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Introduction

The most common state of matter in the Universe is plasma. A plasma

is a gas that is significantly ionized and thus is composed of electrons and

ions, and that has a low enough density to behave classically, i.e. to obey

Maxwell-Boltzman statistics rather than Fermi-Dirac or Bose-Einstein. The

dynamical behavior of a plasma is more complex than the dynamics of the

gases and fluids [1]. This dynamical complexity has two many origins:

• The dominant form of interparticle interaction in a plasma, Coulomb

scattering, is so weak that the mean free paths of the electrons and ions

are often larger than the plasma macroscopic length scales. This allows

the particle velocity distributions to deviate seriously from their equi-

librium Maxwellian forms and, in particular, to be highly anisotropic.

• The electric and magnetic fields in a plasma are of long range. This

allows charged particles to coupled to each other electromagnetically

and act in concert as modes of excitation, i.e plasma waves, that behave

like single dynamical entities.

There are several ways to infer a characteristic length in a plasma, de-

pending upon which physical principles one wish to emphasize. All plasmas

are characterized by a fundamental length scale determined by the temper-

ature and number density of the charged particles

λD =

√
kBT

8πne2
, (1)

where n is the density, T is the plasma temperature and kB is the Boltzmann’s

constant. λD is the Debye length, that is a measure of the sphere of influence

1



of a given test charge in a plasma. In general, the Debye length depends on

the speed of the test charge with respect to the plasma.

Having estimated the characteristic length for a plasma, one can now

define a plasma more definitively. One of the important dimensionless pa-

rameters associated with a plasma is the plasma parameter, g, that indicates

the number of plasma particles in a Debye sphere and it is defined by

g =
1

nλD
3 . (2)

For Debye shielding to occur, and for the description of a plasma to be

statistically meaningful, the number of particles in a Debye sphere must be

large, i.e. g ≪ 1. This assumption is called the plasma approximation [1].

The particles, that compose the plasma, are not static but move under

the effects of the electric and magnetic fields. The motions of these charged

particles can be described through characteristic frequencies. If one considers

the electrons in a uniform, homogeneous plasma, that are displaced from their

equilibrium positions, an electric field arises because of charge separation.

Since the electrons have inertia, the system behaves as a harmonic oscillator.

The resulting oscillations are called electron plasma oscillations or Langmuir

oscillations [1]. If a plasma contains several species, it is customary to define

a plasma frequency for each species according to the equation

ω(s)
p =

√
4πnsZ2

s e2

ms
, (3)

where ms is the particle mass and Zs is the particle charge number.

A plasma is typically embedded in a background magnetic field, B. In

this context, a charged particle moves in a uniform circular motion around

the magnetic field at a characteristic frequency called the cyclotron frequency

Ω(s) =
ZseB

msc
. (4)

Moreover, from the Maxwell stress tensor, a magnetic field may be character-

ized as having a pressure of B2/8π, perpendicular to the local magnetic field.

The plasma kinetic pressure, P , has to be also considered. It often occurs
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that one or other of the two terms dominates, in which case the smaller of

the two terms can be neglected. To characterize the relative importance of

the two terms, it is useful to define a quantity called the plasma β, which is

given by

β =
P

B2/8π
. (5)

If β ≫ 1, the plasma pressure force dominates and the magnetic field pres-

sure can be neglected. On the other hand, β ≪ 1, the magnetic field force

dominates and the plasma pressure can be neglected [2, 3, 4, 5]. Sometimes,

it becomes important to consider the contribution of each particle species

separately; a particle plasma βs can be defined.

The dynamical behavior of a plasma depends markedly on frequency. At

the lowest frequencies, the ions and electrons are locked together by elec-

trostatic forces and behave like an electrically conducting fluid; this is the

regime of magnetohydrodynamics (MHD). At somewhat higher frequencies,

the electrons and the ions can move relative to each other, behaving like two

separate and interpenetrating fluids; this is the two-fluid regime. At still

higher frequencies, complex dynamics is supported by anisotropies in the ve-

locity space and can be analyzed using the kinetic theory. In the framework

of kinetic theory, the statistical description of the plasma state is provided by

the so-called particle distribution function, which is defined as the probabil-

ity density in phase space. Boltzmann equation describes the time evolution

of the distribution function under the effects of electric and magnetic fields.

In the absence of particle collisions, from the Boltzmann equation one can

get the so -called Vlasov equation.

A natural laboratory to study the plasma characteristics is represented by

the solar wind, that is a continuous, but highly variable, weakly collisional

plasma outflow from the Sun, that travels at high speed. This complex

medium results highly structured, in which waves and turbulent fluctuations

exist on a wide range of scales, from fractions of a second to many hours. In

the 1960’s the advent of spacecraft, that travelled into the solar wind, allowed

us to measure this plasma directly for the first time. Modern spacecraft can

accurately measure many properties of the solar wind, providing us with a
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unique resource to study directly solar-wind fluctuations in great detail. The

plasma, electric and magnetic field instruments are used “in situ” to measure

the distribution functions for various species, as well as electric and mag-

netic fields. The particle distribution functions can then be used to calculate

density, bulk flow velocities, temperature, heat flux etc. The power spectra

of electric and magnetic fluctuations give additional information about the

nature of the solar-wind plasma [6, 7].

Spacecraft measurements generally reveal that the solar-wind plasma is

usually in a state of fully-developed turbulence. Turbulence represents a very

complex problem in a plasma since cross-scale coupling and kinetic effects

are present. As the fluctuations are carried away from the Sun, progressively

lower frequencies decay and transfer energy to smaller scales, where kinetic

effects dominate the plasma dynamics. At these scales, phenomena such as

temperature anisotropy, heating, particle energization, entropy cascade and

so on come into play.

This general picture of astrophysical turbulence becomes more compli-

cated because of the multi-component nature of the solar wind. The in-

terplanetary medium, although predominantly constituted of protons, is also

made of a finite amount of doubled ionized helium (alpha particles), together

with a few percentage of heavier ions. The kinetic properties of heavy ions in

the solar wind are known to behave in a well organized way under most solar-

wind flow conditions: their speeds are faster than that of hydrogen by about

the local Alfvén speed, and their kinetic temperatures are proportional to

their mass. The simplicity of these properties points to a seemingly straight-

forward physical interpretation; wave-particle interactions with Alfvén waves

are the probable cause. Preferential heating and acceleration of heavy ions in

the solar wind and corona represent a long-standing theoretical problem in

space physics, and are distinct experimental signatures of kinetic processes

occurring in collisionless plasmas.

In this scenario, the use of a kinetic numerical code, able to investigate

the kinetic effects and, in particular, the resonant wave-particle interactions,

is evidently crucial. Moreover, when dealing with the investigation of the

physical dynamics of a turbulent system, a “zero noise” Eulerian code is par-
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ticularly efficient in the analysis of tail at short spatial scales of the energy

cascade. In fact, in the short-scale spectral region, the energy level of the fluc-

tuations is typically very low and different numerical approaches, such as the

Particle-In-Cell (Lagrangian) ones, can fail due to their intrinsic statistical

noise. In Chapter 2 we discuss this point in more details.

In this thesis we propose the use of an Eulerian hybrid Vlasov-Maxwell

(HVM) code for the analysis of the kinetic effects during the evolution of the

solar-wind cascade, that describes the kinetic dynamics of protons and heavy

ions. During this thesis, the previous version of HVM code [8], that consid-

ered the kinetic dynamics of protons, has been updated with the inclusion of

the numerical solution of the Vlasov equation for the heavy ion species. The

HVM algorithm integrates numerically the Vlasov equation in phase space

coupled to the Maxwell equations for the electromagnetic fields. The Vlasov

equation is solved for the proton and alpha particle species, while electrons

are treated as a fluid. Thanks to the inclusion of the kinetic dynamics of

alpha particles in the model, we will be able to focus on the effects that the

presence of heavy ions produces on the evolution of the solar-wind plasma,

up to the spectral region where short-wavelength dissipation should occur

and where the energy coming from the large scales should turn into heat,

through a physical process which does not involve collisional viscosity, at

variance with ordinary fluids. The identification of the physical mechanism

replacing “energy dissipation” in a collisionless magnetized plasma and es-

tablishing the link between macroscopic and microscopic scales would open a

new scenario of broad importance in the field of turbulence and space plasma

heating. In this scenario, the understanding of the short-scale dynamics of

the solar-wind plasma, which is presumably driven by kinetic effects, is a

point of key relevance in space plasma physics.

This thesis is organized as follows. Chapter 1 is devoted to the dis-

cussion of the description of a plasma. Fluid and kinetic approaches are

introduced independently, emphasizing the interconnections between the dif-

ferent descriptions of the plasma behavior in different regimes. In Chapter

2 we discuss the essential role that numerical simulations play in modern

space plasma physics research. The Vlasov equation is a nonlinear partial
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derivative differential equation, whose analytical solution is available only in

a few simplified linear cases, but the nonlinear regime must be investigated

numerically. In this context, we describe the PIC and the Vlasov approach,

pointing out the main differences that lie in the description of the particle

distribution function. The hybrid Vlasov-Maxwell model, for kinetic protons

and alpha particles, is discussed in detail. Numerical testing analyses have

been performed and compared with the analytical solutions for the disper-

sion relations of cyclotron waves and ion-acoustic waves. Chapter 3 reviews

in some detail the general properties of the solar wind, both at large and

small scales. Both theory and observations are discussed. In Chapters 4 and

5 we summarize our numerical results. In particular, in Chapter 4 we exam-

ine the effects produced by the presence of alpha particles in the evolution

of the solar-wind turbulent cascade in the direction parallel to the ambient

magnetic field (slab turbulence) [9, 10, 11] in 1D-3V (one-dimensional in

physical space and three dimensional in velocity space) phase space configu-

ration, for different values of the plasma parameters. In Chapter 5 we study

the turbulent activity in the presence of alpha particles in 2D-3V phase space

configuration. In this context, the presence of a mean magnetic field has a

strong effect on the turbulent dynamics. If this field is much larger than the

fluctuation amplitude, turbulence becomes essentially 2D in the plane per-

pendicular to the field, since the stiffness of field lines suppresses magnetic

fluctuations with short wavelengths along the field [9, 10, 11, 12].
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Chapter 1

Plasma Modeling

A plasma is an ionized gas: when a gas is heated enough that the atoms

collide with each other and knock their electrons off in the process, fourth

state of matter is formed. Plasmas occur pervasively in nature: indeed, most

of the known matter in the Universe is in plasma state. The science of plasma

physics is important to provide an understanding of these naturally occurring

plasmas and of controlled nuclear fusion [1, 3, 13].

Plasma dynamics is determined by the self-consistent interaction between

electromagnetic fields and a statistically large number of charged particles:

charge separation between ions and electrons gives rise to electric fields and

charged-particle flows give rise to currents and magnetic fields. In order to

evaluate these self-consistent electric and magnetic fields it would be nec-

essary to know the position and velocity of each particle at all times. The

motions of the charged particles must be followed in the fields they generate

and in those externally imposed. While this approach is conceptually easy

to understand, it is nowadays not feasible with the available computational

resources.

A situation where a certain set of approximations is valid and provides

a self-consistent description is called regime. Less detailed descriptions, that

consider approximations involving the particle description, can be divided in

two main types: kinetic (Vlasov) and fluid (two-fluid and magnetohydrody-

namic) models.

• Vlasov theory: average over all particles of a given species s (electrons
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and ions) having the same velocity at a given location and characterize

the plasma using the velocity distribution function fs(r,v, t), which

gives the density of particles of species s having velocity v at position r

at time t. The Vlasov theory is the most detailed model for collisionless

plasmas.

• Two-fluid theory: average velocities over all particles of a given species

s at a given location and characterize the plasma using the species

density ns(r, t), mean velocity us(r, t) and pressure Ps(r, t). The two-

fluid model is intermediate in complexity and approximates plasma as

a system of mutually interacting, finite-pressure electron and ion fluids.

Fluid models are often accurate when the collisional rate is high enough

to keep the plasma velocity distribution close to a Maxwell-Boltzmann

distribution.

• Magnetohydrodynamics theory: average momentum over all particles

of all species and characterize the plasma using the center-of mass den-

sity ρ(r, t), center-of mass velocity U(r, t) and pressure P(r, t) defined

relative to the center-of-mass velocity. The magnetohydrodynamics

model is the least detailed and approximates plasma as a single, finite-

pressure, electrically conducting fluid.

The question of which of these models to use when analyzing a given

situation is essentially a matter of selecting the best tool for the task and

furthermore it is often advantageous to alternate between these models when

analyzing a specific problem.

1.1 Kinetic description

At a given time, each particle has a specific position and velocity. The

basic element in the kinetic description of a plasma is the particle distribution

function, fs(r,v, t), that describes how particles of species s are distributed in

both physical and velocity space. The distribution function, fs(r,v, t), repre-

sents the number density of particles found in a point in the six-dimensional
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space (r,v). This space, whose volume element is d3rd3v, is called phase

space, in which is possible to visualize the spatial and velocity trajectories si-

multaneously. The number of particles at time t having position in a volume

element d3r of physical space and having velocities within a volume element

d3v of velocity space is defined to be fs(r,v, t)d3rd3v. The number density

of particles in physical space is given by

ns(r, t) =

∫
fs(r,v, t)d3v , (1.1)

the mean (fluid) velocity of the particles is given by

us(r, t) =
1

ns(r, t)

∫
vfs(r,v, t)d3v , (1.2)

the pressure can be defined by

Ps(r, t) =
ms

3

∫
(v − us)(v − us)fs(r,v, t)d3v . (1.3)

The procedure of multiplying fs(r,v, t) by various power of velocity, v, and

then integrating over velocity generates the moments of the distribution func-

tion.

The temporal evolution of fs(r,v, t) gives a description of the system

more detailed than a fluid description, but less detailed than following the

trajectory of each individual particle. Using the evolution of the particle

distribution function to characterize the system does not keep track of the

trajectories of individual particles, but characterizes classes of particles hav-

ing the same localization and velocity.

In order to obtain an equation for the evolution of the particle distribution

function fs(r,v, t), one can use the conservation of particle number, following

a group of particles along its trajectory in the six-dimensional phase space.

The total derivative of the distribution function is equal to zero (Dfs/Dt =

0), that in an explicit form becomes

∂fs

∂t
+ v · ∂fs

∂r
+

qs

ms

(
E +

v ×B

c

)
· ∂fs

∂v
= 0 . (1.4)

When collisions are important, an additional term (∂fs/∂t)coll must be in-

cluded at the right-hand side of the equation (1.4) to describe the effect
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of short-range interparticle forces. The term (∂fs/∂t)coll is the time rate of

change of fs due to collisions and it is a collision operator, whose form is con-

strained by the description of the apparent ‘creation’ and ‘annihilation’ of

particles. When collisions are fully included, equation (1.4) is usually called

Boltzmann equation. Kinetic theory is generally applied to plasma phenom-

ena for which binary collisions are relatively unimportant and in the case of a

sufficiently hot plasma, where collisions can be neglected, the equation (1.4)

is usually called Vlasov equation. The distribution function fs as measured

when moving along a particle trajectory is constant. This gives a powerful

method to find solutions for the Vlasov equation. Since fs is a constant when

measured in a frame following an orbit, one can choose fs to depend on any

quantity that is constant along the orbit.

The equation (1.4) can be used to describe the evolution of the particle

distribution function in a collisionless plasma. Typically the electric and

magnetic fields E and B making up the force qs(E+v×B/c) are partly due

to the externally applied fields and partly due to the internally generated

fields. In order to have a closed set of equations, the electric and magnetic

fields can be calculated self-consistently from the Maxwell equations

∇ · E = 4πρe , (1.5)

∇ · B = 0 , (1.6)

∇× E = −1

c

∂B

∂t
, (1.7)

∇× B =
4π

c
j +

1

c

∂E

∂t
, (1.8)

where the charge density, ρe, and the current density, j, are obtained at each

point in space from the appropriate integrals of the distribution function

(js = qsnsus).

The Vlasov-Maxwell equations represent a nonlinear system, that pro-

vides the most realistic description of a collisionless plasma.
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1.2 Two-fluid description

An alternative, but less precise, treatment of a fully ionized plasma is

represented by the two-fluid description. In the fluid approximation, the

plasma is considered to be composed of two or more interpenetrating fluids,

one for each species. In the simplest case, where there is only one species

of ions, two equations of motion are needed, one for the positively charged

ion fluid and one for the negatively charged electron fluid. The ion and the

electron fluids interact with each other even in absence of collisions, because

of E and B fields they generate, that are described by Maxwell equations

(1.5)-(1.8) for a given state of the plasma. In order to obtain the equations

that describe the plasma dynamics in the two-fluid approximation, moments

of the entire Vlasov equation are to be taken. A set of a partial differential

equations, relating the mean quantities ns(r, t), us(r, t), and so on, can be

obtained integrating the equation (1.4) over velocity for each species. The

first and simplest step is the calculation of the zeroth moment, that gives the

species continuity equation

∂ns

∂t
+

∂

∂r
· (nsus) = 0 . (1.9)

Now, multiplying the equation (1.4) by v and integrating over velocity, the

first moment of the Vlasov equation gives the momentum equation

ms

[
∂(nsus)

∂t
+

∂

∂r
· (nsusus)

]
= nsqs

(
E +

us × B

c

)
− ∂

∂r
· Ps . (1.10)

When collisions are present, in the right-hand side of equation (1.10), the

term −
∑

t Rst must to be included. Here, the summation is over all species

t, not equal to s, with which particles of species s can collide and Rst =

−msnsνst(us − ut), where νst is called collision frequency of species s on

species t. Since momentum density transferred to species s from species t,

namely Rst, and the moment density transferred to species t from species

s, namely Rts, must obey momentum conservation, one can deduce that

Rts = −Rst.

