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Summary in Italian

Nell’ambito del presente lavoro di tesi è stato affrontato un problema

di rilevante interesse applicativo relativo alla valutazione e generazione

di offerte (Bid Generation Problem) nell’ambito di aste combinatorie per

sistemi di trasporto di tipo full-truckload (a pieno carico).

L’organizzatore (auctioneer) di un’asta combinatoria, vuole acquistare

tramite asta dei servizi (contratti) di trasporto, cioè rotte (lane) su

cui trasportare dei carichi (load). I vari trasportatori (carrier) devono

quindi fare delle offerte (bid) sulle rotte di trasporto che vogliono vendere

all’asta, non in maniera individuale (come nelle aste singole), ma raggrup-

pate in pacchetti (bundle) di rotte.

Il Bid Generation Problem (BGP) in un’asta combinatoria è il prob-

lema affrontato dal carrier per poter costruire tali offerte (bundle di rotte)

da sottomettere all’asta sotto forma di bid (cioè l’insieme di load con il

relativo prezzo proposto).

Le aste combinatorie sono di solito scelte per procurare i servizi

di trasporto per via delle sinergie che usualmente esistono tra le varie

rotte messe all’asta e quelle componenti la rete di trasporto attuale di

un carrier. La necessità di valutare un numero esponenziale di bundle

(pari al numero di tutti i sottoinsiemi che si possano formare con le

rotte messe all’asta) conferisce al problema decisionale una natura NP-

completa, come evidenziato ad esempio in [33]. La scarsità dei riferimenti

bibliografici, se pur motivata dall’oggettiva difficoltà di soluzione sopra

descritta, non ha giustificazioni però dal punto di vista applicativo.
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In tale ambito si colloca la presente tesi di Dottorato avente come obi-

ettivo lo sviluppo di un advisor che assista i carrier nelle loro decisioni

di bidding, integrandosi nella pianificazione dinamica delle operazioni di

trasporto. In particolare, nel lavoro di tesi è stato proposto un modello

di ottimizzazione misto intero per il BGP in grado di determinare non

solo il bundle di load sottomesso all’asta e il relativo prezzo, ma anche

il relativo routing della flotta del carrier, effetuato nell’orizzonte tempo-

rale per servire sia il bundle di rotte sottomesso che la rete di trasporto

attuale.

I principali contributi innovativi del modello proposto derivano da:

1) l’inclusione nel modello di un vincolo di tipo probabilistico (chance

constraint), che mira a guidare la scelta del bundle con maggiore chance

di vincita alla fine dell’asta, cioè la cui probabilità di superare il clearing

price (rappresentato tramite una variabile aleatoria) sia superiore ad un

certo livello di probabilità. Rispetto al modello di Savelsbergh et al.

([54]), si considera la probabilità che il bundle sia vincente nei vincoli

invece che nella funzione obiettivo, e la distribuzione normale del clearing

price (più realistica) invece di quella uniforme. Inoltre, in [54], si trattava

di più aste singole indipendenti, svolte in parallelo, qui invece abbiamo

un’asta combinatoria a busta chiusa, primo prezzo, single-round.

2) il considerare il prezzo del bundle come variabile di decisione, come

solo in [54] accadeva , negli altri articoli si considera o qualche formula

di calcolo ([42], [52], [53]) oppure noti, fissati uguali alla somma dei

prezzi richiesti dall’auctioneer (ask price) per le singole rotte componenti

il bundle ([6],[24]).

3) l’inclusione dell’aspetto temporale del problema reale (finora solo

Chang aveva considerato in [6] la rete estesa spazio-tempo per il BGP).

4) il determinare anche il routing dei camion relativo a tutto l’orizzonte

temporale ([24] era il primo articolo che, nel modello proposto per il BGP,

includeva anche il VRP, ma senza però considerare la variabile tempo).

5) l’inclusione delle finestre temporali (time-windows) relative alla
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consegna di ogni carico messo all’asta e dei carichi della rete attuale di

trasporto (precedentemente contrattati) dal carrier.

6) lo studio e la quantificazione delle sinergie tra le rotte messe all’asta

e quelle dell’attuale rete di trasporto del carrier (in due modi, e diver-

samente di come fatto in [2], [6], [54], [58]) e l’inclusione di tali sinergie

nella distribuzione della variabile aleatoria considerata (il clearing price

del bundle).

Per i motivi sopra descritti, il modello proposto risulta più completo

e più complesso rispetto a tutti i modelli finora esistenti per il BGP nelle

aste combinatorie nei trasporti a pieno carico.

Il presente lavoro è organizzato in 5 capitoli, esclusa l’introduzione

e le conclusioni. Nel seguito viene riportata una breve descrizione del

contenuto di ogni capitolo. La tesi inizia con una introduzione al presente

lavoro.

Nel capitolo 1 vengono introdotte le aste combinatorie, partendo

dalla loro definizione e descrizione(fasi dell’asta), alla loro classificazione

rispetto vari criteri, agli svantaggi e vantaggi rispetto alle aste normali,

evidenziati nella letteratura esistente.

Nel capitolo 2 sono descritte, partendo dalla letteratura, le aste com-

binatorie utilizzate per procurare servizi (contratti) di trasporto nel caso

full-truckload e forniti esempi di aste. Inoltre, vengono descritti i prob-

lemi presenti in un asta combinatoria: il problema di generazione e val-

utazione delle offerte (Bid Generation Problem, BGP) ed il problema di

determinazione del vincitore (Winner Determination Problem, WDP),

ed evidenziata la loro difficoltà di soluzione (problemi NP-hard).

Il capitolo 3 è dedicato al BGP, oggetto di studio di questa tesi.

Dopo aver presentato lo stato dell’arte relativo al BGP, viene riportato

un modello originale proposto per il BGP, evidenziando le novità di tale

modello e le complicazioni rispetto ai modelli esistenti nella letteratura.

Vengono illustrate le difficoltà di risoluzione di tale modello (dovute al

numero esponenziale dei bundle, quindi dei vincoli e delle variabili, ecc...).
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Con l’obiettivo di superare a priori il problema della dimensione, quindi

per diminuire la cardinalità dell’insieme dei bundle possibili, sono state

sviluppate delle procedure di preprocessamento dell’insieme delle rotte

messe all’asta, tenendo conto sia dalla posizione dei camion che dalle

finestre temporali di consegna dei carichi. Inoltre, sono state studiate e

quantificate le sinergie tra le rotte messe all’asta e quelle dell’attuale rete

di trasporto del carrier (in due modi, e diversamente di come fatto in [2],

[6], [54], [58]) ed incluse nella distribuzione della variabile aleatoria con-

siderata (il clearing price del bundle). Vengono presentati i chance con-

straints ed effettuata una discussione relativamente alla distribuzione ed

all’indipendenza delle variabili aleatorie rappresentando i clearing price

dei load componenti il bundle.

Diverse versioni di tale modello sono state prodotte a partire dalla

formulazione iniziale, includendo la sinergia nella funzione obiettivo e/o

nei vincoli, considerando finestre temporali di prelievo dei carichi, con-

siderando vincoli di copertura delle rotte (come in [51], [53]), riformu-

lando il modello tale che la rete spazio-tempo sia esplicita.

Nel capitolo 4 viene proposto un approccio risolutivo di tipo euristico

in quanto l’elevata dimensione (esponenziale) del problema ha permesso

la soluzione esatta soltanto fino ad una certa cardinalità del insieme di

rotte messe all’asta. Per dimensioni superiori sono state costruite delle

euristiche che permettono una risoluzione sequenziale del problema.

Una prima categoria di euristiche, partendo dal bundle di load di

cardinalità massima, cioè uguale all’insieme dei load messi all’asta, val-

uta il profitto decrementale (beneficio marginale) di ogni bundle ottenuto

togliendo un load del bundle corrente alla volta, sceglie il load in cor-

rispondenza di cui si è ricavato il migliore profitto decrementale, ag-

giorna il bundle corrente (eliminandone il load selezionato) e cos̀i via.

Il procedimento è ripetuto fino a quando il bundle corrente non risulta

vuoto. Una variante di questa euristica è ottenuta partendo dal bundle

di cardinalità minima (vuoto, per esempio) e valutando il profitto incre-
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mentale (all’aggiunta di un load al bundle corrente). La complessità sarà

soltanto dell’ordine di n2 (con n la cardinalità dell’insieme di load messe

all’asta).

Una seconda categoria di euristiche considera come insieme dei bun-

dle iniziali un certo insieme di bundle scelti secondo vari criteri (ran-

dom, quelli con maggiore sinergia e/o compressa in qualche intervallo, di

cardinalità compressa in qualche intervallo, etc...). Risolve il problema

per ogni bundle di tale insieme e seleziona tra essi il bundle di massimo

valore della funzione obiettivo.

Il capitolo 5 è relativo alla fase sperimentale condotta al fine della val-

utazione della correttezza (validazione) del modello e delle prestazioni dei

metodi risolutivi proposti in termini di efficienza ed efficacia. Come am-

bienti di sviluppo (implementazione e soluzione) del modello sono stati

usati GAMS, Microsoft Visual C++, ILOG CPLEX ed ILOG CON-

CERT. Dal momento che per le aste combinatorie non sono in generale

disponibili pubblicamente i dati reali (come spesso viene segnalato in

letteratura, per esempio in [2]), si è costruito anche un generatore di

problemi test, implementato in C. A causa del numero esponenziale di

vincoli e variabili (relativi ai bundle di load messi all’asta), il modello

proposto è stato risolto in maniera esatta soltanto fino ad una certa di-

mensione (20 rotte messe all’asta). Per dimensioni superiori sono state

utilizzate le euristiche proposte per una risoluzione sequenziale del prob-

lema. Vengono effettuati dei confronti tra le varie euristiche proposte

implementate, fornendo il gap con la soluzione ottima ed i relativi tempi

computazionali.

I risultati preliminari ottenuti sono molto incoraggianti e mostrano

l’efficacia e l’efficienza delle strategie risolutive sviluppate e l’utilità del

modello proposto in termini di strumento in grado di supportare i carrier

nelle decisioni integrate di routing della flotta e di bidding profittevoli.

La tesi chiude con la parte relativa alle conclusioni del lavoro ed alla

ricerca futura.
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Il lavoro di tesi rappresenta un valido studio ed una scrupolosa anal-

isi delle problematiche riguardanti il BGP in un asta combinatoria nei

trasporti di tipo full truckload. Il maggior contributo scientifico è stato

quello di aver presentato e definito un modello matematico per la valu-

tazione e la generazione di offerte (integrando anche il routing della flotta

dei carrier) e delle procedure euristiche in grado di risolverlo su istanze

più complesse.
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Introduction

In this thesis has been studied a relevant applicative interest problem

(the Bid Generation Problem) related to the generation and evaluation of

the bids in combinatorial auctions for the procurement of full truckload

transportation services.

0.1 Motivation

In a combinatorial auction the auctioneer wants to procure trans-

portation services, that is lanes on which there are carried loads. The

various carriers had to make some bids on the transportation lanes that

want to sell during the auction, not individually (like in normal auction),

but grouped in packages (bundles) of lanes.

The Bid Generation Problem (BGP) in a combinatorial auction is the

problem faced by the carrier in order to construct such bundles of loads

to submit in the auction as bids (that is the set of proposed loads with

their corresponding price).

The combinatorial auctions are usually chosen in order to provide

transportation services because of the synergies between the auctioned

lanes and those of the current transportation network of the carriers.

Examples of companies using combinatorial auctions to procure logistics

services are: Sears Logistics Services, The Home Depot; Walmart Stores,

Compaq Computer Co., Staples Inc., The Limited Inc., Limited Logistics

Services, Kmart Corporation (aided by Logistics.com)([9]).
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The necessity to evaluate an exponential number of bundles (equal to

the number of all possible subsets that can be made with the auctioned

loads) brings to the decisional problem a NP-complete nature, as high-

lighted for example in [33]. The lack of bibliographic references, even

if justified by the objective difficulty of solution of the BGP previously

described, does not have motivation from the applicative point of view.

0.2 Goals

The present Ph.D. thesis fits in this context, having as goal the de-

velopment of an advisor that assists carriers in their bidding decisions,

integrated in the dynamic planning of the transportation operations. In

particular, in this thesis a mixed integer optimization model has been

proposed for the BGP, being able to determine not only the bundle of

loads submitted in the auction and its corresponding price, but even the

corresponding routing of the fleet of the carrier, made in the temporal

horizon, in order to serve both the submitted bundle of loads and the

carrier’s current transportation network.

Therefore, the main aim of this thesis is the definition, the design,

the implementation and the test of innovative models and methods com-

putationally efficient for the BGP in combinatorial auctions for the pro-

curement of full truckload transportation services.

0.3 Contribution

The main innovative contributions of the proposed model and its

variants derive from:

• the inclusion in the model of a probabilistic-type constraint (chance

constraint), which looks up to guide the selection of the bundle with

the highest winning chance at the end of the auction, that is whose
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probability of exceeding the clearing price (represented by means of

a random variable) is greater than a certain probability level. Un-

like the model of Savelsbergh et al. ([54]), we consider the winning

probability of the bundle in the constraints instead in the objective

function and the normal distribution of the clearing price (more

realistic) instead of the uniform one. Moreover, the paper [54] is

concerning several single independent auctions simultaneously run,

here instead we consider a sealed-bid, first-price, single-round com-

binatorial auction.

• considering the price of the bundle as a decision variable, like only

in [54] occured, while in other papers the bundle’s price is computed

by using some formula ([42], [52], [53]) or is considered known, fixed

equal to the sum of the auctioneer’s ask prices for the single loads

which form the bundle ([6],[24]).

• the inclusion of the temporal aspect of the real problem (until now

only Chang had considered in [6] the space-time extended network

for the BGP).

• the determination of the routing of the truck relative to all the tem-

poral horizon (only [24] included the VRP in the proposed model

for the BGP, but without consider the time variable).

• the inclusion of the time windows relative to the delivery of every

auctioned load and of the loads of the carrier’s existing transporta-

tion network (previously auctioned).

• the study and the computation of the synergies between the auc-

tioned loads and those of the carrier’s existing transportation net-

work (in two ways, and differently as done in [2], [6], [54], [58]) and

the inclusion of these synergies in the distribution of the random

variable representing the clearing price of the bundle.
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Because of all the previously described reasons, the proposed model re-

sults more complete and more complex respect to all the already existing

models for the BGP in combinatorial auctions for the procurement of full

truckload transportation services.

The huge, exponential dimension of the problem have permitted the

exact solution only up to certain cardinality of the set of the auctioned

loads. For higher dimensions some heuristic procedures that permit a

sequential solving of the BGP have been constructed. The behaviour of

the proposed solution approaches was evaluated on a wide range of test

problems generated by ourselves.

0.4 Organization of the thesis

The thesis is organized in five chapters, introduction and conclusions

excluded.

In the following a brief description of the content of each chapter is

reported. The thesis begins with an introduction of the present work.

In chapter 1 the combinatorial auctions are introduced, starting from

their definition and description (the auction’s stages), to their classifi-

cation respect to various criteria, to benefits and drawbacks respect to

normal, simple auctions, highlighted by the existing scientific literature.

In chapter 2, starting from the literature, the combinatorial auctions

used to procure transportation services (contracts) in the full-truckload

case are described and examples provided, as well. Moreover, we pro-

pose a detailed description of the problems of a combinatorial auction:

the bid generation and evaluation problem (BGP) and the {emphwinner

determination problem (WDP) and highlight their difficulty of solution

(NP-hard problems).

Chapter 3 is devoted to the BGP, the main subject of this thesis.

After presenting the BGP’s state of art, we propose an original model

for the BGP, by highlighting the new aspects of such a model and the
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additional difficulties respect to the existing models in the literature.

The difficulties of solution of this model are illustrated (due to the ex-

ponential number of bundles, hence of variables and constraints, etc...).

In order to partially solve a priori the dimensional problem, and so to

decrease the cardinality of the set of all possible bundles, there have been

developed preprocessment procedures of the set of the auctioned loads,

taking into account both of the trucks’ position and the loads’ deliv-

ery time windows. Moreover, the synergies between auctioned loads and

those of the carrier’s existing transportation network have been stud-

ied and quantified (in two ways, and differently as done in [2], [6], [54],

[58]) and included in the distribution of the random variable represent-

ing the clearing price of the bundle. We present the chance constraints

and discuss the distribution and the independence of the random vari-

able representing the clearing prices of the loads components the bundle.

Different variants of this model have been produced beginning with the

initial formulation, including the synergy in the objective function and/or

in the constraints, considering loads’ pick-up time windows, considering

lane covering constraints (like in [51], [53]), reformulating the model such

that the time-space extended network be explicite.

In chapter 4 an heuristic-type solution approach is proposed because

the huge (exponential) dimension of the problem allowed the exact solu-

tion only up to certain cardinality of the set of the auctioned loads. For

higher dimensions some heuristic procedures that permit a sequential

solving of BGP have been constructed.

A first type of heuristics, starting from the maximal cardinality bun-

dle of loads (that is, equal to the set of the auctioned loads L), evaluate

the decremental profit (marginal benefit) for each bundle obtained by

dropping out one load at a time from the current bundle, and choose

the load for whom it has been yield the best decremental profit. Then

update the current bundle (eliminating the previously selected load) and

so on. The procedure is repeted until the current bundle becomes empty.

14



A version of this heuristic can be obtained by considering as the initial

bundle that one with minimal cardinality (for example, the empty set)

and evaluating the incremental profit get by adding a load to the cur-

rent bundle. The complexity of this first type of heuristic algorithms will

be only of O(n2) (where n is the cardinality of the set of the auctioned

loads).

A second type of heuristics considers as the initial set of bundles a

certain set of bundles selected with respect to various criteria (random

selection, bundles chosen with higher synergy and/or in some interval,

bundles with cardinality in some interval, etc...). Then the problem for

every bundle of this set (constructed as above) is solved and, moreover,

we select from these the bundle with maximum value of the objective

function.

