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Chapter 1

Introduction

In the fascinating picture of science, viewed as a constant fight to push forwards the

limits of the human knowledge, with a preferred direction singled out by technological

applications, whose final goal is to improve human life, our small contribution, subject

of this thesis, deals with the analysis of properties related to excitations of carbon based

nanostructured materials.

The choice of carbon based materials is justified because in the last decades they are

raising as promising materials with a wide range of technological applications, ranging from

electronics, where carbon is supposed to replace silicon, to medicine and biology, where

carbon represents one of the fundamental building blocks of organic compounds. Actually,

carbon based nanostructured materials are usually referred to as strong correlated systems,

owing this definition to their particular electronic properties determined by the valence

electrons, that are involved in complicated many body excitations. In this work, we

analyze in particular the electronic excitation properties of Graphene, both freestanding

and adsorbed on metal surfaces, and carbon nanotubes.

This introductory chapter briefly reviews the prominent features of Graphene and car-

bon nanotubes, postponing a proper introduction, presentation and discussion of results to

the following chapters. Throughout the entire work we use atomic units1, unless otherwise

stated. SI units will be occasionally used to improve the readability of data and results.

The organization of the entire work is as follows.

Firstly, in chapter 2 we shortly review the Density Functional Theory (DFT) [1, 2],

that is not the main topic of this work, but is used as a working tool throughout all the

1electron mass me = 1; reduced Plank constant ~ = 1 elementary charge e = 1, Bohr radius a0 = 1.
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1 Introduction

thesis. We start with the theory based on the Hoenberg-Kohn theorems and give a sketch

of how the theory is translated to an application algorithm, the Kohn-Sham procedure.

Then, we review the approximation involved in solving a DFT problem, with particular

attention on the ones used for our purposes.

In chapter 3 we study the Auger electron emission from single walled carbon nanotubes.

We develop a theory for Auger electron emission, based on perturbation theory and the

Fermi golden rule (FGR). Then we study the Auger emission lineshape of a (10, 10) single

walled carbon nanotube, using as starting points two DFT calculations with different char-

acteristics, namely an all electron calculation on a finite size tube and a pseudopotential

calculation on a periodic tube [3]. We include also initial and final state effects to under-

stand the role played by such corrections, that lie outside the FGR approach, in deforming

the emission line that is compared to experimentally measured Auger emission data from

nanotube bundles [4].

In chapter 4 we analyze the Graphene system adsorbed on a Nickel (111) surface.

We present experimental measurements of secondary electron emission [5, 6, 7, 8]. The

adsorption of the Graphene layer induces significant modifications on the secondary emis-

sion properties of the Nickel surface, reflected, both on the total emission yield and on

the emission lineshape. We find the latter to be modified by a series of peaks, showing a

remarkable dispersion that we ascribe to the particular density of unoccupied states of the

system. We try to analyze the nature of these peaks using a simple approach based on a

DFT band structure calculation of Graphene adsorbed on (111)-oriented Nickel slabs of

different thicknesses. To validate the approach, we apply first the technique to the case of

Graphite, using secondary electron emission data taken from literature [9, 10, 11].

In chapter 5, we study the electron energy loss function of Graphene and Graphene

adsorbed on Nickel (111) surfaces. We firstly introduce the physical problem and review

how the energy loss function can be calculated, using as starting point a ground state DFT

calculation. Then we calculate the energy loss function for freestanding Graphene. We

analyze also how the charge carrier density variation modifies the loss function of freestand-

ing Graphene. Then, we calculate the loss function for Graphene adsorbed on a Nickel

surface, representing a system characterized by strong interactions between Graphene and

the substrate, and compare the result with some experimental measurements.

2



1 Introduction 1.1 Graphene

1.1 Graphene

Graphene is a two-dimensional (2D) honeycomb arrangement of Carbon atoms. It has been

widely studied since 60 years for different reasons, even though it was believed that a pure

two-dimensional material was impossible to synthesize. At the beginning it was considered

an ideal 2D material so it was studied for purely “academic” purposes. Then, its particular

electronic structure was studied and applied to study the properties of Graphite, that is

a vertical stacking of Graphene sheets with small interlayer interactions. In its adsorbed

form on surfaces, Graphene was originally called Monolayer Graphite and it was studied

for its low chemical reactivity. The concept of Graphene is also found in studies of low

dimensional carbon allotropes, like fullerenes and in particular C60 (discovered in 1985)

that is a Graphene sheet projected onto a sphere, resulting from the electronic point

of view in a 0-dimensional material, or carbon nanotubes (discovered in 1991) that are

obtained by rolling up a Graphene sheet to form a cylinder, which can be interpreted as

1-dimensional materials. Graphene received renewed interest in the lastest years, after

its discovery as a freestanding material in 2004, by A. Geim and K. Novoselov [12] who

also started to study its electronic properties. Since then, several singular properties and

behaviors have been understood leading to a broad field of possible applications, ranging

from electronics to medicine and passing trough chemistry and theoretical physics, where

the most outstanding and fascinating application concerns the peculiar band structure of

Graphene used to test the Dirac theory of the relativistic electron.

As anticipated above, Graphene is a two-dimensional arrangement of carbon atoms. Its

structure is formed by two interpenetrated hexagonal carbon sublattices, or by an hexago-

nal lattice with a basis of two carbon atoms. In figure 1.1, we show the honeycomb lattice,

obtained as the “superposition” of the two inequivalent sublattices A and B; the distance

between nearest neighbor carbon atoms is a = 1.42 Å; a1 and a2 are the translation vectors

and the two sublattices are connected by one of the δ vectors. In figure 1.2A, we show

the unit cell of Graphene, used in our work, and in figure 1.2B, the corresponding first

Brillouin Zone (BZ) with reciprocal lattice vectors b1 and b2 and high symmetry points

Γ, K and M; the yellow path is usually considered in band structure plots, and encloses

the irreducible high symmetry zone.

Most of the peculiar properties of Graphene are connected with its band structure [13].

In our work, we are concerned with electronic properties so we will stress mostly this point.

In particular, with a simple Tight Binding approach [14], it is possible to determine one of

3



1 Introduction 1.1 Graphene

Figure 1.1: Honeycomb Graphene lattice obtained as sum of two triangular sublattices.

A: Tri-dimensional view;

B: The two sublattices in detail; a1 and a2 are the primitive translation vectors, δ1, δ2, or δ3 allow to go

from the sublattice A to the sublattice B.

Figure 1.2: Unit cells:

A: Two possible choices of the unit cell for the Graphene lattice, each with two atoms.

B: Reciprocal lattice primitive vectors b1 and b2 corresponding to the direct lattice vectors of panel A,

and the 1st BZ, with the high symmetry points Γ, K and M, singled out as black, blue and red points,

respectively; the yellow line draws the path along which the band structure is usually plotted, it also

encloses the irreducible part of the BZ, i. e. the part of the BZ that can be used to reproduce the full BZ

with symmetry operations.

Useful quantities: |a1| = |a2| = 2.46 Å; |b1| = |b2| ≈ 2.95 Å−1; ΓK ≈ 1.71 Å−1; ΓM ≈ 1.47 Å−1.

the peculiar properties of Graphene represented by the π and π∗ bands, that are the last

occupied and the first unoccupied bands. The Graphene π bands are shown in figure 1.3;

the two bands touch at a single point, in correspondence of the six K high symmetry

4



1 Introduction 1.1 Graphene

Figure 1.3: π and π∗ Graphene bands obtained with a tight binding calculation [14]; the magnification

show the band dispersion around the K point and the Dirac cone.

points of the BZ, see figure 1.2B. This point is called Dirac point because, as shown in the

magnification of figure 1.3, the band dispersion around this point is represented by a cone,

so that the electron quasi-momentum may be written k = K + q, and the band dispersion

is approximated by:

E(q) ≈ ±vF |q| for |q| � |K|. (1.1)

This is the same energy dispersion for the Dirac electron in relativistic quantum physics,

with vF the Fermi velocity that is roughly 1/200 the speed of light. The Fermi energy

passes through the Dirac point and the density of states is zero at the Fermi energy, so

that Graphene can be classified as a 0-gap semiconductor. The relation (1.1) gives to

Graphene several interesting electronic properties, connected to electric conduction and

electronic excitations, that we are going to investigate throughout this work.

1.1.1 Graphene on Nickel surfaces

The adsorption of a Graphene overlayer on metal surfaces has been studied for 40 years

both for its application in catalysis and as a covering material to reduce the chemical

reactivity of metals. In last few years the study received renewed interest with the pur-

pose of creating large high quality Graphene samples. To this purpose, several different

transition metal surfaces have been used [15], each of them with its peculiar advantages

and disadvantages.

In our work we analyze Graphene adsorbed on Nickel (111) surfaces. One of the

advantages is the fact that Nickel (111) surface translational vectors have a length roughly

5



1 Introduction 1.1 Graphene

Figure 1.4: Graphene Nickel (111) top-fcc configuration.

A: Graphene adsorbed on a trilayer Nickel (111) slab.

B: Adsorption sites: one of the two inequivalent carbon atoms sits on top of the topmost Nickel layer

atoms, the other in the fcc hollow sites of the surface, while the hcp (Hexagonal Close Packed) sites are

left empty.

C: Relative position of the carbon and Nickel atoms in the unit cell: one of the carbon atom is on top

of the first layer Nickel atom, the other is on top of the third layer Nickel atom; thicker Nickel slabs are

obtained repeating the three Nickel atoms in the vertical direction.

equal to the one of Graphene, being 2.49 Å. As a consequence, the geometrical properties of

Graphene are preserved, this issue is also reflected on the Low Energy Electron Diffraction

pattern that exhibits the same spots for both materials, and can be used to monitor

the crystalline quality of the Graphene overlayer during adsorption. On the contrary, the

interactions between the Nickel substrate and the Graphene overlayer are quite strong. On

the one hand, this is an advantage because the overlayer can be formed easily by different

techniques [15], and the formation of bilayer or multilayer of graphite is unfavorable. On

the other hand, these strong interactions affect the electronic structure [16], in particular

near the Fermi level, that causes Graphene to lose some of its properties.

One of the important issues of the Graphene-Nickel interface from the theoretical point

of view is concerned with the Carbon adsorption sites. We recall that the Nickel crystal

structure is Face Centered Cubic (fcc). For symmetry reasons, the number of possible

adsorption sites for a Carbon atom on a Nickel (111) surface, preserving the LEED pattern,

is finite [17, 18]. In our calculation we take advantage of the calculations made by Bertoni

et al. [17] and choose as atomic structure for Graphene/Nickel the top-fcc configuration.

In such a configuration the two Carbon atoms of the Graphene unit cell are adsorbed on

two inequivalent sites: one sits on top of the Nickel topmost layer atoms and the other lies

6



1 Introduction 1.2 Carbon Nanotubes

Figure 1.5: Single-walled (SWCNT) and multi-walled (MWCNT) carbon nanotubes.

on the fcc hollow sites of the surface. The direct space primitive vectors and Brillouin zone

are the same the one of Graphene (see figure 1.2), apart from length corrections due to the

little mismatch between the lattice constants. Figure 1.4 shows the adsorption geometry

and the atoms in the unit cell in the case of Graphene adsorbed on the first 3 layers of a

Nickel (111) surface.

1.2 Carbon Nanotubes

Carbon Nanotubes (CNTs) are allotropes of Carbon with cylindrical shape. They owe their

name to their tube shape with diameter length in the nanometer range. Since their discov-

ery in 1991, CNTs have been extensively investigated for their peculiar properties [14, 19],

that are valuable in a vast number of fields, which include electronics, optics, material

science, and medicine. As already observed, a CNT may be thought as a Graphene sheet

rolled into a cylinder; since there are many different ways of rolling up a Graphene sheet,

there also are many different CNTs exhibiting peculiar electronic and geometrical proper-

ties. Actually, CNTs are classified according to their properties.

The first big distinction is between single-walled (SW) and multi-walled (MW) CNTs,

see figure 1.5. A single walled carbon nanotube is obtained by rolling a single Graphene

layer, while a multi-walled CNT is obtained by rolling Graphene multilayers, resulting in

a series of concentric single walled carbon nanotubes. All the other properties of SWCNTs

are determined by their chirality, that is by how the Graphene sheet is rolled. SWCNTs

are usually grouped into armchair, zigzag and chiral classes, see figure 1.6. The nanotube

crystal structure, i. e., the unit cell and lattice vector, is determined by a translation vector

T and a chiral vector Ch. The chiral vector connects two carbon atoms in the Graphene

7



1 Introduction 1.2 Carbon Nanotubes

Figure 1.6: Armchair (n = m), zigzag (m = 0) and chiral (n,m) SWCNT.

Figure 1.7: A Graphene sheet with the definition of the chiral vector Ch and the translation vector T.

sheet that coincide after the rolling procedure; the translation vector is perpendicular to

the chiral vector on the Graphene sheet, and spans the portion of Graphene that needs

to be taken into account for constructing the unit cell of the CNT. Such a vector also

represents the translation vector of the 1-dimensional lattice. Both chiral and translation

vectors are uniquely determined by two indices (n,m), called chiral indices, see figure 1.7.

The chiral Ch and the translation T vectors are defined as

Ch = na1 +ma2 (1.2)

T =
2m+ n

GCD[2n+m, 2n−m]
a1 −

2n+m

GCD[2n+m, 2n−m]
a2, (1.3)

where GCD[a, b] represent the greatest common divisor between a and b. The electronic

8



1 Introduction 1.2 Carbon Nanotubes

properties of a SWCNT are determined by the chiral indices (n,m). Tight binding calcu-

lations [14] show that armchair (n = m) CNTs are metallic. Other types of tubes are also

metallic if n−m is a multiple of 3, while they are semiconducting otherwise.

9



Chapter 2

Density Functional Theory

Density functional theory (DFT) is one of the most widely used technique for ab initio

calculations of the structure of atoms, molecules, solids, surfaces, together with their

properties and interactions. Though DFT is not the main subject of this thesis, it is used

as a working tool for the investigations in the following chapters. The aim of this chapter

is to shortly review the theoretical basis of DFT and its capabilities of calculating physical

and chemical properties of materials, with particular care to electronic-structure related

applications. In the following discussion we follow the approaches by Martin [1, Chapters

6 and 7], Payne and coworkers [2].

10



2 Density Functional Theory 2.1 Introduction

2.1 Introduction

The most challenging problem in the theoretical study of the properties of physical systems

with many electrons is that, whatever the property is, one has to face with a set of equations

for large numbers of electrons interacting with one another. The basic idea brought by

DFT is to reduce the cumbersome problem of determining the many-body wavefunction of

the system at equilibrium to the study its ground state electron density. The Hohenberg-

Kohn theorems prove such a function to be the only quantity needed to define the system

Hamiltonian and then all the observable properties of the system.

DFT has been very popular in solid state physics since its introduction, around the

beginning of the 1970’s, while its application to systems of chemical and biological interests

has grown more recently, during the early 1990’s, with the improved understanding and

modeling of the exchange correlation energy and because of the increased computational

power. Nowadays it is used both in physics and quantum chemistry to simulate a wide

class of systems ranging from the condensed phase to atoms and molecules. Its main usage

is devoted to the determination of properties connected to the electronic density, like total

and partial energies, charge densities and dipole moments, atomic forces and stress tensors,

geometries of molecules, bonds length and vibrations, phonons, and density of states.

Our main interest is the determination of one-electron energies and wavefunctions

entering the ground state and excited states of Carbon based nanomaterials. In this

chapter, we give a short review on DFT with specific emphasis on the techniques that will

be used in the rest of the work. These arguments are organized as follows. In section 2.2,

we introduce the many-electron problem and the Hohenberg-Kohn theorems that provide

the foundations of DFT. In section 2.3, we shortly sketch the Kohn-Sham (KS) procedure,

that is how DFT is used to solve the many-electron problem. Finally in section 2.4, we

deal with the typical approximations encountered in formulating and solving the many-

electron problem using DFT, paying particular attention to the exchange and correlation

functionals, boundary conditions, pseudopotentials and basis sets that will be used in the

following chapters.

2.2 Theoretical basis

To set up the problem, let us consider a system composed of N electrons interacting with

one another via the Coulomb interaction and being probed by an external potential Vext,

11



2 Density Functional Theory 2.2 Theoretical basis

which may be the periodic potential of ion cores in crystalline solids. This system is

described by the following Hamiltonian1:

H = −1

2

N∑
i

∇2
i +

N∑
i

Vext(ri) +
1

2

N∑
i 6=j

1

|ri − rj|
, (2.1)

expressed in atomic units. It is well known that this kind of problem is not exactly solvable.

The basic concept of DFT is that all the relevant and observable properties of the ground

state of the many electron system are uniquely determined by the ground state electron

density.

This kind of approach was first used by Thomas [21] and Fermi [22] who, working

independently, established a statistical model in 1927 to approximate the equilibrium

distribution of electrons in a many electron atom. In particular, they represented the total

electron kinetic energy as a functional of the electron density n(r):

TTF [n] =
35/3π4/3

10

∫
d3r n5/3(r), (2.2)

and combined this functional with the classical expressions for the nuclear-electron and

electron-electron interactions, which can be both expressed in terms of n(r). By doing so,

they first introduced the total energy density functional

ETF [n] = TTF [n] +

∫
d3rVext(r)n(r) +

1

2

∫
d3r1d

3r2
n(r2)n(r2)

|r1 − r2|
,

where the second term is the electron interaction with the external potential and the third

term represents the classical Coulomb interaction between two charge densities, that is

the Hartree energy.

Later on, Dirac [23] added a term to this functional to take into account the exchange

interaction between electrons, due to the Pauli exclusion principle. The result was the

Thomas-Fermi-Dirac total energy functional:

ETFD[n] = ETF [n]− 34/3

4π1/3

∫
d3r n(r)4/3,

in which the last term is an approximation of the exchange energy.

1Regarding the degrees of freedom of the “positively charged” background, responsible for Vext, we

are assuming that they can be viewed as frozen, as in the Born-Oppenheimer approximation [20]; their

contribution to the Hamiltonian (2.1) and to the total energy functional (2.4) is indeed an additive, though

configuration dependent, constant as long as only the electrons’ degrees of freedom are concerned.

12



2 Density Functional Theory 2.2 Theoretical basis

The problem with the Thomas-Fermi model is that it relies on approximations that

are indeed too crude to get good results also in the case of simple atoms, however their

idea of expressing the total energy as a functional of the electron density turned out to be

very useful, as we will explain in the following sections.

2.2.1 The Hohenberg-Kohn theorems

DFT is based on two theorems introduced and demonstrated by Hoenberg and Kohn [24].

In their form, the Hohenberg and Kohn (HK) theorems allow the construction of an exact

many-body theory applicable to all systems (not only interacting electrons) governed by

a Hamiltonian of the form (2.1).

The first HK theorem can be stated as:

Theorem 1: If the Ground States of two many electron systems, each containing N

electrons, one with external potential V1(r), and the other with external potential V2(r),

have the same ground state electron density n0(r), then the two external potentials differ

only by an additive constant C, that is:

V1(r) = V2(r) + C. (2.3)

In other words, the first HK theorem states that the external potential Vext(r), and then

the full many body Hamiltonian (2.1), are uniquely determined by the ground state elec-

tron density n0(r). As a consequence, since the Hamiltonian is fully determined, except

for a constant energy shift, so are the many-body wavefunctions (ground state and ex-

cited states as well). Therefore, at least in principle, all the properties of the system are

determined by the ground state electron density n0(r).

One of the most important consequences of this is that all the observable quantities

can be expressed as functionals of the electron density. In particular, the total energy

functional E[n] is defined by:

E[n] = T [n] + Eint[n] +

∫
d3r Vext(r)n(r), (2.4)

where we have explicitly represented as functionals the kinetic energy part of the total

energy, T [n], and the electron-electron interaction part, Eint[n].

The second HK theorem establishes a variational principle for the total energy func-

tional:

13



2 Density Functional Theory 2.3 Kohn-Sham DFT

Theorem 2: For each external potential Vext, the total energy functional E[n], defined

by (2.4), reaches its global minimum for the ground state density n0 and the value E[n0]

is the ground state energy of the system.

The form of the total energy functional allows also the definition of the Universal Hohenberg

and Kohn functional FHK [n] as:

FHK [n] = T [n] + Eint[n]. (2.5)

By Universal, we mean that (2.5) is the same for all the many electrons system, regardless

the external potential acting on them. At this point it is interesting to notice that the

two HK theorems and all DFT theory can be applied to all many body problems (not

only to many electron problems) provided that the universal functional FHK is changed

accordingly.

2.3 Kohn-Sham DFT

As stated above, HK theorems allow the construction of an exact theory for the many

electron system; however, the theory is exact in principle but it can not be exploited in

practice because the exact HK functional (2.5) is not known. As already observed in the

case of the Thomas-Fermi model, the problem lies both in the kinetic energy term T [n] and

in the electron-electron interaction term Eint[n]. Regarding the latter, one needs to model

the many-body nature of the electron-electron interaction and state it as a functional of the

electron density. The kinetic energy term, on the other hand, can be calculated explicitly

as a sum of one body terms (see the first term in (2.1)), but it can not be easily expressed

as a functional of the electron density.

A way to overcome these two difficulties is given by Kohn and Sham [25]. It consists

in replacing the interacting N -electron system with N independent electrons coupled to

an effective external potential that depends on the electron density. For this substitution,

two assumptions are necessary, which are consistent with the HK theorems:

1. The ground state density of the interacting N -electron system, in the external poten-

tial Vext, is representable by the ground state density of an auxiliary non-interacting

system.

2. The non-interacting Hamiltonian Haux contains the usual kinetic energy operator

14



2 Density Functional Theory 2.3 Kohn-Sham DFT

and an effective potential V σ
eff, which may depend on spin degrees of freedom σ:

Haux = −1

2
∇2 + V σ

eff(r), (2.6)

With the first assumption, the electron density is given by the sum of the one-electron

densities of the auxiliary system, i.e., the squared moduli of the N one-electron wave

functions2:

n(r) =
∑
σ

N ′∑
i

|ψσi (r)|2. (2.7)

Though we can still write the total energy as a functional of the electron density:

EKS[n] = Ts[n] + EHartree[n] + Exc[n] +

∫
d3rVext(r)n(r), (2.8)

the complexity of the many electron problem comes back, since to know n(r) we first have

to compute the N one-electron wavefunctions ψσi .

