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Chapter 1

Introduction

1.1 Research Motivations

The design of modern passenger cars is a complex process which requires a systematic

use of CAE (Computer Aided Engineering) techniques in order to guarantee the delivery

of high-quality products in the shortest possible amount of time. Multibody simulations

play a major role in the design process, and they are employed in several development

areas such as ride & handling performances optimization and development and valida-

tion of active suspension systems. Active and semi-active control systems are massively

employed to enhance the ride and handling performances of modern passenger cars as

well as to guarantee a safe and reliable dynamic response of the vehicle when dealing

with dangerous situations. Because of the complex interaction between the vehicle’s me-

chanical components and the control systems elements, i.e. ECUs (Electronic Control

Units), sensors and actuators, the CAE design of the overall mechatronic system has a

crucial role in the development of new products. This research work aims at improving

the state-of-the-art techniques in efficient multibody multibody simulations for partic-

ular applications such as the validation and the design of suspension systems equipped

with active control systems.

RT (Real-time) multibody simulations constitute the basic tool for the validation of

active suspension systems. The RT integration of the EOM (Equations of Motion)

describing complex mechanical systems requires the employment of proper integration

schemes which must be able to handle the time integration at each time step in less

than an a priori fixed sampling time interval. The LI (Linearly Implicit) Euler method

has been successfully employed for the RT integration of large stiff systems of DAE

(Differential Algebraic Equations) which typically arise from the complex mechanical

systems of interest in practical applications. The current demand of automotive industry

1



Introduction 2

is to further increase the degree of complexity of multibody models employed in RT

applications for the validation of active control systems, pushing researchers to improve

the efficiency of the currently available integration methods. In this research work we

investigate the improvements in the efficiency of the LI Euler method coming from the

conversion of the EOM at each time step from a dependent to an independent coordinates

formulation.

Despite the great increase in the computational power available to perform multibody

simulations, there are still several applications which require the employment of ex-

tremely simplified vehicle models. As an example, simplified concept models are em-

ployed in the early stages of the design process when there are only few geometric and

component data available, and the definition of detailed multibody models is not fea-

sible. Moreover, simplified multibody models of the vehicle are employed in iterative

applications such as optimization and parameters identification, which may require run-

ning a high number of simulations. Finally, the design of active control systems is still

based on extremely simplified suspension models since they are more suitable to set up

and tune the logic of the controllers which will be later implemented in the ECUs. The

model reduction approach, i.e. the simplification process which leads to simple and ef-

ficient multibody models starting from detailed representation of the vehicle, generates

two fundamental open issues in the current industrial practise: the inappropriateness

of the simplified suspension models in reproducing all the relevant dynamic phenom-

ena actually occurring in a real suspension and the weak link between those simplified

models and the detailed multibody models developed for the fine tuning of ride and han-

dling performances. In this work the first of the aforementioned problems is addressed

by proposing a trailing-arm multibody concept model of the suspension which is able

to properly reproduce both the vertical ride behaviour and the dynamic phenomena

occurring during forward acceleration and braking manoeuvres. A parameters identifi-

cation process is then proposed in order to obtain the unknown design parameters of

the trailing-arm concept model starting from the knowledge of the dynamic response of

a detailed reference multibody model of the suspension. By using this approach, the

design modifications which are constantly adopted in order to tune the ride and handling

performances of detailed multibody suspension models can be easily reflected into the

proposed trailing-arm concept models and taken into account also in the design of the

control logics thus leading to an integrated mechatronic design of the active suspension

systems.
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1.2 Manuscript overview

The manuscript is organized as follows. In Chapter 2 the state-of-the-art on efficient

multibody simulations is first analysed in order to clarify the objective of the present

research. The main aspects influencing the efficiency of the multibody simulation are

discussed, i.e. the multibody formulation, the numerical integration and the model

complexity.

In Chapter 3 the dependent coordinates formulation is described in details and employed

to derive the classical implementation of the LI Euler method. An alternative implemen-

tation of the LI Euler method is then proposed, which exploits a velocity transformation

approach to automatically switch from a dependent to an independent coordinates rep-

resentation of the EOM of the multibody system. Finally, a non-iterative projection

method is described, which allows to minimize the drift from the algebraic constraint

conditions using a fixed number of operations at each time step.

In Chapter 4, the two implementations of the LI Euler method presented in Chapter 3

are employed to integrate the EOM describing an industrial rear left multilink suspension

of a passenger car. All the relevant aspects of the modelling process are first discussed,

and then the integration performances are presented with a particular emphasis on the

advantages and drawbacks of the proposed implementation of the LI Euler method.

Chapter 5 proposes a model reduction approach which can be employed to transform a

detailed suspension system into an equivalent simplified model. The simplified model is

able to accurately reproduce the vertical ride performances and the anti-lift/dive/squat

properties of the original detailed system thanks to a trailing-arm representation of the

suspension. The quarter-car suspension problem is first addressed and then extended to

the full vehicle. Moreover, an identification process is proposed, which allows to identify

the design parameters of the concept model starting from the knowledge of the dynamic

response of the target model.



Chapter 2

State-of-the-Art on Efficient

Multibody Simulations

2.1 Multibody simulations in the automotive industry

Nowadays multibody simulations constitute a crucial tool in the development of new

products in the automotive industries. As any other tool employed in the engineering

process, multibody simulations are expected to help delivering better products in an ever

decreasing amount of time, in order to ensure their competitiveness in the global market.

Less time and better quality are the guidelines which underlay almost any process or

action in the design of a new vehicle. Multibody simulations are directly affected by

these two contrasting requirements in a variety of different applications which are all

crucial in the development of a successful product.

A wide interpretation of the less time requirement from a multibody simulations point

of view is the need for specific techniques and processes which can improve the speed

of the whole design cycle. In the following list, the main multibody simulations based

processes currently employed in the development o new vehicles are reported:

• early stage concept modelling: it is based on the employment of concept mod-

els techniques in the early stages of the design process. These techniques exploit

extremely simplified multibody models of the full vehicle and its core subsystems

to find out a first set of optimized values for the major design parameters, such

as masses and CG (Center of Gravity) positions, suspensions rates and damping

properties etc., to speed up the convergence towards an optimal final product in

the subsequent design stages.

4
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• off-line tuning of vehicle dynamics performances: this is accomplished by

using detailed multibody models both at the components and at the full vehicle

levels. These models are employed for the fine tuning of the vehicle subsystems

attributes, e.g. the K&C (Kinematics & Compliance) characteristics of the sus-

pension, and of the global handling and ride performances of the vehicle. The

extensive use of detailed multibody models allows a CAE based design of the ve-

hicle, with a tremendous reduction in the time required to achieve an optimal

design configuration which would otherwise been achieved by means of expensive

and time consuming tests on real prototypes.

• loads prediction for NVH (Noise Vibration Harshness) and fatigue anal-

ysis: high fidelity multibody models are employed to obtain the time histories of

suspension’s loads in particular driving scenarios. These loads are then furnished

to Finite Element analysts in order to determine the NVH characteristics of the

vehicle and to perform fatigue analysis on critical suspension components.

• vehicle simulators: the primary use of these devices in the automotive industry

is for preliminary subjective tests of the vehicle performances. As shown in Fig.

2.1 a vehicle simulator is constituted by a moving platform which is actuated in

order to reproduce the vehicle motion resulting from the interaction of a human

driver with a virtual simulation scenario. This is achieved by simulating in real

time the vehicle behaviour by means of a multibody model which receives in input

the commands from the human driver. The test on simulators are often used

to check the effectiveness of the vehicle tuning obtained with off-line multibody

techniques.

• tuning of active control systems: this task is achieved by using extremely

simplified multibody models of the full vehicle or of its subsystems. Due to their

low complexity level, which directly traduces in a low number of states, these

models are particularly indicated to set up and tune the control logics at the basis

of the active control systems installed on the vehicle.

• validation of active control systems: this phase has a crucial importance due

to the increasing influence of active control systems on the dynamic behaviour and

on the safety characteristics of modern passenger cars. The correct interaction

between the various elements of the active control system, i.e. the control logic

implemented in the ECU, the sensors and actuators and the vehicle’s mechanical

system itself must be verified before the realization of the first prototype in order to

avoid expensive and time consuming late modifications. This is done by connecting

a part of the real hardware of the control system (see Fig. 2.2) to the multibody

model of the vehicle which simulates the real behaviour of the car.
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Figure 2.1: FKFS Stuttgart Motion Vehicle Simulator [1]

Figure 2.2: HIL set up for testing of an ABS/ESP control unit and brake system

When dealing with multibody simulations, the better quality requirement can be trans-

lated in results accuracy, i.e. the ability of the simulation to deliver results which are as

representative as possible of the real phenomenon which has to be simulated. The accu-

racy of the multibody simulation increases with the complexity of the models employed.

However the simulation’s accuracy must not be seen as an absolute concept since its

acceptable/possible level may significantly vary according to the particular application.

In the following list several areas of the vehicle design process are grouped according to

the degree of accuracy currently provided by the multibody simulations on which they

are based:

• low accuracy level

- initial optimization and benchmarking analysis: at this stage the amount of

data available for the definition of multibody models is very low. These data are

generally carried on from previous models having analogous characteristics to the
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new vehicle which must be designed. Given the poor underlying database these

models are expected to furnish accurate results only for a limited number of global

characteristics.

- design of controllers: for these applications, extremely simplified multibody mod-

els are deliberately taken into account for the design of control laws because of their

low complexity level. This means that also in the advanced stages of the design

cycle, when detailed geometrical and component data are available, the design of

the active controllers is still carried on by means of very simplified models which

often correlate very poorly with detailed multibody models used in other design

areas.

• medium accuracy level

- validation of active control systems: ideally, for these applications, the accuracy

level furnished by the multibody simulations should be extremely high in order

to be able to detect all possible malfunctioning coming from complex interactions

between ECUs, sensors, actuators and mechanical system. However, since these

simulations are based on the connection of a piece of real hardware with a virtual

multibody model of the remaining part of the vehicle, there are stringent require-

ments on the speed of the simulations which, as it will be explained in the following

sections, prevents the use of extremely detailed multibody models. Several model

reduction techniques are then used to decrease the complexity of detailed multi-

body models in order to allow their employment in HIL (Hardware In the Loop)

tests for the validation of active control systems as it will explained later in this

Chapter.

- vehicle simulators: also in this case, the multibody models whose real time inte-

gration determines the motion of the simulator, should be as accurate as possible

in order to feedback to the human driver the most realistic excitations. Once

again the real time requirements compel the use of simplified multibody models

in vehicle simulators, which limits the effectiveness of these potentially extremely

powerful tools.

• high accuracy level

- fine tuning of components level attributes and of the overall ride and handling

performances: for these tasks extremely detailed multibody models of the vehicle

and its subsystems are employed, in order to predict the characteristics of the

real vehicle with the highest possible degree of confidence. These detailed models

are generally composed by hundreds of bodies, most of them modelled as flexible

components. The non-linear characteristics of bushings elements, bump and re-

bound stops, coil and gas springs are determined experimentally and inserted into

the model whose static and dynamics characteristics are in turn correlated against

objective measurements. The development and validation of these models is a
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difficult and time consuming task but it greatly speeds up the subsequent tuning

phase. Indeed, by using these models, vehicle dynamics engineers can test in a

virtual environment different settings in order to meet the target performances of

the particular vehicle under analysis.

- loads prediction for NVH and fatigue analysis: for these applications the highest

level of accuracy is requested in the evaluation of suspension’s loads. Indeed for

NVH and fatigue studies, the accuracy of the models must be guaranteed up to

several hundreds Hz.

Multibody simulations are thus a crucial tool in the development of new vehicles, and

there are still several areas in which their contribution and their effectiveness can be

enhanced in order to improve the overall speed of the design process.

Among them, the issue of avoiding the model simplification process which is currently

mandatory in order to achieve real time simulations for HIL validation of active control

systems and for MIL (Man In the Loop) tests in vehicle simulators, is one of the most

addressed by the multibody research community.

Another open issue, which may potentially decrease the effectiveness of the design of

active control systems, is the poor correlation between the simplified models employed

in the design of active controllers and the detailed off-line multibody models which are

constantly developed and tuned in order to meet the target performances of the vehi-

cle, e.g. its ride and handling attributes. The same correlation issue may be recognized

between the simplified concept models employed for initial optimization and benchmark-

ing studies and their predecessors, i.e. the models coming from previous projects which

share the same main characteristics with the new vehicle to be developed.

Moreover, by keeping the low complexity level of multibody models employed in the

initial concept design phase and in the design of controllers, it would be extremely

beneficial to enhance the accuracy level of the simulations by enabling the simplified

models to capture more physical phenomena then they currently do.

These open issues will be addressed in the remaining of this manuscript and possible

solutions will be developed. As it will become clear in the following sections, the effi-

ciency of the multibody simulation plays a key role in the resolution of these problems.

The major factors whose interaction determines the efficiency of the multibody simula-

tion are the coordinates formulation, the numerical integration and the model

complexity, as it will be described in the next 3 sections with a particular emphasis

on real-time applications.
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2.2 Multibody Formulations

2.2.1 Dendependent Coordinates Formulations

The modelling of the multibody system is a crucial factor in the overall efficiency of the

dynamic simulation [2, 3]. It involves the selection of a proper coordinates representation

to describe the position and orientation of each body in the mechanical system. The 3

most used sets of dependent configuration parameters, whose employment leads to a set

of equations of motion expressed in a descriptor form, are: the Cartesian coordinates,

the relative coordinates and the natural coordinates.

The Cartesian coordinates formulation constitutes the basis of many commercial multi-

body software thanks to its ease of implementation and generality [4–6]. The position

and the orientation of each body is uniquely determined by 3 Cartesian coordinates of

a reference point, which generally coincides with the CG of the body itself, and by 3

independent angles or 4 dependent Euler parameters describing the orientation of the

body reference frame with respect to the inertial frame [7, 8]. The use of the Cartesian

coordinates formulation results in a large set of loosely coupled EOMs.

The efficiency in the solution of the EOMs can be greatly improved by means of for-

mulations based on relative coordinates where the topology of the mechanical system is

taken into account by specifying the position of each body in relation with the previous

body in the kinematic chain. Historically, the relative coordinates formulation was the

first one to be use in order to implement a multibody computer code. However this

approach requires more intelligence in the preprocessor than the Cartesian coordinates

formulations, and gives birth to recursive schemes for the assembly of the multibody

system of equations [9–11].

The natural coordinates formulation is based on the idea that the mechanical system

can be represented as a collection of points and vectors [3, 7, 12, 13]. The configuration

of the mechanical system is thus defined by the positions of these points which, in turn,

are related among them by constant distance constraints coming from the rigid body

assumption. As described in [7] the natural coordinates formulation may be numerically

more efficient than the Cartesian coordinates formulation since it takes into account the

topology of the mechanical system. However it is not as suitable as the Cartesian co-

ordinates formulation for an implementation into a general purpose multibody software

and its employment in industrial applications is thus very limited.

In the general case, all the dependent coordinates formulations described above require

the definition of algebraic constraint equations in order to numerically model the joint
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connections in the mechanical system. When the classical method of Lagrange Mul-

tipliers is employed to obtain the equations of motion of the system [2, 7], a set of

Differential-Algebraic equations of index 3 is obtained. The index of the DAE set is

generally reduced to 2 and 1 since there are no obvious way to handle the numerical

integration of an index 3 DAE system. However this process, as it will be explained in

Chapter 2, relies on the differentiations of the constraint equations and thus results in

the loss of the constant terms employed to define the constraint conditions. This results

in a numerical instability which causes the numerical solution to progressively violate the

initial constraint conditions requiring the use of proper stabilization methods to avoid

it. Alternatively, the Penalty Formulation introduced by Bayo et al. in [14] can be used

to assemble the equations of motion of the system. In this formulation the Lagrange

multipliers are eliminated from the equations of motion by directly incorporating the

constraint conditions as dynamical systems penalized by a large penalty factor [2, 7].

The dependent Cartesian coordinates formulation associated with the Lagrange multi-

pliers method represents the most used strategy in the developing of commercial multi-

body software. For this reason in this research work an approach will be proposed, as

it will be described in Chapters 3 and 4, in order to improve its efficiency when dealing

with real time simulations of vehicle dynamics. This approach is strictly related to the

formulation in independent coordinates which will be introduced in the next section.

2.2.2 Independent Coordinates Formulation

When an independent coordinates formulation is used, the numerical integration is per-

formed only on a limited number of independent coordinates whose number coincides

with the number of degrees of freedom of the mechanical system. By using these for-

mulations it is possible to obtain a set of equations of motion expressed in a state space

form, i.e. only in terms of the independent coordinates. The most known indepen-

dent coordinates formulations are the coordinates partitioning method [15], the Kane’s

method [16] and the virtual power with projection matrices method [17]. A state-space

representation of the equations of motion can be also obtained using the so called velocity

transformation methods [18–21].

The great advantage of an independent coordinates formulation is the big reduction

in the number of coordinates which must be integrated. Moreover, since the constraint

equations are no longer present in the equations of motion, the numerical problems asso-

ciated to the integration of DAE systems are avoided and classical integration methods

for ODE (Ordinary Differential Equations) can be employed.
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The main drawback of independent formulations is that they require the computation-

ally expensive solution of the position and velocity problems at each time step in order

to univocally determine the configuration of the system. To avoid the numerically inef-

ficient solution of the position problem at each time step, an extended set of differential

equations may be solved [22] which takes into account all the velocities and not only the

independent ones. In this way the dependent positions at the next time step are directly

furnished by the numerical integration process. Finally, independent coordinates formu-

lations are generally less robust then dependent coordinates formulations when dealing

with singular configurations and their implementation is much more involved.

As it will be described in Chapters 3 and 4, the velocity transformation method proposed

by de Jalon et al in [7] will be employed in this research work to transform the equations

of motion expressed in dependent Cartesian coordinates to a state-space form in order

to improve the efficiency of the integration process.

2.3 Numerical Integration

2.3.1 Requirements for real time simulations

As pointed out before, HIL and MIL as well as SIL (Software In the Loop) applications,

have become standard tools for the design and the development of new vehicles [23–27].

These simulations impose stringent requirements in terms of integration performances.

This is dictated by the fact that real hardware must be interfaced to the mathematical

models of the full vehicle or of one of its subsystems (e.g. suspension system and steering

system) as shown in Fig. 2.3.

The ECUs represent a typical example of the real hardware which is usually tested

by means of HIL simulations in automotive applications. Since their control logics

are generally not available for commercial reasons, a full virtual prototyping of the

mechatronic system is not feasible, causing HIL simulations to be the only tool for

analysing the correct interaction between the control system and the mechanical system.

Moreover, to accomplish a proper CAE driven design of the vehicle, the test of control

units and active control systems must start long before the realization of the first physical

prototype of the vehicle. In this case the only possible strategy is to replaced the vehicle

by its virtual representation, i.e. a multibody model, thus enabling engineers to test the

interaction between controls and mechanical system already in the early stages of the

design process. As shown in Fig. 2.3 the numerical model of the vehicle is connected

to the real test environment through sensors and actuators signals. The frequency rate

of the hardware embedded in the HIL simulation determines the frequency at which
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Figure 2.3: HIL simulations scheme [30]

signals must be exchanged with the mathematical multibody model of the mechanical

system, the current standard for automotive applications being 1 kHz. This determines

the crucial requirement for HIL simulations, i.e. the integration process must provide

the states of the mechatronic system at the current time step in less than 1 ms.

