
UNMrD\DELLACAIABRIA
=

UNIVERSITA’ DELLA CALABRIA

Dipartimento di Ingegneria Informatica, Model I istica, Elettronica e Sistemistica

Dottorato di Ricerca in

Ingegneria dei Sistemi e Informatica

CICLO

XXVII

TITOLO TESI

Design and Performance Evaluation

of Algorithms for Wireless

Self-Organizing Systems

Settore Scientifico Disciplinare

ING-INF/03

Coordinatore: Ch.mo Prof. Seraio GREO

Firma ‘-

Supervisore/Tutor: Ing. Vale5iafrOScRì

Firma_____________________

Ing. Gianiuca ALOI

Firma____________________

Dottorando: Dott. Rosario SURACE

Firma

________________



Rosario Surace

Design and Performance

Evaluation of Algorithms for

Wireless Self-Organizing Systems

1 Dicembre 2014





Contents

Abstract (English version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Abstract (Italian version) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Self-Organizing Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1 Wireless Sensor Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Robot Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3 UAV Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Impact of the Propagation Environment on CMA . . . . . . . . . 13
2.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2 Propagation and Energy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 Propagation Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 Energy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Controlled Mobility Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Results of the free-space model . . . . . . . . . . . . . . . . . . . . . . 20
2.4.2 Results of the two-ray ground model . . . . . . . . . . . . . . . . . 21
2.4.3 Results of the generic model . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Algorithms to Film Sport Events with Flying Robots . . . . . . 25
3.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Definitions and initial assumptions . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2.1 Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.2 Event . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Viewer satisfaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.4 Relevant assumptions related to the drones . . . . . . . . . . . 29

3.3 Distributed algorithms for dynamic VRP-STW . . . . . . . . . . . . . . 30
3.3.1 Nearest Neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3.2 Nearest Neighbor-Division Field . . . . . . . . . . . . . . . . . . . . . 30



VI Contents

3.3.3 Nearest Neighbor with Specular Repositioning . . . . . . . . 31
3.3.4 Nearest Neighbor with Quasi-Specular Repositioning . . . 31
3.3.5 Ball Movement Interception . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Performance evaluation varying detour factor . . . . . . . . . 33
3.4.2 Comparison of Positioning Techniques . . . . . . . . . . . . . . . 35

3.5 A Multi-objective Approach for UAV Problem . . . . . . . . . . . . . . 37
3.5.1 Problem Statement and Mathematical Formulation . . . . 38
3.5.2 The solution approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.5.3 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4 Multi-Objective Evolving Neural Network . . . . . . . . . . . . . . . . . 55
4.1 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.2 Smart mobile devices supporting SDR. . . . . . . . . . . . . . . . . . . . . . 58
4.3 Neural Network and Genetic Algorithm . . . . . . . . . . . . . . . . . . . . 60

4.3.1 The Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3.2 The Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.3.3 Connectivities and Communication Complexity . . . . . . . 63
4.3.4 BER Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3.5 Transmitted Energy Computation . . . . . . . . . . . . . . . . . . . 64
4.3.6 Cut-off rate curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.4 The optimization model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.5 Validations, Simulations and Results . . . . . . . . . . . . . . . . . . . . . . . 70

4.5.1 Validation of the Optimizazion Model . . . . . . . . . . . . . . . . 71
4.5.2 Fixed nodes analysis supporting SDR . . . . . . . . . . . . . . . . 72
4.5.3 Mobile nodes analysis supporting SDR . . . . . . . . . . . . . . . 72
4.5.4 Mobile nodes analysis with variable SDR nodes . . . . . . . 74
4.5.5 Varying the percentange of mobile nodes . . . . . . . . . . . . . 75

4.6 Video Surveillance Applications with Ultra-Low Power Sensor . 77
4.6.1 Reference Model and Problem Formulation . . . . . . . . . . . 79
4.6.2 Evolutionary algorithm for neural network training . . . . 81
4.6.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5 Decentralized Time-Synchronized Channel Swapping . . . . . . 85
5.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1.1 Novelty, Contributions and work Organization . . . . . . . . 89
5.2 PCO-based Sync/Desync for DT-SCS . . . . . . . . . . . . . . . . . . . . 90

5.2.1 Introduction to the Basic Concept . . . . . . . . . . . . . . . . . . . 90
5.2.2 Coupling via Sync and Desync . . . . . . . . . . . . . . . . . . . . 91
5.2.3 Protocol Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Protocol Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.1 Balancing and Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Contents VII

5.3.2 Connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.3.3 Estimation of Energy Consumption . . . . . . . . . . . . . . . . . . 103

5.4 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
5.4.1 Node Balancing and Connectivity . . . . . . . . . . . . . . . . . . . 104
5.4.2 Convergence Time of DT-SCS versus TSCH . . . . . . . . . . 106
5.4.3 Bandwidth Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.5 Experiments With TelosB Motes . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.5.1 Energy Consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5.2 Results Under Interference . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5.3 Bandwidth Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Reference of the Candidate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127





Abstract (English version)

The work done during the PhD course involves the study of the Self-
Organization of wireless sensors, robots and UAV networks. In particular,
this thesis investigates how each node composing the system can take advan-
tage from the Self-Organization and from mobility, in a way to optimize some
networks parameters as coverage and energy consumption.

Self-Organization is a process in which pattern at the global level of a sys-
tem emerges solely from numerous interactions among the lower-level com-
ponents of a system. The rules specifying interactions among the systems
components are executed using only local information, without reference to
the global pattern [1].

Mobility, although still for some types of systems is not considered a primi-
tive of the network: in recent years has been the subject of many studies just as
useful feature to achieve certain objectives, not least the energy consumption
in transmission.

The network issues has been addressed using different approaches from
the theoretical studies aimed at finding the maximum achievable performance
benchmarks, through the introduction of appropriate optimization models, the
proposal of distributed heuristics and more realistic communication protocols,
and the use of biology-inspired mechanisms, such as genetic algorithms (GA)
and neural networks (NN). The purpose of this type of approach is to move
in the direction of networks that are able to self-organize by adapting to
different environmental conditions and dynamic as well as hard scenarios (i.e.
environment disasters).

The rest of the thesis is organized as follows: in Chapter 1 background on
Self-Organizing Systems is given. In Chapter 2 we investigate on the impact of
the Propagation Environment on Controlled Mobility Algorithms; distributed
heuristics to Film Sport Events with Flying Robots in Chapter 3 and Bio-
Inspired approaches in Chapter 4. Finally, a new communications protocol for
WSN called Decentralized Time-Synchronized Channel Swapping is analyzed
in Chapter 5.





Abstract (Italian version)

Il lavoro svolto durante il corso di dottorato di ricerca ha previsto lo stu-
dio dell’auto-organizzazione, meglio conosciuta come Self-Organization, in reti
wireless di sensori, robot e UAV. In particolare, questa tesi indaga come ogni
nodo che compone il sistema può trarre vantaggio dalla Self-Organization e
dalla mobilità, in modo da ottimizzare alcuni parametri di rete come la co-
pertura ed il consumo energetico.

La Self-Organization è un processo, il cui schema a livello globale, emerge
unicamente dalle numerose interazioni tra i componenti di livello inferiore del
sistema. Le regole che specificano le interazioni tra i componenti sono eseguite
utilizzando solo informazioni locali, senza riferimento al modello globale [1].

La mobilità, anche se ancora per alcune tipologie di sistemi non è consi-
derata una primitiva di rete, negli ultimi anni è stata oggetto di molti studi
proprio come caratteristica utile al raggiungimento di determinati obiettivi,
non ultimo quello del consumo energetico in trasmissione.

I problemi di rete sono stati affrontati usando approcci diversi, a partire
dagli studi teorici, volti a trovare il rendimento massimo ottenibile (bench-
marks) attraverso l’introduzione di adeguati modelli di ottimizzazione, pas-
sando per la proposta di euristiche distribuite e protocolli di comunicazione
più realistici, oltre che attraverso l’uso di meccanismi bio-ispirati, come gli
algoritmi genetici (GA) e le reti neurali (NN). Lo scopo di questo tipo di
approccio è quello di muoversi nella direzione di reti che sono in grado di
auto-organizzarsi adattandosi alle diverse condizioni ambientali ed a scenari
dinamici nonché difficili (es. disastri ambientali).

Il resto della tesi è organizzata come segue: nel Capitolo 1 verrà fornito
un background sui Self-Organizing Systems. Nel Capitolo 2 indagheremo sugli
effetti degli ambienti di propagazione negli algoritmi di mobilità controllata;
nel Capitolo 3 verranno proposte delle euristiche distribuite per filmare eventi
sportivi con UAV, mentre l’approccio bio-ispirato sarà affrontato nel Capitolo
4. Infine, un nuovo protocollo di comunicazione per WSN chiamato Decen-
tralized Time-Synchronized Channel Swapping verrà analizzato nel Capitolo
5.





1

Self-Organizing Systems

Self-organization is a great concept for building scalable systems consisting
of a large number of subsystems. Key factors in similar environments are
coordination and collaboration of the subsystems for achieving a shared goal.
Self-organization is not an invention but its principles have been evolved in
nature and in the last few years, the concept of self-organization has been
applied to technical systems and finally to wireless networks. Also, in this
context the self-organization concept can be summarized as the interaction of
multiple components on a common global objective. This collaborative work
may be without any central control and the primary objectives of similar net-
works are scalability, reliability and availability [2]. Scalability is the ability of
a system to handle growing amounts of work in a graceful manner or its ability
to be enlarged to accommodate that growth, reliability is ability of a system to
perform and maintain its functions in routine circumstances, as well as hostile
or unexpected circumstances, finally availability regards the possibility to use
the network whenever is needed consequently Self-Organization should not
require special maintenance periods. Scientific community is not completely
agree about the definition of Self-Organization but the main characteristics
can be summarized as follows:

Self-organization is a process in which pattern at the global level of a
system emerges solely from numerous interactions among the lower-
level components of a system. The rules specifying interactions among
the systems components are executed using only local information,
without reference to the global pattern [1].

Moreover is important to distinguish between self-organized systems and sy-
stems that are only self-ordered: critical is the distinction between pattern
and function, so in Self-Organization the global order that emerge through a
formation or a specific pattern need to be functional to something [3]. Two
more properties emerge from such definition:

• is not straightforward to guess the final pattern looking only to the local
interactions (emergent behavior);
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• the missing of determinism of the algorithms [4].

For these features to hold, the following are some of the conditions that
must be met [3]:

1. the system must have inputs and some measurable output;
2. the system must have a goal or goals;
3. the units must change internal state based on their inputs and the states

of other units;
4. no single unit or non-communicative subset of units can achieve the sys-

tem’s goal as well as the collection can;
5. as it gains experience in a specified environment, the system achieves its

goals more efficiently and/or accurately, on average.

One key research issue in designing and operating WSNs is to gain such
self-* properties as:

• Self-configuration - allows WSN applications to configure their own ope-
rational parameters (e.g. routing decision parameters or sleep periods) de-
pending on the current situation in terms of environmental circumstances,
e.g. connectivity, quality of service parameters and self-organize into desir-
able structures and patterns (e.g. routing tables or duty cycling patterns);

• Self-management - capability to maintain devices or networks depending
on the current parameters of the system;

• Self-optimization - allows WSN applications to constantly seek improve-
ment in their performance by adapting to network dynamics with minimal
human intervention;

• Self-healing - allows WSN applications to autonomously detect, localize
and recover automatically from disruptions in the network (e.g. node or
link failures).

The self-* properties are important in WSNs because they are often re-
quired to operate in unattended areas (e.g. forest or ocean), physically un-
reachable areas (e.g. inside a building wall) or potentially harsh/hostile areas
(e.g. nuclear power plants). The design of self-organizing systems is not top
down as in traditional systems which are typically built starting considering
the overall system and then approach the singles components and modules.
Typically in design Self-Organizing systems the approach starts from thinking
at the local interaction among components that, if they are modelled properly,
could led to some kind of organization even if there is no guarantee about that
[5].

Self-organization can be realized through different approaches [4]:

• Location-based mechanisms : geographical positions or affiliation to a group
of surrounding nodes such as clustering mechanisms, are used to reduce
necessary state information to perform routing decisions or synchroniza-
tions. Usually, similar methods as known for global state operations can
be employed in this context. Depending on the size of active clusters or the
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complexity to perform localization methods, such location-based mecha-
nisms vary in communication and processing overhead;

• Neighborhood information: further state reduction can be achieved by de-
creasing the size of previously mentioned clusters to a one-hop diameter.
In this case, only neighborhood information is available to perform ne-
cessary decisions. Usually, hello messages are exchanged in regular time
periods. This keeps the neighborhood information up-to-date and allows
the exchange of performance measures such as the current load of a system;

• Probabilistic algorithms : in some cases for examples if messages are very
infrequently exchanged or in case of high mobility, pure probabilistic me-
thods can lead to optimal results without any use of state information.
Statistical measures can be used to describe the behavior of the overall
system or the behavior of single components in terms of next action to
perform. Obviously, no guarantee can be given that a desired goal will be
reached;

• Bio-inspired methods : biologically inspired methods build a category that
is composed of neighborhood-depending operations very similar to beha-
vior of some species present in nature as ants or fishes and birds. All ob-
jectives are addressed by using positive and negative feedback often using
a reinforcement learning.

With miniaturization of computing elements we have seen many mobile
devices appear in the market that can collaborate in an ad hoc fashion without
requiring any previous infrastructure control consequently mobility has a large
impact on the behavior of ad hoc networks [6]. This latter consideration allows
us to consider the mobility as a fundamental aspect of the self-organizing
networks.

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) consists of low-cost, low-power, multi-
functional, autonomous sensor nodes deployed either randomly or according
to some predefined statistical distribution, over a geographic region of inte-
rest to monitor physical or environmental conditions, such as temperature,
sound, vibration, pressure, motion or pollutants and to cooperatively pass
their data through the network to a main location usually a sink node with
more energy and processing and communication capabilities. The develop-
ment of wireless sensor networks was motivated by military applications such
as battlefield surveillance; today such networks are used in many industrial
and consumer applications, such as industrial process monitoring and con-
trol, machine health monitoring, transportation, entertainment, crisis mana-
gement, homeland defense, home automations and smart spaces. The WSN is
built of nodes, from a few to several hundreds or even thousands, where each
node is connected to one (or sometimes several) sensors. Each sensor network
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node,f consist of communication capabilities through a radio transceiver with
an internal antenna or connection to an external antenna, processing capa-
bilities through a micro-controller, possibilities of storing data using different
type of memories and finally an electronic circuit to interface with the sen-
sors and an energy source, usually a battery or an embedded type of energy
harvesting. A sensor node might vary in size from some centimeters down to
the size of a grain of dust. Also the cost of sensor nodes is variable in the
ranging from a few to hundreds of dollars, depending on the complexity of
the individual sensor node. Size and cost constraints on sensor nodes result
in corresponding constraints on resources such as energy, memory, mobility
features, computational speed and communications bandwidth. A sensor node
by itself has severe resource constraints, such as low battery power, limited
signal processing, limited computation and communication capabilities, and
a small amount of memory; hence it can sense only a limited portion of the
environment. However, when a group of sensor nodes collaborate with each
other, they can accomplish a much bigger task efficiently.

One of the primary advantages of deploying a wireless sensor network is
its low deployment cost and freedom from requiring a messy wired communi-
cation backbone, which is often infeasible or economically inconvenient. Due
to these constraints, resource management is of critical importance to these
networks. Sensor nodes are scattered in a sensing field with varying node den-
sities. Each node has a sensing radius within which it can sense data, and a
communication radius within which it can communicate with another node.
Each of these nodes will collect raw data from the environment, does local
processing, possibly communicates with each other in an optimal fashion to
perform neighborhood data or decision fusion (aggregation), and then route
back those aggregated data in a multi-hop fashion to data sinks, usually called
the base-stations, which link to the outside world via the Internet or satellites.
Since an individual node measurement is often erroneous because of several
factors, the need for collaborative signal and information processing is critical.

One important criterion for being able to deploy an efficient sensor net-
work is to find optimal node placement strategies. Deploying nodes in large
sensing fields requires efficient topology control. Nodes can either be placed
manually at predetermined locations or be dropped from an aircraft. How-
ever, since the sensors are randomly scattered in most practical situations, it
is difficult to find a random deployment strategy that minimizes cost, reduces
computation and communication, is resilient to node failures, and provides
a high degree of area coverage. The notion of area coverage can be consid-
ered as a measure of the quality of service (QoS) in a sensor network, for
it means how well each point in the sensing field is covered by the sensing
ranges. Once the nodes are deployed in the sensing field, they form a com-
munication network, which can dynamically change over time, depending on
the topology of the geographic region, inter-node separations, residual battery
power, static and moving obstacles, presence of noise, and other factors. Rout-
ing protocols and node scheduling are two other important aspects of wireless
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sensor networks because they significantly impact the overall energy dissipa-
tion. Routing protocols involve primarily discovery of the best routing paths
from source to destination, considering latency, energy consumption, robust-
ness, and cost of communication. Conventional approaches such as flooding
and gossiping waste valuable communication and energy resources, sending
redundant information throughout the network. In addition, these protocols
are neither resource-aware nor resource-adaptive. Challenges lie in designing
cost-efficient routing protocols, which can efficiently disseminate information
in a wireless sensor network using resource-adaptive algorithms. On the other
hand, node scheduling for optimal power consumption requires identification
of redundant nodes in the network, which can be switched off at times of
inactivity.

Synthesizing, the main characteristics of a WSN include:

• power consumption and processing capabilities constraints;
• dynamic network topology;
• heterogeneity of nodes;
• mobility of nodes;
• scalability to large scale of deployment;
• ability to cope with node failures;
• ability to withstand harsh environmental conditions.

More recently the communication devices composing the WSN are not
only equipped with sensors but also with mechanical devices that allows the
movement on the ground or the fly of such nodes. In this contest we will refer
to these kinds of networks respectively as Robot networks and UAV networks.
In literature such networks with more intelligence and abilities are reported
as Wireless Sensor and Actor Networks (WSANs) [7]. More specific details
about these networks will be given in the followings subsections.

1.2 Robot Networks

The technological development of the last decade in robots, computing and
communications has led to envisage the design of robotic and automation
systems consisting of networked vehicles, sensors, actuators and communica-
tion devices. These developments enable researchers and engineers to design
new robotic systems that can interact with human beings and other robots
in a cooperative way. This new technology has being denominated “Network
Robot Systems” (NRS) and includes the following elements [8]:

• Any NRS has to have at least a physical robot which incorporates hardware
and software capabilities;

• Autonomous capabilities: a physical robot must have autonomous capa-
bilities to be considered as a basic element of a NRS;

• Network-based cooperation: the robots, environment sensors and humans
must communicate and cooperate through a network;
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• Environment sensors and actuators: besides the sensors of the robots, the
environment must include other sensors, such as vision cameras and laser
range finders, and other actuators, such as speakers and flickers;

• Human-robot interaction: in order to consider a system as NRS, the system
must have a human-robot related activity.

The European study group Research Atelier on Network Robot Systems
inside of EURON II has given the following interesting definition of NRS:

A Network Robot System is a group of artificial autonomous systems
that are mobile and that make important use of wireless communica-
tions among them or with the environment and living systems in order
to fulfill their tasks.

Network Robot Systems (NRS) call for the integration of several fields:
robotics, perception (sensor systems), ubiquitous computing, artificial intel-
ligence, and network communications. Some of the key issues that must be
addressed in the design of Network Robot Systems are cooperative localiza-
tion and navigation, cooperative environment perception, cooperative map
building, task allocation, cooperative task execution, human-robot interac-
tion, network operation, and communications. The topic Network Robot Sy-
stems transcends conventional robotics, in the sense that there exists, for these
type of distributed heterogeneous systems, an interrelation among a commu-
nity of robots, environment sensors and humans. Applications include network
robot teams (for example to play soccer), human-robot networked teams (for
example a community of robots that assist people), robots networked with the
environment (for example for tasks on urban settings or in space applications)
or geminoid robots (a replication of a human with own autonomy and being
partially tele-operated through the network).

1.3 UAV Networks

Advances in control engineering and material science and low cost and high
performance of commercial wireless equipment made it possible to develop
small-scale unmanned aerial vehicles (UAVs) equipped with cameras, sensors
and communication devices. The technology originates from military applica-
tions, recently, have also been offered this kind of products also for the com-
mercial market and have gained much attention. In civil applications UAVs
can act for example as relays between ground stations that could not other-
wise communicate due to distance or obstructed line of sight. Multiple UAVs
could simultaneously detect, record and track wildfires. Last but not least,
UAV networks can be deployed on demand to create an instant communica-
tion infrastructure for example to facilitate temporary hot spots and compen-
sate network outages in case of public events and emergencies. Today such
UAVs are used specially for aerial imaging, police and fire rescue operations,
and military missions.
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An UAV network can be regarded as an autonomous system that flies in
the air, senses the environment, and communicates with the ground station.
Typically it is controlled by a human operator by remote control. Despite
these advances, the use of a single UAV has severe drawbacks, demanding for
a system in which several UAVs fly in a formation and cooperate in order
to achieve a certain mission. Potential opportunities and benefits of multiple
cooperating UAVs include the following [9]:

• a single UAV cannot provide an overall picture of a large area due to its
limited sensing range, limited speed, and limited flight time. Furthermore,
it has only a limited view onto the ground due to buildings, trees, and
other obstacles. A formation of UAVs can cover a much larger area. In
addition, multiple views on a given scene, taken by different UAVs at the
same time instant, can help to overcome the problem of occlusion;

• by intelligently analyzing different views, the image quality can be im-
proved and even depth information can be computed, leading to a three-
dimensional model of the environment;

• using GPS system based navigation and sophisticated on-board electronics
that lead to high stability in the air, by communicating each other the
direction of provenience, when a meeting occur, is possible to achieve full
coverage in a minimum time [10];

• an aerial imaging system working with a multitude of UAVs can be made
more robust against failures and allows a certain level of task sharing
among the UAVs.

A vision for the future is to have an aerial imaging system in which UAVs
will build a flight formation, fly over an area of interest, and deliver high
quality sensor information such as images or videos. These images and videos
are communicated to the ground, fused, analyzed in real-time, and finally
presented to the user.

The main tasks for collaborative UAVs are as follows:

• Flying in a structured and controlled manner over a predefined area;
• Sensing the environment, i.e., taking pictures, recording video data, and

possibly fuse it with the data from other sensors, e.g., infrared sensors and
audio sensors;

• Analyzing sensor data, either off-line at the ground station or on-line,
during flight, and in a collaborative manner and presenting the results to
the user;

• Processing the sensor data on-board during flight, performing object de-
tection, classification and tracking.

Adding properly specifics mechanisms for autonomous control flying, and
cooperation with other UAVs, such a UAV formations behaves as a Self-
Organizing System such as swarm of birds.





2

Impact of the Propagation Environment on
Controlled Mobility Algorithms

In this chapter, we are interested in investigating the role of the propaga-
tion model used in the simulations of distributed algorithms that using the
controlled mobility. This technique allow to each nodes of the network to
autonomously move towards a position that is optimal in terms of energy
consumption for the transmission of a data flow. In literature was been shown
as the optimal placement for relay nodes that help the transmission of a data
flow between a source and destination nodes is on “evenly spaced” positions on
straight line between source and destination. This is true if the initial residual
energies are the same for all nodes, obviously this assumption is not realistic,
so the new placement for relay nodes is on “energy spaced” positions.

In the literature, the most used model for propagation is the free-space en-
vironment. Free-space is often too simplistic and ideal for the real propagation
environment conditions. It is interesting to understand how controlled mobi-
lity works in more realistic propagation environments. Therefore, we evaluate
the real benefits of controlled mobility also in the two-ray ground environ-
ment. The two-ray ground model refers to an environments with two-ray (as
in Figure 2.1) and considers other parameters that the free-space model do not
take into account. Moreover, we propose a generic propagation model able to
predict the path loss value for different environments: this model generalizes
the free space model. It is based on the same physical phenomena assumed
by the free space model but introduces a critical distance, as a threshold on
the distance between two devices. Below this threshold, the model turns to
be the simple free-space model.

In order to simulate the three propagation environments presented above,
we must understand how the energy consumed by the devices for communica-
tion is related to the environment by describing the energy model related to
the propagation model. After the energy model has been described mathema-
tically, we can implement it in a simulator and evaluate the results obtained.

The rest of this chapter is organized as follows: related works in Section
2.1; Section 2.2 describe the propagation environments and derive the energy
model for data transfer for different environments. In Section 2.3 we show
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the controlled mobility algorithms used in this work. Simulation results are
presented in Section 2.4 before concluding the work in Section 2.5.

2.1 Related Works

Wireless Sensors Network (WSN) are systems composed of a set of devices
capable to detect environment entities, collect data on specific events, com-
municate with each other, and move towards relevant positions. Certainly,
one of the most important issues in the design of these networks is the energy
consumption, since the devices are often powered by batteries. In this context,
in recent years, the concept of mobility has been exploited also to reduce the
energy consumption, by determining the best location for a device to move in
order to maximize its life-time [11], [12] and [13].