The KF functional (2.8) contains the non-interacting kinetic energy 3:

Ts[n] =
∑
σ

N ′∑
i

|∇ψσi (r)|2, (2.9)

which is indeed a functional of n because the density dependence is implicit in the one

electron wavefunctions, ψσi = ψσi [n]. It also depends explicitly on the classical electron-

electron interaction energy:

EHartree[n] =

∫
d3r1d

3r2
n(r1)n(r1)

|r1 − r2|
, (2.10)

while all the other many-body electron-electron interactions are included in the so called

exchange and correlation functional Exc[n].

This new formulation of the problem allows to set up an iterative search of the ground

state density n0(r) in a self-consistent cycle, depicted in the flow chart of figure 2.1.

The procedure is illustrated in more details in the following sections, together with the

approximations hidden within.

2At this point we insert explicitly the spin index σ in the one-electron wavefunction. We must pay

attention to the upper extreme of the i-summation running on the occupied one-electron wavefunctions

only. For this reason, N is replaced by N ′, assuming
∑N ′

i

∑
σ = N .

3It is worth noticing that the kinetic energy functional T [n] in (2.5) is, in general, different from the

non interacting kinetic energy functional Ts[n] defined in (2.9); the difference between the two forms lies

in the many-body interactions that are excluded in the independent electron picture; such missed terms

must be somehow included in the exchange and correlation part Exc[n].
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Initial Guess electron density: 

Calculate effective potential 

Solve KS equations 

Calculate the electron density 

Converged? 

Output quantities: 
Energy, forces, stresses, eigenvalues, 

eigenvectors… 

Yes 

No 

Figure 2.1: Flow chart for the KS self consistent procedure.

2.3.1 Self-consistent KS cycle

The self consistent (SC) KS cycle is quite similar to the Hartree-Fock cycle for calculating

the ground state of many electron atoms [26]. The preliminary step of the SC cycle is an

initial guess for the total electron density n(r). The initial electron density can then be

used to calculate the total energy functional for the first step. At this point the next step

would be operating a variation in the electron density that minimizes the total energy.

However, as already pointed out, this operation is not possible because it is not possible

to have a simple expression of the kinetic part as a density functional. The problem is

then transferred to the wave-function using equations (2.9) and (2.7). Now, the minimum
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of the total energy can be obtained by equating to zero the variation of the total energy

with respect to the wave-functions 4:

δEKS
δψσ∗i (r)

=
δTs

δψσ∗i (r)
+

[
δEext

δn(r)
+
δEhartree

δn(r)
+
δExc
δn(r)

]
δn(r)

δψσ∗i (r)
= 0, (2.11)

subject to the orthonormalization condition

〈ψσi |ψσ
′

j 〉 =

∫
d3rψσ

′∗
i (r)ψσj (r) = δijδσσ′ . (2.12)

Equations (2.11) and (2.12) can be put together, using suitable Lagrange multipliers εσi
and noticing that

δTs
δψσ∗i (r)

= −1

2
∇2ψσi (r) and

δn(r)

δψσ∗i (r)
= ψσi (r), (2.13)

to form a Schroedinger-like equation:

(Hσ
KS − εσi )ψσi (r) = 0, (2.14)

where the KS Hamiltonian is given by

Hσ
KS = −1

2
∇2 + V σ

KS (2.15)

and the KS potential VKS is nothing but the effective potential defined in (2.6):

V σ
KS =

δEext

δn(r)
+
δEhartree

δn(r)
+
δExc
δn(r)

= Vext(r) + VHartree(r) + V σ
xc(r). (2.16)

The SC cycle is then structured as follows. The initial guess for the electron density

is plugged as input into (2.16) to obtain the KS potential. Then, the KS Hamiltonian is

calculated and the KS equation are solved to obtain the one-electron eigenvalues εσi and

the eigenfunctions ψσi . These eigen-functions are used to calculate the output electron

density n(r) by (2.7), which is used as input for recalculating the KS potential and the KS

Hamiltonian. The scheme is iterated self-consistently because the output electron density

4Equation (2.11) is obtained by varying EKS with respect to the conjugate wave-functions ψσ∗i , as is

done in all variational problems of quantum mechanics. This leads to the secular equations (2.14) for

the wave-functions ψσi . Varying EKS with respect to the ψσi leads to secular equations that are complex

conjugates of (2.14), yielding as solutions the conjugate wavefunctions ψσ∗i . This is a consequence of the

Hermiticity of the Kohn-Sham Hamiltonian (2.15).
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of a given iteration step is necessary to obtain the input KS potential at the following

step. This loop is considered to be closed, and the solution achieved, when a certain input

and output quantity is similar enough that some convergence criterion is fulfilled. There

are a lots of possible choices for input/output quantities in setting up the convergence

criterion. For example, one can focus on the total energy, the orbital energies or the

density itself. Convergency is reached when differences in the chosen quantities, calculated

with the electron densities of two (or more) subsequent steps, are less than some given

(small) values. The self-consistent procedure stops either when the convergence criterions

is fulfilled, or when a maximum number of iterations has been performed. The last output

electron density is the solution of the SCF-cycle and may be used to obtain all the other

relevant properties of the system.

2.4 Approximations in solving a DFT “problem”

Up to now we have described some abstract procedures to solve the many electron prob-

lem using DFT, without introducing any real approximations. To solve practical problems

however some approximations are necessary. This section is devoted to the approxima-

tions that will be encountered in the following chapters, discussing briefly the advantages

and disadvantages of each one. It is necessary to stress that the topics covered are not

exhaustive; for a more detailed discussion see refs.[1, 2].

2.4.1 Exchange and Correlation “Flavor”

The first approximation is the most important from a fundamental point of view, because

is the only one that is necessary and is not used to ease the procedure. It concerns the

HK functional. As we observed in section 2.3, direct application of the HK theorems

in solving the many-electron problem is impractical due to the difficulties in expressing

the kinetic energy term as a density functional and in modeling the electron-electron

interaction. The KS procedure allows to “simplify” the kinetic energy part, but it keeps

untouched the electron-electron interaction part. We recall that the exact HK functional

is not known; in the proposed formulation, all the unknown parts of the HK functional

are included in the exchange-correlation term, Exc, of the total energy functional (2.8), or

in the exchange-correlation potential, Vxc, used to define the effective KS potential (2.16).
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2 Density Functional Theory 2.4 Approximations in DFT

The exchange-correlation energy is of course a density functional, then we may write:

Exc[n] =

∫
d3r n(r)εxc([n], r) (2.17)

where the εxc is an energy per particle and it is in general a complicated “function” of

the position r, the density n(r) and the density gradient ∇n(r), that can be calculated in

principle for all the possible positions r.

Indeed, there are several possible choices for Vxc, or equivalently for εxc; we are not

going here to explore all of them. In fact, we do not have a universal exchange-correlation

functional, because each different physical situation has its proper approximations and so

its “best” exchange-correlation functionals. However the functionals can be grouped into

classes according to some of their main features.

One of these is the class of Local functionals. A functional is local if εxc is a function

of the position r and of the electron density (together with its derivatives) calculated at

the same position r. Local functionals are, for example, the functionals that use the local

density approximation (LDA) [27, 28, 29, 30]:

ELDA
xc =

∫
d3rn(r)εLDAxc (n(r), r), (2.18)

and its generalization to include the dependence of εxc on the derivatives of the density,

called generalized gradient approximation (GGA) [31]:

EGGA
xc =

∫
d3rn(r)εGGAxc (n(r), |∇n|, . . . , r). (2.19)

For non-local functional [32] it is not possible to write a simple expression like (2.18)

or (2.19) because the calculation of εxc([n], r) includes the evaluation of the density n, and

eventually its derivatives ∇n, in r and at other spatial positions, say {ri}.
Another class of density functional is obtained for exchange-correlation terms depend-

ing explicitly on the one-electron orbitals, which is called orbital-dependent functional.

Among these, we mention the LDA+U method [33], where an artificial potential term (U)

acting only on localized orbitals (like d and f orbitals in transition elements) is added to

a standard LDA functional. Finally, in the so called Hybrid functionals [34], a non-local

density term is combined with the exact Hartree-Fock exchange term.

2.4.2 Periodic and finite-size calculations

As we stated in the introduction, DFT can be used to study both finite size entities and

large bulk materials.
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2 Density Functional Theory 2.4 Approximations in DFT

Finite size entities are, for instance, atoms and molecules and in general all systems

that are composed by a (fixed) finite number of atoms and then have a finite number of

electrons. In this case the cluster of atom is considered isolated in space and the DFT

algorithm of Fig. 2.1 can be applied directly.

On the contrary, bulk property of macroscopic materials can be studied, by means

of DFT methods, with periodic boundary conditions. A periodic calculation is set up by

constructing a fundamental finite size cluster of atoms, called the unit cell. In this way the

number of electron in the unit cell is finite. The unit cell is periodically replicated using

some displacement lattice vectors {R} to construct the bulk solid, that has infinite size

and then is made by indefinite numbers of atoms and electrons. The periodic description

allows to apply the Bloch theorem [35] and express the wavefunctions as Bloch states:

ψnk(r) = eik·r unk(r) (2.20)

where the function unk(r) has the same periodicity of the lattice5 and depends on the band

index n and on the quasi wavevector k. Moreover the periodic properties of the wavefunc-

tions are reflected in the density that is periodic and may be calculated by summing over

the occupied band states that are half the number of the electrons in the unit cell. In-

deed, the complexity of infinitely extended systems is recovered because the calculation

of the density is made integrating over k. The k integral however can be replaced by a

summation over a finite number of k-points in the first Brillouin zone (BZ). This is indeed

an approximation and is usually done by the method of Monkhorst and Pack [36]. The

latter consists in sampling the BZ with points that are not connected with one another

by symmetry operations, or, equivalently, by sampling the irreducible part of the first

BZ, that is the part of the BZ that can be used to construct the full BZ using symmetry

operations.

Periodic Supercells

It should be stressed that the distinction between finite size and periodic calculations is

not sharp. There exists intermediate situations in dealing, for example, with one or two

dimensional objects that can be modeled by periodic structures in reduced dimensions.

Typical examples are surfaces and graphene, for two dimensional objects, and nanotubes

5The periodicity of unk allows to write unk(r) =
∑

G cn,k+G eiG·r/
√
V , where V is the volume of the

solid and {G ∈ R3 : G · R = 2πl, l ∈ N} the reciprocal lattice. This makes the plane-wave basis set a

natural, but not the only, choice in periodic calculations, see section 2.4.4.
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for one dimensional objects. These cases are usually treated by intermediate types of

calculations, i. e., using the Bloch’s theorem only along the truly periodic directions. Such

an approach, however, is impossible with plane-wave basis sets (see section 2.4.4), then

the problem is handled by means of supercells. The idea is to create a three dimensional

lattice and let the translational vectors become very big in the directions in which there is

no true periodicity. In this way, we are actually constructing a fictitious periodic system

in three dimensions, replicating the system that we want to study in the non-periodic

directions. The translational vector lengths have to be large enough to ensure that the

system replicas do not see each other.

Supercell approaches are also applied to study defects in three dimensional systems,

which break the translational invariance of perfect crystals. The Bloch representation

and plane-wave basis sets may be also used, in the same way as outlined above, to study

finite size systems, like large atoms and molecules. Ideally, the length of the translation

vectors in the non-periodic direction should go to infinity, however it is usually limited

by computational costs, due to the increase of the number of atoms and basis functions.

Finally, we remark that finite size calculations involving large number of atoms can be used

to obtain information on bulk properties, when one wants to avoid a periodic calculation.

Such a choice, has inevitable computational costs and practical limitations: the theoretical

capability of most commercial and free open-source codes for finite size calculations is of

the order of 104 atoms, however a large cluster of atoms is generally made of 103 entities.

2.4.3 All electron and Pseudo-Potential methods

A way to ease the computational burden and reduce the convergency times of DFT codes

is to define suitable pseudo-potentials eliminating inert electrons, which do not partic-

ipate directly to the process understudy [1, Chapter 11]. The main underlying idea is

that, for most purposes, the core electrons can be viewed as tightly bound to the ionic

cores and relatively inert. This observation leads to substituting core electrons with an

approximately averaged screening influence on the ionic potential that is parametrized

by pseudo-potentials. Among the advantages of this procedure we mention the reduced

electron number and basis set size, especially in periodic calculations where the sharply

peaked core orbitals require large numbers of plane waves to be reproduced.

Construction of a pseudo-potential consists in finding a potential whose eigenfunctions

perfectly match the original all electron wavefunctions at electron-nuclear distances r larger
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Figure 2.2: Schematic comparison between the Coulomb potential and a possible choice of pseudo-

potential; in the picture is also shown the difference between the all-electron and the pseudo-eigenfunctions.

than a given cut-off distance rcut. This usually consists in removing the divergent part of

the potential for r → 0, as shown schematically in Fig. 2.2. The main disadvantages are

that, on the one hand, no information can be obtained from core electrons, and, on the

other hand, the pseudization procedure gives valence wavefunctions with wrong behavior

at r < rcut; a classical example is the pseudized 2s wavefunction of a many-electron atom

that has no nodes, while it should have one node.

Choosing of the correct pseudo-potential in a DFT calculation is one of the most

difficult and important parts and, even in this case, it is not possible to define a perfect

pseudo-potential for all situations concerning a given atom. Usually, the pseudo-potentials

are tested with available experiments on some measurable quantities. It is worth noticing

that there are a numerous standard techniques for pseudo-potential generation. Here, we

mention only the two big categories of norm-conserving [37] and ultra-soft [38] pseudo-

potentials. Norm-conserving pseudo-potentials enforce the condition to the norm of their

eigenfunctions that must equal the norm of the original all-electron eigenfunctions for inte-

grations above rcut. Ultra-soft pseudo-potentials release this condition to further decrease
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the size of the basis set.

In some situations the desired output quantities are directly related to core electrons,

so the use of pseudo-potential is not possible and all-electron calculations are necessary.

2.4.4 Basis set

In 2.3.1 we saw that at each step of the KS self-consistent cycle we need to solve a time-

independent Schroedinger-like problem (2.14), which means to find eigenfunctions and

eigenvalues of the KS Hamiltonian (2.15).

A way of easing the procedure is to expand each one-electron wavefunction in compo-

nents of a suitable basis set {φj}:

ψσi (r) = χσ

Nbasis∑
j

cσj φj(r), (2.21)

where the {cσj } are undefined complex numbers, and χσ accounts for the spin part of the

electron state. The correctness of the reconstruction of ψσi depends on the completeness

of the basis set. Obviously, a complete basis set is made by an infinite number of basis

functions that can not be used in practice, so the number of basis components Nbasis is a

compromise between the computational cost and the “fidelity”of the representation (2.21).

The introduction of a basis allows to transform the problem (2.14) in a matrix di-

agonalization problem, at each step of the SC cycle, whose ingredients are the matrix

elements 〈φi|Hσ
KS|φj〉 of the KS Hamiltonian and the overlap integrals 〈φi|φj〉 between the

basis functions6. Diagonalization leads to a set of Nbasis eigenvalues {εi} and eigenvectors

{cσj }, which reproduce ψσi , and hence allows to calculate the electron density n(r) in (2.7).

Each different problem has its best basis set and it should be stressed that a wrong

choice of the basis set may result in wrong calculations or non-converging SCF cycles.

Among the many possible choices of basis sets we mention plane waves, and localized

orbitals [1, chapters 14,15].

Plane waves, generally used in periodic calculations7, are defined by the reciprocal

lattice vectors {Gj} chosen to expand the periodic part unk(r) of the Bloch function (2.20):

6Indeed it is not necessary to use a set of orthogonal basis function as basis set, so the overlap integrals

between different basis functions can be nonzero.
7As previously stated, plane waves may be also used for finite-size objects, by means of periodic super-

cell methods.
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φj(r) =
1√
V
eiGj ·r. (2.22)

These are normalized using the volume V of the solid, which is the unit-cell volume in

real space multiplied by number of k-points used in the BZ sampling. The number of

plane waves included in the basis set is usually limited by a cut-off energy Ecut, so that

only the plane waves fulfilling |k + Gj|2 < 2Ecut, for all considered k-points, are included

in the calculation. It should be noted that plane waves are not the best choice for all-

electron calculations, because reliable representations of the localized core orbitals can be

achieved only by using very large numbers of plane waves, that results in inefficiently slow

computations.

All-electron calculations are generally performed using localized orbitals as basis sets,

which are the natural choice to describe finite size systems. Localized orbitals are also

employed in periodic tight-binding calculations to reproduce the periodic parts of the

Bloch functions. Among the different localized functions available for defining a basi set,

we mention:

1. Slater type orbitals (STOs) [39] are analytical functions, whose shape mimic the

eigen-functions of the Hydrogen atom. Being spherically symmetric, STOs are usu-

ally expressed as products of spherical Harmonics and radial functions, that decay

like e−r. STOs enter ab-initio calculations of simple diatomic molecules [26] and can

be used both for all electron and pseudo-potential DFT codes.

2. Gaussian type orbitals (GTOs) [40] are spherically symmetric functions with Gaus-

sian radial parts, which have the advantage of easing matrix-elements integrations

and speeding up SC iterations. They can be used both for all electron and for

pseudopotential calculations. GTOs may be also expressed in cartesian form with

an angular part which is a homogeneous polynomial in the components of the posi-

tion vector.

3. Numerical atomic orbitals (NAOs) [41] are spherically symmetric functions whose

radial parts are computed numerically. Unlike the GTOs and STOs, NAOs have the

advantage that they can be defined on a finite size support. Being centered on the

atomic cores, the overlap between two NAOs is exactly zero when the corresponding

centers are sufficiently far apart. NAOs are usually defined as finite support approx-
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imations of some analytic functions or from numerical pseudo-potential calculations

for the isolated atom.

Finally, it is worth noticing that some techniques use mixed basis functions, like the

Projector Augmented Plane Waves method (PAW), with localized functions for the regions

near the atomic cores and plane waves for the interstitial regions. An application is

provided by the localized d and f orbitals in the LDA+U method.
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Chapter 3

Auger electron emission from

Carbon Nanotubes

In this chapter we present an ab-initio approach to calculate the Auger transition rate

of a many-electron system, once its ground-state one-electron properties are known. The

starting point is first-order time-dependent perturbation theory, expressed in terms of

the Fermi Golden Rule (FGR), that is combined with a suitable method, like density

functional theory (DFT), giving as outputs the one-electron energies and wavefunctions

needed to determine the cross-section for the Auger effect. We apply the developed tool to

conducting single walled carbon nanotubes (SWCNTs) [3] of the (10, 10) armchair type,

and compare the results with Auger electron emission spectroscopy (AES) measurements

on Bucky papers [4]. We focus on initial and final state effects that rely on many body

correlations lying outside the FGR, which turn out to be extremely important for achieving

good agreement between simulations and experiments.
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3.1 Introduction

Auger electron emission is a crucial phenomenon for understanding the local electronic

structure of solid-state materials. It is at the heart of AES, a widely used surface science

technique, which yields a unique spectrum for each chemical species. This peculiarity is

due to the local nature of the Auger effect, which has as initial state a missing inner-

shell electron. In Carbon nano-structures, AES is based on the analysis of energetic

electrons ejected by the sudden creation of a 1s-hole. The emission mechanism is due to

one of the valence 2s/2p electrons tunneling to neutralize the core-state and the other

being ejected into the vacuum. Accordingly, the Kinetic energy distribution of ejected

electrons carries information on the occupied density of the σ and π band levels and the

repulsion matrix elements between the initial and final states of the process. From the

theoretical point of view, Auger emission rates can be calculated once the many-body

wave-functions (for the ground and excited states of the material system) are known.

Exact calculations are still impractical, because of the determinantal complexity of these

wave-functions. However, ground-state DFT calculations provide information on the one-

electron quasi-orbitals and energy levels, which may be used as inputs in the cross-section

for Auger electron emission, as given by the FGR [42]. An interesting point is the ‘flexible

nature’ of DFT codes where, for example, we can: (i) include all system electrons or

replace the core-electrons by suitable pseudo-potentials; (ii) use finite-size or periodically

boundary conditions; (iii) choose localized orbital or plane-wave basis sets. What are left

out of the FGR are many-electron correlations, which significantly affect both ends of the

Auger core-valence-valence (CVV) spectrum from SWCNTs [3]. Indeed, the final energy

of emitted electrons depends on both the initial and final valence band states that are

directly or indirectly involved in the Auger effect. The former are shaken up by the core-

hole perturbation, while the latter are distorted by the interaction between the valence

holes left behind by CVV transitions. Here, we explicitly discuss inclusion of these initial

and final-state effects in the FGR, together with finite lifetime corrections. Analysis of

the Auger emission properties of SWCNTs with this approach allows us to state the role

played by these many body effects in strongly correlated electrons.

The chapter is organized as follows. In section 3.2 we shortly sketch the physical idea

behind the Auger effect. In section 3.3 we develop a method to calculate the Auger electron

emission rate in the FGR, starting from the set of one-electron orbitals and energies

computed with Hartree-Fock (HF) or DFT codes. In section 3.4 we apply the method
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of section 3.3 to determine the Auger emission spectrum of a (10, 10) SWCNT. Finally,

in section 3.5 we introduce the many-body correlations outlined above and apply them to

the calculations of section 3.4, comparing the resulting numerical spectrum with existing

Auger measurements on SWCNT bundles [4].

3.2 Auger effect

The Auger effect is a de-excitation mechanism of an inner-shell core-hole that results in

the emission of an electron from a valence state. The necessary condition is the creation

of a core-hole by x-ray absorption or electron bombardment.

The simplest situation is that of an isolated atom in which a core hole has been created.

Fig. 3.1 shows a simple sketch of the Auger effect. The ionized atom with an empty core

state of energy EC lies in an excited state; one of the outer electrons, from an energy level

E1, tunnels to neutralize the core hole; this results in a energy surplus (the excitation

energy E1−EC) that is dissipated either with the fluorescence of an x-ray photon or with

the emission of another outer electron from an energy level E2. The later is termed ‘Auger

electron’. After this process the atom is left doubly ionized. The kinetic energy of the

Auger electron is related, by total energy conservation, to the energies of the electronic

levels involved in the process. In the simple picture of Fig. 3.1 the kinetic energy of the

emitted electron is given by the relation

EK = −(EC − E1 − E2) (3.1)

and the emission spectrum is in principle a Dirac delta function of the emission energy,

whose lineshape will be eventually corrected to embody initial and final states effects.

