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Preface

The design of accurate recommender systems is rapidly becoming one of the
most successful application of data mining and machine learning techniques.
Recommendation is a special form of information filtering, which extends the
traditional concept of search, by modeling and understanding personal users’s
preference. The importance of an accurate Recommender System is widely
witnessed by both academic and industrial e↵orts in the last two decades. In
this thesis, we are going to present and discuss the application of novel prob-
abilistic approaches for the modeling of users’ preference data. We start our
treatment by formally introducing the recommendation problem and sum-
marizing the state of the art techniques for the generation of personalized
recommendations. This analysis proves the e↵ectiveness of probabilistic mod-
els based on latent factors in modeling and identifying patterns within the
high dimensional (and exceptionally sparse) preference data. The probabilis-
tic framework provides a powerful tool for the analysis and characterization
of users and items, as it allows the identification of similar users and items
which can be gathered in user communities and item categories.

Rooted on these backgrounds, our work focuses then on the problem of ef-
fectively adopting probabilistic models to preference data. Our contributions
can be summarized in three directions. First, we study the e↵ectiveness of
the probabilistic techniques in generating accurate and personalized recom-
mendation lists. Probabilistic techniques provide several kind of item ranking
function which can be used to produce the recommendation list. This rankings
focus on the estimate of the item selection, or on the predicted preference of
each pair user,item or on a combination of these two, that we named item
selection and relevance. The latter, which is based on the idea of predicting
the chances that a user will “play and enjoy” a given content, is the best per-
former in terms of recommendation accuracy, and we design two probabilistic
methods for the direct estimation of this function from data. Finally, starting
from the observation that thes high dimensional preference data may exhibit
both global and local patterns, we propose and a probabilistic hierarchical
model, in which user communities and item categories depend on each other.
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This means that di↵erent user communities can exhibit di↵erent preference
patterns on di↵erent item categories, where the identification of the latter
depend on the considered community. This approach better models relation-
ships between users and items and improve existing techniques both in terms
of prediction and recommendation accuracy.

During the development of this thesis, it has been my privilege to work with
brilliant and wonderful people. Among all, my sincere thanks go to Giuseppe
Manco, for his support and guidance over the past three years. I am grateful
for his collaboration whose benefits go over and above the learning of data
mining techniques. His wide perspective, motivation, passion and, above all,
his work ethical standards, had a great impact in shaping my enthusiasm
towards research.

Rende,
November 2012 Nicola Barbieri
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1.1 Introduction

With the increasing volume of information, products, services (or, more gen-
erally, items) available on the Web, the role of Recommender Systems (RS)
[1] and the importance of highly-accurate recommendation techniques have
become a major concern both in e-commerce and academic research. In par-
ticular, the goal of a RS is to provide users with not trivial recommendations,
that are useful to directly experience potentially interesting items. Moreover,
their exploitation in e-commerce can also provide more interactions between
the users and the system, that can be profitably exploited for delivering more
accurate recommendations. RSs are widely employed in di↵erent contexts,
from music (Last.fm 1) to books (Amazon 2), movies (Netflix 3 ) and news
(Google News 4[2] ), and they are quickly changing and reinventing the world
of e-commerces[3].

Recommendation can be considered as a “push” system which provides
users with a personalized exploration of a wide catalog of possible choices.
While in a search based system the user is explicitly required to type a query
(what she is looking for), here the query is implicit and corresponds to all
the past interactions of the user with the system (items/web pages previ-
ously purchased/viewed). Recommendations, as introduced before, help users
in exploring and finding interesting items which the user may not found on
her own. By collecting and analyzing past users’ preferences in the form of ex-
plicit ratings or like/dislike products, the RSs provide the user with smart and
personalized suggestions, typically in the form of “Customers who bought this
item also bought” or “ Customers Who Bought Items in Your Recent History
Also Bought”. The goal of the provider of the service is not just to trans-
form a regular user in a buyer, but also make her browsing experience more
confortable, building a strong loyalty bond . This idea is better explained by
Je↵ Bezos (chief of Amazon.com) words: “If I have 3 million customers on the
Web, I should have 3 million stores on the Web”.

The strategical importance of the development of always more accurate
recommendation techniques has motivated both academic and industrial re-
search for over 15 years; this is witnessed by huge investments in the devel-
opment of personalized and high accuracy recommendation approaches. On
October 2006, Netflix, leader in the movie-rental American market, released
a dataset containing more of 100 million ratings and promoted a competition,
the Netflix Prize 5[4], whose goal was to produce a 10% improvement on the
prediction quality achieved by its own recommender system, Cinematch. The
competition lasted three years and was attended by several research groups
from all over the world, improving and inspiring a fruitful research. During

1
last.fm

2
amazon.com

3
netflix.com

4
news.google.com

5
netflixprize.com/

last.fm
amazon.com
netflix.com
news.google.com
netflixprize.com
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this period a huge number of recommendation approaches has been proposed
and the improvements reached in personalization and recommendation en-
couraged the emergence of new business models based on RSs.

In this chapter we will provide an overview of the recommendation sce-
nario; in particular, we will firstly provide a formal framework which specifies
some notations used throughout this work and discuss how to evaluate recom-
mendations. Then we will introduce and discuss the most known collaborative
filtering approaches, and we will present an empirical comparison of the main
techniques.

1.2 Formal Framework

Recommendation is a particular form of information filtering which analyze
past user’s preference on a catalog of items to generate a personalized list
of suggested items. Thus, in the following, we will introduce some basilar
notations to model users, items, and their associated preferences.

Let U = {u1, . . . , uM} be a set of M users and I = {i1, . . . , iN} a set of N
items. For notational convenience, in the following, we reserve letters u, v to
denote users from U and letters i, j to indicate items from I. User’ s prefer-
ences can be represented as a M⇥N matrix R, whose generic entry ru

i denotes
the preference value (i.e., the degree of preference) assigned by user u to item
i. User preference data can be classified as implicit or explicit. Implicit data
corresponds to mere observations of co-occurrences of users and items. Hence,
the generic entry ru

i of the user-item rating matrix R is a binary value. Pre-
cisely, ru

i = 0 means that u has not yet experienced i, whereas ru
i = 1 simply

signifies that user u has been observed to experience item i. Explicit data is
more informative, since it records the actual ratings from the individual users
on the experienced items. Ratings are essentially judgments on the interest-
ingness of the corresponding items. Generally, in the context of real-world
recommender systems, ratings are scores in a (totally-ordered) numeric do-
main V, which is a fixed rating scale that often includes a small number of
interestingness levels, such as a five-star rating scale. In such cases, for each
pair hu, ii, rating values ru

i fall within a limited range V = {0, . . . , V }, where
0 represents an unknown rating and V is the maximum degree of preference.
Notation rR denotes the average rating among all those ratings ru

i > 0.
The number of users M as well as the number of items N are very large

(typically with M >> N) and, in practical applications, the rating matrix R
is characterized by an an exceptional sparseness (e.g., more than 95%), since
the individual users tend to rate a limited number of items. The set of items
rated by user u is denoted by IR(u) = {i 2 I|ru

i > 0}. Dually, UR(i) = {u 2
U|ru

i > 0} is the set of all those users, who rated item i. Any user u with
a rating history, i.e., such that IR(u) 6= ; is said to be an active user. Both
IR(u) and UR(i) can be empty. This is known as cold start, and it generally
happens whenever a new user or item is added to the underlying information
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system. Cold start is generally problematic in recommender systems, since
these cannot provide suggestions for users or items in the absence of su�cient
information.

Fig 1.1 exemplifies the aforementioned notions. The illustration sketches a
recommendation scenario with 10 users, 10 items and explicit observed pref-
erences. The set of users who rated item i2 is UR(i2) = {u1, u4, u8, u10}. Also,
the set of items rated by user u2 is IR(u2) = {i3, i5, i7, i9}. The rating value of
user u2 over item i4 as well as the ratings from u4 over i1 and i3 are unknown.

i1 i2 i3 i4 i5 i6 i7 i8 i9 i10
u1 2 5 3 1 2
u2 2 4 5 1
u3 1 4 5 1
u4 4 4 2 2
u5 1 3 3 3 5
u6 2 1 3 4 5
u7 4 5 5 1 1
u8 3 4 3 1 3
u9 1 3 2 4 4

u10 5 5 5 4

Fig. 1.1. Example of Rating Matrix.

Given an active user u, the goal of a RS is to provide u with a recom-
mendation list L ✓ I including unexperienced items (i.e., L \ IR(u) = ;),
that are expected to be of interest to u. This clearly involves predicting the
interest of u into unrated items. Let r̂u

i denote the predicted rating of the user
u on the item i, while we denote by pu

i the overall predicted preference for the
same pair, which is actually used to produce a ranked list of items. In a first
instance, we can assume that candidate items for recommendation are ranked
according to their predicted preference. This assumption and other ranking
functions will be later analyzed in Chap. 4.

1.2.1 Evaluation Metrics

Di↵erent evaluation metrics have been proposed in order to evaluate the ac-
curacy of a RS[5, 6, 7]. Recommendations usually come in the form of a list of
the k items that the user might like the most. Intuitively, an accuracy metric
should measure how close the predicted list is to the actual ranked list of
preferences of the user, or how close is the predicted rating from the its actual
preference value. According to [5], evaluation metrics for recommendations
can be classified in three classes: prediction accuracy, classification accuracy
and rank accuracy metrics. Predictive accuracy metrics measure how close the
predicted ratings are to the actual ratings. Classification accuracy is appro-
priate metric in case of binary preferences, because it measures the frequency
with which the system makes the right choice in the item suggestion phase.
Rank accuracy metrics measure how close the top-k list of recommended items
is close to the actual order of the same items.
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A common framework in the evaluation of the predictive capabilities of a
RS algorithm is to split the rating matrix R into two matrices T and S, such
that the former is used to train a recommendation algorithm, while the latter
is used for validation purposes.

Prediction accuracy is measured by using statistical metrics that compare
predicted values with actual ratings:

• Mean Absolute Error (MAE): measures the average absolute deviation
between a predicted and a real rating. It is an intuitive metric, easily to
compute and widely used in experimental studies:

MAE =
1

|S|
X

(u,i) 2 S

|ru
i � r̂u

i | . (1.1)

• Mean Squared Error (MSE): computes the mean squared error be-
tween the observed ratings and the predicted values:

MSE =
1

|S|
X

(u,i) 2 S

(ru
i � r̂u

i )2 . (1.2)

• Root Mean Squared Error (RMSE): it has been used as Netflix Prize
metric for the prediction error. It is very similar to MSE but emphasizes
large errors:

RMSE =

vuut 1

|S|
X

(u,i) 2 S

(ru
i � r̂u

i )2. (1.3)

• Mean Prediction Error (MPE): measures how many predictions di↵er
from the actual rating values:

MPE =
1

|S|
X

(u,i) 2 S

[ru
i 6= r̂u

i ] . (1.4)

MPE represents the percentage of data instances for which the recommen-
dation system is not able to compute the exact observed rating.

Classification metrics measure the ability of the RS in detecting relevant
items for each user. The recommendation list Lu for the user u is generated by
ranking a set of candidate items according to a personalized ranking function.
The accuracy of Lu is ultimately assessed through a comparison with the
items appearing in IS(u). Therein, the standard classification-based metrics,
i.e., precision and recall, can be adopted to evaluate the recommendation
accuracy of the recommendation list. Such metrics require the capability to
distinguish between relevant and irrelevant recommendations. Given a user u
and a subset T r

u ✓ IS(u) of relevant items, the degree of precision and recall
of the k items within L is defined as shown next:
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Recall(k) =
1

M

MX

u=1

|Lu \ T r
u |

|T r
u | .

P recision(k) =
1

M

MX

u=1

|Lu \ T r
u |

k
.

(1.5)

Item relevance can be measured in several di↵erent ways. When explicit pref-
erence values are available, we consider as relevant all those items that received
a rating greater than the average ratings in the training set:

T r
u = {i 2 IS(u)|ru

i > rT}.

Precision and Recall are conflicting measures of the accuracy: for instance, by
increasing the size of the recommendation list, Recall is expected to increase
but Precision decreases. F-score is the harmonic mean of Precision and Recall,
used to evaluate them in conjunction:

F = 2 · Precision ·Recall

Precision + Recall
. (1.6)

Finally, ranking accuracy metrics measure the ability of the RS to gener-
ate a personalized ordering of the items, which match up with the the true
users’ ordering. Typically the predicted and observed orderings are comparaed
by using Kendall’s tau and Spearman’s rho.This perspective is without any
doubts approach is the lack of data, since generally the full user-based ranking
of all items is not available.

Evaluating recommendation is one of the biggest unsolved problem of cur-
rent research in RSs. In particular:

• O✏ine evaluation rarely match up to online results;
• O✏ine metrics like Prediction/Recall, RMSE and MAP are poor proxies

for what happens in the online world and they have been reported to be far
from measuring the real impact of recommendations on users’ purchasing
activities;

• Common evaluations do not consider the real users’s satisfaction.

In general, a more e↵ective evaluation should focus on how the user perceives
recommendations and on measuring their helpfulness. Current research is in-
vestigating several aspects correlated with evaluation, such as the analysis of
the return of investment (ROI) in improving prediction and recommendation
metrics and the proposal of more convincing o✏ine evaluation metrics.

1.3 Collaborative Filtering Approaches to
Recommendation

State-of-the art recommendation methods have been largely approached from
a Collaborative Filtering (CF) perspective, which essentially consists in the
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posterior analysis of past interactions between users and items, aimed to iden-
tify suitable preference patterns in users’ preference data. Tapestry [8] is con-
sidered the ancestor of CF systems. It was designed to support both content-
based and collaborative filtering. Recording the reactions of each user on a
particular document and explicit feedback, Tapestry allows mail filtering in
an area of interest basing on other people annotations.

Modern CF techniques aim to predict the preferences values of users on
given items, based on previously observed behavior. The assumption is that
users who adopted the same behavior in the past, will tend to agree also in the
future. The main advantage in using CF techniques relies on their simplicity:
only users’ past ratings are used in the learning process, no further informa-
tions, like demographic data or item descriptions, are needed. CF solves some
of the main drawbacks of Content Based (CB) approaches [9, 10]:

• CF approaches are more general and re-usable in di↵erent context, while
CB techniques require the specification of a complete profile (set of fea-
tures) for each user/item;

• CB techniques provide the user with a list of products whose features are
“similar” to ones that she experienced in the past. This approach may
imply the recommendations of redundant items and the lack of novelty;

• The e↵ectiveness of recommendation increases as the user provides more
feedback.

According to [11], collaborative filtering approaches can be classified in two
classes, Memory-based and Model-based. The first class infers the preference
of the active user on an item by using the database of preferences. The most
common memory-based approaches are the Nearest Neighbors methods, which
use the whole preference history of users and items and statistical techniques
to infer similarities and then use this similarity measures to make a predic-
tion. Model-based approaches operate in two phases: initially the preference
database is used to learn a compact model and, in the second phase, this model
is used in order to infer users’ preferences. Actually, memory-based approaches
can rely on a model as well (i.e. similarity matrix in neighbors models), which
is usually built in a o↵-line mode, but they still need to access to a database of
preference values. Memory-based approaches are intuitive because, in the sim-
plest case, they directly transforms stored preferences data in predictions, but
they need to keep the whole dataset in memory. On the other hand, model-
based approaches require less memory because they need to access only to
the small-size model previously computed from the dataset, but the reason
behind the provided predictions may not be easily interpretable. Moreover,
memory-based approaches, such as Neighborhood models, are most e↵ective at
detecting strong but local relationships, while model-based approaches, such
as Latent Factor models, can estimate weak but global relationships. Figure 1.2
summarizes the di↵erent approaches used by the two methods.
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Fig. 1.2. Memory-based vs Model-based Approaches

In the following we will briefly review three family of CF approaches,
namely Baseline, Nearest Neighbors and Latent Factor models, before focusing
in more detail on Probabilistic Approaches in the next chapter.

1.3.1 Baseline Models

Baseline algorithms are the simplest approaches for predicting users’ numer-
ical preferences. This section will focus on the analysis of the following al-
gorithms: OverallMean, MovieAvg, UserAvg, DoubleCentering and the Global
E↵ects Model.
OverallMean computes the mean of all ratings in the training set, this value is
returned as prediction for each pair hu, ii. MovieAvg predicts the rating of a
pair hu, ii as the mean of all ratings received by i in the training set. Similarly,
UserAvg predicts the rating of a pair hu, ii as the mean of all ratings given by
u. Given a pair hu, ii, DoubleCentering compute separately the mean of the
ratings of the movie r̄i, and the mean of all the ratings given by the user r̄u.
The prediction is computed as a linear combination:

r̂u
i = ↵ r̄i + (1 � ↵) r̄u, (1.7)

where 0  ↵  1.
The Global E↵ects Model is considered one of the most useful and e↵ective

technique in the context of the Netflix Prize. The key idea, proposed by Bell
and Koren in [12] and widely appreciated by the Netflix Prize’s contestants,
is to precede standard collaborative filtering algorithms with simple models
that identify systematic tendencies in rating data, called global e↵ects. For
example, some users might tend to assign higher or lower ratings to items
respect to their rating average (user e↵ect), while some items tend to receive
higher rating values than others (item e↵ect). Some other interesting consid-
erations involve the time dimension: for example could be identified temporal
patterns in user’s ratings which might rise or fall over period of time. A similar
analysis could be performed on items: for example some movies might receive
higher ratings when they first are proposed, while ratings might fall after their
release period. The proposed strategy is to estimate and remove one global
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e↵ect at time, in sequence: at each step we do not focus on the raw ratings
but on the residuals of the previous step. In [12] authors identify 11 kind of
e↵ects, and empirically evaluate the e↵ectiveness of this method by recording
an improvement in RMSE after each cleaning step.
The main advantage of this approach relies on its capacity of removing noise
from data. As instance, once global e↵ects has been completely removed from
data, the K-Nearest Neighbors approach, which works better on residuals
because they make possible to correctly identify neighbors and the actual
strength of their relationships, could be used to compute the predicted resid-
uals and then, the final predicted values could be obtained by adding the
global e↵ects back.

1.3.2 Neighborhood-Based Approaches

Neighborhood based approaches [13, 14] compute each rating prediction by
relying on a chosen portion of the data. According to a user-based perspective,
the predicted rating on an item is generated by selecting the most similar users
to the active one, said neighbors, and then using an aggregate function of their
ratings. This intuitive definition corresponds to the classic behavior of asking
friends for their opinions before purchasing a new item and it raises some
fundamental questions:

1. How is it possible to model similarity about users/items?
2. How can we identify a neighborhood for the current user/item?
3. How can ratings of neighbors be used to generate a rating prediction?

The most common formulation of the neighborhood approach is the K-
Nearest-Neighbors (K-NN). The rating prediction r̂u

i is computed following
simple steps: (i) a similarity function associates a numerical coe�cient to each
pair of users, then K-NN finds the neighborhood of u by selecting her the K
most similar users; (ii) the rating prediction is computed as the average of the
ratings given by neighbors on the same item, weighted by the similarity coe�-
cients. The user-based K-NN algorithm is intuitive but doesn’t scale because
it requires the computation of similarity coe�cients for each pair of users.
Considering that the number of items is generally lower than the number of
users, a more scalable formulation can be obtained considering an item-based
approach [13]. Thus, in the rest of the section, we will focus on item-based
approaches. According to this perspective, the predicted rating for the pair
hu, ii can be computed by aggregating the ratings given by u on the K most
similar movies to i. The underlying assumption is that the user might prefer
movies more similar to the ones he liked before, because they share similar
features. The prediction is computed as:

r̂u
i =

P
j2N (i;u) si,j · ru

jP
j2NK(i;u) si,j

, (1.8)
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where si,j is the similarity coe�cient between i and j, and NK(i;u) is the set
of the K items evaluated by u which are most similar to i.

Similarity coe�cients play a central role in the Neighborhood based ap-
proaches: in the first phase they are used to identify the neighbors, while in
the prediction phase they act as weights. Di↵erent techniques may be used
to compute similarity coe�cients for items or users and in most cases the
similarity is computed by considering only the co-rated pairs. As instance,
considering the case of the item-to-item similarity computation, only ratings
from users who rated both the items are taken into analysis, Dually, the user-
to-user similarity computation is commonly based on the ratings given on
co-rated items. Let UR(i, j) denote the set of users who provided a rating
for both i and j, i.e UR(i, j) = UR(i)\UR(j). Similarity coe�cients are often
computed according to the Pearson Correlation or the Adjusted Cosine, which
improves the cosine similarity by taking into account the di↵erences in rating
scale between di↵erent users[13]:

sij = Pearson(i, j) =

P
u2UR(i,j) (ru

i � ri) ·
�
ru
j � rj

�
qP

u2UR(i,j) (ru
i � ri)

2
qP

u2UR(i,j)

�
ru
j � rj

�2 ;

sij = AdjCosine(i, j) =

P
u2UR(i,j) (ru

i � ru) ·
�
ru
j � ru

�
qP

u2UR(i,j) (ru
i � ru)2

qP
u2UR(i,j)

�
ru
j � ru

�2 .

As discussed in [15], similarity coe�cients based on a larger support are
more reliable than the ones computed using few rating values, so it is a com-
mon practice to weight the similarity coe�cients using the support size. This
technique is called shrinkage:

s0i,j =
si,j · |UR(i, j)|
|UR(i, j)| + ↵

, (1.9)

where ↵ is an empirical value.
An improved version of K-NN can be obtained by refining the neighborhood
model with baseline values. Formally:

r̂u
i = bu

i +

P
j2NK(i;u) si,j · (ru

j � bu
j )

P
j2NK(i;u) si,j

, (1.10)

where bu
i denote a baseline value.

An alternative way to estimate item-to-item interpolation weights is by
solving a least squares problem minimizing the error of the prediction rule.
This strategy, proposed in [16, 17], defines the Neighborhood Relationship
Model, one of the most e↵ective approaches applied in the Netflix prize com-
petition. In this case the prediction is computed as:

r̂u
i =

P
j2NK(i;u) wi,j · ru

jP
j2NK(i;u) wi,j

, (1.11)
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where the non-negative interpolation weights wi,j are computed as the solution
of the following optimization problem:

min
W

X

v2UR(i)

 
rv
i �

P
j2N (i;u,v) wi,j · rv

jP
j2N (i;u,v) wi,j

!2

s.t. wi,j � 0 8i, j 2 I

where the set N (i;u, v) is defined by all the items most similar to i which are
evaluated both by u and v.

Fig. 1.3 shows the performance in prediction accuracy of K-NN mod-
els. We empirically compare two di↵erent choices for the baseline function:

Fig. 1.3. Prediction Accuracy: K-NN models

BaselineK-NN relies on a double-centering baseline, whereas the K-NN (user
e↵ect) version computes the baseline values according to the User E↵ect Model
[12]. Except the SimpleK-NN, all the considered K-NN approaches improve
Cinematch’s precision, and the best performance is achieved by the Neighbor-
hood Relationship Model.

1.3.3 Latent Factor Modes

The assumption behind Latent Factor models is that the preference of the user
can be expressed considering a set of contributes which represent and weight
the interaction between her tastes and the target item on a set of features.

