
Antonino Rullo

Università della Calabria - DIMES

Cyber Defense of Enterprise
Information Systems:
Advanced Issues and Techniques

PhD Thesis

Advisors:

Andrea Pugliese

Domenico Saccà

Contents

1 Introduction . 1

Part I Attack Detection

2 Expressive and Efficient Online Alert Correlation 7
2.1 Introduction . 7
2.2 Preliminaries and Problem Formalization 9

2.2.1 Discussion . 14
2.3 Efficient Retrieval . 15
2.4 Experimental Results . 19

2.4.1 Setting . 19
2.4.2 Results . 21

2.5 Related Works . 25
2.5.1 Graph-Based Alert Correlation . 25
2.5.2 Fusion-Based Alert Correlation . 27
2.5.3 Pattern Discovery . 27
2.5.4 Other Works . 27

2.6 Conclusions . 28

3 Intrusion Detection with Hypergraph-Based Attack Models 29
3.1 Introduction . 29
3.2 Modeling Attack Processes . 32
3.3 Consistency of Attack Models . 35
3.4 The Intrusion Detection Problem . 38
3.5 Action Hierarchies . 40
3.6 Indexing and Detecting Attack Instances 41
3.7 Experimental Evaluation . 45

3.7.1 Setting . 47
3.7.2 Results . 48

3.8 Related Work . 51

VI Contents

3.8.1 Hypergraphs in security. 51
3.8.2 Workflow modeling. 52
3.8.3 Intrusion detection with attack graphs. 52

3.9 Conclusions . 53

Part II Anomaly Detection

4 PADUA: Parallel Architecture to Detect Unexplained
Activities . 57
4.1 Introduction . 57
4.2 Related Work . 59

4.2.1 A priori definitions. 59
4.2.2 Learning and then detecting abnormality. 59
4.2.3 Similarity-based abnormality. 60
4.2.4 Cybersecurity. 60

4.3 Probabilistic Penalty Graphs . 61
4.3.1 Definition of PPGs . 61
4.3.2 Unexplained Situations . 62
4.3.3 Deriving Noise Degradation Values from a Training Set 67

4.4 The PPG-Index: Fast Computation of Unexplained Situations
on a Single CPU . 68
4.4.1 Super-PPGs . 68
4.4.2 The PPG-Index . 69
4.4.3 Example: updating and pruning a PPG-Index 73

4.5 Partitioning Super-PPGs Across a Compute Cluster 74
4.5.1 Probability Partitioning (PP) and Probability-Penalty

Partitioning (PPP) . 75
4.5.2 Expected Penalty Partitioning (EPP) 76
4.5.3 Temporally Discounted Expected Penalty Partitioning

(tEPP) . 77
4.5.4 Occurrence Partitioning (OP) . 78

4.6 Parallel Detection . 78
4.7 Experimental Results . 79

4.7.1 Video Surveillance Domain . 80
4.7.2 Cybersecurity Domain . 83

4.8 Conclusions . 84

Part III Adversarial Defense

5 Pareto-Optimal Adversarial Defense of Enterprise Systems 89
5.1 Introduction . 89
5.2 Related Work . 91
5.3 Vulnerability Dependency Graphs . 93

Contents VII

5.3.1 From Attack Graphs to Vulnerability Dependency
Graphs . 95

5.4 Players’ Strategy . 98
5.4.1 Defender’s Strategy . 98
5.4.2 Attacker Strategy . 100
5.4.3 Best Strategy of the Attacker . 105

5.5 Pareto Analysis for the Defender . 105
5.5.1 Bi-Objective Optimization Problem Formulation 106
5.5.2 Computing the Pareto Frontier . 110
5.5.3 Finding the Optimal Defender Strategy 112
5.5.4 MILP Formulations for Bi-Optimization Problem and

Optimal Defender Strategy . 113
5.5.5 Possible Extensions . 123

5.6 Experimental Results . 125
5.6.1 Topology of the VDGs Used in the Experiments 125
5.6.2 Pareto Frontiers . 127
5.6.3 Execution Time . 130

5.7 Conclusion and Future Work . 131
5.8 Table of Symbols . 133

6 Conclusions . 135

References . 137

1

Introduction

The original purpose of the Internet was to be a data network dedicated to
the spread of documents within the scientific community and not intended
instead for purely public use. But the rapid growth of Internet occurred in
the last 15 years has led many organizations, such as companies, governments,
law enforcement, banks, universities, etc., to use the network as one of their
most important tools. This made Internet perhaps the biggest existing inter-
change, trading and communication place, on which have migrated hundreds
of services, and on which thousands of monetary transactions, trades and
accumulation of information daily occur.

Today Internet is characterized as a democratic network where each single
user can transmit information of any kind – often in a totally anonymous
way. This fact, on the one hand, is one of the main reasons for the success
of the network as a powerful tool for mass communication, but on the other,
it generates inherent weaknesses and vulnerabilities. Indeed, many are the
attacks achievable via the network from hackers with malicious intentions such
as denial of service and theft of sensitive data (passwords and authentication
codes, cloning of credit cards, etc.) as well as direct fraud against consumers
such as through fake e-mail. The nature of Internet has therefore allowed the
spread of a different kind of user, the malicious user, who uses the network
infrastructure in order to cause damages to normal users or organizations.

The infrastructure of Internet presents a series of vulnerabilities, or flaws,
which allow malicious users to bypass security controls, and to anonymously
navigate a system along pathways not planned for normal users. Thus, orga-
nizations with network-connected information systems must necessarily put
appropriate countermeasures in place in order to prevent malicious users from
taking advantage of their systems. Industry has a very strong market-based
incentive to ensure that networks are safe and secure, with participants work-
ing in partnerships with government and even with competitors. Protecting
cyberspace is critical from the perspective of both industry and government.
They share common interests in building confidence and security in the use

2 1 Introduction

of information and communication technology (ICT) to support economic
growth and national security.

Market pushes ICT firms to place a high priority on the security of their
products and services. Moreover, as cyber attacks continue to increase in vol-
ume and sophistication, it is critical that the public and private sectors partner
create a system with the flexibility to address threats as they evolve. Advanced
Persistent Threat (APT) attacks have significantly changed the cyber threat
landscape by introducing an adversary, likely backed by nation-states, with a
high likelihood of success. With a high level of expertise, funding and organi-
zation, APT attackers will likely succeed in breaching a targeted system. In
this scenario, there are three important security issues an organization needs
to take care of:

• Attack Detection: making their systems able to recognize and deal with
ongoing attacks when a malicious user has been able to begin one;

• Anomaly Detection: making their systems able to identify anomalous be-
haviors not necessarily classifiable as attacks;

• Adversarial Defense: making their systems immune to known attacks.

The objective of this thesis is to propose techniques that address the three
above issues using advanced methods and techniques of two basic fields: model
checking for intrusion and anomaly detection and game theory for adversarial
defense.

In model checking, one develops a specification of an algorithm and then
attempts to validate various assertions about the correctness of that specifica-
tion under the specific assumptions about the model. Model checking provides
a useful and rigorous framework for examining security issues.

Game theory has been used successfully in several areas. The approach
explicitly models the interests of attackers and defenders and their repeated
interactions. Game theory is useful in understanding how to prioritize cyber
defense activities. It is not possible to protect everything all the time and so
some notion of risk must be established; game theoretic approaches provide a
framework for reasoning about such choices.

The thesis is divided into three parts that illustrate the problems dealt
with for each of the mentioned issues, the adopted formal techniques and the
main achieved results.

Part 1 on attack detection presents real-time intrusion detection techniques
that, given a set of known attack patterns, index the “activities” that are hap-
pening in a monitored system in order to extract “attack instances”, e.g., sub-
sequences of the log that match some of the given patterns [1, 2, 3]. In partic-
ular, Chapter 1 describes a framework where known attacks are described by
deterministic finite automatons equipped with correlation and severity func-
tions that are used to further constrain the structure of attacks and assign
them a severity value. During the detection process, attack instances returned
by the pro- posed index structure and associated maintenance and detection
algorithm are kept in a priority queue of size k, which orders them according to

1 Introduction 3

their severity value so that only the k “more severe” (possibly ongoing) attacks
are returned to the security expert. The framework presented in Chapter 2
uses hypergraph-based models to describe attacks. This provides the ability to
describe attacks in a much more compact way, by allowing order-independent
sets of action symbols that better capture the scenarios where some of the
steps an attacker must follow do not necessarily have to be taken in a specific
order.

Part 2 on anomaly detection proposes a novel technique that labels sub-
sequences of the log as “unexplained” when they significantly differ from “ex-
plained” ones [4]. In particular, in Chapter 3 a graph-based model is proposed
to describe activities that are “planned” to occur in the monitored system.
Expected actions correspond to vertices, while edges describe probabilistically-
weighted precedence relationships between actions. In this case, sub-sequences
of the log that match a path in a model are given a “score” that is a function
of the weights associated with the edges in the path. The model includes a
“penalty” component, which is used to lower scores in the presence of noise
in the log. A parallel detection algorithm merges graph models and extracts
unexplained sub-sequences, based on a different definition of score aimed at
capturing the degree of unexplainedness of the sub-sequences. The algorithm
is designed to run over a k + 1 nodes cluster in which the merged graph is
split according to some heuristics.

Finally, Part 3 on adversarial defense presents a defense technique that,
given a set of software vulnerabilities, computes the Pareto-optimal sets of
vulnerabilities that have to be patched in order to cover a portion of the
network as wide as possible with limited resources [5]. The technique is de-
veloped with a game-theoretic approach. The game is a two-player game, and
it is played once. Each player has a set of actions, and knows what the value
of each action will be, but the value depends on what the other player does.
So in principle each player considers all its options, based on what the other
player might do, contemplating all its options. Each player adopts a strategy,
possibly involving random choices, describing what they will do. There is more
than one optimality concept. A Nash equilibrium occurs when neither player
can do better just by changing their strategy. The two strategies together are
Pareto optimal when every change that makes one player better off harms the
other player. There can be multiple Nash equilibria, and multiple Pareto equi-
libria, and they need not agree. In particular, Chapter 4 proposes a technique
for the defense of computer networks that, given a finite cost an organiza-
tion is willing to bear to limit network security risks, and given a minimal
“productivity level” the organization requires (associated with the possibility
of deactivating some of the software deployed on the network) identifies the
Pareto-optimal sets of patches to be applied. The idea is to model a scenario
where we want to limit the chances for malicious users to cause damage, while
keeping the total cost of the security operations below the available budget,
and deactivating software in a way that the total associated productivity level
does not decrease unacceptably.

4 1 Introduction

Finally Chapter 6 draws the conclusion and discusses further research
work.

Part I

Attack Detection

2

Expressive and Efficient Online Alert
Correlation

We propose a technique for alert correlation that combines DFA-like patterns
with correlation functions and supports the fast retrieval of occurrences of the
given patterns through specifically-designed indexing and retrieval schemes.
Our approach supports (i) the retrieval of the top-k (possibly non-contiguous)
sub-sequences, ranked on the basis of an arbitrary user-provided severity func-
tion, (ii) the concurrent retrieval of sub-sequences that match any pattern in a
given set, (iii) the retrieval of partial occurrences of the patterns, and (iv) the
online processing of streaming logs. The experimental results confirm that,
although the proposed model is very expressive, the indexing and retrieval
schemes are able to guarantee a very high efficiency of the retrieval process.

2.1 Introduction

Intrusion Detection Systems (IDSs) usually generate logs whose tuples encode
timestamped security-related alerts that are recorded from a monitored sys-
tem. In general, the alert correlation process transforms groups of such alerts
into intrusion reports of interest for the security expert. Alerts typically con-
tain attributes like the type of event, the address of the source and destina-
tion hosts, etc. These attributes are matched against known vulnerabilities,
in order to avoid reporting alerts wih no actual associated risk (e.g., a Linux-
oriented attack blindly launched on a Windows machine). However, applying
this approach alone can lead to missing relevant alerts that do not match any
vulnerability (e.g., ICMP PINGs) but that can be part of a more complex
multi-step attack. Alerts must therefore also be correlated using the knowl-
edge encoded in specific structures (e.g. attack graphs [6]) that describe logical
connections of interest among correlated alerts. In anomaly detection systems
[4, 7, 8, 9, 10, 11], historical data is used to build profiles of the “normal” user
behaviors, so that sequences of actions that deviate from the profiles are classi-
fied as “anomalous”. Misuse detection systems [6, 12, 13, 14, 15, 16, 17] make

8 2 Expressive and Efficient Online Alert Correlation

instead use of sets of descriptions of suspicious activities that are matched
against the log in order to identify ongoing activities.

In order to describe logical connections among alerts, multi-step and
fusion-based correlation techniques have been used in the past [18]. Multi-
step correlation [19, 20, 21] seeks to identify suspicious activities that consist
of multiple “steps” by modeling activities through attack graphs [6, 15, 22,
23, 24, 25] or deterministic finite automata (DFAs). Any activity that com-
plies with a graph or a DFA description is considered suspicious. Fusion-based
correlation [19, 20, 26] uses instead similarity functions that, when applied to
the attributes of incoming alerts, establish whether they should be considered
part of a same activity.

The current literature about alert correlation provides a wide variety of
methods based on the above approaches. In this chapter, we propose a tech-
nique that combines DFA-like patterns and correlation functions, and sup-
ports the fast retrieval of occurrences of the given patterns using specifically-
designed indexing and retrieval schemes. Our approach provides the following
main features:

• The objective is that of retrieving the top-k sub-sequences of a log (ranked
on the basis of a user-provided severity function) that match some graph-
based pattern and satisfy the constraints expressed by a user-provided
correlation function.

• We do not mandate any specific schema for the alerts: we simply regard
each alert as a relational tuple with a user-provided schema.

• Both the user-provided correlation and severity functions can be arbitrary
– we only mandate their polynomial-time computability.

• The proposed indexing and retrieval schemes are designed to manage mul-
tiple patterns, each with its specific severity and correlation functions.

• The retrieved sub-sequences can possibly be non-contiguous.
• The user can specify a maximum duration for each pattern, in order to

retrieve only the sub-sequences that fit in specific time windows.
• The reports built can be based on partial occurrences of activities of in-

terest, i.e., sub-sequences that have not yet reached their terminal stages
in the DFAs.

• The log is streamed into the system, so the retrieval of correlated alerts is
performed in an online fashion with appropriate tuple rates (i.e., tuples
processed per second).

Figure 2.1 shows the two patterns we will use as our running example
throughout the chapter. Edges are labeled with alert symbols and each stage
is annotated with the severity value associated with it. The sequence {access,
service exploit, DoS} represents a possible Denial of Service attack. A secu-
rity expert may want to take security measures at a certain “depth” of this
attack. To this end, the expert wants to receive a report every time a stage of
the sequence is traversed. In other words, we must look at all sub-sequences
of the log that match some prefix of any path in the pattern. Furthermore,

2.2 Preliminaries and Problem Formalization 9

in order to counter the intrusions more quickly, the expert may want to only
look at the first k sub-sequences, based on their associated severity value – in
the example, we assume that the severity of a sub-sequence only depends on
the stage reached in the pattern. Moreover, the correlation function looks at
the attributes of the alerts in order to decide which alerts are to be considered
part of a same attack. Finally, for each pattern, only the sequences that fit in
a time window of maximum length τ are considered.

S
0

S
1

scan

S
4

access

S
2

web

exploit

S
5

service

exploit

S
3

information

loss

S
6

DoS

S
9

S
10

scan

S
11

S
14

ICMP

redirect
S

12

DNS

spoofing
S

15

ARP

spoofing
S

13

phishing
S

16

S
8

upload

shell DoS

S
7

DB dump

access

P1: t=25

P2: t=16

25

35

40

50

120

110

90100

95

10580

75

55

45

20

Fig. 2.1. Example patterns. Each stage is annotated with its associated severity
value.

2.2 Preliminaries and Problem Formalization

In this section we introduce some preliminary notions and formalize the
alert correlation problem, which basically consists in finding the top-k sub-
sequences of a log that represent an attack w.r.t. a given set of patterns.

We assume the existence of (i) a finite set A of alert symbols and (ii) w
attribute domains ATT1, . . . , ATTw. A log is a set L = {`1, . . . , `n} of tuples
(each corrisponding to an alert) of the form 〈id, symbol, ts, att1, . . . , attw〉
where id is an identifier, symbol ∈ A, ts ∈ N is a timestamp, and ∀i ∈ [1, w],
atti ∈ ATTi. We assume that ∀i ∈ [1, n − 1], `i.ts < `i+1.ts. Moreover, we
denote component c of log tuple ` as `.c.

The notion of a pattern is formalized by the following definition.

10 2 Expressive and Efficient Online Alert Correlation

Definition 2.1 (Pattern). A pattern is a tuple P = 〈S, ss, St, δ, τ〉 where:

• S is a set of stages;
• ss ∈ S is the start stage;
• St ⊆ S is the set of terminal stages;
• δ : S ×A → S is the stage transition (partial) function;1

• τ ∈ N is the maximum duration of an occurrence of P .

We assume that ∀s ∈ St,∀sym ∈ A, δ(s, sym) is not defined, and that ∀s ∈
S,∀sym ∈ A, δ(s, sym) 6= ss.

In the following, when δ(s, sym) = s′, we say that there is an edge from s to
s′ labeled with sym.

Example 2.2. Pattern P1 of our running example is formalized as follows:

• S = {s0, . . . , s8};
• ss = s0;
• St = {s3, s6, s7};
• δ(s0, scan)=s1, δ(s0, access)=δ(s1, access)=s8, δ(s1,web exploit)=s2,

δ(s2, information loss)=s3, δ(s4, service exploit)=s5,
δ(s5, DoS)=δ(s8, DoS)= s6, δ(s5,DB dump)=s7, δ(s5, upload shell)=s8;

• τ = 25.

An occurrence of a given pattern is a possibly non-contiguous subsequence
of the log whose associated alert symbols correspond to a path that begins
in a start stage. In addition, the overall duration of the subsequence must
comply with the maximum duration allowed by the pattern. The following
definition formalizes this.

Definition 2.3 (Occurrence). Given a pattern P = 〈S, ss, St, δ, τ〉 and a
log L, an occurrence of P in L is a set O = {`1, . . . , `m} ⊆ L such that:

• ∀i ∈ [1,m− 1], `i.ts < `i+1.ts;
• there exists a set {s0, s1, . . . , sm} ⊆ S such that:

– ss = s0;
– ∀i ∈ [1,m], δ(si−1, `i.symbol) = si;

• `m.ts− `1.ts ≤ τ .

1 Some past works assume aciclicity of the patterns because, in many practical
cases, the “criticality” associated with a sequence of alerts does not change when
the sequence contains a portion that is repeated multiple times as it matches
a cycle in the pattern. In such cases, the overall sequence is equivalent to the
one obtained after removing the portion matching the cycle. We do not make
this assumption as it would reduce the expressiveness of the model and it is not
needed by the indexing algorithm we discuss in Section 2.3.

2.2 Preliminaries and Problem Formalization 11

It should be observed that Definition 2.3 does not require an occurrence to
reach a terminal stage. This feature gives security experts complete freedom
in deciding whether or not a certain subsequence must be considered “critical”
(i.e., with a high severity). Thus, any prefix of a complete path in the pattern
can correspond to a critical subsequence the framework must take into ac-
count. Terminal stages are used to semantically represent the “final goal” of
the attacker. Moreover, they help the retrieval algorithm as they signal that
a subsequence can no longer be extended.

The following definition formalizes the way we characterize the severity of
a subsequence and the attribute-based correlation among log tuples.

Definition 2.4 (Severity and Correlation Functions). Given a pattern
P and a log L, the severity w.r.t. P is a function

σP : 2L → N.

Moreover, the correlation w.r.t. P is a function

γP : 2L → {true, false}

such that γP (X) = true for all subsets X ⊆ L that, based on their attribute
values, can be part of a same occurrence.

We assume transitivity of function γP , that is, if γP (X1 ∪X2) = true and
γP (X2 ∪X3) = true, then γP (X1 ∪X3) = true. Thus, we will sometimes use
the equivalent notation γP : L×L→ {true, false}. It should also be observed
that it is natural to assume σP (X) = 0 when X is not an occurrence of P in
L.

We are now ready to define the alert correlation problem we address.

Definition 2.5 (Alert Correlation Problem). Given a set P of patterns,
a log L, and a number k ∈ N, the alert correlation problem consists in finding
a set O = {O1, . . . , Ok} such that:

1. each Oi is an occurrence in L of a pattern Pi ∈ P;
2. ∀i ∈ [1, k], γPi(Oi) = true;
3. ∀i ∈ [1, k − 1], σPi(Oi) ≥ σPi+1

(Oi+1);
4. there do not exist a pattern P ∈ P and an occurrence O /∈ O of P in L

such that σP (O) > σPk(Ok).

In Definition 2.5, Condition 2 states that all tuples in each occurrence
Oi ∈ O must be correlated to one another; Condition 3 states that O contains
occurrences in decreasing order of severity value; Condition 4 ensures that
the occurrences in O are the ones with the top-k severity values. We do not
assume that ∀i, j with i 6= j, Pi 6= Pj – in other words, set O can contain two
different occurrences of the same pattern.

It should be noted that if the security expert is only interested in con-
tiguous occurrences (as the majority of existing approaches do), our proposed
framework can be straighforwardly extended to post-process the retrieved oc-
curreces and filter out non-contiguous ones.

12 2 Expressive and Efficient Online Alert Correlation

Example 2.6. Returning to our running example, suppose we want to find
the occurrences of the patterns in the log of Figure 2.2. In this case, log
tuples are of the form 〈id, symbol, ts, sourceIP, targetIP 〉. We assume that
γP1

and γP2
consider log tuples as correlated if their sourceIPs are equal

and their targetIPs are in the same subnetwork w.r.t. the example network
in Figure 2.3. Moreover, σP1 and σP2 return the values in Figure 2.1 if the
targetIPs of the tuples are outside the firewall – values are doubled if the
targetIPs are inside the firewall. The resulting sub-sequences are listed in
Figure 2.4, ordered by severity value. Note that O8 is not an occurrence of P2

id symbol ts sourceIP targetIP

100 scan 12 160.57.91.110 110.80.70.120
101 reverse key 13 160.57.91.110 110.80.70.120
102 scan 14 130.10.71.151 120.15.62.140
103 buffer overflow 15 190.23.41.170 170.21.88.124
104 web exploit 16 130.10.71.151 120.15.62.141
105 SQL injection 24 190.23.41.170 170.21.88.124
106 information loss 26 190.23.41.170 170.21.88.124
107 ICMP redirect 28 160.57.91.110 110.80.70.122
108 ARP spoofing 29 160.57.91.110 110.80.70.129
109 DoS 32 190.23.41.170 170.21.88.124
110 information loss 35 130.10.71.151 120.15.62.146

Fig. 2.2. Example log.

Fig. 2.3. Example network.

according to Definition 2.3, since its duration is 17 time units which is longer
than the maximum duration of any occurrence of P2 (that is, 16 time units).

2.2 Preliminaries and Problem Formalization 13

Sub-sequence Pattern Severity Duration

O1 = {102, 104, 110} P1 240 21
O2 = {102, 104} P1 80 2

O3 = {100, 101, 107} P2 75 16
O4 = {100, 101} P2 45 1
O5 = {102} P1 50 0
O6 = {100} P2 25 0
O7 = {100} P1 20 0

O8 = {100, 101, 107, 108} P2 0 17

Fig. 2.4. Example sub-sequences (only log tuple ids are shown).

The set O = {O1, . . . , O4} is a solution for the alert correlation problem with
k = 42. In fact, it satisfies all of the conditions of Definition 2.5:

1. each Oi has an associated pattern Pi for which it is an occurrence in L;
2. γP1

(O1) = γP2
(O2) = γP3

(O3) = γP4
(O4) = true;

3. σP1
(O1) ≥ σP1

(O2) ≥ σP2
(O3) ≥ σP2

(O4);
4. σP1

(O5) ≤ σP2
(O4) and σP2

(O6) ≤ σP2
(O4).

In the characterization of the complexity of the alert correlation problem
we target, we make the realistic assumption that the computation of functions
γ and σ can be performed in polynomial time. We therefore denote the com-
plexity of computing such functions as O(polyγ,σ(x)), that is a polynomial in
the cardinality x of the set to which the functions are applied. The following
result establishes the overall complexity of the problem.

Proposition 2.7. The worst-case asymptotical time complexity of solving the
alert correlation problem is

Ω

log k · ∑
P=〈S,ss,St,δ,τ〉∈P

(τ |S| · polyγ,σ(τ))

 .

To see why the above result is true, it suffices to observe that:

1. τ is the maximum cardinality of an occurrence of P , so τ |S| is the maxi-
mum possible number of occurrences of P in L. It should be observed that
the existence of a “local time window” where alerts can be “connected”
is common to all the models that allow to constrain the length of the
sub-sequences (see, e.g., [16]) – obviously, without such constraints, this
term would become |L||S|.

2. polyγ,σ(τ) represents the time needed to check the correlation among the
tuples of an occurrence of P and to compute their severity.

2 Note that a security expert may want to discard O2 and O4 because they are
prefixes of O1 and O3 respectively.

14 2 Expressive and Efficient Online Alert Correlation

3. To extract the top-k occurrences, it suffices to maintain a priority queue of
maximum size k while scanning the whole set of occurrences – this takes
time log k for each occurrence.

2.2.1 Discussion

To complete this section, we provide examples of how two interesting models
proposed in the past can be expressed using our model.

In [22] the authors formally define an attack graph as a directed graph
G = (V ∪ C,Rr ∪ Ri), where V is the set of known exploits, C is the set
of relevant security conditions, and Rr and Ri denote the require and imply
relationship between exploits and security conditions, defined as Rr ⊆ C × V
and Ri ⊆ V × C, respectively. The prepare-for relationship between exploits
is the composite relation Ri ◦Rr.

The problem of looking for all the occurrences of an attack graph G =
(V ∪C,Rr∪Ri) in a log that reports security exploits is fully equivalent to our
alert correlation problem if we translate G into a pattern P = 〈S, ss, St, δ, τ〉
along with functions γP and σP as follows (where we denote the label of an
exploit v ∈ V as label(v)).

• We define S = {s0} ∪ {slabel(v) | v ∈ V }, ss = s0, and St = {slabel(v) | v is
an end node in G}.

• We define function δ so that if (v, v′) ∈ Ri◦Rr then δ(slabel(v), label(v
′)) =

slabel(v′). Moreover, if v ∈ V is a start node in G, then δ(s0, label(v
′)) =

slabel(v′).
• We set τ = k =∞.
• We define γP (O) so that it evaluates to true iff O corresponds to a path

in G from a start node to an end node.
• We define σP (O) so that it evaluates to a fixed value σ′ > 0 if O cor-

responds to a path in G from a start node to an end node, and zero
otherwise.

A more complex stochastic temporal automaton-based model is proposed
in [16]. Here, the edges in an automaton A are annotated with probabilities,
which in turn depend on the time elapsed between two consecutive observa-
tions (each log tuple corresponds to an observation). More specifically, each
edge is annotated with a timespan distribution that is a pair (I, τ) where I is
a set of time intervals and τ : I → [0, 1] is a function that associates a value
τ(x, y) ∈ [0, 1] with each time interval [x, y] ∈ I. Then, an occurrence O of
the automaton is defined as a sequence of log tuples matching a path from a
start to an end node in A, and its overall probability prob(O) is the product
of the probabilities between all the pairs of consecutive observations in O.
In addition, O is considered valid w.r.t. the “context” of its tuples (expressed
through a context attribute) iff for any t, t′ ∈ O, t.context ' t′.context, where
' is an equivalence relation defined over the domain of the context attribute.

2.3 Efficient Retrieval 15

The evidence problem defined by the authors consists in finding all occur-
rences in a log having a probability higher or equal to a given threshold p.
Given an automaton A, we can build a pattern P that makes the evidence
problem solvable based on the solution to our alert correlation problem. In
this case, we define the components of P and the value of k as in the previous
case. Then we define:

• γP (O) so that it evaluates to true iff ∀t, t′ ∈ O, t.context ' t′.context.
• σP (O) = prob(O) if O corresponds to a path in G from a start node to an

end node, and zero otherwise.

It is easy to see that, after computing the solution to our alert correlation
problem, it suffices to select all the occurrences O having σP (O) ≥ p to obtain
a correct solution to the evidence problem.

2.3 Efficient Retrieval

In this section we introduce a data structure called AC-Index, whose objective
is that of efficiently “tracking” the occurrences of a given set of patterns in a
log. The index is updated as soon as a new log tuple enters the system, and
it contains a priority queue whose content represents the top-k occurrences
found so far in the log.

We denote the set of patterns as P. Without loss of generality, we assume⋂
〈S,ss,St,δ,τ〉∈P S = ∅. Moreover, we use S to denote the set

⋃
〈S,ss,St,δ,τ〉∈P S.

Finally, given an alert symbol sym ∈ A, we define stages(sym) ⊆ S as the set
of non-terminal stages having an incoming edge labeled with sym — formally,
∀s ∈ stages(sym), ∃〈S, ss, St, δ, τ〉 ∈ P such that s ∈ S, s 6= ss, s /∈ St, and
∃s′ ∈ S such that δ(s′, sym) = s.

We are now ready to define our AC-Index.

Definition 2.8 (AC-Index). Given a set P of patterns an a log L, an AC-
Index IP is a tuple 〈Tables,MainTable, PQ〉 where:

• Tables is a set containing a table table(s) for each s ∈ stages(sym) with
sym ∈ A. table(s) contains rows of the form (PL, sev) where PL is a list
of pointers to tuples in L, and sev ∈ N is the severity value corresponding
to the set of tuples pointed by PL;

• MainTable is a table where each row is of the form (sym,Z), where sym ∈
A and Z is a set of pointers to tables table(s);

• PQ is a priority queue containing pairs of the form (PL, sev) that are
copies of table rows in tables(s). The size of PQ is bounded by k and the
priority is the value of sev.

In the AC-Index, a row (PL = {`↑0, . . . , `↑m}, sev) ∈ table(s) corresponds
to an occurrence O = {`0, . . . , `m} in L of a pattern P = 〈S, ss, St, δ, τ〉 ∈ P
with sev = σP (O) and δ(s′, `m.symbol) = s for some s′ ∈ S. Following the

16 2 Expressive and Efficient Online Alert Correlation

definition of set stages, no table is built for neither initial stages (because
such stages cannot correspond to occurrences) nor terminal stages (because
we do not need to store non-extendable occurrences). In MainTable, a row
(sym,Z) encodes the fact that, for each table tables(s) pointed by Z there
exists a stage s ∈ S with at least one ingoing edge labeled with sym. Finally,
PQ always contains the k occurrences found so far with higher severity values.
Moreover, if requested by the security expert, PQ can be configured in such a
way that it will discard the occurrences that are prefixes of some occurrence
of the same pattern. In our running example, O2 and O4 would be discarded
since they are prefixes of O1 and O3, respectively.

Example 2.9. Figure 2.5 shows the initial status of the AC-Index built over
pattern P1 = 〈S, ss, St, δ, τ〉. At this stage, PQ and all table(s) are empty.
MainTable contains a number of rows equal to the number of distinct alert
symbols labeling edges that end in non-terminal stages.

MainTable

sym Z

scan

web exploit

access

service exploit

upload shell

table(s1)

PL sev

table(s2)

PL sev

PQ

PL sev

table(s4)

PL sev

table(s5)

PL sev

table(s8)

PL sev

Tables

Fig. 2.5. Example initial index status.

Figure 3.7 shows the pseudo-code of the Insert algorithm that indexes a
new log tuple `new with associated alert symbol `new.symbol.

In the algorithm, Lines 6-9 deal with the case where s is a start stage, by
creating a new occurrence. Specifically, it creates a new row table r and adds
it to PQ and to table(s′), where s′ is the stage reached from s by following
the edge labeled with sym. Lines 11-20 check whether the new log tuple `new
can be correlated with those in the existing occurrences. If it does (Lines
13-20), it is appended to such occurrences and the latter are added to PQ.
Otherwise, i.e., if it does not fit in the time window τ , then the last log tuple
of each occurrence that can not be extended is removed from its related table
(Line 22). Observe that this implicitly corresponds to a pruning process that

2.3 Efficient Retrieval 17

Algorithm: Insert(`new, IP)
Input: New log tuple `new, AC-Index IP = 〈Tables,MainTable, PQ〉
Output: Updated AC-Index IP

1 sym← `new.symbol
2 Z ←MainTable(sym)
3 for each table(s) ∈ Z
4 let P = 〈S, ss, St, δ, τ〉 be a pattern s.t. s ∈ S
5 s′ ← δ(s, sym)
6 if s = ss
7 r ← (`↑new, 0)
8 if s′ /∈ St then add r to table(s′)
9 add r to PQ

10 else
11 for each row r ∈ table(s)
12 let O = {`1, . . . , `n} be the set of log tuples pointed by r.PL
13 if `new.ts− `1.ts ≤ τ
14 if γP ({`n, `new})
15 O′ ← append `new to O
16 PL′ ← append `↑new to r.PL
17 r′ ← (PL′, σP (O′))
18 if s′ /∈ St then add r′ to table(s′)
19 add r′ to PQ
20 end if
21 else
22 remove r from table(s)
23 end if
24 end for
25 end if
26 end for

Fig. 2.6. Insert algorithm.

is applied during the construction of the index, as opposed to the concurrent
pruning applied by the Prune algorithm, which will be discussed later on.

Example 2.10. Figure 2.7 shows the status of the AC-Index after indexing
log tuples from 102 to 110 of our running example when considering pattern
P1 = 〈S, ss, St, δ, τ〉 only.

The indexing process can be divided into 3 distinct macro-steps:

1. The first processed log tuple is 〈102, scan, . . .〉. Since there exists a row
(scan, {table(s1)↑}) in MainTable, row r1 = (PL = [102↑], sev = 50) is
added to table(s1) (50 is the severity value returned by σP1

). Then, a copy
of r1 is added to PQ. Log tuple 〈103, buffer overflow,...〉 is skipped becaue
there are no rows in MainTable with sym = buffer overflow.

2. Log tuple 〈104, web exploit , . . .〉 can be correlated with 〈102, scan, ...〉,
because δP1(s1, scan) = s2 and γP1(102, 104) = true. Thus, row r2 =
([102↑, 104↑], 80) is added to table(s2) and PQ. Log tuples from 105 to 109

18 2 Expressive and Efficient Online Alert Correlation

MainTable

sym Z

scan

web exploit

… …

table(s1)

PL sev

[102] 50

table(s2)

PL sev

[102 ,104] 80

PQ

PL sev

[102 ,104 ,110] 240

[102 ,104] 80

[102] 50

.

.

.

r1

r2

Tables

r3

copy of r2

copy of r1

Fig. 2.7. Example index status after indexing log tuples from 102 to 110 of the log
of Figure 2.2.

are skipped because none of them can be correlated with log tuples 102
or 104. As an example, tuple 〈106,information loss, . . .〉 cannot be linked
to the occurrence O={102, 104} although δP1

(s2, information loss) = s3,
because γP1({102, 104, 106}) = false due the IPAttacker attribute value,
which is distinct from that of tuples 102 and 104.

3. Log tuple 〈110, information loss, . . .〉 can be correlated with {102, 104},
because δP1

(s2, information loss) = s3 and γP1
(104, 110) = true. How-

ever, in this case, a new row r3 = ([102↑, 104↑, 110↑], 240) is directly added
to PQ because there does not exist table(s3) since s3 is a terminal stage.

As the example shows, we only need to store occurrences in Tables if they
can be extended. In fact, when an occurrence ends in a terminal stage it is
no longer extendable, so it can be directly stored in PQ – this is why the
AC-Index does not contain any table(s) with s being a terminal stage.

The following result ensures that Algorithm Insert solves the alert corre-
lation problem both correctly and optimally.

Proposition 2.11. Given a log L, the execution of Algorithm Insert on all tu-
ples in L terminates, and after the execution, the content of PQ represents the
correct solution to the alert correlation problem. The worst-case asymptotical
time complexity of Insert is

O

log k · ∑
P=〈S,ss,St,δ,τ〉∈P

(τ |S| · polyγ,σ(τ))

 .

The Insert algorithm can work in parallel with the Prune algorithm shown
in Figure 2.8, that updates Tables by linearly scanning them and removing
every row which represents an occurrence that is no longer extendable based
on the maximum duration τ . This pruning process saves both memory space
and processing time – moreover, it can be performed in parallel with the Insert
algorithm.

2.4 Experimental Results 19

Algorithm: Prune(IP , ts)
Input: AC-Index IP = 〈Tables,MainTable, PQ〉, current timestamp ts
Output: Updated AC-Index IP

1 for each table(s) ∈ Tables
2 let P = 〈S, ss, St, δ, τ〉 be the pattern s.t. s ∈ S
3 for each r ∈ table(s)
4 let {`1, . . . , `n} be the set of log tuples pointed by r.PL
5 if ts− `1.ts > τ
6 remove r from table(s)
7 end if
8 end for
9 end for

Fig. 2.8. Pruning algorithm.

It should be noted that the pruning policy could also vary based on the
structure of the severity function σ. In fact, a different pruning algorithm
could evaluate in advance the maximum severity an occurrence can reach
in the future, and immediately prune it if its maximum severity is under the
current k-th. This policy could for instance be applied to our running example,
where the severity only depends on the stage reached by the occurrence.

The following result ensures the correctness of the Prune algorithm.

Proposition 2.12. Given a log L = {`1, . . . , `n}, let I0
P be the empty AC-

Index and IiP be the AC-Index returned by Insert(`i, Ii−1
P). For any i ∈ [1..n],

the set of solutions in IiP is equal to the one in Prune(IiP , `i.ts).

2.4 Experimental Results

In this section we report on the experimental assessment we performed on our
proposed alert correlation framework when applied to real-world and synthetic
patterns. We implemented the framework in Java and run the experiments on
an Intel Core i7-3770K CPU clocked at 3.50GHz, with 12GB RAM, running
Windows 8.

2.4.1 Setting

We ran two rounds of experiments:

1. In the first round, we used real-world patterns P1 and P2 of Figure 2.1
and P3 and P4 of Figure 2.9.

2. In the second round, we used synthetic patterns P5 and P6 of Figure 2.10.

For both rounds, we built synthetic logs consisting of 300K tuples. Each log
was built by combining a set of sub-logs, each of which is a sequence of alert
symbols that can represent an occurrence of a given pattern. Specifically, a log

20 2 Expressive and Efficient Online Alert Correlation

P4: t=13

S
23

S
24

scan
S

25
S

26

S
28

63

242210 service

exploit

privilege

escalation

S
27

52

remote

shell

remote

shell

DNS

spoofing

S
31

service

replication

115

S
29

90

S
30

91
service

replication
backDoor

rootkit
service

replication

S
17

S
18

Google

dork
S

19
S

20
S

22

P3: t=9

85654238 service

exploit
upload

shell

S
21

43

DB dump upload

shell

DDoS

Fig. 2.9. Real-world patterns P3 and P4.

