

If you can’t explain it simply,

you don’t understand it well enough.

Albert Einstein

A mia nonna Angela.

Per il suo volermi bene incondizionato e la felicità
che mi trasmette ogni volta che mi è accanto.

Preface

Social networks became in recent years the most popular platforms for inter-
action, communication and collaboration between friends. Indeed, they allow
people to improve their social connection and to know political and social
change almost instantaneously. Moreover, individual entertainment in a wide
variety of forms is supported. Social networks also have a great impact in daily
life due, in particular, to their effect on the way people are connected each
other and can share valuable experiences, disseminate good practices, organize
demonstrations and so on. In this respect, significant work on social networks
has been done by sociologists and social psychologists since the 1950s, though
almost all of this research was carried out on small-scale networks, because of
the inherent difficulty of getting reliable, large-scale data from subjects about
their friendships.

Nowadays, internet provides a new opportunity to study social interactions
on a much larger scale than was previously possible. More in detail, we now
have access to large-scale data on interactions and acquaintanceships. Indeed
the size of social networks that can be studied has exploded from the hundreds
of people to the hundreds of thousands of people or even more. As a result,
there are new challenges tied to social networks management such as the
efficient computation and maintenance of shortest distances in the network.

In this thesis, we study several questions about social networks from an
algorithmic perspective.

In particular, we present two main contributions to the study of social
networks:

1. The definition of an effective and efficient technique for shortest distances
maintenance;

2. The study of a new and challenging problem such as the non progressive
influence maximization.

Our contributions consist both in theoretical discussion on the topics, anal-
ysis of related work and finally definition of suitable algorithms. Indeed, we
will provide the reader a complete tool for understanding the basic notion

Preface VII

of social networks, shortest paths and social influence, that will guide her
through the comprehension of their underlying properties and algorithms.

Organization

This thesis is organized into three parts. Part I is a background on social
networks. We begin with discussing some structural properties to move then
on to the question of social influence and its effectiveness. In part II we describe
the challenging related to the shortest distance evaluation problem on the
actual graphs, highlighting limits of the current solutions. We discuss our
proposal to efficiently maintain all-pairs shortest distances for graphs stored
in relational databases. Finally, part III continues the analysis introduced in
part I but at the more fine-grained level of viral marketing. We introduce
the influence maximization problem and some of its extensions considered
in literature, before concluding with the discussion of a brand new relevant
problem and our solution to solve it.

Summary of Publications

The results presented in part II of this thesis will appear in the Journal of
Computer and System Sciences (JCSS 2015). Results reported in part III have
been submitted to a top conference and are currently undergoing the review
process.

Ringraziamenti

La tesi è la sintesi di un percorso di studi, ma anche di vita. E scrivere questa
sezione mi mette sempre in grossa difficoltà..perché non è facile riuscire a
ringraziare in poche parole e senza scadere nelle classiche frasi fatte e di
circostanza tutti coloro che mi hanno aiutato e supportato in questi anni.
Ringrazio la mia famiglia, che, nonostante gli alti e gli innumerevoli bassi,
mi è sempre stata a suo modo vicina. Soprattutto durante i mesi all’estero,
con le telefonate giornaliere di ore che facevano tanto sorridere i miei amici
canadesi..a pensarci adesso mi stupisco di come ci fosse sempre, da un giorno
all’altro, qualcosa di nuovo da raccontare!
Grazie ai miei “soci” Elio e Nunzio per la vostra amicizia e l’enorme pazienza
dimostrata, soprattutto negli ultimi tempi.
Ringrazio i miei colleghi Deborah, Roberto e Salvatore perché avete reso questi
anni di dottorato più leggeri e pieni di risate. Un ringraziamento particolare a
Cristian Molinaro per tutto l’aiuto, i consigli e soprattutto l’incoraggiamento
durante le varie prove sostenute.
Il ringraziamento più sincero va al mio supervisore Prof. Sergio Greco. In
questi 10 anni qui all’università, sei sempre stato per me un punto di riferi-
mento e un modello da seguire. Perché nonostante il ruolo che rivesti, mi ha

VIII Preface

sempre colpito l’umiltà con cui affronti le cose e il modo in cui riesci a mettermi
a mio agio anche nei momenti in cui mi sembrava di non aver fatto abbastanza.
Non finirò mai di ringraziarti per la fiducia accordatami e l’opportunità che
mi hai dato nel fare questo dottorato proprio con te.

Grazie!

Contents

Part I Social Networks

1 General Keynotes . 2
1.1 Structural Properties . 2

1.1.1 Scale Free Networks . 2
1.1.2 Small World Phenomenon . 3

1.2 Information and Influence Diffusion . 5
1.2.1 Social Influence . 6

Part II Shortest Distances Management in Large Networks

2 Shortest Distances Problem . 10
2.1 Definition . 11
2.2 Non Incremental Algorithms . 11

2.2.1 Limits . 11
2.3 Incremental Algorithms . 12

3 Shortest Distances Maintenance on DBMS 15
3.1 Preliminaries . 15
3.2 Incremental Maintenance of All-Pairs Shortest Distances 17

3.2.1 Single Edge Management . 19
3.2.2 Multiple Edges Management . 27

3.3 Experimental Evaluation . 33
3.3.1 Datasets . 33
3.3.2 Experimental setup . 35
3.3.3 Results on the DIMACS dataset . 36
3.3.4 Results on the DIMES dataset . 39
3.3.5 Results on the regular dataset . 41

3.4 Discussion . 42

X Contents

Part III Non-Progressive Models for Viral Marketing in Social
Networks

4 Influence Maximization Problem . 45
4.1 Modeling Cascading Behavior . 45

4.1.1 Independent Cascade Model . 46
4.1.2 Linear Threshold Model . 48

4.2 Problem Statement . 50
4.2.1 Greedy Algorithm for Influence Maximization 51

4.3 Extensions . 52
4.3.1 Influence Maximization under Competition 53
4.3.2 Continuous-Time Diffusion Process. 54

5 Competitive, Continuous Time and Non-Progressive
Influence Maximization . 56
5.1 Problem Statement and Related Works . 57

5.1.1 Non-Progressive Influence Maximization Problem 58
5.2 CT Non-Progressive K-LT Model . 59

5.2.1 Non-Progressiveness Property . 59
5.2.2 Continuous Time Property . 61
5.2.3 Model Definition . 62

5.3 NPK-LT Model Properties . 63
5.3.1 Reachability under the NP-LE Model 65
5.3.2 Monotonicity and Submodularity . 67

5.4 Discussion . 71

Conclusions . 72

References . 74

Part I

Social Networks

1

General Keynotes

As social networks are gaining popularity, sociologists and computer scientists
have investigated their properties and many results concerning their structure,
social influence, social groupings, disease and information propagation, have
been obtained. In the following we discuss most relevant social networks prop-
erties and introduce some opportunities that markets, online campaigning and
viral marketing are exploiting by knowing how people are influenced by the
decisions of their social environment. We also describe the potential speed of
information diffusion and the dynamics of other kinds of contagion that can
spread through these networks.

1.1 Structural Properties

Social network is a collection of people in which some pairs of these people
are connected by links. Given their usual large size, it is generally difficult to
summarize the whole network succinctly; there are parts that are more or less
densely interconnected, sometimes with central “hubs” containing most of the
links, and sometimes with natural splits into multiple tightly-linked regions.
Participants in the network can be more central or more peripheral; they
can straddle the boundaries of different tightly-linked regions or sit squarely
in the middle of one. As a result, developing a language for talking about
the typical structural features of social networks is an important first step in
understanding them.

1.1.1 Scale Free Networks

The structure of a social network is modeled by a graph. A graph is a mathe-
matical way of specifying relationships among a collection of entities. It con-
sists of a set of objects, called nodes (or vertices), with some pairs of these
objects connected by links (or edges). Two nodes connected by edges are
named neighbors. In social networks, nodes represent people and edges model

1.1 Structural Properties 3

their social interaction. More formally, a graph consisting of n nodes and m
edges is a pair (V,E) where V = {v1, v2, . . . , vn} is the set of nodes and
E ⊆ V ×V is the set of edges. A graph is undirected if E is a set of unordered
pairs; otherwise it is directed (i.e. edges are ordered pairs). In the following,
we consider directed graphs unless specified otherwise. Relationships within a
graph are commonly represented by a n× n adjacency matrix g = [gij]i,j∈V ,

where gij ∈ {0, 1} represents the existence of an edge from node i to node j.
Each gij value can also be non-binary. In this case, it represents the inten-
sity of the interaction among people. Typically, edges of a social network can
have a wide range of possible intensity, but for conceptual simplicity, they are
classified according to the following categories: strong ties (the stronger links,
corresponding to friends), and weak ties (the weaker links, corresponding to
acquaintances) [34]. Simply from their visual appearance, it is clear that social
networks structure is quite complex. For more than 40 years, science treated
all complex networks as being completely random [22]. In a random network
nodes follow a Poisson distribution, and it is extremely rare to find nodes
having a number of links that significantly deviates from average. Random
networks are also called exponential, because the probability that a node is
connected to h other vertices decreases exponentially for large h. However, a
variety of complex systems share an important property: some nodes have a
tremendous number of connections to other nodes, whereas most nodes have
just a handful [5]. The popular nodes, called hubs, can have hundreds, thou-
sands or even millions of links. Networks containing such important nodes
are called “scale free”, since these networks appear to have no scale. Social
Networks are scale-free [49]. In scale-free networks, the distribution of node
linkages follows a power law. Power laws describe systems in which most
nodes have just a few connections and some have a tremendous number of
links. Power laws are quite different from the bell-shaped distributions that
characterize random networks. Indeed, a power law does not have a peak, as
a bell curve does, but is instead described by a continuously decreasing func-
tion: the probability that a node has degree h is proportional to h−γ for large
h where γ > 1 is the power-law coefficient. In Figure 1.1 there is a compari-
son of these two kinds of network. The upper section (Figure 1.1 (a)) shows
a random network and the bell curve distribution of its node linkages, while
in the bottom section (Figure 1.1 (b)) there is a scale-free network with a
distribution of links resulting in a power law.

1.1.2 Small World Phenomenon

Since social networks are inherently dynamic, it is also useful to think about
their evolution over time, i.e. the mechanisms by which nodes are added to
or removed from the network and by which edges arise and vanish. One of
the most important principles is that if two people in a social network have a
friend in common, then there is an increased likelihood that they will become
friends themselves at some point in the future. This principle is known as

4 1 General Keynotes

Number of Links

Number of Links

N
u

m
b

e
r

o
f

N
o

d
e
s

N
u

m
b

e
r

o
f

N
o

d
e
s

Many nodes

with few links

Few hubs with

many links

Majority of nodes

with the same

number of links

(a)

(b)

Fig. 1.1. Random versus Scale-Free Networks

triadic closure. The key role of triadic closure in social networks has motivated
the formulation of simple social network measures to capture its prevalence.

One of these is the clustering coefficient [65]. The clustering coefficient of
a node u is defined as the probability that two randomly selected friends of
u are friends with each other. In other words, it is the fraction of pairs of
u’s friends that are connected to each other by edges. In general, the cluster-
ing coefficient of a node ranges from 0 (when none of the node’s friends are
friends with each other) to 1 (when all of the node’s friends are friends with
each other). In social networks, this coefficient is significantly high because
people tend to have friends who are also friends with each other.
Further significant parameters in understanding social networks properties are
the diameter and the average path length. The former is the maximum dis-
tance between any pair of nodes in the graph, while the latter is the average
number of hops required to get from one node to another over all pairs of
nodes in the graph by following the shortest route possible. In 1967 Milgram,
a social psychologist at Harvard University, conducted an experiment to find
out the average path length between two Americans. He sent hundreds of
letters to people in Nebraska, asking them to forward the correspondence to
someone they knew in order to eventually reach a designated target person
living in Boston as quickly as possible. Milgram found out that the letters
that arrived at the final recipient had passed through an average of six indi-
viduals, resulting in the phenomenon colloquially known as the six degrees of
separation. Although Milgram’s experiment was hardly conclusive - most of
the letters never reached the destination - researchers have recently learned
that other networks exhibit this small-world property. Indeed, despite social

1.2 Information and Influence Diffusion 5

networks usually have a size comparable to the Web graph, they have av-
erage path lengths and diameters remarkably short [49]. This result is quite
surprisingly if we consider that social networks abound in triangles, i.e. sets
of three people who mutually know each other. As a result, when we think
about the nodes you can reach by following edges from your friends, many
of these edges go from one friend to another, not to the rest of world. Thus,
from the local perspective of an individual, the social network appears to be
highly clustered, not the kind of massively branching structure that would
more obviously reach many nodes in a few steps. However, the presence of
weak ties (the links to acquaintances that connect us to parts of the network
that would otherwise be far away), is enough to make the world “small”, with
short paths between every pair of nodes. Weak ties can act as bridges, i.e.
nodes without which the network will split into two or more subgroups. More
in detail, strong ties, representing close and frequent social contacts, tend to
be embedded in tightly-linked regions of the network, while weak ties, repre-
senting more casual and distinct social contacts, tend to cross between these
regions.

One obvious corollary of the small-world phenomenon (there are short
paths between most pairs of nodes) is that social networks must have a large
connected component containing most of the nodes (there are paths between
most pairs of nodes). This giant component typically contains a significant
fraction of all the nodes in the network. When a network contains a giant
component, it almost always contains only one. Indeed, two co-existing giant
components are something really hard to see in real networks because, it’s
essentially inconceivable that it does not exist a single edge from someone in
the first of these components to someone in the second giant components.

1.2 Information and Influence Diffusion

Diffusion theories have been intensively studied for decades by both epidemi-
ologists and marketing experts. Indeed, there are clear connections between
epidemic disease and the diffusion of ideas through social networks. Both dis-
eases and ideas can spread from person to person, across networks connecting
people, and in this respect, they exhibit very similar structural mechanisms.
For the propagation of any kind of contagion throughout a population, it is
common practice to consider the existence of a critical threshold. Any virus,
disease or fad that is less infectious than this threshold will inevitably collapse,
while those above the threshold will grow exponentially. In the scale-free net-
works, where hubs are connected to many other nodes, this threshold is zero
[53]. Indeed, at least one hub will tend to be infected by any corrupted node.
And once a hub has been infected, it will pass the virus to numerous other
nodes, eventually compromising other hubs. It means that in social networks,
which in many cases appear to be scale-free, all viruses, even those that are
weakly contagious, will spread throughout the entire system. Moreover, the

6 1 General Keynotes

existence of short paths between almost every pair of nodes due to the small
world property, has substantial consequences for the potential speed with
which information, diseases, and other kinds of contagion can spread through
the network. While the ease of propagation can have disruptive effects if we
consider virus or diseases, it can also be very beneficial in many business
contexts, where companies are interested in starting a viral effect for their
products. Viral marketing, for instance, is considerable interested in attract-
ing the attention of the largest possible audience to a brand, a product, or a
service. In viral marketing, customers help marketers to promote a product
or a service by the so-called “word-of-mouth” advertising. The latter is often
a more cost effective type of advertising and, in some cases, more effective in
absorbing new customers and making people adopt a new product because
people are more affected by their friends or the people they trust. A key ques-
tion in this category of marketing is finding the best set of people (the most
“powerful” or central) so that, targeting them, will speed the adoption of a
product to the larger number of people in the network.

1.2.1 Social Influence

All viral marketing strategies are based on the idea that careful targeting a
small number of “influential” individuals to use a product, for instance by
giving it to them for free or at a discounted price, can have a cascading effect
on the adoption of that product. In a network setting, indeed, user actions
must not be evaluated as stand alone, but considering that the network will
react to them. More in detail, each individual’s actions may be triggered by
one of his/her friends recent actions. An example of this scenario is the user
purchasing profile. More in detail, it often happens that a user buys a product
because one of his/her friends has recently bought the same product. This
process has been variously described as social influence. Formally, consider
a social network represented as a directed graph G = (V,E) and a function
p : E → [0, 1] assigning a weight or probability p(u, v) (or simply pu,v) to every
edge (u, v) ∈ E. The latter represents the influence exerted by user u on v. This
informally captures the intuition that whenever u performs an action, then v
also performs the action after u, with probability pu,v. Typically, highest is this
probability, larger is the gain that v has in imitating the behavior of u. Indeed,
choices made by u can provide indirect information about what it knows
and there are immediate payoffs from copying its decisions. As an example,
payoffs that arise from using compatible technologies instead of incompatible
ones. The success of a viral marketing campaign is strictly related with the
identification of situations where social influence between users exists. Indeed,
in systems where social influence exists, ideas, modes of behavior, or new
technologies can diffuse through the network like an epidemic [3]. Therefore,
being able to identify in which cases influence prevails and to detect the most
influential nodes are important steps to strategy design.

1.2 Information and Influence Diffusion 7

Influence vs. Homophily

The existence of influence in a network can be difficult to detect because there
are other phenomena surrounding users’ behavior that are different from in-
fluence, but may appear to be as such. One of these is known as homophily,
the principle that we tend to be similar to our friends, and hence perform
similar actions. For example, a person who is overweight tends to have over-
weight friends. If one of them develops a cardiology disease, followed by one of
his/her friends, can we really claim that the health of the first influenced that
of the second? Thus, the existence of a social tie does not necessarily cause
a certain behavior to propagate. The problem of homophily vs. influence and
the introduction of methods for distinguishing them, has been tackled by some
researchers [3, 4]. Researchers have also investigated whether influence can re-
ally drive substantial viral cascades over real-world social networks. Indeed,
as appealing as the viral model marketing seems in theory, its practical im-
plementation is greatly complicated by its low success rate. Even creators of
successful viral projects are rarely able to repeat their success with subsequent
projects. As a result, there have been studies both supporting the existence
of social influence [39, 35] and challenging it [66]. Typically, its effectiveness
for applications such as viral marketing depends on the datasets. Thus, before
deciding whether to adopt a viral marketing approach, it is recommended a
careful analysis of evidence in available datasets.

Influential Nodes

Based on its structural properties, several techniques have been developed to
identify key nodes in a social network and a plethora of centrality measures
have been defined over the years. Main centrality measures can be summarized
in the following three classes:

• Degree centrality measures: Number of links a node has with the rest
of the networks nodes;

• Closeness centrality measures: Average number of “hops” from a given
node to all other nodes in the graph;

• Betweenness centrality measures: The number of shortest paths that
will be affected by a node removal.

Figure 1.2 highlights nodes within a network with the highest values of these
centrality measures.

Clearly, degree centrality measures are easy to compute because it is only
necessary to count the direct links of the nodes in the network. Nodes with
high degree centrality have higher probability of receiving and transmitting
information flowing in the network. For this reason, high degree centrality
nodes are considered to have great influence over a larger number of nodes
and/or are capable of communicating quickly with the nodes in their neigh-
borhood. However, the main disadvantage of the degree centrality measures

8 1 General Keynotes

a

c

f g

b

ed

Best closeness
Highest betweenness

Highest degree

h

i

Fig. 1.2. Nodes with different centrality values

is that they only take into account the immediate ties of a node, while indi-
rect contacts are not considered at all. As a consequence, it may happen that
a node could be quite central, but only in a local neighborhood. Indeed, it
might be tied to a large number of nodes, but those nodes might be rather
disconnected from the network as a whole. Closeness centrality approaches,
instead, emphasize the distance of a node to all other nodes in the network by
focusing on the distance from each node to the others. They are based on the
idea that nodes that have a short distance to other nodes, may disseminate
information very effectively through the network since they require only few
intermediaries for contacting a large number of nodes. Finally, betweenness
centrality takes into account the control of the information flow that a node
may exert based on its position in the network. This approach assumes implic-
itly that the communication and interaction between two nodes that are not
directly linked depends on the intermediate nodes. Thus, a node is considered
to be well connected if it appears in a huge number of shortest paths between
pairs of nodes in the network.

Part II

Shortest Distances Management in Large

Networks

2

Shortest Distances Problem

The problem of evaluating and maintaining shortest paths between each pair
of vertices in a graph has received an increasing attention in recent years due
to the several real life scenarios in which information about shortest paths are
crucial. Indeed, this problem appears to be critical in many practical appli-
cations, such as management of communication or transportation networks,
where a prompt reaction to changes (e.g. collapse of a road, crash of a router),
through a rapid recalculation of involved shortest paths, is the first form of
intervention to ensure high level safety and prevention. There is also a wide
range of applications in social network analysis, road networks [67], biologi-
cal networks [45, 58], keyword search [68], twig-pattern matching [31], graph
pattern matching [24], and many others, in which is crucial to know just the
shortest distances among vertices. The latter is both an important task in its
own right (e.g., if we want to find how close people are in a social network)
and an important subroutine for many advanced tasks associated with large
graphs (e.g., different measures, such as centrality measures and network di-
ameter, are based on shortest distances). To this end, different variants of
this problem have been investigated over the years: single-pair shortest path
(SPSP) (find a shortest path from a given source vertex to a given destination
vertex), single-source shortest paths (SSSP) (find a shortest path from a given
source vertex to each vertex of the graph), and all-pairs shortest paths (APSP)
(find a shortest path from u to v for every pair of vertices u and v). Variants of
these problems where we are interested only in the shortest distances, rather
than the actual paths, have studied as well—we will use SPSD, SSSD, and
APSD to refer to the single-pair shortest distance, single-source shortest dis-
tances, and all-pairs shortest distances problems, respectively. In this section,
we discuss the approaches in the literature to solve the above problems—we
first consider non-incremental algorithms and then the incremental ones. The
latter have been introduced to deal with graphs subject to frequent updates,
since it is impractical to compute shortest paths/distances from scratch every
time changes are made to the graph.