In equation (1.10), Ps is the pressure tensor defined in equation (1.3).

If fs is an isotropic function of v, then the off-diagonal terms in Ps vanish
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and the three diagonal terms are identical. It is important to emphasize that

assuming isotropy is done largely for mathematical convenience and that

in real system the distribution is often quite anisotropic, as we will discuss

in more details in the following. Collisions drive the distribution function

towards isotropy, while competing processes simultaneously drive it towards

anisotropy. Thus, each situation must be considered individually in order to

determine whether there are sufficient collisions to make it isotropic.

It becomes evident that each time it is taken a moment of the Vlasov

equation, an equation for the wanted moment is obtained, but because of

the v · ∂fs/∂r term in the Vlasov equation, a next higher order moment also

appears. Thus, moment-taking never leads to a closed system of equations,

there will always be a ‘looser end’, a highest order moment for which there

is no determining equation. Some sort of “ad hoc” closure procedure must

always be invoked to terminate this chain, for examples typical closures in-

volve invoking adiabatic or isothermal assumptions. In the isothermal limit,

the heat flux term dominates all other terms, in which case the temperature

becomes spatially uniform and the collisional terms are small enough to be

ignored: Ps = nskBTs, with temperature Ts constant. In the adiabatic limit,

the heat flux and the collisional terms are small enough to be ignored, so the

volume under consideration is thermally isolated from the outside world, i.e.

no heating is flowing: Ps ∼ nγ
s , being γ the adiabatic index.

1.3 Magnetohydrodynamics description

Magnetohydrodynamics (MHD) [12] is an alternate description of the

plasma, that is treated as a single hydrodynamics fluid acted upon by electric

and magnetic forces. In this model, instead of using ue and ui to describe

mean motion, two new velocity variables are used, being a linear combination

of ue and ui. The new velocity-like variables are the current density

j =
∑

s

qsnsus , (1.11)
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which is essentially the relative velocity between ions and electrons, and the

center-of-mass velocity

U =
1

ρm

∑

s

msnsus , (1.12)

where ρm =
∑

s msns is the total mass density. Magnetohydrodynamics is

primarily concerned with low-frequency, long-wavelength, magnetic behavior

of the plasma and it is typically used to describe phenomena having spatial

scales large enough for the plasma to be essentially neutral (
∑

s nsqs = 0).

The assumption of approximate charge neutrality will be valid whenever the

spatial scale lengths of the phenomena of interest greatly exceed the Debye

length.

Since a plasma is a conducting medium, it is necessary to determine how

the current density j depends on the electric field E. If a two-component

plasma, consisting of electrons and one species of positively charged ions, is

considered, the equation

E +
ui ×B

c
=

1

enc
j× B − 1

en
∇ ·Pe

+
me

ne2

[
∂j

∂t
+ ∇ · (jui + uij)

]
+ ηj (1.13)

is called the generalized Ohm’s law, in electron MHD regime, where η is the

resistitvity. The term j × B/en is called the Hall term. If all terms on the

right-hand side are sufficiently small, i.e. the ion Larmor radius is very small

compared to the scale length of the fluid motion and the fluid velocities of the

order of thermal velocity, the equation reduces to the simple form of Ohm’s

law

E +
ui × B

c
= ηj . (1.14)

Since the moment equations do not define a closed system of equations, an

equation of state must be chosen as a closure. The equation of state specifies

the plasma pressure as a function of temperature and density, and its form

depends on various assumptions that must be made concerning the effect of

collisions.
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As the collision frequency goes to zero, the resistivity term ηj is so small

as to be negligible compared to the other terms in equation (1.14), then the

plasma is said to be ideal or perfectly conducting. The ideal equations of

MHD are best thought as exactly describing an ideal infinitely conducting

fluid with an adiabatic equation of state whose properties are sufficiently

close to a plasma to be of interest, rather than an appropriate system of

equations for a real plasma.

The various assumptions contained in MHD lead to a simplifying ap-

proximation of Maxwell’s equations. In particular, the assumption of charge

neutrality in MHD makes Poisson’s equation superfluous because Poisson’s

equation prescribes the relationship between non-neutrality and electrostatic

component of the electric field.

MHD models provide by far the simplest descriptions of plasmas.

1.4 Which plasma description to use when?

Among the three levels of plasma description (Vlasov, two-fluid, and

MHD), Vlasov is the most accurate and MHD is the least accurate. The

basic logic is that the fastest, finest scale processes require kinetic descrip-

tions, but then over longer time and length scales more fluid-like, macroscopic

models become appropriate.

Kinetic theory is needed to treat problems involving flow along a magnetic

field (or in absence of a magnetic field) in the case of long mean-free path and

problems go high-frequency and/or short-wavelength flow across a magnetic

field.

The fluid approximation is sufficiently accurate to describe the majority

of macroscopic (large-scale) plasma phenomena and it is also sufficient for

providing a good description of important types of wave-like behavior that

are possible in a plasma. The one-fluid approach is preferable for short-

time hydrodynamic effects in which non ideal effects plays a minor role.

Its great advantage is that its equations are considerably simpler to handle

than the two-fluid approach. The two-fluid equations are more accurate

and necessary for any precision in the study of phenomena where plasma
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transport or dissipation is involved. They are too complex to solve, however,

for any problems except those with simple geometries.

Finally, MHD is more macroscopic point of view and it is more efficient to

use in situations where the greater detail and accuracy of Vlasov or two-fluid

models are unnecessary. MHD is particularly suitable for situations having

complex geometry because it is very difficult to model such situations us-

ing the microscopically oriented Vlasov to two-fluid approaches and because

geometrical complexities are often most important at the MHD level of de-

scription. Naturally exist ad are very important issues requiring a two-fluid

or a Vlasov point of view.
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Chapter 2

Numerical Plasma Modeling

Numerical simulation is the kind of simulation that uses numerical meth-

ods to quantitatively represent the evolution of a physical system [14]. In the

last few decades, numerical simulation has become an indispensable addition

to plasma diagnostics, especially in situations where direct measurements are

costly or difficult to implement. These complications may be due to the lim-

ited accessibility to the plasma, due to small lengths or time scales or simply

because the quantities of interest are difficult to measure directly with any

available measurement technique. The result of such simulation can have a

good representation of the real environment.

Most of the plasma in space is collisionless; hence collective plasma phe-

nomena dominate over binary collisional interactions. Collective interactions

are especially efficient when wavelength or spatial localization, wave frequen-

cies or time scales become comparable to characteristic dispersion scales of

the plasma as there are gyro-radii, inertial or Debye lengths, gyro- and plasma

frequencies. Nonlocal and nonlinear interactions between plasma and waves

have to be described. The physics of collisonless plasma is well described by a

self-consistent solution of a system of Vlasov and Maxwell equations. Due to

its non locality and non linearity in many important situations no analytical

solutions of the Vlasov equation can be found, i.e. numerical solutions and

simulation approaches are necessary.

For many years, due to restricted computer resources, collisionless plas-

mas have been simulated mainly by using the flow of the distribution func-
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tions of phase space via introducing macro-particles in the Lagrangian Par-

ticle in Cell (PIC) approach. Physically, in PIC codes the finite number of

macro-particles introduces an unphysical noise inside the system, that lim-

its the applicability of PIC codes to the investigation of insensitive to fine

nonlinear resonant and micro-turbulence collective field-particle interaction

phenomena. Nowadays, thanks to the technological development of the com-

putational resources, the Eulerian approach for the numerical solution of the

Vlasov equation has become a valid alternative to the PIC methods. Vlasov

codes provide a powerful tool for low noise studies of collisionless plasmas

with a fine resolution of phase space including those regions where trapping

occurs or where particles move at speeds close to wave velocities. The obvious

price for the noise reduction is the numerical complication.

2.1 Particle In Cell method

The basic idea of the PIC method [15] is that the system is represented by

a small number of finite-size particles all interacting via the correct potential

at distances beyond the overlap distance, but correcting the effect of fewer

particles at small distances by reduced interaction potential. The end result is

that the electric field fluctuations in the system are correctly smooth as they

should be in a weakly coupled system. Similarly the trajectory of particles

are smooth as in the real system but not because each particle is surrounded

by a very large number of near neighbors; rather the few near neighbors

produce weak interactions. The collective effect is still correct as the long

range interaction is unmodified and reproduces correctly the physical system.

The mathematical formulation is obtained by assuming that the distribu-

tion function of each species is given by the superposition of several elements,

called computational superparticles or macroparticles. The equations of mo-

tion of this large number of macroparticles are numerically integrated under

the effect of the self-consistent electromagnetic fields. At each time step , the

macroscopic plasma variables (density, velocity and current) are obtained by

collecting the particles in each grid point of a uniformly spaced grid and used

for the integration of the Maxwell equations for fields. The phase space parti-
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cle distribution can be evaluated in the same statistically way. The solution

of the field equations can be obtained through a wide variety of methods;

the majority of the existing PIC methods relies on finite difference or finite

volume.

The PIC method yields satisfying results with a relatively small number

of particles. However, it is well known that the numerical noise inherent

to the particle method becomes, in some cases, too important to get an

accurate description of the distribution function. Moreover, the numerical

noise only decreases as 1/
√

N , when the number of particles N is increased.

Moreover, energy is not preserved exactly. The fundamental reason is that

in practice the PIC method uses many particles per cell: there are infinite

particle configurations resulting in the same value of the quantities projected

to the grid. This degree of freedom is what causes the finite grid instability

and the lack of exact energy conservation.

In recent years, the PIC codes have been extensively used for the de-

scription of the kinetic dynamics of turbulent space plasmas, particularly

focusing on many interesting physical aspects, like wave-particle interaction

[16], particles heating [17] and turbulence [18, 19, 20, 21, 22].

2.2 Eulerian Vlasov-Maxwell method

Vlasov methods which, instead of following the particle trajectories, solve

directly the Vlasov equation on a phase space grid, have proven to be an

efficient alternative to the PIC method for some specific problems. Such

methods are useful, in particular, to provide an accurate description of the

phase space regions where the distribution function has small values. An

Eulerian Vlasov code (see for examples [8, 23, 24, 25]) integrates numerically

the Vlasov equation by time-advancing the particle distribution function on

a uniform fixed grid in phase space under the effects of the self-consistent

electric and magnetic fields. In the Eulerian algorithms in Refs. [8, 23, 24],

the numerical solution of the Vlasov equation is based on the well-known time

splitting method first proposed in Ref. [26]. The time splitting consists in

separating the evolution of the particle distribution function in phase space
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into subsequent translations, first in physical space and then in velocity space

[23]. This allows to reduce the phase space integration of the advection-type

Vlasov equation to the integration of two advection equations in physical

space and velocity space, respectively. Spatial and velocity derivatives of the

distribution function are typically evaluated by employing standard finite

difference upwind schemes [8, 23, 24]. However, also finite volume algorithms

can be used [27, 28]. The Vlasov equation is then self-consistently coupled to

the Maxwell equations for the electromagnetic fields. The particle density,

the mean velocity and the current density needed for the solution of the

Maxwell equations are evaluated at each time step as the velocity moments

of the distribution function.

The numerical description of a Vlasov-Maxwell plasma system requires,

in the most general case, to perform simulations in a six-dimensional phase

space configuration, for both electrons and ions. Due to the large time scale

separation between ion and electron dynamics, full electron-ion Vlasov nu-

merical experiments are out of reach of the presently available computing

resources. Nevertheless, significant analyses can be performed in phase space

configurations with reduced dimensionality or by focusing on the kinetic dy-

namics of one particle species at a time. From this latter consideration, the

so-called hybrid Vlasov-Maxwell algorithm [8] has been recently developed.

Within this hybrid model the Vlasov equation is numerically solved, through

a Eulerian scheme, for the proton distribution function, while the electrons

are treated as a fluid. At each time step, the electric field is evaluated by

solving numerically a generalized Ohm’s law, in which the Hall term, the

pressure gradient term and the electron inertia contributions are retained.

The Faraday equation and the Ampere equation, in which the displacement

current has been neglected, are advanced in time though the so-called Cur-

rent Advance Method, introduced for the first time by Matthews in Ref. [29]

and then generalized to the hybrid case by Valentini et al. in Ref. [8]. An

equation of state for the electron pressure is chosen to close the set of hybrid

Vlasov-Maxwell equations and quasi-neutrality is assumed.

Although the kinetic description in this hybrid model is restricted only

to the ion species, still the computational cost of the hybrid Vlasov-Maxwell
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simulations is very expensive, especially when multidimensional problems are

treated. For this reason, a massive parallelization procedure, based on the use

of the Message Passing Interface protocol, has been performed. At present,

an update version of the hybrid Vlasov-Maxwell code has been implemented

to take into account also the kinetic dynamics of alpha particles with the

purpose of providing a more realistic description of the solar-wind plasma

[30].

2.2.1 Results for kinetic protons and fluid electrons

In the last years, the Eulerian hybrid Vlasov-Maxwell code has been ex-

tensively employed in 1D-3V (one dimension in physical space and three

in velocity space) phase space configuration, for the analysis of the kinetic

effects on protons during the development of the solar-wind turbulent cas-

cade towards kinetic scales, along the direction of the mean magnetic field

[31, 32, 33, 34]. The basic idea behind this numerical research thread is

to shed light on the physical mechanisms that replace energy dissipation at

short wavelengths in a system, like the solar wind, where collisional viscosity

is absent. In this range of short spatial scales, kinetic effects are considered

to be the best candidates in governing the system dynamics.

Through the analysis of the numerical results of these hybrid Vlasov-

Maxwell simulations, a novel branch of electrostatic fluctuations, propagat-

ing at frequency which is a small fraction of the proton plasma frequency,

has been identified. These waves, dubbed ion-bulk (IBk) waves [34, 35], have

acoustic type dispersion and phase velocity comparable to the proton thermal

speed. At variance with the well-known ion-acoustic waves, the IBk fluctua-

tions can survive against Landau damping [36] even for values of the electron

to proton temperature ratio of order unity, typical values for the solar-wind

environment. For these reasons, the IBk fluctuations seem to represent a

very efficient channel to carry the solar-wind energy coming from the large

MHD scales towards small kinetic scales in the longitudinal component of

the energy spectrum.

The hybrid Vlasov-Maxwell simulations have also shown that the res-
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onant interaction of protons with these electrostatic fluctuations produces

significant distortions in the longitudinal proton velocity distribution with

the generation of a field-aligned beam of accelerated particles that stream at

a typical speed close to the local Alfvén velocity. The generation of these

double peaked proton velocity distributions has been recovered in many "in

situ" spacecraft observations in the solar wind [37, 38].

More recently, the 2D-3V version of the hybrid Vlasov-Maxwell code has

been also used to investigate the role of local kinetic effects in plasma turbu-

lence, in the plane perpendicular to an ambient magnetic field [39]. In these

simulations, during the evolution of turbulence, coherent structures and vor-

tices appear in the bi-dimensional maps of the inplane magnetic field. Nearby

the regions of high magnetic stress, magnetic reconnection events can occur

locally as the results of the generation of small scales along the turbulent

cascade. In these regions the particle velocity distributions depart from the

typical configuration of thermodynamical equilibrium showing generation of

temperature anisotropy, both along and across the local magnetic field, as

well as bumps and elongation along the direction of the ambient magnetic

field.

2.3 Hybrid Vlasov-Maxwell code with heavy

ions

A new version of the hybrid Vlasov-Maxwell (HVM) code, where the

Vlasov equation is integrated both for the proton and the alpha particle dis-

tribution functions, has been recently proposed to study the role of minor ions

in the evolution of the solar-wind turbulent cascade self-consistently trigged

at large wavelengths by nonlinear wave-wave interactions [30]. The updated

HVM code integrates numerically the following (dimensionless) equations:

• The Vlasov equation for proton and alpha particle distribution func-

tions fs(r,v, t), with s = p, α

∂fs

∂t
+ v · ∂fs

∂r
+

qs

ms

(E + v × B) · ∂fs

∂v
= 0 , (2.1)

where E and B are the electric and magnetic fields

21



• The generalized Ohm’s law for the electric field E (for details about

derivation see Appendix A)

E− d2
e∆E = −ue × B − 1

ne
∇Pe −

∑

s

Ns

Ms
us ×B

+
1

ne

∑

s

1

Ms
∇ · Πs + d2

e∇ ·
(
∑

s

Nsusus − ueue

)
, (2.2)

that takes into account the electron inertia, where Ns = Zsns/ne and

1/Ms = Zsme/ms, with me and ms being the electron and ion masses.