S
12

S
13

S
14

S
15

S
16

S
17

a b c d e

c

d

e

d

e

e

S
18

f
S

19

g
S

20

h

f

g
h

f

g
h

f
g

h

f
g

h

g
h

h

P
5
: t=14

10

15

20

25 30 35 40 50

S
21

S
22

S
23

S
24

S
25

S
26

a b c d e
S

27

f
S

28

g
S

29

h

10 15 20 25 30 35 40 50

P
6
: t=14

Fig. 2.10. Synthetic patterns P5 and P6.

combines several sub-logs {L1, . . . , Ln} where each Li is built by considering a
path from an initial to a terminal stage in a pattern. These sub-logs were built
and combined under six different log generation modes, each corresponding to
a possible real-world scenario:

1. each sub-log only contains alert symbols in its corresponding pattern, and
the sub-logs are concatenated;

2. same as mode 1, except that some alert symbols are substituted with
“noise”, i.e. with symbols not present in the corrisponding pattern, with
a certain frequency;

2.4 Experimental Results 21

3. same as mode 1, except that noise is inserted in the sequence;
4. same as mode 1, except that a certain percentage of each Li partially

overlaps with Li+1;
5. same as mode 2, but with partial overlap as in mode 4;
6. same as mode 3, but with partial overlap as in mode 4.

We performed 14 runs for each round of experiments. The log generation
modes, noise frequency, and overlap percentage used are reported in Fig-
ure 3.10. Note that default values are log generation mode 6 (that is the most
complex mode, which also captures the fact that noise more often appears
between alert symbols of actual interest), noise frequency 3/10, and overlap
percentage 40%.3 We assumed worst-case behavior of function γ, i.e., it always
returns true.

We also performed experiments with much larger logs (1M tuples) – inter-
estingly, the performance we obtained in terms of tuples processed per second
was 5.1% worse at most.

Run Log gen. mode Noise frequency Overlap percentage

1 1 – –
2 2 3/10 –
3 3 3/10 –
4 4 – 40%
5 5 3/10 40%
6 6 3/10 40%

7 6 1/10 40%
8 6 2/10 40%
9 6 3/10 40%
10 6 4/10 40%
11 6 5/10 40%

12 6 3/10 20%
13 6 3/10 30%
14 6 3/10 40%
15 6 3/10 50%
16 6 3/10 60%

Fig. 2.11. Parameter values used for each experimental run.

2.4.2 Results

Figure 2.12 reports the results of the first round of experiments. In particular,
Figure 2.12(top) shows the number of log tuples processed per second when
varying the log generation mode (runs 1–6), Figure 2.12(center) shows the

3 For simplicity of presentation, the run with all parameters set to default values
is reported as three separate runs (6, 9, and 14) in Figure 3.10.

22 2 Expressive and Efficient Online Alert Correlation

variation with respect to noise frequency (runs 7–11), and Figure 2.12(bottom)
the variation with respect to the percentage of overlap between consecutive
occurrences in the log (runs 12-16).

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

2,5E+06

1 2 3 4 5 6

tu
p

le
s/

se
c

Log generation mode

9,0E+05

1,1E+06

1,3E+06

1,5E+06

1,7E+06

1,9E+06

2,1E+06

2,3E+06

1/10 2/10 3/10 4/10 5/10

tu
p

le
s/

se
c

Noise frequency

1,40E+06

1,45E+06

1,50E+06

1,55E+06

1,60E+06

1,65E+06

1,70E+06

1,75E+06

1,80E+06

20% 30% 40% 50% 60%

tu
p

le
s/

se
c

Overlap

Fig. 2.12. Tuple rates in the first round of experiments.

The results confirm our expectations and show extremely good overall per-
formances. In Figure 2.12(top) we can notice that, as expected, the presence
of noise in the log or overlap between consecutive instances reduces the overall

2.4 Experimental Results 23

number of occurrences, thus improving performances. Moreover, when noise
appears instead of alert symbols of actual interest (which we believe is an
even more realistic case), we obtain better results than when noise appears
between such symbols. Generally, the number of tuples processed per second is
extremely high – it is consistently higher than 765K, and 1.4M on average. In
both Figure 2.12(center) and Figure 2.12(bottom) the trend is basically linear
in the frequency of noise and percentage of overlap – in these experiments,
the average tuple rate is around 1.6M tuples/sec.

The second round of experiment used patterns P5 and P6 to outline the
behavior of our framework when varying the “density” of the patterns, i.e.,
the number of edges w.r.t. the number of vertices – much denser patterns
usually yield a much bigger AC-Index as each log tuple can be attached to
many more occurrences.

Figure 2.13 shows the tuple rates obtained in this round. Again, the results
appear very satisfactory. We can notice in Figure 2.13(top) that the perfor-
mance loss is always around 40% when moving from a sparse pattern (P6) to
a much denser one (P5). The tuple rate never dropped below 260K tuples/sec,
and it was around 700K tuples/sec on average. In the experiments where we
fixed the log generation mode to 6 and varied noise frequency and overlap
percentage (center and bottom of the figure) the performance loss was always
around 60%. It should be observed that the number of paths in P5 is 64 times
that of P6. Thus, the relationship between the number of paths and the tuple
rates is much less than linear.

We also measured the number of occurrences and the indexing time per
tuple normalized by the number of occurrences. The results for all the runs
of the second round are reported in Figure 2.14. As expected, the number
of occurrences is lower when using P6. Interestingly, the normalized indexing
time shows very small variations with respect to the specific configuration used
(8% on average), and the framework appears to use slightly more resources
per occurrence when using P6.

Finally, Figure 2.15 reports the maximum size and the normalized maxi-
mum size of the AC-Index for all the runs of the second round. As expected,
using P5 produces a much larger AC-Index – the difference was around 60%
on average (again, showing a sub-linear relationship with the number of paths
in the patterns). Moreover, in this case the size of the AC-Index shows very
small variations with respect to the configuration used. Again, the framework
appears to use slightly more resources per occurrence when using P6.

Wrapping up, we can draw the following general conclusions from the
experimental results:

• Overall, the framework is able to process logs that enter the system at
extremely large rates – orders of magnitude of 100K–1M tuples/sec are
definitely sufficient for fully covering a wide range of real-world applica-
tions.

24 2 Expressive and Efficient Online Alert Correlation

0,0E+00

5,0E+05

1,0E+06

1,5E+06

2,0E+06

1 2 3 4 5 6
tu

p
le

s/
se

c
Log generation mode

P5 P6

5,0E+05

1,0E+06

1,5E+06

2,0E+06

1/10 2/10 3/10 4/10 5/10

tu
p

le
s/

se
c

Noise frequency

P5 P6

6,0E+05

8,0E+05

1,0E+06

1,2E+06

1,4E+06

1,6E+06

20% 30% 40% 50% 60%

tu
p

le
s/

se
c

Overlap

P5 P6

Fig. 2.13. Tuple rates in the second round of experiments.

• The framework scales well w.r.t. the amount of noise in the log and overlap
between consecutive occurrences.

• When working with much denser patterns, the framework scales well with
the much higher number of occurrences retrieved. It shows good “stability”
of the normalized indexing time per tuple and of the size of the AC-
Index w.r.t. the various experimental parameters used. Interestingly, the

2.5 Related Works 25

0E+00

2E+06

4E+06

6E+06

8E+06

1E+07

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#

 o
f

o
c
c
u

r
re

n
c
e

s

Run

P5 P6

0

1E-13

2E-13

3E-13

4E-13

5E-13

6E-13

7E-13

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

in
d

e
xi

n
g

 t
im

e
 p

e
r

tu
p

le
/

#
 o

f
o

cc
u

rr
e

n
ce

s

Run

P5 P6

Fig. 2.14. Number of occurrences (top) and normalized indexing time per tuple
(bottom) in the second round of experiments.

“efficiency per occurrence” of the framework is slightly higher with denser
patterns.

2.5 Related Works

2.5.1 Graph-Based Alert Correlation

A number of interesting graph-based alert correlation techniques has been
proposed in the past. Attack graphs and finite automata have often been
used for this purpose. In [27] Michael et al. proposed a technique for identi-
fying malicious execution traces with automatically-learned finite automata.
Sekar et al. [28] created an automaton-based approach for detecting anoma-
lous program behaviors. Each node in the DFA represents a state in the pro-
gram under inspection which the algorithm utilizes to learn “normal” data
and perform detection. [29] proposes to increase the accuracy of the N-gram
learning algorithm by using a DFA representation for intrusion detection via
system call traces. In [30] Wagner and Dean show how static analysis may

26 2 Expressive and Efficient Online Alert Correlation

50

100

150

200

250

300

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#

 o
f

ro
w

s

Run

P5 P6

0,0E+00

5,0E-05

1,0E-04

1,5E-04

2,0E-04

2,5E-04

3,0E-04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
 o

f
ro

w
s

/

#
 o

f
o

cc
u

rr
e

n
ce

s

Run

P5 P6

Fig. 2.15. Maximum size (top) and normalized maximum size (bottom) of the
AC-Index in the second round of experiments.

be used to automatically derive a model of application behavior for intru-
sion detection. They make use of a nondeterministic DFA to characterize
the expected system call traces. In [1] a hypergraph-based intrusion detec-
tion model correlates groups of alerts that may occur in any order. In [31] a
technique is presented to automatically produce candidate interpretations of
detected failures from anomalies identified by detection techniques that use
inferred DFAs to represent the expected behavior of software systems. In [32]
Branch et al. describe an approach for the real-time detection of denial of
service attacks using time-dependent DFAs. They use the time intervals be-
tween certain event occurrences, as defined in a DFA, to improve the accuracy
of detecting specific attacks. [23] proposes a correlation algorithm based on
attack graphs that is capable of detecting multiple attack scenarios for foren-
sic analysis. In [22] attack graphs are used for correlating, hypothesizing, and
predicting intrusion alerts. [24] proposes to represent groups of alerts with
graph structures, along with a method that automatically identifies frequent
groups of alerts and summarizes them into a suspicious sequence of activity.
In [33] a framework is described for managing network attack graph complex-
ity through interactive visualization, which includes hierarchical aggregation

2.5 Related Works 27

of graph elements. [25] proposes an automated technique for generating and
analyzing attack graphs, based on symbolic model checking algorithms. [6, 34]
construct attack scenarios that correlate critical events on the basis of pre-
requisites and consequences of attacks. [35] focuses on the online approach to
alert correlation by employing a Bayesian network to automatically extract
information about the constraints and causal relationships among alerts. Fi-
nally, [36] introduces a host-based anomaly intrusion detection methodology
using discontinuous system call patterns.

2.5.2 Fusion-Based Alert Correlation

Fusion-based correlation techniques make use of correlation functions in order
to store, map, cluster, merge, and correlate alerts. [37] proposes a multisensor
data fusion approach for intrusion detection. Cuppens [38, 39] suggests to
design functions which recognize alerts corresponding to the same occurrence
of an attack and create a new alert that merges data contained in those alerts.
[40] presents a probabilistic approach to alert correlation by extending ideas
from multisensor data fusion. Their fusion algorithm only considers common
features in the alerts to be correlated, and for each feature they define an
appropriate similarity function.

2.5.3 Pattern Discovery

Sun et al. proposed several methods for pattern discovery. In [41] a distributed
hierarchical real-time algorithm is described that works with group of streams.
Patterns discovered from each stream are merged in order to obtain global pat-
terns across groups. [42] provides a mining technique based on tensor analysis.
Timestamp, type, and location attruibutes of data stream values are modeled
using a tensor, giving particular attention to the temporal aspect. In [43] a
pattern discovery technique for streaming applications is proposed. The ten-
sor stream is a general dynamic data model successfully used for this purpose,
where data streams and time-evolving graphs become the rst and second order
special cases.

2.5.4 Other Works

In [44] the main objective is to analyze the alert correlation techniques that
are able to improve the intrusion detection task in terms of alert flooding,
false alerts and scalability in heterogeneous log scenarios. [45] describes an
aggregation and correlation algorithm for acquiring intrusion detection alerts
and relating them together to expose a more condensed view of the security
issues raised. In [20] Valeur et al. propose a general correlation model, which
provides cascaded stages to normalize, pre-process, fuse, verify, and correlate
alerts and reconstruct attacks.

28 2 Expressive and Efficient Online Alert Correlation

2.6 Conclusions

In this chapter we proposed a technique for alert correlation based on DFA-
like patterns and user-provided correlation functions that supports the fast
retrieval of occurrences of the given patterns through appropriate indexing
and retrieval schemes. The experimental results have proven that, although
the proposed model is very expressive, the specifically-designed indexing and
retrieval schemes are able to guarantee a very high efficiency of the retrieval
process.

3

Intrusion Detection with Hypergraph-Based
Attack Models

In numerous security scenarios, given a sequence of logged actions, it is nec-
essary to look for all subsequences that represent an intrusion, which can be
meant as any “improper” use of a system, an attempt to damage parts of it,
to gather protected information, to follow “paths” that do not comply with
security rules, etc. In this Chapter we propose a hypergraph-based attack
model for intrusion detection. The model allows the specification of various
kinds of constraints on possible attacks and provides a high degree of flexi-
bility in representing many different security scenarios. We discuss the main
features of the model and study the problems of checking the consistency of
attack models and detecting attack instances in sequences of logged actions.
Moreover, we propose an index structure and its associated maintenance and
retrieval algorithms, which are designed to concurrently track instances of
multiple attack models. The efficiency of our proposed index and algorithms
is confirmed by an extensive experimental evaluation.

3.1 Introduction

In numerous security scenarios, given a sequence of logged actions, it is nec-
essary to look for all subsequences that represent an intrusion. The intrusion
detection task is not generally restricted to the field of computer networks:
for instance, it includes the scenarios where a surveillance system is active
over a public area. An intrusion can thus be meant as any “improper” use of
a system, an attempt to damage parts of it, to gather protected information,
to follow “paths” that do not comply with security rules, etc.

In this Chapter we propose a hypergraph-based attack model for intrusion
detection. Our proposed model is capable of:

• representing many different attack types/structures in a compact way;
• expressing temporal constraints on the execution of attacks;
• accommodating many different security scenarios;

30 3 Intrusion Detection with Hypergraph-Based Attack Models

• representing attack scenarios at different abstraction levels, allowing to
“focus” the intrusion detection task in various ways.

An attack model is defined in such a way that the paths from start to
terminal hyperedges in the model represent an attack and correspond to sub-
sequences of a given input log—we assume that the log is a sequence of events
(tuples) having a type and a timestamp. Such subsequences are the instances
of the attack model.1 A group of log tuples of the same type form the in-
stance of a vertex, whereas the associations among groups form the instance
of a hyperedge (called segment). The model allows expressing various kinds
of constraints: vertices can specify type and cardinality constraints on groups
of tuples and hyperedges can specify temporal constraints on the associations
among groups.

It should be observed that our notion of attack model assumes that all pos-
sible attacks follow a path from a start to a terminal hyperedge in the model.
As a matter of fact, in numerous security applications, attack models cover
all possible attacks since they are defined on the basis of the specific network
configuration of an organization. Actions in the model basically correspond to
interdependent security vulnerabilities/alerts on specific machines – attack-
ers cannot follow different paths because this would require, e.g., traversing
firewalled network sections [6].

The following example intuitively introduces the main features of the pro-
posed model.

Example 3.1. Consider the attack model in Fig. 3.1, where actions are logged
security alerts and are depicted with plain circles (vi), while hyperedges are
depicted with dotted circles (hi).

In this attack model:

• h1 is a start hyperedge (indicated with a white arrow) so an attack can
begin with it. Vertex v1, labeled with Scan, requires the presence of exactly
one log tuple of type Scan (cardinality constraint “(1:1)”);

• hyperedge h2 represents an association between vertices v1, v2, and v3,
requiring that the corresponding instance (log segment) contains exactly
one Scan tuple along with optional Local Access and Remote Access
tuples (cardinality constraint “(0:1)”), in any order. Moreover, there is a
temporal constraint (3, 6) that mandates, for the log segment, a temporal
extension between 3 and 6 time points (note that this actually ensures
that at least one Local Access or Remote Access tuple is present in the
segment);

• hyperedge h3 represents an association between vertices v2, v3, and v4,
indicating that an instance of h2 can be extended by one or more Directory
Traversal tuples (cardinality constraint “(1:∞)”);

• the same applies to hyperedges h4 and h5;

1 Note that, although we use the word “instance”, the input logs are not assumed
to be generated according to our model.

3.1 Introduction 31

Local

Access

Remote

Access

Directory

Traversal

SQL

Injection

Buffer

Overflow

Host

Control

DB

Server

Control

Web

Server

Control

Information

Loss

DoS

Privilege

Escalation

h2(3,6)

h1

h4(3,8)

h5(5,10)

h6

h7

h8

v1(1:1)

v2(0:1)

Scan

h3

v3(0:1)

v4(1:?)

v6(1:3)

v5(1:1)

v7(1:1) v11(1:1)

v8(1:1)

v9(1:1) v10(1:1)

v12(1:1)

12

Fig. 3.1. Example attack model

• h6 is a terminal hyperedge (indicated with a black arrow), so an attack
can end with it.

• the edge between h3 and h6 adds a further temporal constraint: the log
tuple where the segment which is an instance of h3 starts must appear at
most 12 time points before the tuple where the segment for h6 starts.

If we consider the log in Fig. 3.2(a), the corresponding instance is graph-
ically described in Fig. 3.2(b). Further details will be provided in the next
section.

The remainder of the paper is organized as follows. In Section 3.2 we give
the formal definitions of attack models and instances. In Section 3.3 we charac-
terize the problem of consistency checking for attack models and give related
theoretical results. In Section 3.4 we formally define the intrusion detection
problem we are interested in, and characterize its complexity. In Section 3.5
we introduce the generalization/specialization of actions through is-a relation-
ships and briefly discuss their applications and related issues. In Section 3.6 we
propose an index data structure and its associated maintenance and retrieval
algorithms that index a log with respect to multiple attack models in order to
quickly find attack instances in it. In Section 4.7 we show experimental results
which confirm the validity of our index and algorithms. Finally, Section 3.8
discusses related work and Section 3.9 outlines conclusions.

32 3 Intrusion Detection with Hypergraph-Based Attack Models

Log tuple Type Timestamp

`1 Scan 0
`2 Privilege Escalation 1
`3 Buffer Overflow 2
`4 Remote Access 5
`5 Directory Traversal 7
`6 Buffer Overflow 10
`7 Scan 11
`8 SQL Injection 12
`9 Privilege Escalation 14
`10 Web Server Control 15
`11 DB Server Control 17
`12 Information Loss 20

(a)

Scan

Privilege Escalation

Buffer Overflow

Remote Access

Directory Traversal

Buffer Overflow

Scan

SQL Injection

Privilege Escalation

Web Server

Control

DB Server Control

Information loss

Local

Access

Remote

Access

Directory

Traversal

SQL

Injection

Buffer

Overflow

DB

Server

Control

Web

Server

Control

Information

Loss

Privilege

Escalation

h2(3,6)

h4(3,8)

h5(5,10)

h6

v2(0:1)

h3

v3(0:1)

v4(+)

v6(1:3)

v5(1:1)

v7(1:1) v11(1:1)

v8(1:1)

v9(1:1)

12

h1

v1(1:1)

Scan

(b)

Fig. 3.2. Example log (a) and instance of the model (b)

3.2 Modeling Attack Processes

In this section we give the formal definitions of our proposed attack model and
its instances. We assume that an alphabet A of symbols is given, univocally
identifying the action types of the underlying process of attack.

Definition 3.2 (Attack Model). An attack model defined over the set of
actions A is a tuple M = 〈H, λ, τ, ε, S, T 〉 where:

• H = (V,H) is a hypergraph, where V is a finite set of vertices and H is a
set of hyperedges (i.e., for each h ∈ H, h ⊆ V).

3.2 Modeling Attack Processes 33

• λ : V → A×N0× (N+ ∪{∞}) is a vertex labeling function that associates
with each vertex v ∈ V a triple of the form (a, l, u), with l ≤ u, which
specifies the action of v along with its cardinality constraints.2

• τ : H → N0 × (N+ ∪ {∞}) is a (partial) function that expresses tem-
poral constraints (in terms of lower and upper bounds) on hyperedges—
domain(τ) will denote the set of hyperedges h ∈ H such that τ(h) is de-
fined;

• ε : H×H → N+ is a (partial) function that express temporal constraints (in
terms of upper bounds) on ordered pairs of distinct hyperedges—domain(ε)
will denote the set of pairs of hyperedges hi, hj ∈ H such that ε(hi, hj) is
defined;

• S, T ⊆ H are nonempty sets of start and terminal hyperedges, respectively.

The following example shows how the model of Fig. 3.1 is formalized ac-
cording to Definition 3.2.

Example 3.3. In the attack model M = 〈H, λ, τ, ε, S, T 〉 of Fig. 3.1 we have:

• V={v1, . . . , v12};
• H={h1 = {v1}, h2 = {v1, v2, v3}, h3 = {v2, v3, v4}, h4 = {v4, v5, v6}, . . .};
• λ(v1) = (Scan, 1, 1), λ(v2) = (Local Access, 0, 1), λ(v3) = (Remote Access, 0, 1),

λ(v4) = (Directory Traversal, 1,∞), λ(v5) = (Buffer Overflow, 1, 1), etc.;
• domain(τ) = {h2, h4, h5}, τ(h2) = (3, 6), τ(h4) = (3, 8), τ(h5) = (5, 10);
• domain(ε) = {(h3, h6)}, ε(h,h6) = 12;
• S = {h1}, T = {h6, h7, h8}.

We now define paths in an attack model.

Definition 3.4 (path). A path π in an attack model M = 〈H, λ, τ, ε, S, T 〉
is a sequence h1, . . . , hm of distinct hyperedges from H such that

1. h1 ∈ S;
2. ∀i ∈ {2, ...,m}, hi−1 ∩ hi 6= ∅;
3. there is no index j ∈ {2, ...,m − 1} such that h1, ..., hj−1, hj+1, ..., hm

satisfies both Conditions 1 and 2.

Moreover, π is said to be complete if hm ∈ T .

A log is a sequence `1, ..., `n, with n > 0 and where each `i is a tuple
〈att1, . . . , attk〉 of attributes (e.g., user-id, IP, etc.). In the following, we as-
sume that a ‘timestamp’ attribute, here just formalized as a natural number,
encodes the time point (w.r.t. an arbitrary but fixed time granularity) at which
the action represented by a log tuple occurs. Moreover, for each i, j ∈ {1, ..., n}
2 The intended meaning of the symbol ‘∞’ is that there is no upper bound.

34 3 Intrusion Detection with Hypergraph-Based Attack Models

with i < j, it holds that `i.timestamp < `j .timestamp, i.e., the sequence re-
flects the temporal ordering of the tuples.3 Moreover, we assume that a ‘type’
attribute encodes the action.

Before defining the instance of an attack model, we introduce the notion
of m-segmentation.

Definition 3.5 (m-segmentation). Let L = `1, ..., `n be a log and let m >
0 be a natural number. A segment of L is a pair (s, t) of natural numbers
such that 1 ≤ s ≤ t ≤ n. An m-segmentation of L is a sequence (1 =
s1, t1), ..., (sm, tm = n) of pairs of natural numbers such that:

1. ∀i ∈ {1, ...,m}, (si, ti) is a segment of L;
2. ∀i ∈ {1, ...,m− 1}, si+1 ≤ ti.

Example 3.6. Consider the log L of Fig. 3.2(a)—for the moment, ignore
the timestamps. The sequence (1, 1), (1, 4), (4, 5), (5, 8), (6, 11), (11, 12) is a 6-
segmentation of L that segments it into the sub-logs L1 = `1, L2 = `1, . . . , `4,
L3 = `4, . . . , `5, L4 = `5, . . . , `8, L5 = `6, . . . , `11, and L6 = `11, . . . , `12.

Finally, given a log L = `1, . . . , `n, we define the temporal distance between
two tuples `i and `j in L as d(`i, `j) = |`j .timestamp− `i.timestamp|. We are
now ready to formalize the notion of instance of an attack model.

An instance of an attack model M over a complete path in M is a log that
can be segmented in such a way that, for each segment:

1. the types of the log tuples in the segment comply with the corresponding
hyperedge;

2. the segment does not include unnecessary tuples as its start or end;
3. the temporal extension of the segment complies with the constraints spec-

ified by function τ (if present);
4. the start tuples of two consecutive segments comply with the constraints

specified by function ε (if present).

The following definition formalizes this.

Definition 3.7 (Instance of an Attack Model). Assume that M =
〈H, λ, τ, ε, S, T 〉 is an attack model over A. Let π = h′1, . . . , h

′
m be a com-

plete path in M , and let L = `1, . . . , , `n be a log. Then, we say that L is an
instance of M over π, denoted by L |=π M , if there exists an m-segmentation
(s1, t1), ..., (sm, tm) of L such that ∀i ∈ {1, . . . , m},

1. ∀ v ∈ h′i, if λ(v) = (a, l, u), then l ≤ |{` ∈ `si , ..., `ti |`.type = a}| ≤ u;
2. ∃ vs, vt ∈ h′i such that λ(vs) = (`si .type, ls, us) and λ(vt) = (`ti .type, lt, ut);
3. if h′i ∈ domain(τ), then li ≤ d(`si , `ti) ≤ ui, with τ(h′i) = (li, ui);

3 Note that we are assuming here, w.l.o.g., that there are no tuples with the same
timestamp. Indeed, this can always be guaranteed by assuming a sufficiently fine
time granularity.

3.3 Consistency of Attack Models 35

4. ∀i, j ∈ [1,m] s.t. i < j and (h′i, h
′
j) ∈ domain(ε), it holds that d(`si , `sj) ≤

ε(h′i, h
′
j).

Example 3.8. Consider the attack model M of Fig. 3.1 and the path π =
h1, h2, h3, h4, h5, h6 in M . The log L in Fig. 3.2(a) is an instance of M over
π because the 6-segmentation (1, 1), (1, 4), (4, 5), (5, 8), (6, 11), (11, 12) of L is
such that (see Fig. 3.2(b)):

• the sets of action types associated with sub-logs L1 = `1, L2 = `1, . . . , `4,
L3 = `4, . . . , `5, L4 = `5, . . . , `8, L5 = `6, . . . , `11, and L6 = `11, . . . , `12,
are “minimal” supersets of the sets of action types associated with hy-
peredges h1, h2, h3, h4, h5 and h6, respectively (Conditions 1 and 2 in
Definition 3.7);

• temporal constraints hold (Conditions 3 and 4 in Definition 3.7):
– τ(h2) = (3, 6) and 3 ≤ d(`1, `4) = 5 ≤ 6;
– τ(h4) = (3, 8) and 6 ≤ d(`5, `8) = 5 ≤ 8;
– τ(h5) = (5, 10) and 5 ≤ d(`6, `11) = 7 ≤ 8;
– ε(h3, h6) = 12 and d(`1, `4) = 9 ≤ 12.

3.3 Consistency of Attack Models

In this section we study the consistency of attack models and the complexity
of checking whether a given attack model is consistent. We start by defining
the consistency of a path.

Definition 3.9 (Consistency of a path). Let π be a complete path in an
attack model M = 〈H, λ, τ, ε, S, T 〉. We say that π is consistent w.r.t. M if
there is an instance L of M over π, i.e., if there is a log L such that L |=π M .

To detect the consistency of a complete path π = h′1, . . . , h
′
m in M , we

associate a support graph with π, denoted by SG(M,π) = 〈N,E, ω〉, that is
a node- and edge-weighted directed graph where:

• the set N of nodes are the hyperedges of π;
• there is precisely an edge from h′α to h′β in E for each (h′α, h

′
β) ∈ domain(ε)

with α < β;

• ω(h′i) =

{
li if h′i ∈ domain(τ) and τ(h′i) = (li, ui);

0 if h′i 6∈ domain(τ);

• ω(h′α, h
′
β) = ε(h′α, h

′
β).

Example 3.10. Consider the attack model M ′ obtained from the model M
of Fig. 3.1 by adding the temporal constraint ε(h2, h5) = 5. The graph
SG(M,π = h1, h2, h3, h4, h5, h6) is shown in Fig. 3.3. By definition, the graph
has 6 nodes/hyperedges, and two edges corresponding to the two elements in
the domain of ε.

36 3 Intrusion Detection with Hypergraph-Based Attack Models

h
3

h
4

30

h
5

h
6

5 0

12

h
2

3

5

h
1

0

Fig. 3.3. Support graph associated with the path h1, h2, h3, h4, h5, h6

The following result gives us necessary and sufficient conditions for a path
to be consistent.

Theorem 3.11. Let M be an attack model and let π = h′1, . . . , h
′
m be a com-

plete path in M . Then, π is consistent w.r.t. M if and only if for each edge
(h′α, h

′
β) in SG(M,π), it holds that

β−1∑
i=α

ω(h′i) ≤ ω(h′α, h
′
β).

For instance, in Fig. 3.3, we have that ε(h2, h5) = 5 < wSG(h2)+wSG(h3)+
wSG(h4) = 6. Thus, by Theorem 3.11, π is not consistent w.r.t. M ′.

We now define three kinds of consistency notions for attack models.

Definition 3.12 (Consistency of an attack model). Assume that M =
〈H, λ, τ, ε, S, T 〉 is an attack model. We say that:

1. M is (S/T)-consistent if ∀hs ∈ S, ∀hm ∈ T there is a path π starting
with hs and ending with hm, respectively, that is consistent;

2. M is (S)-consistent if ∀hs ∈ S, there is a complete path π starting with
hs that is consistent;

3. M is (T)-consistent if ∀hm ∈ T , there is a path π terminating with hm
that is consistent.

Observation 1 Let M be an attack model. If M is (S/T)-consistent, then
M is both S-consistent and T -consistent.

Finally, we characterize the complexity of checking the consistency of an
attack model.

Theorem 3.13. Deciding whether a given attack model is (S/T)-consistent
is NP-complete, even if |S| = |T | = 1.

Proof. Membership in NP is trivial. For the hardness, we give a reduction
from the Monotone one-in-three 3SAT problem, which is known to be
NP-complete [46]. The problem is a variant of the classical satisfiability prob-
lem, where the input instance is a conjunction of clauses, with each clause
consisting of exactly three variables (i.e., negation is not allowed). The goal is

3.3 Consistency of Attack Models 37

to determine whether there is a truth assignment to the variables so that each
clause has exactly one true variable (and thus exactly two false variables).

Let φ = C1 ∧ ... ∧ Cm be a Boolean formula taken as input and such that
each clause Ci = xi,1∨xi,2∨xi,3, ∀i ∈ {1, ...,m}, consists of exactly 3 variables.
Based on φ, we define an attack model M(φ) = 〈H, λ, τ, ε, S, T 〉 over a set A
of actions, where H = (V,H) and such that:

1. V = {s, φ, t, φ̄} ∪ {Ci, xi,j , C̄i, x̄i,j | i ∈ {1, ...,m} ∧ j ∈ {1, 2, 3}};
2. the set H exactly contains the following hyperedges:
• hs = {s, C1};
• hi,j = {Ci, xi,j} and h∧i,j = {xi,j , Ci+1}, ∀i ∈ {1, ...,m − 1} ∧ j ∈
{1, 2, 3};

• hm,j = {Cm, xm,j} and h∧m,j = {xm,j , φ}, ∀j ∈ {1, 2, 3};
• h̄s = {φ, C̄1};
• h̄i,j = {C̄i, x̄i,j} and h̄∧i,j = {x̄i,j , C̄i+1}, ∀i ∈ {1, ...,m − 1} ∧ j ∈
{1, 2, 3};

• h̄m,j = {C̄m, x̄m,j} and h̄∧m,j = {x̄m,j , φ̄}, ∀j ∈ {1, 2, 3}; and,

• ht = {φ̄, t};
3. λ(v) = (v, 1, 1), for each v ∈ V ; in fact, A = V ;
4. domain(τ) = {h̄s}, and τ(h̄s) = (2, 3);
5. S = {hs}, T = {ht};
6. for each variable of the form xi,j with i ∈ {1, ...,m} and j ∈ {1, 2, 3},

for each clause Cz with z ∈ {1,,m} where xi,j occurs (possibly with
i = z), and for each variable xz,k 6= xi,j with k ∈ {1, 2, 3} occurring
in Cz and different from xi,j , we have that: (hi,j , h̄z,k) ∈ domain(ε) and
ε(hi,j , h̄z,k) = 1.

As an example, the formula φ = (x ∨ y ∨ z) ∧ (x ∨ y ∨ w) is a YES
instance to the Monotone one-in-tree 3SAT problem, as it witnessed
by the truth assignment where x is the only variable evaluating true. The
hypergraph associated with the attack model M(φ) is shown in Fig. 3.4, where
for the sake of readability only arrows associated with constraints involving
the variable x in φ are depicted.

Fig. 3.4. The graph reduction constructed from φ.

38 3 Intrusion Detection with Hypergraph-Based Attack Models

Now, we complete the proof by claiming that: φ is a YES instance to
the Monotone one-in-three 3SAT problem ⇔ there M(φ) is (S/T)-
consistent.

(⇒) Let θ be an assignment witnessing that φ is a YES instance. Based on θ,
we build the sequence of vertices v(θ) = s, C1, x1,j1 , C2, x2,j2 ,, Cm, xm,jm , φ,
C̄1, x̄1,j1 , C̄2, x̄2,j2 ,, C̄m, x̄m,jm , φ̄, t where xi,ji is the only variable evalu-
ating true w.r.t. θ in the clause Ci, ∀i ∈ {1, ...,m}. Moreover, we build the
sequence π(θ) = {v1, v2}, ..., {vi, vi+1},, {v4m+3, v4m+4}, where vi is the
i-th vertex in the sequence v(θ). Note that π(θ) is a path in M(φ) starting
with hs and terminating with ht. In addition, it is consistent. Indeed, let
Lθ = l1, l2, ..., l4m+4 be a log such that li.type = vi and li.timestamp = i,
for each i ∈ {1, ..., 4m+ 4}. Then, just notice that L |=π(θ) M(φ).

(⇐) Let π be a consistent path in M(φ) starting with hs and terminating
with ht. Note that by definition of a path, π must be of the following form:
π = hs, h1,a1 , h

∧
1,a1 ,, hm,am , h

∧
m,am , h̄s, h̄1ā1 , h̄

∧
1,ā1 ,, h̄m,ām , h̄

∧
m,ām , ht,

where a1, ..., am, ā1, ..., ām ∈ {1, 2, 3}. Now, recall that τ(h̄s) = (2, 3),
i.e., in particular, the duration of h̄s is at least 2 time units. Given the
construction of ε, it follows that π cannot contain any pair of hyperedges in
the domain of ε. Therefore, for each hyperedge hi,ai , with i ∈ {1, ...,m},
if the variable xi,ai occurs in the clause Cz, with z ∈ {1, ...,m}, then
the hyperedge h̄z,āz is actually such that xz,āz = xi,ai . Let now θ be
the truth assignment such that the variable xi,ai evaluates true, for each
i ∈ {1, ...,m} (and the remaining variables evaluate false). Note that θ is
satisfying. Then, assume by contradiction that there is a clause Cz and
two distinct variables xz,α and xz,β evaluating true in θ. By construction
of θ, it must be the case that xz,α = xi′,ai′ and xz,β = xi′′,ai′′ , where i′

and i′′ are two indices in {1, ...,m}. However, by the above observations,
h̄z,āz is actually such that xz,āz = xi′,ai′ = xi′′,ai′′ . That is, i′ = i′′, which
is impossible if the variables xz,α and xz,β are distinct.

Interestingly, as the above result is obtained even when |S| = |T | = 1, the
following result is entailed.

Corollary 3.14. Deciding whether a given attack model is (S)-consistent
(resp., (T)-consistent) is NP-complete.

Present research is investigating conditions under which consistency check-
ing becomes tractable. In fact, tractable cases may arise when there are bounds
on the number and structure of hyperedges and on the size of domain(ε).

3.4 The Intrusion Detection Problem

In this section we formally characterize the intrusion detection problem we
are interested in and its complexity. The problem is basically that of checking

3.4 The Intrusion Detection Problem 39

whether a log is an instance of an attack model. The following definition
formalizes this.

Definition 3.15 (Intrusion Detection Problem). Given an attack model
M and a log L, determine whether there exists a complete path π in M such
that L |=π M .

We now characterize the complexity of the above problem.

Theorem 3.16. The intrusion detection problem is NP-complete.

Proof. Membership in NP is trivial: it suffices to use π and the correspond-
ing |π|-segmentation as a polynomially-verifiable witness. We prove NP-
hardness by polynomial-time reduction from Hamiltonian path [46]. Let
Gin = (Vin, Ein) be an undirected graph. In order to decide whether Gin con-
tains a Hamiltonian path, we build an attack model M = 〈H, λ, τ, ε, S, T 〉 as
follows:

• H = (V,H);
• V = Vin;
• H = {{v1, v2} | (v1, v2) ∈ Ein};
• ∀v ∈ V , λ(v) = (x, 1, 1);
• domain(τ) = domain(ε) = ∅;
• S = T = H.

Then, we build a log L = `1, . . . , `n where n = |V | and ∀`i ∈ L, `i.type = x
and `i.timestamp = i. Now, in order to include all log tuples in an attack
instance, all of the vertices in V must be traversed exactly once. Thus, there
exists a complete path π in M such that L |=π M if and only if Gin contains
a Hamiltonian path.

Theorem 3.16 establishes that there are cases where detecting an intrusion
is not doable in polynomial time (unless P=NP). Intuitively, the exponential
blowup is mainly due to the fact that, while analyzing the log:

1. it is necessary to maintain all possible “partial” instances (prefixes of the
log that are “instances” over incomplete paths) of the attack model M ;

2. many different incomplete paths in M can be associated with each partial
instance;

3. many different segmentations of the partial instance can be associated
with each (partial instance, incomplete path) pair.

Thus, when a new log tuple is analyzed and matched against the current set
of partial solutions, many new partial solutions may be generated.

Recent works on the detection instances of temporal-automaton models in
sequences of logged events [16, 6] have shown that acceptable detection times
in real-world cases can be obtained by employing compact index structures
and, most importantly, by limiting the number of partial solutions through

40 3 Intrusion Detection with Hypergraph-Based Attack Models

a form of early filtering based on temporal constraints. In other words, they
have shown that the presence of temporal constraints allows to only look at
the set of current partial solutions that lie within a fixed temporal “window”.
In Section 3.6 we define a new index structure and its associated detection
algorithm that, based on the same intuition, allow our intrusion detection
framework to obtain acceptable execution times – this will be confirmed by
the experimental assessment described in Section 4.7.