This approach has been widely adopted in information retrieval. For ex-
ample, the Latent Semantic Indexing (LSI) [18] is a dimensionality reduction
technique which assumes a latent structure in word usage across documents.
LSI uses Singular Value Decomposition to represents terms and documents
in the features space: some of these feature components are be very small
and may be ignored, obtaining an approximate model. Given a m⇥ n matrix
A with rank r, the singular value decomposition of A, denoted by SV D(A)
Figure 1.4, is defined as:

SV D(A) = U⇥⌃ ⇥VT , (1.12)

where:
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• U is an m ⇥ m orthogonal matrix6; the first r columns of U are the
eigenvectors of AAT (left singular vectors of A);

• V is an n ⇥ n orthogonal matrix; the first r columns of V are the eigen-
vectors of ATA (right singular vectors of A);

• ⌃ is a n⇥ n diagonal matrix with only r nonzero values, such that: ⌃ =
{�1, · · · ,�n} , �i � 0 8 1  i < n, �i � �i+1, �j = 0 8 j � r + 1;

• {�1, · · · ,�n} are the nonnegative square root of the eigenvalues of ATA
and are called singular values of A.

Fig. 1.4. Singular Value Decomposition

SVD has an important property: it provides the best low-rank linear approx-
imation of the original matrix A. Fixed a number k  r, called dimension
of the decomposition, the matrix Ak =

Pk
i=1 ui�iv

T
i minimizes the Frobenius

norm kA�AkkF over all rank-k matrices. Therefore, focusing only on the
first k singular values of ⌃ and reducing the matrices U and V, the original
matrix can be approximated using Ak:

A ⇡ Ak = Uk⌃kV
T
k (1.13)

where Uk is obtained by removing (r � k) columns from the matrix U and
VT

k is produced by removing (r � k) rows from the matrix V . An example of
this approximation is given in Figure 1.5. Considering the text analysis case,
LSI factorizes the original term-document matrix into the product of three
matrices which reflects the relationships between each single term and docu-
ment in the k features-space, where k is the number of considered features.
The derived matrix Ak is not the exact factorization of A: the procedure of
selecting only the k largest single values captures the underlying structure of
A, removing at the same time noise [19].
Several works have studied the application of SVD in recommender systems
[20, 21]: the dimensional reduction approach is very useful for CF because
is able to produce a low-dimensional representation of the original high-
dimensional rating matrix R and to capture the hidden relationships between

6
U

T
U = I
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Fig. 1.5. k-rank approximation of A

users and products that could be used to infer the user’s preference on consid-
ered items. Focusing on a scenario that involves ratings given by a set of users
on a set of movies, it is plausible to assume that the user’s rating on a movie
is influenced by a set of feature of the movie itself and by the user’s prefer-
ence on those feautures. An intuitive idea of what of hidden features might
represent in this scenario, is the genre interpretation: assuming the existence
of a limited number of di↵erent genres of movies (action, romance, comedy,
etc.), the rating is influenced by the user’s preference on those genres and by a
movie’s factors that represent how much the considered movie belongs to each
genre. Figure 1.6 shows an example of this scenario, with 3 hidden factors.

Fig. 1.6. Example of the application of SVD decomposition

With an abuse of notation, in this section will use a simplified but equiva-
lent formalization for the SVD, in which the original matrix is approximated
by the product of 2 component matrices with K features:

R ⇡
⇣
Uk

p
⌃

T

k

⌘⇣p
⌃kV

T
k

⌘
= U ·V, (1.14)

where U is a M ⇥ K matrix and V is a K ⇥ N . Intuitively, each users’s
preference on an item matrix is decomposed as the product of the dimensional
projection of the users and items into the K-dimensional feature space:

r̂u
i =

KX

k=1

Uu,k ·Vk,i. (1.15)
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Fixed the number of features K, we can estimate the feature matrices by
solving this optimization problem:

(U,V) = arg min
U,V

2

4
X

(u,i)2 T

 
ru
i �

KX

k=1

Uu,kVk,i

!3

5 . (1.16)

Funk in [22] proposed an incremental procedure, based on gradient descent,
to minimize the error of the model on observed ratings. The feature matrices
are randomly initialized and updated as follows:

U0u,k = Uu,k + ⌘ (2eu,i ·Vk,i) ,

V0k,i = Vk,i + ⌘ (2eu,i ·Uu,k) ,
(1.17)

where eu,i = r̂u
i �ru

i is the prediction error on the pair hu, ii and ⌘ is the learn-
ing rate. The optimization procedure could be further improved considering
regularization coe�cients �. Updating rules become:

U0u,k = Uu,k + ⌘ (2eu,i ·Vk,i � � · Uu,i) ,

V0k,i = Vk,i + ⌘
�
2eu,i ·U0u,k � � ·Vk,i

�
.

(1.18)

A more refined model can be obtained by integrating a combining a baseline
model with the SVD prediction:

r̂u
i = bu

i +
KX

k=1

Uu,k ·Vk,i, (1.19)

or considering user and item bias components [23]:

r̂u
i = cu + di +

KX

k=1

Uu,k ·Vk,i, (1.20)

where cu is the user-bias vector and di is the item-bias vector, which are
trained simultaneously with the features matrices with regularization rate �2:

c0u = cu + ⌘ (eu,i � �2 (cu + di � r̄T))

d0i = di + ⌘ (eu,i � �2 (cu + di � r̄T)) .
(1.21)

An alternative and more e↵ective formulation, known as Asymmetric SVD
[23], models each user by exploiting all the items that she rated:

Uu,k =
1p

|I(u)| + 1

X

i2 I(u)

wk,i. (1.22)

A slightly di↵erent version, named SVD++ [15], models each user by consid-
ering both a user-features vector and the corresponding bag-of-items repre-
sentation.
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Latent factor models based on the SVD decomposition change according to
the number of considered features and the structure of model, characterized
by presence of bias and baseline contributes. The optimization procedure used
in the learning phase plays an important role: learning could be incremental
(one feature at the time) or in batch (all features are updated during the same
iteration of data). Incremental learning usually achieves better performances
at the cost of learning time.

To assest the predictive capabilities of latent factor models, we tested
several version of SVD model, considering the batch learning with learning
rate 0.001. The regularization coe�cient, where needed, has been set to 0.02.
To avoid overfitting, the training set has been partitioned into two di↵erent
parts: the first one is used as actual training set, while the second one, called
validation set, is used to evaluate the model. The learning procedure is stopped
as soon the error on the validation set increases. Fig.1.7 shows the accuracy
of the main SVD approaches. An interesting property of the analyzed models
is that they reach convergence after almost the same number of iteration, no
matter how many features are considered. Better performances are achieved
if the model includes bias or baseline components; the regularization factors
decrease the overall learning rate but are characterized by an high accuracy.
In the worst case, the learning time for the regularized versions is about 60
min. The SVD++ model with 20 features obtains the best performance with
a relative improvement on the Cinematch score of about 5%.

(a) (b)

Fig. 1.7. Prediction Accuracy: Comparison of SVD based models
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2.1 Introduction

Probabilistic approaches assume that each preference observation is randomly
drawn from the joint distribution of the random variables which model users,
items and preference values (if available). Typically, the random generation
process follows a bag of words assumption and preference observations are as-
sumed to be generated independently. A key di↵erence between probabilistic
and deterministic models relies in the inference phase: while the latter ap-
proaches try to minimize directly the error made by the model, probabilistic
approaches do not focus on a particular error metric; parameters are deter-
mined by maximizing the likelihood of the data, typically employing an Ex-
pectation Maximization procedure. In addition, background knowledge can be
explicitly modeled by means prior probabilities, thus allowing a direct control
on overfitting within the inference procedure [24]. By modeling prior knowl-
edge, they implicitly solve the need for regularization which a↵ects traditional
gradient-descent based latent factors approaches.

Further advantages of probabilistic models can be found in their easy inter-
pretability: they can often be represented by using a graphical model, which
summarizes the intuition behind the model by underlying causal dependen-
cies between users, items and hidden factors. Also, they provide an unified
framework for combining collaborative and content features [25, 26, 27], to
produce more accurate recommendations even in the case of new users/items.
Moreover, assuming that an explicit preference value is available, probabilis-
tic models can be used to model a distribution over rating values which can
be used to infer confidence intervals and to determine the confidence of the
model in providing a recommendation.

In the following we will briefly introduce some paradigmatic probabilistic
approaches to recommendation, which can be categorized into 3 main classes:
Mixture Models, Probabilistic Topic Models and Probabilistic Matrix Factor-
ization Techniques. Fig. 2.1 o↵ers an overview of the generative models of
the main techniques. The underlying idea of probabilistic models based on
latent factors is that each preference observation hu, ii is generated by one of
k possible states, which informally model the underlying reason why u has
chosen/rated i. Based on the mathematical model, two di↵erent inferences
can be then supported to be exploited inthe modelling of preference data [28]:

• Forced Prediction: the model provides estimate of P (r|u, i), which repre-
sents the conditional probability that user u assign a rating value r given
the item i;

• Free prediction: the item selection process is included in the model, which
is typically based on the estimate of P (r, i|u). In this case we are interested
in predicting both the item selection and the preference of the user for each
selected item. P (r, i|u) can be factorized as P (r|i, u)P (i|u); the resulting
model still includes a component of forced prediction which however is
weighted by the item selection component and thus allows a more precise
estimate of user’s preferences.
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2.2 Mixture Models

A mixture model [29] is a general probabilistic approach which introduces a
set of latent factor variables to represent a generative process in which data
points may be generated according to a finite set of probability distribution.
The simplest latent factor approach to model users’ preference data is the
Multinomial Mixture Model (MMM, [30]). According to this model, we
assume that a user u is associated with a latent factor z, which models her
“attitude”, and ratings for an item i are generated according to this factor. The
corresponding generative semantic, represented graphically in Figure 2.1(a),
can be summarized as:

1. For each user u = {1, · · · ,M}
a) Sample a user attitude z according to a multinomial distribution

over the latent variable ✓
b) For each i 2 I(u)

i. Draw a rating value r according to multinomial distribution
over rating values �i,z

The ✓ parameter here is the prior probability distribution over the possibile
states of the latent variables, P (Z), whereas �i,z is a multinomial over V which
drives for the rating generation P (R = r|i, z). The learning of the parameter
of the model can be accomplished by employing the EM algorithm, which also
provides, with the “responsibilities”, an estimate of the mixing proportion for
each user P (z|u). Given those parameters, the probability distribution over
ratings for the pair hu, ii can be computed as:

P (r|i, u) =
KX

z=1

P (z|u) · �z,i,r (2.1)

where
P (z|u) / P (uobs|z)✓z

and uobs represents the observed values (u, i, r) in R.
The User Communities Model (UCM, [31]) (see Sec. 5.2.1) refines

the inference formula Eq. 2.1 by introducing some key features. First, the
exploitation of a unique prior distribution ✓ over the user communities helps in
preventing overfitting. Second, adds flexibility in the prediction by modeling
an item as an observed (and hence randomly generated) component, thus
following a free-prediction perspective.



20 2 Probabilistic Approaches to Preference Data

β

zu r

K x N

N
Ɵ

M

(a) Mixture Model

β

zu

r

K x N

N

Ɵ

M

i

φ
K

(b) User Community
Model

zu,n
N

Ɵu

M

i

φ
K

(c) pLSA

zu,n
N

Ɵu

M

r

β
KxN

(d) Aspect Model

zu,n
N

Ɵu

M

i

φ
K

η

α

(e) LDA

zu,n
N

Ɵu

M

r

β
KxN

η

α

(f) URP

zu

N

πu

M

r

φ
KxL

η

αu

ziπiαi

(g) Bi-LDA

r

MxN

ɣ

σu σi

M
ð

σ

N

(h) Probabilistic Matrix Factor-
ization

Fig. 2.1. Generative models to preference data.
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2.3 Probabilistic Topic Models

Probabilistic Topic models [32, 33, 34] include a suite of techniques which
widely used in text analysis: they provide a low-dimensional semantic repre-
sentation that allows the discovering of global relationships within data. Given
a corpus of documents, the assumption behind this family of techniques is that
each document may exhibit multiple topics and each word in the document is
generated by a particular topic. A generative process for CF, based on latent
topics, is shown in Figure 2.2. In the CF context, topics could be interpreted as

Fig. 2.2. Latent Class Model for CF - Generative Process

genres, item categories or user’s attitudes, although no prior meaning is gen-
erally associated with them. A proper definition of topics might be obtained
by considering them as “abstract preference pattern”: users, or items, partic-
ipate in each preference pattern with a certain degree, and these membership
weights project each user/item into the latent factor space. We assume that
there are a fixed number of topics, and each user is characterized by her own
preference on genres. For example, in Figure 2.2, the considered user shows
a particular interest in action and historic movies, while her interest in ro-
mance is low. Each genres specifies the probability of observing each single
item. Movies like “Independence Day” and “Die hard” will have an higher
probability of being observed given the “action” topic, than in the context of
“romance”. Given an user and her preferences on topics (which defines prefer-
ences on movies), the corresponding purchasing history can be generated by
choosing a topic, and then drawing an item from the corresponding distribu-
tion over items. In the example, the first topic to be chosen is “action”, which
generates the movie “Die Hard”; the process of topic and item selection is
iteratively repeated to generate the complete purchase history of the current
user.

The probabilistic Latent Semantic Analysis approach (PLSA, [35,
36]) specifies a co-occurrence data model in which the user u and item i are
conditionally independent given the state of the latent factor Z. Di↵erently
from the previous mixture model, where a single latent factor is associated
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with every user u, the PLSA model associates a latent variable with every
observation triplet hu, i, ri. Given an active user u, her purchase history can
be generated according to the following generative semantic:

1. For n = 1 to |I(u)|:
a) Select a user profile z according to user-specific multinomial dis-

tribution over topics ✓u = P (Z = z|u);
b) Pick an item i by sampling from the multinomial distribution

�z = P (i|z);

Hence, di↵erent ratings of the same user can be explained by di↵erent
latent causes in PLSA (modeled as priors {✓u}1,...,m in Figure 2.1(c)), whereas
a mixture model assumes that all ratings involving the same user are linked
to the same underlying community. PLSA directly supports item selection:

P (i|u) =
KX

z=1

�z,i✓u,z (2.2)

where �z represents a multinomial distribution over items. The main drawback
of the PLSA approach is that it cannot directly model new users, because the
parameters ✓u,z = P (z|u) are specified only for those users in the training set.

We consider three further variants for the PLSA, where explicit preferences
are modeled by an underlying distribution �z,i. In the Aspect Model (AM,
[36]) �z,i is a multinomial over V. In this case, the rating probability can be
modeled as

P (r|u, i) =
KX

z=1

�r,i,z✓u,z (2.3)

Conversely, the Gaussian PLSA (G-PLSA, [24]) models �z,i = (µiz,�iz) as
a gaussian distribution, and provides a normalization of ratings through the
user’s mean and variance, thus allowing to model users with di↵erent rating
patterns. The corresponding rating probability is

P (r|u, i) =
KX

z=1

N (r;µiz,�iz)✓u,z (2.4)

The Flexible Mixture Model (FMM) [37] extends the Aspect Model,
by allowing each user/item to belong to multiple clusters, which are deter-
mined simultaneously, according to a coclustering approach. Assuming the
existence of K user clusters indexed by c and L item clusters, indexed by d,
and let P (ck) be the probability of observing the user-cluster k with P (u|ck)
being the probability of observing the user profile u given the cluster k and
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using the same notations for the item-cluster, the joint probability P (u, i, r)
is defined as:

P (u, i, r) =
CX

c=1

DX

d=1

P (c)P (d)P (u|c)P (i|d)P (r|c, d)

The Latent Dirichlet Allocation [32] is designed to overcome the main
drawback in the PLSA-based models, by introducing Dirichlet priors, which
provide a full generative semantic at user level and avoid overfitting. The
generative process that characterized LDA can be formalized as follows:

1. For each user u = {1, · · · ,M}
a) Choose Nu according to a Poisson’s distribution, or to any other

distribution that could model the number of items in the user
profile

b) Choose ✓u ⇠ Dir(↵)
c) For each of the Nu items to be generated:

i. Choose a topic z ⇠ Multinomial(✓u)
ii. Choose an item i according to the multinomial probability

conditioned on the selected topic: P (i|z,�)

Again, two di↵erent formulations, are available, based on whether we are
interested in modeling implicit (LDA) or explicit (User Rating Profile,
URP[38]) preference values. In the first case, we have:

P (i|u) =

Z KX

z=1

�z,i✓zP (✓|uobs)d✓ (2.5)

(where P (✓|uobs) is estimated in the inference phase). Analogously, for the
URP we have

P (r|u, i) =

Z KX

z=1

�z,i,r✓zP (✓|uobs)d✓ (2.6)

The idea behind the models presented so far, is the starting point of more
advanced approaches that include side information to achieve better results
in prediction accuracy and provide tools for cold-start recommendation [26,
25, 39]. Interesting results have been obtained by adopting a co-clustering
structure [40, 41, 42, 37, 43]. As instance, the Bi-LDA model proposed in
[43] (represented in Figure 2.1(g)), extends the URP model employing two
interacting LDA models which enforce the simultaneous clustering of users
and items in homogeneous groups. The rating probability according to this
bayesian coclustering model can be computed as:
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P (r|u, i) =

Z Z X

zu,zi

P (r|zu, zi)P (zu|⇡u)P (zi|⇡i)P (⇡u|uobs)P (⇡i|iobs)d⇡ud⇡i

(2.7)
where both P (⇡u|uobs) and P (⇡i|iobs) are estimated in the inference phase.

The generative process of the Bi-LDA is as follows:

1. For each user u = {1, · · · ,M}
a) Choose Nu according to a Poisson’s distribution
b) For each of the Nu items to be generated:

i. Choose a user attitude zu
u,n ⇠ Discrete(⇡u)

ii. Choose an item category zi
u,n ⇠ Discrete(⇡i)

iii. Generate a rating value for the chosen item according to the
distribution P (r|'zu

u,n,zi
u,n

)

2.4 Probabilistic Matrix Factorization

The Probabilistic Matrix Factorization approach (PMF, [44]) reformu-
lates the rating assignment as a matrix factorization. Given the latent user
and item k-feature matrices �u and �i, (where K denotes the number of the
features employed in the factorization), the preference value is generated by
assuming a Gaussian distribution over rating values conditioned on the inter-
actions between the user and the considered item in the latent space, as shown
in Figure 2.1(h). In practice, P (r|u, i) is modeled as a gaussian distribution,
with mean �T

u �i and fixed variance �:

P (r|u, i) = N (r; �T
u �i,�

2) (2.8)

The conditional distribution of the observed data, given the latent user and
item feature matrices, � and �, is computed as

P (R|�,�,�) =
MY

u=1

NY

i=1

N (ru
i ; �T

u �i,�
2)�(u, i)

where �(u, i) is an indicator function that is equal to 1 if the user u has
rated the item i, zero otherwise. Moreover, to avoid overfitting, user and item
features are generated by two zero-mean spherical Gaussian priors:

P (� |�u) =
MY

u=1

N (�u; 0,�2
uI) P (�|�i) =

NY

i=1

N (�i; 0,�
2
i I)

Di↵erent extensions of the basic framework have been proposed: a constrained
version [44] of the PMF model is based on the assumption that users who have
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rated similar sets of items are likely to exhibit similar preferences, while its
bayesian generalizations [45] and extensions with side information [46, 47, 48]
are characterized by an higher prediction accuracy.
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3.1 Introduction

Recent studies [49, 50] have shown that the focus on prediction does not
necessarily helps in devising good recommender systems. As the number of
available customers increases, is always more di�cult to understand, profile
and segment their behaviors and a similar consideration holds for the catalog
of products. Under this perspective, CF models should be considered in a
broader sense, for their capability to understand deeper and hidden relation-
ships among users and products they like. For example, the high dimensional
preference matrix can be partitioned to detect user communities and item
categories; the analysis of the relationships between these two levels can pro-
vide a faithful yet compact description of the data which can be exploited for
better decision making.
The latent variable modeling, exploited within a probabilistic framework, of-
fers some important, and easily interpretable, insights into the users’s pur-
chase and preference patterns. In this chapter we are going to discuss some
of the applications of probabilistic models to the task of pattern discovery in
collaborative filtering data.

A first study which describes the application of probabilistic approaches,
to understand users’s preference and interests, is presented in [51]. In this
work, authors exploited the pLSA model to infer the underlying task of a
web browsing session and to discover hidden semantic relationships between
users and web pages. More specifically, the web session of the user u can be
represented using co-occurrence pairs notations (u, p), where p is a collection of
web objects, called pageview, resulting from a single action of the user. During
a web session the user can visit di↵erent pageviews, and their corresponding
importance within the session can be represented using a weight function
w(u, p), which could be binary (existence or non existence of the pageview in
a user session) or numeric (number of times that the pageview p is visited
within the same user session, duration of the pageview in that session). The
probability distributions that define the pLSA model and other probabilities,
like the prior P (z) or the user specific distribution P (z|u), which can be
obtained by marginalization or Baye’s rule, allow the following analysis:

• Characterize Topics by Items: Each topic, represented by a latent
factor, can be characterized by a set of web pages which are strongly as-
sociated with it. Those pages, or in general products belonging to an user
purchase session, are called characteristic objects for the topic z. Intu-
itively, a characteristic page given a topic z is a page which exhibits an
high probability of being observed given the considered topic (P (i|z) is
high) and a low probability for being generated by other di↵erent top-
ics. The characteristic objects for a topic zk can be defined as the set of
products/pages, indexed by i, such that: P (i|zk) · P (zk|i) � µ, where µ
is a fixed threshold. Characteristic objects identification allows a better
understanding of hidden factors. The pLSA model does not associate any
a priori meaning with the states of the hidden variables which are used to
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detect relationships between users, grouping like-minded users in the same
community, and items, grouping similar items in the same category. Char-
acteristic objects might provide a posteriori interpretation for the state of
the hidden variable, which can be an useful starting point for the following
analysis of users patterns and relationships between di↵erent topics.

• Characterize Topics by User Histories: A similar approach can be
used to associate each topic with a set of characteristic users. A charac-
teristic user uk for a given topic zk is an user which prefers zk over the
other di↵erent topics, which implies that a wide fraction of the products
in the purchase history of uk share the topic zk. The characteristic users
for the topic zk can be formally defined as the set of users u which sat-
isfy P (u|zk) · P (zk|u) � µ. In this case p(u|zk) can be computed from
P (Z = z|u) by applying the Bayes’ rule.

• User Segments Identification: The relationships among the state of the
hidden variable, users and items can be used to understand common inter-
ests and preferences of users. An user segment is a set of users that shared
a similar topic in their past sessions. The user segment corresponding to
the topic zk can be computed by selecting those users with P (u|zk) � µ
where the parameter µ is used as threshold. A projection of the user seg-
ment into the item space can be obtained considering the most frequent
items for the user segment.

• Topic Identification: the pLSA model provides an easy way to iden-
tify the topic in a given user session. Given an active user u and a list
of items/pages recently purchased/viewed called session, the probabil-
ity P (z|session) can be estimated via a modified version EM algorithm,
known as folding-in approach [52], in which the the probabilities P (i|z)
are fixed.

In the next, we are going to discuss two novel applications of probabilistic
approaches to pattern discovery in CF data. Mutual relationship between
users and items can be detected by means of co-clustering approaches. The
key idea is that similar users are detected by taking into account their ratings
on similar items, which in turn are identified considering the ratings assigned
by similar users. In Sec. 3.2, we will provide a co-clustering approach to model
preference data, and then we will discuss some of its applications.
As the volume of the users grows, users profiling and segmentation techniques
are becoming essential to understand their behavior and needs. Identifying
groups of similar minded users is a powerful tool to develop targeted marketing
campaigns. Motivated by these observations, in Sec. 3.3 we will propose a
probabilistic method to detect communities of customers who exhibit the same
preference patterns.
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3.2 Characterizing Relationships Through Co-Clustering

In this section we present a co-clustering approach to preference prediction
and rating discovery. Unlike traditional CF approaches, which try to discover
similarities between users or items using clustering techniques or matrix de-
composition methods, the aim of the BMM is to partition data into homo-
geneous blocks enforcing a simultaneous clustering which consider both the
dimension of the preference data. This approach highlights the mutual rela-
tionship between users and items: similar users are detected by taking into
account their ratings on similar items, which in turn are identified considering
the ratings assigned by similar users.