For a reliable real time simulation to take place, the number of operations carried out

by the integration algorithm in each time step must be known a priori. Implicit schemes

do not provide such a property since they compute the states of the system at the

next time step by iteratively solving a non-linear system of equations. On the contrary

explicit integration methods rely on a fixed number of operations at each time step.

Among them, low order schemes are generally preferred in RT applications due to the

low number of operations executed at each time step. For this reason the explicit Euler

method has been extensively used in HIL simulations. However it can be only used for the

time integration of non-stiff ODE systems, i.e. only the integration of the EOM related

to simplified vehicle models without stiff force elements and ideal joints connections can

be addressed using this method.

Numerical stiffness is an intrinsic characteristics of multibody models employed in vehicle

dynamics applications. It is often generated by the use of very stiff elastic bushings

elements in order to model the suspension’s compliance [28, 29]. Indeed, connecting

the low mass suspension links by means of stiff force elements results in high frequency

vibrations which oppose to the slow dynamics of the remaining part of the system causing

numerical stiffness. Numerical stiffness in the EOM can be also caused by the modelling

of subsystems with fast dynamics like electric circuits and controllers.
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As pointed out in the previous section, the use of dependent coordinates formulations

with the Lagrange multipliers method leads to a set of Differntial-Algebraic equations

whose index must be reduced from 3 to 2 and 1 by differentiating the constraint equa-

tions. This allows the use standard numerical integrators but, at the same time, intro-

duces the issue of a proper stabilization of the constraint equations in order to reduce

the numerical drift from the original constraint conditions. The stabilization of the

constraint equations must be also taken into account when addressing the real-time

integration of the equations of motion in vehicle dynamics applications.

Summarizing, the real time requirements which must be fulfilled by the numerical inte-

grators are:

• low turnaround time: the time required to complete all the operations in one time

step must be lower then the communication step which is standardised as 1 ms;

• deterministic: the number of operations to be performed at each time step must

be known a priori ;

• suitable for stiff numerical problems: the solver must be able to handle the numer-

ically stiff EOM describing complex vehicle dynamics models with stiff bushing

elements;

• suitable for DAE problems: the integrator must be able to minimize the drift from

the constraint conditions resulting from the index reduction of the DAE describing

constrained vehicle dynamics models;

2.3.2 Linearly Implicit Euler method

The linearly implicit Euler method meets all the requirements imposed by real time

simulations. It combines the efficiency of the explicit Euler method and the stability

properties of the implicit Euler method and has been successfully employed to achieve

RT integration of the EOM associated to high-fidelity multibody systems containing

stiff-force elements and ideal joints [30, 31]. The computational effort required by the

linearly implicit Euler method is predictable since it requires the solution of a linear

system of equations at each time step. Moreover it exploits a linear approximation of

the stiff terms in the vector of generalized forces in order to be able to cope with stiff

numerical problems. Finally, to minimize the constraint violation, a combined use of

the linearly implicit Euler method with a non-iterative projection step and alternatively

with a modified Baumgarte stabilization method has been proposed in [30].

A great deal of research has been carried out to enhance the performances of the linearly

implicit Euler method with the final aim of make it possible the RT integration of
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large stiff DAE systems of equations arising from extremely complex models of real

mechanical systems [28, 30, 32, 33]. In particular, research efforts have focused on the

efficient evaluation of the system Jacobians which have a crucial effect on the stability

and accuracy of the linearly implicit Euler method. Classical off-line techniques based on

finite-differences approximations are not suitable for RT simulations of large scale models

due to the high number of function evaluations they require whenever the Jacobians

must be updated. Moreover, in order to guarantee the unconditional stability of the

linearly implicit Euler method, only the terms related to the stiff force elements in the

vector of generalized forces are required and thus the exact computation of Jacobians

is not needed at all. The analytical evaluation of the Jacobians at each time step has

been proposed by Rill in [34] where the choice of the stiff terms to be retained is based

on physical considerations on the mechanical system. An alternative method has been

proposed by Schiela et al. in [35] where, in a pre-processing step, a reference trajectory

is selected for the evaluation of the Jacobians whose non-stiff terms are detected by

means of numerical considerations and then brought to zero in order to enhance the

factorization of the Jacobian matrix. A third approach has been used by Arnold et al.

in [30] relying on a pre-processing step during which the Jacobians are evaluated for all

the characteristic configurations of the mechanical system. These set of pre-evaluated

Jacobians is then used during the RT simulation avoiding any additional computational

effort.

2.4 Model reduction techniques

The practice of converting detailed multibody models into equivalent simplified ones is

still extensively adopted in the automotive industry in order to increase the efficiency

of the multibody simulations in particular applications.

Indeed, despite the continuously increasing amount of computational power available in

off-the-shelf workstations, the model reduction approach still represents the only suitable

solution for dealing with iterative processes which may require a very high number of

simulations such as:

• parameters identification: these techniques are often employed in vehicle dynamics

applications in order to obtain the unknown parameters of a target vehicle. This

latter is represented by a simplified multibody model whose main design parame-

ters, such as mass and inertia of the sprung mass, unsprung masses, suspensions

rates and damping properties, are tuned iteratively in order to reproduce the re-

sponse of the target vehicle [36–38].
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• design optimization: a common problem in the industrial practise is the finding of

an optimal set of design parameters which allows to meet certain desired vehicle

performances. A typical example is the tuning of the dampers in passengers cars

which may involve a considerable number of iterations. Simplified models are much

more adapt then detailed ones to set up automatic optimization processes based

on iterative multibody simulations [39–41].

• tuning of controllers: the iterative tuning of active controllers is another design

area where simplified vehicle models are used extensively. In order to ensure

optimal control performances, the parameters in the controllers must be tuned by

running numerous tests in different operating conditions [23–27].

Moreover, standard ODE explicit solvers, first of all the explicit Euler method, are still

the standard for real-time applications in the automotive industry. For the reasons

explained in the previous two sections, the reduction process required to transform a

high-fidelity multibody model into one suitable for integration by means of standard

explicit ODE integrators is quite a cumbersome and time consuming task. It involves

the preparation of proper K&C look-up tables in order to take into account the charac-

teristics of the suspensions linkages without retaining all the suspension links and the

stiff bushing connections. Kinematic closed loop (i.e. the leverage in the steering sys-

tem) must be replaced by kinematic look-up tables while open kinematic loops with ideal

joints connections must be expressed in relative coordinates in order to avoid DAE. This

simplification process weakens the link between the detailed multibody models and their

real-time counterparts. On top of that, every modification in the starting high-fidelity

multibody model (e.g. a change in the positions of the suspension’s hard points) requires

the regeneration of the affected look-up tables in the simplified model. This requires

time consuming objective tests on tailored K&C test rigs or their virtual reproduction

via multibody simulations as shown in Fig. 2.4.

The research community has intensively addressed the issues of model reduction for

real-time applications in the last years trying to improve the look-up tables approach

[33, 42, 43]. Rulka et al. proposed an automatic approach (macro joint approach) to

transform the set of DAEs describing a detailed multibody model into an equivalent set

of ODEs by keeping the same full component parametrization in [44] while Eichberg et

al. proposed a non-linear model reduction process in [33, 42] in order to generate real

time simulations models from existing detailed multibody models by neglecting the high

frequencies contributions in handling models but considering the non-linear compliant

kinematic effects in the suspensions by means of look-up tables.
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Figure 2.4: K&C look-up tables [45]

Summarizing, model reduction techniques constitute a fundamental tool to enhance the

efficiency of multibody simulations for vehicle dynamics applications such as parameters

identification, design optimization, tuning of controllers and real-time simulations.
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2.5 Research Contribution

From the analysis of the state-of-the-art on efficient multibody simulations conducted

in this Chapter, the following areas have been identified as possible targets for further

investigations:

1. enhancement of the performances of real-time solvers for stiff DAE systems by

combining the generality and ease of implementation of the dependent Cartesian

coordinates approach and the efficiency of a state-space formulation obtainable by

means of velocity transformation techniques;

2. elimination of look-up tables for the representation of the non-linear kinematics of

the suspension systems;

3. automatic transformation of detailed off-line suspension models into simplified ones

suitable for design optimization, tuning of controllers and real-time simulations;

4. set-up of an accurate and reliable identification process to find out the unknown

design parameters of reduced suspension models in order to enhance their corre-

lation with detailed off-line models and real prototypes.

In particular, in order to address the first of these topics, an investigation has been

carried out on the possible efficiency improvements in the linearly implicit Euler method

associated to an automating switching from a dependent to an independent coordinates

formulation. This approach can potentially improve the integration efficiency if it implies

a substantial reduction in the number of DOFs (Degrees Of Freedom) retained in the

multibody model. This is particularly the case for multibody systems composed by a

large number of bodies whose configuration parameters are related by a large number of

constraint equations. Detailed multibody models developed for automotive applications

perfectly fit in this category since they are generally built using a considerable number of

bodies (more then 150) and ideal joints (e.g. driveline and steering systems connections).

Moreover these models are usually obtained using general purpose multibody software

based on dependent coordinates formulations in which 4 dependent Euler parameters

are employed to describe the orientation of each body. The use of dependent Euler

parameters avoids numerical problems due to singular configurations but requires an

additional constraint equation for each body in the system causing a great increase in

the total number of constraint equations. The proposed approach intends exploiting

these intrinsic characteristics to improve the efficiency of the standard implementation

of the linearly implicit Euler method for automotive applications. In particular the

implementation of the linearly implicit Euler method has been modified in order to carry

out the integration process by only considering a reduced set of independent velocities
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instead of the complete one. To this aim we apply the projection method proposed by

the Jalón et al. in [7]. By expressing the EOM of the multibody system in independent

coordinates it is possible to obtain a great reduction in the dimensions of the linear

system which has to be solved at each time step, since only the current independent

accelerations must be found instead of the complete set of dependent accelerations. The

proposed methodology has been implemented starting from a symbolic representation

of the EOM of the mechanical system. Analytical expressions for the Jacobians are

obtained by considering only the stiff terms in the vector of generalized applied forces

and the non-iterative projection method proposed in [30] is applied as well in order to

minimize the drift off of the numerical solution from the constraint conditions. The

proposed implementation of the linearly implicit Euler method is then compared to the

classical one based on a dependent coordinates formulation through a numerical test

case in order to highlight possible advantages and drawbacks.

The second issue, that is avoiding the use of look-up tables for the modelling of non-linear

suspension kinematics, has been addressed by adopting a trailing arm representation of

the suspension which enables not only the analysis of the vertical ride behaviour but

also the study of the dynamic phenomena occurring during longitudinal acceleration

and braking manoeuvres, which are influenced by the anti-squat, anti-lift and anti-dive

characteristics of the suspension.

Finally, the 3rd and 4th open issues have been addressed by the implementation of a

parameters identification process which allows to estimate the unknown parameters of

the trailing arm concept model, both in its quarter car and full vehicle versions, starting

from the knowledge of the dynamic response of a reference model. The method can

be applied to map detailed off-line multibody models into equivalent simplified trailing

arm models which can then be employed in applications such as design optimization,

tuning of controllers and real-time simulations. Moreover the identification method has

been designed in order to be able to receive in input, as the reference dynamic response,

measured data coming from experimental tests on a target vehicle. This is particularly

useful when competitors vehicles must be analysed for benchmarking studies, since their

main design parameters can be easily obtained without expensive measurements set-ups.



Chapter 3

LI Euler Method: dependent and

independent coordinates

formulations

3.1 Dependent coordinates formulation of the EOMs of a

multibody system

Multibody models are composed by several bodies whose positions and orientations must

be univocally described by means of a set of configuration parameters or coordinates

[2]. Formulations in dependent coordinates constitute the basis for several general pur-

pose multibody software. When dependent coordinates are used, the position and the

orientation of each body in the mechanical system are described by means of a fixed

number of configuration parameters while a set of algebraic equations is defined in order

to mathematically represent the constraint conditions applied among bodies. This leads

to the following system of index-3 DAE:

f(q, q̇, q̈, λ, t) = M(q)q̈ + Φq
T (q, t)−Q(q, q̇, t) = 0

Φ(q, t) = 0
(3.1)

In Eq. 3.1 M and Q represent the mass matrix and the vector of generalized applied

forces respectively. This latter contains the gravity force and the force elements applied

between bodies, which in vehicle dynamics applications consist generally in tires and

shock-absorbers as well as elastic bushing connections and aerodynamics loads. The

19
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n dependent configuration parameters univocally describing the configuration of the

multibody system and their time derivatives are indicated as q and q̇ respectively. Vector

Φ contains the constraint equations whose number is denoted as m, the constraint

Jacobian matrix Φq groups the derivatives of the constraint equations with respect to

the configuration parameters and finally λ is the vector of Lagrange multipliers. Due

to the modelling of bushing connections and shock absorbers bump and rebound stops

the vector of generalized applied forces in Eq. 3.1 contains stiff terms which lead to a

stiff index-3 DAE system whose direct integration cannot be approached by means of

standard ODE integrators. For this reason the index of the DAE system is generally

reduced to 2 and 1 by substituting the constraint equations at the position level in Eq.

3.1 for the constraints at the velocity coordinates level:

Φqq̇ + Φt = 0 (3.2)

and for the constraints at the acceleration coordinates level:

Φqq̈ + Φ̇t + Φ̇qq̇ = 0 (3.3)

In Eqs. 3.2 and 3.3 the vector Φt contains the time derivative of the constraint equations

while Φ̇q is the time derivative of the constraint Jacobian matrix. Since the differen-

tiation process cuts out the constant terms present in the constraint equations at the

position level, a linear and quadratic growth of ‖Φ(q, t)‖ can be observed in the nu-

merical solutions obtained with the index -2 and index -1 formulations respectively. In

order to avoid this drift away from the manifold defined by the constraint equations the

Baumgarte stabilization technique is commonly employed [46]. In the classical Baum-

garte approach, the violation in the constraint conditions during the time integration of

the EOM expressed in the index -1 form is reduced by substituting the constraint at the

acceleration level of Eq. 3.3 by a proper linear combination of the constraint conditions

at position, velocity and acceleration level:

Φqq̈ + Φ̇t + Φ̇qq̇ + 2α(Φqq̇ + Φt) + β2Φ = 0 (3.4)

The same approach can be used to apply the Baumgarte stabilization to the time inte-

gration of the EOM expressed in the index -2 form [30] by replacing Eq. 3.2 with:

Φqq̇ + Φt + γΦ = 0 (3.5)
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Proper numerical values of the Baumgarte parameters α, β and γ must be assigned in

order to reduce the drift-off effect and to limit the introduction of artificial stiffness into

the system.

3.1.1 Implicit Integration schemes

The numerical integration of the EOM expressed in the index -1 and index -2 forms is

typically carried out by means of implicit integration schemes in off-line simulations

[47–52]. Indeed the presence of stiff terms in the EOM imposes unpractical restrictions

to the step-size if explicit integration schemes are used. In order to find the set of 3n+m

unknowns constituted by positions, velocities, accelerations and Lagrange multipliers at

the next time step, 2n additional integrals must be added to the EOM of Eq. 3.1:

q(i+1) = q(i) +

∫ t(i)+h

t(i)

q̇dt, q̇(i+1) = q̇(i) +

∫ t(i)+h

t(i)

q̈dt (3.6)

where h is the time step size and the subscripts i and i+1 indicate the current and the

next time step of the integration process respectively. Implicit integration algorithms

rely on the substitution of the integrals of Eq. 3.6 for integration formulas which assume

the following form:

q(i+1) = Λ(q≤i, q̇≤i, q̈≤i, q̈≤(i+1)), q̇(i+1) = Λ̌(q̇≤i, q̈≤i, q̈≤(i+1)) (3.7)

In Eq. 3.7 the dependent configuration parameters and the dependent velocities at the

next time step are expressed as functions of the states at the current and previous time

steps as well as functions of the accelerations at the next time step. The actual form

of the integration formulas Λ and Λ̇ varies according to the particular implicit scheme

adopted. By replacing the configuration parameters q and their time derivatives q̇ in

Eq. 3.1 by the integration formulas of Eq. 3.7, a non-linear system having as unknowns

the n accelerations and the m Lagrange multipliers at the next time step is obtained:

F(q̈(i+1), λ(i+1)) =

[
f(q̈(i+1), λ(i+1))

CEs(q̈(i+1))

]
= 0 (3.8)

where CEs(q̈(i+1 )) indicates the constraint equations (at the velocity or acceleration

level). The non-linear system in Eq. 3.8 can be solved iteratively by the Newton-

Raphson algorithm in order to find the accelerations and the Lagrange multipliers at

the next time step. The kth iteration of the Newton-Raphson method can be written as:
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{
q̈k(i+1)

λk(i+1)

}
=

q̈k−1(i+1)

λk−1(i+1)

− [J(q̈k−1(i+1), λ
k−1
(i+1))]

−1F(q̈k−1(i+1), λ
k−1
(i+1)) = 0 (3.9)

where the iteration matrix J is defined as:

J =

∂f(q̈(i+1),λ(i+1))

∂q̈(i+1)

∂f(q̈(i+1),λ(i+1))

∂λ(i+1)
∂CEs(q̈(i+1))

∂q̈(i+1)
0

 (3.10)

As previously pointed out, the basic requirement in RT simulations is that the number

of operations to be carried out at each integration time step must be fixed. Indeed this

is the only way to be a priori sure that the turnaround time, i.e. the time required to

complete the operations at each time step, is lower than the time span of 1 ms imposed

by RT standards [30, 35]. Due to their iterative nature implicit integration schemes are

not able to fulfill this requirement. For this reason the linearly implicit Euler integration

method has been proposed [30, 31, 34] which is able to handle the integration of DAE

systems containing stiff terms by performing a fixed number of operations at each time

step. This is achieved by means of a linear approximation of the stiff terms contained

in the vector of the generalized applied forces Q in Eq. 3.1 as it will be explained in the

next section.

3.2 Integration of the EOM expressed in dependent coor-

dinates with the linearly implicit Euler method

By discretizing in time the differential equations of motion in Eq. 3.1 and by expressing

them at the current time step i one obtains:

M(i)q̈(i) + Φq
T
(i)λ(i) = Q(i) (3.11)

where M(i) = M(q(i)),Q(i) = Q(q(i), q̇(i), t(i)) and Φq(i)
= Φq(q(i), t(i)). The approx-

imation of the accelerations at the current time step by finite differences leads to the

following expression:

M(i)

(q̇(i+1) − q̇(i))

h
+ Φq

T
(i)λ(i) = Q(i) (3.12)

By combining Eq. 3.12 with the finite differences representation of the velocities at the

current time step the formulas of the first order Explicit Euler method can be obtained:
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[
q(i+1)

M(i)q̇(i+1) + hΦq
T
(i)λ(i)

]
=

[
q(i)

M(i)q̇(i)

]
+ h

[
q̇(i)

Q(i)

]
(3.13)

It is well known that the explicit Euler method cannot be used for the stable integration

of stiff ODEs or DAEs systems unless the time step is reduced to unpractical values [53].