Chapter 5 is related to the extensive computational phase carried out

in order to validate the model and evaluate, in terms of efficiency and

efficacy, the performances of the proposed solution methods. GAMS, Mi-

crosoft Visual C++, ILOG CPLEX ed ILOG CONCERT have been used

as development (implementation and solving) environment of the model.

Since for the combinatorial auctions the real data are not usually publicly

available (as often pointed out in the scientific literature, for example in

[2]), we constructed and implemented in C a test problems’ generator.

Because of the exponential number of variables and constraints (corre-

sponding to the bundles of auctioned loads), the proposed model has

been solved exactly only up to a certain dimension (20 auctioned loads).

For higher dimensions the proposed heuristic procedures that permit a

sequential solving of the BGP have been used. Extensive computational

tests are carried out on a meaningful number of test problems, with the

goal of assessing the behaviour of the proposed approaches. Thus, the

various proposed heuristics have been compared, providing the gap with

the best (optimal) solution and the corresponding computational times.

The preliminar results are very encouraging and show the efficacy and
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the efficiency of the developed solving strategies and the usefulness of the

proposed model in terms of tool to support the carriers in their integrated

fleet routing and profitable bidding decisions.

Conclusions (and future work projects) are given at the end of the

thesis.

This thesis represents a rigorous study and an accurate analysis of the

problems related to the BGP in a combinatorial auction for full truckload

transportation. The main scientific contribution is the introduction and

the definition both of a mathematical model for the bid generation and

evalutation (integrating also the routing of the carriers’ fleet) and of the

heuristic procedures able to solve the BGP on more complex instances.
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Chapter 1

Combinatorial Auctions

1.1 Introduction

Auctions have been used since ancient times. The first auctions took

place as early as 500 B.C, as is generally accepted. Perhaps one of the

most spectacular auctions in history occurred in 193 A.D. when the

throne to the Roman Empire was auctioned to the highest bidder by

the Praetorian Guard, after having killed the emperor Pertinax ([16]).

Today auctions are known to be an efficient way for selling and procur-

ing items of different nature. For example, auctions are used when trad-

ing oil, gas, timber, mineral rights, radio frequency rights, services con-

tracts, collectibles of all kinds and so on. There are numerous on-line

auction websites, and auctions have even made their way into the on-line

gaming scene.

McAfee and McMillan ([29]) define auctions as market institutions

with an explicit set of rules determining resource allocation and prices,

based on bids from the market participants. An auction could be viewed

as a method of commerce where the auctioneer elicits price information

from bidders through the submission of bids. A winner is selected based

on an allocation rule which takes into account only the submitted bids,

and the winner pays some amount specified by a payment rule. In tra-
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ditional (standard) auctions, the allocation rule is to award the item to

the highest bidder, but this does not have to be the case more generally.

Many auctions concern the selling or procuring of a single item (single-

item auctions). Examples of widely applied single-item auction protocols,

both in practice and in the scientific literature, known as the main four

types of ”‘classical”’ auctions ([57],[19]), are:

• Open ascending price auction (English auction) : the auc-

tioneer starts with a reservation price, the lowest acceptable price,

and the price is raised with every new bid, the bidders dropping

out of the auction when they are not willing to bid above the cur-

rent price. The winner is the last remaining bidder and he pays

the price of his bid. Since the auction is open the bids are known

to bidders during the auction.

In the English auction, the auctioneer has the right to keep se-

cret the reservation price. Because of the high competition level

between bidders and of the unskilled bidders that raise the price,

in this kind of auction it is common the “winner course”, that is

paying an item more than its real value.

• Open descending price auction (Dutch auction): even if the

English auction is the most common (used) kind of auction, the

Dutch auction is the first one known in the history; the Babilonians

used it for selling young women to rich people.

In this type of open auction, the bid starts from a extreme price

and decreases until a buyer gains the item and pays the last lowest

price.

• First-price sealed-bid auction: the most important property of

this auction is that the bids are submitted in a ”sealed envelope”,

thus are hidden to other bidders. Usually, in this kind of auction

every bidder can submit only one bid, hence the choice of the bid

results very important.
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This kind of auction has two stages: a bid stage, where the buyers

submit their bids, and a solving (auction) stage, where the winner

of the auction is determined. In a forward sealed bid auction, the

winner (the highest bidder) pays the amount bid. In a reverse

(or procurement) auction, with one buyer and many sellers, the

lowest bid presented by the sellers wins and is payed by the buyer.

However, the analysis of selling auctions and procurement auctions

is similar.

• Second-price sealed-bid (Vickrey) auction: as the first-price

auction, in the Vickrey auction the bidders submit bids in a ”‘sealed

envelope”’, hence bids are unknown to the other bidders. Highest

bidder wins and pays the value of the second highest bid. Even

if the first-price auction seems provide major benefits to the seller

(auctioneer), in pratice this is not true. In the Vickrey auctions the

bidders are not afraid to present high prices and this represents a

gain for the auctioneer.

All of the above auctions have been thoroughly analyzed, and bidder

behavior has been mapped for many settings.

Even if we have considered only the single-unit auctions, the types

of auction previously reported could be extended to the multi-unit case

where more units of the same object are auctioned. For a detailed de-

scription of the multi-unit auctions see, for example, ([19]).

However, there are cases when a seller has many items that he wishes

to sell simultaneously and where buyers have synergies on certain combi-

nations of items. One such example is the shipping industry, and another

is the spectrum license auctions held world wide.

There are several ways to approach the sale of multiple items. A

classification of the multi-item auctions distinguish between ([44]):

• sequential auctions

• parallel auctions

19



• combinatorial auctions.

In the sequential auctions the items could be sold one after the other,

there will be as many auctions as many items are being auctioned. Thus,

every item or indivisible set of items is auctioned one at a time. The

winner determination is done by simply choosing the best bid for each

item. Given its simplicity, the sequential auction was widely used during

the past and the most of the auctions used today in the world are of this

type.

Another option to sell the items is to auction them simultaneously in

several parallel auctions, so in a simultaneous auction.

Yet another way to auction multiple items is by allowing bidders to

submit bids not on single items but on indivisible bundles of items, which

brings us to combinatorial auctions, our central topic.

The sequential and parallel auctions could lead to inefficient resources

allocation. The combinatorial auctions mainly appear in order to over-

come these problems.

1.2 Combinatorial auctions

The (Combinatorial Auctions) have been proposed for the first

time in 1982 by S. Rassenti et al. ([38]). They are multi-item auctions

in which the bidders can define their own combinations of items (called

packages or bundles) and can submit bids on them instead of on single

items or predefined bundles.

The problem of auctioning multiple goods can be difficult; especially

when the valuations of combinations of items differ, or when bidders

have preferences over bundles. This is often the case in transportation

exchanges.

Analyzing combinatorial auctions is hard and compared to single-item

auctions relatively little has been done. Since combinatorial auctions

are being used more and more, there is a need to study them further.
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Combinatorial auctions are computationally hard, but a first-price com-

binatorial auction really worth pursuing compared to the much simpler

simultaneous single-item auction. That because the combinatorial auc-

tion captures the synergies between items, and thus the first-price combi-

natorial auction produces higher revenue than simultaneous single-item

auctions.

The combinatorial auctions can be classified as:

• one-sided, if there are many buyers and one seller or a buyer and

many sellers;

• multi-item, if items of different types are sold;

• multi-unit, if more units of the same item can be sold.

The multi-item auctions are frequent in industrial and logistic supplies

(stocks) where the suppliers are able to satisfy the buyers’ requests on

various items ([48]).

The combinatorial auction permits to the bidders to better express

their own preferences and provides more economic efficiency and major

auction revenue. This is particularly important for the bidders when

the items are sostitutable or complementar: in the latter situation we

can talk about synergies. There are synergies between items when the

sum of the values of the single item is smaller than the value of the set

consisting of them. For example, a pair of shoes is worth more than the

sum of the values of a single unpaired right shoe and a single unpaired

left shoe.

Beyond the benefits, however, the combinatorial auctions involve

many inherently difficult problems, both for the auctioneer and the bid-

ders ([25]). As mentioned by Song and Regan ([53]), we face the Bid

Construction Problem where bidders have to compute bids over different

job combinations, and the Winner Determination Problem where jobs

have to be allocated among a group of bidders. Moreover, it may be
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unrealistic to bundle jobs which belong to different shippers and these

procedures are not directly applicable in situations where jobs arrive at

different points in time.

The task to solve the Winner Determination Problem (WDP),

that is to find the set of winning bids maximixing the auctioneer’s rev-

enue, is fully entrusted to the auctioneer: there will be a set of bids on

different bundles and from this set is necessary to extract that subset

with the highest total value and being a feasible solution of the problem.

In this thesis will not be studied the WDP, but we can affirm that this

is a very studied problem in the leterature, even if it is a NP-complete

problem, and for this reason it is often solved by using heuristic algo-

rithms trying to provide a solution as near as possible to the best optimal

solution.

The problem faced by the bidder in order to evaluate and generate

bids (Bid Generation Problem (BGP)) will be studied in detail in

the next chapters, dedicated to the use of the combinatorial auctions in

transportation industry.

This thesis concerns the interdisciplinary field of combinatorial auc-

tions, combining the fields of operations research, computer science and

economics.

1.2.1 Types of combinatorial auctions

The combinatorial auctions can be classified, based on their dynamic,

as follows ([49],[35]):

• one-shot or single-round auctions;

• iterative or multi-round auctions.

The one-shot auctions are sealed-bid and have an unique bidding

stage during which all the bidders submit their bids. There are indi-

viduated the winning bids by solving the corresponding WDP and are
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computed the prices to be paid. The design parameters for the one-shot

auctions are the bidding language, the bid evaluation policy and the pric-

ing policy. The bidding language, studied in detail in the next section,

specifies the bids’ language, the bid evaluation criterion describes the

technique to determine the winners, and the pricing policy determines

the prices of the winning items.

The iterative auctions can be sealed-bid or open auctions, but they

have more bidding stages. In an iterative auction the bids submission and

evaluation are done several times and after every iteration the bidders

obtain additional information. These auctions can finish after a estab-

lished time period or after a certain termination rule has been satisfied

(for example, when there are not any new bids). In the most of the iter-

ative auctions, the winner determination and the prices computation are

done after any iteration, such that to compute the temporary allocations,

while in other auctions are done only after the closing of the auction.

The bidding dynamic adopted in this thesis is one-shot, commonly

used in the logistic auctions. However, the iterative auctions have been

used in a great number of industrial applications, since help the bidders

to express their own preferences and to receive information on prices and

allocations at every round of the auction ([3]).

As illustated in the previous section, the combinatorial auctions are

one-sided auctions. These correspond to exchange situations where there

is:

(1). a (seller) and many (buyers) (forward auction);

(2). many sellers and one buyer (reverse auction).

In the Forward Combinatorial Auction the seller puts in the auction his

own items with a starting price for every item; subsequently there will

be the competition between the buyers to establish the market price of

the various auctioned items. Therefore, the buyers have the main role,

while the seller (auctioneer) has to establish the different criteria of the
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auction. The goal of this kind of auction is to maximize the seller’s profit,

that is the auction’s profit.

A combinatorial auction where the auctioneer has to buy several

goods from the buyers is called (Reverse Combinatorial Auction). The

aim of this type of auction is, for the buyer, to obtain some goods at the

minimum possible cost, and for the sellers, is to sell all the auctioned

items, obtaining the best possible revenue both in terms of maximum

economic profit and minimum time employed by the buyers in order to

finish the activities.

There are two common strategies for the reverse auction:

(1). the buyers assert how much they are willing to pay for an item or

a bundle of items and the sellers answer with a bid;

(2). the buyers identify the items or the bundles of items they are in-

terested to buy without any price indication. The interested sellers

submit their bids for the various packages.

The subject of this thesis is a one-shot reverse combinatorial auction.

1.2.2 Bidding languages

In an auction, the bid is the expression of the bidder’s wish to pay a

certain sum of money for different aims. The bidders formulate the bids

according to their own preferences and to the bidding strategies.

The bidding languages, defined by Nisan ([32]), indicate how (the mes-

sage format and the interpretation rules) the bidders can formulate their

own bids. The more direct way to formulate a bid is to allow to every

bidder to assign a price to every possible bundle.

Before describing the bidding types, we need to define the concepts of

complementarity and substitutability, already mentioned. Defini-

tion

Two disjoint sets S and T are called complementar if v(S ∪ T ) >
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v(S) + v(T ), where v is a function that returns the evaluation a bidder

give to the set, variable of the function. Conversely, two sets are called

substitutable if v(S ∪ T ) < v(S) + v(T ).

The languages for the combinatorial auctions are usually done by

(atomic bids), hence every bidder may submit only one bid, considered

as pair (B,p), where B is the bundle and p is the ask price.

The two most popular languages are:

(1). additive-OR (OR): can be proposed more atomic bids, knowing

that every bidder can obtain any number of pairs;

(2). exclusive-OR (XOR): can be proposed more atomic bids, but the

number of pairs to be obtained by the single bidder is at most one.

In other words, the bidder obtains either all the items of the bundle

listed in a specified bid, or nothing.

It is proved that the OR bids can represent all the bids that do not have

substitutes; moreover, it is proved that the XOR bids can express all the

types of bids.

The XOR language permits to every bidder to define a demand price

for each possible winning combination. From this point of view, it can

be considered the most suitable language for the combinatorial auctions.

However, it has communicative and cognitive complexities caused by the

exponential number of bundles to be evaluated.

1.3 Fields of application

In the literature concerning the combinatorial auctions numerous ap-

plications have been reported ([31]). For example, there are applications

in the telecommunications, in e-procurement, in truckload transporta-

tion, in supply chain.
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FCC spectrum allocations

FCC is the Federal Communications Commission, a federal agency

in USA which allocates spectrum licenses. In these cases, the problem

is to achieve an efficient, value maximizing, allocation of new spectrum

licenses to wireless telephone companies. The mobility of clients leads

to synergistic values across geographically consistent license areas; for

example, the value for New York City, Philadelphia, and Washington DC

might be expected to be much higher than the value of any one license by

itself. Since some companies might value certain combination of licenses

more than individual licenses, all the licenses have to be allocated at the

same time.

Electronic procurement

The combinatorial auction can be used for procuring direct or indi-

rect materials. A buyer wants to procure a bundleofi items and sends

a request for quote (RFQ) to several sellers. The vendors respond with

quotes for subsets of items. The problem is to select the best set of bids

that minimizes the total cost of procuring the required bundle.

This is one of the major application areas for combinatorial auctions

since buying a bundle of items rather than individual items can reduce

the times and lead to savings of the logistics costs.

Bandwidth exchanges

Public and private companies (sellers) get available slots of bandwidth

of a fixed size and duration. Buyers (service providers or smaller compa-

nies) have values for bundles of slots. In this case, the allocation problem

is to assign combinations of bandwidth slots to buyers and match them

with sellers in order to maximize the total surplus in the system (that

is the total amount received from the buyers minus the total cost to be

paid to sellers). This problem leads to a combinatorial exchange.
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Logistics and trasportation

Procuring logistics or transportation services is a natural application

for combinatorial auctions since bundling is common and natural in lo-

gistics services.

A logistics exchange consists of shippers (buyers) who would like to

ship bundles of loads from several sources to several destinations and

carriers (sellers) who specify the cost of shipping along the bundles of

routes serviced by them. Thus, a logistics exchange corresponds to a

combinatorial exchange, too.

Supply chain formation

Automated, dynamic supply chain formation is currently an impor-

tant problem and one of the approaches to solving this problem is based

on combinatorial auctions. The agents here are the potential participants

in the supply chain, placing bids on combinations of different resources

in the supply chain. If the bidder does not get all components from the

desired bundle, then the transaction has no value to him.

Distributed resources allocations

In a manufacturing plant, a set of jobs has to be scheduled across a

set of machines. Each job has some deadline and possible cost of delay

and requires to be processed on several machines. In this framework, the

allocation problem is concerning how to select the best set of machine

slots for individual jobs such that to minimize metrics like maximum

tardiness or total delay, etc...

Another application is in collaborative planning. Consider a system of

robots that wish to perform a set of tasks and have a joint aiml to perform

the tasks at a cost as low as possible. Suppose there are n tasks to be

performed and m robots are available. Each robot requires a certain cost

for performing a subset of tasks. The overall goal is to allocate subsets of
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tasks to robots so as to minimize the overall cost. Many other resource

allocation scenarios have been explored: for example, train scheduling,

bus route allocation, airport time slot allocation, and airspace resource

allocation.

Other applications

Recently, the combinatorial auctions have been used in improving

school meals. Other interesting applications are in business to business

negotiations, in spatial mission times assigning, in licenses to polution

industries, in production planning, in space assigning to commercial tele-

visions and in planning of travel packages. In the last case, the problem

is to allocate flights, hotel rooms, and entertainment tickets to agents

who have certain preferences over location, price, hotels, etc. Here, com-

binations are important because a hotel room without a flight ticket or

an entertainment ticket has no value.
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Chapter 2

Combinatorial Auctions for

Truckload Procurement

Usually, auctions are considered in the context whereby human bid-

ders compete with each other in order to purchase an item at the lowest

possible price from an auctioneer who wants to sell the item at the high-

est possible price. In the case of allocation of transportation jobs, the

auctioneer (e.g. a shipper) wants to subcontract transportation jobs at

the lowest possible prices and each bidder (e.g. a carrier) wants to de-

liver the service at the highest possible payments. This situation creates

a reverse auction because the sellers (carriers) bid instead of the buyers

(shippers) and prices are bid down instead of up. The models for nor-

mal (forward) auctions can be obviously reversed and applied to reverse

auctions.