2.2 Non Incremental Algorithms 11

2.1 Definition

Let G = (V,E, ω) be a (directed or undirected) weighted graph where ω :
E → R0 is a function assigning a weight (or distance) to each edge (u, v) ∈ E.
A sequence v0, v1, . . . , vl (l > 0) of vertices of G is a path from v0 to vl if
(vi, vi+1) ∈ E for every 0 ≤ i ≤ l − 1. We use ω(u, v) to denote the weight
assigned to the edge (u, v) by ω. Thus, the weight (or distance) of a path

r = v0, v1, . . . , vl can be defined as ω(r) =
∑l−1
i=0 ω(vi, vi+1). Obviously, there

can be multiple paths from v0 to vl, each having a distance. A path from v0
to vl with the lowest distance (over the distances of all paths from v0 to vl)
is called a shortest path from v0 to vl and its distance is called the shortest
distance from v0 to vl.

2.2 Non Incremental Algorithms

Since the introduction of the well-known Dijkstra’s algorithm [20], a plethora
of algorithms have been proposed to improve on its performance (see [18, 61]
for recent surveys). Some of the techniques addressing the APSP problem,
such as [1, 54], take into account specific cases (directed/undirected graphs,
non-negative weights, etc.), but, in general, the most efficient solutions re-
quire an execution time of O(n3), where n identifies the number of graph’s
vertices [42, 10]. Recently there have been introduced several approaches ex-
ploiting on demand distance and path computation. Most of these methods
require a pre-processing step for building index structures to support the fast
computation of shortest paths and distances [11, 41, 2, 60, 28, 69, 55, 56,
36, 57, 70, 14, 27]. In particular, [11, 41, 2, 60] address the SPSD problem,
while a similar approach for the SPSP problem has been proposed in [28].
[69] considers both the SPSP and SPSD problems and also requires the pre-
computation of an auxiliary hierarchical index structure. There have been also
proposals addressing the approximate computation of SPSD [55, 56, 36, 57].
These methods are based on the selection of a subset of vertices as “land-
marks” and the offline computation of distances from each vertex to those
landmarks. [70] and [14] propose disk-based index structures for solving the
SSSP and SSSD problems, while disk-based index structure for the SPSP and
SPSD problems have been proposed in [27].

2.2.1 Limits

Besides the fact that most of the aforementioned techniques assume that
graphs, shortest distances, and auxiliary index structures fit in the main mem-
ory (which is not realistic for large graphs used in many current applications),
the main limit of all the approaches mentioned above is that they need to re-
compute a solution from scratch every time the graph is modified, even if we
make small changes affecting a few shortest paths/distances. Since most of

12 2 Shortest Distances Problem

the real networks are large and dynamic, i.e. they are composed by an high
number of vertices and the insertion/deletion of connections between these
vertices are very frequent operations, the recomputation from scratch of the
shortest distances may be unfeasible due to its cost and its limited effective-
ness. Indeed, it is unlikely that graph changes cause an update of the majority
of shortest distances. In general, a good heuristic is that small variations on
graph correspond to little changes to distances among vertices. The following
example clarifies this assertion.

Example 2.1. Consider the directed graph represented by solid edges in Fig-
ure 2.1(left). Suppose to add the dashed edge (b, c, 1).

dc
1

a

b

1 1

1

fe
1

1
1

Andiamo

Via cosa

dc
1

a

b

1 1

1

2

fe
1

1
1

2

2

2

Fig. 2.1. Updated graph (left) and the corresponding shortest distances (right).

In Figure 2.1 (right) we show the resulting shortest distances graph, where
the insertion of the edge (b, c, 1) affects only two connections (the dashed
edges), while most of the graph remains unchanged.

Therefore, these methods work well if the graph is static and the pre-
processing phase, required to build the index structures that are leveraged
to answer queries, needs to be done only once; in contrast, if the graph is
dynamic, then the expensive pre-processing phase has to be done every time
a change is made to the graph and this is impractical for large graphs subject
to frequent changes.

2.3 Incremental Algorithms

Recently, several techniques have been proposed to incrementally maintain
shortest paths and distances when graph updates occur. The core idea is to
apply the recomputation from scratch only when graphs substantially change.
In [40] the authors introduce useful data structures to support an arbitrary
sequence of delete operations and to easily compute a path between each pair
of vertices on a directed acyclic graph. The time complexity of the algorithm
for edge deletions management is O(nm) in the worst case, where m is the

2.3 Incremental Algorithms 13

number of edges and n the number of vertices. In [19] the dynamic mainte-
nance of APSP is tackled both for edge insertions and edge deletions. The
proposed algorithm requires O(n2log3n) amortized time per update. In [6]
the authors present a hierarchical scheme for efficiently maintaining approx-
imate APSP in undirected unweighted graphs under deletions of edges. The
proposed algorithm works in sub-cubic time and needs an upper bound for
the path length. In [44] a fully dynamic algorithm for maintaining transitive
closure and APSP in digraphs with positive integer weights bounded by a
constant b is presented. In [17] the authors propose an algorithm for main-
taining nearest neighbor lists in weighted graphs under vertex insertions and
decreasing edge weights. This work is tailored for scenarios where queries are
a lot more frequent than updates.
All the techniques above share the use of specific (complex) data structures
and work in the main memory, which limits their applicability to very large
graphs (the number of shortest distances is quadratic in the number of ver-
tices in the worst case).
On the other hand, the growing availability of computer networks led to the
development of distributed algorithms, where each vertex is a resource (e.g.,
a router). In [16] the authors propose a distributed solution to manage the
interleaving of insert and delete operations on a network with positive real
edge weights. In [15] is addressed the issue of updating shortest paths when
multiple edge changes occur simultaneously. The efficiency of these techniques
is evaluated w.r.t. the total number of messages sent over the edges and the
space required to each vertex. As other distributed solutions known in the lit-
erature, these algorithms are based on distance-vector routing protocol and,
consequently, suffer of some typical drawbacks, such as a slow convergence to
the correct distance and the looping phenomenon, which contribute to restrict
their applicability.
Aside to algorithms working on specifically designed data structures, there
are many algorithms which exploit database systems, providing structurally
simple solutions for the computation of the new content of a database after
updates. More in details, when graphs are stored in relational databases, the
shortest distance maintenance problem is a special case of the view mainte-
nance problem. The view maintenance problem for both recursive and non-
recursive views has been addressed in [37]. Depending on the view type, i.e.
recursive or not, authors define two algorithms, respectively DRed algorithm
and Counting algorithm. The latter exploits the number of alternative deriva-
tions for a tuple, avoiding not necessary tuple deletions till this number is
greater than zero. DRed algorithm works on recursive views, thus it can be
used for shortest distance maintenance. The main drawback of this technique
is that it considers all possible derivations of a tuple only after that this is
already deleted. This operation may be expensive on massive graphs because
it could remove (and thus causes recomputation) a much larger graph portion
than that effectively affected by the modification. A similar approach has been
adopted in [52] where the authors propose incremental algorithms to maintain

14 2 Shortest Distances Problem

all pairs of shortest distances for graphs stored in relational DBMSs after edge
insertions and deletions. These algorithms improve on [37] by avoiding unnec-
essary joins and unnecessary tuple deletions in the original graph—however,
[52] can deal only with the APSD maintenance problem while [37] works with
general views (both in SQL and Datalog).

3

Shortest Distances Maintenance on DBMS

Although many incremental algorithms to solve the shortest paths/distances
maintenance problem have been proposed, they are designed to work in the
main memory. This significantly limits their applicability to many current ap-
plications where graphs are very large and, consequently, it is prohibitive to
keep all shortest distances in the main memory. To the best of our knowledge,
[52] is the only disk-based approach for the incremental maintenance of all
pairs shortest distances. Specifically, [52] considers graphs stored in relational
DBMSs. However, the proposed algorithms can handle only a single insertion
or deletion at a time. Moreover, our experimental evaluation revealed that
algorithm devoted to edge insertion management performs well on large but
sparse graphs, while edge deletion management offers poor performances even
on small graphs. To overcome the above mentioned limitations, we propose a
novel approach that works on large graphs stored in relational DBMSs and
that tackles the shortest distance maintenance problem when graph changes
occur. In particular, we introduce two algorithms supporting both edge inser-
tions and deletions on graphs stored in a DBMS. The proposed solution aims
to reduce the time needed to deal with the graph updates, avoiding recom-
putation of shortest distances not affected by the changes made to the graph.
Moreover, we designed our algorithms in order to manage multiple insertions
(or deletions) in a single step. The validity of the proposed techniques was
confirmed by deep and accurate experimental evaluation in which they have
been tested considering both real-world and synthetic networks. We also com-
pared our results with the approaches proposed in [52] to assess our superior
performances.

3.1 Preliminaries

In this section, we introduce the notation and terminology used in the rest of
this chapter. We recall that, for our purposes, graphs and shortest distances
are stored in relational databases. Notice that this allows us to take advantage

16 3 Shortest Distances Maintenance on DBMS

of full-fledged optimization techniques provided by relational DBMSs. Specif-
ically, the set of edges of a graph is stored in a ternary relation E containing a
tuple (a, b, w) iff there is an edge in the graph from a to b with weight w . We
call E an edge relation. Likewise, a ternary relation SD is used to store the
shortest distances for all pairs of vertices of the graph, that is, (x, y, d) ∈ SD
iff there is a path from x to y and d is the shortest distance from x to y.
We also say that SD is the shortest distance relation for E. Without loss of
generality, we assume that graphs do not have self-loops, i.e., edges of the
form (a, a) (the reason is that self-loops can be disregarded for the purpose of
finding shortest distances). Moreover, we consider directed weighted graphs
and call them simply graphs—the extension of the proposed algorithms to
undirected graph is trivial.
We deal with the shortest distance maintenance problem defined below.

Problem (All-pairs shortest distances maintenance). Given an edge
relation E, the shortest distance relation SD for E, and a set of edges ∆E,
compute the shortest distance relation for E ∪∆E (or E−∆E).

We are interested in solving the problem in an efficient incremental fashion,
i.e., avoiding to compute the new shortest distance relation from scratch. It is
worth noting that the case where we want to compute the shortest distance
relation for E∪∆E (resp. E−∆E) corresponds to the scenario where the orig-
inal edge relation E is modified by adding new edges (resp. deleting edges).In
addition to the edge relation for a graph and the corresponding shortest dis-
tance relation, our algorithms will use auxiliary relations of arity 3 and 5.
Auxiliary relations of arity 3 will be used to store tuples of the form (x, y, d),
called distance tuples, whose meaning is that there is an edge from x to y with
weight d, or there is a path from x to y with distance d. Relations of arity
5 will store tuples of the form (x, y, d, a, w), called extended distance tuples,
whose meaning is that there is a path from x to y with distance d and either
the first edge along the path is (x, a) with weight w or the last edge along the
path is (a, y) with weight w.
We will use the relational algebra operators π (projection), ✶ (join), ⋉ (left
semi-join), × (Cartesian product), ∪ (union), and − (difference). We will re-
fer to the i-th attribute of a relation as $i. For instance, the projection of a
relation R on the first and third attribute is written as π

$1,$3
R. We will use

the generalized projection so that we can write expressions like π
a,$1

R, which
is equivalent to {a} × π

$1
R.

Given a tuple ϕ = (ϕ1, ..., ϕn), the i-th element of ϕ is denoted as ϕ[i]. Given
two tuples ϕ1 and ϕ2, we say that ϕ1 and ϕ2 are similar, denoted ϕ1 ∼ ϕ2,
iff ϕ1[1] = ϕ2[1] ∧ ϕ1[2] = ϕ2[2]. Intuitively, as we are dealing with relations
storing distances between vertices, two tuples are similar when they refer to
(possibly different) paths between the same pair of vertices.
Below we define the operators min, ⊕, and ⊖, which will be used in the
proposed algorithms. Let Q and R be relations containing distance tuples
or extended distance tuples (and thus of arity 3 or 5). The min operator is

3.2 Incremental Maintenance of All-Pairs Shortest Distances 17

defined as follows:

min(Q) = {ϕ ∈ Q | ϕ[1] 6= ϕ[2] ∧ ∄ϕ′ ∈ Q s.t. ϕ′ ∼ ϕ ∧ ϕ′[3] < ϕ[3]}

Thus, min(Q) returns all the (extended) distance tuples ϕ in Q with ϕ[1] 6=
ϕ[2] (i.e., ϕ refers to a path whose endpoints are distinct vertices) and s.t.
Q does not contain a similar (extended) distance tuple with a strictly lower
distance. The min operator with two arguments is defined as follows:

min(Q,R) = {ϕ ∈ min(Q) | ∄ϕ′ ∈ R s.t. ϕ′ ∼ ϕ ∧ ϕ′[3] ≤ ϕ[3] }.

Thus, min(Q,R) first applies min to Q and then returns all the (extended)
distance tuples ϕ in the resulting relation s.t. R does not contain a similar
(extended) distance tuple with a lower distance.
The binary operators ⊕ and ⊖ are defined as follows:

Q⊕R = Q ∪ {ϕ ∈ R | ∄ϕ′ ∈ Q s.t. ϕ′ ∼ ϕ}
Q⊖R = Q− {ϕ ∈ Q | ∃ϕ′ ∈ R s.t. ϕ′ ∼ ϕ ∧ ϕ′[3] = ϕ[3]}

Thus,Q⊕R returns a relation obtained by adding toQ the (extended) distance
tuples of R which are not similar to any of the (extended) distance tuples in Q,
whereas Q⊖R returns a relation obtained from Q by deleting every (extended)
distance tuple for which there exists a similar (extended) distance tuple in R
with the same value on the third attribute (i.e., with the same distance).
Notice that all the operators above can be expressed in the relational algebra
as well as in SQL.

3.2 Incremental Maintenance of All-Pairs Shortest

Distances

In this section, we present novel algorithms for the incremental maintenance
of shortest distances. We start by introducing algorithms to handle the in-
sertion and deletion of a single edge. After that, we propose algorithms able
to deal with the insertion and deletion of multiple edges at once. As shown
in Section 3.3, the latter algorithms outperform the former ones even with a
single insertion/deletion. We report the single insertion/deletion algorithms
as they ease presentation of the ones for multiple insertions/deletions.

We point out that edge weight updates can also be handled by our al-
gorithms, as changing the weight w of an edge (a, b) into w′ can be han-
dled by first deleting (a, b, w) and then inserting (a, b, w′). Furthermore,
our algorithms to deal with the insertion and deletion of multiple edges
at once can be used to handle an arbitrary sequence of mixed edge inser-
tions/deletions/updates. In fact, given an edge relation E, the shortest dis-
tance relation SD for E, and a sequence of edge insertions/deletions/updates
∆E, we can proceed as follows:

18 3 Shortest Distances Maintenance on DBMS

• Step 1. We apply the sequence of operations in ∆E to E so as to get the
final edge relation Ê.

• Step 2. We then apply the algorithm to handle multiple deletions with
the following input: E is the edge relation, SD is the shortest distance
relation, and E− Ê are the edges to be deleted. This gives us the shortest
distance relation SD′ for E′ = E− (E− Ê).

• Step 3. Finally, we apply the algorithm to handle multiple insertions with
the following input: E′ is the edge relation, SD′ is the shortest distance
relation, and Ê−E are the edges to be inserted. This gives us the shortest
distance relation for Ê.

The following example illustrates how we can manage a sequence of edge
insertions/deletions/updates by following the steps outlined above.

Example 3.1. Consider the graph in Figure 3.1 (left) corresponding to the edge
relation E = {(a, b, 1), (b, c, 2), (c, d, 3), (d, b, 2)}. The set of changes we want
to make to the graph are represented in Figure 3.1 (center) and consists of: (i)
deleting (b, c, 2) (red dotted edge), (ii) inserting (d, a, 1) (blue edge), and (iii)
decreasing the cost of (d, b, 2) from 2 to 1. Making these changes to the original

edge relation yields the new edge relation Ê = {(a, b, 1), (c, d, 3), (d, a, 1), (d, b, 1)}
whose graph is reported in Figure 3.1 (right)—this is the output of step 1.

d c

2

a b
1

3

2

Andiamo

Via cosa
d c

2

a b
1

3

1
2
1

Andiamo

Via cosa
d c

a b
1

3

1

1

Fig. 3.1. Original graph (left), set of changes (center), and the updated graph
(right).

The incremental maintenance of the shortest distance relation involves a
multiple edges deletion (step 2) followed by a multiple edges insertion (step 3).
More in detail, step 2 consists in the computation of the shortest distance re-
lation SD′ for the edge relation E′ obtained from the original one by delet-
ing the set E − Ê = {(b, c, 2), (d, b, 2)}—these are the red dotted edges in
Figure 3.2 (left). Then, step 3 consists in computing the shortest distance
relation for the edge relation obtained from E′ by inserting the new edges
Ê− E = {(d, a, 1), (d, b, 1)}—these are the blue edges in Figure 3.2 (right)).

Also, it is worth noting that insertions and deletions of vertices can be
straightforwardly reduced to our setting and thus be handled by our algo-
rithms too: vertex insertions (resp. deletions) are handled by inserting (delet-
ing) all edges that are incident from/to the inserted (resp. deleted) vertices.

3.2 Incremental Maintenance of All-Pairs Shortest Distances 19

d c

2

a b
1

3

2

d c

a b
1

3

1
1

Fig. 3.2. Deletion step (left) and insertion step (right).

As a consequence, our algorithms can easily handle an arbitrary sequence of
edge insertions/deletions/updates and vertex insertions/deletions.

3.2.1 Single Edge Management

In this section, we first propose an algorithm to handle the insertion of a single
edge and then address the deletion of a single edge. Moreover, we discuss in
detail the solution proposed in [52] to better understand the difference between
the approaches.

Single edge insertion

Algorithm 1 deals with the insertion of a single edge. We point out that
the algorithm (as well as all the other algorithms proposed in this paper) is
written in a form that eases presentation without applying optimizations to
relational algebra expressions. However, relational DBMSs have full-fledged
query optimization techniques to easily optimize the code—indeed, this is one
of the advantages of relying on a relational DBMS.

Given the shortest distance relation SD for an edge relation E, and an edge
e = (a, b, w) to be added to E, Algorithm 1 computes the shortest distance
relation for E∪{e}. The precondition ∄(a, b, w′) ∈ E with w′ 6= w ensures that
there does not already exist an edge from a to b.The additional precondition
∄(a, b, w′) ∈ SD with w′ ≤ w is imposed just because if it does not hold, then
the insertion of e has no effect on the shortest distance relation and thus there
is no need to recompute it.

The algorithm works as follows. First, it computes all the distance tu-
ples obtained by concatenating e with shortest paths starting from vertex b
(step 1), that is, tuples of the form (a, y, d) s.t. there is a path from a to y
with distance d, the first edge along such a path is e, and the path from b to
y is a shortest one (w.r.t. the original edge relation). Then, among these dis-
tance tuples, the algorithm selects only those that improve on current shortest
distances, that is, those tuples (a, y, d) in ∆Pf s.t. either there is no shortest
path from a to y in SD or there is one with distance greater than d (step 2).

Next, two analogous steps are performed: first, shortest paths ending in
vertex a are concatenated with e (step 3), yielding tuples of the form (x, b, d)
s.t. there is a path from x to b with distance d, the last edge along such a

20 3 Shortest Distances Maintenance on DBMS

Algorithm 1 Single-Edge-Insertion-Maintenance

Input: Edge relation E
Shortest distance relation SD for E
Edge e = (a, b, w) s.t. ∄(a, b, w′) ∈ E with w′ 6= w and
∄(a, b, w′) ∈ SD with w′ ≤ w

Output: Shortest distance relation for E ∪ {e}
1: ∆Pf = πa,$2,$3+w(σ$1=bSD);
2: ∆SDf = min(∆Pf , SD);
3: ∆Pℓ = π$1,b,$3+w(σ$2=aSD);
4: ∆SDℓ = min(∆Pℓ, SD);
5: ∆Pi = π$1,$5,$3+$6−w(∆SDℓ ×∆SDf);
6: ∆SD = min(∆SDℓ ∪∆Pi ∪∆SDf ∪ {e}, SD);
7: SD∗ = ∆SD ⊕ SD;
8: return SD∗;

path is e, and the path from x to a is a shortest one (w.r.t. the original edge
relation); then, among the tuples in ∆Pℓ, the algorithm selects only those that
improve on shortest distances in SD (step 4).

After that, the distance tuples obtained at steps 2 and 4 (which correspond
to path whose first or last edge is e, respectively) are combined via a Cartesian
product (step 5). Specifically, this step computes a relation ∆Pi by combining
each tuple (x, b, d1) in ∆SDℓ with each tuple (a, y, d2) in ∆SDf so as to get a
tuple (x, y, d1+d2−w). Notice that the distance of tuples in ∆Pi is diminished
of w because e is taken into account both in tuples of ∆SDℓ and in tuples of
∆SDf .

Finally, the algorithm selects those tuples in ∆SDℓ ∪∆Pi ∪∆SDf ∪ {e}
that improve on the shortest distances in SD (step 6) and incorporates them
into SD (step 7). The following example illustrates how Algorithm 1 works.

Example 3.2. Consider the directed graph in Figure 3.3 (left) whose shortest
distance relation SD is represented in Figure 3.3 (right).

d ec
1

a

b

1 31

a d ec

b

1

1

3
1

4

5

4

2

Fig. 3.3. A graph (left) and the corresponding shortest distances (right).

