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Abstract

The main focus of this thesis are phase transitions both in gauge theories, in particular in

Quantum ChromoDynamics (QCD), and in two-dimensional spin models. The approach

is numeric, relying on dedicated simulation and analysis softwares, and takes advantage

of the possibility to discretize our theories, and describe our models, on a lattice.

Three different kind of investigations have been carried out, two of them concerning

QCD. The thermal deconfinement/chiral phase transition in QCD at zero chemical po-

tential has been indeed, indirectly studied, respectively via the characterization of color-

field flux tubes, as footprints for confinement in SU(3) pure gauge theory, and via a

study at imaginary chemical potential for the case of full QCD with two degenerate

flavors of dynamical quarks Nf = 2.

In the former case a systematic study of the longitudinal profile of the chromoelectric

field produced by the strong interaction of a pair of quark and antiquark in the QCD

vacuum has been realized, both at zero and nonzero temperature. Measurements have

been performed in numerical simulations implementing the appropriate field-related lat-

tice operator. The characteristic sizes of the flux tubes have been extracted through a

fitting procedure based on a well known picture for the confinement phenomenon called

“dual superconductor model” that traces an analogy between color confinement and su-

perconductivity. Such a picture is found to successfully describe our numerical results for

the chromoelectric field distribution at zero temperature. Taking one step further in the

dual analogy, the profile of the flux tube has been then studied at finite temperature and

across the deconfinement transition. However, results indicate that the analogy cannot

be pushed so far: as the temperature is increased towards and above the deconfinement

temperature Tc, the amplitude of the field inside the flux tube gets considerably smaller,

while the shape of the flux tube does not vary appreciably at the onset of deconfinement.

An ”evaporation” of flux tubes is observed that has no counterpart in ordinary (type-II)

superconductivity and let the tube structure survive the phase transition, consistently

with observations in heavy-ion collision experiments.
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Abstract. 2

A somewhat different analysis about the thermal phase transition in Nf = 2 QCD (where

direct studies are prevented either by the well known sign problem or by high numerical

costs) can be carried out at imaginary values of chemical potential that are critical for

the Roberge-Weiss (RW) phase transition. In particular, the nature of the RW phase

transition at the endpoint of the first order critical RW line has been investigated. It

is found to depend on the quark masses in a way that it is a triple first-order point in

the limit of zero (infinite) masses and a second order critical endpoint at intermediate

masses. Similar results are relevant for the understanding of the nature of the thermal

transition at µ = 0.

Coming to spin models and, to be more specific, to two-dimensional spin models charac-

terized by non-Abelian symmetry groups U(2) and SU(N) for N = 5, 8, the existence of

infinite order (BKT) phase transition has been checked. Such transitions were expected

on the basis of analytical computations and have been, indeed, numerically detected

in all considered models. By means of finite size scaling analysis it has been also ob-

served that the BKT phase transition that takes place in U(2) models belongs to the

universality class of the two-dimensional XY model.



Sintesi in lingua italiana

Alcuni fenomeni critici di particolare interesse fisico, quali la transizione di fase termica

nella teoria delle interazioni forti (QCD) e transizioni di fase di ordine infinito in modelli

di spin 2D costituiscono il principale oggetto d’indagine in questa tesi. L’approccio è di

natura numerica: esso fa affidamento su codici di simulazione e di analisi dedicati e si

avvale della possibilità di discretizzare le teorie di gauge, e descrivere i modelli di spin,

su reticolo.

Sono stati condotti tre diversi tipi d’indagine, due dei quali riguardanti la QCD. La

transizione termica di deconfinamento nella QCD a potenziale chimico nullo è stata,

infatti, studiata in maniera indiretta, rispettivamente mediante la caratterizzazione dei

tubi di flusso cromoelettrici, impronta del confinamento nella teoria di pura gauge SU(3),

e mediante lo studio della QCD con due sapori di quark dinamici Nf = 2 a potenziale

chimico immaginario non nullo.

Nel primo caso è stato realizzato uno studio numerico sistematico del profilo longitudi-

nale del campo cromoelettrico prodotto dall’interazione forte di una coppia di sorgenti

statiche (quark ed antiquark) nel vuoto della QCD. Lo studio è stato condotto sia in

condizioni di temperatura nulla che a temperatura finita, entro ed oltre la temperatura

critica per la transizione di fase di deconfinamento. Le misure sono state realizzate entro

simulazioni numeriche mediante implementazione dell’appropriato operatore di reticolo

sensibile al campo di colore. Le taglie caratteristiche dei tubi di flusso sono state estratte

mediante una procedura di fit basata su di un ben noto scenario per il fenomeno del con-

finamento delle cariche di colore detto “modello del superconduttore duale” che traccia

un’analogia fra il confinamento di colore e la superconduttività. A temperatura zero si è

verificato come il modello descriva con successo le misure realizzate su reticolo. Facendo

un passo in avanti nell’analogia della superconduttività duale, il profilo del tubo di flusso

è stato studiato anche a temperatura finita e attraverso la transizione di deconfinamento.

I risultati indicano che l’analogia non può essere portata avanti fino a questo punto. Si

è osservato che, al crescere della temperatura verso ed oltre la temperatura critica di
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deconfinamento, l’ampiezza del campo che costituisce il tubo di flusso diminuisce sensi-

bilmente, mentre la forma del profilo del tubo di flusso non varia apprezzabilmente. Si

osserva una “evaporazione” del tubo di flusso che non ha controparte nella teoria della

superconduttività ordinaria. Il tubo di flusso sopravvive, di fatto, alla transizione di

fase consistentemente con le osservazioni negli esperimenti di collisione di ioni ad alta

energia.

Una diversa analisi della transizione di fase termica nella QCD per Nf = 2 (laddove

studi diretti non sono possibili per via del ben noto problema del segno o dell’elevato

costo numerico) può essere realizzata a valori immafinari del potenziale chimico che sono

critici per la transizione di fase di Roberge- Weiss (RW). In particolare la natura della

transizione RW all’estremità della linea critica RW del primo ordine è stata studiata come

funzione della massa dei quark. La natura di questa particolare transizione è rilevante

per la comprensione della transizione termica a potenziale chimico nullo in QCD. I

risultati ci dicono che al punto estremo della linea critica RW si ha una transizione del

primo ordine (in un punto triplo) nel limite di masse nulle (infinite), del secondo ordine

a masse intermedie.

Venendo ai modelli di spin e, per essere più precisi, a modelli di spin 2D con simmetria

non Abeliana di tipo U(2) ed SU(N) con N = 5, 8, è stata verificata l’esistenza di

transizioni di fase di ordine infinito (BKT). Tali transitioni sono attese sulla base di

predizioni analitiche e sono state, di fatto, osservate numericamente in tutti i modelli

citati. Per mezzo di una analisi di “finite size scaling” è anche stato osservato che la

transizione di fase che ha luogo nei modelli di spin con simmetria U(2) appartiene alla

stessa classe di universalità della analoga transizione nel modello XY in due dimensioni.



Introduction

The lattice formulation of Quantum Field Theories (QFT) has been introduced not so

long ago by Wilson (1974). The success of lattice theories has been ratified by the pos-

sibility to make computations numerically, with the help of modern (super)computers,

and by the accurate results (compared to experiments) and predictions produced in

the last decades. Among others, there is one particular context in which the introduc-

tion of lattice techniques has marked a turning point in scientific research: the Quantum

ChromoDynamics (QCD). The lattice formulation provides, indeed, the main useful tool

to meet the need of studying the strong interactions, from first principles, in its non-

perturbative regime at the typical hadronic energy scales. Beyond QCD applications,

critical phenomena in spin models also call for non-perturbative lattice studies.

Critical phenomena and, in particular, phase transitions constitute the leitmotif of this

works in which a collection of numerical investigations is presented. The phase transi-

tions that have been studied are:

• the confinement/deconfinement transition in SU(3) pure lattice gauge theory (LGT),

indirectly studied through a quantitative analysis of the color flux tubes produced

by the interaction of color sources;

• the finite temperature chiral/deconfinement phase transition in Nf = 2 QCD from

imaginary chemical potential;

• the order/disorder (BKT) phase transition in 2D spin models with non-Abelian

U(N)/SU(N) symmetry.

The relevant concepts about phase transitions, critical phenomena and universality are

discussed in Chap. 1.

In Chap. 2 an brief introduction on QCD, with particular reference to its lattice version,

is given in order to set the context for the investigations on its thermal phase transition.

As an across-the-board topic for our study of both LGT and spin models, numerical

methods in lattice theories are addressed in Chap. 3.
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The last three chapters in this thesis summarize the main numerical findings in the three

different explored contexts.

The investigation on SU(3) flux tubes has been carried on in collaboration with prof.

Paolo Cea and dr. Leonardo Cosmai from the University of Bari.

The thermal phase transition in Nf = 2 QCD at imaginary chemical potential has been

the topic of investigation in a training period spent at the Institute For Theoretical

Physics in Frankfurt (Goethe University), under the supervision of prof. Owe Philipsen

and in collaboration with members of his research group.

Finally results concerning spin models have been produced in collaboration with prof.

Oleg Borisenko and dr. Volodymir Chelnokov from the Bogolyubov Institute for Theo-

retical Physics of Kiev.



Chapter 1

Phase transitions and Critical

phenomena

“Everything must change so that nothing changes”

Giuseppe Tomasi di Lampedusa, Il Gattopardo (1958)

The collection of all macroscopic parameters of a thermodynamic system (volume, tem-

perature, pressure, applied external field, magnetization etc.) defines the thermodynamic

state of that system. In statistical mechanics, to represent the thermodynamic state of

a system, scalar functions called “thermodynamic potentials” are used, that may be

written in terms of the partition function of the system. When a smooth change in

the thermodynamic state of systems triggers an abrupt modification in the macroscopic

physical (e.g. mechanical) properties of the system, we are faced with a phase transition

and the corresponding value of the relevant macroscopic parameter that has been varied

is said to be “critical”.