The simple form (3.1) links the kinetic energy of the emitted electron to the electronic

states involved in the emission mechanism, therefore, it clearly shows that the Auger effect

can be used to probe the electronic properties of atoms, molecules and solids. Indeed,

the energy levels involved in the emission mechanism are characteristic of the particular

atom where the core-hole has been created, so that Auger electrons act as fingerprints of

chemical species present in the target materials. This makes the underlying AES technique

a powerful tool for both qualitative and quantitative analysis of solid surfaces and surface

like objects, because both core hole creation and electron emission are processes that take

place at surfaces, due to the short mean free path of electrons in matter at low energies,

on the electronvolt energy-scale.
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Figure 3.1: Schematic sequence explaining the initial state and possible de-excitation mechanisms for an

atom with a core hole.Top left : initial state, an ionized atom with a core hole.Top Right : de-excitation

through fluorescence: an electron from the energy level E1 relaxes to the core level EC through emission

of a soft x-ray photon; the final state ia a ionized atom with the hole in the E1 level.Bottom Left : Auger

de-excitation: the electron from the energy level E1 neutralizes the core hole EC while another electron

is emitted from the electron state E2 with a kinetic energy EK .Bottom Right : Auger final state: At the

end of the process the atom is doubly ionized.

In solids, the one-electron energy levels are organized in bands, so the situation is

similar to the atomic and molecular cases, with the neutralizing and emitted electrons

coming from the same or from two distinct energy bands. In this case, the Auger process

can be used to study the electronic structure of the investigated materials and, moreover,

the electron-electron interactions among band electrons. Emission line-shapes produced

by Auger electrons are determined, in first approximation, by the density of states of the

involved valence bands, weighted by the proper transition matrix elements, and corrected

by initial and final state effects.
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Our purpose is the calculation of the Auger emission spectrum from SWCNTs. In

Carbon based materials, the energy level are simple because they are made by a deep

narrow band, originating from the 1s levels, and a series of overlapping bands, coming

from 2s and 2p levels of isolated Carbon atoms. To simplify the picture, we can imagine all

these bands to mix together forming valence and conduction bands. Since we are interested

in Auger emissions from CVV transitions, both neutralizing and emitted electrons come

from the valence bands.

3.3 Auger cross section

The simplest way of handling the calculation of the Auger cross-section is to apply first-

order time-dependent perturbation theory [42]. We assume our system to be composed by

all the electrons from its constituents atoms: the initial state is an excited state and the

potential responsible for the Auger effect is the Coulomb interaction. The lowest order

transition rate T for the process is then given by the FGR [42]:

T = 2π
∑
F

ρ(EF) |VFI|2 δ(EI − EF ), (3.2)

where VFI denote the matrix elements of the potential between the initial state |I〉 and

a bunch of final states |F 〉, ρ(EF) is the density of final states, and the delta function

ensures total energy conservation. From the knowledge of the transition rate, we can

evaluate the probability per unit energy and unit emission angle that the process occurs.

Such a key-quantity is proportional to the differential cross section of the process.

We conveniently use a second quantized formalism [43, 44] and assume that, whatever

the system, we are able to solve the complicated many-electron problem for its ground

state |0〉 in which the Nel electrons that make up the system occupy the lowest Nel energy

levels. The excited states can be obtained by application of creation and annihilation

fermion operators, bi and b†i , in the following way:

• b†i |0〉 is the many-body state with an extra electron in the one-electron state |i〉, if

such a state is unoccupied1;

• bi |0〉 = 0 if the one-electron state |i〉 is occupied;

1Hereinafter, we include in a single letter all the good quantum numbers defining the one-electron state

including spin degrees of freedom.
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• bj |0〉 is the many-body state with a missing electron in the one-electron state |j〉, if

the latter is occupied;

• b†j |0〉 = 0 if the one-electron state |j〉 is unoccupied.

We recall the canonical anti-commutation relations for the fermion operators:

{br, b†s} = δrs, (3.3)

{br, bs} = {b†r, b†s} = 0; (3.4)

and the definitions of field and adjoint-field operators:

Ψ(r) =
∑
i

φi(r)bi and Ψ†(r) =
∑
i

φ∗i (r)b†i , (3.5)

where φi represent the one-electron wavefunction, associated to the energy level εi, in the

space representation.

The electron-electron Coulomb potential is a two body operator so it is defined as:

V̂ =
1

2

∫
d3r

∫
d3r′

1

|r− r′|
Ψ†(r)Ψ†(r′)Ψ(r′)Ψ(r). (3.6)

For our purpose it is convenient to change the notation by adopting the following conven-

tions: we denote by d, c, and a the creation/annihilation operators for core, valence, and

free electrons in the states specified by quantum numbers s, v, and q, respectively. In this

way the field operator definition is split in three summations:

Ψ(r) =
∑
q

φq(r)aq +
∑
v

φv(r)cv +
∑
s

φs(r)ds (3.7)

Correspondingly, the two-body potential (3.6) turns out be composed of 81 distinct terms,

each one made of 2 creation and 2 annihilation operators. These terms incorporate all

Coulomb interactions among one-electron states, and include the many-body effects that

we will treat in section 3.5. Among the 81 sub-operators, we also have the Auger Neutral-

ization (AN) potential that creates an electron in a core-level and a free electron, while it

destroys two valence electrons:

V̂AN =
∑
s

∑
q

∑
v

∑
v′

V q v
s v′ a

†
qd
†
scv′cv (3.8)

where we have introduced the shortened notation:

V q v
s v′ =

∫
d3r

∫
d3r′φ∗q(r)φv(r)

1

|r− r′|
φ∗s(r

′)φv′(r
′) (3.9)
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for the two-electron integrals. This type of potential gives nonzero results only if the initial

and final states entering

VFI = 〈F| V̂AN |I〉 . (3.10)

are linked by an Auger process similar to the one sketched in Fig. 3.1.

The final state is obtained from the ground state by creating a free electron of wavevec-

tor qf and destroying two electrons with the valence numbers vf and v′f :

|F 〉 = cv′f cvfa
†
qf
|0〉 ⇐⇒ 〈F | = 〈0| aqf c†vf c

†
v′f
. (3.11)

The initial state, instead, is the ground state with a missing core electron in a state si:

|I〉 = dsi |0〉 , (3.12)

that we fix in order to remove the s-summation from VFI. The spin of the core-state is also

fixed, which has important consequences on the integral (3.9) because of spin-conservation.

We will see that summing over different spin orientations of the core-state results in a factor

of two in VFI, and a factor of four in the cross-section of the Auger process.

Using equations (3.8), (3.10), (3.11), and (3.12) we can write:

VFI =
∑
s

∑
q

∑
v

∑
v′

V q v
s v′ 〈0| aqf c

†
vf
c†v′f
a†qd
†
scv′cvdsi |0〉 , (3.13)

which is easily evaluated using:

〈0| aqf c†vf c
†
v′f
a†qd
†
scv′cvdsi |0〉 = δqqf δssi

(
δvvf δv′v′f − δv′vf δvv′f

)
; (3.14)

to obtain:

VFI = V
qf vf
si v′f

− V qf v
′
f

si vf . (3.15)

We recall that, to evaluate the Auger transition rate, we need to take the squared modulus

of VFI and then sum over the final states, that in our case corresponds to compute the

following summations
∑

qf

∑
vf

∑
v′f

restricted by energy conservation. We observe that, as

long as the spin-orbit interaction is neglected, spin degrees of freedom have the only effect

that each electronic state may be occupied by at most two electrons with opposite spins.

Explicit inclusion of spin quantum numbers, however, causes some of the integrals (3.9) to

vanish giving rise to the direct and exchange interactions of the HF theory. In particular,

the initial neutralizing valence electron state and the core state must have the same spin.

The same constraint holds for the initial emitting valence state and the final plane wave
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state. Summing over spin quantum numbers and dropping the subscripts i and f from

the matrix elements (3.15), we may rewrite the Auger transition rate as:

T = 4πρ(Ef )
∑
q

∑
v

∑
v′

(
2
∣∣∣V q v′

s v

∣∣∣2 +
∣∣∣V q v′

s v − V
q v
s v′

∣∣∣2) δ(εq − εv′ + εs − εv). (3.16)

The main ingredients in this relation are the one-electron wavefunctions and energies

of the system understudy. The key point is recognizing that the emitted electron can

be represented by a plane wave φq, of wave vector q and energy εq = ~2|q|2/2m, and

the density of final states coincides with the free electron DOS: ρ ∝ √εq. Eq. (3.16)

allows evaluation of the Auger cross section and the Auger spectrum, i. e., the energy

distribution of electrons emitted along a given direction. Such a quantity is proportional

to the probability density for an electron to be emitted with energy εq inside the solid

angle Ω:

Ξ0(εq,Ωq) =
∑
v v′

Wv v′(q)δ(εq − εv′ + εs − εv), (3.17)

where the δ function eliminates one of the two summations over the valence states, and

the effective potential

Wv v′(q) = Wv v′(εq, θq, φq) = W0ρ

(
2
∣∣∣V q v′

s v

∣∣∣2 +
∣∣∣V q v′

s v − V
q v
s v′

∣∣∣2) (3.18)

contains both the direct and exchange energies of the HF theory plus a normalization

constant W0 constraining ∫
dεq

∫
d2ΩqΞ0(εq,Ωq) = 1. (3.19)

In the next sections we will apply Eq. (3.17) to calculate the CVV Auger line for a SWCNT.

3.4 Cluster and Periodic calculations of Auger elec-

tron emission from a (10, 10)-carbon nanotube

As shown in the former section, the inputs of the Auger rate (3.16) and normalized spec-

trum (3.17) are the one-electron eigenenergies and eigenfunctions of the investigated sys-

tem. We choose to calculate them using DFT combined with two different basis sets and

boundary conditions. More specifically, we perform an all-electron cluster and a pseudo-

potential periodic calculations on a conductive nanotube of chiral indices (10, 10) [3].
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The same approaches have been applied to conducting tubes of different lengths and

radii [45, 46]. In the present calculation, the two DFT methods give almost identical en-

ergy levels and density of states and two necessarily different sets of one-electron orbitals

that we use to evaluate the FGR (3.16).

3.4.1 Ground state calculations

We begin our analysis with the primitive cell of a (10, 10) SWCNT used to generate a

cluster of 540 Carbon atoms lying on the surface of a tube of radius 6.875 Å and length

∼ 35 Å. We add 20 Hydrogen atoms to passivate the dangling bonds of each of the tube

ends. We choose the coordinate system shown in Fig. 3.2, together with the unit-cell of

the tube, where the x axis coincides with the tube axis and the z axis points long a radial

direction connecting the tube center to a reference atom located at R0 = (0, 0, 6.875) Å.

Figure 3.2: Portion of the (10, 10) SWCNT used for both periodic and cluster DFT calculations outlined

in the text. The gray spots denote the primitive cell of the structure. Core hole creation is simulated on

the highlighted atom, from which we calculate the Auger spectrum.

We perform restricted Hartree Fock (RHF) and DFT computations using the quantum

chemistry code called GAMESS [47], with the minimal 3G basis set by Huzinaga [48] and

the Generalized Gradient Approximation (GGA) by Perdew Burke and Ernzerhof (PBE) [49]

for the exchange and correlation functional. The output ground-state wave-function is
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made of 1640 molecular orbitals (MOs), with two electrons of opposite spins per MO. In

the MOs we can distinguish 540 core-orbitals and 1100 occupied valence orbitals.

The energy levels for the 540 core orbital are nearly degenerate in a range of 0.18 eV

around a mean energy εc, taking the value −269.88 eV with respect to the vacuum level,

whereas the experimental energy lies at about −290 eV. Such a disagreement is due to a

well known inaccuracy of HF and DFT calculations in predicting the energy spectrum of

Carbon based nanostructures [50]. The same scaling procedure is usually employed in DFT

calculations of the Graphene band structure [51]. The core orbitals are linear combinations

of 1s-orbitals of free Carbon, resulting, however, in 540 orbitals sharply peaked on each

of the Carbon atoms. With this in mind, we choose to confuse the core “band” with a

multiple degenerate state, of energy εc, whose wavefunctions, denoted by φs = 〈r|1sR〉,
are made by atomic Carbon core functions. The latter are taken from the used basis sets

and centered on each Carbon atom positions R.

On the other hand, the valence orbitals φv = 〈r|v〉 can be expanded as

〈r|v〉 =
∑
R

∑
i=s,px,py ,pz

vi R〈r|iR〉, (3.20)

where i represents a contracted Gaussian orbital, that may have s- or p- symmetry and is

centered at the R-site, and vi R is the corresponding coefficient obtained from the secular

equations yielding the optimized ground state. Their energy levels form a quasi-continuum

whose occupied portion lies between −24.35 eV and −4.55 eV, see Fig. 3.3A. The upper

value of this interval, designating the highest occupied orbital, and denoted εF , is consis-

tent with Fermi level measurements on SWCNT bundles [52]. The energy levels show a

narrow“band gap” (see the inset in Fig. 3.3A) between the occupied and unoccupied parts,

while the armchair (10, 10) nanotube should be metallic. This is an effect of finite size

calculations, as observed in refs. [46, 53]. From the one-electron states we can construct

a DOS by partitioning the occupied energy range in steps of 0.2 eV and counting the

number of one-electron states inside each interval; the valence orbital expansion (3.20)

allows us to construct a projected DOS onto states with defined symmetry; the result of

this procedure appears in Fig. 3.3B. We observe that the DOS is dominated by the s

component at the bottom of the valence band. Then, we have the s contribution going to

zero and the p components raising up with increasing the valence energy towards εF . We

clearly see that py and pz components bring identical contributions, while the px DOS is

different; this is a direct consequence of cylindrical symmetry, x being the axial direction

of the tube. We also observe that the highest occupied valence states are made up only by
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Figure 3.3: Valence energies (A) and valence DOS (B) of a 35 Å(10, 10) SWCNT, whose unit cell is

shown in figure 3.2, as obtained by finite-size all-electron calculations with the GAMESS code [47]. Band

energies (C) and DOS (D) for the same SWCNT obtained by periodic pseudo-potential calculations with

the SIESTA code [41]. In both cases, the partial DOS related to the s, px, py, pz orbital are obtained

from the squared moduli of the optimized coefficients of Eq. (3.20)

py and pz components, which are p-shaped orbitals oriented along the tube radius. The

latter correspond to π states in unrolled graphene that extend along the perpendicular

direction to the graphene sheet.

To complete our study, we perform periodic pseudopotential calculations on the same
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nanotube with the unit cell of Fig. 3.2, using the DFT code called SIESTA[41]. We

keep the GGA approximation for the exchange and correlation functionals in the PBE

parametrization and use a double zeta basis set of numerical orbitals for the valence

states. Such a basis set is derived from a norm-conserving pseudopotential of the Troullier

and Martins type [54] replacing the 1s orbitals. We choose a sampling 26 k-points in the

irreducible segment of the one dimensional Brillouin Zone (BZ). Accordingly, we obtain 80

doubly occupied states per k-point corresponding to a total number of 2080 wave-functions,

whose eigenvalues range from−22.78 eV to εF = −3.70 eV; these wavefunctions are written

using Eq. (3.20) where the multiple index v includes the band and k-point indices, 〈r|iR〉
denotes the numerical orbital centered at the R site of the primitive cell, and viR contains

the phase factor of the Bloch wave expansion. The band structure, the corresponding DOS

and projected DOSes are shown in Fig. 3.3C and D. We observe a small band gap, which

is however an artifact of the BZ sampling failing to catch the k-point where valence and

conduction bands touch.

Direct comparison between the computed DOS with the finite-size and periodic ap-

proaches shows that both bandwidth and peak positions are in substantial agreement.

Projected DOS analysis give compatible results of the two methods in the energy range

from εF down to εF − 12 eV. On the other hand, we see substantial differences in the

component contributions near the bottom of the valence band, where the s DOS appears

to be depressed in periodic calculations with respect to cluster calculations. Furthermore,

in periodic DFT the p components are non vanishing in the same energy window. This

difference may be addressed to the pseudo-potential approach that has removed the 1s

state, bringing mayor consequences on the s-symmetry of the valence pseudo-orbitals, as

we will see later on.

3.4.2 Evaluation of the Auger cross section

Once we have obtained the one-electron energies and wavefunctions, we can apply Eq. (3.16)

to calculate the probability for Auger electron emission (3.17). Such an evaluation passes

through the computation of the Auger matrix elements (3.9) that, using the expan-

sion (3.20), can be written as linear combinations of Coulomb integrals involving a lo-

calized s-type orbital (coming from φs), and the plane wave (φq), for the initial state, and

two localized functions of either s or p symmetries (included in φv and φv′), for the final

state. These integrals are analytical if the localized functions are the contracted Gaussian
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type orbitals of GAMESS calculations, while they need be simplified by partial wave ex-

pansion and computed numerically for the numerical orbitals of SIESTA calculations (see

appendix A). Nevertheless, the complexity of the problem is still very high resulting in

an impractical procedure due to the large number of atomic components involved in the

valence states2.

To reduce the numerical burden we focus only on one reference atomic site, the one

denoted R0 in Fig. 3.2, and we place the core hole onto this site. Next, we compute the

Coulomb integrals (3.9) within the on-site approximation, that is we retain only the coeffi-

cients viR0 and the atomic states |iR0〉 in the expansion (3.20) of the valence wavefunctions.

This approximation is justified by observing that the core hole orbital is sharply peaked at

the atomic site where it is centered and its value is nearly zero at atomic distances far from

this site. Actually, we performed an evaluation of the nearest neighbor contribution to the

Auger spectrum for a smaller size nanotube and we indeed observed negligible corrections

to the on-site approximation [45].

With the on-site approximation, we compute the first-order energy distributions of

ejected electrons Ξ0(εq, θ = 0), shown in Fig. 3.4A and B for both DFT approaches, which

account for all possible transitions leading to electron ejection along the radial direction z

of the tube. Partial spectra are obtained by considering separately the components that

describe CVV transitions involving the ss, px(y)px(y), spz, px(y)pz and pzpz parts of the

valence states, respectively. In this way, we can distinguish partial cross-sections where

either the neutralizing or the ejected electrons originate from the band states that we

denote σs (s symmetry), σp (py and px symmetries), and π (pz symmetry).

The symmetry of the on-site contributions in the Coulomb integrals (3.9) yield a simple

angular dependence to all the Wv v′ matrix elements in the FGR spectrum (3.17) and allows

us to analytically compute the angular-integrated distribution

N0(E) =

∫
Ω0

d2ΩΞ0(E,Ω). (3.21)

which describe CVV processes involving other core-hole sites at the central region of the

tube. The main features of the averaged spectrum (3.21) are shown in Fig. 3.4C and

D for Auger emissions within the solid angle Ω0 ∼ 1.85 sr, corresponding to a cone of

2For example, in the present application, each valence state results from 40 and 580 localized orbitals

in periodic and cluster approaches, respectively. This implies that each matrix element of the form (3.9)

requires 1, 600 and 336, 400 computations per core site, while the number of transitions involved in Auger

electron emission are 1, 210, 000 and 4, 326, 400, respectively.
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Figure 3.4: Normalized distributions of electrons ejected from a SWNCT cluster (A,C) and a periodic

SWCNT (B,D). The spectra are resolved into the different emission components explained in the text.

In panels A and B we have plotted the radial emission distributions, while in panels C and D we show

angular averaged calculations over an emission cone with a semi-aperture of ∼ 45◦. Emission energies

are referred to electrons emitted from the lowest occupied level (LO) so that the edge of the emission

spectrum ε0 corresponds to the total CVV bandwidth.

∼ 45◦ relative to the z-direction. The discrepancies between the s and p valence DOS in

the two DFT approaches (Fig. 3.3B, 3.3D) are reflected in unequal CVV rates for elec-

trons ejected from the bottom of the valence band. Indeed, the CVV spectrum contains

products of two one-electron DOS whose partial components differ, in the two models, at

high binding energy by a factor of ∼ 2 − 3. Moreover, we can expect different behav-

iors of the Auger matrix elements between all-electron and pseudo-potential calculations,

because in the latter case the valence orbital are accurate beyond the cut off radius of

the pseudo-potential, while we are calculating a matrix element with a narrow 1s orbital.

Interestingly, the biggest discrepancy concerns the σsσs sub-spectrum being more intense

by a factor of ∼ 8 in cluster calculations. The other subcomponents of the CVV spectrum
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are in excellent agreement with one another, demonstrating that only the 2s orbitals are

significantly disturbed by the pseudo-potential within the 1s-region. We remark that the

FGR rate (3.16), generating the integral spectrum (3.21), has been calculated from the

DFT ground-state, which implies that both core and valence orbitals are frozen during the

entire process.

3.5 Many body effects

Further insight, into the CVV spectral profile, results from accounting for many body

correlations that produce permanent changes in the electronic structure, and cause non

non-stationary behavior of initial and final states. In particular, initial-state effects mani-

fest in the sudden core-hole creation and decay, whereas final-state effects are mainly due

to the interaction between the valence holes and their subsequent recombination. Both

these phenomena are a consequence of the electron-electron interaction and are embodied

in the 81 terms of the Coulomb potential expansion (3.10). Finite lifetime of the initial

core hole and the final valence holes are additional many-body effects to be included in a

realistic simulation of the Auger spectrum.

Initial-state, dynamic core hole screening is dominant on valence electrons close to the

Fermi level, that may be excited by the effective core-hole potential and produce asym-

metric distortions in the Auger emission spectrum. Such a collective excitation becomes

critical in x-ray absorption spectra from simple metals that exhibit a power-law anomaly

known as Fermi edge singularity [55, 56]. In Eq. (3.10), the many-electron shake-up is

accounted for by the term:

V̂FE =
∑
s

∑
v

∑
v′

V s v
s v′d

†
sdsc

†
v′cv. (3.22)

Final-state correlations are inherent the valence holes created by the Auger effect (see

Fig. 3.1), and propagating in the valence bands due to the potential:

V̂HH =
∑
v1

∑
v2

∑
v′1

∑
v′2

V
v2 v′2
v1 v′1

c†v1cv′1c
†
v2
cv′2 . (3.23)

Accurate evaluation of these features would require DFT calculations of the excited many-

body states of the system: the initial state without one core electron, and something like

106 combinations of final states without two valence electrons and with an ejected elec-

tron (Fig. 3.3). To overcome such an intractable situation, we adopt a semi-phenomenological
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scheme where the decay probabilities for core and valence holes are converted into lifetime

widths that produce a Lorentzian broadening of the spectra.