Suppose we add the edge (c, d, 1). Figure 3.4 shows different relations com-
puted by Algorithm 1 in steps 1–5, namely ∆SDf = {(c, e, 2)} (red edge),

3.2 Incremental Maintenance of All-Pairs Shortest Distances 21

∆SDℓ = {(b, d, 2), (a, d, 3)} (green edges), and ∆Pi = {(b, e, 3), (a, e, 4)} (pur-
ple edges).

d ec
11

a

b

1 1

4

3

2

3

2

2

Fig. 3.4. Intermediate steps of Algorithm 1.

Among these new tuples, Algorithm 1 selects those that improve on current
shortest distances (step 6)—intuitively, the algorithm selects the colored edges
in Figure 3.4 which are not in Figure 3.3 (right) or are in Figure 3.3 (right)
with a greater distance. Finally, the selected tuples are incorporated into the
shortest distance relation (step 7). Figure 3.5 shows the updated graph and the
new shortest distances.

a d ec

b

1

1

3
1

1

a d ec

b

1

1

2
1

1

3

4

3

2

2

Fig. 3.5. Updated graph (left) and the corresponding shortest distances (right).

Theorem 3.3. Given an edge relation E, the shortest distance relation SD
for E, and an edge e, Algorithm 1 computes the shortest distance relation for
E ∪ {e}.

Proof. Let En = E ∪ {e} and SDn be the shortest distance relation for En.
We start with two observations used in the following. First, if a distance tuple
(x, y, d) is in SD∗, then there is a path from x to y in En whose distance is d—
indeed, this property holds also for ∆Pf , ∆SDf , ∆Pℓ, ∆SDℓ, ∆Pi, and ∆SD.
Second, SD∗ does not contain two distance tuples (x, y, d1) and (x, y, d2) s.t.
d1 6= d2 (to see why, it suffices to look at steps 6–7 and the definitions of min
and ⊕).

22 3 Shortest Distances Maintenance on DBMS

Soundness (SD∗ ⊆ SDn). Let (x, y, d) ∈ SD∗. As noticed above, this means
that there is a path from x to y in En; thus, there must be a shortest one too,
which implies that a distance tuple (x, y, d′) is in SDn. We show that d = d′.
One of the following two cases must occur.
(1) There is a shortest path r′ from x to y in En (its distance is d′) which does
not go through e. Since r′ goes only through edges in E, then (x, y, d′) ∈ SD.
Since ∆SD contains distance tuples corresponding to paths in En that strictly
improve on shortest distances in SD (step 6), then there is no distance tuple
(x, y, d′′) in ∆SD. Since SD∗ = ∆SD ⊕ SD (step 7), then (x, y, d′) ∈ SD∗.
Hence, d = d′.
(2) Every shortest path from x to y in En (whose distance is d′) goes through
e. Let r′ be one of such shortest paths. Then, e is either (i) the first edge of
r′, or (ii) the last edge of r′, or (iii) an intermediate edge of r′. Notice that in
case (i) the subpath of r′ that goes from b to y is a shortest path in En and
also in E (because r′ does not go though e twice); in case (ii) the subpath of
r′ that goes from x to a is a shortest path in En and also in E; in case (iii) the
subpath of r′ that goes from x to a and the subpath of r′ that goes from b to
y are shortest paths in En and also in E. Now it is easy to see that a distance
tuple for r′ is computed at step 1 (resp. 3 and 5) when case (i) (resp. (ii) and
(iii)) holds. In particular, in case (iii), since every shortest path from x to y
in En goes through e, it must be the case that every shortest path from x to
b in En has e as last edge, and every shortest path from a to y in En has e as
first edge, and thus a distance tuple for r′ is computed at step 5. Notice that
since every shortest path from x to y in En goes through e, this is the case
where the insertion of e strictly improves the shortest distance from x to y.
Thus, (x, y, d′) belongs to ∆SD (step 6) and SD∗ (step 7). Hence, d = d′.
Completeness (SD∗ ⊇ SDn). Consider a distance tuple (x, y, d) in SDn. If
there is a shortest path r from x to y in En (its distance is d) that does not
go through e, then (x, y, d) ∈ SD. This means that ∆SD does not contain a
distance tuple (x, y, d′) because distance tuples in ∆SDℓ ∪∆Pi ∪∆SDf ∪{e}
correspond to paths in SDn and thus do not strictly improve on p (see step 6).
Hence, (x, y, d) ∈ SD∗ (see step 7). If every shortest path from x to y in En
goes through e, then it can be verified that (x, y, d) ∈ SD∗ by applying the
same reasoning used in part (2) above. ✷

Single edge deletion

The algorithm to handle the deletion of a single edge consists of two phases,
the first one performed by Algorithm 2 and the second one carried out by Al-
gorithm 3. Roughly speaking, Algorithm 2 deletes from SD shortest distances
whose corresponding paths might go through the deleted edge e. Subsequently,
Algorithm 3 recomputes the new shortest distances between vertices affected
by the deletion of e.

The precondition e ∈ (E∩SD) is to consider only significant cases: if e /∈ E
then no edge is effectively deleted from the graph, whereas if e = (a, b, w) /∈

3.2 Incremental Maintenance of All-Pairs Shortest Distances 23

SD then there is a path from a to b not using e and with a distance strictly
lower than w—in this case, the deletion of e does not affect any shortest
distance (recall that we consider non-negative weights).

Algorithm 2 Single-Edge-Deletion-Maintenance

Input: Edge relation E
Shortest distance relation SD for E
Edge e=(a, b, w) s.t. e ∈ (E ∩ SD)

Output: Shortest distance relation for En = E− {e}
1: ∆Pf = πa,$2,$3+w(σ$1=bSD);
2: ∆SDf = (SD ∩∆Pf)− (En ∪ (π$1,$5,$3+$6(En ✶

$2=$1
SD)));

3: ∆Pℓ = π$1,b,$3+w(σ$2=aSD);
4: ∆SDℓ = (SD ∩∆Pℓ)− (En ∪ (π$1,$5,$3+$6(SD ✶

$2=$1
En)));

5: ∆Pi = π$1,$5,$3+$6−w(∆SDℓ ×∆SDf);
6: ∆SDi = SD ∩∆Pi;
7: SD− = ∆SDℓ ∪∆SDf ∪∆SDi ∪ {e};
8: SD = SD − SD−;
9: SD+ = Recalculate(En, SD

−, SD);
10: SD∗ = SD ∪ SD+;
11: return SD∗

Algorithm 2 works as follows. First, it computes all the distance tuples ob-
tained by concatenating e with shortest paths starting from vertex b (step 1),
that is, tuples of the form (a, y, d) s.t. there is a path from a to y with distance
d, the first edge along such a path is e, and the path from b to y is a shortest
one (w.r.t. the original edge relation). Among these tuples, the algorithm se-
lects those that are shortest distances and for which there does not exist an
alternative path having the same (minimum) cost (step 2).

Next, two analogous steps are performed: the algorithm computes all the
distance tuples obtained by concatenating shortest paths ending in vertex a
with e (step 3) and selects those that are shortest distances and for which
there does not exist an alternative path having the same (minimum) cost
(step 4).

Then, the tuples computed at step 4 (corresponding to paths where the
last edge is e) are combined with the tuples computed at step 2 (corresponding
to paths where the first edge is e) via a Cartesian product (step 5). Analogous
to step 5 of Algorithm 1, since edge e is taken into account twice, the distance
of the tuples obtained from the Cartesian product is diminished of w.

Among the tuples computed at step 5, only those that are shortest dis-
tances are kept (step 6). The shortest distances computed in steps 2, 4 and 6,
together with edge e, are stored in relation SD− (step 7) and deleted from
SD (step 8).

24 3 Shortest Distances Maintenance on DBMS

Finally, Algorithm 3 is called (step 9); this algorithm computes the new
shortest distances for paths in SD− (provided that they still exist) and the
new shortest distances are added to SD (step 10).

Algorithm 3 Recalculate

Input: Edge relation En

Deleted distances SD−

Shortest distance relation SD

Output: Relation SD+;
1: ∆P = (En ∪ (π$1,$5,$3+$6(En ✶

$2=$1
SD))) ⋉

$1=$1∧$2=$2

SD−;

2: ∆SD = min(∆P)
3: SD+ = ∆SD;
4: while ∆SD 6= ∅ do
5: ∆P = π$1,$5,$3+$6(En ✶

$2=$1
∆SD) ⋉

$1=$1∧$2=$2

SD−;

6: ∆SD = min(∆P, SD+);
7: SD+ = ∆SD ⊕ SD+;
8: end while
9: return SD+

Algorithm 3 computes the new shortest distances (when they exist) for
the endpoints of the distance tuples in SD− (recall that SD− are the shortest
distances that have been deleted by Algorithm 2). First, it adds to En all the
distance tuples obtained by concatenating edges in En with shortest paths
in the updated shortest distance relation SD (step 1). Indeed, only those
distance tuples whose endpoints are in a tuple of SD− are kept and stored
in ∆P . Among these distance tuples, the minimum ones are selected (step 2)
and added to SD+ (step 3)—SD+ is the set of distance tuples that will be
eventually returned by the algorithm (and added to the shortest distance
relation by Algorithm 2).

Then, SD+ is iteratively updated as follows (steps 4–8). The algorithm
computes all the distance tuples obtained by concatenating edges in En with
tuples in ∆SD, and keeps only those whose endpoints are in a tuple of SD−

(step 5). Among these, only distance tuples that improve on shortest distances
in SD+ are kept (step 6) and incorporated into ∆SD+ (step 7). An example
is provided below.

Example 3.4. Consider the graph and the corresponding shortest distances of
Figure 3.5. Suppose we delete the edge (c, d, 1) from the graph.
The shortest distances affected by this deletion are marked with dashed links
in Figure 3.6 (left) and are obtained at steps 1–7 of Algorithm 2 similar to
the intermediate steps of Algorithm 1 depicted in Figure 3.4. Such shortest
distances are deleted from the current shortest distance relation. After that,
Algorithm 3 tries to recompute such shortest distances by iteratively updating
∆SD. Figure 3.6 (right) shows the new shortest distances computed by Algo-

3.2 Incremental Maintenance of All-Pairs Shortest Distances 25

d ec
11

a

b

1 1

4

3

2

3

2

2

Andiamo

Via cosa

d ec
1

a

b

1 1

5

4

4

3

2

Fig. 3.6. Affected SDs (left) and new SDs (right).

rithm 3 highlighting those obtained at the initialization of ∆SD (green edges)
and those computed at successive iterations (purple edges). As expected, we
obtain the original shortest distances reported in Figure 3.3 (right).

Theorem 3.5. Given an edge relation E, the shortest distance relation SD
for E, and an edge e, Algorithm 2 computes the shortest distance relation for
E− {e}.

Proof. Let En = E − {e} and SDn be the shortest distance relation for En.
Notice that each iteration of the loop in Algorithm 3 computes shortest dis-
tances that strictly improve on the currently computed ones. As we consider
non-negative edge weights, the number of iterations is finite. Thus, Algo-
rithm 3 and consequently Algorithm 2 terminate. Notice that (x, y, d) ∈ SD−

iff (x, y, d) is in the input relation SD and one of the following conditions
holds: (i) there is a shortest path from x to y in E whose first edge is e and
there is no shortest path from x to y in En with distance d (see steps 1–2);
(ii) there is a shortest path from x to y in E whose last edge is e and there
is no shortest path from x to y in En with distance d (steps 3–4); (iii) there
is a shortest path from x to y in E where e is an intermediate edge and for
the two subpaths starting from and ending in e conditions (i) and (ii) apply,
respectively (steps 5–6); (iv) e = (x, y, d) (step 7).
Soundness (SD∗ ⊆ SDn). Let (x, y, d) ∈ SD∗. This means that there exists
(x, y, d′) in the original SD. (1) If there is a shortest path from x to y in E
that does not go through e, then (x, y, d′) ∈ SDn. Conditions (i)–(ii) above
do not apply. If none of conditions (iii)–(vi) applies, then (x, y, d′) is not in
SD−, remains in SD, and is in SD∗. If one of conditions (iii)–(vi) holds, then
(x, y, d′) ∈ SD− and it is easy to see that (x, y, d′) is computed by Algorithm 3
as it tries to compute deleted shortest distances using only edges in En. As
SD∗ does not contain two distinct distance tuples (x, y, d1) and (x, y, d2), then
d = d′. (2) If every shortest path from x to y in E goes through e, then one of
conditions (i)–(iv) applies and thus the shortest distance from x to y in En is
correctly computed by Algorithm 3 as it computes deleted shortest distances
using only edges in En.

26 3 Shortest Distances Maintenance on DBMS

Completeness (SD∗ ⊇ SDn). Let (x, y, d) ∈ SDn. This means that there
exists (x, y, d′) in the original SD. (1) If d′ = d, then there is a shortest path
from x to y in E that does not go through e. Thus, the same reasoning used in
part (1) above can be applied to show that (x, y, d)′ is not in SD−, remains
in SD, and therefore is in SD∗. (2) If d′ < d, then every shortest path from
x to y in E goes through e. Thus, as one of conditions (i)–(iv) applies, then
(x, y, d′) ∈ SD−. Finally, (x, y, d′) is computed by Algorithm 3 and thus is in
SD∗. ✷

Pang et al.’s algorithms

We briefly discuss the incremental maintenance algorithms proposed in [52]
to find the shortest distance between every pair of vertices after single-edge
insertion and deletion. The Algorithm 4 for edge insertion is fairly simple
and works as follows. When inserting edge (a, b) with distance w > 0, the
shortest distances formed by any path from node x through (a, b) to y could
be affected; such paths are computed via a Cartesian product and stored in
∆P (step 1). Then, among these distance tuples, the algorithm selects only
those that improve on current shortest distances, that is, those tuples (x, y, d)
in ∆P s.t. either there is no shortest path from x to y in SD or there is one
with distance greater than d (step 2). Finally, tuples of SD that no longer
express shortest distance are updated with the new value (step 3).

Algorithm 4 Insertion - Pang et al. [52]

Input: Edge relation E; for each vertex v, the tuple (v, v, 0) is in E
Shortest distance relation SD for E
Edge (a, b, w)

Output: Shortest distance relation for E ∪ {(a, b, w)}
1: ∆P = π$1,$5,$3+$6+w(σ$2=a(SD)× σ$1=b(SD))
2: ∆SD = min(∆P,SD);
3: SD = ∆SD ⊕ SD;
4: return SD;

The Algorithm 5 for edge deletion is clearly more involved. First, it com-
putes all the distance tuples obtained by concatenating (a, b) with shortest
paths ending in a and those starting from node b (step 1), that is, tuples of
the form (x, y, d) s.t. there is a path from x through (a, b) to y with distance
d, and the paths from x to a and from b to y are the shortest ones (w.r.t. the
original edge relation). Among these tuples, those that are shortest distances
are stored in SD− (step 2), while the shortest distance tuples that do not use
the deleted edge (a, b) are stored in the relation Trust (step 3). Edge (a, b)
is then removed from the edge relation (step 4). At this point, Algorithm 5
starts computing the new shortest distances. In ∆P are stored the new tu-
ples (x, y, d), whose endpoints are in a tuple of SD−, expressing that there

3.2 Incremental Maintenance of All-Pairs Shortest Distances 27

exists a path between node x and y with distance d, but d may not be the
shortest (step 5). Among these distance tuples, the minimum ones are selected
(step 6) and added to the tuples in Trust, forming eventually the resulting
shortest distance relation (step 7).

Algorithm 5 Deletion - Pang et al. [52]

Input: Edge relation E; for each vertex v, the tuple (v, v, 0) is in E
Shortest distance relation SD for E
Edge (a, b, w)

Output: Shortest distance relation for E− {(a, b, w)}
1: ∆P = π$1,$5,$3+$6+w(σ$2=a(SD)× σ$1=b(SD));
2: SD− = ∆P ∩ SD;
3: Trust = SD − SD−;
4: E = E− {(a, b, w)};
5: ∆P = (π$1,$8,$3+$6+$9((Trust ✶$2=$1 E) ✶$5=$1 Trust)) ⋉

$1=$1∧$2=$2

SD−;

6: SD+ = min(∆P)
7: SD = Trust ∪ SD+;
8: return SD

3.2.2 Multiple Edges Management

In this section, we provide algorithms to update the shortest distance relation
after the insertion or deletion of multiple edges. Obviously, the insertion of
k edges might be handled by calling k times Algorithm 1, and the deletion
of multiple edges might be analogously handled. However, the algorithms we
propose in this section leverage the information about the entire set of edges
to be inserted or deleted to maintain the shortest distance relation in a more
efficient way.

The core idea is to identify paths affected by the insertions/deletions start-
ing from the vertices that are one hop far from the inserted/deleted edges and
propagating changes farther only if necessary. If the insertion/deletion of an
edge e = (a, b, w) does not influence the shortest distance from a to b, then no
updates need to be propagated. On the other hand, if the shortest distance
from a to b changes, this may in turn affect the shortest distances of a’s and
b’s neighbors (because their shortest paths may use edge e). In this case, our
algorithms update the shortest distance from a to b and propagate the vari-
ations farther only if a’s and b’s neighbors are really affected. For instance,
if there is no path from a to b after the deletion of e, but their neighbors
still have the same shortest distances (because of alternative paths), then the
algorithms do not look at farther vertices. On the other hand, if changes are
propagated, vertices that are two hops from e are considered by applying the
same reasoning.

28 3 Shortest Distances Maintenance on DBMS

Moreover, proceeding one hop at a time allows the algorithms to combine
the effects of the different edges to be inserted/deleted, reducing the compu-
tational effort w.r.t. individually handling them one at a time.

In order to deal with the insertion and deletion of multiple edges, we need
to extend the algorithms proposed in Section 3.2.1.

One extension regards the schema of the auxiliary relations used in the
algorithms. We will use relations ∆Pf , SDf , ∆SDf , ∆Pℓ, SDℓ, and ∆SDℓ,
whose schema has been enriched for algorithmic purposes. Specifically, ∆Pf ,
SDf , and ∆SDf contain extended distance tuples of the form (x, y, d, a, w)
meaning that there is an edge from x to a with weight w, a path r from a to
y, and d = w + ω(r). In other words, (x, y, d, a, w) means that there exists a
path from x to y, having distance d, and whose first edge is (x, a, w).

On the other hand,∆Pℓ, SDℓ, and∆SDℓ contain extended distance tuples
of the form (x, y, d, a, w) meaning that there is a path r from x to a, an edge
from a to y with weight w, and d = ω(r) + w. In other words, (x, y, d, a, w)
means that there is a path from x to y, having distance d, and whose last
edge is (a, y, w).

Multiple edges insertion

Algorithm 6 is an extension of Algorithm 1 that is able to handle the insertion
of multiple edges at once. It takes as input an edge relation E, the shortest
distance relation SD for E, and a set of edges ∆E to be added to E. The
output is the shortest distance relation for E ∪∆E.

The algorithm first computes a subset ∆Es of ∆E containing those edges
(a, b, w) s.t. w is less than the shortest distance from a to b in the input
relation SD (step 1); ∆Es is then incorporated into SD (step 2). After this
pre-processing phase, the updating phase starts.

More in detail, the algorithm initially considers paths composed by two
edges, where the first one belongs to ∆Es (step 3). For each of these paths
having a distance lower than the current shortest distance (steps 6–8), the
algorithm considers longer paths (in terms of number of edges) obtained by
adding one more edge to the right (step 9). The process is repeated until no
further lower distances are obtained (steps 5–10).

Then, the algorithm proceeds in a similar way but adding edges to the
left. More specifically, it first considers paths with two edges where the last
one belongs to ∆Es (step 11) and then iteratively adds further edges to the
left as long as paths improving on current shortest distances can be derived
(steps 13–18).

After the iterative steps described above, SDf (resp. SDℓ) contains ex-
tended distance tuples referring to paths whose first (resp. last) edge belongs
to ∆Es. In addition, each extended distance tuple belonging to these sets
maintains information about the first or last edge being used and its weight.
This information is used in the next step (step 19), where an extended dis-
tance tuple of SDℓ is combined with an extended distance tuple of SDf iff the

3.2 Incremental Maintenance of All-Pairs Shortest Distances 29

Algorithm 6 Multiple-Edges-Insertion-Maintenance

Input: Edge relation E
Shortest distance relation SD for E
Set of edges ∆E s.t. for each edge (a, b, w) ∈ ∆E,
∄(a, b, w′)∈E with w′ 6=w

Output: Shortest distance relation for En = E ∪∆E
1: ∆Es = min(∆E, SD);
2: SD = ∆Es ⊕ SD;
3: ∆Pf = π$1,$5,$3+$6,$2,$3(∆Es ✶

$2=$1
En);

4: SDf = ∅;
5: repeat
6: ∆SDf = min(∆Pf , SD);
7: SDf = ∆SDf ⊕ SDf ;
8: SD = π$1,$2,$3(∆SDf)⊕ SD;
9: ∆Pf = π$1,$7,$3+$8,$4,$5(∆SDf ✶

$2=$1
En);

10: until ∆SDf = ∅
11: ∆Pℓ = π$1,$5,$3+$6,$4,$6(En ✶

$2=$1
∆Es);

12: SDℓ = ∅;
13: repeat
14: ∆SDℓ = min(∆Pℓ, SD);
15: SDℓ = ∆SDℓ ⊕ SDℓ;
16: SD = π$1,$2,$3(∆SDℓ)⊕ SD;
17: ∆Pℓ = π$1,$5,$3+$6,$7,$8(En ✶

$2=$1
∆SDℓ);

18: until ∆SDℓ = ∅
19: ∆Pi = π$1,$7,$3+$8−$5(SDℓ ✶

$4=$1∧$2=$4
SDf);

20: ∆SDi = min(∆Pi, SD);
21: SD∗ = ∆SDi ⊕ SD;
22: return SD∗;

last edge of the path of the former is equal to the first edge of the path of the
latter. Among the obtained extended distance tuples, only those improving
on the current shortest distance are kept (step 20) and incorporated into SD
(step 21).