According to the proposed classification, phase transitions fall into two possible cate-

gories. They are said to be discontinuous or first order transitions if there is a latent

heat (i.e. a discontinuity in the internal energy of the system) or, more generally, a

discontinuity in the first derivative of the relevant thermodynamic potential. They are

said to be continuous transitions if, instead, no discontinuity in the first derivative of

thermodynamic potential is present. It may also happen that a change in the behavior

of a system does not correspond to any discontinuity, but just to rapid, but smooth,

changes in the thermodynamic potential and all its derivatives: in this case there is

no true phase transition, but a so-called crossover transition. The sketched distinction

is further clarified through concepts like correlation length and phase coexistence and

symmetry breaking that will be introduced in what follows.

7
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In particular, the symmetry breaking phenomenon will be dealt with in Sec. 1.1. Sec. 1.2

will be devoted to the case of continuous phase transition and the scaling hypothesis

will be discussed in Sec. 1.3

1.1 Phenomenology of phase transitions: symmetry break-

ing and critical behavior

A relevant quantity for phase transitions phenomenology is the correlation length of the

system (ξ). It can be conceived (neglecting boundary effects) as the size of the smallest

sample of the system showing the same macroscopic properties of the system as a whole.

It is the scale of length over which the fluctuations of the microscopic properties of

the system are correlated among each other. The actual value of ξ depends on the

thermodynamic state of the system and it is sensitive to critical points.

Another quantity which is sensitive to phase transitions, and relevant for their classi-

fication, is the order parameter measuring the order in the spatial distribution of the

microscopic degrees of freedom (dof) of the statistical system. It makes sense to intro-

duce a measure of order since it is connected to the symmetry properties of the system

whose breaking/restoration often happens in correspondence to a phase transition. A

good order parameter (it can be a scalar as well as a vector and real as well as imagi-

nary) is nonzero in the ordered (less symmetric) phase, while it vanishes in the disordered

(more symmetric) phase. The phenomenon of spontaneous symmetry breaking accounts

for a symmetry of the partition function of a system (formally expressed by its invariance

under transformations by elements of the group specifying the symmetry) which is not

shared by the states of that system that are actually realized. While local gauge sym-

metries cannot be spontaneously broken [1], a global symmetry such as Z2 symmetry in

Ising model and SO(3) in Heisenberg model is broken down by the state of the system

that is realized in its thermodynamic limit.

It is worth remarking, however, that the symmetry breaking mechanism is not the unique

mechanism responsible for critical phenomena. Indeed, a Berezinskii-Kosterlitz-Thouless

(BKT) phase transition (it will be the topic of Chap. 6) can take place in some systems

of low space dimensionality, despite a symmetry breaking is forbidden by the energetics

of the system. The main characteristic of a BKT transition is an essential singularity

in the thermodynamic potential, while its derivatives of whatever order are continuous,

and this behavior is understood as the unbinding of topological objects.

In the case of first order transitions (melting of a 3D solid, condensation of a gas into

a liquid, etc.), the two (or more) states on either side of the critical point also coexist,
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as two distinct states with distinct properties, exactly at the critical point. Beyond

the critical point, a unique stable phase is reached whose properties are continuously

connected to one of the co-existent phases at the critical point. Various thermodynamic

quantities show discontinuous behavior at the critical point. Such transitions often

exhibit hysteresis and the correlation length at the transition is generally finite.

In the case of a continuous transition (ferromagnetic transition, liquid-gas transition) the

correlation length becomes infinite: fluctuations are correlated over all distance scales

and a unique critical phase is realized. The two (or more) phases on either side of the

critical point must become identical as it is approached. The differences in the various

thermodynamic quantities between the competing phases, like the energy density and

the magnetization also go to zero smoothly.

In the case of a crossover transition (deconfinement transition in QCD with 2+1 phys-

ical quarks), there are neither divergences nor singularities in any quantity: only rapid

variations and with the location in thermodynamic variables depending on the studied

observable. That is why critical regions rather than critical points are identified.

In the phase diagram, which is the graph, with external parameters on the axes, on

which the phase of the system at equilibrium is specified for each point (tuple of pa-

rameters), phase transitions correspond to phase boundaries between regions of given

phases. Boundaries corresponding to first order transitions may cross, and a triple point

arises, where there is coexistence of three different phases. On the other hand, crossover

transitions corresponds to crossover regions (no boundary can be identified) and this im-

plies that a first order phase boundary must end before encountering a crossover region:

a weakening of the transition (smoothen discontinuities) is expected, until it eventually

ends up in a second order critical end point (CEP). As a particular case, it may also

happen that it is a boundary consisting in triple points to end before a crossover region

is met, and its ending is called tricritical point.

1.2 Continuous phase transitions: critical exponents and

universality

As already stated, continuous phase transitions are characterized by the divergence of

the correlation length as the relevant thermodynamic variable reaches its critical value.

For definiteness we will now discuss what happens in correspondence to a paramagnet-

ferromagnet transition with the relevant thermodynamic variable given by the temper-

ature. As T → T+
C an increasing number of microscopic dof (spin variables) become

correlated to each other, effectively behaving as a single (rescaled) spin variable on a
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scale of distance measured by the correlation length ξ. At the critical temperature the

continuous phase transition takes place and ξ =∞, so that critical behavior is dictated

by fluctuations on all distance scales.

The strong correlation among an asymptotically infinite number of dof is what makes it

difficult to study such kind of critical phenomena, but the renormalization group (RG)

approach provides a solid method for the description of critical behaviors. Furthermore,

there is also an advantage brought in by the large correlation lengths: it consists in the

fact that the microscopic details of the interaction among the elementary dof become

irrelevant, so that classes of systems can be identified whose properties fall in a small

number of classes, each characterized only by dimensionality and symmetry properties

of the Hamiltonian, rather than by its specific form. This phenomenon goes under the

name of universality and is accounted for in the RG approach that also predict the

scaling behavior of thermodynamic quantities showing a power-law dependence on the

“distance from the critical point” in its vicinity. The powers in such a dependence are

called critical exponents. Given that t ≡ (T−TC)/TC and h ≡ H/kBTC are the reduced

temperature and reduced external magnetic field respectively, the exponents are defined

as follows:

C ∝ |t|−α (1.1)

m ∝ |t|β (1.2)

χ ∝ |t|−γ (1.3)

m ∝ |t|1/δ , T = TC (1.4)

ξ ∝ |t|−ν (1.5)

Γ (r) ∝ r−d+2−η (1.6)

where d is the dimensionality of the system, C the specific heat, m the magnetization,

χ the magnetic susceptibility, ξ the already introduced correlation length and Γ (r) the

connected two-point correlation function for magnetic variables at distance r. Only

the most singular contribution has been taken into account in the above equations and

proportionality constants have been neglected. Systems showing the same set of critical

exponents belong to the same universality class.

As mentioned, the power laws are not just observed, but predicted by the RG method.

The present discussion about the (real space) RG method is inspired to [2–4]. The basic

idea behind the RG approach is the correspondence between changes in the length-scale

of the thermodynamic system and transformations of the dof and coupling constants

such that the partition function is preserved. The length scale is iteratively increased by

coarse-graining, i.e. by integrating/averaging over all fluctuations within a given length



Chapter 1. Phase transitions and Critical phenomena 11

scale. This is equivalent to studying the behavior of the system over a length-scale

x → x′ = x/b: it corresponds to a rescaling of the lattice spacing, hence of the cutoff,

if the theory lives on a lattice and to a redefinition of the interacting dof. After every

coarse-graining step a rescaling step of all quantities is necessary by appropriate powers

of the chosen length scale factor, moreover adequate transformations for the couplings

are looked for, that bring the new effective Hamiltonian, involving only the dof that were

not averaged out, in the same functional form as the original one, even tough depending

on a new set of coupling constant and on rescaled effective dof. It is just the dependence

of the new couplings on the old ones that defines the so-called renormalization group

equations. The key observation that justifies the use of coarse-graining is the separation

of scale between the correlation length at given values of the couplings ξ ({gi}) and the

distance over which fluctuations are averaged. Being the former much larger than the

latter, dof on length scales a� ba� ξ act as a single unit.

A generic renormalization group equation is the law of transformation for the coupling

constants in the theory, induced by the chosen coarse-graining law of transformation for

its dof f
({
s(n)

})
, where variables are indicated with the superscript (n) counting the

iterations in the RG procedure. It is convenient to introduce the operator

T
(
s(n+1), s(n)

)
=





1, if s(n+1) = f({sn});

0, otherwise.
(1.7)

It is a weight operator satisfying
∑

s(n+1) T
(
s(n+1), s(n)

)
= 1, that must preserve the

symmetry of the original Hamiltonian. Formally, then a RG group transformation can

be expressed as

e−H
(n+1)(s(n+1)) = trs(n)T

(
s(n+1), s(n)

)
e−H(s(n)), (1.8)

and according to the properties of T
(
s(n+1), s(n)

)
the partition function is left invariant.

A RG iteration can be seen as a transformation in the manifold of all the coupling

constants compatible with the symmetries of the model being investigated

{g(n+1)} = Rb
(
{g(n)}

)
, (1.9)

where R is, in general, a complicated nonlinear transformation and b indicates the

rescaling parameter in the coarse-graining. A sequence of RG iterations gives rise to a

renormalization group trajectory that is the discrete flow in the manifold of all couplings

of the point {g} identifying the system. A corresponding flow for the correlation length
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is established since that also changes as

ξ
(
Rnb
(
{g(0)}

))
= b−nξ

(
g(0)
)
. (1.10)

The simplest asymptotic behavior of the system in the limit of infinitely many iterations

is that the corresponding sequence of couplings smoothly converges towards some fixed

points defined by the relation

g∗ = Rb (g∗) , (1.11)

and with the property that the corresponding correlation length, subject to Eq. (1.10),

shows a singularity, ξ = ∞, if the fixed point is a critical point and the corresponding

Hamiltonian becomes scale invariant.

