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Abstract

The research of this thesis is part of the study of some problems in extremal com-
binatorial set theory, which are related to some aspects of the analytic number
theory. We placed these problems in the lattice theory and using classic tools we
e have obtained some results, which are related to the well-known Manickham-
Miklós-Singhi-conjecture (1988). In particular, we found the maximum and
the minimum values related to a class of multi-sets of real numbers with non-
negative sums. Moreover we builded a Boolean map for each intermediate value
between the maximum and the minimum. This Boolean map represents the
abstract form of each multi-sets.

However, the lattice theory provided a partial solution. Afterwards, with
di�erent approach, we solved a generalization of a problem of Manickam e Mik-
lós.

The last goal was to adopt analytical methods to �nd some estimates, which
come from property of graded Posets.

Any ranked poset whose largest antichain is not bigger than its maximum
level is said to possess the Sperner property, hence the Sperner property is
equivalently the property that some rank level is a maximum antichain. Many
tools have been developed by researchers to determine whether a poset has
the property of Sperner, instead there are considerably fewer techniques for
establishing if a poset has not the Sperner property. In particular, we studied
a quotient of lattice of partition of the set [n] = {1,2, . . . , n} and we estimate
how much it is `close' to be a Sperner poset.
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Sommario

L'attività di ricerca di questa tesi rientra nell'ambito dello studio di alcuni pro-
blemi di combinatoria estremale che risultano essere connessi ad alcuni aspetti
della teoria analitica dei numeri. Abbiamo collocato tali problemi nell'ambito
della teoria combinatoria dei reticoli e utilizzando gli strumenti classici di tale
teoria abbiamo ottenuto alcuni risultati, i quali sono connessi ad una congettu-
ra del 1988 di Manckam, Miklös e Singhi. Più in particolare, siamo riusciti a
determinare il massimo e il minimo valore relativi ad una certa classe di multi-
insiemi di numeri reali aventi somma non negativa. Inoltre abbiamo costruito
una particolare mappa Booleana per ogni valore intermedio tra il minimo e il
massimo. Questa mappa rappresenta la forma astratta di ciascun multi-insieme.

Tuttavia, la tecnica di collocare questi problemi nella teoria dei reticoli ha
fornito solo una soluzione parziale. Successivamente, con un approccio diverso,
abbiamo risolto una generalizzazione di un problema di Manickam e Miklós.

L'ultimo obiettivo è stato quello di applicare alcuni metodi analitici per tro-
vare delle stime che provengono da alcune proprietà relative ai Posets graduati.

Ogni Poset graduato possiede la proprietà di Sperner se l'anticatena più
larga non è più grande del livello massimo. Molti interessanti Posets nascono in
Combinatorica fornendo ai ricercatori una ricchezza di problemi. La principale
verità di questa ricerca è stata sviluppare metodi per stabilire la proprietà di
Sperner. Al contrario ci sono molte meno tecniche per stimare la grandezza di
un'anticatena massima in un Poset che non possiede la proprietà di Sperner.
In particolare, abbiamo studiato un quoziente del reticolo delle Partizioni di un
insieme stimando quanto questo si `avvicina' ad essere un Sperner Poset.
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Chapter 1

Introduction

In this thesis we study some problems in extremal combinatorial set theory,
which is a branch of extremal combinatorics. The general problem in extremal
combinatorial set theory is to start with all collections of subsets of an underlying
ground set, apply restrictions, and then ask how large or small some property
can be under those restrictions. In general extremal combinatorial set theory the
main problem is related into �nding (or estimating) the maximum or minimum
number of sets satisfying given set-theoretic or combinatorial conditions on such
sets.

In [35] the authors asked the following question:

Let n be an integer strictly greater than 1 and a1, . . . , an be real
numbers satisfying the property ∑

n
1=1 ai ≥ 0.We may ask: how many

of the subsets of the set {a1,⋯, an} will have a non-negative sum?

Following the notations of [35], the authors denote with A(n) the minimum
number of the non-negative partial sums of a sum ∑

n
i=1 ai ≥ 0, not counting the

empty sum, if we take all the possible choices of the ai's. They proved (see
Theorem 1 in [35]) that A(n) = 2n−1 and they explained as Erdös, Ko and Rado
investigated a question with an answer similar to this one:

What is the maximum number of pairwise intersecting subsets of an
n−elements set? As in their case, here also the question becomes
more di�cult if we restrict ourselves to the d−subsets.

More details about this remark can be �nd in the famous theorem of Erdös-Ko-
Rado [28] (see also [31] for an easy proof of it).
Formally, with the introduction of the positive integer d, the problem is the
following. Let In = {1,2 . . . , n} and 1 ≤ d < n be integers a function f ∶ In → R
is called an n−weight function if ∑x∈In f(x) ≥ 0.
Denote with Wn(R) the set of all the n−weight functions and set

φ(f, d) = ∣{Y ⊆ In ∶ ∣Y ∣ = d, ∑
y∈Y

f(y) ≥ 0}∣,

ψ(n, d) = min{φ(f, d) ∶ f ∈Wn(R)}.
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8 CHAPTER 1. INTRODUCTION

If f is such that f(1) = n−1, f(2) = ⋯ = f(n) = −1, it follows that ψ(n, d) ≤ (
n−1
d−1

).

In [8], Bier and Manickam proved that ψ(n, d) = (
n−1
d−1

) if n ≥ d(d−1)d(d−2)d+d4

and ψ(n, d) = (
n−1
d−1

) if d∣n.
Both the proofs use the Baranyai theorem on the factorization of complete
hypergraphs [4](see also [50] for a modern exposition of the theorem).
In [35] and [36] it was conjectured that ψ(n, d) ≥ (

n−1
d−1

) if n ≥ 4d.
In [36] this conjecture (the Manickam-Miklös-Singhi Conjecture) is set in the
more general context of the association schemes (see [3] for general references on
the subject). This conjecture is connected with the �rst invariant distribution
of the Johnson association scheme (see [8], [36], [33], [34]). The distribution
invariants were introduced by Bier [7], and later investigated in [9], [32], [33],
[36]. In [36] the authors claim that this conjecture is, in some sense, dual to
the theorem of Erdös-Ko-Rado [28]. Also, as pointed out in [43], this conjecture
settles some cases of another conjecture on multiplicative functions by Alladi,
Erdös and Vaaler, [1]. Partial results related to the Manickam-Miklös-Singhi
conjecture also have been obtained in [5], [6], [18], [19], [20] and more recently
in [2] and [49]. Bisi and Chiaselotti in [11] and [12] have discovered an interesting
lattice structure hidden behind this conjecture. They de�ned a partial order ⊑ on
the power set P(In) having the following property : if X,Y are two subsets of In
such that X ⊑ Y , then ∑i∈X ai ≤ ∑i∈Y ai, for each n-multiset {a1, . . . , an} of real
numbers such that a1 ≥ ⋯ ≥ ar ≥ 0 > ar+1 ≥ ⋯ ≥ an. This order de�nes a lattice
structure on P(In) the lattice (S(n, r),⊑). They established the connection
between the lattice S(n, r) and some combinatorial extremal sum problems
related to a conjecture of Manickam, Miklös and Singhi and they have given
an interpretation of these problems in terms of a particular class of boolean
maps de�ned on S(n, r).

In the same way Chiaselotti, Marino and Nardi studied two extremal com-
binatorial sum problems.
Let a1, . . . , ar be r non-negative real numbers and let ar+1, . . . , an be n − r neg-
ative real numbers with non-negative sum, i.e.,

r

∑
i=1

ai +
n

∑
j=r+1

aj ≥ 0.

Let γ(n, r) [η(n, r)] be the minimum [maximum] number of subsets of {a1, . . . , an}
whose element-sum is non-negative. In [21], the authors have studied the fol-
lowing two problems:

(P1) Which are the values of γ(n, r) and η(n, r) for each n and r, 0 < r ≤ n?

(P2) If q is an integer such that γ(n, r) ≤ q ≤ η(n, r), can we �nd r non-negative
real numbers a1, . . . , ar and n − r negative real numbers ar+1, . . . , an with
r

∑
i=1
ai +

n

∑
j=r+1

aj ≥ 0 such that the number of subsets of {a1, . . . , an} whose

element-sum is non-negative is exactly q?

Using a poset-formulation of the previous problems, the authors solved the
problem (P1) and they provided a partial result for (P2) showing that the
answer is a�rmative for particular class of boolean maps de�ned on S(n, r).
Afterwards Engel and Nardi [25], using a di�erent method, solved completely
the problem (P2).
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The lattice S(n, r) is distributive, graded, involutive, moreover the largest
antichain is not bigger than its maximum level, i.e. S(n, r) has the Sperner
property. Many tools have been developed by researchers to determine whether
a poset has the property of Sperner, instead there are considerably fewer tech-
niques for establishing if a poset has not the Sperner property. In the last part
of the thesis we consider a new poset and we estimate how much it is `close' to
be a Sperner poset.
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Chapter 2

Notation and terminology

The problems considered in this thesis are most conveniently formulated in terms
of partially ordered sets, or posets for short. Thus we start with discussing some
basic notions concerning posets, which are assumed to be �nite throughout this
thesis. We adopt the classical terminology and notations usually used in the
context of the partially ordered sets (see [22], [23] and [44] for the general aspects
on this subject).

2.1 Posets

De�nition 2.1.1. Let P be a set. An order (or partial order) on P is a binary
relation ≤ on P such that, for all x, y, z ∈ P ,

� x ≤ x,

� x ≤ y and y ≤ x imply x = y,

� x ≤ y and y ≤ z imply x ≤ z.

These conditions are referred to, respectively, as re�exivity, antisymmetry and
transitivity. A set P equipped with an order relation ≤ is said to be an ordered
set (or partially ordered set). Some authors use the shorthand poset. We use
x ≤ y and y ≥ x interchangeably, and write x ≰ y to mean `x ≤ y is false', and so
on. Less familiar is the symbol ∥ used to denote non-comparability: we write
x ∥ y if x ≰ y and y ≰ x.

We later deal with the construction of new ordered sets from existing ones.
There is one such construction which it is convenient to have available immedi-
ately. Let P be an ordered set and let Q be a subset of P . Then Q inherits an
ordered relation from P ; given x, y ∈ Q, x ≤ y in Q if only if x ≤ y in P . We say
in these circumstances that Q has the induced order, or, when we wish to be a
more explicit, the order inherited from P .

There is a simple way to represent small posets pictorially, for describing it
we need the following de�nition.

De�nition 2.1.2. Let P be an ordered set and let x, y ∈ P . We say x is covered
by y (or y covers x), and write x ⋖ y, if x < y and x ≤ z < y implies z = x. The
latter conditions is demanding that there be no element z of P with x < z < y.

11



12 CHAPTER 2. NOTATION AND TERMINOLOGY

Let P be an ordered set. We can represent P by a con�guration of cir-
cles (representing the elements of P ) and interconnecting lines (indicating the
covering relation). The construction goes as follows.

(1) To each point x ∈ P , associate a point p(x) of the Euclidean plane R2,
depicted by a small circle with center at p(x).

(2) For each covering pair x ⋖ y in P , take a line segment l(x, y) joining the
circle at p(x) to the circle at p(y).

(3) Carry out(1) and (2) in such a way that

1. if x ⋖ y, then p(x) is `lower' than p(y) (that is, in standard Cartesian
coordinates, has a strictly smaller second coordinate),

2. the circle at p(z) does not intersect the line segment l(x, y) if z ≠ x
and z ≠ y.

A con�guration satisfying (1)-(2)-(3) is called a diagram (or Hasse diagram) of
P .
The following �gure shows two alternative diagrams for the ordered set P =

{a, b, c, d} in which a < c; a < d; b < c and b < d. (When we specify an ordered
set by a set of inequalities in this way, it is to be understood that no other pairs
of distinct elements are comparable.)

a

c

b

d

a

b
c d

De�nition 2.1.3. For a poset P with cardinality ∣P ∣ = n. The incidence matrix
of P is a n × n matrix M such that

M(x, y) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if x ≤ y

0 otherwise
.

We need to be able to recognize when two ordered sets, P and Q, are `es-
sentially the same'.

De�nition 2.1.4. We say that P and Q are (order) isomorphic, and write
P ≅ Q, if there exists a map ϕ from P onto Q such that x ≤ y in P if and only
if ϕ(x) ≤ ϕ(y) in Q. Then ϕ is called an order-isomorphism.

Such a map ϕ faithfully mirrors the order structure. It is necessarily bi-
jective. On the other hand, not every bijective map between ordered sets is
an order-isomorphism: consider, for example, P = Q = 2 and de�ne ϕ by
ϕ(0) = 1, ϕ(1) = 0. Thus one can think that two posets are isomorphic if
they di�er only in the names of their elements. This is exactly analogous to
the notion of isomorphism of groups, rings, etc. It is an instructive exercise to
draw Hasse diagrams of the one poset of order (number of elements) one (up to
isomorphism), the two posets of order two, the �ve posets of order three, and
the sixteen posets of order four.

Structure-preserving maps are considered more generally.

De�nition 2.1.5. Let P and Q be ordered sets. A map φ ∶ P → Q is said to be
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(i) order-preserving (or, alternatively, monotone) if x ≤ y in P implies φ(x) ≤
φ(y) in Q;

(ii) order-embedding (and we write φ ∶ P ↪ Q) if x ≤ y in P if and only if
φ(x) ≤ φ(y) in Q;

(iii) order-isomorphism if it is order-embedding which maps P onto Q

There are some ways of constructing new ordered sets from existing ones.
For example, given any ordered set P we can form a new ordered set P ∂ (the
dual of P ) by de�ning x ≤ y to hold in P ∂ if and only if y ≤ x holds in P. For P
�nite, we obtain a diagram for P ∂ simply by `turning upside down' a diagram
for P .

Now, we introduce some important special elements.

De�nition 2.1.6. We say P has a bottom element if there exists ⊥∈ P (called
bottom) with the property that ⊥≤ x for all x ∈ P . Dually, P has top element if
there exists ⊺ ∈ P such that x ≤ ⊺ for all x ∈ P .

De�nition 2.1.7. Let P be an ordered set and Q ⊆ P .Then a ∈ P is a maximal
element of Q if a ≤ x and x ∈ Q imply a = x. We denote the set of maximal
elements of Q by MaxQ. If Q (with the order inherited from P ) has top element,
⊺Q, then MaxQ = {⊺Q}; in this case ⊺Q is called greatest (or maximum) element
of Q, and we write ⊺Q = maxQ. A minimal element of Q ⊆ P and minQ, the
least (or minimun) element of Q (when these exist) are de�ned dually, that is
by reversing the order.

There are several di�erent ways to join two ordered sets together.

De�nition 2.1.8. Let P1, . . . , Pn be ordered sets. The Cartesian product P1×
. . . × Pn can be made into an ordered set by imposing the coordinatewise order
de�ned by

(x1, . . . , xn) ≤ (y1, . . . , yn)⇐⇒ (∀i) xi ≤ yi in Pi

Given an ordered set P , the notation Pn is used as shorthand for the n-fold
product P × . . . P .

Associated with any ordered set are two important families of sets. They
play a central role in our results.

De�nition 2.1.9. Let P be an ordered set and Q ⊆ P .

(i) Q is a down set (alternative terms include decreasing set and order ideal)
if, whenever x ∈ Q, y ∈ P and y ≤ x, we have y ∈ Q.

(ii) Dually,Q is a up set (alternative terms include increasing set and order
�lter) if, whenever x ∈ Q, y ∈ P and x ≤ y, we have y ∈ Q.

Given an arbitrary subset Q of P and x ∈ P , we de�ne

↓ Q ∶= {y ∈ P ∣(∃x ∈ Q)y ≤ x} and ↑ Q ∶= {y ∈ P ∣(∃x ∈ Q)y ≥ x},

↓ x ∶= {y ∈ P ∣y ≤ x} and ↑ x ∶= {y ∈ P ∣y ≥ x}.

These are read `down Q', etc. It is easily checked that ↓ Q is the smallest down-
set containing Q. and that Q is a down-set if and only if Q =↓ Q, and dually
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for ↑ Q. Clearly ↓ {x} =↓ x, and dually. Down-sets(upsets) of the form ↓ x (↑ x)
are called principal.

A chain C in a poset is a totally ordered subset of P , i.e., for all x, y ∈ P ,
either x ≤ y or y ≤ x. Let P be an ordered set.

(i) If C = {c0, c1, . . . cn} is a �nite chain in P with ∣C ∣ = n + 1, then we say
that the length of C is n.

(ii) P is said to have length n, written l(P ) = n, if the length of the longest
chain in P is n.

(iii) P is of �nite length if it is length n for some n ∈ N0.

(iv) P has no in�nite chain if every chain in P is �nite.

(v) A chain is called saturated if it has the form C = (c0 ⋖ . . . ⋖ ch), and
it is called maximal if, in addition, co and ch are minimal and maximal
elements of P , respectively.

At opposite extreme from a chain is an antichain. The ordered set P is a
antichain for x, y ∈ P if x ≤ y only if x = y. Subsets of a poset will often be
called families too (motivated by families od subsets of a set). Antichains are
also called Sperner families. A k-family is a family in P containing no chain of
k + 1 elements in P , thus a 1-family is an antichain.

A rank function of a poset P is a function r from P into the set N of all
natural numbers such r(p) = 0 for a minimal element p of P and p ⋖ q implies
r(q) = r(p) + 1. A ranked poset is a poset with a rank function. If in a ranked
poset every minimal element has rank 0 and every maximal element has the
same rank, we speak of a graded poset. The number r(P ) ∶= max{r(p) ∶ p ∈ P}

is called the rank of P. If P is a �nite poset, equivalently we say that the poset
P is graded of rank n if every maximal chain has length n. If r(P ) <∞ the dual
of a ranked poset P is ranked.

The product of two ranked posets P, Q is de�ned to be the poset P × Q
together with the rank function rP×Q given by rP×Q(p, q) ∶= rP (p) + rQ(q). For
a ranked poset P , we de�ne the i th level by Ni(P ) ∶= {p ∈ P r(p) = i}; its size
Wi(P ) ∶= ∣Ni(P )∣ is called the i th Whitney number, i = 0, . . . , r(P ) (when there
is no danger of ambiguity, we write brie�y Ni and Wi). It is useful to de�ne
Ni ∶= ∅ and Wi ∶= 0 if i ∉ {0, . . . , r(P )}. Obviously, each level of a ranked poset
is an antichain, and the union of k levels is a k-family.

Given a group G of automorphisms of a poset P , a nonempty subset A of P
is called an orbit if for all p, q ∈ A there is some φ ∈ G such that φ(p) = q and if
A is maximal with respect to this property. It is easy to see that union of all
orbits is a partition of P . Now the quotient of P under G (denoted by P /G) is
the poset of all orbits ordered in the following way: A ≤ B in P /G if there exist
a ∈ A, b ∈ B such that a ≤ b in P .

The rank-generating function F (P ;x) of a ranked poset is de�ned by F (P ;x) ∶=

∑p∈P x
r(p) = ∑

r(P )

i=0 Wix
i. It is easy to see that F (P ×Q;x) = F (P ;x)F (Q,x) if

P and Q are ranked.
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2.2 Lattices

Many important properties of an ordered set P are expressed in terms of the
existence of certain upper bounds or lower bounds of subsets of P . Two of
the most important classes of ordered set de�ned in this way are lattices and
complete lattices.

De�nition 2.2.1. Let P be an ordered set and let S ⊆ P . An element x ∈ P is
an upper bound of S if s ≤ x for all s ∈ S. A lower bound is de�ned dually. The
set of all upper bounds of S is denoted by Su:

Su ∶= {x ∈ P ∣(∀s ∈ S)s ≤ x} and Sl ∶= {x ∈ P ∣(∀s ∈ S)s ≥ x}

Since ≤ is transitive, Su is always an up-set and Sl a down-set. If Su has a least
element x, then x is called the least upper bound of S. Equivalently, x is the
least upper bound of S if

(i) x is an upper bound of S, and

(ii) x ≤ y for all upper bounds y of S.

The least upper bound of S exists if and only if there exists x ∈ P such that

(∀y ∈ P )[((∀s ∈ S)s ≤ y)⇐⇒ x ≤ y]

and this characterizes the least upper bound of S. This way of presenting the
De�nition is slicker, but is less transparent until the two-step version has been
fully mastered.

Dually, if Sl has a greatest element, x, then x is called the greatest lower
bound of S. Since least elements and greatest elements are unique, least upper
bounds and greatest lower bounds are unique when they exist. The last upper
bound of S is also called supremum of S and is denoted by supS; the greatest
lower bound of S is also called the in�mum of S and is denoted by infS. It is
easily seen that if P has a top element ⊺, then Pu = {⊺} in which case supP = ⊺.
By duality, infP =⊥ whenever P has a bottom element.

Looking ahead, we shall adopt the following notation: we write x ∨ y (read
as `x join y') in place of sup{x, y} when it exists and x ∧ y (read as `x meet y')
in place of inf{x, y} when it exists. Similarly, we write ⋁S (the `join of S') and

⋀S (the `meet of S') instead of supS and inf S when these exist. It is sometimes
necessary to indicate that the join or meet is being found in a particular ordered
set P , which case we write ⋁P S or ⋀P S.

We shall be particularly interested in ordered sets in which x ∨ y and x ∧ y
exist for all x, y ∈ P .

De�nition 2.2.2. Let P be a non-empty ordered set.

(i) If x ∨ y and x ∧ y exist for all x, y ∈ P , then P is called a lattice.

(ii) if ⋁S and ⋀S exist for all S ⊆ P , then P is called a complete lattice.

Given a lattice L, we may de�ne binary operations join and meet on the non-
empty set L by

a ∨ b ∶= sup{a, b} and a ∧ b ∶= inf{a, b} (a, b ∈ L).
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We view a lattice as an algebraic structure ⟨L;∨,∧⟩ and explore the properties
of these binary operations. We amplify the connection between ∨,∧, and ≤ using
the following results (see [22] for a proof).

Lemma 2.2.3. Let L be a lattice and let a, b ∈ L. Then the following are
equivalent:

(i) a ≤ b;

(ii) a ∨ b = b;

(iii) a ∧ b = a.