The three cited works identify three macro-categories of mobility in wire-
less systems: random [11], predictable [12] and controlled [13] mobility. In the
first category, mobile devices are supposed to move according to a random
mobility pattern. Many probabilistic models have been proposed in order to
foresee devices movements. Unfortunately random mobility represents more
of a problem to solve than an advantage to exploit. A network access point
mounted on a means of public transportation that moves with a periodic
schedule represents a case of predictable mobility. A predictable schedule per-
mits an easier, programmable accomplishment of some desired target, but mo-
bility is not considered as a network primitive yet. Finally, controlled mobility
generally consists of mobile devices introduced in the network and moving to
specified destinations with defined mobility patterns for specific objectives. In
this work, we are interested in this last category of mobility.

In fact, by driving the devices in “optimal” position, we can ensure a more
efficient and reliable energy management as well as provide benefits in terms of
communication. For instance, it is possible to alleviate path loss, which is a key
element in signal dispersion. In the free space model, path loss is proportional
to the square of the distance between the devices [75]. So, the shorter the
distance between two devices, the lower the signal loss and consequently the
energy used for transmitting/receiving data. On the other hand, to reach the
optimal positions, devices have to make physical movements that consume
energy. Hence, a trade-off between the energy consumed for the movement
and that used for the data trasmission/reception is very important to exploit
controlled mobility potentialities.

In literature, several schemes involving controlled mobility are presented
for different goals, such as: coverage management [15], [16], [17], energy con-
sumption reduction [18], [19], [20], [21], transport layer parameters improve-
ment [22], [23], [24]. Furthermore, in [25], authors show that the virtualization
of movements reduces the energy consumption.
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2.2 Propagation and Energy Models

The energy consumed by a device in order to transmit 1 bit at distance d is
E = β · dα where α is the path loss exponent and β is a constant [26]. In the
simulations reported in literature, α is usually set to 2 as a typical value of
the free-space environment [25]. A different choice in the path loss exponent
leads to a different environment. Also β is related with the path loss exponent,
in fact its measurement unit is [Joule/mα]. In the two following subsections,
we first introduce the propagation models that will be simulated and then we
derive the corresponding energy model for data transmission/reception.

2.2.1 Propagation Models

The propagation models most used in literature are: the free-space and the
two-ray ground model, which assign to the path loss exponent (α) a value of
2 and 4, respectively. In this work, we vary the value of α between these two
extremes. To do this, we propose a generic-model able to use a path loss value
in the range 2 ≤ α < 4.

The path loss value related to the free-space model is calculated as [27]

PLfree−space =
PT

PR
=

(

4πd

λ

)2

where λ is the wavelength and d is the distance between transmitter and
receiver.

Instead, the path loss value related to the two-ray ground model is [27]

PLtwo−ray ground =
PT

PR
=

d4

h2th
2
r

where ht and hr are the transmitter and receiver antenna heights, respectively,
and d is the distance between the devices as in Figure 2.1.

Fig. 2.1. Two-ray ground model
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For all the values of α between 2 and 4, we propose a generic model able
to predict the path loss value through the following relation [28], computed
from the logarithmic form of the free-space path loss by using the least mean
square error method [29]:

PLgeneric =

(

4πd0
λ

)2

·
(

d

d0

)α

+ χ

where d is the distance between transmitter and receiver, λ is the wavelength,
χ is the value of the shadowing effect, and d0 is the critical distance. If the
distance between the devices is smaller than the critical distance, we can
assume that they communicate in the free-space model. As we can see the
model just described is an extension of free-space model, infact, if α = 2,
the two models coincide. The description of these propagation models is very
important because the value of the path loss exponent is an important part
of the energy models that we will derive.

2.2.2 Energy Models

The following step is to derive mathematically the energy model corresponding
to each mentioned propagation model.

As we already reported, the energy consumed by a device in order to send
1 bit at distance d is E = β · dα, where α is the path loss exponent and β is a
constant [26]. Both α and β depend on the environment: α varies between 2
and 4 according to the propagation model and β depends on the value chosen
for α. Therefore, β itself changes according to the propagation environment.

The energy consumption of a generic device to send l bit at distance d, for
the free-space model is:

Efree−space = l · β · d2 = l ·
{

Prec

R
· 1

GtGr
·
(

4π

λ

)2}

· d2

where Gt and Gr are the gains of transmitting and receiving antennas, respec-
tively, Prec is the minimum power so that a bit is received correctly, R is the
trasmission rate and λ is the wavelength. In order to characterize the propa-
gation environment, we plug in this model values commonly used in Wireless
Sensor Networks (WSN):

• trasmission rate R = 10 kbits (in the WSN, typically, 10 ≤ R ≤ 240 kbits);
• antenna gain Gt = Gr = 1;
• minimum power Prec = −85 dBm = 3.6× 10−12 W ;
• wavelenght λ = 0.125 m;
• operating frequency f = 2.4 GHz

so we obtain the following energy model:
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Efree−space = l ·
{

3.2
pJ

bit ·m2

}

· d2 (2.1)

The energy model for the two-ray ground environment casts as follows:

Etwo−ray ground = l · β · d4 = l ·
{

Prec

R
· 1

GtGr
· 1

h2th
2
r

}

· d4

By setting the gains of the antennas equal to 1, and antennas heights to
ht = hr = 1.5 m [30], we obtain the following relation:

Etwo−ray ground = l ·
{

0.0625
fJ

bit ·m4

}

· d4 (2.2)

In order to compute the energy model to use for a generic path loss expo-
nent in the range 2 < α < 4, we set unitary gains of antennas, so to derive
for free-space and two-ray ground environments the two following relations:

{Efree−space = l · Prec

R · PLfree−space

Etwo−ray ground = l · Prec

R · PLtwo−ray ground

therefore, according to the same logic, for generic model we will have a model
equal to

Egeneric = l · Prec

R
· PLgeneric = l · Prec

R
·
(

4πd0
λ

)2

·
(

d

d0

)α

We decided to set the critical distance to d0 = 1.5 m [31]

Egeneric = l ·
{

8.1862
pJ

bit

}(

d

1.5 m

)α

(2.3)

Also in the simulation, we need to take into account the energy consump-
tion due to the movement [32]:

Em(d) = k · d+ Efriction

where d is the covered distance, k is a costant (0.1 < k < 1 J
m ) and Efriction

is the energy needed to overtake the static friction. For our simulations k will
be set to 0.1 and the static friction will be neglected since Efriction ≪ k · d.

2.3 Controlled Mobility Algorithms

One of the key points for this category of mobility, it is the determination
of the optimal position to maximize the life-time, and thus, to minimize the
energy consumption of a node during communication.
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It’s clear that to have less waste of energy, and therefore to maximize the
life-time of a sensor, the optimum position to achieve is in the line between
the source and destination nodes. Consequently, the controlled mobility drives
sensors to be spaced uniformly (evenly spaced) in point to point communica-
tion between the transmitting node and the receiver node.

In the real world, however, it is fair to assume that the nodes are positioned
with the same energy initially, but it is also proper to consider that, according
to the position and the amount of data transmitted, the residual energy is
different from node to node. As a result it can be shown, as done in [25],
that, if the residual energy is different between the various nodes, the nodes
controlled mobility will drive to a new optimal position, which will always
be along the line joining the source and destination but the nodes will not
be evenly spaced, but rather assume a position dependent on their residual
energy (energy spaced). The non-uniformity in fact, derives from the fact that
the residual energy is different between the nodes.

By driving the devices in “optimal” position, we can ensure a more effi-
cient and reliable energy management as well as provide benefits in terms of
communication. So, the shorter the distance between two devices, the lower
the signal loss and consequently the energy used for transmitting/receiving
data. On the other hand, to reach the optimal positions, devices have to make
physical movements that consume energy. Hence, a trade-off between the en-
ergy consumed for the movement and that used for the data transmission is
very important to exploit controlled mobility potentialities. The three energy
models proposed above will be used to determine the energy consumption of
different schemes of controlled mobility [24]:

• evenly-spaced (EvS);
• energy-spaced (EnS);
• virtual evenly-spaced (VEvS);
• virtual energy-spaced (VEnS).

The first scheme of controlled mobility drives nodes to space uniformly along
the straight line between the source and destination nodes (Figure 2.2a), the
second scheme spaces the devices along the straight line by taking into ac-
count their residual energy (Figure 2.2b). The last two controlled mobility
algorithms introduce the virtual movement concept [24], i.e. nodes do not
move until the algorithm converges to a stable point (Figure 2.2c).

All the algorithms have been tested in the three mentioned propagation
models and their performance will be compared with an algorithm that does
not let devices to move (no-movement algorithm, NM).

2.4 Results

In this section, we will show the results obtained by simulating the mentioned
controlled mobility schemes through MATLAB [33] in different propagation



2.4 Results 19

(a) evenly spaced positioning (b) energy spaced positioning

(c) virtual spaced positioning

Fig. 2.2. Controlled mobility algorithms

environments. We are interested to evaluate the results in terms of residual
energy of the devices after movement and data transmission. Similarly to the
simulation scenario in [25], we consider a data flow between a source and a
destination device in a 1000 m × 1000 m field. In Table 2.1 we reported the
values of the parameters used throughout the simulation. The routing issue
is out of the scope of this work. Since the optimal solution for placement in
terms of energy consumption requires nodes to lie on the direct route between
source and destination [13], we chose to use for all the simulated algorithms
a routing scheme that chooses nodes placed at the shortest distance to the
straight line.

As we said in the previous section, we have tested four controlled mobi-
lity schemes: evenly-spaced (EvS), energy-spaced (EnS), virtual evenly-spaced
(VEvS) e virtual energy-spaced (VEnS) [25] along with a scheme that does
not allow devices to move (NM). The first scheme of controlled mobility drives
nodes to space uniformly along the straight line between the source and des-
tination nodes, the second scheme spaces the devices along the straight line
by taking into account their residual energy. The last two controlled mobility
algoritms introduce the virtual movement concept [25], i.e. nodes do not move
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until the algorithm converges to a stable point. All the algoritms have been
tested in the three mentioned propagation models.

2.4.1 Results of the free-space model

According to the energy model in Equation 2.1, we simulated the behaviour of
five algorithms for a path loss exponent equal to 2. Specifically, we present two
simulation campaigns: in the first the nodes density is fixed to 6 · 10−4 nodes

m2

and the transmission data length varies between 0.1 and 4 Gb; in the second
the size of the data to transmit is fixed to 1 Gb and the nodes density varies
according to the values reported in Table 2.1.
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Fig. 2.3. Free-space: Residual energy vs. data sent (ρ = 6 · 10−4 nodes
m2 )

The results of the first simulation campaign are presented in Figure 2.3 We
can see that for low quantities of data sent, the algorithm without mobility
presents a larger residual energy respect to the controlled mobility algorithms,
but when the size of the transmission increases the gap vanishes quickly. In

Table 2.1. Simulation Parameters

Field Area (L× L) 1000m × 1000m

Source Position (xS, yS) (0,0)

Destination Position (xD, yD) (1000,1000)

Nodes Density (ρ) {2, 4, 6, 8, 10} · 10−4 nodes
m2

Data Lenght (l) 50Mb ÷ 40Gb

Initial Residual Energy (Ei) {15÷ 20}J

Max. Transmission Radius (r) 1
2·√ρ

m

Transmission Rate (rT ) 10kbit/s

Number of run for each scenario 100
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Figure 2.3 we can see that the threshold value for which is convenient to let
devices move is 0.5 Gb for the case ρ = 6 · 10−4 nodes

m2 .
The second simulation campaign took into consideration five scenarios

with varying devices density ρ = [2, 4, 6, 8, 10] · 10−4 nodes
m2 . Figure 2.4 shows

that a higher density improves the performance in terms of residual energy
after the transmission. This result was expected because a higher density of
devices requires a smaller amount of movements to drive the devices to the
straight line.
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Fig. 2.4. Free-space: Residual energy vs. node density (l = 1 Gbit)

If we compare the controlled mobility algorithms, we can see that in both
the simulation campaigns, the virtual movement algorithms use less energy
than their corresponding real movement algorithms. This improvement is due
to the energy saved by virtualizing the movement of nodes.

2.4.2 Results of the two-ray ground model

For the simulation in the two-ray ground environment, we have used the en-
ergy model in Equation 2.2. Even for this model we performed two simulation
campaigns: in the first the nodes density is fixed to 6 · 10−4 nodes

m2 and the
transmission data length varies between 0.1 and 40 Gb; in the second the size
of the data to transmit is fixed to 10 Gb and the nodes density varies according
to the values reported in Table 2.1.

From the first simulation campaign, in Figure 2.5, we can see that, even
for the two-ray ground model, there is a threshold value (7 Gb) for the data
length from which is convenient to move devices and let them find positions
that are less energy consuming. One important difference in respect of the
free space model is that the residual energy decreases more slowly when the
transmitted data increases. This result shows the effectiveness of moving to
a better placement for the devices when the propagation model is not the
simple free space.
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Fig. 2.5. Two-ray ground : Residual energy vs data sent (ρ = 6 · 10−4 nodes
m2 )

Figure 2.6 shows the average residual energy when nodes density varies. In
this case, we can see that when the nodes density increases, the algorithm with
no movement improves its performance and reaches almost the real movement
algorithms.
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Fig. 2.6. Two-ray ground : Residual energy vs node density (l = 10 Gbit)

Again the algorithms with virtualized movements perform better than
their corresponding real movement ones.

2.4.3 Results of the generic model

The generic-model works with values of the path loss exponent in the range
2 ≤ α < 4. Specifically, in our simulations, we have used an α variable in the
range {2 ÷ 3.75} with a step of 0.25, nodes density set to ρ = 6 · 10−4 nodes

m2

and we let the size of data vary between 1 and 300Mb. For matter of space,
in this chapter we will show only the results for α = 2.5 and α = 3.25.
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Fig. 2.7. Generic-model : Residual energy vs data sent (α = 2.50)

In Figure 2.7 and 2.8, the simulation results show the same trend obtained
for the previous environments: the algorithm with no movement is better than
all the others, in terms of devices residual energy, until a certain data length.
When α = 2.5 the threshold on the data length is around 100Mb in respect of
the algorithms with real movements, and 50 Mb in respect of the algorithms
with virtualized movements. When α = 3.25 the threshold on the data length
is around 7 Mb in respect of the algorithms with real movements, and 4 Mb
in respect of the algorithms with virtualized movements.

These results reflects the behaviour observed for the previous two models
and show that, because of both a faster power decay when α increases and
controlled mobility robustness is very convenient to move devices and let them
find the optimal energy consumption positions.
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Fig. 2.8. Generic-model : Residual energy vs data sent (α = 3.25)
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2.5 Conclusions

In this chapter we evaluated the performance of a WSN system under differ-
ent propagation models when devices use controlled mobility schemes. Five
different algorithms have been tested. Four of them make devices move ac-
cording to a different controlled mobility scheme, while the fifth algorithm
keeps devices in the original positions.

The simulations have been performed in three propagation environments:
free-space, two-ray ground and generic model. The first one uses a path loss
exponent equal to 2, the second one that uses several more parameters to
model the two-ray and a path loss exponent set to 4 and the last one able to
use values of the path loss exponent in the range 2 ≤ α < 4 by generalizing
the free space model.

The results showed that controlled mobility leads to a lower energy con-
sumption for all the propagation environments, when the size of the data to
transmit is higher than a threshold. This threshold becomes smaller when the
value of the path loss exponent increases. Furthermore, algorithms that use
virtualization of the movements perform better than the corresponding real
movement algorithms because of the energy saved by moving only when the
algorithm converges.

This work led to the writing and publication of the following work:

R. Surace, V. Loscŕı, E. Natalizio, “On the Impact of the Prop-
agation Environment on Controlled Mobility Algorithms”, in
International Workshop on Mobility and Communication for Cooperation
and Coordination (MC3) at IEEE ICNC 2012.
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Algorithms to Film Sport Events with Flying
Robots

Flying robots, also know as Unmanned Aerial Vehicles (UAV) or drones,
are aerial vehicles that operate without a human pilot. Flying robots are
usually equipped with a positioning system, storage memory, and a wireless
transceiver. They can fly at considerable speed, 60 km/h for commercial de-
vices and 220 km/h for military aircrafts. Since their creation, flying robots
have found many uses in civil and military applications. Currently, they are
most often used for aerial reconnaissance, scientific research, logistics and
transportation, or more in general, in all the situations where a direct hu-
man intervention would be hazardous. A brilliant example of flying robots’
usefulness was presented in Fukushima in 2011, when a flying robot was used
to explore the disaster site at Japan’s devastated nuclear power plant. We
are convinced that the real potential of flying robots consists in achieving
coordination and cooperation among the devices of a fleet, and that the cor-
rect design of coordination/cooperation schemes would pave the way for the
realization of mission-oriented devices.

In this work, we make a step in the direction of deploying coordi-
nation/cooperation schemes for flying robots operations by proposing, formu-
lating and simulating the Sport Event Filming (SEF) problem. We introduce
this problem in order to provide a novel application scenario, where we can de-
velop strategies to coordinate the movement of a group of mobile robots in the
presence of highly varying time-space constraints to film/monitor a sequence
of actions while optimizing some specific objective. Nevertheless, a solution
to this problem is of interest for several application domains. Besides TV fil-
ming, it would be beneficial for environmental monitoring, disaster recovery,
site inspection and exploration, etc.

Specifically, the SEF problem copes with the organization of a fleet of
flying robots able to fly over a limited field to film a sport event with the
objective of maximizing the satisfaction experienced by viewers who watch
the game on TV, while minimizing the traveled path.

The family of problems we deal with are usually referred to as Dynamic
Vehicle Routing (DVR) problem, and the static variants taken into consider-
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ation in this work are all NP-hard problems. Specifically for the event filming
problem some solutions have been proposed [34], [35], [36], [37]. The main dis-
advantage of these solutions is that cameras are fixed. Therefore, they are not
applicable to the more general problem of coordinating flying robots move-
ments to film an event in a hostile or hazardous environment. Furthermore,
they cannot provide the same level of accuracy or entertainment given by
mobile devices. Whereas several solutions exist for mobile sensor networks in
static scenarios, to the best of our knowledge, no schemes using flying robots
have been proposed to solve this specific and dynamic problem.

The core contributions of our work can be outlined as follows:

• we describe and formulate an interesting and unexplored problem in the
framework of self-organization of mobile video sensing devices;

• we propose two families of algorithms to solve the dynamic version of the
problem in a distributed way and without any knowledge of the sequence
of actions;

• we propose a mathematical model in Section 3.5 for the static version of
the problem.

The rest of this chapter is organized as follows. Section 3.1 presents the
Vehicle Routing Problem and its variants. In Section 3.3 we propose two
families of distributed techniques for the optimal placement of flying robots.
These schemes are tested and analyzed through several simulation campaigns
in Section 3.4. Finally, in Section 3.5 we show the mathematic model used to
validate the algorithms tested, before concluding the chapter in Section 3.6.

3.1 Related Works

The problem of determining the movement pattern for a certain number of
flying robots when they have to film an event while maximizing viewer satis-
faction and minimizing the total transportation costs can be considered as a
special case of the Vehicle Routing Problem with Time Windows (VRPTW).
Specifically, it can be classified as a Vehicle Routing Problem with Soft Time
Windows (VRP-STW), where the sequence of points in the field to be filmed
represent the customer to be served. If a specific point is not timely filmed,
this affects only the satisfaction of the viewers without invalidating the overall
solution.

The VRPTW assume that the cities to be visited (actions in the SEF
problem) are known a priori and will not change during the execution of the
solution. However, in real applications this assumption may be too strict. In
reality, we have locations to be served that can be highly variable [39]: they
can be born and die at any moment, their demands can change over time even
when the solution has already been calculated. Also in the SEF problem, the
position to film and the time to film that location change action by action.
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The problem of planning routes through service demands that arrive dur-
ing a mission execution is known as the Dynamic Vehicle Routing Problem
(DVRP) [40], because part or all the locations to reach are not known a pri-
ori.

In [40], the authors identify three main approaches to address DVR prob-
lems. The first approach is to simply re-optimize every time a new event
takes place; in the second approach, routing policies are designed to minimize
the worst-case ratio between their performance and the performance of an
optimal offline algorithm that has a priori knowledge of the entire input se-
quence; in the third approach, the routing problem is embedded within the
framework of queueing theory and routing policies are designed to minimize
typical queueing-theoretical cost functions such as the expected waiting time
in the system for the demands.

Both families of distributed algorithms we present in this work follow the
first approach. In the second family, we additionally consider specific charac-
teristics of the problem to forecast the next locations to be covered.

3.2 Definitions and initial assumptions

To better understand the SEF problem must first be defined as a sport event
is characterized and its key components: game actions, drones movement and
viewer satisfaction.

3.2.1 Action

An action consists of a sequence of simultaneous movements performed by the
main actors of the event: the ball (or football, disk, etc.), the players and the
referees. The complete characterization of an action is composed of a quadru-
ple (x, y, z, t) for each actor, where (x, y, z) are the coordinates of the actor’s
position in a tri-dimensional spatial reference system and t is the time instant
when the actor is in that position. We assume that the camera-drones move
on a plane that is fixed, parallel to the plane where the actions take place
and high enough so as not to interfere with the actions. To correctly film the
game, cameras will have to match the players (x, y)− coordinates exactly by
moving over their heads and filming them from a perpendicular perspective. It
is worth noting that in reality a perfect matching of the (x, y)− coordinates
is not necessary for the SEF problem, because the camera aperture diame-
ter can compensate for moderate errors in camera positioning. Nevertheless,
we have to consider that the SEF problem is used here as a representative
of a general class of coordination/cooperation problems, which could present
more severe constraints for the drones, such as the need for a perpendicular
filming perspective due to physical obstructions. Furthermore, this assump-
tion remarkably simplifies the mathematical modeling and, to obtain a fair
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comparison, it will be used also for evaluating the proposed distributed algo-
rithms. From the camera perspective the images will be flattened on the game
field plane. Hence, the z− coordinate for both the players and the drones can
be neglected in the definition of the problem and its solution. Our future work
will also consider movement of the camera over the z − axis or, equivalently,
its zooming capabilities. A transversal (rather than perpendicular) perspec-
tive of filming, which is possible by considering the rotational capabilities
of the cameras, would lead to a totally different problem and mathematical
formulation that we do not consider in this work.

An action is defined within a time window, which consists of the following
time instants and intervals:

• tbirth: is the moment when the possession of the ball is gained by another
player;

• tstart: is the moment when the player who has possession of the ball starts
moving with it;

• tstop: is the moment when the player in possession of the ball loses it;
• Tfly: is the time interval between the loss of the ball by one player (tstop)

and the gain of it by another (tbirth).

Fig. 3.1. Game action’s soft time window.

We are not interested in Tfly because we assume that a typical camera can
follow the movement of the ball from one player to another for the whole event.
Therefore, we will not use Tfly in optimizing the viewer satisfaction. Instead,
we want to offer the viewers the possibility of enjoying the performance of the
individual players involved in the event by “personalized” shots when they get
possession of the ball. The duration of an action is the time interval between
tbirth and tstop. As discussed in Section 3.2.4, drones can recognize when a
player is in possession of the ball. Hence, the time interval between tstart and
tstop involves all the movements of the player in possession of the ball as well
as the consequent movements of the drone that is filming the current action,
even when the player moves away from the ball reception position.
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3.2.2 Event

An event is a sequence of actions that takes place in a size-limited field and
in a predefined time span. In the following, we will use a subscript for tbirth,
tstart and tstop that indicates the action within the whole event.

3.2.3 Viewer satisfaction

The satisfaction Sk
i of the viewer by watching the ith action of the event,

filmed by the kth drone is modeled as


















Smax tkarr,i < tstart,i

−Smax · tkarr,i−tstart,i

tstop,i−tstart,i
+ Smax tstart,i ≤ tkarr,i ≤ tstop,i

0 tkarr,i > tstop,i

(3.1)

where tkarr,i is the arrival time of drone k at the position of action i. It is
worth observing that the no-linear piecewise function (3.1) can be linearized
by using binary variables. The related linearized function has been used when
testing the proposed model. The total satisfaction of the viewer is obtained
by averaging the sum of the satisfaction experienced from each action on the
whole event. The satisfaction of the viewer is represented graphically in Fig.
3.1. It is maximized if the drone arrives at the action location before tstart and
it decreases linearly until becoming 0 when t = tstop. Hence, the definition of
viewer satisfaction matches with the definition of Soft Time Window, because
the only effect of a drone not arriving before tstart at the action location is to
reduce the overall satisfaction of the viewer without invalidating the solution
of the problem.

3.2.4 Relevant assumptions related to the drones

With regards to the drones movement, we refer to UAV camera-drones as any
aircraft that has a limited energy E provided by its battery and capable of
moving autonomously at constant speed v. We assume that our UAV camera-
drones are equipped with a positioning system (GPS or indoor positioning
system), a camera, storage memory and a wireless transceiver to send the
filmed images to a base station and to allow communication and cooperation
with other UAV camera-drones. These drones are capable of identifying and
localizing a target by some radio frequency identification tag applied to it or
by using a sensor network [42, 43, 44] deployed on the side of the field and
capable of locating the target and communicating with the drones. Therefore,
drones are able to recognize when a player is in possession of the ball because
player and ball tags will be overlapping. When this occurs, the drone that
is filming the action “sticks” to the player and follows him until the ball is
released, and the current action terminates. Further extension of this work
will consider in detail the communication aspects of filming and transmitting
the images to a base station.
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3.3 Distributed algorithms for dynamic VRP-STW

If the whole event sequence is available a priori, then the SEF problem be-
comes a VRP-STW problem, which has been modeled and solved to optimality
[38]. Since this assumption is not realistic for a real-time system, new opti-
mization methods need to be designed to tackle the dynamic version of the
SEF problem.

