuming a dominant, recessive and an heterozygote disadvantage/advantage model of inheritance of the analyzed polymorphism. The p-value of the proposed test statistics was obtained by the Monte-Carlo procedure described in Ziegler and König (2010).

As mentioned before, in stage 2 the *MAX* test, originally proposed by Freidlin et co-workers (2002) was adopted. The *MAX* test (or *MAX3* test) takes the maximum of three Cochran-Armitage Trend Tests (Z_{REC} , Z_{ADD} , Z_{DOM}) and it is given by:

$$MAX = MAX\{|Z_{Rec}|, |Z_{Add}|, |Z_{Dom}|\}$$

where Z_{REC} , Z_{ADD} , and Z_{DOM} represent the three Cochran-Armitage Trend Test statistics assuming a recessive, additive or dominant mode of inheritance of the analyzed polymorphism. In order to estimate the p-value of *MAX*, a simple algorithm to calculate its asymptotic null distributions was recently suggested by Zang and co-workers (2010) was used.

In the present study the χ^2_{MAX} test (maximum of three different chi-square tests) was used in stage 1 to assess the associations between the selected markers (M=317) and the analysed phenotype. Then, the χ^2_{MAX} values were ranked and a proportion $\pi_{markers}$ of the top-ranked polymorphisms (p-value<0.15), corresponding approximately to the 10% of the initial set of SNPs (first decile), was selected for stage 2 analysis. By following the standard strategy to consider the stage 2 data as a replication study, we tested for association using the *MAX* test, adopting the Bonferroni-corrected significance level $\alpha/(\pi_{markers}*M)$.

Interaction analysis

In order to capture gene-gene interactions we availed of the Model-Based Multifactor Dimensionality Reduction (MB-MDR) method recently developed by Calle and co-workers (2010). It is an extension of the popular Multifactor Dimensionality Reduction (MDR) method in which risk categories are defined using a regression model that also allows adjustments for main effects and covariates. By this approach, first, a logistic regression analysis is performed to define multilocus genotypes categorized as high (H), low (L) or no risk (0). Then, this multilocus genotypes of the same risk category are merged and two Wald statistics (WH and WL, one for each risk) with the relevant p-values (PH and PL) are obtained. The significance for the epistatic effect is be based on the minimum between PH and PL (MIN.P). Finally, the significance of a specified model is assessed through a permutation test on the maximum Wald statistic and implemented in the function mbmdr.PermTest of MB-MDR package.

In the present study we applied the MB-MDR algorithm to the stage 2 dataset. The permutation procedure (10,000 permutations) was applied to the interaction models with a MIN.P<0.05.

Results

Dataset Stage 1

Initially, 317 SNPs from 105 candidate genes (see Supplementary Table S1) were genotyped in 78 cases and 71 controls. After the QC phase, the final number of analysed polymorphisms in Stage 1 was 235. In particular, 49 SNPs were excluded from the analysis because of a significant deviation from HWE. 30 SNPs were excluded from the analysis because of a MiF value higher than 20%. Finally, 3 SNPs were excluded on the basis of MAF criterion (<1%). The cleaned dataset was then analyzed for association with longevity by using the χ^2_{MAX} test.

Single-locus analysis

The following Manhattan plot (Figure.1) displays the p-values computed on the basis of the χ^2_{MAX} test with respect to the analyzed polymorphisms.

Table 1 reports the list of the top-ranked SNPs (p-value<0.15) obtained according to the association results (χ^2_{MAX}) and corresponding approximately to the top decile of the initial set of SNPs.

Dataset Stage 2

The 31 selected SNPs were genotyped in the additional 288 cases and 554 controls in the subsequent Stage 2. Two SNPs were excluded from the following association analysis because of a MiF value higher than 20%.

As mentioned in "Materials and Methods" section, the cleaned dataset was then analyzed for association with longevity by using the *MAX* test. In Table 2 the association results of the 29 selected SNPs ranked on the basis of their estimated p-values are reported.

From Table 2, it can be easily be seen that there is a major peak on the chromosome 6 with a p-value equal to 4.72×10^{-4} (rs282070). This SNP is located in *MAP3k7* gene. Another peak can be seen on chromosome 14 with a p-value equal to 0.001 (rs2111699). This SNP is located in *GSTZ1* gene. Also after the Bonferroni correction both the associations between the above mentioned variations and human longevity remained statistically significant (p-value < 0.05/29).

Interaction analysis.

Table 3 reports the significant second-order interactions results (p<0.05) in the Stage 2 dataset from the MB-MDR analysis.

In this table for each interaction model a permutation testing was performed for each of the topranked models (MIN.P <0.05) by permuting the outcome variable calling the *mbmdr.PermTest* function of the *mbmdr* package (10,000 permutations). By this approach we found that all these interactions resulted to be highly significant (P \leq 0.05). However, after a Bonferroni correction for multiple testing no significant differences remained.

Discussion

In the present study, we have investigated possible associations between longevity and 317 SNPs in 105 candidate genes involved in the regulation of aging related biological pathways. For testing associations we used a two-stage design, an approach that has proven useful for the identification of a number of genetic variants associated with pathological phenotypes such as

cancer, Crohn's Disease, migraine (Milne et al. 2006; Beckly et al. 2008; Corominas et al. 2009). To improve the efficiency of this study design, we used two robust tests which are powerful when the underlying genetic model is unknown, and which were successfully applied to genome-wide association studies (Joo et al. 2005; Tian et al. 2005; Zheng et al. 2007; Sladek et al. 2007; Li et al. 2008a; 2008b).

We found that two SNPs, rs282070 on intron 1 of *MAP3K7* gene, and rs2111699 on intron 1 of *GSTZ1* gene, were significantly associated with survival at advance age after Bonferroni correction.

MAP3K7 (also known as TAK1, Transforming growth factor- β activated kinase-1) is a serine/threonine kinase, member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, which plays a crucial role in interleukin 1 (IL-1), tumor necrosis factor (TNF), and Toll-like receptor (TLR) signaling pathways. Various stressors and inflammatory cytokines trigger the activation of MAP3K7 which in turn activates key intra-cellular kinases such as the p38 MAPK, c-jun N-terminal kinase (JNK) and I-kappa B kinase complex (IKK). These pathways ultimately activate transcription factors nuclear factor-kappa B (NF-KB) and activator protein-1 (AP-1) which are critical regulators of genes of the immune-inflammatory responses (Ninomiya-Tsuji et al. 1999; Sato et al. 2005; Chen et al. 2006; Landström 2010). Studies have also demonstrated that the oxidative stress caused by reactive oxygen species (ROS) may induce or mediate the activation of the MAPK pathways, including the one mediated by MAP3K (Son et al. 2011 for a review). In particular, Omori and colleagues (2008) reported that MAP3K7 regulates the levels of ROS and prevent inflammation. Thus, MAP3K7 may be considered as a primary factor in the cascade of intracellular events initiated by environmental and/or physiological stressors that induce cells to survive or to die, and therefore may be important for regulating aging. However, although several components of MAPK signaling pathways play important roles in the regulation of cellular senescence (Maruyama et al. 2009; Debacq-Chainiaux et al. 2010), and have been also implicated in the pathogenesis of many human diseases (Kim and Choi 2010), no data has been documented so far about the

influence of MAP3K7 on human aging and longevity. The results of our study provide the first evidence of such an influence with the rs282070 positively affecting longevity in a dominant manner.

It is intriguing that the second gene, *GSTZ1*, we have identified as playing a role in longevity is also implicated in the cellular response to environmental insults. *GSTZ1* is in fact a member of glutathione S-transferase (GSTs) superfamily of multifunctional enzymes which are involved in the cellular detoxification, via conjugation with glutathione (GSH) of a wide range of endogenous and exogenous toxic compounds, and various reactive products generated under oxidative stress. Diverse cellular functions, ranging from apoptosis to cell survival, are also modulated by GSTs (Nebert et al. 2004; Hayes et al. 2005; Laborde 2010).

The GSTs comprise three families of genes designed as cytosolic, mitochondrial, and microsomal transferase. The cytosolic GSTZ class of GSTs is expressed in many eukaryotic species, including fungi, plants, insects, and mammals (Board et al. 1997). Human GSTZ1, which is identical to maleylacetoacetate isomerase, catalyses two distinct reactions: the biotransformation of a range of α -haloacids, including dichloroacetic acid (DCA), a drinking water contaminant, and the GSH-dependent isomerisation of maleylacetoacetate to fumarylacetoacetate, the penultimate step in the Phenylalanine–Tyrosine catabolic pathway (Board et al. 2005; Board and Anders 2011). Analysis of Gstz1-knockout mice provided more insight about the physiological role of Gstz1. Besides a range of pathological changes, $Gstz1^{-/-}$ mice display the induction of some of the cytosolic GST isoenzymes, and the constitutive expression of genes that are regulated by antioxidant-response elements (AREs) and that respond to oxidative stress via the Keap1/Nrf2 signaling pathway, which regulates the expression of numerous detoxifying and antioxidant genes (Lim et al. 2004; Lee and Johnson 2004;). All of these findings support the view that the lack of GSTZ1 may induce oxidative stress (Blackburn et al. 2006). The antioxidant role of GSTs is well known and derives essentially from their ability to regulate the concentration of GSH, the most powerful cellular antioxidant, in different cellular compartments including mitochondria, the principal source and target of ROS. For instance, specific mitochondrial GST isoforms are able to protect mitochondria from oxidative insults either indirectly by maintaining appropriate levels of GSH or directly by reducing cellular peroxides and reactive aldehydes, such as 4-hydroxynonenal (HNE), generated from lipid peroxidation (Raza 2011). The recent discovery that GSTZ1 also localizes in mitochondria (Li et al. 2011), leads to assume that GSTZ1 may also contribute to the cellular redox status, and then may be relevant to aging and longevity. Interestingly Starr et colleagues (2008) showed that the *GSTZ1* R42G variant affects both telomere length, a biomarker of stress and aging, and physical aging and suggest that this may occur through oxidative stress. Moreover it has been shown that the *GSTZ1*- 1002 G>A variant influences cognitive ability in the elderly, probably because of its effect on dopamine production and dopamine by-product disposal (Starr et al. 2008). In our study, the rs2111699 resulted to be significant associated to the longevity phenotype. It seems to act in a recessive manner, with the minor allele favoring survival at very old age. To our knowledge this is the first study reporting an association between *GSTZ1* genetic variability and human survival.