3.5 Action Hierarchies

In this section we show how our proposed attack model can be seamlessly
extended to handle the definition of generalization/specialization hierarchies
among actions. The introduction of generalization/specialization relationships
gives rise to two fundamental consequences:

• it allows to generalize/specialize an attack model when we want to track
less (more) specific actions;

• it may affect the number of instances of the model and, as a consequence,
the performance of the intrusion detection task.

Fig. 3.5(top) shows an example hierarchy for some of the software vulner-
abilities used in the attack model of Fig. 3.3.

Directory

Traversal

SQL

Injection

Input

Validation Error

Buffer

Overflow

Memory

Safety

Software

Vulnerabilities

Dangling

Pointers

Directory

Traversal

SQL

Injection

Buffer

Overflow

v
4

v
6

v
5

Input

Validation

Error

Buffer

Overflow

v
4
+v

6
v

5

++

Directory

Traversal

SQL

Injection

Memory

Safety

h
4

h
4
’

h
4
’’

v
3

v
6

v
5

Fig. 3.5. Examples of abstraction based on action hierarchies

We model action hierarchies through an is-a relation ∆ ⊆ A × A and
denote the transitive closure of ∆ as ∆+. With the introduction of gener-
alization/specialization relationships, the following modifications have to be
applied to Definition 3.2 and 3.7:

3.6 Indexing and Detecting Attack Instances 41

• In Definition 3.2, we add a requirement for function λ: it must be such
that ∀v, v′ ∈ h with λ(v) = (a, x, y) and λ(v′) = (a′, x′, y′), it holds that
(a, a′) ∈ ∆+, y′ ≥ x. This ensures that the generalization/specialization
relationships among the actions in h still allow the existence of log seg-
ments that are instances of h.

• In Definition 3.7, in order to correctly apply generalization/specialization
relationships, Conditions 1 and 2 become:
– ∀v ∈ h′i, if λ(v) = (a, l, u), then l ≤ |{` ∈ `s, ..., `t|(`.type, a) ∈ ∆+}| ≤

u;
– ∃ vs, vt ∈ h′i such that λ(vs) = (types, ls, us), λ(vt) = (typet, lt, ut),

(`s.type, types) ∈ ∆+, and (`t.type, typet) ∈ ∆+.

The following example shows how the use of action hierarchies allows us
to easily generalize/specialize an attack model and how it affects the number
of instances of the model.

Example 3.17. Suppose we define the action hierarchy of software vulnerabili-
ties of Fig. 3.5(top) and we want to modify the attack model M of Fig. 3.1 for
an intrusion detection task where it does not matter what kind of input vali-
dation error occurs. Fig. 3.5(bottom) shows how we could re-design hyperedge
h4 at a higher level of abstraction: v4 and v6 “collapse” into a single vertex,
labeled with the action that is the closest common ancestor of the two. The
resulting edge is h′4. The attack model M ′ obtained this way is a generaliza-
tion of M that better fits our needs. In this case, the number of instances of
M ′ is likely to be larger than those of M , since we now also admit instances
with neither SQL Injection nor Directory Traversal actions.

A larger number of instances can also be produced by generalizing h4

through a re-labeling of v5 with Memory Safety, thus producing h′′4 . This
way, the instances will admit Dangling Pointers log tuples as well.

3.6 Indexing and Detecting Attack Instances

In this section we present our proposed index structure, called AM-Index,
and its associated maintenance and retrieval algorithms. As briefly discussed
in Section 3.4, the index exploits as much as possible the temporal locality of
the instances of the given attack models, along with their associated temporal
constraints. The proposed index and algorithms are designed to be capable of
concurrently tracking instances of multiple attack models. Moreover, besides
retrieving the instances of any of the given models in the log, they return for
each instance the path followed in the corresponding model.

In the remainder, given an attack model M = 〈H, λ, τ, ε, S, T 〉 and a hyper-
edge h ∈ H, we define inM (h) = {h′ ∈ H s.t. there exists a complete path π
in M containing the subsequence h′, h}. Moreover, for the sake of conciseness,
if λ(v) = (a, l, u) we also write label(v) = a.

42 3 Intrusion Detection with Hypergraph-Based Attack Models

Definition 3.18 (AM-Index). Given a setM of attack models and a log L,
an AM-Index IM is a pair 〈T , I〉 where:

• T is a set containing a table table(h) for each hyperedge present in M.
Each row r ∈ table(h) is composed by the following components:
– for each v ∈ h with label(v) = a, a list PL[a] of pointers to log tuples.
– previous is a pointer to a table row (possibly null).
– completed is a boolean flag.
– model is the identifier of a model in M.
– minTS is a timestamp.

• I is a set containing, for each model M ∈ M, a list instances(M) of
pointers to table rows.

The components of the rows of a table table(h) represent the following
information:

• each pointer list PL[a] contains pointers to log tuples l with l.type = a
or l.type = a′ and (a′, a) ∈ ∆+ that are a part of the log segment which
satisfies h.

• previous points to a row of table(h′) with h′ ∈ inM (h) – this row represents
a segment to which the log tuples pointed by the lists in r can be linked
in order to extend a partial instance.

• completed is true iff r represents a segment that completely satisfies h.
• model is the identifier of a model containing h.
• minTS is the minimum l.timestamp where l is a log tuple pointed by a

list PL[x] for each x such that ∃v ∈ h with label(v) = x

The pointers in instances(M) point to table rows that represent log seg-
ments corresponding to terminal hyperedges in M which have been completed.

Example 3.19. Figure 3.6 shows the status of the AM-Index after indexing
the log of Example 3.8 up to tuple `10. At this stage, the index contains the
following information.

• The row in table(h1) represents the fact that hyperedge h1 of model M is
completed by a segment that includes the log tuple `1 (that is instance of
vertex v1 of h1). In addition, minTS = 0 means that the segment starts
at time 0.

• The row in table(h2) represents the fact that hyperedge h2 of model M is
completed by a segment that includes log tuples `1 and `4. Moreover, the
previous pointer points to the row in table(h1) as the segment represented
by the row in table(h2) follows the former in the (partial) attack instance
being represented.

• The row in table(h3) represents the fact that hyperedge h3 of model M is
completed by a segment that includes log tuples `4 and `5. The previous
pointer points to the row in table(h2) as the segment represented by the
row in table(h3) follows the former in the (partial) attack instance being
represented.

3.6 Indexing and Detecting Attack Instances 43

PL[v1] previous completed model minTS

l1 ^ true M 0
table(h1)

PL[v1] PL[v2] PL[v3] previous completed model minTS

l1 l4 ^ true M 0
table(h2)

PL[v2] PL[v3] PL[v4] previous completed model minTS

l4 ^ l5 true M 5
table(h3)

PL[v4] PL[v5] PL[v6] previous completed model minTS

l5 l6 l8 true M 7
table(h4)

PL[v5] PL[v6] PL[v7] PL[v8] PL[v9] previous completed model minTS

l6 l8 ^ l10 l9 false M 10
table(h5)

Fig. 3.6. Status of the AM-Index after indexing the log of Example 3.8 up to tuple
`10

• The row in table(h4) represents the fact that hyperedge h4 is completed
by a segment that includes log tuples `5, `6 and `8. The previous pointer
points to the row in table(h3) as the segment represented by the row in
table(h4) follows the former in the (partial) attack instance being repre-
sented.

• The row in table(h5) represents the fact that hyperedge h5 is partially
completed by a segment that includes log tuples `6, `8, `9 and `10, but we
still have to encounter a log tuple corresponding to vertex v7.

Figure 3.7 shows the pseudo-code of the AM Insert algorithm that indexes
a new log tuple lnew with associated action lnew.type. In the algorithm, Lines
3-10 deal with the case where lnew.type is in a start hyperedge. Specifically, the
algorithm creates a new row r pointing to lnew, then adds this row to table(h)
(where h is the hyperedge containing a = lnew.type), and checks whether r
represents a segment that completely satisfies h (by calling the CheckCom-
pleted procedure). Lines 11-23 check whether lnew can be appended to the
existing segments (i.e., every row r ∈ table(h) with r.completed = false), by
verifying cardinality and temporal constraints. If so, a new pointer to lnew
is added to the pointer list r.PL[a], and the new segment is passed to the
CheckCompleted procedure. Otherwise, r is removed as it represents a non-
extendable segment. Procedure CheckCompleted takes as input a table row r
and an hyperedge h, and checks whether the segment of log tuples pointed by
r is an instance and/or if it can be further extended. More specifically, Line
26 sets r.completed = true because, according to the constraints expressed by
h, the segment of log tuples pointed by r completely satisfies h. Line 27 stores
a new instance by adding a pointer to r in instances(M) if h is a terminal

44 3 Intrusion Detection with Hypergraph-Based Attack Models

Algorithm AM Insert(lnew, IM)
Input: New log tuple lnew, AM-Index IM
Output: Updated AM-Index IM

1 a← lnew.type
// —– Is a in a start hyperedge for some M ∈M? —–

2 R← ∅
3 for each M = 〈H, λ, τ, ε, S, T 〉 ∈ M
4 for each (h, v) s.t. h ∈ S, v ∈ h, and (label(v) = a or label(v) = a′ and (a, a′) ∈ ∆+)
5 r ← 〈PL = ∅,⊥, false,M, lnew.timestamp〉
6 r.PL[a]← {l↑new}
7 add r to table(h) and to R
8 checkCompleted(h, r)
9 end for

10 end for
// —– Can lnew be added to an existing segment? —–

11 for each M = 〈H, λ, τ, ε, S, T 〉 ∈ M, H =< H,V >
12 for each (h, v) s.t. h ∈ H, v ∈ h, and (label(v) = a or label(v) = a′ and (a, a′) ∈ ∆+)
13 for each table row r ∈ table(h) \R s.t. r.completed = false
14 if lnew.timestamp− r.minTS + 1 ≤ u′ where τ(h) = (·, u′)
15 and size(r.PL[a]) + 1 ≤ u where λ(v) = (·, ·, u)

16 add l↑new to r.PL[a]
17 checkCompleted(h, r)
18 else // —– The segment violates the constraints —–
19 remove r from table(h)
20 end if
21 end for
22 end for
23 end for

Procedure checkCompleted(h, r)
Input: Hyperedge h, index table row r

24 if l′ ≤ lnew.timestamp− r.minTS + 1 where τ(h) = (l′, ·)
25 and ∀w ∈ h, lw ≤ size(r.PL[label(w)]) where λ(w) = (·, lw, ·)
26 r.completed← true

27 if h ∈ T then add r↑ to instances(M) // —– M is the model to which h belongs —–
// —– Create the rows for outgoing hyperedges —–

28 for each h′ s.t. h ∈ inM (h′)

29 r′ ← 〈PL = ∅, r↑, false,M, 0〉
30 for each az s.t. ∃z ∈ h ∩ h′ with label(z) = az
31 r′.PL[az]← r.PL[az]
32 end for
33 r′.minTS ← minimum timestamp of the log tuples pointed by r′

34 add r′ to table(h′)
35 end for
36 end if

Fig. 3.7. AM Insert algorithm.

hyperedge. In lines 28-35, for each outgoing hyperedge h′ of h, a new row r′ is
created with r′.previous = r and r′.PL[az] = r.PL[az] for each az ∈ h∩h′. In
other words, if h has at least one outgoing hyperedge h′, then h and h′ have
at least one vertex in common az, thus we must create table rows r in table(h)
and r′ in table(h′), both pointing the same log tuple l with l.type = az.

3.7 Experimental Evaluation 45

Example 3.20. Figure 3.8 shows the evolution of the AM-Index when indexing
tuples `11 and `12 of the log of Example 3.8. When indexing tuple `11 (Fig-
ure 3.8(a)) the AM Insert algorithm identifies the row in table(h5) as one that
represents a segment that can be extended by `11 (`11 is an instance of ver-
tex v7). Thus, the algorithm replaces the ⊥ pointer in PL[v7] with a pointer
to `11 (note that, for clarity of presentation, the figure shows a deletion of
the row). Then, procedure CheckCompleted verifies that the segment is com-
pleted, so it marks the row as completed and creates a new row in table(h6)
that contains, for each vertex in common between h5 and h6, a copy of the
pointer list of the vertex. This new row gets completed after indexing `12, that
is an instance of vertex v11 (Figure 3.8(b)). Moreover, since h6 is a terminal
hyperedge, a pointer to the row is added to instances(M).

Figure 3.9 shows the pseudo-code of the AM Retrieve algorithm that re-
turns the instances of a set of attack models w.r.t. a log, represented as tu-
ples of the form (M, ls, lt, π), where ls and lt are the first and last tuple of
an instance of M over a complete path π. The algorithm takes as input an
AM-Index IM = 〈T , I〉 and a set of models M′ ⊆ M such that for each
instances(Mi) ∈ I,

⋃
iMi = M′. For each pointer r↑ ∈ instances(M), the

algorithm assignes to lt the most recent log tuple pointed by r, i.e., the last
tuple of a log segment that completely satisfies a terminal hyperedge (Line
4). On Line 5, π is the set of hyperedges involved in the current instance.
The algorithm follows the chain of r.previous pointers backwards, from r to
the row representing a start hyperedge (Lines 7-10). The last row rlast of the
chain will be recognized due to its previous attribute set to ⊥. This way, hy-
peredges represented by all rows of the chain are added to π. Finally, Line 11
assigns to ls the less recent log tuple pointed by rlast, i.e., the first log tuple
from which the current instance begins.

Finally, we point out that a simple yet effective concurrent pruning process
can be performed during the maintenance of the AM-Index. In fact, when the
AM Insert algorithm eliminates a non-completed row from a table table(h)
because it violates the constraints, we can follow the chain of previous pointers
starting from that row and eliminate any row r ∈ table(h′) if the following
conditions hold:

1. r is not pointed by any other row (this can be done efficiently by storing
the number of pointers to each row);

2. r cannot be extended by a row corresponding to a segment for a hyperedge
h′′ 6= h such that h′ ∈ inM (h′′) for some M .

3.7 Experimental Evaluation

In this section we report on the experimental results of our proposed algorithm
when applied to a number of distinct attack models. We implemented the
framework in Java. All the experiments were run on an Intel Core i7-3770K
CPU clocked at 3.50GHz, running Windows 8, with 12GB RAM available.

46 3 Intrusion Detection with Hypergraph-Based Attack Models

PL[v1] previous completed model minTS

l1 ^ true M 0
table(h1)

PL[v1] PL[v2] PL[v3] previous completed model minTS

l1 l4 ^ true M 0
table(h2)

PL[v2] PL[v3] PL[v4] previous completed model minTS

l4 ^ l5 true M 5
table(h3)

PL[v4] PL[v5] PL[v6] previous completed model minTS

l5 l6 l8 true M 7
table(h4)

PL[v5] PL[v6] PL[v7] PL[v8] PL[v9] previous completed model minTS

l6 l8 ^ l10 l9 false M 10

l6 l8 l11 l10 l9 true M 10

table(h5)

PL[v7] PL[v11] previous completed model minTS

l11 ^ false M 17
table(h6)

(a)

PL[v1] previous completed model minTS

l
1

^ true M 0
table(h

1
)

PL[v1] PL[v2] PL[v3] previous completed model minTS

l
1

l
4

^ true M 0
table(h

2
)

PL[v2] PL[v3] PL[v4] previous completed model minTS

l
4

^ l
5

true M 5

table(h
3
)

PL[v4] PL[v5] PL[v6] previous completed model minTS

l
5

l
6

l
8

true M 7

table(h
4
)

PL[v5] PL[v6] PL[v7] PL[v8] PL[v9] previous completed model minTS

l
6

l
8

l
11

l
10

l
9

true M 10

table(h
5
)

PL[v7] PL[v11] previous completed model minTS

l
11

l
12

true M 17

table(h
6
)

instances(M) = { }

(b)

Fig. 3.8. Evolution of the AM-Index when indexing tuples `11 and `12 of the log of
Example 3.8

3.7 Experimental Evaluation 47

Algorithm AM Retrieve(IM =< T , I >,M′)
Input: AM-Index IM, setM′ ⊆M of attack models
Output: Set I of tuples of the form (M, ls, lt, π)

such that M ∈M′ and ls, . . . , lt |=π M

1 I ← ∅
2 for each M ∈M′
3 for each r↑ ∈ instances(M)
4 lt ← most recent log tuple pointed by r
5 π ← {hyperedge represented by r}
6 rcurr ← r
7 while rcurr.previous 6= ⊥
8 rcurr ← rcurr.previous
9 add the hyperedge represented by rcurr to π

10 end while
11 ls ← less recent log tuple pointed by rcurr
12 add (M, ls, lt, π) to I
13 end for
14 end for
15 return I

Fig. 3.9. AM Retrieve algorithm.

3.7.1 Setting

We ran two rounds of experiments:

1. In the first round, we used the real-world attack model of Figure 3.1 along
with other three real-world models.

2. In the second round, we used four models derived from those used in the
first round by adding cardinality constraints, in order to analyze how the
AM Insert algorithm behaves when working with more constrained attack
models.

For both rounds, we built synthetic logs consisting of 100K tuples. Each log
was built by combining a set of sub-logs, each of which is a sequence of action
symbols that can represent an instance of a given attack model. Specifically, a
log combines several sub-logs L1, . . . , Ln where each Li is built by considering
a complete path in a model. These sub-logs were built and combined under
six different log generation modes, each corresponding to a possible real-world
scenario:

1. each sub-log only contains action symbols in its corresponding model, and
the sub-logs are concatenated;

2. same as mode 1, except that some action symbols are substituted with
“noise”, i.e. with symbols not present in the corrisponding model, with a
certain frequency;

3. same as mode 1, except that noise is inserted in the sequence;

48 3 Intrusion Detection with Hypergraph-Based Attack Models

4. same as mode 1, except that a certain percentage of each Li partially
overlaps with Li+1;

5. same as mode 2, but with partial overlap as in mode 4;
6. same as mode 3, but with partial overlap as in mode 4.

We performed 14 runs for each round of experiments. The log generation
modes, noise frequency, and overlap percentage used are reported in Fig-
ure 3.10. Note that default values are log generation mode 6 (that is the most
complex mode, which also captures the fact that noise more often appears
between alert symbols of actual interest), noise frequency 3/10, and overlap
percentage 40%.4

Run Log gen. mode Noise freq. Overlap perc.

1 1 – –
2 2 3/10 –
3 3 3/10 –
4 4 – 40%
5 5 3/10 40%
6 6 3/10 40%

7 6 1/10 40%
8 6 2/10 40%
9 6 3/10 40%
10 6 4/10 40%
11 6 5/10 40%

12 6 3/10 20%
13 6 3/10 30%
14 6 3/10 40%
15 6 3/10 50%
16 6 3/10 60%

Fig. 3.10. Parameter values used for each experimental run.

We also performed experiments with much larger logs (1M tuples) – the
performance we obtained in terms of tuples processed per second was 25%
worse in the average case.

3.7.2 Results

Figure 3.11 reports the number of log tuples processed per second in both
rounds of experiments. In particular, Figure 3.11(top) shows the number
of tuples processed when varying the log generation mode (runs 1–6), Fig-
ure 3.11(center) shows the variation with respect to noise frequency (runs
7–11), and Figure 3.11(bottom) the variation with respect to the percentage
of overlap between consecutive instances in the log (runs 12-16).

4 For simplicity of presentation, the run with all parameters set to default values
is reported as three separate runs (6, 9, and 14) in Figure 3.10.

3.7 Experimental Evaluation 49

0,0E+00

5,0E+04

1,0E+05

1,5E+05

2,0E+05

2,5E+05

3,0E+05

3,5E+05

1 2 3 4 5 6

tu
p

le
/s

e
c

Log generation mode

Round 1 Round 2

1,0E+05

1,5E+05

2,0E+05

2,5E+05

3,0E+05

3,5E+05

4,0E+05

20% 30% 40% 50% 60%

tu
p

le
/s

e
c

Noise frequency

1,5E+05

1,7E+05

1,9E+05

2,1E+05

2,3E+05

2,5E+05

2,7E+05

1 2 3 4 5

tu
p

le
/s

e
c

Overlap

Fig. 3.11. Tuple rates in both rounds of experiments.

The results confirm our expectations and show very satisfying overall per-
formances. In Figure 3.11(top) we can notice that, in the majority of cases, the
presence of noise in the log or overlap between consecutive instances reduces
the overall number of instances, thus improving performances. Generally, the
number of tuples processed per second is very high – it is consistently higher
than 42K, and over 151K on average. In both Figure 3.11(center) and Fig-

50 3 Intrusion Detection with Hypergraph-Based Attack Models

ure 3.11(bottom) the trend is almost linear in the frequency of noise and
percentage of overlap – in these experiments, the average tuple rate is around
216K tuples/sec. When we look at the differences between the first and sec-
ond round, i.e., when moving to more constrained attack models that allow
for fewer instances, the results again appear satisfactory. – the performance
gain is around 25% in the majority of cases.

We also measured the number of instances and the indexing time per
tuple normalized by the number of instances. The results for all the runs
are reported in Figure 3.12. As expected, the number of instances is much
lower in the second round. Interestingly, the normalized indexing time shows
relatively small variations with respect to the specific configuration used in
the first round, and the framework appears to use slightly more resources per
instance when using more constrained models.

0,E+00

1,E+03

2,E+03

3,E+03

4,E+03

5,E+03

6,E+03

7,E+03

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
 o

f
in

s
ta

n
c
e

s

Run

Round 1 Round 2

0

5E-09

1E-08

1,5E-08

2E-08

2,5E-08

3E-08

3,5E-08

4E-08

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

In
d

e
x

in
g

 t
im

e
 p

e
r

tu
p

le
 /

n
u

m
b

e
r

o
f

in
st

a
n

ce
s

Run

Fig. 3.12. Number of instances (top) and normalized indexing time per tuple (bot-
tom) in both rounds of experiments.

Finally, Figure 3.13 reports the maximum size and the normalized max-
imum size of the AM-Index for all the runs. Interestingly, the overall size of
the AM-Index appears relatively stable with respect to the configuration used.

3.8 Related Work 51

Again, the framework appears to use more resources per instance when using
more constrained models.

0,0E+00

5,0E+03

1,0E+04

1,5E+04

2,0E+04

2,5E+04

3,0E+04

3,5E+04

4,0E+04

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
 o

f
ro

w
s

Run

Round 1 Round 2

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

#
 o

f
ro

w
s

/

#
 o

f
in

st
a

n
ce

s

Run

Fig. 3.13. Maximum size (top) and normalized maximum size (bottom) of the
AM-Index in both rounds of experiments.

3.8 Related Work

3.8.1 Hypergraphs in security.

Hypergraphs [47] have been used to model networks in the security scenario.
For instance, networks are modeled as hypergraphs in [13, 48] for network-
based intrusion detection. In [49], hypergraphs are used for alert correlation,
whereas [50] uses hypergraphs to model security dependencies in the context
of risk analysis. In [51], a hypergraph-based model is presented for describing
security properties, which allow focusing on the connections between entities,
by generating intrusion scenarios in situations that transcend the physical

52 3 Intrusion Detection with Hypergraph-Based Attack Models

containment. In contrast to these works, we use hypergraphs to describe at-
tacks instead of networks. A similar approach has been used in [52], where a
datalog-based architecture is defined for a system that is able to reason on
violations of the logging infrastructure. Instead of using an attack graph, they
generalize the concept by representing the attack as a directed hypergraph,
which allow to specify logical statement that describe the violation.

3.8.2 Workflow modeling.

Since an intrusion can be generally interpreted as a sequence of actions, many
different kinds of models have been used in the past, such as, e.g., graph
grammars [53] and Petri nets [54]. A number of works in the field of process
modeling share with us the core idea of exploiting a hypergraph structure as
generalization of a traditional (process) graph model. Unlike regular graph-
structured process models, where an edge defines the sequential execution of
adjacent vertices, an hyperedge is an arbitrary set of vertices which can be ac-
complished in any order. The applicability of hypergraphs to process modeling
was studied, e.g., in [55, 56, 57, 58], where the authors extend a metagraph
structure, originally proposed in [59] to represent transformation relations be-
tween two sets of objects, into a novel model, named metagraph-based work-
flow, tailored to model workflow executions. In contrast to traditional process
modeling approaches, this approach proposes a view of workflow where actions
are represented by edges that relate objects (i.e., vertices of the hyperedge)
that are consumed and produced during action execution. Also inspired by hy-
pergraph formalism, the approach in [60] uses hypergraphs to define execution
semantics of flexible process graphs (FPG), a formal approach for modeling
business processes in a flexible way. However, in a FPG, actions are repre-
sented by vertices rather than edges, and hyperedges define routing decisions
by specifying executions of sets of actions that can be accomplished in an or-
der that is actually determined when executing a process instance. Besides the
specificity of the above models, the main difference with our proposed model
is the focus on process modeling issues and their use for simulation/analyzing
purposes. On the contrary, in our case hypergraphs are a basis for a completely
new model to handle the problem of detecting intrusions.

3.8.3 Intrusion detection with attack graphs.

Our model fits well at the base of intrusion detection tasks that, to date, have
often been based on direct attack graphs. In many works, such graphs are
constructed by analyzing the interdependencies between vulnerabilities and
security conditions that have been identified in the target network [16, 6, 61],
or for correlating intrusion alerts [62, 63, 64]. One of the main advantages of
using hypergraphs lies in the possibility of compactly representing a larger
number of possible attack scenarios.

3.9 Conclusions 53

Finally, our idea to abstract an attack scenario using a hierarchy of action
types is related to that proposed in [65], where associating a label to each
attack action is proposed, in order to report the stage where the attacker is.
However, differently from our purposes, they present a quantitative threat
modeling method which quantifies security threats by calculating the total
severity weights of attack paths that are considered to be relevant.

3.9 Conclusions

In this Chapter we proposed a hypergraph-based attack model for intrusion
detection which provides a very high flexibility in capturing diverse security
scenarios. We studied the problems of checking the consistency of attack mod-
els and detecting attack instances in sequences of logged actions. Moreover,
we proposed an index structure and its associated maintenance and retrieval
algorithms, whose efficiency has been proven by an extensive experimental
evaluation.

Part II

Anomaly Detection

4

PADUA: Parallel Architecture to Detect
Unexplained Activities

There are numerous applications (e.g., video surveillance, fraud detection, cy-
bersecurity) in which we wish to identify unexplained sets of events. Most past
work has been domain-dependent (e.g., in video surveillance or cybersecurity)
and much of it focused on the valuable class of statistical anomalies in which
statistically unusual events are considered. In contrast, assume that there is
a set A of known activity models (both harmless and harmful) and a log L of
time-stamped observations. We define a part L′ ⊆ L of the log to represent
an unexplained situation when none of the known activity models can explain
L′ with a score exceeding a user-specified threshold. We represent activities
via the notion of a probabilistic penalty graph (PPG) and show that a set of
PPGs can be combined into one Super-PPG. We define an index structure
for Super-PPGs. Given a compute cluster of (K + 1) nodes (one of which is
a master node), we show how to split a Super-PPG into K subgraphs that
can be autonomously processed by K compute nodes. We provide algorithms
for the individual compute nodes to ensure seamless handoffs that maximally
leverage parallelism. PADUA is domain-independent and can be applied to
many domains (perhaps with some specialization). We conducted detailed ex-
periments with PADUA on two real-world datasets. First, we tested PADUA on
the ITEA CANDELA video surveillance dataset. Second, we tested PADUA
on network traffic data appropriate for cybersecurity applications. PADUA
scales extremely well with the number of processors and significantly outper-
forms past work both in accuracy and time. Thus, PADUA represents the first
parallel architecture and algorithms for identifying unexplained situations in
observation data and—in addition to high accuracy—can scale well.

4.1 Introduction

Many organizations continuously monitor transactional data in order to iden-
tify irregularities. For instance, security officers at airports need to identify
unexplained behavioral patterns (e.g., people who leave unattended packages)

58 4 PADUA: Parallel Architecture to Detect Unexplained Activities

in order to identify threats to public safety. Banks monitor transaction streams
on their secure web sites to identify suspicious behaviors. Insurance compa-
nies look for unexplained patterns in claims data. Stock market regulators
look for suspicious trading patterns that may artificially drive stock prices
up or down [66]. In computer security, attack graphs [6] have been devel-
oped in order to identify known attack patterns by which hackers try to
compromise systems. Insurance investigators have also developed patterns of
activity to look for [67] . In all of these applications, experts have identified
“known” patterns to look for. These known patterns include both harmless
and harmful behavior—much work has focused on learning patterns of be-
havior [68, 69, 70, 71, 72, 73, 74, 75, 76, 77] so that statistically significant
variations of these known patterns can be flagged.

“Bad guys” are constantly innovating and seeking new ways to carry out
their crimes. In this chapter, we propose PADUA, the first parallel architecture
for the detection of unexplained “situations” that we are aware of. A situation
is any subset of a given log of observations. PADUA starts with some set A of
activity models that are known in advance. A may consist of a combination of
harmless and harmful activities—when a known harmful activity is detected in
a log of observations, PADUA will automatically raise an alert that a security
analyst can respond to (or a program specialized to address that harmful
activity can be invoked). However, this chapter focuses on the problem of
identifying situations that collectively cannot be satisfactorily explained by
any of the activity models in A. The contributions of this chapter are as
follows.

1. Though the goal of PADUA is not to propose a new activity model, in
Section 4.3 we propose Probabilistic Penalty Graphs (PPGs for short).
PPGs extend stochastic automata [78] in order to handle “noise”. Han-
dling noise is critical in real-world applications as many observed events
are probably irrelevant. For instance, in an airport, people exhibit a num-
ber of behaviors that were not thought of when models of known activities
were developed. Similarly, activity patterns at a bank web site may ex-
hibit a lot of noise. A situation is deemed unexplained if, intuitively, the
situation cannot be explained by any known activity model in A with a
score exceeding a user-defined threshold τ .

2. In Section 4.4, we propose a data structure that combines a set of PPGs
into a single Super-PPG, together with algorithms to maintain this Super-
PPG data structure and to seamlessly flag unexplained situations when
they occur. Super-PPGs offer scalability on single machine implementa-
tions.

3. In Section 4.5, we show that given a set of (K + 1) cluster nodes, we
can split a Super-PPG into a set of K sub-PPGs, each of which can be
executed on one of K compute nodes. We show 5 different approaches to
splitting a Super-PPG for the purpose of detecting unexplained situations.

4.2 Related Work 59

4. In Section 4.6, we provide parallel coordination algorithms for detecting
unexplained situations using which each compute node can “hand off”
computation to an appropriate other node when necessary.

5. We implemented all these data structures and algorithms on a parallel
architecture with over 160 CPUs and conducted accuracy and timing ex-
periments with two real-world datasets. The ITEA CANDELA dataset1

contains a wide range of video surveillance data. The Naples Network
Traffic dataset contains network traffic from the University of Naples.
Experiments (reported in Section 4.7) show that: (i) PADUA scales ex-
tremely well with the number of CPUs and runs faster than past work for
detecting unexplained situations, (ii) PADUA significantly improves the
accuracy of past work [6]—the F-measure increases from 0.72 to 0.89.

We emphasize that an unexplained situation may not be a harmful one. For
instance, if PADUA flags a situation as being unexplained, a security analyst
may look at the situation—if it is harmless, it can be added to the set A of
known activities as a harmless activity and if it is harmful, likewise, it can be
added to the set A and flagged as harmful. By flagging unexplained situations
we have the potential for a semi-automated method to grow the set of known
activity patterns over time.

4.2 Related Work

4.2.1 A priori definitions.

Several researchers have studied how to search for specifically defined patterns
of normal/abnormal activities using different models such as Hidden Markov
Models [79, 80], coupled Hidden Markov Models [81, 82], Dynamic Bayesian
Networks [83], Stochastic Automata [84], Bayesian networks and probabilistic
finite state automata [85]. In contrast, this chapter starts with a set A of
known activity models (for normal/abnormal activities) and finds sequences
that are not sufficiently explained by any of the known models in A.

4.2.2 Learning and then detecting abnormality.

Much work first learns a normal activity model and then detects abnormalities.
In data mining, objects (e.g., people, transactions) may have an associated
vector of properties. By clustering a set of objects, we can identify objects that
either do not belong to any cluster or are “far away” (in the high-dimensional
vector space) from any cluster. Here, belonging to a sufficiently big cluster is
considered “normal”, being far away from a cluster or being part of a tiny clus-
ter is considered anomalous. Examples of such an approach are encompassed

1 http://www.multitel.be/image/research-development/
research-projects/candela/

60 4 PADUA: Parallel Architecture to Detect Unexplained Activities

in [86]. [68] proposes a semi-supervised approach to detect abnormal events
that are rare, unexpected, and relevant. Detection of unseen or rarely occur-
ring events are also considered in [69, 70, 71, 72, 73]. [87] defines an anomaly
as an atypical behavior pattern that is not represented by sufficient samples
in a training dataset and satisfies an abnormal pattern. [74] learns patterns
of activities over time in an unsupervised way. [75] learn trajectory proto-
types and detect anomalous behaviors when visual trajectories deviate from
the learned representations of typical behaviors. [76] automatically learn high
frequency events and declares them normal—events deviating from these rules
are anomalies. [77] first analyzes and designs features from the data and then
detects abnormal activities using the designed features. All these approaches
first learn normal activity models and then detect abnormal/unusual events.
These papers differ from this chapter as they consider rare events to be abnor-
mal. In contrast, we may consider situations to be unexplained even if they
are not rare—if existing models do not capture them with high probability,
they are flagged as unusual. In addition, if a model exists for a rare situation,
we would flag it as “explained”, while many of these frameworks would not.

4.2.3 Similarity-based abnormality.

[88] proposes an unsupervised technique in which each event is compared with
all other observed events to determine how many similar events exist. Unusual
events are events for which there are no similar events. Similarly, [89] consid-
ers a scene in a video anomalous when the maximum similarity between the
scene and all previously viewed scenes is below a threshold. In [90], frequently
occurring patterns are normal and patterns that are dissimilar from most
patterns are anomalous. An unsupervised approach, where an abnormal tra-
jectory refers to something that has never (or rarely) been seen was proposed
in [91]. In [92], unusual events are detected by computing the likelihood of a
new observation w.r.t. the probability distribution of prior observations.

4.2.4 Cybersecurity.

Intrusion detection systems (IDSs) monitor network traffic for suspicious be-
havior and trigger alerts [8, 93, 94]. Alert correlation methods aggregate
such alerts into multi-step attacks [22, 6, 95, 96]. Intrusion detection tech-
niques can be broadly classified into signature-based [94] and profile-based (or
anomaly-based) [8] methods. A signature is a set of conditions that character-
ize intrusion activities w.r.t. packet headers and payload content. Historically,
signature-based methods have been used extensively to detect malicious activi-
ties. In profile-based methods, a known deviation from the norm is considered
anomalous (e.g. HTTP traffic on a non-standard port). In contrast, in this
chapter, we consider the case where we have a set A of known activities (both
innocuous and dangerous)—and we are looking for observation sequences that
cannot be explained by either (if they were, they would constitute patterns

4.3 Probabilistic Penalty Graphs 61

that were known a priori). These need to be flagged as they might represent
“zero day” attacks. Correlation techniques try to reconstruct attacks from
isolated alerts. The main role of correlation is to provide a higher level view
of the actual attacks [95, 96, 97, 98, 99]. Both IDSs and correlation techniques
rely on models encoding a priori knowledge of either normal or malicious be-
havior, and cannot appropriately deal with events that are not explained by
the underlying models.

4.3 Probabilistic Penalty Graphs

We assume the existence of a finite set A of action symbols. A log tuple is
a (k + 1)-tuple l = (s, att1, . . . , attk) where s ∈ A, and att1, ..., attk are
attributes (e.g., source, actor, time-stamp etc.). A log is a finite sequence of
log tuples. We use l.action to refer to action symbol s of tuple l. Intuitively, a
log tuple corresponds to an observation of l.action along with the associated
attributes of the observation att1, . . . , attk. By convention, if action a2 occurs
after a1 in a log, then the action a2 occurred temporally after a1.

4.3.1 Definition of PPGs

In this chapter, we model activities using probabilistic penalty graphs which
extend the stochastic activity definition of [78] with a penalty component
which allows us to handle noise.

Definition 4.1 (Probabilistic Penalty Graph (PPG)). A probabilistic
penalty graph (PPG for short) is a labeled graph A = (V,E, δ, ρ) where:

• V ⊆ A is the set of nodes;
• E ⊆ V × V is the set of edges (with no self-loops);
• the set of start nodes (i.e., nodes with in-degree zero), denoted start(A),

is non-empty;
• the set of end nodes (i.e., nodes with out-degree zero), denoted end(A), is

non-empty;
• δ : E → (0, 1) is a function that associates a probability distribution with

the outgoing edges of each node, i.e., ∀v ∈ V ,
∑

(v,v′)∈E δ(v, v
′) = 1;

• ρ : E → (0, 1) is a function that associates a noise degradation value with
each edge.

The last component (noise degradation function) is new and extends the
stochastic automata of [78]. To understand the intuition behind it, consider
an edge e = (a1, a2) in some PPG labeled with probability δ(e) and noise
degradation ρ(e). This edge can be read as: if a1 occurs in a log and a2

occurs later and there are z actions b1, . . . , bz in the log strictly between
a1 and a2, then the score associated with the subsequence a1, b1, . . . , bz, a2

is δ(e) · ρ(e)z. As the degradation ρ(e) ∈ [0, 1], the larger z is, the lower

62 4 PADUA: Parallel Architecture to Detect Unexplained Activities

the subsequence score (because ρ(e)z decreases as z increases). Thus, the
subsequence “pays a penalty” as the amount of noise in it increases. For
example, consider an edge e = (a1, a2) with δ(e) = 0.7 and ρ(e) = 0.2. Suppose
our log contains the sequence 〈a1, b1, b2, a2〉. The score of a transition from a1

to a2 is 0.7∗(0.2)2 = 0.028 because there are two “noisy” events (b1, b2) in the
middle. In contrast, with the same δ and ρ, consider the log 〈a1, b2, b2, b3, a2〉
where an extra noisy observation b3 occurs between a1, a2. The score of a
transition from a1 to a2 is 0.7 ∗ (0.2)3 = 0.0056, an even smaller number.

Example 4.2. The PPG in Fig. 4.1 shows an e-commerce network intru-
sion scenario from [6]. Here PostFirewallAccess is the only start node and
CentralDBServerAccess is the only end node. Each edge e is labeled with
(δ(e), ρ(e)), i.e., the probability and noise degradation values for the edge.
For example, the outgoing edges of node PostFirewallAccess show that there
is a 90% probability the next action is MobileAppServerAccess and a 10%
probability it is CentralDBServerAccess. Furthermore, the former edge has a
degradation value 0.2 and the latter has a degradation value 0.4.