An alternative is the use of the implicit Euler method which can handle the integration of

ODEs or DAEs systems containing stiff terms but requires an a-priori unknown number

of iterations to find the positions and the velocities at the next time step as the solution

of the following system:

[
q(i+1)

M(i)q̇(i+1) + hΦq
T
(i)λ(i)

]
=

[
q(i)

M(i)q̇(i)

]
+ h

[
q̇(i+1)

Q(i+1)

]
(3.14)

where Q(i+1 ) = Q(q(i+1), q̇(i+1), t(i+1)). In order to avoid the step-size restrictions

related to the explicit Euler integration scheme and the iterative solution of a non-linear

system of equations associated to the implicit Euler integration scheme, the linearly

implicit Euler method has been proposed [30, 31] for the real-time integration of the

stiff DAE system of Eq. 3.1. The linearly implicit Euler method represents a suitable

alternative to the explicit and the implicit Euler methods. Indeed, even if it requires

a fixed number of operations for each time step it can handle the integration of stiff

EOM by approximating the vector of generalized applied forces as a Taylor expansion

truncated at its first term. The variations in the values of the dependent configuration

parameters ∆q(i) and their time derivatives ∆q̇(i) are defined by the following forward

differences formulas:

[
∆q(i)

∆q̇(i)

]
=

[
q(i+1) − q(i)

q̇(i+1) − q̇(i)

]
(3.15)

By obtaining q(i+1) and q̇(i+1) from Eq. 3.15 and substituting their values in Eq. 3.14

the following expression can be obtained:

[
∆q(i)

M(i)∆q̇(i) + Φq
T
(i)λ(i)

]
=

[
h(q̇(i) + ∆q̇(i))

hQ(q(i) + ∆q(i), q̇(i) + ∆q̇(i), t(i+1))

]
(3.16)

As previously anticipated the linearly implicit Euler method relies on the first order

approximation of the vector of generalized applied forces in the LHS (Left Hand Side)

of Eq. 3.16 by means of the following Taylor expansion:
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M(i)∆q̇(i) + Φq
T
(i)λ(i) = h[Q(i) + ∂Q

∂q

∣∣∣
t(i)

∆q(i) + ∂Q
∂q̇

∣∣∣
t(i)

∆q̇(i) +
∂Q

∂t
h] (3.17)

By substituting the first equation of the matrix expression in Eq. 3.16 into Eq. 3.17 and

by assuming that the vector of generalized applied forces does not contain any explicitly

time-dependent terms one gets:

[M(i) − hJq̇(i) − h
2Jq(i)]∆q̇(i) + Φq

T
(i)λ(i) = hQ(i) + h2Jq(i)q̇(i) (3.18)

where the Jacobians of the vector of generalized applied forces are indicated as Jq(i)
=

∂Q
∂q

∣∣∣
t(i)

and Jq̇(i)
= ∂Q

∂q̇

∣∣∣
t(i)

. In order to be able to solve Eq. 3.18 for the variations in the

n dependent velocities ∆q̇(i), m additional equations are needed since there are m extra

unknowns contained in the vector of Lagrange multipliers. As suggested by Arnolds et

al. in [30], the m constraint equations at the velocity level can be added to Eq. 3.18

coming up with an index -2 DAE formulation. By discretizing in time Eq. 3.2 and by

imposing that the velocities at the next time step satisfy the constraints at the velocity

level the following expression is obtained:

Φq(q(i+1), t(i+1))q̇(i+1) + Φt(q(i+1), t(i+1)) = 0 (3.19)

The expressions for the positions and velocities at the next time step of Eq. 3.15 can be

then substituted in Eq. 3.19 to obtain:

Φq(i+1)[q̇(i) + ∆q̇(i)] + Φt (i+1) = 0 (3.20)

where Φq(i+1)
= Φq(q(i) + ∆q(i), t(i+1)) and Φt(i+1)

= Φt(q(i) + ∆q(i), t(i+1)). The m

additional relations of Eq. 3.20 can then be added to Eq. 3.18 in order to obtain the

following system of linear equations which can be solved to find the variations in the n

dependent velocities and the m Lagrange multipliers at the current time step:

[
M(i) − hJq̇(i) − h

2Jq(i) Φq
T
(i)

Φq(i+1) 0

][
∆q̇(i)

λ(i)

]
=

[
hQ(i) + h2Jq(i)q̇(i)

−Φq(i+1)q̇(i) −Φt (i+1)

]
(3.21)

Eq. 3.21 provides the function evaluation associated with the linearly implicit Eu-

ler method for a constrained multibody system whose EOM are expressed in terms of
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Table 3.1: Algorithm 1 and correspondent numerical integration routine

algorithm 1
[
∆q(i) ∆q̇(i)

]
= Function Evaluation 1 (q(i), q̇(i), t(i))

M(i) = M(q(i))

Q(i) = Q(q(i), q̇(i), t(i))

Φq(i)
= Φq(q(i), t(i), )

Jq(i)
= Jq(i)

(q(i), q̇(i))

Jq̇(i)
= Jq̇(i)

(q(i), q̇(i))

Φq(i+1)
= Φq(q(i) + ∆q(i), t(i+1))

Φt(i+1)
= Φt(q(i) + ∆q(i), t(i+1))[

∆q̇(i) λ(i)
]T

=

[
M(i) − hJq̇(i)

− h2Jq(i)
ΦT

q(i)

Φq(i+1)
0

]−1 [
hQ(i) + h2Jq(i)

q̇(i)

−Φq(i+1)
q̇(i) −Φt(i+1)

]

Numerical Integration 1 [q, q̇]= Num Int 1 (q(0), q̇(0))

for i=1 to iend[
∆q(i) ∆q̇(i)

]
= Function Evaluation 1 (q(i), q̇(i), t(i))[

q(i+1)

q̇(i+1)

]
=

[
q(i)

q̇(i)

]
+

[
∆q(i)

∆q̇(i)

]

dependent coordinates. The unconditional stability of the integration method is guar-

anteed as long as the matrices Jq(i)
and Jq̇(i)

approximate all the stiff terms in the exact

Jacobians ∂Q
∂q

∣∣∣
t(i)

and ∂Q
∂q̇

∣∣∣
t(i)

[31].

The pseudo-code implemented to perform the function evaluation of Eq. 3.21 is reported

in Tab. 3.1 together with the pseudo-code associated to the numerical integration of

the EOM. It can be noticed that the number of operations required to perform the

function evaluation at each time step is fixed thus meeting the basic requirement for RT

simulations.

3.3 Automated independent coordinates switching in the

linearly implicit Euler method

The linearly implicit Euler method presented in the previous section is able to handle

the integration of the stiff DAE system of Eq. 3.1 by performing a fixed number of

operations at each time step. With the aim of improving the numerical efficiency of

this method we investigate the use of the projection method based on the matrix R

defining the basis of the null-space of the constraint Jacobian, in order to reduce the

dimensions of the linear system to be solved at each time step. In particular we propose

the use of the projection method at each iteration of the linearly implicit Euler method

to automatically transform the expressions for the function evaluation of Eq. 3.21 from

a dependent coordinates formulation to a state space form in terms of a minimal set

of independent coordinates, allowing a reduction in the dimensions of the linear system
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from n+m to f =n-m. This reduction in the number of unknowns can be particularly

important if a highly constrained mechanical system is taken into account. The pro-

jection method based on the matrix R relies on the relationships between independent

and dependent velocities and accelerations [7]. In order to obtain these relationships the

vectors b and c must be defined from Eqs. 3.2 and 3.3 as:

Φqq̇ = −Φt ≡ b

Φqq̈ = −Φ̇t − Φ̇qq̇ ≡ c
(3.22)

In addition to Eq. 3.22 it must be also considered that the independent velocities ż

can be obtained as the projection of the dependent velocities on the rows of a matrix

B of dimensions f×n. The set of independent velocities is determined by the choice

of matrix B. A particular set of independent coordinates is not adequate to univocally

determine the configuration of a mechanism during its entire range of motion due to

possible singular configurations. For this reason matrix B must be changed whenever

the configuration of the mechanism cannot be further described by means of the current

set of independent coordinates. However for automotive application, as addressed in

this paper, matrix B can be considered as constant since no singular configurations

are reached during normal working conditions. Different numerical methods can be

employed in order to obtain matrix B starting from the knowledge of the constraint

Jacobian matrix [7, 54]. In particular matrix B must have full rank f and its rows

must be also linearly independent of the m rows of the constraint Jacobian matrix.

The relationships between independent and dependent velocities and accelerations are

defined as [7]:

q̇ =

[
Φq

B

]−1 [
b

ż

]
=
[
S R

] [b
ż

]
= Sb + Rż (3.23)

q̈ =

[
Φq

B

]−1 [
c

z̈

]
=
[
S R

] [c
z̈

]
= Sc + Rz̈ (3.24)

Eqs. 3.23 and 3.24 can be rewritten in a discretized form as:

∆q(i) = hS(i)b(i) + R(i)∆z(i)

∆q̇(i) = hS(i)c(i) + R(i)∆ż(i)
(3.25)
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The columns of the n×f matrix R in Eqs. 3.23, 3.24 and 3.25 constitute a basis of

the nullspace of the constraint Jacobian matrix. This property can be exploited in

order to eliminate the term containing the Lagrange multipliers in Eq. 3.18. Indeed

by substituting the second one of Eq. 3.25 into Eq. 3.18 and pre-multiplying by the

transpose of the projection matrix R one obtains:

RT
(i)[M(i) − hJq̇(i) − h

2Jq(i)]R(i)∆ż(i) =

RT
(i)[hQ(i) + h2Jq(i)q̇(i)]−RT

(i)[M(i) − hJq̇(i) − h
2Jq(i)]hS(i)c(i)

(3.26)

The linear system of Eq. 3.26 has only f variations in the independent velocities as

unknowns and represents the function evaluation needed by the linearly implicit Euler

method at each time step. Two possible algorithms can be employed in order to carry on

the integration process by using the state space formulation of Eq. 3.26 as suggested by

de Jalón et al. in [7]. A first possibility is to employ the variations in the independent

coordinates and velocities to find the independent coordinates and velocities at the

next time step by means of an Euler integration step. The dependent velocities and

positions at the next time step must then be found by solving the velocity and the

position problems in order to be able to proceed with the integration process. Indeed, the

dependent velocities and positions are required at each time step for the computation of

the terms in Eq. 3.26. An alternative approach can be used [7] which allows avoiding the

solution of the non-linear position problem at each time step. This approach relies on the

integration of an enlarged system of differential equations which practically translates

in giving in input the current variations in the dependent coordinates ∆q(i) and in

the independent velocities ∆ż(i) to the Euler integration step obtaining in output the

dependent coordinates q(i) and the independent velocities ż(i) at the next time step.

The pseudo-code implementing the function evaluation proposed in this section is re-

ported in Tab. 3.2. The routine receives in input the constant matrix B, the dependent

coordinates and the independent velocities at the current time step and returns in out-

put the current variations in the dependent positions and in the independent velocities.

The dimensions of the linear system to be solved in order to find the variations in the

independent velocities at the current time step is reduced to f =n-m by transforming

the EOM from a dependent coordinates formulation to a state space form in terms of a

minimal set of coordinates. However, in order to find the projection matrix R, a matrix

of dimensions n×n must be inverted at each time step in algorithm 2 reducing the ad-

vantages of the state space formulation. Notice that the constant matrix B representing

the mapping from dependent to independent velocities is computed just once before the
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Table 3.2: Algorithm 2 and correspondent numerical integration routine

algorithm 2
[
∆q(i) ∆ż(i)

]
= Function Evaluation 2 (q(i), ż(i), t(i), B)

Φq(i)
= Φq(q(i), t(i), )

T(i) =
[
S(i) R(i)

]
=

[
Φq(i)

B

]−1
b(i) = −Φt(q(i), t(i))

S(i)b(i) = T(i)

[
b(i) 0

]T
∆z(i) = h ż(i)
∆q(i) = hS(i)b(i) + R(i)∆z(i)
q̇(i) = ∆q(i)/h

M(i) = M(q(i))

Q(i) = Q(q(i), q̇(i), t(i))

Jq(i)
= Jq(i)

(q(i), q̇(i))

Jq̇(i)
= Jq̇(i)

(q(i), q̇(i))

c(i) = c(q(i), q̇(i), t(i))

S(i)c(i) = T(i)

[
c(i) 0

]T
∆ż(i) = [RT

(i)[M(i) − hJq(i)
− h2Jq(i)

]R(i)]
−1

·[RT
(i)[hQ(i) + h2Jq(i)

q̇(i)]−RT
(i)[M(i) − hJq(i)

− h2Jq(i)
]hS(i)c(i)]

Numerical Integration 2 [q, ż]= Num Int 2 (q(0), ż(0))

for i=1 to iend[
∆q(i) ∆ż(i)

]
= Function Evaluation 2 (q(i), ż(i), t(i), B)[

q(i+1)

ż(i+1)

]
=

[
q(i)

ż(i)

]
+

[
∆q(i)

∆ż(i)

]

beginning of the simulation using one of the methods proposed in [7, 54] and then given

in input to algorithm 2.

3.4 Stabilization of the constraint equations

The numerical solutions obtained by means of the two implementations of the linearly

implicit Euler method described in the previous sections are affected by the drift off

from the manifold defined by the algebraic constraint equations Φ(q(i), t(i)) = 0. In

particular, when the EOM in terms of dependent coordinates are expressed in the index -

2 form of Eq. 3.21, the constraints at velocity level are used in order to provide the

m additional equations required to compute the variations in the dependent velocities

and the Lagrange multipliers at the current time step. As previously pointed out,

since the expressions of the constraints at velocity level do not contain the constant

terms originally present in the constraint equations at position level, a linear growth of

‖Φ(q, t)‖ takes place as the numerical solution advances in time [53]. Similarly, when

the EOM expressed in the state space formulation of Eq. 3.26 are integrated to obtain

the dependent positions and the independent velocities at the next time step, a drift
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off of the solution from the constraint manifold is also observed. This drift is due to

the fact that the algorithm avoids the computationally expensive solution of the non-

linear position problem defined by the algebraic constraint equations at each time step.

Numerical round-off errors can thus accumulate as the numerical integration advances

in time causing a violation of the constraint conditions.

A projection of the numerical solution back to the manifold defined by the constraint

equations must be thus applied at the end of both algorithms 1 and 2 in order to

maintain an acceptable level of accuracy. Several techniques have been proposed in

order to prevent the numerical solution from drift off from the manifold defined by

the algebraic constraint equations [30, 46, 53]. A typical approach adopted in off-line

simulation is the use of iterative projection methods [55]. Generally the norm of the

residual vector in the constraint equations at the next time step is evaluated and, if it

is higher than a user defined tolerance, a nonlinear constrained minimization problem

is solved iteratively in order to find a new set of dependent configuration parameters

q∗(i+1) which belongs again to the constraint manifold as described in [30, 31, 55]:

if
∥∥Φ(q(i) + hq̇(i), t(i+1))

∥∥ > TOL

then min
{∥∥∥q∗(i+1) − [q(i) + hq̇(i)]

∥∥∥ : Φ(q∗(i+1), t(i+1)) = 0
} (3.27)

After the iterative solution of the constrained minimization problem of Eq. 3.27 the

errors in the velocity constraints are corrected as well by projecting the velocities back

to the manifold defined by the constraints at the velocity level:

min
{∥∥∥q̇∗(i+1) − q̇(i+1)

∥∥∥ : Φq(q∗(i+1), t(i+1))q̇
∗
(i+1) + Φt(q

∗
(i+1), t(i+1)) = 0

}
(3.28)

This linear system can be solved without the need of iterative solution methods in

order to find the corrected velocities q̇∗(i+1). Once again the iterative solution of the

minimization problem in Eq. 3.27 must be avoided in RT applications where an a-

priori known number of operations is required at each time step. As demonstrated

by Burgermaister et al. [31] one Newton iteration for the solution of the constrained

minimization problem mentioned above is sufficient to avoid the drift off effect providing

that the projection is performed at each time step. The noniterative projection method

can be applied after the function evaluation in both algorithm 1 and algorithm 2 in

order to obtain a corrected set of dependent velocities from the solution of the following

linear system [30]:



LI Euler Method: dependent and independent coordinates formulations 30

Table 3.3: Numerical integration routines plus the non-iterative projection step

Numerical Integration 1 [q, q̇]= Num Int 1 (q(0), q̇(0))

for i=1 to iend[
∆q(i) ∆q̇(i)

]
= Function Evaluation 1 (q(i), q̇(i), t(i))[

q̇∗(i) − q̇(i)

µ(i)

]
=

[
M(i) Φq

T
(i)

Φq(i) 0

]−1 [
0

− 1
hΦ(q(i) + hq̇(i), t(i+1))

]
∆q∗(i) = hq̇∗(i)[
q(i+1)

q̇(i+1)

]
=

[
q(i)

q̇(i)

]
+

[
∆q∗(i)
∆q̇(i)

]
Numerical Integration 2 [q, ż]= Num Int 2 (q(0), ż(0))

for i=1 to iend[
∆q(i) ∆ż(i)

]
= Function Evaluation 2 (q(i), ż(i), t(i), B)[

q̇∗(i) − q̇(i)

µ(i)

]
=

[
M(i) Φq

T
(i)

Φq(i) 0

]−1 [
0

− 1
hΦ(q(i) + hq̇(i), t(i+1))

]
∆q∗(i) = hq̇∗(i)[
q(i+1)

ż(i+1)

]
=

[
q(i)

ż(i)

]
+

[
∆q∗(i)
∆ż(i)

]

[
M(i) Φq

T
(i)

Φq(i) 0

][
q̇∗(i) − q̇(i)

µ(i)

]
=

[
0

− 1
hΦ(q(i) + hq̇(i), t(i+1))

]
(3.29)

As described in [30, 31] the linear system of Eq. 3.29 can be interpreted as one simplified

step of the Newton-Raphson algorithm for the solution of the constrained minimization

problem of Eq. 3.28 with initial guess q∗(i) = qi + hq̇i and µ(i) = 0. The the non-

iterative projection step in Eq. 3.29 must be applied after the function evaluations of

both algorithms 1 and 2 to obtain the corrected variations in the dependent coordinates

∆q∗(i) = hq̇∗(i) which can then be used within the integration routines to carry on with the

integration process as reported in the pseudo-codes of Tab.3. The use of the projection

step of Eq. 3.29 is sufficient to drastically reduce the drift away of the numerical solution

from the constraint conditions [30, 31].

3.5 Summary

In this Chapter the theoretical background associated to a dependent coordinates for-

mulation of the stiff differential-algebraic Equations of Motion associated to a complex

multibody system has been first resumed.
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The main features of the off-line implicit integration schemes have been presented, show-

ing that their iterative nature prevents them from be used in real-time applications where

the number of operations to be performed at each time step must be known a priori.

The linearly implicit Euler method has been then introduced, which constitutes the cur-

rent state-of-the-art in RT simulations of complex multibody systems. In particular the

theoretical foundations of its classical implementation in terms of dependent coordinates

have been described and translated into a numerical algorithm (referred to as algorithm

1), which has been implemented in Matlab.

An alternative implementation of the linearly implicit Euler method has been then

proposed which is based on the use of the numerical method proposed by de Jalón et

al. in [7] to automatically switch from a dependent coordinates representation of the

Equations of Motion to an independent one. Also in this case the theoretical background

and the numerical implementation (algorithm 2) have been treated.

Finally the non-iterative projection method employed to avoid the violation of the con-

straint conditions described in [30, 31] has been discussed together with its numerical

implementation.