Overall, based on our an previous data, it can be concluded that *MAP3K7* and *GSTZ1* are longevity genes whose variability actually affects the organism's chances of reaching advanced age.

As the rs282070 in *MAP3K7* and the rs2111699 in *GSTZ1* are intronic, their functional significance is unclear. It is possible that these SNPs are located in regions containing cisregulatory elements essential for gene expression, and that the allelic variants differently affect the transcriptional rate, but linkage disequilibrium (LD) of these SNPs with other functional variants it also possible. This is an interesting issue that needs to be investigated in future research. Nevertheless, we believe that our results reinforce the view that the immune, inflammatory and stress responses, which are essential components of the body's network of defense against external and internal damaging agents, play an essential role in life span and in age-related phenotypes.

In the 2000 Franceschi and colleagues used the term inflamm-aging to indicate that aging is accompanied by an age-dependent up-regulation of the inflammatory response due to the lifelong chronic antigenic load which impinges upon the immune system (immunosenescence), and is associated with increased morbidity and mortality rates in the elderly. In fact, chronic inflammation has been implicated in the pathogenesis of chronic age-related diseases including Alzheimer's disease, atherosclerosis, diabetes, and even cancer (Franceschi et al. 2000; Franceschi et al. 2007); on the contrary, studies of centenarians showed that variations in several pro- or anti-inflammatory molecules influence successful aging and longevity, and that longevity is partially due to the capability of maintaining an inflammatory response at relatively low level of intensity (Bonafè et al. 2001; Lio et al. 2002; Capri et al. 2006; Iannitti and Palmieri, 2011). There is a close link between inflammation and oxidative stress, in fact an excessive production of ROS can induce an inflammatory response. This fits in the frame of the free-radical theory of aging, developed in 1956, which asserts that free radical damages are responsible of many of the changes occurring over time. The recently proposed oxidationinflammatory theory of aging (De la Fuente and Miquel 2009), brings together the concepts above mentioned, highlighting the key involvement of the immune/ inflammatory/oxidative stress axis in the rate and quality of aging. Our finding that the variability of two genes working along this axis promotes survival at very old age agrees with the above, and

confirms that long-lived subjects are equipped with gene variants that allow them to optimize the cellular response to environmental and internal stresses.

References

Anselmi CV, Malovini A, Roncarati R, Novelli V, Villa F, Condorelli G, Bellazzi R, Puca AA (2009) Association of the FOXO3A locus with extreme longevity in a southern Italian centenarian study. Rejuvenat Res 12, 95–104.

Atzmon G, Rincon M, Schechter CB, Shuldiner AR, Lipton RB, Bergman A, Barzilai N (2006) Lipoprotein genotype and conserved pathway for exceptional longevity in humans. PLoS Biol 4 (4): e113. Beckly JB, Hancock L, Geremia A, Cummings JR, Morris A, Cooney R, Pathan S, Guo C, Jewell DP (2008) Two-stage candidate gene study of chromosome 3p demonstrates an association between nonsynonymous variants in the MST1R gene and Crohn's disease. Inflamm Bowel Dis 14(4):500-7.

Blackburn AC, Matthaei KI, Lim C, Taylor MC, Cappello JY, Hayes JD, Anders MW, Board PG (2006) Deficiency of glutathione transferase zeta causes oxidative stress and activation of antioxidant response pathways. Mol Pharmacol 69(2):650-7.

Board PG, Anders MW (2011) Glutathione transferase zeta: discovery, polymorphic variants, catalysis, inactivation, and properties of Gstz1-/- mice. Drug Metab Rev 43(2):215-25.

Board PG, Anders MW (2005) Human glutathione transferase zeta. Methods Enzymol 401:61–77

Board PG, Baker RT, Chelvanayagam G, Jermiin LS (1997) Zeta, a novel class of glutathione transferases in a range of species from plants to humans. Biochem J 328:929–935.

Bonafè M, Olivieri F (2009) Genetic polymorphism in long-lived people: cues for the presence of an insulin/IGF-pathway-dependent network affecting human longevity. Mol Cell Endocrinol 299(1):118-23.

Bonafè M, Olivieri F, Cavallone L, Giovagnetti S, Mayegiani F, Cardelli M, Pieri C, Marra M, Antonicelli R, Lisa R, Rizzo MR, Paolisso G, Monti D, Franceschi C (2001) A gender-dependent genetic predisposition to produce high levels of IL-6 is detrimental for longevity. Eur J Immunol 31(8):2357-61.

Calle ML, Urrea V, Malats N, Van Steen K (2010) mbmdr: an R package for exploring gene-gene interactions associated with binary or quantitative traits. Bioinformatics 26(17):2198-9.

Capri M, Monti D, Salvioli S, Lescai F, Pierini M, Altilia S, Sevini F, Valensin S, Ostan R, Bucci L, Franceschi C (2006) Complexity of anti-immunosenescence strategies in humans. Artif Organs 30(10):730-42.

Chen ZJ, Bhoj V, Seth RB (2006) Ubiquitin, TAK1 and IKK: is there a connection? Cell Death Differ 13:687–692.

Christensen K, Johnson TE, Vaupel JW (2006) The quest for genetic determinants of human longevity: challenges and insights. Nat Rev Genet 7(6):436-48.

Chung WH, Dao RL, Chen LK, Hung SI (2010) The role of genetic variants in human longevity. Ageing Res Rev 9 Suppl 1: S67-78.

Corominas R, Ribases M, Camiña M, Cuenca-León E, Pardo J, Boronat S, Sobrido MJ, Cormand B, Macaya A (2009) Two-stage case-control association study of dopamine-related genes and migraine. BMC Med Genet 10:95.

Cournil A, Kirkwood TB (2001) If you would live long, choose your parents well. Trends Genet 17(5): 233–5.

Cuppen E. Genotyping by Allele-Specific Amplification (KASPar) (2007) CSH Protoc 2007:pdb.prot4841. doi: 10.1101/pdb.prot4841.

de Bakker PI, Yelensky R, Pe'er I, Gabriel SB, Daly MJ, Altshuler D (2005) Efficiency and power in genetic association studies. Nat Genet 37: 1217-23.

De Benedictis G, Franceschi C (2006). The unusual genetics of human longevity. Sci. Aging Knowledge Environ. 10, pe20.

De la Fuente M, Miquel J (2009) An update of the oxidation-inflammation theory of aging: the involvement of the immune system in oxi-inflamm-aging. Curr Pharm Des 15(26):3003-26.

Debacq-Chainiaux F, Boilan E, Dedessus Le Moutier J, Weemaels G, Toussaint O (2010) p38(MAPK) in the senescence of human and murine fibroblasts. Adv Exp Med Biol 694:126-37.

Deelen J, Beekman M, Uh HW, Helmer Q, Kuningas M, Christiansen L, Kremer D, van der Breggen R, Suchiman HE, Lakenberg N, van denkker EB, Passtoors WM, Tiemeier H, van Heemst D, de Craen AJ, Rivadeneira F, de Geus EJ, Perola M, van der Ouderaa FJ, Gunn DA, Boomsma DI, Uitterlinden AG, Christensen K, van Duijn CM, Heijmans BT, Houwing-Duistermaat JJ, Westendorp RG, Slagboom PE (2011) Genome-wide association study identifies a single major locus contributing to survival into old age; the APOE locus revisited. Aging Cell 10(4):686-698.

Flachsbart F, Franke A, Kleindorp R, Caliebe A, Blanché H, Schreiber S, Nebel A (2010) Investigation of genetic susceptibility factors for human longevity – a targeted nonsynonymous SNP study. Mutat Res 694(1-2):13-9.

Flachsbart F, Caliebe A, Kleindorp R, Blanche H, von Eller-Eberstein H, Nikolaus S, Schreiber S, Nebel A (2009) Association of FOXO3A variation with human longevity confirmed in German centenarians. Proc Natl Acad Sci USA 106: 2700–2705.

Fontana L, Partridge L, Longo VD (2010) Extending Healthy Life Span—From Yeast to Humans. Science 328(5976):321-6.