2.1 Truckload Procurement

The truckload transportation includes full truckload (TL), less-than-

truckload (LTL) and packages delivery. It has been the most important

transportation area in U.S.A., producing in 2005 more than 739 mld

dollars incomes, that is the 5, 9% of PIL. The trucking transportation
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represents over 84, 3% from the total worldwide transportation market

incomes, only in U.S.A. represents by itself more than 40, 6%([25]).

In TL transportation the goods are transported through dedicated

movements from the origin (O) to the destination (D), without inter-

mediar stops.

Shippers and carriers are the main actors in the TL market. The

shippers can be producers, detailers, distributors or anyone needs to move

the merchandise. The carriers are the transportation companies that

have available tir, trucks or other .

In a TL contract the lane is represented by the auctioned item.

In practice, the general TL procurement process has five steps in the

sequence of strategic, tactical and operational procedures.

Step 1. Carrier Screening: the procurement process begins with

the strategic decision of selecting the carrier base. Shipper usually uses

some kind of screening process in order to reduce the number of potential

carriers to a reasonable subset. The most common screening criteria are

the electronic data interchange capability, financial stability, the equip-

ment availability and the geographic coverage. The aim of carrier screen-

ing is to reduce the complexity and cost of the final selection process, by

filtering the thousands of candidate carriers down to hundreds or dozens

of quality guaranteed carriers.

Step 2. Information Exchange: after selecting the set of potential

carrier candidates, the shipper provides shipment network details to the

carriers. These ones use the received information to develop bids for the

procurement services and volume commitments. The information’s qual-

ity and format that shippers communicate with the carriers are critical

for the overall optimization of the procurement practice.

Step 3. Carrier Assignment: after having shared with the carriers

the shipper’s transportation requirement, depending on the bidding in-
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formation the carriers submit, the shipper selects the final set of carriers

that would best suit the procurement needs in terms of lowest cost. He

assigns carriers to the shipment network for every traffic lane, hence a

lane by lane assignment is performed either by a contract forming com-

petitive bidding process or in the spot market. The contracts formed

are usually open agreements between shipper and carriers, the load ten-

dering carrier being picked for a lane at the time when the shipment is

finally ready to be shipped. Step 2 and 3 are iterative and coupled as

the tactical phase of the procurement process.

Step 4. Load Tendering: although carriers have been assigned to

each lane during the Step 3, due to real time uncertainty, final choices

need to be made for selecting exactly which carrier to use for each load

as it becomes ready to ship. Hence, the assignment process provides only

some guidelines as to which carrier to call for certain lanes but there is

often need for real time choices to be made between alternative carriers.

Step 5. Performance Review: the final step of the procure-

ment process is review of each carrier performance by tracking important

Key Performance Indicator (carrier refusal rates, on-time pickup/delivery

rates, service standard, etc...). This step provides feedback to the carrier

screening procedure, suggesting corrective actions for the carrier screen-

ing decisions. Step 4 and 5 are seen as the operational phase of the

procurement process.

One of the main problems in TL transportation is the empty reposi-

tioning because represents a significant part of the operative costs ([25]).

An ”‘empty distance (repositioning)”’ is called the situation when the

vehicle travels unloaded. The deadheads are verified when a vehicle must

come back to the depot or reach another destination in order to load the

merchandise, when the drivers and the vehicles are not moving or for

other reasons.

Since there are not payments for the empty repositioning and for the

deadheads, it is necessary but not easy to search a set of loads that per-
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mit to reduce or eliminate them for the benefit both of the shippers and

of the carriers.

Another important problem in TL transportation is the “valuation of

the costs” done by the carrier. The movement costs of the merchandise

on a lane are interdependent ([25]) because they are not determined only

by the lane, but depend on the other lanes of the same loop (route), too.

Therefore, the minimum cost to move the load on a lane will depend also

on the volume of the other lanes.

Of particular interest in this thesis are the TL carriers which operate

therefore over irregular routes like taxis, performing direct line-hauls from

origins to destinations.

Because of very low fixed cost and sensitivity to the balance of the

loads (empty repositioning is one of the major sources of cost for TL

carriers), TL carriers tend to have slight diseconomies of scale and exhibit

significant economies of scope ([4]). Economies of scope means here the

total cost of a single carrier serving a set of loads is lower than that

of multiple carriers serving the same set of loads. Since TL carriers

show significant economies of scope, combinatorial auctions are effective

auction mechanisms for shippers to procure TL transportation services.

The most common procurement process for transportation services is

similar to a simple sealed-bid auction ([51]). Here an auctioneer (shipper)

announces the bidding item (contract to serve a certain transportation

job), a group of bidders (carriers) review this item, and then each of them

submits a price in a sealed envelope. The auctioneer then reviews the

bids and determines the winner.
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2.2 Truckload procurement combinatorial

auctions

The combinatorial auctions can provide more efficient allocations if

they have a multi-unit structure and are useful mechanisms for the as-

signing of the loads, since the carriers may prefer some loads and hence

bids without the fear to obtain an incomplete set of loads.

The shipper determines which loads to propose in the auction and the

carrier has to know which bundles of loads to submit to the auctioneer.

The auctioneer, that may be the shipper or an agent representing him,

solves the Winner Determination Problem (WDP) in order to decide

which bundles of loads to assign to the carriers. If we have a one-shot

auction, after the solving of WDP there are no longer allowed bids. For

iterative auctions instead, the carriers can submit again bids even af-

ter the winner determination, therefore at every iteration a new WDP

is built and solved. These packages may be different from those of the

previous rounds, depending on the new prices fixed by the auctioneer,

called ask prices. Several stopping rules that finish the auction can be

used.

2.2.1 Literature review

Helping the carriers to present efficient bids leads to a cost reduction

even for the shipper ([25]).

An et al arrived at similar conclusions in [2]. Both the bidders and the

shipper significantly benefit from the combinatorial auctions respect to

the more traditional formats that allow bids only on single items. Hence,

even the shippers have to encourage the use of the combinatorial bids.

Recently, big companies have started to experiment the use of the com-

binatorial auctions, wishing to give flexibility to carriers in the contracts
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and to reduce the supplying costs.

In [22] it is reported the experience of Sears Logistics Services that, in

1995, was the first company that successfully used the combinatorial auc-

tions for the transportation service assignment; in this way the Sears has

saved mln of dollars per year from the transportation costs. The initial

auction involved 854 loads with an effective cost of about 190 mln dol-

lars yearly. Sears implemented an iterative combinatorial auction that

riduced the cost to 165 mln dollars per year, a saving of 13%.

In [9] it is presented the experience of the Home Depot that, in Jan-

uary 2000, has used a one-shot combinatorial auction mechanism for the

merchandise movement between its depots and the planning centers. The

auctioned loads represented about 52.000 movements, that is a quarter of

all the input movements in the stores of the Home Depot network. More

than 110 carriers have been invited to participate and the major part

of them submitted bids. In this auction the carriers had more freedom

respect to the other traditional auctions of Home Depot ; for example,

the carriers could submit OR bids both on groups of lanes and on single

lanes. Moreover, they could specify additional restrictions on the aggre-

gated bids, that is a carrier could limit the number of loads assigned in

a geographic area or, as default, the total number of lanes assigned to

a carrier could not exceed his available capacity, etc... It has been said

that “the new bidding process is a big success” and the “Home Depot

intends to continue using this new bidding process”, but there are not

been reported the specific number of the savings. The auction had a

big success: not only provided to Home Depot better costs, but many

carriers had been satisfied of the lanes assigned to them.

The value of the combinatorial auctions for TL transportation is dis-

cussed in [5], where several optimization models for allowing the shipper

to assign the lanes to carriers are presented. The experience of the au-

thors (Caplice and Sheffi) in designing and lead more than 100 auctions

for TL transportation, from which 50 were combinatoral, is reported.
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These auctions involved more than 8 mld dollars in transportation ser-

vices and have lead to a saving for the shippers of more than 500 mln

dollars.

Sheffi refers in [50] that many other companies, besides Sears and Home

Depot, like Colgate-Palmolive, Compaq Computers, Ford Motors, Inter-

national Paper, Lucent Technologies Inc., Nestlè S.A., Procter and Gum-

ble, Quaker Oats (a part of Pepsico Beverages and Foods Inc.) and the

Wal-Mart Stores, have used the combinatorial auctions in order to de-

crease its transportation costs mantaining a high service level.

In [30] it is described the bidding approach for the Reynolds Metals based

on optimization. Unfortunately, the model has not been completely im-

plemented because of the limited functionality of the computers of that

period.

The use of strategic tools for the assignment of lanes for the merchandise

transportation becomes fundamental part of all the distribution chains.

For example, Manugistics Group Inc. has bought Digital Freight Ex-

change in May 2002 in order to add bid submitting tools to the suite

SRM. Schneider Logistics has introduced their module Combined Value

Auction (CVA) in June 2002. The same authors worked to the devel-

opment of the theory of combinatorial assignments in the transportation

field ([4]) and in the application of optimization-based techniques for

more than 50 companies in the TL transportation, LTL transportation,

sea, railway and air transportation area. There were spent more than 8

mld dollars for the transportation services with a saving for the suppliers

of about 500 mln dollars.

In [9] are described the combinatorial auctions in procurement. Mak-

ing the ”right” pricing decision is a complex task in sales or procurement.

Pricing mechanisms in the exchange of goods/services are:

• posted price mechanisms (prices determined by seller; can be dy-

namic: customized prices or intertemporal prices);
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• price discovery mechanisms (prices determined via a bidding pro-

cess): auctions (forward or reverse).

In a reverse (procurement) auction the buyer puts out a request for quote

(RFQ) for a service/product; prices are determined by a competition

among potential sellers.

Combinatorial (package) auctions (CA), where bidders are allowed to

submit bids on combinations of products or services, are effective mecha-

nism since can lead to more economical allocations of products or services

when there exist strong complementarities (synergies) over goods or ser-

vices, with source varying for different bidders (see e.g., [43]). Prices are

made on combinations of items (bundles or packages) and the bidders

can submit multiple bids (a bid consists in the proposed bundle and its

price). Combinatorial auctions empowered by the exponential growth of

online procurement have recently received much attention in transporta-

tion and logistics industries. Internet auctions’ benefits can be lower

information, transaction and participation costs, increased convenience,

ability for asynchronous bidding and access to larger markets.

Examples of companies using CA to procure logistics services are:

Sears Logistics Services, The Home Depot; Walmart Stores, Compaq

Computer Co., Staples Inc., The Limited Inc., Limited Logistics Ser-

vices, Kmart Corporation (aided by Logistics.com)([9]). Sears Logistics

Services in the early 1990s saved more than 84 million dollars by running

six combinatorial auctions over a 3-year period ([22]). Limited Logistics

Services saved 1.24 million dollars in 2001 compared to the previous year

([9]). It is noted that the TL trucking companies in the above-mentioned

practical applications bid for fixed-term contracts instead of spot-market

loads. Even if there are not spot-market combinatorial auctions in action

now, there exists the believe that not only they should be, but even will

be adopted and prevail in TL procurement auctions in the future ([6]).

Combinatorial auctions (CA) require bidding on an exponential num-

ber of bundles of loads (full economies of scope and scale), thus in [7] it
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is exploited the underlying structure of a truckload procurement prob-

lem in order to find solutions to fully-enumerated auctions in reasonable

time.

Hence, this new approach in combinatorial truckload procurement

auctions (CTPA) consist in the implicit consideration of complete set of

all possible bids. Based on the paper of Beil, Cohn, Sinha (2007), there

exists a known, amenable structure underlying the cost of servicing a

given set of bid loads, then will be solved a minimum-cost flow problem

in order to compute the least-cost (set of) tour(s) covering a set of loads.

This research focuses on the complementarities among bid loads and car-

riers’ existing networks and embed this underlying cost structure (bid

generating function) directly into WDP, the resulting WDP being refor-

mulated as multi-commodity flow (MCF) problem of polynomial size.

The contributions of the paper in [7] are:

• developed tractable models to solve a basic truckload procurement

auction to optimality in single round, fully considering (implicitly)

the exhaustive set of all possible bids;

• showed how the power of mathematical programming can enable

this basic problem to be extended to include additional important

real-world operational considerations;

• took advantage of this new capability to solve fully-enumerated

truckload procurement auctions as a tool for conducting numerical

analysis on the characteristics of CTPA solutions.

Carriers’ cost structure consists of direct movement costs and indi-

rect movement (repositioning) costs. The carriers try to build efficient

continuous moves (tours) with minimal empty mileage, by combining

bid loads, carrier’s pre-existing contracted loads and opportunities on

the spot market. These backhaul opportunities are uncertain at auc-

tion’s time so carriers estimate them, for each directed city pair in the
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network, with an n-tiered step function (ehere 1 tier denotes 1 type of

backhaul opportunity). Given the set of bid loads and the estimation of

backhaul opportunities, the carriers determine the least-cost set of tours

to serve these loads; this cost is used for computing the bid price (here, a

first-price auction). As typically in a first-price auction, the bid price is

given by the true-cost of the bid and a percentage-based markup ([52]).

In most of the CTPA papers the bundle prices are assumed exoge-

nously endowed (external source) so there will be considered carriers’

explicit prices for all the preferred bundles. In [7] the carriers compute

the bundle prices using a well-structured bid-generating function (BGF)

hence an implicit bidding approach to solve WDP using BGF directly,

in lieu of the actual bids.

According to the traditional auction mechanism, the carriers compute

the bid price for each bundle by solving a BGF, impossible in practice

for CTPA with thousands of loads to compute prices and submit bids for

exponential set of bundles and solve exponentially-large WDP. The so-

lution given in [7] is that each carrier submits its BGF to auctioneer and

these BGF are embedded into WDP. The resulting implicit WDP is a

polynomially-sized model solution-equivalent to fully enumerated tradi-

tional WDP and can be reformulated as a multi-commodity flow (MCF)

problem, easy solved in practice for CTPA ([1]). Moreover, the formula-

tion is expanded to capture key operational considerations on the number

of loads, number of winners, total mileage, favoring of incumbents, per-

formance measures.

For a large-scale implicit WDP has been proposed an alternative

model, largely invariant in increasing the number of loads (so appears

a scalability improvement of orders of magnitude). The loads with com-

mon origin and destination cities are aggregated into a single lane with

weight given by the number of loads on that lane.

The computational experiments done for CTPA with up to 200 bid

loads have showed the scalability of implicit WDP and for CTPA with up
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to 5000 bid loads have showed the scalability and tractability of the alter-

native implicit WDP model (even extended with additional operational

constraints).

A numerical analysis has been done in order to better understand

the CTPA performance and characteristics (solution time, number of

winners, empty movement percentages, etc...) and the effects on them

of important problem parameters (number of carriers, number of loads,

carriers’ backhaul capacities, network structure, etc...).

In conclusion, the implicit bidding approach (proposed in [7]) has

been applied to solve CTPA in a single round while implicitly consider-

ing the exhaustive set of all possible bundles. This approach directly ad-

dresses the two main challenges of the CA: bidding on an exponentially-

large set of bundles and solving the corresponding exponentially-large

WDP.

As future research interests, the authors of [7] address additional op-

erational considerations: regional coverage requirements, backup carrier

bids, and maximum tour length constraints; use the proposed tool to

asses the quality of various auction mechanisms (first price, second price,

etc) for truckload procurement or under various procurement settings;

detailed modelling of uncertainties (in the cost parameters due to spot

market variability, about carriers’ existing and future networks, and tim-

ing effects) and development of appropriate solution approaches; extend

the use of the implicit bidding approach to other application domains

(wireless spectrum auctions, energy auctions, procurement auctions with

capacity-constrained suppliers), after studying if the bid generating ap-

proach is amenable.

2.2.2 Difficult problems in Combinatorial auctions

In spite of the previously mentioned attractive characteristics, it is

known that constructing desired bids and determining the winners in
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CA pose a big burden on the bidders and auctioneers. For instance, if n

products or services are posted, each bidder may submit bids for up to

the theoretical 2n − 1 different combinations of goods or services. Thus,

both the auctioneer’s winner determination problem, and the bidder’s

bid construction and valuation problems are NP-hard ([53]). To solve the

winner determination problem, some researchers have tried to develop ef-

ficient heuristic algorithms ([46]), while others have designed alternative

auction mechanisms that restrict bidders to bid on the set of permitted

combinatorial bids ([43]). These restricted approaches make the winner

determination problem computationally manageable, but might reduce

the value of CA because the bidders cannot perfectly express their syn-

ergistic values. Compared to the winner determination problem, the bid

generation and valuation problems deserve much attention since are very

important but not enough studied and for this reason are the focus of

this thesis. Since, in practice, it is not always worthwhile to prepare all

possible packages in many settings (e.g., truckload transportation pro-

curement), a bidder needs only to submit necessary packages. Therefore,

the techniques to extract desirable ones from a potentially huge number

of possible bid packages are required ([6]). Challenging tasks in CA are:

• auctioneer’s mechanism design problem;

• auctioneer’s Winner Determination Problem (WDP): NP-complete

([32]);

- exact optimal solution: fast search algorithms ([14]; [46]; [47]);

- near-optimal solution: approximate solution methods ([38]; [14];

[21]).

• bidder’ problem of preparing/submitting combinatorial bids (expo-

nential number of bundles);

• bidders’ problem of determining the appropriate bidding price on

the bundles (considering own costs and resources and those of the
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competitors).