We take a contact potential for the core-hole perturbation over a range ∆0 around εF,

and neglect the variations of the valence DOS within the same range. Thus, we can model

the singular response of π electrons by the Mahan, Nozières, and De Dominicis (MND)

theory of soft X-ray absorption [55, 56], which predicts ejected electrons around the CVV

threshold ε0 to be more energetic than in the unperturbed case (Fig. 3.4). The MND

approach yields an asymmetric broadening distribution of the form

MND(E) =
e−(E−ε0)/∆0

Γ(α)∆α0
0 (E − ε0)1−α0

, (3.24)

with Γ the Euler Gamma function, being nonzero for E > ε0, which implies that the

effect is manifested at energies above the CVV threshold. The α0-parameter is a critical

exponent characterizing the average core hole effect on ejected electrons.

Valence hole-hole correlations are to be found in the two-hole interacting DOS, de-

noted D
v2v′2
v1v′1

, which is combined in a four-index tensor relation with the Auger potential

terms (3.9) to give the corrected CVV rate of the process [4]. If the excited many-electron

states of the system could be still represented in terms of the ground state valence orbitals,

the correlated DOS would take the (diagonal) form

D
v2v′2
v1v′1

(E) = δv1v′1δv2v′2δ(εq + εs − εv1 − εv2 + uv1 v2), (3.25)

where uv1 v2 is the average hole-hole repulsion integrals. In a ‘mean field’ approach, we

may focus just on the diagonal matrix-elements (3.25) raplacing the δ-terms in the FGR

rate (3.16). In this way, we are considering each CVV transitions, concurring to the first

order response Ξ0(εq,Ω), to be shifted towards lower energies by the average repulsion of

the valence-holes.

With the simplified picture so far outlined, many-body effects lead to correcting the

FGR spectrum Ξ0(εq, θ = 0) and the angular integrated spectrum N0(E) as:

N(E) =
∑
vv′

∫
Ω0

d2ΩWvv′(E,Ω)Bα0∆0
γ0δ0

(E + εs − εv − εv′ + uvv′). (3.26)

where Bα0∆0
γ0δ0

is the broadening function due to initial-final state lifetimes (Lorentian broad-

ening of width γ0), many-electron shake up (MND distribution of critical exponent α0, and

width ∆0), and an additional Gaussian broadening (of width δ0) which accounts for the
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3 AES from CNTs 3.5 Many body effects

electron-phonon coupling at room temperature [57, 58, 59, 45, 46]. We point out that

the MND-term is applied only if either or both v and v′ run over a π-band state, thus it

involves only the σπ and ππ components of the energy distribution. We also notice that

angular integration affects only the Auger matrix elements Wvv′ , thus we can separate the

broadened components Nll′ of the whole spectrum N(E), with ll′ = σsσs, σpσp, σπ, and

ππ, as we did in Fig. 3.4C and 3.4D. To further simplify the understanding of hole-hole

effects, we use the scheme followed Houston et al. [60]. In particular, we compute N(E)

by letting all uvv′ → 0, and distort each Nll′ by an effective hole-hole repulsion energy

Ull′ , using the Hilbert transform of Nll′ , here denoted Ill′ . In this way we, reduce the

information on the shifts {uvv′} , which should be calculated from the valence holes of

the excited states of the system, to four effective energy parameters. We expect suitable

choice of these parameters to compensate for the missing off-diagonal matrix elements of

the two-hole interacting DOS. The distorted distributions take the form of the Cini CVV

spectrum from filled-band systems [61, 62]

Ñll′(E) =
Nll′(E)

[1− Ull′Ill′(E)]2 + π2U2
ll′N

2
ll′(E)

. (3.27)

To visualize how the changes brought by Eqs. (3.26) and (3.27) influence the Auger line-

shapes of Figs. 3.4C and 3.4D, we take advantage of previous studies and fix the broad-

ening widths to γ0 ∼ 0.06 eV [63], δ0 = 0.3 eV [57, 58, 59, 45, 46]. We estimate the

shake-up parameters from the X-ray photo-emission line-shape from nanotube bundles,

letting ∆0 ∼ 2.9 eV and α0 ∼ 0.85 [59]. As for the effective hole-hole repulsion ener-

gies, we use similar values to those proposed in refs. [45, 46] , by taking Uππ = 0.01 eV,

Uσπ = 0.02 eV, and Uσpσp = 4.5 eV, while we separately apply the Cini distortion function

(3.27) to CVV processes originating from s-valence states. In particular, we allow hole-hole

correlations to be more efficient at the bottom of the valence band, using a larger value for

Uσsσs than Uσpσp . The resulting energy distributions are shown in Fig. 3.5, where we have

put in evidence the effect of the σ-band distortion. We need to observe that the peculiar

structure of the denominator of Eq. (3.27) is such that the intensities of the undistorted

spectra (Nll′) and the effective repulsion energies (Ull′) are non-linearly correlated: the

more intense is Nll′ , the less amount of Ull′ is needed to distort it. A more reliable parame-

ter to compare distorted spectra of different intensities is the average energy displacement

between the distorted and the undistorted line-shapes, which in view of Eq. (3.26) can be

interpreted as the mean hole-hole interaction energy.

For example, the considered value Uσpσp = 4.5 eV brings an average hole-hole inter-
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Figure 3.5: Many body corrections to the FGR spectra of figure 3.4 and their components; high binding

energy distortions, broadening widths and shake-up parameters are discussed in the text. The σsσs and

σpσp unperturbed contributions from both cluster (A) and periodic (B) calculations are displayed to

highlight the distortion procedure.

action energy of uσpσp = 0.8 eV and uσpσp = 0.8 eV to the σpσp sub-spectra, as obtained

from the cluster and periodic DFT approaches, respectively. On the other hand, applying

a similar distortion to the σpσp parts of Fig. 3.4C and 3.4D means to consider close values

for the average interaction energy between the two s-holes, but largely different values for

Uσsσs . Based on the cluster calculations of ref. [46], we set uσsσs = 1.5 − 2 eV, which

corresponds to Uσpσp ∼ 18− 20 eV in the σsσs-component of Fig. 3.4C.

Comparison with experiments requires a further adjustment of the valence energy

widths to the observed band width [50]. To do so, we assume the valence eigenstates,

calculated with both DFT methods, to have eigenenergies in an artificially expanded

energy-scale of ∼ 7 − 8%, which allows the core level to get the correct experimental

value of −290 eV. We, then, select the data of ref. [4], acquired on nanotube bundles of

diameter in the range 1.3− 1.4 nm, where the high binding energy resonance was clearly

resolved. As shown in Fig. 3.6, not only we find excellent agreement with the measured

features of the spectrum at emission energies above ∼ 250 eV, but we also provide evi-

dences that the peak at ∼ 240 eV is an effect of the hole-hole interaction. We confirm the

interpretation of ref. [4], although more accurate studies are needed before reaching any

final conclusion. As a final remark we observe that the Fermi edge singularity is somewhat

quenched in conducting nanotubes by the decreasing behavior of the valence DOS, which

goes virtually to 0 at εF (Figs. 3.3B and 3.3D). On the contrary, the dynamic screening of
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Figure 3.6: Normalized distributions and band-components of figure 3.5 stretched horizontally by 7.5%

and compared with the measurements on carbon nanotube bundles, ref. [4].

π-electrons is more efficient in tubes of different chirality that offer electron structures with

narrow band gaps, and virtually divergent DOS. This means that our shake-up parameters

might have been overestimated.

3.6 Conclusions

In conclusion, we have presented two DFT models to determine the Auger CVV spectra of

electrons ejected from conducting SWCNTs, taking into account the full effect of the on-

site electron-electron interaction. Using the FGR, we have computed the cross section for

Auger electron emission from a core-hole placed at the center of the tube along directions

parallel to the tube diameter. We observed that the FGR approach gives an Auger emission

spectrum with structures that our method was capable to assign to different Auger process,

where the involved electrons come from different orbitals. At this stage we see that the

pseudo-potential method give results that differ from the all electron method only in the

low energy part of the spectrum (s-s part). This issue can be addressed to the pseudization

procedure that gives orbitals that are accurate only beyond the pseudopotential cut-off

radius. This point affects the carbon CVV auger cross section because the latter involves

the evaluation of a matrix element with the 1s orbital characterized by a very narrow

function. The effect is prominent in the s-orbitals because these are mostly influenced by
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the pseudization procedure for symmetry reasons.

We have extended the calculations to include the effect of other core-holes, around the

tube’s central region, by averaging over different emission angles. We have attempted a

simple modeling of the many body effects inherent in CVV processes, based on the original

theory by Cini and Sawatzky [61, 62], and following the procedure outlined by Houston et.

al. [60]. In both cases we see that the procedure predict a low emission energy resonance,

observed experimentally [4].

We have included the many-electron shake-up around the Fermi energy by a heuristic

procedure related to some previous studies on ion induced Auger electron emission from

simple metals [57, 58], X-ray photoemission from bundles of SWCNTs [59], and CVV

emission from infinite Carbon nanotubes [45]. The collective effect induced an asymmetric

broadening on the calculated emission spectrum that affect principally the high emission

energy of the spectrum. We have found satisfactory agreement with measurements of CVV

electron emissions from SWCNT bundles [4].
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Chapter 4

Secondary electron emission from

Graphene adsorbed on Ni(111)

In this chapter we present experimental measurements of electron emission, induced by

electron bombardment, from graphene adsorbed on Nickel (111) surfaces [5, 6, 7, 8]. In

particular, we focus on secondary electron emission spectra and their properties, by varying

the experimental parameters. Then, we develop a simple method, based on a density

functional theory (DFT) approach, to calculate the density of unoccupied states. We first

apply it to graphite, using experimental data taken from the literature, and then to the

Graphene-Nickel system to reproduce some features observed in our experimental spectra.
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4 SEE from graphene/Ni 4.1 Introduction

4.1 Introduction

Secondary electron emission (SEE) is a fundamental phenomenon in particle-solid interac-

tions and is important in a wide variety of areas like surface analysis, microscopy, electrical

discharge and plasma processing of materials, particle accelerators. Studies of the energy

distribution of emitted electrons, the secondary electron spectrum, and its integral, the

electron emission yield (number of emitted electrons per incident particle), reveal the

complexity of the process that is generally discussed as a three-step process: in depth ex-

citation by primary particles, transport of secondary excited electrons by collisions toward

the surface, escape through the surface barrier. Transport of secondary electrons occurs by

multiple elastic and inelastic scattering events. The main product of this collision cascade

is an energy distribution of emitted electrons characterized by a broad continuum spec-

trum, peaked at low energy and monotonically decreasing at high energy. This spectrum

can be superimposed by spectral features arising from the peculiar density of final excited

states, and from specific emission processes such as the Auger de-excitation of inner-shell

holes or Plasmon decay.

All these features and the small electron mean free path at low energy make SEE par-

ticularly suitable to study surface like objects, in particular Graphene. Interestingly, SEE

experiments on Graphene have been undertaken only recently, even though experimental

measurements on graphite and on graphite adsorbed on different surfaces proved to be

suitable for the study of the empty states of the system. In this chapter we analyze the

SEE properties of the system Graphene adsorbed on Nickel (111), basing our analysis on

experimental measurement of electron emission induced by electron bombardment. The

main features observed in the emission spectra is a series of peaks superimposed to the

cascade peak and connected to the empty bands of the system.

From the theoretical point of view, it is not possible to deal with the SEE properties

without modeling properly the emission process. In particular, up to now the theoretical

study of the empty states of a systems, singled out by peaks in the secondary emission

spectra, has been performed only trough band structure calculations. In this work we try

to do the same using DFT to calculate the band structure of our system, and applying

the method to graphite experimental measurements found in literature.

The chapter is organized as follows. In section 4.2 we shortly review the experimental

equipment used to adsorb a Graphene single layer on a Nickel (111) surface and to acquire

the secondary electron emission spectra. In section 4.3 we present our experimental mea-
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surements, in particular the SEE spectra and discuss how these spectra are modified by the

experimental parameters. Then in section 4.4 we calculate through DFT the band struc-

ture of the system and introduce a simple method to go from a band structure calculation

to a k-projected density of states that can be compared to the experimental measurements

of the empty states obtained through SEE spectroscopy. We apply this method to graphite

first, taking advantage of the vast amount of experimental data available in literature, and

then to the experimental data on Graphene/Nickel presented in section 4.3.

4.2 Experimental Details

Our secondary electron emission experiments were carried out in an Ultra High Vacuum

(UHV) chamber with base pressure 10−10 mbar. The UHV chamber is equipped with

all standard facilities for surface science techniques, among the others, the one used for

our measurements are an electron gun, a ion gun an hemispherical electron analyzer and

a Low Energy Electron Diffraction (LEED) instrument; the chamber is also equipped

with High-Resolution and Angle-Resolved electron energy loss (HREELS and AREELS)

instruments. The UHV chamber is shielded with µ−metal and has different gas-lines

that allow controlled gas insertion into the chamber. The hemispherical electron analyzer

(SPECS Phoibos 100) allows both the sample composition analysis, by means of auger

electron spectroscopy (AES), and angle resolved secondary electron emission spectroscopy,

operating at constant pass energy (Epass = 30 eV) with an angular acceptance of 2◦.

The electron beam, generated by a thermionic source, lied at 90◦ from the axis of the

spectrometer.

4.2.1 Sample preparation and preliminary analysis

The substrate on whom Graphene is deposited is a (111)-oriented surface of a high-purity

Nickel single crystal. The Nickel surface was prepared with repeated cycles of sputtering

with Ar ions at 2.5 keV and annealing at 1000 K. The surface contamination was monitored

with AES and the crystalline order by LEED.

Graphene monolayer were grown by cracking under Vacuum ethylene at 800 K on the

Nickel surface. The layer formation was monitored observing the Carbon signal in the

AES spectrum of the surface. An exposure to 600 L (Langmuir 1 L= 106 torr s) was

found to be enough for the formation of the monolayer [64, 65, 66]. Further exposition to
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ethylene gave no significative changes in the carbon signal in the AES spectra, confirming

that the absorption rate of carbon decreases drastically once the surface is fully covered

by a monolayer, so that the further formation of other graphite layers is automatically

stopped. The crystalline quality of the adsorbed monolayer was checked by LEED, that

highlighted a good reconstruction of the surface [67] and a high crystalline quality. Also

AREELS and HREELS techniques on our samples gave results fully consistent with the

existing literature (see [15] and reference therein).

4.3 Secondary electron emission measurements

Our secondary emission study starts with a comparison (figure 4.1) between the secondary

emission spectra obtained from the clean and the Graphene covered Nickel (111) surface.

The surface is excited by 500 eV primary electrons impinging on the surface with an angle

of θi = 45◦ with respect to the surface normal, along the ΓK direction. The electron

analyzer collects the electrons emitted with an emission angle of θe = 45◦ with respect to

the surface normal, along the ΓK direction, see section 1.1 for the Brillouin Zone geometry.

The spectra are collected keeping the sample connected to the same bias voltage, namely

−5 V with respect to ground, to see the onset of the electron emission. In figure 4.1 we

show the collected spectra, normalized to the same height to compare line-shapes.

As it is often the case for secondary emission from metal surfaces, the Ni spectrum

is dominated by a broad cascade peak of secondary electrons starting at ∼ 7 eV, with a

maximum at ∼ 9 eV and smoothly decreasing at high energies. The onset of the spectrum

gives information about the work function (the minimum energy required to emit an

electron) of the sample. The origin of the energy scale is determined by the electron

analyzer work function. In our case we were able to set it by measuring the position of a

know Auger line. In the figure we use the same value of the origin for both spectra. In this

way we can’t give an absolute value for the work function, rather we can measure work

function differences.

Now we can focus on the modification that the adsorbed Graphene induces to the

emission spectrum. We can notice two main differences. First of all we see that the onset

of the two spectra is located at different energies. This is a consequence of the fact that the

surface work function decreases by roughly 1 eV when the surface is covered by Graphene.

Then we can observe that the spectrum is not smooth anymore but it is constituted by a

series of peaks superimposed to the cascade peak.
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Figure 4.1: Secondary electron emission spectra of a clean (blue circles) and a Graphene covered (red

squares) Ni(111) surface, excited by 500 eV electrons; the inset shows the experimental geometry. Both

samples were biased with respect to ground by −5 eV. The spectra are normalized to the same height to

compare line-shapes. The horizontal axis origin is set to the same value for both spectra (see text).

In figure 4.2 we try to analyze the peak series that we will call fine structure from this

moment on. A spectrum acquired using a primary electron energy of 700 eV and the same

experimental geometry as in figure 4.1 is shown in figure 4.2A. Three main feature are

clearly visible, labeled I, II, and III. The three features appear to be superimposed to

the smoothly decreasing cascade peak. Other peaks can be resolved after a background

substraction of the cascade peak, represented by a smooth polynomial function and that

appears as a red line in figure 4.2A. The procedure of the background substraction is il-

lustrated in figure 4.2B, where a zoom-in of the subtracted data is shown for two spectra,

acquired with 500 eV and 700 eV primary electron energies. The substraction highlights

the three main features and other weaker features, labeled a and b. It should be mentioned

that the procedure shown in figure 4.2 is extremely complicated and somehow arbitrary

because there is no justification for the choice of the function that represents the back-

ground and because it doesn’t allow to resolve structures that can be hidden near the

maximum of the cascade peak, rather, local maxima can be searched for by other means

that we employ for the fine structure analysis later on.
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B 

A 

Figure 4.2: Panel A: Electron emission spectrum from Graphene/Ni(111) using 700 eV primary electrons

and the same experimental geometry of figure 4.1; the three main peaks, labeled I, II, and III, are

highlighted; the red line is the function used for secondary electron background substraction.

Panel B : Data after background substraction for 500 eV and 700 eV impinging on Graphene Nickel; other

three feature, a, b, and c, are resolved.

4.3.1 Fine structure properties

The comparison in figure 4.1 shows that the fine structure is the main consequence of the

Graphene deposition on the Nickel substrate. To understand the origin of the peaks we

carried out a qualitative analysis of the behavior of the fine structure when we changed

the experimental parameters.
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In in figure 4.3 we carried out two different Carbon depositions, in different conditions,

on the clean Nickel (111) surface and we acquired the electron emission spectra, shown in

figure 4.3A, from both the samples in the same experimental condition, namely 500 eV

electron beam impinging at 45◦ with respect to the surface normal and collecting the

emitted electron at an emission angle of 45◦ on the ΓK direction; we also acquired the

LEED pattern of both the samples shown in figures 4.3B and 4.3C. As it is clear form the

LEED patterns the two Carbon deposition gave two different results. In figure 4.3B we can

see only six spots, equal to those typical of the Ni(111) surface, meaning that we obtained

a perfect reconstruction of the Nickel surface, that is the carbon overlayer is indeed a

well ordered Graphene sheet. The second LEED pattern (figure 4.3C) shows, besides the

six spots, more diffuse light and some secondary structures. We call this second sample

“disordered Graphene” and it represents indeed a situation where the covering procedure

of the Nickel failed to give a good graphene sheet. The comparison of the secondary

electron emission spectra of these two samples is shown in figure 4.3A. We can see that

the spectrum of the “disordered” sample exhibits a different fine structure than the one of

the “ordered” sample.

The analysis of figure 4.3 shows that the fine structure is very sensitive to the crystal-

lographic order of the Graphene overlayer. Furthermore, we also observed that the fine

structure is modified and rapidly washed out by even the slightest bombardment with

Helium and Argon ions.

An important issue in secondary electron emission is the dependence of the emission

efficiency as a function of the energy of the primary electron beam. The total electron yield

(the number of emitted electron per incident electron) is found to depend on the primary

electron energy. Our main concern is, however, the dependence of the electron spectra on

the primary energy and, in particular, the dependence of the observed fine structure on

the primary electron energy. This issue is addressed in figure 4.4, were we compare two

emission spectra excited with different primary electron energies in the same experimental

geometry. As it is clear from figure 4.4 the observed fine structure exhibits no significant

dependence on the primary electron energy.

The next point is exploring the dependence of the fine structure on the incidence and

emission angles. In figure 4.5 we show the electron emission spectra acquired from the

same Graphene/Nickel sample keeping fixed the primary electron energy and changing

the experimental geometry. Though our current experimental setup is not very well suited

for angular measurements, as it does not allow for independent variations of the incidence
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A B 

C

Figure 4.3: Panel A: Comparison between the electron emission spectra obtained with the same experi-

mental geometry from two different Graphene/Nickel samples and different deposition results; the spectra

are normalized to the same height. In Panel B-C we show the LEED patterns obtained from the two

samples.

and emission angles, the modifications that we observe in the spectra are significant. First

of all we can observe that the spectrum acquired with θi = 55◦ and θe = 35◦ (blue triangles)

is narrower than the one with θi = 45◦ and θe = 45◦ (red circles). Indeed the former is

more intense (it is not reflected in the figure because of the normalization). This is a direct

consequence of the more intense cascade peak in the former situation due to the incidence

angle of the primary electrons. A big incidence angle with respect to the surface normal

means that the incident electrons penetrate less inside the sample and that the cascade of

collision is generated near to the surface. Secondly, we can observe that the fine structure

is present in both the spectra but the peaks appear shifted in the two configurations and

the shift is not rigid.

Summarizing, we can say that the absorption of the Graphene over the Nickel (111)

surface induces significant changes in the emission spectrum. In particular we observed a

series of peaks superimposed to the cascade peak background. Our experiments demon-
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Figure 4.4: Comparison between the electron emission spectra obtained from the Graphene/Nickel sample

using two different primary electron energies, namely Ep = 500 eV (red squares) and Ep = 900 eV (blue

triangles). In both cases the electron beam impinged on the surface at 55◦ with respect to the surface

normal on the ΓK direction. Electron were collected at 35◦ along ΓK. The spectra are normalized to the

same height to compare line shapes. The vertical axis has a logarithmic scale.

strate that these peaks are very sensitive to the crystallographic order of the surface that

is a very important point, and suggests that secondary electron emission can be used also

to monitor the quality of the growth process. Then we observed that the fine structure

is independent on the primary beam energy, while it exhibits a strong dependence on the

experimental geometry.

This last point suggested us to carry out a systematic study of the dependence of

the fine structure on the experimental geometry. In figure 4.6 we show the results of our

observations. We can see that changing the experimental geometry results in very different

spectral fine structures. As stated previously some of these peaks are very difficult to

resolve from the cascade peak. Nevertheless, we can clearly identify other structures and

some of them show a remarkable “dispersion” with the emission angle.
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Figure 4.5: Comparison between the electron emission spectra of Graphene/Nickel excited by 500 eV

primary electrons, using two different experimental geometries: blue triangles θi = 55◦ and θe = 35◦; red

circles θi = 45◦ and θe = 45◦. In both cases the angle is measured with respect to the surface normal

along the ΓK direction. The spectra are normalized to the same height to compare line shapes. The

vertical axis has a logarithmic scale.