To detect this hidden block structure within preference matrix, in the fol-
lowing we will provide an extension the Block Mixture Model (BMM) proposed
in [53, 54] for binary incidence matrices. We extend the original BMM formula-
tion to model each preference observation as the output of a gaussian mixture
employing a maximum likelihood (ML) approach to estimate the parameter
of the model. The strict interdependency between user and item cluster makes
di�cult the application of traditional optimization approaches like EM; thus,
we perform approximated inference based on a variational approach and a
two-step application of the EM algorithm. The block structure retrieved by
the model in the inference phase allows to infer patterns and trends within
each block. Overall, the proposed model guarantees a competitive prediction
accuracy with regards to state-of-the art co-clustering approaches, it allows
to infer topics for each item category, and finally allow as learn character-
istic items for each user community, or to model community interests and
transitions among topics of interests.

3.2.1 A Block Mixture Model for Preference Data

In this section, we are interested in devising how the available data fits into
ad-hoc communities and groups, where groups can involve both users and
items. Fig. 5.1 shows a toy example of preference data co-clustered into blocks.
As we can see, a coclustering induces a natural ordering among rows and
columns, and it defines blocks in the preference matrix with similar ratings.
The discovery of such a structure is likely to induce information about the
population, and to improve the personalized recommendations.

Formally, a block mixture model (BMM) can be defined by two partitions
(z,w) which, in the case of preference data and considering known their re-
spective dimensions, have the following characterizations:

• z = {z1, · · · , zK} is a partition of the user set U into K clusters and
zuk = 1 if u belongs to the cluster k, zero otherwise;

• w = {w1, · · · , wL} is a partition of the item set I into L clusters and
wil = 1 if the item i belongs to the cluster l, zero otherwise.
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Fig. 3.1. Example Co-Clustering for Preference Data

Given a rating matrix R, the goal is to determine such partitions and the
respective partition functions which specify, for all pairs hu, ii the probabilistic
degrees of membership wrt. to each user and item cluster, in such a way to
maximize the likelihood of the model given the observed data. According to
the approach described [53, 54], and assuming that the rating value r observed
for the pair hu, ii is independent from the user and item identities, fixed z and
w, the generative model can be described as follows:

1. For each u generate zu ⇠ Discrete(⇡1; . . . ;⇡K)
2. for each i generate wi ⇠ Discrete( 1; . . . ; L)
3. for each pair hu, ii:

• detect k and l such that zuk = 1 and wil = 1
• generate r ⇠ N(R;µl

k,�
l
k)

The corresponding data likelihood in the Block Mixture can be modeled
as

p(R, z,w) =
Y

u2U
p(zu)

Y

i2I
p(wi)

Y

hu,i,ri2R

P (r|zu, wi)

and consequently, the log-likelihood becomes:

Lc(⇥;R, z,w) =
KX

k=1

X

u2U
zuk log ⇡k +

LX

l=1

X

i2I
wil log l

+
X

hu,i,ri2R

X

k

X

l

⇥
zukwil log'(r;µl
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l
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⇤ (3.1)

where ⇥ represents the whole set of parameters
�
⇡1, . . . ,⇡K , 1, . . . , L, µ
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,

and '(r;µ,�) is the gaussian density function on the rating value r with
parameters µ and �:

'(r;µ;�) = (2⇡)�1/2��1exp

✓
�1

2�2
(r � µ)2

◆



32 3 Pattern Discovery and Users’ Profiling in CF Data

Inference and Parameter Estimation.

Denoting P (zuk = 1|u,⇥(t)) = cuk, P (wil = 1|i,⇥(t)) = dil and P (zukwil =
1|u, i,⇥(t)) = eukil, The conditional expectation of the complete data log-
likelihood becomes:

Q(⇥;⇥(t)) =
KX

k=1

X

u

cuk log ⇡k +
LX

l=1

X

i

dil log l +

X

hu,i,ri2R

X

k

X

l

⇥
eukil log'(r;µl

k,�
l
k)
⇤

As pointed out in [53], the above function is not tractable analytically, due to
the di�culties in determining eukil; nor the adoption of its variational approx-
imation (eukil = cuk · dil) allows us to derive an Expectation-Maximization
procedure for Q 0(⇥,⇥(t)) where the M-step can be computed in closed form.
In [53] the authors propose an optimization of the complete-data log-likelihood
based on the CEM algorithm. We adapt the whole approach here. First of all,
we consider that the joint probability of a a normal population xi with i = 1
to n can be factored as:

nY

i=1

'(xi;µ,�) = h(x1, . . . , xn) ⇤ '(u0, u1, u2;µ,�),

where
h(x1, . . . , xn) = (2⇡)�n/2,

'(u0, u1, u2;µ,�) = ��u0exp

✓
2u1µ� u2 � u0µ

2

2�2

◆
,

and u0, u1 and u2 are the su�cient statistics.
Based on the above observation, we can define a two-way EM approxima-

tion based on the following decompositions of Q0:

Q0(⇥,⇥(t)) = Q0(⇥,⇥(t)|d) +
X

i2I

LX

l=1

dil log l �
X

u2U

X

i2I(u)

dil/2 log(2⇡)

where

Q0(⇥,⇥(t)|d) =
MX

u=1

KX
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cuk (log(⇡k) + ⌧uk)
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u
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Analogously,

Q0(⇥,⇥(t)) = Q0(⇥,⇥(t)|c) +
X

u2U

KX

k=1

cuk log ⇡k �
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The advantage in the above formalization is that we can approach the
single components separately and, moreover, for each component it is easier
to estimate the parameters. In particular, we can obtain the following:

1. E-Step (user clusters):

cuk =
P (u|zk) · ⇡kPK

k0=1 P (u|zk0) · ⇡k0
P (u|zk) =
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l=1
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3. E-Step (item clusters):
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4. M-Step (item clusters):
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Rating Prediction

The blocks resulting from a co-clustering can be directly used for prediction.
Given a pair hu, ii, the probability of observing a rating value r associated to
the pair hu, ii can be computed according to one of the following schemes:

• Hard-Clustering Prediction:
P (r|i, u) = '(r;µl

k,�
l
k), where k = argmax

j=1,··· ,K
cuj and l = argmax

h=1,··· ,L
dih are

the clusters that better represent the observed ratings for the considered
user and item respectively.

• Soft-Clustering Prediction:
P (r|i, u) =

PK
k=1

PL
l=1 cukdil'(r;µl

k,�
l
k), which consists of a weighted

mixture over user and item clusters.

The final rating prediction can be computed by using the expected value of
P (r|u, i).

In order to test the predictive accuracy of the BMM we performed a suite
of tests on a sample of Netflix data. The training set contains 5, 714, 427
ratings, given by 435, 656 users on a set of 2, 961 items (movies). Ratings on
those items are within a range 1 to 5 (max preference value) and the sample
is 99% sparse. The test set contains 3, 773, 781 ratings given by a subset of
the users (389, 305) in the training set over the same set of items. Over 60%
of the users have less than 10 ratings and the average number of evaluations
given by users is 13.

We evaluated the performance achieved by the BMM considering both
the Hard and the Soft prediction rules and performed a suite of experiments
varying the number of user and item clusters. Experiments on the three models
have been performed by retaining the 10% of the training (user,item,rating)
triplets as held-out data and 10 attempts have been executed to determine
the best initial configurations. Performance results measured using the RMSE
for two BMM with 30 and 50 user clusters are showed in Figure 3.2(a) and
Figure 3.2(b), respectively. In both cases the soft clustering prediction rule
overcomes the hard one, and they show almost the same trend. The best result
(0.9462) is achieved by employing 30 user clusters and 200 item clusters. We
can notice from Table 3.1 that the results follow the same trend as other
probabilistic models (pLSA[28], FMM [37], ScalableCC[55]).

Method Best RMSE K H
BMM 0.946 30 200

PLSA 0.947 30 -
FMM 0.954 10 70

Scalable CC 1.008 10 10

Table 3.1. Prediction Accuracy.
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(b) k=50

Fig. 3.2. Predictive Accuracy of BMM

3.2.2 Pattern Discovery using BMM.

The probabilistic formulation of the BMM provides a powerful framework for
discovering hidden relationships between users and items. As exposed above,
such relationships can have several uses in users segmentation, product cata-
log analysis, etc. Several works have focused on the application of clustering
techniques to discover patterns in data by analyzing user communities or item
categories. The co-clustering structure proposed so far increases the flexibility
in modeling both user communities and item categories patterns. Given two
di↵erent user clusters which group users who have showed a similar prefer-
ence behavior, the BMM allows the identification of common rated items and
categories for which the preference values are di↵erent. For example, two user
community might agree on action movies while completely disagree on one
other. The identification of the topics of interest and their sequential patterns
for each user community lead to an improvement of the quality of the rec-
ommendation list and provide the user with a more personalized view of the
system. In the following we will discuss examples of pattern discovery and
user/item profiling tasks on Movielens data.

Co-Clustering Analysis

The relationships between groups of users and items captured by the BMM
can be easily recognized by analyzing the distribution of the preference values
for each cocluster. Given a co-cluster hk, li, we can analyze the correspond-
ing distribution of rating values to infer the preference/interest of the users
belonging to the community k on item of the category l. Figure 3.3 shows
graphically a block mixture model with 10 users clusters and 9 item clusters
built on the MovieLens dataset. A hard clustering assignment has been per-
formed both on users and clusters: each user u has been assigned to the cluster
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c such that c = argmax
k=1,··· ,K

cuk. Symmetrically, each item i has been assigned to

the cluster d such that: d = argmax
l=1,··· ,L

dil. The background color of each block

Fig. 3.3. Coclustering

hk, li describes both the density of ratings and the average preference values
given by the users (rows) belonging to the k-th group on items (columns) of
the l-th category: the background intensity increases with the average rating
values of the coclusters, which are given in Table 3.2. Each point within the
coclusters represents a rating, and again an higher rating value corresponds
to a more intense color. The analysis underlines interesting tendencies: for ex-
ample, users belonging to the user community c1 tend to assign higher rating
values than the average, while items belonging to item category d6 are the
most appreciated. Two interesting blocks of the whole image are further ana-
lyzed in Figure 3.4(a) and in Figure 3.4(b). Here, two blocks are characterized
by opposite preference behaviors: the first block contains few (low) ratings,
whereas the second block exhibits a higher density of high value ratings.
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d1 d2 d3 d4 d5 d6 d7 d8 d9

c1 3.4 3.59 3.59 4 2.91 4.43 3.59 2.93 3.65
c2 2.23 2.2 2.92 2.79 2 3.45 2.07 1.80 2.51
c3 2.11 3.24 3 3.66 2 4.17 1 1.03 5
c4 2.45 2.69 2.54 3.2 2.43 3.74 2.51 2 2.56
c5 1 1.79 1 2.32 1 2.98 1.66 1 1.75
c6 2.93 3.07 3 3.57 2.20 4.09 2.9 2.3 3.16
c7 1 3.56 3.9 3.7 3.64 3.39 4 3.49 2
c8 2.25 2.26 1.62 3.27 1 4.17 4.54 1 2.45
c9 4.08 3.24 4.40 3.54 5 4 3.71 4.5 5
c10 1.91 2.82 1 2.7 4.3 2.2 1 4 2

Table 3.2. Gaussian Means for each block

(a) Cocluster (c5, d8): Avg rating:
1

(b) Cocluster (d1, d6): Avg rating:
4.43

Fig. 3.4. Cocluster Analysis

Item-Topic Analysis

A structural property of of interest is the item-topic dependency. Given a set
of F topics G = {g1, · · · gF } and assuming that each item is tagged with at
least one of those, we can estimate the relevance of each topic within item
clusters through a variant of the tf-idf measure [56], namely topic frequency
- inverse category frequency (tf-icf ).

The topic frequency (similar to the term frequency) of a topic g in a cluster
dl can be defined as:

tfg,dl
=

P
i2dl

�(g2Qi)
|Qi|

P
u2U �(u, i)

PF
g0=1

P
i2dl

�(g02Qi)
|Qi|

P
u2U �(u, i)

In a scenario, where items are associated with several topics (genres), and
where the number of topics is much lower than size of the itemset, it is high
likely that all topics appear at least one in each item category. According
to this consideration, the standard definition of idf would be useless for our
purposes. We, hence, provide an alternative formulation based on entropy [57],
namely inverse category frequency (icf ) for a topic g is:

icfg = 1 + P (g) log2[P (g)] + [1 � P (g)] log2[(1 � P (g))]

Here, P (g) represent the prior probability of observing a item-genre and is

computed as P (g) =
PL

l=1 P (g|dl) · P (dl), where P (g|dl) = tfg,dl and P (dl) =
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 l. By combining the above definitions we can finally obtain the tf-icf measure
for a topic g in a category dl as:

tf-icfg,dl
= tfg,dl

⇥ icfg

We can also exploit the fact that BMM provides a soft assignment to clusters,
and provide an alternative version of tf as:

tfg,dl
=

P
i2dl

�(g2Qi)
|Qi)| · dil

P
u2U �(u, i)

PF
g0=1

P
i2dl

�(g02Qi)
|Qi)| · dil

P
u2U �(u, i)

The above considerations can be also applied to the case of item frequency:

ifi,dl
=

dil

P
u2U �(u, i)P

i02dl
di0l

P
u2U �(u, i

0)

icfi = 1 + P (i) log2[P (i)] + [1 � P (i)] log2[(1 � P (i))]

where:

P (i) =
|U(i)|
|U|

The topic and item relevance described so far can be directly employed
to identify and measure the interest of each user community into topics and
items. More specifically, we can measure the interest of a user community ck

for a topic g as:

CIt(ck , g) =

PL
l=1 µ

l
k · tf-icfg,dlPF

g0=1

PL
l=1 µ

l
k · tf-icfg0,dl

The item-based counterpart follows straightforwardly:

CIi(ck , j ) =

PL
l=1 µ

l
k · if-icfj,dlPF

j0=1

PL
l=1 µ

l
k · if-icfj0,dl

where j is the item target.

Evaluation

The MovieLens dataset provides for each movie a list of genres. This informa-
tion can be used to characterize each item category, by exploiting the within-
cluster topic relevance discussed so far. The tf-icf measure of observing each
genre within each item category is given in Table 3.3, where the dominant
topic is in bold.

The pie charts in Figure 3.5(a), Figure 3.5(b) and Figure 3.5(c) show
the distribution on topics for di↵erent item clusters. We can observe di↵erent
patterns: d2 is characterized by a strong attitude for horror movies, animation
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d1 d2 d3 d4 d5 d6 d7 d8 d9

Action 0.03640 0 0.07375 0.06054 0.05152 0 0.05624 0.06966 0
Adventure 0.01981 0 0.04237 0.04339 0.03813 0 0.03828 0 0
Animation 0.01591 0 0.00660 0.00926 0.01801 0.24622 0.00999 0 0
Children’s 0.01581 0 0.03228 0.01643 0.02261 0 0.02855 0 0
Comedy 0.04137 0.03559 0.05403 0.05185 0.04730 0.06209 0.05685 0.10228 0
Crime 0.03319 0 0.01585 0.02217 0.01973 0 0.02515 0 0
Documentary 0.01423 0 0.00028 0.00053 0.00291 0 0.00341 0 0.94466
Drama 0.09777 0.00923 0.02308 0.05247 0.07720 0.04839 0.05099 0.06727 0
Fantasy 0.00553 0 0.01175 0.01579 0.01171 0 0.01559 0 0
Film-Noir 0.01485 0 0.00029 0.00123 0.00580 0 0.00113 0 0
Horror 0.01570 0.53057 0.08225 0.02691 0.01569 0 0.04014 0.03426 0
Musical 0.01739 0 0.00619 0.00914 0.02224 0 0.01088 0 0
Mystery 0.01697 0 0.00832 0.02757 0.00958 0 0.00952 0 0
Romance 0.03470 0 0.02395 0.05776 0.05092 0.09889 0.04625 0 0
Sci-Fi 0.02818 0 0.06247 0.04644 0.03843 0 0.04150 0 0
Thriller 0.04613 0 0.05851 0.05052 0.04771 0 0.05057 0 0
War 0.03902 0 0.01268 0.01041 0.01442 0.12291 0.00716 0.11860 0
Western 0.01653 0 0.00625 0.00704 0.00641 0 0.00875 0 0

Table 3.3. tf-icf measures for each genre in each movie category

(a) Item cluster 2 (b) Item cluster 6 (c) Item cluster 8

Fig. 3.5. Topic Analysis on Item Clusters

is the dominant topic in cluster 6, and d8 is summarized by the war genre.
Finally, the cluster d9 shows a predominance of drama movies. A summary
of the dominant genres in each item cluster, i.e., with higher tf-icf, is given
below:

Item Cluster Dominant Genre
d1 Drama
d2 Horror
d3 Horror
d4 Action
d5 Drama
d6 Animation
d7 Comedy
d8 War
d9 Documentary

Figure 3.6 shows the CIt(g , ck ) values (in gray scale). We can further an-
alyze such values to infer the interest of a user community for a given topic.
In particular, a community exhibits a high interest for a topic if the corre-
sponding CIt value is su�ciently higher than the average CIt value of all the
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other topics. Table 3.4 summarizes the associations among user communities
and item topics. For example, users in c8 exhibit preferences for the Action
and War genres.

Fig. 3.6. Topic-Interests for User Communities

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

Action y y y y y
Advent.
Animat. y y
Children’s
Comedy y y y y y y y y y y
Crime
Documen. y y y y y y y y y y
Drama y y y y y y y y y y
Fantasy
Noir
Horror y y y y y y y y y y
Musical
Mystery
Romance y y y
Sci-Fi
Thriller
War y y y
Western

Table 3.4. Summary of Interests in Topics For User Communities

User Profile Segmentation

The topics of interest of a user may change within time and consecutive
choices can influence each other. We can analyze such temporal dependen-
cies by mapping each user’s choice into their respective item cluster. As-
sume that movieLens data can be arranged as a set {ū1, . . . , ūM}, where
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ū = {hru
i , i, t

u
i i8i 2 I(u)} and tui is the timestamp corresponding to the rating

given by the user u on the item i. By chronologically sorting ū and segmenting
it according to item cluster membership, we can obtain a view of how user’s
tastes change over time. Three example of user profile segmentation are given
in the figures below (the mapping between item categories and colors is given
by the included table).

(a)

(b)

(c)

Item Cluster Color

d1 Red
d2 Blue
d3 Green
d4 Yellow
d5 Magenta
d6 Orange
d7 Cyan
d8 Pink
d9 Dark Grey

Fig. 3.7. User Profile Segmentation

In practice, we can assume that the three users show a common attitude
towards comedy and drama, which are the dominant topics corresponding to
the colors yellow and orange. Notice, however, that users (b) and (c) are prone
to change their interest towards comedy, as clearly shown by the change in
color.

Modeling Topic Transitions

Based on the above observations, we aim at estimating the sequential connec-
tions among topics: In practice, we would like to analyze which item categories
are likely to next capture the interests of a user. Those sequential patterns can
be modeled by exploiting Markov Models. The latter are probabilistic models
for discrete processes characterized by the Markov properties. We adopt a
Markov Chain property here, i.e., a basic assumption which states that any
future state only depends from the present state. This property limits the
‘memory’ of the chain which can be represented as a digraph where nodes
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represent the actual states and edges represent the possible transitions among
them.

Assuming that the last observed item category for the considered user is di,
the user could pick an item belonging to the another topic dj with probability
p(dj |di). Thus, we need to estimate all the transition probabilities, starting
from a |L + 1| x |L + 1| transition count matrix Tc, where Tc(i, j) stores the
number of times that category j follows i in the rating profile of the users.1

The estimation we provide is rather simple, corresponding to a simple
frequency count:

p(dj |di) =
Tc(i, j)PL+1

j=1 Tc(i, j0)

Figure 3.8 represents the overall transition probability matrix, which high-
lights some strong connection among given categories. As instance, the item
categories having drama as dominant genre, d4, d6 and d9 are highly correlated
as well as d2, d7 and d8 which correspond to comedy movies.

Fig. 3.8. Item Categories Transitions

It is interesting to compare how the transition probabilities change within
di↵erent user communities. Figure 3.9 shows the transitions for three di↵erent
communities. Notice that, besides common transition patterns, each commu-
nity has some distinctive transitions that characterize their population. For
all the considered user communities, the most likely initial item category is
d6; while the first and the last community reproduced in the example show
a strong attitude corresponding to the transition d8 ! d2, this is instead a
weak pattern within c7. The same consideration can be done for the transition

1 We assume two further states ✏, representing the initial choice, and �, representing
the last choice.
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d9 ! d7, which is strong for c7 and c10, while users belonging to c3 are more
prone to the transition towards d6.

(a) User community c3 (b) User community c7 (c) User community c10

Fig. 3.9. Community-based Item Category Transitions

The analysis of the transition probabilities can be hence exploited for
generating new recommendations enforcing topic diversity in the top-K lists
of items by taking into account not exclusively the current topic of interest
but the ones that more likely could be connected to it.

3.3 Users’ Profiling with Soft Constraints

The User Rating Profile (URP) [38] is an extension of the LDA which provides
a full generative semantic for explicit preference data. The model is defined by
a mixture of the so called user attitudes which represent abstract rating pat-
terns. Each user is represented by its own distribution over attitudes, namely
#u, which specifies a probability of selecting each of the K possible topics z.
As in LDA, this distribution is not a parameter of the model but it is a ran-
dom variable sampled from a Dirichlet distribution with parameter ↵. Each
topic is then characterized by a multinomial distribution over rating values
�z. We extend the original formulation of the model by employing Dirichlet
priors � over the � distribution, that should help in improving the estimate of
rating probabilities for items which have received few evaluations. The model
is characterized by the following generative process:

1. For each user u 2 U sample user community-mixture components
#u ⇠ Dir(↵)

2. For each user attitude z = {1, · · · ,K},
a) For each item (i) sample rating probabilities 'z,i ⇠ Dir(�)

3. For i 2 I(u)
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a) Choose a user attitude z ⇠ Discrete(#u)
b) Generate a rating value for the chosen item according to the dis-

tribution P (R|'z,i)

A graphical representation of the parameters of the URP model is given in
Figure 3.10. The projection into the latent space of each user, #u, can be used
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Fig. 3.10. URP Example

to detect groups of users which share the same interests or preference pattern.
In fact, each topic is defined by a set of users who exhibit the same rating
patterns and thus can be used to detect community-memberships, where each
user community gathers users who tend to express the same preference value
on the same item. However, the generative presented above relies exclusively
on the observed users’ preferences, while we may be interested in retrieving
communities focusing on additional information. As instance, we extend this
definition of user community to capture both users who tend to agree in their
preferences over items, and users who tend to select the same set of items,
no matter the subjective preference. To include such information, we can
devise a regularization procedure which is embedded in the learning phase of
the model. In the following, we will first derive a Gibbs Sampling parameter
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estimation for the URP model and then design a regularization procedure
to enforce a set of soft constraints. Finally, we will evaluate the prediction
accuracy of the overall approach and the e↵ectiveness of the regularization
procedure.

Parameter Estimation.