In Section 3.1 we mentioned that three different approaches have been
identified. The first of these approaches simply proposes to re-optimize every
time a new event takes place. This approach is the most suited for the spe-
cific communication and movement capabilities of the flying robots to offer
a feasible and practical solution to the event filming problem. In fact, the
sub-optimal solution will be computed action-by-action by the flying robots
that cooperate by exploiting their communication capabilities in a distributed
and self-organized fashion. For this purpose, we introduce in the distributed
strategies the coordination time, Tcoord, which is the time needed by the robots
to communicate with each other and determine which of them will move to
follow the newly generated action.

In the following we present two families: Nearest Neighbor (NN) and Ball
Movement Interception (BMI), each of them consisting of four different dis-
tributed techniques to solve the event filming problem.

3.3.1 Nearest Neighbor

The Nearest Neighbor technique for DVR problems in robotic system is pre-
sented in [41]. The core idea is that viewer satisfaction increases when a flying
robot is able to reach the location of the current action as quickly as possi-
ble, and that the minimum traveled distance is achieved by the closest flying
robot. Thus, the flying robot that is the closest to the location of the action
is the one chosen to move and film the action. The following three techniques
are extensions of the basic NN technique.

3.3.2 Nearest Neighbor-Division Field

A disadvantage of the NN technique is that when a sequence of actions occurs
in a limited area, the same flying robots will be chosen to film it. If the
duration of this sequence extends over time, it would cause one robot to reach
its maximum feasible traveled distance much earlier than the others.

Based on these considerations, we introduce the Nearest Neighbor-Division
Field (NN-DF). In the NN-DF technique, each robot is assigned to a portion
of the field, and it will film the actions that are located inside that portion.

This technique has the disadvantage of not choosing the robot that is the
nearest to the current action, which can result in a reduced satisfaction for
the viewer. We will see in Section 3.5.3 the effects of this with respect to the
reduced area for each robot to monitor.
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3.3.3 Nearest Neighbor with Specular Repositioning

In the previous two techniques only one robot moves when a new action is
born. The Nearest Neighbor with Specular Repositioning (NN-SR) technique
considers robots as belonging to a pair. When one of them, k, is chosen to
move to film an action for which it is the nearest neighbor, the robot that
is closest to the position specular to the action position, k̄, moves as well to
mirror the movement of the first. More precisely, let L and W be the length
and the width of the field. When robot k moves to the position of the new
action (xa, ya), k̄ will move to (L−xa,W −ya). It is worth noting that robots
are not coupled at the beginning of the event, instead k̄ is chosen action-by-
action depending on the proximity to the action specular position. We expect
that this technique, which results in robots traveling more than the previous
techniques, will be more reactive and timely in filming the actions so as to
offer a higher satisfaction to the viewer.

3.3.4 Nearest Neighbor with Quasi-Specular Repositioning

A generalization of the NN-SR technique is the Nearest Neighbor with Quasi-
Specular Repositioning (NN-QSR). The NN-SR technique makes pairs of
robots move specularly. As we have already highlighted, this behavior can
lead to a quick depletion of the maximum allowed traveled distance, due to
the specular movements of the robot (k̄) that is not filming any action. Thus,
the idea behind the NN-QSR is to make the center of the field be an attractor
for k̄ while it is repositioning in the direction of k’s specular position.

The attraction strength on the movement can be modulated through an
appropriate detour factor, 0 ≤ β ≤ 1. When β = 0, no detour is applied on
the movement of k̄, which moves to the specular position in respect of the
current action position, and NN-QSR coincides with NN-SR. When β = 1, k̄
is completely detoured towards the center of the field. For intermediate values
between 0 and 1, k̄ move on a point on the straight line between these two
extreme points. More precisely, if (xa, ya), L, W are the positions of the new
action, the length and the width of the field, respectively, then k̄ will move to
(L · (1− β

2 )− xa · (1− β),W · (1− β
2 )− ya · (1− β)).

By detouring the movement of k̄, we expect a higher satisfaction of the
viewer as compared to the NN and NN-DF techniques, without introducing a
high traveled distance expenditure as in the NN-SR technique.

3.3.5 Ball Movement Interception

All the previous techniques work well if tbirth and tstart are sufficiently far in
time to allow a robot to reach the action location before tstart. In fact, these
techniques try to solve the dynamic version of the proposed problem simply
by adapting as quick as possible the position of one (or one pair of) robots.
None of them try to forecast the location to film for next action before its
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tbirth. As we described in [38], the static model introduces the time of “flight”
of the ball when the ball is not possessed by any player, Tfly. This interval
of time between tstopi

and tbirthi+1
could be used to forecast the location of

next action.
We can realistically assume that robots, which are able to constantly detect

the ball and its location, are also able to easily compute their trajectory. For
the sake of simplicity, in this work, we consider only that the ball moves
along straight lines. We consider the parabolic trajectory of the ball as flatted
on the straight line lying on the game field plane, and we do not take into
consideration special effects that can be given to the ball.

By assuming that robots know the trajectory of the ball, they can estimate
the next player who will hold the ball. Through this estimation, before the
ball reaches the next player they can start moving towards the straight line
between the position of the previous action and that of the player expected
to receive the ball. Thus, we introduce a new family of techniques, called
Ball Movement Interception (BMI), which includes all the previous techniques
augmented by this knowledge: Ball Movement Interception (BMI), Ball Move-
ment Interception with Division Field (BMI-DF), Ball Movement Interception
with Specular Repositioning (BMI-SR) and Ball Movement Interception with
Quasi-Specular Repositioning (BMI-QSR). It is important to note that we do
not assume that unexpected interceptions of the ball destined to a specific
player are neglected. In fact, such events would simply cause a degradation in
the performance of this family of techniques.

3.4 Performance Results

In this Section we will show two simulation campaigns illustrating selected
results obtained for the proposed algorithms when several parameters vary.
We consider the average viewer satisfaction as the output parameter for as-
sessing the quality of the route chosen for the robots, and the total traveled
distance as the output parameter representing the cost of the route. In the
first simulation campaign we study the impact of the detour factor, β, on the
performance of the Specular Repositioning techniques. The second simulation
campaign is a more general comparison among the different distributed tech-
niques. The results have been achieved by using MATLAB [33], and they have
been averaged over 1000 runs with a confidence interval of 95%. The param-
eters presented in Table 3.5 are used in all the simulation campaigns, specific
differences will be highlighted in each campaign subsection. In Table 3.1, we
list the distributed algorithms names and the corresponding acronyms.

We simulate the behavior of the algorithms when the number of actions
in the event and the duration of each action vary, respectively. The number
of actions is useful to characterize the time-space variability of the actions in
the event, whereas the duration of an action represents the dynamicity of the
event. Both these input parameters depend on the kind of sport that has to be
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Name Acronym

Nearest Neighbor NN

Nearest Neighbor
NN-DF

with Division Field

Nearest Neighbor
NN-SR

with Specular Repositioning

Nearest Neighbor
NN-QSRβwith Quasi-Specular Repositioning

Ball Movement Interception BMI

Ball Movement Interception
BMI-DF

with Division Field

Ball Movement Interception
BMI-SR

with Specular Repositioning

Ball Movement Interception
BMI-QSRβwith Quasi-Specular Repositioning

Table 3.1. Simulated algorithms and their acronyms

filmed and their characterization is left as a future work. In our simulations,
we also used a variable number of robots (2÷ 6), but, for matter of space, we
will be able to show few results of scenarios with 2 and 4 robots.

Parameter Value

Size of the game field (L×W ) 110× 80 [m2]

Max Distance Feasible by Robots 65 [km]

Speed of Robots 15 [m/s]

Action Min Duration (tbirth → tstop) 0.2 [s]

Ball Min and Max Speed {1÷ 40} [m/s]

Coordination Time (Tcoord) 0.2 [s]

Max Satisfaction (Smax) 1

Actions Spatial and Temporal Distribution random

Number of run for each scenario 1000

Table 3.2. Fixed parameters used for all simulations

3.4.1 Performance evaluation varying detour factor

In this simulation campaign we want to investigate the impact of the detour
factor on the performance of the QSR techniques. Hence, we compare the
results of NN-QSR and BMI-QSR, when the detour factor, β, varies in the
range {0÷ 1}. We let the number of actions in the event and the duration of
an action vary, as shown in Table 3.3. The range considered for the former
parameter has been increased to match the time duration of a real event. The
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performance of the two techniques in terms of average viewer satisfaction for
different number of actions is reported in Fig. 3.2, and traveled distance for
different maximum durations of the actions in Fig. 3.3.

Number of Robots 2

Robot k Position {(−1)k L
4
+ L

2
, W

2
}

Action Max Duration (tbirth → tstop) {2, 6, 10}[s]

Detour Factor (β) {0÷ 1}

Number of Actions {100, 500, 1000}

Table 3.3. Simulation parameters used for simulating NN-QSR and BMI-QSR

Fig. 3.2. QSR techniques: average viewer’s satisfaction when the detour factor and
the number of actions vary

From Fig. 3.2 we observe that use of the ball movement interception does
limit the need to reposition the robot specular to the robot that is filming
the action. The BMI technique leads to a high viewer’s satisfaction when
the attraction strength towards the center of the field increases, whereas the
NN-QSR technique presents a maximum when the detour factor is between
0.5 and 0.6. This also means that different detour strengths should be ap-
plied depending on the used technique. As expected, the viewer satisfaction
experienced with the BMI technique is higher on average.

The same behavior for the NN-QSR technique is presented in Fig. 3.3,
where we can appreciate the existence of a minimum in the distance traveled
by the robots when the detour factor is around 0.6. The BMI-QSR improves
its performance when the detour factor grows until values very close to 1. It is
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interesting to remark that for both the techniques, a decrease in the distance
traveled by the robots corresponds to an increase in the satisfaction experi-
enced by the viewer. Comparatively, the NN-QSR technique leads the robots
to travel about 1.3 km on average less than the BMI-QSR technique, with
a corresponding about 18% on average of decrease in the viewer’s satisfac-
tion. For both the output parameters, the number of actions and the action
maximum duration do not significantly impact the performance of the differ-
ent techniques, therefore the three simulated algorithms produce overlapping
curves.

3.4.2 Comparison of Positioning Techniques

This second simulation campaign, whose main parameters are in Table 3.4,
shows the results when all the distributed techniques are applied to a sce-
nario with a variable number of actions and a fixed action maximum duration
(Fig. 3.4, 3.5) and a fixed number of actions and a variable action maximum
duration (Fig. 3.6, 3.7).

In Fig. 3.4 we show that the distance traveled by the robots grows linearly
with respect to the number of actions for all the algorithms. Thus, it is easy
to predict the distance that each technique will make robots travel through
an estimate of the number of actions a real event will consist of. As expected,
the NN technique is the best in terms of traveled distance, both when the
Division Field is used and when it is not. The basic technique of the BMI
family performs as the third best for this metric, which is a very encouraging
result because of the consideration we will make about the average viewer
satisfaction. On average the BMI technique makes robots travel about 73 km

Fig. 3.3. QSR techniques: traveled distance when the detour factor and the action
maximum duration vary
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more than NN in the considered interval. The techniques with Specular Repo-
sitioning are the worst for this metric because of the distance traveled by the
robot that does not film the action.

Number of Drones 4

Drone k Position
{(−1)k L

4
+ L

2
,

(−1)⌈k/2⌉ W
4

+ W
2
}

Action Max Duration (tbirth → tstop) 2÷ 10 [s]

NN-QSR Detour Factor (β) 0.6

BMI-QSR Detour Factor (β) 0.8

Number of Actions {1000 ÷ 5000}

Table 3.4. Simulation parameters used for distributed algorithms comparison

Fig. 3.4. Distributed algorithms comparison: total traveled distance for fixed actions
maximum duration (6 [s])

The situation is reversed in Fig. 3.5, which shows the average viewer sat-
isfaction. All techniques in the BMI family achieve a higher satisfaction than
the corresponding techniques in the NN family. The distance between the
best techniques of the two families for this parameter, which are the basic
technique and the SR technique, is 14% on average. When the upper limit
on the feasible traveled distance is reached, both the satisfaction achieved by
BMI-SR and BMI-QSR start decreasing, since robots are not allowed to move
anymore. Thus, the instantaneous satisfaction goes to zero and the average
satisfaction decreases. Until the feasible distance limit is reached, the two
techniques of the BMI family perform very similarly, the only main difference
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Fig. 3.5. Distributed algorithms comparison: average viewer’s satisfaction for fixed
actions maximum duration (6 [s])

is that the QSR let robots travel more efficiently. Instead, we can appreciate
some difference in the performance of the same techniques for the NN family,
the SR technique performs 2% better on average than the QSR technique.

In Fig. 3.6 we can appreciate the traveled distance when the maximum
duration of the actions varies. We can see that all the proposed algorithms
are scalable with respect to this input parameter, and the heuristics ranking
is the same of that in Fig. 3.4. Fig. 3.7 shows a logarithmic growth of the
average viewer’s satisfaction when the actions maximum duration increases.
Very quick and short actions create troubles to all the algorithms, which do
not achieve more than 30% of viewer’s satisfaction, whereas they perform
much better and reach 90% of satisfaction when the maximum duration is
the upper value. On average, the BMI techniques have a gain of 15% over the
corresponding NN techniques.

3.5 A Multi-objective Approach for UAV Problem with
Soft Time Windows Constraints

In this chapter, also we give a mathematical formulation of the problem as
a multi-criteria optimization model, in which the total distances traveled by
the UAVs (to be minimized), the customer satisfaction (to be maximized) and
the number of used UAVs (to be minimized) are considered simultaneously. A
dynamic variant of the basic optimization model, defined by considering the
rolling horizon concept, is shown. In order to test this model, we introduce a
case study as an application scenario, where sport actions of a football match
are filmed through a distributed UAVs system. The customer satisfaction and
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Fig. 3.6. Distributed algorithms comparison: total traveled distance for a fixed
number of actions (1000)

Fig. 3.7. Distributed algorithms: average viewer’s satisfaction for a fixed number
of actions (1000)

the traveled distance are used as performance parameters to evaluate the
proposed approaches on the considered scenario.

3.5.1 Problem Statement and Mathematical Formulation

The considered scenario is characterized by a set of UAVs that fly over a finite
dimension area in order to reach all the events, which occur in a finite time
horizon. The satisfaction degree achieved by the customer is determined by
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considering the instant of the time that a drone reaches a particular event
location. Indeed, it is a measure of the temporal event coverage.

Modeling through graph theory

The UAVs single-objective routing problem has been introduced in [45]. In this
section, we consider the trade-off among three conflicting objectives, namely
the total traveled distance, the customer’s satisfaction and the number of
used UAVs. The mathematical model presented in this work can be viewed as
multi-criteria extension of the model in [45] and it can be described by using
the graph theory as follows.

Let G = (V,A) be a directed graph where N = {1...n} is the vertices set
and A is the arcs set. The vertices i with i = (m+1)...(n− 1), where m is the
number of available UAVs, denote the events to be reached and monitored,
these events contribute to the customer satisfaction evaluation, whereas the
vertices j with j = 1...m identify the drones starting position and n represents
the final event.

A non-negative cost dij is associated to each arc (i, j) ∈ A, representing
the Euclidean distance from vertex i to vertex j. It is assumed that dii = ∞
with i = 1...n, that is loops on the same event are prohibited.

Let us consider a set of m (0 < m < n) identical drones, constrained by
a maximum allowed traveled distance dkmax, k = 1, . . . ,m initially positioned
at the vertices j with j = 1...m, and able to move in two dimensions with
constant and homogeneous speed v. Each drone must follow at most one route,
starting from its initial position, including a set of events and ending to n.
Each event should be reached by exactly one drone.

Each vertex is associated with a time window, in which the corresponding
event i remains active [tbirth,i; tstop,i] where i = (m + 1)...n. A drone that
reaches an event must stay in the event position until the corresponding time
window ends. Each event is associated with a satisfaction function (Fig. 3.1)
and the instant of time in which a drone starts monitoring an event influences
the satisfaction obtained by the customer.

The goal is to find a route to be followed by each drone such that all the
events are monitored and some criteria are optimized simultaneously.

Notations and Definitions

In order to describe the proposed mathematical model it is useful to introduce
the following notations and definitions.

• A = L×W size-limited area;
• [0 . . . T ] time horizon;
• N = {1...n} set of events spatially distributed in A and temporally dis-

tributed in [0 . . . T ];
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• M = {1...m} drones (vehicle) able to move in 2 dimensions with constant
and homogeneous speed v (0 < m < n);

• dkmax maximum feasible distance traveled by vehicle k ;
• 1, . . . ,m drones initial positions;
• n drones final position;
• tbirth,i, tstart,i and tstop,i born, start and stop time instant of the event i

∀i ∈ N \ {1, . . . ,m};
• tbirth,i < tstart,i < tstop,i ∀i ∈ N \ {1, . . . ,m};
• tstop,i < T ∀i ∈ N \ {1, . . . ,m et n} and tstop,n = T (hypothesis in order

to conclude the events before the scenario end);
• dij Euclidean distance between event i and j ∀i, j ∈ N ;
• tkarr,i arrival time instant of vehicle k to event i ∀i ∈ N \ {1, . . . ,m} and

∀k ∈M ;
• tkdep,i departure time instant of vehicle k from event i ∀i ∈ N \ {n} and

∀k ∈M ;
• tki→j =

dij

v time required by vehicle k to go from event i to j ∀i, j ∈ N
and ∀k ∈M ;

• xkij binary variable used to indicate if drone k travels along the arc i-j

xkij =







1 if vehicle k travels along arc (i,j)

0 otherwise

• yki binary variable to indicate if drone k reached the event i

yki =







1 if vehicle k reaches the event i

0 otherwise

• Sk
i customer satisfaction achieved when the event i is reached by drone k

∀i ∈ N \ {1, . . . ,m et n} and ∀k ∈ M . The mathematical description is
given in (3.1);

• Smax max satisfaction obtainable by the customer in a single event;
• Ψ =

∑m
k=1

∑n−1
i=m+1 S

k
i total customer satisfaction, i.e. the sum of cus-

tomer satisfaction perceived in all events;

• Ψ̄ =
∑m

k=1

∑n−1

i=m+1
Sk
i

n−m−1 average customer satisfaction;

• Ψ̄% = Ψ̄× 100 percentage average customer satisfaction;
• Ψmin minimum level of ensured satisfaction;
• rk = (v1, v2, ...vh) with v1 ∈ {1, . . . ,m}, vh = n, v2...vh−1 ∈ N \ {1, . . . ,m

et n} and ∀k ∈ M . Each drone has to travel a route that starts from its
initial position and finish at final position.

It is worth observing that a piecewise linear function is used to represent the
customer’s satisfaction, given in (3.1). In order to linearize this function, the
following variables are introduced:
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• δk1i, δ
k
2i and δ

k
3i binary variables defined as follows:

δk1i =







1 if tkarr,i ≤ tstart,i

0 otherwise

δk2i =







1 if tstart,i < tkarr,i ≤ tstop,i

0 otherwise

δk3i =







1 if tstop,i < tkarr,i ≤ tstop,n

0 otherwise

• zk1i, z
k
2i and z

k
3i non-negative variables.

The function (3.1) for each i ∈ N \{1, . . . ,m} and for each k ∈M assumes
the following form:

Sk
i = Smaxδ

k
1i + Smaxδ

k
2i +

( −Smax

tstop,i − tstart,i

)

zk2i

with the variables constrained as follows:

δk1i + δk2i + δk3i = 1

0 ≤ zk1i ≤ tstart,i · δk1i
0 ≤ zk2i ≤ (tstop,i − tstart,i) · δk2i
0 ≤ zk3i ≤ (tstop,n − tstop,i) · δk3i

Assumptions

• The time and spatial distribution of events are known in advance;
• All the events (except the last one) must be reached by exactly 1 drone;
• Drones start from different positions;
• Drones, that accomplished their tasks, converge towards a dummy loca-

tion (last event), where maintenance operations on the vehicles can be
performed. The distance traveled to reach this final position is not taken
into account in the total cost evaluation;

• All events ∈ N \ {1, . . . ,m} have their own soft time window already
presented in Fig. 3.1.

Mathematical model

The UAVs routing problem with soft time windows has been mathematical
represented by defining a multi-criteria optimization model. The considered
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objective functions are related to the following three specific aspects: minimize
traveled distance, maximize average customer satisfaction and minimize the
number of used vehicles.

In the evaluation of the first two objectives, the events corresponding to
the initial drones’ position and to the last dummy position are not taken
into account. The third criterion is determined by considering the number of
vehicles that reach the last event directly from their initial position, without
reaching other events. These UAVs represent the vehicles that are not used.

The proposed formulation can be mathematically represented as follows:

min

m
∑

k=1

n−1
∑

i=1

n−1
∑

j=1

dij · xkij (3.2)

max Ψ̄ (3.3)

min
(

m−
m
∑

k=1

m
∑

i=1

xkin
)

(3.4)

Subject to:
m
∑

k=1

yki = 1 ∀i ∈ N \ {n} (3.5)

m
∑

k=1

ykn = m (3.6)

yki ≥ xkji ∀i, j ∈ N, k ∈M (3.7)

yki ≥ xkij ∀i, j ∈ N, k ∈M (3.8)

m
∑

i=1

n
∑

j=m+1

xkij = 1 ∀k ∈M (3.9)

n−1
∑

i=1

xkin = 1 ∀k ∈M (3.10)

n−1
∑

j=1

m
∑

k=1

xkji = 1 ∀i ∈ N \
{

{1, . . . ,m} ∪ {n}
}

(3.11)

n
∑

j=1

m
∑

k=1

xkij = 1 ∀i ∈ N \ {n} (3.12)
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n
∑

i=1

xkiz −
n
∑

j=1

xkzj = 0 ∀z ∈ N \
{

{1, . . . ,m} ∪ {n}
}

, k ∈M (3.13)

xkii = 0 ∀i ∈ N, k ∈M (3.14)

m
∑

i=1

m
∑

j=1

xkij = 0 ∀k ∈M (3.15)

tkarr,i = 0 ∀i ∈ {1, . . . ,m}, k ∈M (3.16)

tkarr,j =

n
∑

i=1

(tkdep,i + tki→j) · xkij ∀j ∈ N \ {1, . . . ,m}, k ∈M (3.17)

tkdep,i ≥ 0 ∀i ∈ N, k ∈M (3.18)

tkdep,i ≥ tstop,i · yki ∀i ∈ N \
{

{1, . . . ,m} ∪ {n}
}

, k ∈M (3.19)

tkdep,i ≤ tstop,n · yki ∀i ∈ N, k ∈M (3.20)

tkdep,n = tstop,n ∀k ∈M (3.21)

tkarr,n ≤ tstop,n ∀k ∈M (3.22)

δk1i + δk2i + δk3i = yki ∀i ∈ N, k ∈M (3.23)

0 ≤ zk1i ≤ tstart,i · δk1i ∀i ∈ N, k ∈M (3.24)

0 ≤ zk2i ≤ (tstop,i − tstart,i) · δk2i ∀i ∈ N, k ∈M (3.25)

0 ≤ zk3i ≤ (tstop,n − tstop,i) · δk3i ∀i ∈ N, k ∈M (3.26)

Sk
i = Smaxδ

k
1i+Smaxδ

k
2i+

( −Smax

tstop,i − tstart,i

)

zk2i ∀i ∈ N\{1, . . . ,m}, k ∈M

(3.27)

Sk
i = 0 ∀i ∈ {1, . . . ,m}, k ∈M (3.28)

tkarr,i = tstart,i · δk2i + tstop,i · δk3i + zk1i + zk2i + zk3i ∀i ∈ N, k ∈M (3.29)
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The tree objective functions represent the total traveled distance (3.2) to
be minimized, the average customer satisfaction (3.3) to be maximized and
the number of used vehicles (3.4) to be minimized.

Each event (except the final one) must be monitored by exactly one drone
(3.5), while the last event must be reached by all the drones (3.6). The event
j must be monitored by the drone that followed the path that goes from event
i to j (3.7-3.8).

All vehicles must start from their initial position and stop in the final event
position (3.9-3.10). For each event, exactly one path entering and outgoing
from it must be present in the final solution (3.11-3.13). The drones cannot
follow loops, i.e. they cannot return to an event previously monitored (3.14)
and cannot reach the other drones’ initial positions (3.15). The arrival time
to the initial position is set equal to the starting simulation instant (3.16),
instead, the arrival time to the event j (excluding the initial event) by the
vehicle k must be equal to time of departure from event i added to the time
it takes to go from i to j (3.17).

A drone can leave an event only after the simulation time is started (3.18),
the event work is finished (3.19) and before the end of the simulation time
horizon (3.20).

A drone must never leave the last event, therefore, the departure from
final event has only a symbolic value equal to the end of the simulation (3.21)
and a vehicle must reach the final position before the end of the simulation
period (3.22). The constraints (3.23-3.29) are used to linearize the customer’s
satisfaction condition (3.1).

Case Study: Sport Event Filming Problem

In section 3.5.1, we modeled the UAVs movement in order to make them able
to reach a set of events and stay in these positions until the end of the event
itself.