4.3.2 Origin of the fine structure

The observations of the previous section allow us to state that the fine structure is related

to the empty states of the system. During the collision cascade electrons are excited into

unoccupied electronic states above the vacuum level. From these states the excited elec-

trons emerge into vacuum creating the series of peaks that constitutes the fine structure,

reflecting the maxima of the density of unoccupied states. This attribution explains the

angular dependence of the peaks and indeed was already observed in Silicon [68] and in

graphite [69, 11]. In our case, thanks to the comparison of figure 4.1, we can conclude that

Angle Resolved Secondary Electron Emission (ARSEE) is capable of map out the empty

bands of Graphene.

Using the angle resolved spectra of figure 4.6 and the free electron dispersion relation

for the emitted electrons we can calculate the parallel component k‖ of momentum of the
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Figure 4.6: Comparison between Graphene/Nickel electron emission acquired with 500 eV primary energy

and different experimental geometry (see the inset for the color code). All angles are measured with

respect to the surface normal; the incident beam and the emitted electron lie on the ΓK symmetry line.

The vertical axis has a logarithmic scale. The spectra are normalized and displaced vertically for clarity.

The energy axes origin is the same for all the spectra.

emitted electrons as:

k// =

√
2mE

~2
sin θe (4.1)

where E is the energy of the emitted electron with respect to the vacuum level (kinetic

energy) andme is the electron mass. If we use equation (4.1) we can calculate the dispersion

of the structures observed in figure 4.6 that is the dispersion of the excited states of the

system graphene/Ni(111); such a dispersion is shown in figure 4.7. To do so, however, we

need to measure carefully the energy and to reference it to the Vacuum level. We can do it

by measuring the energy of one of the Nickel or Carbon Auger lines; this procedure results

in an uncertainty on the measured energy of roughly 1 eV. This value is comparable with

the uncertainty on the maximum of the fine structure peaks as it is clear from figure 4.6. In

figure 4.7 the points are taken as centers of each fine structure peak. k‖ is calculated using

(4.1) and the energy of the peak referenced to the Vacuum level, using a work function

φ = 5.1 eV, while the vertical axis in figure 4.7 has its origin on the Fermi level.
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Figure 4.7: Fine structure peaks dispersion. The origin of energy axis is set to the Fermi level, also

the vacuum level EV = 5.1 eV is indicated. k‖ is along the ΓK direction; high symmetry points are

indicated in the upper horizontal axis. The obtained data are compared with ARSEE data from HOPG

[11], corrected to take into account a work-function of 4.6 eV for HOPG. The naming of the bands b1-b8

will be used in the analisys.

As anticipated before, in figure 4.7 we can see some structures that exhibit an important

dispersion with k‖ and other nearly flat bands. Our result is compared with some ARSEE

measurements on Highly Oriented Pyrolytic Graphite (HOPG) by Hoffman et al. [11].

We can see a reasonable agreement between the two sets of experimental data, that are

taken from similar materials. It should be stressed that in both cases the measurement

uncertainties are very big.

Very recently emission from few-layer Graphene grown on SiC has been studied [70]

under the assumption that the thickness of the sample does not produce significant attenu-

ation either in the incoming beam or in the secondary electrons ejected from the substrate.

Under the same assumptions, the only expected effect would be a variation of the escape

probability due to the variation of the work function [70] that is similar to the case of the
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adsorption of sub-monolayer quantities of alkali metals on sputter-cleaned metal surfaces

[71, 72, 73]. Hence, based only on the increase of the measured work function with the

number of Graphene layers, a decrease of emission intensity and a slight distortion of the

spectral distribution of secondary electrons have been calculated, starting from an initial

distribution typical of Si [70]. The variations in the spectral line-shapes observed in our

experiments cannot be ascribed to work function changes, and are not consistent with the

assumption that the overlayer has no significant effect on the secondary electrons issued

from the substrate. Rather, the reported observations imply that the electronic structure

of adsorbed Graphene has an important effect in the transport of secondary electrons.

Electrons that succeed in being emitted originate from a collision cascade that is governed

by the peculiar electronic structure of the graphitic overlayer, resulting in the observed

fine structure.

It is important to remark that a detailed analysis of the spectra requires knowledge

of excited states at much higher energy than those covered by existing band-structure

calculations for Graphene/Ni(111) [17]. This point will be addressed in the projected

density of state calculation of the following section.

4.4 Ab-initio band structure and k-projected density

of states

4.4.1 Calculation details

Our ab-initio computations begin with a DFT ground state (GS) calculation, within the

Local Density Approximation (LDA) [74] for the exchange and correlation part of the total

Hamiltonian, as implemented in the ABINIT code [75, 76]. We used the plane wave basis

(energy cut-off 25 Hartree), and a norm conserving pseudopotential of Troullier and Mar-

tins type [54]. We performed GS calculations for free standing Graphene, two-dimensional

(2D) few-layer graphene slabs (2 to 6 layers) and 2D Nickel slabs (up to 7 layers, oriented

in the (111) direction), three-dimensional (3D) Nickel and 3D-graphite, and Graphene-

Ni(111) interfaces. The 2(3,6)-layer Graphene model are obtained superimposing 2(3,6)

Graphene layers with the ABAB stacking of graphite at the graphite interlayer spacing,

namely 3.354 Å, see figure 4.8 and section 1.1 for all the crystallographic information. As

for the Graphene-Nickel interface, we used Nickel (111) slabs of different thickness (up to 7

layer) by placing the two inequivalent C atoms on top of the outmost Ni layer and in the fcc
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Figure 4.8: A: 3D unit cell and lattice vectors of Graphite; there are four atoms per unit cell. Each carbon

layer has two inequivalent atoms C1 and C2.

B: AB stacking of graphite, C1 atoms are stacked one on top of the other in the z direction C2 atoms are

not.

C: 3D Brillouin Zone and reciprocal lattice vectors of Graphite, the position of the high symmetry points

encountered in the calculation is highlighted.

Inset: Values of some of the lengths shown, a0 is the smallest carbon-carbon distance, while c is the

graphite interlayer distance.

hollow sites of the surface, following the calculation by Bertoni et al. [17]. The separation

distance between the repeated system in the perpendicular direction (slab cases) was large

enough to exclude interactions between the replicas, keeping constant the total volume.

We adopted a vacuum distance larger than 30 Å. Brillouin Zone (BZ) integration was

performed on unshifted 50 × 50 Monkhorst-Pack [36] grids in the irreducible BZ, which

correspond to a 2551 full-BZ k-point sampling in 2D systems, while we used unshifted

36 × 36 × 12 and 30 × 30 × 17 samplings in bulk Graphite and bulk Nickel calculations,

respectively. The converged electron density was finally used to calculate the one electron

eigenstates and eigenvectors on selected k-points along the ΓK direction.

4.4.2 k-projected density of states

Our band structure calculation are in very good agreement with calculation found in

literature, see for instance [77]. However previous calculations were focused on the energy

region close to the Fermi energy, while our main purpose is the calculation of unoccupied

electronic states up to 40 eV above the Fermi level. The calculated band structure of
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Figure 4.9: Calculated energy bands of graphene. The graph covers all the ΓK line up to the M point.

The Fermi level is set to energy 0.

Graphene in figure 4.9 shows the typical Dirac cone formed by the π bands at the Fermi

level (set to 0 energy) at the K point. The empty part is composed by a quasicontinuum

of states starting at about 4 eV with a parabolic-like dispersion with k‖ on which are

superimposed states with defined symmetry [78].

The comparison of the experimental secondary electron emission data with the band

structure of figure 4.9 is quite difficult, rather we can construct a k-projected density

of unoccupied states. The construction is as follow: for a selected k-point k0 and a

given energy Ei we count the number of eigenenergies N(Ei) inside the energy interval

Ei−dE/2÷Ei+dE/2; to each point of such an histogram is added a gaussian broadening;

we use dE = 0.1 eV and a broadening of 0.5 eV.

In figure 4.10 we show a false color plot of the k-projected density of states (k-DOS)

obtained with the outlined procedure. The brighter regions mark the high density points.

As can be seen from the graphic, the quasicontinuum of states of figure 4.9 of the empty

bands is still present, however 5 high density bands that show a parabolic dispersion with

k‖ dominate the plot. These bands are nothing but 2D free-electron-like states resulting

from the geometry of the lattice. As a comparison in fig. 4.10 we show also (red dashed

lines) the free electron band for a 2D wavevector plotted in the reduced-zone scheme,
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Figure 4.10: False color plot of the calculated k-projected density of states for graphene, brighter parts

mark higher density points. The red dashed lines are 2D free-electron-like bands, calculated with (4.2).

obtained from (4.2)

E(k‖) =
∑
G

~2

2m
(k−G)2

‖ + φ (4.2)

where G is a reciprocal lattice vector, the subscript ‖ stands for the vector parallel com-

ponent to the ΓK direction, and φ = 4.6 eV is an offset representing the distance between

the Fermi level and the vacuum level. This observation is reinforced by the fact that the

same free-electron-like parabolas are present in the calculation of a slab of a different ma-

terial with the same 2D lattice, for instance a one-layer-thick Nickel (111) slab. It is worth

noticing that, beyond the 2D parabolic bands, the typical Graphene symmetry features

[78] are still present and visible.

4.4.3 Application to Graphite

As previously stated, there is a lack of experimental measurements of the empty states

of Graphene, instead the empty bands of graphite have been intensely studied for about

thirty years with different techniques such as Angle Resolved Photoelectron Spectroscopy
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Figure 4.11: False color plot of the calculated k-projected density of states for graphene bilayer, panel A,

and tri-layer, panel B(see text), brighter parts mark higher density points.

(ARPES)[10, 79, 80], Angle Resolved Secondary Electron Emission spectroscopy (ARSEE)

[69, 9, 81, 80, 11], Inverse Photoemission (IP) [9, 82, 83], and Target Current Spectroscopy

(TCS) [9, 82, 83]. All these techniques are capable to map the density of unoccupied states,

so we can apply the previously outlined procedure to graphite.

Before going further to the analysis of the experimental data taken from literature

it is worth doing a comparison between different calculations to see the ‘transition’, if

any exist, between a pure 2D material, like a Graphene sheet, and a bulk material, like

graphite. This comparison is carried out in figure 4.11 and 4.12, where we show the same

calculation as the one in figure 4.10 applied to Graphene bi-layer, tri-layer, 6-layer, and to

bulk graphite.

Figure 4.11 shows the k-DOS for bilayer Graphene (panel A) and trilayer Graphene

(panel B). A comparison to figure 4.10 shows that in both cases we can identify the same

features present in Graphene, ie the 2D parabolic bands are the most visible structures,

while the other Graphene typical features seem to increase with the number of layers,

suggesting that they are in fact typical of the graphitic carbon layer.

This behavior is clearer in the case of 6-layer Graphene (figure 4.12A), where the 2D

parabolic bands are still visible, but the layer feature are as intense as the parabolic ones.
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Figure 4.12: False color plot of the calculated k-projected density of states for 6-layer graphene, panel A,

and bulk graphite, panel B; brighter parts mark higher density points.

To complete the analysis we calculate also the band structure and the k-DOS of bulk

graphite, the ΓKM plot appears in figure 4.12A. The comparison of the 6-layer Graphene

k-DOS with the graphite one shows, first of all, that the 2D parabolic states are not present

in bulk graphite More importantly, we can observe that the carbon layer features, clearly

visible in the 6-layer-Graphene case, are also present in the graphite plot, suggesting that

they are indeed graphite bands; in particular, a calculation of the k-DOS along other

directions in the BZ shows that they can be associated with graphite bands that do not

show a significant dispersion with k⊥, reinforcing the conjecture that they are related

to the graphitic carbon layer. Finally we notice that the free-electron-like parabolas are

quite invisible if we calculate the k-DOS for 9-layer Graphene. So we can conclude that

the Graphene 6 layer calculation represent a good compromise between the bulk graphite

properties and the surface properties, represented by the 2D parabolic states found in the

slab calculations.

At this point we can come back to the analysis of the experimental data on graphite.

Recently Mahata et al. [10] have reported some ARPES measurements where they were

able to map some empty states of HOPG and single-crystal graphite and compared their

results with a selection of other measurements obtained with other experimental techniques
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like IPS [83], TCS [82], VLEED [84], and the first principles calculation by Tatar and Rabii

[85].

The interpretation of the empty bands obtained with different experimental techniques

is difficult for many reasons. First of all some structures detected with one technique is not

observed with another one, see for example [9]; this is usually addressed to the different

physical principle at the base of each technique. Another problem is the determination of

k‖. For a free electron it can be calculated by

k‖ = (2mE/~)1/2Sinθe (4.3)

where θe is the emission angle with respect to the surface. However to use (4.3) we need

to define a reference level for the energy scale. The choice of the reference is not unique.

In the case of an experimental technique where electrons are emitted, such as ARPES

and ARSEE, one can use the Fermi level of the sample which is an absolute choice (for

metallic samples) only if the sample is grounded, otherwise sample and spectrometer will

have different Fermi levels; however also in this case there is an ambiguity in the choice of

the point in energy to start the free electron parabola for the calculation of (4.3), since the

vacuum level of grounded sample and spectrometer are, in general, different. Finally, as it

is clear from [10], all the techniques used have very large error bars. All these difficulties

are highlighted by the fact that all the results found in literature, albeit consistent, are

not in very good agreement with one another.

With this in mind we can start analyzing the experimental data for graphite available

in literaurte. We use the ARPES experiments by Mahata et al. [10] and the ARSEE

experiments by Hoffman et al [11] and by Maeda et al. [9]. For our comparison we us

the calculation on Graphene 6 layer, as we saw that it encloses both the bulk graphite

features and the parabolic bands. The comparison appears in figure 4.13. We see that

the calculation for the 6 layer Graphene reproduces the spectroscopic features that have

been observed in experiments of electron emission from bulk graphite, including also the

anomalous bands reported recently in ARPES experiments on HOPG by Mahata et al.

[10]. On the other hand, the 2D parabolic bands are those observed in photoemission

experiments on Graphene layers grown on SiC reported by Hibino et al. [86].

4.4.4 Application to Graphene adsorbed on Ni(111)

Once we verified that our approach was fruitful in the interpretation of graphite experi-

mental measurements we can turn to the Graphene/Nickel system that is the main goal
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Figure 4.13: False color plot of the calculated k-DOS for 6-layer graphene, compared with three sets of

experimental data taken from literature: Red: ARPES data by Mahata et al. [10]; Orange: ARSEE data

by Maeda et al. [9]; Yellow: ARSEE data by Hoffman et al. [11] corrected to include a work function of

4.6 eV.

of our work.

In figure 4.7 we reported the dispersion of the fine structure observed in secondary

emission spectra from Graphene Nickel, ascribing the fine structure to empty bands of

the system and comparing it to the ARSEE results by Hoffman et al. [11]. Now we

can compare those points with the k-DOS calculation of Graphene Nickel. To better

understand, however, we plot the data of figure 4.7 also on the calculation for monolayer

Graphene fig. 4.14A, 6 layer graphene fig. 4.14B, a 5 layer Nickel slab fig. 4.15A, and the

system Graphene/Nickel 5 layers fig. 4.15B.

As already evidenced in figure 4.7, we can identify 8 bands. We already noticed that

the Graphene k-DOS plot was dominated by the parabolic quasicontinuum that renders

very difficult a comparison with the dispersion data. We move to the graphitic case 4.14B,

well described by the 6-layer Graphene calculation as evidenced in the previous section.

The band (see inset in figure 4.7 for the names) b1, b2, b4-b7 find correspondence in

the calculation and in the experiments performed on graphitic samples. b5 and b6 can
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Figure 4.14: Comparison between the fine structure dispersion in figure 4.7 and the k-DOS calculation

for graphene (panel A) and 6-layer Graphene (panel B).

Figure 4.15: Comparison between the fine structure dispersion in figure 4.7 and the k-DOS calculation

for a 5-layer Nickel slab (A) and the system graphene/Nickel 5 layers (B).
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be ascribed either to a 2D parabolic band or to a graphitic band that overlap in this

region. The comparison in fig. 4.15A shows that b8 is peculiar of the Nickel system,

either slab or bulk calculation. Finally b3 finds no correspondence in either Graphene,

graphite and Nickel bulk, while appears in Nickel slab calculation and is enhanced in the

system graphene/Ni(111).

4.5 Conclusions

Summarizing, we measured secondary electron emission spectra from Graphene adsorbed

on a Nickel (111) surface. We saw that the adsorption of the Graphene overlayer induces

significant changes in the secondary emission lineshape of Nickel. In particular we observed

a series of peaks superimposed to the cascade peak. This fine structure showed to be

sensitive to the crystallographic order and radiation damage, suggesting secondary electron

emission as a tool to study the quality of the produced Graphene overlayer. Moreover

the fine structure proved to be independent on the primary electron beam energy, while

showed an important angular dependence. These observations suggested us to perform

a systematic study of the peak dispersions with the emission angle and allowed us to

conclude, consistently with existing literature, that the fine structure is connected to the

empty states of the system. As a consequence our secondary electron emission experiments

allowed us to map the empty bands of graphene/Ni(111). To complete our analysis we

made a DFT calculation of the band structure of the system. We decided to study first

the graphite case to take advantage of the vast amount of data available in literature. In

particular we chose the datasets regarding secondary electron emission Maeda et al. [9] and

by Hoffman et al. [11] and the photoemission spectroscopy data by Mahata et al. [10].

After our ground state DFT calculation we constructed a k-projected density of state

for graphitic system and, our approach, though very simple, proved to be very fruitful

in the reproduction of the experimental data. Then we moved to Graphene adsorbed

on Nickel, performing an equivalent analysis and we found a good agreement between

our calculation and the experimental data taken from our secondary electron emission

experiments. In particular we were able to identify graphitic states, and Nickel states.

This point is particularly interesting, because the Nickel features were much weaker and

somehow hidden in the cascade peak before the adsorption of the Graphene sheet that

seems to act as an enhancing factor for the emission from Nickel states. More insight into

this problem can be achieved performing a deeper study also on the clean Nickel substrate.
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Chapter 5

Electron energy Loss calculations on

Graphene and Graphene adsorbed

on Ni(111)

This chapter is devoted to develop a technique that allows to calculate ab-initio the en-

ergy loss function starting from a Density Functional Theory (DFT) based ground state

calculation. The theory relies on many body perturbation theory, as given in ref [87], and

its application to surfaces and surface like materials [88]. The illustrated theory is first

applied to freestanding pristine Graphene, obtaining results fully consistent with exist-

ing measurements and calculations; then the doped Graphene loss function is calculated,

taking into account the effect of injection of electron and holes in the system; finally we an-

alyze Graphene adsorbed on Nickel, representing an example of strong interaction between

Graphene and the supporting substrate.
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5.1 Introduction

Electron energy loss spectroscopy (EELS) is a high sensitive method for characteriza-

tion and investigation of solid surfaces and surface like objects, such as Graphene and

Graphene adsorbed on metal surfaces. To this extend, the Graphene-surface interactions

play a fundamental role, distinguishing between weak bonding and strong bonding. In

this chapter we apply a DFT-based approach, called Time Dependent Density Functional

Theory (TDDFT), to calculate the loss function of doped freestanding Graphene and

Graphene adsorbed on a Nickel (111) surface: the former is applicable to weak interac-

tion Graphene/substrate, while the latter represents a paradigmatic examples of strong

bonding.

In the case of weak bonding, the typical band structure of Graphene, in particular

the conical Dirac point, is preserved. Graphene is called quasi-freestanding and the main

effect is the charge exchange between the supporting material and Graphene, having as

a consequence the production of a shift in the Fermi level, observed also in doped free-

standing Graphene. Actually the Fermi level shift can be ascribed to different causes

like, shape and defect of the Graphene flake, charge transfer with the supporting material

[89], chemical doping [90], application of a gating potential [12]. This point is receiving

particular interest for the technological applications of Graphene, especially in the raising

Graphene based electronics [91], where the device engineering preserving the conical Dirac

point can be a very important task. The insertion of electron or holes is reflected in the

loss function, where it is produced an intraband plasmon resonance, observed experimen-

tally on Graphene adsorbed on several surfaces [92, 93, 94, 95, 96] and predicted by some

Tight Binding based calculations [97, 98, 99]. On the contrary, our calculation shows two

distinct intraband plasmon resonances due to the anisotropy of the band structure near

the Dirac point, one of them has not been experimentally observed yet.

In the case of strong bonding the strong Graphene-substrate interactions destroy the

conical Dirac-point band structure leading to a more complicated picture. Anyway a loss

function calculation for Graphene adsorbed on Nickel (111) is interesting, because this

system is one of the most studied Graphene-metal interfaces due its promising applica-

tion in the production of large and good quality Graphene monolayers [15]. The strong

interaction in this case are mainly due to the hybridization between the carbon p and the

Nickel d orbitals. As a consequence the effect is reflected in the distortion of the Graphene

π plasmon, as observed in two recent works [100, 101].
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The chapter is organized as follows. In section 5.2 we review how the screening problem

of an electron gas is treated in a perturbation theory framework, and how the screening

properties are related to the excitation spectrum of a system and to the electron energy

loss spectrum. We also describe a technique that allow to treat the screening within a

Density Functional Theory framework and consequently to calculate ab-initio the energy

loss function of a system. Then, in section 5.3, we apply the theory developed in section

5.2 to calculate ab-initio the energy loss function of Graphene. We concentrate on the case

of freestanding Graphene and include also the effect of doping, i. e., the effect on the loss

function induced by the injection of electrons or holes in the system. Finally in section 5.4

we calculate the loss function for Graphene adsorbed on a Nickel (111) surface, simulated

by a Graphene sheet adsorbed on a 1, 2 or 3 layer thick Nickel slab.

5.2 Theoretical basis

To construct a theoretical model for the energy loss of an electron moving inside matter

we start with a simple picture. We can imagine the electron approaching a solid surface,

and eventually entering it, with a kinetic energy E0. Along his path, the electron interacts

with the particle that make up the solid through the Coulomb interaction, suffering both

elastic and inelastic scattering. The elastic scattering causes the electron to change its

direction, while inelastic scattering causes it to loose part of its kinetic energy, creating

excitations in the solid. So we can imagine the electron as being a potential Vp(r, t) that

depends on space and time, because we are dealing with a moving electron, perturbing the

electrons of the solid, that we can imagine in its ground state. One can think to handle

this problem by the usual time dependent perturbation theory, however it turns out that

it is far too complicated because of the very high (in principle infinite) number of particle

to take into account and because of the complicated many body interaction between them.