Theorem 2.2.4. Let L be a lattice. Then ∨ and ∧ satisfy, for all a, b, c ∈ L,

(L1) (a ∨ b) ∨ c = a ∨ (b ∨ c) (associative laws)
(L1)∂ (a ∧ b) ∧ c = a ∧ (b ∧ c)

(L2) a ∨ b = b ∨ a (commutative laws)
(L2)∂ a ∧ b = b ∧ a

(L3) a ∨ a = a (idempotency laws)
(L3)∂ a ∧ a = a

(L4) a ∨ (a ∧ b) = a (absorption laws)
(L4)∂ a ∧ (a ∨ b) = a

We can derive new lattice from existing ones.

De�nition 2.2.5. Let L be a lattice and ∅ ≠M ⊆ L. Then M is a sublattice of
L if

a, b ∈M implies a ∨ b ∈M and a ∧ b ∈M.

De�nition 2.2.6. Let L and K be lattices. De�ne ∨ and ∧ coordinate-wise on
L ×K, as follows:

(l1, k1) ∨ (l2, k2) = (l1 ∨ l2, k1 ∨ k2),

(l1, k1) ∧ (l2, k2) = (l1 ∧ l2, k1 ∧ k2).

It is routine to check that L×K satis�es the identities (L1)-(L4)∂ and therefore
is a lattice.

There are important lattices which satisfy additional identities.

De�nition 2.2.7. Let L be a lattice.

(i) L is said to be a distributive if it satis�es the distributive law,

(∀a, b, c ∈ L) a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

(ii) L is said to be a modular if it satis�es the modular law,

(∀a, b, c ∈ L) a ≥ cÔ⇒ a ∧ (b ∨ c) = (a ∧ b) ∨ c.

Proposition 2.2.8. Every distributive lattice is modular.

Proof. Let L be a distributive lattice, then (∀a, b, c ∈ L) a ∧ (b ∨ c) = (a ∧ b) ∨
(a ∧ c). If a ≥ c we have a ∧ c = c, thus a ∧ (b ∨ c) = (a ∧ b) ∨ c.
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2.3 Sequences

A sequence of nonnegative real numbers {an} is called unimodal if there is a
number h such that ai ≤ ai+1 for i < h and ai ≥ ai+1 if i ≥ h. It is called
logarithmically concave (or log concave) if a2i ≥ ai−1ai+1 for all i. For a �nite
sequence (a0, . . . , an), we say that it is symmetric if ai = an−i for all i. If the
Whitney numbers of P are unimodal (resp. symmetric), then P is said to be a
rank unimodal (resp. rank symmetric).

If {an} and {bn} are two in�nite sequences of real numbers, the following
notations for n → ∞ are well known: an ∼ bn if limn→∞

an
bn

= 1; an = O(bn) if

there exists some c ∈ (R) such that ∣an∣ ≤ c∣bn∣ for all n; an = o(bn) if limn→∞
an
bn

=

0 and an ⪯ bn if an ≤ bn(1 + o(1)).
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Chapter 3

The Lattice S(n, r)

Bisi and Chiaselotti [11] have built a family of lattices related to some combina-
torial extremal sum problems and we studied the main properties of this family
of lattices.

Let n, r be two �xed integers such that 0 ≤ r ≤ n and let In = {1,2 . . . , n}.
In the �rst part of this chapter (section 3.1) we de�ne a partial order ⊑ on the
power set P(In) having the following property : if X,Y are two subsets of In
such that X ⊑ Y , then ∑i∈X ai ≤ ∑i∈Y ai, for each n-multiset {a1, . . . , an} of real
numbers such that a1 ≥ ⋯ ≥ ar ≥ 0 > ar+1 ≥ ⋯ ≥ an. This order de�nes a lattice
structure on P(In) that we will denote by (S(n, r),⊑). We show as this lattice
is distributive, graded (section 3.2), involutive (section 3.3), i.e. X ⊑ Y implies
Y c ⊑ Xc and a recursive formula to count the number of its elements having
�xed rank (section 3.4).

3.1 A new lattice

Let n and r be two �xed integers such that 0 ≤ r ≤ n. We denote by A(n, r)
an alphabet composed by the following (n + 1) formal symbols: 1̃, . . . , r̃, 0�,
1, . . . , n − r. We introduce on A(n, r) the following total order:

n − r ≺ ⋯ ≺ 2 ≺ 1 ≺ 0� ≺ 1̃ ≺ 2̃ ≺ ⋯ ≺ r̃ (3.1)

where n − r is the minimal element and r̃ is the maximal element in this chain.
If i, j ∈ A(n, r), then we shall write : i ⪯ j for i = j or i ≺ j; i⋏j for the minimum
and i ⋎ j for the maximum between i and j with respect to ⪯; i ⋖ j if j covers i
with respect to ⪯; j ≻ i for i ≺ j; j ⪰ i for i ⪯ j. We shall denote by (C(n, r),⊑)
the n-fold cartesian product poset A(n, r)n. An arbitrary element of C(n, r)
can be identi�ed with an n-string t1⋯tn where ti ∈ A(n, r) for all i = 1, . . . , n.
Therefore, if t1⋯tn and s1⋯sn are two strings of C(n, r), we have

t1⋯tn ⊑ s1⋯sn ⇐⇒ t1 ⪯ s1, . . . , tn ⪯ sn.

We introduce now a particular subset S(n, r) of C(n, r). We denote by
S(n, r) the set of all the formal expressions i1⋯ir ∣j1⋯jn−r (hereafter called
strings) that satisfy the following properties:

19
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i) i1, . . . , ir ∈ {1̃, . . . , r̃,0�},

ii) j1, . . . , jn−r ∈ {1, . . . , n − r,0�},

iii) i1 ⪰ ⋯ ⪰ ir ⪰ 0� ⪰ j1 ⪰ ⋯ ⪰ jn−r,

iv) the unique element which can be repeated is 0�.

In the sequel we often use the lowercase letters u,w, z, ... to denote a generic
string in S(n, r). Moreover to make smoother reading, in the numerical exam-
ples the formal symbols which appear in a string will be written without ˜ ¯
and � ; in such way the vertical bar ∣ will indicate that the symbols on the
left of ∣ are in {1̃, . . . , r̃,0�} and the symbols on the right of ∣ are elements in
{0�,1, . . . , n − r}.

Example 3.1.1. a) If n = 3 and r = 2, then A(3,2) = {2̃ ≻ 1̃ ≻ 0� ≻ 1} and
S(3,2) = {21∣0, 21∣1, 10∣0, 20∣0, 10∣1, 20∣1, 00∣1, 00∣0}.

b) If n = 3 and r = 0, then A(3,0) = {0� ≻ 1 ≻ 2 ≻ 3} and S(3,0) =

{∣123, ∣023, ∣013, ∣012, ∣003, ∣002, ∣001, ∣000}.

c) If n = 3 and r = 3, then A(3,3) = {3̃ ≻ 2̃ ≻ 1̃ ≻ 0�} and S(3,3) =

{000∣, 300∣, 200∣, 100∣, 320∣, 310∣, 210∣, 321∣}.

d) If n = 3 and r = 1, then A(3,1) = {1̃ ≻ 0� ≻ 1 ≻ 2} and S(3,1) =

{0∣12, 0∣02, 0∣01, 0∣00, 1∣02, 1∣01, 1∣12, 1∣00}.

e) If n = 0 and r = 0, then S(0,0) will be identi�ed with a singleton Γ
corresponding to ∣ without symbols.

f) S(1,0) = {1∣, 0∣}, S(0,1) = {∣1, ∣0}.
◻

In the following, S(n, r) will be considered as sub-poset of C(n, r) with
the induced order from ⊑ after the restriction to S(n, r). Therefore, if w =

i1⋯ir ∣j1⋯jn−r and w′ = i
′
1⋯i

′
r ∣j

′
1⋯j

′
n−r are two strings in S(n, r), by de�nition

of induced order we have

w ⊑ w′
⇐⇒ i1 ⪯ i

′
1, . . . , ir ⪯ i

′
r, j1 ⪯ j

′
1, . . . , jn−r ⪯ j

′
n−r.

As it is well known, (C(n, r),⊑) is a distributive lattice whose binary opera-
tions of inf and sup are given respectively by (t1⋯tn)∧(s1⋯sn) = (t1⋏s1)⋯(tn⋏
sn), and (t1⋯tn) ∨ (s1⋯sn) = (t1 ⋎ s1)⋯(tn ⋎ sn).

Example 3.1.2. If n = 7 and r = 4, and if w1 = 4310∣023, and w2 = 2100∣012,
are two elements of S(7,4), then w1 ∧w2 = 2100∣023, and w1 ∨w2 = 4310∣012.
If n = 8 and r = 5, and if w1 = 00000∣001, and w2 = 10000∣003, are two elements
of S(8,5), then w3 ∧w4 = 00000∣003, and w3 ∨w4 = 10000∣001. ◻

In general, if w1,w2 ∈ S(n, r), then it is trivial to verify that w1∧w2 ∈ S(n, r)
and w1 ∨w2 ∈ S(n, r). Therefore the following Proposition holds:

Proposition 3.1.3. (S(n, r),⊑) is a distributive lattice.

Proof. (C(n, r),⊑) is a distributive lattice and S(n, r) is closed respect to ∧ and
∨. Hence S(n, r) is a distributive sublattice of C(n, r).
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De�nition 3.1.4. If w1,w2 ∈ S(n, r), then

i) w1 ⊏ w2 if w1 ⊑ w2 and w1 ≠ w2;

ii) w1 ⋖ w2 if w2 covers w1 with respect to the order ⊑ in S(n, r) (i.e. if
w1 ⊏ w2 and there does not exist w ∈ S(n, r) such that w1 ⊏ w ⊏ w2);

iii) w1 ê w2 if w2 does not cover w1 with respect to the order ⊑ in S(n, r).

The minimal element of S(n, r) is the string 0⋯0∣12⋯(n − r) and the maxi-
mal element is r(r − 1)⋯1∣0⋯0. Sometimes they are denoted respectively with
0̂ and 1̂. Note that there is a natural bijective set-correspondence ∗ ∶ w ∈

S(n, r) ↦ w∗ ∈ P(I(n, r)) between S(n, r) and P(I(n, r)) de�ned as follows:
if w = i1⋯ir ∣j1⋯jn−r ∈ S(n, r) then w∗ is the subset of I(n, r) made with the
elements ik and jl such that ik ≠ 0� and jl ≠ 0�. For example, if w = 4310∣013 ∈

S(7,4), then w∗ = {1̃, 3̃, 4̃,1,3}. In particular, if w = 0⋯0∣0⋯0 then w∗ = ∅.

The lattice (S(n, r),⊑) has the following unary complementary operation
c: (p1⋯pk0⋯0∣0⋯0q1⋯ql)

c = p′1⋯p
′
r−k0⋯0∣0⋯0q′1⋯q

′
n−r−l, where {p′1, . . . , p

′
r−k} is

the complement of {p1, . . . , pk} in {1̃, . . . , r̃}, and {q′1, . . . , q
′
n−r−l} is the com-

plement of {q1, . . . , ql} in {1, . . . , n − r} (for example, in S(7,4), we have that
(4310∣001)c = 2000∣023).

3.2 Fundamental Properties of the Lattice S(n, r)
The Hasse diagrams of the lattices S(n, r) for the �rst values of n and r are
reported in Figure 3.1.

Proposition 3.2.1. If 0 ≤ r ≤ n, then S(n, r) ≅ S(r, r) × S(n − r,0).

Proof. Let (wP ,wN) ∈ S(r, r)×S(n−r,0), with wP = i1⋯ir ∣ and wN = ∣j1⋯jn−r,
where i1, . . . , ir ∈ {1̃, 2̃, . . . , r̃,0�} and j1, . . . , jn−r ∈ {0�,1,2, . . . , n − r}. We set
ϕ(wP ,wN) = i1⋯ir ∣j1⋯jn−r. It is easy to verify that ϕ is an isomorphism be-
tween S(r, r) × S(n − r,0) and S(n, r).

Proposition 3.2.2. Let w = l1⋯ln, w
′ = l

′
1⋯l

′
n be two strings in S(n, r). Then:

w ⋖ w′ if and only if w and w′ di�er between them only in one place k, where
lk ⋖ l

′
k.

Proof. (⇒) By contradiction, we distinguish two cases:

Case 1. there exists a place k such that lk ≠ l
′
k and lk ê l

′
k. Since by hypothesis

w ⋖ w′, we have w ⊏ w′; therefore it must be lk ≺ l
′
k. This implies that

lk ≺ l ≺ l
′
k

for some l ∈ A(n, r). Hence the string wl = l1⋯lk−1lklk+1⋯ln is such that w ⊏

wl ⊏ w
′; against the hypothesis.
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S(0,0) ∶

0∣

S(1,1) ∶ 1∣

∣1

S(1,0) ∶ ∣0

00∣

10∣

20∣

S(2,2) ∶ 21∣

0∣1

1∣10∣0

S(2,1) ∶
1∣0

∣12

∣02

∣01

S(2,0) ∶ ∣00

000∣

100∣

200∣

210∣

310∣

320∣

300∣

S(3,3) ∶ 321∣

00∣1

00∣0

10∣1
20∣1

20∣0

21∣1

21∣0

S(3,2) ∶ 10∣0

0∣12

1∣12

0∣02
0∣01

1∣01

0∣00

1∣00

S(3,1) ∶ 1∣02

∣123

∣023

∣013

∣003

∣002

∣001

∣012

S(3,0) ∶ ∣000

Figure 3.1: Hasse diagrams of the lattices S(n, r) for the �rst values of n and r.
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Case 2. there exist at least two places k and s, with s > k, such that lk ⋖ l
′
k

and ls ⋖ l
′
s. Then, if we consider the string:

u = l1⋯lk−1lklk+1⋯ls−1l
′
sls+1⋯ln,

it follows that w ⊏ u ⊏ w′; against the hypothesis.
(⇐) From the hypothesis we have that w ⊏ w′. Suppose that the thesis is false,

then there exists an element w′′ ∈ S(n, r) such that w ⊏ w′′ ⊏ w′. Let w′′ = l
′′
1⋯l

′′
n.

Then
li = l

′′
i = l

′
i

if i ≠ k, and lk ≺ l
′′
k ≺ l

′
k, and hence lk ê l

′
k ; against the hypothesis.

We de�ne now the function ρ ∶ S(n, r) → N0 as follows: If w ∈ S(n, r) and
we consider the symbols i1, . . . , ir, j1, . . . , jn−r as non-negative integers (without
˜and )̄, then we set

ρ(w) = i1 +⋯ + ir + ∣j1 − 1∣ +⋯ + ∣jn−r − (n − r)∣
= i1 +⋯ + ir + (1 − j1) +⋯ + ((n − r) − jn−r).

Proposition 3.2.3. The function ρ satis�es the following two properties:

i) ρ(0̂) = 0;

ii) if w,w′ ∈ S(n, r) and w ⋖ w′, then ρ(w′) = ρ(w) + 1.

Proof. i) Since 0̂ = 0⋯0∣12⋯(n − r), the thesis follows by the de�nition of ρ.

ii) If (w = l1⋯ln) ⋖ (w′ = l
′
1⋯l

′
n) , by Proposition 3.2.2 we have that lt ⋖ l

′
t for

some t ∈ {1, . . . , n} and lk = l
′
k in all the other places k ≠ t.

We distinguish di�erent cases:

Case 1. Suppose that 1 ≤ t ≤ r and lt ≻ 0�. In this case we have that w =

l1⋯lt−1ltlt+1⋯lr ∣lr+1⋯ln and w′ = l1⋯lt−1(lt + 1)lt+1⋯lr ∣ lr+1⋯ln. Hence ρ(w
′) =

l1 +⋯+ lt−1 +(lt +1)+ lt+1 +⋯+ lr +∑
n−r
k=1(k− lr+k) = ∑

r
k=1 lk +∑

n−r
k=1(k− lr+k)+1 =

ρ(w) + 1.

Case 2. Suppose that 1 ≤ t ≤ r and lt = 0�. In this case we have that l′t = 1,
hence w = l1⋯lt−100⋯0∣lr+1⋯ln and w′ = l1⋯lt−110⋯0∣lr+1⋯ln, from which it
holds that ρ(w′) = ρ(w) + 1.

Case 3. Suppose that (r + 1) ≤ t ≤ n and that lt = 0�. In this case we have
a contradiction because there does not exist an element l′t in {0�,1, . . . , n − r}
which covers 0�.

Case 4. Suppose that (r + 1) ≤ t ≤ n and that lt ≺ 0�; since we consider
lt as an integer, it means that 1 ≤ lt ≤ (n − r). In this case we have that
w = l1⋯lr ∣lr+1⋯lt−1ltlt+1⋯ln and w′ = l1⋯lr ∣lr+1⋯lt−1(lt − 1)lt+1⋯ln. Therefore
ρ(w′) = ∑

r
i=1 li+∑

n−r
k=1,k≠t−r(k−lr+k)+[(t−r)−(lt−1)] = ∑

r
i=1 li+∑

n−r
k=1(k−lr+k)+1 =

ρ(w) + 1.
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Proposition 3.2.4. S(n, r) is a graded lattice having rank R(n, r) = (
r+1
2
) +

(
n−r+1

2
) and its rank function coincides with ρ.

Proof. A �nite distributive lattice is also graded, therefore S(n, r) is also graded.
In order to calculate the rank of S(n, r) we need to determine a maximal chain
and its length. We consider the following chain C in S(n, r) ∶

1̂ = r(r − 1)⋯21∣00⋯0
1 string with r elements
di�erent from 0 on the left of ∣

⋮
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

r(r − 1)(r − 2)0⋯0∣00⋯0
⋮

r(r − 1)10⋯0∣00⋯0

(r-2) strings with 3 elements
di�erent from 0 on the left of ∣

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

r(r − 1)0⋯0∣00⋯0
⋮

r10⋯0∣00⋯0

(r-1) strings with 2 elements
di�erent from 0 on the left of ∣

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

r0⋯0∣00⋯0
⋮

10⋯0∣00⋯0

r strings with 1 element
di�erent from 0 on the left of ∣

00⋯0∣00⋯0

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

00⋯0∣00⋯1
⋮

00⋯0∣00⋯(n − r)

(n-r) strings with 1 element
di�erent from 0 on the right of ∣

⋮
⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

00⋯0∣001(4⋯(n − r))
00⋯0∣002(4⋯(n − r))
00⋯0∣003(4⋯(n − r))

3 strings with (n-r-2) elements
di�erent from 0 on the right of ∣

{
00⋯0∣01(34⋯(n − r))
00⋯0∣02(34⋯(n − r))

2 strings with (n-r-1) elements
di�erent from 0 on the right of ∣

0̂ = 00⋯00∣(12⋯(n − r))
1 string with (n-r) elements
di�erent from 0 on the right of ∣

Therefore C has exactly (1 + 2 + ⋯ + (r − 1) + r) + 1 + (1 + 2 + ⋯ + (n − r)) =
r(r+1)

2
+

(n−r+1)(n−r)
2

+ 1 = (
r+1
2
) + (

n−r+1
2

) + 1 elements and hence the length

of C is (
r+1
2
) + (

n−r+1
2

) + 1. By Proposition 3.2.2, each element of the chain
covers the previous one with respect to the order ⊑ in S(n, r). Furthermore, C
has minimal element 0̂ (the minimum of S(n, r)) and maximal element 1̂ (the
maximum of S(n, r)), hence C is a maximal chain in S(n, r). Finally, since
S(n, r) is a graded lattice of rank R(n, r) and it has 0̂ as minimal element, its
rank function has to be the unique function de�ned on S(n, r) and with values
in {0,1, . . .R(n, r)} which satis�es the i) and ii) of Proposition 3.2.3. Hence
such a function coincides with ρ, by the uniqueness property.

The following Proposition shows that w and wc are symmetric in the Hasse
diagram of S(n, r).

Proposition 3.2.5. If w ∈ S(n, r), then ρ(w) + ρ(wc) = R(n, r).
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Proof. Let w = i1⋯ir ∣j1⋯jn−r and wc = i
′
1⋯i

′
r ∣j

′
1⋯j

′
n−r. Then ρ(w) + ρ(wc) =

∑
r
k=1 ik +∑

n−r
k=1(k − jk) +∑

r
k=1 i

′
k +∑

n−r
k=1(k − j

′
k). By de�nition of wc in S(n, r),

it follows that ∑
r
k=1 ik +∑

r
k=1 i

′
k = ∑

r
k=1 k and ∑

n−r
k=1 jk +∑

n−r
k=1 j

′
k = ∑

n−r
k=1 k. Hence

ρ(w) + ρ(wc) = ∑
r
k=1 k + 2∑

n−r
k=1 k −∑

n−r
k=1 k = ∑

r
k=1 k +∑

n−r
k=1 k = (

r+1
2
) + (

n−r+1
2

) =

R(n, r).

3.3 Involutive property of S(n, r)
In general, (S(n, r),⊑) is not a Boolean lattice. For example, if we take w =

54210∣012 ∈ S(8,5), it is easy to verify that there does not exist an element
w′ ∈ S(8,5) such that w ∧ w′ = 0̂ and w ∨ w′ = 1̂. In this section we will prove
that the function w ∈ S(n, r) ↦ wc ∈ S(n, r) is involutive with respect to the
order ⊑, in the sense that if w1 ⊑ w2, then w

c
2 ⊑ w

c
1.

Proposition 3.3.1. Let w,w′ ∈ S(n, r) be such that w′ ⋖ w then wc ⋖ (w′)c

Proof. The proof is structured in four distinct cases.