The proposed model is useful for representing many real applications [46]
[47] [48]. In this work, we consider the Sport Event Filming (SEF) problem
as a case study.

In this context, the challenge is to organize a fleet of drones able to fly
over a limited field and film a sport event with the objective of maximizing
the satisfaction experienced by customers who watch the game on TV.

In order to apply the proposed model to the SEF problem, we assume that
a match is the scenario in which a set of game actions (i.e. the events of the
generic model) is randomly deployed in space-time PoI.

An example of game action is given in Fig. 3.8, where, in subfigure 1, the
ball reaches the player 1 and a new game action borns. In subfigure 2, player
1 starts its action by moving and in subfigure 3 player 1 stops its action when
he loses the ball, passing it to the player 2. In subfigure 4 the ball reaches
player 2 and a new action borns.
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Fig. 3.8. Example of game action

We will not use Tfly in optimizing the spectators satisfaction because we
assume that an usual camera can follow the movement of the ball from one
player to another for the whole event. The goal is to compute the movements
of a drones set equipped with a camera, to achieve all the game actions and
film them.

An additional requirement in order to adapt the generic mathematical
model to the SEF problem is: the events (game actions for SEF problem) must
be sequential and not occur simultaneously, in fact the couple player-ball are
in only one time-space location at each time and game actions are serial. To
ensure these requirements, we set tstop,i < tbirth,j ∀i, j ∈ N \ {1, . . . ,m} with
i < j. In addition, the constraints (3.14) are modified as follows:
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i
∑

j=1

xkij = 0 ∀i ∈ N, k ∈M (3.30)

With the introduction of these constraints, the actions are causal in the time,
that is drones cannot reach an action before the action occurs and are forbid-
den to produce loops.

3.5.2 The solution approaches

In this section, the solution approaches proposed to address the multi-
objective UAVs routing problem are described in details.

Two different solution strategies have been defined to address the UAVs
routing problem. The former (i.e., the ǫ-constraint method) assumes that all
the events are known in advance and allows to determine an approximation
of the Pareto front, the latter is a rolling horizon strategy. In what follows,
the proposed methods are described in details.

The ǫ-constraint method

Several approaches for solving multi-objective optimization problems have
been proposed in the scientific literature [49]. In this work, in order to deter-
mine the set of efficient solutions, the ǫ-constraint method, introduced in [50],
is applied.

The main idea of this method is to select only one of the objective functions
to be optimized, whereas all others are converted into constraints. Thus, a set
of ǫ-constraint problems Pi(ǫ), one for each objective i = 1...k at a time is
solved.

The ǫ-constraint method is applied to the bi-objective version of the UAVs
routing problem, where the total distance traveled and the customer’s satis-
faction are taken into account. The third objective is tackled as a parameter of
the optimization procedure, in the sense that the number of UAVs to be used
is fixed at each iteration of the overall algorithm. However, it is important to
point out, that since m varies within the range of meaningful values that can
be assigned to the number of UAVs, the overall optimization process allows
us optimizing all the three objectives simultaneously.

Thus, let m̄ a given number of available drones, the following two opti-
mization problems (i.e., P1(ǫ2) and P2(ǫ1)) are solved iteratively.

minimize

m̄
∑

k=1

n−1
∑

i=1

n−1
∑

j=1

dij · xkij (3.31)

subject to:
x ∈ X (3.32)
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Ψ̄ ≥ ǫ2 (3.33)

maximize Ψ̄ (3.34)

subject to:
x ∈ X (3.35)

m̄
∑

k=1

n−1
∑

i=1

n−1
∑

j=1

dij · xkij ≤ ǫ1 (3.36)

where X denotes the feasible region defined by the constraints (3.5-3.13),
(3.15-3.29) and (3.30).

Thus in the first model we optimize the total traveled distance and we take
into account the customer’s satisfaction as an ǫ-constraint; in the latter, the
customer’s satisfaction is optimized and the total traveled distance is handled
as an ǫ-constraint. At each iteration, the value of the parameters ǫ1 and ǫ2,
are adequately modified.

A rolling horizon strategy

We defined a rolling horizon approach in order to capture the dynamicity of
the considered scenario. In the static case, it is assumed that all of the events
are know in advance, instead in the dynamic case this assumption is relaxed:
events can start at any time of the considered time horizon.

In order to handle this specific situation, the route to be followed by the
drones are planned by assuming the availability of partial known information
about the position and the instant of time in which each event takes place [51].
In particular, let n be the number of events to be monitored, it is assumed
that only a certain number r of events (0 < r < n) is known at each decision
epoch. Thus the proposed static model is used to define the best UAVs routing,
by considering only the known events and no information on future events is
considered.

When a new set of r events become available (i.e., in the subsequent de-
cision epoch), the new routing is determined by considering as initial drones’
positions those obtained in the previous optimization.

3.5.3 Computational Experiments

The computational experiments have been carried out on Hewlett-Packard
m9460it, Intel Core 2 Quad Q9400 2.66 GHz and 4 GB Ram with operating
system Windows Vista 64 bit.

To solve the proposed mathematical model, we used LINGO 9.0 ([52]), a
tool designed to build and solve different optimization models in efficient way.
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In order to assess the behavior of the considered solution approaches, the
SEFP as been considered as a case study. In particular, the specific scenario,
whose main characteristics are reported in Table 3.5, has been considered in
the computational phase.

Parameter Value

Size of the game field (L×W ) 110× 80 [m2]

Action Min/Max Duration (tbirth → tstop) {0.2÷ 6} [s]

Number of game actions 20

Ball Min/Max Speed {1÷ 40} [m/s]

Coordination Time (Tcoord) 0.2 [s]

Max Satisfaction (Smax) 1

Actions Spatial and Temporal Distribution random

Number of run for each scenario 1000

Confidence interval of 95%

Table 3.5. Values of the relevant parameters used for the experimental testing

The number of drones m̄ has been varied in the interval [1, . . . , 6]. We
considered 6 as the maximum number of drones since the application scenario
is based on a sport event whose field size is small. In fact, we will observe to
the follow that difference of performance is not so appreciable when we pass
from 5 to 6 drones. The set of efficient solutions obtained by the ǫ−constraint
method is depicted in Fig. 3.9.

Fig. 3.9. Graphical representation of the Pareto front obtained with the ǫ-constraint
method
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In order to show the effectiveness of the proposed solution approach, we
have also carried out computational experiments by treating the problem as
a single-objective optimization problem, where a convex combination of the
three objective functions has been considered.

The related problem assumes the following form:

minimize α

m̄
∑

k=1

n−1
∑

i=1

n−1
∑

j=1

dij · xkij − β Ψ̄ + γ
(

m̄−
m̄
∑

k=1

m̄
∑

i=1

xkin
)

(3.37)

subject to:
x ∈ X (3.38)

where α, β and γ are non-negative parameters chosen in such a way that
α+ β + γ = 1.

To generate non-dominated solutions, the single-objective optimization
problem has been solved for different values of these parameters and different
values of the number of drones m̄. Also in this case m̄ has been chosen in the
interval [1, . . . , 6], whereas α, β and γ have been selected as in Table 3.6. The
related results are reported in Fig. 3.10. By observing Fig. 3.10, the advan-
tage of the use of the ǫ-constraint method is evident. The superiority of this
approach is underlined by the results reported in what follows.

α β γ

1 0 0
0 1 0
0 0 1
1
3

1
3

1
3

1 1 1
1
2

1
2 0

1
2 0 1

2

0 1
2

1
2

Table 3.6. Values for the parameters α, β and γ

More specifically, in order to compare the two considered solution ap-
proaches, the quality of the Pareto approximation set is evaluated by consid-
ering the diversity of the set. In particular, the spacing metric proposed by
Schott in [53] is used. The aim of this metric is to evaluate how evenly the
points in the approximation set are distributed in the objective space. It is
defined as follows:

∆ =

√

√

√

√

1

η − 1

η
∑

i=1

(d̄− di)2
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Fig. 3.10. Graphical representation of the Pareto front obtained by solving the
single-objective optimization

where di = minj=1,...,η,j 6=i
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, f1, f2, f3 represent

the considered criteria and d̄ is the mean of di, i = 1, . . . , η.
The spread metric S introduced in [54] has been also considered. This

metric is used to evaluate if the set of solutions obtained span the entire
Pareto optimal region and it is defined as follows:

S =

∑M
m=1 d

e
m +

∑η−1
i=1

∣

∣di − d̄
∣

∣

∑M
m=1 d

e
m + (η − 1)d̄

where dem represents the Euclidean distance between the extreme solutions
of Pareto optimal front and the boundary solutions of the obtained non-
dominated set corresponding to m− th objective function; di denotes the Eu-
clidean distance between neighboring solutions in the obtained non-dominated
solutions set and d̄ is the mean value of these distances. The smaller the value
of S, the better the diversity of the nondominated set.

It is worth observing that this metric works only for bi-objective opti-
mization problems. Thus, in order to evaluate S, we have considered only two
of the three objective functions that is the total traveled distance and the
customer’s satisfaction.

The obtained results are given in Table 3.7, they underline that for the
considered scenario the ǫ-constraint method outperform the single objective
optimization approach.

Three different scenarios have been considered to evaluate the performance
of the proposed rolling horizon approach, obtained by varying the value of
the parameter r, representing the number of events known at each decision
epoch. In particular, r has been set equal to 3, 4 and 5. In addition, at each
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ǫ-constraint Single Objective
Method Optimization

S 19.08 27.50
∆ 1.00 1.13

Number of
Pareto Solutions 19 15

Table 3.7. Values of spacing and spread metrics and number of efficient points for
the ǫ-constraint method and the single objective optimization approach

time instant of the rolling horizon, for a given number of drones, we solve a
single-objective optimization model in which the total distance traveled by the
drones is minimized and the customer’s satisfaction is handled as a constraint.
The number of drones m̄ has been set equal to 1, 2, 3, 4, 5 and 6, whereas
the lower limit on the customer’s satisfaction has been chosen equal to 0.50,
0.90. The case in which Ψ̄ is not constrained has been also considered.

The related results are given in Fig. 3.11, they clear underline that the
best performance are obtained when r = 3.

(a) Pareto Front r = 3 (b) Pareto Front r = 4

(c) Pareto Front r = 5

Fig. 3.11. Pareto Front determined by the rolling horizon approach
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This behavior can be explained by observing that the lower r, the higher
the number of the times in which the model is solved and thus the better is
the representation of the dynamicity of the problem.

In order to evaluate the performance of the proposed rolling horizon strat-
egy, we have compared this approach with the heuristic techniques proposed in
[45], where the UAVs routes are re-optimized every time a new action starts.
The sub-optimal solution is computed action-by-action by the drones that
cooperate by exploiting their communication capabilities in a distributed and
self-organized fashion.

The related results are given in Tables 3.8, where for each heuristic and for
each number of the available drones, indicated with m̄, the sum of the distance
traveled by each UAV (i.e. the total distance) and the average customer’s
satisfaction are given.

From the results we can argue as, in terms of satisfaction, BMI-based
techniques generally behave better than techniques without BMI, when the
number of nodes is smaller. In fact, the gap in terms of satisfaction level is
around 30% when only a UAV is considered and ≈ 8% when the number of
drones is 3. This better level of satisfaction is paid in terms of total distance
traveled. In fact, the difference in terms of distance between the BMI-based
and no-BMI-based approaches can achieve values greater than 500 meters
when the number of UAVs is smaller than 3. When the number of devices
increases (≥ 4), we can notice as performance behaviors in terms of both
satisfaction and total distance between the two macro-class of approaches
(i.e. BMI-based and no-BMI-based) decreases. These considerations allow us
to conclude that BMI-approaches are preferable when the number of available
devices is smaller.

The set of efficient solutions determined by applying all the considered
heuristics is given in Fig. 3.12.

From the collected results, it is evident that, for the considered scenario,
the rolling horizon approach behaves the best. Indeed, the solutions deter-
mined by this last strategy dominates those identified by the heuristics.

Fig. 3.12. Pareto Front determined by heuristic approaches
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Heuristic m̄ Total Customer’s m̄ Total Customer’s
Distance Satisfaction Distance Satisfaction
(meter) (meter)

NN 1 931.91 0.55 2 748.57 0.73
NN-SR 1 926.85 0.54 2 1231.14 0.75

NN-QSR0.5 1 937.23 0.54 2 1041.40 0.78
NN-QSR0.6 1 929.17 0.54 2 1036.66 0.78
NN-QSR0.7 1 935.73 0.54 2 1043.81 0.77

BMI 1 1076.62 0.85 2 935.72 0.87
BMI-SR 1 1084.90 0.84 2 1667.66 0.86

BMI-QSR0.6 1 1087.39 0.84 2 1275.02 0.87
BMI-QSR0.7 1 1079.75 0.84 2 1252.38 0.88
BMI-QSR0.8 1 1085.62 0.84 2 1228.86 0.88
BMI-QSR0.9 1 1083.12 0.85 2 1227.86 0.88

NN 3 606.17 0.81 4 520.72 0.86
NN-SR 3 1063.05 0.80 4 849.67 0.85

NN-QSR0.5 3 901.14 0.82 4 772.99 0.85
NN-QSR0.6 3 890.38 0.81 4 768.49 0.84
NN-QSR0.7 3 884.44 0.81 4 755.39 0.85

BMI 3 824.04 0.89 4 728.95 0.90
BMI-SR 3 1371.47 0.89 4 1190.80 0.90

BMI-QSR0.6 3 1150.63 0.89 4 1029.34 0.90
BMI-QSR0.7 3 1129.05 0.89 4 1014.36 0.91
BMI-QSR0.8 3 1100.16 0.89 4 994.94 0.90
BMI-QSR0.9 3 1080.28 0.89 4 974.26 0.90

NN 5 490.47 0.88 6 437.09 0.90
NN-SR 5 777.17 0.88 6 682.67 0.89

NN-QSR0.5 5 682.63 0.87 6 608.34 0.89
NN-QSR0.6 5 670.30 0.87 6 601.73 0.89
NN-QSR0.7 5 655.66 0.88 6 578.12 0.90

BMI 5 644.35 0.91 6 582.58 0.92
BMI-SR 5 1060.84 0.92 6 950.95 0.92

BMI-QSR0.6 5 929.86 0.91 6 842.67 0.92
BMI-QSR0.7 5 915.14 0.91 6 829.30 0.92
BMI-QSR0.8 5 876.56 0.92 6 801.88 0.92
BMI-QSR0.9 5 838.49 0.92 6 764.37 0.92

Table 3.8. Computational results obtained by the heuristic approaches
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3.6 Conclusion

In the first part of this chapter we considered the dynamic version of the
problem where knowledge of the entire sequence of actions is not assumed to
be known a priori. The dynamic version of the Sport Event Filming can be
treated as a Dynamic Vehicle Routing problem. We solved it by re-optimizing
the position of the drones every time that a new action occurs.

In the second part of this chapter we proposed a mathematical formula-
tion as multi-criteria optimization model by consider the minimization of the
distance traveled, the maximization of customers and the minimization of the
number of used UAVs. Concerning the mathematical optimization model we
took into account of the dynamicity of the events by considering the concept
of rolling-horizon. Furthermore, we proposed some and we compared the per-
formance of heuristics proposed in the first part of the chapter, in terms of
traveled distance, customer satisfaction and number of vehicles. In order to
test and compare the heuristic with the mathematical formulation results, we
considered a specific application scenario, that is a football match where the
events were the game actions to be followed and our UAVs were equipped
with cameras.

This work led to the writing and publication of the following works:

E. Natalizio, R. Surace, V. Loscŕı, F. Guerriero, T. Melodia, “Two
Families of Algorithms to Film Sport Events with Flying
Robots”, in 10th IEEE International Conference on Mobile Ad-hoc and
Sensor Systems (MASS 2013), October 2013.

F. Guerriero, R. Surace, V. Loscŕı, E. Natalizio, “A Multi-objective
Approach for Unmanned Aerial Vehicle Routing Problem
with Soft Time Windows Constraints”, in Applied Mathematical
Modelling, Volume 38, Issue 3, 1 February 2014, Pages 839-852.
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Multi-Objective Evolving Neural Network

Very recently, the idea of designing new communication devices, capable to
adapt their operation roles in a self-organized fashion to rapidly face the
changes within the working environment, has gained a very high attention
from the wireless network research community [55],[56]; similarly, the avail-
ability of novel general purpose and powerful hardware platforms able to be
dynamically reconfigured via software, has paved the way for new research di-
rections in which it is possible to deploy extremely challenging communication
scenarios.[57],[58].

Being inspired by this novel communication trend and, taking into ac-
count the unique features offered by the recent Software Defined Radio (SDR)
paradigm, we considered the design of a self-adapting deployment strategy
for a communication network in which several wireless devices, scattered all
around in a specific area, can carry out a common task according to specific
network requirements in terms of coverage or connectivity. In this context,
aiming at handling very unlike communication scenarios, we firmly believe
that, the SDR capabilities of future wireless devices can be effectively im-
proved by coupling them with the potential offered by a wise controlled mo-
bility strategy to exploit different reconfiguration and self-adaptation levels.

By following this first intuition, the work proposes a distributed Neu-
ral/Genetic algorithm to compute the final nodes positions and the more
performing modulation schemes for each transmitter/receiver pair in order to
guarantee an agreed QoS level. In particular, by considering a generic SDR
architecture [59], the major advantages consisting into the ability of automa-
tically selecting the more suitable modulation scheme to be used for an un-
known received signal, can be effectively achieved. Thus, as a channel capacity
varies, modulation scheme switching enables the baud rate to be increased or
decreased in order to maximize the channel capacity usage. In addition, as
demonstrated in our preliminary studies [61], SDR capabilities supported by
a wireless node, coupled with the controlled mobility functionality, can im-
prove the overall system performances in terms of connectivity. Therefore,
such mobile SDR nodes turn out to be very useful for communication sce-
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narios in which, the requirements on constrained QoS connectivity, are more
stringent respect to the ones on the maximum coverage.

An example of such communication scenario could be the case of a dis-
aster area where the communication between the survivors and the rescue
teams has to guarantee a good quality level[60]; on the other side, a commu-
nication scenario mostly related to applications such as pollution monitoring
or fire detection only need a high coverage degree that can be achieved by
taking advantages just from the mobility of the nodes without using the SDR
capabilities.

In summary, we made the following contributions in this work:

• we discussed the potential of mobile SDR communication devices in terms
of both dynamical re-configuration and operation flexibility;

• we shown how the SDR capabilities supported by the wireless node, cou-
pled with the controlled mobility functionality driven by a distributed
Neural/Genetic, can improve the system performances in terms of connec-
tivity by also guaranteeing an agreed QoS level;

• we designed and validated an optimization model in order to prove, in
a mathematical way and on a very simple communication scenario, the
goodness of the proposed Neural/Genetic algorithm before to conduct a
more complex and intensive simulation analysis;

• we validated, throughout a self developed simulator based on a widely used
open source framework for evolutionary design, the proposed strategy in
different communication scenarios by varying both the amount of mobile
and SDR nodes to measure the impact of a larger number of Mobile/SDR
nodes on the overall system performances;

• we proposed an application of the neural/genetic algorithm on the video
surveillance through ultra-low power sensors.

The rest of the work is organized as follows: Section 4.1 presents few recent
research works on deployment techniques for wireless nodes and adaptive mod-
ulation schemes implemented via SDR. Section 4.2 describes which technolo-
gies and specific features the devices involved in the proposed communication
scenario should support, by highlighting hardware and software capabilities.
Section 4.3 presents the Neural/Genetic algorithm able to compute the best
positioning for the wireless nodes to satisfy the constraints imposed by the
specific communication scenario. Section 4.4 presents the proposed optimiza-
tion model to describe and validate the system behaviour from a mathematical
point of view. Section 4.5 discusses the obtained results and the goodness of
the proposed approach in terms of extreme adaptability in different commu-
nication scenarios; in Section 4.6 we show an application of the algorithm on
the video surveillance through ultra-low power sensors before the conclusions
in Section 4.7.
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4.1 Related Works

In this work we envision two main topics: 1) deployment techniques for differ-
ent communication scenarios and 2) adaptive modulation schemes for nodes
equipped with SDR capabilities. From the synergic combination and integra-
tion of Neural and Genetic approaches, we designed an algorithm able to
compute the best position and the most suitable modulation scheme for each
node involved into the communication path. According to these remarks, we
first recall few contributions on positioning techniques for wireless nodes that
have attracted much research attention becoming increasingly important in
recent years. In [76] the authors try to outline the main criteria that should
be considered while deploying wireless nodes in a sensor field. Fundamentally,
they give an overview of multi-objective approaches by outlining the main
assumptions and the formulation of this challenging problem. In [77], the au-
thor argues that the communication holes in wireless networks is the main
problem causing inefficiency; thus it needs to be effectively addressed. More
precisely, sensor nodes can be moved from an initial “unbalanced” state to a
“balanced” state, where the number of communications holes is minimized. In
[78] the authors distinguish placement approaches by considering determin-
istic and non-deterministic techniques. Often, non-deterministic placements
are also named as random placements, while deterministic placements are re-
ferred as controlled placements and the authors refer to the two approaches
by keeping this kind of assumption. The choice of how to deploy the sensors
in a field, is often affected by the specific application, the type of sensors,
the environment in which the sensors operate, etc. The possibility to control
a node deployment can be extremely advantageous in terms of operational
costs. Based on this last consideration, we figure out to equip wireless nodes
with motion capabilities in order to make them able to move towards specific
and more convenient locations by obtaining a dynamic changing of the topol-
ogy/deployment. In this way, it could be add more control to the network
and consequently outperform the operational costs. Generally, the survey we
cited above, group the deployment techniques based on some specific network
parameters such as coverage, lifetime, connectivity, or two or more of them
together, but do neither consider at all the possibility for the nodes to au-
tonomously move towards a specific position nor to adapt the modulation
scheme to some specific requirements. In this work we consider the possibility
to “change” the modulation scheme in order to guarantee a certain Bit Error
Rate (BER) level, and in case this constraint can be satisfied by selecting more
than one scheme, we select the most efficient in terms of energy consumption.
For this reason, the contributions that compare modulation schemes selec-
tion to increase coverage and/or connectivity are considered also as related
work. In [61] we present the preliminary idea to opportunistically select the
more appropriate modulation scheme in order to achieve a certain degree of
coverage and connectivity. The added value in respect of [61] is first of all
in terms of a general benchmark definition, computed through the formula-
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tion of the combined coverage and connectivity problems as a multi-objective
optimization problem. Moreover, we provide more details in terms of results
by validating the algorithm we propose in several communication scenarios.
Starting from 2007, Stuckmann and Zimmermann [79] envisaged SDR tech-
nology as one of the four main objectives, to develop European technologies
for systems beyond 3G. Specifically, the spectrum and resource management
to make efficient the use of existing spectrum resources can be realized in an
feasible and effective way through the application of the SDR concept. The
importance of this kind of technology is shown in [80], where the authors
propose to optimize the throughput of the network, working in different chan-
nel conditions, by considering an automatic modulation switching method to
reconfigure the transceivers of SDR systems. We propose a similar approach
but with a different purpose, namely a multi-objective algorithm where the
goals are both the coverage and the connectivity, in addition the technique is
also energy-aware because, where more solutions are feasible, the best one in
terms of energy-consumption is selected. Finally, in [81], the authors analyse
different modulation techniques in combination with SDR. In practice, they
outline again the importance of this kind of technology for the future mobile
communication systems.

4.2 Smart mobile devices supporting SDR

New powerful devices supporting SDR capabilities will be used in the next
future to form a self-evolving wireless network in which several goals such as
coverage increase, high data rate and connectivity will be achieved in diverse
communication scenarios. For this reason, with the aim of considering a quite
modern communication context, we studied the case in which both simple
mobile or fixed sensor nodes equipped with a wireless IEEE 802.15.4/ZigBee
compliant RF transceiver, are considered. Furthermore, we also took into ac-
count the presence of more complex mobile devices, with a high processing
capability, able to dynamically change the modulation scheme between differ-
ent transmitter/receiver pairs by using the SDR support as shown in Figure
4.1. In addition, we assume that these wireless devices are equipped with
a GPS module coupled with a software application for position coordinates
exchange to perform a specific positioning strategy as detailed in the next
section.

By exploiting the new features of programmable SDR architectures, a
flexible implementation of several modulation schemes (i.e. MFSK, MPSK,
MQAM) can be realized in a simple and effective way. This flexibility turns
into a great adaptivity to optimize different network performance indexes such
as throughput, coverage and degree of connectivity of a wireless networks op-
erating under varying channel conditions. In this context, the devices equipped
with SDR functionalities can easily work as relay nodes in a multi-hop com-
munication scenario by dynamically adapting different modulation schemes
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Fig. 4.1. Mobile relay devices supporting SDR capabilities

between the receiving and transmitting phases with the aim of optimizing
network performances such as BER (Bit Error Rate), energy consumption
and overall coverage.

It is well known that channel modulation has a relevant impact on
the quality of the wireless link measured in terms of BER and on soft-
ware/hardware complexity; furthermore, digital modulation/demodulation
techniques need specific channel waveform coherence, coding/decoding and
spreading/despreading of the radio spectrum [62]. Since the bit error prob-
ability is a function of the channel modulation, a radio channel with better
quality has to be assigned to a larger number of bits and a higher order mod-
ulation, whereas a channel with poorer quality has to be assigned fewer bits
or even no bit when the channel quality is too bad. For example, by working
with three main digital modulation schemes (i.e. MFSK, MPSK, MQAM)
having different modulation orders (M=2,4,8,16 ), it is possible to select and
to use the most suitable combination by implementing it on-the-fly throughout
SDR techniques. Moreover, to guarantee a certain BER value, the modulation
schemes could be dynamically changed according to the channel quality ex-
perienced by the nodes and the distance variation between nodes due to the
mobility.