The problem can be simplified if we assume that the perturbation Vp, that the incoming

electron exerts on the solid electrons, is weak compared to the electron-electron interactions

inside the solid. This allow us to use the linear response theory [102, chapter 6], [103,

Chapter 3], [43, Chapter 13]. In the linear response theory, the effect of the external

perturbation in the system is given in term of a response function that is independent on

the inducing perturbation, being a property of the unperturbed system itself.

The main result of the linear response theory is the Kubo formula. If the external

perturbation is coupled with the observable whose operator is B̂ (i. e. we write Vp(t) =
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Ft B̂, with Ft a complex number) and we want to know the effect that the perturbation

has to the observable whose operator is Â, the Kubo formula states that the variation of

the mean value 〈Â〉 is given by [103, Page 116]:

∆At = 〈Â〉t − 〈Â〉0 = − i
~

∫ t

−∞
dt′Ft′

〈[
Â(t), B̂(t′)

]〉
0

(5.1)

where the 〈 〉t is the expectation value taken at the time t when the perturbation is on,

〈 〉0 is the expectation value on the unperturbed system, [Â, B̂] is the usual commutator

between the operators Â(t) and B̂(t) in the Heisemberg representation with the perturba-

tion off. As it is clear in (5.1) in the linear response framework the perturbed quantity is

calculated by means of unperturbed expectation values.

In our case, the perturbation induced by the incoming electron is coupled with the

charge density of the system and we are interested on the modification induced by the

electron on the charge density of the system, so we are interested in the density-density

response function of our system.

This effect is similar to the macroscopic screening of a test charge in a system by the

other free charges of the system. Indeed we can imagine the space- and time-dependent

potential as induced by a moving test charge inside or in the vicinity of the electron gas

made up by the quasi-free electron of the system. With this observation we can introduce

a dielectric function ε, that takes into account the microscopic response of the electrons,

in analogy to the classical dielectric theory.

5.2.1 Dielectric Function ε

We can define the Dielectric function starting from the classical relations for the electric

field and the electric displacement in a dielectric medium[87]:

∇ ·D = 4πρext ∇ · E = 4πρtot (5.2)

with ρext the external charge density and introducing the total charge density ρtot =

ρext + ρind as a sum of the external charge and the induced charge in the medium by the

external electric field. At this point we assume1 that the induced density is proportional

to the electric displacement D, that, in fact, means assuming that the induced density

is proportional to the external density, ρind ∝ ρext. This means that the electric field is

1This assumption is fully consistent with linear response regime.
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proportional to the electric displacement so that we can write the classical relation:

E = ε−1D. (5.3)

We can use the dielectric constant ε to write a relation between the charge densities, con-

sistent with (5.2) and (5.3), ρtot = ε−1ρext, and, more importantly, between the potentials

generated by the charge densities:

φtot = φext + φind = ε−1φext. (5.4)

All the above equations can be generalized to the case of position- and time-dependent

quantities, introducing a position- and time-dependent dielectric function ε(r, r′, t, t′), or,

in the frequency domain, ε(r, r′, ω)2. Equation (5.4) is then generalized to:

φtot(r, ω) =

∫
d3r′ε−1(r, r′, ω)φext(r′, ω). (5.5)

It can be demonstrated that the dielectric function can be related to a quantity, called

spectral density S, that is directly related to the elementary excitation of the “disturbed”

quantity [103], in our case the density. We recall that the loss function we are looking for

is made up of the energy loss by the electron to excite the electron density of the solid.

Up to now we have defined the dielectric function (5.5) and stated its importance,

however we still need a model to calculate it, that includes the microscopic effect of the

electron gas. It is worth noticing that it is not possible to calculate exactly ε [44], not even

in the case of the electron gas, so approximations are necessary. It turns out that, as in the

classical dielectric problem, in linear regime, we can introduce a function equivalent to the

classical susceptibility χ. This function is nothing but the aforementioned density-density

response function, as we will see. In the next section we introduce this response function

and its link to the dielectric function. We start defining our χ as the linear response of

the density to the external potential, so we call it density response function [88].

From the next section on we will adapt the notation so that the electron density,

rather than the charge density, enters in all our equations. To do so we need to include the

electron charge consistently in the definition of the densities and potentials; we assume

that this process is carried out through the transformation φ→ ϕ and ρ→ n.

2Going from the time to the frequency domain we assume that the dielectric function is local in time,

that is ε(r, r′, t, t′) = ε(r, r′, t− t′); this allows us to use the convolution theorem for the Fourier transform,

so that all the time integrations become products between functions in the frequency domain.
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5.2.2 Density response function χ

We want to calculate the response induced in the electron density n of a many electron

gas by an external potential ϕext(r, t), assuming a space- and time-dependent external

potential. We can go to the frequency space by a Fourier-transform and analyze directly

the ω-Fourier component of the potential ϕext(r, ω). In what follow all the quantities will

be in the frequency domain.

We start writing the total electron density as:

n(r, ω) = n0(r, ω) + δn(r, ω), (5.6)

where we use the unperturbed electron density n0(r, ω) and we introduced the induced

density δn(r, ω). In the framework of the linear response theory, we have to retain term

in the Taylor expansion of the total density (5.6) up to the first order in the external

potential, this allows us to write:

δn(r, ω) =

∫
d3r′χ(r, r′, ω)ϕext(r′, ω) (5.7)

where we introduced the density response function χ(r, r′, ω), that is given by [87]:

χ(r, r′, ω) =
∑
m

ρ∗m,0(r)ρ0,m(r′)

×
[

1

~ω − (Em − E0) + iη
− 1

~ω − (Em − E0) + iη

]
; (5.8)

where the η is an infinitesimal with dimension of energy, and ρm,0 are matrix elements

between the manybody excited state |Ψm〉, of total energy Em, and the many body ground

state |Ψ0〉, of total energyE0, of the electron density operator,

ρ̂(r) =

Nel∑
i=1

δ(r̂− ri), (5.9)

where δ is the dirac delta function and ri are the electron coordinates of the Nel-electron

system.

At this point we can find a relation between the density response function and the

dielectric function. The latter is indeed defined as:

ε−1(r, r′, ω) = δ(r− r′) +

∫
d3r′′v(r− r′′)χ(r′′, r′, ω). (5.10)
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In (5.10) it is clear that solving the problem of calculating ε is equivalent to the prob-

lem of calculating χ. However, equation (5.8), even though symbolic, embodies directly

the microscopic properties of the electron gas. As it is always the case in many-body

physics, equation (5.8) is difficult to evaluate because of the complexity of the many-body

wavefunctions inside it; in what follow we introduce and discuss some approximate ways

to calculate the density response function.

Random Phase Approximation (RPA)

A first possibility to calculate the density response function (5.8) is given by the Random

Phase Approximation (RPA), or time dependent Hartree approximation.

The idea behind the RPA is considering the many-body wave function in the matrix

elements in (5.8) as composed by independent one-electron wave functions as in the Hartree

approximation. The external potential ϕext induces a perturbation δn in the electron

density that creates an induced potential δϕ:

δϕ(r, ω) =

∫
d3r′v(r, r′)δn(r′, ω), (5.11)

where v(r, r′) is the bare Coulomb potential. The induced potential (5.11) is used to

calculate the induced density δn self-consistently:

δn(r, ω) =

∫
d3r′χ0(r, r′, ω)

[
ϕext(r′, ω) + δϕ(r′, ω)

]
. (5.12)

In (5.12) we introduced the independent-electron density response function, χ0(r, r′, ω),

that is the response function of the Hartree system with Nel independent electrons:

χ0(r, r′, ω) =
∑
i,j

(fi − fj)
ψi(r)ψ∗j (r)ψj(r

′)ψ∗i (r
′)

~ω − (εi − εj) + iη
, (5.13)

where ψi and εi represent the ith eigenfunction and eigenenergy of the Hartree Hamiltonian3

and {fi} are the Fermi-Dirac occupation factors. Equation (5.13) follows easily from

(5.8), noticing that the many-body ground state |Ψ0〉 in the Hartree approximation is the

product of the Nel lowest energy eigenfunction ψl(r), that is |Ψ0〉 =
∏

l ψl(rl), and the

3For the Hartree approximation see for instance ref. [104]; the Hartree hamiltonian is similar to the

Kohn-Sham hamiltonian introduced in 2.3.1 in which the electron-electron interaction is represented by

VHartree of (2.16) only.
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ground state energy E0 is simply
∑

l εl, while the mth excited state is the ground state

with the ith occupied state substituted by the jth unoccupied state.

Equations (5.11) and (5.12) and (5.7) define the interacting density response function

χ(r, r′, ω) with the Dyson type equation:

χ(r, r′, ω) = χ0(r, r′, ω) +

∫
d3r1

∫
d3r2χ

0(r, r1, ω)v(r1, r2)χ(r2, r
′, ω). (5.14)

The interacting density response function in (5.14) enters (5.10) to give the inverse

dielectric function that we can write, shortening the notation, as

(εRPA)−1 = 1 + vχ; (5.15)

with a little of algebra4 it is possible to write the following relation for the so called RPA

or Lindhard dielectric function [44, 105]:

εRPA = 1− vχ0. (5.16)

Time Dependent Density Functional Theory (TDDFT)

The natural generalization of RPA is given by Time Dependent Density Functional Theory

(TDDFT). In formulating the TDDFT approach we can follow the same path of the

previous section. This time the one electron wavefunctions ψi and energies εi are the

Kohn-Sham quasi-orbital and eigenenergies obtained from the diagonalization of the full

KS-Hamiltonian (2.15). The expression for the density response function is generalized to:

χ(r, r′, ω) = χ0(r, r′, ω) +

∫
d3r1

∫
d3r2χ

0(r, r1, ω)K(r1, r2, ω)χ(r2, r
′, ω), (5.17)

with the due generalization in the definition of χ0, and where K(r, r′, ω) is given by:

K(r, r′, ω) = v(r, r′) + fxc[n0](r, r′, ω) (5.18)

with v(r, r′) the usual bare Coulomb potential and with the introduction of the Exchange-

Correlation Kernel fxc[n0], defined formally by:

fxc[n0](r, t, r′, t′) =
δVxc[n](r, t)

δn(r, t)

∣∣∣∣
n=n0

. (5.19)

4The calculation is straightforward in the “shortened” notation, however the relation holds also in the

“integral” notation of (5.10).
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Vxc entering (5.19) can be the same used in the DFT calculation performed to get

the eigenvalues and wavefunction, eventually generalized to include explicitly the time

dependence of the density, but this choice is not compulsory. As in the case of the DFT

Hamiltonian, the right xc-Potential and xc-Kernel are unknown so they must be approxi-

mated in some way. There are a lot of possibilities in selecting the exchange and correlation

kernel:

1. Time Dependent Local Density Approximation (TDLDA) or Adiabatic Local Density

Approximation (ALDA) [106], in which fxc is assumed to be the functional derivative

of the LDA Exchange-Correlation, that is:

fALDAxc [n0](r, r′) = δ(r− r′)
δV LDA

xc [n](r, t)

δn(r, t)

∣∣∣∣
n=n0

.

2. Another common used approximation [107] for the exchange correlation kernel is:

fxc[n0](q,G,G′, ω) = − α

|g + G|
δ(G−G′)

written directly in the reciprocal space and with α a parameter that depends on the

case under study.

3. Random Phase Approximation (RPA) in which the exchange-correlation kernel is

set to 0. The difference with the previous section is that the Kohn-Sham orbital and

energies are used in χ0, so the fxc = 0 case is sometimes called DFT-based RPA. It

should be stressed that nowadays the term RPA approximation is usually referred

to the DFT-based RPA of this section rather than the pure RPA introduced in the

previous section. In this case it is possible to define an RPA dielectric function as in

(5.16).

All the calculations of the next sections are performed in the DFT-based RPA approxi-

mation framework.

5.2.3 χ0 in Fourier space, Adler-Wiser formula

It can be useful to evaluate the Fourier transform of the density response function χ in the

wave-vector representation. In the case of a periodic system the main ingredient entering
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equation (5.14) or (5.17), the noninteracting density response function χ0, is given by the

Adler-Wiser formula [108, 109]:

χ0(q,G,G′, ω) =
2

Ω

1stBZ∑
k

∑
v,c

fv,k − fc,k+q

~ω − (εc,k+q − εv,k) + iη

× 〈v,k| e−i(q+G)·r |c,k + q〉 〈c,k + q| ei(q+G′)·r′ |v,k〉 ; (5.20)

where we used the bra-ket notation for the one-electron Bloch wave functions [35]:

〈r|n,k〉 = φn,k(r) = eik·run,k(r) (5.21)

with the band index n, the Bloch quasi-momentum k, and with un,k(r) being the function

with the same periodicity of the direct lattice.

Although it is not clear at a first sight, (5.20) is indeed the Fourier transform of (5.14)

or (5.17) in the case of a periodic system5. It becomes clear, if we observe that a generic

function f(r) can be Fourier-analyzed including explicitly the reciprocal lattice vector as:

f(r) =
1√
V

1stBZ∑
q

∑
G

f̃(q,G)e−i(q+G)·r; (5.22)

where the G-s are reciprocal lattice vectors and the q summation is confined to the first

Brillouin zone; we note that the fourier-transform is normalized to the volume. In the case

of χ0 the Fourier components should be (dropping the ∼):

χ0(q,G,q′,G′;ω) =
2

Ω

∑
k1

∑
v

∑
k2

∑
c

fv,k1 − fc,k2

~ω − εc,k2 + εv,k1

× 〈c,k2| ei(q1+G1)·r |v,k1〉 〈v,k1| ei(q2+G2)·r′ |c,k2〉 , (5.23)

where Ω is the normalization Volume and the factor 2 comes from the spin degrees of

freedom integration. However it is easy to show that the only non-zero components are

those with q = q′ and are given by (5.20). Using (5.21) we have:

〈c,k2| ei(q+G)·r |v,k1〉 =

∫
d3r uv,k1(r)u∗c,k2

(r)eiG·r︸ ︷︷ ︸
g(r)

ei(k1−k2+q)·r︸ ︷︷ ︸
h(r)

. (5.24)

5In the papers by Adler [108] and Wiser [109] χ0 is derived directly in Fourier space so we can think

the other way round, that is equations (5.14) or (5.17) as the Fourier transforms to the direct-space

representation of equation (5.20).
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We recognize in the integrand of (5.24) a periodic part g(r) with the same periodicity of

the direct lattice and an oscillating part h(r); the integration is extended to the volume

of the solid. We can imagine that, because of the highly oscillating integrand, the result

of the integration would be zero, unless the oscillating part is constant, i.e. h(r) = 1, that

requires k1 − k2 + q = 0, that is

k2 = k1 + q. (5.25)

In (5.23) we have two integrals as (5.24) that give rise to two conditions like (5.25). These

two conditions can be put together to give another condition involving the qs. The two

conditions are:

q1 = −q2 = q, (5.26)

k2 = k1 + q; (5.27)

and justify the expression (5.20).

One of the main advantages of the Fourier space representation is that all the integra-

tions entering the defining equations of χ, ε−1 and εRPA become matrix multiplications.

Indeed we can imagine χ0 at a given q as a matrix (an infinite dimensional matrix), whose

matrix elements can be labeled by G and G′. If we notice that the Fourier components

of the coulomb interaction are given by:

vq(G,G′) =
4π

|q + G|2
δG,G′ , (5.28)

we can write for the Fourier components of χ and ε−1:

χ(q,G,G′, ω) = χ0(q,G,G′, ω)

+
∑
G1

∑
G2

χ0(q,G,G1, ω)vq(G1,G2)χ(q,G2,G
′, ω); (5.29)

ε−1(q,G,G′, ω) = δG,G′ +
∑
G1

vq(G,G1)χ(q,G1,G
′, ω). (5.30)

The second advantage of the Fourier space representation is that it allows to define

some “q-resolved” quantities like the Fourier components in (5.29) and (5.30). To do so we

have to “get rid” of G and G′ form equations (5.29) and (5.30). It can be demonstrated

[109] that the q-Fourier component of a macroscopic quantity f is the G = 0 component
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of the microscopic expansion (5.22). So the Fourier components of the macroscopic ε−1

and χ are:

χ(q, ω) = χ(q,G = 0,G′ = 0, ω), (5.31)

ε−1(q, ω) = ε−1(q,G = 0,G′ = 0, ω), (5.32)

This definition is particularly useful because allows to connect the dielectric function

ε and the density response function χ to the density excitation of the system through the

Spectral Density.

5.2.4 Spectral Density, S, excitations and collective modes

We start from the perturbation theory and the Fermi golden rule [87]. As stated before,

if we imagine the interaction potential to be coupled to the density of the system (i.e. we

write the potential as Vqρ̂, where Vq and ρ̂ play the role of Ft and B̂ in the definition of

the Kubo formula (5.1)) the probability that the external potential exchanges energy ω

and momentum q is given by:

P (q, ω) = 2π |Vq|2
∑
m

|ρ̂m,0|2 δ(~ω − (Em − E0)). (5.33)

In (5.33) we used directly the Fourier transform of the interaction potential assuming that

it is local and it is not explicitly time dependent6; ρ̂, m, 0, Em and E0 have the same

meaning as in (5.8) and (5.9). It is useful to define a function called Structure Factor or

Spectral Density that is independent on the potential as:

S(q, ω) =
P (q, ω)

|Vq|2
. (5.34)

S(q, ω) contains all the possible excitation mechanisms that involve a response in the

system density, whatever the shape of the potential, and is actually the density-density

response function we are looking for. Using (5.8) and (5.33) it is clear that S is related

to the imaginary part of the density response function χ and hence to ε−1. So we can

finally close the gap and link the excitation of the system to the macroscopic screening

function ε (5.32). Now we recall our picture of the projectile impinging on a surface and

6This is the case for the Coulomb potential; actually using (5.33) we are assuming that the time

dependence appears as a slowly switching on of the potential.
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Figure 5.1: Qualitative sketch of the different contribution to the spectral density as predicted by the

Landau Theory for the Fermi liquid[87, chapter 2].

we come back to the energy loss of the projectile. Because each excitation of the system

is correlated to an energy loss of the projectile we can write:

ENERGY LOSS = −Im
{

1

ε

}
. (5.35)

The exact knowledge of the spectral density gives all the possible density excitation of

the system and then all the contribution to the energy loss function. These properties are,

of course, typical of the system under study; however it is possible to give a qualitative

description of the spectral density within the framework of the Landau theory of the Fermi

liquids [87]. These theory is valid under some condition that are usually met by systems

of interacting electrons.

All the possible contributions to the spectral density can be collected in three categories,

single-particle excitations (SPE), multi-particle excitations and collective modes. In figure

5.1 we show a qualitative sketch of the different contribution to the spectral density, as

predicted by the Landau theory, in the simple case of electrons occupying a single partially

filled band of finite bandwidth.

We start with single particle excitation (SPE), that we can imagine to be the contribu-

tion to the spectral density that takes into account the generation of an excitation in which

one electron is promoted from its energy level to an excited level, creating an electron-hole

pair. In the simple picture of an electron belonging to a single band, with the Fermi level

placed somewhere inside the energy band, the SPE spectrum has a finite extent (see figure

5.1), that reflects the bandwidth, while its shape is influenced by the transition matrix

elements and by the density of states. In a more realistic situation, the energy structure
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of a system is made up by several valence and conduction bands, so the SPE spectrum

is more complicated, reflecting the convolution of the density of occupied states and the

density of empty states, weighted by the transition matrix elements7. We can imagine the

SPE spectrum to be related to the response of a single electron as being independent on

the other electrons, so it is related to the independent electron response function χ0. In

fact, the optical excitation spectrum, related to the single particle excitation spectrum, is

usually [44] calculated as:

OPTICAL SPECTRUM ∝ −Im{ε} (5.36)

In our case we can say that the SPE spectrum is proportional to−Im{χ0}, or, equivalently,

introducing the Coulomb potential, we have in our case:

SPE = −Im{εRPA} (5.37)

The multi-particle excitation spectrum simply represent the spectral density contribu-

tion in which more than one electron is excited at the same time. This part is less intense

than the single particle one, but extends from 0 to ∞ also in the simple case of a single

finite-width energy band (see figure 5.1).

Finally superimposed to single particle and multi-particle excitations we have the con-

tribution due to collective excitations of the electron gas. As depicted in figure 5.1 collective

modes appear as very narrow peaks, having in principle the shape of a Dirac delta. In

the case of the electron gas they are associated to electric charge oscillation, so they are

called Plasmons. As in the classical plasma oscillation, the plasmon condition is given by

the zeros of the dielectric function. In our case the plasmon condition is given by:

PLASMON CONDITION: εRPA(q, ω) = 0. (5.38)

In (5.38) it is meant that both the real part the imaginary part are zero. Equation (5.38)

defines the dispersion relation ω(q) of the plasmon, that appears also as a singularity in

ε−1.

In figure 5.1 the plasmon is sketched as a narrow but actually finite-width peak, in

contrast with the plasmon condition (5.38) predicting the collective modes to be Dirac

deltas. Nevertheless the Landau theory predicts a coupling between the collective modes

and the single particle and multi particle excitations. This coupling results in the broad-

ening of the plasmon peak that is called Landau Damping. Depending on the coupling,

7This is usually called joint density of states.
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the plasmon can be over-damped that results in a broadening that renders the plasmon

peak indistinguishable from the single particle and multi particle excitation spectrum. In

this case the collective mode concept is no longer well defined. From the mathematical

point of view, Landau damping due to single particle excitation is present whenever the

plasmon mode is in a region where Im{χ0} 6= 0, that is the plasmon condition is fulfilled

only by the real part of εRPA. Actually, zeros of Re{εRPA} occur always in couple, the

first one in energy being connected to a peak in Im{εRPA}, so a Single particle excitation

peak, and the second one either in a region in energy where Im{εRPA} = 0, giving an

undamped plasmon, or in the tail of the single particle excitation peak, in this case we

have a Landau-damped plasmon. In the case of strong damping it is possible to follow the

plasmon dispersion only following the plasmon peaks in ε−1. Finally it is worth noticing

that in any real situation plasmon resonances are always damped, even in the region where

Landau damping is negligible, due to other interactions, like plasmon-phonon coupling or

electron-electron interactions that go beyond the Random Phase Approximation.

5.3 Loss function of freestanding pristine and doped

Graphene

Our first system under study is freestanding Graphene. We apply all the theory developed

in the previous section to this system. Our aim is the calculation of the loss function of

Graphene, that makes possible the interpretation of electron energy loss spectra. We will

focus also in the influence of the charge carrier density due to doping in the loss function

of Graphene.