Case 1. Let w and w′ be distinct in the following way:

w = i1⋯ir−s−110⋯0∣⋯

w′
= i1⋯ir−s−100⋯0∣⋯,

where i1 ≻ ⋯ ≻ ir−s−1 ≻ 1̃.
Consider now (w∗)π and ((w′)∗)π : they are two elements of P(A(n, r)∖{0�}).
In (w∗)π there are (s) elements of A(n, r) ≻ 0� and in ((w′)∗)π there are (s+1)
elements of A(n, r) ≻ 0�. Furthermore, 1̃ ∈ ((w′)∗)π and 1̃ ∉ (w∗)π, hence the
symmetric di�erence between (w∗)π and ((w′)∗)π is equal to {1̃}. From this, it
follows that:

(w′
)
c
= ((w′)∗)π = t1⋯ts10⋯0∣⋯

wc = (w∗)π = t1⋯ts00⋯0∣⋯,

where {t1, . . . , ts, 1̃} = {i1, . . . , ir−s−1,1, . . . , n − r}
c in A(n, r)∖{0�} and t1 ≻ ⋯ ≻

ts ≻ 1̃. By Proposition 3.2.2, it follows that (w′)c covers wc.

Case 2. Adaptation of Case 1 to the elements on the right of ∣.

Case 3. Let k be the index in which w and w′ are distinct,1 ≤ k ≤ r, then:

w = i1⋯ik−1(ik + 1)ik+1⋯ip0⋯0∣⋯

w′
= i1⋯ik−1ikik+1⋯ip0⋯0∣⋯,

with i1 ≻ ⋯ ≻ ik−1 ≻ ik + 1 ≻ ik ≻ ik+1 ≻ ⋯ ≻ ip ≻ 0�.
Then, in (w∗)π there are exactly q = (r−p) elements ≻ 0� and in ((w′)∗)π there
are also q = (r−p) elements ≻ 0�. Moreover, it follows that ik ∈ (w∗)π ∖((w′)∗)π

and ik+1 ∈ ((w′)∗)π ∖(w∗)π, hence the symmetric di�erence between (w∗)π and
((w′)∗)π is equal to {ik, ik+1}. From this, it follows that:

(w′
)
c
= ((w′)∗)π ∶ t1⋯tl−1(ik + 1)tl+1⋯tq0⋯0∣⋯
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wc = (w∗)π ∶ t1⋯tm−1iktm+1⋯tq0⋯0∣⋯,

where ik + 1 appears in the l−th place (1 ≤ l ≤ r) in (w′)c and ik appears in the
m−th place (1 ≤m ≤ r) in wc, with

{t1, . . . tl−1, tl+1, . . . , tq} = {t1, . . . tm−1, tm+1, . . . , tq}, (3.2)

where {t1, . . . , tq} = {i1, . . . ik, ik + 1, ik+1, . . . , ip,1, . . . n − r}
π in A(n, r) ∖ {0�}.

We prove now that the place l coincides with the place m. Let t ∈ {tl+1, . . . , tq}
and suppose by contradiction that t ∉ {tm+1, . . . , tq}. By (3.2) it follows that
t ∈ {t1, . . . , tm−1}, hence we will have ik+1 ≻ t and t ≻ ik, and hence ik+1 ≻ t ≻ ik
in A(n, r) and this contradicts ik ⋖ (ik + 1).
Let now t ∈ {t1, . . . , tm−1}. Suppose by contradiction that t ∉ {t1, . . . , tl−1}. By
(3.2) it follows that t ∈ {tl+1, . . . , tq}, hence we will have t ≻ ik and ik + 1 ≻ t, by
which ik +1 ≻ t ≻ ik, and this contradicts ik ⊢ ik +1. By (3.2) hence follows that
m = l, and this proves that wc ⋖ (w′)c.

Case 4. Analogously to Case 3 with k such that r + 1 ≤ k ≤ n.

Proposition 3.3.2. If w,w′ ∈ S(n, r) are such that w′ ⊑ w, then wc ⊑ (w′)c.

Proof. It is enough to consider a sequence of elements w0,w1, . . . ,wn such that
w′ = w0 ⊑ w1 ⊑ ⋯ ⊑ wn−1 ⊑ wn = w where wi covers wi−1 for i = 1, . . . , n and
apply Proposition 3.3.1 to wi−1 ⋖ wi.

In general, a poset P = (P,≤) is called an involution poset if there exists a
map ′ ∶ P → P such that (i) (x′)′ = x and (ii) x ≤ y, then y′ ≤ x′ for all x, y ∈ P .
Hence by Proposition 3.3.1 and 3.3.2, (S(n, r),⊑,c , 0̂, 1̂) is an involutive and
distributive bounded lattice. If w = i1⋯ir ∣j1⋯jn−r is an element of S(n, r), with
0 ≤ r ≤ n, we can also consider the symbols i1, . . . ir, j1, . . . , jn−r as elements
in the alphabet A(n,n − r), where j1, . . . , jn−r ∈ {ñ − r ≻ ⋯ ≻ 1̃ ≻ 0�} and
i1, . . . , ir ∈ {0� ≻ 1 ≻ ⋯ ≻ r}; in such case we will set wt = jn−r⋯j1∣ir⋯i1. Then it
holds that the map w ∈ S(n, r)↦ wt ∈ S(n,n − r) is bijective and is such that

w ⊑ w′ in S(n, r)⇐⇒ (w′
)
t
⊑ wt in S(n,n − r), (3.3)

since (wt)t = w, for each w ∈ S(n, r). Also the map w ∈ S(n, r) ↦ wc ∈ S(n, r)
is bijective, and since (wc)c = w, by Proposition 3.3.2, it follows that

w ⊑ w′ in S(n, r)⇐⇒ (w′
)
c
⊑ wc in S(n, r). (3.4)

Therefore it holds the following isomorphism of lattices:

Proposition 3.3.3. If 0 ≤ r ≤ n, then S(n, r) ≅ S(n,n − r).

Proof. It is enough to consider the map ϕ ∶ S(n, r) → S(n,n − r) de�ned by
ϕ(w) = (wt)c. Since the map ϕ is the composition of the map w ∈ S(n, r) ↦
wt ∈ S(n,n − r) with the map u ∈ S(n,n − r) ↦ uc ∈ S(n,n − r), it follows that
that ϕ is bijective. Furthermore, by (3.3) and (3.4), it holds that

w ⊑ w′ in S(n, r)⇐⇒ ϕ(w) ⊑ ϕ(w′
) in S(n,n − r).

Hence ϕ is an isomorphism of lattices.
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Example 3.3.4. S(3,1) ≅ S(3,2) and for example ϕ(0∣01) = ((0∣01)t)c =

(10∣0)c = (20∣1), or ϕ(1∣02) = ((1∣02)t)c = (20∣1)c = (10∣0), see the Hasse di-
agrams in Figure 3.1.. ◻

3.4 A Recursive Formula for the Number

In this section we give a recursive formula which counts the number of elements
in S(n, r) having �xed rank. At �rst we show that S(n, r) can be seen as a
translate union of two copies of S(n − 1, r) if 0 ≤ r < n and of S(n − 1, n − 1) if
r = n.

Proposition 3.4.1. Let n ≥ 1 and r ∈ N such that 0 ≤ r ≤ n. Then there
exist two disjoint sublattices S1(n, r), S2(n, r) of S(n, r) such that S(n, r) =

S1(n, r) ∪ S2(n, r), where:

i) Si(n, r) ≅ S(n − 1, r) for i = 1,2, if 0 ≤ r < n;

ii) Si(n,n) ≅ S(n − 1, n − 1) for i = 1,2, if r = n.

Proof. We distinguish two cases:

i) 0 ≤ r < n; we denote by S1(n, r) the subset of S(n, r) of all the strings w
of the form w = i1⋯ir ∣j1⋯jn−1−r(n − r), with j1⋯jn−1−r ∈ {0�,1, . . . , n − r − 1};
moreover, we denote by S2(n, r) the subset of S(n, r) of all the strings w of the
form w = i1⋯ir ∣0j2⋯jn−r, with j2⋯jn−r ∈ {0�,1, . . . , n − r − 1}.

It is clear that S(n, r) is a disjoint union of S1(n, r) and S2(n, r). We
prove now that Si(n, r) ≅ S(n − 1, r) for i = 1,2. Let i = 1 (the case i = 2 is
analogous). It is obvious that there exists a bijective correspondence between
S1(n, r) and S(n − 1, r). Furthermore, if w,w′ ∈ S1(n, r) are such that w =

i1⋯ir ∣j1,⋯jn−r−1(n−r), w
′
= i

′
1⋯i

′
r ∣j

′
1⋯j

′
n−r−1(n−r), it follows that w ⊑ w′ (with

respect to the order on S(n, r)) if and only if i1⋯ir ∣j1⋯jn−r−1 ⊑ i
′
1⋯i

′
r ∣j

′
1⋯j

′
n−r−1

(with respect to the order in S(n − 1, r)). Hence S1(n, r) is isomorphic to
S((n − 1), r).
Finally, since the order on S(n, r) is component by component, it follows that
each Si(n, r) (for i = 1,2) is a sublattice of S(n, r).

ii) r = n; by i), there exist two disjoint sublattices S1(n,0), S2(n,0), of S(n,0)
such that S(n,0) = S1(n,0)∪S2(n,0), with Si(n,0) ≅ Si(n−1,0), for i = 1,2. By
Proposition 3.3.3, it follows that S(n,n) ≅ S(n,0), therefore there also exist two
disjoint sublattices S1(n,n), S2(n,n), of S(n,n) such that S(n,n) = S1(n,n) ∪
S2(n,n), where Si(n,n) ≅ Si(n,0) ≅ S(n − 1,0) ≅ S(n − 1, n − 1), for i = 1,2,
again by Proposition 3.3.3.

If n ≥ 1, the element of minimal rank of the sublattice S2(n, r) is obviuosly
ŵ = 0⋯0∣012⋯(n−r−1). This element has rank 0 as element of (S2(n, r),⊑), but
in S(n, r) has rank given by ρ(ŵ) = (1−0)+(2−1)+(3−2)+⋯+((n−r)−(n−r−1)) =
n − r. Therefore we can visualize S2(n, r) (in the Hasse diagram of S(n, r)) as
an upper-translation of the sublattice S1(n, r), of height (n − r).

Example 3.4.2. For example, this is the Hasse diagram of S(5,3) as a translate
union of S1(5,3) ≅ S(4,3) (red lattice) and of S2(5,3) ≅ S(4,3) (green lattice).
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000∣12

100∣12 000∣02

200∣12
100∣02

000∣01
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320∣12 310∣02
300∣01

210∣01 200∣00
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◻

Given the lattice S(n, r), for each k such that 0 ≤ k ≤ R(n, r), we denote with
s(n, r, k) the number of elements of S(n, r) with rank k. It holds the following
ricorsive formula for s(n, r, k) ∶

Proposition 3.4.3. Let n ≥ 1. If r ∈ N is such that 0 ≤ r < n, then

s(n, r, k) =

⎧⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎩

s(n − 1, r, k) if 0 ≤ k < (n − r)
s(n − 1, r, k) +
s(n − 1, r, k − (n − r)) if (n − r) ≤ k ≤ R(n − 1, r)

s(n − 1, r, k − (n − r)) if R(n − 1, r) < k ≤ R(n, r)

If r = n, then s(n,n, k) = s(n,0, k).

Proof. We distinguish three cases:

Case 1. Let k be such that 0 ≤ k < (n − r). By what we have asserted before,
the element ŵ (i.e. the minimum of S2(n, r)) has rank (n− r) in S(n, r), hence
by Proposition 3.4.1, it follows that s(n, r, k) coincides with the number of
elements of rank k in S1(n, r) and since S1(n, r) ≅ S(n − 1, r), it follows that
s(n, r, k) = s(n − 1, r, k).

Case 2. Let k be such that (n−r) ≤ k ≤ R(n−1, r). In this case, the number of
elements of rank k in S(n, r) coincides with the sum of the number of elements
of rank k in S1(n, r) and of the number of elements of rank [k − (n − r)] in
S2(n, r). Since S1(n, r) ≅ S2(n, r) ≅ S(n − 1, r), it follows that s(n, r, k) = s(n −
1, r, k) + s(n − 1, r, k − (n − r)).
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Case 3. Let k be such that R(n − 1, r) < k ≤ R(n, r). In this case s(n, r, k)
coincides with the number of elements of rank [k−(n−r)] in S2(n, r), and since
S2(n, r) ≅ S(n − 1, r) it follows that s(n, r, k) = s(n − 1, r, k − (n − r)).

Finally, if r = n, the last equality follows from the isomorphism S(n,n) ≅

S(n,0).

By the recursive formula stated in Proposition 3.4.3, the �rst values of
s(n, r, k) are given by:

s(0,0,0) = 1

s(1,0,0) = s(0,0,0) = 1
s(1,0,1) = s(0,0,0) = 1
s(1,1,0) = s(1,0,0) = 1
s(1,1,1) = s(1,0,1) = 1

s(2,0,0) = 1
s(2,0,1) = s(1,0,1) = 1
s(2,0,2) = s(1,0,0) = 1
s(2,0,3) = s(1,0,1) = 1
s(2,1,0) = s(1,1,0) = 1
s(2,1,1) = s(1,1,1) + s(1,1,0) = 2
s(2,1,2) = s(1,1,1) = 1
s(2,2,0) = s(2,0,0) = 1
s(2,2,1) = s(2,0,1) = 1
s(2,2,2) = s(2,0,2) = 1
s(2,2,3) = s(2,0,3) = 1

The rank generating function of P ×Q leads to the following Cauchy-type
formula for s(n, r, k).

Proposition 3.4.4. If 0 ≤ r ≤ n and 0 ≤ k ≤ R(n, r) then s(n, r, k) = ∑
k
i=0 s(r, r, i)⋅

s(n − r, n − r, k − i).

Proof. The rank generating function of S(n, r) is

F (S(n, r), t) =
R(n,r)

∑
k=0

s(n, r, k)tk.

By Proposition 3.3.3 it follows that

S(n, r) ≅ S(r, r) × S(n − r,0) ≅ S(r, r) × S(n − r, n − r).

Hence

F (S(n, r), t) = F (S(r, r) ×S(n − r, n − r), t) = F (S(r, r, t)) ⋅F (S(n − r, n − r, t)).

Then the thesis follows by the following equality:

F (S(n, r), t) = (∑
R(r,r)
l=0 s(r, r, l)tl) ⋅ (∑

R(n−r,n−r)
j=0 s(n − r, n − r, j)tj)

= ∑
R(r,r)+R(n−r,n−r)
k=0 ∑

k
i=0 s(r, r, i)s(r, r, k − i)t

k

= ∑
R(n,r)
k=0 ∑

k
i=0 s(r, r, i)s(n − r, n − r, k − i)t

k.
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The following Proposition shows a symmetric property of S(n.r).

Proposition 3.4.5. If 0 ≤ r ≤ n and k = R(n, r), then s(n, r, i) = s(n, r, k − i)
for 0 ≤ i ≤ k.

Proof. We recall that Sl(n, r) is the set of elements of S(n, r) with rank l for
each 0 ≤ l ≤ k. It is enough to consider the map f ∶ Si(n, r)→ Sk−i(n, r) de�ned
by f(w) = wc.
At �rst we observe that f is well de�ned, because if w ∈ Si(n, r) then ρ(w) = i
and by Proposition 3.2.5 ρ(wc) = k − i, therefore wc ∈ Sk−i(n, r). The map f
is injective, because by (wc)c = w it follows that wc1 = w

c
2 ⇒ w1 = w2. To show

that f is also onto, we take v ∈ Sk−i(n, r) and w = vc. Since ρ(v) = k − i, by
Proposition 3.2.5 we have that k = ρ(vc) + ρ(v) = ρ(w) + ρ(v) = ρ(w) + (k − i),
hence ρ(vc) = i, i.e. w ∈ Si(n, r) and f(w) = wc = (vc)c = v, so f is onto and
hence f is bijective.



Chapter 4

Solutions of problems on

non-negative subset sums

Using results of [11] and [12], Chiaselotti, Marino and Nardi solved some com-
binatorial extremal sum problems (section 4.3). For one problem they provided
a partial result, showing that the answer is a�rmative for a related poset-
formulation (section 4.4). Afterwards Engel and Nardi solved completely the
problem (section 4.5).

4.1 Relation between weight functions and maps

on S(n, r)
Our aim in this section is to connect the study of particular weight functions
and of the related extremal problems to some Boolean maps on S(n, r).

In the sequel n and r will denote two �xed integers such that 1 ≤ r ≤ n.
We set I(n, r) = {r̃, . . . , 1̃,1, . . . , n − r} and we consider I(n, r) as a n-set in
which we simply have marked the di�erence between the �rst r formal symbols
r̃, . . . , 1̃ and the remaining (n − r) formal symbols 1, . . . , n − r, so we can write
A(n, r) = I(n, r) ∪ {0�}.

De�nition 4.1.1. The function f ∶ A(n, r) → R is a (n, r)−weight function
such that:

f(r̃) ≥ ⋯ ≥ f(1̃) ≥ f(0�) = 0 > f(1) ≥ ⋯ ≥ f(n − r), (4.1)

f(1̃) +⋯ + f(r̃) + f(1) +⋯ + f(n − r) ≥ 0. (4.2)

We call WF (n, r) the set of the (n, r)−weight functions and if f ∈WF (n, r)
we set α(f) ∶= ∣{Y ⊆ I(n, r) ∶ ∑y∈Y f(y) ≥ 0}∣. If f ∈WF (n, r), the sum function
Σf ∶ S(n, r) → R induced by f on S(n, r) is the function that associates to
w = ir⋯i1∣j1⋯jn−r ∈ S(n, r) the real number Σf(w) = f(i1)+⋯+ f(ir)+ f(j1)+
⋯ + f(jn−r).

Proposition 4.1.2. If f is a (n, r)−weight function and if w,w′ ∈ S(n, r) are
such that w ⊑ w′, then Σf(w) ≤ Σf(w

′).

31
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Proof. If w = i1⋯ir ∣ j1⋯jn−r ⊑ w
′ = i

′
1⋯i

′
r ∣j

′
1⋯j

′
n−r, then we have that i1 ⪯ i

′
1,

⋯, ir ⪯ i
′
r, j1 ⪯ j

′
1, ⋯ jn−r ⪯ j

′
n−r; hence, since f is increasing on A(n, r), the

assertion follows immediately by De�nition of sum function Σf .

Proposition 4.1.3. If f is a (n, r)−weight function and if w ∈ S(n, r) is such
that Σf(w) < 0, then Σf(w

c) > 0.

Proof. By De�nition of the two binary operations ⊓ and ⊔ and of the comple-
ment operation c on S(n, r), we have that

w ⊔wc = 12⋯r∣1⋯(n − r) and w ⊓wc = 00⋯0∣0⋯0.

Hence, by De�nition of Σf and since f(0�) = 0, we have that

Σf(w) +Σf(w
c
) = Σf(w ⊔wc) = f(1̃) +⋯ + f(r̃) + f(1) +⋯ + f(n − r) ≥ 0,

by (4.2). Hence, if Σf(w) < 0, we will have that Σf(w
c) > 0.

We denote by 2 the Boolean lattice composed of a chain with two elements
that we denote N (the minimum element) and P (the maximum element). A
Boolean map (brie�y BM) on S(n, r) is a map A ∶ dom(A) ⊆ S(n, r) → 2, in
particular if dom(A) = S(n, r) we also say that A is a Boolean total map (brie�y
BTM) on S(n, r). If A is BM on S(n, r), we set S+A(n, r) = {w ∈ dom(A) ∶

A(w) = P}.

We can associate to f ∈WF (n, r) the map Af ∶ S(n, r)→ 2 setting

Af(w) = {
P if Σf(w) ≥ 0
N if Σf(w) < 0

(4.3)

Let us note that ∣S+Af (n, r)∣ = ∣{w ∈ S(n, r) ∶ Af(w) = P}∣ = α(f).

It is easy to observe that the map Af has the following properties:

(i) Af is order-preserving

(ii) If w ∈ S(n, r) is such that Af(w) = N , then Af(w
c) = P

(iii) Af(0⋯0∣0⋯0) = P , A(0⋯0∣0⋯01) = N and Af(r⋯21∣12⋯(n − r)) = P

Example 4.1.4. Let f be the following (5,3)-weight function :

f ∶
3̃ 2̃ 1̃ 1 2
↓ ↓ ↓ ↓ ↓

1 1 0.9 −0.8 −2.1

We represent the map Af de�ned on S(5,3) by using the Hasse diagram of this
lattice, on which we color green the nodes where the map Af assumes value P
and red the nodes where it assumes value N:
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◻

Note that if we have a generic Boolean total map A ∶ S(n, r)→ 2 which has
the properties (i), (ii) and (iii) of Af , i.e. the following:

(BM1) A is order-preserving

(BM2) If w ∈ S(n, r) is such that A(w) = N , then A(wc) = P

(BM3) A(0⋯0∣0⋯0) = P , A(0⋯0∣0⋯01) = N and A(r⋯21∣12⋯(n − r)) = P

In general there does not exist a function f ∈ WF (n, r) such that Af = A (see
Example 4.1.5 [12]),

We denote by W+(S(n, r),2) the set of all the maps A ∶ S(n, r) → 2
which satisfy (BM1) and (BM2) and by W+(n, r) the subset of all the maps
in W+(S(n, r),2) which satisfy also (BM3).

Example 4.1.5. Let us consider the map A ∶ S(6,3)→ 2 reported in Figure 4.1,
where green nodes are P and red nodes are N .
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000∣123

100∣123 000∣023

200∣123
100∣023

000∣013

300∣123 210∣123 200∣023 100∣013 000∣012 000∣003

310∣123 300∣023 210∣023
200∣013

100∣012 100∣003 000∣002

320∣123 310∣023 300∣013 210∣013 200∣012 200∣003 100∣002 000∣001

321∣123 320∣023 310∣013 300∣012 300∣003 210∣012 210∣003 200∣002 100∣001
000∣000

321∣023 320∣013 310∣012 310∣003 300∣002 210∣002 200∣001 100∣000

321∣013 320∣012 320∣003
310∣002

300∣001 210∣001 200∣000

321∣012 321∣003 320∣002 310∣001 300∣000 210∣000

321∣002
320∣001

310∣000

321∣001 320∣000

321∣000

Figure 4.1: Map A ∶ S(6,3)→ 2.