Chapter 4

Industrial application: modelling

and integration performances

In order to test and compare the efficiency and the accuracy of the two implementations

of the linearly implicit Euler method presented in Chapter 3, an industrial application

case has been analysed. The main goal is to highlight possible advantages of the imple-

mentation proposed in this research work, which exploits the projection method based

on matrix R to automatically convert the EOM from a dependent to an independent

coordinates representation.

4.1 Industrial Application Case

A rear left multilink suspension of a rear-drive passenger car has been considered as

shown in Figure 4.1. The mechanical system is composed by 11 bodies which are the

chassis, the rear subframe, the 5 suspension’s links, the knuckle, the rim, the differen-

tial shaft and the halfshaft. The chassis is constrained in such a way that only its 3

translational DOFs are permitted and it is connected to the rear subframe by means of

4 bushings with linear stiffness and damping properties. The driving torque is delivered

from the chassis to the rim through the driveline elements which are the differential

shaft and the halfshaft. The differential shaft is connected to the chassis by means of

a cylindrical joint and to the halfshaft by means of a universal joint. The halfshaft-

rim connection is also modeled as a universal joint. Finally the rim is connected to the

knuckle by means of a revolute joint. The shock-absorber is modeled as a spring-damper

force element with linear stiffness and damping characteristics. A non-linear tire force

element has been also introduced in which the tire-road interaction forces applied to

the rim are functions of the indentation between the tire contact-patch and the road

32
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Figure 4.1: Rear multilink suspension of a rear-wheel-drive passenger car

surface. Tangential forces at the tire-road contact patch are computed by the Pacejka’s

magic formulas while the single contact point transient tire model [56] has been imple-

mented in order to take into account the dynamic phenomena related to the tire carcass

compliance.

Starting from the common mechanical system described above 2 models have been ob-

tained, in the first one, which will be referred to as bushings model (Fig. 4.2), the

connections of the 5 suspension’s links with the subframe and the knuckle are defined

using 10 bushing force elements with linear stiffness and damping properties. In the

second model, which will be indicated as ideal joints model (Fig. 4.3), the suspension’s

links are connected to the subframe by means of 5 universal joints and to the knuckle

by means of 5 spherical joints. The bushings model and the ideal joints model will be

used to assess the efficiency of algorithm 1 and algorithm 2 when dealing with stiff DAE

problems. In particular their performances will be first tested in the case of a classical

suspension model (bushings model) and then in the case of a suspension model with a

high number of ideal joints connections (ideal joints model).

In order to formulate the EOM of the two suspension models under analysis, a depen-

dent Cartesian coordinates approach has been adopted in which the orientation of each

body is described by means of 4 dependent Euler parameters. The total number of

configuration parameters required to completely describe the position and orientation of

each body is thus n=77. The two models have 31 common constraint equations which

are the 11 constraint equations imposing the relationships between the dependent Euler

parameters; the 3 constraint equations defined to eliminate the rotational DOFs of the

chassis; the 17 constraint equations associated to the ideal joints applied among the
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Figure 4.2: Bushings model

Figure 4.3: Ideal joints model

driveline elements. In the ideal joints model 5 additional universal joints are employed

to connect the suspenion’s links to the rear subframe and 5 additional spherical joints

are used to connect the links to the knuckle. 35 additional constraint equations are thus

needed for the definition of the ideal joints model as resumed in Tab. 4.1.

The implementation of the (bushings model) and of the (ideal joints model) will be

described in the next 2 sections.
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Table 4.1: Resume of the bushings model and the ideal joints model properties

bushings model ideal joints model

# of configuration parameters n=77 n=77
# of constraint equations m=31 n=66
# of DOFs f =46 f =11

4.2 Maple implementation and numerical integration in

Matlab

The numerical approach for the modelling of a multibody-system is a quasi-standard

choice in general purpose commercial software such as VL Motion, ADAMS, SYMPACK

and DADS [4–6, 57]. These software provide a simple and robust way to model complex

multibody systems for the most diverse applications. Despite complex models can be

easily and quickly defined by means of user-friendly GUIs (Graphic User Interfaces), the

accessibility of the underlying EOM is often limited if not possible at all. Moreover the

use of a general-purpose multibody software greatly limits the level of control of the user

which is not able to choose the coordinates representation to be used in order to define

the position and orientation of each body in the system.

An alternative approach is the use of Computer Algebra Software (CAS), such as Maple

and Mathematica, to obtain the symbolic representation of matrices and vectors em-

ployed in the mathematical definition of the EOM of a multibody system. These latter

are generally converted in source codes such as C and Fortran for a fast and efficient

numerical integration. The availability of symbolic EOM is particularly important in

RT applications where analytical simplifications can be performed in a preliminary step

increasing the efficiency of the exported simulation codes. Moreover each term in the

EOM can be isolated and exported separately to the numerical simulation environment

where it can be further manipulated according to the needs of the user.

In this research work the symbolic approach has been adopted for the modelling of

the multibody systems under analysis. In particular the EOM of the two suspensions

models have been obtained symbolically by means of the set of methods and procedures

collected in the Maple library ’MBSymba’ proposed by Lot et al. in [58]. Matalb has

been chosen as the numerical simulation environment since it offers a wide range of

built-in routines which can be directly used in order to manipulate the terms in the

EOM (i.e. matrix multiplication, matrix inversion, etc.). As it will be described in the

following paragraphs Matlab has been also used for modelling purposes, in particular to

set up the tire force element, and for the coding of the integration routines assessed in
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Chapter 3. A brief overview of the modelling process will be now given before expanding

the specific issues in the next subsections.

The modelling phase in MBSymba starts with the definition of the spatial configuration

of the mechanical system, i.e. all the bodies are defined and positioned with respect

to the global reference frame. The constraint and loading conditions must then be

described. The MBSymba library offers a variety of commands to define force elements

and ideal constraint connections applied among bodies. When the model definition

is completed and all bodies, force elements and constraints are properly defined, the

’lagrange equations’ command can be used to obtain the EOM of the multibody system.

What this command actually does is to compute the Lagrangian of the system:

L = T
(
q, ˙q, t

)
− V (q) +

m∑
k=1

λkφk
(
q, ˙q, t

)
(4.1)

where T is the total kinematic energy, V is the potential energy of conservative forces,

λk are the Lagarnge’s multipliers associated to the constraint reactions, and then sym-

bolically compute the associated Lagrange’s equations:

d

dx

(
∂L

∂q̇i

)
− ∂L

∂qi
= Qi (4.2)

Once the EOM have been derived with the ’lagrange equations’ command, all the terms

needed to perform the function evaluations in algorithms 1 and 2 have been isolated and

then exported in the Matlab environment. In particular the following terms have been

extracted:

• the mass matrix M(q);

• the vector of generalized applied forces Q(q, q̇, t);

• the vector containing the constraint equations in residual form Φ(q);

• the jacobian of the constraint equations Φq(q);

• the vector c(q, q̇) coming from the double differentiation of the constraint equa-

tions;

• the jacobians of the vector of generalized applied forces Jq(i)
(q, q̇, t) and Jq̇(i)

(q, q̇, t);

Note that, since in the systems under analysis all the constraint equations are time

independent (scleronomous constraints), the term containing the constraint conditions

Φ, its jacobian Φq and the vector c do not depend on time. Furthermore the term Φt

vanishes.
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The jacobians required by the linearly implicit Euler methods are computed symbolically

by taking into account the stiff terms in the vector of generalized applied forces. In the

ideal joints suspension models these stiff terms consist only in the reaction forces of the

4 bushings connecting the subframe to the chassis. For the bushings model the number

of stiff terms in the vector of generalized forces greatly increases since there are 10

more bushings connections with respect to the ideal joints model. The structures of the

jacobians of the vector of generalized forces Jq(i)
and Jq̇(i)

as well as of the constraint

jacobians Φ(q) for both the bushings and ideal joints models will be described in more

details when addressing the actual implementation of the code respectively in subsections

4.2.3 and 4.2.2.

4.2.1 Bodies definition

The first step in developing the suspension models in Maple is the definition of a local

body reference frame rigidly attached at the CG of each body. The position of the origin

of the body reference frame associated to the jth body with respect to the global reference

frame is defined by the translation vector:

Oj =
[
xj yj zj

]T
(4.3)

The rotation matrix describing the orientation of the jth body in terms of its Euler

parameters is defined as:

Aj =


1− 2 (θ2)

2 − 2 (θ3)
2 2(θ1θ2 − θ0θ3) 2(θ1θ3 + θ0θ2)

2(θ1θ2 + θ0θ3) 1− 2 (θ1)
2 − 2 (θ3)

2 2(θ2θ3 − θ0θ1)
2(θ1θ3 − θ0θ2) 2(θ2θ3 + θ0θ1) 1− 2 (θ1)

2 − 2 (θ2)
2

 (4.4)

The body reference frame associated to the jth body is then defined by the following

4×4 matrix:

Tref
j =

[
Aj OJ

0 0 0 1

]
(4.5)

Once the jth body reference frame has been defined, it can be given in input, together

with the mass and inertia moments, to the command make BODY in order to complete

the definition of the jth body.
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Having defined the bodies in the mechanical systems, the correspondent configuration

parameters must be ordered and collected in a single vector q. To this aim, the position

coordinates and the Euler parameters of the jth body in the system can be first grouped

in a body coordinates vector:

qj =
[
xj yj zj θj0 θj1 θj2 θj3

]T
(4.6)

Then the 11 coordinate vectors correspondent to the 11 bodies in the suspension model

can be stored together in q which thus contains all the 77 dependent coordinates de-

scribing the configuration of the mechanical system:

q =
[
(q1 )T · · · (qj)T · · · (qn)T

]T
(4.7)

In particular the ordering of the bodies coordinate vectors in the total vector q is the

following:

• j =1 → upper arm;

• j =2 → leading arm;

• j =3 → control arm;

• j =4 → trailing arm;

• j =5 → lower arm;

• j =6 → knuckle;

• j =7 → rim;

• j =8 → differential outshaft;

• j =9 → halfshaft;

• j =10 → chassis;

• j =11 → subframe;

The mass matrix M of the complete system presents the pattern showed in Fig. 4.4.

In particular the squared 7×7 portion of the mass matrix associated to one specific

body presents 3 diagonal translational inertia terms each one containing the mass of the

body and a 4×4 lower-right matrix containing the inertia terms associated to the Euler

parameters. These terms are functions of the moments of inertia of the body along the

axis of the body reference frame attached to its CG.
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Figure 4.4: Mass matrix

4.2.2 Constraint equations and constraint jacobian

As discussed earlier, the use of 4 dependent Euler parameters requires taking into account

an algebraic constraint equation for each body in the system. Indeed the four dependent

Euler parameters in the orientation matrix of Eq. 4.4 satisfy the following relation:

3∑
k=0

(θk)
2 = 1 (4.8)

Besides the relationships between Euler parameters, the algebraic equations describing

the ideal joints in the system must be also taken into account and stored within the vector

Φ. A brief description of ideal joints constraint equations required for the modelling of

the suspensions under analysis is given in the followings.

In order to restraint the rotational degrees of freedom of the chassis, 4 constraint equa-

tions are required to prevent its Euler parameters from vary with respect to their initial

values which are defined as: θchassis0 = 1; θchassis1 = 0; θchassis2 = 0; θchassis3 = 0. These

4 relationships have been used to eliminate the rotations of the chassis. It is worth

pointing out that since these 4 constraint equations already fix the values of the chassis

Euler parameters, the constraint condition in 4.8 is not required for this particular body.

The built-in commands ’spherical joint’, ’cylindrical joint’ and ’revolute joint’ available

in the MSymba library have been used to model the ideal joint connections shown in

Figs. 4.2 and 4.2. These commands provide in output respectively 3, 4 and 5 algebraic

constraint equations. Since a universal joint command is not available in the MSymba
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library, these joint connections have been modelled by first applying a revolute joint at

the origin of the auxiliary reference systems defining the position and orientation of the

joint in the two bodies (3 constraint equations) and then imposing the normal condition

between their axes (1 constraint equation).

Once they have all been defined, the algebraic constraint equations can be stored in the

vector Φ which contains a total of m=66 and m=31 constraint equations respectively

in the case of the ideal joints model and the bushings model.

The order of the constraint equations in the vector Φ related to the ideal joints model

is the following:

• Φ1 → Φ35 : links connections;

• Φ36 → Φ52 : driveline connections;

• Φ53 → Φ62 : Euler parameters relationships;

• Φ63 → Φ66 : chassis constraints;

For the bushings model the first 35 links connections are missing:

• Φ1 → Φ17 : driveline connections;

• Φ18 → Φ27 : Euler parameters relationships;

• Φ28 → Φ31 : chassis constraints;

At this point it is possible to compute the constraint jacobian which is defined as:

Φq =


Φq11 Φq12 · · · Φq1n

Φq21 Φq22 · · · Φq2n
...

...
. . .

...

Φqm1 Φqm2 · · · Φqmn

 (4.9)

where Φq ij = ∂Φi/∂qj .

The actual patterns of the constraint jacobians are shown in the next figures. In par-

ticular Fig. 4.6a shows the constraint jacobian for the ideal joints models while in Fig.

4.6b the constraint jacobian related to the bushings model is reported.

It is possible to notice that the 31×77 constraint jacobian matrix associated to the

bushings models is exactly the same as the lower 31×77 part of the constraint jacobian

matrix associated to the ideal joints model whose total dimensions are 66×77. This is

due to the particular ordering adopted to collect the constraint equations in the vectors

Φ in the 2 models.
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(a) ideal joints model

(b) bushings model

Figure 4.5: Patterns of the constraint jacobians

As described in Section 2 the matrix R is obtained by inverting the the n×n matrix

whose m×n upper partition is the constraint jacobian matrix and whose f×n lower part

is denoted as matrix B:

[
S(i) R(i)

]
=

[
Φq(i)

B

]−1
(4.10)

Matrix B must have full rank f and its rows must be linearly independent from the rows

of the constraint jacobian. There are several numerical methods available to compute

matrix B starting from the knowledge of the constraint jacobian matrix as described in

[7, 54]. As pointed out in Chapter 3, matrix B defines the mapping between dependent

and independent coordinates and can be computed just once off-line, before the starting

of the actual integration process. Indeed, since the suspension doesn’t reach any singular

configuration during normal operating conditions, the transformation from dependent

to independent coordinates can be effectively described using a constant matrix B com-

puted at the initial configuration of the system. In this work the QR decomposition of
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(a) ideal joints model

(b) bushings model

Figure 4.6: B matrix patterns

the constraint jacobian matrix has been employed to compute the matrix B. In particu-

lar the constraint jacobian matrix has been first evaluated at the initial configuration of

the suspension Φq(q0) where q0 is the vector of configuration parameters correspondent

to the initial configuration of the suspension. The Matlab command qr has been then

employed to decompose its transpose as:

[C1,C2] = qr(ΦT
q (q0)) (4.11)

where the n×n orthogonal matrix C1 and the n×m upper triangular matrix C2 satisfy

the following relationship:

ΦT
q (q0) = C1 ∗C2 (4.12)

Finally, as described in [7, 54], matrix B has been obtained as the transpose of the n×f

right partition of matrix C1. The patterns of matrix B are reported in Fig. 4.6 for both

the ideal joints model and the bushings model. These matrices have been computed just

once off-line and then used in the computations related to algorithm 2 as discussed in

the Chapter 3.
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4.2.3 Standard force elements and bushings

The standard force elements in the suspension models, i.e. the shock-absorber and the

traction torque applied from the chassis to the differential shaft, have been defined using

the built-in commands available in the MBSymba library. However, MBSymba does not

provide a dedicated bushing routine for the modelling a three dimensional elastic force

elements connecting two bodies. Moreover, as pointed out previously, the bushing force

elements constitute the only source of numerical stiffness in the models under analysis,

and their contributions to the jacobians of the vector of generalized applied forces Q

must be computed as well. A bushing routine has been thus implemented using both

the MBSymba library in Maple and proper Matlab coding. The ultimate goal is the

implementation of a routine which receives in input:

• the coordinates and velocities of 2 generic bodies in a complex mechanical system;

• the local position of the auxiliary reference frames defining the bushing position

in each of the 2 bodies;

and returns in output:

• the contributions of the bushing element to the total vector of generalized applied

forces Q;

• the contributions of the bushing element to the jacobian matrices Jq and Jq̇;

The routine has been developed by considering 2 isolated bodies i and j which are

connected by a general bushing force element, having 3 translational and 3 rotational

stiffness and damping characteristics.

Body i and body j are connected by the bushing element at the attachment points

P i and P j . An auxiliary reference frame is attached at the connection point in each

body. The auxiliary reference frames are instrumental to compute the relative kinematic

quantities (i.e. relative positions and velocities) which determine the forces and torques

of the bushing element. In particular the expressions for the 6 relative translational and

angular displacements and the 6 relative translational and angular velocities between the

2 reference frames have been obtained symbolically in Maple using the built-in MBSymba

functions. These relative kinematic quantities are only functions of the configuration

parameters of the two bodies qi and qj and of their time derivatives q̇i and q̇j .

Once the relative kinematic quantities are available, the elastic and damping reactions

acting on the 2 bodies can be created using the MBSymba commands make FORCE

and make TORQUE. The EOM of the simplified multibody system only constituted by
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bodies i and j and by the elastic and damping reactions of the bushing, have been then

obtained using the lagrange equations command in order to find the vector of generalized

forces Qbushij of dimensions 14×1. This generalized force vector, which contains only

the terms associated to the bushing reactions, can be now differentiated in order to find

its jacobian matrices. In particular the command jacobianF has been used in Maple to

compute the jacobians Jq
bushij and Jq

bushij which are defined as:

J
bushij
q =


Jq11 Jq12 · · · Jq1n

Jq21 Jq22 · · · Jq2n
...

...
. . .

...

Jqn1 Jqn2 · · · Jqnn

 ,Jbushijq̇ =


Jq̇11 Jq̇12 · · · Jq̇1n

Jq̇21 Jq̇22 · · · Jq̇2n
...

...
. . .

...

Jq̇n1 Jq̇n2 · · · Jq̇nn

 (4.13)

where Jqhk = ∂Q
bushij
h /∂qk , Jq̇ ij = ∂Q

bushij
h /∂q̇k and the total number of configuration

parameters is n=14 since this custom force routine has been developed in the general

case of a bushing connecting two isolated bodies.

When the bushing routine is employed to define a bushing connection between two

bodies in a complex mechanical system the issue of properly locate the elements of

Qbushij , J
bushij
q and J

bushij
q̇ in the total vector of generalized forces and in the total

jacobian matrices must be addressed.

This can be done by specifying in input to the bushing routine the structure of vector

q, i.e. the location of the coordinates of the 2 bodies affected by the force element.

For example if a bushing connecting the chassis to the subframe has to be defined, the

position of the first coordinate of the chassis in the vector q must be specified, together

with the location of the first coordinate of the subframe.