Fixed points are responsible for the universality phenomenon, since they are just prop-

erties of the RG transformations and do not depend on the specific form of the starting

point Hamiltonian. It is then clear that the above introduced critical exponents char-

acterizing the non-analyticities of ξ and other thermodynamic observables in correspon-

dence to a continuous phase transition, must have their origin in the infinitely many

iterations of the RG transformations. Critical points can be classified according to their

attractive/repulsive nature by a linearization of the RG equation,

g′ = g∗ + δg′ = Rb (g∗ + δg) ' Rb (g∗) +Kbδg = g∗ +Kbδg, with Kb =
∂Rb
∂g

, (1.12)

and diagonalization of the transformation matrix Kb. Critical phenomena are char-

acterized by the eigenvalues and eigenvectors of the linear transformation matrix Kb.
Because of the linearity of Kb and the semi-group property of the RG transformations,

real eigenvalues are generally expressed as λi(b) = byi . Displacements in the couplings

space from the critical point before and after a RG transformation can be expanded in

the basis of the eigenvectors of Kb and the coefficients in this expansion ui are called

scaling variables since they are found to satisfy u′i = byiui.

The description of the critical behavior of a system in the RG approach is then reduced

to the study of the properties of fixed points by means of the exponents of the eigenvalues

of the linearized transformation yi and the scaling variables ui. These last are connected

through the coupling constants to physical parameters like temperature, pressure, mag-

netic field, etc. The former are related to the critical exponents and determine the

nature of the latter in the sense that a scaling variable is said to be relevant (irrelevant)

if yi > 0 (yi < 0) so that the iteration of RG transformations amplifies (deamplifies)

displacements from the fixed point. The meaning of universality is further clarified since

our analysis tells that Hamiltonians that differ only by interaction terms corresponding
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to irrelevant scaling variables give rise to the same critical behavior dictated by the same

fixed point in the RG coupling space.

1.3 The scaling hypothesis

As already mentioned the yi > 0 exponents in the eigenvalues of the linearized RG

transformation are connected to the critical exponents. In what follows again, for defi-

niteness, the universality class of the critical short-range Ising model is considered, but

analogous results hold for any universality class with a single relevant thermal scaling

variable and a relevant scaling variable connected to a symmetry breaking field in the

action.

The relevant thermal scaling variable and the exponent of the corresponding eigenvalue

are indicated by ut, yt, while uh, yh are the same quantities for the magnetic relevant

field. There are also infinitely many irrelevant variables. The starting point, to get to the

critical exponents and scaling relations between them, is a critical point in the coupling

space for the model, which lies a finite distance apart from the fixed point. A finite

number of RG iterations will suffice to bring that point in the region, around the fixed

point, where RG equations in their linearized version are valid. The scaling variables

in this region will, then, depend analytically on the reduced temperature t = (T−TC)/TC

and reduced field h (measuring the deviations from the critical point) and vanish when

t = h = 0. We are allowed, indeed, to take ut and uh to be proportional to t and h

respectively. The key quantity to be used is the singular part of the reduced free energy

per site. Its RG flow, neglecting the finite contribution coming from the averaged out

dof at each RG step, is described by the equation

f
(
{g(0)}

)
= b−ndf

(
{g(n)}

)
. (1.13)

In terms of the scaling variables the transformation law for the singular free energy,

neglecting all the irrelevant variables, becomes

f (ut, uh) = b−ndf (bnytut, b
nyhuh) . (1.14)

The condition |bnytut| = ut0 , on the number n of iterations of the RG transformation, is

imposed for arbitrary, but small, ut0 , to ensure the validity of the linear approximation.

As a result, Eq. (1.14) rewritten in terms of h and t takes the form

f(t, h) =

∣∣∣∣
t

t0

∣∣∣∣
d/yt

Φ

(
h/h0

|t/t0|yh/yt

)
, (1.15)
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where Φ is a scaling function whose only dependence on the particular system lies in the

proportionality constant t0 and h0 in the relation between scaling variables and reduced

temperature/field.

All thermodynamic critical exponents can be derived by the just obtained scaling law,

through the corresponding thermodynamic quantities given by appropriate derivatives

of the singular free energy. For the specific heat, one gets C = ∂2f/∂t2|h=0 ∝ |t|
d/yt−2 so

that

α = 2− d

yt
. (1.16)

The spontaneous magnetization is given by M = ∂f/∂h|h=0 ∝ (−t)(d−yh)/yt in a way that

β =
d− yh
yt

. (1.17)

The expression for the susceptibility ∂2f/∂h2|h=0 ∝ |t|
(d−2yh)/yt results in

γ =
2yh − d
yt

. (1.18)

Finally, taking into account how the magnetization M varies with the reduced field h

one gets M ∝ hd/yh−1 that gives

δ =
yh

d− yh
. (1.19)

The above results constitute a redundant set of relations expressing four thermodynamic

critical exponents in terms of only two RG transformation eigenvalues yt and yh. The

obvious implication is that scaling relations between them hold and α + 2β + γ = 2 as

well as α+ β (1 + δ) = 2 are two such relations.



Chapter 2

Quantum Chromodynamics

“One might think this means that imaginary numbers are just a mathe-

matical game having nothing to do with the real world. From the viewpoint

of positivist philosophy, however, one cannot determine what is real. All one

can do is find which mathematical models describe the universe we live in. It

turns out that a mathematical model involving imaginary time predicts not

only effects we have already observed but also effects we have not been able

to measure yet nevertheless believe in for other reasons. So what is real and

what is imaginary? Is the distinction just in our minds?”

Stephen William Hawking, The Universe in a Nutshell (2001)

The strong interactions, responsible for the hadronic and nuclear structure, are described

by a quantum field theory, which is a non-Abelian gauge field theory called quantum

chromodynamics (QCD). As a theoretical background to this work the derivation of

the QCD Lagrangian from the requirement of local gauge invariance, its quantization

within the framework of the Feynman functional-integral formalism, its regularization

through the lattice formulation and its renormalization in the continuum limit will be

discussed. Aiming at the investigation of some typical aspects of the theory of strong in-

teractions, such as confinement/deconfinement phase transition, its order and the whole

phenomenology it involves (in particular, the existence of chromoelectric flux tubes),

we will focus our attention to QCD at non-vanishing temperature and density and con-

centrate on symmetry properties of the QCD action functional that are relevant to our

studies and that may undergo spontaneous, rather than explicit, breaking. Finally the

QCD phase diagram will be addressed.

Since, as a starting point for the lattice formulation of QCD, we will have to consider

the theory quantized within the Feynman functional-integral formalism in its Euclidean

15
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formulation, we will adopt Euclidean formulation already when discussing the contin-

uum theory. The validity of the lattice approach with the supply of numerical methods

is indeed based on a structural equivalence between lattice gauge theories and statistical

mechanics made explicit in the Euclidean formulation (otherwise the oscillatory inte-

grand appearing in the path integrals could not be interpreted as a Boltzman weight).

2.1 Continuum formulation of QCD

The theory of strongly interacting fields is a particular case of Yang-Mills theories [5] for

which the local gauge invariance under local rotations among the Nc = 3 color indices

of the quarks is required. QCD is an SU(3) gauge theory. The fields whose dynamics is

dictated by QCD are fermionic matter fields (quarks) and bosonic gauge fields (gluons).

While quarks ψ (x) are Dirac spinors carrying also color index (hence 4× 3 components

objects) and appearing in six possible flavors, gauge fields Aµ (x), describing color-

charged gluons, are Lorentz vector fields whose components are matrices belonging to

the algebra LSU(3) of the SU(3) group1. The action will include a free fermionic term,

a free bosonic and boson-boson interacting term and a fermion-boson interacting term.

We start by discussing the fermionic and fermion-boson interacting parts of the QCD

action, which is a Lorentz scalar bilinear functional of the fermionic fields

SF
[
ψ, ψ̄, Aµ

]
=

Nf∑

f=1

∫
d4x ψ̄(f) (x)

(
γµDµ (x) +m(f)

)
ψ(f), (2.1)

with the index f of the sum running over Nf different quark flavors and

Dµ (x) = ∂µ + iAµ (x) . (2.2)

In the action the γ matrices appear that are 4× 4 matrices in Dirac space obeying the

Euclidean anticommutation relations

{γµ, γν} = 2δµν . (2.3)

The precise expression for the action is justified by the fact that from it the Euclidean

Dirac equation in presence of an external field Aµ (x) can be obtained. At this point the

invariance of the QCD action,

SF
[
ψ′, ψ̄′, A′µ

]
= SF

[
ψ, ψ̄, Aµ

]
, (2.4)

1In terms of the generators Ta of SU(3), Aµ (x) = Aaµ (x)Ta, a = 0, . . . , 8
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under local rotations in color space has to be required. Such rotations are realized by

3 × 3 special unitary matrices U (x) acting on the fermion fields (in the fundamental

representation of the group) as

ψ (x)→ ψ′ (x) = U (x)ψ (x) , ψ̄ (x)→ ψ̄′ (x) = ψ̄ (x)U † (x) . (2.5)

By analogy with the QED case, the action in Eq. (2.1) already contains the so-called co-

variant derivative Dµ (x), which is the quantity, with the same transformation properties

under gauge rotations as the fermionic fields ψ (x), needed to ensure gauge invariance.