MobileApp

DBAccess

MobileApp

ServerAccess

OrderProcessing

ServerAccess

CentralDB

ServerAccess

PostFirewall

Access

(0.9,0.2)

(0.1,0.4)

(0.2,0.7)

(0.4,0.3)

(0.4,0.5)

(0.7,0.1) (0.4,0.3)

(0.3,0.2)

(0.6,0.2)

Fig. 4.1. Probabilistic Penalty Graph.

4.3.2 Unexplained Situations

In order to define unexplained situations, we first define PPG occurrences in
a log.

Definition 4.3 (PPG Occurrence). Let A = (V,E, δ, ρ) be a PPG and L
a log. An occurrence of A in L is a pair (L∗, I∗) where

1. L∗ = l1, . . . , ln is a contiguous subsequence of L;
2. I∗ = i1, . . . , im is a sequence of indices of L, with 1 ≤ ij ≤ n, i1 = 1,
im = n, and ij < ij+1;

3. ∀j ∈ [1,m− 1], (lij .action, lij+1 .action) ∈ E;
4. l1.action ∈ start(A);

4.3 Probabilistic Penalty Graphs 63

5. ln.action ∈ end(A).

Thus, an occurrence of a PPG A consists of a contiguous subsequence L∗

of L and a set I∗ of indexes specifying the tuples in L∗ whose associated
actions are a path from a start to an end node in A—the remaining tuples
of L∗ constitute “noise”. Fig. 4.2 illustrates the definition pictorially—each
“box” represents a log tuple. In this example, L∗ = 〈l1, l2, . . . , l9〉 consists of
the entire sequence shown, while I∗ = 〈1, 5, 6, 9〉 refers to the shaded boxes.
For this to be a valid occurrence of a PPG A, we need to make sure that A
contains an edge from l1.action to l5.action, from l5.action to l6.action, and
from l6.action to l9.action, and moreover ensure that l1.action is a valid start
state node and l9.action is a valid end node for A.

l
1

l
2

l
3

l
4

l
5

l
6

l
7

l
8

l
9

Fig. 4.2. An example of PPG occurrence.

Of course, some occurrences are “good” while others may not be as good.
This “goodness” is captured via the score of an occurrence which is defined
below. The score of (L∗, I∗) is

score(L∗, I∗) = Πj∈[1,m−1]δ(lij .action, lij+1 .action)·ρ(lij .action, lij+1 .action)z

with z = ij+1 − ij − 1. Thus, the score of (L∗, I∗) is computed by taking into
account

1. the probability on the edges belonging to the path li1 .action, . . . , lim .action
specified by I∗ (i.e., Πj∈[1,m−1]δ(lij .action, lij+1 .action)), and

2. the amount of noise in L∗.

If there are many tuples in L∗ which are not part of a path from a start
to an end node in A, then the score of (L∗, I∗) decreases. This is because
when z (the amount of noise) increases, multiplying δ(lij .action, lij+1 .action)
by ρ(lij .action, lij+1

.action)z yields a smaller score, because ρ(−,−) ∈ [0, 1].
We illustrate this below.

Example 4.4. Consider a log whose associated sequence of action symbols
is 〈PostFirewallAccess, x, MobileAppServerAccess, OrderProcServerAccess, x, x,
CentralDBServerAccess, x〉, where x /∈ V and V is the set of vertices of
the PPG in Fig. 4.1. Then, (L∗, I∗), where L∗ = 〈PostFirewallAccess, x,
MobileAppServerAccess, OrderProcServerAccess, x, x, CentralDBServerAccess〉
and I∗ = 1, 3, 4, 7, is an occurrence of the PPG in Fig. 4.1 and its score is
0.9 · 0.21 · 0.4 · 0.50 · 0.6 · 0.22.

Now we come to the critical definition of an unexplained situation.

64 4 PADUA: Parallel Architecture to Detect Unexplained Activities

Definition 4.5 (Unexplained Situation). Let A = (V,E, δ, ρ) be a PPG
and L a log. An unexplained situation for A is a pair (Lu, Iu) where

1. Conditions 1–4 in Definition 4.3 hold;
2. ln.action ∈ V − end(A);
3. there is no occurrence (L∗, I∗) of A such that Lu is a prefix of L∗ and Iu

is a prefix of I∗;
4. there is no pair (L′u, I

′
u) 6= (Lu, Iu) such that Lu is a prefix of L′u, Iu is a

prefix of I ′u, and (L′u, I
′
u) satisfies all conditions above.

Thus, an unexplained situation for A consists of a contiguous subsequence
Lu of L and a set Iu of indexes specifying the tuples in Lu whose associated
actions are a path ending in a non-end node in A. The third condition requires
that an unexplained situation cannot be extended so as to get an occurrence
of A. The fourth condition ensures that unexplained situations are as long as
possible.

The score score(Lu, Iu) of an unexplained situation (Lu, Iu) is given by:

Πj∈[1,m−1](1− δ(lij .action, lij+1 .action)) · (1− ρ(lij .action, lij+1 .action))z

with z = ij+1−ij−1. The score of (Lu, Iu) takes into account the probabilities
of the edges along the path specified by Iu and the noise degradation values
for the tuples in Lu which are not referenced by Iu; however, edge probabilities
and degradation values are complemented. We illustrate this in the following
examples.

Example 4.6. Consider the PPG in Fig. 4.1. Let δ be

• δ(MobileAppServerAccess,MobileAppDBAccess) = 0.1
• δ(MobileAppServerAccess,OrderProcServerAccess) = 0.7.

Now consider a log containing two subsequences of tuples

• L1 = 〈MobileAppServerAccess, x, x, x, MobileAppDBAccess〉
• L2 = 〈MobileAppServerAccess, x, x, x, OrderProcServerAccess〉

In this case, L1 may contribute to the score of an occurrence of the PPG
with a probability equal to 0.1, and L2 with a probability of 0.7. This means
that “moving” from MobileAppServerAccess to MobileAppDBAccess is less likely
than moving from MobileAppServerAccess to OrderProcServerAccess in the ac-
tivity described by the PPG. Hence, when computing the score of unexplained
situations containing L1 or L2, the contributions are complemented: moving
from MobileAppServerAccess to MobileAppDBAccess is considered “more unex-
plained” than moving from MobileAppServerAccess to OrderProcServerAccess,
and their contributions to the score become 0.9 and 0.3, respectively.

4.3 Probabilistic Penalty Graphs 65

Example 4.7. Consider the log 〈PostFirewallAccess, x, MobileAppServerAccess,
MobileAppDBAccess, x, x〉. Then, (Lu, Iu), where Lu = 〈PostFirewallAccess, x,
MobileAppServerAccess, MobileAppDBAccess〉 and Iu = 1, 3, 4 is an unexplained
situation for the PPG in Fig. 4.1 with score 0.1 · 0.81 · 0.6 · 0.70.

We now define the concept of an unexplained situation w.r.t. a PPG when
we are given a threshold τ .

Definition 4.8. Let A be a PPG, L a log, and τ ∈ [0, 1]. A τ -unexplained
situation for A is an unexplained situation (Lu, Iu) for A with score(Lu, Iu) ≥
τ .

The definition of a τ -unexplained situation above is given for a single PPG.
Given a set A of PPGs, we would like to find a set of τ -unexplained situations
w.r.t. the whole set A. We define the τ -unexplained situations for a set of
PPGs as follows.

Definition 4.9. Let A be a set of PPGs, L a log, and τ ∈ [0, 1]. A τ -
unexplained situation for A is a maximal contiguous subsequence Lu of L
such that for every A in A, there is a τ -unexplained situation (L′u, I

′
u) for A

s.t. Lu is a subsequence of L′u.

Thus, given a set A of PPGs, a τ -unexplained situation is a maximal
contiguous subsequence Lu of the log which is contained in a τ -unexplained
situation of every PPG in A (i.e., Lu is unexplained w.r.t. all PPGs in A).
Before computing the set of τ -unexplained situations, we show that our theory
has several elegant properties.

As threshold τ is used to select only those unexplained situations for which
we have a confidence above τ , higher values of τ are stricter conditions for a
situation to be unexplained. The following proposition states that our frame-
work satisfies the natural property that unexplained situations become wider
by decreasing the threshold (moreover, new unexplained situations might be
found).

Proposition 4.10. Consider a log L, a set A of PPGs, and two thresholds
τ1, τ2 ∈ [0, 1]. Let U1 (resp. U2) be the set of τ1- (resp. τ2-) unexplained situ-
ations for A. If τ1 ≥ τ2, then for every L1

u in U1 there exists L2
u in U2 s.t. L1

u

is a contiguous subsequence of L2
u.

Proof. Let L1
u be a τ1-unexplained situations for A, i.e., L1

u ∈ U1. Defini-
tion 4.9 implies that for every A ∈ A there is a τ1-unexplained situation
(L′u, I

′
u) for A s.t. L1

u is a subsequence of L′u. It is easy to check that τ1 ≥ τ2
implies that (L′u, I

′
u) is a τ2-unexplained situation for A. This means that for

every A ∈ A there is a τ2-unexplained situation (L′u, I
′
u) for A s.t. L1

u is a
subsequence of L′u. The following two cases may occur. (i) If L1

u is maximal,
then the claim trivially holds (we are in the case where L2

u = L1
u). (ii) If

L1
u is not maximal, then there exists L2

u 6= L1
u s.t. L1

u is a proper contiguous
subsequence of L2

u, and for every A ∈ A there is a τ2-unexplained situation
(L′u, I

′
u) for A s.t. L2

u is a subsequence of L′u.

66 4 PADUA: Parallel Architecture to Detect Unexplained Activities

Given two PPGs A1 = (V1, E1, δ1, ρ1) and A2 = (V2, E2, δ2, ρ2), we write
A1 v A2 iff (i) V1 = V2, (ii) E1 = E2, and (iii) δ1(e) ≤ δ2(e) and ρ1(e) ≤ ρ2(e)
for every e ∈ E1 (or, equivalently, e ∈ E2). Given two sets A1 and A2 of PPGs
we write A1 v A2 iff for every A1 ∈ A1 there exists A2 ∈ A2 s.t. A1 v A2.

Intuitively, A1 v A2 means that A1 and A2 are topologically the same,
but A2 has possibly higher edge probabilities or penalties. Notice that higher
edge probabilities/penalties for a PPG lower the confidence we have in τ -
unexplained situations and thus, we would expect a smaller portion of the
log to be unexplained. Indeed, as stated by the following proposition, this is
correctly captured by our theory.

Proposition 4.11. Consider a log L, a threshold τ ∈ [0, 1], and two sets of
PPGs A1, A2. Let U1 (resp. U2) be the set of τ -unexplained situations for A1

(resp. A2). If A2 v A1, then for every L1
u in U1 there exists L2

u in U2 s.t. L1
u

is a contiguous subsequence of L2
u.

Proof. Recall that, by definition of v, if A2 v A1, then for every A2 ∈ A2

there exists A1 ∈ A1 s.t. A2 v A1. Notice that if (Lu, Iu) is a τ -unexplained
situation for A1, then (Lu, Iu) is a τ -unexplained situation also for A2. This
is because (Lu, Iu) is clearly an unexplained situation for both A1 and A2

(because they are topologically the same and the definition of unexplained sit-
uation involves only the topology of the PPG and the log—see Definition 4.5)
and the score of (Lu, Iu) computed w.r.t. A1 is less than or equal to the score
of (Lu, Iu) computed w.r.t. A2.

Suppose A2 v A1 and let L1
u be a τ -unexplained situations for A1. Defi-

nition 4.9 implies that for every A1 ∈ A1 there is a τ -unexplained situation
(L′u, I

′
u) for A1 s.t. L1

u is a subsequence of L′u. Suppose by contradiction that
there does not exist a τ -unexplained situation L2

u for A2 s.t. L1
u is a con-

tiguous subsequence of L2
u. In other words, neither L1

u nor any contiguous
subsequence of the log containing L1

u is a τ -unexplained situations for A2.
Then, by Definition 4.9, there is at least one PPG A2 in A2 s.t. there does
not exist a τ -unexplained situation (L′u, I

′
u) for A2 s.t. L1

u is a subsequence of
L′u. The definition of v implies that there exists A1 ∈ A1 s.t. A2 v A1. Since
L1
u is a τ -unexplained situations for A1, then there must be a τ -unexplained

situation (L′u, I
′
u) for A1 s.t. L1

u is a subsequence of L′u. As shown at the be-
ginning of the proof, this means that (L′u, I

′
u) is a τ -unexplained sequence for

A2, and, furthermore, L1
u is a subsequence of L′u, which is a contradiction.

As we wish to find situations that are not sufficiently explained by a set
A of PPGs, another natural property is that a smaller portion of the log
becomes unexplained by adding PPGs to A. The following corollary says that
this property is satisfied by our theory.

Corollary 4.12. Consider a log L, a threshold τ ∈ [0, 1], and two sets of
PPGs A1, A2. Let U1 (resp. U2) be the set of τ -unexplained situations for A1

(resp. A2). If A2 ⊆ A1, then for every L1
u in U1 there exists L2

u in U2 s.t. L1
u

is a contiguous subsequence of L2
u.

4.3 Probabilistic Penalty Graphs 67

Proof. It is straightforward to check that A2 ⊆ A1 implies A2 v A1 (see the
definition of v). Thus, the claim follows from Proposition 4.11.

4.3.3 Deriving Noise Degradation Values from a Training Set

We can easily derive noise degradation values from a training set of data
as follows. Suppose we have a PPG A and e = (a1, a2) is an edge in this
PPG. Suppose we have a log L. Let occ(L, e) denote the set of all contiguous
sequences in L that start with a1 and end with a2. Suppose these are presented
to a user for training purposes and the user marks some of these as valid
transitions from a1 to a2 and marks the others as invalid. Let valid(L, e) be
the subset of occ(L, e) marked valid and invalid(L, e) = occ(L, e)\valid(L, e).
For any sequence s = a1, b1, . . . , bk, a2, let noise(s, e) = k. Moreover, for each
integer i, let f(i) be the percentage of sequences in occ(L, e) with i units of
noise between a1 and a2 that are marked valid, i.e.,

f(i) =
|{s | s ∈ valid(L, e) ∧ noise(s, e) = i}|
|{s | s ∈ occ(L, e) ∧ noise(s, e) = i}|

We now plot a graph with i on the x-axis and f(i) on the y-axis and look
for a value ρ(e) such that the function g(i) = δ(e)∗ρ(e)i best approximates the
function f , i.e. such that the mean square error Σi(g(i)−f(i))2 is minimized.
This can be done by a standard curve fitting procedure [100]. 2

As an example of this procedure, suppose we consider an edge e = (a1, a2)
and that the training set has a maximum of 3 noisy observations between
a1, a2. Suppose the table below shows the set occ(L, e) along with the
valid/invalid annotation.

Sequence s noise(s) Annotation

a1, b1, a2 1 valid

a1, b3, a2 1 valid

a1, b1, b2, a2 2 valid

a1, b1, b3, a2 2 valid

a1, b1, b4, a2 2 invalid

a1, b1, b2, b3, a2 3 valid

a1, b2, b3, b5, a2 3 invalid

a1, b2, b6, b2, a2 3 invalid

According to this training set, f(1) = 1, f(2) = 0.67, f(3) = 0.33. Suppose
the transition probability δ(e) is 0.5. Then we are looking for a function g(i) =
δ(e) ∗ ρ(e)i such that Σ3

i=1(g(i)− f(i))2 is minimized. Let ρ(e) = u. Then we
want to minimize (0.5 ∗ u − 1)2 + (0.5 ∗ u2 − 0.67)2 + (0.5 ∗ u3 − 0.33)2. We
can minimize this expression, subject to the requirement that it is non-zero.

2 Note that this is just one simple way of learning penalties. The goal here is not
to study machine learning algorithms to learn such graphs, just to show that
reasonably simple ways to learn these penalties exist.

68 4 PADUA: Parallel Architecture to Detect Unexplained Activities

This is a straightforward polynomial (cubic) constraint solving problem that
can be solved using any non-linear constraint solver.

4.4 The PPG-Index: Fast Computation of Unexplained
Situations on a Single CPU

In this section, we define a PPG-Index to quickly compute the set of all τ -
unexplained situations within a log. We first show how to merge all PPGs
together into a Super-PPG. Then we develop a PPG-Index structure that is
automatically updated when new observations come into the log. The PPG-
Index is fully geared towards finding the τ -unexplained situations within a
log as the log is changing. This section focuses on implementing these opera-
tions on a single CPU while subsequent sections define the parallel algorithms
within PADUA.

4.4.1 Super-PPGs

We first define a Super-PPG, which is a compact representation of a set of
PPGs. Note that a Super-PPG is not a PPG, but a slightly different structure
which encapsulates all the information within the given set of PPGs.

Definition 4.13 (Super-PPG). Let A = {A1, . . . , Ak} be a set of PPGs,
where ∀i ∈ [1, k], Ai = (Vi, Ei, δi, ρi). A Super-PPG is a 4-tuple G(A) =
(VG, EG, δG, ρG) where

• VG = ∪i∈[1,k]Vi and EG = ∪i∈[1,k]Ei;
• δG : VG × VG × A → [0, 1] is the function s.t. δG(v, v′, Ai) = δi(v, v

′) if
(v, v′) ∈ Ei, 0 otherwise.

• ρG : VG × VG × A → [0, 1] is the function s.t. ρG(v, v′, Ai) = ρi(v, v
′) if

(v, v′) ∈ Ei, 0 otherwise.

Basically, the Super-PPG associated with A has the same vertices as in the
graphs in A. The “global” probability function δG returns the probability
of an edge in this graph w.r.t. a specific activity and the “global” ρG noise
degradation function does the same.

Example 4.14. Let A = {A1, A2} where A1 is the PPG in Fig. 4.1 and A2 is
the PPG in Fig. 4.4. Fig. 4.3 shows G(A), where each edge (v1, v2) has labels
of the form A : (δG(v1, v2, A), ρG(v1, v2, A)).

The definition of a Super-PPG yields an immediate way of quickly con-
structing a Super-PPG.

4.4 The PPG-Index: Fast Computation of Unexplained Situations on a Single CPU 69

MobileApp

ServerAccess

PostFirewall

Access

PlaceOrder

PreFirewall

Access

(0.1,0.8) (0.5,0.2)

(0.5,0.9)

(0.8,0.9)(0.9,0.7)

(0.2,0.9)

Fig. 4.3. PPG A2.

MobileApp

DBAccess

MobileApp

ServerAccess

OrderProcessing

ServerAccess

CentralDB

ServerAccess

PostFirewall

Access

A1:(0.9,0.2)

A2:(0.5,0.2)

A1:(0.1,0.4)

A1:(0.2,0.7)

A1:(0.4,0.3)

A1:(0.4,0.5)

A1:(0.7,0.1) A1:(0.4,0.3)

A1:(0.3,0.2)

A1:(0.6,0.2)

PreFirewall

Access
PlaceOrder

A2:(0.1,0.8)

A2:(0.9,0.7)

A2:(0.5,0.9)

A2:(0.8,0.9)

A2:(0.2,0.9)

Fig. 4.4. Super-PPG.

4.4.2 The PPG-Index

The PPG-Index uses the Super-PPG to efficiently keep track of all unex-
plained situations found in a log whose score is above a threshold τ . In the
following, we denote the set of references (pointers) to the elements in a set
S as ref(S).

Definition 4.15 (PPG-Index). Let A be a set of PPGs, L a log, and
G(A) = (VG, EG, δG, ρG). A PPG-Index is a 4-tuple IG = (G(A), tablesG,
countG, completedG), where:

• For each v ∈ VG, tablesG(v) is a set of tuples of the form (current, A,
score, previous, closed, count), where current ∈ ref(L), A ∈ A, score ∈
[0, 1], previous ∈ ref(P) with P =

⋃
v∈VG tablesG(v), closed is a boolean

value, and count ∈ N;
• countG ∈ N;
• completedG : A → 2ref(P) is a function that associates each PPG with a

set of references to the tuples in tablesG.

For each action symbol v ∈ VG, the index contains a table tablesG(v).
In the table, each tuple t = (current, A, score, previous, closed, count) repre-
sents the fact that an unexplained situation for PPG A contains the log tuple
pointed by current, and current.action = v. In particular:

70 4 PADUA: Parallel Architecture to Detect Unexplained Activities

• the score of the sequence up to the current tuple is equal to the value of
score;

• previous points to the index tuple that precedes t in the sequence;
• closed indicates if the situation cannot be extended with a score above the

threshold;
• count is the number of log tuples indexed before current (including

current itself);
• countG is the global counter of indexed log tuples;
• completedG associates a PPG with those tuples in tablesG that represent

the last action of an unexplained situation.

When the log is empty, the PPG-Index is empty (with empty tablesG and
completedG, and with countG = 0)—we use I0

G to denote this “empty” PPG-
Index.

Example 4.16. Let A = {A1, A2} be the set of PPGs of Example 4.14 and con-
sider a log whose associated sequence of action symbols is 〈PreFirewallAccess,
x, PostFirewallAccess〉. The corresponding index tables are shown in Fig. 4.5
(dashed box). The index contains an index tuple in tablesG(PreFirewallAccess)
(denoted teb in the following) and two tuples in tablesG(PostFirewallAccess)
(tic, t

′
ic in the following). The presence of teb indicates that PreFirewallAccess

is a start node for A2: it has no previous index tuple and its score is 1. More-
over, its count is 1 because it is the first action in the log. Likewise, tic means
that PostFirewallAccess is a start node for A1. Finally, t′ic means that PostFire-
wallAccess can also follow PreFirewallAccess in an unexplained situation for
A2. Thus, its previous index tuple is teb and its score is

teb.score · (1− δG(PreFirewallAccess,PostFirewallAccess, A2))

·(1− ρG(PreFirewallAccess,PostFirewallAccess, A2))

where the penalty component derives from the presence of x between
PreFirewallAccess and PostFirewallAccess. Note that at this point we have
countG = 3, completedG(A1) = {tic}, and completedG(A2) = {t′ic}.

Fig. 4.6 shows the pseudo-code of the PPG Insert algorithm that indexes
a new log tuple lnew with associated action symbol lnew.action = a. In the
algorithm, Lines 3–6 deal with the case where a is a start node for some PPG,
by creating a new sequence. Lines 11–12 compute the score associated with
the extension of an existing sequence by action a. Finally, Lines 13–17 update
tablesG(a) based on information provided by the tuples in each tablesG(v)
such that v is an in-neighbor of a in any of the given PPGs.

The PPG Insert algorithm works with a pruning algorithm PPG Prune
that updates the value of the closed attribute. For each (v, t) such that v ∈ VG
and t ∈ tablesG(v), PPG Prune sets t.closed to true iff t.score ·maxP < τ
where

• maxP = maxx|(v,x)∈E [(1− δG(v, x, t.A)) · (1− ρG(v, x, t.A))z]

4.4 The PPG-Index: Fast Computation of Unexplained Situations on a Single CPU 71

A1 0.03 false 6

A1 0.048 false 6

A1 0.1 false 4

A2 0.018 false 4

A1 0.08 false 5

A2 0.014 false 5

current A score previous closed count

A2 1 ^ false 1

A1 1 ^ false 3

A2 0.18 false 3

PreFirewallAccess

x

PostFirewallAccess

MobileAppServerAccess

MobileAppServerAccess

OrderProcServerAccess

x

PlaceOrder

tablesG(v) v

PreFirewallAccess

PostFirewallAccess

MobileAppServerAccess

OrderProcServerAcccess

Log actions

Fig. 4.5. Sequence of actions and status of tablesG.

Algorithm PPG Insert(lnew, IG, τ)
Input: New tuple to be inserted lnew, PPG-Index IG,

threshold score τ
Output: Updated PPG-Index IG

1 a← lnew.action
2 countG ← countG + 1

// —– Check whether a is a start node for some PPG —–
3 for each A ∈ A s.t. a ∈ start(A)
4 t′ ← (lnew, A, 1,⊥, false, countG)
5 add t′ to tablesG(a) and to completedG(A)
6 end for

// —– Append a to an existing sequence, if possible —–
7 for each action symbol v ∈ VG
8 s.t. ∃A ∈ A : δG(v, a,A) 6= 0
9 for each tuple t ∈ tablesG(v)
10 s.t. ¬t.closed and t.A = A
11 z ← countG − t.count− 1
12 p← t.score · (1− δG(v, a,A)) · (1− ρG(v, a,A))z

13 if p ≥ τ and a /∈ end(A)
14 t′ ← (lnew, A, p, t, false, countG)
15 add t′ to tablesG(a) and to completedG(A)
16 remove t from completedG(A), if present
17 end if
18 if a ∈ end(A)
19 remove t from completedG(A), if present
20 end for
21 end for

Fig. 4.6. PPG Insert and PPG Retrieve algorithms.

• E is the set of edges of t.A
• z = countG − t.count− 1

72 4 PADUA: Parallel Architecture to Detect Unexplained Activities

Algorithm PPG Retrieve(IG)
Input: PPG-Index IG

built using threshold τ
Output: the set of all τ -unexplained

situations for A = {A1, . . . , Ak}
1 for each Ai ∈ A
2 Ui ← ∅
3 for each t ∈ completedG(Ai)
4 le ← t.current
5 while t.previous 6= ⊥
6 t← t.previous
7 end while
8 ls ← t.current
9 add (subLog(L, ls, le)) to Ui
10 end for
11 end for
12 return maxComSubseq(U1, . . . , Uk)

Fig. 4.7. PPG Retrieve algorithm.

Example 4.17. Consider a log whose associated sequence of action symbols is

〈PreFirewallAccess, x,PostFirewallAccess,MobileAppServerAccess,

MobileAppServerAccess,OrderProcessingServerAccess, x,PlaceOrder〉

The status of the PPG-Index after indexing this log is shown in Fig. 4.5.

The PPG Retrieve algorithm, shown in Fig. 4.7, uses the Super-PPG to re-
turn the set of τ -unexplained situations for A. For each A ∈ A, PPG Retrieve
computes the set of τ -unexplained situations for A by (i) retrieving the index
tuples pointed by completedG(A) and then (ii) following previous pointers
until previous = ⊥ for each retrieved index tuple, while storing the needed
log tuples (current attribute). Finally, it returns the maximal common con-
tiguous subsequences of the computed sets. The following result establishes
correctness and completeness of the algorithms.

Proposition 4.18. Consider a set A of PPGs, a log L = l1, . . . , ln, and a
threshold τ ∈ [0, 1]. Let IiG be the PPG-Index returned by PPG Insert(li, Ii−1

G , τ).
Then:

IiG = PPG Insert(li,PPG Prune(Ii−1
G , τ), τ).

Moreover, PPG Retrieve(InG) is the set of all τ -unexplained situations for A.

Proof. We start by showing that the correctness of Line 10 of PPG Insert,
which ignores those tuples in Ii−1

G whose closed attribute is true, is not affected
by the application of PPG Prune to Ii−1

G . PPG Prune sets t.closed = true

4.4 The PPG-Index: Fast Computation of Unexplained Situations on a Single CPU 73

when t points to a log tuple with associated action v that end a sequence
L∗ ⊆ L representing an unexplained situation w.r.t. a PPG t.A with score
t.score. It is easy to see that the score of any sequence extending L∗ cannot
exceed t.score ·maxP , with maxP being the maximum possible value of

(1− δG(e, t.A)) · (1− ρG(e, t.A))z

where e is an outgoing edge of v in the Super-PPG and z is the number of
noise actions encountered after indexing t (i.e., z = countG− t.count− 1). As
a consequence, based on Definition 4.4, if t.score ·maxP < τ , L∗ cannot be
further extended.

The PPG Insert algorithm indexes tuple li with associated action li.action =
a. If a ∈ start(A) for some A ∈ A, the index tuple t′ (with t′.current = li)
that is added to tablesG(a) must have no previous pointer, and its score
must be set to 1 by Definition 4.4. Moreover, t′ by itself represents an unex-
plained situation, so it is correctly added to completedG(A). If some A ∈ A
has an edge from v to a, then the sequence obtained by adding li to the se-
quence represented by any index tuple t in tablesG(v) has a score equal to
t.score · (1 − δG(v, a,A)) · (1 − ρG(v, a,A))z, with z = countG − t.count − 1.
If this score is above τ and a /∈ end(A), then it is correct (i) to extend the
existing sequence with li (obviously, we have t′.previous = t in this case) and
(ii) to remove t from completedG(A) based on Condition 4 of Definition 4.4,
as it no longer represents an unexplained situation. Finally, if a ∈ end(A),
then it is correct to remove t from completedG(A) based on Condition 3 of
Definition 4.4.

Finally, the correctness of the PPG Retrieve algorithm immediately fol-
lows from the correctness of PPG Insert and PPG Prune. In fact, PPG Retrieve
reconstructs all unexplained situations for any PPG Ai by just following back-
ward pointers in tableG. It is easy to see that, at the end of each iteration, ts
and te are the start and end log tuples of an unexplained situation for Ai—the
set of all τ -unexplained situations is then the maximal common subsequence
of such unexplained situations by Definition 4.9.

4.4.3 Example: updating and pruning a PPG-Index

Consider the log of Example 4.17, whose associated sequence of action symbols
is

〈PreFirewallAccess, x,PostFirewallAccess,MobileAppServerAccess,

MobileAppServerAccess,OrderProcessingServerAccess, x,PlaceOrder〉

Assume the first three log tuples are already indexed as in Example 4.16,
and that we execute PPG Insert on the remaining tuples with τ = 10−3.
When the first MobileAppServerAccess tuple is handled by PPG Insert, two in-
dex tuples are added to tablesG(MobileAppServerAccess) (Fig. 4.5). The first
one completes the sequence 〈PostFirewallAccess, MobileAppServerAccess〉 for

74 4 PADUA: Parallel Architecture to Detect Unexplained Activities

PPG A1, so the score decreases by 1−δG(PostFirewallAccess, MobileAppServer-
Access, A1) w.r.t. its previous index tuple. The second one completes the
sequence 〈PreFirewallAccess, PostFirewallAccess, MobileAppServerAccess〉 for
PPG A2, so the score decreases by 1−δG(PostFirewallAccess, MobileAppServer-
Access, A2). In both cases, on Lines 7–18 we have v = PostFirewallAccess, a =
MobileAppServerAccess, and z = 0 because there are no log tuples between
PostFirewallAccess and MobileAppServerAccess. The execution of PPG Insert
on the second MobileAppServerAccess tuple produces two additional tuples
in tablesG(MobileAppServerAccess). The score values for these tuples are fur-
ther decreased using the penalties associated with the (PostFirewallAccess, Mo-
bileAppServerAccess) edges in A1 and A2, respectively. This is due to the Mo-
bileAppServerAccess log tuple between PostFirewallAccess and MobileAppServer-
Access, that must be now interpreted as noise—in this case, z = 1. After index-
ing the remaining log tuples, the situation of the tables is that of Fig. 4.5. Note
that the PlaceOrder log tuple completed an occurrence of A2 that extended all
of the unexplained situations for A2. Thus, in order to satisfy Condition 3 in
Definition 4.3, PPG Insert (Line 16) removed all the corresponding index tu-
ples from completedG(A2). completedG(A1) contains instead two pointers to
the tuples in tablesG(OrderProcessingServerAccess), and we have countG = 8.

Assume now that PPG Prune is executed on the index and consider tuple
teb ∈ tablesG(PreFirewallAccess). We have z = countG − teb.count − 1 = 6,
so moving from PreFirewallAccess to PostFirewallAccess in A2 would now make
the score decrease by (1−0.1)·(1−0.8)6 = 5.8·10−5. In the case of PlaceOrder,
the score would instead decrease by (1−0.9) · (1−0.7)6 = 7.3 ·10−5. Thus, we
have maxP = 7.3 · 10−5. Since teb.score ·maxP < τ , we know that teb can no
longer be linked to a new tuple. As a consequence, PPG Prune sets teb.closed
to true, and teb is no longer considered by PPG Insert (at Line 8).

4.5 Partitioning Super-PPGs Across a Compute Cluster

We implement the PPG-Index on a cluster of (K + 1) nodes in two steps. We
propose 5 ways of partitioning the Super-PPG into K parts in a way that tries
to minimize the expected inter-node communication. Each compute node is
allocated one of these parts—the one remaining node is a master node. Within
a compute node, a PPG-Index for the portion of the Super-PPG allocated to
it is constructed. Each compute node also has a handoff protocol that governs
inter-node communications—this will be discussed in the next section.

Let A be a set of PPGs and G(A) = (VG, EG, δG, ρG) the corresponding
Super-PPG. A vertex partition of G(A) is a set of graphs

G = {G1 = (V1, E1), . . . , GK = (VK , EK)}

such that

• {V1, . . . , VK} is a partition of VG

4.5 Partitioning Super-PPGs Across a Compute Cluster 75

• Ei = {(v, v′) ∈ EG| v, v′ ∈ Vi}

Given an edge e = (vi, vj), an edge cost function cost(e) can be defined
in different ways. We introduce different options in the rest of this section.
These cost functions employ probability and noise degradation functions that
consider the average of the probability and degradation values appearing on
e across all the PPGs, that is, if e = (vi, vj), then we define:

• δ′(e) = avg{δG(vi, vj , A) | A ∈ A, δG(vi, vj , A) > 0}
• ρ′(e) = avg{ρG(vi, vj , A) | A ∈ A, δG(vi, vj , A) > 0}

The cost of G is

CostD(G) =
∑

1≤i,j≤K∧i 6=j

CostD(Gi, Gj)

where

CostD(Gi, Gj) =
∑

e=(vi,vj)∈EG,vi∈Vi,vj∈Vj

cost(e)

We will try to find a G that minimizes CostD(G). This can be computed
through a standard minimum cut algorithm such as [101].

4.5.1 Probability Partitioning (PP) and Probability-Penalty
Partitioning (PPP)

The first two cost functions set the cost of an edge in terms of probability
alone and in terms of both probability and penalty: CostDPP (e) = 1 − δ′(e)
and CostDPPP (e) = (1− δ′(e)) · (1− ρ′(e)). Intuitively, CostDPP tries to keep
edges with a high transition probability on the same compute node. Likewise,
CostDPPP tries to keep edges with both a high transition probability and
a high noise degradation value together on the same compute node. This
is because the higher these values, the higher the probability that the two
actions will be connected in an unexplained situation with a score above the
threshold.

Example 4.19. Consider the Super-PPG of Example 4.14 (cf. Fig. 4.4). Sup-
pose we have two compute nodes. A possible vertex partition is the one con-
sisting of two graphs: G1 containing vertices

{PostFirewallAccess,MobileAppServerAccess,PreFirewallAccess,PlaceOrder}

and G2 cointaining vertices

{MobileAppDBAccess,OrderProcessingServerAccess,CentralDBServerAccess}

The edges of the Super-PPG that go from one of the two graphs to the other
are

76 4 PADUA: Parallel Architecture to Detect Unexplained Activities

• e1 = (PostFirewallAccess, CentralDBServerAccess)
• e2 = (MobileAppServerAccess, MobileAppDBAccess)
• e3 = (MobileAppServerAccess, OrderProcessingServerAccess)
• e4 = (MobileAppServerAccess, CentralDBServerAccess)

Moreover, we have

• δ′(e1) = 0.1, ρ′(e1) = 0.4
• δ′(e2) = 0.4, ρ′(e2) = 0.3
• δ′(e3) = 0.4, ρ′(e3) = 0.5
• δ′(e4) = 0.2, and ρ′(e4) = 0.7

The following costs are obtained by considering the probability partitioning:

• CostDPP (e1) = 1− 0.1 = 0.9
• CostDPP (e2) = 1− 0.4 = 0.6
• CostDPP (e3) = 1− 0.4 = 0.6
• CostDPP (e4) = 1− 0.2 = 0.8

Thus, the overall cost of the partition is 0.9 + 0.6 + 0.6 + 0.8 = 2.9. On the
other hand, the costs obtained via the probability-penalty partitioning are:

• CostDPPP (e1) = (1− 0.1) · (1− 0.4) = 0.54
• CostDPPP (e2) = (1− 0.4) · (1− 0.3) = 0.42
• CostDPPP (e3) = (1− 0.4) · (1− 0.5) = 0.3
• CostDPPP (e4) = (1− 0.2) · (1− 0.7) = 0.24

In this case, the overall cost of the partition is 0.54 + 0.42 + 0.3 + 0.24 = 1.5.

4.5.2 Expected Penalty Partitioning (EPP)

Suppose occ(vi, vj) is the expected number of log tuples appearing between
two tuples with actions vi and vj in the log. The function occ can be easily
learned from a historical log. We can then define

CostDEPP (e) = (1− ρ′(e))occ(vi,vj)

Thus, CostDEPP assigns to an edge, a cost that takes into account the
expected penalty value between the two actions involved in the edge. Again,
the higher this value, the higher the probability that the two actions will be
connected in an unexplained situation with a high score.

Example 4.20. Consider the vertex partition of Example 4.19 and assume func-
tion occ is defined as follows:

• occ(PostFirewallAccess, CentralDBServerAccess)=3
• occ(MobileAppServerAccess, MobileAppDBAccess)=4
• occ(MobileAppServerAccess, OrderProcessingServerAccess)=5.7
• occ(MobileAppServerAccess, CentralDBServerAccess)=2

4.5 Partitioning Super-PPGs Across a Compute Cluster 77

The following costs are obtained by considering the expected penalty parti-
tioning:

• CostDEPP (e1) = (1− 0.4)3 = 0.216
• CostDEPP (e2) = (1− 0.3)4 = 0.2401
• CostDEPP (e3) = (1− 0.5)5.7 = 0.019
• CostDEPP (e4) = (1− 0.7)2 = 0.09

Thus, the overall cost of the partition is 0.216+0.2401+0.019+0.09 = 0.5651.