Given the hyperparameters ↵, �, the joint distribution of the data R, the
user-topic mixture ⇥, the rating probabilities � and the observation-topic
assignments Z, can be computed as:

P (R, Z,⇥,�|↵,�) = P (Z|⇥)P (⇥|↵)P (�|�)P (R|Z,�)

The complete data likelihood can be obtained by integrating over ⇥ and �:

P (R, Z|↵,�) =

Z Z
P (Z|⇥)P (⇥|↵)P (�|�)P (R|Z,�)d⇥d�

which, due to the conditional independence R ?? ↵|Z, can be factored as:

P (R, Z|↵,�) =

Z
P (Z|⇥)P (⇥|↵)d⇥

Z
P (R|Z,�)P (�|�)d�

The first term of the complete data likelihood, P (Z, |⇥) represents the prob-
ability of observing the topic-assignments matrix Z given the multinomial
parameters ⇥ and can be computed as:

P (Z|⇥) =
Y

u2U

Y

i2I
p(zu,i|#u) =

Y

u2U

KY

k=1

#
nk
u

u,k

where nk
u denote the number of times that the topic k has been assigned to ob-

servations corresponding to the user u and #u,k = P (zk|u). The k-dimensional
Dirichlet random variable ⇥ can take values in the (k-1) simplex, and the cor-
responding k-dimensional distribution is:

P (⇥|↵) =
Y

u2U

1

�(↵)

KY

k=1

#↵k�1
u,k

where �(↵) =
� (

PK
k=1 ↵k)QK

k=1 � (↵k)
is introduced for notational convenience.

The likelihood of the rating matrix R given the topic assignments Z and the
distribution over rating values � can be computed as:

P (R|Z,�) =
Y

u2U

Y

i2I

VY

r=1

'zu,i,i,r =
KY

k=1

Y

i2I

VY

r=1

'
nk
i,r

k,i,r

where nk
i,r denotes the number of times that the rating r has been assigned

to the item i when the topic is k and 'k,i,r = P (R = r|zk, i). Again, � is
multinomial distribution with Dirichlet priors �:
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P (�|�) =
Y

i2I

KY

k=1

1

�(�)

VY

r=1

'�r�1
k,i,r

Thus, rearranging the components and grouping Dirichlet-Multinomial distri-
butions, the complete data likelihood can be expressed as:

P (R, Z|↵,�) =
Y

u2U

1

�(↵)

Z KY

k=1

#
nk
u+↵k�1

u,k d#u

Y

i2I

KY

k=1

1

�(�)

Z VY

r=1

'
nk
i,r+�r�1

k,i,r d'ik

The formulation of the joint distribution is the starting point for the inference:
in fact, the distribution P (Z|R) whose determination is the target of the
inference process is directly proportional to the joint distribution:

P (Z|R,↵,�) =
P (Z,R|↵,�)

P (R|↵,�)

which however is intractable mainly because the computation of the de-
nominator requires a summation over an exponential number of terms. The
Gibbs Sampling procedure addresses this point by using the full conditional
P (Zn|Z¬n,R,↵,�) in order to simulate P (Z|R,↵,�), where n denotes a
single rating observation n = {u, i, ru

i }, Zn is the cell of the matrix Z which
corresponds to this observation, while Z¬n denotes the remaining topic assign-
ments. The Gibbs Sampling algorithm estimates the probability of assigning
the topic k to the observation n-th. given the assignment corresponding to all
the other rating observations as:

P (Zn = k|Z¬n,R) / P (Z,R)

P (Z¬n,R¬n)

=
nk

u¬n + ↵kPK
k0=1(n

k0
u + ↵k0) � 1

nk
i,r¬n + �r

PV
r0=1(n

k
i,r0 + �r0) � 1

(3.2)

The multinomial parameters ⇥ and � can be obtained according to their
definition and considering the expectation of the corresponding prior distri-
butions:

#u,k =
nk

u + ↵kPK
k0=1 n

k
u + ↵k0

(3.3)

and

'k,i,r =
nk

ir + �rPV
r0=1 n

k
ir0 + �r0

(3.4)

A summary of symbols used in the derivation of the model is given in Table 3.5.
Algorithm 6 shows the pseudocode for the inference phase: the Gibbs Sam-
pling procedure starts with a random initialization; then topic assignments
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are estimated till convergence (error on a held-out set starts to increase) or
till the number of performed iteration reaches the maximum value. Hyper-
parameters can be updated employing iterative approximation (see [58] for
further details).

Algorithm 1 URP-GibbsSampling
Require: The sets U = {u1, . . . , uM} and I = {i1, . . . , iN}

the rating matrix R,the number of latent topics K, initial hyperparameters
↵ and �.

1: initializeTopicAssignments()
2: iteration 0
3: converged false
4: while iteration < nMaxIterations & !converged do

5: for all hu, i, ri 2 R do

6: zu,i  topicAssignments.get(u, i)
7: z0u,i  sampleTopic(u, i, r) {According to Eq. 5.10};
8: topicAssignments.set(u, i, z0u,i)
9: update counts using the new topic for the observation hu, i, ri
10: end for

11: updateHyperParams()
12: if iteration > burnin & iteration%sampleLag == 0 then

13: sampleMultinomials() {According to Eq. 5.17 and Eq. 3.4};
14: converged  checkConvergence() {Current RMSE on HeldOut data >

Previous RMSE};
15: end if

16: iteration iteration+ 1
17: end while

Rating Prediction.

The main goal of the model is to predict preference values for the items that
users have not rated yet. Given a pair hu, ii, the distribution over ratings
corresponding to that observation can be computed by using the parameter
estimated during the learning phase:

P (R = r|u, i) =
KX

k=1

P (zk|u)P (r|zk, i) =
KX

k=1

#u,k · 'k,i,r

The final preference value can be computed from this distribution according
to di↵erent schema:

• Most Probable Rating : ru
i = argmax

r=1,··· ,V
P (R = r|u, i)

• Median Rating : ru
i : P (R  r|u, i) � 1

2 and P (R � r|u, i)  1
2

• Expected Rating : ru
i = E[R|u, i]
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Symbol Description
M #users
N #items
V #stars
K #latent factors / user attitudes
↵ K-vector; parameters of the Dirichlet prior over topics
#u K-vector; Multinomial distribution over topics

for the user u: #u,k = P (zk|u)
� K ⇥N ⇥ V matrix which encodes the parameters

of the multinomial distribution: 'i,k,r = P (R = r|zk, i)
� V -vector; parameters of the Dirichlet prior

over rating values
Z M ⇥N matrix which represents

hidden topic assignments for each pair hu, ii
Zn topic assignment for the pair n = hu, ii
Z¬n topic assignments for all the pairs hu, ii

excluding the observation n

nk
u # times that the topic k has been assigned to observation

corresponding to the user u
nk
i,r # times that the topic k has been assigned to

the item i when the associated rating is r

Table 3.5. Summary of Symbols

The latter method, which computes the prediction for the pair hu, ii as the
expected rating, is the most used, mainly because it minimizes MSE, and
thus RMSE. The distribution of probability over ratings represents an impor-
tant advantage of probabilistic approaches, because it can be used to infer
confidence intervals and variance which can in turn be used to estimate the
confidence of the prediction itself and thus improve the recommendation ac-
curacy.

3.3.1 Community Detection and Neighborhood Regularization.

Probabilistic approaches based on latent topics, such as PLSA and LDA, pro-
vide a powerful framework for community detection and analysis. According
to the parameters of the URP-model, similar minded users can be detected
by analyzing their distribution over topics, which represent abstract interests
and rating patterns. More specifically, we can partition users into homogenous
groups, named user communities, by considering the dominant topic in their
respective profile:

cluster(u) = argmax
k=1,··· ,K

#u,k

Once user communities have been discovered, we can infer their character-
istics and subjective preferences over products in the catalog, by detecting
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significant items. An item i is considered significant for the community k if
P (i|zk) > P (i|zk0) 8k0 6= k, where the probability of observing an item given
a topic zk can be estimated at the end of the inference phase as:

p(i|zk) /
X

hu,ri2R

P (r|zk, i)p(zk|u) =
X

hu,ri2R

'k,i,r · #u,k (3.5)

One of the key di↵erences between neighborhood and latent factor mod-
els relies on the ability of detecting hidden relationships among users and/or
items. In fact, while Neighborhood based models are good at detecting strong
but local relationships due to the direct estimate of the similarity between ob-
jects, latent factor models are able to detect weak but global patterns, defined
as topic-specific multinomial distribution over rating values. As consequence,
using the direct estimate of similarity coe�cients, neighborhood models in-
duce a more intuitive clustering (they are based on an intuitive notion of
similarity), while the latter approaches achieve a better prediction accuracy
because cluster and their corresponding probability distributions are obtained
employing a likelihood maximization approach.
Assume that we are given external evidence of strong relationships between
users; we can employ a soft constraints regularization procedure to push the
Gibbs Sampling towards a clustering solution that preserves neighborhoods.
This background information can be specified as a set of soft constraints in the
form hu,NK

u i, where NK
u is the set of the K most similar users to u according

to a specified similarity measure (Pearson, Cosine and Jaccard are the most
used).
The key assumption in the following approach is that if two user are simi-
lar, then they will likely associate the same hidden topic z to the same item.
We can adopt the procedure summarized in Algorithm 2 to regularize hidden
topic assignments.

Given two user neighbors u and u0 who have rated the same item i, the
hidden topic corresponding to the observation of i can be computed by sam-
pling from the parameters of the user who have been purchased more items,
because he is better represented in the topic space. Topic regularization is
performed for a limited number of observations; when the prediction error
computed after the regularization exceeds significantly the one’s computed
before, the regularization is rejected. An alternative regularization schema
could be obtained according to a simulated annealing procedure, where regu-
larization steps which deteriorare prediction accuracy could be also accepted
and the e↵ect of regularization decreases as the number of iteration increases.
Moreover, the same protocol can be used to perform regularization on items,
by assuming that similar items will be likely to receive the same topic assign-
ment by the same user.

To measure the e↵ect of the regularization, we can compute for each user
u the percentage of his neighbors mapped in the same cluster as:

P
u02NK

u
�(u, u0)

K
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Algorithm 2 performRegularization
1: E  computeError()
2: regularizedPairs 0
3: while regularizedPairs < max do

4: choose a random pair hu, ii
5: choose u0 2 NK

u : ru
0

i 6= 0
6: if |I(u0)| > |I(u)| then
7: zu,i  sampleTopic(u0, i, rui )
8: else

9: zu0,i  sampleTopic(u, i, ru
0

i )
10: end if

11: regularizedPairs regularizedPairs+ 1
12: end while

13: updateMultinomials()
14: E0  computeError()
15: if E0 � E > 10e� 5 then

16: undoRegularization()
17: end if

where �(u, u0) = 1 i↵ cluster(u) = cluster(u0), zero otherwise. Then, the
average percentage of neighbors preserved can computed by averaging over
users.

3.3.2 Experimental Evaluation.

We evaluate the e↵ectiveness of the proposed approach considering two per-
spectives:

• Prediction Accuracy : we are interested in evaluating whether the URP
model with Gibbs Sampling procedure for parameter estimation achieves
a competitive prediction accuracy with respect to the variational version
and considering other similar probabilistic approaches;

• E↵ect of Regularization: we are interesting in measuring how much the
clustering solution induced by the Regularized-URP model maintains the
neighborhoods provided as external evidence and evaluating possible ef-
fects of regularization on prediction accuracy.

Prediction accuracy is measured as the RMSE and we performed a Mon-
teCarlo 5-fold validation on MovieLens-1M data, where for each fold the
training-set contains about the 80% of overall ratings. Information about
the number of users, items, sparseness coe�cient, and average rating per
users/items regarding the first fold are summarized in Table 3.6. All the
considered approaches have been trained over the training-data, employing
a early stopping criterion, i.e. the learning phase is terminated as soon as the
prediction error measured on a held-out data (%1 of the training) increases.
The Gibbs-Sampler burn in period is fixed at 300 iterations; after that pe-
riod the procedure samples multinomial parameters with an interval of 10
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Training Set Test Set
Users 6,040 6,032
Items 3,706 3,444
Ratings 800,729 199,480

Avg ratings (user) 132 33
Avg ratings (item) 216 57
Sparseness Coe↵ 96% 99%

Table 3.6. Summary of the Data used for validation (1 Fold)

iteration (sampling lag). Hyperparameters ↵ and � were initialized to 2 and
0.5, respectively. Rating predictions are computed as the expected value of
P (R = r|u, i).

Figure 3.11 shows the average prediction error achieved by di↵erent models
on validation folds, varying the number of hidden topics from 2 to 10, while the
best result for each model is summarized in Table 3.7. The URP-Gibbs o↵ers
a significant advantages in term of prediction accuracy over all the considered
competitors, for all number of topics. As reported in [38], the variational pa-

Fig. 3.11. Predictive Accuracy

Approach Best RMSE #Topics

Mixture of Multinomials 0.9328 4
Gaussian PLSA 0.9241 10

URP 0.9868 10
URP-Boosted 0.9235 4
URP-Gibbs 0.8997 9

Table 3.7. Predictive Accuracy Summary

rameter estimation of the URP model with randomly initialized parameters
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does not perform well, and better results can be obtained by initializing the
model with the parameters obtained by fitting a multinomial mixture model
with the same number of topics (URP-Boosted). Following this approach, the
variational estimation is able to improve the prediction accuracy of the Multi-
nomial Mixture Model, which follows more or less the same trend. The best
result achieved by the Gibbs URP is obtained employing 9 topics. The predic-
tion accuracy is not the only advantage of the Gibbs-Sampling inference: as
shows in Figure 3.12, the learning time corresponding to variational inference
is larger than the one required by the sampling procedure and the gain is more
marked for a number of topics greater than 5. It is worth noticing that the

Fig. 3.12. Learning Time

prediction accuracy of URP model is still far from state-of-art collaborative
filtering techniques ( Probabilistic Matrix Factorization [44] achieves on the
same data an average RMSE of 0.8655 employing 10 hidden factors). On the
other hand, the URP model defines a full generative semantic which is more
easy to understand and can be used to generalize to novel user profiles.

The evaluation of the e↵ects of regularization has been performed by con-
sidering the capabilities of the model in reproducing neighborhood with max-
imum dimension of 20, obtained employing Jaccard similarity:

simu,v =
|I(u)

T
I(v)|

|I(u)
S
I(v)|

Using such similarities coe�cients, the neighborhood model, which stores for
each user the first K = 20 neighbors, does not take into account rating in-
formation but its computation requires less resources. As a preliminary test,
regularization has been performed exclusively during the burn-in period with
a lag of 5 iterations. Typically, only few (from 5 to 10) regularization steps are
performed before the regularization starts to jeopardize prediction accuracy.
As shown in Figure 3.13, the influence of the regularization on prediction
accuracy is limited. This procedure does not produce significant reduction
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on RMSE and also the learning time Figure 3.12 of Regularized URP and
Gibbs-URP is similar. The most interesting result is related at the analysis

Fig. 3.13. E↵ect of Regularization on RMSE

of the percentage of neighbors which are mapped to the same cluster of the
corresponding user by the regularization. Some results are summarized in Ta-
ble 3.8, which compares the percentage of neighbors considering regularization
with the one achieved without it, varying the size of the neighborhood. The
gain achieved with regularization is significant, proving the e↵ectiveness of
the proposed approach even if the e↵ective number of iterations that include
regularization is limited.

Approach K=5 K=10 K=15 K=20
URP (5) 24.33 23.82 23.64 23.53

Regularized-URP (5) 36.50 36.33 36.28 36.13

URP (10) 28.19 27.74 27.61 27.41
Regularized-URP (10) 38.54 38.37 38.36 38.34

Table 3.8. % of Neighbors Preserved

Finally, Table 3.9 shows the 5 most significant items for 10 user commu-
nities, computed according to Eq. 3.5, their corresponding prior probability
(in square brackets) and underlying topics, which are obtained considering
the genres associated to each movie. Although we did not directly perform a
quantitative comparison between clusters obtained employing regularization
and the ones obtained without it, because it would require the definition of
a measurement of cluster purity and thus a more deep analysis, a qualitative
evaluation shows the regularization procedure helps in enforcing the similarity
between relevant items within the communities.
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Cluster 1 [0.0472] Cluster 2[ 0.0298] Cluster 3[0.1432] Cluster 4[0.0540] Cluster 5[0.4181]
Crime,Thriller Comedy,Romance Action, Adventure Action, Sci-fi Comedy, Drama

Fargo Shakespeare in Love Abyss Terminator 2 Big Chill
GoodFellas Groundhog Day Arachnophobia Star Wars: Return of the Jedi Risky Business
Taxi Driver When Harry Met Sally Batman Returns Jurassic Park Waking Ned Devine

Psycho American President Logan’s Run Matrix Prizzi’s Honor
Reservoir Dogs Sleepless in Seattle Heavy Metal Men in Black Midnight in the Garden of Good and Evil

Cluster 6 [0.0453] Cluster 7 [0.0071] Cluster 8 [0.0061] Cluster 9 [0.2402] Cluster 10 [0.0082]
Comedy Comedy Action, Sci-fi Crime, Thriller Childrens
Airplane! Austin Powers Terminator Silence of the Lambs Toy Story
Clerks American Pie Fly Godfather E.T. the Extra-Terrestrial

Big Lebowski Caddyshack StarTrek: Wrath of Khan Sixth Sense Willy Wonka and the Chocolate Factory
High Fidelity Animal House Heat Pulp Fiction Muppet Movie

There’s Something Ab. Mary Wedding Singer Star Trek Usual Suspects Snow White and the Seven Dwarfs

1

Table 3.9. User communities and relevant movies
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4.1 Introduction

To improve the accuracy of CF-based recommendation engines, researchers
have focused on the development of accurate techniques for rating prediction.
The recommendation problem has been interpreted as a missing value pre-
diction problem [13], in which, given an active user, the system is asked to
predict her preference for a set of items. Since a user is more prone to access
items for which she will likely provide a positive feedback, a recommendation
list can be be hence built by drawing upon the (predicted) highly-rated items.

Under this perspective, a common approach to evaluate the predictive
skills of a recommender systems is to minimize statistical error metrics, such
as the Root Mean Squared Error (RMSE). The common assumption is that
small improvements in RMSE would reflect into an increase of the accuracy of
the recommendation lists [59]. This assumption, however does not necessarily
hold. In [50], the authors review the most common approaches to CF-based
recommendation, and compare them according to a new testing methodology
which focuses on the accuracy of the recommendation lists rather than on the
rating prediction accuracy. Notably, cutting-edge approaches characterized
by low RMSE values achieves performances comparable to naive techniques,
whereas simpler approaches, such as the pure SVD, consistently outperforms
the other techniques. In an attempt to find an explanation, the authors im-
pute the contrasting behavior with a “limitation of RMSE testing, which
concentrates only on the ratings that the user provided to the system” and
consequently “misses much of the reality, where all items should count, not
only those actually rated by the user in the past”[50].

The point is that pure SVD rebuilds the original rating matrix in terms
of latent factors, rather than trying to minimize the error on observed data.
In practice, the underlying optimization problem is quite di↵erent, since it
takes into account the whole rating matrix considering both observed and
unobserved preference values. To summarize, it is likely to better identify the
latent factors and the hidden relationships between both factor/users and
factors/items. It is natural then to ask whether more sophisticated latent
factor models confirm this trend, and are able to guarantee better results
in terms of recommendation accuracy, even when they provide poor RMSE
performances.

Among the state-of-the art latent factor models, probabilistic techniques
o↵er some advantages over traditional deterministic models: notably, they do
not minimize a particular error metric but are designed to maximize the likeli-
hood of the model given the data which is a more general approach; moreover,
they can be used to model a distribution over rating values which can be used
to determine the confidence of the model in providing a recommendation; fi-
nally, they allow the possibility to include prior knowledge into the generative
process, thus allowing a more e↵ective modeling of the underlying data distri-
bution. However, previous studies on recommendation accuracy do not take
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into consideration such probabilistic approaches to CF, which instead appear
rather promising under the above devised perspective.

In this chapter we adopt the testing methodology proposed in [50], and
discuss also other metrics [60] for assessing the accuracy of the recommenda-
tion list. Based on these settings, we perform in Sec. 4.2 an empirical study of
some paradigmatic probabilistic approaches to recommendation and propose
in Sec. 4.3 a novel model to estimate both the item selection and relevance,
based on the idea “Play and Enjoy”.

4.2 Probabilistic Methods for Top-N Recommendation

In this section we perform an empirical study of some paradigmatic proba-
bilistic approaches to recommendation. We study di↵erent techniques to rank
items in a probabilistic framework, and evaluate their impact in the generation
of a recommendation list. Before analyzing and discussing the application of
the probabilistic framework for the generation of personalized recommenda-
tion, we will briefly review in Sec. 4.2.1 a general framework for evaluating the
recommendation accuracy. A key role in the process of generating accurate
recommendation lists is played by the schemes with which to rank items can-
didate for recommendation, which will be discussed in Sec. 4.2.2. Finally, we
will discuss an empirical evaluation of probabilistic approaches in Sec. 4.2.3.

4.2.1 Evaluating Recommendation Accuracy

The general framework for the generation of a recommendation list can be
modeled as follows. We will denote by Lj

u the recommendation list provided
by the system to the user u during a generic session j. Then, the following
protocols applies:

• Let Cj
u a list of D candidate random items unrated by the user u in

the past sessions 1, . . . , j � 1;
• Associate to each item i 2 Cj

u a score pu,j
i which represents the user’s

interest for i in session j;
• Sort Cj

u in descending order given the values pu,j
i ;

• Add the first N items from Cj
u to Lj

u and return the latter to the user.

Simple scoring functions can be obtained considering non-personalized
baseline models which take into account the popularity or the average rating
of an items. More specifically, Top Popular (Top-Pop) recommends items with
the highest number of ratings, while Item Average (Item-Avg) selects items
with the highest average rating. Each RS provides a specific scoring pu,j

i , thus
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the testing methodology basically relies on the evaluation of capability of the
RS in providing higher scores for the items of interest in Cj

u.
A first, coarse-grained approach to evaluation, can be obtained by employ-

ing standard classification-based accuracy metrics such as precision and recall,
which require the capability to distinguish between relevant and not relevant
recommendations. For example, if an explicit preference value is available, we
can consider as relevant all those items which have received a rating greater
than the average, otherwise the item will be considered as non-relevant. Given
a user, we assume a unique session of recommendation, and we compare the
recommendation list of N items provided by the RS, according to the protocol
described above, with those relevant items in IS(u). In particular, assuming
we can identify a subset T r

u ✓ IS(u) of relevant items, we can compute pre-
cision and recall as specified in Eq. 1.5. However, these definitions aim at
evaluating the amount of useful recommendations in a single session. A di↵er-
ent perspective can be considered by assuming that a recommendation meets
user satisfaction, if the user can find at least a hit, i.e. an interesting (best
rated) item in the recommendation list. Starting from a redefinition of the set
of relevant items,

T 0ru = {i 2 IS(u)|(u, i, ru
i ) 2 S, ru

i = V }

the following testing protocol can be applied to assess user satisfaction:

• For each user u and for each item i 2 T 0ru :
– Generate the candidate list C by randomly drawing from IR(u)�

(IT(u) [ {i}).
– Add i to C.
– Associate each item within C with a suitable score and sort C in

descending order of item scores.
– Consider the position of the item i in the ordered list: if i belongs

to the top-k items, there is a hit ; otherwise, there is a miss.

According to this protocol, [50] defines the US-Precision and US-Recall.

US-Recall(u, k) =
#hits

|T 0ru | , US-Precision(u,k) =
#hits

k · |T 0ru |

The final values can be obtained by averaging over all users. Notice that the
above definition of precision does not penalize false positives: the recommenda-
tion is considered successful if it matches at least an item of interest. However,
neither the amount of non-relevant“spurious” items, nor the position of the
relevant item within the top-k is taken into account.
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4.2.2 Probabilistic Modeling of Item Ranking

In this section we discuss how the above described models can be used to pro-
vide the ranking pu

i for a given user u and an item i in the protocol described
in Sec. 4.2.1.