The way gauge transformations act on gauge fields, as well as the same presence of gauge

fields, is fixed by the gauge-invariance requirement:

Aµ (x)→ A′µ (x) = U (x)Aµ (x)U † (x) + i (∂U (x))U † (x) . (2.6)

To complete the QCD action, the gluon action term governing the dynamics of gauge

fields must be taken into account and be locally gauge invariant in its turn. The gluon ac-

tion is constructed, by analogy to the QED case, starting from the commutator between

covariant derivatives (in QED this provides us with the electromagnetic field strength

tensor). What one gets in the QCD case is

Fµν (x) = −i [Dµ (x) , Dν (x)] (2.7)

= ∂µAν (x)− ∂νAµ (x) + i [Aµ (x) , Aν (x)] (2.8)

=
8∑

i=1

[
∂µA

i
ν (x)− ∂νAiµ (x)− fijkAjµ (x)Akν (x)

]
Ti (2.9)

The gauge-invariant, Lorentz scalar gauge action can take the form

SG [A] =
1

2g2

∫
d4x tr [Fµν (x)Fµν (x)] (2.10)

=
1

4g2

8∑

i=1

∫
d4x

[
F iµν (x)F iµν (x)

]
. (2.11)

Quadratic pieces appear in the field strength tensor that are responsible for self interac-

tions. With the QCD action at hand, one can write the expectation value of a generic

observable in the path integral formalism,

〈O〉 =

∫
Dψ̄DψDAµO

[
ψ̄, ψ,Aµ

]
e−SQCD∫

Dψ̄DψDAµ e−SQCD
, (2.12)

where SQCD = SF
[
ψ, ψ̄, Aµ

]
+ SG [A].
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2.1.1 Finite temperature continuum QCD

The partition function associated with a quantum mechanical system in contact with a

heat bath at temperature T is the canonical ensemble partition function given by

Z = tr
[
e−βĤ

]
, (2.13)

where β = 1/kBT ≡ 1/T . On the other hand, if one considers (here we use the argument

given in [6]) a quantum system whose state |q〉 = |q1, q2, . . . , qn〉 is the simultaneous

eigenstate of the coordinate operators Qi with eigenvalues qn for the n d.o.f. of the

system, its partition function is

Z =

∫ n∏

i=1

dqi

〈
q
∣∣∣e−βH

∣∣∣ q
〉
. (2.14)

The corresponding path integral representation in configuration space, once introduced

and integrated over conjugate momenta, is

Z =

∫ q

q
Dq e−

∫ β
0 dτ

∫
d3xL(q,q̇), (2.15)

where L is the Euclidean Lagrangian density. This path integral is a sum over all

closed paths starting/arriving in q at “imaginary time” τ = 0/τ = β, i.e. satisfying

qi (0) = qi (β). The formal translation of the last expression to the case of a bosonic

scalar field φ (~x, τ) with Lagrangian density L (φ, ∂µφ) is simply

Z =

∫

per
Dφ e−

∫ β
0 dτ

∫
d3xL(φ,∂µφ), (2.16)

with fields at each space point satisfying periodic boundary conditions (BC) φ (~x, 0) =

φ (~x, β) and β = 1/T being the compactification radius along the time direction on the

Euclidean space-time surface where our fields live, that becomes in this way a torus

with axis along the spatial direction and a radius becoming infinite only in the limit of

vanishing temperature.

Analogous considerations can be made in QCD where one gets, once again, a parti-

tion function defined in a space-time with a compact time direction of extent β and

fields fulfilling, in this case, periodic BC for gauge fields Aµ (~x, τ) = Aµ (~x, τ + β) and

anti-periodic BC for fermion fields ψ (~x, τ) = −ψ (~x, τ + β), which ensures Bose/Ein-

stein statistics for the former and Pauli principle for the latter. Needless to say the

thermodynamic limit is achieved by sending only the spatial 3-volume to infinity.
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Center symmetry and deconfinement

Beyond gauge invariance, that is by construction a symmetry of the QCD action, and

beyond Lorentz invariance, there are other symmetry transformations under which the

QCD action is invariant.

As a first example we will consider the center Z(3) symmetry which is a symmetry of

QCD at finite temperature and is only exactly valid in the limit of infinitely heavy quarks.

What makes this symmetry crucial is that it is related to the confinement-deconfinement

transition of QCD at finite temperature [7, 8]: as temperature is increased up to a critical

value Tc = 270 MeV, pure gauge theory undergoes a phase transition from a confined

phase (colored objects bound into colorless hadrons) to a deconfined phase (free gluons).

As already stated, all bosonic fields at finite temperature have to satisfy periodic BC,

of period β with respect to the Euclidean (imaginary) time axis. The SU(3) matrices

realizing the gauge transformation do not need to be periodic. Nevertheless, assuming

they satisfy the relation

U (τ + β, ~x) = zU (τ, ~x) , (2.17)

where z ∈ SU(3), we have that in order for the transformed gauge field to be periodic,

i.e. A′µ (τ + β, ~x) = (τ, ~x), z has to commute with any SU(3) matrix and be independent

on the space-time coordinates. The only SU(3) elements enjoying such properties are

the elements of the center Z(3) of the group

z = e
πin/Nc1, n = 0, 1, . . . , Nc − 1. (2.18)

We call center transformation a transformation consisting in the multiplication of all

temporal gauge transformation matrices in a given time slice with the same element z

of the center group.

Despite the invariance of the QCD actions under center transformations, gauge-invariant

operators can be built, which do not share the same invariance. One such operator is

the Polyakov loop, defined as the path ordered product of the gauge fields directed along

the Euclidean time axis from 0 to β,

L (~x) =
1

Nc
tr
{
Peig

∫ β
0 dτ A4(τ,~x)

}
. (2.19)

Under a center symmetry transformation the Polyakov loop transforms as

L′ (~x) = zL (~x) . (2.20)
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If the ground state of the system respects the symmetry of the action, then the possible

values for the Polyakov loop related by the center symmetry will occur with the same

probability. The expectation value for L (~x) does then vanish since the same number

of measurements on average will yield each of the possible values and
∑

l ve
2πil/3 = 0.

Anytime L (~x) 6= 0, this signalizes that the center symmetry is spontaneously broken

and the specific center sector can be identified from the phase of L (~x) = |L (~x)| eiφ.

Now comes the physical interpretation of the breaking of center symmetry descending

from the physical interpretation of the Polyakov loop: its expectation value is related to

the free energy of a single quark

〈L (~x)〉 = e−β∆Fq , (2.21)

where ∆Fq is the difference between the free energy of a system with and without a

single free quark. To a vanishing 〈L (~x)〉 corresponds an infinite amount of free energy

to be provided to the system for the creation of a single static free quark state in

the confined phase. 〈L (~x)〉 takes, instead, a finite nonzero expectation value in the

deconfined phase, where the phases of the Polyakov loops cluster around any of the Z(3)

roots. The Polyakov loop is an order parameter distinguishing between the confined and

the deconfined phase of pure gauge theory. Analogous considerations can be done taking

into account the correlator between two Polyakov loops, whose physical interpretation

is connected to the potential between a pair of a static quark and antiquark:

〈
L (~x)L† (~y)

〉
= e−βFqq̄(r)

r→∞−−−→ |〈L〉|2 . (2.22)

For a static potential linearly growing at large distances as the confining potential does

(with the coefficient of the linearly growing term given by the string tension σ > 0),

|〈L〉| has to vanish.

The crucial role of the center symmetry in interpreting the confinement/deconfinement

phase transition has been hypothesized by Svetitsky and Yaffe [8]: their guess was that

the critical behavior of 4D SU(3) gauge theory coincides with that of a 3D Z(3) spin

model. The order of the deconfinement transition has indeed been found to be first order

in the gauge theory exactly as in the corresponding spin model.

A final remark is in order about the explicit breaking of center symmetry in presence of a

fermionic contribution to the action. In this case, because of the statistical requirements

of anti-periodic BC for fermion fields and of their transformation properties under gauge

transformations that are only periodic up to z ∈ SU(3),

ψ′ (~x, τ + β) = U (~x, τ + β)ψ (~x, τ + β) = −zU (~x, τ)ψ (~x, τ) = −zψ′ (~x, τ) ; (2.23)
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the only permissible value for z is z = 1, hence no center symmetry is realized. As

a consequence |〈L〉| does not need to vanish in the confined phase, where physically

pair production screens the confining force. |〈L〉| can still serve as an indicator for

confinement, but it is no longer an order parameter and, for physical quark masses, no

non-analytic phase transition does happen, but rather a smooth crossover.

2.1.2 Finite density continuum QCD

There are phenomena, in the fragmentation region of heavy ion collisions and in the

dense nuclear matter constituting the nuclei of compact neutron stars, where, while

temperature is relatively low, the net quark number density (i.e. the difference between

the total number of quarks and that of anti-quarks) does not vanish.

Nonzero quark number density phenomena require a description in terms of nonzero

quark chemical potential µ, within the grand canonical ensemble. The corresponding

expression for the partition function is

Z (V, T, µ) = tr
[
e−β(Ĥ−µN̂q)

]
, (2.24)

where N̂q is the quark number operator given by

N̂q =

∫
d3x ψ̄ (x) γ0ψ (x) =

∫
d3xψ† (x)ψ (x) . (2.25)

It follows that, with the introduction of the chemical potential, the QCD fermionic action

in Eq. (2.1) is simply modified into

SF
[
ψ, ψ̄, Aµ, µ

]
=

∫
d3x

∫ β

0
dτ ψ̄ (x) (γµDµ (x) +m− µγ0)ψ (x) . (2.26)

It happens that the integrand in Eq. (2.25) changes its sign under the effect of charge

conjugation transformation so that we have µ > 0 (µ < 0) for net quark (anti-quark)

excess. On the other hand both the integration measure and the µ = 0 action are

invariant under charge conjugation transformations in a way that the partition function

is an even function of µ. The chemical potential may also be viewed as a constant,

imaginary, time-directed, background U (1) field coupled to the zeroth component of

the fermion current j0 = ψ̄γ0ψ:

µNq = −ig
∫

d3xA0j0, A0 = iµ/g. (2.27)
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Roberge-Weiss symmetry

As Roberge and Weiss have pointed out in their paper in 1986 [9], a new interesting

symmetry for QCD with fermions, that looks like a remnant of the Z(3) symmetry

holding in the pure-gauge case, is found if a purely imaginary chemical potential iµi

is considered. This symmetry and its spontaneous breaking are of particular interest

because they can be used to constrain the QCD phase diagram in the physically mean-

ingful real imaginary potential case that is, as we will see later on, too difficult to be

studied directly.