4.5.3 Temporally Discounted Expected Penalty Partitioning
(tEPP)

Given a log L = l1, . . . , l|L|, we consider temporal windows of length t and
discount for old occurrences. We define occt(vi, vj , w) as the expected number
of log tuples appearing between two tuples with actions vi and vj in the w-th
temporal window in the log. Temporal windows are ordered starting from the
end of the log, i.e., tuple tk is in the w-th temporal window if

|L| − w · t+ 1 ≤ k ≤ |L| − (w − 1) · t

Then we consider a discount factor d ∈ [0, 1] and define

CostDtEPP (e) =
∑

w>0,occt(vi,vj ,w)>0

(1− ρ′(e)) 1
dw occt(vi,vj ,w)

Example 4.21. Consider the vertex partition of Example 4.19. Suppose we
have a log with 800 tuples and we want to consider temporal windows of length
500. This means that there are two temporal windows to be considered: one
goes from tuple 301 to tuple 800, while the other goes from tuple 1 to tuple
300. Suppose the discount factor d = 2 and occ is defined as follows:

• occ(PostFirewallAccess, CentralDBServerAccess, 1) = 3
• occ(PostFirewallAccess, CentralDBServerAccess, 2) = 2
• occ(MobileAppServerAccess, MobileAppDBAccess, 1) = 4
• occ(MobileAppServerAccess, MobileAppDBAccess, 2) = 1
• occ(MobileAppServerAccess, OrderProcessingServerAccess, 1) = 5.7
• occ(MobileAppServerAccess, OrderProcessingServerAccess, 2) = 4
• occ(MobileAppServerAccess, CentralDBServerAccess, 1) = 2
• occ(MobileAppServerAccess, CentralDBServerAccess, 2) = 3.3

The following costs are obtained by considering the temporally discounted
expected penalty partitioning:

• CostDtEPP (e1) = (1− 0.4)0.5·3 + (1− 0.4)0.25·2 = 1.239
• CostDtEPP (e2) = (1− 0.3)0.5·4 + (1− 0.3)0.25·1 = 1.405
• CostDtEPP (e3) = (1− 0.5)0.5·5.7 + (1− 0.5)0.25·4 = 0.639
• CostDtEPP (e4) = (1− 0.7)0.5·2 + (1− 0.7)0.25·3.3 = 0.670

Thus, the overall cost of the partition is 3.953.

78 4 PADUA: Parallel Architecture to Detect Unexplained Activities

4.5.4 Occurrence Partitioning (OP)

In this case, we consider a pruning threshold c and define

CostDOP (e) =
1

occ(vi, vj)
=

{
1

occ(vi,vj)
if 1
occ(vi,vj)

≥ c;
0 otherwise

Thus, CostDOP is inversely proportional the expected number of log tuples
appearing between two tuples with actions vi and vj . However, if this ratio is
too small (i.e., below threshold c), we assume there is no cost to placing vi, vj
on different nodes.

Example 4.22. Consider the partition of Example 4.19 and suppose occ is
defined as in Example 4.20. Let c = 0.3. Then: CostDOP (e1) = 0.33,
CostDOP (e2) = 0, CostDOP (e3) = 0, and CostDOP (e4) = 0.5. Thus, the over-
all cost of the partition is 0.83 .

4.6 Parallel Detection

In this section we show how the PPG-Index and the PPG Retrieve algorithm
can be adapted to a cluster of K compute nodes and a master node — the re-
quired modifications involve coordination through inter-node communication.

After partitioning a Super-PPG G(A) = (VG, EG, δG, ρG) into K compo-
nents, each component is assigned to a different compute node—thus, each
vertex v ∈ VG is managed by a single compute node denoted node(v). All
compute nodes store the tablesG structures for the vertices they manage,
and their own completedG structures. However, each tuple t in tablesG has a
seventh component, called starting, i.e. the ID of the log tuple from which
the (partial) unexplained situation represented by t started. All nodes in the
cluster also store a copy of G(A) and the value of the threshold τ .

The master node, in order to index a new log tuple lnew, sends it to
the compute node that manages lnew.action after updating the value of
countG (pPPG Send algorithm, reported in Fig. 4.8). At any time, the mas-
ter node can execute the pPPG Retrieve algorithm (Fig. 4.8) to build the
set of τ -unexplained situations detected so far. Note that the only differ-
ence between the pPPG Retrieve algorithm and its single-CPU counterpart
PPG Retrieve is that, for each PPG Ai, instead of retrieving tuples from the
local completedG(Ai), the pPPG Retrieve algorithm queries compute nodes—
then, instead of following backward pointers through the PPG-Index, it can
directly add the corresponding sub-logs to the set Ui by using the starting
component of the index tuples.

The compute nodes execute the pPPG Insert algorithm (reported in
Fig. 4.9) when requested by the master node, and communicate with one
another through the pPPG Get algorithm (Fig. 4.9). In particular, Lines 19–
22 of the pPPG Insert algorithm retrieve from another node a set T of index

4.7 Experimental Results 79

Algorithm pPPG Send(lnew)
Input: New log tuple lnew

1 countG ← countG + 1
2 node(lnew.action).pPPG Insert(lnew, countG)

Algorithm pPPG Retrieve()
Output: τ -unexplained situations for A = {A1, . . . , Ak}

1 for each Ai ∈ A
2 Ui ← ∅
3 for each compute node node managing a vertex in Ai
4 get completedG(Ai) from node
5 for each t ∈ completedG(Ai)
6 add (subLog(L, t.starting, t.current)) to Ui
7 end for
8 end for
9 end for

10 return maxCommSubseq(U1, . . . , Uk)

Fig. 4.8. Algorithms executed by the master node.

tuples that represent unexplained situations that can be extended, and update
the local tablesG and completedG. The pPPG Get algorithm corresponds to
Lines 8–16 of PPG Retrieve — in this case, the set T is obviously returned to
the requesting node. All compute nodes run the PPG Prune algorithm given
in Section 4.4 as well, independently and concurrently with pPPG Insert and
pPPG Get.

4.7 Experimental Results

The Super-PPG management/partitioning and detection functionalities were
developed in C++ while the parallel detection algorithms were implemented
using the Message Passing Interface parallel programming model. We used
METIS3 libraries for partitioning. Super-PPGs with several hundreds of ver-
tices were always partitioned in a few milliseconds. We tested PADUA’s accu-
racy and processing time using the SCOPE 4 distributed computing infrastruc-
ture at the University of Naples. SCOPE consists of over 300 compute nodes
(quad-core Intel Xeon 2.33GHz processors with 8GB RAM) communicating
by dedicated fiber channels. Tests were done with both video surveillance and
network traffic data.

3 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
4 www.scope.unina.it

80 4 PADUA: Parallel Architecture to Detect Unexplained Activities

Algorithm pPPG Insert(lnew, countG)
Input: New tuple to be inserted lnew, tuple count countG

1 a← lnew.action
// —– Check whether a is a start node —–

2 for each A ∈ A s.t. a ∈ start(A)
3 t′ ← (lnew, A, 1,⊥, false, countG, lnew)
4 add t′ to tablesG(a) and to completedG(A)
5 end for

// —– Append a to an existing sequence, if possible —–
6 for each action symbol v ∈ VG s.t. ∃A ∈ A : δG(v, a,A) 6= 0
7 if node(v) is the local node

8–17 // —– Same as PPG Insert (lines 8–17) —–
18 else // —– In this case, coordinate with another cluster node —–
19 for each tuple t ∈ node(v).pPPG Get(v, a,A, countG)
20 t′ ← (lnew, A, p, t, false, countG, t.starting)
21 add t′ to tablesG(a) and to completedG(A)
22 end for
23 end if
24 end for

Algorithm pPPG Get(v, a,A, countG)
Input: Action symbols v, a, PPG A, tuple count countG
Output: Set T of index tuples

1 T ← ∅
2 for each tuple t ∈ tablesG(v) s.t. ¬t.closed and t.A = A
3 z ← countG − t.count− 1
4 p← t.score · (1− δG(v, a,A)) · (1− ρG(v, a,A))z

5 if p ≥ τ and a /∈ end(A)
6 add t to T
7 remove t from completedG(A), if present
8 if a ∈ end(A) then remove t from completedG(A), if present
9 end for

10 return T

Fig. 4.9. Algorithms executed by the compute nodes.

4.7.1 Video Surveillance Domain

PADUA was tested on the video surveillance experimental setup and measures
used in [78]. The log was generated using the ITEA CANDELA video dataset5

which contains several staged package exchanges and object drop-offs and
pick-ups. 64 different action symbols were defined in a semi-automatic way
using both image processing libraries and human annotation.

5 http://www.multitel.be/image/research-development/
research-projects/candela/

4.7 Experimental Results 81

Result Quality

Precision and recall were evaluated against ground truth provided in [78] by
human annotators who were given a set of known activity descriptions along
with graphical representation of the PPGs (we used 30 PPGs), and then asked
to watch the video and identify video segments which where unexplained.
Precision P and recall R were defined as

P =
|{Lau in Ua|∃Lhu in Uh s.t. Lau ' Lhu}|

|Ua|

R =
|{Lhu in Uh|∃Lau in Ua s.t. Lau ' Lhu}|

|Uh|

where Ua is the set of unexplained situations returned by the algorithm, Uh

is the set of sequences identified as unexplained by human annotators, and
Lau ' Lhu iff Lau and Lhu overlap by a percentage not smaller than 75%. Fig. 4.10
shows the results obtained.

0,6

0,65

0,7

0,75

0,8

0,85

0,9

0,95

1

1,00E -10 1,00E -09 1,00E -08 1,00E -07 1,00E -06 1,00E -04

Threshold

Precision Recall F-measure Accuracy (No ICMP rules) Accuracy (No preprocessor rules)

Fig. 4.10. Precision, recall, and F-measure for the video surveillance dataset, and
accuracy for the cybersecurity dataset.

The τ -value that yielded the highest F-measure6, as well as the highest
recall, was 10−8. PADUA’s precision, recall, and F-measure, respectively, were
0.96, 0.83, and 0.89. In contrast, the corresponding values obtained with the
best possible parameter settings in [78] were 0.73, 0.72, and 0.72—significantly
lower in all respects than PADUA. Moreover, the experiments confirm the
claim in Proposition 4.10: with higher values of τ , the average length of unex-
plained situations decreases and, as a consequence, we obtain better precision
and worse recall.

6 F-measure is given by 2PR
P+R

.

82 4 PADUA: Parallel Architecture to Detect Unexplained Activities

Processing Times

To evaluate PADUA’s scalability when using each of our 5 partitioning
schemes, we fixed τ to the value that maximized the F-measure and mea-
sured how processing times varied as we varied the length of the video and
the number of compute nodes. Figs. 4.11 and 4.12(dark line) show the results
obtained.

0

1000

2000

3000

4000

5000

6000

30/2 60/4 125/8 250/16 500/32

P
ro

ce
ss

in
g

 t
im

e
 (

m
s.

)

Video length (minutes)/Number of compute nodes used

Fig. 4.11. Processing times for the video surveillance dataset.

The results show that PADUA provides extremely good performance and
scalability. It is able to process up to 294K tuples per second on the longest
video sequence (each second of video corresponds to 25 log tuples). Moreover,
a 16x increase in the log size only results in a 10x increase in processing time.
Though the different partitioning schemes show similar performance for long
video sequences, OP, PP, and PPP show a performance advantage for video
lengths of up to 125 minutes.

4.7 Experimental Results 83

10000

100000

1000000

2V/2C 4V/6C 8V/18C 16V/54C 32V/162C

Tu
p

le
s/

se
c.

Compute nodes used

Video/OP Cybersecurity/tEPP

Fig. 4.12. Tuples processed per second for two dataset/cost function combinations.
Label xV/yC on the x-axis stands for “x nodes for the video surveillance dataset, y
nodes for the cybersecurity dataset”. The video/traffic lengths considered are those
corresponding to x nodes in Fig. 4.11 and y nodes in Fig. 4.13.

Finally, PADUA clearly outperforms the approach in [78] — for instance,
their processing times for 500 minutes of video were around 105 ms. This
essentially due to (i) the fact that [78] considers possible worlds and there
are exponentially many of them, while we do not, (ii) we use a specifically
designed index, and (iii) the efficiency of the parallel algorithms.

4.7.2 Cybersecurity Domain

The Naples Network Traffic dataset is built based on a Network Sniffer, a
Network Intrusion Detection System (IDS), and an Alert Aggregation com-
ponent. The Sniffer (implemented by Wireshark7) captures network traffic,
whereas the IDS (implemented via SNORT 8) analyzes such traffic and gen-
erates a sequence of action symbols. As the IDS may return lots of alerts, the
Alert Aggregation module aggregates multiple alerts triggered by the same
action into a macro-alert based on a set of aggregation rules. The dataset
contained 2 full days of traffic (about 1,215,000 log tuples). We defined 350
PPGs, corresponding to the available SNORT rules, containing 722 action
symbols. The set of SNORT rules comprised ICMP rules, designed to analyze
ICMP packets, and preprocessing rules that handle situations where packets
have to be decoded into plain text for the actual SNORT rules to trigger.

Result Quality

In the cybersecurity domain, we measured the accuracy of the results as fol-
lows. First, we detected all occurrences of the set of SNORT rules in the log.
Then we ignored a certain subset of the rules and identified the unexplained

7 http://www.wireshark.org/
8 http://www.snort.org/

84 4 PADUA: Parallel Architecture to Detect Unexplained Activities

situations. Occurrences of ignored PPGs were expected to have a relatively
high probability of being unexplained situations, as there is no model for them.
We measured the fraction of such occurrences that were correctly flagged as
unexplained for different values of τ . Specifically, we considered two settings:
one where only ICMP rules were ignored, and another where only prepro-
cessor rules were ignored from a single IP. The results for a log containing
135K tuples, corresponding to 270 minutes of network traffic, are reported in
Fig. 4.10.

The results show good accuracy values. When ICMP rules were ignored,
sequences where ICMP activities were occurring were flagged as unexplained
situations in the majority of cases—the same happened when preprocessor
rules were ignored. As expected, the better accuracy obtained with lower τ -
values corresponded to higher processing times: the full log was processed
in 1,875 ms. with τ = 10−4, 2,345 ms. with τ = 10−8, and 3,502 ms. with
τ = 10−10.

Processing Times

As in the video surveillance case, we measured how processing times varied
with length of the network traffic, using an increasing number of compute
nodes, with τ = 10−8. Figs. 4.12(light line) and 4.13 show the results obtained.

The results confirm that PADUA is able to process up to 335K tuples
per second on the largest network traffic length. More importantly, an 81x
increase in the traffic length only results in a 3x increase in processing time.
Moreover, the different partitioning schemes show similar performance for
shorter traffic lengths—for long traffic lengths, EPP and tEPP appear to be
the best schemes. This suggests OP, OPP, and PPP to be better options when
dealing with smaller logs and fewer action symbols (as in the case of the video
surveillance domain), while EPP and tEPP appear better suited for larger
logs and more action symbols (resulting in larger Super-PPGs).

4.8 Conclusions

To the best of our knowledge, PADUA is the only parallel approach to date
for identifying unexplained situations in historical transaction logs which oc-
cur naturally in many domains. Starting with the same activity model as [78]
(extended slightly to incorporate penalties via the notion of a probabilistic
penalty graph or PPG), we showed how we can merge a set of PPGs into
a single Super-PPG and provided the PPG-Index data structure to store,
update, and analyze observations as they come in (e.g., from a video surveil-
lance application or a cybersecurity application). This Super-PPG can then be
“split” across K compute nodes in a cluster of (K+ 1) nodes in many ways—
we present 5 such ways of doing so. The resulting partitioned graph has one

4.8 Conclusions 85

0

1000

2000

3000

4000

5000

6000

7000

30/2 90/6 270/18 810/54 2430/162

Network traffic (minutes)/Number of compute nodes used

OP

PP

PPP

EPP

tEPP

Naive

Random

Fig. 4.13. Processing times for the cybersecurity dataset.

part stored on each of K compute nodes with one node serving as a mas-
ter node. We develop parallel algorithms that achieve coordination amongst
these different compute nodes so as to leverage parallelism when detecting
unexplained situations.

Experimental results show great promise. On both video and cybersecurity
datasets, we was able to significantly improve on past results for unexplained
situation detection. Specifically, precision, recall and F-measure go up to 0.96,
0.83, 0.89 compared to 0.73, 0.72, and 0.72 respectively from past work—a
significant improvement. Second, scaling is substantial. We was able to process
500 minutes of video (after image processing) on 32 compute nodes in under
2.5 seconds which is two orders of magnitude better than past work. On the
cybersecurity dataset, we was able to process up to 335K observation (log)
tuples per second.

Part III

Adversarial Defense

5

Pareto-Optimal Adversarial Defense of
Enterprise Systems

The National Vulnerability Database (NVD) maintained by the US National
Institute of Standards and Technology provides valuable information about
vulnerabilities in popular software, as well as any patches available to address
these vulnerabilities. Most enterprise security managers today simply patch
the most dangerous vulnerabilities — an adversary can thus easily compro-
mise an enterprise by using less important vulnerabilities to penetrate an
enterprise. In this chapter, vulnerabilities in an enterprise are captured as a
vulnerability dependency graph (VDG) and ti is showed that attacks graphs
can be expressed in them. First we ask the question: what set of vulnerabil-
ities should an attacker exploit in order to maximize his expected impact?
We show that this problem can be solved as an integer linear program. The
defender would obviously like to minimize the impact of the worst case attack
mounted by the attacker — but the defender also has an obligation to en-
sure a high productivity within his enterprise. We propose an algorithm that
finds a Pareto-optimal solution for the defender that allows him to simultane-
ously maximize productivity and minimize the cost of patching products on
the enterprise network. We have implemented this framework and show that
run-times of our computations are all within acceptable time bounds even for
large VDGs containing 30K edges and that the balance between productivity
and impact of attacks is also acceptable.

5.1 Introduction

Security managers working for large organizations face a formidable challenge
in protecting the security of their enterprises. First, there is a huge array of
software running on their servers. The software can be of varying quality from
a security point of view — for instance, some software may come from reputed
software firms like Microsoft and Oracle, while other pieces of software may
constitute shareware or freeware downloaded as needed by users for various
projects. The US National Institute of Standards and Technology (NIST) has

90 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

made a commendable effort to track tens of thousands of software compo-
nents that are widely used and build a database describing various aspects
of the vulnerabilities in these commercial software components. The result
is a National Vulnerability Database1 (NVD for short) that consists of over
50K vulnerabilities identified in software, together with information on the
availability of patches for those machines and the impact that vulnerabilities
could have on security if left un-patched.

As patching software is a task that takes time and effort (and people),
harried enterprise security managers typically patch those vulnerabilities that
pose the highest threat (see, for example, [102, 103]). This effectively leaves
the door wide open for a semi-smart attacker who can simply try to guess the
type of software that a large company probably has installed on its servers
and then tries to penetrate the system through vulnerabilities that are not
rated as high impact vulnerabilities.

In this chapter, we attempt to take a more strategic view of this situation.
First, we ask the question: given a set of publicly known information such as
the cost of patching vulnerabilities (which can be readily inferred by anyone),
what is the strategy that an intelligent attacker would use in order to maxi-
mize the expected damage he can cause? With this in hand, the defender can
come up with defensive strategies that minimize the expected damage the
attacker can inflict. We allow the defender to do two things: (i) deactivate
certain products (e.g. if they have serious vulnerabilities) which could reduce
the impact of attacks and (ii) apply patches to certain vulnerabilities. The
first method has a potential impact on productivity of the enterprise while
the second has a time/cost implication. We define the optimal strategy of
the defender as a Pareto optimization problem and show how to find the set
of all optimal strategies for the defender. We derive a number of complexity
results associated with the attacker’s goal of finding an attack that maxi-
mizes his expected impact, and also the defender’s goal of taking steps to
minimize the maximal impact the attacker can have. We have implemented
algorithms and tested them on 4 real-world vulnerability dependency graphs
(a more general version of attack graphs). Results show that algorithms work
in reasonable amounts of time on real world networks and provide options to
enterprise security managers that represent different combinations of maxi-
mizing productivity and minimizing expected attack impact. This prototype
implementation shows that run-times of our computations are all within ac-
ceptable time bounds even for large VDGs containing 30K edges and that the
balance between productivity and impact of attacks is also acceptable.

The rest of this chapter is organized as follows. Section 5.2 contains a
detailed description of related work in this area. Section 5.3 introduces the
notion of vulnerability dependency graphs (VDGs). Section 5.4 describes the
attacker’s strategy and the defender’s strategy as a two-person game and for-
mally relates these strategies to VDGs. Section 5.5 performs a detailed Pareto

1 nvd.nist.gov

5.2 Related Work 91

analysis of the game from the defender’s perspective by first formulating the
game as a bi-objective optimization problem (maximize productivity and min-
imize impact). A detailed set of complexity results in this section describe the
complexity of the defender’s ability to compute an optimal strategy. It also
formulates the problem of solving the bi-objective optimization problem as
a mixed integer linear program (MILP) and proves the correctness of these
MILPs. Section 5.6 describes the results of experiments we have conducted.
The experiments show that the framework delivers Pareto-optimal solutions
for the defender that provide a good balance between productivity of the en-
terprise and the impact of the attacker’s attacks. Moreover, the algorithms
run within reasonable time bounds even on large VDGs.

5.2 Related Work

NIST’s NVD effort builds on Common Vulnerability Scoring System (CVSS) [104]
and the Common Weakness Scoring System (CWSS) [105] to provide stan-
dard ways for security analysts and vendors to rank known vulnerabilities and
software weaknesses using numerical scores.

A number of tools are available for scanning network vulnerabilities, such
as Nessus [106], but these only report isolated vulnerabilities. By their very
nature, these vulnerabilities are highly interdependent — a machine’s suscep-
tibility to attack depends on the vulnerabilities of the other machines in the
network. An attack graph models these interdependencies by enumerating all
possible sequences of vulnerabilities that attackers may exploit to reach a goal
state [107, 108, 109, 110, 111, 112, 113]. An attack graph can be constructed
either forward, starting from the initial state [109, 111] or backward from the
goal state [25, 114]. Model checking was first used to analyze whether a goal
state is reachable from the initial state [114], but later used to enumerate all
possible sequences of attacks between the two states [25, 115]. Because algo-
rithmic complexity of early attack graph formalisms was exponential, much
of the subsequent research focused on scalability. Under reasonable assump-
tions, attack graph analysis can be formulated in logic, making it unnecessary
to explicitly enumerate states. This leads to polynomial rather than exponen-
tial complexity [61]. In more recent work, attack graphs have been used for
correlating intrusion alerts [22, 62] and to find the minimal set of exploits
from which the goal state is reachable [61, 64, 116].

This framework uses Pareto optimization and game theory to help en-
terprise security officers determine what software to patch, given constraints
on their resources. Though this has never been done previously (to the best
of our knowledge), there has been very interesting work on the use of game
theory for network security. Physical layer has considered eavesdropping (i.e.
listening and analyzing data from the network without interacting with it)
and jamming (i.e. attack that can disrupt data transmission).

92 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

Some past work focuses on security in the physical layer from eavesdrop-
ping and jamming attacks. Here, players include attackers, non malicious
users (that use the physical layer), and the layer itself (with its access con-
trol policy). These games are largely based on performance indexes of the
physical layer, and the main goal is to optimize these performance indexes.
[117, 118, 119, 120] use game-theory to study jamming attacks, while [121]
use Stackelberg games [122].

Game theory has also been used to analyze and design security protocols
for self-organizing the networks. [123] uses a two-player zero sum game where
the first player executes jamming attacks while the second player is a set
of mobile nodes taking countermeasures. An example countermeasure would
revoke the access to a network from a malicious user. [124, 125] use game the-
ory to design revocation protocols for ephemeral networks. [126] studies sensor
networks where an attacker can physically capture sensor nodes, replicate the
nodes, deploy them into the network, and proceed to take over the network. A
multi-player game is formalized in order to model the non-cooperative strate-
gic behavior between the attackers and the network.

Game theory has also been used in intrusion detection systems (IDS).
[127] use a zero-sum stochastic game to model the dynamic configuration
of the IDS (the defender) in response to a sequence of attacks by the at-
tacker. [128] considers a network of intrusion detection systems where the
IDSs cooperate to improve the security of the network. The authors propose an
incentive-compatible trust based resource allocation scheme. In this scheme,
each IDS allocates “help” resources proportionally to the trustworthiness and
the amount of help resource allocated by its neighbors. Moreover, it is proved
with an n-person non-cooperative game that under certain conditions, there
exists a unique Nash equilibrium (that represents global satisfaction) and a
decentralized algorithm (running on each IDS) to reach this equilibrium is
provided. [129] provides a more exhaustive survey of research in network se-
curity.

Finally, [130, 131, 132] consider the problem of finding plans for patching
vulnerabilities, that are tradeoffs between cost and risk, by using the Pareto
analysis. However, in these papers (i) the productivity can be considered as
a cost, but it is not possible to consider cost and productivity separately; (ii)
the risk is defined on acyclic structures representing attacks (our dependency
vulnerability graphs may have cycles); (iii) the risk value does not consider the
worst case. In [131] they also define a problem involving a game theory-based
solution, but they do not mix this with the Pareto analysis and assume that
the attacker does not know the strategy of the defender (instead we assume
this is possible through network scans). My proposal encompasses all of the
above important aspects.

5.3 Vulnerability Dependency Graphs 93

5.3 Vulnerability Dependency Graphs

The goal of this section is to introduce the basic concept of a vulnerability
dependency graph (VDG for short) which is rich enough to express all attack
graphs (cf. Appendix A). Suppose PR is a finite set of software products2

and suppose V is a set of vulnerabilities. We use Vuln(pr) ⊆ V to denote the
set of all vulnerabilities of a particular product pr ∈ PR. Conversely, for any
vulnerability v ∈ V, let PR(v) denote all the products in PR having that
vulnerability. Thus, pr ∈ PR(v) iff v ∈ Vuln(pr). For each vulnerability v ∈ V
there is a set PA(v) of patches that fix v. We assume that any patch in PA(v)
fixes v, i.e. only one patch needs to be applied to fix a vulnerability and that
patch fully covers the vulnerability. We denote the set of all patches as PA.
Note that a patch may fix one or more vulnerabilities, but a vulnerability may
have zero, one, or many patches.

Vulnerabilities may depend on one another. To exploit a vulnerability v2,
an attacker may first need to exploit another vulnerability v1. This leads to
the idea of a vulnerability dependency graph.

Definition 5.1 (Vulnerability dependency graph). A vulnerability de-
pendency graph (VDG for short) is a directed graph G = (V, E) where V is
the set of vulnerabilities (vertices) and E ⊆ V ×V is the set of edges.

Intuitively, an edge from vulnerability v1 to a vulnerability v2 means that v2

can be exploited if v1 is exploited. A vulnerability with zero in-degree can be
exploited directly.

Example 5.2. Fig. 5.1 shows a toy vulnerability dependency graph G with
V = {v1, . . . , v7}, PR = {pr1, . . . , pr5}, PA = {pa1, . . . , pa7}.

For each vulnerability v ∈ V, the values of PR(v) and PA(v) are depicted
in the dotted boxes. For instance, the box at the top left of Fig. 5.1 states
that vulnerability v1 exists in products pr1 and pr2 and there are two patches
for it, pa1 and pa2. Likewise, the impact of this vulnerability is 7.

Given a VDG G = (V,E), We use S(G) to denote the set of all vertices
having in-degree 0, and in(G, v) and out(G, v), respectively, to denote the sets
{v′ | (v′, v) ∈ E} and {v′ | (v, v′) ∈ E}, respectively. In the case of Fig. 5.1, we
have S(G) = {v1, v2}, in(G, v4) = {v1}, and out(G, v4) = {v5, v6}.

Each vulnerability v has an impact Impact(v) which is a measure of the
impact of v on an enterprise if left unpatched. Impact(v) can be estimated
in many different ways from NIST’s Commmon Vulnerability Scoring System
(CVSS). For each vulnerability, CVSS describes an access vector (of how the
vulnerability can be exploited), an access complexity that is a measure of how
difficult it is to exploit a vulnerability, an authentication metric that measures
how often an attacker must authenticate himself, a confidentiality metric that

2 To consider different machines and product versions, we can define the elements
in PR as (machine, product, version) triples.

94 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

+

*

*

*

*

v1

v4

v5

v2

v3

v7

v6

PR(v1) = {pr1, pr2}

PA(v1) = {pa1, pa2}

Impact (v1) = 7

PR(v2) = {pr1, pr2}

PA(v2) = {pa6, pa7}

Impact (v2) = 4

PR(v4) = {pr1, pr2}

PA(v4) = {pa1, pa3}

Impact (v4) = 5

PR(v5) = {pr2, pr3}

PA(v5) = {pa3}

Impact (v5) = 6

PR(v6) = {pr1, pr5}

PA(v6) = {pa5, pa6}

Impact (v6) = 8

PR(v7) = {pr3, pr4}

PA(v7) = {pa4, pa5}

Impact (v7) = 5

PR(v3) = {pr3, pr4}

PA(v3) = {pa4, pa5}

Impact (v3) = 8

Fig. 5.1. Example vulnerability dependency graph

assesses the impact on confidentiality if the vulnerability is exploited, a sim-
ilar metric relating to the impact on integrity of the system, and a metric
describing the impact on the availability of the system if the vulnerability is
exploited in an attack. Based on these parameters, NIST’s CVSS describes
an overall impact of the vulnerability. We do not take a position on whether
NIST’s measure of impact of a vulnerability is the correct one — rather, We
use any function that measures impact of a vulnerability and merely point
to CVSS to assert that at least one such “semi-standard” measure exists in
the literature. The values of Impact for the vulnerabilities of Example 5.2 are
depicted in dotted boxes in Fig. 5.1.

Each patch pa ∈ PA has a cost for the enterprise as a whole, denoted
by CostD(pa). This cost may denote many things, e.g. the time involved in
applying the patch, the labor cost, the lost productivity if part of the system
needs to be taken down to apply the patch, etc. In this chapter, we assume
a single cost to apply a patch across the whole enterprise. The total cost of
applying a set PA ⊆ PA of patches to an enterprise is defined as Tc(PA) =∑
pa∈PA CostD(pa).
We also assume that each product pr ∈ PR has an associated produc-

tivity value Prod(pr) that represents the importance/usefulness of pr in the
organization. The productivity value of a product may be captured in many
ways, e.g. by monitoring how much the product was used per day (averaged
over some time frame), by a user survey, by a weighted combination of the
usage of the product per day and the ranks of the people using it, and so
forth. The total productivity of a set PR ⊆ PR is simply

5.3 Vulnerability Dependency Graphs 95

Tp(PR) =
∑

pr∈PR
Prod(pr).

Example 5.3. Suppose we return to Example 5.2 and set CostD(pai) = i and
Prod(pri) = i . Then Tc(PA) = 28 and Tp(PR) = 15.

Before concluding this section, we note that even though VDGs appear
to be deterministic, they are in fact non-deterministic. For instance, consider
the node v3 in Fig. 5.1. In this figure, we see that for an attacker to exploit
vulnerability v3, he must first have exploited either vulnerability v1 or v2. This
is a form of non-determinism as, by non-deterministically exploiting either
of these two vulnerabilities, the attacker can exploit v3. In general, for an
attacker to exploit a vulnerability v in some arbitrary VDG, he must have
previously exploited any vulnerability in pred(v) where pred(v) is the set of
all predecessors of v in that VDG. One can have even more complex models
of VDGs in which, for instance, we assign a probability to each edge in the
VDG such that for all vertices v (that are not source vertices, i.e. vertices with
in-degree 0), it is the case that Σ(u,v)∈Eprob(u, v) = 1. The sum constraint
says that the sum of the probabilities of the edges incoming to any non-
source vertex v must be one. For instance, in the case of Fig. 5.1, we might
label the edge from v1 to v3 with 70% and the edge from v2 to v3 may be
labeled with 30%. This may suggest that there is 70% likelihood that vertex
v3 will be exploited by an attacker who first exploits v1 and that there is
30% probability that vertex v3 will be exploited by an attacker who first
exploits v2. We did not include such probabilistic VDGs in this chapter for
two reasons. First, the question arises of how to find these probabilities. One
way to achieve this is to consider either historical attack sequence data (but
we did not have such data) or to use CVSSs “access complexity” measure to
subjectively assign such probabilities. Second, we wanted to consider worst
case scenarios where attackers could use all possible paths in VDGs to launch
their exploits — from a security perspective, it makes sense to take care of
worst case scenarios. However, we believe the problem of studying probabilistic
VDGs is an important one for future work.

5.3.1 From Attack Graphs to Vulnerability Dependency Graphs

Different attack graph (AG for short) formalisms are heavily used in the secu-
rity literature [25, 107, 113, 114, 115]. In this section, we show that the VDG
framework is rich enough to express all these attack graphs. We do this by
providing a translation of AGs into VDGs — but first, we must define AGs.

Definition 5.4 (Attack graph). An Attack Graph (AG for short) is repre-
sented by a tuple AG =< M,E,TPart, VM , VE , vM , vE > where

• M is a set of machines.

96 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

• TPart = {M1, . . . ,Mk} is a partition of M i.e. M =
⋃k
i=1Mi and for each

M1,M2 ∈ TPart, M1∩M2 6= ∅. TPart is called a “trust partition” and each
Mi ∈ TPart is called a trust component.

• E ⊆
⋃
Mi,Mj∈TPart,i6=jMi ×Mj is a set of edges called “movement edges.”

• VM is the set of all machine vulnerabilities.
• VE is the set of all edge vulnerabilities.
• vM : M → 2|VM | is a function associating a set of vulnerabilities with each

machine.
• vE : E → 2|VE | is a function that associates with each movement edge

(m,m′), a set of vulnerabilities that can allow an attacker’s payload to
move from machine m to m′.

Thus, an AG is a graph where the set M of nodes is a set of machines.
vM (m) is the set of all possible vulnerabilities that might be present on ma-
chine m. An edge (m1,m2) ∈ E implies the existence of at least one vulner-
ability in m2 that allows an attacker to move from m1 to m2. For each edge
(m1,m2) ∈ E, the set of vulnerabilities allowing an attacker to move from m1

to m2 is vE(m1,m2). Without loss of generality, we assume that VE∩VM = ∅.
AGs also include the concept of a trust partition TPart = {M1, . . . ,Mk}— all
machines within any Mi trust other machines within Mi and hence, when one
of them is compromised, then all the others are as well. Thus, if an attacker
penetrates Mi, then he can use any vulnerability in any machine in Mi to
move to and compromise another machine.

Example 5.5. Fig. 5.2 shows an AG where the white boxes are the trust
components and the grey boxes are the machines. In this AG, TPart =
{M1,M2,M3,M4}, machines m3,m4 are in M3, and vM (m3) = {v3}. Each
machine’s associated set of vulnerabilities is shown below the machine — for
instance, machine m4 has two vulnerabilities, v4, v5. The movement edge from
m2 to m3 in this figure says that vulnerabilities v11 and v12 can be used to
move from machine m2 to m3.

M4

m5

{v6,v7,v9}

m6

{v8}

M3

m4

{v4,v5}

m3

{v3}

M2

m2

{v1,v2}

M1

m1

{ }

{v10}

{v11,v12}

{v13}

{v14}

{v15}

{v16}

Fig. 5.2. Example of an attack graph

We can transform any AG into a VDG as follows. Given an AG AG =<
M,E,TPart, VM , VE , vM , vE >, let AN = {M ∈ TPart | at least one m ∈
M has in-degree 0}. Thus, AN is the attacker network, i.e. the set of trust
components that can be directly attacked by an adversary. For instance, in

5.3 Vulnerability Dependency Graphs 97

the AG of Example 5.5, we have AN = {M1}. We can construct a VDG
G = (V ′, E′) as follows.

Vertices of Transformation of an AG into a VDG

The set of vertices of the VDG is built as follows:

V ′ = {(m, v)|m ∈M,M ∈ TPart, v ∈ vM (m)}∪
∪{(m, v,m1)|m ∈M,M ∈ TPart \AN, (m1,m) ∈ E, v ∈ vE(m1,m)}.

In other words, the vulnerabilities in the VDG are constructed in two ways
corresponding to the two terms in the union above:

• First, they include a set of pairs (m, v) where m is a machine and v is a
vulnerability associated with that machine by AG;

• Second, they include a set of triples (m, v,m1) where v is an edge vulner-
ability in the AG AG that allows an attacker to move from machine m to
m1.

Edges of Transformation of an AG into a VDG

Constructing the edges of the VDG associated with an AG AG is more com-
plex. First we define two quantities. For each trust component M ∈ TPart:

• Let V N(M) = {(m, v)|m ∈M,v ∈ vM (m)} denote the set of all machine-
vulnerability pairs;

• LetAP (M) = {(m, v,m1)|m ∈M,m1 ∈M, (m1,m) ∈ E, v ∈ vE((m1,m))}
denote all triples (m, v,m1) in which an attacker can leverage vulnerability
v to move from machine m to m1.

For each distinct pair of trust componentsMi,Mj ∈ TPart, we useAP (Mi,Mj) =
{(m, v,m1)|m1 ∈ Mi,m ∈ Mj , (m1,m) ∈ E, v ∈ vE((m1,m))} to denote the
set of all triples (m, v,m1) where m is in the first trust component, m1 is
in the second, and v is a vulnerability that allows an attacker to move from
m to m1. In short, if AP (Mi,Mj) is non-empty, then this means that an at-
tacker who can compromise trust component Mi can also compromise trust
component Mj .

We can now define the set E′ of edges in the trust component as follows.

E′ =
(⋃

M∈TPart\AN AP (M)× V N(M)
)
∪

∪
(⋃

Mi∈TPart,Mj∈TPart\AN AP (Mi)×AP (Mi,Mj)
)
.

Example 5.6. The above transformation converts the AG shown in Fig. 5.2
into the VDG shown in Fig. 5.3 below. For each trust component M , the
white nodes represent the set AP (M) while the grey nodes represent the
set V N(M). It is important to note that the VDG does not have any trust
partition — the boxes denoting trust partitions from the AG for Fig. 5.1
are shown here merely to explain how each trust component in the AG got
transformed into vertices of the associated VDG.

98 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

(m2,v10,m1) (m
2
,v

13
,m

4
)

(m2,v2) (m2,v1)

(m
3
,v

12
,m

2
)

(m
3
,v

11
,m

2
)

(m
3
,v

16
,m

5
)

(m
3
,v

3
) (m

4
,v

4
) (m

4
,v

5
)

(m
6
,v

14
,m

23
)

(m
5
,v

15
,m

4
)

(m
5
,v

6
)

(m
6
,v

8
)

(m
5
,v

9
)

(m
5
,v

7
)

M2

M3

M4

Fig. 5.3. Vulnerability dependency graph obtained from the attack graph in Fig. 5.2

Proposition 5.7. Suppose nVv and nVe denote the maximum number of
vulnerabilities within the nodes and labeling the edges of an AG AG =<
M,E,TPart, VM , VE , vM , vE >, respectively. Then, the VDG corresponding to
AG can be computed with a polynomial-time algorithm running in O((|M | ·
nVv + |E| · nVe)2) time.

Proof. We show a simple polynomial time algorithm that computes V DG =<
V ′, E′ > from AG =< M,E,TPart, VM , VE , vM , vE >. We assume we store
TPart, vM and vE in hash structures — so the storage cost is less than or
equal to |M | ·nVv + |E| ·nVe. It is easy to see that the time cost of computing
all nodes in V is O(|M | ·nVv + |E| ·nVe). Therefore, the time to enumerate all
possible edge between the nodes in V is at most O((|M | · nVv + |E| · nVe)2).
In the worst case, the cost of determining which of these edges is in E is the
cost of enumerating all possible edges between the nodes in V . Verifying that
an edge is in E can be done in constant time (since we use hash structures).
Thus, the total cost of this algorithm is O((|M | · nVv + |E| · nVe)2).