Predicted Rating.

The most intuitive way to provide item ranking in the recommendation pro-
cess relies on the analysis of the distribution over preference values P (r|u, i)
(assuming that we are modeling explicit preference data). Given this distribu-
tion, there are several methods for computing the ranking for each pair hu, ii;
the most commonly used is the expected value E[R|u, i], as it minimizes the
MSE and thus the RMSE:

pu
i = E[R|u, i] (4.1)

We will show in Sec. 4.2.3 that this approach fails in providing accurate rec-
ommendation and discuss about potential causes.

Item Selection.

For co-occurrence preference approaches, the rank of each item i, with regards
to the user u can be computed as the mixture:

pu
i = P (i|u) =

X

z

P (z|u)P (i|z) (4.2)

where P (i|z) is the probability that i will be selected by users represented
by the abstract pattern z. This distribution is a key feature of co-occurrence
preference approaches and models based on free-prediction. When P (i|z) is
not directly inferred by the model, we can still estimate it by averaging on all
the possible users who selected i:

P (i|z) /
X

u

�(u, i)TP (z|u)

where �T(u, i) = 1 if Tu
i 6= 0.

Item Selection And Relevance.

In order to force the selection process to concentrate on relevant items, we can
extend the ranking discussed above, by including a component that represents
the “predicted” relevance of an item with respect to a given user:

pu
i = P (i, r > rT|u)

= P (i|u)P (r > rT|u, i) =
X

z

P (z|u)P (i|z)P (r > rT|i, z) (4.3)

where P (r > rT|i, z) =
P

r>rT
P (r|i, z). In practice, an item is ranked on the

basis of the value of its score, by giving high priority to the high-score items.
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4.2.3 Evaluation

In this section we experiment the testing protocols presented in Sec. 4.2.1 on
the most known probabilistic approaches. We use the MovieLens-1M dataset,
which consists of 1, 000, 209 ratings given by 6, 040 users on approximately
3, 706 movies, with a sparseness coe�cient 96% and an average number of
ratings 132 per user, and 216 per item. In the evaluation phase, we adopt a
MonteCarlo 5-folds validation, where for each fold contains about the 80%
of overall ratings and the remaining data (20%) is used as test-set. The final
results reported by averaging the values achieved in each fold.

In order to make our results comparable with the ones reported in [50],
we consider Top-Pop and Item-Avg algorithms as baseline, and Pure-SVD
as a main competitor. Notice that there are some di↵erences between our
evaluation and the one performed in the above cited study, namely: (i) we
decided to employ bigger test-sets (20% of the overall data vs 1.4%) and to
cross-validate the results; (ii) for lack of space we concentrate on MovieLens
only, and omit further evaluations on the Netflix data (which however, in the
original paper [50], confirm Pure-SVD as the top-performer); (iii) we decided
to omit the “long tail” test, aimed at evaluating the capability of suggesting
non-trivial items, as it is out of the scope of this paper.1

In the following we study the e↵ects of the ranking function on the accuracy
of the recommendation list. The results we report are obtained by varying the
length of the recommendation list 2 in the range 1� 20 and the dimension of
the random sample is fixed to D = 1000. In a preliminary test, we found the
optimal number of components for the Pure-SVD to be set to 50.

4.2.4 Predicted Rating

We start our analysis from the evaluation of the recommendation accuracy
achieved by approaches that model explicit preference data, namely PMF[44],
MMM[30], URP[38, 61], UCM[62] and G-PLSA[24], where the predicted rating
is employed as ranking function. First of all, the following table summarizes
the RMSE obtained by these approaches:

Approach RMSE #Latent Factors
Item Avg 0.9784 -
MMM 1.0000 20

G-PLSA 0.9238 70
UCM 0.9824 10
URP 0.8989 10
PMF 0.8719 30

1 Notice, however, that it is still possible to perform an indirect measurement of
the non-triviality and correctness of the discussed approaches by measuring the
gain in recommendation accuracy wrt. the Top-Pop recommendation algorithm.

2 With an abuse of notation, we denote the length of the recommendation list by
N in the following plots
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The results about Recall and Precision are given in Figure 4.1, where the
respective number of latent factors is given in brackets. Considering user satis-
faction, almost all the probabilistic approaches fall between the two baselines.
Pure-SVD outperforms significantly the best probabilistic performers, namely
URP and PMF. The trend for probabilistic approaches does not change con-
sidering Recall and Precision, but in this case not even the Pure-SVD is able to
outperform Top-Pop, which exhibits a consistent gain over all the considered
competitors.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

U
S-

R
ec

al
l

N

US-Recall Ranking Method: Expected Value Prediction

Item-Avg
Top-Pop

Pure-SVD(50)
PMF(30)

MMM(20)
URP(10)

GPLSA(70)
UCM(10)

(a) US-Recall

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
U

S-
Pr

ec
is

io
n

N

US-Precision Ranking Method: Expected Value Prediction

Item-Avg
Top-Pop

Pure-SVD(50)
PMF(30)

MMM(20)
URP(10)

GPLSA(70)
UCM(10)

(b) US-Precision

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

R
ec

al
l

N

Recall Ranking Method: Expected Value Prediction

Item-Avg
Top-Pop

Pure-SVD(50)
PMF(30)

MMM(20)
URP(10)

GPLSA(70)
UCM(10)

(c) Recall

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Pr
ec

is
io

n

N

Precision Ranking Method: Expected Value Prediction

Item-Avg
Top-Pop

Pure-SVD(50)
PMF(30)

MMM(20)
URP(10)

GPLSA(70)
UCM(10)

(d) Precision

Fig. 4.1. Recommendation Accuracy achieved by probabilistic approaches consid-
ering E[r|u, i] as ranking function

A first summary can be obtained as follows. First, we can confirm that
there is no monotonic relationship between RMSE and recommendation ac-
curacy. All the approaches tend to have a non-deterministic behavior, and
even the best approaches provide unstable results depending on the size N .
Further, ranking by the expected value exhibits unacceptable performance on
the probabilistic approaches, which reveal totally inadequate in this perspec-
tive. More in general, any variant of this approach that we do not report here
for space limitations) does not substantially change the results.
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4.2.5 Item Selection and Relevance

Things radically change when item occurrence is taken into consideration. Fig-
ure 4.2 show the recommendation accuracy achieved by probabilistic models
which employ Item-Selection (LDA[32],PLSA[52],UCM and URP) and Item-
Selection&Relevance (UCM and URP). The LDA approach significantly out-
performs all the available approaches. Surprisingly, UCM is the runner-up, as
opposed to the behavior exhibited with the expected value ranking. it is clear
that the component P (i|z) here plays a crucial role, that is further strength-
ened by the relevance ranking component.
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Fig. 4.2. Recommendation Accuracy achieved by probabilistic approaches consid-
ering P (i|u) or P (i, r > 3|u) as ranking functions

Also surprising is the behavior of URP, which still achieves a satisfactory
performance compared to Pure-SVD. However, it does not compare to LDA.
The reason can be found in the fact that the inference procedure in the LDA
directly estimates P (i|z), whereas such a component in the URP model is
approximated a-posteriori. This is also proved by the unsatisfactory perfor-
mance of the MMM approach which falls short of the expectations. Since the
UCM is an extension of the MMM, it is clear that explicitly inferring the �
component in the model helps in achieving a stronger accuracy.
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The PLSA model also seems to su↵er from from the overfitting issues, as
it is not able to reach the performances of the Pure-SVD. On the other side,
if user satisfaction is not taken into account, the PLSA outperforms the Pure-
SVD, as it follows the general trend of the Top-Pop model. More in general,
models equipped with Item-Selection&Relevance outperform their respective
version which make recommendation basing only on the Item-Selection com-
ponent.

We also perform an additional test to evaluate the impact of the size of the
random sample in the testing methodology employed to measure user satisfac-
tion. Results achieved by LDA,Pure-SVD, UCM/URP (Selection&Relevance
Ranking) are given in Figure 4.3. Probabilistic approaches outperform sys-
tematically Pure-SVD for each value of D.
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Fig. 4.3. Recommendation Accuracy achieved by probabilistic approaches consid-
ering K=20 and varying the dimension of the random Sample

4.2.6 Discussion

There are two main considerations in the above figures. One is that rating
prediction fails in providing accurate recommendations. The second observa-
tion is the unexpected strong impact of the item selection component, when
properly estimated.

In an attempt to carefully analyze the rating prediction pitfalls, we can
plot in Figure 4.4(a) the contribution to the RMSE in each single evaluation
in V by the probabilistic techniques under consideration. Item-Avg acts as
baseline here. While predictions are accurate for values 3 � 4, they result
rather inadeguate for border values, namely 1, 2 and 5. This is mainly due
to the nature of RMSE, which penalizes larger errors. This clearly supports
the thesis that low RMSE does not necessarily induces good accuracy, as the
latter is mainly influenced by the items in class 5 (where the approaches are
more prone to fail). It is clear that a better tuning of the ranking function
should take this component into account.
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Fig. 4.4. Analysis of Prediction Accuracy

Also, by looking at the distribution of the rating values, we can see that
the dataset is biased towards the mean values, and more in general the low
rating values represent a lower percentage. This explains, on one side, the
tendency of the expected value to flatten towards a mean value (and hence
to fail in providing an accurate prediction). On the other side, the lack of
low-rating values provides an interpretation of the dataset as a Like/DisLike
matrix, for which the item selection tuning provides a better modeling.

By the way, the rating information, combined with item selection, provides
a marginal improvement, as testified by Figure 4.2.6. Here, a closer look at
the UCM approach is taken, by plotting three curves relative to the three
di↵erent approaches to item ranking. Large recommendation lists tend to be
a↵ected by the rating prediction.
Our experiments have shown that item selection component plays the most
important role in recommendation ranking. However, better results can be
achieved by considering also a rating prediction component, as we will show
in the next section.

Fig. 4.5. Comparison of Di↵erent Ranking Function on UCM(10)
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4.3 Modeling Item Selection and Relevance

A key role in the process of generating accurate recommendation lists is played
by the schemes with which to rank items candidate for recommendation. In
the previous section, we provided a comparative analysis of three possible such
schemes, and studies their impact in the accuracy of the recommendation list.
The results of such study can summarized as follows.

• Lower RMSE values do not necessarily imply improvements in recommen-
dation accuracy. Cutting-edge probabilistic approaches, such as PMF [44],
equipped with expected-value (pu

i = E[R|u, i]) item-ranking schemes have
been shown to perform poorly in terms of recommendation accuracy.

• Probabilistic CF methods were shown to outperform state-of-the-art com-
petitors in terms of recommendation accuracy when equipped with the
item selection scheme pu

i = P (i|u) =
P

z P (z|u)P (i|z).

In the light of foregoing considerations, in this section we propose a new
probabilistic approach to recommendation for explicit preference data, re-
ferred to as the Bayesian User-Community Model (BUCM), which is based
on a mix of item selection and relevance ranking. BUCM introduces a genera-
tive process, which takes into account both item selection and rating emission
to gather into communities those users who experience the same items and
tend to adopt the same rating pattern. Each user is modeled as a random mix-
ture of topics, where each topic is characterized by a distribution modeling
the popularity of items within the respective user-community and by a dis-
tribution over preference values for those items. The proposed model can be
associated with a novel item-relevance ranking criterion, which is based both
on item popularity and user’s preferences. A key di↵erence with respect to con-
ventional probabilistic approaches to recommendation is that Bayesian UCM
allows free-prediction and is, thus, more suitable for the estimation of selec-
tion and preference parameters. While most of the conventional probabilistic
techniques focus on forced-prediction, which explicitly requires to predict the
preference value for each observed user-item pair, the goal of Bayesian UCM
is to model item selection and rating prediction simultaneously.

4.3.1 The Bayesian User Community Model

Bayesian UCM relies on a generative process, which takes into account both
item selection and rating emission. Each user is modeled as a random mixture
of topics, where the individual topic is then characterized both by a distribu-
tion modeling item-popularity within the considered user-community and by
a distribution over preference values for those items.

The main di↵erence between the proposed Bayesian UCM model and the
state-of-art probabilistic approaches to CF is the former is a free-prediction
model. In fact, while most of the models accord with a missing-value per-
spective and, hence, are focused on the prediction of a preference value ru

i
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given the pair hu, ii, the Bayesian UCM model tries to also infer the tendency
of a user to experience some items over others independent of her/his rating
values. The Bayesian UCM model assumes that this tendency is influenced
by implicit and hidden factors which characterize each user community. To
elucidate, a user may be pushed to experience a certain item because she/he
belongs to a community in which the category of that item occurs with an
high probability, although this has no impact on the rating assigned to the
aforesaid item category. The probability of observing an item is independent
from the rating assigned, given the state of the latent variables. Moreover,
free-prediction models are focused on both the estimation of a rating behav-
ior and the popularity of an item within each user community. An item which
has received high ratings and has been experienced few times by the users
belonging to the considered community could not have better chances of be-
ing recommended with respect to a popular item within the same community,
which has received only ratings around the average.

The generative process behind the Bayesian UCM can be summarized as
follows:

1. For each user u 2 U sample user community-mixture components
#u ⇠ Dir(↵)

2. For each topic (or equivalently user community) z = {1, · · · ,K},
a) Sample item selection components 'z ⇠ Dir(�)
b) Sample rating probabilities "z ⇠ Dir(�)

3. Sample the number of items for the user u, Nu / Poisson(K)
4. For n = 1 to Nu

a) Choose a user attitude zu,n ⇠ Discrete(#u)
b) Choose an item in ⇠ Multi('|zu,n)
c) Generate a rating value for the chosen item according to the dis-

tribution P (r|"zu,n,in)

The corresponding graphical model is illustrated in Figure 4.6

4.3.2 Parameter Estimation

We here introduce inference and parameter estimation within the devised
Bayesian UCM. The notation used in our discussion is summarized in Ta-
ble 4.3.2. Given the hyperparameters ↵, � and �, the joint distribution of the
data R, the user-topic mixtures ⇥, the item-selection components �, the rat-
ing probabilities � and the observation-topic assignments Z, can be computed
as:

P (R, Z,⇥,�,� |↵,�,�) = P (R|Z,�,� )P (Z|⇥) · P (⇥|↵)P (�|�)P (� |�)
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Fig. 4.6. Bayesian User Community Model
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The complete data likelihood can be obtained by integrating over ⇥, � and
� :

P (R, Z|↵,�,�) =

Z Z Z
P (R|Z,�,� )P (Z|⇥)P (⇥|↵)P (�|�)P (� |�)d⇥d�d�

which, due to the conditional independence R ?? ↵|Z, can be factored as:

P (R, Z|↵,�,�) =

Z
P (Z|⇥)P (⇥|↵)d⇥

Z Z
P (R|Z,�,� )P (�|�)P (� |�)d�d�

By rearranging the components and grouping the conjugate distributions, the
complete data likelihood can be expressed as:

P (R, Z|↵,�,�) =
MY

u=1

1

�(↵)

Z KY

k=1

#
nk
u+↵k�1

u,k d#u

NY

i=1

1

�(�)�(�)

Z KY

k=1

'
nk
i +�i�1

i,k d'k

·
Z KY

k=1

VY

r=1

✏
nk
i,r+�r�1

k,i,r d"k,i

The latter is the starting point for the inference of all the topics underlying
the generative process, as the conditioned distribution on Z can be written
as:

P (Z|R,↵,�,�) =
P (Z,R|↵,�,�)

P (R|↵,�,�)

This formula is however intractable, mainly because the computation of the
denominator requires a summation over an exponential number of terms.
Gibbs Sampling addresses this problem by defining a Markov chain, in which
at each step inference can be accomplished by exploiting the full conditional
P (Zn|Z¬n,R,↵,�,�). In the latter, n denotes a single rating observation
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n = {u, i, ru
i }, Zn is the cell of the matrix Z which corresponds to this ob-

servation, and Z¬n denotes the remaining topic assignments. The chain is
hence defined by iterating over all the available n states. The Gibbs Sam-
pling algorithm estimates the probability of assigning the topic k to the n-th
observation, given the assignment corresponding to all the other rating obser-
vations:

p(Zn = k|Z¬n,R) / nk
u + ↵k � 1

PK
k0=1(n

k0
u + ↵k0) � 1

· nk
i + �i � 1

PN
i0=1

�
nk

i0 + �i0
�
� 1

·
nk

i,r + �r � 1
PV

r0=1(n
k
r0,i + �r0) � 1

(4.4)

Given the state of the markov chain, denoted my M = R, Z, where Z encodes
the topic assignment for each pair hu, ii 2 R, we can obtain the multinomial
parameters � and ⇥ and � noticing that, by algebraic manipulations, they re-
duce to Dirichlet distributions and can hence been estimated as the underlying
expectations [63]:

#u,k =
nk

u + ↵k

Nu +
PK

k=1 ↵k

(4.5)

'i,k =
nk

i + �iPN
i=1 n

k
i + �i

(4.6)

✏k,i,r =
nk

ir + �rPV
r0=1 n

k
ir0 + �r0

(4.7)

Algorithm 3 The Gibbs-sampling procedure for parameter estimation within
Bayesian UCM
Require: The sets U = {u1, . . . , uM} and I = {i1, . . . , iN}

the rating matrix R,the number of latent topics K, initial hyperparameters ↵, � and �.

1: initializeTopicAssignments() {Randomly assign topics}
2: iteration 0
3: converged false
4: while iteration < nMaxIterations and ¬converged do
5: for all hu, i, ri 2 R do
6: z0

u,i  sampleTopic(u, i, r) {According to Eq. 5.10};
7: update counts using the new topic for the observation hu, i, ri
8: end for
9: updateHyperParams()
10: if (iteration > burnin) and (iteration%sampleLag = 0) then
11: sampleUserTopicsMixingProbabilities() {According to Eq. 5.17 };
12: sampleItemSelectionProbabilities() {According to Eq. 5.18 };
13: sampleRatingProbabilities() {According to Eq. 5.19 };
14: converged checkConvergence()
15: end if
16: iteration iteration + 1
17: end while
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SYMBOL DESCRIPTION
M #Users
N # Items
R M ⇥N Rating Matrix
K # topics/user communities
↵ K- vector,

Dirichlet priors on user communities
� N -vector,

Dirichlet priors on items
� V -vector,

Dirichlet priors on rating values
⇥ matrix of parameters #u

#u mixing proportion of communities for the user u
z topic variable
� matrix of parameters 'k

'k mixing proportion of items for the community k
Nu # preference observations for user u
� matrix of parameters "k

"k vector of rating distributions "k,i for topic k
"k,i distribution over rating values for the item i

and the community k

nk
i # times that the item i has been assigned to topic k

nk
i,r # times that the rating r has been assigned

to the item i when the topic is k
nk
u # times an item evaluated by u

has been assigned to topic k
zn topic assignment for the observation n = hu, ii
z¬n topic assignment for all other observations except

the current observation n = hu, ii
Table 4.1. Summary of notation

Algorithm 6 shows the pseudocode for the inference phase: the Gibbs Sam-
pling procedure starts with a random initialization; then topic assignments are
estimated till convergence or till the number of performed iteration reaches
the maximum value. Hyperparameters can be updated employing iterative
approximation (see [58] for further details). The convergence criteria checks
whether the increase in likelihood (measured on held-out data) is above a
predefined threshold.

4.3.3 Experimental Evaluation

In this section we comparatively evaluate the recommendation performance
of Bayesian UCM. The experiments are aimed at assessing the quality of the
proposed model in two di↵erent perspective:
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• From the forced-prediction viewpoint, we show that the predictive accuracy
(i.e., the prediction error) exposed by the Bayesian UCM over unobserved
ratings is comparable to other state-of-the art probabilistic approaches.

• Conversely, from the free-prediction viewpoint, we show that Bayesian
UCM is the top-notch approach in term of recommendation accuracy, i.e.,
the accuracy of the recommendation list generated.

According to the empirical results originally found in [50] and subsequently
confirmed in [64], there is no monotonic relationship between prediction error
(or, equivalently, accuracy) and recommendation accuracy. Therefore, a low
prediction error does not necessarily imply a satisfactory recommendation
performance. The latter is better evaluated in terms of the accuracy of the
recommendation lists provided to the users. Therefore, the findings in this
section will state the superiority of the Bayesian UCM in providing accurate
recommendations.

We perform the above evaluations on two reference benchmark data sets,
namely MovieLens-1M and a sample of Netflix data. The main features of
these datasets are summarized in the table below:

Also, notice that the co-clustering techniques dis-
cussed in the previous section, like the Flexible Mixture

for user communities and for item categories. In our
case instead, each user community is characterized by
its own partition over the item-set with a flexible num-
ber of topics. In addition, co-clustering models only

Nextflix MovieLens
Training Set Test Set Training Set Test Set

Users 435,656 389,305 6,040 6,040
Items 2,961 2,961 3,706 3,308

Ratings 5,714,427 3,773,781 800,168 200,041
Avg ratings (user) 13.12 9.69 132,47 33,119
Avg ratings (item) 1929.90 1274.50 215.91 60.47
Sparseness Coe↵ 0,9956 0,9643

As far as Predictive Accuracy is concerned, Bayesian UCM provides the
following estimation for user preference:

P (R = r|u, i) =
X

z

P (z|#u)P (r|z, i) =
X

k

#u,k✏k,i,r

We evaluate the RMSE of Bayesian UCM over the MovieLens data set
and compare its predictive accuracy against a selection of state-of-art prob-
abilistic competitors, namely, Mixture of Multinomials [30], G-PLSA [24],
URP-Boosted [38], URP-Gibbs [61], UCM [62] and PMF [44]. Results are
summarized in Table 4.2, wherein column #Topics indicates the number of
latent factors taken into account within each individual probabilistic model.
The minimum RMSE value is highlighted in bold.

Empirical evidence reveals that the predictive accuracy of Bayesian UCM
is lower than that of G-PLSA, URP-Boosted, URP-Gibbs and PMF. This is
not a surprising finding, since the generative process of the aforesaid competi-
tors is focused on the prediction accuracy. By looking at the results in Ta-
ble 4.2, Bayesian UCM is superior to both the variants of UCM. In particu-
lar, Bayesian UCM outperforms significantly the UCM variant equipped with
multinomial rating distribution.
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Approach Best RMSE #Topics
Mixture of Multinomials 0.9328 4

G-PLSA 0.9241 10
URP-Boosted (Variational) 0.9235 4

URP-Gibbs 0.8997 9
PMF 0.8655 10

UCM (Multinomial) 0.9638 4
UCM (Gaussian) 0.9359 2
Bayesian UCM 0.9263 30

Table 4.2. Summary of predictive competitor accuracy over the Movielens dataset

It is worth providing an insight into the di↵erence in predictive accuracy
between URP-Gibbs and Bayesian UCM, since both are Bayesian probabilistic
approaches based on a Gibbs sampling procedure for approximated model in-
ference. The observed RMSE discrepancy is essentially due to the nature of the
underlying mathematical models. Indeed, URP-Gibbs is a forced-prediction
approach meant to increase the likelihood of those communities, in which a
similar rating behavior is observed across the respective users. This is clearly
preferable for predictive accuracy. Instead, Bayesian UCM is a free-prediction
approach, that considers not only the rating behavior but also the frequency
of item selection in the identification of user communities. As a matter of
fact, the generic community gathers those users who tend to assign similar
ratings to items that are frequently experienced within the same community.
Therefore, as it has been already anticipated, an item which has received high
ratings from few users of a community could not have better chances of be-
ing recommended with respect to a popular item within the same community,
which has received only ratings around the average. In other words, combining
rating behavior (which is the only component in forced-prediction) with item
selection for free prediction tends to have a negative impact on the resulting
predictive accuracy.