Franceschi C, Capri M, Monti D, Giunta S, Olivieri F, Sevini F, Panourgia MP, Invidia L, Celani L, Scurti M, Cevenini E, Castellani GC, Salvioli S (2007) Inflammaging and antiinflammaging: a systemic perspective on aging and longevity emerged from studies in humans. Mech Ageing Dev 128(1):92-105.

Franceschi C, Bonafe M, Valensin S, Olivieri F, De Luca M, Ottavini E, De Benedictis G (2000). Inflamm-aging. An evolutionary perspective on immunosenescence. Ann NY Acad Sci 908: 244–254.

Freidlin B, Zheng G, Li Z, Gastwirth JL (2002) Trend tests for case-control studies of genetic markers: power, sample size and robustness. Hum Hered 53(3):146-52.

Gudmundsson H, Gudbjartsson DF, Frigge M, Gulcher JR, Stefansson K (2000) Inheritance of human longevity in Iceland. Eur J Hum Genet 8 (10):743–749.

Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88.

Herskind AM, McGue M, Holm NV, Sorensen TI, Harvald B, Vaupel JW (1996) The heritability of human longevity: a population based study of 2872 Danish twin pairs born 1870 \pm 1900. Hum Genet 97: 319-323.

Hjelmborg vB J, Iachine I, Skytthe A, Vaupel JW, McGue M, Koskenvuo M, Kaprio J, Pedersen NL, Christensen K (2006) Genetic influence on human lifespan and longevity. Hum Genet 119: 312–321.

Iannitti Tommaso, Beniamino Palmieri (2011) Inflammation and Genetics: An Insight in the Centenarian Model Human Biology 83(4): 531-559.

Joo J, Tian X, Zheng G, Lin JP, Geller NL (2005). Selection of single-nucleotide polymorphisms in disease association data. BMC Genet 6:S93. doi: 10.1186/1471-2156-6-S1-S93.

Kenyon CJ (2010) The genetics of ageing. Nature 464 (7288): 504-12.

Kerber RA, O'Brien E, Smith KR, Cawthon RM (2001) Familial excess longevity in Utah genealogies. J Gerontol A Biol Sci Med Sci 56 (3): B130–B139.

Kim EK, Choi EJ (2010) Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta 1802(4):396-405.

Kurg A, Tõnisson N, Georgiou I, Shumaker J, Tollett J, Metspalu A (2000) Arrayed primer extension: solid-phase four-color DNA resequencing and mutation detection technology. Genet Tes 4(1):1-7.

Laborde E (2010) Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death and Differentiation 17: 1373–1380.

Landström M (2010) The TAK1–TRAF6 signalling pathway. The International Journal of Biochemistry & Cell Biology 42: 585–589.

Lee JM, Johnson JA (2004) An important role of Nrf2-ARE pathway in the cellular defense mechanism. J Biochem Mol Biol 37(2):139-43.

Li Q, Yu K, Li Z, Zheng G (2008a) MAX-rank: a simple and robust genome-wide scan for case-control association studies. Human Genetics 123:617–623.

Li Q, Zheng G, Li Z, Yu K (2008b) Efficient approximation of P-value of the maximum of correlated tests, with applications to genome-wide association studies. Annals of Human Genetics 72:397-406.

Li W, James MO, McKenzie SC, Calcutt NA, Liu C, Stacpoole PW (2011) Mitochondrion as a novel site of dichloroacetate biotransformation by glutathione transferase zeta 1. J Pharmacol Exp Ther 336(1):87-94.

Li Y, Wang WJ, Cao H, Lu J, Wu C, Hu FY, Guo J, Zhao L, Yang F, Zhang YX, Li W, Zheng GY, Cui H, Chen X, Zhu Z, He H, Dong B, Mo X, Zeng Y, Tian XL (2009) Genetic association of FOXO1A and FOXO3A with longevity trait in Han Chinese populations. Hum Mol Genet 18(24):4897-904.

Lim CE, Matthaei KI, Blackburn AC, Davis RP, Dahlstrom JE, Koina ME, Anders MW, and Board PG (2004) Mice deficient in glutathione transferase zeta/ maleylacetoacetate isomerase exhibit a range of pathological changes and elevated expression of alpha, mu and pi class glutathione transferases. Am J Pathol 165:679–693. Lio D, Scola L, Crivello A, Colonna-Romano G, Candore G, Bonafè M, Cavallone L, Franceschi C, Caruso C (2002) Gender-specific association between -1082 IL-10 promoter polymorphism and longevity. Genes Immun 3(1):30-3.

Ljungquist B, Berg S, Lanke J, McClearn GE, Pedersen NL (1998) The effect of genetic factors for longevity: a comparison of identical and fraternal twins in the Swedish Twin Registry. J Gerontol A Biol Sci Med Sci 53(6):M441-6.

Lunetta KL, D'Agostino RB Sr, Karasik D, Benjamin EJ, Guo CY, Govindaraju R, Kiel DP, Kelly-Hayes M, Massaro JM, Pencina MJ, Seshadri S, Murabito JM (2007) Genetic correlates of longevity and selected age-related phenotypes: a genome-wide association study in the Framingham Study. BMC Med Genet 8 (Suppl 1):S13.

Malovini A, Illario M, Iaccarino G, Villa F, Ferrario A, Roncarati R, Anselmi CV, Novelli V, Cipolletta E, Leggiero E, Orro A, Rusciano MR, Milanesi L, Maione AS, Condorelli G, Bellazzi R, Puca AA (2011) Association Study on Long-Living Individuals from Southern Italy identifies rs10491334 in the CAMKIV Gene that regulates Survival. Proteins Rejuvenation Res 14(3):283-91.

Maruyama J, Naguro I, Takeda K, Ichijo H (2009) Stress-activated MAP kinase cascades in cellular senescence. Curr Med Chem 16(10):1229-35.

Milne RL, Ribas G, González-Neira A, Fagerholm R, Salas A, González E, Dopazo J, Nevanlinna H, Robledo M, Benítez J (2006) ERCC4 associated with breast cancer risk: a twostage case-control study using high-throughput genotyping. Cancer Res 66(19):9420-7.

Nebel A, Kleindorp R, Caliebe A, Nothnagel M, Blanché H, Junge O, Wittig M, Ellinghaus D, Flachsbart F, Wichmann HE, Meitinger T, Nikolaus S, Franke A, Krawczak M, Lathrop M, Schreiber S (2011) A genome-wide association study confirms APOE as the major gene influencing survival in long-lived individuals. Mech Ageing Dev 132(6-7):324-30.

Nebel A, Flachsbart F, Till A, Caliebe A, Blanché H, Arlt A, Häsler R, Jacobs G, Kleindorp R, Franke A, Shen B, Nikolaus S, Krawczak M, Rosenstiel P, Schreiber S (2009) A functional EXO1 promoter variant is associated with prolonged life expectancy in centenarians. Mech Ageing Dev 130(10):691-9.

Nebert DW, Vasiliou V (2004) Analysis of the glutathione S-transferase (GST) gene family. Hum Genomics 1:460–464

Newman AB, Walter S, Lunetta KL, Garcia ME, Slagboom PE, Christensen K, Arnold AM, Aspelund T, Aulchenko YS, Benjamin EJ, Christiansen L, D'Agostino RB Sr, Fitzpatrick AL, Franceschini N, Glazer NL, Gudnason V, Hofman A, Kaplan R, Karasik D, Kelly-Hayes M, Kiel DP, Launer LJ, Marciante KD, Massaro JM, Miljkovic I, Nalls MA, Hernandez D, Psaty BM, Rivadeneira F, Rotter J, Seshadri S, Smith AV, Taylor KD, Tiemeier H, Uh HW, Uitterlinden AG, Vaupel JW, Walston J, Westendorp RG, Harris TB, Lumley T, van Duijn CM, Murabito JM (2010) A meta-analysis of four genome-wide association studies of survival to age 90 years or older: the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium. J Gerontol A Biol Sci Med Sci 65(5):478-87.

Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K (1999) The kinase TAK1 can activate the NIK-IkB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398:252–256.

Omori E, Morioka S, Matsumoto K, Ninomiya-Tsuji J (2008) TAK1 regulates reactive oxygen species and cell death in keratinocytes, which is essential for skin integrity. J Biol Chem 283(38):26161-8.

Pawlikowska L, Hu D, Huntsman S, Sung A, Chu C, Chen J, Joyner AH, Schork NJ, Hsueh WC, Reiner AP, Psaty BM, Atzmon G, Barzilai N, Cummings SR, Browner WS, Kwok PY, Ziv E (2009) Association of common genetic variation in the insulin/IGF1 signaling pathway with human longevity. Aging Cell 8(4):460-72.

Perls TT, Wilmoth J, Levenson R, Drinkwater M, Cohen M, Bogan H, Joyce E, Brewster S, Kunkel L, Puca A (2002) Lifelong sustained mortality advantage of siblings of centenarians. Proc Natl Acad Sci USA 99 12: 8442–8447.

Perls T, Shea-Drinkwater M, Bowen-Flynn J, Ridge SB, Kang S, Joyce E, Daly M, Brewster SJ, Kunkel L, Puca AA (2000) Exceptional familial clustering for extreme longevity in humans. J Am Geriatr Soc 48 11:1483–1485.