Theorem 3.6. Given an edge relation E, the shortest distance relation SD
for E, and a set of edges ∆E, Algorithm 6 computes the shortest distance
relation for E ∪∆E.

Proof.
Termination. Each iteration of the two repeat-until loops computes longer
(in terms of number of edges) paths that strictly improve on current shortest
distances. As we consider non-negative weights, the number of iterations is
bounded and thus the algorithm terminates.

Let SDn be the shortest distance relation for En. We start with some
observations used in the following. First, if a distance tuple (x, y, d) is in SD∗

30 3 Shortest Distances Maintenance on DBMS

(resp. ∆Es, SD, ∆Pi, ∆SDi) or an extended distance tuple (x, y, d, a, w) is
in ∆Pf (resp. ∆SDf , SDf , ∆Pℓ, ∆SDℓ, SDℓ), then there is a path from x
to y in En whose distance is d. Second, SD∗ does not contain two distance
tuples (x, y, d1) and (x, y, d2) s.t. d1 6= d2 (to see why, it suffices to look at
steps 20–21 and the definitions of min and ⊕).
Soundness (SD∗ ⊆ SDn). Consider a distance tuple (x, y, d) in SD∗. As
noticed above, this means that there is a path from x to y in En; thus, there
must be a shortest one too, which implies that a distance tuple (x, y, d′) is in
SDn. We show that d = d′. One of the following two cases must occur. (1)
There is a shortest path r′ from x to y in En (whose distance is d′) which
does not go through any of the edges in ∆E. Since r′ goes only through edges
in E, then (x, y, d′) belongs to the input relation SD. Since all the auxiliary
relations used by the algorithm contain distance tuples or extended distance
tuples corresponding to paths in En and none of them strictly improve on
(x, y, d′) because the latter correspond to a shortest distance in En, then
it is easy to check that (x, y, d′) remains in SD at all steps and eventually
(x, y, d′) ∈ SD∗. Hence, d = d′. (2) Every shortest path from x to y in En
(whose distance is d′) goes through at least one edge in ∆E. This actually
implies that every shortest path from x to y in En goes through at least one
edge in ∆Es. Let r′ be one of such shortest paths. There must be an edge
e ∈ ∆Es s.t. one of the following conditions holds: (i) e is the first edge of r′

and every subpath of r′ starting from x (and ending in any of the vertices in
r′ following x) improves on the original shortest distances; (ii) e is the last
edge of r′ and every subpath of r′ ending in y (and starting from any of the
vertices in r′ preceding y) improves on the original shortest distances; (iii) e
is an intermediate edge (a, b, w) of r′ and every subpath of r′ starting from
a as well as every subpath of r′ ending in b improves on the original shortest
distances. In case (i) (resp. (ii)) a distance tuple for r′ is computed in the first
(resp. second) repeat-until loop starting from e and adding edges from En to
the right (resp. left) as long as they improve on shortest distances. In case
(iii) a distance tuple for r′ is computed at step 19. Notice that since every
shortest path from x to y in En goes through at least one edge in ∆Es, this
is the case where the addition of ∆E strictly improves the shortest distance
from x to y. Thus, (x, y, d′) belongs to SD∗ and d = d′.
Completeness (SD∗ ⊇ SDn). Consider a distance tuple (x, y, d) in SDn. If
there is a shortest path r from x to y in En (its distance is d) that does not
go through any of the edges in ∆E, then (x, y, d) ∈ SD. Notice that distance
tuples that are added to SD at steps 2, 8, 16 and to SD∗ at step 21 correspond
to paths in En that strictly improve on SD (see steps 1, 6, 14, 20). As there
is no path from x to y in En with distance strictly lower than d, then (x, y, d)
remains in SD at every step and eventually is in SD∗. If every shortest path
from x to y in En goes through at least one edge in ∆E, then it can be verified
that (x, y, d) ∈ SD∗ by applying the same reasoning used in part (2) above. ✷

3.2 Incremental Maintenance of All-Pairs Shortest Distances 31

Multiple edges deletion

Algorithm 7 is an extension of Algorithm 2 which is able to handle the deletion
of multiple edges at once. It updates the shortest distance relation SD for an
edge relation E after the deletion of a set of edges∆E from E. The precondition
∆E ⊆ (E ∩ SD) is imposed for the same reason discussed for the deletion of
a single edge (see Section 3.2.1).

Similar to the algorithm for the deletion of a single edge, Algorithm 7
first deletes shortest distances that might have been obtained using edges in
∆E and then try to recompute the new shortest distances using Algorithm 3.
However, Algorithm 7 performs a more accurate analysis of which shortest
distances should be deleted than the algorithm for the deletion of a single
edge.

Specifically, the algorithm starts by computing a set ∆Es of edges in ∆E
for which there does not exist an alternative path having the same cost (step 2)
and deletes these edges from SD (step 3).

Analogous to Algorithm 6, the algorithm incrementally computes a set
SDf (resp. SDℓ) of extended distance tuples corresponding to paths where
a deleted edge is the first (resp. last) one along the path—see steps 4–11
(resp. steps 12–19). However, only extended distance tuples corresponding
to shortest distances and for which there does not exist an alternative path
having the same cost are considered.

Then, SDℓ and SDf are combined as follows: an extended distance tuple
of SDℓ is combined with an extended distance tuple of SDf iff the last edge
of the path of the former is equal to the first edge of the path of the latter
(step 20). The resulting extended distance tuples belonging to SD are deleted
from SD (step 21–22).

Then, the set of shortest distances deleted till that point, defined as SD−

at step 23, is used as input for Algorithm 3 to recompute deleted shortest
distances (step 24).

Finally, the shortest distances returned by Algorithm 3 are added to SD
(step 25).

Theorem 3.7. Given an edge relation E, the shortest distance relation SD
for E, and a set of edges ∆E, Algorithm 7 computes the shortest distance
relation for E−∆E.

Proof.
Termination. Each iteration of the two repeat-until loops computes strictly
longer (in terms of number of edges) paths that are shortest ones. As we con-
sider non-negative weights, the number of iterations is bounded and thus the
loops terminate. As already discussed in the proof of Theorem 3.5, Algorithm 3
always terminates too.

Let SDn be the shortest distance relation for En. Notice that (x, y, d) ∈
SD− iff (x, y, d) is in the input relation SD and one of the following conditions
holds: (i) there is a shortest path from x to y in E whose first edge is in ∆Es

32 3 Shortest Distances Maintenance on DBMS

Algorithm 7 Multiple-Edges-Deletion-Maintenance

Input: Edge relation E
Shortest distance relation SD for E
Set of edges ∆E s.t. ∆E ⊆ (E ∩ SD)

Output: Shortest distance relation for En = E−∆E
1: Let θ be the condition $1 = $1 ∧ $2 = $2 ∧ $3 = $3
2: ∆Es = ∆E− (π$1,$5,$3+$6(En ✶

$2=$1
SD));

3: SD = SD −∆Es;
4: ∆Pf = (π$1,$5,$3+$6,$2,$3(∆Es ✶

$2=$1
E))⋉

θ
SD;

5: SDf = ∅;
6: repeat
7: ∆SDf = ∆Pf ⊖ (En ∪ (π$1,$5,$3+$6(En ✶

$2=$1
SD)));

8: SDf = SDf ∪∆SDf ;
9: SD = SD − π$1,$2,$3(∆SDf);
10: ∆Pf = (π$1,$7,$3+$8,$4,$5(∆SDf ✶

$2=$1
E))⋉

θ
SD;

11: until ∆SDf = ∅
12: ∆Pℓ = (π$1,$5,$3+$6,$4,$6(E ✶

$2=$1
∆Es))⋉

θ
SD;

13: SDℓ = ∅;
14: repeat
15: ∆SDℓ = ∆Pℓ ⊖ (En ∪ (π$1,$5,$3+$6(SD ✶

$2=$1
En)));

16: SDℓ = SDℓ ∪∆SDℓ;
17: SD = SD − π$1,$2,$3(∆SDℓ);
18: ∆Pℓ = (π$1,$5,$3+$6,$7,$8(E ✶

$2=$1
∆SDℓ))⋉

θ
SD;

19: until ∆SDℓ = ∅
20: ∆Pi = (π$1,$7,$3+$8−$5(SDℓ ✶

$4=$1∧$2=$4
SDf));

21: SDi = SD ∩∆Pi;
22: SD = SD − SDi;
23: SD− = ∆Es ∪ π$1,$2,$3(SDf ∪ SDℓ) ∪ SDi;
24: SD+ = Recalculate(En, SD

−, SD);
25: SD∗ = SD ∪ SD+;
26: return SD∗

and there is no shortest path from x to y in En with distance d (see steps 1–
11); (ii) there is a shortest path from x to y in E whose last edge is in ∆Es
and there is no shortest path from x to y in En with distance d (steps 12–19);
(iii) there is a shortest path from x to y in E with an intermediate edge e in
∆Es and for the two subpaths starting from and ending in e conditions (i)
and (ii) apply, respectively (steps 20–21); (iv) (x, y, d) ∈ ∆Es (step 23).
Soundness (SD∗ ⊆ SDn). Let (x, y, d) ∈ SD∗. Obviously, this means that
there exists a distance tuple (x, y, d′) in the original SD. If there is a short-
est path from x to y in E that does not go through any of the edges in
∆E, then (x, y, d′) ∈ SDn. If none of conditions (i)–(iv) above applies, then
(x, y, d′) is not in SD−, remains in SD, and therefore is in SD∗. Otherwise,
(x, y, d′) ∈ SD− but it is then computed by Algorithm 3 as it computes

3.3 Experimental Evaluation 33

deleted shortest distances using only edges in En. As SD∗ does not contain
two distinct distance tuples (x, y, d1) and (x, y, d2), then d = d′. If every
shortest path from x to y in E goes through an edge in ∆E, then the shortest
distance from x to y in En is correctly computed by Algorithm 3. Complete-
ness (SD∗ ⊇ SDn). Let (x, y, d) ∈ SDn. Obviously, this means that there
exists a distance tuple (x, y, d′) in the original SD. If d′ = d, then there is a
shortest path from x to y in E that does not go through any of the edges in
∆E. Thus, the same reasoning used above for the soundness can be applied
to show that (x, y, d)′ is not in SD−, remains in SD, and is in SD∗. If d′ < d,
then every shortest path from x to y in E goes through an edge in ∆E. Thus,
(x, y, d′) ∈ SD−, (x, y, d) is correctly computed by Algorithm 3, and thus
(x, y, d) ∈ SD∗. ✷

3.3 Experimental Evaluation

We conducted an extensive experimental evaluation of our algorithms com-
paring them against the algorithms proposed by Pang et al. [52], which is,
to the best of our knowledge, the only disk-based approach for the incre-
mental maintenance of all-pairs shortest distances—in particular, it relies on
relational DBMSs too.

Once again, we point out that disk-based incremental algorithms are
needed in many current graph applications where graphs are large and fre-
quently updated.

Recall that the algorithms proposed in [52] are able to handle the insertion
and deletion of only one edge at a time. In this section, we will consider the
following algorithms:

• Single-Edge-Insertion-Maintenance (SI for short),
• Single-Edge-Deletion-Maintenance (SD for short),
• Multiple-Edges-Insertion-Maintenance (MI for short),
• Multiple-Edges-Deletion-Maintenance (MD for short),
• the (single) insertion algorithm of [52] (denoted PI),
• the (single) deletion algorithm of [52] (denoted PD).

The algorithms proposed in [52] are reported in Section 3.2.1.

3.3.1 Datasets

Experiments were carried out on three datasets. Specifically, we used two real-
world networks and a synthetic graph with a “regular” structure as described
below.

• 9th DIMACS Implementation Challenge – Shortest Paths (http:
//www.dis.uniroma1.it/challenge9/). This dataset provides a collection of
road networks available in two versions depending on the weights assigned

34 3 Shortest Distances Maintenance on DBMS

to links. In one version edge weights encode the physical distance between
vertices, while in the other version edge weights stand for the transit time
between two vertices. We used the network for the city of New York where
edge weights stand for distances.

• DIMES Public data repository (http://www.netdimes.org/new/). This
dataset provides monthly snapshots of Autonomous Systems on the Inter-
net. Vertices represent Autonomous Systems while edges represent direct
links between Autonomous Systems that were found for a given month.
Since the original graphs are unweighted, we assigned unitary weight to
every edge. We used the snapshot from October 2011.

• Regular graph. This dataset was generated by replicating several times
the pattern depicted in Figure 3.7.

5

5

5

5

10

Fig. 3.7. Pattern of the regular graph.

The graphs features are reported in Table 3.1.

Datasets # Vertices # Edges # Shortest distances

DIMACS 264,346 730,100 ≈ 6.98× 1010

DIMES 25,683 81,294 ≈ 1.02× 108

Regular 386,100 697,311 ≈ 9.46× 109

Table 3.1. Properties of the considered datasets.

While the DIMACS dataset is a strongly connected graph, the DIMES
dataset is a much less connected graph: the ratio of the number of shortest
distances to the number of all possible pairs of vertices is 0.15 (thus, much
smaller than the ratio for the DIMACS dataset, which is 1). The regular graph
is even more loosely connected: the ratio of the number of shortest distances
to the number of all possible pairs of vertices is 0.06. Using these datasets
we were able to run experiments on graphs having different structures and
connectivity properties.

We point out that, as we deal with the problem of incrementally main-
taining all-pairs shortest distances, the input of all the considered algorithms
consists of both a graph and the corresponding shortest distance relation, with
the size of the latter being much bigger than the size of the former.

3.3 Experimental Evaluation 35

3.3.2 Experimental setup

We considered a strongly connected induced subgraph D of the original
DIMACS graph. An induced subgraph of a graph G = (V,E) is a graph
G′ = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E contains all edges of E connecting
two vertices in V ′. To assess how the algorithms behave as the dataset size
varies, we considered four induced subgraphs of D of increasing size, denoted
by Dimacsi with i ∈ [1..4], where Dimacs4 = D and Dimacsi ⊂ Dimacsi+1,
for i ∈ [1..3]. To generate these graphs we started from a vertex with maximum
degree in the DIMACS dataset and visited connected vertices in a breadth-
first fashion adding to the graph in construction all edges of the original graph
involving vertices so far encountered until the desired size was reached. Fea-
tures of the graphs used in the experiments are reported in Table 3.2—all of
them are strongly connected.

Subgraphs # Vertices # Edges # Shortest distances

Dimacs1 10,193 24,454 103,887,056
Dimacs2 14,275 34,580 203,761,350
Dimacs3 17,378 42,592 301,977,506
Dimacs4 20,012 49,096 400,460,132

Table 3.2. Properties of the DIMACS datasets.

On the other hand, we considered the entire DIMES dataset. Regarding the
regular dataset, as already mentioned before, it was synthetically generated by
replicating several times the pattern of Figure 3.7 until the number of nodes
and edges in Table 3.1 was reached.

Since one of the aims of the experimental evaluation was to study the
algorithms’ running times for different kinds of edges, we had to define the
“importance” of edges being inserted or deleted. We considered a new mea-
sure, called edge relevance, which reflects how many shortest distances are
affected by the insertion/deletion of a set of edges. Specifically, consider an
edge relation E, the shortest distance relation SD for E, and a set ∆E of
edges. The relevance of ∆E when such edges are to be deleted from or added
to E is defined respectively as follows:

φD(∆E) = U(∆E)+D(∆E)
N

; φI(∆E) = U(∆E)+I(∆E)
n(n−1)

where U(∆E) is the number of shortest distances in SD whose distance
changes after deleting or inserting the edges in ∆E (i.e., the number of pairs
of vertices for which the shortest distance changes), D(∆E) (resp. I(∆E)) is
the number of shortest distances removed (resp. created) after the deletion
(resp. insertion) of the edges in ∆E, N is the number of shortest distances in
the graph before the deletion or insertion of the edges in ∆E (i.e., N = |SD|),
and n is the number of vertices in the graph.

36 3 Shortest Distances Maintenance on DBMS

Notice that when the edges in ∆E are deleted, the current shortest dis-
tances can possibly be affected in one of two ways: a shortest distance from
vertex x to vertex y may not be defined anymore (because there is no path
from x to y after the deletions) or its distance increases. Then, φD(∆E) is the
ratio of the number of shortest distances affected by the deletions (in either of
the two ways discussed above), namely U(∆E)+D(∆E), to the total number
of shortest distances that could possibly be affected, namely N .

When the edges in ∆E are inserted, the current shortest distances can pos-
sibly be affected by a reduction of their distance; furthermore, new paths be-
tween vertices that were not reachable before can be generated. Then, φI(∆E)
is the ratio of the number of shortest distances affected by the insertion (either
shortest distances that have become lower or shortest distances of new paths
not existing before), namely U(∆E) + I(∆E), to the total number of shortest
distances that could possibly be affected, namely n(n− 1).

As a heuristic to identify edges with desired values of relevance, we com-
puted edges’ betweenness centrality as this gives good insights on the value of
relevance. This is a generalization to edges of the well-known vertex between-
ness centrality [26] and it is defined as the number of shortest paths that
run along the edge [50]. Thus, the deletion of an edge with high betweenness
centrality is likely to have high relevance—even though this might not be the
case, and this is why our definition of relevance is more suitable than edge
betweenness centrality to measure how many shortest distances are actually
affected by the insertion or deletion of edges.

All experiments were run on an Intel i7 3770K 3.5 GHz, 12 GB of memory,
running Ubuntu 12.04.

3.3.3 Results on the DIMACS dataset

Single edge management

In this section, we discuss the experimental results for the insertion and dele-
tion of a single edge.

We start with the results for the insertion of a single edge. In the first
kind of experiments, we evaluated how execution times vary as the size of
the input increases. For each dataset Dimacsi (i ∈ [1..4]), we computed the
average execution time after a single edge insertion considering edges with
different relevance. Specifically, for each dataset, we considered a set of 20
edges with relevance uniformly distributed in the range [0.5, 5]%, measured
the time to handle the insertion of each of them individually, and finally took
the average time across all 20 edges. We considered relevance up to 5% because
the highest edge relevance we found was approximately 5%. The experimental
results are reported in Figure 3.8 and show that the SI and MI algorithms
have similar performances and both outperform the PI algorithm. It is worth
noticing that the performance gap between our algorithms and PI gets bigger
as the dataset size increases.

3.3 Experimental Evaluation 37

600

800

1,000

1,200

e
 (

se
c)

PI

0

200

400

600

Dimacs1 Dimacs2 Dimacs3 Dimacs4

T
im

e
 (

s

Dataset

PI

SI

MI

Fig. 3.8. Runtime vs. dataset size (sin-
gle insertion).

0

200

400

600

800

1,000

1,200

1,400

T
im

e
 (s
e
c)

% Relevance

PI

SI

MI

Fig. 3.9. Runtime vs. relevance on
Dimacs4 (single insertion).

We also evaluated running times w.r.t. the edge relevance. For each of
the four DIMACS datasets, we considered a set of 40 edges with relevance
in the range (0, 5]%. We report in Figure 3.9 the results obtained for the
largest graph Dimacs4; the other three datasets showed similar trends. Not
surprisingly, runtime increases as the edge relevance increases (because more
modifications need to be made to the shortest distance relation). However,
we found out that most of the edges have a low relevance and only few edges
have high relevance. Once again, SI and MI have similar runtimes and both
outperform PI.

Regarding the deletion of a single edge, we were not able to compare our
algorithms against PD on the four DIMACS datasets because the execution of
PD did not terminate within 5 days. Thus, in order to compare our algorithms
against PD, we considered much smaller induced graphs with up to 2,000
vertices. The results are reported in Figure 3.10 and show that both SD and
MD have significantly lower running times than PD—as an example, for the
graph with 2,000 vertices, our MD algorithm updates the shortest distances
in 5 seconds while PD takes 7 hours. It is also quite evident that the execution
time of PD rapidly grows as the number of vertices increases.

The same running times are reported in Figure 3.11 with the y-axis on a
logarithmic scale and the x-axis reporting the number of shortest distances.
Our algorithms are at least three orders of magnitude faster than PD.

For the sake of completeness, we report in Figure 3.12 the performances
of our algorithms on all DIMACS subgraphs, thus showing how the execution
time varies as the dataset size increases. Figure 3.13 shows the running time for
edges with different relevance—here we used the largest DIMACS subgraph,
namely Dimacs4.

Multiple edges management

In all the experiments of this section we used the largest DIMACS subgraph,
namely Dimacs4.

38 3 Shortest Distances Maintenance on DBMS

15,000

20,000

25,000

30,000

im
e

 (
se

c)
PD

0

5,000

10,000

15,000

250 500 1,000 1,500 2,000

T
im

e

Vertices

PD

SD

MD

Fig. 3.10. Runtime vs. dataset size on
small graphs (single deletion).

1.E+02

1.E+03

1.E+04

1.E+05

 (
se

c) PD

SD

1.E-01

1.E+00

1.E+01

1.E+02

0 1,000,000 2,000,000 3,000,000 4,000,000

T
im

e
 (

se
c

Shortest Distances

SD

MD

Fig. 3.11. Runtime vs. dataset size on
small graphs (single deletion).

1,500

2,000

2,500

e
 (

se
c)

SD

0

500

1,000

Dimacs1 Dimacs2 Dimacs3 Dimacs4

T
im

e
 (

s

Dataset

MD

Fig. 3.12. Runtime vs. dataset size
(single deletion).

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

T
im

e
 (s
e
c)

% Relevance

SD

MD

Fig. 3.13. Runtime vs. relevance on
Dimacs4 (single deletion).