In the last few years, the SDR paradigm is becoming more attractive
and feasible thanks to the development of open-source software tool-kit such
as GNU radio [64] and hardware devices such as Universal Software Radio
Peripheral (USRP) [65]; therefore, several modulation/demodulation software
blocks can be developed within the generic SDR architecture [63] for both
transmitter and receiver (see Figure 4.2) allowing the design of new and more
powerful devices well suited to support the dynamic modulation changing and
adaptation strategies proposed in this work [58],[66].

In particular, it is worth to note that, with reference to the complexity of
such software/hardware architecture, the Hybrid Radio Architecture (HYRA)
proposed in [66] addresses the implementation of SDRs in the context of em-
bedded systems by using reconfigurable hardware platforms with minimal
additional resources.
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Regarding the mobility features implementation, we would like to remark
that this feature can be implemented by equipping a network device with
two or four wheels and a servo motor controlled by Arduino-based modules.
The estimated cost of implementing controlled mobility and reconfiguration
capability in such platforms is reported in the Table 4.1. Even if this kind of
software/hardware architectures seem quite expensive, the fast technological
advancements will favour the reduction of estimated costs; thus, it is plausible
that the mentioned embedded architectures will shortly be available at a much
lower cost.

Fig. 4.2. SDR architecture for Relay Node [63].

Table 4.1. Costs to implement SDR devices.

Mobility Support SDR Support
Wheels + Servo Motors + Arduino USRP B200

250$ 800$

4.3 Neural Network and Genetic Algorithm

The proposed work aims at computing, in a fully distributed fashion, the
best positions for wireless devices belonging to a network placed in a given
area, in order to satisfy some specific network requirements. In particular the
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algorithmic scheme, to be performed by each node, consists of a neural network
used to control and compute the next movement within the network area, and
a genetic algorithm to perform a new solution that better fits with the desired
objective function. Since the computation of the new nodes’ position can be
only based on local information, both the components of the proposed scheme
are performed in a distributed way: a node executes the neural algorithm by
knowing the positions of its neighborhood and the genetic algorithm manages
its own genes without using global information.

Specifically, the two objectives considered in this work, namely, the cover-
age area and the number of sensor devices having a path toward a sink with
a certain quality of service, are in contrast one to each other. Therefore we
designed a wise strategy, based on the approach presented in [67], able to take
into account both the requirements in a dynamic and re-configurable fashion.

4.3.1 The Neural Network

The neural network determines the movements of each wireless node; it is
fully connected, recurrent and time-discrete. The neural network consists in
input, output and hidden neurons. Inputs are subdivided as follows:

• 4 inputs to detect overlapping of sensing zone with neighborhood’ sensing
zone (1 for each direction);

• 4 inputs to detect missing of sink connection (1 for each direction);
• 1 to detect nodes in the same position.

The output is the new position. Each neuron “actives” a real-valued func-
tion and a time-varying real-valued connection with every other neuron of the
network to map input (n-dim) in output (m-dim). We indicate with outj the
output of neuron j towards all other neurons of the network. The output of
neuron j is computed as shown in Equation (4.1).

outj(k) = F

(

∑

i∈N

wij · outi(k − 1) + bj

)

(4.1)

where N is the set of neurons, wij is the weight of the connection between
neuron i and neuron j and bj is the bias of neuron j. Weights can produce
both excitatory or inhibitory effect. The activation function F is the following
linear threshold function:

F (x) =















−1.0 if x ≤ −1.0

x if − 1.0 < x < 1.0

1.0 if x ≥ 1.0

(4.2)

For each node the output of the neural network is given from the two
output neurons and it is consists of two real numbers that vary in the range
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[1,−1], as it is clear from (4.2) and Fig. 4.3. Based on these two values, the
node chooses the action to do. Assuming a square field of n×n cells, the node
can move in one of the four allowed directions or remain in the current cell.

Fig. 4.3. Neural network architecture of one node

4.3.2 The Genetic Algorithm

A conventional and real-value Genetic Algorithm (GA) is used in the training
phase of the Neural Algorithm. The genes are associated with the connec-
tions weights between each couples of neurons and the bias of each neuron.
Through the typical operators of genetic approaches (i.e. crossover, mutation
and selection), different weights to the neurons in the next generations will be
assigned. Of course, the chromosome selected for the next generations is the
one which has the best value of the fitness function. In our work, we consider a
bi-objective functions in order to: 1) maximize the coverage; 2) maximize the
number of nodes connected to the sink either in a direct fashion or through a
multi-hop path. The fitness function can be written as follows:

fitness = α ∗ Coverage + β ∗QoSconnectivity (4.3)

where

Coverage =
covered area

whole area
(4.4)

and

QoSconnectivity =
#nodes connected to the sink

#total nodes
(4.5)

where α and β are weights that take into account the priority of the objective
to be reached.
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The term #nodes connected to the sink represents the number of nodes
“connected” to the sink, namely nodes that are able to reach the sink directly
or for which exists a multi-hop path [68] throughout links that are able to de-
liver data by guaranteeing a certain value of BER given as an input constraint.
To the follow we show the pseudo-code of the Neural/Genetic Algorithm.

Algorithm 1 Neural/Genetic Algorithm
Random Deployment of Wireless Devices;
for all generation i do

for all chromosome j do

for all node n do

while time < timeMAX do

Compute the new position of n through the neural algorithm;
Compute the modulations that n must use to reach either the other nodes and the
sink by guaranteeing a specific QoS; (see Section 4.3.4);
Among all the modulations satisfying the QoS choose those that require less energy
(this only a possible choice, we could also consider the modulations that maximize
the throughput, etc.) (see Section 4.3.5);

end while

end for

Compute chromosome fitness j ;
end for

Consider the chromosome with the highest fitness value, apply genetic operators and then
consider it as input for the next generation i+1 ;

end for

4.3.3 Supported Connectivities and Communication Complexity

As already explained, each node has a set of possible modulations that can
be “used” for data transmission by guaranteeing different connectivity levels.
In this work, we figure out two different types of connectivities:

• BasicConnectivity: according to a specific propagation model, it is possible
to compute the maximum distance at which a node n1 is able to transmit,
that is the transmitting radius. If a node n2 is inside the area delimited
by the circle with radius equal to the transmitting radius of the node n1,
then n1 and n2 are connected. In this work we consider the propagation
model as defined in [69]:

PLgeneric =

(

4πd0
λ

)2

·
(

d

d0

)γ

+ χ (4.6)

where d is the distance between the Tx and the Rx, γ is the path loss
exponent, λ is the wavelength, χ is the shadowing effect value (neglectable)
and d0 is the critical distance.

• QoSConnectivity: each node n has a neighborhood. For every neighbor, the
node n computes the BER value on the specific link by considering the
different available modulations. The node n excludes all the modulations
that do not respect the BER required as constraint in input. In practice,
in this way the node n has a set of neighbors and every link from n to the
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neighbor meets the QoS constraint in terms of BER computed according
to the formulas shown in the next subsection.

For each iteration of the algorithm and for every node, both the BasicConnectivity

and the QoSConnectivity are computed.
Since the proposed algorithm is based on local communication, a node

only needs to know the position of its neighboring nodes to make a movement.
According to [67], after each nodes movement, an update on the nodes position
is broadcasted through a constant size message containing the node identifier
(Id) and the node position (x,y), therefore the message size is in O(1). As a
consequence, considering a constant value for the number of time steps given
as an input parameter, nodes will update their positions and broadcast their
new information at each time step; this leads to a linear message sending
complexity of O(n) where n is the number of nodes within the network.

4.3.4 BER Computation

In order to compute the BER value related to each specific modulation scheme,
we used the following relations coming from an asymptotic approximation [75]:

BERM−FSK ≈ 2k−2 · erfc
(

√

k

2

Eb

N0

)

(4.7)

BERM−PSK ≈ 1

k
· erfc

(

√

k
Eb

N0
sin2

( π

M

)

)

(4.8)

BERM−QAM ≈ 2

√
M − 1√
Mk

· erfc
(
√

3k

2(M − 1)

Eb

N0

)

(4.9)

BER8−QAM ≈ 5

12
· erfc

(

√

1

2

Eb

N0

)

(4.10)

In particular, the BER computation for the QAM modulation needs the
use of two different formula according to the particular shape: formula (4.9)
for squared modulations and formula (4.10) for non squared such as 8-QAM.

4.3.5 Transmitted Energy Computation

In order to save energy for the transmission always guaranteeing the required
QoS level, it is necessary to choose the less power hungry modulation scheme
within the set of the the most common modulation schemes available in real
devices. To this aim, the energy spent per information bit [J ] can be computed
as follows [72]:
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• For both MQAM and MPSK, by considering a signal bandwidth equal to
B[Hz] and, by assuming a sample time Ts ≈ 1/B [73], we can write:

EinfBit ≈
(1 + δ) · SNR ·N0 ·Nf ·Gd

R
+

Pc

R ·B +
Ptr · Ttr

L
(4.11)

where δ = ξ/η − 1, ξ is the peak-to-average power ratio (PAPR) of the
signal depending on the specific modulation, constellation size and shape1

whereas η is the efficiency of PA drain chosen equal to 0.35 as typical
value of class A power amplifiers [73]. Ptr and Ttr are the consumed power
and the time spent in transient mode respectively whilst L is the total
number of information bits. The SNR = Prx·Ts

N0·Nf
, where Prx is the received

signal power, N0/2 is the power spectral density of the noise and Nf is
the receiver noise figure. Moreover, by assuming a general path-loss model,
the value of Gd can be computed according to the Equation (4.6) and it is
equal to Gd = (4πd0

λ )2 · ( d
d0
)γ . Finally, the term Pc represents the circuit

power (i.e. 211 [mW ] for both MQAM and MPSK) and the term R is
the transmitting rate computed for each constellation by using the cutoff
curves.

• For the MFSK modulation, by considering a noncoherent detection, the
well known relationM = 2TSB [70] allows to derive TS =M/2B, therefore
the energy for the transmission will be equal to:

EinfBit =
(1 + δ) · SNR ·N0 ·Nf ·Gd

R
+

Pc ·M
2 ·R · B +

Ptr · Ttr
L

(4.12)

where η = 0.75 is the typical value for class B or even greater (C, D, or
E) power amplifiers [73], ξ = 1 according to [72] and Pc = 165.3 [mW ] for
general MFSK modulation schemes.

4.3.6 Cut-off rate curves

In this work, we decided to use the relation between cut-off rate and pre-
detection SNR to model the required power of the received signal; this choice
is mainly motivated by the fact that the cut-off rate is considered as a mean-
ingful measure of the effective maximum rate for convolutional coding with
sequential decoding [70]. These relations can be calculated for MQAM and
MPSK by the following formulas [71]:

R0 = 2 log2(M)− log2

(

M
∑

m=1

M
∑

i=1

C(xm, xi)

)

1 ξ = 3 · (
√

M−1)√
M+1

for square constellations whereas M is the constellation size, while

it assumes a value among those shown in Tab. 1 of the work [72] for cross-shaped
constellations.
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where C(xm, xi) is the Chernoff bound on the pairwise error probability that
for an AWGN channel having a Rician factor of K = ∞ we have:

C(xm, xi) = exp

(

−1

4
|dmi|2

)

with |dmi|2= |xm − xi|2/N0 and xj is the jth signal.
For noncoherent MFSK we have [70]:

(4.13)

R0 = − 1

Ts
· log2

{

1

M
+

(

1− 1

M

)

· exp
(

−α
2

2

)[
∫ ∞

0

x · exp
(

−x
2

2

)

·
√

I0(αx) dx

]2
}

where α2/2 = SNR and I0(αr) is the modified bessel function of the first
kind. They are shown in Fig. 4.4.
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Fig. 4.4. Capacities and cutoff rates of MQAM, MPSK, and MFSK in AWGN chan-
nel as a function of predetection SNR. Each curve represents a different constellation
size. The curves 1 ≤ log2 M ≤ 6 for M-FSK, and 2 ≤ log2 M ≤ 6 for M-QAM and
M-PSK are shown, where M is the constellation size.
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4.4 The optimization model

In this section, we give the mathematical formulation of the problem under
study, as an integer nonlinear programming model. It is assumed that the
field is represented by a two-dimensional grid. The parameters used for the
formulation are the following: h: the grid height; w: the grid width; ds: the
discretization step; sink: a particular node that is located in a defined a-
priori position; n: the total number of available nodes, including the sink;
r: the sensing radius; txradius: the transmission radius; M : a large positive
number.

The variables of the proposed model are:

• (xk, yk), k = 1, . . . , n the Cartesian coordinates that indicate the location
of the node k in the field;

• φijk, i = 1, . . . , ⌈h/ds⌉, j = 1, . . . , ⌈w/ds⌉, k = 1, . . . , n a binary variable
that takes the value one if the location (i, j) is covered by node k, and zero
otherwise;

• φ+ijk, φ
−
ijk , i = 1, . . . , ⌈h/ds⌉, j = 1, . . . , ⌈w/ds⌉, k = 1, . . . , n are support

variables;
• δij , i = 1, . . . , ⌈h/ds⌉, j = 1, . . . , ⌈w/ds⌉, a binary variable that takes the

value one if the location (i, j) is covered by at least one node, and zero
otherwise;

• γij , i = 1, . . . , n, j = 1, . . . , n, a binary variable that takes the value one if
the node i is linked to node j, and zero otherwise;

• xij , i = 1, . . . , ⌈h/ds⌉, j = 1, . . . , ⌈w/ds⌉, an integer flow variable that is
used to represent the paths from each node to the sink;

• ψ+
k , and ψ

−
k k = 1, . . . , n variables used to represent a relaxed version of

the flow conservation constraints.

The considered problem can be mathematically stated as follows:

max α× (

∑⌈h/ds⌉
i=1

∑⌈w/ds⌉
j=1 δij)

h/ds × w/ds
)− β ×

∑n
k=1 ψ

+
k + ψ−

k

2 ∗ (n− 1)
(4.14)

r − |i− xk|≥M (φ+ijk − 1), ∀i, j and k = 1, . . . , n− 1 (4.15)

r − |j − yk|≥M (φ−ijk − 1), ∀i, j and k = 1, . . . , n− 1 (4.16)

2 ∗ φijk ≤ φ+ijk + φ−ijk , ∀i, j and k = 1, . . . , n− 1 (4.17)

δij ≤
n−1
∑

k=1

φijk , ∀i, j (4.18)
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M δij ≥
n−1
∑

k=1

φijk , ∀i, j (4.19)

|xi − xj |−txradius ≤M (1− γ+ij), ∀i, j = 1, . . . , n (4.20)

|yi − yj |−txradius ≤M (1 − γ−ij), ∀i, j = 1, . . . , n (4.21)

2 ∗ γij ≤ γ+ij + γ−ij , ∀i, j = 1, . . . , n (4.22)

xij + xji ≤ (n− 1) ∗ γij , ∀i, j = 1, . . . , n (4.23)

n
∑

j=1,j 6=i

xij −
n
∑

j=1,j 6=i

xji + ψ+
i − ψ−

i = 1, ∀i = 1, . . . , n− 1 (4.24)

n
∑

j=1,j 6=i

xsink j −
n
∑

j=1,j 6=i

xj sink + ψ+
sink − ψ−

sink = n− 1 (4.25)

0 ≤ xk ≤ ⌈h/ds⌉ , 0 ≤ yk ≤ ⌈w/ds⌉ , ∀k (4.26)

xk, yk integer, ∀k (4.27)

φijk , φ
+
ijk, φ

−
ijk binary, ∀i, j, k (4.28)

δij binary, ∀i, j (4.29)

γij , γ
+
ij , γ

−
ij binary, ∀i, j = 1, . . . , n (4.30)

xij ≥ 0, integer ∀i, j = 1, . . . , n (4.31)

ψ+
i , ψ

−
i ≥ 0, integer ∀i = 1, . . . , n (4.32)

The objective function in (4.14) maximizes the number of locations covered
by at least one node and the number of nodes that reach the sink. Conditions
(4.15) - (4.17) state that if the distance between the node k and the location
(i, j) is lower than or equal to the sensing radius r than the variable φijk
takes the value one, otherwise it is set to zero. Constraints (4.18) and (4.19)
are logical constraints and ensure that the indicator variable δij takes on a
value of one if the location (i, j) is covered by at least one node and zero
otherwise. Conditions (4.20) - (4.22) state that if the distance between the
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node j and the node j is lower than or equal to the txradius than the variable
γij takes the value one, otherwise it is set to zero. Constraints (4.23) ensure
that a flow can be sent from node i to node j only if a link between the two
nodes exists.

Constraints (4.24) and (4.25) represent a relaxed version of the flow con-
servation constraints, where the variables ψ+

i and ψ−
i give a measure of the

violation of these constraints.
Finally, conditions (4.26)-(4.32) represent the variable domain constraints.
The mathematical formulation reported above is an integer nonlinear pro-

gramming model, where the nonlinearity is confined to the constraints (4.15)
- (4.16) and (4.20) - (4.21).

To eliminate the terms with the absolute value, we introduce the additional
constraints reported below:

dxik
≥ i− xk ∀i, k (4.33)

dxik
≥ −i+ xk ∀i, k (4.34)

dyjk
≥ j − yk ∀j, k (4.35)

dyjk
≥ −j + yk ∀j, k (4.36)

dxixj
≥ xi − xj ∀i, j = 1, . . . , n (4.37)

dxixj
≥ −xi + xk ∀i, j = 1, . . . , n (4.38)

dyiyj
≥ yi − yj ∀i, j = 1, . . . , n (4.39)

dyiyj
≥ −yi + yj ∀i, j = 1, . . . , n (4.40)

Thus, constraints (4.15) - (4.16) and (4.20) - (4.21) are replaced by the
following conditions:

r − dxik
≥M (φ+ijk − 1), ∀i, j, k (4.41)

r − dyjk
≥M (φ−ijk − 1), ∀i, j, k (4.42)

dxixj
− txradius ≤M (1 − γ+ij), ∀i, j = 1, . . . , n (4.43)

dyiyj
− txradius ≤M (1− γ−ij ), ∀i, j = 1, . . . , n (4.44)
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4.5 Validations, Simulations and Results

The proposed Neural/Genetic algorithm is evaluated by simulations using
FREVO [82], an open source framework for evolutionary design. We took into
account a 40 × 40 cells field, where 64 nodes are placed in a random way
according to an uniform distribution. We considered one cell and one time
step as discrete units of space and time, respectively. Also the sensing radius
of the nodes is r = 2 [cells] and it expresses the number of cells that nodes
are able to cover in each of the four main direction (north, south, east and
west). For the neural network, we use 9 input neurons, 2 hidden neurons and
2 output neurons. For the genetic algorithm, we use 300 chromosomes and
100 generations. All the results have been averaged over 10 different runs to
respect a confidence interval of 95%.

In order to conduct a quite realistic analysis on the energy consumption, we
chose to set transmitting power (12 dBm) and receiver sensitivity (−80 dBm)
of our devices by referring to an off-the-shelf Bluetooth module made by Rov-
ing Networks [74]. Table 4.2 summarizes all the other simulation parameters
used.

Table 4.2. Values of the relevant parameters used for the simulations

Device Parameters

Power spent in transient mode (Ptr) 100 [mW ]
Time spent in transient mode (Ttr) 5 [µs]

Wavelength (λ) 0.125 [m]
Information bits (L) 1000 [bits]

Receiver noise figure (Nf ) 10
Bandwidth (B) 10 [kHz]

Scenario Parameters

Path Loss Exponent (γ) 3.8
Critical distance (d0) 1 [m]

PSD of the noise (N0/2) 10−15/2 [W/Hz]
Bit Error Rate (BERthreshold) 10−3

Maximum number of time steps 100

Genetic Algorithm Parameters

% of elite selection (e) 15%
% of mutation (mu) 45%
% of crossover (c) 30%

% of created offsprings (off c) 5%
% of selecting an offspring (off s) 5%
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4.5.1 Validation of the Optimizazion Model

This first simulation campaign aims at validating the optimization model
formulated in section 4.4. The presented results have been achieved by using
LINGO 9.0 [52] for the mathematical model and they have been averaged over
100 runs with a confidence interval of 95%. For this simulation campaign we
use a simple scenario with a 6×6 cells field, where {3; 4; 5} nodes are placed in
a random way according to an uniform distribution. Also the sensing radius of
the nodes is r = 1 [cell] and the transmission radius is txradius = 1 [cell]. The
discretization step is ds = 1 and the large positive number M is equal to 1000.
Fig. 4.5 shows that the behaviour of the algorithm proposed is very close to the
centralized optimum obtained through the mathematical model for each value
of alpha/beta within the Fitness function. In order to assess the behaviour of
the proposed optimization model, test problems, characterized by a small
field size and a limited number of nodes, have been considered. This choice
is motivated by the fact that the intrinsic complexity of the model allows to
solve, in a reasonable amount of time, only small size instances. For this reason,
once we validated the satisfying accuracy of the optimization model respect
to the proposed heuristic scheme, we conducted a more intensive simulation
campaign to explore several configuration parameters with an higher number
of nodes within a wider area.
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Fig. 4.5. Validation of the Neural/Genetic Algorithm: Heuristic vs. Optimization
model.
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4.5.2 Fixed nodes analysis supporting SDR

In this section we show the results obtained throughout the support of SDR
capabilities; in this context the communication devices are all fixed but they
can autonomously decide to use one of three different modulation schemes
(MFSK, MPSK, MQAM) with three different symbol levels M (4, 8, 16) thus
the set of possible choices is extended to nine. However, since the mobility
support is out of the scope of this first reference simulation scenario, the Neu-
ral/Genetic algorithm described in section 4.3 cannot be executed every new
generation and the result, in terms of more suitable modulation schemes, in
agreement with the desired QoS, is always the same representing the refer-
ence benchmark point for the next analysis in which the mobility of the nodes
allows to achieve better performances.

Figure 4.6, obtained throughout the implemented simulation framework,
shows a clear example of a communication scenario in which the nodes are
fixed but the use of SDR capabilities allows them to achieve different results
in terms of QoSconnectivity. In particular, in figure 4.6.(a) the circles repre-
senting the nodes, are coloured in different ways according to the different
supported modulation schemes (i.e., yellow for FSK, cyan for QAM and ma-
genta for PSK). The square around the circle represents the communication
ability of each node (i.e., blue if they can reach the sink node, red if they can
communicate between each others without reaching the sink node). On the
other site, the nodes displayed in figure 4.6.(b) are all coloured in blue because
they can choose to use all the different modulation schemes according to the
new features provided by the SDR technology. Thus, they can communicate
with more neighbours respect to the previous scenario in order to reach the
sink node by increasing the performance in terms of QoSconnectivity . On the
contrary, the Coverage cannot take advantage from the SDR technology due
to the lack of mobility support.

Table 4.3 summarizes the obtained results over 1000 simulation runs, also
specifying the percentage of nodes that have chosen any specific modulation
scheme and the average energy consumption for the transmission. It is worth
to note that in the simulated scenario few modulation schemes such as 4-8-
PSK have never been chosen due to the worst performance in terms of BER
and to the higher energy consumption.

4.5.3 Mobile nodes analysis supporting SDR

In this section we show how controlled mobility can be efficiently exploited to
reach better configurations both in terms of Coverage and QoSconnectivity . In
Figures 4.7 we show results obtained when all nodes are equipped with motion
capabilities but they are not able to select, in a dynamic fashion, the most suit-
able modulation. Specifically, all nodes will support only a specific modulation
scheme in a random way, by keeping the percentage of nodes that choose a
certain modulation equal for all the modulation schemes. In this specific case,
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(a) No mobility without SDR (b) No mobility with SDR

Fig. 4.6. Fixed nodes communication scenario: (a) No mobility without SDR, (b)
No mobility with SDR.