Critical design questions are:

• restrict the number and the type of bids to submit ([32]) such that

the WDP can be solved optimally in polynomial time; but bids’

restrictions (no expression of bidders’ preferences) yield economic

inefficiencies like in non-CA ([43]);

• single round versus multiple round auction:

- in single-round auction: famous Generalized Vickrey Auction

(GVA) ([56] ; [21]) - bidders submit true valuations (truthful bid-

ding) but over all possible bundles (resulting large and complex

WDP for auctioneer);

- in multiple rounds auction: the computational burden the single-

round formats place on the bidders during the bid preparation pro-

cess ([33], [34], [17] ) is relieved. Thus bidders can submit bids on

different bundles as prices change, make new bids in response to

other agents’ bids, submit bids on subsets of bundles in each round

(if have limited or costly computational resources). Moreover, the

auctioneer solves a sequence of smaller WDPs.
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Chapter 3

The Bid Generation Problem

In this chapter is described the Bid Generation Problem (BGP) in

TL transportation procurement combinatorial auctions, the focus of this

thesis. After the presentation of the restricted literature regarding this

problem, an original BGP model with synergistic chance constraints is

described. Moreover, there are analyzed concepts like synergy, prepro-

cessment of auctioned loads, distribution and independence of the ran-

dom variables denoting clearing prices of loads component chosen bundle,

etc...

3.1 Literature review

If the Winner Determination Problem was very much studied, there

are only very few studies that focus on bid generation and evaluation

problems.

In [2]it is proposed a model to assess bundle values given pairwise

synergies and develop bundle creation algorithms for selecting profitable

bundle bids based on the model. Their algorithms add as many profitable

items as possible to a bundle given that the value of a bundle increases,

on average, linearly in the bundle size.

In [53] it is proposed a two-phase strategy to solve a TL vehicle rout-
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ing problem to generate bids. The first phase enumerates all routes

satisfying routing constraints to generate candidate bid packages. The

second phase associates a binary variable with each candidate bid pack-

age, and solves a set partitioning problem (bid construction problem) to

determine desirable bids. Their bid construction problem assumes that

all auctioned lanes must be served, and the objective is to minimize total

operation empty movement cost.

As pointed out in [24], minimizing the total empty repositioning cost

may not generate the right set of bid packages. They develop a TL vehicle

routing model to maximize the profit in order to simultaneously, instead

of sequentially such as that in [53], solve the route (package) generation

and selection problems. In addition, their model allows auctioned lanes

to be uncovered.

In [58] it is defined the first-order synergy as the complementarity

between a set of auctioned lanes and a set of booked lanes, and second-

order synergy as the complementarity between a pair of sets of auctioned

lanes and booked lanes. They then demonstrate that the synergy of a

bid package may depend on other packages that will be won. In addi-

tion, they define the profit-based optimality criterion for a combinatorial

bid, and based on some specific assumptions, change the criterion into

the cost-based optimality criterion. Based on the cost-based optimality

criterion, they take the winning probability into account and show that

the optimal solution to a vehicle routing problem may lead to inferior bid

packages. Even though they make so much effort to define different syner-

gies and demonstrate the drawback of employing vehicle routing models

to generate bids, they eventually model their bid generation problem as

a generic vehicle routing problem with time windows. The routing prob-

lem assumes that all auctioned lanes must be served, and the objective is

to minimize the total transportation cost. Their elaborate definitions of

different synergies are, however, not implemented in their bid generation

problem.
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In a combinatorial auction (CA), the exposure problem is avoided

since a bidder can bid on bundles of items (reflecting thus his preference).

In order to achieve efficiency, in the CA has to be addressed the Bid

Generation Problem (BGP). Bidders have many different ways to bundle

the items in a CA and the synergies between bundles usually depend

on winning (or losing) other bundles. Therefore, the BGP in a CA is a

significant and very complicated problem.

Bidding on transportation services offers a typical example of the

BGP ([58]). Carriers bidding in bundles need to consider synergies of

trucking routes and capacity.

The problem statements are:

- carrier fleet of homogeneous trucks with a depot;

- committed set of truckload shipments (engaged lanes);

- call for bids on a set of truckload movements (lanes);

- each lane (engaged or not) has an origin, a destination and a pickup

time window;

- the service network is fully connected.

The carrier has to generate a set of combinations of freight lanes to

cover the lanes in auction and maximize its profit from the auction. The

objective is to minimize the total expected empty travel distance. The

combinations are of the OR type, that is any subset of a bid can be won

in the auction outcome.

Definitions :

Bid: a set of combinations (that form a partition of the set of auc-

tioned lanes) submitted by the carrier;

Derived bid: a set of combinations made up of the original combina-

tions;

Outcome set of a bid: set of all the possible auction outcomes (com-

binations won by the carrier) of that bid;

First-order synergy: measures the complementarity between a set of

lanes and the engaged lanes;
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Second-order synergy: represents the complementarity between a pair

of sets of lanes and the engaged lane (might be negative).

Optimal combinatorial bid: maximizes the expected profit (revenue

of the outcomes of that bid minus related cost empty travel distance);

the formula (optimality criterion) is valid for XOR and OR bids.

Evaluation of a bid: need to know probability, revenue and cost for

each outcome.

Remark:

In a CA, the cost can be accurately evaluated only when an outcome is

realized (using an optimal fleet allocation algorithm to solve the problem

of assigning trucks to unserved lanes to minimize the total empty travel

distance). Ex ante (without knowing the exact outcome), it is difficult to

generate a combinatorial bid (bundling the items) to achieve the minimal

empty distance travelled ex post.

Assumptions:

- competitive market (carriers bid for transportation service procure-

ment);

- bidders price their bid using a value pricing scheme (prices are set based

on the market value of each lane); the price for a combination is the sum

of market prices for each individual lane included and is independent of

the combinations made;

- all the outcomes have the same probability (in deregulated market:

competition equally likely everywhere);

- only OR bids examined: each lane in a bid has the same winning prob-

ability and each lane among different bids must have the same winning

probability;

- the winning probability of each lane is independent of what other lanes

are in the same bundle;

- any bidding strategy a carrier adopts could well be used by its competi-

tors and the bidders in the market are equally competitive (reasonable

approximation of the transportation markets, with multiple carriers often
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maintaining an equally intensive service network);

Remarks:

1). Using the optimal fleet assignment solution may not be the opti-

mal bundling strategy (i.e. doesn’t necessarily lead to the optimal bid,

by grouping the lanes assigned to the same vehicle), hence is identified a

sufficiency condition for the optimal OR bid.

2). When engaged lanes are not present and when the lanes can be

grouped into geographically isolated combinations that meet sufficiency

conditions, it is optimal to take each group as a combination.

3). Multiplicity of optimal bid: when an OR bid satisfying sufficiency

condition is optimal, its derived OR bid is also an optimal bid (under

that condition).

Two heuristic methods are proposed for generating combinatorial

bids.

The first heuristic, based on a fleet assignment model, give a generic

formulation for the routing and scheduling problem and solve it; group

the lanes assigned to the same vehicle into one combination then the

resulting bid consists of all the combinations.

The second heuristic, based on the nearest insertion method, have as

the basic idea to insert a lane into an assignment for any vehicle that

minimizes the total empty travel distance and do this to all lanes, one

by one, until they are all assigned. It is realized the construction of

heuristic assignment and the generation of combinatorial bids is done

like in the first heuristic. Heuristic 1 is computationally complicated,

whereas Heuristic 2 is easy to implement.

Numerical experiments for comparing the performances of the two

heuristics show that, on average, the simple nearest insertion heuristic

underperforms the integer programming-based optimal fleet assignment

model in most instances, but it may outperform the latter by up to

8% in some instances and by 5% (in terms of the total expected empty

distance travelled) in many other instances; by contrast, in a routing

46



and scheduling problem, the former always underperforms the latter.

Winning probability and engaged lanes have an unclear effect on the

relative performance of the two heuristic bidding methods.

In conclusion, although most users prefer to use the formulation of

the Heuristic method 1, as indicated in [51], the optimal fleet assignment

model does not necessarily lead to the best solution (see Remark 1 above).

Considering the effect of the stochastic factors in demand, time, etc... the

authors cautiously suggest just the nearest insertion method for the BGP

if the implementation of the optimal fleet assignment algorithm implies

large cost or technical difficulty. Although pricing is an integral part of

bid generation, it is shown that bundle pricing is separable from bundle

generation in this application, bundle generation problem being discussed

in this paper and bundle pricing will be topic of the future research of

the authors.

In [24], the carrier’s optimal Bid Generation Problem (BGP) in truck-

load transportation procurement combinatorial auctions is studied. The

authors propose a carrier optimization model in which the simultaneous

generation and selection of routes are integrated and existing lane com-

mitments are also incorporated together with total capacity and other

operational constraints (trucks must return the original depot and driv-

ing distance limitation). Carriers (bidders in this auction) use VRP mod-

els in order to identify sets of lanes (based on the actual routes of his

own fleet of trucks) that will maximize his profit. Thus, the objective

of the carrier optimization model is to maximize the utility defined as

the difference between the revenue from servicing a set of lanes (origin-

destination pairs) and the transportation costs (physical costs of cor-

responding route). Given prices for lanes, the model selects only the

best package (set of lanes) to submit to the shipper (auctioneer), that

is the package offering the most profit to the carrier and not that one

achieving the least repositioning cost (amount of empty movement) as
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in other papers ([51]). This is explained by the goal: find the optimal

trade off between the rewards obtained from servicing a set of lanes and

the associated repositioning costs of the vehicles. The model is a nonlin-

ear integer program (both the objective function and some constraints

are quadratic), which is solved by using a decomposition approach based

on column generation and Lagrangian relaxation, then a decomposition

based heuristic is developed. The decomposition strategy involves a par-

tition of the model into a master problem and a sub problem for which a

column generation-like strategy is employed to derive approximate solu-

tions to the original carrier formulation. In the case of single round auc-

tions, reservation prices for lanes can be used as coefficients in the utility

maximization (objective function). Since bidders involved in transporta-

tion procurement combinatorial auctions have hard computational tasks

to evaluate potential packages of lanes, a multi-round format would be an

ideal framework in which bidders could employ optimization to further

ameliorate the computational challenges and can use current price in-

formation for packages to make adjustments in strategies. Furthermore,

prices for individual lanes (corresponding to revenue received for servicing

a lane) could be used as well in multi-round transportation procurement

combinatorial auctions ([18]) as coefficients in the objective function of

a carrier’s bid generation optimization to determine the best package.

The model can be incorporated in multi-round settings (but still has to

be validated), by using marginal approximate-price information for lanes

based on tentative allocation of lanes in a round ([18]). For computa-

tional experiments have been considered instances for carrier models with

up to 335 lanes and have been observed that the proposed decomposition

algorithm effectively computes optimal solutions up to 200 lanes. The

model presented in this paper pertains to a single depot of the carrier in

order to capture realistic features of driver and equipment re-origination

(both, but especially the drivers, often must return to the same physi-

cal location, the depot). If there are more depots, the authors suggest
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that the optimization formulation can be used separately for each depot

(since each depot problem is responsible for lanes around a certain dis-

tance away from the depot, which is realistic in practice). The carrier

solves his bid generation model (for each depot) and then he could amal-

gamate all of the resulting bids from the different depots into an OR bid

to submit to the shipper. An alternative approach suggested in the paper

is to model the carrier’s BGP with multiple depots in a single formula-

tion, but the computational complexity would obviously increase. Thus,

the decomposition strategy (decomposition of lane responsibility per de-

pot), seems to be a more tractable alternative, especially for situations

involving thousands of lanes to be served by a carrier. Besides validating

the carrier model proposed in this paper in a multi-round setting, an-

other aspects for authors’ future research (important issues in real world

truckload combinatorial auctions, also) consists in the incorporation of

win/loss probabilities for lanes and in including the uncertainty in the

actual volume (that will realize) for a given lane.

In [53], the authors investigate the bidding problem in the context

of freight transportation contract procurement combinatorial auctions

from a carrier’s (bidder) perspective, that is they examine the problem

of constructing sets of bids in such auctions so as to optimize the effi-

ciency of the auction from the perspective of an individual bidder. The

bid valuation and construction problem for carriers in combinatorial auc-

tions for the procurement of contracts for freight transportation services

is very difficult and involves the computation (solving) of a number of

NP-hard sub problems. Besides the complexity of this problem ([33]), is

also noticed the actual lack of bidding decision support tool for carrier’s

operations. Thus, computationally efficient approximation methods for

estimating the carriers’ true values and constructing bids are proposed

in this paper. The authors use the same notations and definitions as

in [52], such as atomic bids, carrier’s true cost of serving a set of new
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lanes, complementary, substitutable or additive sets of lanes, bidding

language,etc... All this because this paper includes a great part of the

above mentioned paper (the Bid Construction problem in the absence

of pre-existing commitments). A lot of assumptions are made, such as

TL case, the absence of a central depot and the unlimited carrier’s ca-

pacity, the type of one-shot first-price reverse auction, the carriers bid

truthfully and do not take into account the competitors’ behaviour. The

Bid Construction Problem (BCP) in combinatorial auctions for the pro-

curement for freight transportation contracts is studied in two differ-

ent scenarios: in the absence of pre-existing commitments and in the

presence of pre-existing commitments. Optimization-based approxima-

tion algorithms for solving the above problem in each scenario are also

proposed. For the first scenario, carriers either do not have any pre-

committed contracts of current lanes, or they do not intend to integrate

new lanes into their current operations; therefore, they are only inter-

ested in the combination opportunities among new lanes. Thus, carrier

preferences can be expressed with OR bids, reducing the complexity of

WDP. The main idea of the proposed strategy to generate bids is that

the carrier construct bids such that the total operating empty movement

cost is minimized . Since this requires solving a TL VRP, the authors

follow an approach similar to that one of solving VRP: set partitioning

(SP) formulation of the problem and column generation method for ex-

act solutions. The first step of the bidding strategy consists in using a

search algorithm (depth first search algorithm) to enumerate all routes

with respect to routing constraints () and treat each route (candidate

bid) as a decision variable in the SP formulation of the BCP (BCP-SP).

The new lanes in this route form the set of items bid, its reservation cost

determines the bid price and can be calculated, as in [52], on the base

of route length, empty movement cost and carriers’ profit margin. Each

new lane is duplicate hence it can be used as empty lane by other routes.

The number of optimal routes may exceed the carrier’s fleet capacity,

50



but one can restrict the number of selected routes less than or equal to

the carrier’s fleet size. In BCP-SP is imposed the constraint that each

lane is covered only by one optimal bid (two optimal bids are mutually

exclusive of new lanes). In order to explore all the bidding opportunities

for substitutable bids, the above set of constraints is relaxed in the BCP-

SP formulation, remodelling it as a Set Covering problem (BCP-SC). To

solve it the authors propose the use of a modified Branch and Bound

algorithm that search until all optimal solutions are found. Moreover,

for substitutable bids, is used the Bid Set Augmentation Rule in order

to detect additional bidding opportunities. For the second scenario, the

previous bid construction strategy is extended to the situation in which

carriers already have commitments to other contracts prior to the auction

(carriers may have contracts serving multiple customers). Carriers will

not only deliberate on their bidding plans (on the base of combinational

opportunities among new lanes) but also will have integrate these new

lanes into their current operations. In this case, there will be generated

more candidate routes, in addition to those bids generated in the first

scenario including those bids combination of current and/or new lanes

and/or empty lanes. Now, not only new lanes are duplicated, but also

current (existing) lanes. Besides the constraints in BCP-SC that each

new lane is covered by at least one bid, there are the constraints that

guarantees the inclusion of current lanes in certain routes. Moreover,

XOR bids are developed for any two atomic bids that have substitutable

valuations with respect to a common set of current lanes. Finally, the

bids that conflict with pre-existing routing plans are identified and ex-

cluded by using the Bid Substitution Condition. The performance of the

proposed bid construction method respect to complete enumeration was

studied by using a simulation-based experiment. The number of atomic

bids generated by the above method (for the two scenarios) is signif-

icantly fewer than that of complete enumeration and thus, it is much

faster than the complete enumeration method in terms of computation
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time. The quality of the bids constructed by the new method is quite

close to that of the complete enumeration method; the performance of

the proposed method in terms of number of new lanes won by each of the

carriers (”Smart” or Enumeration) and the empty movement costs after

auction is quite good. The optimization-based bid construction strategy

presented in this paper results optimal for carriers in terms of operational

efficiency in the absence of pre-existing commitments and near optimal

when pre-existing commitments are also considered. Moreover, the ben-

efit of the approximation method proposed is that it provides a way for

carriers to discover their true costs and construct optimal or near optimal

bids by solving a single NP-hard problem, so a significant improvement in

computational efficiency. Future research extensions of this paper can in-

clude application of the proposed bidding methodology to broader fields

with properties among bid items similar to that in the transportation

contract procurement combinatorial auctions, explicit consideration of

the stochasticity of demand and supply, considering multi-attribute con-

tracts, multiple and divisible units (truckloads) on each lane, examine

the BCP in a dynamic auction.

The research in [2] investigates in what consist a ”good bidding strat-

egy”, trying to answer the critical question ”How bidders should bid in

combinatorial auctions (CA) since evaluating and submitting all possible

bundles is not practical for the bidders and the auctioneer?”.

In CA a bidder can express his synergies among items by submit-

ting bids on bundles of goods, so CA are commonly used for allocating

complementary resources.

Definition:

Two items are complements (exhibit synergies) when their combined

value is larger than the sum of their independent values.

Example:

the lanes in a transportation network may be complements if a group

of lanes (geographically close or forming continuous routes) can lead to
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higher efficiency for a carrier.

The contributions of the paper in [2] are:

• Proposes a simple and efficient model for evaluating the value of

any bundle, given pair wise synergies (limited information);

• Designs bidding strategies that efficiently identify desirable bun-

dles;

• Evaluates (via simulations) the performance of different bundling

strategies under various market settings;

• Answers questions like: how does the auctioneer’s revenue change

as more bidders submit bundle bids, how are revenues distributed

among bidders in CA versus non-CA, what issues should bidders

consider when generating and pricing bundles under various market

environments.

It is focused on single-round, first price, sealed-bid forward CA in the

transportation industry.