We first discuss the results for the insertion of multiple edges. Figure 3.14
shows how running times vary as the number of inserted edges goes from 1
to 8. Each running time is the average over forty sets of edges (of the same
cardinality) with overall relevance uniformly distributed in]1, 5.5]%. Recall
that both SI and PI can manage only one edge insertion at a time and thus,
in order to handle k edge insertions, we need to run SI and PI k times.
Figure 3.14 shows that the execution time of PI linearly grows w.r.t. the
number of inserted edges. Both SI and MI notably outperform PI and the
gap gets bigger as the number of inserted edges augments. The MI algorithm
is the fastest one with an execution time that is almost constant. This is
because MI has been designed to deal with the insertion of multiple edges at
once and minimize the computational effort, while SI and PI must be run
once for each inserted edge.

Figure 3.15 reports the execution times for the insertion of 8 edges whose
overall relevance varies from 1% to 5.5%. Each time is the average across
4 different sets (of 8 edges). These results confirm that MI is the fastest
algorithm, SI comes second, and PI has the worst performance.

Regarding edge deletions, we point out again that we were not able to
compare our algorithms against PD as its execution did not halt within 5 days
even with the deletion of a single edge (recall also that managing the deletion

3.3 Experimental Evaluation 39

4,000

5,000

6,000

7,000

8,000

m
e

 (
se

c)
PI

SI

0

1,000

2,000

3,000

4,000

1 2 3 4 5 6 7 8

T
im

e
 (

Inserted Edges

SI

MI

Fig. 3.14. Runtime vs. # of inserted
edges.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

9,000

T
im

e
 (s
e
c)

% Relevance

PI

SI

MI

Fig. 3.15. Runtime vs. relevance (mul-
tiple insertions).

of multiple edges with PD and SD requires multiple runs of the algorithms).
Figure 3.16 shows the execution times of SD and MD for different numbers
of deleted edges. Once again, each time reported in the figure is the average
across 40 sets of edges with overall relevance uniformly distributed in the
range]1, 5.5]%. Similarly to the case of multiple insertions, our algorithm for
handling multiple deletions at once (i.e., MD) outperforms the counterpart
able to deal only with one deletion at a time (i.e., SD).

Figure 3.17 shows the results for the deletion of several sets of edges hav-
ing different overall relevance. Each time is the average across 4 sets, each
consisting of 8 edges. Also in this case, the MD algorithm is the fastest one.

3,000

4,000

5,000

6,000

im
e

 (
se

c)

SD

0

1,000

2,000

3,000

1 2 3 4 5 6 7 8

T
im

e

Deleted Edges

SD

MD

Fig. 3.16. Runtime vs. # of deleted
edges.

0

1,000

2,000

3,000

4,000

5,000

6,000

7,000

8,000

T
im

e
 (s
e
c)

% Relevance

SD

MD

Fig. 3.17. Runtime vs. relevance (mul-
tiple deletions).

3.3.4 Results on the DIMES dataset

Single edge management

For the DIMES dataset it is quite hard to select edges with high relevance
because of the graph structure (recall that this dataset is much more less
connected than the DIMACS dataset, which is strongly connected). For the

40 3 Shortest Distances Maintenance on DBMS

insertion of a single edge, the highest edge relevance was approximately 0.15%
while for the deletion of a single edge the highest relevance was approximately
1.00%.

Figure 3.18 reports the execution time for the insertion of a single edge. We
considered 100 edges with different relevance ranging in the interval [0, 0.15]%.
The figure shows that most of the edges have a relevance below 0.05%. Also for
this dataset,MI outperforms both SI and PI. We point out that PI exhibits
poor performances even if the considered edges affect a negligible number of
shortest distances.

Regarding the deletion of a single edge, we compared only SD and MD
because also with this dataset PD did not terminate within 5 days for different
edges (for which the MD algorithm took less than one second). In this case,
we considered 100 edges and were able to identify edges with relevance up
to 1%, even though most of them have a relevance below 0.2%. Figure 3.19
shows the execution times and confirms the better performances of MD over
SD.

0

50

100

150

200

250

0.00% 0.05% 0.10% 0.15%

T
im

e
 (s
e
c)

% Relevance

PI

SI

MI

Fig. 3.18. Runtime vs. relevance (sin-
gle insertion).

0

10

20

30

40

50

60

70

80

90

0.00% 0.20% 0.40% 0.60% 0.80% 1.00%

T
im

e
 (s
e
c)

% Relevance

SD

MD

Fig. 3.19. Runtime vs. relevance (sin-
gle deletion).

Multiple edges management

To assess the performance of the algorithms with the insertion and deletion
of multiple edges, we varied the number of edges from 1 to 16. Each time is
obtained as the average of 8 different sets having the same number of edges.
Figure 3.20 reports the running times for the insertion case. Once again, both
SI and MI are faster than PI and the gap gets bigger as we insert more
edges. Notably, the growth of the running time of MI is negligible as the
number of inserted edges increases.

Finally, Figure 3.21 reports the performance of MD and SD for the dele-
tion of multiple edges. Also in this case, MD shows better performances than
SD.

3.3 Experimental Evaluation 41

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

1 2 3 4 5 6 7 8 9 10111213141516

T
im

e
 (

se
c)

Inserted Edges

PI

SI

MI

Fig. 3.20. Runtime vs. # of inserted
edges.

0

200

400

600

800

1,000

1,200

1,400

1 2 3 4 5 6 7 8 9 10111213141516

T
im

e
 (

se
c)

Deleted Edges

SD

MD

Fig. 3.21. Runtime vs. # of deleted
edges.

3.3.5 Results on the regular dataset

The last dataset we considered is the regular one, which is bigger than the
two datasets previously considered.

As for the approach in [52], neither the insertion nor the deletion algorithm
was able to handle a single edge within 15 hours. Thus, in the following, we
analyze the performance of our algorithms only.

We varied the number of edges to be inserted/deleted from 1 to 8. Each
time reported in the figures discussed below is the average over three groups
of 1, 2, . . . , 8 edges.

The comparison of algorithms SI andMI (resp. SD andMD) is reported
in Figure 3.22 (resp. Figure 3.24). It is evident that the algorithms for han-
dling multiple insertions and deletions notably outperform the single edge
counterpart—the gap gets bigger and bigger as we augment the number of
edges to be handled. Figure 3.23 (resp. Figure 3.25) zooms in on the running
time of MI (resp. MD) reported in Figure 3.22 (resp. Figure 3.24).

0

5,000

10,000

15,000

20,000

25,000

1 2 3 4 5 6 7 8

T
im

e
 (

se
c)

Inserted Edges

SI

MI

Fig. 3.22. Runtime vs. # of inserted
edges.

0

100

200

300

400

500

600

700

1 2 3 4 5 6 7 8

T
im

e
 (

se
c)

Inserted Edges

MI

Fig. 3.23. Runtime vs. # of inserted
edges.

42 3 Shortest Distances Maintenance on DBMS

0

20,000

40,000

60,000

80,000

100,000

120,000

1 2 3 4 5 6 7 8

T
im

e
 (

se
c)

Deleted Edges

SD

MD

Fig. 3.24. Runtime vs. # of deleted
edges.

0

2

4

6

8

10

12

14

16

18

20

1 2 3 4 5 6 7 8

T
im

e
 (

se
c)

Deleted Edges

MD

Fig. 3.25. Runtime vs. # of deleted
edges.

3.4 Discussion

In this chapter, we have introduced our proposal for the incremental mainte-
nance of all-pairs shortest distances for graphs stored in relational databases.
The proposed algorithms significantly outperform the state-of-the-art tech-
niques designed for the same setting. This is confirmed by the experimental
evaluation where we considered three datasets (both real-world and synthetic)
with different properties in terms of connectivity of the graph. Indeed, from
the experimental results reported in Section 3.3, we can draw the following
conclusions.

• Our algorithms outperform the algorithms proposed in [52] in all cases.
Recall that, to the best of our knowledge, [52] is the state-of-the-art ap-
proach for the all-pairs shortest distances maintenance problem working
on the secondary memory (in particular, graphs are stored in relational
DBMSs as in our approach).

• [52] can handle edge deletions only over very small graphs; experiments
over the regular graph have shown that also edge insertion becomes in-
feasible. Overall, [52] is impractical for the datasets we considered in our
experimental evaluation. These limitations are overcome by our algorithms
which are able to handle both edge insertions and deletions over signifi-
cantly larger graphs.

• Algorithms MI and MD (which, as opposed to all other algorithms, are
able to handle the insertion and deletion of multiple edges at once) are
consistently the fastest ones.
Not surprisingly, their running time increases as the size of the dataset or
the edge relevance augment. Moreover, the execution time grows slowly
as the number of edges to be inserted or deleted increases. The difference
between the multiple edge algorithms and the single edge counterpart gets
bigger and bigger as the number of edges to be inserted/deleted augments
(such a difference was particularly high on the regular graph), which sup-
ports the value of our multiple edge insertion/deletion algorithms and

3.4 Discussion 43

confirms their ability of leveraging the information about a batch of edges
to reduce the time needed to update the shortest distance relation.

Part III

Non-Progressive Models for Viral Marketing in

Social Networks

4

Influence Maximization Problem

As mentioned in Part I, deciding whether to adopt an innovation (such as
a political idea or product), individuals are frequently influenced, explicitly
or implicitly, by their social contacts (friends, acquaintances, or colleagues).
Indeed, the way in which new practices spread through a population depends
mainly on the fact that people influence each other’s behavior. In short, as
a person see more and more people doing something, s/he generally become
more likely to do it as well because, typically, the benefits gained by adopting
a new behavior increase as more and more of your neighbors in the social
network adopt it. As discussed in Chapter 1, it is essential for companies to
target “opinion leaders”, as influencing them will lead to a large cascade of
further recommendations. This is the goal of each viral marketing campaign,
and corresponds in solving the influence maximization problem. To this end,
it is mandatory to accomplish two tasks:

1. a detailed modeling of the influence diffusion process in the network;
2. efficient identification of the target nodes given a diffusion model.

In the following, we focus on this problem, introducing its complexity and the
solutions proposed in literature. We discuss two of the most important and
widely-studied influence propagation models, i.e. the Independent Cascade
Model and the Linear Threshold Model. Then, we summarize some results
regarding several extensions both for the influence diffusion models and the
influence maximization problem.

4.1 Modeling Cascading Behavior

Consider a social network, a new technology tech and let v be an inactive node,
i.e. v has still not adopted tech. From v’s perspective, the process of influence
diffusion will be (roughly) as follows: as time unfolds, more and more of v’s
neighbors will use tech (i.e. they become active). It can happen that at a given
point, due to its neighbors behaviors, v becomes active as well by adopting

46 4 Influence Maximization Problem

tech. As a consequence, v’s decision may in turn trigger further decisions
by nodes to which v is connected. Many diffusion models were proposed to
describe such a process. We consider the two basic ones: Independent Cascade
Model and Linear Threshold Model. For both these models the diffusion of
information (or influence) begins with an initial set of active nodes, denoted
as S0, and proceeds in discrete time steps, generating the active sets St for all
t = 1, 2, The process runs until no more activations are possible. It implies
that once St = St−1, then the set of active nodes will no longer change, and the
diffusion process halts returning the final active set St. Moreover, both models
are progressive. It means that once a node becomes active (or is activated),
it stays active, i.e. for all t ≥ 0, St ⊆ St+1. In the following, we will describe
in details the distinguishing features of the above mentioned models.

4.1.1 Independent Cascade Model

In the Independent Cascade Model (denoted as IC) first described in [43],
each edge (u, v) ∈ E has an associated influence probability pu,v ∈ [0, 1],
corresponding to the influence exerted by node u to node v. More in detail,
given an input social graph G = (V,E), the influence probability of all arcs,
and the initial set of active nodes S0, the process unfolds in discrete steps
according to the following randomized rules:

• When node u first becomes active in step t, it is given a single chance to
activate each currently inactive neighbor v; it succeeds with probability
pu,v, independently of the history thus far;

• if u succeeds, then v will become active at step t+1; but whether or not u
succeeds, it cannot make any further attempts to activate v in subsequent
rounds. Clearly, if v has multiple newly activated neighbors, their attempts
are sequenced in an arbitrary order.

Figure 4.1 shows an example of this diffusion process. Blue numbers next
to the edges are the influence probabilities, while red nodes denote those ones
activated during the process. Solid red edges from an active node u to its
inactive out-neighbors mean that u is trying to activate its neighbors through
these edges, while a dotted blue edge from u to v denotes an edge that cannot
be used to propagate the influence because either u has got its chance to
activate v or v is already active.

Initially, at time t = 0, the seed node a is active (Figure 4.1 (a)). At step
t = 1, a successfully activates b and f , but fails to activate e (Figure 4.1 (b)).
At step t = 2, f fails to activate d, e and g, while b successfully activates c
(Figure 4.1 (c)). At this point, the diffusion stops because the last activated
node, i.e. c, does not have any outgoing edges to inactive nodes.

Live-Edge Graph with independent edge selection

The IC Model can be also defined in an equivalent way by using the live-edge
model with independent arc selection and assuming that all random choices

4.1 Modeling Cascading Behavior 47

cb

e

df

g

a

0.6

0.1
0.1

0.4

0.3

0.050.2

0.25

0.2

0.1 0.020.3

Andiamo

Via cosa

cb

e

df

g

a

0.6

0.1
0.1

0.4

0.3

0.050.2

0.25

0.2

0.1 0.020.3

Andiamo

Via cosa

cb

e

df

g

a

0.6

0.1
0.1

0.4

0.3

0.050.2

0.25

0.2

0.1 0.020.3

(a) t = 0 (b) t = 1 (c) t = 2

Fig. 4.1. An example of the diffusion process of the IC model.

involving the diffusion process have been made in advance [43]. More in detail,
for each edge (u, v) ∈ E, a coin of bias pu,v is flipped at the very beginning
of the process. The edges in the original graph G for which the coin flip
indicated that an activation has been successful are marked as “live” while
the remaining edges are marked as “blocked”. Once fixed the outcomes of the
coin flips, the set of active nodes at the end of the diffusion process can be
deterministically computed. Indeed, starting from the seed set S0, the active
nodes will be those connected to at least one node in S0 by a path consisting
only of live edges.

Let X be the live edge graph obtained by considering only the edges
marked as live, then the final set of active nodes corresponds to the set of
nodes in V that are reachable from S0 in X. Clearly, we can have a live edge
graph X for each possible set of outcomes for all the coin flips on the edges.
Thus, each X can be seen as a possible world. We denote with RXi (S0) the set
of nodes that are reachable in X from S0 within i steps, with i = 0, 1, 2,

To show the equivalence between the IC model and the live-edge model,
the following two distributions need to be equivalent:

1. the distribution over active sets obtained by running the Independent
Cascade model starting from S0, and

2. the distribution over sets of nodes reachable from S0, when live edges are
selected as previously described.

More in detail, for any t ≥ 1, consider any sequence of subsets A1, A2, . . . , At ⊆
V such that A1 ⊆ A2 ⊆ . . . ⊆ At, and once two consecutive subsets are equal,
all the subsequent subsets are also equal. Then, the two models are equivalent
if

Pr(St = At | S1 = A1, . . . , St−1 = At−1) =

Pr(RXt (S0) = At | R
X
1 (S0) = A1, . . . , R

X
t−1(S0) = At−1)

for any such sequence. [12] shown that these probabilities are exactly the
same and are equal to:

∏

v∈At\At−1

1−

∏

u∈At−1\At−2

(1− pu,v)

 ∏

v∈V \At

∏

u∈At−1\At−2

(1− pu,v) (4.1)

48 4 Influence Maximization Problem

Indeed, under the independent cascade model, the set St of nodes active
at step t corresponds to At given S0, S1 = A1, . . . , St−1 = At−1 if and only if:

1. each node v ∈ At \ At−1 is also activated at step t, i.e. v ∈ St \ St−1,
thanks to the influence exerted from its in-neighbors in At−1 \At−2;

2. no node in V \At is activated by any node in At−1 \At−2.

Analogously, the set RXt (S0) of nodes reachable within t step given
RX0 (S0), R

X
1 (S0) = A1, . . . , R

X
t−1(S0) = At−1 is At if and only if:

1. each node v ∈ At \ At−1 is reached in one step by at least one node in
At−1 \At−2;

2. no node in V \At is reachable in one step by any node in At−1 \At−2.

Since all activation events in the IC model are independent and in the live
edge graph each edge (u, v) is independently selected with probability pu,v,
we have that Equation 4.1 holds.

4.1.2 Linear Threshold Model

The independent cascade model is suitable for modeling the diffusion of simple
contagions, such as the adoption of technologies or viruses, where activations
may be triggered from a single source. However, there are many situations
in which exposure to multiple independent sources are needed for an individ-
ual before taking a decision. The Linear Threshold (or LT) Model has been
introduced in [43] to reflect this kind of behavior.

In this model, a node v can be influenced by each neighbor u according to a
weight bu,v such that

∑
u∈Nin(v)

bu,v ≤ 1, where N in(v) is the in-neighbors set of

node v. The dynamics of the process proceed as follows. Each node v chooses
a threshold ϑv uniformly at random from the interval [0, 1]. This represents
the weighted fraction of v’s neighbors that must become active in order for v
to become active. Given a random choice of thresholds, and an initial set of
active nodes S0 (with all other nodes inactive), the diffusion process unfolds
deterministically in discrete steps: in step t, all nodes that were active at step
t−1 stay active, and any node v for which

∑
u∈Nin(v)∩St−1

bu,v ≥ ϑv is activated.

Thus, v becomes active if the total weight of its active neighbors is at least
ϑv.

An example of the diffusion process of the linear threshold model is re-
ported in Figure 4.2. As in Figure 4.1, red nodes denote those ones activated
during the process. Blue numbers next to the edges are the influence weights,
while the grey ones next to the nodes are the thresholds each node has inde-
pendently selected uniformly at random at the very beginning of the process.
Solid red edges from an active node u to its inactive out-neighbors mean that
u is trying to activate its neighbors through these edges, while a solid blue
edge from u to v denotes that u has already tried to activate v, but its influ-
ence does not suffice to get v active. Differently from the dotted ones (that

4.1 Modeling Cascading Behavior 49

cannot be used to propagate the influence), a solid blue edge from u to v
denotes that the influence exerted from u to v may be take into account when
another v’s neighbor will have a chance to activate v.

Initially, at time t = 0, only node a is active (Figure 4.2 (a)). At step t = 1,
a successfully activates b, but its influence is not enough to activate e and f
(Figure 4.2 (b)). At step t = 2, b succeeds in activating c, and, together with
the influence exerted by a, f is activated as well (Figure 4.2 (c)). Then f tries
to activate d, e and g, but only the latter is successfully activated (Figure 4.2
(d)). At time t = 4, g fails in activating d and the diffusion process stops
(Figure 4.2 (e)).

cb

e

df

g

a

0.6

0.1
0.1

0.4

0.3

0.050.2

0.25

0.2

0.1 0.020.3

0.3

0.4

0.6

0.2

0.3

0.8

0.4

Andiamo

Via cosa

cb

e

df

g

a

0.6

0.1
0.1

0.4

0.3

0.050.2

0.25

0.2

0.1 0.020.3

0.3

0.4

0.6

0.2

0.3

0.8

0.4

Andiamo

Via cosa

cb

e

df

g

a

0.6

0.1
0.1

0.4

0.3

0.050.2

0.25

0.2

0.1 0.020.3

0.3

0.4

0.6

0.2

0.3

0.8

0.4

(a) t = 0 (b) t = 1 (c) t = 2

cb

e

df

g

a

0.6

0.1
0.1

0.4

0.3

0.050.2

0.25

0.2

0.1 0.020.3

0.3

0.4

0.6

0.2

0.3

0.8

0.4

Andiamo

Via cosa

cb

e

df

g

a

0.6

0.1
0.1

0.4

0.3

0.050.2

0.25

0.2

0.1 0.020.3

0.3

0.4

0.6

0.2

0.3

0.8

0.4

(d) t = 3 (e) t = 4

Fig. 4.2. An example of the diffusion process of the LT model.

Live-Edge Graph with proportional edge selection

Analogously to the independent cascade model, the linear threshold model also
has an equivalent live-edge graph model. More in detail, we build a random
live-edge graphX by selecting, for each node v ∈ V , at most one incoming edge
of v with probability proportional to the weight of the edge. More specifically,
the node v selects the edge from u with probability bu,v, and no edge with
probability 1 −

∑
u∈Nin(v)

bu,v. The selected edges are those “live”, while the

remaining ones are “blocked”. As before, RXi (S0) is the set of nodes that
are reachable in X from S0 within i steps, with i = 0, 1, 2, To show that
reachability under the live-edge graph defines a process equivalent to that

50 4 Influence Maximization Problem

of the LT Model, we report the original proof given in [43] that works by
induction over the iteration of the LT model. More in detail, let Ai ∈ V be the
set of nodes active after the i−th iteration of the LT process, for i = 0, 1, ... An
inactive node v becomes active at time t under the LT model if the influence
weights in At−1 \At−2 push it over its threshold, given that its threshold was

not exceeded already. This probability is

∑

u∈At−1\At−2

bu,v

1−
∑

u∈At−2

bu,v
. Similarly, we can

compute one step at a time the set of nodes reachable from the seed set S0,
obtaining the set Ai of nodes reachable within i steps, for i = 0, 1, ... If node v
has not be reachable within t−1 step, then the probability it will be reachable
at stage t is equal to the chance its live-edge comes from At−1 \ At−2, given
that its live edge has not come from any of the earlier sets. This probability
corresponds to the activation probability under the LT process, that, as a
result, is equivalent to the reachability under the live-edge graph.