The QCD partition function for a purely imaginary chemical potential (the same as in

Eq. (2.26) with µ replaced by iµi/T) clearly has a periodicity of 2π. What brings us to

the discovery of the Roberge-Weiss symmetry, consisting in a periodicity of 2π/3 of the

partition function, is the fact that the µ-dependence of the partition function, at finite

temperature, can be eliminated from the action integrand and transferred to the BC on

fields, by means of a change of variables which is a modification, by a U (1) rotation, of

the fermionic fields

ψ (~x, τ)→ ψ′ (~x, τ) = ei
µi
T
τψ (~x, τ) . (2.28)

Boundary conditions on fermionic fields then become

ψ (~x, τ +NT ) = −ei
µi
T ψ (~x, τ) . (2.29)

Assuming then the periodicity, in the imaginary time direction, up to a Z(3) element

of the SU(3) matrices performing gauge transformations, and gauge transforming the

partition function, one gets simply new BC

ψ (~x, τ +NT ) = −e−i 2πk
3 ei

µi
T ψ (~x, 0) , k ∈ Z. (2.30)

We just went, through steps preserving the invariance of the partition function from

iµi/T to iµi/T + i2πk/3 which means that, for the QCD partition function periodicity, we

have

Z
(
i
µi
T

)
= Z

(
i
µi
T

+ i
2πk

3

)
. (2.31)

This symmetry unveils an equivalence between discrete imaginary chemical potential

values µi/T = 2πn/3 and center transformations preserving the invariance of Z.

In this context, for critical imaginary potential values

(µi
T

)
c

=
2π

3

(
n+

1

2

)
, n = 0,±1,±2, . . . (2.32)
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there are transitions between adjacent Z(3) sectors, with the particular center sector

identified by the phase of the Polyakov loop L = |L| eiφ, while all physical observables

stay invariant. Such Z(3) transitions have been predicted from perturbative studies [9]

and have been numerically found to be first order phase transition at high temperatures

and crossover at low temperatures, where, instead, the periodicity is smoothly realized.

2.1.3 Asymptotic freedom vs. non-perturbative regime

We are now going to move from the continuum to the lattice formulation of QCD. Such

a choice is well motivated if one is interested in phenomena concerning the low-energy

domain of strong interactions. The reason lies in the dependence of the strong coupling

constant on the energy scale.

QCD is an asymptotically free theory [10–12]: the coupling gets weaker and weaker

for small quark separations, allowing perturbative calculations for all phenomena in the

high-energy/short-distances regime. A perturbative treatment of the theory in the low-

energy/long-distances regime is, instead, prevented by the growth of the strong coupling:

lattice QCD with its numerical tools is the natural choice for the non-perturbative

treatment of QCD.

Renormalization has to be achieved in order to remove divergences appearing in QCD

beyond tree level and a regularization procedure is needed to isolate these divergences.

What happens is that the renormalization procedure inevitably introduces a scale µ.

This scale, that is the scale at which the subtraction of divergences takes place, is

called renormalization scale: it is in principle completely arbitrary, but renormalized

finite Green functions depend on it. Variations in the renormalization scale affects the

contribution to a given results of tree level diagrams with respect to finite contributions

coming from loop diagrams.

The particular choice of µ (as well as the choice of a particular renormalization scheme)

affects physical observable quantities, in the sense that it produces different expressions

connected by finite renormalizations2. The renormalization group equations are the

differential equations governing the response of renormalized Green functions and pa-

rameters to infinitesimal changes of µ such that physical observables are µ-independent.

They take forms that are specific to the renormalization scheme employed. The renor-

malization group equation for the renormalized coupling constant is given in the MS

2If exact calculations were doable, expressions for physical quantities would turn out to be equivalent
among each other regardless of the µ and renormalization scheme choice. This is not true at any fixed
order in perturbation theory
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scheme by

β (gR) = µ
∂gR
∂µ

∣∣∣∣
g,m

, (2.33)

where g and m are the bare coupling constant and bare mass regarded as fixed constants.

Thus the β function represents the rate of change of the renormalized coupling gR at

the scale µ corresponding to fixed bare g and m. What it tells us is that we are dealing

with a running coupling constant. It can be shown that for QCD with three colors and

nf approximately massless quarks, the β function to its lowest order is given by

β (gR) = − b0g
3
R

(4π)2 , b0 = 11− 2

3
nf . (2.34)

Clearly gR decrease with increasing µ if nf < 33/2 and so does the strong coupling

strength defined in analogy with QED as αS (µ) ≡ g2
R/4π, whose µ dependence can be

expressed integrating Eq. (2.34), which has the solution

αS (µ) =
4π

β0ln (µ2/Λ2)
, (2.35)

where Λ is a scale parameter, to be determined experimentally, characterizing the scale

of mass at which αS becomes strong while µ decreases. Eq. Eq. (2.35) tells us that the

coupling decreases as the inverse logarithm of the renormalization scale for large values

of it: this is what is meant by asymptotic freedom.

Experimental determinations for the mass scale Λ yield Λ ≈ 200 MeV meaning that

perturbation theory is valid only at Q � 200 MeV. On the other hand, the strong

coupling at momenta equal or lower than Λ, that is at distances of the order of the size

of light hadrons, is such that perturbative expansion breaks down and non-perturbative

methods are needed.

2.2 Lattice formulation of QCD

The “benefit” of formulating QCD on the lattice is twofold. First of all, while Green

functions for gauge field theories correspond to a system characterized by an infinite

number of degrees of freedom, the corresponding path integrals are only mathematically

well-defined for systems with a denumerable number of degrees of freedom, whence the

necessity of the introduction of a space-time lattice. Secondly, the introduction of the

lattice, although it breaks translational and rotation invariance, has the effect of reg-

ularizing field theories by rendering the momentum integrations in Feynman integrals

ultraviolet finite. The elimination of the short distance contribution to the space-time
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integration amounts, indeed, to the introduction of a momentum cutoff. The momen-

tum cutoff will then be removed, in the renormalization procedure, by extracting the

continuum limit of the theory where also translational and rotation invariance are re-

covered. Furthermore, lattice formulation is the most suited method to deal with the

non-perturbative aspects of the theory.

Let us now turn our attention straight to the specific case of lattice QCD referring, for

a more detailed description, to [6, 13, 14].

For the above mentioned reasons a 4D lattice structure is introduced,

Λ = {n = (n1, n2, n3, n4) |n1, n2, n3 = 0, 1, . . . N − 1;n4 = 0, 1, . . . NT − 1} , (2.36)

where N denotes the number of lattice sites in the three spatial directions, while NT is

the number of lattice sites in the temporal direction which, as we will see in a moment,

will be smaller than N if we are in the case of nonzero temperature.

In this structure, two adjacent points in a given directions are separated, in that direc-

tion, by a distance a which defines the lattice constant and is our unit of distance so

that the position of any object in the lattice is identified by the corresponding n value

in x = an.

In a naive discretization, spinors are placed at the lattice points such that the fermionic

degrees of freedom, carrying the same color, Dirac and flavor indices as in the continuum,

are ψ (n) and ψ̄ (n) with n ∈ Λ.

In the continuum the action S0
F for a free fermion field is given by Eq. (2.1), but on the

lattice both the integral over space-time and the partial derivative, are discretized to

obtain the expression

S0
F

[
ψ, ψ̄

]
= a4

∑

n∈Λ

ψ̄ (n)




4∑

µ=1

γµ
ψ (n+ µ̂)− ψ (n− µ̂)

2a
+mψ (n)


 , (2.37)

which is the starting point for the introduction of gauge fields.

The same procedure adopted in the continuum formulation can then be applied to

construct a gauge invariant lattice action: once again the introduction of gauge fields

is enforced, but with some subtle differences. The local gauge transformations on the

lattice are implemented by choosing an element Ω (n) ∈ SU(3), for each lattice site n,

and transforming the fermion fields according to

ψ (n)→ ψ (n)′ = Ω (n)ψ (n) , ψ̄ (n)→ ψ̄ (n)′ = ψ̄ (n) Ω (n)† . (2.38)
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The term that contains the discretized derivative, unlike the mass term, is not invariant

and transforms according to

ψ̄ (n)ψ (n+ µ̂)→ ψ̄ (n)′ ψ (n+ µ̂)′ = ψ̄ (n) Ω (n)†Ω (n+ µ̂)ψ (n+ µ̂) . (2.39)

Gauge invariance can be achieved by the introduction of a gauge field Uµ (n) labeled by

position n and direction µ indices, so that each Uµ (n) lives on the link connecting the

sites n and n+ µ̂ and we call it a link variable. If we define the gauge transformation of

the new field by

Uµ (n)→ Uµ (n)′ = Ω (n)Uµ (n) Ω (n+ µ̂)† , (2.40)

the quantity ψ̄ (n)Uµ (n)ψ (n+ µ̂) happens to be gauge invariant.

Link variables pointing in the negative µ direction, although not independent, are intro-

duced for notational convenience according to the definition

U−µ (n) ≡ Uµ (n− µ̂)† , (2.41)

and transform according to

U−µ (n)→ U−µ (n)′ = Ω (n)U−µ (n) Ω (n− µ̂)† . (2.42)

It is to be noticed that gluon fields are introduced in the lattice formulation as elements

of the gauge group, while in the continuum formulation they were elements of the algebra

associated with that group.