The general bushing routine has been used to define the 4 chassis-subframe connections,

which are common to both the bushings model and the ideal joints model, as well as to

define the 10 bushes exclusively used in the bushings model to attach the suspension links

to the subframe and to the knuckle. The patterns of the total jacobian matrices Jq and

Jq̇ associated to the two models are shown in Fig. 4. By comparing these two matrices

it can be noticed that in the case of the ideal joints model only the elements related to

the chassis and subframe coordinates are populated since the bushing connections are

defined only between these two bodies.
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(a) ideal joints model

(b) bushings model

Figure 4.7: Patterns of the total jacobian matrices Jq and Jq̇

4.3 Tire force element

The tire behaviour is one of the crucial factors governing the dynamics of the whole vehi-

cle. Tires are responsible for the transmission of vertical, longitudinal and lateral forces

as well as torque reactions from the road surface to the vehicle. A good understanding

and modelling of tires characteristics and of their influence on the whole vehicle dynam-

ics is mandatory in order to perform reliable handling and ride simulations. The issue of

properly modelling the tires behaviour has been extensively addressed in literature and

well established techniques are available to properly reproduce the dynamic behaviour

of a real tire via virtual models at different levels of accuracy. In the next subsections

the main issues related to the tire modelling will be addressed, particularly focusing on:
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Figure 4.8: Main tire parameters and tire reactions [56]

• proper evaluation of the interaction between the contact patch and the road sur-

face;

• relationship between the inputs and the corresponding reaction forces and moments

in steady-state conditions;

• dynamic phenomena due to the tire carcass compliance.

Proper modelling approaches will be presented together with the basic assumptions

adopted in the tire model developed in this work. The relevant details of the Matlab

implementation of the complete tire model will be described together with its validation

w.r.t. a reference tire model.

The sign convention used for tire reactions and other relevant tire kinematics quantities

are shown in Fig. 4.8 where several planes are defined such us the wheel-centre-plane and

the road plane whose intersection determines the longitudinal direction of the wheel, i.e.

the unit vector l. In particular the road plane is identified by its normal n at the contact

point C. Two planes normal to the ground plane are also highlighted, one containing the

vector l and one containing the spin axis of the wheel s. The unit vector t is associated

to the lateral direction of the wheel which is determined by the intersection of the ground

plane and the plane normal to the ground and passing through the spin axis s. The unit

vectors l and t are therefore perpendicular. The length of vector r connecting the wheel

centre A to the contact point C is the loaded tire radius. The position and orientation

of the wheel with respect to the global reference frame is univocally determined once

the position of the wheel centre A and the vector s defining the wheel-spin axis are

known. These quantities can be determined once the 3 translational coordinates and

the 4 Euler parameters associated to the knuckle (i.e. the wheel-carrier) are known.
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Fig. 4.8 also shows the speed of travel of the wheel center which is indicated as V, the

longitudinal slip and the side slip angle denoted as κ and α respectively and the camber

angle denoted as γ. The 6 tire reactions are also shown, in particular Fx, Fy and Fz are

the longitudinal, lateral and normal forces while Mx, My, and Mz are the overturning,

the rolling-resistance and self-aligning moments respectively.

4.3.1 Simplified Tire Enveloping model

The primary source of excitation for the tire dynamics is the road roughness. For short

wavelength unevenness, the tyre enveloping behaviour plays a major role in determining

the dynamic response of the tire itself. Fig. 4.9a shows three distinct responses caused

by a short wavelength obstacle on the road:

• a variation in the vertical force;

• a variation in the longitudinal force;

• a variation in the spin velocity of the wheel.

It is important to notice that the tyre is in contact with the obstacle before and after the

wheel centre is actually positioned above the obstacle and that the shape of the dynamic

responses are completely different from the obstacle shape. In order to take into account

all this phenomena a proper tyre enveloping model must be adopted [56, 59]. The main

idea behind the tire enveloping model is that the tire behaves like a filter which modifies

the road unevenness transmitted from the contact patch to the spindle as shown in Fig.

4.9b. A special road filter has thus been proposed [56, 59] in order to take into account

the tire enveloping properties. The obtained filtered road surface is referred to as the

effective road surface.

(a) Rolling over a short obstacle: tire
responses (b) Tandem cam enveloping model

Figure 4.9: Tire enveloping characteristics
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Figure 4.10: Effective road plane

In order to better understand the concept of effective road surface it is useful to refer to

Fig. 4.10 where it can be appreciated that, if the effective road plane is known, a tyre

model with a single point tire-road interface can be used to calculate the tire response

(i.e. the magnitude of the contact force at the wheel axle and its direction). In order to

obtain the effective road plane a semi-empirical enveloping model has been developed

[59] which is based on the basic consideration that the enveloping properties of the tire

are mainly determined by the deformation of the tread in the contact zone. In particular

the semi-empirical model takes into account the following physical properties of the tire:

• the curvature near the edges of the contact patch does not vary significantly with

vertical load;

• the vertical stiffness in the centre of the contact patch is very low if compared to

the stiffness of the bended belt near the edges of the contact patch;

The tandem cam tire model reported in Fig.4.11 is able to reproduce the empirical

properties listed above. It is composed by two rigid elliptical cams representing the

front and rear edges of the tire in the contact zone. The cams lie in the wheel centre

plane and they are allowed to move vertically. By knowing the longitudinal position x

of the wheel centre, the longitudinal positions of the vertical axes zr and zf along which

the two cams are allowed to move are determined as well. The angle β, which defines

the effective road plane, is found by letting the cams slide vertically on the wheel centre

plane in order to adapt to the road profile height as shown in Fig.4.11. Once the cams

have moved vertically according to the particular road shape, β can be found by simple

geometric considerations, i.e. tacking into account the elliptical profile of the cams, and

then used to compute the tire radial deflection ρ defined as:
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Figure 4.11: Tandem cam enveloping model: Contact detection

ρ = rf − r (4.14)

where rf is the unloaded radius of the tire. The main drawback of the tandem cam

model is that in order to find the distances xf and xr defining the longitudinal positions

of the contact points between the cams and the road, the height of the road must be

compared with those of the cams profiles. This is actually done for a certain number of

points along the longitudinal direction as shown in Fig. 4.11.

In order to avoid the computational burden associated to these operations, a simplified

two cams tire model has been used in this research work, in which the number of points

where the height of the road profile is compared to that of the cams profiles is reduced

to one for each cam. The two cams model thus reduces to a simplified 2-points follower

model as shown in Fig. 4.12. Even if the accuracy of the two-points follower model is

reduced with respect to the tandem cam model, its computationally cheapness makes

it prone to be used in real-time simulations. The 2-points follower model has been

implemented in a proper Matlab function. This latter receives in input the road profile

height as a function of the longitudinal distance travelled by the wheel, the position of

the rim center and the rotation matrix which defines the orientation of the rim-carrier

in the global reference frame. The routine returns in output the angle β defining the

effective road plane and the radial deflection of the tire ρ. The magnitude of the radial

contact reaction force which must be applied to the rim centre is obtained as ρ times

the radial stiffness of the tire. Once the magnitude of the radial contact force has been

computed, its projections along the longitudinal and vertical directions of the rim-carrier

are determined by the effective road plane angle β. It is important to notice that Fig.

4.11 represents a lateral view of the tire in the wheel centre plane which has been defined
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Figure 4.12: 2-point follower enveloping model

in Fig. 4.8 and that the camber angle of the tire is taken into account by means of the

rotation matrix of the rim-carrier.

4.3.2 Pacejka Steady-State Formula

The steady-state reactions of the tire can be determined by means of the Magic Formula

model proposed by Pacejka [56]. The modelling approach adopted by Pacejka is semi-

empirical since it is based on both measured data and physical considerations on the

tire behaviour. According to this approach the tire can be modelled as a non-linear

system with multiple inputs (slip quantities, tire’s angles and load force) and outputs

(longitudinal and lateral forces and tire moments). The relationships between inputs

and outputs are defined by means of the Magic Formula model as it will be explained

in this section. The slip quantities in input to the Magic Formula are the longitudinal

slip and the lateral slip angle. The longitudinal slip is defined as:

κ = −Vx − ωspin · r
Vx

(4.15)

where Vx is the component of the wheel centre speed along the longitudinal direction

defined by the unit vector l in Fig. 4.8, ωspin is the spin angular velocity of the wheel

and r is the effective rolling radius. The lateral slip angle α is defined in a similar way

as:

tan (α) = −Vy
Vx

(4.16)

where Vy is the component of the wheel centre speed along the lateral direction defined

by the unit vector t in Fig. 4.8. These 2 slip quantities can be given in input to the

semi-empirical Magic Formula which assumes the following general form:
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Figure 4.13: Parameters of the magic formula

y = D · sin(C · arctan(B · x− E(B · x− arctan(B · x)))) (4.17)

In Eq.4.17 the term B is a stiffness factor, C is a shape factor, D is the peak value and E

is a curvature factor which must be determined experimentally. The generic independent

variable x in Eq. 4.17 is replaced by κ and α to obtain the longitudinal and lateral tire

reactions respectively. Due to ply-steer, conical effects and wheel camber, an offset may

arise both in x and y in the general formula of Eq. 4.17. These offsets can be taken into

account by using the modified coordinates:

Y (X) = y(x) + Sv

X = x+ SH
(4.18)

The meaning of the coefficients retained in the general Magic Formula of Eq.4 can be

appreciated in Fig. 4.13. The steady-state Magic Formula model just described has

been implemented in Matlab. The values of the coefficients described above have been

extracted from a tire parametric file as will be further described in the followings.

4.3.3 Computation of the spin angular velocity of the wheel

In order to be able to compute the longitudinal slip of the tire a proper sequence of oper-

ations has been implemented to find the spin angular velocity of the wheel ωspin. Indeed

the spin angular velocity is not directly available among the states of the multibody

model when dependent coordinates are used. The relative angular velocity between the

rim and the knuckle must be thus computed using the corresponding states of these two

bodies. By denoting with Arim and Aknuckle the rotation matrices of the rim and of the
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knuckle respectively, the skew symmetric matrices associated with the angular velocity

of the rim and the knuckle in the absolute reference frame can be computed as [8]:

ω̃rim = Ȧrim ·AT
rim

ω̃knuckle = Ȧknuckle ·AT
knuckle

(4.19)

The relative angular velocity between rim and knuckle in the global reference frame can

then be computed as:

ω̃globalkr = ω̃knuckle − ω̃rim (4.20)

If the relative angular velocity is expressed in the local reference frame associated with

the knuckle body, the spin angular velocity can be simply obtained by selecting its y-

component. In order to express the relative angular velocity between rim and knuckle

in the reference frame of the knuckle it must be pre and post multiplied by the rotation

matrix of the knuckle [8]:

ω̃knucklekr = AT
knuckle · ω̃

global
kr ·Aknuckle =


0 −ω3 ωspin

ω3 0 −ω1

−ωspin ω1 0

 (4.21)

Eqs. 4.19, 4.20 and 4.21 have been implemented in Matlab in order to extract the desired

value of the spin angular velocity ωspin which can be then used to compute the values

of the longitudinal and turn slips by means of Eqs. 4.15 and 4.16.

4.3.4 Single Contact Point Transient Tire Model

The applicability of the Magic Formula model is limited to steady-state conditions. This

practically means that for given longitudinal and lateral slips the corresponding longi-

tudinal and lateral forces and tire reaction moments computed by means of the Magic

Formula model build up instantaneously. This is in contrast with what actually happens

in a real tire where, due to the compliance of the tire carcass, a certain delay occurs

between the occurrence of the slip conditions and the building up of the corresponding

tire reactions. The concept of relaxation length plays a key role in the modelling of such

a transient behaviour. The relaxation length can be interpreted as the distance a tire

must roll before it can actually develop a reaction force or moment. In order to take

into account this phenomenon the single contact point transient tire model proposed by

Pacejka [56] and reported in Fig. 4.14 can be employed. In this model the contact patch
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Figure 4.14: Single contact point model [56]

is reduced to a single point S’ which is connected to the wheel by a longitudinal spring

and a lateral spring. This allows the contact point to slip with respect to the ground

in the longitudinal and lateral directions reproducing in a simplified way what actually

happens in a real tire due to the carcass compliance.

In Fig. 4.14 it is possible to distinguish the two points S and S’ which are located

in the plane normal to the road and passing through the wheel spin axis. The point

S moves on the road surface with the same lateral and longitudinal velocities of the

wheel’s centre while the velocity of the point S’ represents the velocity of the contact

patch. The difference in the velocities of S and S’ causes a longitudinal and a lateral

deflection in the tire carcass which are denoted respectively as u and v. The changes in

the longitudinal and lateral tire deflections can be written as:

du
dt = −(VSX − V

′
SX)

dv
dt = −(VSY − V

′
SY )

(4.22)

After several conversions Eqs. 4.22 can be rewritten taking into account the longitudinal

slip relaxation length σκ and the side slip relaxation length σα as:

du
dt + 1

σκ
· |Vx| · u = −VSX

dv
dt + 1

σα
· |Vx| · v = −VSY

(4.23)

In Eq. 4.23 the longitudinal relaxation length is defined as σκ = CFκ/CFx with CFκ

being the longitudinal tire stiffness at the road level and CFx being the longitudinal

slip stiffness. Similarly the lateral relaxation length is defined as σα = CFα/CFY where

CFα is the lateral tire stiffness and CFY is the lateral slip stiffness. The dynamic

differential equations of the single point transient tire model reported in Eq. 4.23 can
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be implemented in order to find the longitudinal and lateral deflections of the carcass u

and v. Once these deflections have been computed a further step is needed to determine

the tire reactions, that is the computation of the following transient slip quantities:

κ′ =
u

σκ
, α′ =

v

σα
(4.24)

Once the transient slip quantities of Eqs. 4.24 have been computed they can be given

in input to the classical steady-state Magic Formula model in order to obtain the tire

reactions.

4.3.5 Matlab implementation of the tire model

Fig. 4.15 shows the scheme of the tire implementation that has been performed within

the Matlab environment. The routine for the computation of the tire reactions receives in

input the states of the rim and of the knuckle coming from the multibody representation

of the suspension system.

The simplified 2-points tire enveloping model is then used to take into account the in-

teraction between the tire and the road profile. In particular a road file containing the

information about the road profile is loaded during the simulation and proper interpola-

tion functions are used to compute the height of the road at the points of interest along

the longitudinal direction. The simplified tire enveloping model computes the amount

of the radial force developed by the tire and the correspondent direction of application

which is defined by the effective road plane. The differential equations associated to the

single contact point transient tire model are then solved in order to obtain the longitudi-

nal and lateral deflections of the tire carcass which are later used to obtain the transient

slip quantities. These latter, with the radial force developed by the tire are finally given

in input to the Magic Formula steady-state model which allows the computation of the

tire reactions that must be applied to the wheel centre in the multibody model of the

suspension.

4.3.6 Validation of the tire model w.r.t. the TNO MF-Tire

The MF-Tire and the MF-Swift tire model by TNO Delft-Tyre represent the current

state-of-the-art in automotive industry for the modelling of tires in handling simulations.

The MF-Tire model implements the Pacejika Magic Formula to compute the tire’s forces

and moments, the semi-empirical enveloping model with elliptical cams for the detection

of the tire-road contact force and the single contact point transient tire model for the
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Figure 4.15: Scheme of the Matlab implementation of the tire model

modelling of dynamic phenomena due to carcass compliances. Additionally, in the MF-

Swift model the tire belt is assumed to behave like a rigid ring thus enabling a correct

representation of the tire dynamics in the frequency range where the bending modes

of the tire belt can be neglected, i.e. approximately up to 60 – 100 Hz. The visual

representation of the MF-Swift model is reported in Fig. 4.16 where the cams enveloping

model, the single contact point transient slip model and the rigid model can be clearly

distinguished. The aim of this section is the validation of the simplified tire model

described in the previous sections against the results furnished by the MF-Tire model.

To this purpose the multibody package VL.Motion has been used which provides a MF-

Tire force element. Since we are only interested in the tire responses, a trivial suspension

model has been set up in VL.Motion, as described in Fig. 4.17, which is composed by

only two bodies: the wheel carrier and the rim.

The wheel carrier is allowed to translate along the 3 directions and is free to rotate around

the vertical axis (yaw motion) while a revolute joint has been used to constraint the rim

to the wheel carrier. The driving torque is directly applied to the rim body from the

wheel carrier while the yaw angular displacement of the wheel carrier is controlled using

an angular position driver. The TNO tire force element has been defined in VL.Motion

using the following settings:

• Dynamics mode: Relaxation behavior, non-linear;

• Contact Method: 2D road;

• Slip forces - Magic Formula evaluation: combined forces/moments;
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Figure 4.16: Scheme of the TNO MF-Swift Tire [59]

Figure 4.17: Tire test manoeuvre: simplified suspension model

When selecting the non-linear relaxation behaviour, the compliance of the tire carcass

is taken into account by means of the single contact-point transient slip model which

gives accurate results from 0 Hz to approximately 10 Hz. Setting the Contact method

to ’2D road’ implies that for the computation of the road height,the travelled distance

is used which is the distance the wheel centre has travelled with respect to the origin

of the global coordinate system. This approach is the same used in the Matlab tire

model implemented in this work. Finally the combined forces/moments options for the

slip forces computation in the Magic Formula takes into account the combined effect of

longitudinal and lateral slips. All the parameters required for the definition of the TNO

MF-Tire are grouped into a tire property file which is structured in different sections:

• Dimension/Inertia;

• Vertical;

• Structural;

• Contact Patch;

• Longitudinal Coefficients;

• Overturning Coefficients;
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Figure 4.18: Magic Formula: longitudinal properties

• Lateral Coefficients;

• Rolling Coefficients;

• Aligning Coefficients;

Fig. 4.18 shows the longitudinal properties of the TNO tire force elements under analysis.

In the top-left graph it can be appreciated the influence of the vertical load on the tire

’longitudinal slip – longitudinal force’ curve for this particular tire. The top-right graph

shows the relationship between the vertical force and the longitudinal stiffness of the

tire while the bottom-left figure shows that the influence of the wheel camber angle on

the ’longitudinal slip – longitudinal force’ curve is negligible. Finally the bottom-right

graph shows the variations of the maximum braking and driving forces as well as the

variations of braking and sliding forces correspondent to a change in the wheel vertical

load.

The lateral properties of the tire are shown in Fig. 4.19, in particular top-left and

top-right graphs show respectively the ’slip angle – lateral force’ and the ’slip angle –

aligning moment’ curves for different values of the vertical wheel load. Additionally the

bottom-left and bottom-right graphs show respectively the ’slip angle – lateral force’ and

the ’slip angle – aligning moment’ curves for different values of wheel camber angles.

It is important to highlight at this point that the same coefficients and tire properties

used in the definition of the TNO tire force element in VL.Motion have been used in the

Matlab tire model implemented in this work.
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Figure 4.19: Magic Formula: lateral properties

In order to highlight the longitudinal and lateral responses of the tire as well as its

enveloping properties, a test manoeuvre has been performed with the basic suspension

model previously described and reported in Fig. 4.16. In particular a driving torque

has been applied to the rim to assess the response of the tire during the acceleration

phase. The driving torque is then removed allowing the tire to roll freely on the road

surface. While it is freely rolling on the road surface, the tire hits a bump obstacle which

is positioned at 15 m from the origin of the global reference frame (i.e. the wheel centre

must travel 15 m before encountering the obstacle). The bump has 1 cm height and 2

cm length and it has been inserted in the test manoeuvre to highlight the enveloping

properties of the tire model. Finally a trapezoidal yaw angle has been imposed through

the angular position driver in order to assess the lateral response of the tire. The driving

torque, yaw angle and road profile applied during the tire test manoeuvre are shown in

Fig. 4.20.

The reference test manoeuvre has been simulated using the bdf solver available in

VL.Motion. In order to be able to compare in a consistent way the Matlab imple-

mentation of the tire force element, which will be used for the scopes of this research

work, to the reference TNO MF-Tire force element, a co-simulation has been set up

between Simulink and VL.Motion as shown in Fig. 4.21.