5.4 Players’ Strategy

In this section, we define the concept of a “strategy” for the defender and
attacker.

5.4.1 Defender’s Strategy

The enterprise security manager’s task is to defend his organization from
attacks. In order to do this, he needs to decide what software can run within
his enterprise and what patches he should apply to them.

5.4 Players’ Strategy 99

Definition 5.8 (Defender strategy). A defender strategy is a pair δ =
(PR,PA) where PR ⊆ PR and PA ⊆ PA. We use DS to denote the set of
all defender strategies.

The definition above represents the fact that, even though PR may include
several software products deployed on the enterprise network, the security
officer decides to deactivate some of them, i.e. those in (PR\PR). The security
officer also decides to only install the set PA of patches.

In order to evaluate a defender strategy, we must understand the rami-
fications of the choices made by the strategy. Once we understand both the
ramifications of different strategies, we can determine an optimal strategy.

Example 5.9. Consider the situation (products, vulnerabilities, and patches)
shown in Example 5.2 and the cost and productivity values of Example 5.3.
A possible defender strategy is δ1 = ({pr1, pr2, pr3, pr4}, {pa4, pa5}). In this
strategy, the defender activates products pr1, pr2, pr3, and pr4, and applies
patches pa4 and pa5. In this case we have Tp(PR) =

∑
i∈{1,2,3,4} Prod(pri) =

10 and Tc(PA) =
∑
i∈{4,5} CostD(pai) = 9. With strategy δ2 = (PR′, PA′) =

({pr1, pr2, pr3, pr4, pr5}, {pa1, pa4}) we have Tp(PR′) = 15 and Tc(PA′) = 5.

Thus, any given defender strategy has an impact on productivity (capturing
the dissatisfaction of those in the organization whose favorite products are
deactivated) and cost (in terms of the patching cost). Of course, each strategy
also has an implication in terms of how secure the enterprise is.

We now define what it means for a defender strategy to leave a vulnera-
bility unprotected.

Definition 5.10 (Unprotected vulnerability). Let G = (V, E) be a vul-
nerability dependency graph and δ = (PR,PA) ∈ DS be a defender strategy.
A vulnerability v ∈ V is said to be unprotected iff all the following three
conditions hold:

• v ∈ S(G) or there exists a vulnerability v′ ∈ in(G, v) that is unprotected;
• PR(v) ∩ PR 6= ∅;
• PA(v) ∩ PA = ∅.

Intuitively, for a strategy δ to leave a vulnerability unprotected, it must be
unpatched (3rd condition above) and at least one product that is active must
contain that vulnerability (2nd condition above). The first condition above
says that if the vulnerability is a source vertex in the VDG, then we cannot
protect against it as it is unpatched by the third condition. The second part of
the first condition says that if there is an unprotected vertex v′ that offers the
capability to move from v′ to v, then v is also unprotected. We use UV (G, δ)
to denote the set of all unprotected vulnerabilities.

We now define the total vulnerability impact in the context of a selected
defender strategy.

100 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

Definition 5.11 (Total vulnerability impact). Suppose δ ∈ DS is a de-
fender strategy, the total vulnerability impact tvi(δ) of a defender strategy δ is
given by

tvi(δ) = Σv∈UV (G,δ)Impact(v).

Intuitively, this definition says that if v is a vulnerability, its impact is 0 if
it is protected — otherwise its impact is whatever Impact(v) specifies (e.g.
whatever the NVD says it is).

Example 5.12. Consider the two defender strategies δ1 and δ2 of Example 5.9.

• Under strategy δ1, we have UV (G, δ1) = {v1, v2, v4, v5} (the unpro-
tected vulnerabilities under δ1 are marked with a “*” in Fig. 5.1). In
this case, the total impact of the unprotected vulnerabilities is tvi(δ1) =∑
v∈UV (G,δ1) Impact(v) = 22.

• Under strategy δ2, we have UV (G, δ2) = {v2} (marked with a “+” in
Fig. 5.1). Observe that, although both v5 and v6 have an associated prod-
uct that is activated and unpatched, they are protected since there is no
path of unprotected vulnerabilities from v1 or v2 to them. In this case,
tvi(δ2) = 4.

We will discuss what constitutes an optimal defender strategy later as this
depends upon what the attacker might do — the subject of the next subsec-
tion.

5.4.2 Attacker Strategy

Intuitively, an attacker’s strategy is a set of vulnerabilities that he will use in
order to penetrate the network. However, while the defender has full access to
his enterprise’s VDG, the attacker most likely does not. He must uncover vul-
nerabilities by using machines he has already compromised in order to discover
what further vulnerabilities are present. We make the worst case assumption
that the attacker can probe the network and, in the initial step, discover
vulnerabilities in S(G). Then, by exploiting these initial vulnerabilities, the
attacker can probe the local network and discover other vulnerabilities (not in
S(G)). This procedure continues in an iterative manner. My model is therefore
a Stackelberg leadership model where the leader (the defender) moves before
the follower (the attacker) moves [122].

Before formally defining an attacker strategy, we recall that if G = (V,E)
is a graph and V ′ ⊆ V is a set of vertices, then the subgraph induced by
V ′ is the graph G′ = (V ′, {(a, b)|a, b ∈ V ′, (a, b) ∈ E}). In other words, the
subgraph induced by V ′ has V ′ as the set of vertices and retains all those
edges in E whose end-points are both in V ′.

Definition 5.13 ((Valid) Attacker strategy). An attacker strategy is a
set of vulnerabilities α ⊆ V such that

5.4 Players’ Strategy 101

1. α ∩ S(G) 6= ∅ and
2. for each vertex v ∈ α, there exists a path from a vertex in α ∩ S(G) to v

in the subgraph of G induced by α.

An attacker strategy α is valid w.r.t. a defender strategy δ iff for all vulnera-
bilities v ∈ α, it is the case that v ∈ UV (G, δ).

We use AS to denote the set of all attacker strategies and ASδ to denote the
set of all attacker strategies that are valid w.r.t. a defender strategy δ.

Simply put, an attacker strategy is a set of vertices such that each vertex
is reachable from a vertex in S(G). It is important to note that an attacker
strategy is not guaranteed to work because the defender might have protected
it. The impact of a valid attacker strategy w.r.t. a defender strategy is given
below.

Definition 5.14 (Impact of a valid attacker strategy w.r.t. a defender
strategy). Let δ be a defender strategy, and α be an attacker strategy that is
valid w.r.t. δ. We define the impact of α in two ways:

impactDA1(α) = max
v∈α

Impact(v)

impactDA2(α) =
∑
v∈α

Impact(v)

impactDA1 captures the idea that the impact generated by an attack is the
maximum of the impacts of the different vulnerabilities that are exploited
by the attacker. impactDA2 says the impact of an attack is the sum of these
impacts. In the chapter, we use the notation impactDA to represent either
impactDA1 or impactDA2.

The following example shows this situation.

Example 5.15. Consider again the two defender strategies δ1 and δ2 of Exam-
ple 5.9.

• Under strategy δ1, valid attacker strategies are α1 = {v1}, α2 = {v1, v4},
α3 = {v1, v4, v5}, and α4 = {v2}. We have
– impactDA1(α1) = impactDA1(α2) = impactDA1(α3) = 7
– impactDA1(α4) = impactDA2(α4) = 4
– impactDA2(α1) = 7, impactDA2(α2) = 12
– impactDA2(α3) = 18

• Under strategy δ2, the only valid attacker strategy is α = {v2} so we have
impactDA1(α) = impactDA2(α) = 4.

We assume that the attacker has a utility function utilA : V→ R+
0 associ-

ating a utility (to him) of exploiting a vulnerability, as well as a cost function
costA : V → R+

0 associating the cost (to him) of exploiting a vulnerability.
For instance, utilA can be derived from NIST’s Common Vulnerability Scor-
ing System (e.g. via their impact metric) and the cost can, for example, be
derived from CVSS’s access complexity metric that measures the difficulty for
a vulnerability to be exploited by an adversary.

102 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

Definition 5.16 (Preferred attacker strategies). Given a utility threshold
u and a cost threshold c, the set of preferred attacker strategies is defined as

PAS(c, u) = {α|α ∈ AS,
∑
v∈α

utilA(v) ≥ u,
∑
v∈α

costA(v) ≤ c}.

The set of preferred valid attacker strategies w.r.t. a defender strategy δ is
defined as

PASδ(c, u) = {α|α ∈ ASδ,
∑
v∈α

utilA(v) ≥ u,
∑
v∈α

costA(v) ≤ c}

Thus, the preferred attacker strategies are the strategies with utility exceeding
a threshold value and cost below a threshold value. Cost may not be a dollar
value — it could be a measure of the risk of being discovered (e.g. if the
attacker is a nation state, the risk of discovery may have political or kinetic
consequences) or it could be a measure of the time and effort required to
launch such attacks. Thus, the attacker wants to do the best he can under his
operating constraints. The following result characterizes the maximal value of
impact (under both definitions impactDA1, impactDA2).

Proposition 5.17 Suppose δ is a defender strategy. If c =∞, then the max-
imum impact value is

max
α∈PASδ(∞,u)

impactDA(α) =

{
impactDA(UV (G, δ)) if

∑
v∈UV (G,δ) utilA(v) ≥ u

0 otherwise.

Proof. UV (G, δ) is a trivially valid attacker strategy. When c = ∞, the con-
straint

∑
v∈α costA(v) ≤ c can be deleted. By Definition 5.14 we know that

each strategy α ∈ AS containing vulnerabilities in V \ UV (G, δ) is not a
valid strategy. By Definition 5.14, any subset α′ ⊆ UV (G, δ) has an impact of
UV (G, δ) at most:

∑
v∈α′ utilA(v) ≤

∑
v∈UV (G,δ) utilA(v). The result follows.

This result provides an upper bound on the impact of the attacker’s pre-
ferred attack strategy by considering the case when the attacker has no cost
constraint. In reality, the attacker has cost constraints to consider, and so he
may not be able to launch all possible attacks.

The following result says that checking whether there exists an attacker
strategy satisfying the attacker’s cost and utility constraints is intractable —
this is good news for defenders as the attacker’s problem is computationally
hard.

Theorem 5.18 Checking if there exists α ∈ PAS(c, u) is NP-complete (for
both impactDA1 and impactDA1)

Proof. Membership in NP follows from the fact that we can guess, in nonde-
terministic polynomial time, a set of vulnerabilities α ∈ V, and then check in
deterministic polynomial time if α ∈ PAS(c, u). In fact, the check consists of
verifying all the following four conditions:

5.4 Players’ Strategy 103

1. α ∩ S(G) 6= ∅;
2. for each vertex v ∈ α, there exists a path from a vertex in α∩S(G) to v in

the subgraph of G induced by α (this can be checked using a polynomial
time reachability algorithm);

3.
∑
v∈α utilA(v) ≥ u;

4.
∑
v∈α costA(v) ≤ c.

We prove NP-hardness by reduction from SAT, which is known to be NP-
complete [133]. Given a boolean formula φ in conjunctive normal form (CNF),
the SAT problem is to decide if there exists a truth assignment to the variables
in φ that satisfies φ. Given a CNF boolean formula φ = C1 ∧ C2 ∧ · · · ∧ Cl
where each clause Ci is a disjunction of propositional variables (negated or
not), let X = {x1, . . . , xk} be the set of propositional variables in φ. We can
built a vulnerability dependency graph G = (V,E) where

V = {x1, x1, . . . , xk, xk} ∪ {C1, . . . , Cl} ∪ {f}

E = {(a, b)|a ∈ {xi, xi}, b ∈ {xi+1, xi+1}, i ∈ {1, . . . , k − 1}} ∪ {(xk, f), (xk, f)}∪
∪{(a,Cj)|a ∈ {xi, xi}, i ∈ {1, . . . , k}, j ∈ {1, . . . , l}, a appears in Cj}

According to this construction, we have two vulnerabilities xi and xi for each
variable xi ∈ X, representing whether xi is true or false, respectively. More-
over, we have a vulnerability for each clause Ci plus another vulnerability
f indicating if the truth assignment is feasible, i.e. only one truth value is
assigned to each variable. The resulting graph is shown in Fig. 5.4, where
the edges from vertices {x1, x1, . . . , xk, xk} to vertices {C1, . . . , Cl} are not
specified because they depend on the specific CNF formula.

.

.

Fig. 5.4. From CNF formula to vulnerability dependency graph

In addition, we have that S(G) = {x1, x1}, because each vertex Ci has at
least one edge, since each clause has at least one variable.

We define the utility and cost functions for the attacker in the following
way:

104 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

utilA(a) =


1 if a = f

1 if a ∈ {C1, . . . , Cl}
0 otherwise

costA(a) =


1 if a ∈ {x1, . . . , xk}
1 if a ∈ {x1, . . . , xk}
0 otherwise

and set the minimum utility u = l + 1 and the maximum cost c = k. Since
we need to satisfy the constraint

∑
v∈α utilA(v) ≥ l + 1, each attacker strat-

egy α ∈ PAS(c, u) must contain the vulnerabilities {C1, C1, . . . , Cl, f} be-
cause they are the only vulnerabilities with utility 1, while all the others
have utility 0. However, since the vertices {C1, C1, . . . , Cl, f} are not in S(G),
then in order to satisfy the constraint that each vulnerability in α must be
reachable from a vertex in S(G), each α must contain other vulnerabilities
in {x1, x1, . . . , xk, xk}. As we can see in Fig. 5.4, the only way to reach f
from S(G) = {x1, x1}, is that each α contains xi or xi for each i ∈ 1, . . . , k.
Moreover, because of the constraint

∑
v∈α costA(v) ≤ c, we have that α does

not contain both xi or xi for each i ∈ 1, . . . , k. Therefore, in order to reach f
we have that each attacker strategy α contains a feasible truth assignment for
the variables in X, and then to reach all the vulnerabilities {C1, C1, . . . , Cl}
from S(G) we also need the feasible truth assignment to satisfy φ. Finally, by
using this transformation, we have that all the strategies in PAS(c, u) repre-
sent all feasible truth assignment of the variables X that satisfy φ. Therefore,
hardness of the problem holds. Note that the result holds for both impactDA1
and impactDA1.

At this point, since the number of attacker strategies in PAS(c, u) can be
exponential, the question is whether it is possible to enumerate all attacker
strategies using a polynomial total time algorithm. We recall that an algorithm
generating all configurations that satisfy a given specification is said to be
polynomial total time [134] if the time required to output all configurations
is bounded by a polynomial in n (the size of the input) and C (the number
of configurations). Unfortunately, as stated in Proposition 5.19, this is not
possible unless P = NP.

Proposition 5.19 If there exists a polynomial total time algorithm for gen-
erating all the attacker strategies in PAS(c, u), then P = NP.

Proof. The proof is inspired by [135]. Suppose there exists an algorithm A
running in time ϕ(n,C) that generates C different attacker strategies in
PAS(c, u), where ϕ is a polynomial function of n and C for an instance
of size n. We can then execute A and stop it after a time equal to ϕ(n, 1).
If A does not terminate or terminates outputting one attacker strategy in
PAS(c, u), then there exists at least one α ∈ PAS(c, u). Otherwise, does
not exist α ∈ PAS(c, u). We thus have a polynomial algorithm to solve an
NP-hard problem (Theorem 5.18). This is impossible unless P=NP.

Corollary 5.20. Given a defender strategy δ, Theorem 5.18 and Proposi-
tion 5.19 also hold for PASδ(c, u).

5.5 Pareto Analysis for the Defender 105

5.4.3 Best Strategy of the Attacker

The success of an attacker strategy depends on the strategy of the defender.
In this case, let δ+ be a defender strategy and c the threshold cost. The best
attacker strategy of the attacker is defined as follows:

α∗ = argmaxα∈ASδ+ ,(
∑
v∈α costA(v)≤c)

∑
v∈α

utilA(v)

The best attacker strategy can be computed by the integer linear program
(ILP) given below. We have for each vi ∈ UV (G, δ+) a binary variable ki ∈
{0, 1} that is set to 1 if the attacker chooses to use vulnerability v in its
strategy and 0 otherwise. Then the ILP is:

maximize
∑

vi∈UV (G,δ+)

utilA(v) · ki (5.1)

subject to∑
vi∈UV (G,δ+)

costA(vi) · ki ≤ c (5.2)

ki −
∑

vj∈in(G,vi)

kj ≤ 0 vi ∈ UV (G, δ+) \ S(G) (5.3)

ki ∈ {0, 1} vi ∈ UV (G, δ+) (5.4)

where the objective function represents the utility produced by the attacker
strategy described by variables k, and Constraint 5.2 models the fact that the
total cost of the attacker strategy must be less than or equal to a threshold
value c. Constraints 5.3 model the fact that the attacker can use a vulnerability
vi /∈ S(G) if he exploits at least one vulnerability in in(G, vi). Corollary 5.20
allows us to infer the following result.

Corollary 5.21. Given a defender strategy δ, finding the best attacker strat-
egy is NP-hard.

5.5 Pareto Analysis for the Defender

Each attacker strategy in PASδ(c, u) has an actual impact w.r.t. each de-
fender strategy δ ∈ DS. This impact is measured via either impactDA1 and
impactDA2. The defender wants to find a strategy that minimizes the max-
imum impact produced by the attacker. The defender can select this best
strategy by either deactivating software products running on his enterprise or
by installing additional patches. One extreme solution is to deactivate all soft-
ware and patch nothing — this preserves security at the price of not allowing
anyone to do their jobs.

106 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

5.5.1 Bi-Objective Optimization Problem Formulation

We formulate the best defender strategy as a bi-objective optimization prob-
lem. We assume that there is a maximal cost c the attacker is willing to bear
and we also assume the attacker requires that his attacks have a minimal util-
ity. The cost could, for example, be measured using CVSS’s access complexity
metric, while the utility could be measured by CVSS’s impact metric. Like-
wise, the defender has a maximum cost ĉ he is willing to bear for applying the
selected patches (e.g. time taken or dollar cost of the labor involved). Thus,
the bi-objective optimization problem for the defender is:

min
δ=(PR,PA)∈DS,Tc(PA)≤ĉ

{ max
α∈PASδ(c,u)

impactDA(α),−Tp(PR)} (5.5)

The first part (maxα∈PASδ(c,u) impactDA(α)) of this bi-objective optimization
problem tries to minimize the maximum impact produced by the attacker —
the second part simultaneously tries to minimize the negative of total produc-
tivity (−Tp(PR)) which is equivalent to maximizing the total productivity,
subject to the cost constraint.

Brief Overview of Pareto Optimization. These two objective functions
compete — in fact, we can minimize impact by eliminating productivity alto-
gether and any increase in productivity increases the impact of the attacker as
well. Pareto analysis [136] is a classic method used to carry out optimizations
in situations where there are multiple competing objectives that must some-
how be satisfied simultaneously. The basic idea behind Pareto optimization of
two competing objective functions φ1 and φ2 subject to a set C of constraints
is as follows. Suppose σ, σ′ are two different solutions and suppose that both
φ1 and φ2 are maximization problems.3 We say that σ is worse than σ′, de-
noted σ � σ′ iff (v1, v2) is the pair of values assigned by σ to the objective
function φ1 and (v′1, v

′
2) is the pair of values assigned by σ′ to the objective

function φ2 and v1 ≤ v′1 and v2 ≤ v′2. In this case, σ′ gives better values to
both objective functions and hence is intuitively better. A solution σ is said
to be Pareto optimal w.r.t. maximization problems φ1, φ2 and constraints C
if and only there is no solution σ′ 6= σ such that σ � σ′.

We use Pareto analysis to solve the optimization problem (5.5) in order
to find a compromise strategy. In our case, the competing functions are the
maximum impact allowed and the productivity. The main point of this method
is the computation of the Pareto frontier (see [136]).

The following result says that checking for existence of a defender strategy
whose cost is less than ĉ, whose productivity is at least p, and where the
impact of attacks that can pierce the strategy is at most r is intractable at
the ΣP2 -completeness level under the assumption that the attacker will only
select a strategy with cost less than or equal to c and utility u (to him).

3 There is no loss of generality in this as minimizing x is the same as maximizing
−x.

5.5 Pareto Analysis for the Defender 107

Theorem 5.22 Given the real numbers p, r, ĉ, c and u, the problem of de-
ciding whether there exists a defender strategy δ = (PR,PA) ∈ DS such that
Tc(PA) ≤ ĉ, maxα∈PASδ(c,u) impactDA(α) ≤ r, and Tp(PR) ≥ p is ΣP2 -
complete (for both impactDA1 and impactDA2).

Proof. Membership in ΣP2 follows from the fact that we can guess, in non-
deterministic polynomial time, a defender strategy (PR,PA) and check if all
the following three condition are satisfied.

1. Tc(PA) ≤ ĉ;
2. Tp(PR) ≥ p;
3. maxα∈PAS(PR,PA)(c,u) impactDA(α) ≤ r.

Conditions (1) and (2) can be verified in deterministic polynomial time, while
the third condition needs an NP oracle verifying that there does not ex-
ist an attacker strategy α ∈ PAS(PR,PA)(c, u) such that impactDA(α) > r.
This oracle guesses (in nondeterministic polynomial time) an attacker strat-
egy α ∈ PAS(c, u) (by using the check phase done in the proof of Theo-
rem 5.18) and checks (in deterministic polynomial time) if α is valid w.r.t. δ
and impactDA(α) > r.

We prove ΣP2 -hardness by reduction from ∃∀ SAT, that is known to be
ΣP

2 -complete if the boolean formula considered is in disjunctive normal form
(DNF) [133]. Given a DNF boolean formula φ, let Y = {y1, . . . , yh} and
X = {x1, . . . , xk} be two sets of variables in φ. The ∃∀ SAT problem consists
in deciding whether there exists an assignment of Y variables such that for
all assignment of X variables, φ is satisfied. We recall that a DNF boolean
formula C1 ∨ C2 ∨ · · · ∨ Cl is a disjunction of clauses where each clause C ′i is
a conjunction of variables (negated or not). The reduction from ∃∀ SAT to
our problem is the following. Given a DNF boolean formula φ with variables
X = {x1, . . . , xk}, we build a vulnerability dependency graph G = (V,E)
where

V = {ya1, . . . , yah} ∪ {y1, y1, . . . , yh, yh} ∪ {x1, x1, . . . , xk, xk}∪
∪{C1, . . . , Cl} ∪ {f}

E = {(a, b)|a ∈ {xi, xi}, b ∈ {xi+1, xi+1}, i ∈ {1, . . . , k − 1}}∪
∪{(xk, f), (xk, f)}∪
∪{(a,Cj)|a ∈ {xi, xi, yi, yi}, i ∈ {1, . . . , k}, j ∈ {1, . . . , l},−a ∈ Cj}

According to the above definition we have, for each variable in the DNF
yi ∈ Y (resp. xj ∈ X), two vulnerabilities, i.e. yi and yi (resp. xj and xj),
representing the truth values of each variable. Moreover, we have, for each
yi ∈ Y , a variable yai whose aim is to guarantee a valid truth assignment
for yi. In addition, for each clause Cz we have the vulnerability Cz indicating
that, if Cz is present in the attacker strategy, the corresponding clause Cz
in the formula is not satisfied. The edges are reported in Fig. 5.5, where
the vulnerabilities are represented as circles and the patches as squares. An

108 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

.

.

.

Fig. 5.5. From DNF formula to vulnerabilities dependency graph in ∃∀SAT reduc-
tion

edge between two vulnerabilities represents an edge in the graph G, while an
edge between a patch and a vulnerability means that the patch solves the
vulnerability. The edges among the vulnerabilities in {x1, x1, . . . , xk, xk} are
the same of the proof of Theorem 5.18, whereas there is an edge between the
vulnerabilities yi (resp. xj) and a vulnerability Cz if the variable yi (resp. xj)
appears in the clause C, and there is an edge between the vulnerabilities yi
(resp. xj) and a vulnerability Cz if the variable yi (resp. xj) appears negated
in the clause Cz.

We considered the set of patches PA = {pa1, pa1, . . . , pah, pah} where each
patch pai (resp. pai) solves both the vulnerabilities yi (resp. yi) and yai. We
define the utility and cost functions for the attacker as follows:

utilA(a) =


1 if a = f

1 if a ∈ {C1, . . . , Cl}
1 if a ∈ {y1, y1, . . . , yh, yh}
0 otherwise

costA(a) =


1 if a ∈ {x1, . . . , xk}
1 if a ∈ {x1, . . . , xk}
0 otherwise

and we impose that the minimum utility is u = l + h + 1 and the maximum
cost is c = k.

For the defender we fix the cost of every patch to 1, and the impact of a
vulnerability as

Impact(a) =


1 if a = f

1 if a ∈ {ya1, . . . , yah}
0 otherwise

We impose that the maximum cost budget is ĉ = h and the maximum impact
is r = 0. Moreover, we assume that p is equal to the sum of all productivities
of each product, i.e., in this situation, no product can be disabled.

From this reduction, we see that the defender can only decide which
patches to use and, since ĉ = h, he can use h patches at most. More-
over, since the r must be 0, each vulnerability yai must be patched, and

5.5 Pareto Analysis for the Defender 109

therefore, for each 1 ≤ i ≤ h, the defender will use pai or pai. It follows
that the patches used by the defender represent the truth assignment for
the variables yi. Note that the source vertices of the graph G are S(G) =
{y1, y1, . . . , yh, yh}∪{ya1, . . . , yah}∪{x1, x1, . . . , xh, xk}. On the attacker side,
instead, we have that, because of the attacker utility constraints, the set of
vulnerabilities used by the attacker must include: (1) all the vulnerabilities
Cz, (2) the vulnerability f , and (3) h vulnerabilities in {y1, y1, . . . , yh, yh}.
It follows that if the defender uses patch pai, then the attacker will use the
vulnerability yi, whereas if the defender uses patch pai, then the attacker
will use the vulnerability yi. Thus, the vulnerabilities yi, yi represent a valid
truth assignment for the variables yi chosen by the defender by using the
patches. Moreover, as shown in the proof of Theorem 5.18, because of the
cost constraints, and since f must be present in the attacker strategy, only
one between xj and xj can be present in the attacker strategy, then also the
vulnerabilities xj , xj represent a valid truth assignment for the variables xj .
It follows that, since all the vulnerabilities Cz must be present in the attacker
strategy, the only possibility is to have an assignment of the variables X and
Y that does not satisfy the DNF. Finally, since r = 0, the defender will have
to find a truth assignment for the variables Y such that there does not exist
a truth assignment of the variables X which causes the DNF to be unsatis-
fied — this corresponds to the ∃∀ SAT problem. This proves ΣP

2 -hardness of
our problem. Note that, as r = 0, the result holds for both impactDA1 and
impactDA2.

The theorem below considers the same case as the theorem above with one
change — this time, the defender makes no assumption at all about the cost
the attacker is willing to bear (i.e. that cost is ∞). This represents a kind of
worst case scenario from the defender’s perspective. Under this assumption,
the problem of checking if a defender strategy exists is still intractable, but
at the NP-complete level.

Theorem 5.23 Given the real numbers p, r, ĉ, u, if c = ∞ then the problem
of deciding whether there exists a defender strategy δ = (PR,PA) ∈ DS such
that Tc(PA) ≤ ĉ, maxα∈PASδ(∞,u) impactDA(α) ≤ r, and Tp(PR) ≥ p is
NP-complete (for both impactDA1 and impactDA2).

Proof. Membership in NP follows from the fact that we can guess, in nonde-
terministic polynomial time, a defender strategy (PR,PA) and then check if
all the following three conditions are satisfied.

1. Tc(PA) ≤ ĉ;
2. Tp(PR) ≥ p;
3. maxα∈PAS(PR,PA)(∞,u) impactDA(α) ≤ r.

Conditions (1) and (2) can be verified in deterministic polynomial time, and,
based on Proposition 5.17, Condition (3) can be verified in polynomial time
as well.

110 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

We prove NP-hardness by reduction from Set Cover, which is known
to be NP-complete [133]. The Set Cover problem is the following: given a
set S = {s1, . . . , sm} and a family F = {S1, . . . , Ss} of subsets of S, decide
whether there exists a subset C of F such that |C| ≤ k and

⋃
Si∈C Si = S.

The reduction is the following. For each element s ∈ S we have a vulnerability
vs in the dependency graph G, and this dependency graph has no edges, thus,
all the vulnerabilities are in S(G). For each Si ∈ F we have a patch pSi
that solves the set of vulnerabilities {vs|s ∈ Si}. Moreover, each vulnerability
in the graph has impact 1, each patch has cost 1, and the value of u is 0.
We also set ĉ = k and r = 0. We assume that p is equal to the sum of the
productivities of each product, i.e., no product is deactivated. Thus, in this
reduction, our problem consists of verifying if there exists a set of k patches
or less that solve each vulnerability (since r = 0). This is equivalent to the
Set Cover problem, and hence our statement follows. Note that as r = 0,
the result holds for both impactDA1 and impactDA2.

5.5.2 Computing the Pareto Frontier

In order to perform our Pareto analysis, let

V P = {(max
α∈PASδ(c,u)

impactDA(α),−Tp(PR)) | δ = (PR,PA) ∈ DS, Tc(PA) ≤ ĉ}

be the set of all possible pairs of values for our two objectives, given that
cost constraints are satisfied. Given two pairs (a, b), (a′, b′) ∈ V P , we say that
(a, b) dominates (a′, b′) if (a ≤ a′ ∧ b < b′) ∨ (a < a′ ∧ b ≤ b′).

Definition 5.24 (Pareto frontier). The Pareto frontier PF for the bi-
objective optimization problem (5.5) is the set {(a, b) | (a, b) ∈ V P and
@(a′, b′) ∈ V P such that (a′, b′) dominates (a, b)}.

Algorithm FindPF (Algorithm 1) computes the Pareto Frontier of the the
bi-objective optimization problem (5.5) without enumerating all pairs in V P .
The algorithm uses two functions getp(p+, ĉ, c, u) and getr(r+, ĉ, c, u).

When the optimization problem associated with getp(r+, ĉ, c, u) has no
feasible solution, the function pget(r+, ĉ, c, u) returns Null. Note that this
multi-objective optimization problem is not linear — later in Section 5.5.4,
We will show how it can be represented as an integer linear optimization
problem.

The following result looks at the complexity of computing the Pareto Fron-
tier.

Theorem 5.25 Given the real numbers c, ĉ and u, the problem of checking
whether a point (p+, r+) is in the Pareto Frontier is in ΣP2 ∩ ΠP

2 and ΣP2 -
hard (for both impactDA1 and impactDA2). Moreover, if c = ∞ the problem
is in DP=NP ∩ co-NP and NP-hard (for both impactDA1 and impactDA2).

5.5 Pareto Analysis for the Defender 111

Algorithm 1 FindPF

1: procedure FindPF (ĉ, c, u)
2: PF = ∅;
3: p+ = getp(∞, ĉ, c, u);
4: while (p+ 6= Null) do
5: r+ = getr(p+, ĉ, c, u);
6: PF = PF ∪ {(p+, r+)}
7: p+ = getp(−r+, ĉ, c, u);
8: end while
9: return PF ;

10: end procedure

where:

getp(r+, ĉ, c, u) = min
(PR, PA) ∈ DS
Tc(PA) ≤ ĉ

maxα∈PAS(PR,PA)(c,u)
impactDA(α) < r+

−Tp(PR)

getr(p+, ĉ, c, u) = min
(PR, PA) ∈ DS
Tc(PA) ≤ ĉ
Tp(PR) = p+

max
α∈PAS(PR,PA)(c,u)

impactDA(α)

Proof. The problem of checking whether a point (p+, r+) is in the Pareto
Frontier can be solved by verifying the following two statements:

1. there exists a defender strategy δ = (PR,PA) ∈ DS such that
• Tc(PA) ≤ ĉ
• maxα∈PASδ(c,u) impactDA(α) ≤ r+

• Tp(PR) ≥ p+

2. does not exist a defender strategy such that Tc(PA) ≤ ĉ, and either
• maxα∈PASδ(c,u) impactDA(α) < r+, and Tp(PR) ≥ p+

or
• maxα∈PASδ(c,u) impactDA(α) ≤ r+, and Tp(PR) > p+.

It is easy to see from the proof of Theorem 5.22 that the problem (1) is in
ΣP2 , while the problem (2) in ΠP

2 . The hardness results directly follows from
Theorem 5.22 the fact that the first problem is in ΣP2 . In particular, if c =∞,
from the proof of Theorem 5.23, we have that the problem (1) is in NP, while
the problem (2) is in co-NP. The NP-hardness derives from the proof of
Theorem 5.23, too.

The following result looks at the complexity of finding the Pareto Frontier
in the case of impactDA1 when the defender makes the worst-case assumption
that the attacker has no cost constraints at all to consider (e.g. if the attacker
is a nation state that may be willing to bear huge costs).

Proposition 5.26 Computing the Pareto Frontier is in FPΣP
2 by considering

impactDA1. Moreover if c =∞ the problem is in FPNP.

112 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

Proof. Since we are considering impactDA1, it is possible to enumerate all the
values that r can assume in polynomial time. In order to prove the proposition

we provide an algorithm in FPΣ
P
2 that is the following:

1. compute the set IM of all impact values for each vulnerability (linear
time in the size of the vulnerability dependency graph);

2. for each value r ∈ IM , compute the value of the maximum productivity p
by using a binary search algorithm with an oracle deciding whether there
exists a defender strategy δ = (PR,PA) ∈ DS such that Tc(PA) ≤ ĉ,

and maxα∈PASδ(c,u) impactDA(α) ≤ r, and Tp(PR) ≥ p (in FPΣ
P
2 from

Theorem 5.22);
3. given the set of all pairs (r, p), obtained from steps 1 and 2, compute all

the non-dominated points in this set (in polynomial time since the size of
IM is polynomial in the size of G).

It follows that the problem of computing the Pareto Frontier by considering

impactDA1 is in FPΣ
P
2 . When c = ∞, from the proof of Theorem 5.23, the

step (2) can be done in FPNP.

It is worth noting that the same proof done for Proposition 5.26 cannot
be valid for the case considering impactDA2 as the set of all possible values
that r can assume is not enumerable in polynomial time.

5.5.3 Finding the Optimal Defender Strategy

Once we compute the Pareto frontier, we are able to choose a compromise
between impact and productivity, i.e., a Pareto point (r+, p+) in the Pareto
frontier. Once a Pareto point is chosen, we can compute an Optimal Defender
Strategy using the productivity generated by the Pareto point to minimize the
maximal impact produced by the attacker. This is formalized via the following
program.

(PR,PA)∗ = argmin (PR, PA) ∈ DS
Tc(PA) ≤ ĉ
Tp(PR) = p+

maxα∈PAS(PR,PA)(c,u)
impactDA(α) ≤ r+

tvi((PR,PA))

The next corollary follows immediately from the proofs of Theorem 5.22
and Theorem 5.23.

Corollary 5.27. Given the real numbers c, u, ĉ, p+, r+ and t, the prob-
lem of checking whether there exists a defender strategy (PR,PA) such that
Tc(PA) ≤ ĉ, ,Tp(PR) = p+,maxα∈PAS(PR,PA)(c,u) impactDA(α) ≤ r+, and

tvi((PR,PA)) ≤ t, is ΣP2 -complete (for both impactDA1 and impactDA2).
Moreover if c = ∞ the problem is NP-complete (for both impactDA1 and
impactDA2)

5.5 Pareto Analysis for the Defender 113

5.5.4 MILP Formulations for Bi-Optimization Problem and
Optimal Defender Strategy

The constraints defining the bi-objective optimization problem presented ear-
lier may be non-linear. This section shows that we can solve the optimization
problems in Algorithm 1 and in Section 5.5.3 via mixed integer linear pro-
grams (MILPs for short).

Variables

We first specify the principal variables in our MILP formulation.

• x1, . . . , x|PR| are binary variables. Intuitively, xi = 0 means product pri is
deactivated while xi = 1 means it is activated.

• y1, . . . , y|PA| are binary variables. Intuitively, yi = 0 means patch pai is
not applied while yi = 1 means it is applied.

• d1, . . . , d|V| are real variables in [0, 1]. If vulnerability vi is unprotected,
then di = 1 — otherwise, di = 0.

• dx1, . . . , dx|V| are real variables in [0, 1]. If at least one product in PR(vi)
is activated, then dxi = 1; otherwise, dxi = 0.

• dy1, . . . , dy|V| are real variables in [0, 1]. If no patches in PA(vi) are ap-
plied, then dyi = 1; otherwise, dyi = 0.

• dd1, . . . , dd|V| are real variables in [0, 1]. If there is at least one unprotected
vulnerability in in(G, vi), then ddi = 1; otherwise, ddi = 0.

Basic Constraints

1. Product constraints: If at least one product in PR(vi) is activated, then
dxi = 1; otherwise, dxi = 0. Thus, we introduce the following constraints:

xj ≤ dxi vi ∈ V, prj ∈ PR(vi)∑
prj∈PR(vi)

xj ≥ dxi vi ∈ V

0 ≤ dxi ≤ 1 vi ∈ V

The first constraint captures the fact that dxi is set to one if at least one
product in PR(vi) is activated. Intuitively, dxi = 1 means that vulnera-
bility vi is active. The second constraint says dxi cannot be made 1 when
no product in PR(vi) is activated — it forces dxi to be zero in this case.

2. Patch constraints: If no patches in PA(vi) are applied, then dyi = 1;
otherwise, dyi = 0. Thus, we introduce the following constraints:

yj ≤ 1− dyi vi ∈ V, paj ∈ PA(vi)∑
paj∈PA(vi)

yj ≥ 1− dyi vi ∈ V

0 ≤ dyi ≤ 1 vi ∈ V

These constraints are similar to those in the preceding item but apply
to patches. The idea is to ensure that dyi is set to 1 when no patches

114 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

in PA(vi) are applied. The first constraint says that if a patch paj for
vulnerability vi is applied, then dyi must be set to 0 (which represents the
fact that at least one patch in PA(vi) is applied). The second constraint
says when no patches for vulnerability vi are applied then dyi must be set
to 1 (the converse of the previous sentence).