The connection between group-valued links and algebra-valued gauge fields is realized

in the gauge transporter

G (x, y) = Pe
ig

∫
Cxy A·ds, (2.43)

which is the path ordered exponential integral of the gauge field Aµ along some curve

Cxy connecting x and y, with the property of transforming as Uµ (n) does. It is possible

to introduce an algebra-valued lattice gauge fields defined by the relation

Uµ (n) = eigaAµ(n), (2.44)

meaning that, up to the first order, Uµ (n) can be interpreted as a lattice version of the

gauge transporter connecting n to n+ µ̂.
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The so-called naive fermion action for fermions in an external gauge field may, then, be

written as

SF
[
ψ, ψ̄, U

]
= a4

∑

n∈Λ

ψ̄ (n)




4∑

µ=1

γµ
Uµ (n)ψ (n+ µ̂)− U−µ (n)ψ (n− µ̂)

2a
+mψ (n)




(2.45)

and the gauge-invariance principle is satisfied by construction, that is SF
[
ψ′, ψ̄′, U ′

]
=

SF
[
ψ, ψ̄, U

]
. It can be shown that in the naive continuum limit a → 0, the action in

Eq. (2.45) approaches the corresponding continuum form.

2.2.1 Pure gauge theory on the lattice

The subsequent step, in analogy with the continuum case is the construction of the

bosonic part of the action. We have to construct a lattice gauge invariant action in

terms of the link variables, with the condition that, in the naive continuum limit a→ 0,

the continuum counterpart must be recovered. Traces over closed loops of link variables,

which are gauge-invariant, are good candidates for the construction of the gauge action.

A possible gluon action with the correct naive continuum limit (the first to be introduced

in [15]) contains the simplest closed loop that can be defined on the lattice, i.e. the so-

called plaquette, which is the following path-ordered product of link variables

Uµν (n) = Uµ (n)Uν (n+ µ̂)U−µ (n+ µ̂+ ν̂)U−ν (n+ ν̂) (2.46)

= Uµ (n)Uν (n+ µ̂)Uµ (n+ ν̂)† Uν (ν̂)† .

The Wilson gauge action is a sum over all plaquettes, with each plaquette counted with

only one orientation,

SG [U ] =
2

g2

∑

n∈Λ

∑

µ<ν

Re tr [I − Uµν (n)] . (2.47)

The factor 2/g2 is dictated by the continuum limit requirement

lim
a→0

SG [U ] = SG [A] , (2.48)

with SG [A] denoting the gauge action in the continuum Euclidean formulation.

The general form for vacuum expectation value of a generic operator Ô, to which the

functional O corresponds, can be written in terms of the complete naive expression for
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the lattice QCD path integral:

〈Ω|O |Ω〉 = 〈O〉 =

∫
DU Dψ̄DψO

[
U, ¯ψ,ψ

]
e−SF [ψ,ψ̄,U]−SG[U ]

∫
DU Dψ̄Dψe−SF [ψ,ψ̄,U]−SG[U ]

. (2.49)

The integral is over all field configurations. What renders it mathematically manageable,

is the fact that, on the lattice, original quantum fields are reduced to a countable number

of classical variables. Correspondingly the path integral measures are defined as

Dψ̄Dψ =
∏

n∈Λ

∏

f,α,c

dψ̄(f) (n)α,c dψ
(f) (n)α,c , (2.50)

with f, α, c flavor, Dirac and color index respectively, and

DU =
∏

n∈Λ

4∏

µ=1

dUµ (n) . (2.51)

This is not the end of the story since the spinors variables have to be turned into anti-

commuting variables to include the correct Fermi-Dirac statistical behavior for fermion

fields. Before addressing fermion fields, it is useful to introduce observables consisting

in traces of products of link variables along closed loops, whose physical interpretation

has to do with the potential between static color sources and their (de)confinement.

The Wilson loop

A Wilson loop consists of two so-called Wilson lines and two temporal transporters. A

Wilson line corresponds to a path Cnm connecting two different spatial points n and m

by means of the ordered product of link variables whose time argument is fixed to the

value nt,

S (m,n, nt) =
∏

(k,j)∈Cnm

Uj (k, nt) . (2.52)

A temporal transporter instead, corresponds to a path on the lattice which is a straight

line in the temporal directions, obtained as an ordered product of link variables all

situated at a given spatial position, say n, and connecting two temporal points, say 0 to

nt

T (n, nt) =

nt−1∏

j=0

U4 (n, j) . (2.53)
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The Wilson loop in its whole is obtained by taking the trace of the product of the Wilson

lines and gauge transporters attached to each other to give a closed loop

W [U ] = tr
[
S (m,n, nt)T (n, nt)

† S (m,n, 0)† T (m, nt)
]

(2.54)

= tr


 ∏

(k,µ)∈L

Uµ (k)


 .

It can be shown that, given a rectangular path on the lattice CR,T , with R and T

extension of the loop in the temporal and in each spatial direction respectively, the

static quark potential is defined by means of the behavior of the corresponding Wilson

loop for large T values,

V (R) = − lim
T→∞

1

T
ln
〈
WCR,T [U ]

〉
, (2.55)

because one finds that

〈
WCR,T (U)

〉
=

∫
DU Dψ̄DψWCR,T [U ] e−SQCD[ψ,ψ̄,U]

∫
DU Dψ̄Dψe−SQCD[ψ,ψ̄,U]

∼
T→∞

C e−TV (R), (2.56)

where
〈
WCR,T (U)

〉
is a short-hand notation for 〈Ω|WCR,T (U) |Ω〉.

Moreover, the so-called string tension can be introduced, which is defined as

σ ≡ lim
R→∞

1

R
V (R) . (2.57)

In the confined phase of our theory the potential between a quark and an antiquark is

expected to grow linearly with distance. This can be readily understood in the context of

a flux tube model connecting the quark and antiquark, where the color-electric field lines

are confined in a tube-like shape between the two quarks. No field lines leak out of the

tube, therefore the field strengths per unit length remains constant over the extension

of the tube and the potential rises linearly with the distance of the quarks. Thus we

have, coherently with Eq. (2.57),

V (R)
R→∞−−−−→ σR (2.58)

and correspondingly the expectation value of the Wilson loop exhibits the asymptotic

area law behavior
〈
WCR,T (U)

〉
→ e−σRT .

The Eq. (2.56) is the basis for the so-called Wilson loop criterion, which says that static

quark confinement holds if Wilson loops obey the area law and the associated string

tension is not zero. The Wilson loop criterion is very important since it allows us to
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distinguish different phases, with and without static quark confinement, by means of

this gauge invariant observable. Therefore the string tension has been used as an order

parameter.

The Polyakov loop

At zero temperature, the potential of a static quark-antiquark pair can be determined

by studying the ground state expectation value of the Wilson loop observable for large

Euclidean times. At finite temperatures, instead, the lattice has a finite extension in

the time direction, and the Wilson loop no longer plays this role, but we can consider a

different gauge invariant quantity whose expectation value yields a measure of the free

energy of a single colored static source and which behave like a order parameter for the

deconfining transition. It is the Polyakov loop, the correlators of a pair of which gives a

finite temperature definition of the potential between static sources, as a special case of

Wilson loop.

The expression for the Polyakov loop on the lattice is the discretized version of the

continuum expression we have already met in Eq. (2.19):

P (m) = tr



NT−1∏

j=0

U4 (m, j)


 . (2.59)

The relations summarizing physical interpretation of Polyakov loop and Polyakov loop

correlators are:

〈
P (m)P (n)†

〉
= e−NT aV (a|n−m|), |〈P 〉| ∼ e−βFq . (2.60)

There is no rigorous proof of the identity between the potential as defined by means of

the Polyakov loop and the one connected to Wilson loop expectation value. There only

exists a proof of the fact that the string tension derived from the Polyakov loop correlator

is bounded from above by the one obtained from the Wilson loop correlator [16].

As we have already mentioned in Sec. 2.1.1 the Polyakov loop acts, at least in pure gauge

theory, as an order parameter for the confinement/deconfinement phase transition.

These statement becomes clear if we notice that we may interpret the 〈P 〉 quantity as

the probability to observe a single static charge because |〈P 〉| is related to the free energy

of a single color charge |〈P 〉| ∼ e−βFq . Then, being finite the critical temperature at

which the phase transition takes place, the condition 〈P 〉 = 0 is realized for Fq → ∞,

while 〈P 〉 is finite for finite values of the free energy. This observation is bound to
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the phenomenological fact that in the confined phase an infinite energy is required to

separate a quark anti-quark pair while the creation of a new pair tied to the old one is

more likely to happen.

2.2.2 The continuum limit

The continuum limit of the theory is the limit in which physical observables become

insensitive to the underlying lattice structure approaching their physical value. In this

sense, the lattice structure acts as a regulator to be removed in the renormalization

procedure.

The so-called naive continuum limit a→ 0 consists in checking that the SU(N) Wilson

gauge action approached the corresponding continuum action. This was true for our

choice of action, but there exists an infinite number of lattice actions characterized by

the same naive continuum limit. What matters is that when removing the lattice cutoff,

for a → 0, physical observables should become independent of a and agree with the

corresponding experimental values. The fact that a discrete action tends to the correct

continuous one in the naive limit does not suffice to ensure that the discrete theory

possesses a true continuum limit corresponding to the interacting field theory we are

interested. Moreover the a-independence of physical observables implies a nontrivial

dependence of the bare parameters on the cutoff a.

A necessary condition for a lattice field theory to be referable in the continuum limit to

a well defined field theory is that it must exhibit a critical region in parameter (coupling,

masses) space, where the correlation lengths ξ diverge signalizing that the system lost

its memory of the underlying lattice structure. This condition can be deduced by simply

requiring the finiteness of the physical masses, in the spectrum of our theory, and traces

the analogy between cutoff removal in field theory and the RG flow towards a fixed point

in the RG approach for statistical systems (see Chap. 1).