It is easy to observe that A ∈ W+(6,3), but for this Boolean total map there
does not exist an f ∈ WF (n, r) such that A = Af . To show that for previous
map does not exist an f ∈WF (n, r) such that A = Af we need to introduce new
De�nitions and results. ◻

4.2 Relation between weight functions and (n, r)-
systems

The purpose of this section is to show that for the Boolean map in Example
4.1.5 there does not exist an f ∈WF (n, r) such that A = Af [12].

Let us suppose that we have r real variables xr̃, . . . , x1̃ and other (n−r) real
variables y1, . . . , yn−r. In the sequel, to simplify the notations, we write simply
xi instead of xĩ and yj instead of yj . However, it is important to mark that the

index i in xi corresponds to the symbol ĩ, while the index i in yi corresponds to
the symbol i and that ĩ ≠ i. We call (n, r)-system of size p a system S of linear
inequalities having the following form:
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S ∶

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xr ≥ ⋯ ≥ x1 ≥ 0 > y1 ≥ ⋯ ≥ yn−r
∑i∈A1

ti ≥ 0 (or < 0)

∑i∈A2
ti ≥ 0 (or < 0)

⋯

⋯

∑i∈Ap ti ≥ 0 (or < 0)

(4.4)

where A1, . . . ,Ap are non-empty and di�erent subsets of I(n, r), all di�erent
from the singletons of I(n, r); moreover ti = xi if i ∈ {r̃, . . . , 1̃} and ti = yi if
i ∈ {1, . . . , n − r}. Formally we set ∑i∈∅ ti = 0. When the subsets A1, . . . ,Ap
coincide with all the possible subsets of I(n, r) di�erent from the singletons and
from the empty set, we say that the (n, r)-system (4.4) is total. Furthermore,
when in (4.4) appears the inequality

xr +⋯ + x1 + y1 +⋯ + yn−r ≥ 0 (4.5)

we say that it is a (n, r)-weighted system. A (n, r)-total weighted system of
type (4.4) can be identi�ed with a Boolean total map A de�ned on the lattice
(S(n, r),⊑). A subsystem of (4.4) which is also equivalent to it, can be identi-
�ed with a particular restriction of the map A which represents (4.4): such a
restriction of A is called core of A.

Let S , S′ be two (n, r)-systems: we say that they are equals (in symbols
S = S′) if they have exactly the same inequalities, otherwise we say that they
are di�erent (in symbols S ≠ S′). If they are both compatibles (i.e. they have
solutions) and equivalents (i.e. they have the same solutions) we shall write S ≡
S′. We denote by Syst(n, r) [TSyst(n, r)] the set of all the (n, r)-systems [(n, r)-
total systems] and by WCSyst(n, r) [WCTSyst(n, r)] the (n, r)-compatible
[total] weighted systems. Let us consider a (n, r)-system S as in (4.4). Since
there is an obvious bijection between the power set P(I(n, r)) and S(n, r), all
the subsets A1, . . . ,Ap in (4.4) can be identi�ed with strings of S(n, r), that we
denote by w1, . . . ,wp.

We denote by (S(n, r) ↝ 2) the poset of the Boolean partial maps on
S(n, r) ([22]). We set now ξr = r0⋯0∣0⋯0, . . . , ξ1 = 10⋯0∣0⋯0, ξ0 = 00⋯0∣0⋯0η1 =
0⋯0∣0⋯01, . . . , ηn−r = 0⋯0∣0⋯0(n−r), ΩS = {w1, . . . ,wp, ξr, . . . , ξ1, ξ0, η1, . . . , ηn−r}.

De�nition 4.2.1. Let S ∈ Syst(n, r). A S-Boolean partial map (S−BPM)
AS ∶ ΩS ⊆ S(n, r)→ 2 is de�ned as follows: for j ∈ {1, . . . , p}

AS(wj) = {
P if ∑i∈Aj ti ≥ 0

N if ∑i∈Aj ti < 0

AS(ξ0) = AS(ξ1) = ⋯ = AS(ξr) = P and AS(η1) = ⋯ = AS(ηn−r) = N .

De�nition 4.2.2. If S,S′ ∈ Syst(n, r), we set S ≲ S′ if S is a subsystem of S′.

This obviously de�nes a partial order ≲ on Syst(n, r). We denote with
B(n, r) the sub-poset of all the Boolean partial maps A ∈ (S(n, r) ↝ 2) such
that ξr, . . . , ξ1, ξ0, η1, . . . , ηn−r ∈ dom(A) and A(ξ0) = A(ξ1) = ⋯ = A(ξr) = P ,
A(η1) = ⋯ = A(ηn−r) = N and with BT(n, r) the subset of all the total maps of
B(n, r). Then the map χ ∶ Syst(n, r)→ B(n, r) such that χ(S) = AS, for each S ∈

Syst(n, r), is an isomorphism of posets. We denote by τ ∶ B(n, r) → Syst(n, r)
the inverse of χ and we set τ(A) = SA if A ∈ B(n, r). Obviously the restriction of
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χ to BT(n, r) de�nes an isomorphism between BT(n, r) and TSyst(n, r) and we
continue respectively to denote with χ and τ this isomorphism and its inverse.

We say that a (n, r)-weight function f is a solution of the system (4.4) if the
assignment

xr = f(r̃), . . . , x1 = f(1̃), . . . y1 = f(1), . . . , yn−r = f(n − r) (4.6)

provides a solution of (4.4).
If f ∈WF (n, r), we denote by Sf the (n, r)-compatible total system having

f as one of its solutions. If f ∈ WF (n, r) the map Af ∶ S(n, r) → 2 de�ned as
(4.3) then it is obvious that ASf = Af .

De�nition 4.2.3. Let H be a family of maps of BT(n, r) and let A ∈ H; we
say that a Boolean partial map B ∈ B(n, r) is a core for A if A∣W = B (where
W = dom(B)) and if A′ ∈H is such that A′

∣W = B, then A = A′. We simply say
that B is a core if it is a core for some A ∈H.

The main result of Bisi-Chiaselotti [12] is the local criterion:
criterion Let H be a family of maps of BT(n, r) such that χ(WCTSyst(n, r)) ⊆
H and let A ∈H. Let B denote a core of A. Then, SA is compatible if and only
if SB ∈WCSyst(n, r) and, in this case, if f ∈WF (n, r) is a solution of SB, it
is also a solution of SA.

The authors use this criterion `from global to local', to decide if a map A that
we choose in a special family H of Boolean total maps of BT(n, r) determines
a (n, r)-compatible total system. In this case the previous criterion are useful if
we know, for each given map A ∈H a core that is `su�ciently' small. The main
results of the paper [12] is building some appropriate families H of Boolean total
maps that satisfy the previous local criterion and such that for each A ∈H there
exists a unique core of A with minimal cardinality (the fundamental core of A).

De�nition 4.2.4. If Z ⊂X we denote withMin(Z) the set of minimal elements
of Z and with Max(Z) the set of maximal elements of Z.

If A is a Boolean partial map on X and if Z is a subset of X, we set:

ZAP = A−1
(P ) ∩Z = {x ∈ Z ∩ dom(A) ∶ A(x) = P},

ZAN = A−1
(N) ∩Z = {x ∈ Z ∩ dom(A) ∶ A(x) = N}.

De�nition 4.2.5. Let X be an arbitrary poset and let H a family of Boolean
partial maps on X. Let W ⊂ X and let ϕ ∶ W → 2. A couple (W,ϕ) is a core
on X if:

N1) ϕ is a BPM on X such that dom(ϕ) =W ;

N2) there exists a unique A ∈H such that A∣W = ϕ.

De�nition 4.2.6. We say that W is fundamental core for A if it is a core for
A and if, for each core V for A, W ⊆ V .

Obviously, if there exists fundamental core of A, then it is unique, therefore
we can speak of the fundamental core for A. Let Core(X) be the family of all
the cores (W,ϕ) on X.
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Proposition 4.2.7. Let A ∈W+(X,2). Then, setting

N(A) =Min(XA
P ) ∪Max(XA

N)

it follows that N(A) is a core for A on X.

Theorem 4.2.8. Let A ∈W+(X,2). Then, setting

Core(A) = N(A) ∖ [Max(A−1
(N))]

c

it results that Core(A) is the fundamental core for A.

Continuing the Example 4.1.5, it is easy to observe that the map A ∈ W+(6,3)
and that the fundamental core of A is the following partial map:

B = {321∣123P,300∣003N,210∣003N,200∣002N,100∣001N,000∣000P}.
Hence SB is the following (6,3)-weighted system :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x3 ≥ x2 ≥ x1 ≥ 0 > y1 ≥ y2 ≥ y3
x1 + x2 + x3 + y1 + y2 + y3 ≥ 0
x3 + y3 < 0
x2 + y2 < 0
x1 + y1 < 0
x2 + x1 + y3 < 0.

Obviously the previous system SB is not compatible, therefore also SA is not
compatible, hence A ∈ W+(6,3), but A ∉ χ(W+CTSyst(6,3)) and so does not
exist an f ∈WF (n, r) such that A = Af .

4.3 An application of the Boolean maps

Let n and r be two integers such that 0 < r ≤ n; we denote by γ(n, r) [η(n, r)]
the minimum [maximum] number of the non-negative partial sums of a sum

∑
n
1=1 ai ≥ 0, when a1, . . . , an are n real numbers arbitrarily chosen in such a way

that r of them are non-negative and the remaining n − r are negative. Inspired
by some interesting extremal combinatorial sum problems raised by Manickam,
Miklös and Singhi in 1987 and 1988 Chiaselotti, Marino and Nardi [21] studied
and solved the following problem (P1):

Which are the values of γ(n, r) and η(n, r) for each n and r, 0 < r ≤
n?

If we use notations of weight function we have that γ(n, r) = min{α(f) ∶ f ∈

WF (n, r)}, η(n, r) = max{α(f) ∶ f ∈ WF (n, r)}. We also set γ∗(n, r) ∶=

min{∣S+A(n, r)∣ ∶ A ∈ W+(n, r)} and η∗(n, r) ∶= max{∣S+A(n, r)∣ ∶ A ∈ W+(n, r)}.
Let us observe that γ∗(n, r) ≤ γ(n, r) ≤ η(n, r) ≤ η∗(n, r).

Theorem 4.3.1. If n and r are two integers such that 0 < r < n, then: γ(n, r) =
γ∗(n, r) = 2n−1 + 1 and η(n, r) = η∗(n, r) = 2n − 2n−r + 1.

Proof. Assume that 0 < r < n. We denote by S1(n, r) the sublattice of S(n, r)
of all the strings w of the form w = i1⋯ir ∣j1⋯jn−r−1(n − r), with j1⋯jn−r−1 ∈

{0�,1, . . . , n − r − 1} and by S2(n, r) the sublattice of S(n, r) of all the strings
w of the form w = i1⋯ir ∣0j2⋯jn−r, with j2⋯jn−r ∈ {0�,1, . . . , n − r − 1}. It is
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clear that S(n, r) = S1(n, r)⋃̇S2(n, r) and S1(n, r) ≅ S2(n, r) ≅ S(n − 1, r). We
consider now the following further sublattices of S(n, r):

S+1 (n, r) ∶= {w ∈ S1(n, r) ∶ w = r(r − 1)⋯21∣j1⋯jn−r−1(n − r)}

S±1 (n, r) ∶= {w ∈ S1(n, r) ∶ w = i1⋯ir−10∣j1⋯jn−r−1(n − r), i1 ≻ 0�}

S−1 (n, r) ∶= {w ∈ S1(n, r) ∶ w = 0⋯0∣j1⋯jn−r−1(n − r)}

S+2 (n, r) ∶= {w ∈ S2(n, r) ∶ w = r(r − 1)⋯21∣0j2⋯jn−r}

S±2 (n, r) ∶= {w ∈ S2(n, r) ∶ w = i1⋯ir−10∣0j2⋯jn−r, i1 ≻ 0�}

S−2 (n, r) ∶= {w ∈ S2(n, r) ∶ w = 0⋯0∣0j2⋯jn−r}

It occurs immediately that: Si(n, r) = S
+
i (n, r)⋃̇S

±
i (n, r)⋃̇S

−
i (n, r) , for i = 1,2

and S±i (n, r) is a distributive sublattice of Si(n, r) with 2n−1−2 ⋅2n−r−1 = 2n−1−
2n−r elements, for i = 1,2.
Now we consider the following (n, r)-weight function f ∶ A(n, r)→ R

f ∶
r̃ ⋯ 1̃ 0� 1 ⋯ (n − r − 1) (n − r)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

(n − r) ⋯ (n − r) 0 −1 ⋯ −1 (n − r)(1 − r) − 1

Then it follows that Σf ∶ S(n, r)→ R is such that

Σf(w)

⎧⎪⎪
⎨
⎪⎪⎩

≥ 0

< 0

if w ∈ S±2 (n, r)⋃̇{0⋯0∣0⋯0}

if w ∈ S±1 (n, r)

It means that the Boolean map Af ∈W+(n, r) is such that:

Af(w) =

⎧⎪⎪
⎨
⎪⎪⎩

P

N

if w ∈ S±2 (n, r)⋃̇{0⋯0∣0⋯0}

if w ∈ S±1 (n, r)

This shows that: ∣S+Af (n, r)∣ = ∣S+1 (n, r)⋃̇S
+
2 (n, r)⋃̇S

±
2 (n, r)⋃̇{0⋯0∣0⋯0}∣ = 2n−r−1+

2n−r−1 + 2n−1 − 2 ⋅ 2n−r−1 + 1 = 2n−1 + 1.
In [35] (Theorem 1) it has been proved that γ(n,1) = 2n−1+1 and γ(n, r) ≥ 2n−1+
1. Since γ(n, r) ≥ γ∗(n, r), using a technique similar to that used in the proof of
the Theorem 1 of [35], it easily follows that γ∗(n, r) ≥ 2n−1+1. As shown above,
it results that ∣S+Af (n, r)∣ = 2n−1+1. Hence 2n−1+1 ≥ γ(n, r) ≥ γ∗(n, r) ≥ 2n−1+1,

i.e. γ(n, r) = γ∗(n, r) = 2n−1+1. This prove the �rst part of Theorem, it remains
to prove the latter part.

We consider now the following (n, r)−weight function g ∶ A(n, r)→ R:

g ∶
r̃ ⋯ 1̃ 0� 1 ⋯ (n − r − 1) (n − r)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

1 ⋯ 1 0 −1
n−r

⋯ −1
n−r

−1
n−r

It results then that the sum Σg ∶ S(n, r) → R is such that Σg(w) ≥ 0 if w ∈

S±1 (n, r)⋃̇S
±
2 (n, r)⋃̇{0⋯0∣0⋯0}, i.e. the Boolean map Ag ∈W+(n, r) is such that

Ag(w) = P if w ∈ S±1 (n, r)⋃̇S
±
2 (n, r)⋃̇{0⋯0∣0⋯0}. This shows that ∣S+Ag(n, r)∣ =

∣S±1 (n, r)⋃̇S
±
2 (n, r)⋃̇S

+
1 (n, r)⋃̇S

+
2 (n, r)⋃̇{0⋯0∣0⋯0}∣ = (2n−1 − 2n−r) + (2n−1 −
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2n−r) + 2n−r−1 + 2n−r−1 + 1 = 2n − 2n−r + 1.
On other hand, it is clear that for any A ∈W+(n, r) it results A(w) = P for each
w ∈ S+1 (n, r)⋃̇S

+
2 (n, r)⋃̇{0⋯0∣0⋯0} andA(w) = N for each w ∈ S−1 (n, r)⋃̇{S−2 (n, r)∖

{0⋯0∣0⋯0}}. Moreover, 2n − 2n−r + 1 is the biggest number of values P that
a Boolean map A ∈ W+(n, r) can assume. Hence, since η(n, r) ≤ η∗(n, r),

we have 2n − 2n−r + 1 = ∣S+Ag(n, r)∣ ≤ η(n, r) ≤ η∗(n, r) ≤ 2n − 2n−r + 1, i.e.

η(n, r) = η∗(n, r) = 2n − 2n−r + 1. This conclude the proof of the Theorem
4.3.1.

To better visualize the previous result, we give a numerical example on a speci�c
Hasse diagram. Let n = 6 and r = 2 and let f as given in previous Theorem, i.e.

f ∶
2̃ 1̃ 0� 1 2 3 4
↓ ↓ ↓ ↓ ↓ ↓ ↓

4 4 0 −1 −1 −1 −5

In the Figure 4.2 we have shown the Hasse diagram of the lattice S(6,2), where
S+1 (n, r) is black; S

±
1 (n, r) is violet; S

−
1 (n, r) are is red; S

+
2 (n, r) is blue; S

±
2 (n, r)

is brown; S−2 (n, r) is green. Therefore Af assume the following values:

� the blue, black and brown nodes correspond to values P of Af

� the violet, red and green nodes correspond to values N of Af , except for
w = 0⋯0∣0⋯0, where the map assume value P.
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00∣1234

00∣023410∣1234

20∣1234 10∣0234 00∣0134

21∣1234 20∣0234 10∣0134 00∣0034 00∣0124

21∣0234 20∣0134 10∣0034 10∣0124 00∣0024 00∣0123

21∣0134 20∣0034 20∣0124 10∣0024 00∣0014 10∣0123 00∣0023

21∣0034 21∣0124 20∣0024 10∣0014 00∣0004 20∣0123 10∣0023 00∣0013

21∣0024 20∣0014 10∣0004 21∣0123 20∣0023 10∣0013 00∣0003 00∣0012

21∣0014 20∣0004 21∣0023 20∣0013 10∣0003 10∣0012 00∣0002

21∣0004 21∣0013 20∣0003 20∣0012 10∣0002 00∣0001

21∣0003 21∣0012 20∣0002 10∣0001 00∣0000

21∣0002 20∣0001 10∣0000

20∣000021∣0001

21∣0000

Figure 4.2: Hasse Diagram S(6,2).
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4.4 An application of concept of basis for S(n, r)
In this section we consider the following problem (Q):

If q is an integer such that γ∗(n, r) ≤ q ≤ η∗(n, r), does there exist a
map A ∈W+(n, r) with the property that ∣S+A(n, r)∣ = q?

Chiaselotti, Marino and Nardi [21] gave an a�rmative answer to the question
(Q) building the map A.

First to give the proof of the Theorem 4.4.4 we need to introduce some useful
results and the concept of basis in S(n, r).
In the following �rst Lemma we show some properties of the sublattices of
S(n, r).

Lemma 4.4.1. Here hold the following properties, where θ = 0⋯0∣0⋯0 and
Θ = r⋯21∣12⋯(n − r)

i) ↑ Θ = S+1 (n, r)⋃̇S
+
2 (n, r)

ii) ↓ θ = S−1 (n, r)⋃̇S
−
2 (n, r)

iii) ↑ S±2 (n, r) ⊆ S
±
2 (n, r)⋃̇S

+
2 (n, r)

iv) ↓ S±1 (n, r) ⊆ S
±
1 (n, r)⋃̇S

−
1 (n, r)

v) ((S±1 (n, r))
c = S±2 (n, r)

Proof. We use the properties of Up-sets and Down-sets.

i) If w ∈ (↑ Θ) then Θ ⊑ w, i.e. it has the form w = r⋯1∣j1⋯jn−r, where
j1⋯jn−r ∈ {0�,1, . . . , n − r}; therefore w ∈ S+1 (n, r)⋃̇S

+
2 (n, r). If w ∈ S+1 (n, r),

it has the form w = r⋯1∣j1⋯jn−r−1(n−r), where j1⋯jn−r−1 ∈ {0�,1, . . . , n − r − 1};
instead if w ∈ S+2 (n, r), it has the form w = r⋯1∣
0j2⋯jn−r, where j2⋯jn−r ∈ {0�,1, . . . , n − r − 1}. In both cases it results
that Θ ⊑ w, i.e. w ∈ (↑ Θ).

ii) It is analogue to i).

iii) The minimum of the sublattice S±2 (n, r) is α = 10⋯0∣01⋯(n − r − 1); since
↑ S±2 (n, r) ⊆↑ α, it is su�cient to show that ↑ α = S±2 (n, r)⋃S

+
2 (n, r). The

inclusion S±2 (n, r)⋃S
+
2 (n, r) ⊆↑ α follows by the De�nition of S±2 (n, r)

and of S+2 (n, r). On the other hand, if w ∈↑ α, it follows that α ⊑ w,
i.e. w = i1⋯ir ∣0j2⋯jn−r, with i1 ≻ 0� and j2⋯jn−r ∈ {0�,1, . . . , n − r − 1}.
Therefore w ∈ S±2 (n, r)⋃S

+
2 (n, r), and this proves the other inclusion.

iv) Let us consider the maximum of the sublattice S±1 (n, r), that is t1 = r(r −
1)⋯20∣0⋯0(n − r). Since ↓ S±1 (n, r) ⊆↓ β, it is su�cient to show that
↓ t1 = S

±
1 (n, r)⋃S

−
1 (n, r); this proof is similar to iii).

v) If w ∈ S±1 (n, r), it has the form w = i1⋯ir−10∣j1⋯jn−r−1(n− r), with i1 ≻ 0�

and j1⋯jn−r−1 ∈ {0�,1, . . . , n − r − 1}, therefore his complement has the
form wc = i′1⋯i

′
r−10∣0j′2⋯j

′
n−r, with i

′
1 ≻ 0� and j′2⋯j

′
n−r ∈ {0�,1, . . . , n − r − 1};

hence wc ∈ S±2 (n, r). This shows that (S±1 (n, r))
c ⊆ S±2 (n, r). Now, if w ∈

S±2 (n, r), we write w in the form (wc)c; then wc ∈ (S±2 (n, r))
c ⊆ S±1 (n, r),

therefore w ∈ (S±1 (n, r))
c. This shows that S±2 (n, r) ⊆ (S±1 (n, r))

c.
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At this point let us recall the De�nition of basis for S(n, r), as given in [12] in
a more general context. In the same way as an anti-chain uniquely determines a
Boolean order-preserving map, a basis uniquely determines a Boolean map that
has the properties (BM1) and (BM2) (see [12] for details). Hence the concept
of basis will be fundamental in the sequel of this proof.