3. Unprotected vulnerabilities and incoming edges: If there is at least
one unprotected vulnerability in in(G, vi), then ddi = 1; otherwise, ddi =
0. Thus, we introduce the following constraints:

dj ≤ ddi vi ∈ V, vj ∈ in(G, vi)∑
vj∈in(vi)

dj ≥ ddi vi ∈ V

0 ≤ ddi ≤ 1 vi ∈ V

The constraints capture the cases when at least one vulnerability is unpro-
tected by analyzing the graph structure of the VDG we are considering.
The first constraint says that when there is an edge from vj to vi in the
VDG and vj is unprotected (i.e. dj = 1) then ddi is also 1 as there is at
least one incoming edge to vi from a vertex (vj) which is unprotected.
The second constraint is the converse of the first, establishing an if and
only if relationship.

4. Unprotected vulnerabilities: If vulnerability vi is unprotected, then
di = 1; otherwise, di = 0. Thus, we introduce the following constraints:

dxi ≥ di vi ∈ V
dyi ≥ di vi ∈ V
ddi ≥ di vi ∈ V \ S(G)

dxi + dyi + ddi ≤ 2 + di vi ∈ V \ S(G)
dxi + dyi ≤ 1 + di vi ∈ S(G)

The first constraint here states that if vulnerability vi is unprotected (di =
1) then at least one product in PR(vi) must be activated (otherwise the
vulnerability would not need protection). The second constraint says that
if vulnerability vi is unprotected (di = 1) then no patch for it is activated.
The third constraint says that if vulnerability vi is unprotected (di =
1) and vi is not a source vertex in the VDG, then one of its incoming
edges is from a vertex that is unprotected. The fourth constraint says
that when at least one product in PR(vi) is activated and no patch for vi
is activated and vi is a non-source vertex that has an incoming edge from
an unprotected vulnerability, then vi is unprotected. The fifth constraint
is similar but applies to vulnerabilities that are sources of the VDG.

Together, the above constraints provide basic constraints that capture the
dependencies between the variables in the mixed integer linear program.

Defender Strategy in the General Case

We now specify the mixed integer linear program for the defender in the gen-
eral case when no assumptions are made. We show the two integer linear

5.5 Pareto Analysis for the Defender 115

programs where impactDA1, impactDA2 measure the impact of the attacker’s
strategy. Note that we will use an arbitrary small number ε to model con-
straints involving the strict less than operator <.

getp(r+, ĉ, c, u) = minimize −
∑

prj∈PR

Prod(prj) · xj (5.6)

subject to

(1− |α|) · impact(vi) + impact(vi) ·
∑
vj∈α

dj ≤ r+ − ε α ∈ PAS(c, u), vi ∈ α (5.7)

basic constraints hold (5.8)∑
paj∈PA

CostD(paj) · yj ≤ ĉ (5.9)

0 ≤ di ≤ 1vi ∈ V (5.10)

yi ∈ {0, 1} vi ∈ V (5.11)

xj ∈ {0, 1} prj ∈ PR (5.12)

As the variables dxi, dyi and ddi (for all vi ∈ V) only need to be in [0, 1],
we do not require these to be explicitly constrained above.4 The objective
function in the above formulation says we want to minimize the negative of the
productivity which is equivalent to maximizing the productivity. Constraint
5.8 represents a set of constraints. The defender has no idea which of the
possible attacks α ∈ PAS(c, u) the attacker will choose. He needs to defend
against all possible attacks. Therefore, for each attack α ∈ PAS(c, u) and
each vi ∈ α, he writes a constraint of the form 5.8. saying that the impact
of each vulnerability in α must be strictly less than r+ — the strict less than
requirement is captured as r+ − ε for an arbitrarily large ε in this constraint
(when impactDA1 is used). The left side of the constraint describes the impact
of the vulnerabilities in α. The second expession Σvj∈αdj is the number of
unprotected vulnerabilities in α. If this sum equals |α|, then α is a valid attack
and in this case, the first term (1− |α|) · impact(vi) makes the left hand side
(1−|α|) · impact(vi)+ impact(vi) ·

∑
vj∈α dj evaluate to impact(vi) and by the

semantics of impactDA1, the constraint merely states that Impact(vi) ≤ r+−ε.
In order to model the min max in the MILP getr(p+, ĉ, c, u) we use another

real variable denoted by h.

4 Due to the nature of the constraints, dsi, dyi, ddi are all guaranteed to have only
{0, 1} values even though we do not explicitly include constraints for this.

116 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

getr(p+, ĉ, c, u) = minimize h (5.13)

subject to

(1− |α|) · impact(vi) + impact(vi) ·
∑
vj∈α

dj ≤ h α ∈ PAS(c, u), vi ∈ α (5.14)

basic constraints hold (5.15)∑
paj∈PA

CostD(paj) · yj ≤ ĉ (5.16)

∑
prj∈PR

Prod(prj) · xj = p+ (5.17)

0 ≤ di ≤ 1 vi ∈ V (5.18)

yi ∈ {0, 1} vi ∈ V (5.19)

xj ∈ {0, 1} prj ∈ PR (5.20)

h ≥ 0 (5.21)

The intuition behind constraint 5.14 is similar to that in the MILP defini-
tion getp() earlier. The major difference is that instead of bounding the impact
of the unprotected vulnerabilities on the right hand side of this constraint, we
are setting it to an unknown value h and then requiring the objective function
to minimize h (which captures the impact of the different attacker strategies
α ∈ PAS(c, u).

Important Note

An important note in the MILPs for getp() and getr() is the following. In the
Pareto Frontier algorithm, getp() is first invoked in line (3) with r+ = ∞ to
return a value of p+. Later, when r+ is invoked in line 5, it is invoked with
the value of p+. Subsequently, when p+ is computed again in Line 7, it is
invoked with the value of r+ computed in line 5 and this is repeated for every
execution of the while loop (lines 4− 8). This explains how these two MILPs
work in synchrony with the Pareto Frontier algorithm to generate the desired
results.

Using impactDA2 instead of impactDA1

If we choose to use the second measure of impact of a set of vulnerabilities,
we need to replace Constraint 5.7 and Constraint 5.14 with the following
constraints that capture the intuition that the impact of α is the summation
of the impacts of the vulnerabilities in α (as opposed to the max which is used
in impactDA1):

(1− |α|) ·
∑
vi∈α

impact(vi) +
∑
vj∈α

impact(vj) ·
∑
vs∈α

ds ≤ r+ − ε α ∈ PAS(c, u)

5.5 Pareto Analysis for the Defender 117

and

(1− |α|) ·
∑
vi∈α

impact(vi) +
∑
vj∈α

impact(vj) ·
∑
vs∈α

ds ≤ h α ∈ PAS(c, u).

The ILP version of the best defender strategy showed in Section 5.5.3 is
reported in the following:

minimize
∑
vi∈V

Impact(vi) · di (5.22)

subject to

(1− |α|) · impact(vi) + impact(vi) ·
∑
vj∈α

dj ≤ r+ α ∈ PAS(c, u), vi ∈ α (5.23)

basic constraints hold (5.24)∑
paj∈PA

CostD(paj) · yj ≤ ĉ (5.25)

∑
prj∈PR

Prod(prj) · xj = p+ (5.26)

0 ≤ di ≤ 1 vi ∈ V (5.27)

yi ∈ {0, 1} vi ∈ V (5.28)

xj ∈ {0, 1} prj ∈ PR (5.29)

h ≥ 0 (5.30)

This formulation is a combination of constraints of the two previous ones
where the objective function represents tvi((PR,PA)). Since this formulation
is a combination, in the following we only focus on the previous ones.

A critical point in these formulations is the exponential number of con-
straints (Constraints 5.8 and 5.14) due to the set PAS(c, u). We use a row
generation technique to avoid enumerating all the exponential number of con-
straints at the very beginning.

Row Generation (RG) Technique

RG is used for problems with a huge number of constraints where the com-
plete enumeration of all constraints is not possible (see [137, 138]). Once such
constraints are identified (in our case, these are the Constraints 5.8 and Con-
straints 5.14), the technique starts with a particular “restricted program”. The
restricted program is obtained from the MILP in Equations 5.6-5.12 (Program
in Equations 5.13-5.21) by removing Constraints 5.8 (resp. Constraints 5.14).
The technique iteratively performs the following two steps:

1. solve the current restricted program obtaining a solution that it is called
restricted solution.

2. given the restricted solution, find an unsatisfied constraint (not present in
the restricted program) w.r.t. the restricted solution, and

118 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

• if such a constraint exists, add the constraint to the restricted program
and continue the iterations.

• otherwise, stop the iterations and return the current restricted solution
— this is guaranteed to be the best solution for the non restricted
program.

We focus only on impactDA1 (as impactDA2 is similar), and we define two
methods getpR and getrR that represents the generic restricted programs.
The method δr = getpR(r+, ĉ, c, u, PAS′) takes as input, the same parameter
of getp plus a set PAS′. This method solves the Program in Equations 5.6-5.12
where the Constraints 5.8 are changed with the following set of constraints
depending to PAS′

(1− |α|) · impact(vi) + impact(vi) ·
∑
vj∈α

dj ≤ r+ − ε α ∈ PAS′, vi ∈ α

and returns the defender strategy δr (the restricted solution) represented by
the variables of type x and y. Instead, the method

(δr, hr) = getpR(p+, ĉ, c, u, PAS′)

takes as input the same parameters of getp plus a set PAS′′. This method
solves the Program in Equations 5.13-5.21) where the Constraints 5.14 are
changed with the following set of constraints depending on PAS′′:

(1− |α|) · impact(vi) + impact(vi) ·
∑
vj∈α

dj ≤ h α ∈ PAS′′, vi ∈ α

and returns the defender strategy δr (the restricted solution) represented by
the variables of type x and y, and hr the optimal value of h.

Note that, calling the method getpR(p+, ĉ, c, u, ∅) (getrR(p+, ĉ, c, u, ∅)) is
equivalent to solving the restricted program without Constraints 5.8 (Con-
straints 5.14).

At this point we need to find a constraint or some constraints that do not
satisfy the current restricted solution provided from the restricted program.
Let δr be the current restricted solution. Then this problem is equivalent
to finding an attack strategy α ∈ PASδr (c, u) (then valid for δr) such that
maxvi∈α impact(vi) is greater than a certain threshold q. For getp the value
of q will be r+ − ε, instead for the program getr the value of q will be hr

(returned by getrR()). Then we define a method called rowGen that solve
the previous problem. This method takes in input δr and q, and returns α
when it exists and null otherwise. Now, the RG techniques are reported in
Algorithm 2.

The result below ensures that Algorithm 2 is correct.

Proposition 5.28 Algorithm 2 is correct and ends in a finite number of
steps.

5.5 Pareto Analysis for the Defender 119

Algorithm 2 RG techniques

1: procedure δ∗ = getpRG(r+, ĉ, c, u)
2: PAS′ = ∅
3: δr = getpR(r+, ĉ, c, u, PAS′);
4: α = rowGen(δr, r+ − ε);
5: while (α 6= null) do
6: δr = getpR(r+, ĉ, c, u, PAS′);
7: α = rowGen(δr, r+ − ε);
8: PAS′ = PAS′ ∪ {α};
9: end while

10: return δr;
11: end procedure

12: procedure δ∗ = getrRG(p+, ĉ, c, u)
13: PAS′ = ∅
14: (δr, hr) = getrR(p+, ĉ, c, u, PAS′);
15: α = rowGen(δr, hr);
16: while (α 6= null) do
17: (δr, hr) = getrR(p+, ĉ, c, u, PAS′);
18: α = rowGen(δr, hr);
19: PAS′ = PAS′ ∪ {α};
20: end while
21: return δr;
22: end procedure

Proof. We first prove that Algorithm 2 ends in a finite number of steps. At
each iteration, the algorithm adds a constraint not present in the restricted
program (if the algorithm added a constraint already present in the restricted
program, then the restricted solution would not be feasible). Therefore, in
the worst case, the algorithm adds all constraints and then ends. Since we
have a finite number of constraints, the algorithm ends in a finite number of
iterations. To prove that Algorithm 2 is correct, we observe that the optimal
value reached at each iteration from the restricted program represents a lower
bound of the optimal value reached from the formulation with all constraints.
If Algorithm 2 stops, then there is no constraint that is not satisfied by the
current restricted solution. Therefore, the current restricted solution satisfies
all constraints and, then, it is also the best solution for the program.

Discussion on Correctness

Before describing the implementation of the row generation technique, we
briefly step aside to review where we are.

1. The natural formulation of the defender’s problem as a Pareto optimiza-
tion problem involves non-linearities as shown in Sections 5.5.1 through

120 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

5.5.3. In particular, the defender’s problem is a non-linear integer Pareto
optimization problem.

2. In the next step (Section 5.5.4), we showed how to represent the defender’s
problem as a mixed integer linear programming problem removing the
non-linearity in the original Pareto formulation.

3. Finally, we used row generation in Algorithm 2 to avoid enumerating
all the integer linear constraints above at the very beginning, instead of
taking the huge amount of time required to explicitly enumerate all needed
constraints.

Proposition 5.28 shows that this sequence of steps is correct and that the
best solution of the original Pareto optimization problem coincides with the
best solution obtained after performing these three steps. Collectively, the
second and third steps provide two big speedups of the problem faced by the
defender.

Implementation of the RG technique

The effectiveness of a row generation technique depends on the total number
of the generated constraints. In order to reduce this number, it is impor-
tant that α, returned by rowGen(δr, q), is also valid for different defender
strategies and not only for δr. A heuristic strategy minimizes the number of
vulnerabilities in α (i.e. its cardinality). In fact, the smaller the cardinality of
α, the greater is the possibility that α is a valid attacker strategy for another
defender strategy. Moreover this is also effective because we consider the case
with impactDA1(α) = maxv∈α Impact(v) and then its value is less dependent
from the cardinality of α (differently from impactDA2(α) =

∑
v∈α Impact(v)).

Thus, we formalize this problem in the following way:

α∗ = argmax
α∈PASδr (c,u),

(
maxvi∈α impact(vi)>q

)|α|
We can compute this by an Integer Linear Program (ILP), formalized in

the following way. For each element vi ∈ UV (G, δr) we define: (i) a binary
variable ki ∈ {0, 1} that is 1 if the attacker chooses to use vulnerability v
in its strategy and 0 otherwise (in the same way of Section 5.4.3), and (ii)
a binary variable ci ∈ {0, 1} that we will use to model the max operator
in maxvi∈α impact(vi). Let maxImpact = (maxvi∈UV (G,δr) impact(vi)). Then
the ILP is the following:

5.5 Pareto Analysis for the Defender 121

maximize
∑

vi∈UV (G,δr)

ki (5.31)

subject to

impact(vi) · ki +maxImpact · ci ≥ q + eps vi ∈ UV (G, δr) (5.32)∑
vi∈UV (G,δr)

ci = |UV (G, δr)| − 1 (5.33)

∑
vi∈UV (G,δr)

utilA(v) · ki ≥ u (5.34)

∑
vi∈UV (G,δr)

costA(vi) · ki ≤ c (5.35)

ki −
∑

vj∈in(G,vi)

kj ≤ 0 vi ∈ UV (G, δr) \ S(G) (5.36)

ki ∈ {0, 1} vi ∈ UV (G, δr) (5.37)

ci ∈ {0, 1} vi ∈ UV (G, δ+) (5.38)

where the optimization function represents the cardinality of α. Constraints 5.32-
5.33 model the nonlinear constraint maxvi∈α impact(vi) > q and Constraints 5.34-
5.35- 5.36 model the fact that α ∈ PASδr (c, u).

Defender Strategy with Unbounded Cost

By Proposition 5.17 we capture the defender’s optimal strategy by using MILP
with a polynomial number of constraints. We use the real variable h to model
the min max. We also use a binary variable z — intuitively z = 1 means∑
v∈UV (G,δ) utilA(v) ≥ u . Then the optimization problems for the Pareto

analysis in the defender strategy where impactDA = impactDA1 are:

122 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

p(r+, ĉ, u) = minimize −
∑

prj∈PR

Prod(prj) · xj (5.39)

subject to

h− (
∑
vi∈V

impact(vi)) · (1− z) ≤ r+ − ε (5.40)

impact(vi) · di ≤ h vi ∈ V (5.41)

basic constraints hold (5.42)∑
paj∈PA

CostD(paj) · yj ≤ ĉ (5.43)

∑
vi∈V

utilA(vi) · di − (
∑
vi∈V

utilA(vi)) · z ≤ u− ε (5.44)

0 ≤ di ≤ 1 vi ∈ V (5.45)

yi ∈ {0, 1} vi ∈ V (5.46)

xj ∈ {0, 1} prj ∈ PR (5.47)

z ∈ {0, 1} (5.48)

h ≥ 0 (5.49)

The second MILP uses another real variable h1 such that when z = 1
(
∑
v∈UV (G,δ) utilA(v) ≥ u) we have h = h1 — otherwise it assumes in the

minimization value 0.

5.5 Pareto Analysis for the Defender 123

r(p+, ĉ, u) = minimize h1 (5.50)

subject to

h− h1− (
∑
vi∈V

impact(vi)) · (1− z) ≤ 0 (5.51)

impact(vi) · di ≤ h vi ∈ V (5.52)

basic constraints hold (5.53)∑
paj∈PA

CostD(paj) · yj ≤ ĉ (5.54)

∑
prj∈PR

Prod(prj) · xj = p+ (5.55)

∑
vi∈V

utilA(vi) · di − (
∑
vi∈V

utilA(vi) · u ≤ µ+ ε (5.56)

0 ≤ di ≤ 1 vi ∈ V (5.57)

yi ∈ {0, 1} vi ∈ V (5.58)

xj ∈ {0, 1} prj ∈ PR (5.59)

z ∈ {0, 1} (5.60)

h ≥ 0 (5.61)

h1 ≥ 0 (5.62)

When we consider the case where we measure impact of an attacker strat-
egy via the function impactDA2, we need to change Constraint 5.41 and Con-
straint 5.52 to: ∑

vi∈V

impact(vi) · di ≤ h.

5.5.5 Possible Extensions

Our framework can be extended in order to accommodate slightly different
scenarios. In this section we provide a few examples.

There can be relationships among different software products, expressed
by constraints imposing that if a software product is deactivated, other ones
will automatically be deactivated as well (because the former provides services
to the latter). To represent the fact that if product pr1 is deactivated then
product pr2 must be deactivated, it suffices to add to the basic constraints
(Section 5.5.4) an additional one of the form x2 ≤ x1 (where xi = 1 if pri is
activated and zero otherwise, see Section 5.5.4). Obviously, if we deactivate
pr1, the total productivity decreases of the productivity values of p1 and p2.

We can also represent more complex relationships defined by a generic
boolean formula, i.e. impose the deactivation of a product if a boolean formula
on the activation variables of other products evaluates to true. If we assume

124 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

that product pr1 must be deactivated if pr2 or pr3 are deactivated together
with pr4 (i.e. the boolean formula for the deactivation of pr1 is (x2 = 0∨x3 =
0) ∧ x4 = 0), we add two variables out2∨3 and out(2∨3)∧4 along with the
following constraints:

1− x2 ≤ out2∨3

1− x3 ≤ out2∨3

(1− x2) + (1− x3) ≥ out2∨3

1− x4 ≥ out(2∨3)∧4

out2∨3 ≥ out(2∨3)∧4

(1− x4) + out2∨3 ≤ 1 + out(2∨3)∧4

1− out(2∨3)∧4 ≥ x1

0 ≤ out(2∨3)∧4 ≤ 1
0 ≤ out2∨3 ≤ 1

The same approach can be used to model relationships among patches, i.e.
to impose that a patch can only be applied if other patches are applied.

Other possible extensions involve the definition of the total productivity
and cost. For instance, we could compute the productivity of a set of products
by taking the maximum (or the minimum) of their productivities. Assume that
we have 3 products pr1, pr2, and pr3 and want to take the maximum of their
productivities. We then add three boolean variables m1, m2, and m3 and a
real variable representing the total productivity prod, along with the following
constraints:

x1 · Prod(pr1) ≤ prod
x2 · Prod(pr2) ≤ prod
x3 · Prod(pr3) ≤ prod

x1 · Prod(pr1) + (1−m1) ∗max{Prod(pr1),Prod(pr2),Prod(pr3)} ≥ prod
x2 · Prod(pr2) + (1−m2) ∗max{Prod(pr1),Prod(pr2),Prod(pr3)} ≥ prod
x3 · Prod(pr3) + (1−m3) ∗max{Prod(pr1),Prod(pr2),Prod(pr3)} ≥ prod

m1 +m2 +m3 = 2
m1,m2,m3 ∈ {0, 1}

prod ≥ 0

The same approach can be used to model the case where we take the
maximum (or the minimum) patch cost.

In another possible scenario, we have the same product installed on k
different machines, so we may need to patch the same vulnerability on each
of such machines. The patching cost is not necessarily equal to k times the
cost of the patch — instead it could be provided by a generic function fcost.
In this case, we can add k new boolean variables l1, . . . , lk and the following
constraints:

5.6 Experimental Results 125∑k
i=1 yi ≥ lsum ∗ sum sum ∈ {0, . . . , n}∑k
i=1 yi ≤ k(1− lsum) + lsum ∗ sum k ∈ {0, . . . , n}∑k
i=1 li = 1
lsum ∈ {0, 1} sum ∈ {0, . . . , n}

then define the total cost as
∑k
i=1 li ·fcost(i). The same approach can be used

to model the case where we use a generic function that computes productivity
values based on the number of activated products.

5.6 Experimental Results

In this section we report on the experimental results of the proposed frame-
work when applied to a number of realistic scenarios. We implemented the
framework in Java and used IBM ILOG CPLEX 12.5 for solving the integer
linear programs. All the experiments were run on an Intel Core i7-3770K CPU
clocked at 3.50GHz, running Windows 8, with 10GB RAM available for the
experiments.

We applied the proposed techniques to 4 different VDGs, whose main
statistics are reported in Fig. 5.6. VDG1 was built from the attack graph
in [139] according to the translation technique described in the next subsec-
tion, and VDG2 is an extension of VDG1 where we added 3 subnetworks
having a similar structure as the original ones. VDG4 was extracted from the
dataset in [140] that represents a network whose topology follows the power-
law rule — we assumed that each edge connects two vulnerabilities in our
scenario. Finally, VDG3 is a subgraph extracted from VDG4. The vulnera-
bilities we considered in VDG1 and VDG2 were exactly those present in the
original attack graphs — we derived their associated products, patches, and
impact values directly from the NVD. Finally, we associated each vertex in
VDG1 and VDG2 with a vulnerability randomly extracted from the NVD.
Additional details about the topology of the VDGs are reported in the next
subsection.

|V| |E| |S(G)| |PA| |PR|
VDG1 249 3,496 65 1,191 4,665

VDG2 900 20,556 144 4,011 13,720

VDG3 2,500 5,390 476 15,286 81,686

VDG4 10,000 30,627 1,400 62,065 284,089

Fig. 5.6. Main statistics of the VDGs used in the experiments

5.6.1 Topology of the VDGs Used in the Experiments

In the experimental evaluation we used 4 different vulnerability dependency
graphs, whose main statistics are reported in Fig. 5.6. In particular, VDG1

126 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

was built by translating the real-world attack graph in [139] according to the
translation technique described above. The overall structure of this attack
graph is reported in Fig. 5.7. The graph contains 3 trust partitions, each
corresponding to a different subnetwork (128, 130, and 140). The figure reports
in parentheses, for each trust partition, the number of vulnerabilities that
allow to compromise a machine in the partition (e.g., 14 vulnerabilities in
subnetwork 128). The figure also reports the number of vulnerabilities that are
associated to movement edges between subnetworks (e.g., 45 vulnerabilities on
the movement edge from subnetwork 128 to subnetwork 140). The resulting
VDG has 249 vertices and 3,496 edges.

128 (14)

128 to 130

(6)

130 to 140

(13)

128 to 140

(45)

130 (131)

140 (46)

Fig. 5.7. Attack graph from [139] used to build VDG1

VDG2 was built by translating an attack graph obtained by extending the
one in Fig. 5.7 with 3 additional trust partitions (corresponding to subnet-
works 150, 160, and 170). Such subnetworks have a similar structure as the
original ones in Fig. 5.7. The resulting attack graph, and the number of vul-
nerabilities considered for each trust partition and each movement edge, are
shown in Fig. 5.8. The resulting VDG has 900 vertices and 20,556 edges.

VDG3 and VDG4 represent completely different scenarios. First, we wanted
to evaluate how the framework behaves when facing much larger networks.
Second, we wanted to consider networks whose topology follows the power-
law rule, i.e. most nodes have few edges, whereas a tiny fraction of nodes
have a large number of edges (more formally, the fraction of nodes with L
edges is proportional to L−k where k is a network dependent constant). This
structure is one of the main reasons why most Internet networks exhibit a very
high stability and resiliency, yet they are prone to occasional collapse [141].
We therefore built VDG4 from the dataset in [140] that is a snapshot of
the Gnutella peer-to-peer file sharing network, and assumed that each edge
connects two vulnerabilities. The resulting VDG has 10,000 vertices and 30,627

5.6 Experimental Results 127

128 (14)

128 to 130

(6) 130 to 140

(13)

128 to 140

(45)

130 (125) 140 (46)

170 (46)

128 to 170

(45)

160 (261)
128 to 160

(17)

150 (242)

160 to 150

(21)

150 to 170

(21)

128 to 150

(17)

Fig. 5.8. Extension of the attack graph from [139] used to build VDG2

edges. Moreover, we selected a subset of the network with fewer vertices and
edges (2,500 and 5,390, respectively) to build VDG3.

5.6.2 Pareto Frontiers

We started by computing the Pareto frontiers for VDG1 and VDG2, using
both the impactDA functions, by varying the maximum patching cost ĉ for the
defender. We also applied the RG technique of Section 5.5.4 in the cases where
we assumed minimum utility and maximum cost for the attacker (we fixed
them to 1 and 0.1%|V|, respectively). In these experiments, we set Prod(pr) =
1 for all products pr, and CostD(pa) = 1 for all patches pa. The Pareto
frontiers we obtained are reported in Fig. 5.9.

The results obtained confirm my our expectations and provide some in-
teresting insights. First, if we look at the frontier obtained for one value of
allowed patching cost ĉ, we see that the Pareto points get closer to the max-
imum possible total productivity value — that is equal to |PR| because the
productivity value of each product is 1 — when we increase the maximum
impact allowed. When assuming no patching at all (ĉ = 0) the framework
identifies the products that need to be deactivated to protect the system,
while maximizing the productivity of the remaining products. For instance,
using impactDA1 on VDG1 without assumptions on the attacker (Fig. 5.9(c))
the framework finds out that the system can reach a total productivity equal
to 3,381, i.e. 72.5% of the maximum possible value even in the “extreme” case
where the user wants to avoid any impact (maximum impact equal to zero). In
addition, the maximum productivity value is reached more quickly when we
increase the allowed patching cost. For instance, in Fig. 5.9(c), the standard

128 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

3200

3400

3600

3800

4000

4200

4400

4600

4800

0 2 4 6 8 10

P
ro

d
u

ct
iv

it
y

Max Impact

I1-C0 I1-C3 I1-C10 I1-C30

10000

10500

11000

11500

12000

12500

13000

13500

14000

0 2 4 6 8 10

P
ro

d
u

ct
iv

it
y

Max Impact

I1-C0 I1-C3 I1-C10 I1-C30

(a) (b)

3200

3400

3600

3800

4000

4200

4400

4600

4800

0 2 4 6 8 10

P
ro

d
u

ct
iv

it
y

Max Impact

I1-C0 I1-C3 I1-C10 I1-C30

10000

10500

11000

11500

12000

12500

13000

13500

14000

0 2 4 6 8 10

P
ro

d
u

ct
iv

it
y

Max Impact

I1-C0 I1-C3 I1-C10 I1-C30

(c) (d)

3200

3400

3600

3800

4000

4200

4400

4600

4800

0 200 400 600 800 1000 1200 1400

P
ro

d
u

ct
iv

it
y

Max Impact

I2-C0 I2-C3 I2-C30

10000

10500

11000

11500

12000

12500

13000

13500

14000

0 1000 2000 3000 4000 5000

P
ro

d
u

ct
iv

it
y

Max Impact

I2-C0 I2-C3 I2-C30

(e) (f)

Fig. 5.9. Pareto frontiers obtained for VDG1 (left) and VDG2 (right). Label “Ix-
Cy” means we used impactDAx with ĉ = y. Charts (a) and (b) represent the case
where RG was applied.

deviations of the productivity values obtained for ĉ = 1, ĉ = 10, and ĉ = 30,
are 420.23, 92.63, and 29.33, respectively.

In some cases, we also notice that increasing the maximum impact does
not actually improve total productivity. For instance, in Fig. 5.9(c), the Pareto
points obtained with ĉ ∈ {0, 3} when the maximum impact is 2 are relatively
close to those obtained with a maximum impact of 6. This provides important
information to the user in order to choose a point that better corresponds to
the desired tradeoff between costs and benefits: moving the maximum impact

5.6 Experimental Results 129

from 2 to 6 would not provide actual benefits in terms of productivity, whereas
just moving from 6 to 8 would allow a notable improvement.

Moreover, the immediate consequence of assuming a minimum utility and
a maximum cost for the attacker (Figs. 5.9(a) and 5.9(b)) is that the produc-
tivity values obtained with the same allowed cost and impact for the defender
are higher — obviously, at the price of the additional risks brought by making
specific assumptions about the attacker. Also, as we will show in the follow-
ing, the application of the RG technique to this case allows us to compute the
Pareto frontiers with acceptable computational effort.

Finally, the results obtained using impactDA2 (Figs. 5.9(e) and 5.9(f)) have
much higher values of maximum impact. This is an obvious consequence of
the fact that we are now taking the sum of the impacts of the unprotected
vulnerabilities. In addition, a much larger number of Pareto points are gen-
erated (e.g., 2,264 points for VDG2 with ĉ = 0). Only a subset of the points
are represented in the figures — in general, with impactDA2, it is necessary
to extract of a subset of the generated points in order to interpret the rela-
tionships among them. Moreover, taking the sum of impact values somehow
makes the importance of the vulnerabilities left unprotected more difficult to
assess.

In a second round of experiments, we looked at how our framework behaves
when using much larger graphs. Fig. 5.10 reports the Pareto frontiers obtained
for VDG3 and VDG4 with impactDA1, for different values of ĉ. The results
generally confirm the observations made for VDG1 and VDG2 — for instance,
for both graphs, the productivity values obtained for all values of ĉ with a
maximum impact between 0 and 4 appear very close.

Optimal Defender Strategies

In both rounds of experiments, we also computed the optimal defender strate-
gies associated with the Pareto frontiers corresponding to ĉ = 10. An inter-
esting result we obtained is that, while the optimization problem aims at
minimizing the total impact given a fixed maximum impact, in all cases we
obtained optimal total impact values lower than or equal to the maximum
impact chosen.

Varying Patch Costs and Productivity Values

To assess the results obtainable by the framework when patch costs and pro-
ductivity values are not fixed to the same value, we ran additional experiments
using the same setting of Fig. 5.9(d), except that we varied patch costs, pro-
ductivity values, and both. In the experiments with varying patch costs, we
randomly assigned a cost in [0.5, 3] to each patch (while keeping the same
total cost for the whole set of patches). We did the same to vary productivity
values.

130 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

64000

66000

68000

70000

72000

74000

76000

78000

80000

82000

0 2 4 6 8 10

P
ro

d
u

ct
iv

it
y

Max Impact

0 3 10 150

250000

255000

260000

265000

270000

275000

280000

285000

0 2 4 6 8 10

P
ro

d
u

ct
iv

it
y

Max Impact

0 10 50 500

Fig. 5.10. Pareto frontiers obtained for VDG3 (left) and VDG4 (right) using
impactDA1, for different values of ĉ.

Fig. 5.11 reports the results obtained when varying patch costs only. The
Pareto frontier is obviously the same for maximum cost ĉ = 0, but interest-
ingly, the total productivity values obtained for all the other values of ĉ are
consistently higher (485.9 on average). This can be explained by observing
that the availability of patches with different costs corresponds to a higher
flexibility in choosing the best subset of patches to apply.

Interestingly, the increase in total productivity we obtained when we also
varied productivity values was much more limited (less than 1% on average).
This can be explained by observing that the percentage of products that are
left activated in the solutions found by the framework is always relatively high
(around 80% in the worst cases, i.e. when ĉ = 0), so the increased flexibility
has much less impact on total productivity.

5.6.3 Execution Time

The algorithms proposed in this chapter have an exponential worst-case time
complexity, as a consequence of the reduction to integer linear programming
problems. Moreover, the ILP problems we derive may include a huge number of
constraints. However, tools like CPLEX embed very efficient and sophisticated
heuristics that enable the solution of very large linear programs in many
applications (especially when combined with RG techniques).

5.7 Conclusion and Future Work 131

10000

10500

11000

11500

12000

12500

13000

13500

14000

0 2 4 6 8 10

P
ro

d
u

ct
iv

it
y

Max Impact

0 3 10 30

Fig. 5.11. Pareto frontiers obtained for VDG2 with impactDA1 and patch costs in
[0.5, 3], for different values of ĉ.

In order to assess the actual computational effort required by the proposed
algorithms in realistic scenarios, we measured the time taken to compute (i)
all Pareto frontiers and (ii) all optimal defender strategies associated with the
Pareto frontiers corresponding to ĉ = 10.

Fig. 5.12 reports the time taken to compute a Pareto frontier for different
values of ĉ when using VDG1 and VDG2. The results show that, as expected,
higher patching costs allow for more freedom in moving through the search
space, and thus result in lower execution times in the majority of cases. Over-
all, execution times appear satisfactory: a Pareto frontier with impactDA1 was
obtained in a matter of seconds for VDG1 and tens of seconds for VDG2 —
the differences between the two graphs are always around 1 order of magni-
tude. Moreover, when moving from impactDA1 to impactDA2, execution times
increase between 1 and 2 orders of magnitude. Finally, the use of the RG
technique in the cases where we made assumptions about the attacker results
in no substantial difference in execution time.

Finally, Fig. 5.13 reports, for all graphs, the average time taken to com-
pute a complete Pareto frontier and the optimal defender strategy associated
with a Pareto point when using impactDA1. Again, execution times appear
satisfactory and acceptable for practical purposes — in addition, we can see
a slightly superlinear increase with respect to the size of the graphs.

5.7 Conclusion and Future Work

Enterprise security managers are a busy lot. They are constantly called upon
to fight various fires within their organization. Many organizations have under-
invested in computer security personnel, leading to chronic stress for enter-
prise security managers. As a consequence, most enterprise security managers
only patch the biggest vulnerabilities within their network [102, 103]. As a
consequence, a smart attacker can easily compromise large organizations by

132 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

1

10

100

1000

0 1 3 5 8 10 20 30 40 50 60 70

T
im

e
 (

s)

Max cost

I1 with RG I1 I2

1

10

100

1000

10000

0 1 3 5 8 10 20 30 40 50 60 70

T
im

e
 (

s)

Max cost

I1 with RG I1 I2

Fig. 5.12. Time taken to compute a Pareto frontier for different values of ĉ when
using VDG1 (top) and VDG2 (bottom). Label “Ix” means we used impactDAx. The
y-axis is on a logarithmic scale.

guessing what commonly available software is likely used within the enterprise,
and then crafting attacks that leverage vulnerabilities that have a moderate
impact and are thus less likely to be patched.

In this chapter, we develop a game-theoretic model to answer the follow-
ing question: Given a finite cost that an enterprise is willing to bear to patch
vulnerabilities, and given a minimal productivity level that the organization
requires, what actions should the enterprise security officer take in order to
best protect his enterprise? In order to answer this question, we first model
the attacker’s behavior. The attacker wants to find a set of vulnerabilities to
exploit whose impact (measured for instance via NIST’s Common Vulnerabil-
ity Scoring System) exceeds a threshold and whose cost (for him to attack) is
below a threshold. We show that the problem of finding an optimal attacker
strategy is NP-complete. The defender may take two kinds of actions – patch-
ing vulnerabilities (which involve a patching cost) and deactivating products
(which involve removing certain products from the network which impacts
productivity of the enterprise as users familiar with those products might ob-
ject, might need re-training, and so forth). The defender wishes to find a set
of vulnerabilities to patch so that the patching cost is below a given threshold
and at the same time, he is minimizing the maximal impact the attacker can

5.8 Table of Symbols 133

1

10

100

1000

10000

VDG1 VDG2 VDG3 VDG4

T
im

e
 (

s)

0,1

1

10

100

1000

VDG1 VDG2 VDG3 VDG4

T
im

e
 (

s)

Fig. 5.13. Average time taken to compute a Pareto frontier (top) and the opti-
mal defender strategy associated with a Pareto point with ĉ = 10 (bottom) using
impactDA1. The y-axis is on a logarithmic scale.

have while simultaneously also maximizing the productivity of his enterprise.
This leads to a problem involving Pareto optimization as these two goals are
mutually competing. We show that checking existence of a strategy for the
defender is ΣP

2 -complete and that various variants of this problem are also
intractable at different levels in the polynomial hierarchy.

Then we show how to formulate the defender’s problem as a convex, non-
linear optimization problem after which we show an encoding as a mixed
integer linear optimization (MILP) problem. Because the MILP formulation
involves a huge number of constraints, we show how to leverage row generation
methods to solve the MILP more efficiently. We test the algorithms using two
real world networks (one of which is varied in some alternative ways). We
show that the Pareto optimization algorithms deliver solutions that capture
a nice balance between impact of the attacker’s attacks and productivity of
the enterprise and that the algorithm runs in a reasonable amount of time.

5.8 Table of Symbols

The table below summarizes the symbols used in this chapter.

134 5 Pareto-Optimal Adversarial Defense of Enterprise Systems

S
y
m
bo

l
S
ec

ti
o
n

D
e
sc

r
ip
ti
o
n

P
R

5
.3

S
e
t

o
f

a
ll

p
ro

d
u
c
ts

V
5
.3

S
e
t

o
f

a
ll

v
u
ln

e
ra

b
il
it

ie
s

V
u
ln

(p
r
)

5
.3

S
e
t

o
f

a
ll

v
u
ln

e
ra

b
il
it

ie
s

o
f

p
ro

d
u
c
t
p
r

P
R

(v
)

5
.3

S
e
t

o
f

p
ro

d
u
c
ts

w
it

h
v
u
ln

e
ra

b
il
it

y
v

P
A

5
.3

S
e
t

o
f

a
ll

p
a
tc

h
e
s

P
A

(v
)

5
.3

S
e
t

o
f

a
ll

p
a
tc

h
e
s

fo
r

v
u
ln

e
ra

b
il
it

y
v

G
=

(V
,
E

)
5
.3

(D
e
f.