The ion density ns, the ion bulk velocity us and the ion pressure tensor

Πs are calculated as the velocity moments of the distribution function

ns(r, t) =

∫
fs(r,v, t)dv (2.3)

ns(r, t)us(r, t) =

∫
vfs(r,v, t)dv (2.4)

Πs(r, t) =

∫
(v − us)(v − us)fs(r,v, t)dv (2.5)

while the electron bulk velocity is given by

ue(r, t) =
1

ne

(
∑

s

Zsnsus −∇× B

)

(2.6)

The characteristic quantities, used to normalize the HVM code, are:

ū = VA ; ω̄ = Ω(p) ; l̄ = VA/Ω(p) = c/ω(p)
p = dp ; n̄ ;

P̄e = Π̄s = n̄mpV
2
A ; Ē = mpVAΩ(p)/e ; B̄ = mpcΩ

(p)/e (2.7)

where VA = B̄/
√

4πn̄mp is the Alfvén velocity, Ω(p) is the proton cy-

clotron frequency, ω
(p)
p is the proton plasma frequency, dp is the proton

skin depth and mp is the proton mass.

The electron skin depth de in scaled unit is equal to
√

me/mp.

• The electron pressure Pe is considered as a function of density ne, as,

for example, in the isothermal approximation

Pe = neTe (2.8)
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• Maxwell equations

∂B

∂t
= −∇×E (2.9)

∇× B = j (2.10)

in Darwin limit [40], in which the time derivative of the electric field,

that is the contribution of the displacements current, is neglected. In

this approximation, the electric current j is fully determined by the

magnetic field gradient and the electron current adjusts itself to main-

tain this equality.

To solve this system numerically we use the current advance method (CAM)

[8], that provides numerical solution for the time advancement of electric and

magnetic fields, and the splitting method [23], for the time advancement of

the particle distribution functions.

2.4 Numerical tests

In this section we present two examples of numerical results about prob-

lems whose analytical linear solutions are well known. First, we consider the

linear propagation of circularly polarized Alfvèn waves in a plasma composed

of electrons, protons and alpha particles. The initial Maxwelliam equilibrium

is perturbed by magnetic and velocity fluctuations, whose expressions have

been derived (see Appendix B) within a three-fluid regime. Then, using

an initial density perturbation, we show that the presence of alpha parti-

cles modifies the branch of the so-called ion-acoustic waves [1]. The time

step ∆t ≃ 2.5 × 10−3—10−2 has been chosen in such a way that Courant-

Friedrichs-Lewy (CFL) condition is satisfied [41].

2.4.1 Dispersion relation of cyclotron waves

A charged particle is said to be in cyclotron resonance with a transverse

wave propagating along the magnetic field if the rotating electric field vector

of the wave, as seen by the particle, matches the cyclotron gyration of the

particle in both frequency and direction of rotation [4, 42, 43]. When such
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a resonance takes place, the particle and the wave can exchange energy ef-

ficiently [44]. The condition for resonance can be written by equating the

wave frequency, Doppler shifted to the rest of the particle’s motion along the

magnetic field, to the gyrofrequency of the particle. For an ion mass ms,

charge qs and parallel speed v‖ the resonance condition is

ω(k‖) − k‖v‖ = ±Ω(s) (2.11)

where ω and k‖ are frequency and parallel wavenumber, respectively, of the

resonant wave and Ω(s) is the gyrofrequency of the ions. The ± sign takes

into account the sense of rotation of the wave electric field vector, given by

the polarization of the wave (see Figure 2.1). The fields of an Alfvén/ion

cyclotron wave rotate in the same direction as an ion gyration, so resonance

with these waves would use the + sign and the equation (2.11) can be satisfied

for slowly moving ions. The fields of a fast wave rotate in the opposite sense,

so the − sign is needed for that resonance and requires the anomalous Doppler

shift of an ion streaming faster than the wave phase speed. The properties

of waves with the appropriate combination of frequency and wavenumber are

determined by the dispersion relation ω(k‖).

Figure 2.1: Left-hand and right-hand parallel propagating circularly polarized elec-
tromagnetic waves [45].
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The dispersion relation for parallel propagating waves along the uniform

magnetic field B0 = B0êx (k = k‖ = kx and k⊥ = 0) in a cold plasma

composed of electrons, protons and alpha particles is given by the following

equation (see Appendix B for details)

c2k2

ω2
− 1 +

ω
(e)
p

2

ω2 − Ω(e)2
+

ω
(p)
p

2

ω2 − Ω(p)2
+

ω
(α)
p

2

ω2 − Ω(α)2
=

±
(
−Ω(e)

ω

ω
(e)
p

2

ω2 − Ω(e)2
+

Ω(p)

ω

ω
(p)
p

2

ω2 − Ω(p)2
+

Ω(α)

ω

ω
(α)
p

2

ω2 − Ω(α)2

)
(2.12)

where ω
(s)
p and Ω(s) (s = e, p, α) are the plasma and cyclotron frequencies

for each species. Here, the minus sign refers to the left-hand polarized mode

(L-wave) and the plus sign is associated to the right-hand polarized mode

(R-wave).
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Figure 2.2: k-ω diagram for right-handed polarized waves in parallel propagation
for a percentage of alpha particles with respect to protons equal to
25%. The black solid line represents the analytical solution in equation
2.12, while the black stars are the numerical results. The black dashed
line is the Alfvén branch ω = k.

We have tested our HVM code in the low β limit and in the condition

of exactly parallel propagation, by taking at the initial time small amplitude

magnetic and velocity perturbations, circularly polarized in the plane per-

pendicular to B0, solutions of the linearized three-fluid equations [see eqs.

(B.19) and (B.20) in Appendix B]. It is worth to point out that only magnetic
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perturbations in the plane perpendicular to the background magnetic field

have been considered (δBx = 0). Moreover, we have chosen ǫ = 10−5 for the

amplitude of the perturbations, B0 = 1 for the uniform magnetic field along

the x-axis, me/mp = d2
e = 1/100 for the electron skin depth, mα/mp = 4

and Zα = 2 for the alpha particle mass and charge number, respectively,

and Te/Tp = 1 for the electron to proton temperature ratio. No drift of the

alpha particles population relative to the protons is initially imposed. We

have also chosen βp = 0.2 for the left-hand polarization and βp = 10−4 for

the right-hand polarization. The length of the numerical spatial domain is

Lx = 0.84 × 2πdp (for R-wave) and Lx = 10 × 2πdp (for L-wave), while in

the velocity space the length of the domain is 5v
(s)
th in each direction. We

have fixed 128 gridpoints in physical space and 323 (for R-wave) and 203 (for

L-wave) gridpoints in velocity space. In Figure 2.2 we present a comparison

between analytical (black solid line) and numerical (black stars) results for

the k-ω diagram for right-handed polarized waves in parallel propagation for

a percentage of alpha particles with respect to protons equal to 25%. At

low frequency (ω ≪ 1), we get the well known Alfvén branch ω = k (black

dashed line), being VA = 1 in our normalized units, that tends to saturate

at the electron gyrofrequency (ω = Ω(e)), going through the whistler regime.

The presence of alpha particles, independently on their percentage, does not

affect the R polarization with respect to the case of a pure electron-proton

plasma.

A different situation appears in the case of left-handed polarized waves, in

fact the presence of alpha particles, even in a small amount, produces a split

of the solutions, with respect to the case of a pure electron-proton plasma [46].

In Figure 2.3 we show the comparison between the analytical solution (red

solid lines) and the numerical results (black stars) for two different values of

alpha particle density: 25% in panel (a) and 1% in panel (b). It is clear that

the two branches have asymptotes at the proton (Ω(p) = 1) and alpha particle

(Ω(α) = 0.5) gyrofrequencies and the gap between the curves is proportional

to the alpha concentration.

As it can be appreciated from Figures 2.2-2.3, the numerical results are

in very good agreement with linear predictions.
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Figure 2.3: k-ω diagram for left-handed polarized waves in parallel propagation for
a percentage of alpha particles with respect to protons equal to 25%
(a) and 1% (b). The red solid line represents the analytical solution
in equation 2.12, while the black stars are the numerical results. The
black dashed line is the Alfvén branch ω = k.

2.4.2 Dispersion relation of ion-acoustic waves

Ion-acoustic waves, the analog of ordinary sound waves in a fluid, are an

example of non equilibrium phenomenon that involves the plasma pressure.

They occur at low frequencies where the mean (fluid) electron velocity is very

nearly locked to the mean (fluid) proton velocity, so the electric polarization is

small; the restoring force is due to thermal pressure (not to the electrostatic

field) and the inertia is provided by the ions. To avoid these waves being

strongly Landau damped [1, 36], the electron temperature must be much

higher than the proton temperature (Te ≫ Tp). In a pure electron-proton

plasma, using kinetic theory, the dispersion relation of the ion-acoustic waves

can be expressed as

ω2
r =

k2c2
s

1 + k2λ
(e)
D

2

[
1 + 3

Tp

Te

(
1 + k2λ

(e)
D

2
)]

(2.13)

where cs =
√

(kBTe/mp) is the sound speed and λ
(e)
D is the Debye length.

However, considering a multi-ion species plasma, the dispersion relation

of the ion-acoustic waves is slightly different. The waves phase velocity is

modified by the presence of heavy ions and, in particular, if a plasma is

composed of electrons, protons and alpha particles, the dispersion relation
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Figure 2.4: k-ω diagram of the ion acoustic waves for a percentage of alpha particles
with respect to protons equal to 50% in equation 2.14 (black-dashed
line), where the black stars are the numerical results. The red-dashed
line represents the analytical solution for a pure electron-proton plasma
in equation 2.13.

becomes (see Appendix C for details)
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1
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(2.14)

In Figure 2.4, we present the comparison between the analytical solution for

the ion-acoustic dispersion relation and the numerical results obtained by

the HVM code in the low β limit. We perturb the initial equilibrium with

a small amplitude density perturbation (ǫ = 10−5); moreover, we choose

me/mp = d2
e = 1/100, mα/mp = 4 and Zα = 2; βp = 0.1, Tp = Tα and

Te/Tp = 600 in order to avoid the Landau damping. The length of the

numerical spatial domain is Lx = 20 × 2πdp, while in the velocity space the

length of the domain is 5v
(s)
th in each direction. We have fixed 256 gridpoints in

physical space, while in the velocity space we have chosen 20 gridpoints along

the longitudinal direction and 8 gridpoints in each transversal direction. The

red-dashed line represents the dispersion relation of the ion-acoustic waves in

a plasma with only protons (see equation 2.13), while the black-dashed line

displays the dispersion relation in presence of alpha particle, in a percentage
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of 50% with respect to protons. The numerical results are represented by

black stars, and are in a good agreement with the linear theory.
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Chapter 3

The solar wind

The solar wind is a flow of ionized solar plasma and a remnant of the solar

magnetic field that pervades interplanetary space. It is a result of the huge

difference in gas pressure between the solar corona and interstellar medium.

This pressure difference drives the plasma outward, despite the restraining

influence of solar gravity.

First estimation of the million degrees Kelvin hot corona was done in

the 1930’s by observations during a solar eclipse. Later, in 1958, Sidney

Chapman [47] showed that a gas under such a high temperature cannot be

static, but due to its extreme heat conduction should expand out into space

and reach out beyond Earth’s orbit. The idea of the expanding corona was

further developed by Eugene Parker in 1958 [48] and subsequent spacecraft

observations have confirmed the general correctness of his model [49, 50].

This first model for the acceleration of the plasma was based on a hydrody-

namic description of the solar atmosphere, proposing that the solar wind was

a smooth, spherically symmetric, time-steady outflow of plasma. Variations,

either temporal or spatial, were not considered. However, observational data

indicates that fluctuations are part and parcel of the interplanetary medium.

Indeed, the length and time scales associated with such fluctuations each

span many orders of magnitude.

Thus the solar wind is a supersonic and super-Alfvénic flow, whose accel-

eration saturated within 0.1 AU. However, due to its complex nature, it is

still difficult for the contemporary science to build up a complete model of
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the solar wind, including its different types and all its multi-scale features.

3.1 A plasma physics laboratory

The solar wind is the extension of the Sun’s atmosphere out into inter-

planetary space. The plasma is almost collisionless, magnetized and, despite

being highly ionized, approximately neutral. In astrophysical terms, the

physical conditions of the solar wind are not unusual. On the contrary, hot,

low-density, magnetized plasmas exist in a variety of environments includ-

ing the interstellar medium, the intergalactic medium and accretion disks.

However, solar wind is distinct in that it provides the only opportunity for

these types of plasma conditions to be studied “in situ” (i.e., through direct

measurements versus remote observations). No other similar astrophysical

environment is accessible to spacecraft, and such low-density plasmas cannot

be produced in laboratories. In this sense, the solar wind provides a unique

“laboratory” for studying the microkinetics of not only heliospheric plasma

but of astrophysical plasmas in general. Several heliospheric space missions

have furnished the scientific community with a wealth of data (velocity, mag-

netic field, plasma density, temperature, etc. and also particle distribution

functions) at a resolution which is not available in any terrestrial laboratory

(see Table 3.1).

The “in situ” observations give evidence that there are three main types

of solar wind, respectively defined as slow, fast and transient wind [7]. The

slow solar wind has an average velocity of about 400 km/s and a temperature

of about 1.4-1.6 × 106 K. It strongly depends on the solar cycle (see Figure

3.1) and appears to originate from a region around the solar equatorial belt,

known as the streamer belt. The slow wind is twice denser and more variable

in intensity than the fast solar wind and it bears a more complex nature,

with turbulent regions and large-scale structures. By contrast, the fast solar

wind remains steadier to the changes of the solar magnetic activity. It has

typical velocity of 750 km/s (varying between 600-800 km/s), a temperature

of 8×105 K and it is less turbulent, but rather to carry many coherent large-

amplitude waves. The third type, the transient wind, is related primarily to
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1 AU 0.3 AU

Flow speed v (km/s) 500 − 750 500 − 750
Direction of v radial radial
Proton density (cm−3) 3 − 4 20 − 40
Magnetic field B (nT) 4 − 6 25 − 45
Direction of B in ecliptic plane in ecliptic plane

35◦ from radial 10◦ from radial
Proton temperature (K) 1.5 − 2.5 × 105 4 − 6 × 105

Proton anisotropy 1 0.5 − 0.8
Electron temperature (K) 1 − 2 × 105 1.5 − 2.5 × 105

Electron anisotropy 1.5 1.5
Plasma β ∼ 1 ∼ 0.1

Table 3.1: Observed properties of high-speed streams in the solar wind measured
by the two Helios spacecraft [51]

the big flares and coronal mass ejections (CMEs). Just like the solar wind,

the CMEs strongly depend on the phase of the solar cycle.

The solar-wind plasma is strongly turbulent. One of the most striking

features of the solar wind is indeed the very large number of degrees of

freedom which are excited: the electromagnetic fields and plasma properties

of the solar wind show fluctuations over a wide range of timescales ranging

from the solar rotation period up to the local electron plasma period. The

power spectrum manifests a behavior reminiscent of the Kolmogorov [52]

power-law for fluid turbulence. The large scales are essentially incompressible

and the fluctuations of magnetic field and plasma velocity are often highly

correlated, so that at times they can be thought of as nearly perfect Alfvén

waves [53]. The Figure 3.2 displays observations by the plasma and magnetic

field experiments on ACE in heliocentric r, t, n coordinates. It is clearly show

that the fluctuations in all components of the velocity and magnetic field are

strongly anti-correlated, while the proton density and the field magnitude

are relatively constant (B2 ∼ const).

For decades, many efforts have been put forward to understand the physi-

cal mechanisms of solar wind turbulence [54, 55, 56], but some of the primary

problems of solar-wind MHD turbulence still remain a puzzle, such as the
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Figure 3.1: Dependence of the solar wind on the solar cycle based on solar wind
observations during the three Ulysses orbits. Top: polar plots of the so-
lar wind speed versus latitude. Bottom: smoothed number of sunspots
per years, together with the current sheet title angle [57].

nature of the nonlinear energy cascade or the strong intermittent character

of solar-wind fluctuations in the inertial range. The inertial range extends

to smaller scales down to a range of wavelengths where kinetic effects dom-

inate the plasma dynamics: non thermal characteristics and velocity-space

anisotropies are permanently present. In order to account fully for the ob-

served microscopic details of the solar-wind plasma, a kinetic description is

certainly necessary.

3.2 General properties

The main elemental ionic composition of the solar wind is protons, but

the second most abundant ionic component is helium (about 5%). These two

ionic components, together with an equal number of electrons essentially con-

stitute the main solar wind [58]. The alpha particles play a significant role in

the structure and dynamics of the solar wind, corona and interior. Determin-

ing the evolution of helium in plasmas allows to characterize the heliosphere,

to improve the understanding of space weather and to test general theories
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Figure 3.2: Plasma and magnetic field data from ACE in heliocentric r, t, n coordi-
nates obtained when the spacecraft was within the core of a high-speed
stream from a coronal hole [59].

of the regulation of energy and matter in magnetized and multi-fluid astro-

physical plasmas.