De�nition 4.4.2. A basis for S(n, r) is an ordered couple ⟨Y+∣Y−⟩, where Y+
and Y− are two disjoint anti-chains of S(n, r) such that :

B1) (↓ Y+)⋂(Y c− ) = ∅;

B2) ((↑ Y+)⋃ ↑ (Y
c
− ))⋂ ↓ Y− = ∅;

B3) S(n, r) = ((↑ Y+)⋃ ↑ (Y
c
− ))⋃ ↓ Y−.

In the proof of Theorem 4.4.4 we will construct explicitly a such basis. We will
also use the following result that was proved in [12].

Lemma 4.4.3. Let ⟨W+∣W−⟩ be a basis for S(n, r). Then the map

A(x) = {
P if x ∈↑ (W+)⋃ ↑ (W

c
−)

N if x ∈↓W−

is such that A ∈W+(S(n, r),2).

Theorem 4.4.4. If q is a �xed integer with 2n−1 + 1 ≤ q ≤ 2n − 2n−r + 1 then

there is a Boolean map Aq ∈W+(n, r) such that ∣S+Aq(n, r)∣ = q.

Proof. Let q be a �xed integer such that 2n−1+1 ≤ q ≤ 2n−2n−r+1. We determine
a speci�c Boolean total map A ∈W+(n, r) such that ∣S+A(n, r)∣ = q. We proceed
as follows.
The case r = 1 is proved in the previous Theorem 4.3.1. Let us assume r > 1.
Since S±1 (n, r) is a �nite distributive sublattice of graded lattice S(n, r), also
S±1 (n, r) is a graded lattice. We denote by R the rank of S±1 (n, r) and with ρ1
its rank function. The bottom of S±1 (n, r) is b1 = 10⋯0∣1⋯(n− r − 1)(n− r) and
the top is t1 = r(r − 1)⋯20∣0⋯0(n − r).
We write q in the form q = 2n−1 + 1 + p with 0 ≤ p ≤ 2n−1 − 2n−r = ∣S±1 (n, r)∣. We
will build a map A ∈W+(n, r) such that ∣S+A(n, r)∣ = 2n−1 + 1 + p.
If p = 0 we take A = Af , with f as in Theorem 4.3.1 and hence we have
∣S+A(n, r)∣ = 2n−1, instead if p = 2n−1−2n−r we take A = Ag, with g as in Theorem
4.3.1, and we have ∣S+A(n, r)∣ = 2n − 2n−r + 1.
Therefore we can assume that 0 < p < 2n−1 − 2n−r.
If 0 ≤ i ≤ R, we denote by Ri the set of elements w ∈ S±1 (n, r) such that
ρ1(w) = R − i and we also set βi ∶= ∣Ri∣. We write each Ri in the following form
Ri = {vi1, . . . , viβi}. If 0 ≤ l ≤ R we set Ul ∶= ⋃̇

i=0,...,l
Ri. If 0 ≤ l ≤ R − 2 we set

Bl ∶= ⋃̇
i=l+2,...,R

Ri and BR−1 ∶= BR ∶= ∅. We can then write p in the form p =

∑
k
i=0 ∣Ri∣+s = ∣Uk ∣+s, for some 0 ≤ s < ∣Rk+1∣ and some 0 ≤ k ≤ R−1. Depending of

the previous number s we partition Rk+1 into the following two disjoint subsets :
Rk+1 = {v(k+1)1, . . . , v(k+1)s}⋃̇{v(k+1)(s+1), . . . , v(k+1)βk+1}, where the �rst subset

is considered empty if s = 0. Let us note that S±1 (n, r) = Uk⋃̇Rk+1⋃̇Bk.
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In the sequel, to avoid an overload of notations, we shall write simply vi instead
of v(k+1)i, for i = 1, . . . , βk+1.

We de�ne now the map A ∶ S(n, r)→ 2

A(w) =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

P

P

N

N

if w ∈ S±2 (n, r)⋃̇S
+
1 (n, r)⋃̇S

+
2 (n, r)⋃̇{0⋯0∣0⋯0}

if w ∈ Uk⋃̇{v1, . . . , vs}

if w ∈Bk⋃̇{vs+1, . . . , vβk+1}

if w ∈ S−1 (n, r)⋃̇{S−2 (n, r) ∖ {0⋯0∣0⋯0}}

(4.7)

Let us observe that ∣S+A(n, r)∣ = ∣S±2 (n, r)⋃̇S
+
1 (n, r)⋃̇S

+
2 (n, r)⋃̇{0⋯0∣0⋯0}∣ +

∣Uk⋃̇{v1, . . . , vs} ∣ = (2n−1 − 2n−r)+ 2n−r−1 + 2n−r−1 + 1+ ∣Uk ∣+ s = 2n−1 + 1+ p = q.
Therefore, if we show that A ∈W+(n, r), the Theorem is proved.
We write Rk in the following way: Rk = {w1, . . . ,wt} ⋃̇{wt+1, . . . ,wβk}, where
{w1, . . . ,wt} = Rk⋂ ↑ {v1, . . . , vs} and {wt+1, . . . ,wβk} = Rk ∖ {w1, . . . ,wt}.
Analogously Rk+2 = {z1, . . . , zq} ⋃̇{zq+1, . . . , zβk+2}, where {zq+1, . . . , zβk+2} =

Rk+2⋂ ↓ {vs+1, . . . , vβk+1} and {z1, . . . , zq} =Rk+2 ∖ {zq+1, . . . , zβk+2}.

We can see a picture of this partition of the sublattice S±1 (n, r) in the following
Figure:

10⋯0∣1⋯(n − r − 1)(n − r) RR

zq ⋯ z1 Rk+2

Rk+3

zq+1⋯zβk+2

vs+1⋯vβk+1 vs ⋯ v1 Rk+1

wt ⋯ w1 Rkwt+1⋯wβk

Rk−1

r(r − 1)⋯20∣0⋯0(n − r) R0

Depending of s and k, we build now a particular basis for S(n, r). For this
we consider the minimum α = 10⋯0∣01⋯(n − r − 1) of S±2 (n, r) and the subsets
T+ ∶= {v1, . . . , vs,wt+1, . . . ,wβk} and T− ∶= {vs+1, . . . , vβk+1 , z1, . . . , zq}. Let us
distinguish two cases:

(a1) α ∈↑ T+

(a2) α ∉↑ T+.

Let η1 ∶= {0⋯0∣00⋯1}. We de�ne two di�erent couples of subsets as follows:
in the case (a1) we set Y+ ∶= T+⋃̇{θ} and Y− ∶= T−⋃̇{η1}; in the case (a2) we set
Y+ ∶= T+⋃̇{θ}⋃̇{α} and Y− ∶= T−⋃̇{η1}.
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Step 1. ⟨Y+∣Y−⟩ is a couple of two disjoint anti-chains of S(n, r)

In both cases (a1) and (a2) it is obvious that Y+⋂Y− = ∅.

Case (a1): The elements {v1, . . . , vs} are not comparable between them be-
cause they have all rank R − (k + 1) and analogously for the elements
{wt+1, . . . ,wβk} that have all rank R − k. Let now v ∈ {v1, . . . , vs} and
w ∈ {wt+1, . . . ,wβk}; then w ∉↓ v because ρ1(v) < ρ1(w) and w ∉↑ v,
because {wt+1, . . . ,wβk}⋂ ↑ {v1, . . . , vs} = ∅ by construction. For the el-
ements in Y− di�erent from η1, we can proceed as for Y+. On the other
hand, we can observe that η1 is not comparable with none of the elements
vs+1, . . . , vβk+1 , z1, . . . , zq since these are all in S

±
1 (n, r) while η1 ∈ S

−
2 (n, r).

Thus Y+ is an anti-chain.

Case (a2): In this case we only must show that α is not comparable with none
of the elements v1, . . . , vs,wt+1, . . . ,wβk . At �rst from the fact that α ∉↑ T+
it follows vi ∉↓ α for each i = 1, . . . , s and wj ∉↓ α for each j = t + 1, . . . , βk.
Moreover, the elements v1, . . . , vs and wt+1, . . . ,wβk are all in S±1 (n, r),
hence they have the form i1⋯ir−10∣j1⋯jn−r−1(n − r), with i1 ≻ 0�, while
α = 10⋯0∣01⋯(n − r − 1); so α ∉↓ vi and α ∉↓ wj for each i = 1, . . . , s and
each j = t + 1, . . . , βk.

Step 2 ⟨Y+∣Y−⟩ is a basis for S(n, r)

Case (a1): We must see that B1), B2) and B3) hold in this case.

B1) Let us begin to observe that T c− = {vcs+1, . . . , v
c
βk+1 , z

c
1, . . . , z

c
q} ⊆

(S±1 (n, r))
c
= S±2 (n, r). Then we have that Y c− ⊆ S±2 (n, r)⋃̇S

+
1 (n, r).

On the other hand, by Lemma 4.4.1 iv) we have also that ↓ Y+ ⊆

S±1 (n, r)⋃̇S
−
1 (n, r)⋃̇{θ}. Hence (↓ Y+)⋂(Y c− ) = ∅. This proves B1).

B2) We show at �rst that ↑ Y c− ⋂ ↓ Y− = ∅.

Since ↑ Y c− ⊆↑ (S±2 (n, r))⋃ ↑ Θ, by Lemma 4.4.1 i) and iii) we have
then ↑ Y c− ⊆ S±2 (n, r)⋃̇S

+
1 (n, r)⋃̇S

+
2 (n, r).

On the other hand, since ↓ T− ⊆↓ S
±
1 (n, r)), by Lemma 4.4.1 iv) it fol-

lows that ↓ T− ⊆ S
±
1 (n, r)⋃̇S

−
1 (n, r). By Proposition 4.4.1 ii), we have

↓ η1 ⊆ S
−
1 (n, r)⋃̇S

−
2 (n, r). Hence we have ↓ Y− ⊆ S

±
1 (n, r)⋃̇S

−
1 (n, r)⋃̇

S−2 (n, r). This proves that ↑ Y
c
− ⋂ ↓ Y− = ∅. We show now that also

↑ Y+⋂ ↓ Y− = ∅; we proceed by contradiction. Let us suppose that
there exists an element z ∈↑ Y+⋂ ↓ Y−, then there are two elements
w+ ∈ Y+ and w− ∈ Y− such that w+ ⊑ z ⊑ w−,hence w+ ⊑ w−. We will
distinguish the following six cases, and in each of them we will �nd
a contradiction.

1. w+ ∈ {v1, . . . , vs} and w− ∈ {vs+1, . . . , vβk+1}. In this case w+ and
w− are two distinct elements having both rank R − (k + 1) and
such that w+ ⊑ w−; it is not possible.

2. w+ ∈ {v1, . . . , vs} and w− ∈ {z1, . . . , zq}. In this case w+ has rank
R − (k + 1) while w− has rank R − (k + 2) < R − (k + 1), and this
contradicts the condition w+ ⊑ w−.

3. w+ ∈ {wt+1, . . . ,wβk} and w− ∈ {vs+1, . . . , vβk+1} . This case is
similar to the previous because w+ has rank R − k while w− has
rank R − (k + 1).
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4. w+ ∈ {wt+1, . . . ,wβk} and w− ∈ {z1, . . . , zq} . Similar to the previ-
ous because w+ has rank R − k while w− has rank R − (k + 2).

5. w+ ∈ {v1, . . . , vs,wt+1, . . . ,wβk} and w− = η1. In this case w+ ⊑ w−
implies that w+ ∈↓ η1; since ↓ η1 ⊆ S

−
1 (n, r)⋃̇S

−
2 (n, r) this is not

possible since w+ ∈ S
±
1 (n, r).

6. w+ = θ and w− ∈ Y− it is obvious that does not exist z such that
w+ ⊑ w−.

B3) Since α is the minimum of S±2 (n, r) we have that S±2 (n, r) ⊆↑ α,
moreover α ∈↑ Y+; therefore S

±
2 (n, r) ⊆↑ α ⊆↑ Y+. Since ↑ Θ ⊆↑ Y c− ,

by Lemma 4.4.1 i) we have then that (S+1 (n, r)⋃̇S
+
2 (n, r)) =↑ Θ ⊆↑

Y c− . By Lemma 4.4.1 ii) we have also that (S−1 (n, r)⋃̇{S−2 (n, r) ∖
{0⋯0∣0⋯0}}) =↓ η1 ⊆↓ Y−. To complete the proof let us observe that

S±1 (n, r) = (
k

⋃
i=0

Ri)⋃̇Rk+1⋃̇(
R

⋃
j=k+2

Rj)

where

(
k

⋃
i=0

Ri) ⊆↑Rk ⊆↑ Y+(
R

⋃
j=k+2

Rj) ⊆↓Rk+2 ⊆↓ Y−.

Moreover, sinceRk+1 = {v1, . . . , vs}⋃̇{vs+1, . . . , vβk+1}, and {v1, . . . , vs}
⊆ Y+ ⊆↑ Y+ and {vs+1, . . . , vβk+1} ⊆ Y− ⊆↓ Y−, then Rk+1 ⊆ (↑ Y+⋃ ↓
Y−). This shows that S±1 (n, r) ⊆ (↑ Y+⋃ ↓ Y−). Since the six sub-
lattices S+i (n, r), S

±
i (n, r) and S−i (n, r) for i = 1,2 are a partition of

S(n, r), the property B3) is proved.

Case (a2): We must see that B1), B2) and B3) hold also in this case.

B1) We begin to show that α ∉ Y c− . In fact, α = (r(r − 1) . . .20∣0 . . .0(n −
r))c; suppose that α ∈ Y c− and show that we obtain a contradiction.
By α ∈ Y c− it follows αc = t1 ∈ Y−. But t1 is the top of S±1 (n, r),
so Y− = t1, since Y− is anti-chain. This means that Rk+1 = R0 and
this is not possible. Since Y+ = T+⋃̇{α}, we have (↓ Y+)⋂Y

c
− = ((↓

T+)⋂Y
c
− )⋃((↓ α)⋂Y c− ) and, moreover, as in the proof of B1) in the

case (a1), we also have that (↓ T+)⋂Y
c
− = ∅; therefore, to prove B1)

it is su�cient to show that (↓ α)⋂Y c− = ∅. As in the proof of B1) We
have that Y c− ⊆ S±2 (n, r)⋃̇{r⋯1∣02⋯n−r}. Since α is the minimum of
S±2 (n, r) and {r⋯1∣02⋯n− r} ∉↓ α, it follows that the unique element
of ↓ α that can belong to Y c− is α, but we have before shown that this
is not true.

B2) As in the previous case we have (↑ Y c− )⋂ ↓ Y− = ∅, moreover (↑

Y+)⋂(↓ Y−) = ((↑ T+)⋃(↑ α))⋂(↓ Y−)((↑ T+)⋂(↓ Y−))⋃((↑ α)⋂(↓

Y−)). As in the case (a1) we have ((↑ T+)⋂(↓ Y−)) = ∅, therefore,
to prove B2) also in the case (a2), it is su�cient to show that ((↑

α)⋂(↓ Y−)) = ∅. As in the proof of B2) in the case (a1) it results that
↓ Y− ⊆ S

±
2 (n, r)⋃̇S

−
1 (n, r)⋃̇{S−2 (n, r)∖{θ}} and, by De�nition of α, it

is easy to observe that (↑ α)⋂(S±1 (n, r)⋃̇S
−
1 (n, r)⋃̇{S−2 (n, r)∖{θ}}) =

∅. Hence ((↑ α)⋂(↓ Y−)) = ∅.

B3) Identical to that of Case (a1).
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Step 3 The map A de�ned in (4.7) is such that A ∈W+(n, r)

Since we have proved that ⟨Y+∣Y−⟩ is a basis for S(n, r), by Lemma 4.4.3 it
follows that the map A ∈W+(S(n, r),2) if the two following identities hold:

(↑ Y+)⋃(↑ Y c− ) = S±2 (n, r) ⋃̇ S+1 (n, r) ⋃̇ S+2 (n, r) ⋃̇
Uk ⋃̇ {v1, . . . , vs} ⋃̇ {θ}

(4.8)

and

↓ Y− =Bk ⋃̇ {vs+1, . . . , vβk+1} ⋃̇ S−1 (n, r) ⋃̇ {S−2 (n, r) ∖ {θ}} (4.9)

We prove at �rst (4.9). By De�nition of Bk and T− it easy to observe that
Bk⋃̇{vs+1, . . . , vβk+1} ⊆↓ T− and moreover by Lemma 4.4.1 ii) we also have that
↓ η1 ⊆ S

−
1 (n, r)⋃S

−
2 (n, r), hence, since ↓ Y− =↓ η1⋃ ↓ T−, it results that

Bk⋃̇{vs+1, . . . , vβk+1}⋃S
−
1 (n, r)⋃̇{S−2 (n, r)∖{θ}} ⊆↓ Y−. On the other hand, by

Lemma 4.4.1 iv) we have that ↓ T− ⊆ S
±
1 (n, r)⋃̇S

−
1 (n, r), because T− is a subset

of S±1 (n, r). At this point let us note that the elements of ↓ T− that are also
in S±1 (n, r) must belong necessarily to the subset Bk⋃̇{vs+1, . . . , vβk+1}. This
proves the other inclusion and hence (4.9).
To prove now (4.8) we must distinguish the cases (a1) and (a2). We set ∆ ∶=

S±2 (n, r)⋃̇S
+
1 (n, r)⋃̇S

+
2 (n, r)⋃Uk⋃̇{v1, . . . , vs} ˙⋃{θ}. Let us at �rst to examine

the case (a1). Since α is the minimum of S±2 (n, r) we have S
±
2 (n, r) ⊆↑ α ⊆↑ Y+.

Moreover, since Y− = T−⋃{η1}, it follows that ↑ Y
c
− ⊇↑ (Θ) = S+1 (n, r)⋃̇S

+
2 (n, r)

by Lemma 4.4.1 i). Finally, since Uk⋃̇{v1, . . . , vs} ⊆↑ T+ =↑ Y+ the inclusion
⊇ in (4.8) is proved. To prove the other inclusion ⊆ we begin to observe
that ↑ Y+⋂(S−1 (n, r)⋃S

−
1 (n, r)) = ∅, therefore the elements of ↑ Y+ that are

not in S±2 (n, r)⋃̇S
+
1 (n, r)⋃̇S

+
2 (n, r) must be necessarily in S±1 (n, r), and such

elements, by De�nition of T+ must be necessarily in Uk⋃̇{v1, . . . , vs}. This
proves that ↑ Y+ ⊆ ∆. For ↑ (Y c− ), we have ↑ (Y c− ) =↑ (T c− ⋃{η1}

c) and since
T− ⊆ S±1 (n, r), also T

c
− ⊆ (S±1 (n, r))

c = S±2 (n, r), by Lemma 4.4.1 v). Therefore
↑ T c− ⊆↑ S±2 (n, r) ⊆ S±2 (n, r)⋃̇S

+
2 (n, r) by Lemma 4.4.1 iii). This shows that

↑ (Y c− ) ⊆ S
±
2 (n, r)⋃̇S

+
2 (n, r)⋃̇S

+
1 (n, r) ⊆ ∆, hence the inclusion ⊆. The proof of

(4.8) in the case (a1) is therefore complete.

Finally, to prove (4.8) in the case (a2), it easy to observe that the only di�erence
with to respect case (a1) is when we must show that ↑ Y+ ⊆ ∆. In fact, in the case
(a2) it results that α ∉↑ T+ and Y+ = T+⋃{α}, while Y− is the same in both cases
(a1) and (a2). Therefore, in the case (a2), the elements of ↑ Y+ that are not in
S±2 (n, r)⋃̇S

+
1 (n, r)⋃̇S

+
2 (n, r) must be in (↑ T+)⋂S

±
1 (n, r) or in (↑ α)⋂S±1 (n, r).

As in the case (a1) we have (↑ T+)⋂S
±
1 (n, r) = Uk⋃̇{v1, . . . , vs} and, since α

is the minimum of S±2 (n, r), it results that ↑ α =↑ S±2 (n, r) ⊆ S
±
2 (n, r)⋃̇S

+
2 (n, r)

by Lemma 4.4.1 iii), hence (↑ α)⋂S±1 (n, r) = ∅. Therefore, also in the case
(a2), the elements of ↑ Y+ that are not in S±2 (n, r)⋃̇S

+
1 (n, r)⋃̇S

+
2 (n, r) must be

necessarily in Uk⋃̇{v1, . . . , vs}. The other parts of the proof are the same as in
the case (a1). Hence we have proved the identities (4.8) and (4.9). By Lemma
4.4.3 it follows then that the map A ∈W+(S(n, r),2). Finally, by De�nition of
A, we have obviously A(η1) = N , A(θ) = P and A(Θ) = P . This shows that
A ∈W+(n, r). The proof is complete.

To conclude we emphasize the elegant symmetry of the induced partitions
on S(n, r) from the Boolean total maps Aq's constructed in the proof.
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4.5 Solution of a problem extremal sums

Question (Q) can be seen as a re�nement the following problem (P2):

If q is an integer such that γ(n, r) ≤ q ≤ η(n, r), can we �nd n
real numbers a1, . . . , an, which r of them are non-negative and the
remaining n− r are negative with ∑

n
1=1 ai ≥ 0, such that the number

of the non-negative sums formed from these numbers is exactly q?

If we use the notations of weight function, problem (P2) can be written as
follows (P2):

If q is an integer such that γ(n, r) ≤ q ≤ η(n, r), does there exist a
function f ∈W (n, r) with the property that α(f) = q?

A solution to problem (P2) has been provided by Engel and Nardi [25], which
will be presented in detail in this section.

For f ∈WF (n, r) and X ∈ A(n, r), let Σ(X) ∶= ∑x∈X f(x). We de�ne:

F+(f) = {X ⊆ A(n, r) ∶ Σ(X) ≥ 0} and
F−(f) = {X ⊆ A(n, r) ∶ Σ(X) < 0}.

Since f is always clear from the context, we will usually omit it in the following.
Note that ∅ ∈ F+, ∣F+∣ = α(f) and ∣F+∣ + ∣F−∣ = 2n.