Table 4.3. Fixed nodes analysis supporting or not supporting SDR capabilities

Output Parameters Without SDR With SDR

Coverage 61.57% 61.47%
QoSconnectivity 2.03% 12.20%
Energy per 2.4 · 10−5 [J ] 2.75 · 10−5 [J ]

Information Bit
Nodes choosing 4-FSK 12.59% 0%
Nodes choosing 8-FSK 28.34% 38.57%
Nodes choosing 16-FSK 34.82% 43.92%
Nodes choosing 4-PSK 0% 0%
Nodes choosing 8-PSK 0% 0%
Nodes choosing 16-PSK 10.80% 10.94%
Nodes choosing 4-QAM 0% 6.57%
Nodes choosing 8-QAM 0% 0%
Nodes choosing 16-QAM 13.45% 0%

the 33.33% of nodes will support FSK or QAM or PSK modulation. Of course,
in order to obtain reliable results we averaged them complying a confidential
interval of 95%. In this scenario, all nodes will move in a distributed fashion
towards novel positions computed through the neural network by consider-
ing a genetic approach during the training phase as explained in Section 4.3.
It is worth to notice that in the configuration where nodes are not able to
move, Coverage cannot be improved and nodes are only allowed to choose a
better modulation in order to improve QoSconnectivity . When nodes are able
to move, better configurations in terms of both Coverage and QoSconnectivity

are obtained. For α values ranging from 0.5 to 1, after 20 Generations the
nodes are able to reach a percentage of coverage higher than 90%. Concern-
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ing the QoSconnectivity index, it is increased from 12.2% to 35% after ≈ 35
Generations by tuning the connectivity parameter (β) with higher values,
0.75 and 1. Unfortunately, if we observe the curves related to Coverage and
QoSconnectivity in a cross-way, we notice as controlled mobility is a valid tool
to improve performance of the system, but coverage and connectivity are op-
posite goals, and then controlled mobility is able to generate configuration
that “answer” in an effective way to the setting of α and β, but it is not able
to handle the opposition of those two QoS requirements. In fact, in Figure
4.7 (a), when the value of α is chosen equal to 0.25, the network is not able
to reach a degree of coverage higher than ≈ 24%, and this is the case (see
Figure 4.7 (b)) where the connectivity value reaches ≈ 42%. By considering
an additional freedom degree consisting into the possibility to set the most
suitable modulation, the overall performance of the system are improved as
shown in Figure 4.8 (a) and (b). A strange effect of the dynamic modulation
setting occurs when α and β are both set equal to 0.5. In this case (see Figure
4.8 (a)), coverage reached is smaller than in the previous case, but it is worth
to analyze this behavior in combination with the connectivity value. In fact,
in Figure 4.8 (b), in correspondence of the same α and β values, we are able to
obtain a connectivity degree higher than 93% after very few Generations. On
the other hand, the system gives an answer matching the interest we express
with the α value, since we set α equal to 0.5. When the α value is higher than
0.5, the system takes properly into account this setting and the coverage in-
creases. From this analysis, we can argue that, by considering in a similar way
the importance of both α and β parameters, the system will behave in a very
effective fashion guaranteeing a very high level of QoSconnectivity and a good
degree of Coverage. These results are also confirmed by the Fitness curves
shown in Figures 4.7 (c) and 4.8 (c) respectively. In fact, we can observe as
Fitness improves by reaching very high values after a few number of gener-
ations when the weight associated with connectivity is the highest possible
(α = 0 and β = 1). In respect of the case in which nodes are only equipped
with motion capabilities, SDR mobile nodes are able to react to the connectiv-
ity requests of the networks. Moreover, in all the studied cases we can notice
an improvement of the Fitness except when coverage is considered as a kind
of high priority (i.e. α = 0.75 or α = 1) making the Fitness trend similar to
the case with no-SDR mobile nodes. As main conclusion of this simulation
campaign, we can argue that, by correctly tuning the α and β weights of the
Fitness function, the wireless network consisting of self-configuring SDR de-
vices can dynamically react in order to face different communication scenarios
by favoring, from time to time, the Coverage, the QoSconnectivity or both.

4.5.4 Mobile nodes analysis with variable amount of SDR nodes

In this section we investigate the impact of the amount of SDR nodes on
the overall network performances because, as detailed in section 4.2 and in
table 4.1, the SDR nodes are still quite expensive devices; thus it is conve-
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(a) Coverageratio (b) QOSconnectivity ratio

(c) Fitness

Fig. 4.7. Neural/Genetic algorithm supporting mobility without SDR capabilities

nient to reduce their number as much as possible. We tested the system with
mobile nodes by choosing the same value for the parameters of the Fitness
function (i.e. α = β = 0.5) and varying the percentage of SDR nodes (i.e.
0%; 20%; 30%; 50%; 100%). The obtained results, shown in figure 4.9, demon-
strate that even using a small amount of SDR nodes, it is possible to achieves
good performances in terms of QoSconnectivity (figure 4.9.b) but the Coverage
turns out to be considerably reduced due to the fact that the nodes equipped
with SDR capabilities work as attractors for the nodes without those features
by greatly reducing the possibility to expand to cover larger areas.

4.5.5 Varying the percentange of mobile nodes

In this scenario we investigate the impact of high number of mobile SDR nodes
on the overall network performances. This analysis is mainly motivated by the
fact that the mobility capability has a quite expensive cost and the SDR equip-
ment is still a bit expensive at the present day. According to these remarks, it
makes sense to test how these capabilities impact on the performance of the
network, both in terms of coverage and connectivity toward the sink; thus we
consider only a portion of nodes equipped with SDR capabilities by varying
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(a) Coverageratio (b) QOSconnectivity ratio

(c) Fitness

Fig. 4.8. Neural/Genetic algorithm supporting mobility and SDR capabilities

the number of nodes able to move toward “better” positions. In this way, we
aim at dimensioning the right number of mobile nodes in order to save money
without excessively reduce the network performances. With this goal in mind,
we decided to test a network scenario in which only half of the nodes are
provided with SDR functionalities and, among the standard nodes, a variable
percentage are equipped with mobile capabilities (i.e. 40%; 60%; 80%; 100%).
Just to give a numerical example, let us consider 64 nodes in the network field,
32 among them are equipped with SDR capabilities and are static whilst the
number of mobile nodes, without SDR capabilities, varies as follows: 12, 19,
25 and 32.

The obtained results are shown in figure 4.10. As already explained, by
using a certain percentage of SDR nodes it is possible to improve the network
performances in terms of connectivity but at the expense of coverage; on the
other side, by considering a more realistic network scenario in which not all
the nodes can move, the effect of attraction mechanism, due to the SDR nodes,
decreases thereby improving the performance in terms of coverage. However,
if the percentage of standard mobile nodes is lower than 80%, we experienced
a bad connection management toward the sink node; i.e. to reach the more
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(a) Coverageratio (b) QOSconnectivity ratio

(c) Fitness

Fig. 4.9. Neural/Genetic algorithm supporting mobility and percentage of nodes
with SDR capabilities

isolated fixed nodes, the SDR nodes prefer to ensure optimal coverage rather
than communicate with the sink.

As main conclusion of this simulation campaign, we can argue that it is
possible to decouple the effects due to both SDR and mobility features; in fact,
in a mixed scenario in which only a portion of fixed nodes are equipped with
SDR capabilities, a good QoSconnectivity level can be guaranteed by increasing
the number of mobile standard nodes.

4.6 Video Surveillance Applications based on Ultra-Low
Power Sensor

In the last few years, a significant effort has been made in the context of
wireless networks, by effectively exploiting their ability to monitor real-world
phenomena [84], [86]. The applications involving wireless sensor networks are
several and with different features, but one common factor of many applica-
tions, is the energy-constrained aspect of battery-powered devices. Normally,
the wireless networks based on battery-powered devices, are mostly influenced
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(a) Coverageratio (b) QOSconnectivity ratio

(c) Fitness

Fig. 4.10. Neural/Genetic algorithm supporting SDR capabilities and percentage
of mobile nodes

by an effective and valid deployment of the nodes in the space. Deployment is
concerned with setting up an operational heterogeneous wireless network in
a real-world environment. Usually, the realization of an effective deployment
is a labor-intensive and cumbersome task. Since energy is a limited and very
precious resource, the extension of the lifetime of a battery-powered nodes
network has to be addressed from different levels: 1) at the device level, by
considering circuits with specific features; 2) at the network level, by imple-
menting effective medium access solutions [91], routing protocols, deployments
etc. In this work we try to devise a solution that combines an effective deploy-
ment of specific ultra low power wireless sensors nodes with LPSN sensors
for monitoring objects’ movements of specific areas. Specifically, LPSN nodes
[87] are able to sense motion. Since VSC are energy-expensive nodes, it would
be useful, for surveillance purpose [89], to wake-up video-camera [90] if and
only if there is an interesting event that occurs (i.e. human being presence
detected). In order to increase the “detectable” area, namely the zone where
the events of interest can occur, and realize the maximum connected VSC
nodes with the sensors (each VSC has to be connected to at least a LPSN
sensor in order to be woken-up), we propose a neural/genetic approach. Neu-
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ral/genetic approaches can be very effective for the solution of multi-objective
problem as shown in [61]. This algorithm has the capability to consider in a
synergistic way two “opposite” objectives. Usually, the greater is the area to
be covered, the smaller is the number of VSC that are connected with at least
a LPSN node. In order to take into account the two goals in a simultaneous
way, two weight factors are introduced that give a kind of priority to the ob-
jectives. The rest of the work is organized as follows. Section 4.6.1 describes
the problem we claim to resolve and the specific scenario considered. Section
4.4 presents the neural network exploited by each node to self-compute its
best position. Section 4.6.2 describes the genetic algorithm used as training
phase for the neural network. Section 4.6.3 presents the simulation results in
different scenarios.

4.6.1 Reference Model and Problem Formulation

In this section, we will describe the specific characteristics of the LPSN sensors
and the deployment problem. As described in [83] and [88], the Pyroelectric
passive InfraRed (PIR) nodes, can be used as a trigger to wake-up a node
from “sleep” mode to a power-hungry video capture mode. LPSN sensors are
exploited in this specific context for event detection purpose [92], [93]. Specif-
ically, they allow to sense motion and are able to detect if a human being is
moving in or out of the sensor range. In the Figure 4.11, we show the archi-
tecture of LPSN nodes considered in this work. The hardware architecture is
divided into three modules, powered by a single source:

• The sensor module which hosts a LPSN sensor, and the conditioning cir-
cuitry to give an analog and a digital output

• Microcontroller board, the controller module built around a TI MSP430,
which includes the power harvester module and batteries

• The communication module consisting of a nanoWatt WUR circuit and an
ADF7020 transceiver to send information and/or to wake-up the neighbor

More details about each module can be found in [83].
In this work the low-power LPSN sensor, that can sense the motion, is

used to detect the presence through continuous low-power sampling. Once
motion is detected, a signal is sent to turn on the video camera for higher
resolution sensing of the event. The main motivation beyond the combined use
of LPSN nodes and video camera, is that LPSN sensors exhibit significantly
lower energy consumption. An example of how LPSN network can be inserted
in an existing energy expensive sensor network is shown in Figure 4.12.

From Figure 4.12, we can notice as the existing network is not modified
with the additional LPSN nodes and the LPSN sensor network is overlayed to
the primary network. When a LPSN sensor detects an intruder, it broadcasts
a message to its neighbourhood (the set of nodes that are in the cover range).
The message is to wake-up the reachable nodes.
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Fig. 4.11. Architecture and image of the implemented LPSN sensor node.

Fig. 4.12. Ultra-low power sensor network overlayed on an existing WSN.

Associated with the LPSN nodes are two different ranges: 1) transmission
range to send broadcast messages (to the video camera) to wake-up them. We
will refer to it as wake-up radius ; 2) directional sensing range to detect events
of interest. Whether a VSC is in the wake-up radius of a LPSN, this means
that this node can be woken-up, since there is at least one LPSN able to wake-
up it if some event occurs. We will refer to the number of video camera that
can be woken-up with the term “connectivity” and our goal is to maximize
it by the mean of a good deployment of the overlayed LPSN network. If the
percentage of VSC that can be woken up is not equal to the maximum (100%),
this means that some VSC can not react to some events and are isolated. On
the other hand, we are also interested tor each the maximum coverage, namely
to maximize the areas covered through the sensing range of the LPSN nodes.
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This means, that we ensure that all the events will be detected by at least a
LPSN.

Fig. 4.13. (left) Example of coverage realized with 10 LPSN nodes (sensing radius
= 8 meters); (right) connectivity exampke with 10 LPSN nodes (transmission range
= 4 meters).

In the Figure 4.13, we show a deployement example realized with 10 LPSN
nodes (yellow nodes in the picture) and 54 VSC (pink nodes). By setting a
directional sensing radius (blue area) equal to 8 meters and an omnidirec-
tional wake-up radius equal to 4 meters(green area), the LPSN sensors will be
capable to wake-up a certain number of VSC (pink nodes with red squares)
by covering an area (the covered area is the total blue area). The VSC that
are out form the coverage of at least a LPSN (pink nodes), will be isolated
and then cannot be woken-up. Follow this reasoning, we can argue that the
objectives to maximize the number of video camera that can be woken up
and the maximization of the detection areas are opposite. Based on these
considerations, we formulate a neural/genetic approach, where we formulate
the problem by considering two weight factors, that can be adapted to the
specific requirements of the user (that would give priority to the connectivity,
that is the number of VSC that can be woken up, or to the coverage).

In the next Section we will give the details for this approach.

4.6.2 Evolutionary algorithm for the neural network training phase

For the neural network, we use the same algorithm and parameters used in
Section 4.3. In order to train the network, in a self-organizing perspective,
unsupervised reinforcement learning is used. Instead of a supervisor a fitness
function is provided to evaluate the neural network’s performance.

The global optimization method used for training the neural network is a
genetic algorithms. The genetic algorithm is encoded with the neural network
weights in a predefined manner where one gene in the chromosome represents
one weight link. There are many chromosomes that make up the population,
therefore, many different neural networks are evolved until a stopping criterion
is satisfied as in our case the maximum number of training generations has
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been reached. The goal of the genetic algorithm is to maximize the fitness
function that is evaluated during the training phase and influences the genetic
selection process.

Since the goal of genetic algorithm is to find a population that permit to
achieve the maximum value of a given fitness function, we need to relate the
fitness function to a measure of coverage and time needed for coverage. To
this scope the fitness function proposed for our scheme to make possible the
evolution of the neural network is the following:

fitness function = achieved coverage− time (4.45)

At each generation the fitness function (4.45) is evaluated and the new
population encoding the weights’s value of the neural network is generated by
selection, mutation and crossover of the previous member of population that
guarantee an high fitness function’s value. In this sense the fitness function
is used as feedback for next generation. Notice that since time and space
are discretized in this equation we’re not summing seconds and meters but
just counting how many cells are covered with current generation taking into
account how many time steps are needed. Increasing the fitness function value
by one unit in respect to previous generation means that evolution has led to
cover one more cell or to cover the same number of cells but with one time
step less. Table 4.4 shows the parameters used for the genetic algorithm.

Table 4.4. Parameters of genetic algorithms

Population size 100
Number of generation 100

Percentage of elite selection 15
Percentage of mutation 45
Percentage of crossover 30

Percentage of randomly created offsprings 5
Percentage of randomly selecting

5
an offsprings from previous generation

4.6.3 Performance Evaluation

In order to compute effectively and adaptively a deployment of LPSN nodes
that overlays the VSC network, we considered the neural/genetic technique
described above. This algorithm is effective to compute the best deployment
of the LPSN nodes, by responding to the specific requirements of the user, by
taking into account the environment and the number of devices available. The
simulation tool considered is FREVO [82]. The synergistic combination of the
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neural network and the genetic algorithm is able to take into consideration
different objective in a simultaneous way, by introducing two weights with
value ranging from 0 to 1 (the sum of these two weight factors has to be
equal to 1). As for instance, if we assign to the coverage weight 1, the weight
connectivity will be 0, and this means that the coverage will be “prioritized”,
and the connectivity will be not considered at all and viceversa. We tested
the algorithm, by varying the weights between 0 and 1., the number of the
LPSN nodes (10, 20, 30) and the wake-up radius (4, 8, 12 meters).

In the Figure 4.14(a) we show the results we obtain when the weight
assigned to the coverage is 0 and the connectivity weight is 1.

(a) Coverage (b) Connectivity

Fig. 4.14. Performance when the coverage is 0 and the connectivity is 1.

In Figure 4.14(b), we show the results concerning the connectivity, when
the weight factor associated with the coverage is equal to 0 and the connec-
tivity factor is 1.

In Figure 4.15(a) we show the results we obtain when the weight assigned
to the coverage is 1 and the connectivity weight is 0.

In Figure 4.15(b), we show the results concerning the connectivity, when
the weight factor associated with the coverage is equal to 1 and the connec-
tivity factor is 0.

As we can remark from the Figures 4.14, when the user requires to the
algorithm to prioritize the connectivity, the algorithm will deploy the nodes
in a way to achieve the 100% of the VSC that can be woken up. In practice,
the technique will try to cover a VSC with at least a LPSN node. This means
that the coverage is not required to achieve the 100%. On the other hand, in
the Figures 4.15, we can observe that the area can not be totally covered, by
considering the specific number of LPSN nodes and the correspondent sensing
radius to detect the events, but in any case, the coverage achieved is greater
than in the previous case. On the other hand, the connectivity will achieve
the maximum value by increasing the wake-up radius.
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(a) Coverage (b) Connectivity

Fig. 4.15. Performance when the coverage is 1 and the connectivity is 0.

4.7 Conclusion

In the first part of the chapter we considered SDR mobile nodes able to move
towards most suitable positions and to select the best modulation scheme in
order to both improve the coverage within a specific area and the connectiv-
ity to a sink node. All nodes run an algorithm based on a totally distributed
Neural/Genetic approach by using only local information. As main conclu-
sion we can argue that the proposed strategy can handle the two opposite
requirements (coverage and connectivity) in a dynamic fashion by wisely tun-
ing the fitness function parameters; moreover, we demonstrated that, quite
similar performances, can be achieved also using a reduced amount of devices
equipped with expensive SDR and mobility features. In the second part of
this chapter we have investigated on effective deployment of an overlayed net-
work inserted over a network of Video Surveillance Camera. The deployment
is dynamically computed through a neural/genetic approach, that allow to
consider a synergistic combination of two parameters, named here “connec-
tivity” and “coverage”, that normally are opposite. Through this approach
we can ask the LPSN nodes to redeploy in order to improve the number of
VSC that can be woken-up.

This work led to the writing and publication of the following works:

V. Loscŕı, P. Pace, R. Surace, “Multi-Objective Evolving Neu-
ral Network supporting SDR Modulations Management”, in 24th
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V. Loscŕı, M. Magno, R. Surace, “Video Surveillance Applica-
tions based on Ultra-Low Power Sensor”, in 1th International
Workshop on Autonomous Monitoring and Networking (WAMN 2014),
August 2014.
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Decentralized Time-Synchronized Channel
Swapping for WSN

Wireless sensor network (WSN) applications, such as visual sensor networks
[94, 95, 96], mobile robots and drones [97, 98] and wireless capsule endoscopy
[99], require:

• high bandwidth and energy efficiency to transmit large amounts of sensory
data (images, video, acceleration and position data, etc.) with low latency
and the smallest possible impact on each sensor’s battery resources;

• spontaneous network reconfiguration and quick convergence to steady state
when nodes join or leave the network;

• robustness to packet losses stemming from interference in the unlicensed
2.4 GHz band [100, 101] used by most WSN deployments.

Beyond these requirements, the recent thrust towards machine-to-machine
(M2M) communications [102, 103] and the integration of WSNs with the
generic internet infrastructure via 6LoWPAN support at the Network layer
[104, 105] call for the development of infrastructure-less, peer-to-peer, com-
munication protocols at the Medium Access Control (MAC) layer.

The concept of channel hopping has gained acceptance as a good solu-
tion for WSN MAC layer coordination, with the time synchronized channel
hopping (TSCH) [106] protocol now being part of the IEEE802.15.4e-2012
standard [107]. Within the context of WSNs, channel hopping enables nodes
to hop between the 16 channels of the 2400-2483.5 MHz band. This is per-
formed such that transmitters and receivers are evenly spread across channels,
so nodes are not constantly in a channel with excessive interference.

Fig. 5.1 depicts an example of the TSCH protocol [106], where an arbitrary
topology is formed between 14 nodes (depicted at the bottom) [108]. Each
node reserves timeslots within the slotframe interval (horizontal axis of the
top part) and within the 16 channels of IEEE802.15.4 (vertical axis of the top
part). Unoccupied slots appear in white. As the slotframe interval of Fig. 5.1
repeats periodically, all nodes transmit and listen in different channels, thus
avoiding concentrated interference.
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However, the TSCH slotframe has a rigid (pre-defined) structure (see Fig.
5.1) and filling up the available slots follows a rather complex advertising
request and acknowledgment (RQ/ACK) process on a coordination channel.
This channel is prone to interference and occasional self-inflicted collisions
when the nodes are set to advertise slot reservations very aggressively. Con-
versely, if slot advertising is not aggressive and nodes leave the network, their
slots may remain unoccupied for long periods until another advertisement
RQ/ACK process reassigns them to other nodes. This limits the bandwidth
usage per channel, as illustrated by the large number of unoccupied slots
of Fig. 5.1. Finally, TSCH cannot be considered as an infrastructure-less
protocol, as (i) a coordinator node is required in order to maintain global
time synchronization via beacon message broadcasts at slotframe boundaries
[101, 106, 107, 108]; and (ii) a dedicated coordination channel must be avail-
able for the advertisement RQ/ACK process.

Fig. 5.1. TSCH example of 14 nodes derived by the 6tisch simulator: (top) slotframe
structure with 101 timeslots and 16 channels of IEEE802.15.4 (blue indicates used
slots, white indicates unused slots); (bottom) corresponding connectivity mesh.

5.1 Related Work

Several approaches propose the use of multichannel MAC layer coordination in
a number of ways. The first category comprises schemes that assign channels
to nodes in a static manner in order to balance them across the available
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channels of IEEE802.15.4 and maximize bandwidth utilization [109, 110, 111].
Such solutions, however, try to minimize the rate of channel hopping, as this
affects network stability and tends to decrease the achieved transmission rate
per node. As such, they achieve reduced node connectivity and are prone to
persistent interference in any of the utilized channels.

The second category comprises protocols based on dynamic coordination
of node channel hopping throughout the lifetime of the WSN. Hwang et
al. [112] proposed a low-energy, receiver-driven, channel hopping scheme for
WSNs that does not require global time synchronization. Instead, each sender
predicts the wake-up time of each receiver encountered, which is shown to
minimize idle listening at the cost of significantly reduced bandwidth ef-
ficiency. Tang et al. [113] proposed the Efficient Multichannel MAC (EM-
MAC), a multichannel protocol based on receiver initiated predictive wake-
up. In EM-MAC, nodes select the channel for communication by following
pseudo-random scheduling, as in the predictive wake-up approach. EM-MAC
is shown to be highly resilient to interference and jamming with similar energy
characteristics to predictive wake-up MAC, albeit at the cost of substantially
reduced duty cycling and low bandwidth utilization.

Alternative approaches for multichannel coordination and hopping utilize
a control (or “coordination”) channel, where nodes negotiate the channel to
use for data transmission. Representative examples include Y-MAC [114], A-
MAC [115], MMAC [116], CAM-MAC [117], MuChMAC [118] and the TSCH
option of IEEE802.15.4e-2012.

Y-MAC [114] uses a hybrid of contention and scheduling mechanism for
access control. Scheduling the receiver wake-up times helps to minimise idle
listening and overhearing. A base station or “sync” node sends timing packets
on a control channel to start the network. These packets also serve as a way
to provide for time synchronization. Transmitting nodes first compete during
a contention-based broadcast period to transmit to the receiver during a slot
in the unicast period. Contention-based backoff methods are used within the
broadcast section to schedule slots in the unicast section. Periodic control
frames, containing time synchronisation data, are also sent so as to keep the
broadcast–unicast frame structure aligned.

A-MAC [115] establishes an optimal timeout value for each node to pe-
riodically wake up so as to send and receive packets. In conjunction with a
rate estimation scheme, A-MAC is shown to decrease energy consumption
compared to previous approaches.

Mobile adaptive MAC (MMAC) [116] is designed as a protocol suitable
for mobile nodes by using dynamic frame times to allow nodes to send data
without long waiting periods, i.e., before the network topology changes. Trans-
mission is contention-free, with frame time calculated as a function of node
mobility. Nodes are required to know their location and movement, which is
a disadvantage since nodes must invest large amounts of energy to establish
this information (e.g., via GPS data).
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Cooperative asynchronous multi-channel MAC (CAM-MAC) [117] uses co-
operation at the center of the protocol design. Nodes creating new connections
are advised by neighbors as to which channels would cause the least disrup-
tion when all neighbors cannot be heard. This is done by the transmission of
probe packets announcing a node’s intention to establish a new connection.
Neighboring nodes are then allowed to provide feedback to the probe in the
form of an invalid response, indicating the connection is not in their interest.
If the probe goes uncontested, then the connection is established, otherwise
the probe fails and the sending node creates a new session elsewhere.

MuChMAC [118] is a low-overhead dynamic multi-channel MAC for wire-
less sensor networks. The protocol was designed to be general-purpose, suit-
able for a wide range of traffic rates. Energy efficiency is achieved by very
low duty cycle (few percent) and collisions are minimized by utilising subslots
within each TDMA timeslot determined by the node ID. This gives perfor-
mance similar to other multichannel TDMA protocols under high traffic load,
while performance under light traffic is similar to single-channel protocols.

Finally, time-synchronized channel hopping (TSCH) [106] is a frequency
hopping reservation based protocol that uses timeslots to make a frame. TSCH
uses a control channel where nodes can advertise their free timeslots. Receiv-
ing nodes can compare their free slots with the advertised slots and sched-
ule a connection by answering the advertisement during the preferred slot.
The protocol was designed for networks that may contain mobile nodes and
stemmed from previous work on the TSMP protocol and the wirelessHART
standardization [119, 120]. In comparison to previously-proposed protocols,
TSCH strikes a good balance between bandwidth utilization, energy consump-
tion and node connectivity. Therefore, it was adopted as an optional mode
within the IEEE802.15.4e-2012 standard [121, 107]. Beyond its standardized
version, TSCH is currently developed via the open-source openWSN effort and
the related 6tisch simulator for an associated IETF RFC [108] and therefore,
can be considered as the definite benchmark for multichannel MAC protocols.