In particular, the Matlab tire model schematized in Fig. 4.15 has been translated in a

Simulink block and connected to the kinematic structure of the simplified suspension

(wheel carrier and rim) modelled in VL.Motion. The co-simulation setup allows for the
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Figure 4.20: Tire test manoeuvre: inputs

Figure 4.21:
Co-simulation: Simulink - VL.Motion

use of the VL.Motion bdf solver also for the numerical integration of the EOM of the

simplified suspension model equipped with the tire model implemented in Simulink. Us-

ing the same solver is a basic requirement in order to be sure that potential differences

in the tire responses are only due to differences in the tire models. Indeed this allows

excluding any influence of numerical issues such as solver characteristics and accuracy

from the comparison. The responses of the TNO tire force element and of the imple-

mented Simulink tire model are compared in Fig. 4.22. In Fig. 4.23 the zoom of the

tire responses in the time window from 9.5 sec to 10.5 sec is reported, which highlights

what occurs when the tire hits the bump. The differences in the responses of the 2

models are due to the substantial simplification adopted in the implemented tire-road

contact model with respect to the complex elliptical cams enveloping model employed in

the TNO MF-Tire force element. However, since the modelling of an accurate tire-road

contact model is beyond the scope of this research work, the global level of accuracy
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Figure 4.22: Test manoeuvre: tire responses

achieved by the simplified model in reproducing the bump responses can be considered

acceptable. Similarly, as it can be appreciated in the time window from 14 sec to 19 sec

in Fig. 4.24, the level of accuracy reached by the lateral responses of the implemented

tire model is acceptable for the purposes of this work.
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Figure 4.23: Test manoeuvre: bump induced responses

Figure 4.24: Test manoeuvre: response to the yaw input
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4.4 Numerical results

The detailed multibody models of the rear-left suspension, i.e. the ideal joints model and

the bushings model, have been implemented using the techniques described in sections

4.2 and 4.3. These 2 models can be employed at this point to carry out numerical

experiments in order to assess the performances of the linearly implicit Euler method in

its classical implementation (algorithm 1) which makes use of a dependent coordinates

formulation, and in the modified version proposed in this research work (algorithm 2),

which exploits an automatic switching from dependent to independent coordinates.

4.4.1 Test manoeuvre

A test scenario has been selected as shown in Fig. 4.25. In the simulated test manoeu-

vre, the vehicle falls and then settles on a flat road and then, from the rest condition,

it accelerates due to a step input torque of 100 Nm applied from the chassis to the dif-

ferential shaft. After the acceleration phase the vehicle incurs in a square bump with 2

cm height and 2 m length. The total simulated time is of 10 seconds. Algorithms 1 and

2 have been used for the numerical integration of the EOM associated to the bushings

model and the ideal joints model in the test manoeuvre scenario under analysis using

an integration time step of 1 ms.

Figure 4.25:
Test Scenario
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4.4.2 Computational time

In order to evaluate the performances of the 2 algorithms, the non-common operations

in the correspondent pseudo-codes shown in sections 3 and 4 have been isolated and the

associated computational times have been checked. In Tab.5 the solving steps exclusively

required by algorithm 1 are reported. In particular the computational time required by

each operation during the numerical integration of the bushings model and the ideal joints

model is shown. It can be observed that the computational time required to find the

variations in the dependent velocities and the Lagrange multipliers at the current time

step greatly increases when the ideal joints model is considered. Indeed, when algorithm

1 is employed, an increase in the number of constraint equations implies the solution of

a bigger system of linear equations at each time step. In the case under analysis the

dimensions of the linear system to be solved at each time step increase from n+m=108

in the case of the bushings model to n+m=143 for the ideal joints model. The solving

steps which are only related to algorithm 2 and the corresponding computational times

employed for integrating the EOM of the bushings model and of the ideal joints model

are reported in Tab.6. As pointed out before, the computation of the projection matrix

R requires the inversion of a n×n matrix at each time step. However the associated

computational burden remains constant as the number of constraint equations increases

when moving from the bushings model to the ideal joints model. On the other hand, the

dimensions of the linear system to be solved at each time step to find the variations in

the independent velocities decrease as the number of constraint equations increases. In

the case under analysis they drop from n-m=46 in the bushings model to n-m=11 in the

ideal joints model. The additional numerical burden to evaluate the projection matrix

R in algorithm 2 is thus compensated by a great reduction in the computational time

required to find the variations in the independent velocities when the highly-constrained

mechanical system represented by the ideal joints model is considered. Indeed by cross-

checking the total computational times in Tab. 4.2 and Tab. 4.3 it can be noticed

that the automated switching of the EOM to an independent coordinates representation

improves the efficiency of the linearly implicit Euler method in the ideal joints model

case.

Table 4.2: Algorithm 1: computational time

algorithm 1 bushings model ideal joints model

solving steps time [s] % of time time [s] % of time

Φq(i+1)
0.38 9.1 0.62 8.08[

∆q̇(i) λ(i)
]T

3.81 90.9 7.05 91.92

Tot Time 4.19 7.67
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Table 4.3: Algorithm 2: computational time

algorithm 2 bushings model ideal joints model

solving steps time [s] % of time time [s] % of time

T(i) =
[
S(i) R(i)

]
=

[
Φq(i)

B

]−1
3.44 68.8 3.7 68.8

∆z(i) = h ż(i) 0.03 0.6 0.04 0.7

∆q(i) = hS(i)b(i) + R(i)∆z(i) 0.08 1.6 0.06 1.1

q̇(i) = ∆q(i)/h 0.03 0.6 0.03 0.6

c(i) 0.32 6.4 0.99 18.4

S(i)c(i) = T(i)

[
c(i) 0

]T
0.16 3.2 0.18 3.3

∆ż(i) 0.94 18.8 0.38 7.1

Tot Time 5 5.38

4.4.3 Solution accuracy

Fig. 4.26 shows the norm of the vector of the constraint equations during the 10 seconds

of simulation. For both algorithms 1 and 2 the errors in the constraint conditions remain

bounded throughout the whole simulation if the non-iterative projection step described

in Section 5 is applied. On the contrary, when the stabilization step is not applied

(dotted lines), an unbounded growth of the error in the constraint conditions takes

place.

Figure 4.26: Constraint violations
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In order to obtain a reference solution, a co-simulation has been set up between the

commercial multibody software VL.Motion and Simulink as shown in Fig. 4.27. The

co-simulation set-up allows for the use of the same tire model in both the reference

simulation and the test simulations obtained by means of algorithm 1 and algorithm 2.

In particular the non-linear tire model previously described has been implemented in a

Simulink block and integrated in the remaining part of the suspension modelled using

VL.Motion. Two reference solutions have been obtained, one for the bushings model and

one for the ideal joints model.

To verify the accuracy of the solutions obtained using algorithms 1 and 2 the displace-

ments, velocities and accelerations at the CG of the chassis along the vertical direction

are compared with the reference solution in Fig. 4.28. A zoom of the responses in the

time window between 8 and 9.5 sec is shown in the graphs on the right which highlights

the vertical response of the chassis when the wheel hits the bump. Results reported in

Fig. 4.28 show that the responses obtained using algorithm 1 and 2 correctly match the

reference solution. Note that in Figure 4.28 and in the remaining of this Chapter only

the simulation results related to the bushings model will be considered since they have

shown the same level of accuracy of results related to the ideal joints model.

The bushing reaction forces at the fore-left bushing connection between chassis and

subframe are compared in Figure 4.29. When the wheel hits the bump, the results

obtained with both the implementations of the linearly implicit method poorly match

the reference solution as can be appreciated in the zooms shown in the right graphs.

This is in line with what has been shown in literature on the accuracy of the linearly

implicit Euler integration method [30] and is caused by the fixed step size of 1 ms

employed during the numerical integration. The same behaviour has been observed for

the bushing reaction torques as shown in Fig.4.30.

Figure 4.27:
Co-simulation set up
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Figure 4.28: Vertical position, velocity and acceleration at the chassis CG
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Figure 4.29: Reaction forces at the fore-left bushing connection

Figure 4.30: Reaction torques at the fore-left bushing connection
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4.5 Summary

In this Chapter the two implementations of the linearly implicit Euler method discussed

in Chapter 3 have been employed for the numerical integration of the stiff differential-

algebraic equations of motion associated to an industrial rear left suspension of a pas-

senger car in a selected test scenario. In particular two models have been developed, the

ideal joints model and the bushings model which have the same number of configuration

parameters n but a considerably different number of constraint equations m.

Several issues associated to the modelling of these 2 multibody systems, which has been

carried out by the combined use of the symbolic algebra software Maple and the Matlab

numerical computing environment, have been addressed. The process required to obtain

the symbolic equations of motion of the 2 models has been described, starting from the

definition of bodies, constraint equations and associated jacobians. The definition of the

force elements in the vector of generalized forces Q has been also described, particularly

focusing on the implementation of the bushing routine which not only computes the

reactions of the bushings elastic connections, but populates also the jacobians matrices

of vector Q. Given the crucial importance of the tire force element on the accuracy of

the overall dynamic simulation, a thoroughly description of the tire model implemented

in this research work has been also provided together with its validation against the

TNO MF-Tire reference model.

The numerical results in terms of integration time have been presented, showing that the

efficiency of the linearly implicit Euler method is enhanced by the automatic switching

from dependent to independent coordinates proposed in Chapter 3 when dealing with a

highly constrained multibody systems.

Also the violation of the constraint conditions has been checked showing that the use

of the non-iterative projection step described in Chapter 3 guarantees the errors in the

constraint conditions to remain bounded throughout the whole simulation.

Finally the accuracy of both algorithms 1 and 2 has been checked by comparison

against the results obtained using the commercial multibody software VL.Motion in

co-simulation with the tire model implemented in Simulink. Results in terms of verti-

cal positions, velocities and accelerations at the CG of the chassis show that the two

implementations of the linearly implicit Euler method guarantee the same acceptable

level of accuracy. However an analysis of the bushing reactions has shown that both the

implementations of the linearly implicit Euler method fail in accurately reproduce the

bushing’s forces and torques reactions when a severe dynamic event occurs (i.e. the tire

hitting the bump). This is however in line with what has been shown in other researches

on the accuracy of the linearly implicit Euler method.



Chapter 5

Efficient Concept Modelling of

the Suspension

After investigating a possible approach to increase the efficiency of the LI Euler integra-

tion method by means of an automated switching from a dependent to an independent

coordinates formulation in Chapters 3 and 4, the reduction of a complex multibody

model of the suspension system into an equivalent simplified concept model will be

addressed in this Chapter.

Concept modelling techniques are based on the efficient modelling of the suspension

system by means of a simplified concept model, this leading to a great reduction in the

complexity of the associated EOM while still reproducing the overall physical behaviour

of the original system with a satisfactory degree of accuracy. Reducing the complexity of

the multibody system while preserving its ability to accurately reproduce the dynamics

of the starting system represents a challenge which has been addressed by a multitude

of research works on real-time applications. Moreover a great deal of research is still

addressing this approach since it remains the most adopted in industrial automotive

applications due to the advantages offered by simplified concept models in applications

such as design optimization, controller tuning and parameters identification. Indeed,

due to their iterative nature these applications may require a considerably high number

of multibody simulations which could not be performed using detailed multibody models

because of the prohibitive amount of integration time they would require.

An investigation on the potential benefits coming from a trailing-arm conceptual repre-

sentation of the suspension system will be conducted in this Chapter. The ultimate goal

is the developing of trailing-arm concept models of the quarter-car suspension and of

the full vehicle which are able to furnish accurate predictions of both the ride behaviour

69
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and the dynamic phenomena occurring during longitudinal acceleration and longitudi-

nal braking manoeuvres. An identification procedure will be also proposed in order to

estimate the unknown design parameters of the concept models using the outputs of ride

tests performed on a reference model.

5.1 Trailing-arm concept modelling of a quarter-car sus-

pension system

Before addressing the full vehicle problem, the quarter-car rear left suspension presented

in Chapter 4 and reported in Fig. 5.1 will be considered as the detailed reference

suspension model to be converted into an equivalent trailing-arm concept suspension.

The final goal is the definition of a very simplified concept model which can be used for

design and optimization studies of the vertical ride behaviour of the suspension as well

as of its performances during acceleration and braking on a straight path.

The 2 DOFs quarter-car model in Fig. 5.2, which is generally employed in the design

of active suspension controllers, cannot be used to study the longitudinal dynamics of a

detailed suspension model since it does not contain any information on the kinematics

of the suspension which determines how the longitudinal forces developed at the tire

road contact patch are transmitted into the chassis as it will be explained in the next

section.

Figure 5.1: Detailed quarter-car suspension
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Figure 5.2: Quarter-car model

5.1.1 Squat, Dive and Lift Phenomena

In order to understand how the suspension kinematics influences the vehicle dynamic

behaviour during acceleration and breaking it is convenient to analyse the suspension

system in the side view plane which is defined as the vertical plane passing through the

wheel center and parallel to the vehicle centreline. For any suspension it is possible to

identify an IC (Instant Center of rotation) which is a virtual reaction point where the

reactions of the suspension’s links on the chassis can be solved into equivalent longitu-

dinal and vertical forces. Any suspension system can be represented in the side view

plane as an equivalent trailing-arm hinged to the chassis at the IC point. The position

of the IC in the side view plane varies with the wheel’s vertical travel according to the

kinematics of the suspension linkage.

In Fig. 5.3a the side-view free-body diagram of a rear independent suspension during

the acceleration phase is shown. The vertical load acting on the wheel is given by the

static load on the rear axle Wrs plus the vertical load transferred from the front to the

rear axle due to the longitudinal acceleration ax. The amount of vertical load transfer

depends only on the longitudinal acceleration, the height of the vehicle’s center of gravity

hCG and the wheelbase L and it is not influenced by the suspension kinematics. The

longitudinal traction force Fx developed at the tire-road contact patch is due to the drive

torque Tdrive imposed to the wheel by the differential through the half shaft. Since the

differential is mounted on the vehicle body the drive torque must also be inserted into

the free-body diagram of the suspension. Due to the forward acceleration there is an

increase in the vertical load acting on the suspension’s spring which causes a deflection

in the rear suspension. This bump movement of the rear suspension is called power squat

and is influenced by the positioning of the IC in the Side View plane. By applying the

second Newton’s law for the moments with respect to the IC point, it is possible to find

the change in the vertical load acting on the rear suspension’s spring:
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(a) Acceleration phase

(b) Braking phase

Figure 5.3: Rear suspension free-body diagrams in the side view plane during accel-
eration and braking

∆Wr =
Wtot · hCG
g · L

· ax − Fx
(e− r)
d

= ∆Fz − Fanti−squat (5.1)

The first term in the RHS (Right Hand Side) of Eq. 5.1 is the vertical load transferred

from the front to the rear axle. The second term, which depends on the horizontal and

vertical positions e and d of the IC in the side view plane, is called anti-squat force since

it reduces the change in the vertical load and consequently the compression of the rear

suspension’s spring during acceleration.

A similar analysis can be conducted in the case of braking as shown in the bottom free-

body diagram of Fig. 5.3b. When outboard brakes are considered, as in the present case,

the braking torque is not present into the free-body diagram since brakes are mounted on

the knuckles and the braking torque is thus transmitted to the chassis by the suspension
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(a) Acceleration phase

(b) Braking phase

Figure 5.4: Front suspension free-body diagrams in the side view plane during accel-
eration and braking

links. During forward braking the rear suspension’s links can develop an anti-lift force

which reduces the suspension rebound or lift movement:

∆Wr =
Wtot · hCG
g · L

· ax − Fb
e

d
= ∆Fz − Fanti−lift (5.2)

By conducting the same analysis on the front suspension it is possible to verify how the

IC position in the side view plane determines the amount of anti-lift force developed

during the acceleration phase for a front wheel drive vehicle (Fig. 5.4a) as well as the

amount of anti-dive force which opposes to the suspension bump or dive movement

during forward braking (Fig. 5.4b). In particular the reduction in the vertical load

acting on the front suspension during acceleration is given by:

∆Wr =
Wtot · hCG
g · L

· ax − Fx
e

d
= ∆Fz − Fanti−lift (5.3)
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while the increase in the vertical load on the suspension springs during braking is given

by:

∆Wr =
Wtot · hCG
g · L

· ax − Fb
e

d
= ∆Fz − Fanti−dive (5.4)

5.1.2 Implementation of the trailing-arm quarter-car model

Based on the analysis conducted in the previous section, a trailing-arm representation of

the suspension system has been chosen in order to develop a concept model suitable for

both vertical ride studies and assessment of the longitudinal acceleration and braking

performances of the suspension.

The model, which is shown in Fig. 5.5, has been implemented in Maple/Matlab using

the same approach adopted for the implementation of the detailed rear left suspension as

described in Chapter 4. In particular the model is composed by 3 bodies which are the

chassis, the trailing-arm and the rim whose positions and orientations are described by a

total of n = 3·7 = 21 configuration parameters. As in the case of the detailed suspension

model, the rotations of the chassis are restrained using 4 algebraic constraint equations.

Two more constraint equations define the dependencies between the Euler parameters of

the trailing-arm and of the rim. Two revolute joints are used to connect the trailing-arm

to the rim and to the chassis. The total number of constraint equations is thus m=16

leaving a total of f =5 dynamic degrees of freedom which are the 3 translations of the

sprung mass, the relative rotation of the trailing-arm w.r.t. the sprung mass and the

rotation of the rim. The tire force element discussed in Chapter 4 has been used in

the model. A spring-damper force element has been defined between the trailing-arm

and the chassis in order to reproduce the global stiffness and damping properties of the

suspension. Finally, since we are dealing with a rear wheel drive vehicle, the traction

torque Tdrive has been applied from the chassis to the trailing-arm and from the trailing-

arm to the rim. The revolute joint applied between trailing-arm and chassis defines the

position of the suspension’s IC in the side-view plane. In particular the position of the

IC can be controlled by means of the design parameters dr and er. It is important to

notice that the variation of the IC position in the side view plane due to the changes in

the suspension travel is not taken into account in the proposed model.

The list of design parameters which completely define the trailing-arm quarter-car model

of Fig. 5.5 is the following:

• sprung mass and its CG position

• Unsprung mass and its CG position
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• dr which defines the longitudinal position of the IC in the side view plane with

respect to the Unsprung CG;

• er which defines the vertical position of the IC in the side view plane with respect

to the Unsprung CG;

• Kr which defines the linear stiffness of the suspension;

• L0r which defines the vertical preload in the suspension;

• Cr which defines the linear damping in the suspension;

• tire parameters;

The sprung and unsprung masses and the correspondent CG positions in the design

configuration can be easily extracted from the detailed suspension model. In particular

the masses of the suspension’s links can be equally split between sprung and unsprung

masses. Also the tire properties can be inherited from the detailed suspension model.

The remaining design parameters, which define the position of the IC in the side view

plane (dr, er) and the global elastic and damping properties of the suspension (Kr, L0r,

Cr) are not directly available in the detailed suspension model. Indeed the global stiff-

ness and damping properties of the suspension are synthesis parameters depending on

the shock-absorbers characteristics as well as on the contribution of the elastic bushing

connections at the suspension’s links. The kinematic structure of the suspension also

influences its global stiffness and damping properties as described in [60, 61]. Moreover

the IC position in the side view plane can be estimated only by means of a detailed kine-

matic analysis of the suspension linkage which depends on the type of suspension under

analysis and requires the availability of accurate geometric data defining the positions

of the suspension’s hard points.