5.3.1 Calculation details

Our ab initio calculation starts with a Density Functional Theory (DFT) ground state cal-

culation for Graphene within the local density approximation (LDA) [30] for the exchange

and correlation part of the potential. We use the plane waves basis set (cut-off energy

25 Hartree) and a norm conserving pseudo-potential of Troullier and Martins type [54].

Our system is constituted by repeated Graphene slabs with a slab spacing of ∼ 20Å. The

Brillouin Zone integration is carried out using a unshifted 60 × 60 × 1 Monkhorst-Pack

grid [36], resulting in 341 k-points in the irreducible Brillouin Zone and 3600 k-points in

the Full Brillouin Zone, see section 1.1 for all the crystallographic information. In figure
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Figure 5.2: LeftPanel: Graphene band structure along the path ΓKMΓ obtained after the ground state

calculation; the origin of the energy axis is the Fermi energy. RightPanel: Graphene Density of States.

5.2 we show the band structure and density of states (DOS) for Graphene, obtained after

our ground state calculation. We obtain results in very good agreement with existing

calculation found in literature, see for example ref. [77]; in particular we obtain the very

well known dispersion at the Dirac point K, where valence and conduction band touch

in a single point and the band dispersion is linear, having the shape of a cone [13]. The

Fermi level, set to 0 in the figure, passes through this single point. The DOS is 0 at the

Fermi level; we see also that nearly flat bands around the M point give rise to Van Howe

singularities in the DOS, both in the occupied and in the unoccupied part.

We use the converged electron density to calculate one electron eigenerergies and eigen-

function on a denser k-point mesh (180× 180× 1, that is 32400 k-points in the Full BZ)

and including up to 60 bands. The eigenenergies and eigenfunctions are plugged inside

the Adler-Wiser formula, (5.20), to obtain the independent electron response function χ0,

from which we can calculate the density response function χ (5.29), the inverse dielectric

function ε−1 (5.30), the RPA dielectric function εRPA (5.16), and all the desired quantities,

as outlined in the previous section.
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Figure 5.3: Energy loss function for undoped Graphene, as a function of the exchanged parallel momentum

in Å−1 along the ΓK direction (horizontal axis) and energy in eV (vertical axis). The intensity scale (on

the right of the plot) has logarithmic increments.

5.3.2 Undoped Graphene

In figure 5.3, we show the calculated Loss function for undoped Graphene, plotted as a

function of the parallel exchanged momentum along ΓK, going from 0 to the K-point,

and energy, from 0 to 30 eV. A cut at 0.287 Å−1 of the same calculation is given in figure

5.4, where we plot also the real part of εRPA and minus the imaginary part of εRPA, i. e.,

the SPE spectrum. In the Loss function we can recognize different features.

First of all we see the SPE at low energy as a nearly flat plateau, starting at q‖ = 0

and E = 0. This is clear from figure 5.4, where we see that the SPE plateau appears in

the region where −Im{εRPA} 6= 0.

After the SPE plateau we see an intense feature that disperses roughly linearly with

the parallel momentum. As we can see in figure 5.4 these peak appears in the tail of the

peak in the −Im{εRPA} and is correlated with a zero of Re{εRPA}. In fact this peak is
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Figure 5.4: Energy loss function (green), real part (blue) and minus imaginary part (red) of εRPA for

undoped Graphene, at the transmitted parallel momentum in 0.287 Å−1 along the ΓK direction as a

function of energy in eV. The intensity is given in arbitrary unit because the plots have been scaled to

allow them appear in the same graphic.

a plasmon peak, usually called π-plasmon that is also present in Graphite [110] and that

in Graphene appears red-shifted with respect to graphite. The reason of the name is that

this plasmon is the collective mode excited after the strong transition (the aforementioned

peak in −Im{εRPA}) between electrons from the Graphene π-bands, that are the last

occupied and the first unoccupied bands (see figure 5.2) and that give rise to the Van-

Howe singularities at roughly −2.5 eV and 2 eV in the DOS, see also ref. [111]. The fact

that the π-plasmon is in a region where the SPE spectrum is decreasing but non-zero,

makes it to be slightly broadened by Landau damping and gives it an asymmetric shape.

The third interesting feature in figure 5.3 is a very broad asymmetric peak that starts

at roughly 15− 18 eV for q‖ ∼ 0 and that disperse with q‖. As it can be seen in figure 5.4

this peak is linked with a maximum of −Im{εRPA} (this time the transition being between

a σ-level and a π-level) and with a drop of Re{εRPA} that does not become zero because

of Landau damping. Actually, this peak is the so-called σ−π-plasmon that is also present

in graphite and that in Graphene appears red-shifted with respect to graphite [110].

An important issue in the loss function calculations are crystal local fields effects. As

already observed, once we use the Fourier representation for the χ0, χ, and ε, for a given

q and ω, we can imagine them to be matrices, whose matrix elements can be labeled by
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Figure 5.5: Energy loss function calculation for undoped Graphene as a function of the exchanged parallel

momentum and energy, see figure 5.3.

Left Panel : the calculation includes only the G = 0, G′ = 0 component in the χ0 expansion (5.23), i.e.,

the calculation is without the inclusion of crystal local field effects.

Right Panel : the calculation includes 61 shortest G-vectors, that is χ0 is a 61×61 matrix; the calculation

is compared to some available experimental data of the π plasmon dispersion for vertically aligned carbon

nanotubes [112] (cyan circles), and for Graphene [113] (blue squares).

the reciprocal lattice vectors G and G′, and that in fact are infinite dimensional. We can

observe that in the definition of the loss function, equations (5.35) (5.32), we need only

the G = 0 and G′ = 0 component of ε−1, nevertheless, we see that in the definition of χ,

equation (5.29), and then also in ε−1, all the infinite χ0 matrix elements are used through

the matrix multiplication. Actually only a finite number of matrix elements is needed for

the calculation, because they are multiplied by the components of the Coulomb potential

that decrease with increasing the length of the G-vector. The convergency of the loss

function with the number of G-vectors included in the evaluation of the loss function is

a crucial point, because the computation of the matrix elements of χ0 is the most time

consuming part of the calculation and the effects on the results are remarkable. This

inclusion is usually referred to as including crystal local field effects, because the G 6= 0

components have the meaning of microscopic periodic part of the function, as already

pointed out.
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We checked the convergency of the calculation including up to ∼ 500 G-vectors in the

definition of χ0. We found that the inclusion of 61 G-vectors was enough to warrantee the

convergency. Nevertheless the effect of crystal local fields is crucial. We can see this effect

in the dispersion of the π-plasmon. It has been already proved that the inclusion of crystal

local fields is necessary to reproduce the linear dispersion of the π-plasmon [112]. This

issue is addressed in figure 5.5, where we can see that the inclusion of only 1 G-vector in

the calculation results in a parabolic dispersion in the π-plasmon. Conversely the inclusion

of 61 G-vectors gives a linear dispersing plasmon that is in very good agreement with the

measured dispersion of the π-plasmon in Vertically aligned Carbon Nanotubes [112] and in

Graphene [113], we note also the very good agreement between our calculation and other

previous calculations on undoped Graphene [112, 114].

5.3.3 Doped Graphene

Once we have analyzed the undoped Graphene loss function, we can use the same technique

to study the doped case. To do so we need to know how to include doping in our calcu-

lation. Actually we are interested in the case of doped freestanding or qausi-freestanding

Graphene. The real (experimental) situation we want to analyze is in fact a Graphene

monolayer that is suspended (freestanding Graphene) or is deposited on a substrate that

has negligible influence on its electronic structure. Then we introduce the doping shifting

the Fermi level above or below the Dirac point, that is we assume that the doping has the

only effect of adding or removing electrons.

The aim of our calculation is to observe the effect that the charge carrier density8 has

on the screening properties of Graphene. The charge carrier density can be modified by

different effects: defects in the Graphene lattice; the shape of the Graphene flake; chemical

functionalization; interaction with the supporting substrate [89]; desired or undesired dop-

ing during the fabrication process [90]; a gating potential [12]. To do so we use the same

ground state calculation for Graphene and artificially change the occupation factors fi in

(5.20) so that the Fermi level is shifted of the desired quantity ∆EF , see figure 5.6. This

represents an approximation, in fact we are assuming that adding or removing electrons

does not change the energy bands of the system.

In figure 5.6 we show a zoom in energy of the band structure and the density of states

of figure 5.2 near the Dirac point. The original Fermi level is set to zero energy. The

8In the case of Graphene we use surface densities.
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Figure 5.6: Energy bands and density of states for Graphene around the Dirac Point. The horizontal lines

mark the position of the Fermi level used in this work for the doped Graphene calculation. In the table

we list the values in eV of the Fermi level shift ∆EF , the corresponding number of added (+) removed

(−) electrons per unit cell n and the n (+) or p (−) doping concentrations.

horizontal lines mark the position of the Fermi level used to analyze the doped cases. The

Fermi level shift ∆EF , the number n of added/removed electrons per unit cell and charge

carrier densities are listed in the table. We use the convention that a negative position

of the Fermi level corresponds to a decrease of the electron per unit cell, the undoped

value being 8. In this way negative numbers in the second and third column of the table

correspond to situations where electrons are removed and holes are injected, so p-doping.

Conversely positive numbers correspond to n-doping. Regarding the values of the charge

carrier densities, we use the convention of calculating it using the number of charge carriers
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Figure 5.7: Energy loss function for undoped Graphene (left panel) and for doped Graphene ∆EF = 1.0 eV

(right panel), as a function of exchanged parallel momentum and energy (see figure 5.3); the intensity

scale (on the right) is the same in the two plots.

added (removed) with respect to the undoped case. It is worth noticing that values for the

charge carrier densities used in this work are a little high. Typical values of charge carrier

densities that can be obtained with gating potential are of the order 1012÷1013 cm−2 [12];

our analysis is more suitable for chemical doping [90]. Nevertheless, as we will see, we

used such high values to better single out the effect of doping in the screening properties

of the system.

We start our analysis with the comparison of the loss function of undoped Graphene

and the loss function of Graphene doped using ∆EF = 1 eV, as shown in figure 5.7.

The first observation that we can make with the aid of figure 5.7 is that the doping does

not influence neither the π plasmon, nor the σ−π plasmon. We verified that this trend is

verified for all the doping levels used in our analysis and shown in figure 5.6, but the case

∆EF = 2 eV. This result is not surprising because the π and σ − π plasmons result from

transition that involve the Van Howe singularities at ∼ −7 eV, ∼ −2.5 eV, and ∼ 2 eV so

they are not influenced as long as the Fermi level lies at values lower than ∼ 2 eV. Then

we can observe that the big difference between the doped and undoped situation is in the

low energy part of the loss function. To better analyze this part we show in figure 5.8 a

zoom of the loss function for low transferred energy and parallel momentum.
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Figure 5.8: Energy loss function for undoped Graphene (left panel) and for doped Graphene with EF =

1.0 eV (right panel), for low exchanged parallel momentum and energy; the intensity scale is the same in

the two plot.

The zoom allows us to observe that the single particle transition part is strongly mod-

ified. We see that adding the doping causes a gap opening in the interband transitions

(interband SPE). Then we can also observe some intensity below the “imaginary line” that

represents the Fermi velocity, that was zero in the undoped case. This means that we are

allowing some intraband transitions (intraband SPE). Both these result can be understood

in the simple Dirac cone approximation, sketched in figure 5.9.

In the simple approximation of the cone band dispersion for Graphene, i. e., E = vF q‖,

with vF the fermi velocity, we see that, in the undoped case (see figure 5.9, left panel)

only interband excitation are possible, because the valence band is completely filled and

the conduction band is completely empty. We note also that the interband transition lie

above the “Fermi velocity line” (vF |q|) and that it is possible to have transition at very

low q‖ and very low energy. In the doped case (figure 5.9, right panel) we are filling part

of the conduction band (n-doping) or emptying part of the valence band (p-doping). This

results in the opening of a gap for interband transition at low q‖, that is the vertical (or

quasi-vertical) transition at very low energy are forbidden. Furthermore, the half filling

of the conduction or valence band, allow the appearing of intraband transitions, that lie

below the Fermi velocity line.
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Figure 5.9: Schematic representation for Single Particle (SP) excitation in Graphene in the cone approx-

imation; Left Panel : undoped case; Right Panel : doped case.

Coming back to figure 5.8 we see that, apart from the single particle excitation modi-

fication, we can observe two new features in the loss function, one sitting in the intraband

SPE region and the other that is visible in the interband SPE region and seems to disappear

entering the SPE gap region. Both the structures are connected to zeroes of the real part

of εRPA, so we can conclude that they are collective modes, even though Landau-damped

plasmons. The structure that lies lower in energy (we will call it low energy palsmon

from now on) is always Landau damped by intraband SPE. The structure that lies higher

in energy (high energy plasmon from now on) is Landau damped in the interband SPE

region. Because we didn’t include any artificial damping mechanism in our calculation,

the high energy plasmon is undamped in the SPE gap region, where it appears as a Dirac

delta that can’t be caught by our finite energy mesh. We can follow its dispersion inside

the undamped region through the zeroes of εRPA. In this way, following the zeroes of εRPA

in the gap region, and the maxima of the loss function in the damped region, we are able

to draw a dispersion for both the plasmons, shown in figure 5.10.

Before going on with the analysis, it is interesting to compare the low energy part of

the loss function when the exchanged parallel momentum is on different directions. In

figure 5.11 we show the calculated loss function for doped Graphene (∆EF = 1.0 eV),

with the exchanged parallel momentum lying on the ΓK and ΓM directions.

We see that the single particle excitation is slightly different, and this reflects directly
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Figure 5.10: Energy momentum dispersion for the two new plasmons in doped Graphene for different

doping levels. Squares represent the low energy plasmon, circles the high energy one; the colour code is

shown in the inset.

the different band dispersion along the two directions. More interestingly, we can clearly

see that the low energy plasmon is absent along ΓM and that the high energy plasmon

dispersions are different, their linear dispersion having different slopes.

To understand the nature of the two new plasmons is necessary to analyze their prop-

erties, starting from figure 5.10.

We can start from the low energy plasmon. It lies always in the region of single particle

intraband excitations, so it is always Landau damped. From figure 5.10 we can see that it

disappears for ∆EF = 2 eV; we should also add that the shape of the peak is altered for

a doping of 1.5 eV (not shown explicitly). Moreover, we see that the plasmon disappears

when we move to the ΓM direction. We see also that the dispersion is different in case of

n- and p-doping.

As for the high energy one in figure 5.10, we can see that it exhibits an almost linear
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Figure 5.11: Comparison between the loss function for doped Graphene for momentum transfer along two

different directions in the Brillouin zone, left panel ΓK, right panel ΓM.

dispersion at high energies with a slope that is independent on the doping level, but has

two different values for n- and p-doping. Moreover the slope depends on the direction of

the transferred momentum. For low momentum transfer it enters the SPE gap region and

its dispersion becomes slightly flat, approaching a value that depends on the doping level.

All these properties can be explained looking at the band dispersion around the K-

point of the Brillouin zone. In figure 5.12 we show a comparison between the Graphene

band structure around the K-point obtained in the framework of the cone approximation

(black dashed line) and the one obtained in our DFT calculation. We see that in the “real”

situation, instead of an isotropic cone, we have different band dispersions on the different

directions. With the aid of the Brillouin zone reproduction in figure 5.12 we can see that if

we put the transferred momentum q‖ along the ΓK direction we are actually probing two

different lines in the Brillouin zone: the first one is the K→ Γ line, highlighted by the red

arrow, and that results in the red branch; the second one is the K→M line, highlighted

by the blue arrow, and that results in the blue branch. Conversely, if we put q‖ along the

ΓM direction we are probing only one direction, K→ K, highlighted by the green arrow,

that results in the green branch.

The above observations allow us to conclude that the two new structures are intraband

plasmons. We observe the low energy plasmon only when q‖ is along ΓK because we see
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Figure 5.12: Anisotropic band structure of Graphene, as obtained from our ground state DFT calculation

and plotted along three different high symmetry paths originating at the K-point and highlighted by

arrows in the Brillouin zone reproduction, i.e., KΓ (red arrow and line), KM (blue arrow and line), KK

(green arrow and line); KΓ and KM branches are sampled by q‖ along ΓK, while q‖ along ΓK samples

the KK branch. The isotropic behaviour due to the cone approximation for the π bands, at the Dirac

point, is shown as a black dashed line.

that the band structure has two different branch, so we have electrons with two different

velocities within the same band, resulting in two distinct intraband plasmon modes. This

is also consistent with the observation that the low energy plasmon changes its shape

increasing the doping up to ∆EF = 1.5 eV and disappears for ∆EF = 2.0 eV, because

for these doping levels the band branch that give rise to the plasmon is almost filled or

completely filled and the intraband transitions are accordingly unfavored or forbidden.

This attribution explains also the different dispersion for n- and p-doping, in fact it is

clear that the blue band in figure 5.12 is not symmetric going from positive to negative

energies. When q‖ is along the ΓM direction we have only one branch, then only one

intraband plasmon mode.

Now we can focus on the high energy plasmon that is present in both directions but has

different slopes in the high momentum limit. The existence of this intraband plasmon has
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Figure 5.13: High energy plasmon dispersion relation for q‖ along ΓK (red circles) and along ΓM (green

squares); our calculation is compared to the Tight Binding based calculation by Hwang and Das Sarma [98]

relying on the cone approximation (blued dashed line). In the figure are also shown the band dispersions

along ΓK (red line) and ΓM (green line) taken from figure 5.12.

been predicted by some tight binding (TB) calculations relying on the cone approximation,

assuming linear dispersing bands around the Dirac point and infinite bandwidth [97, 98,

99]. The plasmon has also been observed experimentally by many authors on Graphene

adsorbed on different materials [92, 93, 94, 95, 96]. The calculations predicted a square

root dispersion law for low q‖ and a linear dispersion, parallel to the Fermi velocity line,

for high q‖. The square root law for low q‖ is typical of 2D plasmons [115], while the linear

dispersing behavior at high q‖ is typical of Graphene and is due to the linear dispersing

bands. In figure 5.13 we compare the TB based calculations by Hwang and Das Sarma

[98] with our ab-initio calculation.

As it is clear from figure 5.13 we find a substantial agreement, in an intermediate

momentum transfer region between ∼ 0.2 and ∼ 0.4 Å−1, and two major differences, at

low momentum and high momentum transfer. Specifically, in our calculation the plasmon
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dispersion becomes flat for low q‖, while the “classical” 2D plasmon should go to zero

energy as
√
q‖ for q‖ → 0 [115]. Such a discrepancy is an artifact of the three dimensional

slab periodicity required in ground state DFT computations with plane waves; in fact,

for low q‖ the Coulomb interaction entering χ is dominated by the long range part. In

practice, when q‖ approaches 0 the charge densities associated with the plasmons on the

Graphene replicas start seeing each other, rendering the collective mode a fictitious 3D

plasmon, with the typical 3D plasmon behaviour, i.e., a finite non zero energy limit for

q‖ → 0 and zero slope [87]. Conversely, for high values of q‖ the TB-calculated plasmon

becomes linear, with the slope being the Fermi velocity in the cone approximation, i. e.

the plasmon dispersion is parallel to the band dispersion. In our calculation, the high

energy plasmon dispersion is linear and parallel to the band dispersion as well; however in

the real case the band dispersion is anisotropic, thus, the different slopes of the plasmon

dispersion reflect the different Fermi velocities in the inequivalent directions.

5.3.4 Summary on doped Graphene

Summarizing, our calculation of the loss function for Graphene with different charge carrier

densities showed that some new resonances are present in the low energy part of the loss

function. These resonances are intraband plasmons and proved to be sensitive to the

charge carrier density. This can suggest to use electron energy loss spectroscopy as a

tool to determine the doping level of freestanding and quasi-freestanding Graphene. Our

calculation showed also that the two new features have a remarkable anisotropy. This

anisotropy comes from the anisotropy of the band structure around the Dirac point and

results, in practice, in electrons having different velocities within the same band that give

rise to acoustic plasmon with different dispersions. This anisotropic effect on the acoustic

plasmon dispersion has not yet been observed experimentally.

5.4 Loss function of Graphene adsorbed on Ni(111)

surfaces

Once we have investigated the loss function of freestanding and quasi-freestanding Graphene,

we move to the system Graphene adsorbed on Ni(111). In this case we can not consider

Graphene as quasi-freestanding because of the strong interaction between the electrons

belonging to the Graphene π bands and the d-electrons of Nickel. Nevertheless the system
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is particularly interesting because Ni(111) surfaces are very well suited for the absorption

of Carbon graphitic monolayer [15] so this system has been investigated for long time, both

theoretically and experimentally, and now it is receiving renewed interest for the synthesis

and study of Graphene.

5.4.1 Calculation details

As in the previous case, our calculation start with a DFT ground state calculation using

the LDA approximation [30] for the exchange and correlation and the plane waves basis

set (cut-off energy 25 Hartree). This time we use the ABINIT code [75, 76] for the ground

state calculation. We use norm conserving pseudopotentials of Troullier-Martins type [54]

for both Carbon and Nickel. The Graphene-Nickel interface is modeled with a slab (made

up by 1-, 2- or 3-monolayer of Nickel oriented in the (111)-direction) and Carbon atoms.

The unit cell is made such that one of the two inequivalent carbon atoms sits on top of

the topmost layer Nickel atoms and the other one is in the fcc hollow sites; the geometry

is taken from the calculation by Bertoni et al. [17], see section 1.1. As in the previous

case, we make a periodic calculation in three dimensions. The 2-dimensional slabs are

repeated in the perpendicular direction with a periodicity of ∼ 21 Å. The Brillouin zone

integration is carried out using an unshifted 60×60×1 k-point Monkhorst-Pack grid [36].

The converged electron density is used to calculate eigenvalues and eigenfunctions on the

same grid, including 60 bands; this allows us to calculate a converged loss function up to

15 eV above the Fermi level.

5.4.2 Graphene Nickel loss function

In figure 5.14 we show the band structure for Graphene adsorbed on 1, 2 and 3 atoms

thick Nickel slabs, and the corresponding density of states. The comparison with figure

5.2 shows that the deep Graphene σ bands are not influenced by the Nickel d bands;

conversely the Graphene band structure is strongly modified in the region in energy near

the Fermi level where the nearly flat Nickel bands appear. The mayor difference is that

the Dirac cone is not present anymore and the density of states is very high at the Fermi

level.