4.2 Problem Statement

The influence maximization problem can be formally defined as follows:

Problem (Influence Maximization). Given a social network G = (V,E),
a diffusion model on G, and a budget k, find a seed-set S ⊆ V with |S| ≤ k
of influential people such that by targeting them to adopt a product, we
maximize the spread of viral propagation σ(S), i.e. the number of other people
in the network who adopt the same product.

This problem can be split into two subtasks. We first need a way to compute
the influence spread σ(S0) given a set S0, and then searching for the seed set
that maximizes the influence spread. In any case, influence maximization in
classic diffusion models including both the independent cascade and the linear
threshold models is computationally intractable, more precisely NP-hard [43].
There are two sources of complexity:

1. Modeling in detail the influence diffusion process in the network and com-
puting the expected number of active nodes, given a seed set of initial
adopters;

2. Identifying efficiently the seed set, i.e. the nodes that can maximize the
spread under the above diffusion model.

To this end, several approximation algorithms and scalable heuristics have
been proposed in the literature. It is worth noting that, the problem of finding
an optimal set of k influential nodes is different from the problem of selecting
k individuals that are each, individually optimal. Intuitively enough, if two
top influential nodes both have strong influence on the same group of nodes,
the influence exerted by the ensemble combination will be quite a bit less
than the sum of the influence of each. As a result, applying naive centrality
measures to find the optimal set of influential nodes will likely fail.

4.2 Problem Statement 51

4.2.1 Greedy Algorithm for Influence Maximization

The first provable approximation guarantees for efficient algorithms has been
introduced in [43] and it is based on a natural diminishing property of the
problem, submodularity.

Definition 4.1 (Submodular and Monotone function). Given a set Ω,
a submodular function is a set function f : 2Ω → R satisfying, ∀X,Y ⊆ Ω
with X ⊆ Y and ∀i ∈ Ω \ Y , the following properties:

f(X ∪ {i})− f(X) ≤ f(Y ∪ {i})− f(Y)

A submodular function f is monotone if ∀X,Y ⊆ Ω with X ⊆ Y

f(X) ≤ f(Y).

In [43] it has been shown that if the function σ(·) is monotone and submodular,
then a simple greedy algorithm able to select a good set of seed nodes can be
exploited. Such an algorithm gives a (1−1/e)− approximation to the optimum.
It implies that the resulting set S0 activates at least (1 − 1/e) > 63% of the
number of nodes that any other size-k set could activate.

Algorithm 8 Greedy Algorithm for Influence Maximization

Input: Size of seed set k
Social Network G = (V,E)

Output: Seed set S0

1: S0 = ∅;
2: while |S0| < k do
3: u← argmaxw∈V \S0

(σ(S0 ∪ {w})− σ(S0));
4: S0 = S0 ∪ {u};
5: end while
6: return S0;

The greedy algorithm, as depicted in Algorithm 8, works by adding to the
candidate set S0 the node u providing the largest marginal gain σ(S0∪{u})−
σ(S0). This selection process is repeated until k elements are selected. For
many diffusion models, including IC and LT, σ satisfies monotonicity and
submodularity. The latter, in both the independent cascade model and the
linear threshold model, is proved in [43] by utilizing the equivalent live-edge
graph models. Indeed, we reported before the proof that both the IC and
LT models correspond to live-edge graphs with different probabilistic edge
selections. Despite the way in which the live-edge graphs are built is different,
for both models we have:

σ(S0) =
∑

∀X

Pr(X)|RX(S0)|

52 4 Influence Maximization Problem

where Pr(X) denotes the probability that X is selected from among all
possible live-edge graphs. It is well known that a non-negative linear com-
bination of monotone (resp. submodular) functions is also monotone (resp.
submodular). Therefore, to prove that σ(·) is monotone and submodular,
it is sufficient to show that, for any live-edge graph X, |RX(·)| is mono-
tone and submodular. Clearly, |RX(·)| is monotone. To see that is also sub-
modular, we have to verify that, for any two sets of nodes, S and T , and
a node v ∈ V \ T , RX(T ∪ {v}) \ RX(T) ⊆ RX(S ∪ {v}) \ RX(S). It
implies that the number of elements in RX({v}) that are not already in
RX(S) has to be equal or bigger than the number of elements in RX({v})
that are not already in RX(T). Since S ⊆ T , the set of nodes reachable
from S can not be larger than those reachable from the bigger set T . Thus,
|RX(S ∪ {v})| − |RX(S)| ≥ |RX(T ∪ {v})| − |RX(T)|, which is the definition
of submodularity. It means that the greedy approach can be applied for these
diffusion models as σ(·) is submodular and monotone. However, the greedy
algorithm requires repeated evaluation of σ(·) (see line 3 Algorithm 8), which
is NP-hard. To this end, in [43] the authors propose a greedy solution based
on the Monte Carlo simulations of the diffusion process to estimate the influ-
ence spread. Given a seed set S0, we can simulate the randomized diffusion
process with seed set S0 for l times. Each time, we count the number of active
nodes after the diffusion ends, and then take the average of these counts over
the l times. Clearly, the bigger is l, the more accurate it will be the estimate
of σ(S0). It is worth noting that, since Monte Carlo simulations only return
an estimate of influence spread and not the exact value, the greedy algorithm
gives a (1− 1/e− ε)−approximation to the optimum (for any ε > 0).

Despite in literature there are not other algorithms able to outperform
the greedy approach, the naive Monte Carlo greedy algorithm has a seri-
ous drawback, i.e. its inefficiency. Indeed, it results unfeasible to run even
for graphs with a moderate size. To deal with this problem, a number of
optimization techniques and heuristics have been proposed with the intent
of developing more efficient and scalable influence maximization algorithms
[46, 13, 33, 64, 62]. The main idea behind most of these works is to avoid
Monte Carlo simulations by exploiting specific aspects of the graph structure
and the diffusion model to significantly speed up the influence computations.

4.3 Extensions

In this section, we summarize some of the results appeared in the literature
where several extensions both for the influence diffusion models and the in-
fluence maximization problem have been proposed. All the diffusion models
proposed satisfy a property called progressiveness, i.e. they assume that, once
a node is activated, it will not change its state any more. More specifically, a
node may change from the inactive state to an active state, but it does not
change from an active state back to the inactive state.

4.3 Extensions 53

4.3.1 Influence Maximization under Competition

All of the above research works only consider the diffusion of a single prod-
uct/service in the social networks. However, in a more real scenario, we may
have that different products propagate concurrently in the same network and,
typically, these diffusions interfere with each other. For example, if a user has
been influenced by friends and, as a results, he has bought a product of a
given brand, it is unlikely he will buy a similar product of a competing brand
in the short period, even under a strong influence from other people. To this
end, extensive research has been done concerning various maximization prob-
lems under competitive influence diffusions [7, 8, 48, 9, 38]. In the following
we deal with only two competing products, despite the rationale can be easily
extended to more than two competitors. Under this assumption, each node
has two possible states: inactive and active, but, in the latter case, a node is
either positively or negatively activated (according if it is active for the target
company or not). Let S+

0 (resp. S−
0) be the seed set for the target company

(resp. competitor), with S+
0 ∩ S−

0 = ∅. At every time step t ≥ 1, there will be
the positive and negative activation attempts of the inactive nodes. Clearly,
since in most of the models proposed the influence propagates in discrete time,
it may happen that both activation attempts are successful on the same node.
It implies that a tie-breaking rule is necessary to determine the node’s choice.

According to the objective function, there are many categories of maxi-
mization problems under competitive influence diffusions.

A natural extension to the traditional problem of influence maximization
is to maximize the spread of one technology in the presence of one or more
competitors [7, 8]. This problem corresponds to a situation where a company
knows the current status of diffusion of the competing product, and it needs to
select its own seed set to maximize its own coverage, considering the influence
over users by its competitor. In [7] the authors propose a generalization of the
independent cascade model. Despite they only provide a polynomial approx-
imation algorithm for trees, an interesting feature introduced in this work is
the use of continuous time in node activation. The latter allows to avoid the
explicit definition of a tie-breaking rule because the probability of two nodes
activating a neighbor at the same time is zero. In [8], the authors suggest sev-
eral natural extension to the linear-threshold model. However, submodularity
does not hold for any of these models, thus the classic greedy approach for
selecting the seed set S+

0 that maximizes the target company diffusion cannot
be used. Extensions of the LT model to the competitive influence scenario,
usually, do not satisfy submodularity. One exception is the K-LT model pro-
posed in [48], where the authors extend the LT model to a competitive setting
while retaining submodularity. They consider the competitive influence max-
imization problem from the perspective of the social network owner, instead
of from the perspective of one of the competing players. Each company that
intends to run a campaign, specifies a budget, a fee to pay to the network

54 4 Influence Maximization Problem

owner, and the latter selects and allocates the seeds to the various companies
in the fairest possible manner.

Another possible objective function is to minimize the coverage of the
competing product or opinion. This is especially the case when a negative
opinion or a rumor about a company or political party is propagating, and
the company or party tries to spread positive and true information to reduce
the spread of the rumor as much as possible [9, 38]. This problem is known
as influence-blocking maximization (IBM) and it has been also investigated in
the epidemiology literature. Indeed, the negative opinion can also represent
a disease, thus it is relevant to find a set of k nodes to immunize so that
the spread of the disease is limited as much as possible. [9] considers two
competing campaigns having different acceptance rates in the network and
one of these starts with a delay, in response to the other. The authors shown
that the general extension of the IC model, in which positive and negative
influences have separate set of parameters, is not submodular. To achieve
submodularity, they assume that positive propagation probability is 1 or is
the same as negative propagation probability, which limits the expressiveness
of the model. [38] shows that the objective function of the IBM problem is
submodular under the competitive LT model and design an efficient algorithm
to overcome the slowness of the greedy approach.

4.3.2 Continuous-Time Diffusion Process.

There are many real-world examples in which interactions between nodes oc-
cur at different rates (e.g. in viral marketing, some user can be quicker than
others to recommend a service). Moreover, in most cases, influence must be
estimated or maximized up to a given time. Maximizing influence spread
within a certain time constraint is relevant in practice. For example, a mar-
keter would like to have her advertisement viewed by a million people in one
month, rather than in one hundred years. The goal is to find the seed set
that maximizes the average number of nodes infected in a time period T and
under the assumption that influence can spread in continuous time [21, 30].
The continuous time influence maximization problem is NP-hard under the
continuous time diffusion model proposed in [21, 30]. Indeed, when T → ∞,
the independent cascade model is a particular case of that model. However,
the objective function is monotone and submodular, thus it is possible to use
the greedy algorithm to find a near-optimal solution. In contrast to previous
discrete-time models which associate each edge with a fixed infection probabil-
ity, the models proposed in [21, 30] associate to each edge (u, v) a transmission
function, fuv(tv|tu), that is the conditional density of node v getting infected
at time tv given that node u was infected at time tu. More specifically, in [30]
the authors show that the influence estimation problem can be solved exactly
when the transmission functions are exponential densities, by using continu-
ous time Markov processes theory. However, the computational complexity of
such approach, in general, scales exponentially with the size and density of the

4.3 Extensions 55

network. This drawback is solved in [21], where the proposed algorithm can
easily scale up to networks of millions of nodes. In particular, they introduce
a scalable randomized algorithm for influence estimation in a continuous-time
diffusion network with heterogeneous edge transmission functions.

In any case, modeling information diffusion using continuous-time diffusion
networks can provide significantly more accurate models than discrete time
models.

5

Competitive, Continuous Time and

Non-Progressive Influence Maximization

Recent studies on modeling influence propagation focus on progressive mod-
els, i.e., once a node is influenced (active), it stays in that state and cannot
become inactive. However, in many real life applications, this assumption is
unrealistic as nodes can get activated and deactivated many times. Consider
as an example the following scenarios:

• Customers subscribing to one of several competing service providers and
have the opportunity and incentive to switch back;

• The spread of diseases among populations (Epidemic models) [51];
• Modeling the interactions and diffusion of conflicting ideas (e.g., opinions

on political candidates) in the network, where people’s opinion may change
due to the interaction with their friends (Voter model) [25, 23].

Extensive research has been done to define several extensions both for the in-
fluence diffusion models and the influence maximization problem. The goal is
to catch those behaviors closer to the real world. To this end, some topics have
been extensively investigated, e.g. as competitive viral marketing [8, 9, 48], in
which two or more players compete with similar products on the same network,
continuous time diffusion networks [21], where the diffusion process evolves in
continuous time and interactions between nodes occur at different rates. How-
ever, non progressive models for viral marketing are still in their infancy. In
particular, to the best of our knowledge, there is lack of work considering the
competitive viral marketing problem in a non progressive context when diffu-
sion evolves in continuous time. In the following, we define the non-progressive
influence maximization problem and propose a new diffusion model, named
NPK-LT Model, obtained by extending the K-LT Model defined in [48]. The
proposed model captures the non-progressive features in viral marketing and
satisfies the desired properties of monotonicity and submodularity.

5.1 Problem Statement and Related Works 57

5.1 Problem Statement and Related Works

Non-progressive models for viral marketing are catching increasing attention
recently. Their importance has been already dealt in the seminal work [43],
where the authors show that the non-progressive influence maximization prob-
lem can be reduced to the progressive case in a different graph. Given a graph
G = (V,E) and a time limit T, the new graph is obtained by replicating
the nodes in G for each time stamp and connecting each node in this graph
with its neighbors in G indexed by the previous time step. However, since in
a non-progressive process a node can switch between states indefinitely, the
classical target function of influence maximization under progressive models,
where the goal is to maximize the expected number of influenced nodes, can
not be exploited in this context. To this end, [47] suggest a new objective
function, i.e. maximizing the total time in which nodes are using a product.
They propose a discrete-time non-progressive model obtained by exploiting
the idea in [43] and, to overcome the scalability bounds associated with this
solution, they introduce an efficient implementation of a continuous-time non-
progressive model. This is the work most closely related to ours. However, they
do not consider competitors that is the focus of our research instead. Indeed,
non-progressive models are more suitable for modeling diffusion of compet-
ing products over the same network. This has been confirmed in [63], where
a data-driven model for predicting the adoption of competing products has
been proposed. Differently from our works, they model how frequently users
adopt a product, but they are not interested in detecting influential nodes
and maximizing the overall adoption.

Epidemic models and voter models are intrinsically non-progressive mod-
els. The former are used originally to study the spread of diseases. Various
epidemic models have been proposed [51]. A frequently used model is the SIS
model, where a node in the I state (infected) may transition back to state
S (susceptible) with a given probability in every time unit, so that the node
becomes susceptible to disease again. Another more sophisticated model is
the SIRS model, where infected nodes may recover from a disease but not get
lifelong immunity. As a result, they may still be susceptible to the disease and
become infected again.

The voter model is a non-progressive model as well and it has been adopted
as the basis for influence diffusion in several studies [23, 25]. Indeed, in the
most basic form of the model, each node in the graph has state 0 or 1 and may
change back and forth between 0 and 1. In each time step, a node v randomly
selects one of its neighbors u and mimics the state that u had in the previous
step. In [23] the authors consider the classic influence maximization problem
under the voter model, which allows to deactivate nodes. In particular, they
show that selecting k nodes with the largest degrees and setting them to state
1 is the best strategy in this model to maximize the probability of nodes in
state 1 in the steady state. In [25], the authors deal with the problem of finding
a perfect seed set of nodes in a competitive setting such that, activating them

58 5 Competitive, Continuous Time and Non-Progressive Influence Maximization

at the beginning of the diffusion process, the whole network ends up being
infected for the target company. They introduce a simple discrete-time non-
progressive model where, at each time step t, a node results infected if the
strict majority of its neighbors is active at time t − 1. Their proposal has
clear limits: first of all the objective function is not realistic; then there are
no scalable algorithms able to model this diffusion process.

5.1.1 Non-Progressive Influence Maximization Problem

Assume that K players, with K ≥ 2, compete with similar products on the
same network. We are interested in maximizing the total expected time during
which nodes stay active for a target company up to T, under the assumptions
that switch of state are possible, and influence between nodes can spread at
different rates. Maximizing influence spread within a certain time constraint is
relevant in practice. For example, a marketer would like to have her advertise-
ment viewed by a million people in one month, rather than in one hundred
years. Moreover, there are many real-world examples in which interactions
between nodes occur at different rates (e.g. some user can be quicker than
others to recommend a service). We denote with Sjt the set of nodes active
for the company Cj at time t and with St = {S1

t , · · · , S
K
t } the set of adapters

for each company after t. Clearly, since at a fixed time a node can be active
at most for a company, at every time t ≥ 0 the sets in St are disjoint. In the
following, when the time is omitted, we are implicitly referring to time t = 0.
More specifically, we define S = {S1, · · · , SK} as the seed set allocation, i.e.
the set of active nodes at time t = 0. Moreover, similarly to [48], we use S−i

to denote the set of seed sets for all companies j ∈ {1, 2, . . . ,K}, with j 6= i,
i.e. S−i =

{
S1, · · · , Si−1, Si+1, · · · , SK

}
.

The problem can be formalized as follow.

Problem (Non-Progressive Influence Maximization). Given a social
network G, a target company Ci, a budget k, a time horizon T and the set
S−i of initial adopters for each company Cj 6= Ci, find a seed-set Si ⊆ V with
|Si| ≤ k of influential people such that initially targeting them to adopt Ci,
we maximize the total Expected Active Time σinp(S

i,T) (informally EAT i)

during which nodes are active for Ci up to time T.
Let σi(Si,S−i, t) be the expected number of nodes active for Ci at time t given

a seed set allocation, then EAT i is defined as σinp(S
i,T) =

∫
T

t=0
σi(Si,S−i, t)dt.

The above problem formulation assumes that we know the set S−i when try-
ing to find Si. That is, company Ci knows the allocations of its competing
companies. Since the influence maximization is an intractable problem even
considering the simplest and progressive diffusion models, we decided to work
under this assumption. However, we plan to propose a different formulation
in the future to better model real case scenarios. It is also worth noting that

5.2 CT Non-Progressive K-LT Model 59

there are plenty of papers dealing with the same assumption [7, 8], i.e. situa-
tions where a company knows the current status of diffusion of the competing
product, and it needs to select its own seed set to maximize its own coverage,
considering the influence over users by its competitor.

5.2 CT Non-Progressive K-LT Model

In the following, we propose an extension of the K-LT Model defined in [48]
that works under the continuous time assumption when switches of company
are allowed. In the classical K-LT Model, K companies compete with similar
products on the same network. The latter is a directed graph G = (V,E) and,
as for the LT Model, each edge (u, v) ∈ E has an associated influence weight
bu,v such that

∑
u∈Nin(v)

bu,v ≤ 1, where N in(v) is the in-neighbors set of node

v. The propagation process starts by selecting a seed set for each company
and unfolds at discrete steps. Initially, each node v ∈ V randomly picks a
threshold ϑv in the range [0, 1]. For each time step t ≥ 1, if the total weight
of the active neighbors for an inactive node v is greater than its threshold
ϑv, node v becomes influenced. Then, at the same time t, v becomes active
for one of the companies of its in-neighbors that activated at t− 1. The basic
assumption is that as a node is activated it never deactivates. However, as we
are interested in modeling a non-progressive phenomena, a node can switch
between active and inactive states many times. Moreover, the diffusion process
evolves in continuous time. In the following, we report a detailed analysis of
these new features and the way we deal with.

5.2.1 Non-Progressiveness Property

Since we are considering a non-progressive scenario, as a node v has picked a
company Ci, all its neighbors active for companies j 6= i, could try to influ-
ence v in adopting Cj . Indeed, a node active for a company i is assumed to be
inactive for all the other companies j 6= i, with i, j ∈ {1, 2, . . . ,K}. It means
that, once a node v is influenced, i.e. its threshold ϑv is exceeded, its following
state will be active for the neighbors that choose the same company, while
inactive for the others. As a result, we need to keep track of the time intervals
during which each node stays active for the company we want to maximize
the spread. More in detail, for each company Ci with i ∈ {1, 2, . . . ,K} and
for each node u ∈ V , we can define the activation window, Wu,i [l], as the
l-th time interval during which node u is first activated and then deactivated
for Ci. Every activation window Wu,i [l] is composed by an activation time,
tu,iA [l], and a deactivation time, tu,iD [l]. Intuitively enough, tu,iA (resp. tu,iD) cor-
responds to the time in which node u is activated (resp. deactivated) in the
considered time interval for Ci. In the following, if it is not specified oth-
erwise, for each node u ∈ V and a given time t, we are going to consider

60 5 Competitive, Continuous Time and Non-Progressive Influence Maximization

the current u’s activation window, i.e. the activation window Wu,i [l] such

that t ∈
[
tu,iA [l] , tu,iD [l]

)
. Since a node u can not be active for more than one

company at the same time, there is no overlapping of activation windows be-
longing to different companies. This implies that at every time t, u’s current
activation window is unique and well specified. Figure 5.1 shows the activation
windows of a node u and depicts the correlation among these new variables.
In this example, node u has been activated for three companies and the bold
window is the current one.

…..

t

W ,

t ,

W ,
W ,

W ,
t , t , t , t , t , t , t ,

Fig. 5.1. An example of activation windows of a node

The main feature of this non-progressive process is that, once a node is active,
it can change company anytime in the future. However, company switches are
not only based on the influence weight of v’s neighbors, but they are strictly
related to the last time node v has been involved in state switching.