“In situ” measurements in the solar wind and remote-sensing observations

of the solar corona have clearly shown that the heavy minor ions in these es-

sentially collisionless space plasma are heated and accelerated preferentially

as compared to the major protons. Often a differential streaming between

two ionic species is also observed. The differential alpha-proton speed ap-

proaches but rarely exceeds the local Alfvén speed [60, 61]. The identification

and explanation of the physical mechanisms responsible for this phenomenol-

ogy may provide a key to explaining why the temperature of the outer solar

atmosphere and expanding corona forming the solar wind is by 2 or 3 orders

of magnitude higher than that of the photosphere. These observations in-

dicate that there are sources of ion heating and momentum exchange which

operate differently on protons and alphas throughout the solar wind. The

turbulent character of the solar-wind plasma is thought to be one of the pos-

sible sources of these different behaviors: the energy of magnetic and electric

fluctuations is transferred from low-frequencies (large wavelengths) to high

frequencies (short wavelengths) along a turbulent cascade, where collisionless
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interactions could finally lead to wave dissipation and plasma energization.

Wave-particle interactions have different resonance factors for the protons

and alpha particles and thereby yield different momentum and energy trans-

fer rates for the two species. In a recent work [62], Kasper et al. have

discussed the breakdown of temperature equilibrium between hydrogen and

helium in the solar-wind data from the WIND mission. The relative occur-

rence of alpha particle to proton temperature ratio illustrates (see Figure 3.3)

the bimodal nature of the dominant components of the plasma, with peaks

near equal temperature, consistent with an isothermal fluid wind, and equal

thermal speed. For 23% of the observations this temperature ratio results

greater than 5: this is the evidence of a mechanism to provide an anoma-

lous heating, corresponding also to a non-Maxwellian shape of the velocity

distribution functions.

Figure 3.3: The relative occurrence of alpha to proton temperature ratio, Tα/Tp,
in the solar wind over the course of the WIND mission [62].

In a highly collisionless plasma, such as the fast solar wind, wave-particle

interactions play a decisive role in determining the shapes of particle velocity

distribution functions. The observed distributions exhibit significant devia-

tions from local thermal equilibrium [63, 64, 65]. According to quasi-linear

theory [66], the protons will thereby diffuse in velocity space, a process lead-

ing the formation of plateaus in the velocity distribution function. The fast

proton velocity distribution function almost always has a beam along the
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magnetic field and a perpendicular core anisotropy, whereas the alpha par-

ticle velocity distribution functions mostly reveal isotropic cores and usually

show no distinct beams. The alpha velocity distribution functions exhibit,

owing to their low number densities, significant deviations from local thermal

equilibrium. Ion-cyclotron waves are usually considered the source of heating

and acceleration of minor ions. The investigation of this preferential source

has been the subject of several analytic studies focused on the quasi-linear

resonant cyclotron interaction of solar-wind ions with parallel-propagating

ion-cyclotron waves [63, 67, 68], but none of these works includes the effects

of solar-wind alpha particles in the wave dispersion relations. The presence

of the alpha particles, or more general heavy ions, can drastically affects the

ion-cyclotron dispersion relation in the vicinity of the ion-cyclotron frequency

(see Appendix B and equation 2.12). In the limit of parallel propagation, the

waves at frequencies close to the cyclotron frequency can interact with the

heavy ions comoving with the bulk plasma [69]. In the solar wind, when the

energy is carried along the turbulent cascade, at frequencies of the order of

the cyclotron frequency the resonant ion-cyclotron interaction can occur.

3.3 Magnetohydrodynamics turbulence

“In situ” observations of the solar-wind plasma have shown that it is visi-

bly permeated by sizable fluctuations of the plasma flow velocity and density

and the magnetic field. Fluctuations occur on all observed spatial and tem-

poral scales, extending from the vast dimensions of the inner heliosphere and

the corresponding solar-wind transit time, or from the solar rotation period,

down to the small kinetic scales associated with the particle gyromotion,

where the dissipation is assumed to finally occur [70].

The first evidence of the presence of solar-wind turbulent fluctuations

was showed by Coleman in 1968 [71] using Mariner 2 magnetic and plasma

observations. The frequency spectrum, in a range of intermediate frequen-

cies displayed a power-law as f−1.2. Spectral properties of the interplanetary

medium have been summarized by Russel in 1972 [72], whose composed fre-

quency spectrum was divided into three main ranges: up to about 10−4 Hz the
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spectral slope was about f−1; at intermediate frequencies 10−4 ≤ f ≤ 10−1

Hz was f−3/2 and for high-frequencies, up to 1Hz, the dependence was f−2.

Figure 3.4: Three spectra of the magnetic field fluctuations. Data refer, from top
to bottom, to observations performed by Helios 2 at 0.3, 0.7, 0.9 AU
respectively [73].

The Helios 2 spacecraft gave for the first time the opportunity to study

the radial evolution of turbulent fluctuations in the solar wind within the

inner heliosphere. The spectra at different heliocentric distances are charac-

terized by two distinct spectral slope: f−1 in the range of low frequencies and

about a Kolmogorov-like spectrum in the range of higher frequencies. These

two regimes are clearly separated by a knee in the spectrum (frequency break).

As the wind expands, the frequency break moves to lower and lower frequen-

cies (see Figure 3.4) so that larger and larger scales become part of inertial

range of turbulent spectrum [73]. The solar-wind power spectrum is not only

function of frequency but also depends on heliocentric distance. Recently,

Perri et al. [74] have shown that the observed high-frequency spectral break

seems to be independent of the distance from the Sun, and then of both the
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ion-cyclotron frequency and the proton gyroradius.

At the range of spatial lengths of the order of the electron kinetic scales

the interpretation of the solar-wind observations is still controversial. Two

different scenarios have been recently pictured: a second spectral break with

an additional power-law range [75] and an exponential cut-off [76]. Moreover,

the electric activity at higher wavenumbers is significantly more intense than

the magnetic one [6, 77].

3.4 Magnetohydrodynamics waves

More than 40 years of “in situ” measurements have nevertheless demon-

strated that the solar wind is by no means steady, spherically symmetric or

without structure. The solar-wind physical properties are indeed variable in

both space and time.

A wave-like behavior in the solar wind has been confirmed by direct ob-

servations ever since the late 1960s [78, 79] and a few years before the wave

interpretation of interplanetary fluctuations was formulated [80]. Spacecraft

data obtained in the inner heliosphere have shown the high degree of corre-

lation existing between the fluctuations in the velocity and magnetic fields

was consistent with the Alfvén waves. Moreover, taking into account the

direction of the mean magnetic field, this correlation indicated that the bulk

of the modes had an outward sense of propagation, with periods of hours.

The ubiquitous Alfvén waves have been continuously reconfirmed for decades,

usually from spacecraft moving in the ecliptic and near the Earth’s orbit.

On the theoretical side, for waves propagating parallel to the magnetic

field, at low frequencies, three modes exist. These modes are called the

fast, intermediate and slow MHD waves. At higher frequencies, these three

modes merge into the whistler mode, the ion-cyclotron mode and the ion-

acoustic mode. The whistler mode has a resonance (point of zero phase

velocity) at the electron cyclotron frequency and the ion-cyclotron mode

has a resonance at the ion-cyclotron frequency. Both the whistler mode

and the ion-cyclotron mode are electromagnetic, since the waves have both

electric and magnetic field. These modes can be driven unstable by a variety
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of free energy sources, including currents, anisotropies and particle beams.

At frequencies above the ion-cyclotron frequency the magnetic field of the

ion-acoustic mode becomes negligibly small compared to the electric field.

This type of wave, with no magnetic field, is referred as electrostatic wave,

since the electric field can be derived from a potential. The ion-acoustic

mode has many properties similar to a sound wave in an ordinary gas and is

strongly damped by Landau damping unless the electron temperature is much

greater than the ion temperature. At higher frequencies, near the electron

plasma frequency, three additional modes appear. Two of these modes are

the free space electromagnetic modes, one of which is right-hand polarized

and the other is left-hand polarized. Slightly above the plasma frequency, a

third purely electrostatic mode occurs called a Langmuir wave or an electron

plasma oscillation [81].

The Helios plasma wave instrument detected two primary types of elec-

trostatic wave: electron plasma oscillations and ion-acoustic waves. These

two types of emission usually occur independently and have different char-

acteristic. The electron plasma oscillations occur in the 56.2 kHz channel,

while the ion-acoustic waves occur in the range from about 1.0 to 17.8 kHz

[82].

3.5 Waves or Turbulence?

The question of whether the magnetic field fluctuations should be inter-

preted in terms of waves or turbulence has lead to a long and sometimes

fruitless controversy [83, 84]. A single observer in interplanetary space can-

not decide whether the fluctuations carried across him by the solar wind are

waves or turbulence because he is not able to distinguish between spatial

and temporal variations. Only the modern concepts of MHD turbulence [85]

allowed a kind of unification of both approaches: dynamical MHD turbu-

lence is not the simple superposition of different waves, but rather consists

of wave-packets which can interact with each other or can decay and excite

new waves.

In the solar wind fluctuations are classified as Alfvénic if the correla-
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tion coefficient is larger than 0.6 and this is obviously true for Alfvén waves.

However, there is also a large number of other fluctuations which fulfill the

Alfvénic correlation, such as structures with variable |B|. Therefore, Alfvén

waves contribute only for a small amount to the Alfvénic fluctuations. The

Alfvénic turbulence or the Alfvénicity of fluctuations is useful in the descrip-

tion of the evolution of turbulence from an orderly state (high Alfvénicity)

to an entirely stochastic one. As these fluctuations decay, the Alfvénicity de-

creases and the slope of the power-density spectrum evolves towards −5/3,

which is the Kolmogorov spectrum of random and uncorrelated turbulence

[9].

The Alfvénicity is larger in fast solar wind streams than in slower ones;

thus in the fast wind an orderly state is preserved over larger spatial scales.

If fast and slow streams interact, the Alfvénicity decreases and the spec-

trum takes the slope of the Kolmogorov spectrum. The solar wind and its

magnetic field therefore have to be understood as a dynamically evolving,

inhomogeneous, anisotropic, turbulent magneto-fluid [86].
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Chapter 4

Alpha particles influence in the

solar-wind Alfvénic turbulence:

1D-3V HVM simulations

As the second most abundant element in the Sun, helium plays a sig-

nificant role in the structure and dynamics of the solar wind, corona and

interior. Determining the evolution of helium in plasmas allows to charac-

terize the heliosphere, to improve understanding of space weather and to

test general theories of the regulation of energy and matter in magnetized

and multi-fluid astrophysical plasmas. In order to investigate the complexity

of solar-wind physics, a support from self-consistent, fully nonlinear Vlasov

models is needed; in this scenario kinetic numerical simulations represent a

fundamental tool of investigation.

We make use of the HVM code (see Section 2.3 for details) to model a

collisionless and magnetized plasma, such as, in some conditions, the solar

wind.

4.1 Initial setup for the simulations

We simulate a plasma embedded in a background magnetic field along the

x direction (B0 = B0êx), where x is the direction of the wave propagation

(k = kêx). Proton and alpha particles have Maxwellian velocity distributions

and homogenous density at t = 0. To mimic the slab turbulence [9, 10,
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11] the initial equilibrium configuration is perturbed by a set of Alfvénic

fluctuations circularly left-hand polarized in the plane perpendicular to the

ambient magnetic field and propagating along it. The form of both proton

and alpha particle velocity and magnetic perturbations was derived from

the linearized three-fluid equations (see Appendix B for details). Only the

first three modes in the spectrum are excited at t = 0, in such a way that

the resulting perturbation amplitude is A = 0.5. The energy is injected at

wavenumbers in the range 0.078 . k . 0.23 along the left-hand branch 1 in

Figure 2.3(b) and no density disturbances are initially imposed on the system

[30].

In this context, we fix realistic values for the solar-wind plasma. The

electron to proton mass ratio is me/mp = 1/1836, the alpha to proton mass

ratio is mα/mp = 4 and the charge number for the alpha particles is Zα = 2;

the density ratio between alpha particles and protons is chosen n
(α)
0 /n

(p)
0 =

5%. The length of the numerical spatial domain is Lx = 12.8×2πdp = 80.4dp,

that is discretized by 4096 gridpoints, where periodic boundary conditions

are imposed [30]. The time step, ∆t = 5 × 10−4, has been chosen in such a

way that the Courant-Friedrichs-Lewy condition for the numerical stability

of the Vlasov algorithm is satisfied [87].

4.2 Solar wind at 1AU

An important parameter, that characterizes the different behaviors ob-

served in the solar wind, is the proton plasma beta, βp, that can be written

as

βp = 2
v

(p)
th

2

V 2
A

(4.1)

where v
(p)
th =

√
Tp/mp is the proton thermal speed.

In order to describe numerically the dynamical behavior of the solar wind

at 1AU [88], we fix the value of the proton plasma beta at βp = 0.5 and

consequently the proton thermal speed is a half of the Alfvén speed (v(p)
th =

0.5). The limits of the velocity domain in each direction and for both the ion
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Te/Tp Tα/Tp

Run A 1 1
Run B 1 4
Run C 5 1
Run D 5 4
Run E 10 1
Run F 10 4

Table 4.1: Initial temperature ratios used in the HVM simulations: Te/Tp (second
column) and Tα/Tp (third column).

species are fixed at vi,max = 5v
(i)
th (i = p, α) and we use 513 in velocity space

[30].

4.2.1 Numerical results

We numerically analyze the kinetic dynamics of protons and alpha parti-

cles when the energy is transferred from large to short wavelengths along the

solar-wind turbulent cascade, in terms of different values of the electron to

proton, Te/Tp, and alpha particle to proton, Tα/Tp, temperature ratios. For

Te/Tp we use the values 1, 5 and 10; for the solar-wind plasma the typical

values are in the range 0.5 < Te/Tp < 4 [60]. For the choice of the values of

Tα/Tp, we referred to Ref. [62], that considered solar-wind data from Faraday

Cup instruments on the WIND spacecraft. They showed that the distribu-

tion of the temperature ratio (see Figure 3.3) displays two maxima: the first

at Tα/Tp = 1, consistent with an isothermal fluid wind, and the second at

Tα/Tp = 4, where the two species instead have equal thermal speeds. For

this reason, we performed simulations using these values of the alpha particle

to proton temperature ratio. The simulations are reported in Table 4.1

Perpendicular temperature anisotropy

The numerical results show that, independently on Te/Tp or Tα/Tp, in the

early stage of the system evolution (0 < t < 30), both the proton and the

alpha particle distribution functions display the generation of perpendicular
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temperature anisotropy, due to resonant interaction of ions with left-hand

polarized ion-cyclotron waves [89, 90].
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Figure 4.1: Temporal evolution of perpendicular (black line) and parallel (red line)
temperature components for protons [plot (a)] and alpha particles [plot
(b)] for Run A. The maximum value of the anisotropy index is larger
for alpha particles (ξ = 1.2) than protons (ξ = 1.06).

In order to evaluate the temperature anisotropy, we can define the anisotropy

index ξ as

ξ =
〈T⊥〉x
〈T‖〉x

(4.2)

where 〈· · · 〉x indicates a spatial average. Figure 4.1 displays the temporal

evolution of perpendicular (black line) and parallel (red line) temperature

components for protons [plot (a)] and alpha particles [plot (b)]. The maxi-

mum value of ξ is larger for alpha particles (ξ = 1.2) than protons (ξ = 1.06).

The reason for this larger temperature anisotropy for alpha particles with re-

spect to protons is due to the fact that in our simulations the energy is

injected into the system at t = 0 along the left-branch of waves [branch 1 in

Figure 2.3(b)], that saturates at frequency of the order of the alpha particle

cyclotron frequency (Ω(α) = Ω(p)/2 = 0.5) [30].

Turbulent activity

We compare the time evolution of the electric and magnetic energies for

all runs, in order to study the nature of the fluctuations at short wavelengths

of the energy spectrum. In Figure 4.2 (a), we report the time evolution of
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Figure 4.2: Numerical results for Run A. (a) Semi-logarithmic plot of time evolu-
tion of the longitudinal electric E (black line) and magnetic B (red line)
energy at short wavelengths of the energy spectrum. (b) Logarithmic
plot of the x, y and z electric component.

the longitudinal electric E (black line) and magnetic B (red line) energy at

short wavelengths, defined as

E(t) =
∑

k>10

|Ekx
|2 and B(t) =

∑

k>10

|Bkx
|2 (4.3)

in a semi-logarithmic plot for Run A. We realized that in the high-wavenumbers

range of the spectrum, say k > 10, the level of the electric fluctuations is

about five orders of magnitude higher than that of the magnetic ones. More-

over, Figure 4.2 (b) gives clear evidence that short-scale structures are gener-

ated in the longitudinal component of the electric field. On the basis of these

considerations, we suggest that the tail at short wavelengths of the energy

spectrum is dominated by electrostatic activity [30].

In Figure 4.3 we report the time evolution of the electric energy E for two

different values of alpha particle to proton temperature ratio (Tα/Tp = 1, 4).