The synergy model proposed in [2] has as input the item values and

pairwise synergy values and as output the bundle values for any combi-

nations (key input for any bidding decision support tool for CA).

The bundle value is given by the sum of the values of the individual

items in the bundle and the ’synergy’ values among the items in the

bundle. Hence, the bundle value is:

- the item value (for a singleton bid);

- the sum of the two items values plus the pairwise synergy value

between them (for a doubleton bid);

- the product of bundle’s cardinality and its average unit contribution

AC (equals to the sum of the average individual of items in bundle and

the average pairwise synergy of items in bundle), for a bundle with size

greater than 2 Since we have a very efficient computation O(n2), with n

the number of items auctioned and the bundle value increases linearly in
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bundle size, this model would be appropriate in transportation auctions,

where both small and large bundles could be valuable for the bidders

([37]). But real data from CA are generally not publicly available and

for this reason the model is not tested or validated.

Bidders in transportation auctions commonly use some ad hoc bid-

ding strategies:

- submit only singleton bids;

- bid on high value packages;

- take competition into account when generating bundles;

- combine a very attractive lane with less desirable lanes,

- put together lanes that increase the ’density’ in an area.

The study in [2] proposes 3 bundling strategies :

- one naive strategy (bidders don’t submit any package bids);

- two wise strategies (internal-based strategy, INT, and competition-

based strategy, COMP).

The bidding strategies focus on generating bundles, not on pricing ,

since it is assumed that bidders price their bundles using a fixed profit

margin.

The internal-based strategy, INT focuses on identifying bundles with

comparably high average value per item. As example in TL CA, the

carriers submit package bids based on the relative value of the shipper’s

lanes to their network rather than the competitors’ networks ([37]). The

bundle creation algorithm starts from each individual item and searches

for items to add in order to increase the most the current bundle’s AC,

process repeated until AC cannot be increased, so will be generated at

least n ’desirable’ bundles with O(n3) running time.

The competition-based strategy, COMP focuses on identifying bundles

for which a bidder has a relatively high valuation compared with his

competitors. Similar to INT, except the criterion for adding an item to a

bundle is the value ratio (VR) of a bidder for a bundle (instead AC), hence

there will be incorporated in the model only the competitors’ item values,
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not their synergy values (in practice, more difficult to gain information

on them). As example in TL CA, the values for individual lanes are

very much dependent on the cost of operating a truck (uniform across

different companies, depending on fuel cost and driver salaries); the cost

of operating a truck on a group of lanes (package bid) depends not only

on lanes but also on carrier’s current network (private information to

carrier, difficult to acquire by competitors).

Simulation experiments (for trucking and spectrum auctions, items

associated with geographic locations, different types of bidders in size

and valuations) have been made to test the performance of the proposed

bundling strategies and answer questions. Simulation assumptions are 4

regions, 20 items (5 per region), the maximum number of bundle bids

(NB) per bidder limited to 2,5,10,15,25. There is no restriction on the

number of singleton bids (submitted for all items); all bidders of the same

type use the same bundling strategy and the same profit margin (equal

to 0).

There are 2 models: market environments with different-size bidders

with comparable valuations (Model 1) and same-size bidders with asym-

metric valuations (Model 2).

Model 1 uses 21 bidders of 3 types: local, regional and global, and

different distributions to model bidders’ synergy values.

Remarks:

1. The auctioneer’s revenue (directly proportional to the sum of the

values of winning bids) increases (due to inclusion of synergies in bundle

bids) in the number of types of wise bidders and NB.

2. In general, for the auctioneer the benefit of adding a type of

wise bidder is greater than the benefit of increasing NB (prefers educate

bidders to bid wise than solve large WDP).

3. Bundle selection for submission in decreasing order of AC (for

INT) and VR (for COMP); for global bidders INT and COMP generate

overlapping bundles: Restricted Overlapping Frequency (ROF) restricts
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the degree of overlap across submitted bundles so the modified bundle

selection procedure in order not to violate the ROF for any item is used,

hence a revised INT (COMP) strategy is also proposed.

4. When only the global bidders are wise it is best for them to submit

bundles with a moderate degree of overlap (more variety implies higher

revenues); when all bidders are wise ROF should not be a constraining

factor in the bundle selection process for global bidders.

5. Global and regional bidders, in general, win more items via bundle

bids and earn higher revenues with COMP, while local bidders win more

items via bundle bids and earn higher revenues with INT.

In practice, bidders use different profit margins for pricing bundles

([4]; [37]). Experiments various scenarios with 1 test bidder with profit

margins values varying from 0.01 to 0.10, remaining bidders’ profit mar-

gins fixed to 0.05. The ratio of optimal profit margin and threshold profit

margin is the risk measure (RM).

Remarks:

6. RM is larger in CA than in non-CA for all bidder types.

7. Local and regional bidders have a larger RM than do global bidders

in CA.

8. Local bidders do not need to bid more aggressively than regional

and global bidders.

Model 2 make experiments with 10 global bidders and the bidders’

synergy values comes from the same distribution, but there are asym-

metries in their item valuations (symmetric bidders draw valuations for

all regions from the same distribution, asymmetric bidders from different

distributions for different regions).

Remarks:

Remarks 1. and 2. still hold under Model 2.

9. Symmetric bidders prefer INT and asymmetric bidders prefer

COMP.

In order to compare the bundling strategies INT and COMP with the
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full enumeration, there have been made experiments with 10 items , 2

regions, 6 local bidders and 3 global bidders.

All bidders use the same bundling strategy except 1 test bidder using

either the same strategy as the other bidders or full enumeration; bid-

ders submit all generated bundles. For a relatively small percentage of

profit loss in most of the 25 instances, the proposed bundling strategies

offer significant computational advantage to the bidders (20 bundles gen-

erated instead 1023 by full enumeration). An auctioneer facing bidders

who strategically submit bundles, rather than submit bids on all possible

bundles, gains significant computational advantages in return for a small

loss in profits.

In conclusion, in [2], a simple and efficient model has been proposed

for evaluating bundle values given pairwise synergies and bundling strate-

gies developed to help bidders select promising and profitable bundle

bids; the efficiency and the performance of bundling strategies has been

tested under different market environments using simulations; experi-

mental results show large benefits for both bidders and auctioneer from

bundle bids and interesting insights were gained; there have been pro-

vided to bidders some suggestions when selecting and pricing bundles.

3.2 Combinatorial Auctions for Truckload

Procurement: the Bid Generation Prob-

lem with Chance Constraints

The purpose of our study is to design a bidding advisor to help TL

carriers made bidding decisions in a single-round, one-sided, sealed-bid,

first-price combinatorial auction for spot-market loads. The TL carrier

will apply the bidding advisor to generate desirable bids and their associ-
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ated prices by solving the embedded bid generation and pricing problems,

based on the currently known information within the planning horizon

(1 week in our case).

The known information:

- number and location of vehicles (assuming all vehicles available for

the first time at the beginning of the planning horizon);

- booked and auctioned loads (pickup and delivery locations, pickup/delivery

time window).

The revenue of pulling a load is defined as follows:

- each booked load has a known revenue;

- for an auctioned load the revenue is defined (possibly) within the

bundle representing the bid (not individually).

The price of the bid is a decision variable in our problem. Since now,

only Savelsbergh in [54] consider the price as a variable and not as a

parameter (fixed equal to the asked price of the auctioneer) like in all

the existing other studies. For those existing papers who model the bid

generation problems as vehicle routing problems, only one allows auc-

tioned items to be uncovered. The assumption that all auctioned items

must be covered may generate inferior bids due to neglecting the TL

carrier’s current fleet management plan. Although the aforementioned

facts are neglected in the combinatorial TL auction literature, they have

been considered in some single-item TL auction studies (a special case

of the combinatorial TL auction: [11], [12]). Therefore, in truckload pro-

curement, the bid generation problem is better formulated as time’space

network based fleet management problems (see e.g., Powell et al., 1995)

instead of vehicle routing problems. For the above reason, in determin-

ing the auctioned lanes the carrier has to consider its fleet management

plans and consequently, bid on a bundle of loads that fit as much as

possible into its plans. Thus, our proposed bidding advisor tightly inte-

grates the load information in e-marketplaces with TL carriers’ current

management plans. Therefore, it can help TL carriers make effective
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bidding decisions. It will be proposed only one bundle, (with its price

and the corresponding routing), that the carrier is confident to win and

that maximizes the carrier’s profit.

It is obvious that the core components of the bidding advisor are the

embedded bid generation and pricing problems.

In our study, the TL carrier’s bid generation and pricing problems in

one-shot combinatorial auctions are formulated as a synergistic minimum

cost flow problem (instead of a vehicle routing problem, as usually in

the literature). The network flow problem takes into account all the

above mentioned crucial characteristics of the bid pricing and generation

problems.

Problem definition:

Let G = (V,A) be a directed complete graph, with V the set of cities

and A the set of all possible links (roads) between cities.

The bid generation and evaluation problem is formulated in a time-

space network where the planning horizon T (1 week) is divided into

discrete intervals (days).

Notation:

L0 - set of loads (carrier’s existing network)

L - set of loads being auctioned

B = ℘(L) - set of considered bundles of loads

Yb - random variable: clearing price for bundle b

K - set of trucks of the carrier

α ∈ [0, 1] - confidence level

cij - cost of the arc (i, j)

τij - travel time between nodes i ∈ V and j ∈ V (assume τii = 1)

R(L0) - revenue from the booked loads

aki is 1 if truck k is in node i at the beginning of the time period, 0

otherwise

For any load l ∈ L ∪ L0:
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i(l)/j(l) origin/destination of load l

a(l)/b(l) starting time/end time for pick-up/delivery time window at

i(l)/j(l)

Variables:

yktij binary variable: truck k is moving or not from i to j starting at

time t

pb continuous variable: bidding price for bundle b

xb binary variable: is 1 if the carrier bids on bundle b, 0 otherwise.

THE MODEL and its VARIANTS

MODEL (pick-up time windows):

max(
∑
b∈B

pbxb +R(L0))−
∑
k∈K

∑
(i,j)∈A

T−τij∑
t=1

cijy
kt
ij (1)

s.t.

P (pbxb ≤ Yb) ≥ 1− α ∀b ∈ B (2)∑
b∈B

xb ≤ 1 (3)

∑
j∈V

yk1
ij = aki ∀i ∈ V, ∀k ∈ K (4)

∑
j∈V :t+τij<T

yktij =
∑

j∈V :t−τji≥1

yktji ∀i ∈ V, ∀t > 1, ∀k ∈ K (5)

∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ 1 ∀l ∈ L0 (6)

∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ xb ∀b ∈ B, ∀l ∈ b \ L0 (7)

∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ 2xb ∀b ∈ B, ∀l ∈ b ∩ L0 (8)

yktij ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀k, ∀t (9)
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xb ∈ {0, 1}, pb ≥ 0 ∀b ∈ B (10)

The objective function (1) maximizes the profit defined as the difference

between revenues (deriving from booked loads plus auctioned loads) and

total cost of the routing. Probabilistic constraints (2) impose a minimum

reliability of α for a bid to be submitted with the winning price. Both (1)

and (2) can be easily linearized. Constraint (3) will force the model to

choose only one bundle (the most convenient one). Constraints (4) gives

information on the location of the trucks at the beginning of the plan-

ning horizon. Constraints (5) are the balance constraints. Constraints

(6) will force the model to serve all the booked loads within the pre-

specified time window, Constraints (7) and (8) represent the relationship

between the routing variables and the bid selection variables. Only the

auctioned loads that belong to the bundle should be served within its

time window. Finally, constraints (9) and (10) are the domain definition

for the variables.

MODEL (delivery time windows):

max(
∑
b∈B

pbxb +R(L0))−
∑
k∈K

∑
(i,j)∈A

T∑
t=1+τij

cijy
kt
ij (1)

s.t.

P (pbxb ≤ Yb) ≥ 1− α ∀b ∈ B (2)∑
b∈B

xb ≤ 1 (3)

∑
j∈V

y
k(1+τij)
ij = aki ∀i ∈ V, ∀k ∈ K (4)

∑
j∈V :t+τij≤T

y
k(t+τij)
ij =

∑
j∈V :t−τji≥1

yktji ∀i ∈ V, ∀t > 1, ∀k ∈ K (5)

∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ 1 ∀l ∈ L0 (6)

61



∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ xb ∀b ∈ B, ∀l ∈ b \ L0 (7)

∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ 2xb ∀b ∈ B, ∀l ∈ b ∩ L0 (8)

yktij ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀k, ∀t (9)

xb ∈ {0, 1}, pb ≥ 0 ∀b ∈ B (10)

EXAMPLE: Let consider the case a carrier has a fleet of 3 vehicles

serving, in 7 cities (regions), 5 already booked loads and (possibly) 5

auctioned loads within one week. Thus, V = {1, 2, 3, 4, 5, 6, 7}, L =

{(4, 5), (6, 1), (2, 5), (4, 3), (7, 4)}, L0 = {(1, 2), (4, 3), (6, 3), (6, 7), (5, 1)}.
The 3 trucks available are distributed in the 7 cities as following: tr1

is in the node 1, tr2 is in the node 4, tr3 is in node 6.

The travel times betweens cities are given by the matrix:

τ =



1 1 1 2 2 3 1

1 1 2 1 1 2 2

1 2 1 2 1 1 1

2 1 2 1 2 3 1

2 1 1 2 1 1 1

3 2 1 3 1 1 2

1 2 1 1 1 2 1


The costs of traveling betweens cities are given by:

C =



0 289 283 587 607 906 268

289 0 618 293 278 558 542

283 618 0 527 275 261 290

587 293 527 0 575 909 286

607 278 275 575 0 271 289

906 558 261 909 271 0 615

268 542 290 286 289 615 0
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The time windows for the loads of L are {[2, 3], [4, 4], [3, 4], [5, 6], [3, 4]};
the time windows for the loads of L0 are {[3, 5], [7, 7], [7, 7], [3, 5], [5, 7]}.

The random variable Yb is given by
∑

l∈bXl ∗ syn(b), where Xl are

random variables denoting the clearing price of each load l and are dis-

tributed N (µl, σl). We consider Xl independent, µl = Ml (Ml is the

asked price for load l) and σl = 3%Ml.

Thus, Yb is distributed N (µb, σb), with µb =
∑

l∈b µl ∗ syn(b) and

σb =
√∑

l∈b σl ∗ syn(b).

The asked prices (auctioneer) for the loads of L are: (792, 1170, 395, 652, 389).

The synergy (synb) between loads of the possible bundles (31) and

existing network is computed and given by:

1.00 1.00 0.94 1.00 0.97 0.95 0.96 1.00 0.96 0.93

0.96 0.96 0.97 0.96 0.96 1.00 0.93 0.94 0.94 0.98

0.96 0.97 0.96 0.96 0.95 0.96 0.96 0.97 0.97 0.97 0.97

The model, linearized and with the chance constraint (2) rewritten

according to the given distribution, is the following:

max(
∑
b∈B

pb +R(L0))−
∑
k∈K

∑
(i,j)∈A

T−τij∑
t=1

cijy
kt
ij (1)

s.t.

pb ≤ (ασb + µb)xb ∀b ∈ B (2)∑
b∈B

xb ≤ 1 (3)

∑
j∈V

yk1
ij = aki ∀i ∈ V, ∀k ∈ K (4)

∑
j∈V :t+τij<T

yktij =
∑

j∈V :t−τji≥1

yktji ∀i ∈ V, ∀t > 1, ∀k ∈ K (5)

∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ 1 ∀l ∈ L0 (6)

∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ xb ∀b ∈ B, ∀l ∈ b \ L0 (7)
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∑
k∈K

∑
t∈[a(l),b(l)]

ykti(l)j(l) ≥ 2xb ∀b ∈ B, ∀l ∈ b ∩ L0 (8)

yktij ∈ {0, 1} ∀i ∈ V, ∀j ∈ V, ∀k, ∀t (9)

xb ∈ {0, 1}, pb ≥ 0 ∀b ∈ B (10)

The model is implemented in GAMS. After the execution (with the

input data given above) we have that the carrier chooses to propose in

the auction the bundle 26 consisting of the loads (4, 5), (2, 5), (7, 4) at the

price of 1467, obtaining the profit of 1399.

Detailed results are given in the related file .lst.

Modifying the model

- modifying the constraints:

Case 1). If we want to modify the constraint (3) in order to impose

that the maximum number of bundles of loads the carrier may propose is

more than 1, we will have that the proposed bundles may have loads in

common (are not disjoint). However, the maximum number the carrier

can propose (including the single-load bundles) is 2|Bundle1| − 1, where

Bundle1 is the bundle chosen with constraint (3) not modified.

For the previous example, if the constraint (3) becomes∑
b∈B

xb ≤ 3 (3′)

then the carrier will propose the bundles 10, 24 and 26 consisting of

{(4, 5), (2, 5)}, {(4, 5), (7, 4)} and {(4, 5), (2, 5), (7, 4)}, respectively, at

the prices of 1062, 1091 and 1467, respectively, obtaining of course a

greater profit (3552). But this is a false profit, because the carrier will

never win simultaneously the 3 not disjoint bundles!

Case 2). If we impose that the carrier does not have to propose at

most one bundle, but he can propose all those bundles that cover the set
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of loads L, then the constraint (3) will be substituted by 3′′:∑
b∈B:l∈b

xb ≤ 1 ∀l ∈ L (3′′)

Using the Kronecker symbol δlb in order to express that l belongs to b or

not, the covering constraint becomes:

∑
b∈B

δlbxb ≤ 1 ∀l ∈ L (3′′)

For the previous example, results that the carrier will propose 3 one-

load bundles, (4, 5), (2, 5) and (7, 4), at the prices of 750, 378 and 372,

respectively, and yielding a profit of 1433. We observe that the profit is

greater than that obtained in the Case 1)., but this is because the sum

of the prices of the 3 single-load bundles is greater than the price of the

3-load bundle. This shows that the Case1). perfectly explains the use of

combinatorial auction and assures the correctness of the synergy concept

applied in the model.