In the case of a pure gauge theory there is only one parameter which has to be tuned in

a way to bring the system near its criticality: it is the dimensionless bare coupling g0,

on which the correlation length in lattice units must depend in a way that

ξ̂ (g0) −→
g0→g∗0

∞, (2.61)

if the system presents, as required in the limit a→ 0, a fixed point g∗0. The correlation

length ξ depends both on g0, by virtue of the requirement in Eq. (2.61), and on a because

ξ = ξ̂a, but the fact that Eq. (2.61) holds only in the a→ 0 limit signalizes an implicit

dependence of ξ̂ on a which occurs as a dependence on a of the bare coupling.
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An important consequence of this dependence is that, for dimensional reasons, the exis-

tence of a functional dependence of the kind g0 = f (a) implicitly introduces a mass scale

ΛL in our theory. Since, for sufficiently small a values, a universal function g0 (a) must

exists, which ensures the finiteness of any physical observable, the ΛL value is univo-

cally determined for a fixed lattice action, and it constitutes the scale by means of which

we are able to extract physical quantities starting from the dimensionless quantities

numerically measured.

The functional form of the connection between g0 and a has to be determined, if we have

to understand how to reach the continuum limit of the theory and to give a meaning to

the measuring process.

Given an observable Θ with mass dimension dΘ, the numerically measurable quantity

is the dimensionless and g0-dependent Θ̂. What we expect is that the existence of a

continuum limit together with an adequate tuning of g0 with a ensures

Θ (g0 (a) , a) =

(
1

a

)dΘ

Θ̂ (g0) −→
a→0
g0→g∗0

Θphys. (2.62)

The quantity g0, as a function of the dimensionless product a (Θphys)
1/dΘ , may then be

determined, for sufficiently small a, by knowing the dependence of Θ̂ on g0 and by fixing

Θ (g0 (a) , a) at its physical value Θphys. Any observable may be used for this purpose

because of the universality of the relation g0 (a) at small enough a.

The above-described method to obtain g0 (a) involves the use of renormalization group

technique and equations based right on the observation that for a→ 0 the value of any

observable must become independent of a, i.e. RG equations of the form

[
a
∂

∂a
− β (g0)

∂

∂g0

]
O (g0, a, . . .) = 0 (2.63)

must hold, with β (g0) = −a∂g0

∂a is the Callan-Symanzik β-function. β (g0) can be de-

termined by inserting into the RG equation some expression for our observable deduced

e.g. in perturbation theory. For the SU(N) case, one finds to lowest order in g0

β (g0) ≈ − 11N

48π2
g3

0 (2.64)

and deduces that g0 is driven towards its fixed point value g∗0 = 0, where β (g0) = 0,

when the lattice spacing a is decreased. The continuum limit is realized at vanishing

bare coupling. Integrating β (g0) we have

a =
1

ΛL
e
− 1

2β0g
2
o , (2.65)
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with β0 = 11N/48π2 and the appearance of the above introduced integration constant

with the dimension of a mass as a scale parameter for our theory. Including NF flavors

of massless quarks and considering the first two orders in g0 in the power expansion for

the β-function, i.e. with

β (g0) = −β0g
3
0 − β1g

5
0, β0 =

1

16π2

(
11− 2

3
NF

)
, β0 =

1

(16π2)2

(
102− 38

3
NF

)

(2.66)

the results are:

a =
1

ΛL
R (g0) , R (g0) =

(
β0g

2
0

)−β1/2β0 e−
1/β0g

2
o . (2.67)

The problem we are faced with when considering the continuum limit, consists in recog-

nizing the region in the coupling constant space where we can extract continuum physics

while performing numerical calculations on finite lattices. According to Eq. (2.67), and

given the condition expressed by Eq. (2.62), we deduce that for g0 ≈ g∗0 = 0,

Θ̂ (g0) ≈
g0→0

ĈΘ (R (g0))dΘ (2.68)

must hold, ĈΘ being a dimensionless constant to be determined by studying the ratio

Θ̂(g0)/(R(g0))dΘ as a function of g0 and noticing the asymptotic scaling of this quantity.

Within the scaling region one hence obtains

Θphys. = ĈΘ (ΛL)dΘ . (2.69)

Only within the scaling window continuum physics can be extracted from numerical

calculations.

2.2.3 Fermions on the lattice: Wilson fermions

A naive discretization of the fermionic part of the QCD action has already been proposed

in Sec. 2.2, but that does not take into account the implementation of Fermi statistics

for the fermion fields and it contains the lattice artifacts called doublers. The former

problem is solved by use of Grassmann anticommuting numbers for the fermion fields:

anticommuting fermion fields obey Fermi statistics since the v.e.v. of a product of

fermion fields change its sign under the interchange of the quantum numbers of any two

of the involved fermions. Grassmann calculus tells us what are the rules for computing

fermionic Gaussian integrals just like the one defining the fermionic partition function,
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once the action is made explicitly bilinear in fermion fields. In particular the Matthews-

Salam formula identifies the fermionic partition function ZF [U ] as the so-called fermion

determinant

ZF [U ] =

∫
dψNdψ̄N . . . dψ1dψ̄1 e

∑N
i,j=1 ψ̄iMij [U ]ψj = det (M [U ]) . (2.70)

As for the doublers, they are removed by adding the Wilson term to the fermion action.

In the single-flavor case the naively discretized fermion action, being bilinear in the

fermion fields, takes the form

SF
[
ψ, ψ̄, U

]
= a4

∑

n,m∈Λ

∑

a,b,α,β

ψ̄a,α (n) Da,b,α,β (n |m) ψb,β (m) , (2.71)

with

Da,b,α,β (n |m) =

4∑

µ=1

(γµ)αβ
Uµ (n)ab δn+µ̂,m − U−µ (n)ab δn−µ̂,m

2a
+mδα,βδa,bδn,m.

(2.72)

Doublers appears already in the free fermion case Uµ (n) = 1, where the expression for

the Dirac operator Fourier transformed into the momentum space is

D̃ (p) = m1+
i

a

∑

µ

γµsin (pµa) . (2.73)

Being diagonal, the expression for the Dirac operator in momentum space can be inverted

to give the quark propagator that, in the m = 0 case, is given by

D̃−1 (p) =
−ia−1

∑
µ γµsin (pµa)

a−2
∑

µ sin2 (pµa)

a→0−−−→
−i∑µ γµpµ

p2
. (2.74)

Beyond the single fermion pole at p = (0, 0, 0, 0) of the continuum, on the lattice there

appears the doublers: 15 unphysical poles at the edges of the Brillouin zone, whenever

all components are either pµ = 0 or pµ = π/a.

A solution to the doublers problem was suggested by Wilson and consists in adding the

so-called Wilson term of the form −a∂µ∂µ to the momentum space Dirac operator that

becomes

D̃ (p) = m1+
i

a

∑

µ

γµsin (pµa) + 1
1

a

∑

µ

(1− cos (pµa)) . (2.75)

The new term vanishes for pµ = 0 while providing an additional mass-like term of 2/a

in correspondence to pµ = π/a components, that makes doublers decouple in the limit
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a→ 0. The Wilson Dirac operator in real space is then

Da,b,α,β (n |m) =

(
m+

4

a

)
δα,βδa,bδn,m −

1

2a

±4∑

µ=±1

(1− γµ)αβ Uµ (n)a,b δn+µ̂,m, (2.76)

where, by convention, γ−µ = −γµ.

To study the limit of large quark masses it is convenient to express the Wilson’s Dirac

operator in term of the hopping mass parameter

κ =
1

2 (am+ 4)
, (2.77)

so that, upon rescaling the fermion fields by a factor (2aκ)
−1/2, we have

Da,b,α,β (n |m) = δα,βδa,bδn,m − κ
±4∑

µ=±1

(1− γµ)αβ Uµ (n)a,b δn+µ̂,m. (2.78)

Clearly κ becomes smaller and smaller for increasing mass values and one can expand

both the quark propagator and the fermion determinant in powers of κ. Such expansions

teach us that quark propagators are nothing but sums of non-back-tracking paths of link

variables connecting two given lattice sites, with the dominant contribution given, in the

static limit, by the straight Wilson line. On the other hand the fermion determinant is

a similar sum, but over closed loops of link variables. We remark that the Wilson action

enjoys charge conjugation symmetry, parity symmetry, Euclidean reflection symmetry

and the Dirac operator is also γ5−hermitian which implies that the fermion determinant

is real.

2.2.4 Temperature and chemical potential

As it has already been pointed out, the partition function for an Euclidean quantum field

theory in the functional integral formalism at finite temperature becomes a weighted sum

over all field configurations living on a Euclidean space-time surface compactified along

the time direction. In two space-time dimensions this surface has the shape of a thorus

whose axis lies along the spatial direction. The radius of the thorus becomes infinite

in the limit of vanishing temperature. In short, the concept of finite temperature in

the path integral formalism is introduced by merely compactifying the Euclidean time

direction and imposing consistent periodic BC on the fields.

As for the lattice formulation of these theories, in the thermodynamic limit, the lattice

we should consider in the finite temperature case would extend over a finite number NT

of lattice sites in the time direction (the zero-temperature field theory is recovered in



Chapter 3. Quantum Chromodynamics 36

the limit NT → ∞), while it should have infinite extension NS = ∞ in the other three

directions. The inverse temperature β being related to NT , by

β = NTa (2.79)

i.e. T = 1/NT a, if we put, for convenience kB = 1. In numerical simulations, Ns must be

kept as large as possible so that Ns � NT and the finite volume effects are negligible.