The time history of E shows that a sudden exponential increase occurs for

both cases. We point out that for Tα/Tp = 4 (Run B) this exponential growth

is somewhat delayed with respect to the case Tα/Tp = 1 (Run A). After the

growing phase, both signals reach a saturation level (higher for Run A), re-

main almost constant for a short time and, then, start decreasing up to a

complete dissipation. The exponential growth is trigged by the generation,

through the ion-cyclotron resonant interaction, of regions of positive slope

(bumps) in the longitudinal velocity distribution of protons, while the dissi-
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Figure 4.3: Time evolution of E in a semilogarithmic plot for Run A (black line)
and Run B (red line) [30].

pation phase is presumably due to the fact that the energy injected into the

system at t = 0 is not replenished during our simulations of decay turbulence

[91]. When considering larger values of the electron to proton temperature
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Figure 4.4: Time evolution of E in a semilogarithmic plot for Run C (black line)
and Run E (red line) [30].

ratio (Te/Tp = 5, 10), the electrostatic activity recovered in the tail at short

scales of the energy spectra displays different features with respect to the

case with Te/Tp = 1. In Figure 4.4, we show the time evolution of E for two

simulations with Te/Tp = 5, 10 and with a fixed alpha to proton temperature

ratio Tα/Tp = 1 (Run C and Run E). The time evolution of E for Tα/Tp = 4

(Run D and Run F), not shown here, is unchanged with respect to the case
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Tα/Tp = 1. Here the exponential growing phase is still present, while the

decreasing phase, observed for Te/Tp = 1, is not recovered: indeed, after the

growing phase, E saturates at a nearly constant level both for Run C and

Run E. The saturation value for Run E is larger than that for Run C by one

order of magnitude [30].
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Figure 4.5: Numerical k-ω spectrum of parallel electric energy for Run A at t = 336
(a) and for Run E at t = 400 (b) [30].

In order to investigate the nature of the short-scale fluctuations we com-

pute the k-ω spectrum of the parallel electric energy for Run A [see Figure

4.5 (a)], evaluated in the time interval 310 < t < 370, where the saturation

level is recovered (see black line in Figure 4.3). This Fourier spectrum dis-

plays that the short-scale electrostatic activity consists of an acoustic branch

of waves (IBk waves) with phase speed v
(IBk)
Φ comparable to the proton ther-

mal velocity (v(IBk)
Φ ≃ 1.24v

(p)
th ). The same evidence has been found for Run

B (not shown here). Moreover, also in Run C and Run D (not shown here)

we observe the presence of a single acoustic branch of IBk waves. On the

other hand, this physical scenario is changed for Run E and Run F. In Figure

4.5 (b), we show the numerical k-ω spectrum of the parallel electric energy

for Run E (the behavior is the same for Run F). For this value of electron

to proton temperature ratio, unrealistic for the solar wind, we observe two

branches of waves with different phase speeds: the lower branch of the IBk

waves with v
(IBk)
Φ ≃ 1.24v

(p)
th and the upper branch, consisting of ion-acoustic

waves with v
(IA)
Φ ≃ 3.6v

(p)
th (in agreement with the linear theory prediction)

[30]. The generation of this branch of ion-acoustic waves is due to the fact
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that our initial perturbations do not satisfy the condition B2 =const., so that

quite soon in the simulations ponderomotive effects produce density fluctua-

tions of the ion-acoustic type. For a large value of Te/Tp these ion acoustic

fluctuations can survive against Landau damping [1] and are visible in the

k-ω spectrum, while for small Te/Tp they are strongly dissipated.
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Figure 4.6: Energy spectra for magnetic (black solid line), electric (red solid line)
fluctuations and proton kinetic energy (purple solid line), proton den-
sity (blue solid line), alpha kinetic energy (purple dashed line) and
alpha density (blue dashed line) for Run A, time averaged in the inter-
val 310 < t < 370. The dot-dashed line at 0.1 . k . 0.5 indicates the
Kolmogorov k−5/3 expectation, while the vertical dashed line indicates
the proton skin depth wavenumber [30].

To quantify the turbulent activity in our system, we compute the power

spectra (see Figure 4.6) for the magnetic (black solid line) and electric (red

solid line) fluctuations and for proton kinetic energy (purple solid line), pro-

ton density (blue solid line), alpha kinetic energy (purple dashed line) and

alpha density (blue dashed line). The fluctuations are averaged in the time

interval 310 < t < 370, where the maximum of the activity is observed.

The same behaviors are recovered independently on the values of Te/Tp and

Tα/Tp. Therefore, in Figure 4.6, we report the energy spectra for Run A.

We point out that in the range of large wavenumbers the electric energy is

about four orders of magnitude higher than the magnetic one, indicating that

electrostatic activity is recovered at short scales. Moreover, the fact that the

spectra for proton density and proton kinetic energy fluctuations are evi-
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dently coupled in the short-scale range of the energy spectra is a signature of

the presence of acoustic-like fluctuations. The dot-dashed lines in the small

wavenumber range of the spectra indicate the Kolmogorov k−5/3 expectation,

reported only for reference purposes [30].

The set of simulations performed (see Table 4.1) have shown that the

branch of the IBk waves represents a preferential channel for carrying the

energy from large to small scales in the longitudinal direction. Moreover, the

Fourier analysis of the parallel electric energy from the simulations reveals

that the phase speed of the IBk waves does not depend on the value of Tα/Tp,

at least for low values of the alpha particle to proton density ratio (we recall

that n
(α)
0 /n

(p)
0 = 5% in our simulations) [30].

Ion dynamics

In order to investigate the effect of the propagation of these electrostatic

acoustic-type fluctuations on the particle distribution functions, in Figure 4.7

(a) we report the longitudinal x-vx phase space contour plot of the proton

reduced distribution function, f̂p(x, vx) =
∫

fpdvydvz, for Run A at t = 336,

when the maximum of E is recovered. This contour plot displays the gener-
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Figure 4.7: Protons: x-vx level lines of the reduced distribution function, f̂p, (a)
and level lines of distribution function in the velocity plane vx-vy (b)
at t = 336, for Run A [30].

ation of a localized trapped particle region (delimited by the vertical white

dashed lines) moving with mean velocity close to the phase speed of the IBk
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waves (∼ 1.24v
(p)
th , black dashed line); this suggests that protons are trapped

by the IBk waves. The presence of this trapped particle population affects

the velocity distribution of protons. This is shown in Figure 4.7 (b) where we

plot the vx-vy level lines of the proton distribution function integrated over

vz and averaged over x in the spatial region of trapped particles [vertical

white dashed lines in Figure 4.7 (a)]. Figure 4.7 (b) gives clear evidence of

the generation of a well-defined field-aligned beam of protons moving with a

mean velocity close to VA = 1.

0 20 40 60 80
x

-1.0

-0.5

0.0

0.5

1.0

v x

(a)

-1.0 -0.5 0.0 0.5 1.0
vx

-1.0

-0.5

0.0

0.5

1.0

v y

(b)

Figure 4.8: Alpha particles: x-vx level lines of the reduced distribution function,
f̂α, (a) and level lines of distribution function in the velocity plane
vx-vy (b) at t = 336, for Run A [30].

The effect of particle trapping by the IBk waves, which works for protons,

cannot be efficient for alpha particles when Tα/Tp = 1. In fact, in this case

the thermal velocity of alpha particles is v
(α)
th = 0.25, so that the phase speed

of the IBk waves falls in the tail of the alpha particle velocity distribution

(v(IBk)
Φ ≃ 0.62VA ≃ 2.5v

(α)
th ). This means that, for Tα/Tp of order of unity,

trapping by IBk waves is less efficient for alpha particles than for protons.

This is shown in the x-vx level lines of the reduced distribution function

of alpha particles f̂α [see Figure 4.8 (a)] where no generation of a localized

trapped particle region is recovered. We point out that the alpha particle

velocity distribution is only modulated by the waves, but no beam generation

is observed [see Figure 4.8 (b)]. Figure 4.9 displays the surface plot of the

phase space alpha distribution f̂α, that gives clear evidence of the strong

modulation of the alpha distribution function [30].
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Figure 4.9: Surface plot of the x-vx of the alpha reduced distribution function f̂α

at t = 336, for Run A [30].

In order to corroborate the considerations above, we consider a simulation

where we have increased the alpha particle to proton temperature ratio to

the value Tα/Tp = 4, in such a way that the two species have the same

thermal speed v
(p)
th = v

(α)
th = 0.5. We expect that, in these conditions, the IBk

waves can efficiently trap resonant alpha particles. The results of this new

simulation are presented in Figure 4.10, where we show the x-vx level lines of

the reduced distribution function of alpha particles f̂α (a) and the vx-vy level

curves (b) of the alpha particle velocity distribution integrated over vz and

averaged over x in the spatial region of trapped particles. Here, we observe

the generation of a field-aligned beam of alpha particles with mean velocity

close to VA. We point out that the behavior of protons is independent on the

value of the alpha particle to proton temperature ratio [30].

The generation of a longitudinal beam of alpha particles is observed only

when Tα/Tp is such that the condition v
(p)
th ≃ v

(α)
th , for which trapping by

IBk waves is efficient even for the alpha particles, is satisfied. The evidence

that the field-aligned beam of alpha particles is observed in the simulations

only for certain values of Tα/Tp could provide a possible explanation for the

spacecraft observations discussed in Ref. [64]; here the author points out

that, at variance with the case of the solar-wind protons, for which a field-

aligned beam is commonly observed, for the case of the alpha particles the

generation of accelerated beams is quite a rare event.
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Figure 4.10: Alpha particles: x-vx level lines of the reduced distribution function
f̂α (a) and level lines of distribution function in the velocity plane
vx-vy (b) at t = 328, for Run B [30].

Summary

When a turbulent cascade is triggered at large wavelengths in the spec-

tral component longitudinal to the background magnetic field, during the

system evolution the velocity distribution of protons exhibits significant de-

viations from local thermodynamic equilibrium. These deviations consist in

the formation of a secondary proton beam moving in the direction of the back-

ground magnetic field B0 with mean velocity close to the local Alfvén speed

and in a generation of temperature anisotropy, independent on the value of

the electron to proton and alpha particle to proton temperature ratios. The

generation of this secondary beam is due to the fact that the IBk waves, the

acoustic branch of waves which represent the main components of the electro-

static activity recovered at short scales, produce a localized trapped particle

region in the proton distribution function, moving with mean velocity close

to v
(IBk)
Φ . On the other hand, we have shown that the particle trapping by

IBk waves is efficient for the alpha particles only when the thermal speed

of alpha particles is close to that of protons, at least in the case of a small

concentration of alpha particles. When this condition is not respected, the

alpha particle velocity distribution shows no distinct beams.

We point out that these numerical results can provide a possible expla-

nation of a physical phenomenology discussed recently in Refs. [64, 65]. In
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these papers, the authors show that in the solar-wind measurements from

spacecraft the generation of a longitudinal beam of alpha particles appears

to be a rare event with respect to a beam of protons. Through our numerical

simulations we have demonstrated that a longitudinal beam of alpha par-

ticles is generated only when Tα ≃ 4Tp. According to the solar-wind data

analysis by Kasper et al. [62], the number of events in which Tα/Tp ≃ 4 is

somewhat lower than the number of events with Tα/Tp ≃ 1, meaning that

the probability of observing the generation of a longitudinal beam of alpha

particles is somewhat lower than the probability of detecting a proton beam.

4.3 Solar wind at 0.3 AU

Near 0.3 AU, where βp ≪ 1, Alfvén-cyclotron waves seem to have an im-

portant impact on ion perpendicular heating and their resulting temperature

anisotropy, connected to the high level of magnetic fluctuations perpendicular

to the mean magnetic field [92]. We present a comparison between the nu-

merical results obtained by the new version of the HVM code, that provides

a multi-ion kinetic description, and direct observations of the ion velocity

distributions from Helios 2 spacecraft. We simulate a collisionless plasma of

kinetic protons and alpha particles and fluid electrons in 1D-3V phase space

configuration in situation of decaying turbulence.

We fix the value of the proton plasma beta at βp = 0.1 (consequently,

v
(p)
th = 0.22) and Te/Tp = 0.5. The limits of the velocity domain in each

direction and for both the ion species are fixed at vp,max = 11.5v
(p)
th and

vα,max = 23v
(α)
th , that are discretized by 713 and 913 gridpoints, respectively

[30].

4.3.1 Numerical results

We numerically analyze in detail the evolution of the distribution func-

tions of the solar-wind protons and alpha particles along the development

of the turbulent energy cascade in the direction parallel to the background

magnetic field, in the typical conditions of the interplanetary medium at 0.3

AU from the Sun. In low-beta conditions (βp = 0.1, in our simulations),
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as we will discuss in the following, the energy injected into the system at

large scales (larger than dp) cannot be efficiently transferred to shorter wave-

lengths (shorter than dp). Therefore, the injected energy can be redistributed

to the plasma particles, producing distortions of the ion velocity distribution

functions.

In the turbulent collision-free solar wind, as observed “in situ” by many

spacecraft and simulated in several numerical experiments, the velocity dis-

tributions of ions generally exhibit significant non-Maxwellian features [38,

62, 63], such as the generation of beams of accelerated ions [38, 63, 64], the

production of temperature anisotropy [61, 65, 92, 93], or even the formation

of non-gyrotropic structures [61, 65, 92, 94]

Ion dynamics

Even though the initial setup of the simulations has been designed in such

a way that both the ion species have Maxwellian distributions of velocities at

t = 0, during the system evolution kinetic processes drive the plasma away

from the condition of thermodynamic equilibrium.

In Figures 4.11 and 4.12 we report the vx-vy level lines of the proton and

alpha particle distribution functions integrated over vz and averaged over the

entire spatial domain x, for different times in the simulation. For protons

(Figure 4.11) these contour plots display a slight modulation, that consists

in a squeezing in the direction parallel to the ambient magnetic field and in

a consequent perpendicular elongation. In Figure 4.12, we show the corre-

sponding contour plots for the alpha particle distribution functions. In this

case we observe a strong deformation in the direction perpendicular to the

ambient magnetic field, with the generation of a beam of accelerated parti-

cles. Moreover, it can be easily seen that the alpha particles are preferentially

heated compared to protons [95]. Due to the finite numerical resolution in

velocity space and to the low value of the plasma beta (both for protons and

alpha particles) the core of both proton and alpha particle velocity distribu-

tions is discretized on a relatively low number of gridpoints (we point out

that the numerical resolution adopted for these simulations is at the limit

of the possibilities of the available parallel machines). As a consequence,
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Figure 4.11: Protons: level lines of the spatial averaged distribution function in
the velocity plane vx-vy (integrated over vz) at t = 0 (a), t = 125 (b),
t = 275 (c) and t = 375 (d) [95].

the total entropy of protons and alpha particles (not shown here) increases

unphysically by few percent, during the simulations. This effect is more rel-

evant for alpha particles than for protons since v
(p)
th = 2v

(α)
th . Nevertheless,

the conservation of the total energy of the system is highly satisfactorily (the

relative variation of the total energy is ≃ 0.06%). One can assume that the

numerical effect of entropy increase, recovered in our hybrid Vlasov-Maxwell

simulations, somehow mimics the expected weak entropy increase owing to

the low collisionality of the interplanetary medium at 0.3 AU.

Different features appear when one looks at the particle velocity distribu-

tions at different spatial positions, instead of performing a spatial average.

Figures 4.13 and 4.14 show the vx-vy level lines of the proton and alpha par-

ticle distribution functions at t = 375 for different values of spatial positions.
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Figure 4.12: Alpha particles: level lines of the spatial averaged distribution func-
tion in the velocity plane vx-vy (integrated over vz) at t = 0 (a),
t = 125 (b), t = 275 (c) and t = 375 (d) [95].

For protons (Figure 4.13) these contour plots display a clear longitudinal

elongation for given spatial positions (c). It is also visible a marked oscil-

lation in the direction vy trigged by the perturbation imposed at t = 0 on

the initial equilibrium (a similar perpendicular motion is observed in vz).

For alpha particles (Figure 4.14) there is no clear tendency of the generation

of a longitudinal elongation as observed for the proton velocity distribution

in Figure 4.13; for the alpha particles this elongation can be in any direc-

tion depending on the spatial position at which the velocity distribution is

considered [95].

To investigate these non gyrotropic features, we compute the components

of the particle mean velocities perpendicular to the direction of the mean

magnetic field, evaluated in a spatial position x = 37, as in plot (c) of Figure
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Figure 4.13: Protons: level lines of the spatial averaged distribution function in
the velocity plane vx-vy (integrated over vz) at t = 375 for x1 ≃ 3 (a),
x2 ≃ 21 (b), x3 ≃ 37 (c) and x4 ≃ 55 (d) [95].

4.14,

ui,j(x̂, t) =
1

ni

∫
vjfi(x̂,v)d3v , i = p, α and j = x, y, z (4.4)

normalized to the particle thermal speed v
(i)
th . Figure 4.15 shows the time

evolution of the x (blue), y (black) and z (red) components of the mean ve-

locities for protons (a) and alpha particles (b), respectively. The amplitude

of the mean velocity oscillations, in the directions perpendicular to the back-

ground magnetic field, for alpha particles δUα is almost six times larger than

v
(α)
th , while for the protons δUp is about two times larger than v

(p)
th [95]. The

numerical evidences reported in Figure 4.15 can be discussed in relation to

observational data from Helios 2, presented in the next section.
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Figure 4.14: Alpha particles: level lines of the spatial averaged distribution func-
tion in the velocity plane vx-vy (integrated over vz) at t = 375 for
x1 ≃ 3 (a), x2 ≃ 21 (b), x3 ≃ 37 (c) and x4 ≃ 55 (d) [95].