Theorem 4.5.1. Let n and r be positive integers with 1 ≤ r ≤ n− 1 and let q be
an integer with 2n−1 + 1 ≤ q ≤ 2n − 2n−r + 1. Then there exists an f ∈WF (n, r)
such that ∣F+∣ = q.

Proof. ForX ⊆ A(n, r) we setX+ =X∩ = {r̃, . . . , 1̃} andX− =X∩ = {1, . . . , n − r}.

Case 1. 2n−1 + 1 ≤ q ≤ 2n − 2n−1 + 2r−1. Then we de�ne f as follows:

f ∶
r̃ r̃ − 1 r̃ − 2 ⋯ 1̃ 0� 1 2 ⋯ (n − r)
↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

q − 2r 2r−2 2r−3 ⋯ 20 0 −2r−1 −2r ⋯ −2n−2

Then f(r̃) ≤ 0 and f(1̃) + ⋯ + f(r̃) + f(1) + ⋯ + f(n − r) = q − 1 − 2n−1 ≥ 0,
hence f ∈WF (n, r). Let

F1 = {X ⊆ A(n, r) ∶X−
= ∅},

F2 = {X ⊆ A(n, r) ∶X−
≠ ∅, r̃ ∉X},

F3 = {X ⊆ A(n, r) ∶X−
≠ ∅, r̃ ∈X,X−

≠ {1, . . . , n − r}},

F4 = {X ⊆ A(n, r) ∶ r̃ ∈X,X−
= {1, . . . , n − r}}.

Obviously,
{X ∶X ⊆ A(n, r)} = F1∪̇F2∪̇F3∪̇F4.

It is clear that F1 ⊆ F+.
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Now let X ∈ F2. Then Σ(X) = Σ(X+) + Σ(X−) ≤ 2r−1 − 1 − 2r−1 < 0, hence
F2 ⊆ F−. If X ∈ F3 then Σ(X) = Σ(X+) + Σ(X−) ≥ q − 2r − 2r−1(2n−r − 2) ≥

2n−1 + 1 − 2r − 2r−1(2n−r − 2) = 1 ≥ 0 hence F3 ⊆ F+. Finally let X ∈ F4. We put
Y = X+ ∖ {r̃}. Then Σ(X) = q − 2r +Σ(Y ) − (2n−1 − 2r−1). Hence Σ(X) ≥ 0 i�
Σ(Y ) ≥ 2n−1 + 2r−1 − q.

In the actual Case 1 we have 0 ≤ 2n−1 + 2r−1 − q ≤ 2r−1 − 1. Using binary
expansions it is easy to see that Σ(Y ) takes on all integer values from 0 to
2r−1 − 1 exactly once if Y runs through all subsets of [2, r]. Hence,

∣F4 ∩ F+∣ = 2r−1 − 1 − (2n−1 + 2r−1 − q) + 1 = q − 2n−1.

Consequently, we have

∣F+∣ = ∣F1∣ + ∣F3∣ + ∣F4 ∩ F+∣ = 2r + 2r−1(2n−r − 2) + (q − 2n−1) = q.

Case 2. 2n − 2n−1 + 2r−1 < q ≤ 2n − 2n−r + 1.

Then there exists a unique integer j ∈ [2, r] such that

2n − 2n−j+1 + 2r−j+1 < q ≤ 2n − 2n−j + 2r−j . (4.10)

Let
d = q − 2n + 2n−j+1 − 2r−j+1.

By (4.10),
0 < d ≤ 2n−j − 2r−j . (4.11)

We write d in the form
d = k ⋅ 2r−j + `,

where k is a non-negative integer and 1 ≤ ` ≤ 2r−j , i.e.

k = ⌈
d

2r−j
⌉ − 1, ` = d − k ⋅ 2r−j .

Note that by (4.11)
0 ≤ k ≤ 2n−r − 2.

We de�ne f as follows:

f ∶
r̃ ⋯ ̃r − j + 2 ̃r − j + 1 r̃ − j ⋯ 1̃
↓ ↓ ↓ ↓ ↓ ↓ ↓

2n−1 − 2r−1 ⋯ 2n−1 − 2r−1 ((k + 1) ⋅ 2r−1 − 2r−j + `) 2r−j+1 ⋯ 2r−r

0� 1 ⋯ (n − r)
↓ ↓ ↓ ↓

0 −2r−1 ⋯ −2n−2

Then f(i) ≥ 0 for i ∈ {r̃, . . . , ̃r − j + 1} and f(1̃)+⋯+f(r̃)+f(1)+⋯+f(n − r) =
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q − 1 − 2n−1 ≥ 2n−1 − 2r−1 − 2r−1(2n−r − 1) = 0, hence indeed f ∈WF (n, r). Let

F1 = {X ⊆ A(n, r) ∶X+
∩ {r̃, . . . , ̃r − j + 2} ≠ ∅},

F2 = {X ⊆ A(n, r) ∶X+
∩ {r̃, . . . , ̃r − j + 2} = ∅, j ∉X+,X−

≠ ∅},

F3 = {X ⊆ A(n, r) ∶X+
∩ {r̃, . . . , ̃r − j + 2} = ∅, j ∉X+,X−

= ∅},

F4 = {X ⊆ A(n, r) ∶X+
∩ {r̃, . . . , ̃r − j + 2} = ∅, j ∈X+

}.

Obviously,
{X ∶X ⊆ A(n, r)} = F1∪̇F2∪̇F3∪̇F4.

If X ∈ F1 then Σ(X) ≥ (2n−1 − 2r−1) − 2r−1(2n−r − 1) = 0, hence F1 ⊆ F+.
Now let X ∈ F2. Then Σ(X) = Σ(X+)+Σ(X−) ≤ (2r−j − 1)− 2r−1 < 0, hence

F2 ⊆ F−.
Clearly, F3 ⊆ F+.
Now we study F4. Let

F4,1 = {X ∈ F4 ∶ Σ(X−
) ≥ −k ⋅ 2r−1},

F4,2 = {X ∈ F4 ∶ Σ(X−
) ≤ −(k + 2) ⋅ 2r−1},

F4,3 = {X ∈ F4 ∶ Σ(X−
) = −(k + 1) ⋅ 2r−1}.

Then
F4 = F4,1∪̇F4,2∪̇F4,3.

If X ∈ F4,1 then Σ(X) > ((k+1)2r−1−2r−j)−k ⋅2r−1 = 2r−1−2r−j ≥ 0, hence F4,1 ⊆

F+. Obviously, Σ(X−) takes on all values from {0,−2r−1,−2 ⋅ 2r−1, . . . ,−(2n−r −
1) ⋅ 2r−1} exactly once if X− runs through all subsets of {1, . . . , n − r}. Hence

∣F4,1∣ = (k + 1) ⋅ 2r−j .

If X ∈ F4,2 then Σ(X) ≤ ((k + 1) ⋅ 2r−1 − 2r−j + l)+ (2r−j − 1)− (k + 2) ⋅ 2r−1 =
l − 1 − 2r−1 ≤ 2r−j − 1 − 2r−1 < 0, hence F4,2 ⊆ F−.

Finally, let X ∈ F4,3. We put Y = X+ ∖ { ̃r − j + 1}. Then Σ(X) = ((k +
1) ⋅ 2r−1 − 2r−j + `) + Σ(Y ) − (k + 1) ⋅ 2r−1, hence Σ(X) ≥ 0 i� Σ(Y ) ≥ 2r−j − `.
Obviously, Σ(Y ) takes on all integer values from 0 to 2r−j − 1 exactly once if Y
runs through all subsets of {r̃ − j, . . . , 1̃}. Accordingly,

∣F4,3 ∩ F+∣ = `.

Consequently,

∣F+∣ = ∣F1∣ + ∣F3∣ + ∣F4,1∣ + ∣F4,3 ∩ F+∣

= (2n − 2n−j+1) + 2r−j + (k + 1) ⋅ 2r−j + `

= (2n − 2n−j+1) + 2r−j+1 + d

= q.
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Chapter 5

Sperner and Non-Sperner

Posets

Let b(P ) be the largest size of a level of the graded poset P , i.e. b(P ) ∶=

max{Wi, i = 0, . . . , r(P )}. Let d(P ) be the largest size of an antichain in P , the
parameter d(P ) is called the the width of poset P . Obviously, for each graded

poset P, d(P )

b(P )
≥ 1.

After Sperner [42], it was proven for many interesting classes of graded posets
that the inequality is in fact an equality, the posets for which d(P ) = b(P ) are
called Sperner posets [23]. In other words, any ranked poset whose largest
antichain is not bigger than its maximum level is said to possess the Sperner
property, hence the Sperner property is equivalently the property that some
rank level is a maximum antichain.

Many interesting posets arise in combinatorics, supplying researchers with a
wealth of problems. The main thrust of this research has been to develop tools
for establishing the Sperner property; there are considerably fewer techniques
for bounding d(P ) in non-Sperner posets.

In the �rst part of this chapter we show that the lattice S(n, r) is a Sperner
poset, instead in the latter part we consider a new poset and we estimate how
much it is `close' to be a Sperner poset.

5.1 A Sperner poset

5.1.1 The full rank property and Jordan functions

Let P be a ranked poset with rank function r of rank n ∶= r(P ). We remember
that for a ranked poset P we de�ne the i th level by Ni(P ) ∶= {p ∈ P ∶ r(p) = i};
its size Wi(P ) ∶= ∣Ni(P )∣ is called the i th Whitney number, i = 0, . . . , r(P )

(when there is no danger of ambiguity we write brie�y Ni and Wi). With P we
associate the poset space P̃ , which is the vector space of all functions ϕ ∶ P → R
with the usual vector space operations. With the element p ∈ P we associate its

51
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characteristic function ϕp ∈ P̃ de�ned by

ϕp(q) =

⎧⎪⎪
⎨
⎪⎪⎩

1 if q = p

0 otherwise

For the sake of brevity, we write p̃ instead of ϕp, but 0̃ denotes the zero

vector. Obviously, {p̃ ∶ p ∈ P} is a basis of P̃ . Thus every element ϕ of P̃ has
the form ϕ = ∑p∈P µpp̃, where µp is real number, and P̃ can be considered as
the vector space of all formal linear combinations of elements of P with real
coe�cients. With the standard scalar product

⟨∑
p∈P

µpp̃,∑
p∈P

νpp̃⟩ = ∑
p∈P

µpνp

the space P̃ becomes a Euclidean space. With a subset F of P we associate the
subspace F̃ of P̃ , which is generated by {p̃ ∶ p ∈ F}. Obviously, the dimension of
F̃ , denoted by dim F̃ , equals ∣F ∣. Note that P̃ = Ñ0⊕ . . .⊕ Ñn, where ⊕ denotes
the direct sum. Any basis B of P̃ with the property B = ⋃

n
i=0B ∩ Ñi, that is,

all basis elements belong to some Ñi, is said to be a ranked basis. In particular,
{p̃ ∶ p ∈ P̃} is a ranked basis. In the following we consider linear operators
P̃ → P̃ . We de�ne φψ to be the operator for which φψ(ϕ) = φ(ψ(ϕ)) for all
φ ∈ P̃ . Further let φi ∶= φ . . . φ (i times) if i ≥ 1. It is useful to de�ne φj to be the
identity operator Ĩ if j ≤ 0. For a subspace E if P̃ , let φ(E) ∶= {φ(ϕ) ∶ φ ∈ E}

and φ∣E be the restriction of φ to E. Let φ∗ be the the adjoint operator of φ,
that is, φ∗ ∶ P̃ → P̃ with ⟨φ(ϕ), ψ⟩ = ⟨ϕ,φ∗(ψ)⟩ for all ϕ,ψ ∈ P̃ .

De�nition 5.1.1. If j ∉ {0, . . . , n}, let Ñj = {0̃}. A linear operator ∇̃ ∶ P̃ → P̃

is called raising operator if ∇̃(Ñi) ⊆ Ñi+1

De�nition 5.1.2. A raising operator ∇̃ de�ned on the basis {p̃ ∶ p ∈ P} by

∇̃(p̃) = ∑
q∶p⋖q

c(p, q)q̃

with c(p, q) ∈ R, is called an order-raising operator

De�nition 5.1.3. If j ∉ {0, . . . , n}, let Ñj = {0̃}. A linear operator △̃ ∶ P̃ → P̃

is called lowering operator if △̃(Ñi) ⊆ Ñi−1

De�nition 5.1.4. A lowering operator △̃ de�ned on the basis {p̃ ∶ p ∈ P} by

△̃(q̃) = ∑
p∶p⋖q

d(p, q)p̃

with d(p, q) ∈ R, is called an order-lowering operator

Thus order-raising (resp. lowering) operators are de�ned by functions E(P )→

R, where E(P ) is the arc set of the Hasse diagram of P . If c(p, q) = 1 (resp.
d(p, q) = 1) for all p ⋖ q we speak of the Lefschetz raising (resp. lowering). We
denote by ∇̃ (resp. △̃) a raising (resp. lowering) operator and by ∇̃L = ∇̃L(P )

(resp. △̃L = △̃L(P )) the Lefschetz raising (resp. lowering) operator in P . In-
tuitively speaking the Lefschetz raising operator ∇̃L, when acting on a poset
element, produces the sum of poset elements covering that element.
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Let ∇̃ij ∶= ∇̃j−i∣Ñi (resp. △̃ji ∶= △̃
j−i

∣Ñj ). Then ∇̃ij Ñi → Ñj (resp.

△̃ji Ñj → Ñi). If we �x the bases {p̃ ∶ p ∈ Ni} and {q̃ ∶ q ∈ Nj}, we can
associate whit the linear operator ∇̃ij (resp. △̃ji) a matrix Rij (resp. Lji)
whose columns (resp. rows) and rows (resp. columns) are indexed by rank i
and rank j elements and whose entry in p′s column (resp. row) and q′s row
(resp. column) equals ⟨p̃, △̃ji(q̃), q̃⟩ (resp.⟨∇̃ij(p̃)⟩), p ∈ Ni, q ∈ Nj . If △̃ = ∇̃∗,
then

Lji = R
T
ji for all i, j.

For a �xed raising (resp. lowering) operator ∇̃ (resp. △̃) and for 0 ≤ i ≤ j ≤ k ≤ n,
we have

∇̃jk∇̃ij = ∇̃ik (resp. △̃ji△̃kj = △̃ki),

which implies
RjkRij = Rik (resp. LjiLkj = Lki).

If ∇̃ (resp. △̃) is the Lefschetz raising (resp. lowering) operator, we use the
notation LRij(resp. LLji). In particular, LRi,i+1 is the incidence matrix of
rank i + 1 versus rank i elements, and the entry in p′s column (resp. row) and
q′s row (resp. column) of LRij (resp. LLji) equals the number of saturated
chains from p to q, p ∈ Ni, q ∈ Nj . Note that, as above, LLji = LR

T
ij . We call

the matrices LRij the Lefschetz matrices of P.

Let kerij(∇̃) be the kernel of ∇̃ij , that is, kerij(∇̃) ∶= {ϕ ∈ Ñi ∇̃ij(ϕ) = 0̃},

and let rankij(∇̃) be the rank of ∇̃ij , that is, the dimension of ∇̃ij((̃Ni)). From

linear algebra we know that kerij is a subspace of Ñi and that rankij equals the
matrix theoretical rank of the matrix Rij and, moreover,

rankij + dim kerij = dim Ñi =Wi, rankij = rankRij ≤ min{Wi,Wj}.

If rankij = min{Wi,Wj} we say that Rij and ∇̃ij have full rank. Moreover, we
say that ∇̃ has the full rank property if all ∇̃ij , 0 ≤ i ≤ j ≤ n, have full rank. The
de�nitions for lowering operators are analogous.

The full rank property is a criterion for the strong Sperner property. But let
us look �rst at a weaker condition that already implies the Sperner property.

Theorem 5.1.5. Let P be a rank unimodal. If there exists an order-raising
operator ∇̃ in P̃ such that ∇̃i,i+1 is of full rank for all 0 ≤ i ≤ n − 1, then P has
the Sperner property.

Let ∇̃ be a raising operator in P̃ . A set S = {bi, bi+1, . . . , bj} of elements of
P̃ is called a ranked Jordan string from Ñi to Ñj with respect to ∇̃ if bk ∈ Ñk,
k = i, . . . , j, and ∇̃(bk) = bk+1,k = i, . . . , j − 1,∇̃(bj) = 0. Note that a ranked
Jordan string generates an invariant subspace of P̃ with respect to ∇̃, denoted
in the following by Vijh (h enumerates the ranked Jordan strings from Ñi to

Ñj). A basis of P̃ that is a union of ranked Jordan strings is said to be a ranked

Jordan basis of P̃ with respect to ∇̃. We de�ne:

sij(∇̃) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

rankij + ranki−1,j+1 − ranki−1,j − ranki,j+1 if 0 ≤ i ≤ j ≤ n,

0 otherwise

(If the operator ∇̃ is clear from the context we will write brie�y sij).
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With a raising operator ∇̃ in P̃ we associate its Jordan function J(∇̃, P̃ ;x, y)
de�ned by

J(∇̃, P̃ ;x, y) = ∑
0≤i≤j≤n

sij(x
i
+ xi+1 + . . . + xj)yi+j ,

that is, a polynomial in the variables x and y with nonnegative integer coe�-
cients.

We say that the ranked poset P of rank n ∶= r(P ) has property T if for all
0 ≤ i ≤ j ≤ n there exist min{Wi,Wj} pairwise disjoint saturated chains starting
at some point in the ith level and ending at some point in the jth level. The
following theorem is mainly due to Stanley [45] and Griggs [29] ((i)↔(ii)); see
also [39].

Theorem 5.1.6. Let P be a ranked poset. The following conditions are equiv-
alent:

(i) P is rank unimodal and has the strong Sperner property

(ii) P has property T

(iii) There exist an order-raising operator ∇̃ on P̃ with the full rank property

(iv) There exists an order-lowering operator △̃ on P̃ with the full rank property

5.1.2 Peck poset

Let dk(P ) be the largest size of k-family (union of k antichains ) in P . A ranked
poset P is said to have the k-Sperner property if the maximum k-family in P
equals the largest sum of k Whitney numbers in P , that is, if

dk(P ) = max{Wi1 + . . . +Wik 0 ≤ i1 < . . . < ik ≤ r(P )}

in other words, P is k-Sperner if no union of k antichains is larger than the
union of the k-largest levels Ni. Further, P has the strong Sperner property ( P
is strongly Sperner) if P has the k-Sperner property for all k = 1,2, . . ..

In honor of the `dummy' mathematician G.W. Peck and his best friends
Graham, West, Purdy, Erd®s, Chung and Kleitman, a ranked poset P is called
a Peck poset if it is rank symmetric, rank unimodal and if it has the strong
Sperner property. This means that if a poset is Peck is also Sperner.
One �nds equivalent conditions in Theorem 5.1.6, where one has always to
add rank symmetry. In particular, a poset P is Peck, i� it is rank symmetric
and there exists and order-raising operator with the full rank property. If, in
particular, the Lefschetz raising operator ∇̃ has the full rank property, then we
speak (in the case of rank symmetry) of a unitary Peck poset.

Lemma 5.1.7. Let P be a ranked poset of rank n. It is Peck i� there ex-
ists an order raising operator ∇̃ such that for the Jordan function there holds
J(∇̃, P ;x, y) = F (P ;x)ym, where F (P ;x) is the rank-generating function of P.
The poset P is unitary Peck i� J(∇̃L, P̃ ;x, y) = F (P ;x)yn.

The following product theorem was �rst proved by Can�eld [13], and then
in di�erent ways by Proctor, Saks, Sturtevant [40], by Saks in a more general
version [41], and by Proctor [38].
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Theorem 5.1.8. (Peck Product Theorem. If P1 and P2 are (unitary) Peck
posets, then P1 × P2 is a (unitary) Peck poset, too.

Let P be a ranked poset of rank n and let ∇̃ and △̃ be a raising and lowering
operator on P̃ , respectively. We say that the pair (∇̃, △̃) has the commutation
property, brie�y property C (see [24]), if there are real numbers µ0, . . . , µn such
that

(∇̃△̃ − △̃∇̃)(p̃) = µr(p)p̃ for all p ∈ P.

If in particular (∇̃L, △̃) has property C and if P has unique minimal element,
then P is called by Stanley [46] µ−di�erential. If in particular µi = 2i − n,
i = 0 . . . n, then we say that (∇̃, △̃) has the Lie property.

The following theorem is mainly due to Proctor [37], who proved the equiv-
alence (i)↔(ii).

Theorem 5.1.9. The following conditions are equivalent for a ranked poset P
of rank n.

(i) P is Peck poset

(ii) There exist an order-raising operator ∇̃ and a lowering operator △̃ such
that (∇̃, △̃) has the Lie-property

(iii) There exist an order-raising operator ∇̃ and a lowering operator △̃ such
that (∇̃, △̃) has property C with a regular sequence (µ0, . . . , µn)

Remark 5.1.10. P is unitary Peck i� conditions (ii)(resp. (iii)) in Theorem
5.1.9 hold, with ∇̃ = ∇̃L.

One has still much freedom in constructing (∇̃, △̃) satisfying conditions
(ii)(resp. (iii)) of Theorem 5.1.9. But one has to solve a nonlinear (quadratic)
system of equations with a very number of variables. So let us restrict ourselves
to the special case when ∇̃ = ∇̃L and when △̃ is an order-lowering operator.
Moreover, we will consider only modular lattices though the results can be
given in a more general form (see Proctor [37]). Note that whenever p and q
are two elements that cover (resp. which are covered by) a third element then
necessarily this third element is p∧ q (resp. p∨ q), and r(p) = r(q) = r(p∧ q)+ 1
(resp. r(p ∨ q) − 1). Since r(p) + r(q) = r(p ∧ q) + r(p ∨ q), p and q are covered
by (resp. cover) a unique fourth element, namely p ∨ q (resp. p ∧ q).

We say that the modular lattice P of rank n is edge-labelable if there is a
function f ∶ E(P )→ R such that

f(p, p ∨ q) = f(p ∧ q, q) for all p, q ∈ P with p, q ⋖ p ∨ q (5.1)

and

∑
e+=p

f(e) − ∑
e−=p

f(e) = 2r(p) − n for all p ∈ P. (5.2)

Corollary 5.1.11. Every edge-labelable modular lattice is unitary Peck.