Case 3). If we consider both constraint (3) modified as∑
b∈B

xb ≤ 2

and the L-covering constraint (3′′), then the model will propose 2 bundles

consisting of loads (2, 5) and (4, 5), (7, 4) at the prices of 378 and 1091,

with the profit of 1401 (lower than the previous obtained for 3 single load

bundles, because the price of the 2-load bundle (4, 5), (7, 4) is lower than

the sum of the individual prices of the 2 loads).

Case 4). The same results as in the (Case 3) can be reached by using

the L-covering constraint (3′′) and constraint (3) modified as∑
b∈B

synbxb ≤ 2

.
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Case 5). We can also consider the L-covering constraint (3′′) and

constraint (3) modified as ∑
b∈B

(
1

synb
)xb ≤ 2

In this case we obtain the same results as in the original situation (the

model with constraint (3)), so a unique 3-load bundle proposed. If the

right part of the previous modified constraint (3) is 1 or 3 there will be

obtained only single bundles (1 or 3 one-load bundles, respectively).

Thus, we can observe that if we use the L-covering constraint (3′′) then

usually will be proposed disjoint, one-load bundles (because maximizing

the profit, having greater prices) and only if we restrict the right part

of the modified constraint (3) (seen in the previous cases) to be lower

than |Bundle1| there will be obviously obtained even real (not one-load)

disjoint bundles.

Since |Bundle1| may be unknown (or difficult to know a priori, with-

out solving first the original model), then maybe the constraint (3) can

be removed and can be considered only the L-covering constraint (3′′) in

the model (if we want to propose the bundles that cover all the loads of

set L).

- modifying the objective function and the constraints:

In order to reach our goal to propose more than one bundle, we can

modify the objective function with appropriate coefficients. We think to

multiply the pb by those coefficients involving synergy between loads (for

example, the inverse of the synergy numbers of the bundles) because we

want to propose more bundles (covering the set L) with higher synergy

between their component loads. The O.F. becomes:

max(
∑
b∈B

synbpb +R(L0))−
∑
k∈K

∑
(i,j)∈A

T−τij∑
t=1

cijy
kt
ij (1′)

Case 6). If we consider the L-covering constraint (3′′) then will be
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chosen the same unique bundle as in the solution of the original model

(even if we include or not also the constraint (3) modified).

Case 7). If consider constraint (3) then will be obtained the same

results as in the original model (only the profit obviously greater, 1460).

Considering instead the constraint (3) modified∑
b∈B

xb ≤ 2

then the carrier will propose the not disjoint bundles 10 and 26 consisting

of {(4, 5), (2, 5)} and {(4, 5), (2, 5), (7, 4)} at the prices of 1062 and 1467

with the profit of 2602.

Moreover, considering the constraint (3) modified as∑
b∈B

xb ≤ 3

then will be obtained the same results as in (Case 1). with the higher

(because of the synergy coefficients) profit of 3739.

And so on, modifying the right part of the constraint (3), there will

be obtained more non disjoint bundles (until arriving at the number of

2|Bundle1| − 1 bundles, in our example, 7 possible bundles).

3.3 Preprocessment of the set of auctioned

loads

In order to a priori overcome the dimension problem, decreasing the

cardinality of the set of all possible bundles, preprocessment procedures

of the auctioned loads set have been developed, taking into account both

the trucks’ position and the delivery time windows for the loads.

The first computational experiments, where the departure position of

the trucks making up the available fleet of the carrier was established

in a random way, have produced a great number of infeasible problems.

Whatever the set of loads submitted in the bid is, any feasible solution
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has to cover at least the existing, previously booked transportation con-

tracts for the loads. The infeasibility of the problems was mainly due

to the corriers’ incapacity to satisfy all the booked loads. The choice to

assign the trucks’ departure positions in a not completely random way

comes from the necessity to reduce the infeasibility cases. Therefore the

trucks’ position at the beginning of the temporal horizon was assigned

in the following way:

STEP 1. Fix the number of trucks the fleet is consisting of

equal to the ceil of the half of the booked loads’ number.

STEP 2. IF $(v_i,v_j) \in L_0$ has to be satisfied leaving

necessarily at time $1$ such that to not overcome

the time limits imposed by the time windows THEN

make depart a truck from $v_i$.

Repeat STEP 2 for every $(v_i,v_j) \in L_0$ with

load’s pickup moment equal to $1$.

STEP 3. IF the number of trucks used until this moment

is greater than the initial number of trucks THEN

update the number of trucks that make up the fleet.

STEP 4. IF all the trucks have not been used THEN

assign the departing position randomly for the trucks

still available in the fleet.

After having assigned the departing position for the trucks, a prepro-

cessment of the auctioned loads becomes necessary. Indeed, between the

auctioned loads generated in a random manner, could be some loads hav-

ing the pickup moment the first day of the week. If the preprocessment

of the loads in L will not be carried out, the carrier would consider bun-

dles consisting of loads that he already knows not being able to satisfy

because of the lack of trucks available (at the beginning of the temporal

horizon) in the city representing the load’s pick-up point. This happens

since, having imposed to some trucks to transport the loads in L0, the
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number of trucks available to satisfy any load in L with pick-up day 1,

is decreased.

More precisely, this preprocessment will eliminate a load (vk, vl) da L if

do not exist trucks available to carry it, that is if at time 1 (denoting the

first day of the week) do not exist trucks leaving from vk or they have

been already assigned for satisfying the booked loads.

A detailed description of the preprocessment of the set of loads in L is

provided by the following algorithm, where “difference” denotes the dif-

ference between the number of trucks leaving from vk and the number

of loads in L0 with the origin in vk, “nTrucks” denotes the number of

trucks leaving from vk and “nLoadL” denotes the number of loads in

L having the origin in vk; “matrixV” denotes the matrix keeping track

of the presence or not of one or more trucks in a vertex at the initial

moment.

PREPROCESSMENT RESPECT TO THE DEPARTURE POSITION OF THE TRUCKS

Until all the loads in L have not been examined

Fix $(v_k,v_l) \in L$

IF $(v_k,v_l)$ must be satisfied leaving at time $1$

IF $(v_k,v_l)$ has not been already processed

IF difference$ = 0$ THEN

//we do not have any available truck leaving from $v_k$

update matrixV

IF difference$ > 0$ THEN

recall ProcLtruck // return nloadL, number of loads

//having origin $v_k$ at time $1$, and vettL, array

//that will contain these loads

IF nloadL > difference THEN

recall PreProcessment //for every load in vettL

update mVerProc //keep track of the preprocessed loads

IF there are no trucks leaving from $v_k$

eliminate $(v_k,v_l)$ from $L$ //because we do not have available
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//trucks to carry it

Repeat for a new load of L.

The “Preprocessment” procedure, recalled in the previous algorithm,

will verify if it is possible to eliminate some of the loads in L having

pick-up place in the same node, but for whom there are no any more

available trucks.

This algorithm works as following: verifies the temporal compatibility

(respect to the time windows) for every load in L with those in L0; if

from the comparison would results an incompatibility with all the load in

L0, then will be performed the same examination with the loads of L. If

even from these comparisons will be obtained a general incompatibility,

the load will be eliminate from L since it could not be satisfied.

The temporal incompatibility derives from the assumption in the model

definition that every lane has a fixed travelling time and that every load

in L0 and in L has a time window, that is a set of days in which it could

be delivered. This may lead to some loads to not fall into any route

carried out by the trucks, because temporally incompatible.
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Given (vk, vl) in L, the algorithm preprocessment previously described

is the following:

PREPROCESSMENT

1:Recall the function preproc //return the number of incompatibilities

//with the loads in $L_0$

2:IF the number of incompatibilities is equal to the number of loads in $L_0$

GO TO 1. //return the incompatibility with $L$ except for $(v_k,v_l)$

IF the number of incompatibilities is equal to (number of load in L)$ -1$

eliminate $(v_k,v_l)$ from $L$

The function preproc returns to preprocessment the number of incom-

patibilities between a load of L and all those of L0 and L. It verifies the

temporal compatibility with the loads in L0, by counting the number of

days common to the window associated to the load of L examined and

those of the loads in L0. If there are common days, or days in which the

truck can stay in the same city before leaving it again for a load deliv-

ery or if one establishes, based on the time windows and on the delivery

times, that the delivery of the load in L had to be previous to that of

the load in L0, would result that this load could not be removed from

L, because could belong to some route. Conversely, if it will result to be

temporaly non compatible with all the loads in L0, it would pass to con-

trol analogously by considering the loads in L (excepted that one being

examined).

In the case it will result an incompatibility of the examined load with

all the loads in L0 and in L, then would be returned tovpreprocessment

a number of intersection equal to 0, thus that load is a candidate to the

elimination from L.

Let [akl, bkl] be the time window of the load (vk, vl), [aij, bij] be the

time window of the load (vi, vj).

PREPROC
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Until all the loads in $L_0$ (or $L$) have not been examined

1:Fix $(v_i,v_j)$ in $L_0$ (or $L$)

IF $a_{kl}=b_{kl}=a_{ij}=b_{ij}$ THEN

increase the number of incompatibility

IF $a_{kl} \geq b_{ij}$ THEN

assign $0$ to the number of common days;

compute the second extreme of the new window;

IF ($a_{kl}< a_{ij}$) OR ($a_{kl}<b_{ij}$) THEN

compute the new time window;

compute the number of common days;

IF the number of common days $\geq 1$ THEN

STOP. //$(v_k,v_l)$ has non empty intersection with $(v_i,v_j)$

// in terms of their time windows

IF the number of common days $= 0$ THEN

IF the second extreme of the new time window $< b_{ij}$ THEN

STOP. //the truck can stay without moving some days

IF $a_{ij} \geq b_{kl}$ THEN

assign $0$ to the number of common days;

compute the second extreme of the new window;

IF ($a_{ij}< a_{kl}$) OR ($a_{ij}< b_{kl}$) THEN

compute the new time window;

compute the number of common days;

IF the number of common days $\geq 1$ THEN

STOP. //$(v_k,v_l)$ has non empty intersection with $(v_i,v_j)$

// in terms of their time windows

IF the number of common days $= 0$

IF the second extreme of the new time window $< a_{kl}$ THEN

STOP. //the truck can stay without moving some days

IF the first extreme of the new time window $> b_{kl}$ THEN

increase the number of incompatibilities

GO TO 1.
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3.4 Synergy between loads

Optimization-based decision support tools to help carriers in their

bids generation are needed in order to include the synergies between

loads and to maximize the revenues derived from the bids.

In practice not all the carriers can count on a bidding advisor and thus

they use simple methods based on past data and on their own knowledge.

In the literature concerning the fleet management the synergies are very

often ignored.

A model to evaluate bundles, given the pairwise synergy values, is

proposed in [2], and algorithms for the bundle selection are developed,

too.

Chang ([6]) proposes a decision support model for the carriers partici-

pating in one-shot combinatorial auctions. His bid advisor integrates the

load information in the e-marketplace with the carriers’ fleet management

plans and chooses hence the desirable bundle of loads. The bid genera-

tion and evaluation problems are formulated as synergetic minimum cost

flow problems, by estimating the average synergy values between loads

through an aproximation based on the activity on the geographically next

links.

In [24] there are identified the synergies in the available lanes, that is

the economies of scope in the carrier transportation operations in order

to determine the optimal packages to bid on, for maximizing the profit.

Wang e Xia ([58]) define the first-order synergies as the complementa-

riety between a set of auctioned loads and a set of booked loads and the

second-order synergies as the complementariety between a pair of sets of

auctioned and booked loads. It is showed that the synergy of a bundle

can depend on other winning bundles.

From all the studies in the literature, only in [2] it is explicitly shown

how to compute the synergies between (bundles of) loads.
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We want to include the synergies in the clearing price of a bundle,

because this price is influenced by the interaction level between the auc-

tioned loads of that bundle and the booked loads (of the existing network)

of possible winner carrier, that is by the synergy between the loads.

Hence, the random variable Yb denoting the clearing price will have a

normal distribution with parameters µb = Mb · synb, σ2
b = n · syn2

b , that

is:

Yb ≡ N(Mb · synb, n · syn2
b) (3.1)

where Mb is the auctioneer’s asked price for the bundle b.

It is very difficult for a carrier to know a formula for the synergy

since is a “function of all environment variables”. Therefore we have to

determine a way to compute the synergy values between loads.

We introduce an application method of the concept of “average syn-

ergy”. Let L00 denote the previously contracted loads of a hypotetic

(phantom) carrier participating in the auction and assumed to be the

possible (expected) winner.

Consider a bundle b consisting of n auctioned loads.

We have to evaluate the “pairwise synergy” that every load of the bundle

b has with all the loads of the carrier’s existing transporation network

L00 and with the remaing loads of b. The bundle’s synergy will be given

by the average of the all possible (made from its loads) pairwise synergy

values.

The computing formula for the synergy of the bundle is defined by:

syn(b)=

∑|b|
j=1

(∑|L00|
l=1 pairwisesyn(j,l)+

∑
k<j pairwisesyn(j,k)

)
|b||L00|+

(
|b|
2

)
In the sequel, the algorithm for determining the synergy of a bundle

of loads:

BUNDLE SYNERGY
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for all (vi, vj) ∈ b do
for all (vr, vs) ∈ L00 do

pairwisesynergy ((vi, vj), (vr, vs), Syn)

end for

for all (vr, vs) ∈ b \ (vi, vj) do

pairwisesynergy ((vi, vj), (vr, vs), SynLL)

end for

end for

syn(b) = average pairwise synergy

3.4.1 Distance-based synergy algorithm

A first approach to quantify the synergy between two loads is based

on the analysis of the distance between them.

The distance between two nodes is considered, for simplicity, equal to

the travelling time associated to the arc connecting them.

We consider now an auctioned load and a booked load.

At first, we have to verify if there is time compatibility between the two

loads (as described in the algorithm below). If the loads result incom-

patible means that between them does not exist complementarity, so the

synergy value is set to 1. Two arcs (representing loads)(vi, vj), (vr, vs)

are said to be incompatible if the arc (vi, vj) can not be run before the

arc (vr, vs). If the loads result instead compatible they will have synergy

more or less strong depending on the number of days of “intersection”

and of the distance between them.

The algorithm that compute the pairwise synergy for two loads based

on their distance is:

dist pairwise synergy((vi, vj), (vr, vs), synergymatrix)

if (aij = ars = bij = brs) then

sin1← 1

sin2← 1

end if

else (*)
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if (aij ≥ brs) then

sin1← 1

end if

else

if (aij < ars or aij < brs) then

G = [aij + dist(j, r) + tau(r, s), bij + dist(j, r) + tau(r, s)] ∩ [ars, brs]

if (G = 0 and aij + dist(j, r) + tau(r, s) > brs) then

sin1← 1

end if

else

sin1← TabSyn[G][dist(j, r)]

end if

repeat from (∗) for sin2

return pairwisesyn← sin1+sin2
2

We note that the pairwise synergy for (vi, vj), (vr, vs) is different from

that of (vr, vs), (vi, vj); for this reason it is chosen to make an average of

the obtained values such that to assign to the pair of loads a (symmetric)

synergy value.

The best case is when the two loads have the biggest number of days

in common and zero distance (maximum synergy), while the worst case,

besides the time incompatibility situation, is when the loads have the

smallest number of common days and great distance between them.

3.4.2 Hop-based synergy algorithm

A second approach to quantify the synergy between two loads is based

on the number of hop. It is called hop a lane that a vehicle has to run

on empty in order to reach another city.

Given two nodes, one of the following situations is possible:

• doesn not exist the direct arc connecting them => numhop = 0;

• exists the direct arc connecting them => numhop = 1;
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• the shortest path it is obtained by passing by an intermediate node

=> numhop = 2;

Since on a hop a carrier travels empty, unloaded, he will support only

a travelling cost, without any revenue. Therefore, lower the number of

empty lanes in the routing of a vehicle, smaller the cost supported by the

carrier. From here the idea to analyze the type of lanes connecting two

cities.

Assume, for example, that there exists the direct arc between two nodes,

that is the number of hop associated to this pair of nodes is 1. If this

lane is corresponding to an auctioned or to a booked load, it will provide

a revenue to the carrier, and the lane will not be considered a hop; hence

the number of hop will decrease to 0.

The algorithm that compute the pairwise synergies based on the num-

ber of hop is reported below.

Consider as in he previous section an auctioned load and a booked load

and verify their time compatibility.

If the loads result incompatible means that between them does not exist

complementarity, so the synergy value is set to 1. Otherwise, the trans-

portation of the first load is prior to that of the second load, the type of

lanes connecting them is studied. If there are corresponding to auctioned

or booked loads, then it is compared even the time windows, in order to

decide that the number of hop can be decreased. So between the two

loads it is a stronger synergy that seems to be or is expected.

hop pairwise synergy((vi, vj), (vr, vs), synergymatrix)

if (aij = ars = bij = brs) then

sin1← 1

sin2← 1

end if

else (*)

if (aij ≥ brs) then

sin1← 1

end if
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else

if (aij < ars or aij < brs) then

G = [aij + dist(j, r) + tau(r, s), bij + dist(j, r) + tau(r, s)] ∩ [ars, brs]

if (G = 0 and aij + dist(j, r) + tau(r, s) > brs) then

sin1← 1

end if

else

if (numhop 6= 0) then

if (IntermediateNodes[vj ][vr] = 0) then

if (search((vj , vr), L00) = NO) then

search((vj , vr), L)

end if

end if

else

if (IntermediateNodes[vj ][vr] = vk) then

if (search((vj , vk), L00) = NO) then

search((vj , vk), L)

end if

if (search((vk, vr), L00) = NO) then

search((vk, vr), L)

end if

end if

end if

sin1← TabSyn[G][numhop]

end if

repeat from (∗) for sin2

return pairwisesyn← sin1+sin2
2

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
procedure search((vj , vr), set)

for all ((vm, vn) ∈ set) do

if (m = j and n = r) then

da← aij + dist(j, r)

db← bij + dist(j, r)

if (da ≥ amn and db ≤ bmn) then

numhop← numhop− 1

end if

end if
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end for

The algorithm computing the pairwise synergy value for loads based

on the concept of distance between two cities (destination of one and

origin of another) gives importance to the time employed to transport a

load and not to the type of the carried load, hence to the possible revenue

derived from it. The hop based algorithm, instead, gives importance

to the type of the transported load, hence booked, auctioned or empty

repositioning lane, despite of the time need to carry it, so the cost derived

from it.