Helios 2 data

During its first perihelion passage in 1976, Helios 2 provided some mea-

surements of the velocity distribution of alpha particles. The Helios plasma

experiment measures the ion energy distribution at different azimuth and ele-

vation angles within 10s, but the plasma measurement cadence was about 40s.

Figure 4.16 displays the contour plots of the measured alpha particle velocity

distributions in (V,B) plane. Here V is the solar-wind flow velocity vector

and B is the background magnetic field vector. It turns out that the con-

tours of the inner part of the alpha particle distribution functions are roughly

symmetric, but far from the core, at the tails, the contours are no longer sym-

metric, and are mainly elongated across B to one side more than the other.

This shape of the alpha particle distribution functions is mostly obtained for
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Figure 4.15: Time evolution of the x (blue), y (black) and z (red) components of
the mean velocity (evaluated at x = x̂ and normalized to the particle
thermal speed) for protons (a) and alpha particles (b) [95].

low proton plasma beta (βp ≃ 0.1). Therefore, the gyrotropy property of al-

pha particle distributions is not always maintained in low plasma beta. This

is not the case for proton core, indeed, the proton velocity distributions are

mostly gyrotropic around the magnetic field vector B. Moreover, the proton

cores are mainly elongated across the background magnetic field displaying

a clear perpendicular heating with (T⊥ > T‖) [38, 61, 63, 92].

For the measurements of the particle velocity distributions, the plasma

experiment does not provide a snapshot of these distribution functions at

a given time and space position, but rather it gives an integrated velocity

distribution function within the measurement time which is about 10s. If we

consider the typical values of solar wind speed, V ∼ 700 km s−1, and the pro-

ton inertial length, dp ∼ 100 km, then the 10s time period would correspond

to a measurement distance of about 70dp. Therefore, in low plasma beta con-

dition, the integrated velocity distribution of alpha particles or other minor

ions can be affected by large-scale fluctuations. The presence of such fluc-

tuations may cause an apparent broadening in the velocity distribution, and

thus the gyrotropy around the background magnetic field can be destroyed.

However, one would expect that such effect on the alpha particles and

minor ions distribution functions by oscillations could be reduced when the

59



measurement time gets smaller than 10s. The future space missions of Solar

Orbiter and Solar Probe Plus might provide high resolution plasma measure-

ments, and thus the microphysics of alpha particles and of the other minor

ions can be studied with high accuracy in low plasma beta regions.

Summary

Solar-wind “in situ” measurements from the Helios 2 spacecraft in regions

of the heliosphere close to the Sun (∼ 0.3 AU), at which typical values of the

proton plasma beta are observed to be lower than unity, show that the alpha

particle distribution functions display peculiar non-gyrotropic shapes, with

significant elongations in the direction perpendicular to the background mag-

netic field. The results of HVM simulations for alpha particles have clearly

shown that the velocity distributions of alpha particles integrated over the

whole spatial simulation box (i.e., 80dp) are not gyrotropic (Figure 4.12).

Moreover, their shapes show a broadening along the direction perpendicu-

lar to B although the velocity distributions given at fixed time and space

position appear to be cooler (Figure 4.14). Therefore, relying on the inte-

grated velocity distributions, we are led to believe that the alpha particles

are perpendicularly heated. The Vlasov simulation may explain why the ob-

served alpha particle velocity distributions are not gyrotropic in low plasma

beta regions. According to the simulation, the existence of transverse waves

(even with relatively small amplitude) can lead to an oscillation transverse

drift of alpha particles whose oscillating amplitude is δUα > v
(α)
th . Therefore,

when one averages or integrates the particle velocity distributions over the

space then the coherent motion may cause a broadening in the integrated

distribution functions, and the gyrotropy property may break down. We

would expect that those effects do not occur when the oscillating drift is

much smaller than the local ion thermal speed. According to Figure 4.13

the displacement of the proton distribution functions in velocity space, δUp,

is relatively smaller than the local proton thermal speed, i.e., δUp . v
(p)
th .

Therefore, the distortion effect on the integrated proton distribution func-

tions is negligible, as it is clear from Figure 4.11, and thus the gyrotropy

property can be maintained. It is worth to point out that the process of
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averaging applied during the data collection by Helios 2 in fact corresponds

to the spatial average performed in HVM simulation.

The comparison between the numerical results and the observational data

allows us to provide a possible physical interpretation to the generation of

non-gyrotropic velocity distributions of heavy ions in the solar wind. Ac-

cording to this interpretation, the apparent perpendicular broadening of the

alpha particle velocity distributions, as recovered both in the numerical sim-

ulations and in the Helios 2 observations, can be explained as being due

to sampling and averaging which were applied during the reduction of the

measured and simulated data.
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Figure 4.16: Contour plots of alpha particle velocity distributions in (V,B) plane
measured by Helios 2 at the heliocentric distance R = 0.29 AU. The
black line represents the orientation of the background magnetic field.
The values of the proton plasma beta that correspond to the mea-
surements are all about 0.1. The normalized velocity distribution
values that are higher than 0.98 with respect to the maximum are
represented by red color, and the normalized velocity distribution
values which are ranging between [0.9,0.98], [0.85,0.90], [0.80,0.85],
[0.750.,80], [0.73,0.75] and [0.73,0.70] are represented by yellow, green,
light green, blue, violet and dark color, respectively. [95].
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Chapter 5

Multi-ion plasma turbulence:

2D-3V HVM simulations

In a plasma system where the effects of particle collisions can be consid-

ered negligible (like the solar wind or, in many cases, the laboratory plas-

mas), the resonant wave-particle interaction represents the only way particles

and waves can exchange energy between each other. For these reasons, wave-

particle resonance is a basic process in many physical phenomena such as, for

example, wave damping, particle acceleration, growth of instabilities, genera-

tion of anisotropies and, in general, departure from the local thermodynamic

equilibrium configuration.

In recent analysis performed on solar-wind data from the Helios space-

craft, the link between the signatures of kinetic effects and some impor-

tant parameters of heavy ions, such as relative speed, temperature ratio and

anisotropy, has been investigated [61, 65, 92]. In these works the authors

pointed out that more significant anisotropies and non-Maxwellian features

are detected for alpha particles distribution functions with respect to protons.

The evolution of the velocity distribution functions in the solar wind, and the

production of kinetic signatures such as heating and temperature anisotropies

represent nowadays some of the key issues of space plasma physics [96, 97].

The fact that kinetic scales can have a determinant role in shaping the turbu-

lent spectra and that the role of secondary ions cannot be neglected suggests

that a multi-scale and multi-species self-consistent Vlasov treatment of the

turbulent solar wind is required.
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In fact, a kinetic description of collisionless plasma turbulence offers the

powerful opportunity of giving important insights for the interpretation of

“in situ” satellite measurements in the solar wind. In this context, an in-

dispensable and crucial support to investigate the complexity of solar-wind

physics is represented by kinetic numerical simulations. In order to perform

an accurate analysis of a 2D turbulent collisionless plasma of kinetic protons

and alpha particles, we adopt an approach similar to the one used in Ref.

[39], extending these results to the more realistic multi-ion treatment.

We simulate a collisionless and magnetized multi-species (electrons, pro-

tons and alpha particles) turbulent plasma through the use of the HVM

code. The Vlasov equation for proton (fp) and alpha particle (fα) distri-

bution functions [8, 30] is integrated numerically in a 2D-3V phase space

domain.

5.1 Initial setup for the simulations

The initial equilibrium consists of a plasma composed of kinetic protons

and alpha particles, with Maxwellian velocity distributions and homogeneous

densities (n(p)
0 and n

(α)
0 respectively), and fluid electrons described by a gener-

alized Ohm equation, where a resistive term has been added as a standard nu-

merical Laplacian dissipation. A small value for the resistivity (η = 2×10−2)

has been chosen in order to achieve relatively high Reynolds numbers and to

remove any spurious numerical effects due to the presence of strong current

sheets. The system is embedded in a background magnetic field B0 = B0êz.

The plasma dynamics and the development of turbulence are investigated in

a double periodic (x, y) domain perpendicular to B0, where the total mag-

netic field can be written as B = B0 + B⊥. The equilibrium configuration

is perturbed by a 2D spectrum of fluctuations for the magnetic and proton

velocity fields (alpha particles have zero initial bulk velocity). We inject en-

ergy with random phases and wave numbers in the range 0.05 < k < 0.3,

where k = 2πm/L, with 2 ≤ m ≤ 6 and L being the box size in each spatial

direction. The rms of the initial magnetic perturbations is δB/B0 ≃ 0.3.

Neither density disturbances nor parallel variances are imposed at the be-
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ginning of the simulation. The proton plasma beta is βp = 2, consequently

the proton thermal speed is v
(p)
th = 1. The electron to proton temperature

ratio is set Te/Tp = 1. For the alpha particles we set Zα = 2, mα/mp = 4,

n
(α)
0 /n

(p)
0 = 5% and Tα/Tp = 1. With this choice, the alpha particle thermal

speed is v
(α)
th = v

(p)
th /2.
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Figure 5.1: Time evolution of the average out-of-plane squared current density 〈j2
z 〉

[98].

The system size in the spatial domain is L = 2π × 20dp in both x and

y directions, while the limits of the velocity domain for both ion species

are fixed at vmax,i = ±5v
(i)
th (i = p, α) in each velocity direction. In these

simulations, we use 5122 gridpoints in the two-dimensional spatial domain

and 613 and 313 gridpoints in proton and alpha particle three-dimensional

velocity domains, respectively. The time step is ∆t = 10−2. We point out

that in the Ohm equation for the electric field we have neglected the electron

inertia terms. These terms are in fact proportional to the squared electron

skin depth, then cannot be adequately resolved within the discretization of

our simulations [98].

5.1.1 Numerical results

We study numerically the kinetic evolution of protons and alpha particles

in a situation of decaying turbulence. We expect that kinetic effects develop

simultaneously together with magnetic fluctuations and shears, the latter
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playing a fundamental role in the production of interesting features such

as particle acceleration, heating, temperature anisotropy, wave-particle like

interactions, and generation of beams in the ion distribution function.

Figure 5.2: Contour plot of the out-of-plane total current density jz. The isolines
of the magnetic potential, Az, are indicated by black/white lines. The
positions of the X-points, where the reconnection occurs, are indicated
by red thick crosses [98].

Turbulent activity

As in the fluid counterpart, large scale fluctuations produce a turbulent

cascade toward small scales. In analogy with fluid models of decaying turbu-

lence [99], it is possible to identify an instant of time at which the turbulent

activity reaches its maximum value. Since the current density is propor-

tional to the level of small-scale gradients, a good indicator of the level of

turbulent activity is represented by the average out-of-plane squared current

density 〈j2
z 〉. In Figure 5.1 we report the time evolution of 〈j2

z 〉. Here, it is

clearly shown that at t = t̃ ∼ 40 〈j2
z 〉 reaches its maximum value. This is the

characteristic time at which decaying turbulence shares many statistical sim-

ilarities with steady state (driven) turbulence, and, at this time, we perform

our analysis [98].
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Figure 5.3: (Top panel) Probability distribution functions of the different current

densities: j
(e)
z red solid-cross line, j

(p)
z blue dashed-square line, j

(α)
z

green dashed-circle line, and jz black dashed-triangle line. (Bottom
panel) Probability distribution functions of the standardized variables,
obtained by subtracting the average and normalizing to the respective
rms value, are reported. The light-blue dot-dashed line is the Gaussian
fit [98].

Turbulence manifests through the appearance of coherent structures, ex-

hibiting a sea of vortices (islands) and current sheets. This behavior can be

seen in shaded contour map (Figure 5.2) of the out-of-plane total current

density jz. The contour lines in the plot represent the magnetic potential

Az of the inplane magnetic field (B⊥ = ∇Az × êz). The different colors

(black/white) of the Az contour lines indicate different directions of rotation

of the vortices. The coherent structures visible in Figure 5.2 are not static,

but evolve in time interacting nonlinearly among each others. Moreover, in

between the islands, the current becomes very intense, this being a signature
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of the intermittent nature of the magnetic field and affecting the patchiness of

the parallel and perpendicular heating. In these regions of magnetic stress,

reconnection events locally occurs at the X points of Az, indicated in the

contour plot by red crosses [98].

0.1 1.0 10.0
k

10-14

10-12

10-10

10-8

10-6

10-4

10-2

S
pe

ct
ru

m

k-5/3

Figure 5.4: Power spectra of np (green-square line), up (purple-triangle line), B

(black-solid line) and E (red-dashed line) [98].

In the top panel of Figure 5.3 we report the probability distribution

functions (PDF) of j
(p)
z (blue dashed-square line), j

(α)
z (green dashed-circle

line), j
(e)
z (red solid-cross line) and jz (black dashed-triangle line). This plot

clearly indicates that there is a certain ordering in the maximum values of the

achieved current. The main contribution to the total current seems to come

from the electrons and the protons, that develop the most intense bursty

events. In contrast, the alpha particle current structures are smoother and

are concentrated on larger scales. In the same figure (bottom panel), we

report the PDF of the standardized variables obtained by subtracting the

average and normalizing to the respective rms value. The Gaussian fit is also

plotted (light-blue dot-dashed line) as reference. The currents jz and j
(e)
z are

highly non-Gaussian distributed, because they are related to the increments

(gradients) of the magnetic field (and electron flows are essentially frozen-

in). The proton and alpha particle contributions, on the other hand, behave

more like Gaussian variables, since they are related to primitive variables

of turbulence such as velocities and densities, and they do not capture high
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order statistics [98].
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Figure 5.5: The velocity spectra (a) and the normalized density spectra (b) for
protons (black-solid line) and for alpha particles (red-dashed line) [98].

In order to quantify the turbulence, the power spectra of density and bulk

velocity for both protons and alpha particles and of magnetic and electric

fields have been computed. In Figure 5.4 we report the power spectra of

np (green-square line), up (purple-triangle line), B (black-solid line) and E

(red-dashed line). The Kolmogorov expectation k−5/3 (black-dashed line) has

been plotted as a reference. These power spectra reveal several interesting

features, many of them recovered also in solar-wind spacecraft observations.

In fact, the large scale activity is incompressible and the Alfvénic correlation

between magnetic and velocity fluctuations is broken at the proton skin depth

(vertical black dashed line). Moreover, the electric activity (red-dashed line)

at higher wavenumbers is significantly more intense than the magnetic one

(black-solid line) [6, 77]. It is worth to point out that the power spectra

displayed in Figure 5.4 present no significant differences with respect to the

same spectra obtained through HVM simulations without alpha particles

(see Figure 1 in [39]), meaning that the presence of alpha particles does not

significantly affect the dynamical evolution of the turbulent cascade [98].

To make a direct comparison of the dynamical evolution of the two ion

species, in Figure 5.5 we show the velocity spectra (a) and the normalized

density spectra (b) for protons (black-solid line) and for alpha particles (red-

dashed line). The density spectra for protons and alpha particles are nor-

malized to n
(p)
0 and n

(α)
0 , respectively. While the velocity spectra (a) of the
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two ion species do not display significantly different features, we notice that

the alpha particles contribution to the density spectra (b) is lower than the

proton one for wavenumbers higher than the proton skin depth wavenum-

ber. This behavior is possibly related to the fact that the alpha particles

are heavier than protons, so their inertia does not allow to follow the field

fluctuations at smaller scales [98].

Ion temperature anisotropy

It is important to investigate the link between the turbulent behavior

observed in the plasma and the generation of non-Maxwellian features in

velocity space. For this purpose, we compute the ion temperature anisotropy

Ai for each species, defined as the ratio between the perpendicular and the

parallel temperature with respect to the local magnetic field

Ai =
T

(i)
⊥

T
(i)
‖

(i = p, α) (5.1)

Our initial condition has been set up in such a way to have spatially isotropic

temperatures for both the ion species at t = 0. Nevertheless, during the

development of turbulence the temperatures do not remain spatially isotropic

but present local enhancements and depressions nearby the regions of high

magnetic stress, as already found for the protons in Ref. [39]. To quantify

this statement, the probability distribution function (PDF) of Ai has been

computed.

Figure 5.6 shows the PDF of the temperature anisotropy for protons Ap

(a) and alpha particles Aα (b) at four different times in the simulation. In the

early stage of the system evolution (t = 1, black line), the PDFs are picked

around Ap = Aα = 1, meaning that the simulation starts with an isotropic

configuration. During the evolution of the system (t = 21, purple line; t = 34,

red line; t = 40, blue line) the PDFs elongate in the parallel (Ai < 1)

and in the perpendicular (Ai > 1) direction, displaying a strong anisotropic

behavior. It is worth noting that the statistical behavior of the anisotropies

saturates already at t ≃ 20. Regardless of the particular ion species, the

anisotropy preferentially manifests itself along the perpendicular direction,
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Figure 5.6: Probability distribution function of the temperature anisotropy Ai of
protons (a) and alpha particles (b) at four different times in the system
evolution: t = 1 black line, t = 21 purple line, t = 34 red line, t = 40
blue line [98].

an evidence commonly detected in the solar-wind observations [61, 65, 92].

However, alpha particles are more anisotropic than protons, as more evidently

shown in Figure 5.7 where we have directly compared the PDFs of the two

ion species (Ap blue-square line and Aα red-triangle line) when the peak of

the nonlinear activity is reached (t = 40) [98].