Puca AA, Daly MJ, Brewster SJ, Matise TC, Barrett J, Shea-Drinkwater M, Kang S, Joyce E, Nicoli J, Benson E, Kunkel LM, Perls T (2001) A genome-wide scan for linkage to human exceptional longevity identifies a locus on chromosome 4. Proc Natl Acad Sci U S A 98(18):10505-8.

Raza H (2011) Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J 278(22):4243-51. doi: 10.1111/j.1742-4658.2011.08358.x.

Satagopan JM, Elston RC (2003) Optimal two-stage genotyping in population based association studies. Genetic Epidemiology 25:149-157.

Satagopan JM, Venkatraman ES, Begg CB (2004) Two-stage designs for gene disease association studies with sample size constraints. Biometrics 60:589-597.

Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S (2005) Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immuno 16:1087–1095.

Schoenmaker M, de Craen AJ, de Meijer PH, Beekman M, Blauw GJ, Slagboom PE, Westendorp RG (2006) Evidence of genetic enrichment for exceptional survival using a family approach: the Leiden longevity study. Eur J Hum Genet 14 (1):79–84.

Skol AD, Scott LJ, Abecasis GR, Boehnke M (2007) Optimal designs for two-stage genome-wide association studies. Genetic Epidemiology 31:776-788.

Skytthe A, Pedersen NL, Kaprio J, Stazi MA, Hjelmborg JV, Iachine I, Vaupel JW, Christensen K (2003) Longevity studies in GenomEUtwin. Twin Res 6 (5): 448-54.

Sladek R, Rocheleau G, Rung J, Dina C, Shen L, Serre D, Boutin P, Vincent D, Belisle A, Hadjadj S, Balkau B, Heude B, Charpentier G, Hudson TJ, Montpetit A, Pshezhetsky AV, Prentki M, Posner BI, Balding DJ, Meyre D, Polychronakos C, Froguel P (2007) A genome-wide association study identifies novel risk loci for type 2 diabetes. Nature 445(7130):881-5.

Slagboom PE, Beekman M, Passtoors WM, Deelen J, Vaarhorst AA, Boer JM, van den Akker EB, van Heemst D, de Craen AJ, Maier AB, Rozing M, Mooijaart SP, Heijmans BT, Westendorp RG (2011) Genomics of human longevity. Philos Trans R Soc Lond B Biol Sci 366(1561):35-42.

Son Y, Cheong YK, Kim NH, Chung HT, Kang DG, Pae HO (2011) Mitogen-Activated Protein Kinases and Reactive Oxygen Species: How Can ROS Activate MAPK Pathways? J Signal Transduct 2011:792639. doi:10.1155/2011/792639

Starr JM, Fox H, Harris SE, Deary IJ, Whalley LJ (2008) GSTz1 genotype and cognitive ability. Psychiatr Genet 18(4):211-2.

Terry DF, Wilcox MA, McCormick MA, Perls TT (2004) Cardiovascular disease delay in centenarian offspring. J Gerontol A Biol Sci Med Sci 59 (4): 385–389.

Terry DF, Wilcox M, McCormick MA, Lawler E, Perls TT (2003) Cardiovascular advantages among the offspring of centenarians. J Gerontol A Biol Sci Med Sci 58 (5): M425–M431.

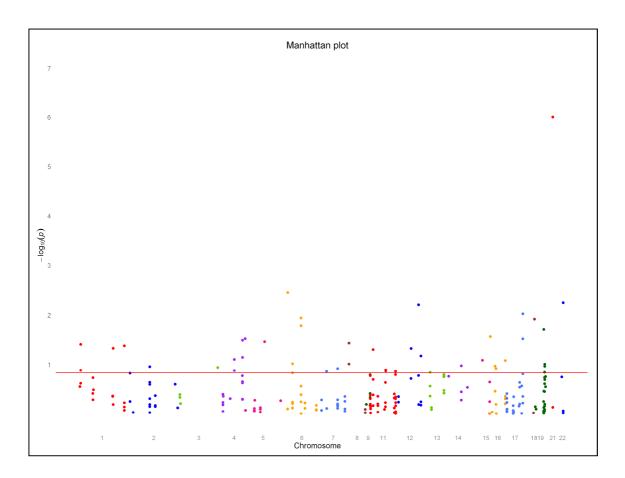
Thomas D, Xie R, Gebregziabher M (2004) Two-stage sampling designs for gene association studies. Genetic Epidemiology 27:401-414.

Tian X, Joo J, Zheng G, Lin JP (2005) Robust trend tests for genetic association in case-control studies using family data. BMC Genet 6:S107. doi: 10.1186/1471-2156-6-S1-S107.

Vaupel J W (2010) Biodemography of human ageing. Nature 464 (7288): 536-542.

Walter S, Atzmon G, Demerath EW, Garcia ME, Kaplan RC, Kumari M, Lunetta KL, Milaneschi Y, Tanaka T, Tranah GJ, Völker U, Yu L, Arnold A, Benjamin EJ, Biffar R, Buchman AS, Boerwinkle E, Couper D, De Jager PL, Evans DA, Harris TB, Hoffmann W, Hofman A, Karasik D, Kiel DP, Kocher T, Kuningas M, Launer LJ, Lohman KK, Lutsey PL, Mackenbach J, Marciante K, Psaty BM, Reiman EM, Rotter JI, Seshadri S, Shardell MD, Smith AV, van Duijn C, Walston J, Zillikens MC, Bandinelli S, Baumeister SE, Bennett DA, Ferrucci L, Gudnason V, Kivimaki M, Liu Y, Murabito JM, Newman AB, Tiemeier H, Franceschini N (2011) A genome-wide association study of aging. Neurobiol Aging 32(11):2109.e15-28.

Willcox BJ, Donlon TA, He Q, Chen R, Grove JS, Yano K, Masaki KH, Willcox DC, Rodriguez B, Curb JD (2008) FOXO3A genotype is strongly associated with human longevity. Proc Natl Acad Sci U S A 105(37):13987-92.


Willcox BJ, Willcox DC, He Q, Curb JD, Suzuki M (2006) Siblings of Okinawan centenarians share lifelong mortality advantages. J Gerontol A Biol Sci Med Sci 61(4):345–354.

Zang Y, Fung WK and Zheng G (2010) Simple algorithms to calculate the asymptotic null distributions of robust tests in case-control genetic association studies. R. Journal of Statistical software 33(8).

Zheng G, Joo J, Lin JP, Stylianou M, Waclawiw MA, Geller NL (2007) Robust ranks of true associations in genome-wide case-control association studies. BMC Proc 1 Suppl 1:S165.

Zheng G, Meyer M, Li W, Yang Y (2008) Comparison of two-phase analyses for casecontrol genetic association studies. Statistics in Medicine 27:5054-5075. Ziegler A and König IR (2010) Front Matter. In: Second Edition A Statistical Approach to Genetic Epidemiology: With Access to E-Learning Platform by Friedrich Pahlke. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, Germany. doi: 10.1002/9783527633654.

Zuo YJ, Zou GH, Zhao HY (2006) Two-stage designs in case-control association analysis. Genetics 173:1747-1760. **Figure 1**. Manhattan plot of the stage 1 association results using the χ^2_{MAX} test (maximum of three different chi-square tests). Red line represents the p-value threshold for the top ranked SNPs (p<0.15).

dbSNP	GENE	DOM	P _{DOM}	REC	P _{REC}	HET	P _{HET}	MAX	P-value
rs12626475	SOD1	16.997	< 0.001	2.236	0.151	5.587	0.022	16.997	< 0.001
rs135539	PPARa	9.406	0.002	0.012	1.000	8.229	0.006	9.406	0.006
rs6214	IGF1	9.394	0.004	1.508	0.275	3.842	0.058	9.394	0.006
rs1062935	RAPTOR	8.431	0.005	0.540	0.560	3.739	0.064	8.431	0.010
rs7614	MBD2	3.899	0.054	1.822	0.196	7.937	0.006	7.937	0.012
rs282070	MAP3K7	5.629	0.019	0.295	0.668	7.028	0.011	7.028	0.012
rs1005273	PDK1(PDPK1)	1.494	0.271	3.262	0.088	6.838	0.015	6.838	0.028
rs10470911	EGF	1.482	0.232	6.546	0.013	0.573	0.512	6.546	0.033
rs2069762	IL2	6.527	0.014	4.943	0.045	1.147	0.332	6.527	0.030
rs16902632	GAP(RASA1)	6.488	0.017	0.174	0.710	3.740	0.069	6.488	0.035
rs157703	MAP3K7	4.370	0.040	1.179	0.352	6.254	0.015	6.254	0.016
rs1799930	NAT2	4.220	0.042	0.655	0.529	6.171	0.021	6.171	0.037
rs7209040	RAPTOR	1.470	0.288	2.765	0.105	6.043	0.015	6.043	0.031
rs6337	NTRK1	5.877	0.022	0.934	0.400	3.497	0.072	5.877	0.047
rs1800471	TGFB1	5.708	0.020	5.708	0.019	0.000	0.000	5.708	0.020
rs1800896	IL10	3.413	0.092	0.857	0.378	5.587	0.018	5.587	0.042
rs1625525	MDM2	5.491	0.032	0.295	0.697	4.652	0.041	5.491	0.048
rs3789327	ARNTL	1.076	0.358	5.398	0.023	1.016	0.393	5.398	0.050
	SHP12								
rs11066301	(PTPN11)	3.243	0.108	4.905	0.036	0.016	1.000	4.905	0.067
rs9991904	EGF	4.871	0.034	0.642	0.446	3.014	0.094	4.871	0.072
rs6533485	EGF	4.814	0.044	0.890	0.444	1.272	0.319	4.814	0.073
rs4073	IL8	3.092	0.093	4.460	0.039	0.154	0.739	4.460	0.079
rs1800566	NQO1	0.340	0.621	4.452	0.055	0.011	1.000	4.452	0.084
rs1549854	MEK (MAP2K1)	4.441	0.042	0.272	0.668	2.658	0.139	4.441	0.083