3.5 Chance constraints expression accord-

ing to the normal distribution

With the aim to explain the uncertainty related to the results of

the auction, the lowest bid price between all the carriers competing for

each load, called the clearing price, is modeled as a random continuous

variable, assumed normally disributed.

A random normal (or gaussian) variable X is a continuous random

variable usually denoted by X ≡ N(µ, σ2). The two parameters, called

expected values, that is µ and σ2, corresponds to the mean E(X) and

variance V ar(X) of the distribution. Indead, it can be proved that

E(X) = µ e V ar(X) = σ2. Hence, every normal distribution is uniquely

defined by the mean and the variance.

The random gaussian variable is characterized by the probability density

function, often referred as gaussian function:

f(x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

, x ∈ < (3.2)

described by symmetric and bell curve (Gauss curve.

The particular case where the mean (µ = 0) and the variance (σ2 = 1)

is known as standard normal variable and is indicated by N(0, 1).
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The cumulative distribution function Φ of the standard normal distribu-

tion is

Φ(x) =

∫ x

−∞

1√
2π
e

(
−u

2

2

)
du (3.3)

and the quantile function Φ−1 can not be expressed in a close form in

terms of elementary functions. Therefore, approximated values of this

functions are available only in tables and can be obtained by using ap-

proximating calcol algorithms.

Consider a bundle b consisting of n auctioned loads. Assume that, for

every load i of the bundle, the random variable representing the lowest

bid of the carriers competing for that load is denoted by Xi (i = 1, ..., n)

and have a normal distribution given by:

Xi ≡ N(µi, σ
2
i ) (3.4)

where the mean value µi is assumed equal to the auctioneer’s asked price

Mi for the auctioned load i and the estimation of the standard deviation

σi of the probability density function describing the load price is assumed

equal to 1.

In practice, the variables are dipendent because the bid price for a load

depends on the prices of the near loads, but the modeling and the sim-

ulation of multivariate dependent random variable is always a complex

problem in the applications. Therefore, it has been assumed that the

normal random variable Xi are independent.

We consider thus the random variable Yb, the clearing price of the

bundle b as following:

Yb =
n∑
i=1

Xi (3.5)

The following theorem holds, expressing the important property of in-

variance respect to the sum of the independent variables.

Theorem Linear combinations of normal and independent random

variables are normally distributed, too.
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Hence, it follows that:

Yb ≡ N(µb, σ
2
b ) (3.6)

where

µb =
n∑
i=1

µi σ2
b =

n∑
i=1

σ2
i (3.7)

Since we have assumed µi = Mi (i = 1, ..., n), we obtain µb =
∑n

i=1 µi =∑n
i=1 Mi = Mb, (that is equal to the ask price for the whole bundle b)

and σ2
b = n. It follows that:

Yb ≡ N(Mb, n) (3.8)

The chance constraints of the model proposed for the BGP in Chapter

3, expressed according to the normal distribution of the clearing price of

each bundle, are the following:

pbxb ≤ µb + σbΦ
−1(α) ∀b ∈ B (3.9)

where Φ−1 is the inverse function of the cumulative distribution function

for a standard normal distribution.

This inverse can be determined from the tables existing for the the cu-

mulative distribution function. For example, for α = 0.05 we have that

Φ−1(0.05) ≈ −1.65.

From the probabilistic type constraint we have that the confidence level

is equal to 1 − α, with α ∈ [0, 1]. It expresses the degree of certainty of

the result. For example, if α is 0.05, then “In 95% of the cases the bid

price for a bundle is lower than the clearing price of that bundle or there

is a 95% chance that the submitted bundle will win the auction”.
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Chapter 4

The proposed heuristic

approach

In this chapter are described the heuristic methods proposed for the

solution of the BGP model. There are presented two categories of sequen-

tial heuristics: the first category heuristic generate a bundle of loads,

starting from the maximal/minimal cardinality bundle and evaluating

the decremental/incremental marginal benefit of dropping out/inserting

a load and updating the current bundle; the second category heuristic se-

lects from a set of bundles generated respect to different criteria, the best

one, that is the bundle with the highest value of the objective function.

4.1 Introduction

Since the number of the constraints and variables related to the bun-

dles of auctioned loads is exponential, the model proposed in chapter 3

for the BGP was solved exactly (using Branch and Bound) only up to a

certain dimension, more precisely, up to 20 auctioned loads.

For higher dimensions have been build some heuristics that permit a

sequential resolution of the problem.

In the literature there are proposed for the BGP solution methods
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that consider the Lagrangian relaxation and column generation or some

kind of decomposition methods.

In [24], the nonlinear (quadratic) integer model is solved by using

a decomposition approach based on column generation and Lagrangian

relaxation, thus a decomposition based heuristic is developed. The de-

composition strategy involves a partition of the model into a master

problem and a subproblem for which a column generation-like strategy

is employed to derive approximate solutions to the original carrier for-

mulation.

In [58], two heuristic methods are proposed for generating combina-

torial bids.

The first heuristic, based on a fleet assignment model, give a generic

formulation for the routing and scheduling problem and solve it; group

the lanes assigned to the same vehicle into one combination then the

resulting bid consists of all the combinations.

The second heuristic, based on the nearest insertion method, have as

the basic idea to insert a lane into an assignment for any vehicle that

minimizes the total empty travel distance and do this to all lanes, one

by one, until they are all assigned. It is realized the construction of

heuristic assignment and the generation of combinatorial bids is done

like in the first heuristic. Heuristic 1 is computationally complicated,

whereas Heuristic 2 is easy to implement.

Numerical experiments for comparing the performances of the two

heuristics show that, on average, the simple nearest insertion heuristic

underperforms the integer programming-based optimal fleet assignment

model in most instances, but it may outperform the latter by up to 8% in

some instances and by 5% (in terms of the total expected empty distance

travelled) in many other instances.

In [53], the Bid Construction Problem (BCP) in combinatorial auc-

tions for the procurement for freight transportation contracts is studied

in two different scenarios: in the absence of pre-existing commitments
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and in the presence of pre-existing commitments. Computationally effi-

cient optimization-based approximation algorithms for solving the above

problem in each scenario are also proposed.

The main idea of the proposed strategy to generate bids is that the

carrier construct bids such that the total operating empty movement

cost is minimized. Since this requires solving a TL VRP, the authors

follow an approach similar to that one of solving VRP: set partitioning

(SP) formulation of the problem and column generation method for exact

solutions. The first step of the bidding strategy consists in using a search

algorithm (depth first search algorithm) to enumerate all routes with

respect to routing constraints and treat each route (candidate bid) as

a decision variable in the SP formulation of the BCP (BCP-SP). The

new lanes in this route form the set of items bid, its reservation cost

determines the bid price and can be calculated, as in [52], on the base of

route length, empty movement cost and carriers’ profit margin. In BCP-

SP is imposed the constraint that each lane is covered only by one optimal

bid (two optimal bids are mutually exclusive of new lanes). In order to

explore all the bidding opportunities for substitutable bids, the above set

of constraints is relaxed in the BCP-SP formulation, remodelling it as a

Set Covering problem (BCP-SC). To solve it the authors propose the use

of a modified Branch and Bound algorithm that search until all optimal

solutions are found. Moreover, for substitutable bids, is used the Bid Set

Augmentation Rule in order to detect additional bidding opportunities.

For the second scenario, the previous bid construction strategy is ex-

tended to the situation in which carriers already have commitments to

other contracts prior to the auction (carriers may have contracts serving

multiple customers). Carriers will not only deliberate on their bidding

plans (on the base of combinational opportunities among new lanes) but

also will have integrate these new lanes into their current operations.

Moreover, XOR bids are developed for any two atomic bids that have

substitutable valuations with respect to a common set of current lanes.
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Finally, the bids that conflict with pre-existing routing plans are identi-

fied and excluded by using the Bid Substitution Condition.

The performance of the proposed bid construction method respect to

complete enumeration was studied by using a simulation-based experi-

ment. The number of atomic bids generated by the above method (for

the two scenarios) is significantly fewer than that of complete enumera-

tion and thus, it is much faster than the complete enumeration method

in terms of computation time. The quality of the bids constructed by the

new method is quite close to that of the complete enumeration method;

the performance of the proposed method in terms of number of new lanes

won by each of the carriers (”Smart” or Enumeration) and the empty

movement costs after auction is quite good.

The optimization-based bid construction strategy presented in [53]

results optimal for carriers in terms of operational efficiency in the ab-

sence of pre-existing commitments and near optimal when pre-existing

commitments are also considered. Moreover, the benefit of the approxi-

mation method proposed is that it provides a way for carriers to discover

their true costs and construct optimal or near optimal bids by solving a

single NP-hard problem, so a significant improvement in computational

efficiency.

As already said, our model for the BGP proposed in Chapter 3 de-

termines not only the best bid to submit and its price, but even assigns

the loads to the carrier’s trucks, providing the corresponding routing.

The problem of assigning jobs to vehicles in a transportation network

is wellknown in the area of vehicle routing problems (VRP) as a real-

time multivehicle pickup and delivery problem with time-windows. Such

problems arise in the transportation of elderly and/or disabled persons,

shared taxi services, certain courier services and so on.

The VRP and its variants have been studied extensively (see [20] and

[55] for a survey. It is well-known that most variants of the VRP prob-

lem are NP-hard, so that it is virtually impossible to find an optimal
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solution within a short time. Most work focuses on static and determin-

istic problems where all information is known when the schedule has to

be generated (see, for example, [8]. The dynamic assignment problem,

as discussed in [15], also shows some similarities. Here resources (e.g.

vehicles) are dynamically assigned to tasks that arrive during schedule

execution. Key differences are:

(1) each individual vehicle schedule contains only one job at a time;

(2) the price of a job is exogenous and the only issue is whether to

accept this job and if so, to assign a vehicle to this job;

(3) only the most profitable jobs are accepted.

Powell and Carvalho ([36]) use so-called Logistics Queuing Networks

(LQN) to decompose the large and complex scheduling problem by a

series of very small problems. In this way, many real world details can

be included in the model that cannot be dealt with using traditional

approaches. Still this is a centralized planning approach.

Closely related work can also be found in ([39]; [40]; [41]) who investi-

gate the dynamic assignment of vehicles to loads for real-time truckload

pickup and delivery problems. They provide relatively simple and fast

local rules. Yang et al. ([59]) extend this work to a formal optimization-

based approach for the same problem class. They use simulation to com-

pare this approach with the previously developed heuristics. Mahmassani

et al. ([27]) present a hybrid approach combining fast heuristics for initial

assignment with the optimization-based approach for the off-line prob-

lem of reassigning and sequencing accepted loads. Several approaches for

routing and scheduling in oversaturated demand situations are developed

in [28].

4.2 Sequential heuristics of type I

A first category of heuristic method starts from the bundle of loads

of maximal cardinality (that is, equal to the set of the auctioned loads
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L). Evaluate the decremental profit (marginal benefit) for each bundle

obtained by dropping out (deleting) one load at a time from the cur-

rent bundle, and choose the load for whom it has been yield the best

decremental profit. Then update the current bundle (eliminating the

previously selected load) and so on. The procedure is repeted until the

current bundle becomes empty. Let f(S) be the objective function value

obtained by solving the BGP when the auctioned loads set is given by

S ⊆ L.

The heuristic algorithm previously described is the following:

SEQUENTIAL DESCENDING HEURISTIC ALGORITHM OF TYPE I

Pick initial subset S0 = L

1 : FORALL i ∈ S0

compute the marginal benefit of dropping load i from the

current set as ρ(i) = f(S0 \ {i})− f(S0)

Determine i? = argmax ρ(i)

Update S0 as S0 = S0 \ {i?}
IF S0 is not empty THEN GO TO 1, ELSE STOP.

A version of this heuristic can be obtained by considering as the initial

bundle that one with minimal cardinality (for example, the empty set)

and evaluating the incremental profit (at adding a load to the current

bundle).

The heuristic algorithm previously described is the following:

SEQUENTIAL ASCENDING HEURISTIC ALGORITHM OF TYPE I

Pick initial subset S0 = ∅
1 : FORALL i ∈ L \ S0

compute the marginal benefit of adding load i to the

current set as ρ(i) = f(S0 ∪ {i})− f(S0)

Determine i? = argmaxρ(i)

IF ρ(i?) > 0 THEN
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update S0 as S0 = S0 ∪ {i?}
IF S0 = L THEN STOP, ELSE GO TO 1.

The complexity of this first type of heuristics will be only of O(n2)

(where n is the cardinality of the set of the auctioned loads).

4.3 Sequential heuristics of type II

A second category of heuristics considers as the initial set of bundles

a certain set of bundles selected with respect to various criteria (random

selection, bundles chosen with higher synergy and/or in some interval,

bundles with cardinality in some interval, etc...). Then solves the problem

for each bundle of this set and select from these the bundle with maximum

value of the objective function.

Let B̄ be the initial set of bundles, instead of the set B of all possible

bundles formed with the loads of L. The set B̄ is determined by using

the above mentioned criteria.

The heuristic algorithm previously described is the following:

SEQUENTIAL HEURISTIC ALGORITHM OF TYPE II

FORALL b ∈ B̄
solve the BGP with B = {b};
Let zb be the optimal (objective function) value

Solve the problem maxb∈B̄zb, let b? be the optimal solution.

The (near) "‘optimal"’ bundle, heuristic solution of the BGP

(with B = B̄) is given by b?.
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Chapter 5

Computational results

Several computational experiments have been carried out in order to

validate the proposed BGP model and to measure the efficiency and the

efficacy of the previously considered heuristic solution strategies. Since

for the combinatorial auctions, in general, there are not publicly available

real data (as is often signaled in the leterature, for example in [2]), a test

problems’ generator has been constructed and implemented in C language

and compiled by using Dev-C++ (versione 4.9.9.0).

5.1 Test problems configuration

In order to simulate combinatorial auctions data, an automated prob-

lems generator has been produced; thus, a significant set of test instances

has been obtained.

We create the complete graph G = (V,A) (introduced in Chapter 3)

with the nodes representing the cities and the arcs all the possible direct

links (streets) between cities.

The travelling times matrix τ , the distance matrix Dist and the costs

matrix Cost have been generated as follows:

• The matrix τ has been randomly generated according to an uniform

distribution in the range [1, 3]; we have assumed that the travel time
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from a node to itself , that is the time to stay in a node, is equal

to 1 day (τii = 1 for every i) and that the matrix τ is symmetric

(τij = τji for every i and j).

• The matrix Dist has the elements given by:

distij = τij · 90 · 8

because we have assumed that a truck travels at the average speed

90km/h and that the number of working hours of the trucks’ drivers

is fixed to 8h/day .

For the sake of simplicity, we have assumed that distij = τij for

every i 6= j and distii = 0.

• The cost matrix Cost has the elements direct proportional to the

distance, defined by the following formula:

costoij = (270 + random(0, 50)) · distij

where 270 Euros represents the minimum cost of traveling on the lane

and random(0, 50) is a random number, having uniform distribution be-

tween 0 and 50, that represents possible cost variations due to the increase

of the fuel price, of the highway taxes, etc...

The minimum cost of 270 Euros has been obtained by assuming that:

• a truck runs at an average speed of 90km/h;

• a truck travels 5km/l;

• the fuel costs 1, 4 Euro/l

• the working day is about 8h;

• a driver gains 68 Euros daily.
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Successively, assuming that the initial graph was not constructed on

the shortest path, that is, it did not have the minimum distance arcs

between nodes, a reduced graph has been generated by using the Floyd

Warshall’s algorithm. Therefore, the new set of arcs will be A′ ⊂ V ×V ;

the sets L0 of booked loads and L of auctioned loads will be generated

by selecting randomly two subsets of A′.

We have assumed that the number of loads in L is equal to the number

of loads in L0.

A time window was associated to every booked load and to every auc-

tioned load. In both cases, the time window extremes represent the first

and the last possible day of delivery of the load.

The first extreme of the time windows associated to a load l in L0 was

generated according to the following formula:

a(l) = τij + uniform(1, T − τij)

The second extreme b(l) is obtained from the same formula, by imposing

only that it is has to be greater than or equal to a(l). The temporal

horizon T has the length of 7 days, hence we can have time windows

with the minimal length of 1 day and the maximal length of 6 days. The

choice of associating time windows completely random to the loads in

L0 derives from the fact that the existing transportation network is the

result of more auctions previously won by the carrier, organized by the

shippers having different needs in terms of delivery times.

For the auctioned loads instead, three different types of time windows

have been simulated:

(1). short : with at most two delivery days;

(2). medium: with at most three delivery days;

(3). long : with at most four delivery days.

The time τij of travelling on a lane influences the delivery time of a load.

Therefore, the first “possible” delivery day will have to be at least equal to
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the travel time associated to the load plus an additional time, expressed

in number of days, randomly chosen according to a uniform distribution

in a range between 1 (first day of the week) and the day obtained by the

difference between the temporal horizon length, the travelling time and

a random number (depending on the window type). Hence a(l) can be

at least 2, as in the L0 case. The b(l) will be computed starting from the

first extreme and adding a random number, based on the time windows

type.