In order to investigate in details the effects of turbulence on the velocity

distributions of ions, in Figure 5.8 we report the isosurfaces of the particle

velocity distribution, evaluated at the spatial locations where the anisotropy

index reaches its maximum value for protons (a) and alpha particles (b). In

each panel, the direction of the local magnetic field is also reported as a red

tube [100]. It is evident that, while the proton velocity distribution remains

quite close to the Maxwellian spherical shape, the alpha particles velocity

distribution is evidently shaped by kinetic effects, displaying, in this case, a

certain elongation with the formation of a bubble structure in the direction

perpendicular to the local magnetic field. These typical non-Maxwellian

velocity distributions are common features of the solar-wind plasmas [38, 61,

63, 65, 92].

In Figure 5.9 we consider the isosurfaces of the alpha particle velocity dis-

tribution at two distinct locations in physical space, at which Aα > 1 (a)-(b)
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Figure 5.7: Comparison between the proton (Ap, blue-square line) and the alpha
particle (Aα, red-triangle line) anisotropies is reported at the peak of
the turbulent activity, i.e., at t = 40 [100].

and Aα < 1 (c)-(d). We also report the direction of the local magnetic field

(red tube) and the principal axis (blue tube) of the velocity distribution, eval-

uated from the stress tensor in the minimum variance frame (for details see

[39]). The alpha particle velocity distribution appears strongly affected by

turbulence and modulated by the local magnetic field topology, manifesting

both kinds of anisotropy; moreover the principal axis of the velocity distri-

bution can be both aligned or perpendicular to the local magnetic field [98].

Another interesting feature is the local formation of bubbles in the velocity

distribution along the direction of the local magnetic field that resemble the

characteristic longitudinal beams of accelerated particles commonly observed

in the solar wind data [38, 63] and in 1D-3V HVM simulations [30, 31].

Temperature anisotropy correlation

Any correlation between Aα and Ap may reveal that simultaneous kinetic

instabilities of protons and alpha particles locally occur, modulated by the

ambient magnetic field, or that an instability for a given species may influence

the other, and vice-versa. In Figure 5.10 we analyze the correlation between

protons and alpha particle temperature anisotropy, showing the joint PDF.
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Figure 5.8: Isosurfaces of the proton (a) and alpha particle (b) velocity distribu-
tions at two different spatial locations, where Ap, Aα > 1. The direc-
tion of the local magnetic field is reported as a red tube [100].

The left panel displays the PDF of solar-wind data, while the right plot

shows the numerical results. Although most of the events are concentrated

at Aα = Ap = 1 (isotropic configuration), and are broadly scattered because

of turbulence, this joint distribution suggests that there is a clear monotonic

dependence between alpha and proton anisotropies [98]. The shape of the

numerical distribution is in good agreement with solar wind data.

Moreover, analogously to Maruca et al. in Ref. [101], we fitted the above

distribution with Ap = Aℓ
α, obtaining ℓ ≃ 0.22 (in [101] the authors obtained

ℓ ≃ 0.25). These results suggest that the correlation between proton and

alpha particle kinetic effects, commonly observed in the solar wind, may be

the result of an active turbulent cascade, where kinetic instabilities are locally

activated and modulated by the ambient magnetic field.

Another source of instability in a multi-ion plasma is represented by the

differential flow between different ion species [102, 103, 104]. We found that

the temperature anisotropy for the alpha particles shows a certain correlation

to the their drift velocity Vαp = |up −uα| with respect to protons. In Figure

5.11 the left panel displays the solar-wind data, while the right plot shows
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Figure 5.9: Isosurfaces of the alpha particle velocity distributions at two different
spatial locations: namely in regions where the distribution functions
show anisotropy Aα > 1 (a)-(b) and Aα < 1 (c)-(d) [98]. The direction
of the local magnetic field (red tube) is also reported together with the
principal axis (blue tube) of the velocity distributions (for details see
[39]).

the numerical results. The right panel, in which Aα is reported as a function

of Vαp, shows that the temperature anisotropy increases with increasing rela-

tive flow speeds (in Alfvénic units), up to Vαp ∼ 0.5. These results are again

in good agreement with some observational analyses. The left panel reports

the correlations of temperature anisotropies with differential ion speed in the

solar-wind measurements from the Helios spacecraft [61]. For the case of the

alpha particles, Bourouaine et al. found that Aα increases as the ion differen-

tial speed stays below about 0.5VA. Beyond this value Aα becomes roughly

constant, until Vαp exceeds a value of about 0.7VA, but then it decreases

towards a value below unity when Vαp ≃ VA (not reached in our system).

However, it is worth to point out that in a different data analysis of

Advanced Composition Explorer (ACE ) solar wind observations, Kasper et

al., in Ref. [62], found that the alpha temperature anisotropy is monoton-
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Figure 5.10: (Left) Plot of Rp = T
(p)
⊥ T

(p)
‖ versus Rα = T

(α)
⊥ T

(α)
‖ , generated by

binning values of Rα from the WIND data. The red-dashed line cor-
responds to ℓ = 0.25 (see Figure 1b in [101]). (Right) Joint proba-
bility distribution function of proton and alpha particle temperature
anisotropy. This two dimensional PDF shows a correlation between
the anisotropy in the two species recovered in the HVM simulation.
The black-dashed line represents the best fit Ap = Aℓ

α, with ℓ = 0.22
[98]

ically decreasing with increasing alpha particle to proton relative speed in

the range 0 ≤ Vαp . 0.5. It is also worth noting that while these studies

are carried out on years of solar wind data, that detect different plasmas

with different parameters, homogeneities, large scale effects and so on, in our

case, these phenomena are the genuine result of a turbulent and statistically

homogeneous cascade [98].

Summary

The investigation of the role of kinetic effects in a two dimensional turbu-

lent multi-ion plasma through HVM numerical simulations has reproduced

an important part of the complex phenomenology underlying many processes

in the solar wind and suggested that a noise-free Eulerian Vlasov description

of a multi-component collision-free plasma plays a fundamental role in the

interpretation of the observational data from spacecraft [61, 101].

Even though the presence of a small percentage of heavy ions does not

affect significantly the evolution of the turbulent cascade, our numerical re-
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Figure 5.11: (Left) The mean values of the temperature anisotropy of the alpha
particles versus the relative ion differential speed from the Helios 2

data. The vertical dotted line separates fast from slow solar-wind
regimes (see Figure 4 in [61]). (Right) Anisotropy of the alpha particle
temperatures binned as a function of the differential speed Vαp, in
Alfvénic units, recovered in the HVM simulation [98]. In both panels,
the bars indicate the uncertainties of the mean values.

sults clearly show that the dynamics of alpha particles at short spatial scales

displays several interesting aspects, mainly consisting in the departure of the

distribution function from the typical Maxwellian configuration. In a situ-

ation of decaying turbulence, coherent structures appear, such as vortices

and current sheets. In between magnetic islands, reconnection events occur.

Moreover, temperature anisotropy is found to be higher in regions of high

magnetic stress.

Both ion species manifest a preferentially perpendicular heating, although

the anisotropy is more pronounced for the alpha particles, according with

solar wind observations. The anisotropy of the alpha particle is correlated to

the proton anisotropy, and also depends on the local differential flow between

the two species. Evident distortions of the particle distribution functions have

been recovered, consisting in the production of bumps along the direction of

the local magnetic field and distortions in the perpendicular directions.
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Conclusions

Questions such as “What are the dissipative processes in a collisionless tur-

bulent plasma like the solar wind? What processes are dominant and under

what conditions?” represent nowadays the crucial issues in the understanding

the dynamical evolution of the inner heliosphere. Wave particle interactions

(cyclotron resonance, Landau damping, particle trapping) as well as current

sheets generation and reconnection events can be of central importance in

heating the solar plasma. In this context, the hybrid Vlasov-Maxwell code,

that includes the kinetic behavior of protons and alpha particles, has been

used to analyze in details plasma dynamics in the spectral regions of scales

shorter than the proton skin depth.

First of all, we have investigated the role of alpha particles in the devel-

opment of the solar-wind turbulent cascade toward short wavelengths, in the

direction parallel to the ambient magnetic field, in 1D-3V phase space con-

figuration. The system evolution has been investigated in terms of different

values of the electron to proton and alpha particle to proton temperature

ratios. In conditions of solar wind at 1 AU, the numerical results show that

the previously studied kinetic dynamics of protons is not strongly affected

by the presence of alpha particles, at least when these are present in low

concentration. Our simulations not only provide a physical explanation for

the generation of beams of accelerated particles along the direction of the

ambient magnetic field for both protons and alpha particles, but also show

that this mechanism is more efficient for protons than for alpha particles, in

agreement with recent solar-wind data analyses [30].

On the other hand, considering the physical conditions of the interplan-

etary medium close to the Sun (0.3 AU), the numerical results display that
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the alpha particle distribution function departs from the typical Maxwell con-

figuration of local thermodynamic equilibrium. These features are in good

agreements with solar-wind “in situ” measurements from the Helios space-

craft in regions of the heliosphere at 0.3 AU, showing that the alpha particle

distribution functions display peculiar non-gyrotropic shapes, with signifi-

cant elongations in the direction perpendicular to the background magnetic

field. The comparison between the numerical results and the observational

data has also provided a possible explanation of the observed behavior, due

to sampling and averaging procedure applied during the reduction of the

measured and simulated data [95].

Hybrid Vlasov-Maxwell simulations have been also employed to inves-

tigate the role of kinetic effects in a two-dimensional turbulent multi-ion

plasma. In the typical conditions of the solar-wind environment, and in sit-

uations of decaying turbulence, the numerical results show that the velocity

distribution functions of both ion species depart from the typical configura-

tion of thermal equilibrium. The ion temperature anisotropy, computed in

the reference frame given by the local magnetic field, is found to be higher

in regions of high magnetic stress. A preferentially perpendicular heating is

observed for both ion species, in according with solar-wind data. Moreover,

for the parameters considered, it has been found that alpha particles develop

higher anisotropy than protons. The comparison between our numerical re-

sults and recent solar-wind analyses have shown a very good quantitative

correspondence both for the correlation of alpha particle and proton temper-

ature anisotropies and for the correlation of alpha anisotropy and relative

flow speed [98].

The results presented in this thesis significantly reproduce some of the

complex behaviors recovered in the interstellar medium, suggesting that the

hybrid Vlasov-Maxwell model, proposed in the present work, represents an

important and indispensable tool for the interpretation of many physical

phenomena recovered in the spacecraft observations.

Of course, lots of questions remain still unanswered and a complete ge-

ometry description (3D-3V phase space configuration), even though more

expensive, would be invaluable to extend our understanding of more realistic
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systems, this being an important aspect for future study.
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Appendix A

Generalized Ohm’s law derivation

For small wavelength and high frequency, the one fluid ideal magneto-

hydrodynamics (MHD) description is no longer sufficient and the Hall effect

(HMHD) has to be included and eventually also electron inertia (EMHD). A

general Ohm’s law can be obtained for phenomena with typical frequencies

ω and spatial scales l such that

- Quasi neutrality is satisfied: l ≫ λ
(e)
D , ω ≪ ω

(e)
p

- Displacement currents are negligible: l ≫ c/ω

- The plasma is weakly magnetized: Ω(e) ≪ ω
(e)
p

where λ
(e)
D is the Debye length, ω

(e)
p the electron plasma frequency and Ω(e)

the electron cyclotron frequency, c being the light speed and e and me the

electron electric charge in absolute value and mass, respectively.

We consider a plasma composed of electrons, protons and heavy ions.

From now on, we identify all kind of ions, with charge number Zs, through

the subscript s. We assume the quasi-neutrality condition ne =
∑

s Zsns

and, neglecting the displacement current, we can define the current density

j as

j = e

[
∑

s

Zsnsus − neue

]
=

c

4π
∇×B . (A.1)

We also use the Faraday equation

1

c

∂B

∂t
= −∇× E . (A.2)
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We can write the electron and ion momentum equations as

∂

∂t
(neue) + ∇ · (neueue) = − 1

me
∇Pe −

ene

me

(
E +

ue × B

c

)
, (A.3)

∂

∂t
(nsus) + ∇ · (nsusus) = − 1

ms

∇ · Πs +
eZsns

ms

(
E +

us × B

c

)
. (A.4)

Making the temporal derivative of eq. (A.1) and replacing the momentum

equations, we obtain

c2

4πe
∇× (∇×E) −

∑

s

Zs∇ · (nsusus) −

∑

s

Zs

ms
∇ · Πs +

∑

s

Z2
snse

ms
E +

∑

s

Z2
s nse

msc
us × B +

∇ · (neueue) +
1

me
∇Pe +

ene

me
E +

ene

mec
ue ×B = 0 , (A.5)

where, from eq. (A.1), we can define the electron velocity as

ue =
∑

s

Zs
nsus

ne

− 1

ene

j . (A.6)

Moreover, from the quasi-neutrality condition (∇ · E = 0) we can write the

double vectorial product as

∇× (∇×E) = −∇2E . (A.7)

Defining the following quantities

n = ne =
∑

s

Zsns ;
1

Ms
= Zs

me

ms
; Ns = Zs

ns

ne

(

⇒
∑

s

Ns = 1

)

,(A.8)

we finally obtain
(

1 +
∑

s

Ns

Ms

)

E− mec
2

4πe2n
∇2E =

me

e
∇ ·
(
∑

s

Nsusus − ueue

)

+
1

en

∑

s

1

Ms
∇ · Πs −

1

en
∇Pe −

1

c
ue ×B − 1

c

∑

s

Ns

Ms
us ×B . (A.9)
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For this analysis, we focus on a plasma system, like the solar wind, made

of electrons, protons and very low concentrations of heavy ions (Helium,

Carbon, Nitrogen, Oxygen and so on). From this assumption, in the left-

hand side of eq. (A.9), we can neglect the term
∑

s Ns/Ms

1 +
∑

s

Ns

Ms
∼ 1 , (A.10)

while, in the right-hand side of the same equation, we observe that

ue ∼
∑

s

Ns

Ms

us , (A.11)

because ions in the plasma move slower than electrons. From these consid-

erations, eq. (A.9) can be written as

E − mec
2

4πe2n
∇2E =

me

e
∇ ·
(
∑

s

Nsusus − ueue

)

+
1

en

∑

s

1

Ms
∇ ·Πs −

1

en
∇Pe −

1

c
ue × B − 1

c

∑

s

Ns

Ms
us ×B . (A.12)

In order to have all the quantities dimensionless, we consider the following

characteristic quantities

ū = VA ; ω̄ = Ω(p) ; l̄ = VA/Ω(p) = c/ω(p)
p = dp ; n̄ ;

P̄e = Π̄s = n̄mpV
2
A ; Ē = mpVAΩ(p)/e ; B̄ = mpcΩ

(p)/e , (A.13)

where VA is the Alfvén velocity, Ω(p) is the proton cyclotron frequency, ω
(p)
p

is the proton plasma frequency, dp is the proton skin depth and mp is the

proton mass. Moreover, another important quantity to introduce is the so-

called electron skin depth, defined as

d2
e =

c2

ω
(e)
p

2

(
mp

mp + me

)
≃ c2

ω
(e)
p

2 , (A.14)

that in dimensionless unit can be written as d2
e = me/mp.

Finally, we can write the generalized Ohm’s law in dimensionless unit as
(

1 − d2
e

ñ
∇2

)
Ẽ = −ũe × B̃ − 1

ñ
∇P̃e −

∑

s

Ns

Ms
ũs × B̃

+
1

ñ

∑

s

1

Ms
∇ · Π̃s + d2

e∇ ·
(
∑

s

Nsũsũs − ũeũe

)
. (A.15)
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Appendix B

Fluid theory of plasma waves

A wave propagating in some medium usually satisfies a differential equa-

tion that determines the possible solutions for the wave in that medium. If

the differential equation is linear, Fourier analysis provides a simple method

of determining the allowed solutions. Any combination of derivatives can be

represented by the following operator substitutions

∂

∂t
→ −ıω ,

∇ → ık . (B.1)

To analyze the waves that can exist in a plasma, the basic equations that

must be solved self-consistently are Maxwell’s equations and the particle

equations of motion. To obtain the dispersion relation, we need to look for

a solution to Maxwell’s equations. A system of equations can be obtained

by eliminating either E and B from Faraday’s law and Ampère’s law. After

Fourier transforming, Faraday’s and Ampère’s laws become

k × Ẽ =
ω

c
B̃ ,

ık × B̃ =
4π

c
j̃− ı

ω

c
Ẽ , (B.2)

where B̃ and Ẽ are the Fourier transforms of magnetic and electric fields, re-

spectively. Eliminating B̃ between these two equations gives a homogeneous

equation for the electric field

c2

ω2
k ×

(
k × Ẽ

)
= −4πı

ω
σ · Ẽ − Ẽ , (B.3)
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where the current density j̃ has been replaced by the linear and local relation

σ ·Ẽ in Fourier space (the matrix σ is a tensor called the conductivity tensor).