Table 1. Top-ranked SNPs (p<0.15) obtained according to χ^2_{MAX} test in the stage 1 sample.

rs1799929	NAT2	1.996	0.192	1.109	0.326	4.396	0.045	4.396	0.098
rs1770345*	MTOR (FRAP1)	4.330	0.046	-	-	4.330	0.042	4.330	0.040
rs195990	PRKCB1	0.596	0.477	3.343	0.079	4.276	0.050	4.276	0.108
rs3212948	ERCC1	0.071	0.861	4.111	0.050	3.176	0.099	4.111	0.099
rs854556	PON1	3.974	0.050	0.322	0.618	2.638	0.136	3.974	0.122
rs2111699	GSTZ1	3.964	0.056	1.664	0.328	1.836	0.220	3.964	0.107
rs870995	PI3K (PIK3 CA)	1.618	0.230	1.030	0.332	3.874	0.062	3.874	0.116
rs1800587	IL1A	3.856	0.071	0.583	0.590	2.366	0.174	3.856	0.112
rs649392	CCND1	0.218	0.724	3.817	0.081	1.436	0.248	3.817	0.130
rs1042571	POMC	3.052	0.113	3.738	0.125	1.203	0.369	3.738	0.152
rs603965	CCND1	0.289	0.714	3.694	0.060	1.435	0.255	3.694	0.138
rs2227306	IL8	3.669	0.071	0.883	0.399	1.972	0.187	3.669	0.134
rs2261434	MTOR (FRAP1)	1.308	0.314	1.755	0.241	3.554	0.068	3.554	0.132
rs1799787	ERCC2	2.170	0.177	0.368	0.642	3.542	0.068	3.542	0.145

*Since no subject homozygous for the rare allele was observed, the chi-square test for the recessive model was not reported.

Table 2. Association results of the 29 selected SNPs ranked on the basis of their estimated p-values using the *MAX* test in the stage 2 sample.

dbSNP ID	Gene	CHR	BP	Best model	MAX3	P-value	Q-value
rs282070	MAP3K7	6	91296420	Dominant	3.733	4.72E-04	0.011
rs2111699	GSTZ1	14	77788597	Recessive	3.537	0.001	0.012
rs11066301	SHP12 (PTPN11)	12	112871372	Dominant	2.906	0.009	0.069
rs1042571	POMC	2	25383887	Recessive	2.101	0.075	0.459
rs3212948	ERCC1	19	45924362	Recessive	2.006	0.095	0.460
rs1770345	MTOR (FRAP1)	1	11214580	Dominant	1.569	0.222	0.738
rs1800587	IL1A	2	113542960	Recessive	1.363	0.321	0.738
rs1062935	RAPTOR	17	78939857	Additive	1.306	0.349	0.738
rs1549854	MEK (MAP2K1)	15	66696735	Dominant	1.276	0.365	0.738
rs649392	CCND1	11	69464793	Dominant	1.254	0.377	0.738
rs12626475	SOD1	21	33042929	Recessive	1.247	0.382	0.738
rs1799787	ERCC2	19	45856144	Dominant	1.225	0.393	0.738
rs195990	PRKCB1	16	23946385	Recessive	1.061	0.495	0.738
rs135539	PPARa	22	46559267	Recessive	1.029	0.518	0.738
rs3789327	ARNTL	11	13385316	Additive	1.017	0.521	0.738
rs10470911	EGF	4	110865271	Recessive	1.010	0.524	0.738
rs4073	IL8	4	74606024	Dominant	0.962	0.558	0.738
rs6214	IGF1	12	102793569	Additive	0.925	0.584	0.738
rs854556	PON1	7	94944923	Recessive	0.885	0.609	0.738
rs2069762	IL2	4	123377980	Recessive	0.870	0.617	0.738
rs1625525	MDM2	12	69212831	Dominant	0.843	0.637	0.738
rs870995	PI3K (PIK3 CA)	3	178913006	Dominant	0.771	0.686	0.741
rs7209040	RAPTOR	17	78527294	Dominant	0.705	0.725	0.741
rs1005273	PDK1(PDPK1)	16	2645965	Additive	0.696	0.731	0.741

rs1799930	NAT2	8	18258103	Recessive	0.603	0.791	0.770
rs7614	MBD2	18	51681244	Recessive	0.457	0.872	0.816
rs1800896	IL10	1	206946897	Recessive	0.263	0.956	0.837
rs16902632	GAP(RASA1)	5	86654813	Additive	0.129	0.989	0.837
rs1800566	NQO1	16	69745145	Dominant	0.050	0.998	0.837

Table 3 . Interaction analysis results obtained using the Model-Based Multifactor
Dimensionality Reduction approach proposed by Calle and co-workers (2010)

SNP1	SNP2	NH	WH	PH	NL	WL	PL	MIN.P	P*
rs195990	rs2111699	2	6.947	0.008	1	3.493	0.062	0.008	0.0056
rs1770345	rs3789327	1	4.032	0.045	2	6.870	0.009	0.009	0.0094
rs16902632	rs3789327	1	6.147	0.013	1	3.432	0.064	0.013	0.0118
rs649392	rs2069762	1	5.717	0.017	0	-	-	0.017	0.0128
rs16902632	rs6214	1	2.890	0.089	1	5.651	0.017	0.017	0.0122
rs1800566	rs2069762	1	5.188	0.023	0	-	-	0.023	0.0109
rs12626475	rs1799930	1	4.890	0.027	0	-	-	0.027	0.0141
rs1549854	rs1800896	1	4.661	0.031	0	-	-	0.031	0.0234
rs1770345	rs1625525	0	-	-	1	4.439	0.035	0.035	0.0281
rs649392	rs4073	1	4.434	0.035	0	-	-	0.035	0.0274
rs1799930	rs6214	1	4.381	0.036	0	-	-	0.036	0.0253
rs1062935	rs282070	1	4.372	0.037	0	-	-	0.037	0.0193
rs11066301	rs1800566	1	4.338	0.037	0	-	-	0.037	0.0242
rs649392	rs1770345	0	-	-	1	4.305	0.038	0.038	0.0345
rs135539	rs870995	1	3.461	0.063	1	4.236	0.040	0.040	0.0286
rs1800566	rs4073	1	4.065	0.044	0	-	-	0.044	0.0254
rs282070	rs1800896	1	4.042	0.044	0	-	-	0.044	0.0304
rs135539	rs7614	1	4.022	0.045	1	3.629	0.057	0.045	0.037
rs1800896	rs1799787	0	-	-	1	3.962	0.047	0.047	0.0382

NH, NL: the number of multi locus genotypes classified as high and low risk, respectively.

WH, WL: Wald statistic for the high and low risk categories, respectively.

PH, PL: unadjusted P-value for the high and low risk categories, respectively

MIN.P: The minimum between PH and PL.

P*: simulated p-values obtained calling the *mbmdr*.*PermTest* function of the *mbmdr* package (10000 permutations)

Gene Name	SNPs	Chr position	bp position	Туре	Pos. in gene
MAP3K7	rs157703	6q15	29047801	Stress response	Intron 14
MAP3K7	rs791063	6q15	29058479	Stress response	Intron 13
MAP3K7	rs13208824	6q15	29064902	Stress response	Intron 13
MAP3K7	rs1144159	6q15	29067873	Stress response	Intron 12
MAP3K7	rs2273567	6q15	29077101	Stress response	Intron 12
MAP3K7	rs282070	6q15	29116593	Stress response	Intron 1
MAP3K7IP1	rs7949	22q13.1	19218068	Stress response	Intron 12
CAT	rs1001179	11p13	33247472	Stress response	Promoter
CAT	rs11032700	11p13	33248944	Stress response	Intron 2
CAT	rs533425	11p13	33256565	Stress response	Intron 2
CAT	rs2300181	11p13	33263780	Stress response	Intron 7
CAT	rs554576	11p13	33271135	Stress response	Intron 10
CAT	rs10488736	11p13	33276493	Stress response	Intron 11
CD14	rs2569190	5q31.1	1175843	Stress response	Promoter
IL10	rs3024498	1q31-q32	459308	Stress response	3' UTR
IL10	rs3024496	1q31-q32	459643	Stress response	3' UTR
IL10	rs1518111	1q31-q32	462424	Stress response	Intron 3
IL10	rs1800872	1q31-q32	464186	Stress response	Promoter
IL10	rs1800871	1q31-q32	464413	Stress response	Promoter
IL10	rs1800896	1q31-q32	464676	Stress response	Promoter
IL1A	rs2856838	2q14	2247895	Stress response	Intron 4
IL1A	rs2071373	2q14	2248007	Stress response	Intron 4
IL1A	rs1800587	2q14	2250883	Stress response	5' UTR
IL1B	rs1143643	2q14	2296225	Stress response	Intron 7

Table 1SM. Loci and polymorphisms analyzed in the stage 1.