As already discussed, the results are significantly di↵erent when recom-
mendation accuracy is taken into account. Here, Bayesian UCM is compared
against a selection of heterogeneous competitors, namely Top-Pop and Item-
Avg [50], Pure-SVD [50], LDA [32], PLSA [28], URP-Gibbs and UCM. Item
ranking in the context of the aforesaid probabilistic approaches, apart from
UCM, exclusively relies on item selection. The UCM is the only competitor
that can combine both item selection and rating emission for item ranking,
as it directly supports a free-prediction approach. Also, It is worth noticing
that, though being the top-performer in terms of predictive accuracy, PMF is
not considered here, because previous tests performed in [64] have shown that
its recommendation accuracy is low. The results are summarized in Fig. 4.7
in which Bayesian UCM is referred to as BUCM for convenience. The latter
achieves the best performance against all the competitors, and in general the
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two datasets confirm the same trend. 3 Notice that, the performances of both
Pure-SVD and PLSA over the Netflix data set are very close to Top-Pop.

These plots show the results achieved by the selected competitors over the
MovieLens data set, when the size of their recommendation lists varies from
1 to 20. It is evident that all probabilistic approaches, with the only excep-
tion of PLSA, outperform both the baseline methods, namely Top-Pop and
Item-Avg, as well as Pure-SVD. This confirms the e↵ectiveness of probabilis-
tic modeling: Bayesian UCM outperforms all competitors both in (standard
and US) precision and recall.
The gain in accuracy with respect to LDA is more significant when US-
precision and US-recall are taken into account (recall 0.5 vs 0.468 when
k = 20), mainly because in this test item ranking benefits from the com-
ponent of predicted relevance.
Notably, the discrepancy between the recommendation accuracy of Bayesian
UCM and UCM is consistently large. This confirms the advantages of the
Bayesian approach. Also, it is worth noticing how URP, though exhibiting
a higher predictive accuracy than Bayesian UCM, poorly performs in terms
of recommendation accuracy with respect to the latter. Such an empirical
evidence confirms the importance of the selection component in the recom-
mendation process.

The US precision and recall of Bayesian UCM are further (comparatively)
investigated over the Movielens data set, when the size of the random sam-
ple of candidate recommendations is varied in the testing protocol from 250
to 1000. The results shown in Figure 4.8 prove the superiority of Bayesian
UCM. Finally, it is important to evaluate whether the Bayesian UCM in-
troduced a significant performance degradation. In principle, the increase in
recommendation accuracy comes at a cost of a more complex model which
in turn provides a more complex inference procedure. In fig. 4.9 we compare
the execution times of the Bayesian UCM to those of the URP model. The
two models exhibit a similar generative process, the di↵erence lying in the
explicit modeling (and inference) of the item selection component. The latter
di↵erence however, only yields a reasonable overhead.

3 We omitted some models on NetFlix data to ease readability of the overlapping
curves.
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Fig. 4.7. Precision and recall over the MovieLens and Netflix data sets
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Hierarchical Co-clustering of Users’ Preference
Data
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5.1 Introduction

Collaborative filtering data exhibit global patterns (i.e. tendencies of some
products of being ‘universally’ appreciated) as well significative local patterns
(i.e tendency of users belonging to a specific community to express similar
preference indicators on the same items). Local preferences a↵ect the per-
formance of RS especially when the number of users and items grows, and
their importance has been acknowledged by the current CF literature [65].
This schema, in which similarity coe�cients between users are computed by
taking into account the item-category, allows two users to agree perfectly on
one topic while disagree completely on one other.

Typically, local patterns can be better detected by means of co-clustering
approaches [55, 35, 37, 66, 67, 68]. Unlike traditional CF techniques, which
try to discover similarities between users or items using clustering techniques
or matrix decomposition methods, co-clustering approaches aim to partition
data into homogenous blocks enforcing a simultaneous clustering on both the
dimensions of the preference data. This highlights the mutual relationships
between users and items: similar users are detected by taking into account
their ratings on similar items, which in turn are identified considering the
ratings assigned by similar users.

However, a main weakness of the current approaches to co-clustering is
the static structure enforced by fixed row/column blocks where both users
and items have to fit. For example, the movies “Titanic” and “Avatar”, are
typically associated with di↵erent categories: the former is about romance,
whereas the latter can be considered an action, sci-fi movie. Assuming a global
and unique partition on the item-set, we can expect to see the movies into
di↵erent partitions. However, that structure would fail to recognize a group
of users who are really into the movies of James Cameron (who is the director
for both the movies). Analogously, any method associating the two movies
with the same partition would fail in identifying the di↵erence in genre.

The issue in the previous example is that di↵erent user groups can infer
di↵erent interpretations of item categories. A more flexible structure, where
item categories are conditioned by user categories, would better model such
situation, by e.g., allowing “Titanic” and “Avatar” to be observed in the same
item category within the “Cameron” group, and in di↵erent categories outside.
Notice that traditional clustering approaches are not a↵ected by this problem,
as they only concentrate on local patterns in one dimension of the rating
matrix. The drawback, however, is that they ignore structural information in
the other dimension, which by the converse can be exploited both for more
accurate prediction and user profiling.

In this chapter we present and discuss probabilistic hierarchical approaches
which are able to discover both global and local trends in data, allowing dif-
ferent user communities to show di↵erent preference values on distinct groups
of items. The underlying structure di↵ers from the previously proposed co-
clustering approaches to CF data because it does not assume the existence of
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a unique partition on the item-set: each user community is characterized by
having its own set of topics involving items and user preferences.

5.2 A 2-phase Probabilistic Hierarchical Co-clustering
Approach

The starting point in our approach is the observation that di↵erent com-
munities can infer di↵erent evaluations of the same item. Specific groups of
users tend to be co-related according to di↵erent subsets of features. However,
though semantically-related, two users with (possibly several) di↵erences in
their item ratings would hardly be recognized as actually similar by any globa
l model imposing a fixed structure for item categories. Individual user can
be intended as a mixture of latent concepts, each of which being a suitable
collection of characterizing features. Accordingly, two users are considered
as actually similar if both represent at least a same concept. Viewed in this
perspective, the identification of local patterns, i.e. of proper combinations of
users and items, would lead to the discovery of natural clusters in the data,
without incurring into the aforesaid di�culties. Consider the toy example in
Figure 5.1, where homogenous blocks exhibiting similar rating patterns are
highlighted. There are 7 users clustered into two main communities. Com-
munity 1 is characterized by 3 main topics (with groups d11 = {i1, i2, i3},
d12 = {i4, i5, i6, i7} and d13 = {i8, i9, i10}), whereas community 2 includes 4
main topics (with groups d21 = {i1, i4, i5}, d22 = {i2, i3, i7}, d23 = {i6, i10}
and d24 = {i8, i9}). The novelty is that di↵erent communities group the same
items di↵erently. This introduces a topic hierarchy which in principle increases
the semantic power of the overall model.

Fig. 5.1. Example of Local Pattern in CF Data

The generative model for the proposed scheme can be summarized as fol-
lows:
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1. Select a user community ck according to the probability distribution
⇡k;

2. select a user u with probability Pk(u) = P (u|ck) and an item i with
probability Pk(i) = P (i|ck);

3. Choose a topic dh with probability P (dh|i, ck)P (dh|u, ck);
4. produce the rating r with probability �h(r) = P (r|dh).

Formally, we can assume that the probability of a triplet hu, i, ri is

P (u, i, r) =
KX

k=1

⇡kPk(u)Pk(i)P (r|i, u, ck) (5.1)

where the latter correspond to a “local” probabilistic latent semantic analysis,
provided that the user communities are known:

P (r|i, u, ck) =
HkX

h=1

�h(r)Pk(dh|i)Pk(dh|u) (5.2)

The idea, in the above formula, is learning latent communities from the
data as well as a collection of characterizing concepts for each community.
In particular, each rating can be seen as the outcome of a mixture of vari-
ous concepts, where some concepts are more or less probable according to the
cluster where the user fits. Hence, a data tuple can be thought as the outcome
of the following generative model: firstly pick a distribution over latent clus-
ters; next, choose the concepts associated and finally generate the individual
values. Also, notice the role of the prior probabilities (⇡k) in the generative
process. In practice, they model the assumption that observing a pair hu, ii is
not totally random, but it is instead the result of the grouping of users into
communities.

Due to the strong coupling between the user community latent variable
c and the one corresponding to local patterns d, the exact inference for the
model characterized by the joint probability in Eq. 5.1, which would maximize
both the user community cohesion and the local topic similarity, is di�cult
to solve analytically. Hence, we adopt an approximated solution, based on a
hard clustering policy for user communities, such that the inference of the
parameters can be performed e�ciently without compromising the generative
semantic and the flexibility of the model.

We devise a hierarchical approach to the estimation of the components
involved into Eq. 5.1. In practice, our approach consists in a preliminary
discovery structure, where user communities are detected. Next, for each user
community, a topic model is investigated, and the most prominent topics are
discovered and properly modeled.
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The general scheme of the algorithm is shown in Algorithm 4 and could be
summarized as follows: given a rating matrix R, discover k user communities;
then, for each of those communities, according to an hard clustering approach,
select from U a subset of users that belong to the considered community and
generate a set of Hk topic models for their ratings.

Algorithm 4 HMbuild
Require: The sets U = {u1, . . . , uM} and I = {i1, . . . , iN}

and the corresponding rating matrix R;
Ensure: a set C = {c1, . . . cK} of user community models

and a subset Dk = {d(k)1 , . . . , d
(k)
Hk

} for each user community k
1: C  GenerateUserCommunities(R);
2: for all community model ck, k = 1, . . . ,K do

3: let Uk = {u 2 U|p(ck|u) � p(cj |u), j = 1, . . . ,K}, and Rk the corresponding
submatrix of R;

4: Dk  GenerateTopicModels(Rk );
5: end for

The hierarchical model for users’ ratings consists in a set of K user commu-
nity models and for each of them a set of Hk topic models which represent local
preference patterns for the member of the considered community. The user
community level specifies the probabilities �uk = P (ck|u) with k = 1, . . . ,K,
which measure how much the ratings given by the user u fit the preference
behavior underlined by each of the communities. For example, the following
user profile ( “The Good, the Bad and the Ugly”, 5), (“Once Upon a Time in
the West”,5) would presumably fits better the patterns of the“western” user
community rather then the ones typical of the “romance” community.

The probability of observing the rating r for the pair (u, i) can be computed
considering two schema, summarized in Algorithm 5:

• Hard-Clustering Prediction:

P (r|i, u) =
HkX

h=1

�h(r)Pk(dh|i)Pk(dh|u) (5.3)

where k = argmax
j=1,··· ,K

�uj is the cluster that better represents the previously

observed rating of the user u. This prediction rule relies exclusively on the
information given by the topic model corresponding to the user’s cluster;
thus it might produce low quality predictions if the user’s community is
not identified with enough confidence.

• Soft-Clustering Prediction:

P (r|i, u) =
X

k

�uk · P̃ (r|i, u, ck) (5.4)
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where the probabilities �uk act as mixture weights and the distribution
over rating values corresponding to the community ck is computed taking
into account both global and local patterns:

P̃ (r|i, u, ck) =

⇢
P (r|i, u, ck) if u 2 Uk

P (r|i, ck) otherwise
(5.5)

Note that if u 2 Uk then �uk is the dominant mixing weight and the
distribution over ratings is refined by considering the corresponding set
of topic models; in the opposite case the distribution over ratings can be
estimated by considering the probability of observing each rating given an
item within the considered community.

Algorithm 5 HMcomputeRatingsProbability
Require: a pair hu, ii
Ensure: a probability P (R = r|u, i) for each rating value r
1: let c = argmax

j=1,··· ,K
p(ck|u)

2: for all r = 1 to V do

3: if Hard-Clustering then

4: P (R = r|u, i) =
PHk

h=1 �h(r)Pk(dh|i)Pk(dh|u)
5: else

6: for all community model ck, k = 1, . . . ,K do

7: if k = c then

8: prob  Dk .getRatingProbability(r , u, i)
9: else

10: prob  ck.getRatingProbability(r, i)
11: end if

12: P (R = r|u, i) P (R = r|u, i) + �uk ⇥ prob
13: end for

14: end if

15: end for

5.2.1 Modeling User Communities.

The discovery of the communities is accomplished essentially via a model-
fitting procedure based on a maximum-likelihood estimation. In practice, we
assume that the rating matrix R is modelled as a set of user vectors, where
each vector is characterized by the preferences of the user. Formally, this
means that we can model the probability P (r, i|u) for each triplet hu, i, ri.

The corresponding probability of observing a user hence corresponds to
the joint probability of observing all his ratings, that is

P (u|⇥,R) =
NY

i=1

VY

r=1

(P (i|⇥) · P (r|i,⇥))�(u,i,r)



5.2 A 2-phase Probabilistic Hierarchical Co-clustering Approach 81

where

�(u, i, r) =

⇢
1 if ru

i = r
0 otherwise

This modeling allows us to adopt a maximum likelihood approach to the
estimation of the ⇥ parameters characterizing the P (i|⇥) and P (r|i,⇥). For
example, we can characterize P (i|⇥) via a Bernoulli pdf parameterized by ↵i,
and P (r|i,⇥) as a multinomial (with factors �ri). Within a ML framework,
the estimation of the above probabilities would produce

↵i =

PM
u=1

PV
r=1 �(u, i, r)PM

u=1

PN
i0=1

PV
r=1 �(u, i

0, r)
�ri =

PM
u=1 �(u, i, r)PM

u=1

PV
r0=1 �(u, i, r

0)
(5.6)

A first e↵ect of the above estimates is to adjust the soft-clustering predic-
tion formula Eq. 5.5 as

P (r|i, u) = �
X

k

�uk · P (r|u, i, ck) + (1 � �)�ri

where � is a weighting factor proportional to the number of ratings |I(u)|. In
practice, the estimate �ri provides a higher contribution when the number of
ratings given by a user is low (and hence it acts as a prior).

The component P (r, u, i, ck) and the posteriors �uk can be estimated by
assuming the existence of a set of communities, where each community models
specific user attitudes. In particular, the probability of observing a user is
given by the mixture

P (u|C) =
KX

j=1

P (u|cj)⇡j =
KX

j=1

NY

i=1

VY

r=1

⇡j (↵ij · �rij)
�(u,i,r)

where a single community cj is characterized by the parameters ↵ij = P (i|cj)
and �rij = P (r|cj , i). The expected log likelihood can hence be defined as:

Q(R;� ) =
MX

u=1

KX

j=1

�uj ·
"

NX

i=1

VX

r=1

�(u, i, r) · (log↵ij + log �rij) + log ⇡j

#

Estimating the parameters by means of an EM procedure yields the following
equations:

E-Step:

�uj = P (cj |u) =
P (u|cj) · ⇡jPK

j0=1 P (u|cj0) · ⇡j0

M-Step:
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⇡j =

PM
u=1 �uj

M

↵ij =

PM
u=1 �uj

PV
r=1 �(u, i, r)PM

u=1 �uj

PN
i0=1

PV
r=1 �(u, i

0, r)
�rij =

PM
u=1 �uj · �(u, i, r)PM

u=1

PV
r0=1 �uj · �(u, i, r0)

A further advantage of the above formalization is the possibility of ex-
ploiting the above model for prediction purposes as well as for for structure
discovery. A prediction function in fact can be defined as

r̂u
i = E[R|u, i] =

VX

r=1

r ·
X

k

�rik · �uk (5.7)

and used as a baseline for the special case described in step 10 of algorithm 2.
We shall see in the following that the resulting baseline function is even com-
petitive with state-of-the art approaches. approach The above formalization
also allows an alternative gaussian model

P (r|i, cj) = N (vr
u;µij ,�ij) =

1p
2⇡�ij

exp

"
� (vr

u � µij)
2

2�2
ij

#

where vr
u is the Z-score normalization of r with regards to user u:

vr
u =

r � µu

�u

and the means and the variances are estimated as proposed in [24], using a
smoothing schema:

µu =

P
i2Iu

(ru
i + qµ̄)

|I(u)| + q
�u =

P
i2Iu

(ru
i + qµ̄)

|I(u)| + q

The rating prediction for the pair (u, i) can be hence computed as:

r̂u
i = µu + �u

 
KX

k=1

�uk · µik

!
(5.8)

Assuming a gaussian model for P (R = r|✓j , i), the likelihood takes the
following form:

ll(⇥|U) =
MX

u=1

KX

j=1

�uj

"
log ⇡j +

NX

i=1

VX

r=1

�(u, i, r)·

 
log↵ij �

1

2
log 2⇡ � 1

2
log �ij �

(v � µij)2

2�2
ij

!#

and the M-Steps can be rewritten as:

µik =

PM
u

PV
r �uk · �(u, i, r) · vr

uPM
u

PV
r �uk�(u, i, r)

�2
ik =

PM
u=1

PV
r �uk · �(u, i, r)(vr

u � µik)2
PM

u=1

PV
r �uk�(u, i, r)
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5.2.2 Local Community Patterns via Topic Analysis.

The approach to the discovery of local community patterns is based again
on a EM procedure which aims at maximizing the likelihood of the Rk =
{hr, u, ii|P (ck|u) � P (cj |u), j = 1, . . . ,K} rating matrix associated to a com-
munity model ck. In practice, we can define the expected log-likelihood

Q(Rk; ) =
MX

u

NX

i

VX

r

HkX

h

 k(h; r, i, u)·[log �h(r) + logPk(dh|i) + logPk(dh|u)]

where  k(h; r, i, u) = P (dh|r, i, u, ck). The EM algorithm can hence be defined
in terms of the following formulas:

• E-Step:

 k(h; r, i, u) =
�h(r)Pk(dh|i)Pk(dh|u)P
j �j(r)Pk(dj |i)Pk(dj |u)

• M-Steps:

Pk(dh|i) =

PM
u

PV
r  k(h; r, i, u)

P
h0
PM

u

PV
r  k(h0; r, i, u)

Pk(dh|u) =

PN
i

PV
r  k(h; r, i, u)

P
h0
PN

i

PV
r  k(h0; r, i, u)

P (r|dh) = N (r;µdh ,�dh)

where

µdh =

PM
u

PN
i

PV
r  k(h; r, i, u)�(u, i, r) · r

PM
u

PN
i

PV
r  k(h; r, i, u)�(u, i, r)

�dh =

PM
u

PN
i

PV
r  k(h; r, i, u)�(u, i, r) · (r � µdh)2

PM
u

PV
r

PN
i  k(h; r, i, u)�(u, i, r)

5.2.3 Computational aspects.

Once the parameters of the hierarchical model have been estimated, the on-
line complexity for computing predictions scales with the number of user com-
munities and corresponding topics, while the o↵-line phase requires more re-
sources. In fact, the complexity of the learning phase is determined by the
complexity of discovering user communities, which is linear with the number
of observed ratings.

To avoid overfitting, which could deteriorate the predictive skills of the
models on unobserved data we adopt an Early Stopping criterion: a fraction
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of the data has been retained as held-out dataset and the models have been
trained on the remaining part of the data until the accuracy on the held-out
data begins to increase.

The estimation of the correct number of clusters is accomplished by re-
sorting to a Cross-Validation approach based on a penalized Log-Likelihood
principle, as described below. Given a set D of observations (in our case, the
rating matrix R and its subsets Rk), we aim at finding the model parameters
⇥ maximizing the probability P (⇥|D). In logarithmic terms,

log(P (⇥|D)) = logP (D|⇥) + logP (⇥)

= log(L(⇥|D)) + logP (⇥)

The idea in the above formula is to counterbalance two opposing requirements:
the fitting of the data and the complexity of the model. By modeling P (⇥)
can be modeled as an exponential distribution w.r.t the size of ⇥, we can
rewrite the above as

log(P (⇥|D)) ⇡ log(L(⇥|D)) �m log n

where m is the size of ⇥ (i.e., the number of model parameters), and n is the
size of D. The evaluation strategy hence consists in computing log(P (⇥|D))
for each possible ⇥, and in choosing the model where it is maximal. In par-
ticular, the strategy can be summarized as follows:

1. fix the values Kmin and Kmax;
2. choose the number C of cross-validation trials;
3. for each trial c:

a) sample a subset Dtrain from D;
b) for k ranging from Kmin and Kmax:
c) compute log(P (⇥k|Dtrain))c;

4. for each K, average the values log(P (⇥k|Dtrain))c over c;
5. choose the value k⇤ such that log(P (⇥k⇤ |Dtrain))avg is maximal.

Discussion

There are several major di↵erences between state-of-the art models and the
above formalization. Considering pLSA, the hidden variable z there is used to
discover similar trends in the rating behavior and encourages grouping users
into user communities. The prediction relies solely on P (r|i, z) and does not
consider item hierarchies and, hence boosted predictions triggered by similar
items. By contrast, the proposed hierarchical approach aims to discover local
patterns for each user community. Also, there are two further components
which boost the prediction accuracy of the underlying user community model.
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First, the multinomial prior ⇡j for each user community j, which helps in
preventing overfitting by counterbalancing the contribute of each user u in
�uj . The ⇡j component can be interpreted as a laplacian smoothing based on
uniform Dirichlet priors. Clearly, explicit modeling of such priors via Bayesian
estimation, in the style of [38], can be adopted. However, as discussed in the
next section, the computational cost would leverage significantly. Also, the ↵ij

component explicitly models the likelihood that item i has been rated within
community j. The latter also is a major di↵erence, at the user community
level, with respect to the multinomial mixture and the User Rating Profile
models, discussed in [30].

Also, notice that the co-clustering techniques discussed in the previous sec-
tion, like the Flexible Mixture Model, assume the existence of a fixed partition
both for user communities and for item categories. In our case instead, each
user community is characterized by its own partition over the item-set with a
flexible number of topics. In addition, co-clustering models only produce pre-
diction on the basis of local contribution P (r|ck, dh). By contrast, according
to Eq. 5.5, our prediction benefits from both local and global information.

A final remark is concerned with the possibility of considering the proposed
approach symmetrical. Our model starts with user communities and then
generates topics. In theory a dual scheme could be viable as well, by first
generating item categories and then specific user communities conditioned
to item categories. However, duality only holds if the number of rows and
columns of the rating matrix are of the same order of magnitude. In fact, the
number of model parameters in an item-based mixture grows linearly to the
number of users. If the number of items is significantly less than the number
of users, this would cause the generation of few categories characterized by
too many parameters (and as a consequence the resulting model would be
prone to overfitting).

5.2.4 Evaluation

We evaluate the e↵ectiveness of the proposed approach in two di↵erent re-
spects:

• To measure the e↵ectiveness of the User community model adopted in the
first stage in discovering communities fitting the training data. Since each
community should be able to model a user’s preferences, it is interesting
to measure the prediction accuracy of Eq. 5.7 and Eq. 5.8, which exploit
the community mixtures.

• To measure the overall prediction accuracy of the hierarchical approach,
and to compare it to other well-known approaches in the literature.

Additionally, as a paradigmatic example, we shall inspect the informative
content of the structures discovered by the hierarchical mode proposed so far.
We will show how the resulting community/topic model can provide significant
informative content about the communities and the relevant topics discovered.
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Nextflix MovieLens
Training Set Test Set Training Set Test Set

Users 435,656 389,305 6,040 6,040
Items 2,961 2,961 3,706 3,308

Ratings 5,714,427 3,773,781 800,168 200,041
Avg ratings (user) 13.12 9.69 132,47 33,119
Avg ratings (item) 1929.90 1274.50 215.91 60.47
Min ratings (user) 1 1 5 12
Min ratings (item) 5 1 1 1
Max ratings (user) 957 691 2266 62
Max ratings (item) 64492 42780 2229 1199
Sparseness Coe↵ 0,9956 0,9643

Table 5.1. Summary of the Data used for validation.