We can define the dielectric tensor ǫ as a function of the conductivity tensor

that, in the component form, is written as

ǫij(k, ω) = δij +
4πı

ω
σij . (B.4)

The wave equation for a plasma, or for a medium that has a dielectric tensor

ǫij , can be expressed as
[
c2k2

ω2

(
δij −

kikj

k2

)
− ǫij

]
Ej = 0 . (B.5)

Moreover, if we define the dispersion tensor Λij as

Λij =
c2k2

ω2

(
δij −

kikj

k2

)
− ǫij , (B.6)

the wave equation assumes the simple form

Λij(k, ω)Ej(k, ω) = 0 . (B.7)

For the homogeneous eq. (B.7), in order to have non-trivial solution for Ej

the quantity Λij(k, ω) must be zero. This condition is called the dispersion

relation, that provides a relationship between ω and k, depending essentially

on the conductivity tensor.

The conductivity tensor σij can be obtained from fluid theory. To obtain

a linear set of equations, all the dependent variables (vs, ns, Ps,E and B) are

assumed to consist of a constant uniform zero-order term plus a small first-

order perturbation. The zero-order electric field must also be zero, otherwise

at zero-order the particles would not remain at rest. The fluid equations that

describe the plasma, composed of different ion species s, in Fourier space,

are

−ωn
(s)
1 + n

(s)
0 k · v(s)

1 = 0 ,

ωv
(s)
1 =

k

m(s)n
(s)
0

P
(s)
1 + ı

q(s)

m(s)

(
E1 +

v
(s)
1 × B0

c

)
, (B.8)
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P
(s)
1 = γ(s)T (s)n

(s)
1 .

In these equations the subscript (0) identifies the zero-order quantities and

the subscript (1) identifies the first-order quantities. In order to calculate

the current density, we need to evaluate the particle velocity. We choose a

background magnetic field B0 along the z-direction (B0 = B0êz), while the

orientation of the wavevector k is defined as k = (kx, 0, kz). In this reference

frame, the motion equations can be written in matrix form as




1 − γ(s)T (s)

m(s)

k2
x

ω2 −ı q(s)B0

m(s)c
1
ω

−γ(s)T (s)

m(s)
kxkz

ω2

ı q(s)B0

m(s)c
1
ω

1 0

−γ(s)T (s)

m(s)
kxkz

ω2 0 1 − γ(s)T (s)

m(s)

k2
z

ω2









v
(s)
x

v
(s)
y

v
(s)
z




= ı

q(s)

m(s)ω





Ex

Ey

Ez




(B.9)

We can simplify this expression, by considering a propagation parallel to the

ambient magnetic field (kx = 0, kz = k)




1 −ı q(s)B0

m(s)c
1
ω

0

ı q(s)B0

m(s)c
1
ω

1 0

0 0 1 − γ(s)T (s)

m(s)
k2

ω2









v
(s)
x

v
(s)
y

v
(s)
z




= ı

q(s)

m(s)ω





Ex

Ey

Ez




(B.10)

Solving the system (B.10), we obtain the mobility tensor τ
(s)
ij , that repre-

sents the particle response to the electric field in terms of the velocity field.

Therefore the conductivity tensor can be defined as

σij =
∑

s

q(s)n
(s)
0 τ

(s)
ij . (B.11)

Using the definitions given for the dielectric tensor ǫij (see eq. C.1), the

dispersion tensor Λij , in matrix form, becomes

Λij =





c2k2

ω2 − 1 +
∑

s
ω

(s)
p

2

ω2−Ω(s)2
+ı
∑

s
Ω(s)

ω

ω
(s)
p

2

ω2−Ω(s)2
0

−ı
∑

s
Ω(s)

ω

ω
(s)
p

2

ω2−Ω(s)2
c2k2

ω2 − 1 +
∑

s
ω

(s)
p

2

ω2−Ω(s)2
0

0 0 1 −
∑

s
ω

(s)
p

2

ω2− γ(s)T (s)

m(s)
k2

= 0
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In other terms, the equation

1 −
∑

s

ω
(s)
p

2

ω2 − γ(s)T (s)

m(s) k2
= 0 (B.12)

represents the longitudinal (parallel to B0) mode, while the equation

(
c2k2

ω2
− 1 +

∑

s

ω
(s)
p

2

ω2 − Ω(s)2

)2

=

(
∑

s

Ω(s)

ω

ω
(s)
p

2

ω2 − Ω(s)2

)2

(B.13)

represents the transverse (perpendicular to B0) mode.

Considering, now, a plasma composed of electrons, protons and alpha

particles, the equation (B.13) can be expressed as

c2k2

ω2
− 1 +

ω
(e)
p

2

ω2 − Ω(e)2
+

ω
(p)
p

2

ω2 − Ω(p)2
+

ω
(α)
p

2

ω2 − Ω(α)2
=

±
(
−Ω(e)

ω

ω
(e)
p

2

ω2 − Ω(e)2
+

Ω(p)

ω

ω
(p)
p

2

ω2 − Ω(p)2
+

Ω(α)

ω

ω
(α)
p

2

ω2 − Ω(α)2

)
(B.14)

where the minus sign refers to the left-hand polarized mode (L-wave) and the

plus sign is associated to the right-hand polarized mode (R-wave). The elec-

tric field vector of the electromagnetic mode traces out circle in the counter-

clockwise (R) or clockwise (L) sense. At low frequencies (ω ≪ Ω(p)), both

waves tend to the Alfvén waves (fast and slow Alfén waves are indistinguish-

able for parallel propagation). In dimensionless unit (A.13), the equation

(B.14) assumes the form

k2

ω2
+

Mp
′

ω2 − Mp
′2 +

Np
′

ω2 − 1
+ Z2

α

Mp
′

Mα
′

Nα
′

ω2 − (ZαMp
′

/Mα
′

)2
=

± 1

ω

(

− Mp
′

ω2 − Mp
′2 +

Np
′

ω2 − 1
+ Z3

α

Mp
′2

Mα
′2

Nα
′

ω2 − (ZαMp
′

/Mα
′

)2

)

, (B.15)

in which the displacement current has been neglected and the characteristic

frequencies have been introduced. In equation (B.15) the quantities Ms
′

and

Ns
′

are defined as follows:

Ms
′

=
ms

me
, Ns

′

=
ns

ne
(s = p, α) . (B.16)
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Moreover, starting from the matrix form of the dispersion relation (B.7)

it is easy to obtain also the normal modes for the L- and R-waves. The

magnetic and velocity (both for protons and alpha particles) perturbations

can be expressed, in dimensionless unit, as
{

δBx = −
∑

n ǫn
k

ωn
cos(knx)

δBy = −
∑

n ǫn
k

ωn
sin(knx)

{
δu

(p)
x = −

∑
n ǫn

1
ωn−1

cos(knx)

δu
(p)
y = −

∑
n ǫn

1
ωn−1

sin(knx)

{
δu

(α)
x = −∑n

Zαmp

mα
ǫn

1
ωn−Zαmp/mα

cos(knx)

δu
(α)
y = −

∑
n

Zαmp

mα
ǫn

1
ωn−Zαmp/mα

sin(knx)
(B.17)

for the L polarization and
{

δBx =
∑

n ǫn
k

ωn
sin(knx)

δBy =
∑

n ǫn
k

ωn
cos(knx)

{
δu

(p)
x = −

∑
n ǫn

1
1+ωn

sin(knx)

δu
(p)
y = −∑n ǫn

1
1+ωn

cos(knx)

{
δu

(α)
x = −

∑
n

Zαmp

mα
ǫn

1
ωn+Zαmp/mα

sin(knx)

δu
(α)
y = −

∑
n

Zαmp

mα
ǫn

1
ωn+Zαmp/mα

cos(knx)
(B.18)

for the R polarization, where ǫn is the amplitude of the nth mode and ωn is

its frequency.

The expressions (B.17) and (B.18) can be used as the initial perturbations

in the numerical experiments, using the hybrid Vlasov-Maxwell code, but

in the code geometry the background magnetic field is along x direction.

Applying a rotation of the reference frame, the normal modes implemented

in the numerical simulations are
{

δBy = −∑n ǫn
k

ωn
cos(knx)

δBz = −
∑

n ǫn
k

ωn
sin(knx)

{
δuy,p = −∑n ǫn

1
ωn−1

cos(knx)

δuz,p = −
∑

n ǫn
1

ωn−1
sin(knx)

{
δuy,α = −∑n

Zαmp

mα
ǫn

1
ωn−Zαmp/mα

cos(knx)

δuz,α = −
∑

n
Zαmp

mα
ǫn

1
ωn−Zαmp/mα

sin(knx)
(B.19)

and
{

δBy =
∑

n ǫn
k

ωn
sin(knx)

δBz =
∑

n ǫn
k

ωn
cos(knx)

{
δu

(p)
y = −∑n ǫn

1
1+ωn

sin(knx)

δu
(p)
z = −

∑
n ǫn

1
1+ωn

cos(knx)

{
δu

(α)
y = −

∑
n

Zαmp

mα
ǫn

1
ωn+Zαmp/mα

sin(knx)

δu
(α)
z = −

∑
n

Zαmp

mα
ǫn

1
ωn+Zαmp/mα

cos(knx)
(B.20)

for the L- and R polarizations, respectively.
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B.1 Pure electron-proton plasma

In the limit of zero-concentration of alpha particles (Nα → 0), the equa-

tion (B.15) reduces to the case of a plasma composed of electrons and protons,

describing the well-known whistler (R) and ion-cyclotron (L) waves [42, 43, 4]

k2

ω2
+

Mp
′

ω2 − Mp
′2 +

1

ω2 − 1
= ± 1

ω

(
− Mp

′

ω2 − Mp
′2 +

1

ω2 − 1

)
(B.21)

with Np
′

= np/ne = 1, by imposing the quasi-neutrality condition. The

R-wave has a resonance at ω = Ω(e) (electron-cyclotron resonance). This

makes physical sense because the sense and frequency of rotation of the

electric field matches the gyromotion of the electrons. In other words, at the

electron-cyclotron resonance the transverse electric field associated with a

right-handed wave rotates at the same velocity, and in the same direction, as

electrons gyrating around the equilibrium magnetic field. Thus, the electrons

experience a continuous acceleration from their interaction with the electric

field, which tends to increase their perpendicular energy. On the other hand,

the L-wave has a resonance at ω = Ω(p) (proton-cyclotron resonance). At

this resonance, the rotating electric field associated with a left-handed wave

resonates with the gyromotion of the protons, allowing wave energy to be

converted into perpendicular kinetic energy of the protons. There is a band

of frequencies, lying above the proton-cyclotron frequency, in which the left-

handed wave does not propagate. At very high frequencies a propagating

mode exists, which is basically a standard left-handed circularly polarized

electromagnetic wave, somewhat modified by the presence of the plasma. The

continuation of the Alfvén wave to just below the proton-cyclotron frequency

is generally called the proton-cyclotron wave.
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Appendix C

Kinetic theory of ion-acoustic

waves

In a plasma in which Te ≫ Tp the ion waves propagate and are only weakly

damped, while are heavily damped in a plasma in which Te ≃ Tp. This sug-

gest that ion waves might be driven unstable by a rather weak drift if the

electrons are sufficiently hot so that the damping by the maxwellian compo-

nent will be weak compared with the growth from the drifting maxwellian.

The wave properties, stable or unstable, are obtained from solving for the

zeros of the dielectric function D(k, ω) obtained by linearizing the Vlasov-

Poisson equations [1]

D(k, ω) = 1 −
∑

s

ω
(s)
p

2

k2

1

n
(s)
0

∫ +∞

−∞

∂F
(s)
0 /∂u

u − ω/k
du = 0 , (C.1)

where ω = ωR + ı ωI is the complex frequency. In order to obtain the

dispersion relation ωR(k), we look for the zeros of the real part of the dielectric

function in the limit of small damping (ωI ≪ ωR)

DR(k, ωR) = 1 −
∑

s

ω
(s)
p

2

k2

1

n
(s)
0

P

∫ +∞

−∞

∂F
(s)
0 /∂u

u − ωR/k
du = 0 , (C.2)

where the symbol P denotes the Cauchy principal value, that provides a

mathematical procedure for avoiding the divergence in the integral at u =

ωR/k.
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Considering a plasma composed of electrons, protons and alpha particles,

we can suppose that electrons and ions have Maxwellian velocity distribu-

tions, F
(s)
0 (u), but possibly with different temperatures. Because of their far

greater inertia, the ions will have a far smaller mean thermal speed than the

electrons

v
(p)
th , v

(α)
th ≪ vΦ =

ωR

k
≪ v

(e)
th with v

(p)
th ∼ v

(α)
th . (C.3)

Then the wave phase velocity is larger compared to the ion thermal velocity

and so is way out on the tail of the proton velocity distribution where there

are very few ions that can surf and damp the waves. On the other hand, this

wave phase velocity is small compared to the electron thermal velocity, so

the waves reside near the peak of the electron velocity distribution and many

electrons can surf with the waves; moreover, there are nearly equal numbers of

fast and slower electrons and the surfing produces little net Landau damping.

Thus, Te ≫ Tp leads to successful propagation of ion-acoustic waves.

Under these assumptions, neglecting straightforward calculations, we can

write the real part of the dielectric function (eq. C.2) as the contributions of

the electron, proton and alpha terms separately

DR(k, ωR) ∼ 1 − ω
(p)
p

2

ω2
R

(
1 + 3k2λ

(p)
D

2 ω
(p)
p

2

ω2
R

)
−

ω
(α)
p

2

ω2
R

(
1 + 3k2λ

(α)
D

2ω
(α)
p

2

ω2
R

)
+

1

k2λ
(e)
D

2 = 0 , (C.4)

where λ
(s)
D = v

(s)
th /ω

(s)
p , being s = e, p, α. Solving this equation and explicating

the particle characteristic quantities give the following expression for the

dispersion relation of the ion-acoustic waves

ω2
r =

1

1 + k2λ
(e)
D

2

[
k2 n

(p)
0

n
(e)
0

c2
s

(
1 + Z2

α

n
(α)
0

n
(p)
0

mp

mα

)]
×

[

1 + 3
n

(e)
0

n
(p)
0

Tp

Te

(

1 +
n

(α)
0

n
(p)
0

Tα

Tp
Z2

α

m2
p

m2
α

)
1 + k2λ2

De

(1 + Z2
αmp/mαn

(α)
0 /n

(p)
0 )2

]

. (C.5)
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In the limit of n
(α)
0 → 0, the equation (C.5) becomes

ω2
r =

k2c2
s

1 + k2λ
(e)
D

2

[
1 + 3

Tp

Te

(
1 + k2λ

(e)
D

2
)]

, (C.6)

assuming the quasi-neutrality condition (n(p)
0 ∼ n

(e)
0 ). Equation (C.6) is the

expression of the dispersion relation for the ion acoustic waves in a pure

electron-proton plasma [1, 4].

To evaluate the imaginary par to of the frequency, ωI , we consider the

imaginary part of the dielectric function

DI(k, ωR) = −
∑

s

ω
(s)
p

2

k2

π

n
(s)
0

∂F
(s)
0 (u)

∂u

∣∣∣ω
R
k

, (C.7)

that, in presence of alpha particles, can be written as

DI(k, ωR) =

√
π

2

ωR

k

ω
(p)
p

2

k2

(
mp

kBTp

)3/2 [
exp

(
− mp

2kBTp

ω2
R

k2

)
+

n
(α)
0

n
(p)
0

(
Tp

Tα

)3/2(
mα

mp

)1/2

Z2
α exp

(
− mα

2kBTα

ω2
R

k2

)
+ (C.8)

n
(e)
0

n
(p)
0

(
Tp

Te

)3/2(
me

mp

)1/2

exp

(
− me

2kBTe

ω2
R

k2

)]
.

Then ωI can be evaluated as

ωI = − DI(k, ωR)

∂DR(k, ωR)/∂ωR
. (C.9)

In the limit vΦ ≪ v
(e)
th , the electron exponential term becomes

exp

(
− me

2kBTe

ω2
R

k2

)
∼ 1 (C.10)

and

ωI = − 1

A + 6Bk2λ
(p)
D

2 ω
(p)
p

2

ω2
R

{√
π

8

ω4
R

k3

(
mp

kBTp

)3/2

[
exp

(
− mp

2kBTp

ω2
R

k2

)
+

n
(e)
0

n
(p)
0

(
Tp

Te

)3/2(
me

mp

)1/2

+ (C.11)

n
(α)
0

n
(p)
0

(
Tp

Tα

)3/2(
mα

mp

)1/2

Z2
α exp

(
− mα

2kBTα

ω2
R

k2

)]}
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represents the expression for the imaginary part of the frequency, where the

constants A and B are defined as

A = 1 + Z2
α

mp

mα

n
(α)
0

n
(p)
0

and B = 1 +
n

(α)
0

n
(p)
0

Tα

Tp

Z2
α

(
mp

mα

)2

. (C.12)

Neglecting the contribution of the alpha particles

n
(α)
0 → 0 =⇒ A → 1 , B → 1 , n

(e)
0 ∼ n

(p)
0 , (C.13)

the expression for ωI (eq. C.11) can be written in the following way

ωI = − 1

1 + 6k2λ
(p)
D

2 ω
(p)
p

2

ω2
R

{√
π

8

ω4
R

k3

(
mp

kBTp

)3/2

[

exp

(
− mp

2kBTp

ω2
R

k2

)
+

(
Tp

Te

)3/2(
me

mp

)1/2
]}

. (C.14)
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