IL1B	rs1143634	2q14	2298313	Stress response	Exon 4
IL1B	rs1143627	2q14	2302310	Stress response	Promoter
IL1B	rs16944	2q14	2302790	Stress response	Promoter
IL6	rs1800795	7p21	22255603	Stress response	Promoter
IL6	rs1474347	7p21	22257082	Stress response	Intron 3
IL8	rs4073	4q13-q21	3113034	Stress response	Promoter
IL8	rs2227306	4q13-q21	3114065	Stress response	Intron 2
SOD2	rs2758331	6q25.3	2392411	Stress response	Intron 5
SOD2	rs5746105	6q25.3	2399979	Stress response	Intron 3
SOD2	rs4880	6q25.3	2401213	Stress response	Exon 1
TNF	rs1800629	6p21.3	22401282	Stress response	Promoter
TNF	rs2857712	6p21.3	22400904	Stress response	Promoter
IL2	rs2069762	4q26-q27	47873111	Stress response	Promoter
IL12	rs17875322	4q26-q27	3552508	Stress response	3' UTR
IFNG	rs2069727	12q14	30691529	Stress response	3' UTR
SOD1	rs4998557	21q22.11	18696763	Stress response	Intron 1
SOD1	rs9967983	21q22.11	18699353	Stress response	Intron 2
SOD1	rs12626475	21q22.11	18704800	Stress response	3' near gene
SOD3	rs2536512	4p15.3- p15.1	15476673	Stress response	Exon 3
SOD3	rs2855262	4p15.3- p15.1	15477334	Stress response	3'UTR
SOD3	rs2284659	4p15.3- p15.1	15470155	Stress response	5' near gene
PRKCB1	rs195990	16p11.2	15259464	Stress response	Intron 2
PRKCB1	rs198145	16p11.2	15515694	Stress response	Intron 16
PRKCA	rs17633401	17q22- q23.2	23030104	Stress response	Intron 1
PRKCA	rs1877848	17q22-	23243284	Stress response	Intron 3

		q23.2		1	
PRKCA	rs721429	17q22- q23.2	23420646	Stress response	Intron 8
PRKCA	rs4381631	17q22- q23.2	23495184	Stress response	Intron 13
SIRT6	rs352496	19p13.3	4126252	Cell cycle regulation	Promoter
ARNTL	rs2279287	11p15	12085726	Cell cycle regulation	Promoter
ARNTL	rs1982350	11p15	12137372	Cell cycle regulation	5' UTR
ARNTL	rs3789327	11p15	12172557	Cell cycle regulation	Intron 5
ARNTL	rs2278749	11p15	12185119	Cell cycle regulation	Intron 11
CLOCK	rs1801260	4q12	3641252	Cell cycle regulation	3' UTR
PER1	rs2253820	17p13.1	7645518	Cell cycle regulation	Exon 17
PER2	rs2304672	2q37.3	5119343	Cell cycle regulation	5' UTR
PER3	rs10462020	1p36.23	2418050	Cell cycle regulation	Exon 15
MBD1	rs125555	18q21	29289281	Cell cycle regulation	Exon 10
MBD2	rs7614	18q21	33170346	Cell cycle regulation	3' UTR
MBD2	rs603097	18q21	33242208	Cell cycle regulation	Promoter
TGFB1	rs8179181	19q13.1	14106424	Cell cycle regulation	Intron 6
TGFB1	rs4803455	19q13.1	14119727	Cell cycle regulation	Intron 3
TGFB1	rs2241715	19q13.1	14125104	Cell cycle regulation	Intron 2
TGFB1	rs1800471	19q13.1	14127094	Cell cycle regulation	Exon 1
TGFB1	rs1982073	19q13.1	14127139	Cell cycle regulation	Exon 1
APE1	rs3136820	14q11.2	2197	Cell cycle regulation	Exon 5
ATM	rs664677	11q22-q23	11705598	Cell cycle regulation	Intron 22
ATM	rs3092859	11q22-q23	11705872	Cell cycle regulation	Exon 24
ATM	rs1801516	11q22-q23	11737878	Cell cycle regulation	Exon 39
ATM	rs611646	11q22-q23	11739513	Cell cycle regulation	Intron 38
ATM	rs227040	11q22-q23	11785807	Cell cycle regulation	Intron 60

ATR	rs10804682	3q22-q24	48729680	Cell cycle regulation	Intron 25
ATR	rs9855919	3q22-q24	48729735	Cell cycle regulation	Intron 25
ATR	rs2227928	3q22-q24	48776758	Cell cycle regulation	Exon 4
BAX	rs4645878	19q13.3- q13.4	21726128	Cell cycle regulation	Promoter
BAX	rs1805419	19q13.3- q13.4	21727294	Cell cycle regulation	Intron 4
CCND1	rs603965	11q13	322034	Cell cycle regulation	Exon 4
CCND1	rs649392	11q13	324992	Cell cycle regulation	Intron 6
CDKN1B	rs34330	12p13.1- p12	5629669	Cell cycle regulation	5' UTR
CDKN1B	rs2066827	12p13.1- p12	5630073	Cell cycle regulation	Exon 2
CDKN1B	rs34329	12p13.1- p12	5632207	Cell cycle regulation	Intron 4
CDKN2A	rs3088440	9p21	21958159	Cell cycle regulation	3' UTR
CDKN2A	rs11515	9p21	21958199	Cell cycle regulation	3' UTR
CDKN2A	rs3731239	9p21	21964218	Cell cycle regulation	Intron 2
CDKN2A	rs3731211	9p21	21976847	Cell cycle regulation	Intron 2
EGF	rs4444903	4q25	35382256	Cell cycle regulation	5' UTR
EGF	rs10470911	4q25	35413417	Cell cycle regulation	Intron 5
EGF	rs929446	4q25	35431490	Cell cycle regulation	Intron 9
EGF	rs7692976	4q25	35459713	Cell cycle regulation	Intron 19
EGF	rs2298999	4q25	35460053	Cell cycle regulation	Intron 19
EGF	rs4698803	4q25	35462573	Cell cycle regulation	Exon 20
EGF	rs9991904	4q25	35470725	Cell cycle regulation	Intron 22
EGF	rs6533485	4q25	35475709	Cell cycle regulation	Intron 23
ERBB2	rs2952155	17q21.1	1586014	Cell cycle regulation	Intron 4
ERBB2	rs1801200	17q21.1	1603884	Cell cycle regulation	Exon 17

ERBB2	rs1058808	17q21.1	1608333	Cell cycle regulation	Exon 31
ERCC1	rs3212986	19q13.32	18180954	Cell cycle regulation	3'UTR
ERCC1	rs3212955	19q13.32	18191714	Cell cycle regulation	Intron 5
ERCC1	rs11615	19q13.32	18191871	Cell cycle regulation	Exon 5
ERCC1	rs3212948	19q13.32	18192580	Cell cycle regulation	Intron 3
ERCC2	rs13181	19q13.3	18123137	Cell cycle regulation	Exon 23
ERCC2	rs1799787	19q13.3	18124362	Cell cycle regulation	Intron 20
ERCC2	rs3916874	19q13.3	18125144	Cell cycle regulation	Intron 18
ERCC2	rs238415	19q13.3	18125453	Cell cycle regulation	Intron 18
ERCC2	rs50872	19q13.3	18130667	Cell cycle regulation	Intron 13
ERCC2	rs50871	19q13.3	18130733	Cell cycle regulation	Intron 13
ERCC2	rs1799793	19q13.3	18135477	Cell cycle regulation	Exon 10
ERCC2	rs238406	19q13.3	18136527	Cell cycle regulation	Exon 6
ERCC5	rs2296147	13q33	16588051	Cell cycle regulation	5' UTR
ERCC5	rs1998876	13q33	16590719	Cell cycle regulation	Intron 2
ERCC5	rs4771436	13q33	16591696	Cell cycle regulation	Intron 2
ERCC5	rs1047768	13q33	16594193	Cell cycle regulation	Exon 2
ERCC5	rs17655	13q33	16617678	Cell cycle regulation	Exon 15
ERCC5	rs873601	13q33	16618013	Cell cycle regulation	3' UTR
GADD45A	rs532446	1p31.2	2441	Cell cycle regulation	Intron 3
MDM2	rs1625525	12q14.3- q15	31356137	Cell cycle regulation	Intron 5
NBS1	rs12680687	8q21	4169561	Cell cycle regulation	Intron 14
NBS1	rs709816	8q21	4185884	Cell cycle regulation	Exon 10
NBS1	rs1805794	8q21	4208652	Cell cycle regulation	Exon 5
OGG1	rs2072668	3p26.2	9738140	Cell cycle regulation	Intron 5
OGG1	rs1052133	3p26.2	9738773	Cell cycle regulation	Exon 7