More specifically, we assume that v is as less motivated in changing com-
pany as recently it has been activated for its current one. The rationale behind
this choice is based on the consideration that when becoming active for a com-
pany has a cost (for example, purchasing a product or service), customers are
more likely to exploit the service until its cost has been amortized by its
use. To this end, we introduce a function that denotes the willingness of v
to change company at a given time t and that allows to avoid the continu-
ous (and unrealistic) switches of company every time a neighbor u ∈ N in(v)
tries to encourage v to adopt its same company. More in detail, let tvA be the
activation time of the current v’s activation window. We define a switching
function ρ(v, t) = 1 − e−ψ∆t, with ∆t = t − tvA and ψ constant, as the prob-
ability that at time t node v is motivated to leave its current company for
another. Clearly, if node v has never been involved in an activation before the
considered time, this function should not to affect the probability of its first
activation. To this end, when tvA is undefined, we assume that ρ(v, t) = 1.

5.2 CT Non-Progressive K-LT Model 61

5.2.2 Continuous Time Property

The diffusion process evolves in continuous time. We model this feature by
considering that information (or influence) spreads from an active node to
its neighbors at different rates across different edges. To this end, for each
outgoing edge (u, v) ∈ E, we associate a random spreading time, τuv, sampled
from a density over time. The spreading time of an edge (u, v) is defined as
the time interval after which the active node u can propagate the influence
to an inactive node v, i.e. if tuA (resp. tuD) is the current activation (resp.
deactivation) time of node u, then at time tuA+τuv the influence would reach its
neighbor v. As a result, influence propagation does not rely only on the state of
a node (active or inactive). We say that a node u is influential for its neighbor
v at time t if u is still active for the same company at that time, i.e. t < tuD, and
u stays active enough to allow its influence to span over node v, i.e. t ≥ tuA+τuv.
It is worth noting that, each time a node u is activated, new values for u’s
outgoing spreading times have to be considered. To this end, a list of pre-
sampled spreading times is associated to each edge (u, v) ∈ E. Thus, we can
further refine the notion of influential node as follows. Given an edge (u, v), we
say that node u, active for the company Ci, is also influential for v at time t, if

there exists an activation window Wu,i [l] such that t ∈
[
tu,iA [l] + τuv, t

u,i
D [l]

)
.

We denote with Ii(v, t) the set of influential neighbors of v active for the
company Ci at time t and with I(v, t) =

⋃
i∈{1,2,...,K}

Ii(v, t) the overall set of

its influential neighbors. Among the nodes belonging to the set I(v, t), it may
exist a neighbor u for which t = tuA + τuv. We say that this node is actively
influential for v to denote that, differently from the other influential nodes
that have already had their chance, u is the only one that can try to activate
v at time t.
In the K-LT Model, the probability that an influenced node v gets active at
time t for company Ci is equal to:

∑

u∈Ai
t−1

\Ai
t−2

bu,v/
∑

u∈At−1\At−2

bu,v (5.1)

with Ait−1 denoting the set of nodes active for company Ci at time t− 1, and
At−1 =

⋃
i∈{1,2,...,K}A

i
t−1 the overall set of nodes active at the end of time

t − 1. Thus, v picks a company by considering the influence exerted by its
in-neighbors that activated at time t− 1. In our model, the rationale is quite
similar, but, clearly, we need to take into account the influential nodes. Hence,
it seems natural to compute the correspondent activation probability by just
replacing the sets of active nodes in Equation 5.1 with the influential ones, as
follows: ∑

u∈Ii(v,t)\Ii(v,t−)

bu,v/
∑

u∈I(v,t)\I(v,t−)

bu,v (5.2)

However, differently from the K-LT Model, it is worth noting that we operate
in continuous time. Introducing continuous time in influence propagation has

62 5 Competitive, Continuous Time and Non-Progressive Influence Maximization

a positive side effect, i.e., at each time t > 0, at most one event can occur and
it involves only one node (e.g. v). It means that the probability of two nodes
activating one node at the same time is zero. More in detail, at every time
t > 0, just the event in which a node becomes actively influential for one of
its neighbors and, consequently, tries to activate it for its same company, can
occur. Occurrence of events induces a well-defined total order on time. For any
given time instant t, we denote by t− and t= the instants of time, respectively,
of the last two events that occurred before t. Thus, if at time t, node u is
actively influential for v, then I(v, t) \ I(v, t−) = {u} and Ii(v, t) \ Ii(v, t−) is
not empty only if the company promoted by node u is exactly Ci. As a result,
Equation 5.2 does not define a probability, but a boolean value, that is one if
u is active for Ci, zero otherwise.

5.2.3 Model Definition

Our Non-Progressive model can be formally defined as follows:

Definition 5.1 (Continuous Time and Non-Progressive K-LT Model
(NPK-LT Model)). Given the seed set allocation S = {S1, · · · , SK}. The
diffusion process unfolds in continuous time according to the state switches of
the nodes in the network that are defined as follow:

• Influenced Event. An inactive node v is influenced at time t if the cumula-
tive influence of all its influential neighbors is such that

∑
u∈I(v,t)

bu,v ≥ ϑv.

It means that node v is influenced if the total weight of the in-neighbors of
v still active and whose influence has reached v, is at least ϑv. We denote
with α(v, t) the boolean storing the outcome of this event, i.e.

α(v, t) =

{
1 if

∑
u∈I(v,t)

bu,v ≥ ϑv

0 otherwise

• Activation Event. A node v influenced at time t is activated for the com-
pany Ci if there exists a v’s in-neighbor u, active for the company Ci,
that became actively influential for v at time t, i.e. u ∈ Ii(v, t) \ I(v, t−)
where t− < t is the timestamp of the last event; We denote with βi(v, t)
the boolean storing the outcome of this event, i.e.

βi(v, t) =

{
1 if ∃u ∈ N in(v) s.t. u ∈ Ii(v, t) \ I(v, t−)
0 otherwise

• Switching Event. A node v active for the company Ci switches to company
Cj at time t if one of its neighbor is become actively influential at that
time, i.e. βj(v, t) = 1, and v wants to change company, whose interest
is modeled by the switching function ρ(v, t). We denote with γij(v, t) the
probability of this event, i.e.

5.3 NPK-LT Model Properties 63

γij(v, t) = ρ(v, t) ∗ βj(v, t)

Figure 5.2 shows a possible state evolution of a node under the assumptions
of this extended K-LT Model with K = 2.

Inactive

Influenced

Active
for C1

Active
for C2

Inactive

Influenced

Active
for C1

Active
for C2

Inactive

Influenced

Active
for C1

Active
for C2

Inactive

Influenced

Active
for C1

Active
for C2

(a) t = 0 (b) t = 2.5 (c) t = 2.5 (d) t = 7.23

Fig. 5.2. State dynamics under the NPK-LT Model.

The node stays inactive until time t = 2.5 (Figure 5.2 (a)), after which it is
first influenced (Figure 5.2 (b)) and then activated for C1 (Figure 5.2 (c)). At
time t = 7.23, it switches company, getting active for C2 (Figure 5.2 (d)).

It is worth noting that seed nodes can be involved only in switching actions,
since their initial state is active for the company they are promoting.

5.3 NPK-LT Model Properties

In order to prove that, given a seed set allocation and a target company
Ci, EAT i is monotone and submodular under the NPK-LT Model, we show
that the latter is equivalent to an extended version of the live-edge model
introduced in [43]. We recall that, in the considered social network G, each
edge has an associated influence weight and a list of spreading times. Moreover,
when the propagation process starts, each node u ∈ V randomly chooses a
threshold ϑu in the range [0, 1].

Definition 5.2 (Continuous Time and Non-Progressive Live-Edge
Model (NP-LE Model)). Let G = (V,E) be a directed graph. A possible
universe U can be computed by selecting ∀v ∈ V at most one of v incoming
edges. In particular, v picks an edge (u, v) ∈ E with probability bu,v, and no
edge with probability 1−

∑
u∈Nin(v)

bu,v.

The above definition of NP-LE Model is equivalent to the classical LT live
edge model introduced in [43], but it is worth noting that, since we are in
a non-progressive scenario, edges incoming to seed nodes are not discarded.
Indeed, also nodes in the seed sets can switch company, thus being influenced
from the neighbors. A further difference w.r.t. the traditional definition of live

64 5 Competitive, Continuous Time and Non-Progressive Influence Maximization

edge model is that we introduce the notion of possible universe, that seems
replacing the classical possible world concept. The difference between these
nomenclatures will be clear soon.

In the LT live-edge model discussed in [43], the selected edges (that
build a possible world) are referred as “live” and the discarded ones are said
“blocked”. In our model, instead, the selected edges build a possible universe
U , while a possible world Xt is a collection of K disjoint subset of V storing,
for each u ∈ V , the time tuA ≤ t starting from which u belongs to the set
Xi
t ∈ Xt. Before defining how a possible world can be obtained, we introduce

the notion of “ghost” edges. At every time t >= 0, we have to distinguish,
among the edges in U , the real live edges and those ones are ghosts. An edge
(u, v) that is ghost at time t acts as a blocked edge. The rationale behind this
choice is that such an edge cannot be used to propagate the influence to v,
thus, ignoring it, will not affect the result of the diffusion process.

Definition 5.3 (Ghost Edges). Let Es ⊆ E be the set of edges in the pos-
sible universe U and Xt− = {X1

t−
, . . . , XK

t−
} a possible world. Then, the edge

(u, v) ∈ Es is ghost at a given time t > t− if one of the following conditions
holds:

1. t 6= tuA + τuv, or
2. v is not motivated in leaving its current set Xi

t−
∈ Xt− .

The ghost edges are our instruments to introduce the influence propagation
rule of the NPK-LT Model into the NP-LE Model. Indeed, the first condition
in the definition above takes into account that influence can be propagated
from u to v only if t = tuA+τuv, i.e. u is actively influential for v at time t. The
second condition models the feature that the less is motivated v in changing
company, the highest is the probability that every attempt to influence it will
fail. We recall that ρ(v, t) represents the interest (eq. motivation) of node v in
changing company at time t and takes into account the last activation time of
node v. Thus, assuming that the possible world Xt− corresponds to the sets
of nodes active at time t−, with probability 1− ρ(v, t), (u, v) is a ghost edge
despite u is actively influential for v at time t. Clearly, since the temporal
parameters associated to the graph play a role also in the live-edge model, at
every time t ≥ 0 at most one node can be actively influential and, as a result,
at each time t we can have at most one live edge.

In order to better understand the notion of Universe and possible World,
we can exploit the notion of quantum measurement. More in detail, the state of
a system can be determined only by performing a measure on the system that
gives us its actual state. In our case the system is represented by the universe
and, as time flows, different possible worlds will arise. Thus, the measurement
of the universe state at a given time t, will select the actual possible world
induced by the evolution of the universe due to the events causing edges to
become live. As will be clear in the following, this measure corresponds to
the notion of reachability that in turn is function of the sequence of events
occurring in the universe.

5.3 NPK-LT Model Properties 65

5.3.1 Reachability under the NP-LE Model

The notion of reachability is also peculiar to our model. We are in a com-
petitive scenario, thus we have to consider that K companies Cj , with
j ∈ {1, 2, . . . ,K}, compete on the same network and each of them has a
set of initial adopter Sj associated. In the following, since at most a single
edge can be live at every time t ≥ 0, we introduce first the notion of one-step
reachability.

Definition 5.4 (One-Step Reachability). Given a node v, a possible uni-
verse U , a possible world Xt− and a candidate set Xi

t−
∈ Xt− , we say that v

is one-step reachable at time t from Xi
t−

if (u, v) is the current live edge in U
given Xt− and u ∈ Xi

t−
.

Hence, according to the definition above, a node v is one-step reachable at
time t from u ∈ Xi

t−
if the edge (u, v) is live at time t. In other words, v is

one-step reachable if, starting from the time in which u is lately activated, the
elapsed time t suffices to allow the influence to propagate to the node v across
the edge connecting these two nodes. We recall that at every time t ≥ 0 at
most one edge can be live, thus the same target node can not be reachable
from two sets Xi

t−
, Xj

t−
∈ Xt− , with j 6= i.

Definition 5.5 (Reachable nodes). Given a possible world Xt− and a pos-
sible universe U , the set of nodes reachable at time t from a set Xi

t−
∈ Xt−

denoted as RUt (X
i
t−
,Xt−), includes:

• each node u ∈ Xi
t−

and the node v ∈ V such that v is one step reachable
at time t from Xi

t−
, or

• each node u ∈ Xi
t−

such that u is not one step reachable at time t from

any set Xj

t−
∈ Xt− , with j 6= i.

We denote with RUt (Xt−) the overall set of subsets RUt (X
i
t−
,Xt−) of nodes

reachable in U from any Xi
t−

∈ Xt− at time t, i.e.

RUt (Xt−) =
⋃

Xi

t−
∈X

t−

RUt (X
i
t− ,Xt−)

The set RUt (Xt−) corresponds to a possible world at time t. Indeed, given a
seed set allocation S and a universe U , a possible world Xt can be recursively
constructed as follows:

Xt =

{
S if t = 0
RUt (Xt−) otherwise

where t− < t represents the last time stamp in which a couple (u, v) ∈ Es
became live. Thus, since the event in which an edge becomes live is not com-
pletely deterministic, we may have different possible worlds at time t.

66 5 Competitive, Continuous Time and Non-Progressive Influence Maximization

Example 5.6. Figure 5.3 shows how we can emulate the diffusion process on
a possible universe applying iteratively this notion of reachability. Initially,
given the graph G (Figure 5.3 (a)), we can generate a set of possible uni-
verse, according to the NP-LE Model definition and the weight influence (not
reported for sake of readability in the plot) associated to each edge in G. In
(Figure 5.3 (b)) we consider one of these possible universe, named U , and two
disjoint subsets of nodes, A1 = {a} and A2 = {f} (highlighted in red and
green and representing the possible world Xt=0). Dotted (resp. solid) edges
denote ghost (live) edges at the specified time. The blue colored numbers
associated to edges denote their spreading times, while nodes reached at least
once during the process, are labeled with the last time in which this event
occurred (the orange colored numbers).

c

b

e

d

f

g

a

Andiamo

Via cosa

b

d

f

g

a
0

0

9

3

5.1

3.2
e

6.1

Andiamo

Via cosa

b

d

f

g

a
0

0

9

3

5.1

3.2

3

e

6.1

(a) Original Graph G (b) Possible Universe U (c) t = 3

b

d

f

g

a
0

0

9

3

5.1

3.2

3

.
e

6.1

Andiamo

Via cosa

b

d

f

g

a
0

0

9

3

5.1

3.2

3

.
e

6.1

6.1

Andiamo

Via cosa

b

d

f

g

a
0

0

9

3

5.1

3.2

3

. 8.3
e

6.1

6.1

(d) t = 3.2 (e) t = 6.1 (f) t = 8.3

Fig. 5.3. An example of diffusion process under the NP-LE Model.

Starting from a possible world Xt− and assuming that at time t = t− + δ
an edge becomes live, we obtain a new possible world Xt by computing the
reachable nodes from Xt− .
At time t = 3, edge (a, b) becomes live with probability 1 and b is added
to A1, thus we get the possible world Xt=3 = {A1 = {a, b};A2 = {f}}
(Figure 5.3 (c)). Analogously, node g is added to A2 at time t = 3.2 as (f, g)
gets live (Figure 5.3 (d)), while at time t = 6.1, A1 includes e thanks to
the in-going live edge (a, e) (Figure 5.3 (e)). At time t = 8.3, d is added
to A2 (Figure 5.3 (f)). At this point, each node has been reached at least
once, obtaining the possible world Xt=8.3 = {A1 = {a, b, e};A2 = {f, g, d}}
The process may continue by considering, at time t = 12, the edge (b, f).

5.3 NPK-LT Model Properties 67

At that time, node b becomes actively influential for f but, in this case, the
edge (b, f) will be actually live with probability ρ(f, t). We recall indeed that
the switching probability of a node that has already been reached once, is
not equal to 1. In this example, we assume that (b, f) remains ghost, i.e. we
consider the possible world Xt=12 = Xt=8.3 .

From the previous example, it is clear that given a universe and starting
from the seed set allocation S, we can build a tree of possible worlds by
computing iteratively the reachable nodes and, assuming of flipping a coin
with bias ρ(v, t) each time an edge (u, v) ∈ Es may become live, considering
each possible outcome of the coin flip. In Figure 5.4 we depict this tree for
the universe and the seed sets reported in Figure 5.3 (b). The value reported
besides each node in this tree is the probability of that possible world. As
expected, the possible worlds tree has a single branch till time t = 8.3, i.e.
until each node in the graph has not been reached more than once.

S0=X0

X8.3= A1={a,b,e};A2={f,g,d}

X3

X3.2

X6.1

Xt=12= A1={a,b,e,f};A2={g,d}

Xt’>t= A1={a,b,e,f,g};A2={d}

t=12=X8.3

t’>t=Xt

Xt’’>t’= A1={a,b,e,f,g,d};A2=∅

Pr[X3]=1

ρ(f,t)1‐ρ(f,t)

Pr[Xt]ρ(g,t’) Pr[Xt](1‐ρ(g,t’))

Pr[Xt’]ρ(d,t’’) Pr[Xt’](1‐ρ(d,t’’))

t’’=Xt’

Pr[X3.2]=1

Pr[X6.1]=1

Pr[X8.3]=1

Fig. 5.4. Tree of Possible Worlds

We can build new possible worlds till time t”, corresponding to the time
in which all the nodes belong to the same set. We recall that, each time a
node switch set, new values of its outgoing spreading times are picked.

5.3.2 Monotonicity and Submodularity

We need to show that reachability under the NP-LE Model is a monotone and
submodular function. More in detail, given a universe U and a possible world
X, we prove that the function RUt (X

i,X−i) is monotone and submodular in

68 5 Competitive, Continuous Time and Non-Progressive Influence Maximization

Xi, with X−i fixed. We recall that the formalism X−i denotes a collection of
disjoint subsets of nodes, one for each company j ∈ {1, 2, . . . ,K}, with j 6= i.
To this end, given two sets of nodes S and T such that:

1. S ⊆ T , and
2. T ∩Xj = ∅ for each Xj ∈ X−i.

we prove that the following conditions

1. monotonicity
|RUt (S,X

−i)| ≤ |RUt (T,X
−i)|

2. submodularity

|RUt (S ∪ {v},X−i)| − |RUt (S,X
−i)| ≥ |RUt (T ∪ {v},X−i)| − |RUt (T,X

−i)|

are satisfied.
Since the time is fixed and at most one node can be reached every

time, the first condition holds. As concern the submodularity, the proof
straightforwardly follows from the one given in [43]. The quantity |RUt (S ∪
{v},X−i)| − |RUt (S,X

−i)| (resp. |RUt (T ∪ {v},X−i)| − |RUt (T,X
−i)|) is the

number of elements in RUt ({v},X
−i) that were not included in RUt (S,X

−i)
(resp. RUt (T,X

−i)). As the number of nodes in RUt (T,X
−i) is greater or equal

to those in RUt (S,X
−i), the submodularity condition holds.

Theorem 5.7. The expected spread σi(Si,S−i, t) of a company Ci under the
NPK-LT Model is monotone and submodular.

Proof. In order to prove that σi(Si,S−i, t) under NPK-LT Model is monotone
and submodular, we need to show the equivalence between the diffusion pro-
cess defined by our model and the reachability under NP-LE Model.
More in details, consider, at any time t ≥ 0, any set At = {A1

t , · · · , A
K
t } of

K disjoint subsets of V . Given the set St of active sets at time t for each
company Ci, with i ∈ {1, 2, . . . ,K}, we have to show that

Pr (St = At | S0 = A0, · · · ,St− = At−) =

Pr
(
RUt (St−) = At | R

U
0 (S0) = A0, · · · , R

U
t−(St=) = At−

)

Claim. The diffusion process defined by NPK-LT Model is equivalent to the
reachability under NP-LE Model.

The rationale for the claim relies on the fact that the probability of reach-
ing at time t a new node in the NP-LE Model (i.e. the probability of a given
possible world) corresponds to the probability that an activation (or, equiva-
lently, a switching of company) occurs at time t in the NPK-LT Model. This
follows from the proof of equivalence between the LT diffusion process and
the LT live-edge reachability given in [43]. However, there are some differences

5.3 NPK-LT Model Properties 69

we have to take into account. First of all, we need to consider the propaga-
tion delay of the influence. This feature is shared by both models. Indeed,
the spreading times are sampled (thus known) every time a node is activated
(eq. reachable). Moreover, a node can get deactivated for a company (thus
activated for another). To this end, we will consider, separately, the events of
activation of a node for a company and its deactivation. It is worth noting
that, since we are assuming continuous time evolution, at most one activation
can occur at a given time t > 0 and at most two companies will be affected
by this change (the chosen one and the left one).

• Activation Event.
In the following, we will show that, given K disjoint sets of nodes, one for
each company Ci, the probability of activation of a node for Ci at time t in
the NPK-LT Model is equivalent to the probability that this node is added
to the set of Ci reachable nodes at time t according to the NP-LE Model.
More in detail, let t− be the time in which the last event occurs prior
to t. Then, the probability that a node v is activated for company Ci at
time t > t− under the NPK-LT Model is similar to the probability defined
in [48] where, instead of directly considering the set of active nodes at the
last iteration, i.e. St− , we consider only the node u ∈ I(v, t) ⊆ St− actively
influential for v, i.e. the active node that is able to propagate the influence
at time t. Moreover, since we are in a non progressive scenario, a node v
can become adopter at time t of a given company Ci regardless of whether
it was active for another company at time t′ < t. It implies that v’s activa-
tion probability for a given company Ci at time t under the NPK-LT Model
is only related to the motivation of v in adopting a company at that time
and to the probability that it will actually adopt Ci, i.e.