We used two popular benchmark datasets (Netflix and Movielens) for rat-
ing prediction to validate the predictive performance of the proposed ap-
proach. In short, Netflix dataset contains over 100 million of ratings given by
480, 189 users on a set of 17, 770 movies, collected between October 1998 and
December 2005. The Netflix Prize dataset has been the reference data for em-
pirical comparisons of Collaborative Filtering algorithms during the last years,
mainly for 3 reasons: (i) size of dataset and sparseness coe�cient; (ii) avail-
ability of results from competitive algorithms; (iii) availability of a baseline
score for the prediction error, achieved by a real RS (the Netflix Cinematch
algorithm) on the same dataset. We exploited a subsample of the whole Net-
flix data, and partition it into training and test set, where the latter contains
ratings given by a subset of the users in the training set over the same set of
items. Info about this dataset are summarized in Table 5.1.
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Fig. 5.2. ECDF for user and item ratings on NetFlix.

Figure 5.2 shows the empirical cumulative densities for both user and item
ratings within the subsample adopted here. There are some major di↵erences
between the original Netflix dataset and the subsample used here. For ex-
ample, we can see from Figure 5.2(a) that over 60% of the users have less
than 10 ratings and the average number of evaluations given by users is 13
(whereas the original dataset exhibits an average 200 ratings). In addition, fig-
ure Figure 5.2(b) shows that over 50% of the items have received less than 200
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ratings, with an average value of 1929. Again, the average ratings in the orig-
inal dataset were 5000. In practice, the subsample we exploit is more di�cult
than the original dataset. 1

Predictive Accuracy.

We compare our approach with the most known latent factor approches for
rating prediction. In particular, we directly implemented the Regularized SVD
[23], pLSA [28], FMM [51], Multinomial Mixture Model [30] and URP [38].
The summary of our results can be found in tables 5.2(a) and 5.2(b). Other
algorithms not listed here will be discussed separately in the end of the section.

In a first set of experiments, we evaluate the performance achieved by the
User Community Models, considering both the Multinomial and the Gaussian
version and performed a suite of experiments varying the number of user
communities and compared the obtained RMSE values with the ones achieved
by the Gaussian pLSA algorithm on the same data.

Experiments on the three models were performed by retaining the 10% of
the training (user,item,rating) triplets as held-out data; finally 10 attempts
have been executed to determine the best initial configurations. Predictions
for the User Community Models are generated according to Eq. 5.5, because
preliminary experiments have shown that it outperforms the Hard-Clustering
prediction rule. Performance results of the two User Communities Models and
pLSA are shown in Figures 5.3(a) and 5.3(b).

Considering Netflix, the multinomial User Community approach and the
pLSA do not produce a significant improvement over the Cinematch base,
which is close to 0.95; for both these models the best RMSE values is achieved
by considering 150 user communities. The average RMSE for the pLSA model
is 0.9474 and only minor improvements on this result are observed varying the
number of clusters. The gaussian User Community version outperforms both
the multinomial model and pLSA, achieving the best RMSE value of 0.9280
when 30 user communities are employed. The learning phase corresponding
to the best model takes about 30 minutes on a INTEL XEON E5520 at 2.27
Ghz, with an average of 6 iterations needed to reach convergence. We were
not able to extensively report on FMM and URP on Netflix, due essentially to
the high computational resources needed by these models. Table 5.2(a) shows
the best result we were able to compute for FMM. For URP, the only model
we were able to compute required 17,340secs and did not exhibit significant
results. We were able, however, to thoroughly experiment on MovieLens with
these models as well.

Surprisingly, the multinomial User Community model has a significant
worsening on MovieLens. While the Gaussian model is still competitive, due
essentially to the z-score normalization exploited in Eq. 5.8, the multinomial
model seems to su↵er more the skewness of the dataset.

1 This also explains the di↵erence between the values declared in the original papers
by the competitors and the values we were able to reproduce on our subsample.
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Fig. 5.3. Performance results.

The hierarchical schema allows us to obtain more refined results. This
approach has been evaluated by considering both the multinomial and the
gaussian version on the first layer clustering, and adopting the procedure
for the dynamic estimation of the number of topics described in Sec. 5.2.3.
Figure 5.3(d) and Figure 5.3(c) show the performances achieved by the two
version and the ones achieved by a natural competitor based on latent fac-
tors: the regularized SVD. In both the cases, the hierarchical approach pro-
duces a significant improvement over the first clustering layer, outperforming
the SVD model. On Netflix, hierarchical approach produces RMSE values
0.9222 (multinomial model) and 0.9211 (gaussian model), while the best re-
sult achieved by the SVD model is 0.9275. This situation is also reflected in
MovieLens where the Reg. SVD produced 0.9345. Again, it’s a surprise to see
that in this case the multinomial hierarchical approach (0.9274) outperforms
the Gaussian hierarchical (0.9296). This result is even more surprising, if we
consider that the multinomial user communities didn’t perform very well in
the first level. It seems that the adoption of specific item categories boosts
the performance significantly.

Figure 5.3(e) compares all the probabilistic approaches to co-clustering
on MovieLens data. Here we compare our approaches with FMM, Bregman
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(a) NextFlix Data

Approaches Best RMSE Parameters
Overall Mean 1.0839
User Avg 1.0368
Item Avg 1.009
Knn Simple 1.0066 K = 15
Scalable Coclustering 0.9862 K = 3 , H = 5
Weighted Centering 0.9707 ↵ = 0.6
Knn with Double Cen. Baseline 0.9637 K = 20
Flexible Mixture Model 0.9540 K = 10 , H = 70
Block Mixture model 0.9477 K = 30 , H = 30
PLSA 0.9474 K = 100
Knn with user effect baseline 0.9453 K = 20
Multinomial Mixture Model 0.9434 K = 10
User Communities Multinomial 0.9391 K = 70
Regularized SVD 0.9275 #features = 100
User Communities Gaussian 0.9274 K = 30
KNN Relationship model 0.9258 K = 20
Hierarchical model Multinomial - Fixed 0.9251 K = 50 , H = 100
Hierarchical model Multinomial - Flexible 0.9222 K = 100
Hierarchical Model Gaussian - Fixed 0.9212 K = 50 , H = 100
Hierarchical Model Gaussian - Flexible 0.9211 K = 30

TABLE I
COMPARATIVE ANALYSIS ON A SAMPLE OF NETFLIX DATA

Approaches Best RMSE Parameters
Overall Mean 1.1150
User Avg 1.0462
URP 0.9869 K = 10
Item Avg 0.9862
User Communities Multinomial 0.9638 K = 4
Multinomial Mix 0.9640 K = 2
Weighted Centering 0.961 ↵ = 0.7
URP - Boosted 0.9568 K = 3
PLSA 0.9468 K = 2
Regularized SVD 0.9345 #features = 8
Block Mixture model 0.9467 K = 10 , H = 7
Scalable Coclustering 0.9416 K = 7, H = 5
User Communities Gaussian 0.9359 K = 2
Flexible Mixture Model 0.9335 K = 10, H = 10
Hierarchical Model Gaussian - Fixed 0.9297 K = 2 , H = 2
Hierarchical Model Gaussian - Flexible 0.9296 K = 2
Hierarchical model Multinomial - Fixed 0.9278 K = 2 , H = 3
Hierarchical model Multinomial - Flexible 0.9274 K = 3

TABLE II
COMPARATIVE ANALYSIS ON MOVIELENS1M

(b) MovieLens-1M Data

Approaches Best RMSE Parameters
Overall Mean 1.0839
User Avg 1.0368
Item Avg 1.009
Knn Simple 1.0066 K = 15
Scalable Coclustering 0.9862 K = 3 , H = 5
Weighted Centering 0.9707 ↵ = 0.6
Knn with Double Cen. Baseline 0.9637 K = 20
Flexible Mixture Model 0.9540 K = 10 , H = 70
Block Mixture model 0.9477 K = 30 , H = 30
PLSA 0.9474 K = 100
Knn with user effect baseline 0.9453 K = 20
Multinomial Mixture Model 0.9434 K = 10
User Communities Multinomial 0.9391 K = 70
Regularized SVD 0.9275 #features = 100
User Communities Gaussian 0.9274 K = 30
KNN Relationship model 0.9258 K = 20
Hierarchical model Multinomial - Fixed 0.9251 K = 50 , H = 100
Hierarchical model Multinomial - Flexible 0.9222 K = 100
Hierarchical Model Gaussian - Fixed 0.9212 K = 50 , H = 100
Hierarchical Model Gaussian - Flexible 0.9211 K = 30

TABLE I
COMPARATIVE ANALYSIS ON A SAMPLE OF NETFLIX DATA

Approaches Best RMSE Parameters
Overall Mean 1.1150
User Avg 1.0462
URP 0.9869 K = 10
Item Avg 0.9862
User Communities Multinomial 0.9638 K = 4
Multinomial Mix 0.9640 K = 2
Weighted Centering 0.961 ↵ = 0.7
URP - Boosted 0.9568 K = 3
PLSA 0.9468 K = 2
Regularized SVD 0.9345 #features = 8
Block Mixture model 0.9467 K = 10 , H = 7
Scalable Coclustering 0.9416 K = 7, H = 5
User Communities Gaussian 0.9359 K = 2
Flexible Mixture Model 0.9335 K = 10, H = 10
Hierarchical Model Gaussian - Fixed 0.9297 K = 2 , H = 2
Hierarchical Model Gaussian - Flexible 0.9296 K = 2
Hierarchical model Multinomial - Fixed 0.9278 K = 2 , H = 3
Hierarchical model Multinomial - Flexible 0.9274 K = 3

TABLE II
COMPARATIVE ANALYSIS ON MOVIELENS1M

Table 5.2. Summary of the comparative analysis (K and H represent respectively
the number of user communities and item topics)

Co-clustering [55] and Block Mixture Model [67]. Again, the hierarchical ap-
proaches outperform the other co-clustering approaches. This gives evidence
that conditioning item categories to user communities provides better struc-
tures. Finally, Figure 5.3(f) shows the execution times of these co-clustering
approaches. Here, we employ 10 item categories and vary the number of user
communities.

A final validation qualitatively compares our approach with some among
the most popular and e↵ective approaches for making recommendations. We
focused on single techniques rather than ensembles or combinations of multiple
predictors.

Results on Netflix data show that the prediction accuracy achieved by the
proposed model is competitive to the ones achieved by other popular recent
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approaches, such as PMF [44], Bi-LDA [43] and SVD++ [15]: the first one
is reported to achieve on a sample of 1M ratings of Netflix data an RMSE
equals to 0.9253; the latter achieves 0.9333 on the overall Netflix dataset. As
far as the SVD++ is concerned, although it achieves a 0.904 RMSE value on
the considered dataset, the problem with such an approach is that it takes
advantage of implicit information contained in the test-set.

The model also compares with fLDA [25] and the Regression-based latent
factor models [69], which integrate user/item features and on a 75% � 25%
split of the MovieLens-1M achieve 0.9381 and 0.9258 RMSE values.

Structure Discovery.

The hierarchical model can be used for classical pattern discovery tasks, such
as the identification of the most appreciated items for each user community,
as well a new kind of analysis, in which we focus on di↵erent topics and their
impacts on the rating behavior of users within the same community. Table
5.3 shows a selection from the most significant items for 10 user communities
and their topics. We show 5 communities only, and the 5 most relevant top-
ics within them. An item i is considered significant with respect to a topic
h within the community k if Pk(dh|i) > Pk(d0h|i) 8h0 6= h. For each commu-
nity we register its prior probability (in square brackets) and the a-posteriori
interpretation of its topics.

For instance, user community #2 is characterized by the topics: “Fantasy”,
“Sci-Fi”, “Live-Music Performance” “Action” and “Drama”. It is worth notic-
ing how the informative content in the hierarchy allows to better discriminate
among topics and tendencies. By focusing on the first level only, the same
community would exhibit a global attitude towards action movies (as “Glad-
iator”, “Die Hard” and “Terminator 2” are the most probable items here).

5.3 A Bayesian Hierarchical Model for Preference Data

Coclustering approaches are based on the idea that similar users can be de-
tected by taking into account their ratings on similar items, which in turn are
identified considering the ratings assigned by similar users. A main weakness
in these approaches is the static structure enforced by fixed row/column blocks
where both users and items have to fit. In the previous chapter,we approached
this problem and proposed the Hierarchical User Community Model (HUCM
in the following) which is based on a dynamic hierarchy between user com-
munities and item categories. In practice, there is a dependency relationship
between latent factors on items and latent factors on users, which e↵ectively
overcomes the limits of a static structure enforced by fixed row/column blocks
where both users and items have to fit.

When focusing on user communities only, HUCM is incidentally capable of
explicitly modeling item selection, i.e, the probability that an item is actually
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Community 1 [0.09] Community 2 [0.05] Community 3 [0.17] Community 4 [0.06] Community 5 [0.04]
Topic 1 Curb Your- Star Wars: EpIV Gladiator The Best- It’s a-

Enthusiasm of Friends Wonderful Life
The O�ce: Series 2 The Incredibles The Shield Friends: S6 Star Wars: EpIV
The O�ce Special The Princess Bride Star Wars: EpIV Gilmore Girls Ben-Hur
Monty Python’s Lord of the Rings: Saving- Friends: S5 Gone with-
Flying Circus The Two Towers Private Ryan the Wind

Interpr.: Comedy Fantasy Action, war Sitcom Classic

Topic 2 Bruce Springsteen: Doctor Who: Knowing Me- The Life and- Blue’s Clues:
Anthology 1978-2000 Pyramids of Mars Knowing You Times of Frida Kahlo Shapes and Colors
Karajan: Mozart: Doctor Who: Shag Birth of the- Yu-Gi-Oh!
Don Giovanni The Ribos Operation Blues / Blue Skies
Music of the Heart Battlestar Galactica Aladdin Julius Caesar Sesame Street
Music for Montserrat Last Exile Side Out American Dream Black Beauty

Interpr.: Music Sci-Fi Comedy Documentary For children

Topic 3 Glengarry- Harry Connick Jr.: The Secret- Reservoir Dogs Gone in-
Glen Ross Only You Lives of Dentists 60 Seconds
JFK Donna Summer: Live Proof of Life Get Shorty Intolerable Cruelty
Bataan Ben Harper: Live The Ice Storm The Naked Gun Confidence
Changing Lanes Mozart: Don Giovanni Body Story 8MM The Naked Gun

Interpr.: Drama Live performances Drama Crime Crime

Topic 4 Highlander Robin Hood: Equilibrium Amelie A Midsummer-
Prince of Thieves Night’s Dream

The Recruit Proof of Life Ladder 49 Victor / Victoria Chances Are
Ali Mission Impossible II Bad Company Princess Mononoke Fools Rush In
Rambo: First Blood Vanilla Sky Waking Life Sophie’s Choice Mighty Aphrodite

Interpr.: Action Action, famous actors Thriller Romance Comedy, Fantasy

Topic 5 Men in Black Love Story 13 Going on 30 All the Pretty Horses The Parallax View
Alien Resurrection Co↵ee and Cigarettes Planet of the Apes Romeo Must Die Waterworld
Spider-Man 2 A Walk in the Clouds Men in Black Great Expectations Romeo Must Die
X-Men: Evolution Hannah and- Rosemary- The Manchurian- Swimming-

Her Sisters and Thyme Candidate with Sharks
Interpr.: Action, Sci-Fi Drama, romance Fantasy, Comedy Drama Thriller

1

Table 5.3. User communities and relevant topics

selected by a user. While most of the conventional probabilistic techniques
focus on forced-prediction, which explicitly requires to predict the preference
value for each observed user-item pair, the non-hierarchical version of HUCM
(referred to as UCM in the following, see Sec. 5.2.1) is capable to model item
selection and rating prediction simultaneously.

To summarize, previous research devised two major contributions to the
current literature. First, hierarchical probabilistic structures based on latent
factor models can better model the underlying hidden relationships at the
basis of users’ behaviors. This allows to boost the prediction accuracy of such
probabilistic models. Second, explicit modeling of item selection plays a crucial
role with accurate recommendation lists. As shown in Chap. 4, a combined
use of items selection and ranking prediction is crucial for providing accurate
recommendation lists.

There is an apparent mismatch between these two situations. The explicit
modeling of item selection boosts the accuracy of recommendation lists, yet it
negatively impacts on prediction accuracy. The point is that exploiting item
selection for ranking prediction in a (hierarchical) co-clustering model yields
too many parameters to estimate, and consequently the risk of overfitting in-
creases. As a matter of fact, the models achieving better prediction accuracy
[38, 44, 43, 62] ignore the item selection components, whereas the models ex-
hibiting the highest recommendation accuracy (such as Pure-SVD [50], pLSA
[28], LDA [32] and UCM ) provide poor performance in ranking prediction, or
do not support it at all.
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In this section we propose a new Bayesian Hierarchical latent factor model
(BH in the following) which combines the advantages of both hierarchical
modeling and item selection, and comparatively investigate both its recom-
mendation accuracy and prediction error. BH relies on a generative process,
which can take into account both item selection and rating emission, so that
those users who experience the same items and tend to adopt the same rat-
ing pattern are gathered into communities. Individual users are modeled as
a random mixture of communities, where the individual community is char-
acterized again by a mixture of topics modeling both the popularity of items
and the distribution over item ratings.

BH reinterprets the former HUCM in a Bayesian modeling setting, that
is better suited to the sparseness of the preference data and less susceptible
to overfitting. Additionally, BH allows a simpler and more elegant procedure
for the estimation of model parameters through Gibbs sampling [63].

5.3.1 The Bayesian Hierarchical Model

In the following we extend the framework proposed in Sec. 5.2 by relaxing
some basic conditions:

• users can exhibit diverse “dynamic” behaviors (in the style of [35]). That
is, for each user there is no fixed community. Rather, the local behavior is
picked randomly among the most probable.

• Analogously, items are dynamically associated with topics according to an
underlying probability law.

• The overall process is governed by Bayesian priors thus allowing a more
controlled modeling of data sparseness.

The key idea is that there exists a set of user communities, each one describing
di↵erent tastes of users and their corresponding rating patterns. Each user
community is then modeled as a random mixture over latent topics, which
can be interpreted as item-categories. Given a user u, we can foresee his/her
preferences on a set of items Iu by choosing an appropriate user community
z and then choosing an item category w for each item in the list. The choice
of the item category w actually depends on the selected user community z.
Finally the preference value is generated by considering the preference of users
belonging to the group z on items of the category w. This local modeling of
items is the main di↵erence in the generative semantics with respect to state-
of-the-art LDA based co-clustering approaches [43].

A first coarse-grained generative process directly derived from [62] can be
devised as an adaptation of the well-know LDA-based models [32, 38], and is
graphically depicted in Figure 5.4:
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Fig. 5.4. BH-Forced Generative model

1. For each user u 2 U sample user community-mixture components
#u ⇠ Dir(↵);

2. For each item i 2 I and user community z 2 {1, . . . ,K} sample the
mixture components 'z,i ⇠ Dir(�)

3. For each topic w 2 {1, . . . , L} and user community z = {1, · · · ,K},
sample rating probabilities "z,w ⇠ Dir(�)

4. For each active pair n = hu, ii in R:
a) Choose a user attitude zn ⇠ Discrete(#u)
b) Choose a topic wn ⇠ Multi('zn,i)
c) Generate a rating value for the chosen item according to the dis-

tribution P (r|"zn,wn)

With respect to HUCM, that relies on maximum likelihood estimation with
multinomial priors for model inference, the new Bayesian formulation (BH-
Forced in the following) is both better suited to the sparsity of the rating
matrix and less susceptible to overfitting. Moreover, it allows the develop-
ment of a simpler and more elegant procedure for approximated parameter
estimation based on Gibbs sampling [63]. Notice that, in the following, we
model P (r|"zn,wn) as a multinomial over the parameter vector "zn,wn . Di↵er-
ent choices can be made, in the style of [24], which are omitted here for lack
of space.

Figure 5.5 shows how the rating matrix described in Figure 5.1 can be
modeled according to BH-Forced. The figure summarizes a setting of the prob-
ability distributions for a BH-Forced Co-Clustering model compatible with the
data represented in the previous example. By applying the generative process
described above, the interested reader can easily verify that each observed
rating can be replicated by drawing upon the corresponding distribution. For
example, let us consider the observation hu5, i5i. According to the devised
generative process, we first pick user community 2 for u5, exploiting table c.
Next, we assign item category 1 to item i5, by drawing upon the available
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categories according to the probability in table e. Finally, given the cocluster
h2, 1i, we observe rating 5 by picking randomly according to the related rating
distribution in table f.

Again, it is worth noticing that the Bayesian Hierarchical model is more
powerful, as it allows the modeling of complex relationships in a more dy-
namic scenario. As a matter of fact, users (resp. items) are not necessarily
statically bound to a single community (resp. topic), but their membership
can be dynamically modeled. In particular, for each pair hu, ii diverse user
communities and item categories can be picked, according to the associated
multinomial priors.
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Fig. 5.5. Probabilistic modeling of local patterns

Modeling Free Prediction.

A problem with the BH model introduced so far is its focus on forced-
prediction. That is, the model concentrates on the prediction of preference
values for each observed user-item pair, and does not explicitly take into ac-
count item selection. As already mentioned, this component plays a crucial
role in the generation of the recommendation list. Hence, it is likely to expect
poor recommendation accuracy for this model.

The point is that the components in the BH-Forced model do not provide
a direct support to the computation of P (r, i|u). Thus, the only possibility for
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BH-Forced is to generate a recommendation list by resorting to the expected-
value.

We fix this issue by accommodating the hierarchical scheme in Figure 5.4
with an explicit item selection component. Specifically, each user is modeled
as a random mixture of topics, where the individual topic is then characterized
both by a distribution modeling item-popularity within the considered user-
community and by a distribution over preference values for those items. In
particular, the distribution of items given the topic variable w depends on
the choice of the user community: this enforces an explicit modeling of item
popularity both within a category and within a community, and hence provides
a high degree of flexibility. Further, the rating prediction components maintain
almost the same structure as in the BH-Forced model, and hence even the
accuracy is almost the same.
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Fig. 5.6. BH-Free Model

The generative process for the new BH-Free model, whose corresponding
graphical scheme is shown in Figure 5.6, is as follows:

1. For each user u 2 U sample user community-mixture components
#u ⇠ Dir(↵);

2. For each user community z 2 {1, . . . ,K} sample the mixture compo-
nents 'z ⇠ Dir(�)

3. For each topic w 2 {1, . . . , L} and user community z = {1, · · · ,K},
a) Sample item selection components &z.w ⇠ Dir(�)
b) Sample rating probabilities "z,w ⇠ Dir(�)

4. For each u 2 U
a) Sample the number of items for the user u, Nu / Poisson(K)
b) For n = 1 to Nu

i. Choose a user attitude zu,n ⇠ Discrete(#u)
ii. Choose a topic wu,n ⇠ Multi('zu,n)
iii. Choose an item in ⇠ Multi(&zu,n,wu,n)
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iv. Generate a rating value for the chosen item according to the
distribution P (r|"zu,n,wu,n).

BH-Free tries to infer the tendency of a user to experience some items
over others independent of her/his rating values. The model assumes that this
tendency is influenced by implicit and hidden factors which characterize each
user community. To elucidate, a user may be pushed to experience a certain
item because she/he belongs to a community in which the category of that
item occurs with a high probability, although this has no impact on the rating
assigned to the aforesaid item category. The probability of observing an item
is independent from the rating assigned, given the state of the latent variables.
This is a major di↵erence with respect to most of the (co-clustering) models,
which instead approach the problem from a matrix approximation perspective
(as they focus on the prediction of ru

i ). By contrast, free-prediction models
are focused on both the estimation of a rating behavior and the popularity of
an item within each user community. An item which has received high ratings
and has been experienced few times by the users belonging to the considered
community could not have better chances of being recommended with respect
to a popular item within the same community, which has received only ratings
around the average.