From the previous description, it is evident that the bandwidth and relia-
bility of the control node (or channel) can become significant obstacles to the
efficacy of multichannel protocols for decentralized processing and communi-
cations applications arising in many mobile and ad-hoc WSN infrastructures
[94, 95, 97, 98], especially under strong interference conditions. These issues
are expected to become even more pronounced within infrastructure-less de-
ployments envisaged for M2M and 6LoWPAN WSNs [102, 103, 104, 105].
For these reasons, on-going efforts towards a decentralized TSCH mechanism
[106] that does not rely on a single coordinator node or coordination chan-
nel employ distributed Aloha-based scheduling for the advertisement channel
and a gossip mechanism for the propagation and response to advertisement
information. However, such mechanisms: (i) are still based on the time and
energy-consuming RQ/ACK mechanism; (ii) have a rigid slotframe structure
(Fig. 5.1) and (iii) require an independent manner for global time synchro-
nization (e.g., via a separate GPS unit [106]).
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Overall, with the aim to improve channel hopping protocols for WSNs,
three key issues can be identified: (i) avoiding the dependence on a coordi-
nation channel and/or coordinator node and converting the time-frequency
coordination into a truly decentralized framework; (ii) providing a decen-
tralized approach for time synchronization in the WSN; (iii) making node
synchronization and timeslot assignment dynamic under varying interference
conditions and densities of nodes per channel.

5.1.1 Novelty, Contributions and work Organization

This work addresses these issues based on the concept of pulse coupled oscil-
lators (PCOs) [122, 123]. Specifically, we propose a novel decentralized time-
synchronized channel swapping (DT-SCS) framework, in which nodes ran-
domly join a channel and achieve PCO-based coordination via the periodic
transmission of beacon packets at the MAC layer.

For channels with an equal number of nodes, DT-SCS converges to syn-
chronized beacon packet transmission at the MAC layer in a completely unco-
ordinated manner. Furthermore, it allows for arbitrary pairwise swaps between
nodes in neighboring channels with minimal effort and without disrupting the
WSN operation. Finally, due to the inherent adaptation of PCO mechanisms
to the effects of nodes joining and leaving the process, our proposal is robust
to interference and the effects of node churn during WSN reconfiguration.

While the use of PCOs as a means for decentralized synchronization or
desynchronization is well-established for single-channel distributed coordi-
nation [122, 123], this is the first approach to simultaneously deploy both
concepts for decentralized time-synchronized transmissions and channel swap-
ping.

Our detailed contributions are summarized below:

• We propose the DT-SCS protocol that marries the key benefits of: (i)
a self-managed, decentralized, collision-free, time-division multiple access
(TDMA) schedule produced by PCOs with negative coupling within each
channel (a.k.a. Desync [122]); (ii) PCOs with positive coupling (a.k.a.
Sync [123]) across multiple channels to provide for spontaneous align-
ment of nodes’ timeslots, which in turn allows for node pairwise channel
swapping without loosing WSN stability or bandwidth efficiency; (iii) elas-
tic (rather than rigid) time synchronization and spontaneous adaptation of
the available transmission slots across all channels via the Sync/Desync
coupling coefficients.

• We prove that DT-SCS convergences to a balanced steady state and esti-
mate its expected connectivity and energy consumption.

• We present detailed simulation and experimental results demonstrating the
efficacy of the proposed protocol for distributed multichannel coordination
in WSNs.
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• Finally, we carry out detailed comparisons between DT-SCS and TSCH
in terms of: convergence delay, bandwidth efficiency, robustness to inter-
ference and the existence of hidden terminals, and energy consumption.

Regarding the remainder of the work, 5.2 describes DT-SCS based on pos-
itive and negative PCO coupling. 5.3 analyzes the proposed protocol in terms
of stability, connectivity and energy consumption. 5.4 provides simulation re-
sults, whereas Section 5.5 provides validation results on a WSN comprising
TelosB motes with the Contiki operating system. Finally, Section 5.6 con-
cludes the work.

5.2 PCO-based Sync/Desync for DT-SCS

5.2.1 Introduction to the Basic Concept

Consider a WSN consisting of W nodes randomly distributed in C channels
[see the left part of Fig. 5.2(a)], with each node transmitting short beacon
packets periodically every T seconds. The proposed DT-SCS mechanism bal-
ances the number of nodes per channel and adjusts the transmission time of
each node’s beacon packets to reach an evenly-distributed timeslot allocation
within each channel. Specifically, the nodes in each channel perform PCO-
based desynchronization (i.e., they are “Desync” nodes) and elect a single
“Sync” node to provide for cross-channel synchronization. Within each pe-
riod, the Sync node of each channel listens for the Sync beacon message in
the next channel1 and adjusts the transmission time of its own beacon packet
in its own channel using PCO-based synchronization [123]. Sync nodes will
also move to the next channel if they detect that less nodes are present there.
In this way, the WSN can converge to the steady state with Wc = W

C nodes
per channel2. The beacon packet transmission flow between DT-SCS nodes is
schematically illustrated in the right part of Fig. 5.2(a).

Once the system reaches the steady state, Sync or Desync nodes in
adjacent channels can swap channels and timeslots in pairs using a simple
RQ/ACK scheme. Fig. 5.2(b) highlights the short interval between two con-
secutive beacon packet transmissions (stemming from two different nodes in
a channel), during which RQ/ACK packet transmissions for channel swaps
take place. If nodes join or leave the network, all remaining nodes adjust their
beacon packet timings spontaneously, in order to converge to a new steady
state. As shown in Fig. 5.2(a), the key aspect of DT-SCS is the spontaneous

1 with cyclic behavior between Channels 1 and 16 of IEEE 802.15.4, i.e., the Sync
node of Channel 16 listens for the Sync beacon message of Channel 1

2 For simplicity, we assume that W is divisible by C. However, when this is not the
case the scheme balances the number of nodes to Wc ∈

{⌊

W
C

⌋

,
⌈

W
C

⌉}

nodes per
channel.
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convergence of the WSN from a random state to a multichannel time synchro-
nized beaconing, without the need for a coordinator node or a coordinating
channel.

Once convergence to steady state is achieved, the only overhead in the
proposed DT-SCS protocol stems from handling swap requests as well as
beacon packet broadcasts. Both, however, are very short packets (less than ten
bytes), which makes the overhead minimal compared to the payload packet
transmission and reception.

The loss of beacon packets and timing errors due to interference cause
node beacon times to waver, i.e., nodes send beacon messages at incorrect
times. As such, all nodes receiving these messages are similarly affected. If left
untreated, this wavering may propagate through the network until all nodes
are affected and the network is no longer considered converged. To combat
this, we consider the notion of coupling between nodes, introduced by PCOs
[123, 124]: instead of a Desync node jumping directly to the midpoint of its
beacon neighbors, the node slides towards the mid point with coupling factor
α (0 < α < 1); similarly, a Sync node gradually adjusts its beaconing time
by coupling factor β (0 < β < 1) to align with the beacon of the Sync node
in the next channel. Using PCOs with appropriate coupling factors ensures
that any noise and instability in beacon timings is attenuated and does not
propagate uncontrollably throughout all nodes and channels of DT-SCS.

5.2.2 Coupling via Sync and Desync

Next, we briefly describe the synchronization and desynchronization primi-
tives that form the basis of the proposed DT-SCS. Both of these primitives
are algorithms for revising the beacon packet broadcast time of a node in a
WSN based on the broadcast times of beacon packets from other nodes within
a certain time interval. Consider Wc nodes being present in channel c, with
c ∈ {1, ..., C}, and the total WSN nodes given by W =

∑C
c=1Wc. Each node

joins the network by broadcasting an initial beacon packet randomly in chan-
nel c at a time between [0, T ) seconds. Each node repeats the transmission
of its beacon packet upon the completion of its cycle, namely, every T sec-
onds. For each node, the fraction of the way through its cycle at a given time
t ∈ [0, T ) is denoted as the node’s phase [123, 124], ϕ ∈ [0, 1).

As shown in Fig. 5.3, we can imagine the beacon packet transmission
times as beads moving clockwise on a ring with period T = 1 s [122]. When
the phase of a node becomes one (namely, the bead reaches the top of the ring
in Fig. 5.3), a beacon packet is broadcast and its phase is reset to zero. Each
node keeps the phase of received beacon packets and updates its own beacon

phase ϕ
(k−1)
curr to ϕ

(k)
curr based on the utilized reactive listening primitive. Thus,

superscript (k) indicates the kth phase-update iteration.
We remark that, for the Sync/Desync algorithms, it is immaterial which

physical sensor node is linked to which beacon broadcast, as the phase update
process is solely dependent on the received beacon packet times [122, 123,
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(a)

(b)

Fig. 5.2. (a, left) Initial random state of W = 12 node in C = 3 channels; (a,
right) DT-SCS converged state with Wc = 4 nodes per channel, showing the intra-
channel desynchronization (solid lines) and inter-channel synchronization (dashed
lines) between Desync (D) and Sync (S) nodes, respectively. Arrows indicate the
intended recipient of each beacon packet transmission. (b) The grey slots indicate
the short transmitting/listening intervals where nodes can request and acknowledge
swaps.

124, 125, 126]. For this reason, we shall be explicitly discussing beacon packet
transmission events and not the physical nodes that broadcast them.

Desync Phase Update

During desynchronization in channel c, each node’s beacon phase is updated
once within each period T . As shown in Fig. 5.3(a), the phase of a node
“curr” is updated based on the phases of received “prev” and “next” beacon
messages, originating from nodes that transmitted their beacon before and
after node “curr”, respectively. Specifically, upon receiving the next beacon
packet, the phase of node “curr” moves towards the middle of the interval
between the phases of “prev” and “next” beacon messages. The kth phase
update of Desync is expressed by3 [122, 125]

3 Since (5.1) is applied when the next beacon packet is received, we have that

ϕ
(k−1)
next = 0 [see Fig. 5.3(a)]. However, we include ϕ

(k−1)
next in (5.1) to clarify that
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Fig. 5.3. (a) A Desync node performs its kth phase update when the next Desync
or Sync beacon packet is received in channel c. (b) A Sync node performs its kth
phase update when a Sync beacon packet is received in channel c + 1 while the
phase of the current beacon broadcast is within its listening interval.

ϕ(k)
curr = (1− α)ϕ(k−1)

curr +
α

2

(

ϕ(k−1)
prev + ϕ

(k−1)
next

)

(mod1) , (5.1)

with α ∈ (0, 1) the Desync phase-coupling constant controlling the speed
of the phase adaptation and expr (mod1) being the modulo-1 of expression
expr ∈ R. Previous work [122, 125] showed that the reactive listening primitive
of (5.1) disperses all beacon packet broadcasts in each channel c ∈ {1, ..., C}
at intervals of T

Wc
. This leads to fair TDMA scheduling in channel c in steady

state (SS). After kss iterations of (5.1), all beacon packets in channel c are
periodic and the phase updates lead to convergence to SS, expressed by

∣

∣

∣
ϕ(kss)
curr − ϕ(kss−1)

curr

∣

∣

∣
≤ bthres, (5.2)

with bthres the preset convergence threshold, typically bthres ∈ [0.001, 0.100]. In

steady state, each node in channel c transmits data packets for T
(

1
Wc

− bthres

)

−
tswap seconds immediately following its beacon packet broadcast, where tswap

denotes the duration of the guard time per node in channel c. Hence, the
maximum number of nodes supported under collision-free TDMA per channel

c is less than
⌊

1
bthres

⌋

.

Proposed Sync Phase Update

PCO-based synchronization with positive coupling [123] updates each Sync
node’s beacon phase according to received beacon packets (from other Sync

the operation of Desync depends on both the previous and next beacon packet
phase.
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nodes) that are within a listening interval of duration T
C s [see Fig. 5.3(b)].

Under the proposed DT-SCS protocol, the phase of each Sync beacon in
channel c changes after a Sync beacon packet is received in channel c +
1 within the listening interval. Hence, the kth phase update of PCO-based

synchronization [123] is performed at ϕ
(k−1)
curr T s after the node’s last beacon

packet transmission, 1− 1
C < ϕ

(k−1)
curr < 1,

ϕ(k)
curr = (1 + β)ϕ(k−1)

curr − β

(

1− 1

C

)

(mod1) , (5.3)

with β ∈ (0, 1) the phase-coupling constant controlling the speed of the phase
adaptation. Any beacon packets transmitted outside the listening interval
(

1− 1
C , 1

)

are ignored with respect to the Sync phase update. However, they
are still processed to extract useful information, such as the total number
of nodes in the current channel (see Section 5.2.3). After k̃ss phase updates,
(5.3) converges to coordinated Sync beacon packet broadcasts at intervals of
(

1± b̃thres

)

× T seconds [123]. Similar to the Desync case, b̃thres is used
4 to

detect convergence to SS under (5.2).

5.2.3 Protocol Description

It is evident that in a WSN comprising W nodes and utilizing coupling
via Sync or Desync within C channels (C > 1), the maximum attainable
throughput per node will be achieved when the number of nodes is balanced
across all channels, i.e., when Wc =

W
C nodes are present within each channel

c, 1 ≤ c ≤ C [111]. Fig. 5.4 presents the basic stages of the proposed DT-SCS
protocol, explained in the following subsections.

Fig. 5.4. Block diagram of the operational modes of DT-SCS. The values of Ne

and Nc are set via experimentation with varying packet loss. Data transmission and
channel swapping takes place only during the Converged mode.

4 Generally, the thresholds bthres and b̃thres for the respective cases of Desync and
Sync can have different values. However, in our implementation, we consider
bthres = b̃thres.
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Node Initialization and Beacon Packet Contents

When initialized, each node joins a channel c (1 ≤ c ≤ C) randomly as
a Desync node. Initially, nodes have their receivers enabled for the entire
beaconing period and send their beacon messages according to the Desync
rules.

Each beacon packet transmitted by a node in channel c contains:

1. the type of beacon packet (Sync or Desync);
2. the node unique identity number (node id);
3. the node id of the Sync node in channel c (NULL if none);
4. the number of unique nodes heard in channel c, Wc;
5. the number of unique nodes heard in channel c+ 1, Wc+1;
6. the current mode that the node perceives channel c to be in (Fig. 5.4):

Election mode, Converging mode, or Converged mode.

Each node can independently establish the information of parts 3 and 4 by
listening on channel c. The information for part 5 is obtained when the Sync
node in channel c listens to the beacon packet from the Sync node in channel
c+1. Alternatively, this information can also be obtained when Desync nodes
in channel c listen for an acknowledgment of a swap request and overhear a
Desync beacon in channel c+1. Finally, the information in part 6 is acquired
as described in the following two subsections.

Election Mode

Election of a Sync node is initiated in each channel c when Ne consecutive
periods have passed without receiving a Sync beacon packet, or when nodes
observe that all other nodes report the Sync node id as NULL. The value
of Ne can be set high enough to avoid reelecting a Sync node just because
Sync beacon packets were lost due to interference. In our experiments, we
found that Ne = 10 provided for virtually no reelections when a Sync node
is already present in each channel c, while allowing for fast network response
when a Sync node actually leaves the channel.

Once the nodes in channel c (1 ≤ c ≤ C) go to Election mode, they report
this in part 6 of their beacon packets. Each node then randomly generates an
8-bit number, r ∈ [0, 255], and transmits it in part 3 of its beacon packet. After
one complete period, the node with the highest number is elected to become
the Sync node for this channel. In the unlikely case where the highest number
is sent by more than one node, the node with the highest node id (part 2) is
elected. All nodes confirm the selection in the subsequent periods by setting
their Sync node id (i.e, part 3) to the node id they have elected. Because
beacon packets may occasionally be lost, there may be some sporadic cases
where nodes may not unanimously agree to the same elected Sync node. In
such cases, nodes rectify their election according to the majority decision.
Once all nodes set the Sync id field to the same value, the Election mode
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(i.e., part 6 in the beacon message) changes to either Converging or Converged
mode. This process ensures that (up to) one Sync node is present per channel.

Converging Mode via Node Balancing across all C Channels

When nodes are in the Converging mode, no channel swapping takes place.
However, in order to balance nodes within the available C channels, Sync
nodes can decide to switch to the next channel if less nodes are present therein,
as described next.

During the Converging mode, all nodes apply the Desync and Sync pro-
cesses of Section 5.2.2. Once a Sync node is elected in channel c, all Desync
nodes receive information about the number of nodes present in the next
channel, i.e., Wc+1 (part 5 of beacon packet contents). If

Wc −Wc+1 − 1 ≥ 0 (5.4)

and c < C, then the Sync node of channel c switches to channel c+1 and joins
as Desync node, while a new Sync node is elected in channel c. Importantly,
nodes in the highest channel, C, can switch to channel 1, i.e., perform “cyclic”
switching from highest to lowest channel, if

WC −W1 − 2 ≥ 0. (5.5)

This prevents a race condition where nodes would be constantly moving across
channels.

Via the new Sync node of channel c, all nodes remaining in channel c
will observe that Wc+1 increased by one. Furthermore, after Nc consecutive
misses of the beacon of the node id that switched, Wc is decreased by one,
i.e., the node is confirmed as having departed channel c. The requirement of
Nc consecutive misses before assuming that the node has left channel c avoids
erroneously decreasing Wc due to a burst of packet losses in the network
caused by transient external interference in channel c.

The above process will lead to nodes moving from lower to higher channels,
thereby enabling the WSN to converge to a balanced number of nodes across
all C channels. That is, if W is divisible by C, then ∀c : Wc = W

C after
balancing. An example of this case is illustrated in Fig. 5.2(a). Moreover, an
illustrative example of balancing when W is not divisible by C is shown in
Fig. 5.5. In the latter case, with respect to channel swapping (discussed in
the following subsection), Desync nodes can apply channel swapping only
between channel 1 and channel 2, and between channel 3 and channel 4.
However, Sync nodes can still swap places between all four channels as their
beacon packet transmissions remain synchronous. Finally, the example of Fig.
5.5 demonstrates that, without the special condition of (5.5) for channel C,
nodes would be cyclically switching during Converging mode.
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Fig. 5.5. Example of balancing under DT-SCS for a network of W = 14 nodes in
C = 4 channels.

Converged Mode, Channel Swapping and Data Transmission

Once nodes are in Converging mode and their Sync or Desync beacon pack-
ets fall within the convergence threshold, i.e., (5.2) holds, they move to Con-
verged mode. They can thus begin data transmission following a short guard
time interval after their beacon packet broadcast. The duration of their trans-
mission lasts until another short guard time interval prior to the subsequent
node beacon packet broadcast, as shown in Fig. 5.2(b). In Converged mode,
nodes transmit data, send or acknowledge swap requests and swap channels,
as explained next.

Firstly, the guard time is used to allow for beacon variability due to Sync
or Desync beacon time adaptation via (5.1) and (5.3). This adaptation may
cause beacon time fluctuations due to packet losses (the range of these fluc-
tuations is controlled via the coupling parameters α and β).

Secondly, in Converged mode all Desync nodes of each channel c can opt
to transmit swap requests in the next channel, or acknowledge swap requests
from a node of channel c − 1, if, and only if, Wc+1 = Wc, or Wc = Wc−1

(respectively, withWC+1 ≡W1 andW0 ≡WC). If a swap is acknowledged, the
corresponding Sync orDesync nodes swap channels in the subsequent period
and remain in the new channel until another swap RQ/ACK event. Because
the swap acknowledgment may not always be received by the requesting node,
sporadic cases may occur where the node requesting the swap does not actually
swap channels. To overcome this, every node that received a swap request
transmits its first beacon packet towards the end of the guard time after
performing the channel swap. This enables the node to detect that its swap-
requesting “partner” is not sending its beacon in its old channel and has
carried out the swap. If, however, the swap partner did not carry out the swap,
then the node returns to its original channel, resumes beaconing therein and
requests a new swap.

Via the channel swapping mechanism, DT-SCS ensures each node can
attempt to swap channels whenever: (i) the application requires; (ii) a node
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wants to reach nodes not present in their original channel; (iii) excessive
interference (i.e., high packet loss) is observed in a channel.

Channel swapping should not be confused with channel switching to bal-
ance the total WSN nodes in C channels during the Converging mode, which
is done without requests and acknowledgments.

Finally, as depicted in Fig. 5.4, nodes in the Converged mode may move
back to Converging mode if Nc consecutive beacon packets are not received
from any Sync or Desync node. Nodes move to Election mode if Ne consec-
utive Sync beacon packets are not received. In both of these modes, no data
transmission or channel swapping takes place.

5.2.4 Discussion

Maximization of Swapping Possibilities

In DT-SCS, the Sync node per channel c provides a single fixed phase refer-
ence to all the nodes in the channel. This allows for accurate phase swapping
whilst maintaining convergence, without the need for (i) a control channel, (ii)
globally synchronized clocks amongst nodes, or (iii) a network coordinator.
Although all the Sync nodes are always aligned once the Converged mode
is reached, only channels with the same numbers of nodes, contain aligned
Desync nodes. According to DT-SCS, channels with equal numbers of nodes
are clustered together, with an ascending number of nodes per channel (see
Fig. 5.5). This is an important feature of the algorithm, as it does not per-
mit channels with unequal node counts to be interspersed. As nodes can only
swap with their counterpart in neighboring channels (a node in channel c may
only swap with the concurrently-firing node in channel c + 1), ensuring that
channels with equal numbers of nodes are grouped together greatly improves
connectivity in the network.

Local Coordination and Timing Elasticity

Swapping between Sync nodes does not cause a reelection as both channels
will still have a single Sync node after the swap. One can perceive each Sync
node as a local channel “coordinator” with influence limited to channel c
(its transmission channel) and channel c + 1 (the channel it listens to). This
approach alleviates the need for a global network coordinator or coordination
channel. Even if a Sync node leaves the WSN, the remaining Desync nodes
in the channel will elect a new node to take its place and the WSN will return
to the Converged mode.

As mentioned in Section 5.2.1, losing beacon packets due to interference
leads to beacon packet transmission at incorrect times. To absorb any tran-
sient oscillations of beacon packet times while at the same time maintain fast
convergence, the values of coupling parameters α and β can be adjusted per
node. Values for α and β close to unity allow for quicker convergence and
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better suit channels with low interference, whilst values close to zero provide
for more stable operation in noisy channels at the cost of longer convergence
times and slower reaction times. There are well-known ways to select optimum
values for α and β for a given application environment [122, 123], which are
not elaborated in this work in detail.

5.3 Protocol Analysis

5.3.1 Balancing and Stability

As described in Section 5.2.3, during the Converging mode of the proposed
DT-SCS protocol, Sync nodes can decide to switch to the next channel if
they detect less nodes present therein. We prove below that this mechanism
leads to a balanced number of nodes per channel as illustrated in Figs. 5.2(a)
and 5.5.

Proposition 1 The proposed node balancing mechanism converges to Wc ∈
{⌈

W
C

⌉

,
⌊

W
C

⌋}

nodes within each channel c, 1 ≤ c ≤ C.

Proof. During the Converging mode, a Sync node may switch from channel
c to c+1, or from channel c− 1 to c. A Sync node switch occurring simulta-
neously between channels c − 1 → c and c → c+ 1 at the kth period can be
expressed stochastically for the number of nodes in channel c (1 < c < C) by

W
(k+1)

c =W
(k)

c − u
[

W
(k)

c −W
(k)

c+1 − 1
]

p
(k)
c+1W

(k)

c

+ u
[

W
(k)
c−1 −W

(k)

c − 1
]

p(k)c W
(k)

c−1, (5.6)

while for channel C,

W
(k+1)

C =W
(k)

C − u
[

W
(k)

C −W
(k)

1 − 2
]

p
(k)
1 W

(k)

C

+ u
[

W
(k)
C−1 −W

(k)

C − 1
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p
(k)
C W

(k)

C−1 (5.7)

and for channel 1,

W
(k+1)

1 =W
(k)

1 − u
[

W
(k)

1 −W
(k)

2 − 1
]

p
(k)
2 W

(k)

1

+ u
[

W
(k)
C −W

(k)

1 − 2
]

p
(k)
1 W

(k)

C , (5.8)

where u[·] is the unit-step function, W
(k)

c−1, W
(k)

c and W
(k)

c+1 are the expected

numbers of nodes at channels c−1, c and c+1 during the kth period, and p
(k)
c

is the probability the Sync node will successfully switch to channel c during

the k period. We remark that p
(k)
c is smaller than unity since (typically) only
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a single (Sync) node will switch channels—or, in the case of interference or
no Sync node elected in the channel, no node will manage to switch.

For every channel c ∈ [1, C] the transition system formed by (5.6) is written
in matrix form as

w(k+1) = G(k)w(k) (5.9)

with

w(k+1) =
[

W
(k+1)

1 W
(k+1)

2 · · · W (k+1)

C−1 W
(k+1)

C

]T

, (5.10)

w(k) =
[

W
(k)

1 W
(k)

2 · · · W (k)

C−1 W
(k)

C

]T

(5.11)

and
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(5.12)

where
∀c < C : g(k)c = u

[

W
(k)

c −W
(k)

c+1 − 1
]

p
(k)
c+1 (5.13)

and
g
(k)
C = u

[

W
(k)

C −W
(k)

1 − 2
]

p
(k)
1 . (5.14)

The transition matrix G(k) of (5.12) has all its columns summing to unity,
while its entries are non-negative and smaller than unity. As such, via the
Perron–Frobenius theorem [127], we find that the maximum magnitude of all
eigenvalues of G(k) is unity, that is, all eigenvalues of any instantiation of G
are within (or on) the unit circle. Hence, under iterations with matrices G,
the system in (5.9) will converge to a steady state. All vectors

w(SS) =
[ ⌊

W
C

⌋

· · ·
⌈

W
C

⌉ ]T
(5.15)

comprise the eigenvectors of the system in (5.9) and lead to G(SS) = I (i.e.,
they all correspond to unity eigenvalues at all time periods during the steady
state). This is because all w(SS) of (5.15) lead to

∀c :







u
[

W
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c −W
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c+1 − 1
]

= 0

u
[

W
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C −W
(SS)

1 − 2
]

= 0

⇒∀c : g(SS)c = 0.