In order to obtain these unknown parameters in a straightforward way, an identification

process has been set up as it will be described in the next subsection.
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Figure 5.5: Trailing-arm quarter-car model

5.1.3 Parameters identification of the trailing-arm quarter-car model

The identification procedure employed to estimate the unknown design parameters is

based on the comparison of the dynamic response of the concept model with that of

the reference model. Once the dynamic behaviour of the reference model has been

measured during a certain test manoeuvre, the same manoeuvre can be reproduced on

the multibody concept model and its design parameters can be tuned in order to obtain

the same dynamic response shown by the reference model.

A proper test manoeuvre has been selected in order to highlight the anti-properties

and the vertical ride behaviour of the detailed quarter-car reference model. The test

manoeuvre is constituted by 4 different phases:

• phase 1 [0-6 sec]: the quarter-car suspension settles on a rough road classified

as B according to the ISO 8608 [62].

• phase 2 [6-10 sec]: a trapezoidal driving torque input with a maximum value of

500 Nm is applied from the chassis to the differential shaft producing a longitudinal

acceleration of the quarter-car suspension.

• phase 3 [10-15 sec]: the driving torque in input is removed and the quarter-car

suspension is allowed to proceed freely along the forward direction simulating the

engaging of the neutral gear.

• phase 4 [15-18 sec]: a braking torque of 350 Nm is applied from the knuckle to

the rim causing a longitudinal deceleration of the quarter-car suspension.
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Figure 5.6: Inputs for the reference test manoeuvre

The driving and braking torques applied during the test manoeuvre are shown in Fig.

5.6 together with the B-type road profile. The test manoeuvre has been performed on

the ideal joints model discussed in Chapter 4, and the correspondent dynamic response

has been measured. In particular the vertical positions and velocities of the chassis

CG have been selected to describe the dynamic response of the reference model. These

quantities will be furnished in input to the identification algorithm and will represent

the target dynamic response to which the concept model will be tuned.

Once the target dynamic response has been obtained, it is possible to start the pa-

rameter identification process. This latter has been carried out in Matlab by using the

’lsqnonlin’ function. In particular a function called ’Quarter trailing arm fun’ has been

implemented and given in input to the lsqnonlin routine. As shown in Fig. 5.7, this

function receives in input the target dynamic response together with the current set of

design parameters grouped in the vector b and performs the integration of the EOM of

the concept model using the same driving and braking torques and the same road profile

specified in the test manoeuvre.

The vertical displacements and velocities of the concept model’s sprung mass obtained

during the dynamic simulation are than compared with those coming from the test

manoeuvre in order to obtain 2 cumulative errors, i.e. the sum of the errors between the

reference and the concept responses throughout all the simulated test. The cumulative

errors in the vertical positions and vertical velocities of the sprung mass are indicated

respectively as f1(b) and f2(b) in Fig. 5.7 in order to highlight their dependency on the

current set of design parameters grouped in the vector b.
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Figure 5.7: Matlab parameters identification process

Figure 5.8: Cost function

The ’lsqnonlin’ Matlab function finds the minimum to the following optimization prob-

lem :

min
b

∥∥∥f(b)
∥∥∥2
2

= min
b

(f1(b)2 + f2(b)2) (5.5)

In particular after 33 iterations the identification algorithms returns the vector of iden-

tified parameters which minimizes the cost function. The evolution of the cost function

is reported in Fig. 5.8.

The target dynamic responses obtained with the ideal joints model have been compared

with those of the identified trailing-arm model in Fig. 5.9. The identified trailing-arm

concept model (blue curves) is able to correctly reproduce the anti-squat and anti-lift

properties of the detailed suspension model (red curves). Indeed during the accelerations

phase [6-10 seconds], the anti-squat force developed by the suspension links causes the

the chassis to move upwards while the opposite phenomenon occurs during braking due

to the anti-lift force. Moreover, the trailing-arm concept model reproduces the vertical

ride behaviour of the suspensions with a satisfying degree of accuracy. In Fig. 5.9

also the responses of the trailing-arm concept model before the identification, i.e. with
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Figure 5.9: Dynamic responses during the test manoeuvre

an initial guess of the design parameters values, is reported (green curves) in order to

highlight the potential errors which may be due to an incorrect selection of the design

parameters. A zoom of the responses between 8 and 10 seconds is also reported in

Fig. 5.10. In Tab. 5.1 the RMS (Root Mean Square) errors in the vertical positions,

velocities and accelerations at the CG of the chassis are reported both before and after

the identification process.
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Figure 5.10: Zoom of the dynamic responses during the test manoeuvre [8s-10s]

Table 5.1: Test Manoeuvre:
RMS errors between the Concept and the Ideal Joints models responses

RMS errors RMS errors
before identification after identification

chassis CG vertical positions 0.2370 [m] 0.0260 [m]

chassis CG vertical velocities 0.1145 [m/s] 0.0425 [m/s]

chassis CG vertical accelerations 0.5191 [m/s2] 0.2583 [m/s2]
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5.1.4 Validation of the identified trailing-arm quarter-car model

In order to validate the identified concept model 2 validation manoeuvres have been

selected in which different values for the driving and braking torques are assigned. Also

the roughness of the road will be varied with respect to the reference test manoeuvre

in order to assess the robustness of the proposed approach. The characteristics of the

considered validation manoeuvres are the followings:

• validation manoeuvre 1: maximum driving torque 300 Nm - braking torque

150 Nm - road profile classified as A in the ISO 8608;

• validation manoeuvre 2: maximum driving torque 400 Nm - braking torque

250 Nm - road profile classified as C in the ISO 8608;

The dynamic responses of the ideal joints model and of the identified trailing-arm con-

cept model are compared in Figs. 5.11 and 5.12 which correspond respectively to the

validation manoeuvres 1 and 2. In both cases the accuracy of the identified concept

model in reproducing the anti-features of the suspension and its vertical ride proper-

ties is acceptable. The RMS errors in the vertical responses of the chassis for the two

validation manoeuvres are reported in Tab 5.2.

A comparison has been also done to assess the potential increase in simulation efficiency

when using the identified trailing-arm model instead of its detailed counterpart, i.e.

the ideal joints model. It is worth noticing at this point that the integration of the

EOM of the trailing-arm concept model can be carried out by means of the explicit

Euler integration scheme with the additional non-iterative projection step described in

Chapter 3 to avoid the violation of the constraint equations, since no stiff force elements

are contained in this simplified model. This greatly reduces the numerical burden during

numerical integration since the evaluation of the Jacobians is completely avoid. Moreover

the great reduction in the number of configuration parameters required to describe the

trailing-arm concept model (i.e. n=26 against n=77 for the ideal joints model) as well

as the reduction in the algebraic constraint equations in the model (i.e. m=16 against

m=66 for the ideal joints model) has a crucial effect on the efficiency of the simulation.

For these reasons the computation time associated to the explicit Euler method when

solving the EOM of the trailing-arm concept model is only about the 30% of the time

required by the linearly implicit Euler method in the computation of the EOM of the

ideal joints model when they are expressed in a dependent coordinates formulation.
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Figure 5.11: Validation Manoeuvre 1: dynamic responses

Table 5.2: Validation Manoeuvres:
RMS errors between the Concept and the Ideal Joints models responses

RMS errors RMS errors
Validation I Validation II

chassis CG vertical positions 0.0285 [m] 0.0276 [m]

chassis CG vertical velocities 0.0330 [m/s] 0.0546 [m/s]

chassis CG vertical accelerations 0.1645 [m/s2] 0.3067 [m/s2]
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Figure 5.12: Validation Manoeuvre 2: dynamic responses

5.2 Concept modelling of the full vehicle

Having assessed the validity of the quarter-car trailing-arm concept model in the previous

section the same modelling approach will be extended here to the whole vehicle. A 7

DOFs full-vehicle suspension system is generally used to analyse the ride behaviour

of passenger cars with independent suspensions [63] where the unsprung masses are

connected to the sprung mass by means of 4 prismatic joints. The bounce, roll and

pitch movements of the sprung mass and the vertical displacement of each unsprung

mass represent the 7 DOFs retained in this model. The vertical displacements at the

4 tire-road contact points can be given in input to the model in order to analyse the

correspondent vertical dynamic response allowing a first assessment and optimization of

the global ride properties. The design parameters of the 7 DOFs model are the mass

and inertia properties of the sprung and unsprung masses and the stiffness and damping
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properties of suspensions and tires. However this model is not accurate in predicting

the vehicle ride behaviour during longitudinal acceleration and braking manoeuvres.

Indeed, even if the 7 DOFs model is modified in order to permit the analysis of longi-

tudinal acceleration and braking manoeuvres, i.e. enabling the longitudinal motion by

adding 4 rotating rims and 4 tire force elements, the prismatic connections are not able

to correctly transfer the tire loads from the unsprung masses to the sprung mass.

This is due to the fact that the classical modelling of the unsprung-sprung masses connec-

tions via prismatic joints does not contain any information about the actual kinematics

of the suspension’s linkage which determines how the longitudinal tractive and braking

forces developed at the tire-road contact patches are transmitted into the vehicle body.

5.2.1 Full vehicle model with trailing-arm suspension

To overcome the limitations imposed by modelling the unsprung-sprung masses connec-

tions by prismatic joints, a full vehicle model with trailing-arm suspensions has been

developed as shown in Fig. 5.13. The model has a total of 12 DOFs which are the

longitudinal and bounce movements of the sprung mass, its roll and pitch angles plus

the 4 relative rotation of the trailing-arms with respect to the sprung mass and the 4

rotations of the rotating rims. This new full vehicle concept model has been proposed

with the goal of providing a simple yet reliable model for the combined analysis of the

vehicle ride performances and the dynamic phenomena occurring during longitudinal

and braking manoeuvres. The main application areas where the proposed 12 DOFs

model with trailing-arm suspensions could be employed are:

• preliminary concept phase in the mechanical design of new vehicle: at

this preliminary stage the concept model could be effectively used to perform

preliminary optimizations of the main design parameters such as sprung/unsprung

masses and suspensions stiffness and damping properties as well as to optimize the

anti-features of the front and rear suspensions in order to meet an initial set of

performance attributes.

• optimization of vertical ride and longitudinal acceleration & braking

performances: given its computational efficiency, the full trailing-arm model

could be used in an iterative optimization procedure to tune the damping char-

acteristics of the suspensions and their anti-features during the advanced design

phase.

• design process of active suspension systems: due to its low complexity level

and its ability to correctly capture the main vehicle ride properties in the low
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Figure 5.13: 12 DOFs full vehicle model with trailing-arm suspensions

frequency range as well as the pitch and bounce changes occurring during acceler-

ation and braking, the proposed concept model is suitable to be used throughout

the whole design process for the tuning of active suspension controllers.

5.2.2 Identification of the full trailing-arm model

Before the proposed full vehicle trailing-arm model can be used to study the vertical ride

behaviour and the dynamic response during acceleration and braking, a proper set of

design parameters must be assigned. Using the same approach described for the quarter-

car trailing-arm model, an identification process will be employed to estimate the initial

set of design parameters of the full vehicle concept model starting from a given reference

model. However the methodology presented in the previous section will be enhanced

here in order to be able to consider as the reference model, not only an available high

fidelity multibody vehicle model but also a real vehicle opportunely instrumented (e.g.

a predecessor vehicle or a competitor vehicle).

A number of design parameters can be directly measured on the reference model while

there are several design parameters which cannot be measured in a straightforward

manner. The assessed parameters which can be easily measured on the reference model

are:

• sprung mass and its CG position

• Unsprung masses and their CG positions
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Indeed the sprung and unsprung masses can be estimated by measuring the weight of

the wheels and the vertical load acting on each wheel when the vehicle is in the rest

condition. The positions of the wheel centres can also be measured and used to define

the positions of the CGs of the unprung masses. Moreover a simple procedure can be

applied to estimate the horizontal and vertical CG locations of the total vehicle as well

as of the sprung mass as described in [64]. In the present work we assume that tire

properties needed for the definition of the concept model are available. If this is not

the case typical values of the vertical stiffness, vertical damping and rolling resistance

coefficients can be assigned depending on the type of the tires under analysis.

The remaining design parameters i.e. the global suspension properties and the inertia

moment of the sprung mass, are not easily obtainable by means of direct measurements

on a predecessor model and a proper identification process needs to be set up in order

to estimate them. The approach described in section 5.1.3 has to be modified in order

to be able to use measured data coming from an objective test on a real vehicle. Indeed

the inputs which have been used during the identification process to obtain the response

of the quarter-car trailing-arm concept model, i.e. the road profile and the driving and

braking torques at the wheels are not easily obtainable from standard measurements

during a ride test on a real vehicle. A different strategy is thus required, which must

extract the inputs to be applied to the concept model during the identification from

available measured data. These inputs, which were the driving and braking torques

and the road profile in the case of the identification of the trailing-arm model discussed

in section 5.1.3, must reproduce on the concept model the same dynamic conditions

experienced by the real vehicle during the test.

A suitable choice is to consider the wheel-centres vertical displacements and the longi-

tudinal acceleration of the vehicle as the input for the concept model during the identi-

fication process. Indeed, as it will be described in the next section, these quantities are

actually achievable from a measurements campaign performed on a real reference vehicle

during a selected test manoeuvre. The vertical displacements of the rim centres can be

used to kinematically drive the vertical positions of the unsprung masses in the concept

model thus removing the need of modelling the tire’s vertical behaviour. Moreover, the

longitudinal acceleration of the reference model can be used to determine the traction

and braking forces as well as the drive torques which must be applied to the concept

model in order to reproduce the test manoeuvre under analysis. The definition of the

multibody model of the full trailing-arm during the identification process must thus

be changed, in particular the tire force elements are not required any more, since the

vertical positions of the wheel centres are directly driven by means of vertical position

drivers and because the longitudinal and braking forces are directly applied in input to
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the model (i.e. they are not generated by the tire force element). The elimination of

tire force elements also removes the need for the rotating rim bodies.

As in the case of the quarter-car trailing-arm suspension, the trailing-arm model which

wil be used during the identification process has been implemented in Matlab/Simulink.

It is composed by 5 bodies, i.e. the sprung mass and the 4 unsprung masses and it

is described by a total of n=35 configuration parameters. The unsprung masses are

connected to the sprung mass in a trailing-arm configuration by using 4 revolute joints

while the vertical positions of the wheel centres are imposed by 4 vertical position drivers.

With the addition of the 5 constraint equations imposing the dependency among the

Euler parameters related to each body, the total number of constraint equations raises

to m=29 and the number of DOFs in the system is f =6 which correspond to the 3

translations and 3 rotations of the chassis. However, since we are not interested in the

lateral dynamics we can also constraint the y position and the yaw angle of the chassis

ending up with only 4 DOFs.

It will be described now how it is possible to obtain the longitudinal and braking forces

to be applied at the tire-road contact patches starting from the measured longitudinal

acceleration on the reference model. The traction force acting on each rear wheel during

the acceleration phase can be estimated starting from the longitudinal acceleration of the

reference model by imposing the dynamic equilibrium along the longitudinal direction

on each track of the vehicle. For the rear left wheel the estimated traction force is given

by:

FxRL =
1

2
Mtotax +RxRL +RxFL (5.6)

where RxRL and RxFL represent respectively the resistant forces at the rear left and

front left wheels computed as:

Rx = frWz +
Iwαw
r

(5.7)

In Eq. 5.7 the parameters fr and Iw are the rolling resistant coefficient of the tire and

the inertia moment of the wheel around its spinning axes respectively while Wz is the

vertical load on the wheel. The effective wheel radius r is considered as a constant

while the angular acceleration of the wheel αw can be approximated as the longitudinal

acceleration of the vehicle divided by the wheel radius. The associated driving torque is

obtained by multiplying the driving force in Eq. 5.6 by the effective wheel radius r :
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TdRL = r · FxRL (5.8)

Since in the present work the full trailing-arm concept model will be used to analyse the

dynamic behaviour of a rear-drive vehicle with independent suspensions, this driving

torque must be applied from the vehicle body to the rear left trailing-arm as explained

in section 5.1.1.

In the case of forward deceleration the braking forces acting on the 4 wheels can also

be estimated by imposing the longitudinal dynamic equilibrium for each track of the

vehicle provided that the distribution of the braking torques between front and rear

axles is known. The braking forces at the rear left and front left wheels are given by:

FxRL = %rear braking · (1

2
Mtotax +RxRL +RxFL) (5.9)

FxFL = %front braking · (1

2
Mtotax +RxRL +RxFL) (5.10)

Eqs. 5.7, 5.9 and 5.10 are obtained assuming that the vehicle is running on a road with

negligible slope. Moreover the aerodynamic forces acting on the vehicle body are, for

sake of simplicity, not taken into account.

The longitudinal forces and the driving torques which will be applied to the multibody

concept model during the identification phase are shown in Fig. 5.14 for both the accel-

eration and the braking phase. By applying this forces and torques on the concept model

and by imposing the vertical displacements at the wheel centres it is possible to run a

multibody simulation reproducing the same test manoeuvre conducted on the reference

model. The resulting dynamic response of the concept model can be then compared

to that of the reference model in order to identify the unknown design parameters. In

order to be able to compare the dynamic response of the full trailing-arm model with

that of a real vehicle, the quantities describing its dynamic response must be actually

obtainable from a real measurements campaign. For this reason the suspension’s strokes

were chosen as the representative dynamic quantities to be compared within the identi-

fication algorithm since they are actually measurable by means of wire potentiometers

on a real reference model. The scheme of the parameters identification process of the

full trailing-arm vehicle is reported in Fig. 5.15. In the figure it is highlighted that the

wheel-centres vertical displacements and the longitudinal acceleration measured on the

reference vehicle are the quantities given in input to the concept model to reproduce the

test scenario. Moreover the dynamic response of the concept model is described by the
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(a) Acceleration phase

(b) Braking phase

Figure 5.14: Full trailing-arm model for the identification process

4 strokes of the suspensions which are given in input to the identification algorithm and

compared with the actual ones measured on the reference model.
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Figure 5.15: Parameters identification process

5.2.3 Virtual Measurements Campaign

In order to identify the design parameters needed for the definition of the concept model

presented in the previous section a virtual measurements campaign has been carried on

a detailed model of a passenger car defined in the multibody environment of Virtual.Lab

Motion. The vehicle under analysis is a rear-wheel drive model mounting McPherson

and multilink suspensions respectively at the front and rear axles. Geometric and inertia

data such as the positions of the suspension’s hard points and the mass and inertia

properties of the various components have been derived from the industrial FE model

of the full vehicle provided by a car manufacturer [65] and used for the definition of the

model shown in in Fig. 5.16. Non-linear stiffness and damping properties of bushing

connections are taken into account in the model as well as the non-linear characteristics

of the shock absorbers which are provided with bump and rebound stops. A rack and

pinion connection is used to model the steering system. Stabilizer bars are inserted on

both the front and rear axles by means of concentrated rotational springs. The exhaust

pipe elements are also included in order to provide the model with its complete mass

and inertia properties. The drive torque is transmitted from the differential to the

rear wheels by means of the half shafts while the braking torques are applied from the

knuckles to the rim in order to simulate outboard brakes. The detailed multibody model

is composed by a total of 81 bodies having 164 degrees of freedom. Tires behaviour is

taken into account by means of the MF-Swift tire model by TNO Delft setted to 2D

contact [59].