5
.1

)
V

u
ln

e
ra

b
il
it

y
d
e
p

e
n
d
e
n
c
y

g
ra

p
h

S
(G

)
5
.3

S
e
t

o
f

a
ll

v
u
ln

e
ra

b
il
it

ie
s

in
G

w
it

h
n
o

in
c
o
m

in
g

e
d
g
e
s

in
(G
,
v
)

5
.3

S
e
t

o
f

a
ll

in
c
o
m

in
g

v
u
ln

e
ra

b
il
it

ie
s

o
f
v

in
G

o
u
t(
G
,
v
)

5
.3

S
e
t

o
f

a
ll

o
u
tg

o
in

g
v
u
ln

e
ra

b
il
it

ie
s

o
f
v

in
G

Im
p
a
ct

(v
)

5
.3

Im
p
a
c
t

o
f

v
u
ln

e
ra

b
il
it

y
v

fo
r

th
e

d
e
fe

n
d
e
r

C
o
st
D

(p
a
)

5
.3

C
o
st

o
f

p
a
tc

h
p
a

fo
r

th
e

d
e
fe

n
d
e
r

T
c
(P
A

)
5
.3

T
o
ta

l
c
o
st

o
f

th
e

se
t
P
A

o
f

p
a
tc

h
e
s

fo
r

th
e

d
e
fe

n
d
e
r

P
ro
d
(p
r
)

5
.3

P
ro

d
u
c
ti

v
it

y
o
f

p
ro

d
u
c
t
p
r

fo
r

th
e

d
e
fe

n
d
e
r

T
p
(P
R

)
5
.3

T
o
ta

l
p
ro

d
u
c
ti

v
it

y
o
f

th
e

se
t
P
R

o
f

p
ro

d
u
c
ts

fo
r

th
e

d
e
fe

n
d
e
r

δ
=

(P
R
,
P
A

)
5
.4

.1
(D

e
f.

5
.8

)
D

e
fe

n
d
e
r

st
ra

te
g
y

(s
e
t

o
f

p
ro

d
u
c
ts
P
R

a
n
d

se
t

o
f

p
a
tc

h
e
s
P
A

)
D
S

5
.4

.1
(D

e
f.

5
.8

)
S
e
t

o
f

a
ll

d
e
fe

n
d
e
r

st
ra

te
g
ie

s
U
V

(G
,
δ
)

5
.4

.1
S
e
t

o
f

a
ll

u
n
p
ro

te
c
te

d
v
u
ln

e
ra

b
il
it

ie
s

o
f
G

g
iv

e
n

th
e

d
e
fe

n
d
e
r

st
ra

te
g
y
δ

tv
i(
δ
)

5
.4

.1
(D

e
f.

5
.1

1
)

T
o
ta

l
v
u
ln

e
ra

b
il
it

y
im

p
a
c
t

o
f

th
e

d
e
fe

n
d
e
r

st
ra

te
g
y
δ

α
5
.4

.2
(D

e
f.

5
.1

3
)

A
tt

a
ck

e
r

st
ra

te
g
y

A
S
δ

5
.4

.2
S
e
t

o
f

a
ll

a
tt

a
ck

e
r

st
ra

te
g
ie

s
v
a
li
d

fo
r

th
e

d
e
fe

n
d
e
r

st
ra

te
g
y
δ

im
p
a
ct
D
A

1
(α

)
5
.4

.2
(D

e
f.

5
.1

4
)

Im
p
a
c
t

o
f

ty
p

e
1

o
f

th
e

a
tt

a
ck

e
r

st
ra

te
g
y
α

im
p
a
ct
D
A

2
(α

)
5
.4

.2
(D

e
f.

5
.1

4
)

Im
p
a
c
t

o
f

ty
p

e
2

o
f

th
e

a
tt

a
ck

e
r

st
ra

te
g
y
α

im
p
a
ct
D
A

(α
)

5
.4

.2
Im

p
a
c
t

o
f

ty
p

e
1

o
r

2
o
f

th
e

a
tt

a
ck

e
r

st
ra

te
g
y
α

u
ti
lA

(v
)

5
.4

.2
U

ti
li
ty

o
f

v
u
ln

e
ra

b
il
it

y
v

fo
r

th
e

a
tt

a
ck

e
r

co
st
A

(v
)

5
.4

.2
C

o
st

o
f

v
u
ln

e
ra

b
il
it

y
v

fo
r

th
e

a
tt

a
ck

e
r

c
5
.4

.2
M

a
x
im

u
m

c
o
st

fo
r

th
e

v
u
ln

e
ra

b
il
it

ie
s

in
th

e
a
tt

a
ck

e
r

st
ra

te
g
y

fo
r

th
e

a
tt

a
ck

e
r

u
5
.4

.2
M

in
im

u
m

u
ti

li
ty

fo
r

th
e

v
u
ln

e
ra

b
il
it

ie
s

in
th

e
a
tt

a
ck

e
r

st
ra

te
g
y

fo
r

th
e

a
tt

a
ck

e
r

P
A
S

(c
,
u

)
5
.4

.2
(D

e
f.

5
.1

6
)

P
re

fe
rr

e
d

a
tt

a
ck

e
r

st
ra

te
g
ie

s
P
A
S
δ
(c
,
u

)
5
.4

.2
(D

e
f.

5
.1

6
)

P
re

fe
rr

e
d

a
tt

a
ch

e
r

st
ra

te
g
ie

s
v
a
li
d

fo
r

th
e

d
e
fe

n
d
e
r

st
ra

te
g
y
δ

ĉ
5
.5

.1
M

a
x
im

u
m

c
o
st

fo
r

th
e

p
a
tc

h
e
s

in
th

e
d
e
fe

n
d
e
r

st
ra

te
g
y

fo
r

th
e

d
e
fe

n
d
e
r

(r
+
,
p
+

)
5
.5

.3
P

a
re

to
p

o
in

t

6

Conclusions

Any organization with network-connected information systems must put ap-
propriate countermeasures in place, in order to prevent malicious users from
taking advantage of their systems. There are three important security issues
to be taken care of: (i) making systems able to recognize and deal with on-
going attacks when a malicious user has been able to begin one; (ii) making
systems able to identify anomalous behaviors not necessarily classifiable as at-
tacks; (iii) making systems immune to known attacks. These three issues are
usually referred to as intrusion detection, anomaly detection, and adversarial
defense. This thesis has elaborated defense techniques for enterprise informa-
tion systems that contribute to address these issues. In particular, a number
of real-time intrusion detection techniques have been presented that, given a
set of known attack patterns, index the “activities” that are happening in a
monitored system in order to extract “attack instances”, e.g., sub-sequences of
the log that match some of the given patterns [1, 2, 3]. Moreover, an anomaly
detection technique has been proposed that labels sub-sequences of the log
as “unexplained” when they significantly differ from the “explained” ones [4].
Finally, a novel defense technique has been devised that, given a set of soft-
ware vulnerabilities, computes the Pareto-optimal sets of vulnerabilities that
have to be patched in order to cover a portion of the network as wide as
possible with limited resources [5]. This technique has been developed with a
security game approach, and it has been shown that there can exist multiple
solutions expressed as cost-productivity pairs, i.e., there may exist more than
one set of vulnerabilities to patch and software to deactivate that satisfy the
security constraints, and each providing different value of patching cost and
level of productivity. The feasibility and performance of the proposed tech-
niques have been extensively validated through experimental assessments that
proved their validity.

As cyber attacks continue to increase in volume and level of sophistication,
future research lines should be addressed to evolve cyber-defense techniques
as well. In particular future techniques should be less dependent on known

136 6 Conclusions

attacks, and more prone to automatic learning. It is also necessary to contin-
uously update metrics and parameters involved in the whole security process.

The development of metrics associated with the level of security of a com-
puter system is clearly desirable, but a clear understanding and in-depth
evaluation of their limitations is mandatory as well. It is certainly possible
to chronicle various existing attack strategies and ensure that a system is not
vulnerable to these, but this is at best a backward-looking approach. Change
detection of files and key programs can help in identifying anomalies, but cor-
relating such anomalies to actual attacks will require further research using
ideas and approaches inherited from fields such as machine learning and event
processing.

In the case of techniques developed with a game-theoretic approach, a
great deal of efforts are required to find solutions that best fit with real-case
scenarios. Future research lines should focus on how to model a security game
as an imperfect and incomplete information game, because making assump-
tions on attackers may lead to undesired results. Indeed, in many past works
too many assumptions on attacker behaviors were groundlessly made, whereas
in real scenarios an organization does not actually know whom it has to face
against over time, as attackers become always more and more sophisticated.
Therefore, it may result non-effective to model a security game as a complete
and/or perfect information game, where is assumed the defender knows the
type of the attacker or his/her utilities. On the contrary, should be taken into
account the worst-case attacker (e.g., with unlimited resources) and defenders
with limited costs, so that a defense strategy will result mostly oriented to the
needs of the defender, instead of to the characteristics of the attacker. Hence-
forth, designing defense strategies against a worst-case attacker may produce
best responses.

References

1. A. Guzzo, A. Pugliese, A. Rullo, D. Saccà, Intrusion detection with hypergraph-
based attack models, in: Graph Structures for Knowledge Representation and
Reasoning, Springer, 2014, pp. 58–73.

2. A. Guzzo, A. Pugliese, A. Rullo, D. Saccà, Hypergraph-based attack mod-
els for network intrusion detection, in: 22nd Italian Symposium on Advanced
Database Systems, SEBD 2014, Sorrento Coast, Italy, June 16-18, 2014., 2014,
pp. 61–68.

3. A. Pugliese, A. Rullo, Expressive and efficient online alert correlation. Submit-
ted to IEEE Symposium on Security and Privacy 2015 conference.

4. C. Molinaro, V. Moscato, A. Picariello, A. Pugliese, A. Rullo, V. S. Subrah-
manian, PADUA: parallel architecture to detect unexplained activities, ACM
Trans. Internet Techn. 14 (1) (2014) 3.

5. E. serra, S. Jajodia, A. pugliese, A. Rullo, V. Subrahmanian, Pareto optimal
adversarial defense of enterprise systems. Accepted by ACM Transaction on
Information and System Security.

6. M. Albanese, S. Jajodia, A. Pugliese, V. S. Subrahmanian, Scalable detection of
cyber attacks, in: Computer Information Systems - Analysis and Technologies
- 10th International Conference, CISIM 2011, Kolkata, India, December 14-16,
2011. Proceedings, 2011, pp. 9–18.

7. A. Patcha, J.-M. Park, An overview of anomaly detection techniques: Existing
solutions and latest technological trends, Computer Networks 51 (12) (2007)
3448–3470.

8. P. Garcia-Teodoro, J. E. Dı́az-Verdejo, G. Maciá-Fernández, E. Vázquez,
Anomaly-based network intrusion detection: Techniques, systems and chal-
lenges, Computers & Security 28 (1-2) (2009) 18–28.

9. C. Piciarelli, C. Micheloni, G. L. Foresti, Trajectory-based anomalous event
detection, IEEE Trans. Circuits Syst. Video Techn. 18 (11) (2008) 1544–1554.

10. T. Shon, J. Moon, A hybrid machine learning approach to network anomaly
detection, Inf. Sci. 177 (18) (2007) 3799–3821.

11. S. Kumar, E. H. Spafford, A pattern matching model for misuse intrusion
detection.

12. V. Paxson, Bro: a system for detecting network intruders in real-time, Com-
puter Networks 31 (23-24) (1999) 2435–2463.

138 References

13. G. Vigna, R. A. Kemmerer, Netstat: A network-based intrusion detection sys-
tem, Journal of Computer Security 7 (1) (1999) 37–71.

14. M. Sheikhan, Z. Jadidi, Misuse detection using hybrid of association rule min-
ing and connectionist modeling, World Applied Sciences Journal 7 (2009) 31–
37.

15. M. Albanese, S. Jajodia, A. Pugliese, V. S. Subrahmanian, Scalable analysis
of attack scenarios, in: Computer Security - ESORICS 2011 - 16th European
Symposium on Research in Computer Security, Leuven, Belgium, September
12-14, 2011. Proceedings, 2011, pp. 416–433.

16. M. Albanese, A. Pugliese, V. S. Subrahmanian, Fast activity detection: In-
dexing for temporal stochastic automaton-based activity models, IEEE Trans.
Knowl. Data Eng. 25 (2) (2013) 360–373.

17. A. Pugliese, V. S. Subrahmanian, C. Thomas, C. Molinaro, PASS: A parallel
activity-search system, IEEE Trans. Knowl. Data Eng. 26 (8) (2014) 1989–
2001.

18. R. Sadoddin, A. Ghorbani, Alert correlation survey: framework and techniques,
in: Proceedings of the 2006 International Conference on Privacy, Security and
Trust: Bridge the Gap Between PST Technologies and Business Services, ACM,
2006, p. 37.

19. C. Kruegel, F. Valeur, G. Vigna, Intrusion Detection and Correlation - Chal-
lenges and Solutions, Vol. 14 of Advances in Information Security, Springer,
2005.

20. F. Valeur, G. Vigna, C. Krügel, R. A. Kemmerer, A comprehensive approach
to intrusion detection alert correlation, IEEE Trans. Dependable Sec. Comput.
1 (3) (2004) 146–169.

21. X. Ou, S. Govindavajhala, A. W. Appel, Mulval: A logic-based network security
analyzer, in: 14th USENIX Security Symposium, 2005, pp. 1–16.

22. L. Wang, A. Liu, S. Jajodia, Using attack graphs for correlating, hypothesiz-
ing, and predicting intrusion alerts, Computer Communications 29 (15) (2006)
2917–2933.

23. S. Roschke, F. Cheng, C. Meinel, A new alert correlation algorithm based on
attack graph, in: Á. Herrero, E. Corchado (Eds.), CISIS, Vol. 6694 of Lecture
Notes in Computer Science, Springer, 2011, pp. 58–67.

24. C.-H. Mao, H.-K. Pao, C. Faloutsos, H.-M. Lee, Sbad: Sequence based attack
detection via sequence comparison, in: C. Dimitrakakis, A. Gkoulalas-Divanis,
A. Mitrokotsa, V. S. Verykios, Y. Saygin (Eds.), PSDML, Vol. 6549 of Lecture
Notes in Computer Science, Springer, 2010, pp. 78–91.

25. O. Sheyner, J. Haines, S. Jha, R. Lippmann, J. M. Wing, Automated generation
and analysis of attack graphs, in: Security and privacy, 2002. Proceedings. 2002
IEEE Symposium on, IEEE, 2002, pp. 273–284.

26. J.-s. Liu, R.-h. Li, Y.-l. Liu, Z.-y. ZHANG, Multi-sensor data fusion based on
correlation function and fuzzy integration function, Systems Engineering and
Electronics 28 (7) (2006) 1006–1009.

27. C. Michael, A. Ghosh, Using finite automata to mine execution data for intru-
sion detection: A preliminary report, in: Recent Advances in Intrusion Detec-
tion, Springer, 2000, pp. 66–79.

28. R. Sekar, M. Bendre, D. Dhurjati, P. Bollineni, A fast automaton-based method
for detecting anomalous program behaviors, in: Security and Privacy, 2001.
S&P 2001. Proceedings. 2001 IEEE Symposium on, IEEE, 2001, pp. 144–155.

References 139

29. A. P. Kosoresow, S. A. Hofmeyr, Intrusion detection via system call traces,
IEEE software 14 (5) (1997) 35–42.

30. D. Wagner, D. Dean, Intrusion detection via static analysis, in: Security and
Privacy, 2001. S&P 2001. Proceedings. 2001 IEEE Symposium on, IEEE, 2001,
pp. 156–168.

31. A. Babenko, L. Mariani, F. Pastore, Ava: automated interpretation of dynam-
ically detected anomalies, in: ISSTA, Vol. 9, 2009, pp. 237–248.

32. J. Branch, A. Bivens, C. Y. Chan, T. K. Lee, B. K. Szymanski, Denial of
service intrusion detection using time dependent deterministic finite automata,
in: Proc. Graduate Research Conference, Citeseer, 2002, pp. 45–51.

33. S. Noel, S. Jajodia, Managing attack graph complexity through visual hierar-
chical aggregation, in: Proceedings of the 2004 ACM workshop on Visualization
and data mining for computer security, ACM, 2004, pp. 109–118.

34. P. Ning, Y. Cui, D. S. Reeves, D. Xu, Techniques and tools for analyzing
intrusion alerts, ACM Trans. Inf. Syst. Secur. 7 (2) (2004) 274–318.

35. H. Ren, N. Stakhanova, A. A. Ghorbani, An online adaptive approach to alert
correlation, in: C. Kreibich, M. Jahnke (Eds.), DIMVA, Vol. 6201 of Lecture
Notes in Computer Science, Springer, 2010, pp. 153–172.

36. G. Creech, J. Hu, A semantic approach to host-based intrusion detection sys-
tems using contiguous and discontiguous system call patterns.

37. T. Bass, Intrusion detection systems and multisensor data fusion, Communi-
cations of the ACM 43 (4) (2000) 99–105.

38. F. Cuppens, A. Miege, Alert correlation in a cooperative intrusion detection
framework, in: Security and Privacy, 2002. Proceedings. 2002 IEEE Symposium
on, IEEE, 2002, pp. 202–215.

39. F. Cuppens, Managing alerts in a multi-intrusion detection environment, in:
acsac, Vol. 1, 2001, p. 22.

40. A. Valdes, K. Skinner, Probabilistic alert correlation, in: Recent Advances in
Intrusion Detection, Springer, 2001, pp. 54–68.

41. J. Sun, S. Papadimitriou, C. Faloutsos, Distributed pattern discovery in multi-
ple streams, in: Advances in Knowledge Discovery and Data Mining, Springer,
2006, pp. 713–718.

42. J. Sun, C. E. Tsourakakis, E. Hoke, C. Faloutsos, T. Eliassi-Rad, Two heads
better than one: pattern discovery in time-evolving multi-aspect data, Data
Mining and Knowledge Discovery 17 (1) (2008) 111–128.

43. J. Sun, Incremental pattern discovery on streams, graphs and tensors, ACM
SIGKDD Explorations Newsletter 10 (2) (2008) 28–29.

44. R. Yusof, S. R. Selamat, S. Sahib, Intrusion alert correlation technique analysis
for heterogeneous log, IJCSNS International Journal of Computer Science and
Network Security 8 (9) (2008) 132–138.

45. H. Debar, A. Wespi, Aggregation and correlation of intrusion-detection alerts,
in: Recent Advances in Intrusion Detection, 2001, pp. 85–103.

46. M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman & Co., New York, NY, USA,
1979.

47. C. Berge, Hypergraphs: Combinatorics of Finite Sets, North-Holland, 1989.
48. G. Vigna, A topological characterization of tcp/ip security, in: FME, 2003, pp.

914–939.
49. B. Morin, L. Mé, H. Debar, M. Ducassé, M2d2: A formal data model for ids

alert correlation, in: RAID, 2002, pp. 115–127.

140 References

50. F. Baiardi, S. Suin, C. Telmon, M. Pioli, Assessing the risk of an information
infrastructure through security dependencies, in: CRITIS, 2006, pp. 42–54.

51. W. Pieters, Ankh: Information threat analysis with actor-network hypergraphs,
CTIT technical report series, Centre for Telematics and Information Technol-
ogy, University of Twente, Enschede, 2010.

52. C. R. Johnson, M. Montanari, R. H. Campbell, Automatic management of
logging infrastructure, in: National Centers of Academic Excellence - Workshop
on Insider Threat, St Louis, MO, USA, 2010.

53. M. Korff, L. Ribeiro, Formal relationship between graph grammars and petri
nets, in: J. Cuny, H. Ehrig, G. Engels, G. Rozenberg (Eds.), Graph Grammars
and Their Application to Computer Science, Vol. 1073 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 1996, pp. 288–303.

54. P. Alimonti, E. Feuerstein, Petri nets, hypergraphs and conflicts (preliminary
version), in: E. W. Mayr (Ed.), Graph-Theoretic Concepts in Computer Sci-
ence, Vol. 657 of Lecture Notes in Computer Science, Springer Berlin Heidel-
berg, 1993, pp. 293–309.

55. A. Basu, R. W. Blanning, Metagraphs in workflow support systems, Decision
Support Systems (3) 199 – 208.

56. A. Basu, R. W. Blanning, A formal approach to workflow analysis, Information
Systems Research 11 (1) (2000) 17–36.

57. A. Basu, R. W. Blanning, Workflow analysis using attributed metagraphs, in:
HICSS, 2001.

58. A. Basu, R. W. Blanning, Metagraphs and Their Applications, Integrated Se-
ries in Information Systems, Springer, Dordrecht, 2007.

59. A. Basu, R. W. Blanning, Metagraphs: a tool for modeling decision support
systems, Manage. Sci. 40 (12) (1994) 1579–1600.

60. A. Polyvyanyy, M. Weske, Hypergraph-based modeling of ad-hoc business pro-
cesses, in: Business Process Management Workshops, 2008, pp. 278–289.

61. P. Ammann, D. Wijesekera, S. Kaushik, Scalable, graph-based network vul-
nerability analysis, in: Proceedings of the 9th ACM Conference on Computer
and Communications Security (CCS 2002), Washington, DC, USA, 2002, pp.
217–224.

62. S. Noel, E. Robertson, S. Jajodia, Correlating intrusion events and building
attack scenarios through attack graph distances, in: Proceedings of the 20th
Annual Computer Security Applications Conference (ACSAC 2004), Tucson,
AZ, USA, 2004, pp. 350–359.

63. L. Wang, A. Liu, S. Jajodia, An efficient and unified approach to correlating,
hypothesizing, and predicting intrusion alerts, in: S. De Capitani di Vimercati,
P. Syverson, D. Gollmann (Eds.), Proceedings of the 10th European Sympo-
sium on Research in Computer Security (ESORICS 2005), Vol. 3679 of Lecture
Notes in Computer Science, Springer, Milan, Italy, 2005, pp. 247–266.

64. L. Wang, S. Noel, S. Jajodia, Minimum-cost network hardening using attack
graphs, Computer Communications 29 (18) (2006) 3812–3824.

65. Y. Chen, B. W. Boehm, L. Sheppard, Value driven security threat modeling
based on attack path analysis, in: HICSS, 2007, p. 280.

66. G. K. Palshikar, M. M. Apte, Collusion set detection using graph clustering,
Data Min. Knowl. Discov. 16 (2) (2008) 135–164.

67. S. Bordoni, G. Facchinetti, Insurance fraud evaluation - a fuzzy expert system,
in: FUZZ-IEEE - Proceedings of the 10th IEEE International Conference on
Fuzzy Systems, IEEE, 2001, pp. 1491–1494.

References 141

68. D. Zhang, D. Gatica-Perez, S. Bengio, I. McCowan, Semi-supervised adapted
hmms for unusual event detection, in: CVPR 2005 - IEEE Computer Soci-
ety Conference on Computer Vision and Pattern Recognition, Vol. 1, IEEE
Computer Society, 2005, pp. 611–618.

69. J. Kim, K. Grauman, Observe locally, infer globally: A space-time mrf for
detecting abnormal activities with incremental updates, in: CVPR 2009 - IEEE
Computer Society Conference on Computer Vision and Pattern Recognition,
IEEE, 2009, pp. 2921–2928.

70. J. Yin, Q. Yang, J. J. Pan, Sensor-based abnormal human-activity detection,
IEEE Trans. Knowl. Data Eng. 20 (8) (2008) 1082–1090.

71. D. H. Hu, X.-X. Zhang, J. Yin, V. W. Zheng, Q. Yang, Abnormal activity
recognition based on hdp-hmm models, in: C. Boutilier (Ed.), IJCAI 2009 -
Proceedings of the 21st International Joint Conference on Artificial Intelli-
gence, 2009, pp. 1715–1720.

72. X.-X. Zhang, H. Liu, Y. Gao, D. H. Hu, Detecting abnormal events via hier-
archical dirichlet processes, in: T. Theeramunkong, B. Kijsirikul, N. Cercone,
T. B. Ho (Eds.), PAKDD 2009 - Advances in Knowledge Discovery and Data
Mining, 13th Pacific-Asia Conference, Vol. 5476 of Lecture Notes in Computer
Science, Springer, 2009, pp. 278–289.

73. F. Jiang, Y. Wu, A. K. Katsaggelos, Detecting contextual anomalies of crowd
motion in surveillance video, in: ICIP 2009 - Proceedings of the International
Conference on Image Processing, IEEE, 2009, pp. 1117–1120.

74. D. Mahajan, N. Kwatra, S. Jain, P. Kalra, S. Banerjee, A framework for activity
recognition and detection of unusual activities, in: B. Chanda, S. Chandran,
L. S. Davis (Eds.), ICVGIP 2004 - Proceedings of the Fourth Indian Conference
on Computer Vision, Graphics & Image Processing, Allied Publishers Private
Limited, 2004, pp. 15–21.

75. A. Mecocci, M. Pannozzo, A completely autonomous system that learns anoma-
lous movements in advanced videosurveillance applications, in: ICIP 2005 -
Proceedings of the 2005 International Conference on Image Processing, Vol. 2,
IEEE, 2005, pp. 586–589.

76. F. Jiang, J. Yuan, S. A. Tsaftaris, A. K. Katsaggelos, Video anomaly detection
in spatiotemporal context, in: ICIP 2010 - Proceedings of the International
Conference on Image Processing, IEEE, 2010, pp. 705–708.

77. J. Wang, Z. Cheng, M. Zhang, Y. Zhou, L. Jing, Design of a situation-aware
system for abnormal activity detection of elderly people, in: R. Huang, A. A.
Ghorbani, G. Pasi, T. Yamaguchi, N. Y. Yen, B. Jin (Eds.), AMT 2012 - Active
Media Technology, 8th International Conference, Vol. 7669 of Lecture Notes in
Computer Science, Springer, 2012, pp. 561–571.

78. M. Albanese, C. Molinaro, F. Persia, A. Picariello, V. S. Subrahmanian, Find-
ing “unexplained” activities in video, in: T. Walsh (Ed.), IJCAI 2011 - Pro-
ceedings of the 22nd International Joint Conference on Artificial Intelligence,
IJCAI/AAAI, 2011, pp. 1628–1634.

79. N. Vaswani, A. K. R. Chowdhury, R. Chellappa, ”shape activity”: A
continuous-state hmm for moving/deforming shapes with application to ab-
normal activity detection, IEEE Transactions on Image Processing 14 (10)
(2005) 1603–1616.

80. N. P. Cuntoor, B. Yegnanarayana, R. Chellappa, Activity modeling using event
probability sequences, IEEE Transactions on Image Processing 17 (4) (2008)
594–607.

142 References

81. M. Brand, N. Oliver, A. Pentland, Coupled hidden markov models for complex
action recognition, in: CVPR, IEEE Computer Society, 1997, pp. 994–999.

82. N. Oliver, E. Horvitz, A. Garg, Layered representations for human activity
recognition, in: ICMI 2002 - 4th IEEE International Conference on Multimodal
Interfaces, IEEE Computer Society, 2002, pp. 3–8.

83. R. Hamid, Y. Huang, I. Essa, Argmode-activity recognition using graphical
models, in: CVPRW’03 - Conference on Computer Vision and Pattern Recog-
nition Workshop, 2003, Vol. 4, IEEE, 2003, pp. 38–38.

84. M. Albanese, V. Moscato, A. Picariello, V. S. Subrahmanian, O. Udrea, Detect-
ing stochastically scheduled activities in video, in: M. M. Veloso (Ed.), IJCAI
2007 - Proceedings of the 20th International Joint Conference on Artificial
Intelligence, 2007, pp. 1802–1807.

85. S. Hongeng, R. Nevatia, F. Brémond, Video-based event recognition: activity
representation and probabilistic recognition methods, Computer Vision and
Image Understanding 96 (2) (2004) 129–162.

86. R. Xu, D. C. Wunsch, Survey of clustering algorithms, IEEE Transactions on
Neural Networks 16 (3) (2005) 645–678.

87. T. Xiang, S. Gong, Video behavior profiling for anomaly detection, IEEE Trans.
Pattern Anal. Mach. Intell. 30 (5) (2008) 893–908.

88. H. Zhong, J. Shi, M. Visontai, Detecting unusual activity in video, in: CVPR
2004 - IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Vol. 4, 2004, pp. 819–826.

89. C. E. Au, S. Skaff, J. J. Clark, Anomaly detection for video surveillance appli-
cations, in: ICPR 2006- 18th International Conference on Pattern Recognition,
Vol. 4, IEEE Computer Society, 2006, pp. 888–891.

90. Y. Zhou, S. Yan, T. S. Huang, Detecting anomaly in videos from trajectory
similarity analysis, in: ICME 2007 - Proceedings of the 2007 IEEE International
Conference on Multimedia and Expo, IEEE, 2007, pp. 1087–1090.

91. L. Brun, A. Saggese, M. Vento, A clustering algorithm of trajectories for be-
haviour understanding based on string kernels, in: SITIS 2012 - Eighth Inter-
national Conference on Signal Image Technology and Internet Based Systems,
IEEE, 2012, pp. 267–274.

92. A. Adam, E. Rivlin, I. Shimshoni, D. Reinitz, Robust real-time unusual event
detection using multiple fixed-location monitors, IEEE Trans. Pattern Anal.
Mach. Intell. 30 (3) (2008) 555–560.

93. B. Mukherjee, L. T. Heberlein, K. N. Levitt, Network intrusion detection,
Network, IEEE 8 (3) (1994) 26–41.

94. A. Jones, S. Li, Temporal signatures for intrusion detection, in: ACSAC 2001
- 17th Annual Computer Security Applications Conference, IEEE Computer
Society, 2001, pp. 252–261.

95. P. Ning, Y. Cui, D. S. Reeves, Constructing attack scenarios through correla-
tion of intrusion alerts, in: V. Atluri (Ed.), CCS 2002 - Proceedings of the 9th
ACM Conference on Computer and Communications Security, ACM, 2002, pp.
245–254.

96. S. O. Al-Mamory, H. Zhang, Ids alerts correlation using grammar-based ap-
proach, Journal in Computer Virology 5 (4) (2009) 271–282.

97. X. Qin, W. Lee, Statistical causality analysis of infosec alert data, in: G. Vigna,
E. Jonsson, C. Krügel (Eds.), RAID 2003 - Recent Advances in Intrusion De-
tection, 6th International Symposium, Vol. 2820 of Lecture Notes in Computer
Science, Springer, 2003, pp. 73–93.

References 143

98. X. Qin, A probabilistic-based framework for INFOSEC alert correlation, Phd
thesis, Georgia Institute of Technology (2005).

99. A. J. Oliner, A. V. Kulkarni, A. Aiken, Community epidemic detection using
time-correlated anomalies, in: S. Jha, R. Sommer, C. Kreibich (Eds.), RAID
2010 - Recent Advances in Intrusion Detection, 13th International Symposium,
Vol. 6307 of Lecture Notes in Computer Science, Springer, 2010, pp. 360–381.

100. P. Lancaster, K. Salkauskas, Curve and surface fitting. an introduction, Lon-
don: Academic Press, 1986 1.

101. D. R. Karger, C. Stein, A new approach to the minimum cut problem, Vol. 43,
1996, pp. 601–640.

102. P. Mell, T. Bergeron, D. Henning, Creating a patch and vulnerability manage-
ment program, NIST Special Publication 800-40, Version 2.0.

103. F. Foret, How to create and deploy a successful patch management policy and
program, SANS Institute.

104. P. Mell, K. Scarfone, S. Romanosky, Common vulnerability scoring system,
IEEE Security & Privacy 4 (6) (2006) 85–89.

105. The MITRE Corporation, Common Weakness Scoring System (CWSSTM),
http://cwe.mitre.org/cwss/, version 0.8 (June 2011).

106. Tenable Network SecurityR©, The NessusR© vulnerability scanner,
http://www.tenable.com/products/nessus (2014).

107. M. Dacier, Towards quantitative evaluation of computer security, Ph.D. thesis,
Institut National Polytechnique de Toulouse (1994).

108. D. Zerkle, K. Levitt, NetKuang - A multi-host configuration vulnerability
checker, in: Proceedings of the 6th USENIX Security Symposium, San Jose,
CA, USA, 1996.

109. C. Phillips, L. P. Swiler, A graph-based system for network-vulnerability anal-
ysis, in: Proceedings of the New Security Paradigms Workshop (NSPW 1998),
Charlottesville, VA, USA, 1998, pp. 71–79.

110. R. Ortalo, Y. Deswarte, M. Kaâniche, Experimenting with quantitative evalu-
ation tools for monitoring operational security, IEEE Transactions on Software
Engineering 25 (5) (1999) 633–650.

111. L. P. Swiler, C. Phillips, D. Ellis, S. Chakerian, Computer-attack graph genera-
tion tool, in: Proceedings of the DARPA Information Survivability Conference
& Exposition II (DISCEX 2001), Vol. 2, Anaheim, CA, USA, 2001, pp. 307–
321.

112. C. R. Ramakrishnan, R. Sekar, Model-based analysis of configuration vulner-
abilities, Journal of Computer Security 10 (1/2) (2002) 189–209.

113. S. Jajodia, S. Noel, B. O’Berry, Managing Cyber Threats: Issues, Approaches,
and Challenges, Vol. 5 of Massive Computing, Springer, 2005, Ch. Topological
Analysis of Network Attack Vulnerability, pp. 247–266.

114. R. W. Ritchey, P. Ammann, Using model checking to analyze network vulnera-
bilities, in: Proceedings of the 2000 IEEE Symposium on Research on Security
and Privacy (S&P 2000), Berkeley, CA, USA, 2000, pp. 156–165.

115. S. Jha, O. Sheyner, J. Wing, Two formal analyses of attack graphs, in: Proceed-
ings of 15th IEEE Computer Security Foundations Workshop (CSFW 2002),
Cape Breton, Canada, 2002.

116. M. Albanese, S. Jajodia, A. Singhal, L. Wang, An efficient approach to assessing
the risk of zero-day vulnerabilities, in: Proceedings of the 10th International
Conference on Security and Cryptpgraphy (SECRYPT), Reykjavik, Iceland,
2013.

144 References

117. T. Basar, The gaussian test channel with an intelligent jammer, IEEE Trans.
Inf. Theor. 29 (1) (2006) 152–157.

118. A. Kashyap, T. Basar, R. Srikant, Correlated jamming on mimo gaussian fading
channels, IEEE Transactions on Information Theory 50 (9) (2004) 2119–2123.

119. E. Altman, K. Avrachenkov, A. Gamaev, Jamming in wireless networks: The
case of several jammers, in: Proceedings of the First ICST International Con-
ference on Game Theory for Networks, GameNets’09, IEEE Press, 2009, pp.
585–592.

120. Q. Zhu, H. Li, Z. Han, T. Basar, A stochastic game model for jamming in
multi-channel cognitive radio systems, in: ICC, IEEE, 2010, pp. 1–6.

121. Z. Han, N. Marina, M. Debbah, A. Hjørungnes, Physical layer security game:
How to date a girl with her boyfriend on the same table, in: Proceedings
of the First ICST International Conference on Game Theory for Networks,
GameNets’09, IEEE Press, Piscataway, NJ, USA, 2009, pp. 287–294.

122. H. von Stackelberg, D. Bazin, R. Hill, L. Urch, Market Structure and Equilib-
rium, Springer, 2010.

123. T. Alpcan, S. Buchegger, Security games for vehicular networks, IEEE Trans-
actions on Mobile Computing 10 (2) (2011) 280–290.

124. M. Raya, M. H. Manshaei, M. Félegyhazi, J.-P. Hubaux, Revocation games in
ephemeral networks, in: Proceedings of the 15th ACM Conference on Computer
and Communications Security, ACM, New York, NY, USA, 2008, pp. 199–210.

125. I. Bilogrevic, M. H. Manshaei, M. Raya, J.-P. Hubaux, Oren: Optimal revoca-
tions in ephemeral networks, Comput. Netw. 55 (5) (2011) 1168–1180.

126. Q. Zhu, L. Bushnell, T. Basar, Game-theoretic analysis of node capture and
cloning attack with multiple attackers in wireless sensor networks., in: CDC,
IEEE, 2012, pp. 3404–3411.

127. Q. Zhu, T. Basar, Dynamic policy-based ids configuration (2009) 8600–8605.
128. Q. Zhu, C. J. Fung, R. Boutaba, T. Basar, GUIDEX: A game-theoretic

incentive-based mechanism for intrusion detection networks, IEEE Journal on
Selected Areas in Communications 30 (11) (2012) 2220–2230.

129. M. H. Manshaei, Q. Zhu, T. Alpcan, T. Bacşar, J.-P. Hubaux, Game theory
meets network security and privacy, ACM Comput. Surv. 45 (3) (2013) 25:1–
25:39.

130. R. Dewri, N. Poolsappasit, I. Ray, D. Whitley, Optimal security hardening
using multi-objective optimization on attack tree models of networks, in: Pro-
ceedings of the 14th ACM Conference on Computer and Communications Se-
curity, CCS ’07, ACM, New York, NY, USA, 2007, pp. 204–213.

131. R. Dewri, I. Ray, N. Poolsappasit, D. Whitley, Optimal security hardening on
attack tree models of networks: a cost-benefit analysis, International Journal
of Information Security 11 (3) (2012) 167–188.

132. N. Poolsappasit, R. Dewri, I. Ray, Dynamic security risk management using
bayesian attack graphs, IEEE Trans. Dependable Secur. Comput. 9 (1) (2012)
61–74.

133. C. H. Papadimitriou, Computational complexity, Addison-Wesley, 1994.
134. D. S. Johnson, C. H. Papadimitriou, M. Yannakakis, On generating all maximal

independent sets, Inf. Process. Lett. 27 (3) (1988) 119–123.
135. E. L. Lawler, J. K. Lenstra, A. H. G. R. Kan, Generating all maximal inde-

pendent sets: Np-hardness and polynomial-time algorithms, SIAM J. Comput.
9 (3) (1980) 558–565.

References 145

136. A. Messac, A. Ismail-Yahaya, C. Mattson, The normalized normal constraint
method for generating the pareto frontier, Structural and Multidisciplinary
Optimization 25 (2) (2003) 86–98.

137. C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, P. H.
Vance, Branch-and-price: Column generation for solving huge integer pro-
grams, Operations Research 46 (3) (1998) pp. 316–329.

138. I. Muter, S. I. Birbil, K. Bülbül, Simultaneous column-and-row generation
for large-scale linear programs with column-dependent-rows, Math. Program.
142 (1-2) (2013) 47–82.

139. S. Jajodia, S. Noel, P. Kalapa, M. Albanese, J. Williams, Cauldron: Mission-
centric cyber situational awareness with defense in depth, in: Proceedings of
the Military Communications Conference (MILCOM 2011), 2011.

140. Stanford Large Network Dataset Collection, Gnutella peer to peer net-
work from august 4, 2002, http://snap.stanford.edu/data/p2p-Gnutella04.html
(2014).

141. M. Ripeanu, A. Iamnitchi, I. T. Foster, Mapping the gnutella network, IEEE
Internet Computing 6 (1) (2002) 50–57.