Thus, we have

∀c : lim
k→∞

W (k)
c ∈

{⌈

W

C

⌉

,

⌊

W

C

⌋}

. (5.16)
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Once C channels have balanced numbers of nodes, the DT-SCS proto-
col performs repeated PCO-based synchronization [123] across channels and
desynchronization [122] within each channel. The former technique leads to
synchronized beacon transmissions of Sync nodes across channels, while the
latter ensures fair TDMA scheduling between the nodes in a channel. The
following proves the efficacy of the algorithm.

Proposition 2 For each channel c, the proposed DT-SCS protocol converges

to equidistant beacon packet transmissions at intervals of T
(

1
Wc

± bthres

)

sec-

onds, with Wc ∈
{⌈

W
C

⌉

,
⌊

W
C

⌋}

and the Sync beacons in all channels being
broadcast concurrently.

Proof. PCO-based synchronization is well-known to achieve convergence [123].
Hence, during the Converging mode, all Sync nodes will converge to syn-
chronous beacons across all C channels, given that their beacon packet broad-
casts are only affected by other Sync node broadcasts. PCO-based desyn-
chronization within each channel is then equivalent to anchored desynchro-
nization [126]. The latter is proven to converge to a steady state wherein the
packet broadcasts are equidistant within the beacon period, i.e., at intervals

of T
(

1
Wc

± bthres

)

seconds. Once this is achieved and all nodes are balanced

across all channels (the latter is ensured via Proposition 1), the system moves
to Converged mode.

Channel swapping events occurring during the steady state do not af-
fect the converged beacon packet transmissions within each channel since: (i)
nodes between unbalanced channels cannot perform swaps; (ii) swapping re-
quests and acknowledgments are done in the guard time periods; (iii) once
swapping is acknowledged, nodes broadcast their first beacon packet in their
new channel at the end of the guard period. In this way, they can confirm
that the node they are swapping with has left the channel. Selecting the
post-beacon guard period to be smaller than bthresT seconds ensures that the
convergence is not disturbed by channel swapping.

5.3.2 Connectivity

Via channel swapping, the Sync node in each channel c can listen to the
transmissions of any node in the other remaining channels c̄ ∈ {1, . . . , C},
c̄ 6= c, except for other Sync nodes, since they are concurrently transmitting.
Hence, the degree of connectivity of a Sync node is

DSYNC =W − C. (5.17)

Similarly, for all channels with
⌊

W
C

⌋

or
⌈

W
C

⌉

nodes, all Desync nodes can
swap channels in order to listen to the transmissions of any other Sync or
Desync node, except for the Desync node that is synchronous to them. In
the Converged mode, the
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Chigh =W −
⌊

W

C

⌋

C (5.18)

highest channels will have

WDESYNC,high =

⌈

W

C

⌉

− 1 (5.19)

Desync nodes (and one Sync node), while the

Clow = C −
(

W −
⌊

W

C

⌋

C

)

(5.20)

lowest channels will have

WDESYNC,low =

⌊

W

C

⌋

− 1 (5.21)

Desync nodes (and one Sync node).

Proposition 3 The average degree of connectivity of a Desync node is

DDESYNC =
1

W − C
[(ChighWDESYNC,high)

2

+ (ClowWDESYNC,low)
2

+ ClowChigh × (WDESYNC,high +WDESYNC,low)]. (5.22)

Proof. The average degree of connectivity of a Desync node is given by the
total number of connections established by Desync nodes divided by the total
number of Desync nodes (i.e., W − C). The total number of connections
is found by multiplying the number of Desync nodes with the number of
connections established by each of them. Particularly, each Desync node in
a channel can connect to (i) all the Sync nodes, (ii) the remaining Desync
nodes in the same channel and (iii) the Desync nodes in other balanced
channels (i.e., channels with the same number of nodes) that do not have the
same phase. Hence, the number of connections established by Desync nodes
in the highest and lowest channels is

ChighWDESYNC,high × (ChighWDESYNC,high + Clow)

and
ClowWDESYNC,low × (ClowWDESYNC,low + Chigh) ,

respectively. Summing the above expressions and dividing by W −C leads to
(5.22).

In the example of Fig. 5.2, we get DSYNC = 9 and DDESYNC = 9, while
in the example of Figs. 5.5 and 5.6, we get DSYNC = 9 and DDESYNC = 7.2.
In contrast, for the same wireless node placement as Fig. 5.6, TSCH achieves
average connectivity of 3.5, as shown at the bottom of Fig. 5.1.
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5.3.3 Estimation of Energy Consumption

It is generally accepted that the radio chipset draws the most power in
IEEE802.15.4-based WSN deployments [121]. As an illustration, Table 5.1
presents the power requirements for different energy states of TelosB at 3
Volts [128, 129].

Table 5.1. Energy Requirements of a Crossbow TelosB Mote. The TI MSP430 MCU
is the Mote Microcontroller Unit. All Values Are Reported in milli-Watt (mW). The
Transmit Operation has Variable Power Levels (the reported corresponds to full
power, 0 dBm)

MSP430 MCU Chipcon CC2420 Radio chip
Sleep Active Sleep Idle Receive Transmit
0.0153 5.4 0.003 1.28 59.1 52.2

The energy consumption of a single node is broken down into two parts,
i.e., receiving and transmitting. The energy due to receiving is analyzed for
Converging and Converged mode. While the channel is in Converging mode,
nodes listen continuously. Once converged, nodes listen to the data slots of
other nodes and to swap requests. These parameters are summed to give the
total amount of energy dissipated to receive by each DT-SCS node (Sync or
Desync), i.e.,

ERx = PRx

{

tconv + nSS ×
[

(W ′
c − 1)

T

Wc

]}

(5.23)

where PRx is the power of the transceiver when receiving, tconv is the time
required for DT-SCS to converge, nSS is the number of periods the WSN
operates in Converged (SS) mode, and W ′

c is the number of nodes the node
listens to.

Likewise, the energy dissipated for transmission is split into the energy
used to (i) broadcast beacon packets and swap RQ/ACK and (ii) to trans-
mit data. Assuming that each node broadcasts on average one beacon packet
and one swap request or acknowledgment per period T , and that each node
transmits data for every interval of T

Wc
seconds following its beacon packet,

the total amount of energy dissipated for transmission is

ETx = PTx

[

2× tbeacon
tconv
T

+ nSS ×
T

Wc

]

(5.24)

with PTx the transmit power, tbeacon the time taken to transmit a beacon or
swap RQ/ACK message and tconv

T the expected number of beacon transmis-
sions until convergence.
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5.4 Simulation Results

All simulations for DT-SCS were performed in Matlab [33], by extending the
event-driven simulator for the Desync protocol by [122]. Simulations report
key metrics related to events such as beacon transmission of a node, nodes
joining or leaving the network, swapping requests and node balancing require-
ments. The results are compared against TSCH simulation results produced
via the 6tisch simulator [108], which is the most accurate TSCH simulator
available in the public domain.

We use data payload size of 60 bytes. Packet loss is simulated by randomly
dropping packets to mimic interference conditions experienced within the 2.4
GHz unlicensed band. Simulations were repeated 100 times and average results
are reported. In the vast majority of the reported results, the span of 95%
confidence intervals was found to be only ±15% from the average values.

Concerning the configuration of the proposed DT-SCS, we used α = 0.9,
β = 0.2 for the Desync and Sync parameters of (5.1) and (5.3), T = 76 ms,
tswap = 2 ms 5 and bthres = 0.01. We set Ne = Nc = 10 to avoid transitioning
from the Converged to the Converging or Election mode under the simulated
packet losses (see Section 5.2.3). Under the specified settings and excluding
the guard time periods (15 ms), one data packet of 60 bytes can be sent within
two consecutive beacon packets within the same channel.

Regarding TSCH, we use the default 6tisch settings for timeslots (101
slots) per slotframe and channels (16 channels). In our experiments, each
node has, on average, two outgoing (data sending) links and one incoming
(data receiving) link. In addition, the --traffic parameter of 6tisch is set to
0.75, which, under the established setup, corresponds to two timeslots per
node link within each slotframe. Convergence is assumed for TSCH when
ten consecutive slotframes are observed with less than 5% change in timeslot
allocations amongst nodes.

5.4.1 Node Balancing and Connectivity

In the first simulation, we show that the proposed node balancing mechanism
within DT-SCS converges to

⌊

W
C

⌋

or
⌈

W
C

⌉

nodes per channel. Figs. 5.6(a)-
(b) show the initial and final node beacon-packet phases versus the channel
number for W = 14 nodes in C = 4 channels. In the initial state [see Fig.
5.6(a)], a random number of nodes, each with a random phase, enter each
channel. In this example, we have W{1,2,3,4} = [5, 3, 2, 4]. In the converged
state [see Fig. 5.6(b)], the nodes have been balanced within the channels (with
the elected Sync nodes indicated in red), where the two highest channels have
four nodes and the two lowest channels have three nodes.

5 We opted for the reported values of T and tswap such that, under the expected
number of nodes per channel in steady state (i.e., 4 nodes), the duration of the
data payload interval in-between the guard times becomes 15 ms, which matches
the data payload interval of TSCH.
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(a) (b)

(c)

Fig. 5.6. Initial (a) and final (b) node beacon-packet phase locations versus channel
number. Each node has a unique id, with Sync nodes indicated in red. (c) Corre-
sponding connectivity between DT-SCS nodes in the Converged mode, with node
swapping enabled.

Fig. 5.7 illustrates the node switching between channels until balancing is
achieved. Specifically, it is shown that, after 16 iterations, the channels are
balanced, while, after 26 iterations, an ascending number of nodes per channel
is obtained, and therefore, DT-SCS reaches the Converged mode. The node
distribution per channel then remains stable until a node joins or leaves the
network.
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Fig. 5.7. Movement of nodes between channels as a result of the balancing mecha-
nism.

5.4.2 Convergence Time of DT-SCS versus TSCH
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Fig. 5.8. Average time required for DT-SCS to reach Converged mode and for
TSCH (simulated via 6tisch) to reach a stable slotframe allocation when 64 nodes
join 16 channels randomly during initialization.

An important aspect of the proposed protocol is the time required to reach
the Converged mode from a random initial state. We investigate this aspect
in comparison to the time required by TSCH to achieve a stable contention-
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free slot allocation via its advertising mechanism. Fig. 5.8 presents the related
results under varying packet loss percentage imposed on each of the 16 chan-
nels of IEEE802.15.4. Even though these simulations do not incorporate all
the aspects of propagation and interference experienced in a real testbed, the
results in Fig. 5.8 demonstrate that, under disturbances in the WSN commu-
nications, DT-SCS reduces the required convergence time by 22.04–91.61%
in comparison to TSCH. This is because, contrary to TSCH, the proposed
DT-SCS protocol does not require nodes to advertise and acknowledge free
slots, which add latency to the convergence to steady state.
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Fig. 5.9. Average time required for DT-SCS and TSCH to return to steady state
under the effect of node churn.

Subsequently, we study the time required for the network to return to the
steady state under the effect of churn. In this case, the WSN was initially in
steady state but the arrival or departure of nodes (i.e., the effect of churn)
caused the network to return to Converging mode. Fig. 5.9 depicts a com-
parison of the re-convergence speed of the proposed DT-SCS against that of
TSCH for different churn conditions, namely, low, medium and high churn.
These conditions correspond to 5%, 25%, and 50% of nodes arriving or leaving
the WSN, respectively. The results show that, under medium and high churn
and packet loss rates lower than 22–25%, DT-SCS reduces the time that the
network requires to return to steady state in comparison to TSCH. This is
because under medium and high churn both protocols will require extensive
reconfiguration to return to steady state. Similar to the convergence from a
random initial state, the proposed DT-SCS has a quicker convergence when
compared to TSCH. On the contrary, TSCH offers a faster convergence when
the packet loss rate is high, or when low churn is experienced. This is to be
expected since, under low churn, only the TSCH nodes that have lost commu-
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Table 5.2. Average Convergence Time (in seconds) Under Hidden Terminals.

DT-SCS TSCH
Without Hidden Terminals 1.1356 13.5845
With Hidden Terminals 1.8514 13.2957

Table 5.3. Average Convergence Time (in seconds) Under Targeted Interference.

DT-SCS TSCH
On a random channel (c 6= 1) 1.2496 14.2186

On DT-SCS ch. c = 1 or TSCH control ch. 1.2496 73.9126

nication links will engage in re-advertising RQ/ACK actions. Conversely, the
proposed protocol will force all nodes to re-converge. Moreover, under high
packet loss, few nodes receive advertising RQ/ACK, and so the schedule re-
mains largely stable. In both cases, however, the disadvantage is that not all
abandoned TSCH slots are reoccupied, thereby leading to lower bandwidth
utilization.

We now investigate the convergence speed of the proposed protocol when
some of the nodes in the WSN are hidden from other nodes (that is, under
the effect of hidden terminals). In particular, we measure the time to achieve
convergence to steady state when four randomly chosen nodes6 cannot com-
municate with a random subset of twenty other nodes in the considered WSN
setup. The results in Table 5.2 show that, irrespective of the presence of hidden
nodes, the convergence speed of DT-SCS is significantly higher than that of
TSCH. When hidden nodes are present, the required convergence time of DT-
SCS increases by 63.03%, while that of TSCH decreases slightly by 2.13%.
Again, this is to be expected since TSCH nodes simply ignore RQ packets
from hidden nodes. On the other hand, the Converging mode of DT-SCS
will perform channel switching until all nodes join channels with non-hidden
terminals.

Next, we study the convergence time of the proposed protocol against
TSCH under the effect of targeted interference, namely, high packet losses
on a given channel. In this regard, we devise the following experiment: We
apply packet loss of 30% on channel ĉ of DT-SCS and TSCH, while all other
channels c 6= ĉ suffer from packet loss of 2%. We explore two cases, i.e., (i)
when ĉ is a random channel (1 ≤ ĉ ≤ 16), or (ii) ĉ is the control channel of
TSCH and a specific channel (e.g., c = 1) of DT-SCS. Contrasting the results
of Tables 5.2 and 5.3 shows that the convergence time of both protocols is
increased with targeted interference. However, contrary to the proposed DT-
SCS, TSCH is particularly vulnerable to packet losses on the control channel,
whereby the convergence time is increased by 444%. This underlines the im-
portance of the decentralised, infrastructure-less, nature of the proposed pro-

6 Nodes can be Sync or Desync.
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tocol and highlights potential problems with centralised protocols that rely
on control nodes or coordination channels. Particularly, under high control
channel interference, a WSN deployment using TSCH will struggle to main-
tain time synchronisation across all channels, thereby suffering from a loss of
performance.

5.4.3 Bandwidth Efficiency

To assess the steady state performance of the proposed DT-SCS against
TSCH, we compare the total payload bits successfully received by all DT-SCS
nodes per second versus the equivalent results obtained via the 6tisch simu-
lator for TSCH. Fig. 5.10 shows that our approach achieves a substantially-
higher slot and channel utilization, leading to bandwidth gains between 27.12–
40.63%. This is because DT-SCS allows for all nodes to use all the available
time in-between their own beacon and the next beacon (barring the guard time
intervals) for contention-free transmission. On the contrary, TSCH requires
advertisement and confirmation actions and imposes a rigid slot allocation.
Such a rigid slotframe allocation imposes strict limitations on the available
bandwidth per node operating under TSCH, restrictions that are not applied
by the proposed DT-SCS protocol.
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Fig. 5.10. Comparison of bandwidth utilization (total payload transmitted by all
nodes per second) between the proposed DT-SCS and TSCH.
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5.5 Experiments With TelosB Motes

Towards a practical evaluation testbed, we implemented both DT-SCS and
TSCH as applications in the Contiki 2.6 operating system running on TelosB
motes. By utilizing the NullMAC and NullRDC network stack options in
Contiki, we control all node interactions at the MAC layer via our application
code. We again consider a WSN deployment with W = 64 nodes in c = 16
channels, which leads to Wc = 4 nodes per channel in the steady state7. The
nodes were distributed in four neighboring rooms located on the same floor,
where each room contains 16 nodes plus 4 extra nodes, each of the latter
configured to listen to a particular channel. These nodes were introduced for
monitoring purposes and for collecting the experimental results.

An example room of our experimental setup is depicted in Fig. 5.11. We
set the beacon period of the nodes to T = 228 ms, which is scaled by a factor
of three compared to the simulations. Given the resolution8 of the standard
Contiki timers, this value ensures that sequential node beacon broadcasts are
distinguishable.

Fig. 5.11. Example of one of the rooms comprising our experimental setup. The 4
nodes at the right-most part of the image are used for monitoring purposes, while the
RF signal generator, which acts to generate interference, is shown in the background.

7 We have experimentally verified that each node (either Sync or Desync) can
reach 48 other nodes via randomly-generated channel swapping requests, which
agrees with (5.17) and Proposition 3.

8 The maximum resolution of the standard Contiki callback timer on the TelosB
platform is 1

128
≃ 7.81 ms.
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5.5.1 Energy Consumption

We measure the energy consumption of DT-SCS per node by placing a TelosB
sensor running DT-SCS in series with a high-tolerance 1-Ohm resistor and by
utilizing a high-frequency oscilloscope to capture the current flow through the
resistor in real time. No other devices operating in the 2.4 GHz band were
present in the surrounding area, hence we assume the expected packet loss to
be negligible. Average results collected over 10 minutes of operation are re-
ported. A snapshot of the oscilloscope showing the power consumption profile
of a TelosB mote using DT-SCS in Converged mode is given in Fig. 5.12. By
setting the nodes to listen for beacons only once every eight periods (instead
of every period) after they reach the steady state9, the average power con-
sumption without transmitting or receiving payload was measured to be 1.58
mW. This power consumption mainly stems from beacon transmission and
reception. The theoretically expected value, estimated via (5.23) and (5.24)
and the values of Table 5.1, was found to be 1.31 mW. This is validates our
implementation against our theoretical analysis. To set an illustrative com-
parison, the power consumption of a node operating TSCH under minimal
payload (i.e., 128 bytes per four seconds) is 1.64 mW [121].

5.5.2 Results Under Interference

In the following, we investigate the convergence time of the WSN using either
the proposed DT-SCS protocol or TSCH, under varying interference levels. We
carried out 100 independent tests, with each room containing an interference
generator for 25 tests. To generate interference, an RF signal generator (see
Fig. 5.11) was used to create an unmodulated carrier in the center of eachWSN
channel. The carrier amplitude was adjusted to alter the signal-to-noise-ratio
(SNR) at each receiver [130, 131]. The nodes were set to maximum power (+0
dBm) in order to operate under the best SNR.

Fig 5.13 shows the time required for DT-SCS and TSCH to converge under
varying interfering signal power levels. The results obtained with our Contiki
implementation corroborate that the proposed DT-SCS reduces the conver-
gence time by an order of magnitude in comparison to TSCH. Moreover, the
difference in convergence time between the proposed protocol and TSCH is
increasing with the interference level. This underlines the key advantages of
the DT-SCS protocol with respect to TSCH, namely, the fact that it (i) is fully
decentralized and (ii) does not depend on an advertisement and acknowledge-
ment scheme.

Next, we investigate the convergence time of the proposed DT-SCS pro-
tocol and TSCH under the effect of targeted interference on a given channel.

9 We have confirmed experimentally that such ”sparse listening” mode during SS
does not affect the stability of DT-SCS under standard residential or office test
conditions.
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Fig. 5.12. Oscilloscope snapshot depicting the power consumption of a TelosB mote
under the proposed DT-SCS. When no payload is transmitted, energy is consumed
by the processor (MCU) and the radio chipset that transmits and listens for beacons.
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Fig. 5.13. Average time required for DT-SCS to reach Converged mode and for
TSCH to reach a stable slotframe allocation under varying interfering signal power
levels. Both DT-SCS and TSCH were implemented as an application in the Contiki
2.6 operating system running on TelosB motes.

Concerning the former, given that there is no coordination channel, we ex-
plore how the interference on channel c+1 effects the convergence in channel
c. A moderate level of interference (that is, 5 dBm) in channel c + 1 causes
fluctuations in the Sync node beacon of channel c, which in turn causes the
convergence time to increase. Particularly, in this case, the convergence time
of the nodes in the observed channel c is increased from 1.223 to 1.518 seconds.
When the same level of interference is also applied on the observed channel,
the convergence time is further increased to 2.738 seconds. Regarding TSCH,
we observed that interference in the advertisement channel led to unstable
behavior and, for the cases where convergence was achieved, more than 30
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Fig. 5.14. Total network bandwidth (total payload bits transmitted by all nodes
per second) between the proposed DT-SCS and TSCH under varying signal power
levels. Both DT-SCS and TSCH were implemented as an application in the Contiki
2.6 operating system running on TelosB motes.

seconds were required. This demonstrates experimentally the detriment of
depending on a coordination channel for advertisement.

5.5.3 Bandwidth Results

Subsequently, we measure the total network bandwidth (that is, total payload
bits per second)—under the same interference conditions—achieved with the
proposed DT-SCS and TSCH. The results, depicted in Fig. 5.14, show that
DT-SCS systematically achieves more than 40% increase in the total network
throughput, irrespective of the interference level. Both protocols experience
a significant loss of throughput under high interference levels (that is, above
10 dBm), which is, however, substantially more severe for TSCH. In effect,
when interference is above 12 dBm, the bandwidth obtained with TSCH drops
to zero. This is due to the inability of TSCH to recover lost slots through
advertising, since almost all advertisement and acknowledgment packets are
lost due to interference. On the contrary, even at high interference levels, DT-
SCS can recuperate bandwidth utilization due to the elasticity of Sync and
Desync mechanisms, discussed in Section 5.3.

The experimental results on TelosB motes confirm that the proposed
DT-SCS protocol offers higher bandwidth utilization and more robustness
to interference compared with the TSCH protocol that is included in the
IEEE802.15.4e-2012 standard. Moreover, the proposed protocol allows for
quicker convergence times with respect to TSCH. Therefore, DT-SCS is shown
to be an excellent candidate for real-life WSN deployments that call for (i) high
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bandwidth (e.g., visual sensor networks), (ii) decentralized, infrastructure-less,
network reconfiguration and fast convergence, and (iii) robustness to high lev-
els of interference.

5.6 Conclusion

We propose a novel protocol for WSNs that performs decentralized time-
synchronized channel swapping (DT-SCS) and circumvents certain conver-
gence and network utilization problems of existing designs, such as the state-
of-the-art TSCH protocol of IEEE802.15.4e-2012. The unique aspect of our
approach is the use of pulsed coupled oscillators that concurrently perform
synchronization and desynchronization in multiple channels. This allows for
rapid convergence to the steady state in a completely decentralized manner,
that is, without requiring a node or channel coordinator, or time synchroniza-
tion via a global clock. DT-SCS spontaneously adapts to node churn and vary-
ing packet losses, while offering high degree of connectivity through channel
swapping. Experimentation via simulations and a real Contiki-based imple-
mentation on TelosB motes shows that, in comparison to TSCH, the proposed
DT-SCS leads to a significant reduction of the convergence time and substan-
tially higher network throughput utilization. These traits render the proposed
DT-SCS an excellent candidate for WSN deployments that collect and com-
municate large quantities of information in a decentralized manner.

This work led to the writing and publication of the following work:

G. Smart, N. Deligiannis, Y. Andreopoulos, R. Surace, V. Loscŕı,
G. Fortino, “Decentralized Time-Synchronized Channel Swapping
for Wireless Sensor Networks”, poster publication in 11th European
Conference on Wireless Sensor Networks (EWSN 2014), February 2014.



Conclusion

This PhD thesis has focused on the Self-Organizing Systems. The work done
has shown as such devices need to be programmed in a new way through
methodologies that allow the learning process and the emerge of behaviors
that fit with the network issues.

Methodologies useful for this purpose as we have shown, are evolving
neural networks inspired by biology and the mobility of the network com-
ponents. Through this new concept the network becomes a Self-Organized
System where the components act in a cooperative way through simple locale
rules learned from the environment and interactions with other nodes and
the global behavior that emerges responds adequately to the dynamics of the
surrounding environment that can also be particularly hostile.

In this PhD thesis we showed a background on Self-Organizing Systems.
We investigated on the impact of the Propagation Environment on Controlled
Mobility Algorithms; proposed and tested distributed heuristics to Film Sport
Events with Flying Robots. Proposed and tested Bio-Inspired approaches to
solve multi-objective problem. In this context, we used the algorithm pro-
posed for the video surveillance through ultra-low power sensors. Finally, we
proposed and tested a new communications protocol for WSN called Decen-
tralized Time-Synchronized Channel Swapping.
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