The high fidelity multibody model was employed to reproduce an experimental ride test

in order to obtain the set of virtual measured quantities which will be used to define the
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Figure 5.16: Full car detailed multibody model

Figure 5.17: Portion of the road profile and its ISO 8608 classification by PSD
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inputs of the full trailing-arm concept model during the parameter identification process.

A proper manoeuvre has been selected in order to highlight both the ride properties of

the vehicle and the effects of the vertical load transfer between front and rear axles

which occurs during acceleration and braking. The vehicle model is settled on a rough

road whose vertical profile has been obtained starting from the power spectral density

related to a B-type road according to the ISO classification [62]. The B road left and

right profiles, which are implemented in Virtual.Lab Motion by means of spline curves

representing the road elevation at the tire contact patches, are depicted in Fig. 5.16

together with the corresponding PSD (Power Spectral Density).

From the rest condition, the steering wheel being kept locked, the vehicle is accelerated to

the speed of about 80 Km/h in 5 seconds in order to point out the anti-squat properties of

the rear suspensions. After the acceleration phase, the drive torque is removed simulating

the engaging of the neutral gear and for 10 seconds the vehicle is let run on the rough

road. A braking torque, equally distributed between front and rear axles, is then applied

to the four wheels causing a sudden decrease of the vehicle speed. During the braking

phase the anti-dive and anti-lift properties respectively of the front and rear suspensions

can be appreciated. The drive torque at the rear wheels and the braking torque applied

at the 4 wheels are reported in Fig. 5.18a together with the resulting longitudinal speed

of the vehicle in Fig.5.18b. After the acceleration phase and the removal of the drive

torque, the longitudinal deceleration of the vehicle reaches a typical value of about 0.01

g due to the rolling resistance forces at the four wheels [66].

During the simulation of the reference test manoeuvre several quantities have been virtu-

ally measured on the detailed full vehicle model. The extension/compression movements

of each suspension have been first sensed. On real life measurements by mounting a wire

potentiometer between the vehicle body and one of the suspension’s links, it is possible

to measure the variations in the suspension travel. In order to reproduce this mea-

surement virtually, a distance sensor has been defined in the detailed vehicle multibody

model to measure the stroke of each suspension during the test manoeuvre. The virtual

quantities measured by the distance sensors have been filtered above 25 Hz with the

aim of considering the same frequency content of signals coming from real instruments

during an experimental test. Fig. 5.19 shows the virtual measured stroke of the front left

suspension obtained in output from the test manoeuvre. During the acceleration phase

(5-10 sec) and the braking phase (20-25 sec) the front suspension undergoes respectively

an extension and a compression (brake-dive) due to the vertical load transfer between

front and the rear axle. An opposed behaviour can be found if the deflections of one of

the rear suspensions are considered.
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(a) Driving and Braking Torques

(b) Longitudinal speed

Figure 5.18: Test scenario: input torques and resulting longitudinal speed

While rim center vertical displacements can be easily obtained in output from a multi-

body simulation, they are not directly measurable during a real experimental campaign.

For this reason these quantities, which are needed as input for the dynamic simulations

during the identification process, must be reconstructed starting from quantities which

are actually measurable in a real ride test. The method here proposed makes use of

the vertical accelerations measured at the four corners of the vehicle body in addition

Figure 5.19: Front left suspension stroke
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to the measures of the suspensions strokes in order to reconstruct the vertical absolute

displacements of the four wheel centres. The proposed method can be better under-

stood representing each suspension as a quarter-car model as reported in Fig. 5.2. The

vertical acceleration at the body corner ddz1 and the suspension deflections z1-z2 can be

used to estimate the vertical displacements of the body corner z1. By subtracting the

suspension deflections from z1 it is possible to obtain the vertical displacements of the

unsprung mass z2.

Four virtual sensors have been thus placed at the four corners of the vehicle body in

order to measure the vertical accelerations in these locations. The low frequencies of the

virtual acceleration signals have been filtered below 0.5 Hz in order to reproduce what

is commonly done in the post processing of real accelerometers signals. Indeed, due to

measurements noise, the low frequency content of the measured accelerations must be

filtered and no information are generally available about the accelerations in the low

frequency range. Fig. 5.20 shows the filtered vertical acceleration of the body at the FL

(Front Left) corner measured during the test manoeuvre.

The obtained acceleration signals can be integrated two times to obtain the vertical

displacements at the four body corners. However, since the low-frequency content of the

vertical accelerations has been filtered, it is not possible to recover the low-frequency

vertical movements at the four corners of the body by simply double integrating the

acceleration signals. This is shown in Fig. 5.21 where the vertical position of the FL

and RL (Rear Left) corners, obtained by double integrating the corresponding vertical

accelerations, are compared to their actual values directly extracted in output from the

multibody simulation. Information needed to reconstruct the low-frequency movements

of the body corners can be extracted from the displacements signals measured by the

virtual wire potentiometers. The changes in the suspension travels in the low frequency

range (below 0.5 Hz) mainly result from the combination of the vertical movements of the

body-corners and the variations in the wheels radius due to the vertical load transfer

between front and rear axle. By neglecting these low frequency tires deflections, the

Figure 5.20: Body vertical acceleration at the FL corner
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Figure 5.21: Chassis corners vertical displacements: step 1

Figure 5.22: Chassis corners vertical displacements: step 2

global vertical position of the body corners can be reconstructed by summing the low

frequency variations in the suspensions strokes to the vertical displacements obtained

by double integrating the vertical accelerations at the body corners. As shown in Fig.

5.22 this leads to a better estimate of the low frequency vertical displacements of the

chassis corners during acceleration and braking.

However by analysing Fig. 5.22 it is possible to notice that, since the tire deflections in

the low frequency range have been neglected, the vertical position of the FL corner is

slightly underestimated during the acceleration phase and, on the contrary, it is overes-

timated during the braking phase if compared to the reference. The opposite behaviour

can be observed if the vertical position at the RL corner is taken into account. Tires

deflections during the acceleration and braking phase can be assessed by means of the

simple model shown in Fig. 5.23 once the longitudinal acceleration of the vehicle is

known. This latter can be obtained by differentiating the longitudinal velocity signal

coming from the tachometer during an experimental test.

For the definition of the model based observer 4 parameters are required which are the

total weight of the vehicle Wtot, the height of the center of gravity hCG, the wheelbase

L and the vertical stiffness of the tires Ktire. Typical values of these parameters can be
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Figure 5.23: Model for tire deflections computation during acceleration & braking

Figure 5.24: FL tire deflection due to the longitudinal transfer of vertical load

assigned depending on the class of the vehicle under analysis in case their actual values

are unknown. By imposing the equilibrium for the moments it is possible to estimate

the change in the vertical loads on the front and rear tires ∆Fz due to the longitudinal

acceleration ax as:

∆Fz =
Wtot · hCG
g · L

· ax (5.11)

Tire vertical deflections can then be obtained dividing ∆Fz by the tire stiffness. Fig.

5.24 shows the estimated deflections of the front left tire during the test manoeuvre. For

the duration of the acceleration phase (5-10 sec) the vertical load on the front wheels

decreases and the vertical deflection of the tire assumes negative values corresponding

to an increase in the tire radius. The opposite phenomenon occurs during longitudinal

deceleration (20-25 sec). The vertical deflections of the rear tires due to the longitudinal

transfer of the vertical load are the same but with opposite sign. The obtained tire

deflections can be used to correct the estimated vertical positions at the four corners of

the body as shown in Fig. 5.25.

As previously anticipated, the vertical displacements at the wheel centres can then be

computed by subtracting the suspension deflections from the global vertical positions

of the body corners. In Fig. 5.26 the wheel centres vertical displacements of the FL

and the RL wheels estimated using the proposed methodology are compared with the
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Figure 5.25: Chassis corners vertical displacements: step 3

Figure 5.26: Estimated vertical displacements of the wheel centres

actual vertical displacements coming from the multibody simulation. The good matching

between the estimated displacements and the numeric reference values confirms the

validity of the proposed approach. In Fig. 5.26 it is also possible to appreciate the

increase and the decrease in the front wheel radius respectively during the acceleration

and the braking phase due to the longitudinal transfer of vertical load between the two

axles.

5.2.4 Identification: Results and Validation

Once the wheel-centre vertical displacements have been obtained, together with the lon-

gitudinal acceleration of the vehicle and the suspension strokes, it is possible to start

the parameter identification process in Matlab by using the ’lsqnonlin’ function. The

numerical identification approach is exactly the same as the one described in section

5.1.3. In this case a function called ’Concept Vehicle fun’ has been implemented and

given in input to the lsqnonlin routine. As shown in Fig. 5.27, this function receives

in input the current set of design parameters b and performs the integration of the
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Figure 5.27: Numerical identification algorithm in Matlab

EOM of the concept model considering in input the longitudinal acceleration and the

wheel-centres vertical displacements coming from the measurements phase. The multi-

body simulations within the iterative identification process have been carried out using

the explicit Euler method in conjunction with the non-iterative projection step for the

stabilization of the constraint equations as described in Chapter 3. The 4 suspension’s

travel obtained during the dynamic simulation are compared with those coming from

the test manoeuvre in order to obtain 4 cumulative errors which constitute the input

for the lsqnonlin function in Matlab. After 21 iterations the identification algorithms

returns the vector of identified parameters which minimizes the cost function. The 14

unknown parameters estimated during the identification process are:

• the inertia moments of the unsprung mass Ixx and Iyy;

• the 4 suspensions pre-loads (i.e. the springs free lengths) L0RL, L0RR, L0FL and

L0FR;

• the stiffness and damping properties of the front and rear suspensions KF , KR,

CF and CR;

• the ICs locations in the side view plane of the front and rear suspensions dF , eF ,

dR and eR;

The set of identified parameters can be used at this point to define the full trailing-

arm concept model shown in Fig. 5.13 which has been implemented in VL.Motion. By

assigning a road profile and the driving and braking torques at the four wheels this

model can be used to study the ride performances and the handling behaviour of the

vehicle during acceleration and braking. In particular, once the parameters have been

identified and loaded into the full trailing-arm concept model in VL.Motion, the same

direct dynamic analysis can be performed on both the concept and the high-fidelity
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Figure 5.28: Validation process

Table 5.3: Validation manoeuvres

Manoeuvre I Manoeuvre II Manoeuvre III

Acceleration Phase 0-80 Km/h 0-80 Km/h 0-54 Km/h in 5 sec
5-10 sec

Braking Phase 200 Nm 300 Nm 310 Nm Front
20-25 sec all wheels all wheels 200 Nm Rear

Road Type A C A/B
(ISO Classification)

model by specifying in input the same road profile and the same driving and braking

torques. The obtained responses can then be compared to test the effectiveness of the

identification process as described in Fig. 5.28.

Three validation manoeuvres have been performed to reproduce 3 different driving sce-

narios as specified in Table 5.3. In the first manoeuvre the vehicle runs on a A-type

road and it undergoes an acceleration from 0 to 80 Km/h in 5 seconds while during the

braking phase a braking torque of 200 Nm is applied at each wheel. Fig. 5.29 shows a

comparison between the concept model and the high-fidelity model in terms of vertical

displacement and vertical velocity at the CG of the chassis, and in terms of pitch and

roll angle of the chassis. Results show that the concept model is able to accurately

predict the dynamic response of the reference high fidelity multibody model thus con-

firming the validity of the proposed identification process. In particular the bounce and

pitch movements of the vehicle body during the acceleration phase (5-10 sec) and the

braking phase (20-25) are correctly reproduced by the concept model proving that the

trailing-arm representation of the suspensions is effective in reproducing the dynamic

phenomena occurring during acceleration and braking manoeuvres. In the second ma-

noeuvre the vehicle undergoes again an acceleration from 0 to 80 Km/h in 5 seconds

while during the braking phase a braking torque of 300 Nm is applied to each wheel.
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Figure 5.29: Results validation manoeuvre I

During the manoeuvre the vehicle runs on a C-type road. Also in this case the identified

concept model is able to correctly reproduce both the low frequency pitch variations

due to the longitudinal acceleration/braking and the vertical ride behaviour of the sus-

pensions. Finally the same level of accuracy has been obtained in the third manoeuvre

where the vehicle starts moving on a A-type road and then incurs in a B-type road. In

this manoeuvre a different braking distribution has been considered, in particular during

the braking phase a braking torque of 310 and 200 Nm has been applied respectively to

the front and rear wheels. The identified model proves to be accurate also in this case.
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Figure 5.30: Results validation manoeuvre II

Figure 5.31: Results validation manoeuvre III
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5.3 Summary

This Chapter has been dedicated to the development of a model reduction process which

allows to enclose the characteristics of a detailed suspension system within a simplified

trailing-arm concept model. The trailing-arm representation of the suspension has been

adopted to include the anti-lift, anti-dive and anti-squat properties of the suspension

which influence the pitch and vertical movements of the chassis during longitudinal

acceleration and braking manoeuvres. A parameters identification process has been also

proposed which allows to identify the design parameters of the concept model in order

to reproduce the same dynamic responses measured on the reference model during a

selected test manoeuvre.

The proposed approach has been first presented by considering a quarter-car suspension

problem. The detailed multibody model of the rear multi-link suspension analysed

in Chapter 4 has been selected as the reference model to be mapped into an equivalent

trailing-arm concept model. A test scenario has been simulated, in order to highlight the

vertical ride properties and the anti-features of the reference rear multi-link suspension

model. During the identification process, which has been carried out in Matlab, the

same test scenario has been simulated on the quarter-car trailing-arm concept model,

and its design parameters have been automatically tuned in order to obtain the same ride

and anti properties of the reference model. The effectiveness of the identified quarter-car

trailing-arm concept model has been validated in two different driving scenarios showing

that the ride characteristics and the anti-squat and anti-lift properties of the reference

model are accurately reproduced.

The reduction process has been extended to the full vehicle in the second part of the

Chapter by introducing a 12 DOFs full trailing-arm concept model. The correspondent

parameters identification process has been enhanced in order to be able to consider a

real car as the target vehicle. For this reason all the quantities needed to reproduce

the test manoeuvre scenario on the full trailing-arm concept model and to compare its

dynamic response against the reference one are derived from physical quantities which

are actually measurable during a real experimental test, i.e. the vertical accelerations

at the chassis corners, the suspensions travels and the longitudinal acceleration of the

chassis. The identified 12 DOFs full trailing-arm concept model has been also validated

in several tests scenario showing its ability to capture the vertical ride properties and

the pitch and bounce movements of the chassis during longitudinal acceleration/braking

manoeuvres.

The employment of the proposed trailing-arm models is suitable at the early stage of the

design process when detailed geometrical and component data are not yet available, in
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order to perform preliminary optimization studies on the global properties of the vehicle

such as sprung and unsprung masses and suspensions rates/damping/anti-features prop-

erties. Moreover, due to their low complexity level and their computational efficiency,

they can be used in iterative processes requiring a high number of simulations, such

as the optimization of damping and anti-feature properties of the suspensions. Finally

they could be a useful tool for control engineers in order to set up and tune the control

logics of active suspension systems for the enhancement of ride performances and for

the control of chassis pitch and bounce movements during acceleration and braking.

The proposed identification process can be used at the beginning of the concept design

phase of new projects, in order to obtain a starting set of design parameters from a

virtual/real predecessor vehicle. Moreover it can be employed to obtain the design

parameters of competitors vehicles for benchmarking analysis.

Since it allows a straightforward mapping of the characteristics of detailed multibody

suspension models into equivalent trailing-arm concepts models, the proposed identi-

fication strategy represents also a useful tool to link the mechanical and the control

sides of the design process. Indeed the components modifications required to obtain

the desired performances from detailed suspension multibody models, i.e. changes in

the hard points locations, components geometries, spring rates, damping properties etc.,

can be automatically reflected into the simplified trailing-arm models used to create and

tune the control logics of active suspension systems thus leading to an integrated vehicle

mechatronic design.



Chapter 6

Conclusions and Outlooks

In this research work an investigation has been conducted on the improvements in the

efficiency of the LI Euler method coming from an independent coordinates representa-

tion of the EOM associated to mechanical systems containing kinematic closed loops

with ideal joints and stiff force elements. The automatic transformation of the EOM

from a dependent to an independent coordinates formulation at each time step relies on

the method based on the matrix R whose columns represent a basis of the nullspace

of the constraint Jacobian matrix. Proper stabilization of the constraint equations has

been carried out by means of a non-iterative projection method which guarantees the

drift off effect to remain bounded for arbitrarily long simulations. The obtained nu-

merical results show that the proposed implementation of the LI Euler method may

enhance the efficiency of the integration process when dealing with highly constrained

multibody systems described by a considerable number of configuration parameters.

The accuracy level of the numerical solution has been proved to be equivalent to that

achieved with the classical implementation of the LI Euler method. Therefore the pro-

posed algorithm seems particularly attractive for RT automotive applications where an

automated switching from a dependent to an independent coordinates representation of

the EOM translates in a considerable reduction in the dimensions of the linear system

to be inverted at each time step in order to proceed with the integration process. Future

research works could quantify the benefits, in terms of integration performances, of the

proposed implementation of the LI Euler method when dealing with large multibody

systems, such as detailed models of the full vehicle composed by a high number of bod-

ies. Moreover the proposed algorithm could be compiled in a low-level language such as

C or Fortran, which are commonly use to set up RT simulations due to their efficiency.

This could allow to study the performances of the proposed algorithm in terms of effec-

tive turnaround time, allowing a better understanding of its performances and a more

effective comparison against the standard implementation of the LI Euler method.

104
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In the final part of the manuscript a model reduction process has been also proposed

which exploits a trailing-arm representation of the suspension in order to correctly re-

produce both the ride and the anti-dive/lift/squat properties of a reference suspension

system. Both a quarter-car and a full vehicle models with trailing arm suspensions have

been presented. An identification process has been also set up in order to embed the dy-

namic characteristics of selected reference suspension systems into the design parameters

of the trailing-arm concept models. In particular the identification process has been first

carried out using a detailed quarter-car multibody model of a rear multilink suspension

as the reference model. The procedure has been then enhanced in order to be able to

identify the design parameters of a full trailing arm model using data coming from an

objective test conducted on a real target vehicle. Due to their low complexity level,

the identified trailing arm models are suitable to be employed in iterative optimization

tasks or for the design and tuning of active suspension controllers monitoring the ride

properties as well as the pitch and bounce responses of the chassis during straight ac-

celeration and braking manoeuvres. They could also be employed in the early stages of

the design phase, when detailed geometrical and components data are not yet available,

in order to perform preliminary benchmarking analysis on the main vehicle design pa-

rameters such as sprung and unsprung masses, suspensions damping and stiffness and

anti-dive/lift/squat properties. A fundamental enhancement of the proposed model re-

duction approach, which could be addressed by future research works, is the extension

of the capability of the trailing-arm models in order to be able to analyse also the lateral

dynamics of the vehicle. To achieve this goal the IC position of the suspension in the

front view plane should be also considered by reorienting the axis of the revolute joints

connecting the unsprung masses to the sprung mass, i.e. by proper positioning of the

instant rotation axis of the suspension. Also the contribution of the anti-roll bars to

the total roll stiffness of the vehicle should be taken into account and, finally, a proper

simplified representation of the steering system should be employed.
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