Thus, the time windows will be obtained as follows:

• the first delivery time will be given by the following formulas:

– a(l) = τij + uniform(1, T − τij − uniform(0, 1)) (short)

– a(l) = τij + uniform(1, T − τij − uniform(0, 2)) (medium)

– a(l) = τij + uniform(1, T − τij − uniform(0, 3)) (long)

• the last delivery time will be given by the following formulas:

– b(l) = a(l) + uniform(0, 1) (short)

– b(l) = a(l) + uniform(0, 2) (medium)

– b(l) = a(l) + uniform(0, 3) (long)

The number of trucks and their position at the beginning of the temporal

horizon have been generated as described in the Chapter 3. First, it is

taken a number of trucks equal to the ceil of the half of the number of

loads in L0. Next, if the number of booked loads with the pickup day 1

exceeds the number of available trucks, the latter will be updated.

The departing position of the trucks has been assigned as follows:

(1). if there are one or more booked loads leaving from the node vi at

time 1, it is imposed that from vi are leaving as many trucks as

those loads;
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(2). the departing position is randomly assigned to the remaining vehi-

cles not yet assigned to nodes at (1).

Therefore, a preprocessment of the auctioned loads will be made based

on the trucks’ departing positions and the three types of time windows

associated to loads in L. A load will be eliminated from L if it has to be

picked up in the first day of the week and there are no available vehicles

in that node to transport it. At the end of this preprocessment there will

be obtained three different set of auctioned loads, corresponding to each

type of time windows.

For every set L′ yield from the preprocessment, it will be computed the

power set (without the empty set), so all the 2n − 1 possible bundles of

auctioned loads, where n is the cardinality of L′.

The revenue derived from the booked loads (contracted in previous auc-

tions) is computed by adding the 40% to the sum of the costs of those

loads.

Based on the distances between cities and the range of delivery days

for the loads, a first table (5.1) with synergy values to associate to pair

of arcs can be produced.

Ten synergy levels are defined: if the loads are temporaly incompatible

the pair of loads has the synergy of 1. If there is temporal compatibility

the levels of synergy go from the inferior one (0.95) corresponding to a

scarce interaction between loads to the superior one (0.50) representing

the maximum possible interaction (complementarity) between two loads.

Based on the range of delivery days for loads and the number of hop

between two cities a second table (5.2) with synergy to associate to every

pair of arcs is constructed.

The parameters of the proposed stochastic model for bidding advisor

are:

• the cardinality of the set of the cities and the cardinality of the
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distanza

0 1 2 3

0 0.6 0.8 0.95 0.95

(time windows) 1 0.55 0.75 0.90 0.90

intersection 2 0.55 0.75 0.90 0.90

days 3 0.5 0.7 0.85 0.85

4 0.5 0.7 0.85 0.85

5 0.5 0.7 0.85 0.85

Table 5.1: Distance-based pairwise synergies

hop

0 1 2

0 0.6 0.8 0.95

(time windows) 1 0.55 0.75 0.90

intersection 2 0.55 0.75 0.90

days 3 0.5 0.7 0.85

4 0.5 0.7 0.85

5 0.5 0.7 0.85

Table 5.2: Hop-based pairwise synergies

auctioned loads’ set;

• the synergy between loads (no synergy, distance-based synergy,

hop-based synergy);

• value of α in the confidence level definition.

In the tests of the next section there will be examined the effects of every

parameter’s changing while the other parameters will be fixed.

All the described data will be generated and saved in distinct files

or one file and imported in the model’s implementation in GAMS or
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Microsoft C++, and will constitute an instance for the BGP (solved by

using the MIP solver ILOG CPLEX).

5.2 Numerical results

5.2.1 Exact solution

The first experiments made by using the implemented model (in

GAMS), have produced solution to problems with 10 cities and 12 auc-

tioned loads. For higher dimension instances, there will be an exponential

computational complexity and the system will yield out of memory.

In order to pass this limitation, first it has been done an iterative solving

of the model, by considering partitions of the set of possible bundles.

At every iteration the problem is solved for each partition, the objective

function values obtained and the corresponding chosen bundle are saved.

At the end of the last iteration it is selected between the various chosen

packages that one corresponding to the maximum value of the objective

function. That bundle is the best bid , that is maximizing the carrier’s

profit, that he can submit in the auction.

By these experiments it is verified until what instance dimension the

BGP can be exactly solved. Because of the exponential number of vari-

ables and constraints (corresponding to the bundles of auctioned loads),

the proposed model can be solved exactly in reasonable execution times

only up to less than 20 auctioned loads. For 20 auctioned loads the

solution time is most of the time exceeding the 5 days.

In the first experiment the number of cities (nodes) and of the auc-

tioned loads (arcs) is varied. The model is tested on 8, 14 and 18 nodes

and on 8, 13 and 16 arcs, since in the optimal solution’s searching on

instances with 20 auctioned loads the computational time limit (fixed to

5 days) is exceeded.

For each nodes-arcs combination five instances were executed (so a
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total of 45 tests). In the table (5.3) the cardinality of the chosen bundle

is reported for each test.

8 arcs 13 arcs 16 arcs

Test |b| Test |b| Test |b|

T1 5 T1 7 T1 6

T2 4 T2 6 T2 5

8 nodes T3 4 T3 5 T3 5

T4 4 T4 6 T4 8

T5 3 T5 6 T5 9

T1 3 T1 4 T1 4

T2 3 T2 6 T2 6

14 nodes T3 3 T3 7 T3 6

T4 4 T4 8 T4 4

T5 3 T5 6 T5 5

T1 3 T1 6 T1 6

T2 3 T2 4 T2 7

18 nodes T3 3 T3 4 T3 6

T5 4 T5 5 T5 6

T5 3 T5 6 T5 5

Table 5.3: Cardinality of the chosen bundle

We can observe that, by increasing the number of auctioned loads,

the cardinality of the chosen bundle is almost always increased. But the

number of the network nodes has no influence on this cardinality.

This is more evident in the table (5.4) where the average number of

loads of the chosen bundle is reported for each nodes-arcs combination.

The computational times employed by GAMS to solve the problem is
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8 arcs 13 arcs 16 arcs

8 nodes 4 6 6.6

14 nodes 3.2 6.2 5

18 nodes 3.2 5 6

Table 5.4: Average cardinality of the chosen bundle

increasing with the cardinality of the auctioned loads set L. For 8 auc-

tioned loads it takes few minutes to solve the problem, but the execution

times arise to about 4 hours for solving the instances with 13 auctioned

loads and to an average of 7 hours for those with 16 loads.

In the next experiment is studied how the synergy value between

loads influences the price of the chosen bundle, hence the carrier’s fleet

management plan. Nine different problem instances for the 14 nodes-8

arcs combination are run. The confidence level is of 95%.

In the table (5.5) |b| denotes the cardinality of the chosen bundle, Mb

denotes the price the shipper is willing to pay for this bundle (ask price),

Pb denotes the prices assigned to the bundle (in Euros) for the synergy

levels distance-based syndb and hop-based synhb. SS, SD and SH rep-

resents the scenario with no synergy between loads, the scenario with the

distance-based computed synergy and hop-based synergy, respectively.

By analysing the results reported in the table (5.5) we remark that

the synergy value associated to the bundle by using the hop-based algo-

rithm is lower than or equal to the synergy value associated to it by the

distance-based algorithm. In the absence of synergy (scenario SS), the

bundle synergy value is 1 and it is omitted from the table.

From the table we can observe that the more frequent (50% of all the

results) synergy value for a bundle is 0.85. Then the value of 0.90 ap-

pears in 39% of the tests and 0.80, the maximum synergy level here, is

associated to bundles only in 11% of the cases.

It is obtained that, by varying the synergy values, the model proposes
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SS SD SH

|b| Mb Pb |b| syndb Pb |b| synhb Pb

test 1 2 922 919 2 0.90 827 2 0.85 781

test 2 3 1899 1896 3 0.90 1707 3 0.85 1612

test 3 3 1434 1431 3 0.90 1288 3 0.85 1216

test 4 3 1442 1439 3 0.90 1295 3 0.85 1223

test 5 3 1885 1882 3 0.85 1600 3 0.80 1506

test 6 3 1834 1831 2 0.85 781 2 0.85 781

test 7 3 2274 2271 3 0.90 2044 3 0.85 930

test 8 4 2722 2718 4 0.90 2446 3 0.90 2042

test 9 3 1402 1399 3 0.85 1189 3 0.80 1119

Table 5.5: Bundle price determination by varying the synergies

the same bundle in 7 tests from all 9. In test 6 the model proposes in the

SS scenario a bundle of 3 loads while in the other scenarios a different

bundle of minor cardinality, because in this way the carrier’s profit is

maximized (as it is the objective of the BGP). An analogue situation

is verified in test 8 where, for the SH scenario it is chosen a bundle of

minor cardinality respect to that one chosen in the other scenarios, but

is the bundle that maximize the expected carrier’s profit. Moreover, one

can observe that the price of the bundle in the scenario SH is lower than

that one in the scenario SD, except the test 6 where it is assigned the

same price. We can see how the synergies influence the price of the bun-

dle of auctioned loads, decreasing the bid price. A lower bid price means

a decreasing of the carrier’s profit but the bid will be more competitive

respect to the bids submitted by the others carriers participants in the

auction. The winning probability of the load influences the choice of the

bundles to bid on. We assume the parameter α used to compute the

confidence level has the following values 0.05, 0.10, 0.15, 0.20, 0.25).
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The experiment considers the 14 nodes-8 arcs combination and the bun-

dle synergy computed based on distance.

|b| syndb 0.05 0.10 0.15 0.20 0.25

test 1 3 0.95 1388.09 1388.69 1389.10 1389.42 1389.69

test 2 3 0.90 1718.24 1718.80 1719.19 1719.49 1719.75

test 3 3 0.85 1599.66 1600.19 1600.56 1600.84 1601.09

test 4 3 0.90 1294.88 1295.44 1295.83 1296.13 1296.39

test 5 3 0.90 1287.68 1288.24 1288.63 1288.93 1289.19

test 6 3 0.90 1706.72 1707.28 1707.67 1707.97 1708.23

test 7 3 0.95 2661.85 2662.45 2662.86 2663.18 2663.45

test 8 4 0.90 2446.48 2447.13 2447.58 2447.93 2448.23

test 9 3 0.85 1188.94 1189.48 1189.84 1190.12 1190.37

Table 5.6: Bundle price by varying α

In the table (5.6) it can be observed that by increasing the value of

the parameter α the price of the chosen bundle is increased too (obvious

behaviour according to the chance constraints).

Therefore, the increasing of the bundle price obviously determines an

increasing of the objective function value, that is of the expected carrier’s

profit. The objective function values are reported in the table (5.7). By

analysing the results of this experiments we can say that, if the carrier

chooses α = 0.05, he will have 95% chance of winning the bundle sub-

mitted as bid, whose price is very low. Otherwise, if the carrier chooses

the α value close to 0.25, he will have only 75% probability of winning

the package but if he wins it, he will obtain the bundle at a higher price

and so he will have a major profit.

An analogue behaviour can be expected in the case of the hop-based

synergy.
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α 0.05 0.10 0.15 0.20 0.25

test 1 523.49 524.09 524.50 524.82 525.09

test 2 738.24 738.80 739.19 739.49 739.75

test 3 228.06 228.60 228.96 229.24 229.49

test 4 716.08 716.64 717.02 717.33 717.59

test 5 701.28 701.84 702.23 702.53 702.79

test 6 153.52 154.08 154.47 154.77 155.03

test 7 549.25 549.85 550.26 550.58 550.85

test 8 712.08 712.73 713.18 713.53 713.83

test 9 168.34 168.87 169.24 169.52 162.77

Table 5.7: Carrier’s revenue by varying α

5.2.2 Heuristic solution

For higher dimensions heuristic procedures that permit a sequential

solving of the BGP have been constructed. Extensive computational tests

are carried out on a meaningful number of test problems, with the goal

of assessing the behaviour of the proposed approaches. Thus, the various

proposed heuristics have been compared, providing the corresponding

computational times and the gap with the best (optimal) solution (up to

the dimension the BGP has been exactly solved).

The sequential solving (in GAMS) described in Chapter 3 leads to

important improvement in terms of execution times. Indead, in the table

(5.8) are reported the results obtained for 8 instances where the number

of auctioned loads was fixed to 10. In the first column is quoted the

number of nodes, in the second one the name of the test, in the third

and fourth column the time employed by the CPU to find a solution: in

the first case, the model has been solved by considering all the possible

bids simultaneously, in the second case instead the model has been iter-
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atively solved. The last column contains the reduction of the execution

time obtained by solving the model in an iterative way.

Number of nodes INSTANCE CPU C (s) CPU I (s) REDUCTION

10 P1 1753 214 88%

10 P2 1467 272 82%

10 P3 601 177 71%

15 P4 85 42 51%

15 P5 61 44 28%

15 P6 93 55 41%

20 P7 933 247 74%

20 P8 1403 267 81%

Table 5.8: Computational times comparison

In the table (5.9) the average computational times are reported for

each nodes-arcs combination.

Number of nodes CPU C (s) CPU I (s) REDUCTION

10 1273.67 221.0 80.33%

15 79.67 47.0 40.0%

20 1168.0 257.0 77.5%

Table 5.9: Average computational times

Respect to the GAMS implementation, the Microsoft C++ imple-

mentation runs even more faster. We repeat the same tests as before (for

the same combinations of nodes-arcs) by running the implementation in

MS C++ of the proposed model for BGP, with or without the use of the

heuristic procedures. CPLEX 10.1.0 is used for solving the underlying

mixed integer problems.
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The sequential solving heuristic algorithms described in Chapter 4

leads to important improvement in terms of execution times. Indead,

in the tables (5.10) and (5.11) the average computational times for each

nodes-arcs combination are reported in the cases the sequential ascending

heuristic and descending heuristic, respectively, of type I is used.

In the table (5.10), the first column contains the number of nodes,

while in the second and third column the times employed by the CPU to

find a solution are reported, as follows:

- in the first situation, the model has been solved by considering all

the possible bids simultaneously;

- in the second situation, the model has been sequentially solved by

using the type I ascending heuristic procedure.

In the last column the reduction of the execution times obtained by

solving the model with the sequential type I ascending heuristic algorithm

is reported.

Number of nodes CPU ALL (s) CPU H1A (s) REDUCTION A

10 12.584 2.261 82%

15 60.812 2.970 95%

20 71.289 6.889 90%

Table 5.10: Average computational times comparison (ascending heuristic)

It can be noticed that the improvement in terms of execution times

is very important, for about 90% in all cases when the type I ascending

heuristic is employed to sequentially solve the BGP.

Analogously, in the table (5.11), the first column contains the number

of nodes, while in the second and third column the times employed by

the CPU to find a solution are reported, as follows:

- in the first case, the model has been solved by considering all the

possible bids simultaneously;
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- in the second case, the model has been solved by using the sequential

type I descending heuristic procedure.

In the last column, the reduction of the execution times obtained

by solving the model with the sequential type I descending heuristic

algorithm is quoted.

Number of nodes CPU ALL (s) CPU H1D (s) REDUCTION D

10 12.584 3.254 75%

15 60.812 7.470 88%

20 71.289 12.768 82%

Table 5.11: Average computational times comparison (descending heuristic)

Hence, when the type I descending heuristic is employed to sequen-

tially solve the BGP, the improvement in terms of execution times is

lower respect to the previous case, when the type I ascending heuristic

is used, but however more than 80%.

We can also provide the gap between the optimal solution and the

solutions obtained when the sequential type I heuristic solving procedures

are employed.

In all the running instances for the type I sequential ascending heuris-

tic the same optimal solutions as in the case of exact solving with all

bundles are obtained. When the type I sequential descending heuristic

is used, the solution of the instances is rarely the same with the exact

optimal solution, but often the solution is not so close to the latter one.

In the table (5.12), the average relative gap of the previous cases is

provided. The two columns contain the solution gaps obtained when

the sequential ascending heuristic procedure and descending heuristic

procedure, respectively, are employed for solving the BGP.

A comparison can be also made directly between the two sequential

type I heuristic procedures. As we can see from the tables (5.10) and

(5.11), the computational times obtained when the sequential ascending
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GAP H1A Gap H1D

0 0.45655

Table 5.12: Average relative gap

algorithm is used are almost a half of those obtained by running the

sequential descending heuristic.

Therefore, between the heuristic solution algorithms proposed, the se-

quential ascending heuristic outperforms the sequential descending pro-

cedure both from the point of view of the quality of the optimal solution

and of the computational times obtained.

For high dimensions, since the input file of all possible bundles (power

set cardinality) is extremely huge as the number of auctioned loads in

L increased, it is chosen to divide this file into more files, one for each

possible cardinality of this set.

The preliminar results obtained are very encouraging and show the

efficacy and the efficiency of the developed solving strategies and the

utility of the proposed model in terms of tool to support the carriers in

their integrated fleet routing and profitable bidding decisions.
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Conclusions

This thesis represents a valid study and an accurate analysis of the

problems related to the BGP in a combinatorial auction for full truckload

transportation.

The major scientific contribution has been to present and define both

a mathematical model for the bid generation and evalutation (integrating

also the routing of the carriers’ fleet) and the heuristic procedures able

to solve the BGP on more complex instances.

As future research we intend to develop more heuristic solution meth-

ods with the aim to faster solve the BGP and to provide better quality

solutions. Other preprocessment procedures of the auctioned loads set

may be also constructed in order to overcome the dimension problem

caused by the exponential number of bundles. The dependence of the

random variables denoting clearing prices of the bundle loads can be

successively studied, too. Moreover, even if we proposed a model for

the BGP in the truckload transportation combinatorial auctions, we can

investigate in which other fields it could be applied.
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