It is worth noticing that support to free prediction was already included
in the UCM model. And in fact, BH-Free can be considered as a substantial
extension of the UCM model, in that it (i) adds a hierarchical co-clustering
structure, thus complying to the originary idea of modeling local patterns;
(ii) accommodates a Bayesian modeling which allows better control on data
sparseness.

Inference and parameter estimation.

The inference process is similar for both BH-Forced and BH-Free. Concerning
the BH-Free model, there’s a small overhead due to the explicit modeling of
item selection. Hence, in the following we shall only sketch the derivation of
the sampling equations for this model. The equations for BH-Forced can be
derived by resorting to similar techniques.

The notation used in our discussion is summarized in Table 5.4. Given
the hyperparameters ↵, �, � and �, the joint distribution of the data R, the
user-community mixtures ⇥, the item-topic components �, the item and rat-
ing probabilities ⌃ and � and the observation-community/topic assignments
Z,W , can be computed as:

P (R, Z,W,⇥,�,⌃,� |↵,�,�, �) = P (R|Z,W,�,⌃) · P (Z|⇥)P (⇥|↵)

· P (W |Z,�)P (�|�) · P (� |�) · P (⌃|�)
(5.9)
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SYMBOL DESCRIPTION
M #Users
N # Items
R M ⇥N Rating Matrix
K # topics/user communities
L # item categories
⇥ matrix M ⇥K of parameters #u

#u K-vector: mixing proportion of user-communities
for the user u

� Matrix of parameters 'k

'k L-vector: mixing proportion for the item category l
and the user-topic k

� Matrix of parameters ✏k,l

✏k,l V -vector: distribution over rating values
for the co-cluster k, l

⌃ Matrix of parameters &k,l

&k,l N-vector: mixing proportion for each item
i in the co-cluster k, l

z user-topic variable
Z M ⇥N matrix: user-topic assignments

for each rating observation
w item-categories topic variable
W M ⇥N matrix: item-categories assignments

for each rating observation
↵ K- vector: Dirichlet priors on user communities
� L-vector: Dirichlet priors on item categories
� V -vector: Dirichlet priors on rating values
� N-vector: Dirichlet priors on items
nk
u # evaluation of the user u which have been

assigned to the user topic k

nk,l
r # times that the rating r has been assigned

to each observation when the user topic is k
and the item category is l

nk,l
i # times that the item category l has been assigned

to observations of the item i when the user topic is k
nu # observations for the user u (|I(u)|)
nk # observations associated with community k
nk,l # times that the category l has been assigned

to observations whose user topic is k

nu {nk
u}

K
k=1

nk {nl
k}

L
l=1

n
(V )
k,l {nk,l

r }V
r=1

n
(N)
k,l {nk,l

i }N
i=1

Table 5.4. Summary of notation

The complete data likelihood can be obtained by integrating over ⇥, �,
⌃ and � which, due to the conditional independence R ?? ↵,�|Z,W can be
factored as:

P (R, Z,W |↵,�,�, �) =

Z
P (Z|⇥)P (⇥|↵)d⇥

Z
P (W |Z�)P (�|�)d�

Z Z
P (R|Z,W,⌃,� )P (⌃|�)P (� |�)d⌃d�

By rearranging the components and grouping the conjugate distributions, the
complete data likelihood can be expressed as:



98 5 Hierarchical Co-clustering of Users’ Preference Data

P (R, Z,W |↵,�,�,�) =
MY

u=1

�(nu + ↵)

�(↵)
·

KY

k=1

�(nk + �)

�(�)

·
KY

k=1

LY

l=1

�(n(V )
k,l + �)

�(�)
·

KY

k=1

LY

l=1

�(n(N)
k,l + �)

�(�)

The latter is the starting point for the inference of all the topics underlying
the generative process, as the conditioned distribution on Z,W can be written
as:

P (Z,W |R,↵,�,�, �) =
P (Z,W,R|↵,�,�, �)

P (R|↵,�,�, �)

This formula is however intractable, mainly because the computation of the
denominator requires a summation over an exponential number of terms.
Gibbs Sampling [63] addresses this problem by defining a Markov chain, in
which at each step inference can be accomplished by exploiting the full condi-
tional P (zn = kn, wn = ln|Z¬n,W¬n,R,↵,�,�). In the latter, zn (resp. wn)
is the cell of the matrix Z (resp. W ) which corresponds to this observation,
and Z¬n (W¬n) denotes the remaining topic assignments. The chain is hence
defined by iterating over the available states n. The Gibbs Sampling algorithm
estimates the probability of assigning the pair kn, ln to the n-th observation,
given the assignment corresponding to all the other rating observations:

P (zn = kn, wn = ln|Z¬n,W¬n,R,↵,�,�) /
nkn

un
+ ↵kn � 1

PK
k0=1(n

k0
un

+ ↵k0) � 1
· nkn,ln + �ln � 1
PL

l0=1(n
l0
kn

+ �l0) � 1

·
nkn,ln

rn
+ �rn � 1

PV
r=1(n

kn,ln
r + �r) � 1

·
nkn,ln

in
+ �in � 1

PN
i=1(n

kn,ln
i + �i) � 1

(5.10)

Given the state of the Markov chain, denoted my M = (R, Z,W ), we can
obtain the multinomial parameters � and ⇥ and � noticing that, by applying
Bayes’s rule and then by algebraic manipulations and the properties of the
Dirichlet distribution [63]. This ultimately yields the following estimations:

#u,k =
nk

u + ↵k

nu +
PK

k=1 ↵k

(5.11)

'k,l =
nk,l + �l

nk +
PL

l=1 �l

(5.12)

✏k,l,r =
nk,l

r + �r

nk,l +
PV

r0=1 �r0
(5.13)

&k,l,i =
nk,l

i + �i

nk,l +
PN

i0=1 �i0
(5.14)
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Finally, given the pair hu, ii we compute the probability of observing the
rating value r in a free prediction context:

p(R = r, i|u) =
KX

k=1

LX

l=1

#u,k · 'k,l · &k,l,i · ✏k,l,r (5.15)

Notice the explicit reference, in Eq. 5.15 to the &k,l,i component that models
the probability of i being selected within co-cluster k, l. Clearly, such a com-
ponent biases the ranking towards relevant items, thus providing the required
adjustment that makes the model suitable for both prediction and recommen-
dation accuracy.

The sampling equations for the BH-Forced model can be derived in a
similar fashion:

P (zn = kn, wn = ln|Z¬n,W¬n,R,↵,�,�) /

nkn
u + ↵kn � 1

PK
k0=1(n

k0
u + ↵k0) � 1

·
nln

kn,i + �ln � 1
PL

l0=1(n
l0
kn,i + �l0) � 1

·
nkn,ln

rn
+ �rn � 1

PV
r=1(n

kn,ln
r + �r) � 1

(5.16)

with parameters

#u,k =
nk

u + ↵k

Nu +
PK

k=1 ↵k

(5.17)

'k,l,i =
nk,l

i + �i

Nk,l +
PN

i=1 �i

(5.18)

✏k,l,r =
nk,l

r + �r

Nk,l +
PV

r0=1 �r0
(5.19)

and prediction

p(R = r|u, i) =
KX

k=1

LX

l=1

#u,k · 'k.l,i · ✏k,l,r (5.20)

A pseudo-code for the learning of the parameters is given in Algorithm 6.

5.3.2 Evaluation

In this section we comparatively evaluate the performance of the two BH
models. The experiments are aimed at assessing the quality of the models in
two di↵erent perspectives:

• From the forced-prediction viewpoint, we show that the predictive accuracy
(i.e., the prediction error) exposed by both the BH-Forced and BH-Free
models over unobserved ratings is comparable and in some cases even
better than other state-of-the art probabilistic approaches.
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Algorithm 6 The Gibbs-sampling procedure for parameter estimation within
Bayesian Hierarchical Model (Forced)

Require: The sets U = {u1, . . . , uM} and I = {i1, . . . , iN}
the rating matrix R,the number of latent topics K, initial hyperparameters

↵, � and �.
1: initializeTopicAssignments() {Randomly assign topics}
2: iteration 0
3: converged false
4: while iteration < nMaxIterations and ¬converged do

5: for all hu, i, ri 2 R do

6: z0u,i  sampleTopic(u, i, r) {According to Eq. 5.10};
7: update counts using the new topic for the observation hu, i, ri
8: end for

9: updateHyperParams()
10: if (iteration > burnin) and (iteration%sampleLag = 0) then
11: sampleUserTopicsMixingProbabilities() {According to Eq. 5.17 };
12: sampleItemSelectionProbabilities() {According to Eq. 5.18 };
13: sampleRatingProbabilities() {According to Eq. 5.19 };
14: converged checkConvergence()
15: end if

16: iteration iteration+ 1
17: end while

• Conversely, from the free-prediction viewpoint, we show that BH-Free is
the top-notch approach in terms of recommendation accuracy

We use two reference benchmark data sets, namely MovieLens-1M and a
sample of Netflix data. Both datasets contain explicit preference data: ratings
fall within the range 1 to 5, where the latter denotes the highest preference
value. The main features of these datasets are summarized in Table 5.5.

We compare both models with some state-of-the-art competitors for CF
recommendation, and in particular with co-clustering approaches. For the
latter aspect, we compare with LDCC [40] (which extends the Bayesian co-
clustering model proposed in [42] and it is based on a collapsed Gibbs sampling
algorithm to perform parameter estimation and inference); with Bregman-CC
proposed in [55] (which is based on the Bregman co-clustering algorithm);
with Bi-LDA [43] (which extends the standard URP model [38] in both the
user and item dimensions). Both models are implemented through a collapsed
Gibbs sampling procedure, where we use uniform priors to initialize the hy-
perparameters of the models. We set the maximum number of iterations to
1000, where the first 100 as burn-in and a sample lag of 10 iterations. All
models have been trained by retaining the 1% of the training data as held out
to perform early stopping and avoid overfitting.

We also compare with the User community models previously defined:
UCM, HUCM [62], and BUCM [70]. Whereas HUCM is a natural choice for
comparison, (as the BH models represent a direct extension of such a model),
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Nextflix MovieLens
Training Set Test Set Training Set Test Set

Users 435,656 389,305 6,040 6,032
Items 2,961 2,961 3,706 3,444

Ratings 5,714,426 3,773,781 800,729 199,480
Avg ratings (user) 13 9 132 33
Avg ratings (item) 1929 1274 216 57
Min ratings (user) 1 1 11 1
Min ratings (item) 5 1 1 1
Max ratings (user) 957 691 1849 465
Max ratings (item) 64492 42780 2738 690
Sparseness Coe↵ 0,9957 0,9642

% of * 4.55 4.53 5.62 5.58
% of ** 10.06 10.06 10.76 10.74
% of *** 28.82 28.87 26.11 26.11
% of **** 33.33 33.39 34.89 34.89
% of ***** 23.21 23.13 22.61 22.69

Table 5.5. Summary of the Data used for validation.

the UCM (and its Bayesian redefinition) explicitly model item selection and
relevance ranking, and hence represent a reference comparison for the BH-Free
model.

Predictive Accuracy.

We start our analysis from the evaluation of the prediction accuracy achieved
by the algorithms. Table 5.6 summarizes the best RMSE obtained on both
the considered datasets, together with the associated settings. To assess the
e↵ectiveness of all the considered approaches in rating prediction, we com-
pare them with Probabilistic Matrix Factorization (PMF) [44], a cutting-edge
probabilistic approach.

MovieLens Netflix
Approach Best RMSE #Topics Best RMSE #Topics

PMF 0.8655 10 0.9309 100
HUCM 0.9278 2-3 0.9212 50-10

Bregman-CC 0.9023 10-20 0.9873 3-5
Bi-LDA 0.9033 30-20 0.9362 30-15
LDCC 0.9074 5-5 0.9419 5-10

BH-Forced 0.9041 15-3 0.9320 10-3
BH-Free 0.9073 30-5 0.9256 30-5
BUCM 0.9292 30 0.9431 10

Table 5.6. Summary of predictive accuracy over the MovieLens and Netflix datasets

As a general remark, both BH-Forced and BH-Free exhibit similar RMSE
as other co-clustering approaches. BH-Free even outperforms all the other
approaches on the NetFlix data, and is the runner-up winner after HUCM
which, however, exhibits a marginal advantage. Minimal di↵erences can also
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be noticed on MovieLens, where PMF achieves the best RMSE score (as ex-
pected). In both datasets, BUCM is overcome by all other co-clustering meth-
ods: this proves that a hierarchical structure provides substantial information
for boosting the accuracy of prediction.

Since the dependency between item categories and user communities tends
to produce more complex structures with respect to traditional co-clustering
approaches, it is important to evaluate the scalability of the BH models in
this respect. Figure 5.7 shows how the RMSE scales with the number of item
categories for the two BH models. BH-Forced globally achieves a lower RMSE,
but tends to overfit the data with a larger number of such categories. This is
clearly due to the huge number of parameters that the model induces: BH-
Forced estimates the matrix {'k,i,l}k=1,...,K;i=1,...,N ;l=1,...,L which is one order
of magnitude bigger than the same matrix in the other co-clustering models
(like Bi-LDA or BH-Free).
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As shown in Figure 5.8, the learning time of the BH models introduced
a reasonable overhead with respect to the learning time of LDCC, when the
number of item categories is less than 20.
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Recommendation Accuracy.

Things change substantially when considering the precision and recall accu-
racy metrics. Based on the results in [31, 70] (discussed in the previous chap-
ter), we consider here also LDA model, which has been identified as one of the
top-performers in terms of recommendation accuracy. Notice that LDA was
not included in the analysis of predictive accuracy, as it does not explicitly
support a way to compute rating prediction. 2

The recommendation list for traditional probabilistic approaches based on
forced prediction is computed by sorting items according to the expected
value. As far as HUCM is concerned, even if the overall model does not
specify item-selection probabilities, these components are modeled explicitly
by the simplified non-hierarchical (B)UCM versions. To summarize, we equip
LDA with item selection ranking, and UCM, BUCM and BH-Free with item
selection and relevance ranking. All the other approaches are based on the
expected value.

Figure 5.3.2 shows the results of recommendation accuracy on Movielens
and Netflix data, when the size k of the list varies from 1 to 20. Probabilistic
models equipped with item-selection achieve the best results in both datasets.
On Movielens data, BH-Free follows the same trend as LDA for user satis-
faction, and exhibits a minimal worsening on standard recall (0.39 vs 0.37)
and precision (0.11 vs 0.10). BH-Forced does not compare with item-selection
methods, but achieves competitive results with the remaining probabilistic
co-clustering approaches, outperforming them in user satisfaction recall. No-
tably, the discrepancy between the recommendation accuracy of Bayesian ap-
proaches and the non-bayesian ones is consistently large. In particular, both
BUCM and BH-Free outperform UCM. This confirms the advantages of the
Bayesian approach.

The trends are confirmed and even strengthened on Netflix data: ap-
proaches equipped with item-selection and relevance ranking, and in particular
BH-Free, tend to outperform all the other approaches. BH-Free achieves the
best recommendation accuracy and exhibits a global gain over both UCM and
BUCM.

The outperformance of BUCM over BH-Free in Movielens can be ex-
plained by the di↵erent distribution of these data with respect to Netflix.
In this latter case, in fact, the huge volume of data is more likely to exhibit
local patterns, which are better modeled by BH-Free. By converse, Movielens
exhibits both less users and less ratings, and hence the simpler BUCM model
can easily fit the data.

2 As a matter of fact, extensions explicitly modeling such feature [38] have been
experimentally shown in [31] to perform worse than Ruslan:2008.
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In this thesis, we presented and discussed about the main applications of
probabilistic approaches to the recommendation problem. The probabilistic
framework provides several advantages over other techniques, both in terms
of modeling and accuracy of the results. The main advantages rely in their
flexibility, as they allow to model di↵erent loss functions, and their capacity
to model a distribution over preference values, which can be used to deter-
mine the confidence of the model in providing a recommendation. Moreover,
since the recommendation task is essentially a prediction problem, the use of
bayesian inference techniques is better suited to the sparsity of the preference
data, as it better prevents overfitting. Besides the above mentioned, there are
other significant advantages in the adoption of probabilistic models for recom-
mendation. Recent studies pointed out that there is more in recommendation
than just rating prediction. A successful recommendation should answer to
the simple question ‘What is the user actually looking for?’ which is strictly
tied with dynamic user profiling.

The recommendation problem has been traditionally interpreted as a miss-
ing value prediction problem, where we are asked to estimate the numerical
users’ preference value on unseen items. The prediction accuracy is commonly
used as a proxy metric to measure the e↵ectiveness of the RS. However, re-
cent studies have pointed out many limitations of this approach, showing
that higher prediction accuracy does not imply higher recommendation ac-
curacy. Motivated by these premises, we have investigated the performance
of the main probabilistic approaches in terms of recommendation accuracy.
In this study, we have shown that probabilistic models, equipped with the
proper ranking function, exhibit competitive advantages over state-of-the-art
RSs in terms of precision and recall of the recommendation list. In particular,
strategies based on item selection guarantee significant improvements, and
we have investigated the motivations behind the failure of prediction-based
approaches.

Item selection plays the most important role in the design of an accurate
personalized ranking function. However, the recommendation accuracy can
be further boosted by computing the recommendation list according to the
item selection and relevance ranking function, which estimates the probabil-
ity that a user will play and like a given item. This approach combines the
benefits of the modeling of preference values (explicit feedback) and of the im-
plicit users’ selection of items (implicit feedback). Thus, we proposed a novel
probabilistic model which is based on a free selection generative process. The
Bayesian UCM takes into account both item selection and rating emission
for the purpose of gathering those users who experience the same items and
tend to adopt the same rating pattern into communities. By exploiting this
joint modeling, the Bayesian UCM outperforms consistently state-of-art ap-
proaches to recommendation in terms of recommendation accuracy, while the
item selection component tends to have a negative impact on the prediction
accuracy.
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The high dimensional preference data exhibit both global and local pat-
terns, which can be identified and characterized by employing a hierarchical
coclustering approach. In general, coclustering techniques are better suited to
model the mutual relationship between users and items: similar users are de-
tected by taking into account their ratings on similar items, which in turn are
identified considering the ratings assigned by similar users. Hierarchical co-
clustering approaches overcome the limitation of enforcing fixed row/column
blocks within the data, by allowing a more flexible structure, where item
categories are conditioned by user communities. Due to the strong coupling
between user communities and item categories, the exact inference for this hi-
erarchical model is analytically and computationally compelling. We proposed
two di↵erent solutions to the problem of learning the hierarchical coclustering
structure. In the first proposal, we adopted an approximated solution, based
on a hard clustering policy for user communities. This is a two-phase process
in which we initially detect homogenous user communities, and then, for each
of them, we detect a corresponding set of item categories. The second solution,
is based on a hierarchical Bayesian approach for preference data, which al-
lows the dynamic associations of user and item categories. Two versions of the
general schema were proposed, namely BH-Forced and BH-Free, respectively
based on the forced and free-prediction semantics. The experimental evalua-
tion highlights the e↵ectiveness of the proposed BH models, which represent
the most satisfactory compromise between prediction and recommendation
accuracy.

The proposed techniques can be extended in several directions, which we
will discuss next.

Combining collaborative and content features

First of all, we are interested in combining in the same bayesian framework
both collaborative and content features. This is expected to increase the ac-
curacy of the recommendations provided by the system and the background
content information can be used to provide personalized recommendations
in cold-start scenarios. Moreover, side information can be exploited for a
better identification and interpretation of user communities and item cate-
gories pattern. Finally, tag annotations define a general way to model each
item/content/information. Hence, personalized techniques that are based on
these information can be used in several context, from news and tweets, to
pictures and video recommendations.

Social Recommender Systems

Users’ behavior on web is more and more influenced by their social interac-
tions with other users, and social recommender systems [71, 72] are emerging
as a powerful combination of both recommendation and social networking
features. In these systems, people share contents and information (generally
indicated as memes), interact with their contacts, and express evaluations on
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them, typically in the form of thumbs up/down. In this context, we are inter-
ested in providing an extension of the proposed framework which takes into
account both users’ past preferences and explicit people relationships to en-
hance recommendations. This implies a radical change in perspective: while in
traditional personalized approaches we model users selection as a process that
depends on her past purchase history, here we have to model users’ choices as
social process. The main di↵erences with respect to traditional techniques for
recommendation relies on the following points:

Users’ Influence : traditional approaches to recommendations assume that
users’ behavior is independent and identically distributed, thus ignoring
social factors and common activities/interests among users. Users may
be pushed to purchase an item under the influence of friends who have
purchased the same item. Thus, at any given time t, each user u is sub-
jected to her neighbors influence which may push/inhibit the selection of a
generic item. Social influence [73, 74, 75] is believed to play an important
role in users’ behavior on SN, thus it will be indeed interesting to analyze
and quantify its role in the item selection and evaluation process.

Temporal Aspect : few e↵orts have been directed towards the modeling of
temporal dimension in recommendations [76, 77, 78]. The temporal di-
mension is necessary to detect causal relationships between friends’ ac-
tions: a user may be pushed to perform a generic action following her own
behavior and preferences or under the influence of one of her friends. The
analysis of the temporal aspect is crucial to determine and distinguish
between social influence or simple correlation. Finally, users’ taste and in-
terests are expected to change in time. Dynamic topic models [79, 80] can
provide an e↵ective tool for the understanding of the evolution of users
preference in time, as well for the detection of emerging trends and topics
[81, 82].

High Dynamism : New users/information join the network and this compro-
mise the application of most of the traditional recommendation tech-
niques, which are based on a finite set of users/items. SNs can be bet-
ter represented as an high dynamic stream of both users and informa-
tion. While several techniques have been proposed to deal with the “cold
start” problem from a user perspective (recommendations to new users),
few e↵orts have been directed towards the design and implementation of
personalization techniques for new items.

Heterogeneity : Almost all current recommender systems are designed for
specific domains and applications without explicitly addressing the het-
erogeneity of the implicit and explicit preference information available
on SNs. In particular, according to the Collaborative Filtering approach,
state-of-art techniques for recommendations take into account only the
past users’ feedback to generate personalized suggestions. On the other
hand, Social Network Recommender Systems are heterogeneous networks[83,
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84], based on textual (reviews/tags), rating information and on social re-
lationships.

Social recommendation over activity streams

Activity streams are one of the most important component in SNs. They allow
us to learn about other users’s recent behavior, activities, generally defined
as feed. However, the flood on activity updates in current SN is huge and and
noisy. As direct consequence, users lose interest in following and reading the
activity stream, and this is the first step towards the walking out from the
SN.
The traditional technique to filter the activity stream is to select only the ac-
tivities generated by friends but, as the number of friends increases with time,
this approach does not alleviate the noise problem. Some friends can produce
many non-interesting activities, dominating the stream and making di�cult to
find interesting items. Identifying and ranking relevant feed items is without
any doubts a promising direction of research [85, 86, 87, 88], which combines
both personalization and the modeling of users’ influence and expertise.

Ranking

The probabilistic framework can be extended to model directly personalized
ranking functions which take into account di↵erent factors, such as serendipity
and novelty. The key idea is to maximize a ranking objective function instead
of minimizing the conventional prediction error. Previous works in this di-
rection have focused on learning a personalized ranking from from implicit
feedback data [89, 90], while the application of the ranking based optimiza-
tion criterion to explicit preference data needs still needs to be addressed.
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