Pr
[
Sit = Si

t−
∪ {v} | St−

]
=

ρ(v, t) · bu,v if ∃u ∈ N in(v) s.t. u ∈ Ii(v, t) \ I(v, t−)

0 otherwise

In this case, we have to consider the switching probability of node v that
takes into account how interested is v in changing company at the specified
time. We recall that the latter is equal to 1 when the node v has never
been activated.
Regarding the NP-LE Model, the probability that a node v is reachable at
time t from the set of Ci reachable nodes in the universe U corresponds
to the existence of a live edge induced from Ii(v, t) \ I(v, t−), i.e.

Pr
[
RXt (Si

t−
,St−) = Si

t−
∪ {v}

]
=

ρ(v, t) · bu,v if ∃u ∈ N in(v) s.t. u ∈ Ii(v, t) \ I(v, t−)

0 otherwise

70 5 Competitive, Continuous Time and Non-Progressive Influence Maximization

Due to the NP-LE Model construction, this probability is exactly the value
obtained for the NPK-LT Model. Thus, by induction over the iterations of
the NPK-LT Model and the live-edge process, we proved that the distribu-
tions produced are the same.

• Deactivation or Switching Event.
The probability of a node’s deactivation follows the same distribution as
well. In the NPK-LT Model, the deactivation event for a company Ci cor-
responds to the activation for another company Cj , with j 6= i. However,
from the perspective of Ci, it is not relevant to know for which company
the deactivated node will become active. Thus, the probability of this event
is the following:

Pr
[
Sit = Si

t−
\ {v} | St−

]
=

∑
S

j
t∈S

−i

t−

Pr
[
Sjt = Sj

t−
∪ {v}

]

Equivalently, in the NP-LE Model, the deactivation event of a node v at
time t for a company Ci corresponds to the reachability of v from nodes
of another company Cj , with j 6= i. Thus, we obtain:

Pr
[
RXt (Si

t−
,St−) = Si

t−
\ {v}

]
=

∑
S

j
t∈S

−i

t−

Pr
[
RXt (Sj

t−
,St−) = Sj

t−
∪ {v}

]

As equivalence has been proven, we are going to show that, under the
NPK-LT Model, the expected number of active nodes at time t for a company
Ci, σi(Si,S−i, t), is monotone and submodular.

To this end, we express the expected number of active nodes σi(Si,S−i, t)
at a specific time t as:

σi(Si,S−i, t) =
∑

∀U

Pr(U) ·

 ∑

∀X
t−

Pr(Xt−) · |R
U
t (X

i
t− ,Xt−)|

where

• Xt− is a leaf node of the possible worlds tree pruned in correspondence of
value of t > t−, and

• Xi
t−

∈ Xt− represents the set of nodes that result active for the company
Ci at time t− for the possible world considered.

Thus σi(Si,S−i, t) is monotonic and submodular as it corresponds to a non-
negative linear combination of monotonic and submodular functions. ✷

Based on the above results, it is straightforward to prove the following corol-
lary.

Corollary 5.8. Function EAT i is monotone and submodular.

5.4 Discussion 71

As definition, σinp(S
i,T) =

∫
T

t=0
σi(Si,S−i, t)dt. Thus EAT i is also sub-

modular as it corresponds to a non-negative linear combination of submodular
functions.

5.4 Discussion

In this chapter, we presented an extension to the K-LT Model to accomodate
continuos time diffusion in a non-progressive setting. Despite the adoption of a
service/product is typically a non-progressive phenomena, extensive research
has been done to define several progressive diffusion models, that rarely fit the
real user behaviours. To overcome this limitation, we provide a non-progressive
propagation model and we have shown that the spread under the proposed
model satisfies the desidered properties of monotonicity and submodularity.
The implication of this result is that all the techniques developed for seed
selection under the classical LT model, including greedy approximation using
Monte Carlo simulation as well as various efficient high quality heuristics are
now available for solving the non-progressive influence maximization problem.
Indeed, it is worth noting that, while non-submodular diffusions behaviors
often exist in reality, it is still widely open on how to deal with optimization
problems beyond submodular function maximization techniques. Therefore,
if submodularity does not hold, the above problem would be still quite open
and we could only rely on heuristics without theoretical guarantee.

Clearly, there are still some challenges to solve. First of all, we described
how influence propagates over the network, more precisely, how influence dif-
fuses to a node from its neighbors thanks to some parameters (such as spread-
ing times and influence weights associated to the edges). However, we cannot
assume that the latter are given as input. Indeed, since real world social net-
work data do not come with such informations, we have to learn the parame-
ters of our influence propagation model from past observations, i.e. from any
evidence of past influence among nodes. Despite there are many algorithms
devoted to this task [32, 29], the real technical challenge is dealing with large-
scale graphs. This is also the main drawbacks of the current solutions for the
seed selection. Indeed, despite dramatic advances have been made in making
the process of seed selection efficient, with heuristics offering a quality close to
the theoretical approximation guarantee, scaling approximation algorithms up
to a billion node network and learning efficiently model parameters are quite
open problems that we are dealing with.

Conclusion and Future Directions

Recent years have witnessed a proliferation of applications dealing with a pe-
culiar form of graph data as social networks. This huge amount of application
lead to the design of ad hoc algorithms devoted to an efficient and effective
management of these data. In this thesis, we focused on two categories of such
algorithms, namely shortest distances maintenance and influence diffusion in
a non progressive environment. Computing shortest distances is one of the
most fundamental problems when managing social networks as the availabil-
ity of accurate information on paths being created or canceled due to the
network evolution is crucial in many real life scenarios. Although many al-
gorithms have been proposed for this purpose, they are designed to work in
main memory assuming static graphs. This assumption, significantly limits
their applicability to many current applications where graphs are very large
and frequently updated (e.g. Facebook graph). Indeed, it is prohibitive to keep
all shortest distances in main memory and compute them from scratch every
time as (even) small changes will cause a great overload for their calculation.

To overcome these limitations, we have proposed efficient algorithms for
the incremental maintenance of all-pairs shortest distances for graphs stored in
relational databases. Our algorithms significantly outperform the state-of-the-
art algorithms designed for the same setting and can handle the insertion and
deletion of multiple edges at once. The proposed algorithms might be easily
extended to solve the APSP problem by keeping track of the edges used during
the shortest distance computation (this might be achieved by using extended
distance tuples). Another interesting direction for future work is to apply the
ideas underlying our approach to the development of algorithms working on
graph database systems [59].

As regards our extension to the K-LT Model for dealing with continuous
time diffusion in a non-progressive setting, we point out the innovative nature
of our work as, despite the adoption of a service/product is typically a non-
progressive phenomena, extensive research has been done to define several
progressive diffusion models, that rarely fit the real user behaviors. Thus, we
defined a non-progressive propagation model and we showed that the spread

Conclusions 73

under the proposed model satisfies the desired properties of monotonicity and
submodularity. This result is clearly a strong one, because all the techniques
developed for seed selection under the classical LT model, including greedy
approximation using Monte Carlo simulation as well as various efficient high
quality heuristics are still adequate for solving the non-progressive influence
maximization problem.

The intriguing features of this problem leave room for interesting follow up
of this work. First of all, a big technical challenge is dealing with large-scale
graphs. As a matter of fact, the basic greedy algorithm for selecting the seed
set has a very high running time, that turns to be unaffordable for actual
graphs. Moreover, we cannot assume that the parameters of our influence
propagation model are given as an input (e.g. the influence weight), because
social network data do not come with such information. In this respect, despite
dramatic advances have been made in making the process of seed selection
efficient by adopting heuristics whose theoretical approximation guarantee a
satisfactory accuracy, scaling approximation algorithms up to a billion node
network and learning efficiently model parameters are quite open problems
that we plan to deal with.

Finally, it will be quite interesting to extend our proposal in order to
consider the influence diffusion from the point of view of the owner of the social
network, instead from the perspective of one of the competing companies. The
latter could be exploited from the owner of the network to guarantee a fair seed
set allocation to the clients running a campaign on it, offering viral marketing
as a service, for a price.

References

[1] Ravindra K. Ahuja, Kurt Mehlhorn, James B. Orlin, and Robert En-
dre Tarjan. Faster algorithms for the shortest path problem. J. ACM,
37(2):213–223, 1990.

[2] Takuya Akiba, Yoichi Iwata, and Yuichi Yoshida. Fast exact shortest-
path distance queries on large networks by pruned landmark labeling. In
SIGMOD Conference, pages 349–360, 2013.

[3] Aris Anagnostopoulos, Ravi Kumar, and Mohammad Mahdian. Influ-
ence and correlation in social networks. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’08, pages 7–15. ACM, 2008.

[4] Sinan Aral, Lev Muchnik, and Arun Sundararajan. Distinguish-
ing influence-based contagion from homophily-driven diffusion in dy-
namic networks. Proceedings of the National Academy of Sciences,
106(51):21544–21549, 2009.

[5] Albert-Laszlo Barabasi and Reka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999.

[6] Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Maintaining
all-pairs approximate shortest paths under deletion of edges. In SODA,
pages 394–403, 2003.

[7] Shishir Bharathi, David Kempe, and Mahyar Salek. Competitive influ-
ence maximization in social networks. In Internet and Network Eco-
nomics, Third International Workshop, WINE 2007, San Diego, CA,
USA, December 12-14, 2007, Proceedings, pages 306–311, 2007.

[8] Allan Borodin, Yuval Filmus, and Joel Oren. Threshold models for com-
petitive influence in social networks. In WINE, pages 539–550, 2010.

[9] Ceren Budak, Divyakant Agrawal, and Amr El Abbadi. Limiting the
spread of misinformation in social networks. In WWW, pages 665–674,
2011.

[10] Timothy M. Chan. More algorithms for all-pairs shortest paths in
weighted graphs. In STOC, pages 590–598, 2007.

References 75

[11] Lijun Chang, Jeffrey Xu Yu, Lu Qin, Hong Cheng, and Miao Qiao. The
exact distance to destination in undirected world. VLDB J., 21(6):869–
888, 2012.

[12] Wei Chen, Laks V. S. Lakshmanan, and Carlos Castillo. Information
and Influence Propagation in Social Networks. Synthesis Lectures on
Data Management. Morgan & Claypool Publishers, 2013.

[13] Wei Chen, Yajun Wang, and Siyu Yang. Efficient influence maximization
in social networks. In Proceedings of the 15th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, KDD ’09,
pages 199–208, 2009.

[14] James Cheng, Yiping Ke, Shumo Chu, and Carter Cheng. Efficient pro-
cessing of distance queries in large graphs: a vertex cover approach. In
SIGMOD Conference, pages 457–468, 2012.

[15] Serafino Cicerone, Gianlorenzo D’Angelo, Gabriele Di Stefano, and
Daniele Frigioni. Partially dynamic efficient algorithms for distributed
shortest paths. Theor. Comput. Sci., 411(7-9):1013–1037, 2010.

[16] Serafino Cicerone, Gabriele Di Stefano, Daniele Frigioni, and Umberto
Nanni. A fully dynamic algorithm for distributed shortest paths. Theor.
Comput. Sci., 297(1-3):83–102, 2003.

[17] Tom Crecelius and Ralf Schenkel. Pay-as-you-go maintenance of pre-
computed nearest neighbors in large graphs. In CIKM, pages 952–961,
2012.

[18] Daniel Delling, Peter Sanders, Dominik Schultes, and Dorothea Wagner.
Engineering route planning algorithms. In Algorithmics of Large and
Complex Networks, pages 117–139, 2009.

[19] Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic
all pairs shortest paths. J. ACM, 51(6):968–992, 2004.

[20] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1(1):269–271, 1959.

[21] Nan Du, Le Song, Manuel Gomez-Rodriguez, and Hongyuan Zha. Scal-
able influence estimation in continuous-time diffusion networks. In NIPS,
pages 3147–3155, 2013.

[22] P. Erdös and A. Rényi. On random graphs i. Publicationes Mathematicae
Debrecen, 6:290, 1959.

[23] Eyal Even-Dar and Asaf Shapira. A note on maximizing the spread of
influence in social networks. In WINE, pages 281–286, 2007.

[24] Wenfei Fan, Jianzhong Li, Shuai Ma, Nan Tang, Yinghui Wu, and Yun-
peng Wu. Graph pattern matching: From intractable to polynomial time.
PVLDB, 3(1):264–275, 2010.

[25] MohammadAmin Fazli, Mohammad Ghodsi, Jafar Habibi, Pooya Jalaly
Khalilabadi, Vahab S. Mirrokni, and Sina Sadeghian Sadeghabad. On the
non-progressive spread of influence through social networks. In LATIN,
pages 315–326, 2012.

[26] L.C. Freeman. A set of measures of centrality based on betweenness.
Sociometry, 40:35–41, 1977.

76 References

[27] AdaWai-Chee Fu, HuanhuanWu, James Cheng, and Raymond Chi-Wing
Wong. Is-label: an independent-set based labeling scheme for point-to-
point distance querying. PVLDB, 6(6):457–468, 2013.

[28] Andrew V. Goldberg and Renato Fonseca F. Werneck. Computing point-
to-point shortest paths from external memory. In ALENEX/ANALCO,
pages 26–40, 2005.

[29] Manuel Gomez-Rodriguez, David Balduzzi, and Bernhard Schölkopf. Un-
covering the temporal dynamics of diffusion networks. In Proceedings
of the 28th International Conference on Machine Learning, ICML 2011,
Bellevue, Washington, USA, June 28 - July 2, 2011, pages 561–568, 2011.

[30] Manuel Gomez-Rodriguez and Bernhard Schölkopf. Influence maximiza-
tion in continuous time diffusion networks. In Proceedings of the 29th
International Conference on Machine Learning, ICML 2012, Edinburgh,
Scotland, UK, June 26 - July 1, 2012, 2012.

[31] Gang Gou and Rada Chirkova. Efficient algorithms for exact ranked twig-
pattern matching over graphs. In SIGMOD Conference, pages 581–594,
2008.

[32] Amit Goyal, Francesco Bonchi, and Laks V. S. Lakshmanan. Learning
influence probabilities in social networks. In Proceedings of the Third
International Conference on Web Search and Web Data Mining, WSDM
2010, New York, NY, USA, February 4-6, 2010, pages 241–250, 2010.

[33] Amit Goyal, Wei Lu, and Laks V. S. Lakshmanan. SIMPATH: an efficient
algorithm for influence maximization under the linear threshold model.
In 11th IEEE International Conference on Data Mining, ICDM 2011,
Vancouver, BC, Canada, December 11-14, 2011, pages 211–220, 2011.

[34] M.S. Granovetter. The Strength of Weak Ties. The American Journal
of Sociology, 78(6):1360–1380, 1973.

[35] Daniel Gruhl, R. Guha, David Liben-Nowell, and Andrew Tomkins. In-
formation diffusion through blogspace. In Proceedings of the 13th Inter-
national Conference on World Wide Web, WWW ’04, pages 491–501,
2004.

[36] Andrey Gubichev, Srikanta J. Bedathur, Stephan Seufert, and Gerhard
Weikum. Fast and accurate estimation of shortest paths in large graphs.
In CIKM, pages 499–508, 2010.

[37] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Main-
taining views incrementally. In SIGMOD Conference, pages 157–166,
1993.

[38] Xinran He, Guojie Song, Wei Chen, and Qingye Jiang. Influence blocking
maximization in social networks under the competitive linear threshold
model. In Proceedings of the Twelfth SIAM International Conference
on Data Mining, Anaheim, California, USA, April 26-28, 2012., pages
463–474, 2012.

[39] Junming Huang, Xue-Qi Cheng, Hua-Wei Shen, Tao Zhou, and Xiao-
long Jin. Exploring social influence via posterior effect of word-of-mouth
recommendations. In Proceedings of the Fifth ACM International Con-

References 77

ference on Web Search and Data Mining, WSDM ’12, pages 573–582,
2012.

[40] Giuseppe F. Italiano. Finding paths and deleting edges in directed acyclic
graphs. Inf. Proc. Lett., 28(1):5–11, 1988.

[41] Ruoming Jin, Ning Ruan, Yang Xiang, and Victor E. Lee. A highway-
centric labeling approach for answering distance queries on large sparse
graphs. In SIGMOD Conference, pages 445–456, 2012.

[42] Donald B. Johnson. Efficient algorithms for shortest paths in sparse
networks. J. ACM, 24(1):1–13, 1977.

[43] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread
of influence through a social network. In KDD, pages 137–146, 2003.

[44] Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest
paths and transitive closure in digraphs. In FOCS, pages 81–91, 1999.

[45] Jan Küntzer, Christina Backes, Torsten Blum, Andreas Gerasch, Michael
Kaufmann, Oliver Kohlbacher, and Hans-Peter Lenhof. Bndb - the bio-
chemical network database. BMC Bioinformatics, 8, 2007.

[46] Jure Leskovec, Andreas Krause, Carlos Guestrin, Christos Faloutsos,
Jeanne M. VanBriesen, and Natalie S. Glance. Cost-effective outbreak
detection in networks. In Proceedings of the 13th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, San Jose,
California, USA, August 12-15, 2007, pages 420–429, 2007.

[47] Vincent Yun Lou, Smriti Bhagat, Laks V. S. Lakshmanan, and Sharan
Vaswani. Modeling non-progressive phenomena for influence propagation.
CoRR, 2014.

[48] Wei Lu, Francesco Bonchi, Amit Goyal, and Laks V. S. Lakshmanan.
The bang for the buck: fair competitive viral marketing from the host
perspective. In KDD, pages 928–936, 2013.

[49] Alan Mislove, Massimiliano Marcon, P. Krishna Gummadi, Peter Dr-
uschel, and Bobby Bhattacharjee. Measurement and analysis of online
social networks. In Proceedings of the 7th ACM SIGCOMM Conference
on Internet Measurement, pages 29–42, 2007.

[50] M. E. J. Newman and M. Girvan. Finding and evaluating community
structure in networks. Physical Review, E 69, 2004.

[51] Mark Newman. Networks: An Introduction. Oxford University Press,
Inc., New York, NY, USA, 2010.

[52] Chaoyi Pang, Guozhu Dong, and Kotagiri Ramamohanarao. Incremental
maintenance of shortest distance and transitive closure in first-order logic
and SQL. ACM Trans. Database Syst., 30(3):698–721, 2005.

[53] Romualdo Pastor-Satorras and Alessandro Vespignani. Epidemic spread-
ing in scale-free networks. Physical Review Letters, 86(14):3200–3203,
2001.

[54] Seth Pettie. A new approach to all-pairs shortest paths on real-weighted
graphs. Theor. Comput. Sci., 312(1):47–74, 2004.

78 References

[55] Michalis Potamias, Francesco Bonchi, Carlos Castillo, and Aristides Gio-
nis. Fast shortest path distance estimation in large networks. In CIKM,
pages 867–876, 2009.

[56] Zichao Qi, Yanghua Xiao, Bin Shao, and Haixun Wang. Toward a dis-
tance oracle for billion-node graphs. PVLDB, 7(1):61–72, 2013.

[57] Miao Qiao, Hong Cheng, Lijun Chang, and Jeffrey Xu Yu. Approximate
shortest distance computing: A query-dependent local landmark scheme.
In ICDE, pages 462–473, 2012.

[58] Syed Asad Rahman, P. Advani, R. Schunk, Rainer Schrader, and Dietmar
Schomburg. Metabolic pathway analysis web service (pathway hunter
tool at cubic). Bioinformatics, 21(7):1189–1193, 2005.

[59] I. Robinson, J. Webber, and E. Eifrem. Graph Databases. O’Reilly Media,
Incorporated, 2013.

[60] Atish Das Sarma, Sreenivas Gollapudi, Marc Najork, and Rina Panigrahy.
A sketch-based distance oracle for web-scale graphs. In WSDM, pages
401–410, 2010.

[61] Christian Sommer. Shortest-path queries in static networks. ACM Com-
puting Surveys, 46:45:1–45:31, 2014.

[62] Youze Tang, Xiaokui Xiao, and Yanchen Shi. Influence maximization:
near-optimal time complexity meets practical efficiency. In Interna-
tional Conference on Management of Data, SIGMOD 2014, Snowbird,
UT, USA, June 22-27, 2014, pages 75–86, 2014.

[63] Isabel Valera, Manuel Gomez-Rodriguez, and Krishna P. Gummadi.
Modeling diffusion of competing products and conventions in social me-
dia. CoRR, 2014.

[64] Chi Wang, Wei Chen, and Yajun Wang. Scalable influence maximization
for independent cascade model in large-scale social networks. Data Min.
Knowl. Discov., 25(3):545–576, 2012.

[65] D. J. Watts and S. H. Strogatz. Collective dynamics of’small-
world’networks. Nature, 393(6684):409–10, 1998.

[66] Duncan J. Watts and Jonah Peretti. Viral Marketing for the Real World.
Harvard Business Review, 2007.

[67] Lingkun Wu, Xiaokui Xiao, Dingxiong Deng, Gao Cong, Andy Diwen
Zhu, and Shuigeng Zhou. Shortest path and distance queries on road
networks: An experimental evaluation. PVLDB, 5(5):406–417, 2012.

[68] Jeffrey Xu Yu, Lu Qin, and Lijun Chang. Keyword Search in Databases.
Synthesis Lectures on Data Management. Morgan & Claypool Publishers,
2010.

[69] Andy Diwen Zhu, Hui Ma, Xiaokui Xiao, Siqiang Luo, Youze Tang, and
Shuigeng Zhou. Shortest path and distance queries on road networks:
towards bridging theory and practice. In SIGMOD Conference, pages
857–868, 2013.

[70] Andy Diwen Zhu, Xiaokui Xiao, Sibo Wang, and Wenqing Lin. Efficient
single-source shortest path and distance queries on large graphs. In KDD,
pages 998–1006, 2013.