We can expect that this increased number of electrons near the Fermi level plays a

prominent role in the screening, and then in the loss function. In figure 5.15 we show the

Graphene/Nickel loss function for the three different analyzed configurations as a function
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Figure 5.14: Graphene adsorbed on Ni(111): band structure for Graphene on 1 Ni layer (top left), 2 Ni

layers (top right) and 3 Ni layers (bottom left); density of states for the three calculations (bottom right).

of exchanged parallel momentum along the ΓK direction and energy. In all the three

situations at low q‖ the loss function is dominated by a peak at about 6÷8 eV that can be

attributed to the Graphene π plasmon. This peak is superimposed on a background due

to the Nickel substrate, as we see that it changes increasing the number of Nickel layers.

At higher q‖ the overall intensity drops down and also the relative intensity of the π peak

with respect to the background, in all the analyzed configurations. We also observe that

the Nickel substrate causes a broadening of the π peak, as compared to the Graphene (see

figure 5.4); the width of the peak also increases increasing the number of Nickel layer, and

in all cases is much bigger than the one calculated for freestanding Graphene. To better

understand, in figure 5.15, bottom right panel, we show the energy momentum dispersion

of the π plasmon, calculated as the maximum of the observed peak. We observe also that,
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Figure 5.15: Energy loss function for Graphene adsorbed on Nickel 1 layer (top left), 2 layers (top right),

3 layers (bottom left) as a function of the exchanged parallel momentum on the ΓK direction and energy.

The intensity scale is the same within the same plot. Bottom right: energy momentum dispersion of the

π plasmon peak.

at least for the few lowest analyzed q‖ we see the initial part of a maximum at higher

energies; this maximum can be attributed to Graphene σ − π plasmon, even though the

energy range of the calculation should be increased to assign it confidently.

The Graphene π plasmon is indeed the more interesting part. We see that the three

different calculations give results consistent with one another, even though, as we already

observed, the width of the peak may suggest that the peak shape is influenced by some

structure due to the Nickel substrate. This observation is further confirmed by the different

dispersion obtained in the three calculations. We observe that the three calculation seem

to have two branches following two different dispersion laws, the separation between the

two regimes being q‖ ∼ 0.6 Å−1. The high q‖ part is the same for the three calculations,

99



5 EELS calculations 5.4 EELS for Graphene/Ni

0.0 0.2 0.4 0.6 0.8 1.0
6

7

8

9

10

q�� H Å -1L GK direction

E
n

er
gy

He
V

L

æ

æ

æ Cupolillo et al.

Generalov et al.

Graphene Ni 2 calc.

Figure 5.16: Comparison between π plasmon dispersions calculated in the present work for the system

Graphene/Nickel 2 layers and the experimental measurement by Cupolillo et al [101] and Generalov et al.

[100] on Graphene adsorbed on Nickel.

while the low q‖ part is slightly different. We can ascribe this behavior to the presence

of two structures, one being the Graphene π plasmon and the other one being some SPE

peak due to the Nickel substrate, appearing at higher energies with respect to the π peak9.

This structure causes an additional broadening through Landau damping on the π peak

that become quite indistinguishable from the SPE background at high q‖ and causes also

a blue shifting of the π peak. This effect increases in strength with increasing the number

of Nickel layers.

In two recent papers [101, 100] the energy loss of Graphene adsorbed on Nickel has been

reported together with a dispersing structure identified with the Graphene π plasmon. In

figure 5.16 we show a comparison of the calculated dispersion for the system Graphene

Nickel 2 layers and the experimental data by Cupolillo et al. [101] and by Generalov et al.

[100]. As we can see, the agreement is not very good specially for high q‖. However we can

observe that the two set of data are in substantial disagreement with one another. The

main issue is that the experimental EELS measurements taken into account, as it is clear

from both articles, are affected by a large uncertainty due to background substraction

and to the exact determination of the energy position of the plasmon resonance. On the

9In freestanding Graphene the loss function goes to zero after the π peak (see figure 5.4) here we have

non zero intensity.
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other hand we already mentioned that in our calculation the peak of the π resonance

is very broad. Actually our calculation can be improved both from the technical point

of view, including more k-points in the BZ integration, and from the principle point of

view, understanding better the role played by the number of Nickel layers included in the

calculation. Both of the improvement are presently under study.

5.5 Conclusions

Summarizing in this chapter we calculated the energy loss function for freestanding Graphene

and Graphene adsorbed on a Ni(111) surface.

The loss function for freestanding Graphene show three main contributions. First,

the single particle excitation spectrum starting at low energy and low q‖. Second, the

linear dispersing π plasmon starting at ∼ 5 eV, that appear red-shifted with respect to

the graphite π plasmon. Third, the broad σ − π plasmon at higher energies, appearing

red-shifted with respect to graphite as well. Then we calculated the modification of the

energy loss function of freestanding Graphene due to the injection of electrons or holes.

The main result is the appearance of two intraband acoustic plasmon resonances, instead

of the single intraband resonance observed in the experiments and predicted through TB

calculations. The two resonances are the result of the anisotropy around the Dirac point,

usually neglected in TB based calculations, that have as a consequence the presence of elec-

trons with two different velocities within the same band, resulting in two distinct plasmon

dispersions. The low energy intraband plasmon still waits to be observed experimentally.

Then we calculated the loss function of the system Graphene-Nickel (111) as a paradig-

matic example of strong bonding between the Graphene with the supporting material. The

main effect of the Nickel substrate is the destruction of the Dirac conical point due to the

hybridization of the carbon p orbital with the Nickel d orbitals. As a consequence we

observe an high density of state at the Fermi level, unlike the zero density of state at the

Fermi level of Graphene, that results in different screening properties. In particular we

observe a significative distortion of the Graphene π plasmon peak and a different peak

dispersion, due to the interaction of the π plasmon with the single particle excitation due

to the Nickel substrate. This feature is compared with two experimental observation re-

porting the same effect, even though the accord is not very good. The discrepancy can be

probably reduced through an improvement of the calculation technique, presently under

study.
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Chapter 6

Conclusions and perspectives

In this work we have analyzed some properties related to electron excitations in car-

bon based nanomaterials, which offer a wide range of potential technological applications

and represent an important field for fundamental research. Our main focus has been on

Graphene, doped Graphene, adsorbed Graphene on metal surfaces, and carbon nanotubes,

with particular attention to ground-state electronic properties and electron excitations of

the valence and conduction bands.

The first part of the thesis was concerned with a study of the kinetic energy distribu-

tions of electron emitted by Auger core-valence-valence processes (CVV) in carbon nan-

otubes (CNTs). Indeed, the principles at the basis of the Auger effect allows to investigate

both inner core electrons and valence band properties of the target materials. We presented

a density functional theory (DFT) method to calculate the Auger emission probability in

the framework of the Fermi golden rule (FGR), and applied it to a (10, 10) armchair single

walled (SW) CNT. Our main goal was to asses, through the comparison of our results with

experimental data taken from literature, the role of some many body corrections that lie

outside the FGR approach and are at the heart of the “exotic” electronic properties of

carbon based materials. In particular, we treated two many body effects: the shake up of

valence electron, due to the core hole dynamic screening in the initial state, and the effect

of hole-hole interactions in the valence band, due to the missing final state electrons. We

treated initial and final state effects by a mean field approach that corrects the ground

state DFT calculations, and we found these corrections to be necessary for an accurate

description of Auger electron emission spectroscopy experiments on nanotube bundles. As

a side effect, we faced a technical problem, that is of fundamental interest in the DFT

modeling of carbon based materials and in DFT in general. We tested an all-electron
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cluster and a periodic pseudopotential DFT approaches as starting ingredients to evaluate

the FGR. We found a general good agreement in the output electronic structures, apart

from some significant differences concerning the lowest occupied valence states of the sys-

tem. We addressed such discrepancies to the pseudization procedure that removes the 1s

core orbitals of carbon in pseudopotential calculations. This point, however, needs a more

detailed analysis that will be the subject of future works. Another interesting point that

will deserve our attention is a more self-consistent evaluation of initial and final state ef-

fects, for example by time-dependent (TD) DFT techniques with suitable approximations

capable of reducing the computational complexity inherent in these methods.

As a second argument, we presented a study of secondary electron emission (SEE)

from Graphene adsorbed on a Nickel (111) surface. We first tackled the problem from the

experimental point of view, by presenting electron emission spectra induced by primary

electron bombardment. We found some interesting features on a series of peaks super-

imposed to the cascade electron peak. Consistent with the previous literature on SEE

from other target materials, we attributed this series of peaks to maxima in the density

of unoccupied states above the vacuum level, i. e. to the empty bands of the system.

We then made a systematic study of the peak positions through angular resolved SEE,

being able to draw a band dispersion plot. We completed our analysis with band structure

calculations using DFT, adapted to compute a k-projected density of states (k-DOS). We

applied this method to graphite first, taking advantage of a vast amount of data available

in the literature, and found a satisfactory agreement between our k-DOS calculations, ca-

pable of highlighting both the bulk and surface properties, and the experiments. Then, we

applied the same technique to our measurements, finding a good agreement that allowed

us to assign the investigated bands both to the Graphene overlayer and to the Nickel

substrate. Our analysis highlighted an interesting property of the Nickel bands that are

somehow hidden in the cascade of the clean Nickel spectrum, but are enhanced by presence

of Graphene. This point will be investigated more deeply, both from the experimental and

theoretical sides.

Finally, we turned our focus to electron energy loss spectroscopy (EELS) of freestanding

Graphene and Graphene adsorbed on Nickel surfaces. We shortly reviewed an ab initio

method to calculate the loss function, using DFT calculations and linear response theory.

We calculated the energy loss function for freestanding Graphene, focusing on the loss

function modifications induced by doping, i. e. the injection of electrons or holes in the

system. We found that the increased charge carrier density leads to the appearance of two
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intraband plasmon resonances in the loss function, with a prominent anisotropic behavior.

This result is different from other loss function calculations on Graphene, which mainly

dealt with the π and σ-π plasmon modes. In addition, only one of the two resonances has

been detected by experimental EELS measurements on quasi-freestanding Graphene. We

thus suggest to perform angle resolved EELS measurements on freestanding Graphene,

which is still lacking, and to find the missing plasmon mode and the anisotropic behavior,

that should be observable with specific doping conditions according to our calculations.

We also studied the dielectric properties of Graphene adsorbed on Nickel (111), with

particular care to the π plasmon of the Graphene overlayer. Our main predictions concern

the broadening and blue-shift of this mode with respect to the freestanding Graphene

case due to the Nickel substrate. The role of substrate electrons is, however, not fully

understood, being a paradigmatic example of strong Graphene/metal interactions.
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Appendix A

Two-electron matrix element of

Auger CVV emission

In order to apply the FGR in calculating the Auger spectrum, we first need to compute

the Coulomb integrals V q v
s v′ , introduced in Eq. (3.9), section 3.3, that involve: a core or-

bital (φs), two valence orbitals (φv and φv′), and a plane-wave (φq). Most DFT approaches,

like those presented in section 3.4, use core and valence pseudo-orbitals represented in a

finite basis of spherically symmetric localized functions ψi(r,R) = 〈r|iR〉, of symmetry

index i and center R. Accordingly, each V q v
s v′ becomes a linear combination of the three-

center partial integrals:

Vq is i′(R,R
′,S) =

∫
d3r

∫
d3r′ e−iq·r ψi(r,R)

1

|r− r′|
ψ∗s(r

′,S)ψi′(r
′,R′) (A.1)

where we have chosen a unit volume in the normalization constant of the plane-wave.

In chapter 3 the Auger spectrum from a cluster of carbon atoms placed on a (10, 10) SWCNT

has been described with a basis sets of Gaussian type orbitals. With such a basis, the par-

tial integrals Vq is i′ have complicated analytical expressions that we will show in details in

section A.1. With more general basis sets the same terms are numerically demanding 6-

dimensional integrals. However, the strong localized nature of the core-orbitals allows us

to retain only the on-site contributions in Eq. (A.1), with R = R′ = S. This is because the

core-functions ψs are so sharply peaked at the core-sites S, that the off-site Vq is i′-integrals

contribute negligibly to V q v
s v′ . In section A.2, we will see how the on-site approximation let

us reduce Eq. (A.1) to 2-dimensional radial integrals that are fastly computed with both

numerical and analytical basis sets. Such an approximation has been crucial in calculating
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the Auger spectrum from a periodic (10, 10) SWCNT with the numerical basis introduced

in section 3.4.

A.1 Gaussian basis function

Carbon based materials have a ground state that includes only s and p one-electron pseudo-

orbitals. Using a Gaussian basis set, we can evaluate the partial integrals (A.1) with the

following s-type and pi-type orbitals (pi = px, py, pz):

ψζ s(r,R) =

(
2

π

)3/4

ζ3/4 e−ζ|r−R|
2

, (A.2)

ψζ pi(r,R) = 2

(
2

π

) 3
4

ζ5/4 (xi −Xi) e
−ζ|r−R|2 , (A.3)

parametrized by an exponent ζ and centered at position R. We, therefore, take a core

state ψγs, located at the site C, and begin by using two s-Gaussians for the valence basis

functions ψαsa and ψβsb , centered at positions A and B, respectively. In other terms, we

work on the partial integral

Vq αsγs βs(A,B,C) =

(
2

π

)9/4
γ3/4α3/4β3/4

V
1/2
ol

∫
d3r e−iq·r e−α|r−A|

2

×
∫
d3r′ e−γ|r

′−C|2 e−β|r
′−B|2 1

|r− r′|
,

where we have restored the volume in the normalization constant of the plane wave.

Then, we replace the Coulomb potential with the Yukawa potential, that is we make

the substitution:
1

|r− r′|
→ e−µ|r−r

′|

|r− r′|
, (A.4)

with the idea of letting the screening constant µ go to zero at the end of the integra-

tion procedure. Such a substitution allows us to Fourier transform the potential to the

momentum space, i. e., to use the representation:

e−µ|r−r
′|

|r− r′|
=

∫
d3p

2π2

eip·(r−r
′)

p2 + µ2
, (A.5)
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which leads to the Yukawa potential matrix elements

Vqµαsγs βs (A,B,C) =
25/4γ3/4α3/4β3/4

V
1/2
ol π17/4

∫
d3p

p2 + µ2

∫
d3r ei(p−q)·r e−α|r−A|

2

×
∫
d3r′ e−γ|r

′−C|2 e−β|r
′−B|2 e−ip·r

′
. (A.6)

Here, we can calculate separately the one-electron integrals

〈γsC| e−ip·̂r |βsB〉 =

(
2

π

)3/2

γ3/4β3/4

∫
d3r e−γ|r−C|

2

e−β|r−B|
2

e−ip·r

=
23/2β3/4γ3/4

(β + γ)3/2
e−

p2

4(β+γ) e−
βγ
β+γ
|B−C|2e−ip·

βB+γC
β+γ (A.7)

and

〈q|eip·̂r |αsA〉 =
α3/4

V
1/2
ol

(
2

π

)3/4 ∫
d3r ei(p−q)·r e−α|r−A|

2

(A.8)

=

(
2π

α

)3/4

e−
|p−q|2

4α
eiA·(p−q)

V
1/2
ol

, (A.9)

while we still need to perform the p-integral:

Vqµαsγs βs (A,B,C) =

∫
d3p

2π2

〈γsC| e−ip·̂r |βsB〉 〈q|eip·̂r |αsA〉
p2 + µ2

. (A.10)

By (A.7) and (A.9), this last relation can be put in the form

Vqµαsγs βs (A,B,C) = V0e
− βγ
β+γ
|B−C|2− q

2

4α
−iq·A

∫
d3p

p2 + µ2
e−ξ p

2−Z·p, (A.11)

where we have introduced the following parameters:

V0 =
25/4β3/4γ3/4

π5/4α3/4V
1/2
ol (β + γ)3/2

, ξ =
α + β + γ

4α (β + γ)
, W = A− βB + γC

β + γ
− iq

2α
. (A.12)

The integral (A.11) can be determined by using the following “trick”: we introduce the

auxiliary function:

fint(ε, µ) = V0 e
− βγ
β+γ
|B−C|2− q

2

4α
−iq·A

∫
d3p e−ξ p

2−W·p e
−ε(p2+µ2)

p2 + µ2
, (A.13)
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satisfying fint(0) = Vqµαsγs βs and fint(∞) = 0, and we write:

Vqµαsγs βs (A,B,C) = fint(0, µ)− fint(∞, µ) = −
∫ ∞

0

dε
d

dε
fint(ε, µ), (A.14)

where

d

dε
fint(ε, µ) = V0 e

− βγ
β+γ
|B−C|2− q

2

4α
−iq·A

∫
d3p e−ξ p

2−W·p

= V0 e
− βγ
β+γ
|B−C|2− q

2

4α
−iq·A π

3/2e−εµ
2

(ξ + ε)3/2
e
W2
x+W2

y+W2
z

4(ξ+ε) (A.15)

Now, the integral (A.14) can be evaluated analytically in the µ → 0 limit, yielding the
final result:

Vq αsγs βs(A,B,C) =
2V0 π2

i
√
W 2
x +W 2

y +W 2
z

e−
βγ
β+γ |B−C|2−

q2

4α−iq·Aerf

 i
√
W 2
x +W 2

y +W 2
z

2
√
ξ

 , (A.16)

where erf is the error function. In its form (A.16), the partial integral Vq αsγs βs is very useful

because it allows us to calculate any other partial integrals, in particular those involving

p-type Gaussians, without repeating the above outlined procedure. Indeed, Eqs. (A.2)

and (A.3) lead to the connection between pi and s Gaussian functions:

ψζ pi(r,R) =
1√
ζ

∂

∂Ri

ψζ s(r,R) (A.17)

that allow us to define all possible partial integrals involving p states by differentiation

of (A.16). For example, we have

Vqµαsγs βpx
(A,B,C) =

1√
β

∂

∂Bx

Vq αsγs βs(A,B,C), (A.18)

or

Vqµαpzγs βpx
(A,B,C) =

1√
βα

∂2

∂Bx∂Az
Vq αsγs βs(A,B,C), (A.19)

On site integrals are straightforwardly obtained by letting A = B = C.

A.2 Spherically symmetric basis functions

We let the core-hole be created at S = 0, and work within the on-site approximation. Due

to its spherical symmetry, each localized basis function may be factored as the product of

a radial part and an angular part, i.e., a Spherical Harmonic:

ψi(r,0) = fi(r)Ylimi (Ω) , (A.20)

108



A V q v
s v′ evaluation A.2 Spherically symmetric basis

with li and mi being usual angular momentum quantum numbers. In our case, the core

wavefunction is an s function, i. e. ls = 0 and ms = 0, then, the on-site Vq is i′-integral (A.1)

in spherical coordinates becomes:

Vq is i′ =

∫ ∞
0

dr r2 fi(r)

∫
d2ΩYlimi (Ω) e−iq·r

×
∫ ∞

0

dr′ r′2 f ∗s (r′) fi′(r
′)

∫
d2Ω′√

4π
Yli′mi′ (Ω

′)
1

|r− r′|
. (A.21)

Next, we use the well known partial waves expansions1

1

|r− r′|
=
∞∑
l′=0

l′∑
m′=−l′

4π

2l′ + 1

min(r, r′)l
′

max(r, r′)l′+1
Yl′m′ (Ω)Y ∗l′m′ (Ω

′) , (A.22)

for the Coulomb potential, and

e−iq·r = 4π
∞∑
l=0

l∑
m=−l

il jl(qr)Y
∗
lm (Ω−q)Ylm(Ω), (A.23)

for the plane wave, where jl is the spherical Bessel function of the first kind. Substituting

Eqs. (A.22) and (A.23) into Eq. (A.21), we get:

Vq is i′ =
∞∑

l,l′=0

(4π)2 il

2l′ + 1

l∑
m=−l

l′∑
m′=−l′

Y ∗lm (Ω−q) (A.24)

×
∫ ∞

0

dr r2 fi(r) jl(qr)

∫ ∞
0

dr′ r′2 f ∗s (r′) fi′(r
′)

min(r, r′)l
′

max(r, r′)l′+1

×
∫
d2ΩYlimi (Ω) Ylm(Ω)Yl′m′ (Ω)

∫
d2Ω′√

4π
Y ∗l′m′ (Ω

′) Yli′mi′ (Ω
′) .

Now, we take advantage of the orthogonality relations between the spherical Harmonics∫
d2Ω′ Y ∗l′m′ (Ω

′) Yli′mi′ (Ω
′) = δl′li′δm′mi′ (A.25)

and of the relation between the integral of the products of three spherical harmonics and
the Wigner 3-J symbol2∫

d2ΩYlimi (Ω) Ylm(Ω)Yl′m′ (Ω) =

√
(2li + 1)(2l + 1)(2l′ + 1)

4π

li l l′

0 0 0

( li l l′

mi m m′

)
(A.26)

1See for instance J. D. Jackson, Classical Electrodynamics, Wiley, 1999
2For definition and properties of the Wigner 3-J symbol see A. Messiah, Quantum Mechanics, North

Holland 1961.
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A V q v
s v′ evaluation A.2 Spherically symmetric basis

to write

Vq i
s i′ = 4π

∞∑
l=0

il

√
(2li + 1) (2l + 1)

(2li′ + 1)

li l li′

0 0 0

 INTii′ (l, q)

×
l∑

m=−l

Y ∗lm (Ω−q)

(
li l li′

mi m mi′

)
. (A.27)

Here, we used

INTii′ (l, q) =

∫ ∞
0

dr r2 fi(r) jl(qr)

∫ ∞
0

dr′ r′2 f ∗s (r′) fi′(r
′)

min(r, r′)li′

max(r, r′)li′+1
(A.28)

for the remaining double radial integral in Eq. (A.27) that can be either computed numer-

ically or evaluated analytically, depending on the particular shape of the basis function.

In both cases it is convenient to rewrite Eq. (A.28) as

INTii′ (l, q) =

∫ ∞
0

dr′ f ∗s (r′) fi′(r
′) (r′)

1−li′
∫ r′

0

dr fi(r) jl(qr) r
2+li′

+

∫ ∞
0

dr′ f ∗s (r′) fi′(r
′) (r′)

2+li′

∫ ∞
r′

dr fi(r) jl(qr) r
1−li′ . (A.29)

We observe that the result is a function of the wavevector length q and the solid angle

Ω−q, corresponding to “emission” angles θq = θ−q + π and ϕq = ϕ−q − π; moreover the

angular dependence of the final integral is relatively simple, being a linear combination of

Spherical Harmonics; this simple form allows analytical angular integration, as observed

in section 3.4.2.
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