TP53	rs1625895	17p13.1	7175464	Cell cycle regulation	Intron 6
TP53	rs1042522	17p13.1	7176821	Cell cycle regulation	Exon 4
CYP2B6	rs2054675	19q13.2	13763973	Metabolism of xenobiotics	Promoter
CYP2B6	rs1987236	19q13.2	13777251	Metabolism of xenobiotics	Intron 1
CYP2B6	rs1042389	19q13.2	13792371	Metabolism of xenobiotics	3' UTR
CYP2B6	rs1552219	19q13.2	13793592	Metabolism of xenobiotics	3' UTR
CYP2B6	rs434606	19q13.2	13800223	Metabolism of xenobiotics	3' UTR
CYP2D6	rs769258	22q13.1	1650	Metabolism of xenobiotics	Exon 1
CYP2D6	rs1065852	22q13.1	1719	Metabolism of xenobiotics	Exon 1
CYP2D6	rs28371703	22q13.1	2593	Metabolism of xenobiotics	Exon 2
CYP2D6	rs28371704	22q13.1	2603	Metabolism of xenobiotics	Exon 2
CYP2D6	rs28371705	22q13.1	2616	Metabolism of xenobiotics	Exon 2
GSTA3	rs494334	6p12.1	43618889	Metabolism of xenobiotics	3' UTR
GSTA3	rs3818234	6p12.1	43621357	Metabolism of xenobiotics	Intron 4
GSTA3	rs523605	6p12.1	43635838	Metabolism of xenobiotics	Promoter
GSTA4	rs405729	6p12.1	43701012	Metabolism of xenobiotics	3' UTR
GSTA4	rs673197	6p12.1	43702488	Metabolism of xenobiotics	Intron 5
GSTA4	rs2274760	6p12.1	43708386	Metabolism of xenobiotics	Intron 3

GSTA4	rs508078	6p12.1	43710167	Metabolism of xenobiotics	Intron 2
GSTA4	rs182623	6p12.1	43720089	Metabolism of xenobiotics	Promoter
GSTZ1	rs2111699	14q24.3	58788350	Metabolism of xenobiotics	Intron 1
GSTZ1	rs2270422	14q24.3	58792577	Metabolism of xenobiotics	Intron 2
GSTZ1	rs2270423	14q24.3	58795391	Metabolism of xenobiotics	Intron 3
GSTZ1	rs1017186	14q24.3	58797722	Metabolism of xenobiotics	3' UTR
HNMT	rs3100701	2q22.1	7339358	Metabolism of xenobiotics	Intron 2
HNMT	rs1020678	2q22.1	7351816	Metabolism of xenobiotics	Intron 2
HNMT	rs1455158	2q22.1	7382647	Metabolism of xenobiotics	3' UTR
NAT1	rs1057126	8p22	5925572	Metabolism of xenobiotics	3' UTR
NAT1	rs15561	8p22	5925579	Metabolism of xenobiotics	3' UTR
NAT2	rs1799929	8p22	6102922	Metabolism of xenobiotics	Exon 1
NAT2	rs1799930	8p22	6103031	Metabolism of xenobiotics	Exon 1
NNMT	rs2244175	11q23.1	17724937	Metabolism of xenobiotics	Promoter
NNMT	rs2852432	11q23.1	17726420	Metabolism of xenobiotics	Promoter
NNMT	rs1941404	11q23.1	17731454	Metabolism of xenobiotics	Intron 2
NNMT	rs11214938	11q23.1	17735076	Metabolism of xenobiotics	Intron 2

NNMT	rs2852425	11q23.1	17744923	Metabolism of xenobiotics	Intron 2
NQO1	rs2965757	16q22.1	23352045	Metabolism of xenobiotics	3' UTR
NQO1	rs10517	16q22.1	23357959	Metabolism of xenobiotics	3' UTR
NQO1	rs1800566	16q22.1	23359344	metabolism of xenobiotics	Exon 6
NQO1	rs2917670	16q22.1	23373162	Metabolism of xenobiotics	Intron 1
PON1	rs854544	7q21.3	20157667	Metabolism of xenobiotics	3' UTR
PON1	rs854548	7q21.3	20160096	Metabolism of xenobiotics	3' UTR
PON1	rs1157745	7q21.3	20175314	Metabolism of xenobiotics	Intron 4
PON1	rs854556	7q21.3	20179199	Metabolism of xenobiotics	Intron 3
PON1	rs757158	7q21.3	20189804	Metabolism of xenobiotics	Promoter
PON2	rs3735586	7q21.3	20269858	Metabolism of xenobiotics	Intron 7
PON2	rs2375005	7q21.3	20271152	Metabolism of xenobiotics	Intron 6
PON2	rs2299263	7q21.3	20274687	Metabolism of xenobiotics	Intron 5
PON2	rs1639	7q21.3	20278126	Metabolism of xenobiotics	Intron 3
SULT1A1	rs4149396	16p12.1	19930593	Metabolism of xenobiotics	Exon 7
SULT1A1	rs2411453	16p12.1	19945100	Metabolism of xenobiotics	Intron 2
SULT1A2	rs762634	16p12.1	19916414	Metabolism of xenobiotics	Exon 10

SULT1A2	rs1059491	16p12.1	19916734	Metabolism of xenobiotics	Exon 8
SULT1A2	rs3743963	16p12.1	19917765	Metabolism of xenobiotics	Intron 6
DRD2	rs1800497	11q23	16833244	Neuroactive ligand- receptor interaction pathway	3' UTR
DRD2	rs1079597	11q23	16858702	Neuroactive ligand- receptor interaction pathway	Inton 1
DRD2	rs1799732	11q23	16908669	Neuroactive ligand- receptor interaction pathway	5' UTR
DRD4	rs936461	11p15.5	513484	Neuroactive ligand- receptor interaction pathway	5' UTR
DRD4	rs4987059	11p15.5	513547	Neuroactive ligand- receptor interaction pathway	Promoter
DRD4	rs3758653	11p15.5	513581	Neuroactive ligand- receptor interaction pathway	Promoter
HTR2A	rs6306	13q14-q21	28451462	Neuroactive ligand- receptor interaction pathway	Promoter
HTR2A	rs6311	13q14-q21	28451479	Neuroactive ligand- receptor interaction pathway	Promoter
NTRK1	rs6339	1q21-q22	7339301	Neuroactive ligand- receptor interaction pathway	Exon 15
NTRK1	rs6337	1q21-q22	7339350	Neuroactive ligand- receptor interaction pathway	Exon 15
РОМС	rs1042571	2p23.3	4199820	Neuroactive ligand- receptor interaction pathway	3' UTR

РОМС	rs7566506	2p23.3	4235406	Neuroactive ligand- receptor interaction pathway	5' UTR
SLC6A3	rs2652511	5p15.3	121756	Neuroactive ligand- receptor interaction pathway	5' UTR
GH1	rs2070680	17q24.2	20638999	INS/IGF-1/GH	3' UTR
GH1	rs2854184	17q24.2	20650004	INS/IGF-1/GH	5' near gene
GH1	rs2727308	17q24.2	20641637	INS/IGF-1/GH	3' near gene
GHR	rs11949751	5p13-p12	42542342	INS/IGF-1/GH	Intron 2
GHR	rs4292454	5p13-p12	42596002	INS/IGF-1/GH	Intron 2
JAK2	rs7849191	9p24	4978761	INS/IGF-1/GH	Intron 2
JAK2	rs7037207	9p24	5033156	INS/IGF-1/GH	Intron 4
JAK2	rs3780378	9p24	5102288	INS/IGF-1/GH	Intron 22
SOCS1	rs4780355	16p13.13	2660937	INS/IGF-1/GH	3' near gene
SOCS1	rs193779	16p13.13	2664044	INS/IGF-1/GH	5' near gene
IGF1	rs12821878	12q23.2	26349857	INS/IGF-1/GH	Intron 2
IGF1	rs7136446	12q23.2	26320705	INS/IGF-1/GH	Intron 2
IGF1	rs35767	12q23.2	26357759	INS/IGF-1/GH	promoter
IGF1	rs6214	12q23.2	26275759	INS/IGF-1/GH	3' UTR
IGF1R	rs874305	15q26.3	646096	INS/IGF-1/GH	Intron 1
IGF1R	rs2018860	15q26.3	708561	INS/IGF-1/GH	Intron 2
IGF1R	rs8037002	15q26.3	896014	INS/IGF-1/GH	Intron 5
IGF1R	rs2229765	15q26.3	928076	INS/IGF-1/GH	Exon 16
GAP	rs388340	5q13.3	37179178	INS/IGF-1/GH	Intron 1
GAP	rs3752862	5q13.3	37228331	INS/IGF-1/GH	Intron 5
GAP	rs16902632	5q13.3	37249171	INS/IGF-1/GH	Intron 9
AKT1	rs2494732	14q32.32	86240237	INS/IGF-1/GH	Intron 11
AKT1	rs2498802	14q32.32	86235487	INS/IGF-1/GH	3' near gene