Proof. For p ∈ P , we de�ne

△̃(p̃) = ∑
q∶q⋖p

f(qp)q̃.

It is easy to check that (∇̃L, △̃) has the Lie property.
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5.1.3 The poset M(n)
The poset M(n) is the poset of all n-tuples a = (a1, . . . , an) with 0 = a1 = ⋯ =

ah < ah+1 < ⋯ < an ≤ n, h ∈ {0, . . . , n} (h = 0 means a1 > 0), with the order
given by a ≤ b i� ai ≤ bi for all i. For the rank of an element a, we have

r(a) = a1 +⋯ + an; thus r(M(n)) = n(n+1)
2

. In the following we show M(4).

(0,0,0,0)

(0,0,0,1)

(0,0,0,2)

(0,0,1,2) (0,0,0,3)

(0,0,1,3) (0,0,0,4)

(0,0,2,3) (0,0,1,4)

(0,1,2,3) (0,0,2,4)

(0,1,2,4) (0,0,3,4)

(0,1,3,4)

(0,2,3,4)

(1,2,3,4)

In the following Theorem we prove that the posetM(n) is an edge-labelable
modular lattice, which as we have seen above implies Peck property (Corollary
5.1.11).

Theorem 5.1.12. The poset M(n) is an edge-labelable modular lattice.

Proof. Observe at �rst that, if b = (b1, . . . , bn) covers a = (a1, . . . , an) in M(n),
then there is some index i such that ai = bi − 1 and aj = bj for j ≠ i. Put for
M(n):

f(a,b) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

n(n+1)
2

if ai = 0,

n(n + 1) − ai(ai + 1) otherwise
.

We have to verify (5.1) and (5.2). Let a,b ⋖ c ∶= a ∨ b. We pass from c to a
by decreasing some component ci by 1 (i.e., ai = ci − 1) and to b by decreasing
some other component cj (i ≠ j)by 1. Moreover, we pass from b to d ∶= a ∧ b
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by decreasing the component bi = ci by 1 (i.e., di = ci − 1 = ai). Consequently,

f(a,c) = f(b,d) ∶=

⎧⎪⎪
⎨
⎪⎪⎩

n(n+1)
2

if ai = 0,

n(n + 1) − ai(ai + 1) otherwise

thus (5.1) is satis�ed. To verify (5.2) consider any a = (a1, . . . , an) ∈ Nk where
0 = a1 = . . . = ah < ah+1 < an ≤ n, h ∈ {0, . . . , n} and de�ne a0 ∶= 0, an+1 ∶= n + 1.
We have

∑
e+=a

f(e) = ∑
h + 1 ≤ i ≤ n ∶
ai−1 < ai − 1

n(n + 1) − (ai − 1)ai (+
n(n + 1)

2
if ah+1 = 1)

∑
e−=a

f(e) = ∑
h + 1 ≤ i ≤ n ∶
ai + 1 < ai+1

n(n + 1) − ai(ai + 1) (+
n(n + 1)

2
if ah+1 > 1)

Now it is not di�cult to see that in ∑e+=a f(e)−∑e−=a f(e) we may drop the
extra conditions on the summation (any new term appearing will cancel each
other), and we obtain

∑
e+=a

f(e) − ∑
e−=a

f(e) = ∑
h+1≤i≤n

− (ai − 1)ai + ai(ai + 1) −
n(n + 1)

2

n

∑
i=h+1

2ai −
n(n + 1)

2
= 2r(a) − r(M(n)).

There is a nice application of the Peck property of M(n) to a number-
theoretic problem. Let R = {r1, . . . , rn} be a set of n distinct positive real
numbers and let α be real number. Moreover, let m(R,α) denote the number
of subsets of R adding up to α. Thus

m(R,α) ∶= ∣{X ⊆ [n] ∶ ∑
i∈X

ri = α}∣

In 1963 Erd®s-Moser [27] posed the problem of maximizing m(R,α). First
observe that there is a natural bijection ϕ ∶ 2[n] → M(n) diven by ϕ(X) ∶=

(0, . . . ,0, i1, . . . , il) for any set X = {i1, . . . , il} ∈ 2[n] with i1 < ⋅ ⋅ ⋅ < il.

Lemma 5.1.13. If ∣R∣ = n, then for all α ∈ R the set {ϕ(X) ∶ X ⊆ [n] and

∑i∈X ri = α} is an antichain in M(n).

Proof. Let, w.l.o.g., r1 < ⋅ ⋅ ⋅ < rn. Assume, in the contrary, that there are
X = {i1, . . . , il} ≠ Y = {j1, . . . , jm} ∈ 2[n], i1 < ⋅ ⋅ ⋅ < il, j1 < ⋅ ⋅ ⋅ < jm such that

l

∑
k=1

rik =
m

∑
k=1

rjk = α
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but ϕ(X) ≤M(n) ϕ(Y ). Then it is easy to see that l ≤ m and il ≤ jm, il−1 ≤

jm−1, . . . , i1 ≤ jm−l+1. If there was some strict inequality under these inequalities,
then we would have α = ∑

l
k=1 rik ≤ ∑

l
k=1 rjm−l+k ≤ ∑

m
k=1 rjk = α with at least one

strict inequality, a contradiction. Consequently, l = m and il = jl, . . . , i1 = j1,
that is, ϕ(X) = ϕ(Y ), implying X = Y , a contradiction.

Theorem 5.1.14. if ∣R∣ = n, then for all α ∈ R,

m(R,α) ≤m([n], ⌊
n(n + 1)

4
⌋) = d(M(n)).

Proof. From Lemma 5.1.13 we derive directly

m(R,α) ≤ d(M(n)).

But M(n) is Peck and of rank n(n+1)
2

. Consequently,

d(M(n)) =W⌊n(n+1)/4⌋(M(n)) = ∣{X ⊆ [n] ∶ ∑
i∈X

i = ⌊
n(n + 1)

4
⌋}∣

=m([n], ⌊
n(n + 1)

4
⌋) ,

and the proof is complete.

5.1.4 S(n, r) is a Sperner poset

It is easy to show that the dual posetM(n)∂ is isomorphic toM(n), thusM(n)∂

is also a Peck poset. It turns out that the lattice S(n, r) is isomorphic to the
poset M(r) ×M(n − r)∂ and by Peck Product Theorem 5.1.8 we can conclude
that S(n, r) is a Sperner poset.

The posetM(r)×M(n−r)∂ was studied by Stanley [45], who noticed that the
Peck property of M(n) together with Lemma5.1.13 solves the modi�cation of
the Erd®s-Moser problem. The original Erd®s-Moser problem concerns integer
sums including negative numbers. Let S = {s1, . . . , sn} be a set of n distinct
real numbers and α any real number. Let

em(S,α) ∶= ∣{X ⊆ [n] ∶ ∑
i∈X

si = α}∣ .

Theorem 5.1.15. For all α ∈ R,

em(S,α) ≤ em({−n,−n + 1, . . . ,0, . . . , n − 1, n},0) if ∣S∣ = 2n + 1,

em(S,α) ≤ em({−n + 1, . . . ,0, . . . , n − 1, n}, ⌊
n

2
⌋) if ∣S∣ = 2n.

Proof. Let us �rst suppose 0 ∉ S. Moreover, let

s1 < . . . < sr < 0 < sr+1 < . . . < sn.

A subset of S is uniquely characterized by a pair (X1,X2)with X1 ⊆ [r], X2 ⊆

[r+1, . . . , n] and, as previously, by a pair (a1, a2) with a1 ∈M(r), a2 ∈M(n−r).
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A family of subset of S that all have element sum α there corresponds an
antichain in M(r) ×M(n − r)∗, which is Peck and so we have

em(S,α) ≤ d(M(r) ×M(n − r)∗) = hn(r),

where
hn(r) ∶=W⌊((r+1)r+(n−r+1)(n−r))/4⌋(M(r) ×M(n − r)∗)

Now consider the maximum of hn(r). W.l.o.g., we assume that r ≤ n − r, that
is, r ≤ ⌊n

2
⌋, and we will show that the maximum of hn(r) is attained at r = ⌊n

2
⌋.

Otherwise we would have some r < ⌊n
2
⌋ with hn(r) > hn(r + 1). It is easy to see

the rank generating function of M(n) is given by

F (M(n);x) = (1 + x)(1 + x2) . . . (1 + xn),

and consequently,

F (M(r) ×M(n − r)∗;x) = (1 + x) . . . (1 + xr)(1 + x) . . . (1 + xn−r).

Let
p(x) ∶= F (M(r) ×M(n − r)∗;x) = β0 + β1x + . . . + βdx

d

with d ∶= (r+1)r+(n−r)(n−r−1)
2

. By rank symmetry and rank unimodality, β0 =

βd ≤ β1 = βd−1 ≤ . . . , and hn(r) (resp. hn(r + 1)) is the largest (i.e. middle)
coe�cient in p(x)(1+xn−r) (resp. p(x)(1+xr+1)). We put βi ∶= 0 if i ∉ {0, . . . , d}.
We have

hn(r) = β⌊(d+n−r)/2⌋ + β⌊(d+n−r)/2⌋−(n−r)

≤ β⌊(d+r+1)/2⌋ + β⌊(d+r+1)/2⌋−(r+1) = hn(r + 1)

since
β⌊(d+n−r)/2⌋ ≤ β⌊(d+r+1)/2⌋

in view of d+n−r
2

≥ d+r+1
2

≥ d
2
and β⌊(d+n−r)/2⌋−(n−r) ≤ β⌊(d+r+1)/2⌋−(r+1) be-

cause of d+n−r−2(n−r)
2

= d+r−n
2

≤ d−r−1
2

=
d+r+1−2(r+1)

2
≤ d

2
, a contradiction. Con-

sequently, indeed hn(⌊
n
2
⌋) = max{hn(r) ∶ 0 ≤ r ≤ ⌊n

2
⌋}.

Thus under the supposition 0 ∉ S, for ∣S∣ = 2n, em(S,α) ≤ h2n(n) =

em({−n,−n + 1, . . . ,−1,1, . . . , n},0), and for ∣S∣ = 2n + 1, em(S,α) ≤ h2n+1(n) =
em({−n, . . . ,−1,1, . . . , n + 1}, ⌊n+1

2
⌋).

Finally we allow 0 to be an element of S. Clearly for S = S′ ∪ {0}, 0 ∉ S′,
em(S,α) = 2em(S′, α)( we can take the subsets with and without zero). For
the sake of brevity, we consider only the case ∣S∣ = 2n + 1. From the pre-
ceding we know that the best we can achieve when 0 is included is 2h2n(n) =
em({−n, . . . ,−1,0,1, . . . , n},0) and, without including 0, the optimum is h2n+1(n) =
em({−n, . . . ,−1,1, . . . , n+1}, ⌊n+1

2
⌋)). But 2h2n(n) is twice the largest (i.e., mid-

dle) coe�cient in (1+x) . . . (1+xn)(1+x) . . . (1+xn), which is not less than largest
coe�cient h2n+1(n) in (1 + x) . . . (1 + xn)(1 + x) . . . (1 + xn)(1 + xn+1) (which is
the sum of two coe�cient from the preceding polynomial). Thus result follows.
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Figure 5.1: class of graded posets which for r(P ) = 5.

5.2 The size largest antichain in the partition lat-

tice

For many interesting classes of graded poset holds the equality d(P ) = b(P ).
But there exist graded posets where the ratio is arbitrarily large. For the class
of graded posets which is illustrated in Figure 5.1 for r(P ) = 5 we have

d(P )

b(P )
=

∣P ∣

8
+

1

2

In [17] was proven an upper bound for each graded poset.

Theorem 5.2.1. Let P be a graded poset. Then

d(P )

b(P )
≤max{

∣P ∣

8
+

1

2
,2}

Proof. We proceed by induction on r(P ). The case r(P ) = 0 is trivial. Let A
be a maximum antichain in P.

Case 1. There is some k ∈ {0, . . . , r(P )} such that ∣A ∩Nk ∣ = ∣Nk ∣. Since P is
graded, we have A = Nk and thus d(P )/b(P ) = 1.

Case 2. There is some k ∈ {0, . . . , r(P ) − 1} such that ∣A ∩Nk ∣ = ∣Nk ∣ − 1. Let

Al ∶=
k−1

⋃
i=0

(A ∩Ni) and Au ∶=
r(P )

⋃
i=k+1

(A ∩Ni) .

Let p the unique element of Nk ∖A. Since P is graded, all elements of Al and
Au are comparable with p (for absurd exists c ∈ A ∩ Ni i ≠ k such that c is
incomparable with p, hence ∣A ∩Nk ∣ = ∣Nk ∣). Hence Al = ∅ or Au = ∅ (since all
elements of Al and Au are comparable with p, all elements of Al are comparable
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with elements of Au ), let w.o.l.g. Au = ∅. Let

P ′
∶=
k−1

⋃
i=0

Ni.

Clearly, P ′ is also graded and

d(P ) = ∣A∣ ≤ d(P ′
) ≤ d(P ) b(P ′

) ≤ b(P )

Consequently, by the induction hypotesis

d(P )

b(P )
≤
d(P ′)

b(P ′)
≤max{

∣P ′∣

8
+

1

2
,2} ≤max{

∣P ∣

8
+

1

2
,2} .

Case 3. Not Case 1 and not Case 2. Then ∣A ∩Nk ∣ ≤ ∣Nk ∣ − 2

d(P ) = ∣A∣ =

RRRRRRRRRRR

r(P )

⋃
i=0

A ∩Ni

RRRRRRRRRRR

≤
⎛

⎝

r(P )

⋃
i=0

Ni
⎞

⎠
− 2(r(P )) = ∣P ∣ − 2(r(P ) + 1) + 2.

Obviously,

∣P ∣ = b(P )(r(P ) + 1), i.e. r(P ) + 1 ≥
∣P ∣

b(P )
.

Hence,

d(P ) ≤ ∣P ∣ − 2
∣P ∣

b(P )
+ 2 = ∣P ∣

b(P ) − 2

b(P )
+ 2

and consequently (since (b(P ) − 2)/(b(P ))2 attains its maximum at b = 4)

d(P )

b(P )
≤
b(P ) − 2

(b(P ))2
∣P ∣ +

2

b(P )
≤max{

∣P ∣

8
+

1

2
,2}

Some similar results have been obtained in [26].

5.2.1 The partition lattice Πn

A partition of the set [n] = {1,2, . . . , n} is a collection of nonempty, pairwise
disjoint subsets of [n], called blocks, whose union is [n]. Let Πn denote the set of
partitions of [n]. In other words, if π ∈ Πn, then we can write π = A1∣A2∣ . . . ∣Ak
and there is an application z ∶ π → z(π) ∶= n1 + . . . + nk = n, with ni ∶= ∣Ai∣ for
1 ≤ i ≤ k. We denote, for example, the partition {4} ∪ {2,5,6} ∪ {1,3} of [6]
brie�y by 4∣256∣13 (or 526∣13∣4,. . . ), and for this partition k = 3 and n1 = 1,n2 = 3
and n3 = 2 (or n1 = 3, n2 = 2,n3 = 1,. . . ). Given two partitions π,σ ∈ Πn, we
say that π re�nes σ if π can be obtained from σ by further partitioning one
or more blocks of y. In other words, If π,σ ∈ Πn π ≤ σ if only if for a block
Ai ∈ π exists some block Bj ∈ σ such that Ai ⊆ Bj . The re�exive closure of this
relation, denoted π ≤ σ, is re�exive, transitive, and antisymmetric; hence, the
pair (Πn,≤) is a �nite partially ordered set. For example the previous partition
4∣256∣13 covers 4∣2∣56∣13, 4∣25∣6∣13, 4∣5∣26∣13, 4∣256∣1∣3. Let b(π) stand for the
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number of blocks in π. Then the rank function is given by r(π) = n − b(π). In
the following, Figure 5.2 we show Π4.

1∣2∣3∣4

12∣3∣4 13∣2∣4 14∣2∣3 23∣1∣4 24∣1∣3 34∣1∣2

123∣4 124∣3 12∣34 13∣24 14∣23 134∣2 234∣1

1234

Figure 5.2: Hasse Diagram Π4.

For the Whitney numbers, we have Wi(Πn) = Sn,n−i, where Sn,k is the
corresponding Stirling number of the second kind, which is de�ned by the number
of partitions of [n] into exactly k blocks. The following basic recurrence holds
for the Stirling numbers:

Sn,k = kSn−1,k + Sn−1,k−1 n, k ≥ 1.

The Bell numbers Bn ∶= ∣Πn∣ can be determined by the formula of Dobinski

Bn =
1

e

∞

∑
i=0

in

i!
.

For �xed n the sequence S(n, k) is unimodal in k, and it has been of interest
of investigate the relationship between d(Πn) and the largest Stirling number
S(n,Kn). From [15] we have:

Theorem 5.2.2. Let a ∶= (2−e log 2)/4. Then for suitable constants c1, c2, and
n > 1

c1n
a
(logn)−a−1/4 ≤

d(Πn)

b(Πn)
≤ c2n

a
(logn)−a−1/4

The lower bound in this theorem is proven in [14]. Moreover, corresponding
limit theorems in [23] imply the following result:

Theorem 5.2.3. We have

b(Πn) ∼

√
logn
√

2π

∣Πn∣
√
n

n→∞.

5.2.2 A quotient of the partition lattice Πn

W.o.l.g hereafter we consider only patitions π ∈ Πn, π = A1∣A2∣ . . . ∣Ak such that
n1 ≥ n2 ≥ . . . ≥ nk. Let π = A1∣A2∣ . . . ∣Ak, σ = B1∣B2∣ . . . ∣Bh be two partitions in
Πn. We de�ne on Πn the equivalence relation π ∼ σ i� ∣Ai∣ = ∣Bj ∣ ∀ 1 ≤ i ≤ k, 1 ≤
j ≤ h. For example, π = 123456∣7 and π = 712345∣6 are equivalent, π,σ ∈ Π7,.
We denote by [π] the equivalence class of partition π ∈ Πn and we denote by Π̃n

the quotient set of Πn respect to the relation ∼. The partition with elements
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sorted in ascending order is chosen as representative, so π = 123456∣7 is the
representative of elements in Π̃7 which have the form A1∣A2 such that ∣A1∣ = 6
and ∣A2∣ = 1. In the following Figure 5.3 we show Π̃7.

1∣2∣3∣4∣5∣6∣7

12∣3∣4∣5∣6∣7

123∣4∣5∣6∣7 12∣34∣5∣6∣7

1234∣5∣6∣7 123∣45∣6∣7 12∣34∣56∣7

12345∣6∣7 1234∣56∣7 123∣456∣7 123∣45∣67

123456∣7 12345∣67 1234∣567

1234567

Figure 5.3: Hasse Diagram Π̃7.

Theorem 5.2.4. We have

b(Π̃n) ∼
π

e
√

6

∣Π̃n∣
√
n

as n→∞.

5.2.3 Estimation of size of the largest antichain in Π̃n

Let Π̃2,n be the set of all partitions in Π̃n which have blocks with cardinality

greater than 1, in other words π = A1∣A2∣ . . . ∣Ak ∈ Π̃n if ∣Ai∣ > 1 for all 1 ≤ i ≤ k.

Theorem 5.2.5. We have
d(Π̃n) ≤ ∣Π̃2,n∣.

Proof. Let ϕ ∶ Π̃n ∖ Π̃2,n → Π̃n be the mapping that assigns to the partition p
(having at least a block with cardinality 1) the partition p′ that can be obtained
from p by combining a block with cardinality 1 and a block with the largest
cardinality of p, for example p = 1234∣5∣6∣7 ∈ Π̃7∖Π̃2,7 we assign to the partition

p′ = 12345∣6∣7. Clearly, for all p ∈ Π̃n ∖ Π̃2,n p ⋖ ϕ(p).
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The mapping ϕ is injective since p can be recovered from ϕ(p) (partition
the block with the largest cardinality s of ϕ(p) into two blocks with cardinality
s − 1 and 1). Let l(p) be the �rst natural number for which ϕl(p)(p) ∈ Π̃2,n. In

addition, let for p ∈ Π̃2,n, ϕ
0(p) ∶= p. If p and q are incomparable elements in

Π̃n, then
ϕl(p)(p) ≠ ϕl(q)(q)

since otherwise (say for l(p) ≥ l(q)) by injectivity of ϕ

ϕl(p)−l(q)(p) = q,

i.e, p ≤ q. Hence, for any antichain A in Π̃n,

∣A∣ = ∣{ϕl(p)(p) ∶ p ∈ A}∣ ≤ ∣Π̃2,n∣.

Theorem 5.2.6. We have

∣Π̃2,n∣ ∼
π
√

6

Π̃n
√
n

as n→∞.

Note that from theorems 5.2.4, 5.2.5 and 5.2.6 follows this result:

Theorem 5.2.7.

1 ≤
d(Π̃n)

b(Π̃n)
≤ e + o(1) as n→∞

Let P (n, k) (resp. p(n, k)) be the number of partitions of n into k or fewer
(resp into exactly k) parts and let p(n) ∶= P (n,n). We note that the ele-
ments of Π̃n are uniquely determined by their cardinality, then there exists an
isomorphism between elements of Π̃n and partitions of integer. In particular,
p(n) ∶= P (n,n) = ∣Π̃n∣ and the Whitney numbers of Π̃n coincide with he number
of partitions of n into exactly k parts. Therefore there exists an isomorphism
between the poset Π̃n and the poset Pn (unordered) of partition of an integer
n, ordered by re�nement, as de�ned by G. Birkho� [[10], pp.16, 104].

We write partitions as x = (a1, a2, . . . , ak), y = (b1, b2, . . . , bl) etc., where we
assume that a1 ≥ a2 ≥ ⋯ ≥ ak > 0, a1 + a2 +⋯ + ak = n and similarly for y. Then
x ≤ y is de�ned to mean that there is a partition {1, . . . , k} = J1 ∪ J2 ∪⋯∪ Jl of
the index set of x into l disjoint, nonempty subsets, such that bi = ∑j∈Ji aj for
all 1 ≤ j ≤ l.

Fix n ≥ 1 then Pn is a graded modular poset of rank n − 1, with maximal
element 1̂ = (n) and minimal element 0̂ = (1, . . . ,1). ts rank function is given by
r(a1, a2, . . . , ak) = n − k. The Whitney numbers of the second kind for Pn are
Wk = p(n,n − k) number of partitions of n into n − k parts. Then the estimate
of the theorem 5.2.7 also holds to the poset Pn, as shown in [17].

To prove 5.2.4 and 5.2.6 we use a result of Szekeres (see [47] and [48] ) which
was reproved in with a new recursion method in [16] a more or less elementary
way:
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Theorem 5.2.8. Let ε > 0 be given. Then, uniformly for k ≤ n1/6

P (n, k) =
f(u)

n
e
√
ng(u)+O(n−1/6+ε).

Here, u = k/
√

(n), and the functions f(u), g(u) are:

f(u) =
v

√
8πu

(1 − e−v −
1

2
u2e−v)

−1/2

(5.3)

g(u) =
2v

u
− u log (1 − e−v) , (5.4)

where v(= v(u)) is determined implicitly by

u2 =
v2

∫
v
o

t
et−1

dt
. (5.5)

The function

F (v) ∶=
v2

∫
v
o

t
et−1

dt

is an increasing (continous) function of v, because its derived function is:

F ′
(v) =

v(∫
v
o

2t
et−1

dt − v2

ev−1
)

(∫
v
o

t
et−1

dt)2

is positive, because

v

∫
o

2t

et − 1
dt >

v

∫
o

t

et − 1
dt ≥

v

∫
o

min
s∈[0,v]

s

es − 1
dt =

v

∫
o

v

ev − 1
dt = v

v

ev − 1
=

v2

ev − 1
.

Since the RHS of 5.5 is an increasing function, also u is an increasing function
of v, and hence the inverse function of u does exist.

Proposition 5.2.9. Let C:= π
√
6
with u also v tends to in�nity (and vice versa)

lim
u→∞

v

u
= C

Proof. Since

1

et − 1
=

1

et(1 − 1
et
)
= e−t

∞

∑
n=0

e−nt =
∞

∑
n=1

e−nt ∀ t > 0,

we have

+∞

∫
o

t

et − 1
dt =

+∞

∫
o

t
∞

∑
n=1

e−ntdt =

+∞

∫
o

∞

∑
n=1

te−ntdt =
∞

∑
n=1

+∞

∫
o

te−ntdt =
∞

∑
n=1

1

n2
.

Now we apply the identity of Parseval to the function f(x) = x on the

interval [−π,π] to �nd the sum of the series
∞

∑
n=1

1
n2 . Since the function f(x) = x
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is odd the Fourier coe�cients an = 0 ∀ n ≥ 0, instead the Fourier coe�cients

bn =
(−1)n+12

n
∀n ≥ 1. By identity of Parseval we have

1

π

π

∫
−π

x2dx = 4
∞

∑
n=1

1

n2
,

i.e.
2

3
π2

= 4
∞

∑
n=1

1

n2

hence
∞

∑
n=1

1
n2 = C2. The result ∫

+∞

o
t

et−1
dt = C2 implies that with u also v tends

to in�nity (and vice versa) and the thesis follows.

Lemma 5.2.10. We have for u→∞ (or v →∞)

v

u
= C −

v + 1

2C
ev +O(v2e−2v).

Proof. For t ≥ 1 we have:

t

et − 1
=

t

et(1 − 1
et
)
=
t

et

∞

∑
n=0

e−nt ≤
t

et
(1 +

2

et
).

Then, it results
t

et
≤

t

et − 1
≤
t

et
+

2t

e2t
.

Using ∫
+∞

o
t

et−1
dt = C2 and taking the integral from v ≥ 1 yields

+∞

∫
v

t

et
≤

+∞

∫
v

t

et − 1
dt =

+∞

∫
o

t

et − 1
dt −

v

∫
o

t

et − 1
dt ≤

+∞

∫
v

t

et
+

2t

e2t

(v + 1)e−v ≤ C2
−
v2

u2
≤ (v + 1)e−v +

e−2v(2v + 1)

2
,

and hence

(
v

u
)
2

= C2
− (v + 1)e−v +O(ve−2v).

Consequently,
v

u
= C (1 −

v + 1

C2
e−v +O(ve−2v))

1/2

.

Using (1 − x)1/2 = 1 − 1
2
x +O(x2) x→ 0, with x = v+1

C2 e
−v +O(ve−2v) we have

v

u
= C (1 −

v + 1

2C2
e−v +O(v2e−2v)) = C −

v + 1

2C
e−v +O(v2e−2v).

Lemma 5.2.11. We have for u→∞ (or v →∞)

g(u) = 2C −
1

C
e−v +O(v2e−2v).
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Proof. Using log(1 − x) = −x +O(x2) x→ 0 with x = e−v we have

−u log(1 − e−v) = ue−v +O(ue−2v)

and consequently by 5.4

g(u) =
2v

u
+ ue−v +O(ue−2v),

and by Lemma 5.2.10

g(u) = 2(C −
v + 1

2C
ev +O(v2e−2v)) + ue−v +O(ue−2v)

g(u) = 2C −
v

C
e−v −

1

C
e−v +O(v2e−2v) + ue−v +O(ue−2v). (5.6)

Moreover, by Lemma 5.2.10 we have

v

u
= C +O(ve−v)

i.e.
v = Cu +O(uve−v).

Using Proposition 5.2.9
v

C
= u +O(v2e−v),

hence
v

C
e−v = ue−v +O(v2e−2v)

i.e.
ue−v =

v

C
e−v +O(v2e−2v)

and �nally substituting the previous expression in equation 5.6 we have

g(u) = 2C −
v

C
e−v −

1

C
e−v +

v

C
e−v +O(v2e−2v),

i.e.

g(u) = 2C −
1

C
e−v +O(v2e−2v).

Proposition 5.2.12. If k ≥ n ≥ 1, then P (n, k) = p(n) for n ≥ k ≥ 2:

P (n.k) = P (n, k − 1) + P (n − k, k) P (n,1) ∶= 1 P (0, k) ∶= 1.

Proof. P(n,k) is the number of solution of x1 + 2x2 + . . . + nxn = n that satisfy
x1 + x2 + . . . ≤ k also. So we divide the set of solutions into two parts: �rst the
solutions of x1 + 2x2 + . . . + nxn = n that also satisfy x1 + x2 + . . . ≤ k − 1: there
are P (n, k − 1) of these; then the solutions of x1 + 2x2 + . . .+nxn = n which also
satisfy x1 + x2 + . . . = k; these are just the solutions of x2 + 2x3 + . . . = n − k and
x2 + x3 + . . . ≤ k (since x1 ≥ 0); hence there are P (n − k, k) of these.
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Lemma 5.2.13. Let 0 < δ < 1
4C

and I = [( 1
2C

− δ)
√
n logn, ( 1

2C
+ δ)

√
n logn].

Then, uniformly for k ∈ I as n→∞

P (n, k) ∼ p(n)e−
√
n
C e−Cu ,

p(n, k) ∼ p(n)e−Cu−
√
n
C e−Cu ,

p(n − k, k) ∼ p(n)e−2Cu−
√
n
C e−Cu .

Here u ∶= k/
√
n.

Proof. Obviously p(n, k) = P (n, k) −P (n, k − 1), by Proposition 5.2.12 we have

p(n, k) = P (n, k − 1) + P (n − k, k) − P (n, k − 1),

i.e.
p(n, k) = P (n − k, k) (5.7)

and subtracting k from each part

p(n − k, k) = P (n − 2k, k) (5.8)

All the following estimates are uniform for k ∈ I and taken for n → ∞. Let
i ∈ {0,1,2}. Let ui ∶=

k
√
n−ik

and vi ∶= v(ui). By equation (5.3)

f(ui) =
vi

√
8πui

(1 − e−vi −
1

2
u2i e

−vi)

−1/2

,

for ui →∞ by Proposition 5.2.9 we have lim
ui→∞

vi
ui

= C and vi ∼ Cui, so

f(ui) ∼
C

√
8π
.

Moreover, by Theorem 5.2.8

P (n − ik, k) =
f(ui)

n − ik
e
√
n−ikg(ui)+O((n−ik)−1/6+ε)

∼
C

√
8π(n − ik)

e
√
n−ikg(ui)

i.e.

P (n − ik, k) ∼
C

√
8πn

e
√
n−ikg(ui). (5.9)

Using (1 − x)1/2 = 1 − 1
2
x + o(x) we have

√
n − ik =

√
n(1 −

ik

n
)

1/2

=
√
n(1 −

1

2

ik

n
+ o(

ik

n
)) ,

hence
√
n − ik =

√
n −

iu

2
+ o(1). (5.10)
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Now,using (1 − x)−1/2 = 1 +O(x) we have

ui =
k

√
n − ik

=
k

√
n (1 − ik

n
)
1/2

= u(1 −
ik

n
)

−1/2

=
k

√
n

(1 +O (
ik

n
))

hence

ui = u +O (
1

n3/2
) = u +O (

log2 n
√
n

) . (5.11)

Let δ < δ1 < δ2 <
1
4C

, since k ∈ I

(
1

2C
− δ1)

√
n logn < k < (

1

2C
+ δ1)

√
n logn

(
1

2C
− δ1)

√
n logn

√
n − ik

<
k

√
n − ik

< (
1

2C
+ δ1)

√
n logn

√
n − ik

.

Then for large n,

(
1

2C
− δ1) logn < ui < (

1

2C
+ δ1) logn.

By Proposition 5.2.9 it follows

(
1

2
−Cδ2) logn < vi < (

1

2
+Cδ2) logn.

Consequently,

vi > logn( 1
2−Cδ2)

−vi < log
1

n( 1
2−Cδ2)

and hence

e−vi <
1

n( 1
2−Cδ2)

.

From Lemma 5.2.10
v

u
= C +O(ve−v)

hence

vi = Cui +O(uivie
−vi) = Cui +O(u2i e

−vi) = Cui +O (
u2i

n( 1
2−Cδ2)

)

since u2i =
k2

n2 = O(log2 n) we have

vi = Cui +O (
log2 n

n( 1
2−Cδ2)

)

noting (5.11)

vi = Cu +O (
log2 n
√
n

) +O (
log2 n

n( 1
2−Cδ2)

) = Cu +O (
log2 n

n( 1
2−Cδ2)

) ,
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hence,

e−vi = e
−Cu+O(

log2 n

n
( 1
2
−Cδ2)

)

= e−Cue
O(

log2 n

n
( 1
2
−Cδ2)

)

,

using ex = 1 + 0(x)

e−vi = e−Cu (1 +O (
log2 n

n( 1
2−Cδ2)

)) = e−Cu + e−CuO (
log2 n

n( 1
2−Cδ2)

) .

Obviously,

e−Cu = O (
1

n( 1
2−Cδ)

)

and thus

e−vi = e−Cu +O (
1

n( 1
2−Cδ)

)O (
log2 n

n( 1
2−Cδ2)

) = e−Cu +O (
log2 n

n1−C(δ+δ2)
)

i.e.

e−vi = e−Cu + o(
1

√
n
) .

By Lemma 5.2.11

g(ui) = 2C −
1

C
e−vi +O(v2i e

−2vi) = 2C −
1

C
(e−Cu + o(

1
√
n
)) +O(v2i e

−2vi)

and this yields

g(ui) = 2C −
1

C
e−Cu + o(

1
√
n
) ,

and from (5.10) we derive

√
n − ikg(ui) = (

√
n −

iu

2
+ o(1))(2C −

1

C
e−Cu + o(

1
√
n
))

i.e.
√
n − ikg(ui) = (

√
n −

iu

2
) (2C −

1

C
e−Cu) + o(1) (5.12)

Note that by the Hrady-Ramanujan formula [30] (put in Theorem 5.2.8u ∶=
√
n)

p(n) ∶= P (n,n) ∼
C

√
8πn

e
√
n2C . (5.13)

From (5.9) and (5.12) we obtain

P (n − ik, k) ∼
C

√
8πn

e(
√
n− iu2 )(2C− 1

C e
−Cu

)+o(1)

i.e.

P (n − ik, k) ∼
C

√
8πn

e
√
n2Ce−iCu−

√
n
C e−Cu+o(1),

using (5.13)
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P (n − ik, k) ∼ p(n)e−iCu−
√
n
C e−Cu+o(1).

Now for i = 0

P (n, k) ∼ p(n)e−
√
n
C e−Cu.

The assertion follows from (5.7) and (5.8), for i = 1,2 we have

p(n, k) = P (n − k, k) ∼ p(n)e−Cu−
√
n
C e−Cu ,

p(n − k, k) = P (n − 2k, k) ∼ p(n)e−2Cu−
√
n
C e−Cu .

In the following let only i ∈ {1,2}. Note that

Ui ∶=
1

2C
logn −

1

C
log iC =

1

C
log

√
n

iC

is the unique point at which the function

hi(u) ∶= −iCu −

√
n

C
e−Cu

achieves its maximum. Now

hi(Ui + t) = −iC(Ui + t) −

√
n

C
e−C(Ui+t)

hi(Ui + t) = −iCUi − iCt −

√
n

C
e−CUie−Ct

hi(Ui + t) = −iC (
1

C
log

√
n

iC
) − iCt −

√
n

C
e
−C( 1

C log
√
n
iC )

e−Ct

hi(Ui + t) = log(
iC
√
n
)

i

− iCt − ie−Ct

hence

ehi(Ui+t) = e
log( iC√

n
)
i
−iCt−ie−Ct

ehi(Ui+t) =
(iC)i

ni/2
e−iCt−ie

−Ct
. (5.14)

let 0 < δ < 1
4C

and let Ui ∶= Ui−δ logn, Ui ∶= Ui+δ logn. Further let ki ∶= ⌊Ui
√
n⌋,

ki ∶= ⌊Ui
√
n⌋, k∗i ∶= ⌊Ui

√
n⌋ and ui ∶= ki/

√
n, vi ∶= v(ui).

Lemma 5.2.14. We have for i ∈ {1,2}

P (n, ki) = o(
p(n)
√
n

) .

Proof. Since

ui ∶=
ki
√
n
=

⌊Ui
√
n⌋

√
n

=
⌊(Ui − δ logn)

√
n⌋

√
n
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ui =
⌊( 1

2C
logn − 1

C
log iC − δ logn)

√
n⌋

√
n

= (
1

2C
− δ) logn +O(1),

we have

e−Cui = elogn
Cδ− 1

2 +O(1)
= nCδ−

1
2 eO(1)

hence

−

√
n

C
e−Cui = −

√
n

C
(nCδ−

1
2 eO(1)

) =
−nCδeO(1)

C

and thus

e−
√
n
C e

−Cui
= e

−nCδeO(1)
C = o(

1
√
n
) .

From Lemma 5.2.13

P (n, ki) ∼ p(n)e
−
√
n
C e

−Cui

the assertion follows

P (n, ki) ∼ p(n)o(
1

√
n
) = o(

p(n)
√
n

) .

Lemma 5.2.15. We have for i ∈ {1,2}

p(n − ki) = o(
p(n)
√
n

) .

Proof. Let 0 < δ1 < δ. Since

ki = ⌊Ui
√
n⌋ = ⌊(Ui + δ logn)

√
n⌋ = ⌊((

1

2C
+ δ) logn −

1

C
log iC)

√
n⌋ .

Then, for large n,

ki ≤ (
1

2C
+ δ1)

√
n logn,

so

n − ki ≤ n − (
1

2C
+ δ1)

√
n logn,

√

n − ki ≤ (n(1 − (
1

2C
+ δ1)

√
n logn

n
))

1/2

=
√
n(1 − (

1

2C
+ δ1)

logn
√
n

)

1/2

,

using (1 − x)1/2 = 1 − 1
2
x + o(x)

√

n − ki ≤
√
n(1 − (

1

4C
+
δ1
2
)

logn
√
n

) + o(1),

i.e. √

n − ki ≤
√
n − (

1

4C
+
δ1
2
) logn + o(1).
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Form (5.13) we derive

p(n − ki) ∼
C

√
8π(n − ki)

e
√
n−ki2C ≤

C
√

8π(n − ki)
e
(
√
n−( 1

4C +
δ1
2 ) logn+o(1))2C

but the RHS of the previous equation is equal to:

C
√

8π(n − ki)
e
√
n2Ce

(−( 1
4C +

δ1
2 ) logn+o(1))2C

∼ p(n)e
(−( 1

4C +
δ1
2 ) logn)2C

= p(n)elogn
(− 1

2
+Cδ1)

=
p(n)
√
n
n−Cδ1 =

p(n)
√
n
o(1) = o(

p(n)
√
n

) .

Proof of Theorem 5.2.4. By Lemma 5.2.13

p(n, k∗1) ∼ p(n)e
−C

k∗1√
n
−
√
n
C e

−C k∗1√
n

= p(n)e
h1(

k∗1√
n
)
,

by equation (5.14) (note t = o(1))

p(n)e
h1(

k∗1√
n
)
∼

C

e
√
n
p(n).

Because h1(U1) is the maximum of h1(u) we have

eh1(u) = −Cu −

√
n

C
e−Cu ≤ eh1(U1)

and again in view of Lemma 5.2.13 we have for k ∈ [k1 + 1, k1 − 1]

p(n, k) <
∼
p(n, k∗1).

For k ≤ k1, for large n
p(n, k) ≤ P (n, k1)

and by Lemma 5.2.14

P (n, k1) = o(
p(n)
√
n

) < p(n, k∗1)

thus

p(n, k) < p(n, k∗1) ∼
C

e
√
n
p(n) =

π

e
√

6

p(n)
√
n
.

For k ≤ k1, for large n, using (5.7)

p(n, k) = P (n − k, k)) ≤ p(n − k1)

and by Lemma 5.2.15

p(n − k1) = o(
p(n)
√
n

) < p(n, k∗1)
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thus

p(n, k) < p(n, k∗1) ∼
C

e
√
n
p(n) =

π

e
√

6

p(n)
√
n
.

Proof of Theorem 5.2.6. Obviously (substract from each part of a memeber of
Π̃2,n, a one)

∣Π̃2,n∣ =

⌊n
2
⌋

∑
k=1

p(n − k, k).

We divide the sum into 3 parts:

⌊n
2
⌋

∑
k=1

p(n − k, k) =
k2

∑
k=1

p(n − k, k) +
k2−1

∑
k2+1

p(n − k, k) +
⌊n
2
⌋

∑

k2

p(n − k, k).

By lemma 5.2.13,uniformly for k ∈ I, where I = [( 1
2C

− δ)
√
n logn, ( 1

2C
+ δ)

√
n logn]

p(n − k, k) ∼ p(n)e
−2C k√

n
−
√
n
C e

−C k√
n

.

and from (5.14) with i = 2

eU2 =
4C2

n
e−2CU2−2e

−CU2
.

Thus
k2−1

∑
k2+1

p(n − k, k) ∼
4C2

n
p(n)

k2−1

∑
k2+1

e
−2C( k√

n
−U2)−2e

−C( k√
n
−U2)

The sum can be considered as an integral approximation with step size n1/2.
Since k2 → −∞ and k2 → +∞ this sum multiplied by

√
n converges for n → ∞

to
+∞

∫
−∞

e−2Ct−2e
−Ct
dt =

+∞

∫
−∞

e−2Cte−2e
−Ct
dt

putting −2e−Ct = u and using integration by parts we have

+∞

∫
−∞

e−2Ct−2e
−Ct
dt =

1

4C
.

Consequently,

k2−1

∑
k2+1

p(n − k, k) ∼
4C2

√
n
p(n)

√
n
k2−1

∑
k2+1

e
−2C( k√

n
−U2)−2e

−C( k√
n
−U2)

∼
4C2

√
n
p(n)

1

4C

so
k2−1

∑
k2+1

p(n − k, k) ∼
C
√
n
p(n).
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Moreover, by Lemma 5.2.14

k2

∑
k=1

p(n − k, k) ≤ P (n, k2) = o(
p(n)
√
n

) .

Finally,by Lemma 5.2.15

⌊n
2
⌋

∑

k2

p(n − k, k) ≤ p(n − k2) = o(
p(n)
√
n

) .

Hence

∣Π̃2,n∣ =

⌊n
2
⌋

∑
k=1

p(n − k, k) ∼
C
√
n
p(n)

and the assertion is proved.
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Chapter 6

Conclusion

In this thesis the main innovation was to introduce the lattice theory in some
combinatorics problems related to the conjecture of Manckam, Miklös e Singhi.

First, we built the lattice S(n, r) and studied the main properties. In the
future, we would like to continue to study the lattice S(n, r) in order to obtain
new results in this context.

Afterwards, we connected the study of particular weight functions with the
study of some Boolean maps on S(n, r). In particular, we showed that

Let A ∈W+(n, r) be a Boolean map on S(n, r) exists a weight func-
tion f ∈WF (n, r), but the reverse is not true.

Now we are interested to �nd the restrictions in order to:A Boolean map exists
i� exists a weight function.

Moreover, we have already started to think interesting asymptotic variants
of the conjecture of Manckam, Miklös e Singhi. For example, let A(n, k) be the
minimum possible number of non-negative k-sums over all possible choices of n
numbers with non-negative sum. Suppose that k is asymptotically equal to rn ,
where r is a real number, 0 < r < 1. The conjecture of Manckam, Miklös e Singhi
states that A(n, k) equals (n − 1 choose k − 1) if r < 0.25 and n is su�ciently
large. We would be interested in the solution of the following problem:

Determine A(n, rn) asymptotically for �xed r and for n → ∞, in
particular also for 0.25 < r < 0.5.

The last goal is continue to study some asymptotic techniques for bounding
the largest size of an antichain in non-Sperner posets (or techniques about the
rapport between d(P ) and b(P ), the largest size of an antichain and the largest
size of a level of a graded poset).

The most interesting problem would be an improvement of the bound for
the poset of Partitions of a set.
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