PDK1	rs758319	16p13.3	2547941	INS/IGF-1/GH	Exon 2
PDK1	rs3087784	16p13.3	2587914	INS/IGF-1/GH	3' UTR
PDK1	rs1005273	16p13.3	2585966	INS/IGF-1/GH	Intron 12
PI3K	rs1445760	5q13.1	18187374	INS/IGF-1/GH	Intron 9
PI3K	rs3730089	5q13.1	18182506	INS/IGF-1/GH	Exon 2
PI3K	rs10940160	5q13.1	18157585	INS/IGF-1/GH	Intron 1
PI3K	rs6890202	5q13.1	18165320	INS/IGF-1/GH	Intron 3
BAD	rs671976	11q13.1	9351824	INS/IGF-1/GH	Intron 1
BAD	rs604203	11q13.1	9322730	INS/IGF-1/GH	3' near gene
FOXO 3A	rs2253310	6q21	13058022	INS/IGF-1/GH	Intron 1
FOXO 3A	rs2802288	6q21	13065644	INS/IGF-1/GH	Intron 1
FOXO 3A	rs4946935	6q21	13170171	INS/IGF-1/GH	Intron 2
FOXO 1A	rs2701896	13q14.1	22107892	INS/IGF-1/GH	3' near gene
FOXO 1A	rs2755209	13q14.1	22117804	INS/IGF-1/GH	Intron 1
FOXO 1A	rs17061503	13q14.1	22226758	INS/IGF-1/GH	5' near gene
AFX	rs12013673	Xq13.1	8635087	INS/IGF-1/GH	Intron 1
AFX	rs5980742	Xq13.1	8639619	INS/IGF-1/GH	Intron 2
AFX	rs5980741	Xq13.1	8632407	INS/IGF-1/GH	5' near gene
MTOR	rs2275527	1p36.2	5728013	INS/IGF-1/GH	Exon 39
MTOR	rs2261434	1p36.2	5707498	INS/IGF-1/GH	Intron 54
MTOR	rs1770345	1p36.2	5751947	INS/IGF-1/GH	Intron 30
RAPTOR	rs7209040	17q25.3	930833	INS/IGF-1/GH	Intron 1
RAPTOR	rs12949279	17q25.3	961950	INS/IGF-1/GH	Intron 1
RAPTOR	rs7208502	17q25.3	1073867	INS/IGF-1/GH	Intron 3
RAPTOR	rs2292639	17q25.3	1319494	INS/IGF-1/GH	3' near gene
RAPTOR	rs1062935	17q25.3	1343396	INS/IGF-1/GH	3' UTR
PGC1a	rs8192678	4p15.1	14491020	INS/IGF-1/GH	Exon 8

PGC1a	rs12650562	4p15.1	14476545	INS/IGF-1/GH	Intron 12
PGC1a	rs2946385	4p15.1	14561681	INS/IGF-1/GH	Intron 2
PGC1a	rs4235308	4p15.1	14539770	INS/IGF-1/GH	Intron 2
PPARa	rs135539	22q13.31	1829973	INS/IGF-1/GH	Intron 1
PPARa	rs5766741	22q13.31	1875896	INS/IGF-1/GH	Intron 3
PPARa	rs9626814	22q13.31	1907960	INS/IGF-1/GH	3' UTR
LEP	rs13228377	7q31.3	53063520	INS/IGF-1/GH	5' near gene
LEP	rs12706832	7q31.3	53070715	INS/IGF-1/GH	Intron 1
LEP	rs3828942	7q31.3	53077881	INS/IGF-1/GH	Intron 2
LEP	rs11761556	7q31.3	53080645	INS/IGF-1/GH	3' UTR
LEPR	rs12145690	1p31	35858932	INS/IGF-1/GH	Inton 1
LEPR	rs1137100	1p31	36008360	INS/IGF-1/GH	Exon 4
LEPR	rs1137101	1p31	36030432	INS/IGF-1/GH	Exon 6
LEPR	rs6688776	1p31	36040096	INS/IGF-1/GH	Intron 10
AMPK	rs12517210	5p12	40737197	INS/IGF-1/GH	Intron 8
AMPK	rs837101	5p12	40746456	INS/IGF-1/GH	Intron 3
AMPK	rs249429	5p12	40754996	INS/IGF-1/GH	Intron 1
AMPK	rs466108	5p12	40769503	INS/IGF-1/GH	Intron 1
ACC	rs829152	17q21	1007776	INS/IGF-1/GH	Intron 1
ACC	rs2302800	17q21	901514	INS/IGF-1/GH	Intron 10
ACC	rs732770	17q21	714789	INS/IGF-1/GH	3' near gene
ACC	rs11659129	17q21	831441	INS/IGF-1/GH	Intron 34
CPT1A	rs11228372	11q13.2	13902373	INS/IGF-1/GH	Intron 1
CPT1A	rs4930248	11q13.2	13871699	INS/IGF-1/GH	Intron 6
CPT1A	rs17610395	11q13.2	13868123	INS/IGF-1/GH	Exon 8
INS	rs7924316	11p15.5	960688	INS/IGF-1/GH	3' near gene
INS	rs2070762	11p15.5	973576	INS/IGF-1/GH	3' near gene

INS	rs3842748	11p15.5	968636	INS/IGF-1/GH	Intron 2
INSR	rs11667110	19p13.3- p13.2	7076609	INS/IGF-1/GH	Intron 13
INSR	rs8103483	19p13.3- p13.2	7085374	INS/IGF-1/GH	Intron 11
INSR	rs12971499	19p13.3- p13.2	7154282	INS/IGF-1/GH	Intron 2
INSR	rs1896639	19p13.3- p13.2	7143846	INS/IGF-1/GH	Intron 2
IRS-1	rs17208239	2q36	77807113	INS/IGF-1/GH	3' near gene
IRS-1	rs1801276	2q36	77871337	INS/IGF-1/GH	Exon 1
IRS-1	rs1820841	2q36	77856876	INS/IGF-1/GH	Intron 2
PI3K	rs870995	3q26.3	85408156	INS/IGF-1/GH	Intron 1
PI3K	rs1607237	3q26.3	85445447	INS/IGF-1/GH	Intron 20
PI3K	rs1568205	3q26.3	85430949	INS/IGF-1/GH	Intron 9
GLUT4	rs2654185	17p13	6780710	INS/IGF-1/GH	5' near gene
GLUT4	rs5418	17p13	6782440	INS/IGF-1/GH	5' UTR
GLUT4	rs5435	17p13	6784471	INS/IGF-1/GH	Exon 4
GLUT4	rs35198331	17p13	6784154	INS/IGF-1/GH	Exon 3
SHC1	rs4845401	1q21	5431948	INS/IGF-1/GH	Intron 3
SHC1	rs1050947	1q21	5425860	INS/IGF-1/GH	3' UTR
SHC1	rs6661212	1q21	5437051	INS/IGF-1/GH	Intron 1
GRB2	rs2053158	17q24-q25	7319731	INS/IGF-1/GH	Intron 1
GRB2	rs959260	17q24-q25	7295694	INS/IGF-1/GH	Intron 2
GRB2	rs7219	17q24-q25	7241640	INS/IGF-1/GH	3' UTR
SOS	rs1059310	2p21	18028570	INS/IGF-1/GH	3' near gene
SOS	rs2888586	2p21	18063222	INS/IGF-1/GH	Intron 9
SOS	rs963828	2p21	18150643	INS/IGF-1/GH	Intron 1
HRAS	rs12628	11p15.5	474242	INS/IGF-1/GH	Exon 2

HRAS	rs4963176	11p15.5	478532	INS/IGF-1/GH	3' near gene
HRAS	rs12577324	11p15.5	469967	INS/IGF-1/GH	Downstream
RAF1	rs15997	3p25	12564070	INS/IGF-1/GH	3' near gene
RAF1	rs1532533	3p25	12575706	INS/IGF-1/GH	Intron 10
RAF1	rs11705805	3p25	12602370	INS/IGF-1/GH	Intron 1
RAF1	rs3821611	3p25	12645208	INS/IGF-1/GH	Intron 1
MAP2K1	rs1549854	15q22.1- q22.33	37487054	INS/IGF-1/GH	Intron 1
MAP2K1	rs1432442	15q22.1- q22.34	37509588	INS/IGF-1/GH	Intron 1
MAP2K1	rs7181936	15q22.1- q22.35	37538228	INS/IGF-1/GH	Intron 5
ERK1	rs7542	16p11.2	21438919	INS/IGF-1/GH	Exon 8
ERK1	rs11865086	16p11.2	21443572	INS/IGF-1/GH	Intron 2
ERK1	rs12444415	16p11.2	21431424	INS/IGF-1/GH	5' near gene
SHP12	rs11066301	12q24	3440881	INS/IGF-1/GH	Intron 1
SHP12	rs11066320	12q24	3475924	INS/IGF-1/GH	Intron 6
SHP12	rs7313360	12q24	3503044	INS/IGF-1/GH	Intron 13
IFG2	rs3213221	11p15.5	944285	INS/IGF-1/GH	Intron 1
IFG2	rs734351	11p15.5	943454	INS/IGF-1/GH	Intron 2
IFG2	rs680	11p15.5	940875	INS/IGF-1/GH	3' near gene
IGFBP1	rs4619	7p13-p12	45421627	INS/IGF-1/GH	Exon 4
IGFBP3	rs2132571	7p13-p12	45450632	INS/IGF-1/GH	5' near gene
IGFBP3	rs2453839	7p13-p12	45442531	INS/IGF-1/GH	Intron 5
IGFALS	rs3751893	16p13.3	1782210	INS/IGF-1/GH	Exon 2
IGFALS	rs17559	16p13.3	1781034	INS/IGF-1/GH	Exon 2
IGFALS	rs2230053	16p13.3	1780854	INS/IGF-1/GH	Exon 2