For what concerns the implementation on the lattice of the chemical potential corre-

sponding to a non-vanishing quark number density, it is not doable just by adding to

the Dirac operator the temporal component of the conserved vector current ψ̄ (x) γ4ψ (x)

multiplied by µ. The reason is that such a term in the action would produce, in the con-

tinuum limit, a divergence in the energy density. A proper discretization of the chemical

potential [17] comes from the determination of the Noether current, corresponding to

the global U (1) symmetry, for the lattice action. Such current is expressed by nearest-

neighbor terms in the temporal direction, so that the chemical potential is implemented

by replacing the temporal hopping term in the Wilson-Dirac operator with

− 1

2a

∑

n∈Λ

(
f (aµ) (1− γ4)αβ U4 (n)ab δn+4̂,m + f (aµ)−1 (1+ γ4)αβ U4

(
n− 4̂

)†
ab
δn−4̂,m

)
.

(2.80)

f (aµ) is found to be, in its simplest form,

f (aµ) = eaµ, (2.81)

since the original action has to be reproduced for µ = 0 and this requires f (0) = 1, the

form of the density term requires f (aµ) = 1+aµ+O (aµ)2 and time reflection invariance

wants f (aµ) = 1/f(−aµ). Also the physically observed particle-antiparticle asymmetry

is built in through this choice since it favors, by eaµ, the propagation forward in time,

while disfavoring the backward propagation by e−aµ. In the sum over closed loops

that represents the fermion determinant in the hopping expansion, the hopping factors

f (aµ)±1 cancel unless for loops that wind around the compact time direction acquiring

a factor f (aµ)wNT , with w number of windings. It is then easier to modify all temporal

hopping terms in a given timeslice by

f (aµ)±NT = e±
µ/T , (2.82)

with plus (minus) sign for forward (backward) hopping.
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The introduction of chemical potential spoils, for aµ 6= 0, the γ5−hermiticity of the

Dirac operator that satisfies instead

γ5D (f) γ5 = D† (1/f∗) . (2.83)

This relation means that the Dirac operator is γ5−hermitian only for f = 1/f∗ and,

for real f = eaµ, only for aµ = 0. In presence of a nonzero real chemical potential

the determinant of the Dirac operator becomes complex and a positive real Boltzmann

weight cannot be obtained just by considering even numbers of fermion flavors. The use

of importance sampling is then compromised and this is known as the “sign problem”.

We remark that an unphysical imaginary value for the chemical potential µ = iη, η ∈ R
would instead ensure γ5−hermiticity since the condition f = 1/f∗ gives

f (iaη) = 1/f(iaη)∗ = 1/f(−iaη) (2.84)

and this equality is clearly fulfilled if f (aµ) = eaµ.

2.3 The phase diagram of QCD

The phase diagram of QCD has been studied for a long time both theoretically (with

perturbative high-energy, low-energy hadronic models, rather than numeric non pertur-

bative studies) and experimentally through heavy ion collisions experiment (RHIC) and

other high energy experiments at LHC.

In this chapter we have discussed some of the symmetry of the QCD action and their

breaking under suitable values for the external macroscopic parameters affecting the phe-

nomenology (temperature and fermionic chemical potential) or the internal microscopic

parameters (quark masses, coupling constant). It is just the spontaneous or explicit

breaking and/or the restoration of particular symmetries (chiral, center, Roberge-Weiss,

etc.) that enriches the phase diagram of QCD with phase transitions whose precise

location and order, depending on T, µ,m(f), g, is not always settled and is the subject

of intensive studies.

Here, we only give a short description of the current knowledge about the phase diagram.

The hadronic confined phase is the phase of QCD at low temperatures and densities,

where the elementary particles (quarks and gluons) are confined within hadrons. This

phase can be well described by the Hadron Resonance Gas Model (HRG), in which

hadrons are treated as a free gas. At a certain density threshold, the HRG description
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Figure 2.1: The QCD T − µ phase diagram

breaks since all particles start to overlap and eventually cannot be identified any more

(transposing the “critical density” to a critical temperature under the assumption of an

ideal gas of hadrons and hadronic resonances, TC ≈ 170 MeV is found [18]). Moreover,

because of the exponential increase of the number of hadron species as a function of the

resonance mass produced in hadronic interactions, an upper limit for the temperature of

hadronic matter (Hagedorn temperature [19]) is settled at TC ≈ 150−200 MeV. Beyond

such critical temperature hadronic matter turns into a plasma of quarks and gluons.

The already discussed asymptotic freedom of QCD, due to the running of the coupling

constant, indeed ensures that there is a transition, called thermal transition, to a de-

confined phase (where quarks and gluons can be described as a gas of non-interacting

particles) while T and µ increase. In this new phase quarks and gluons, rather than

hadrons, are the fundamental degrees of freedom and the so-called quark-gluon plasma

is formed, which is characterized by deconfinement and also chiral symmetry restoration.

The chiral symmetry of QCD and the corresponding transition and order parameter were

not discussed since they are less relevant for our studies, but it is useful to introduce

them here shortly. The massless QCD action is symmetric under chiral rotations of the

fermion fields.3 A mass term in the action breaks explicitly such a symmetry, but also

in the massless limit a spontaneous breaking of the chiral symmetry takes place at the

onset of the deconfinement transition. The observable that acts as an order parameter

for the spontaneous breaking of chiral symmetry is the effective quark mass, also known

as fermionic condensate and measured by the expectation value
〈
ψ̄ψ
〉
. In the confined

3Here we are referring to the chiral rotations realized by the transformations ψ → ψ′ = eiαγ5Tiψ,
ψ̄ → ψ̄′ = ψeiαγ5Ti , where Ti, i = 1, 2, . . . , N2

f − 1 are the generators of SU(Nf ).
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case there is a non-vanishing effective constituent quark mass Mq ≈ 0.3 GeV coming

from the spontaneous breaking, so that for T < Tch we have
〈
ψ̄ψ
〉
6= 0. On the contrary,

in the deconfined phase, for T > Tch, chiral symmetry is exactly restored (in the massless

case) and
〈
ψ̄ψ
〉

= 0.

Even if neither the chiral condensate nor the Polyakov loop are strict order parameters

for the confinement/deconfinement phase transition for 0 < mq < ∞, since the center

and chiral symmetries become exact only in the limits mq →∞ and mq → 0 respectively,

their values can be studied to approximately locate the position of the phase transition

lines in the phase diagram.

What is already known, from numerical studies, about the thermal transition is that

in the physical region for the masses of quarks4 and for vanishing chemical potential it

is not a true phase transition, but a rapid crossover, and it happens for TC = 150 −
170 MeV [20]. Being a crossover the actual value for TC is not uniquely definable, but

generally depends on the observable used for its definition.

The sign problem prevents investigations at µ� 0, so that our current knowledge about

this region is based on models of QCD that only partially reproduce the full theory. The

model calculations predict a first order transition at large µ. Consequently, a critical

end point (CEP) is expected at the end of the first order line.

4for two degenerate light quarks plus the strange quark at their physical masses mud and ms



Chapter 3

Numerical methods in lattice

theories

“Any one who considers arithmetical methods of producing random digits

is, of course, in a state of sin. For, as has been pointed out several times,

there is no such thing as a random number - there are only methods to pro-

duce random numbers, and a strict arithmetic procedure of course is not such

a method. [...] We are dealing with mere “cooking recipes” for making dig-

its; probably they can not be justified, but should merely be judged by their

results.”

John von Neumann, Various techniques used in connection with random digits (1951)

As we will see, the simulation of a certain theory requires the use of numerical techniques

both for the generation of the lattice we have to put the theory on, together with the dof

defined on it, and for the extraction of the expectation values of physical observables.

Moreover, to all numerical estimates of these observables, corresponds a statistical error

that has to be determined as well, by making use of statistical concepts implemented in

a numerical way.

These are the topics to which this chapter is devoted. Our attention will be focused on

the properties and implementation of some Monte Carlo algorithms with some specific

examples (Secs. 3.1.1, 3.1.3, 3.1.2, 3.1.4). A discussion of the so-called smoothing algo-

rithms will follow and, finally, we will address the statistical analysis of data and the

determination of statistical errors affecting the numerical estimates of thermodynamic

observables.

40
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3.1 Monte Carlo methods and algorithms

When calculating the partition function Z for a statistical system, from which thermo-

dynamic properties can be deduced, any time there is no exact analytic expression for

Z, one is faced with the necessity of performing a sum over a quite often huge number of

states (infinite in the thermodynamic limit). A statistical treatment of the theory is then

feasible only thanks to the development of approximate techniques, mainly consisting of

computational methods.

The employment of numerical methods, in its turn, requires a discretized and finite-size

version of the model to be studied. In such a model Z becomes a numerically evaluable

finite sum or a finite-dimensional integral.

In this context, a Monte Carlo (MC) method is a numerical technique for computing

such sums/integrals and estimating properties of the system under study, by making use

of some sequences of random numbers.

For the case of a single random variable the MC procedure can be implemented in three

steps: the generation of a sequence on uniformly distributed random numbers r1, r2, . . . ,

the production of a second sequence of random numbers x1, x2, . . . from the first one

in a way that the new sequence has the distribution one wants to sample (importance

sampling), and the estimation of the probability for a generic random x to take values

in a specific region. It is clearly a way to effectively compute the definite integral of

the distribution function. In multidimensional problems, over a generic region, this may

be the only way to get the integral via vectors of random variables. The accuracy with

which the integral is estimated depends, of course, on how wide the sample of our random

numbers is, with an uncertainty behaving like O (1/
√
N) whatever the dimensionality of

the system.

Behind the described procedure there is the assumption that the expectation value of

some function f (x), with regard to a probability distribution of density ρ (x), can be

approximated by an arithmetical average over a finite sets of values

〈f〉ρ =

∫ b
a dxρ (x) f (x)
∫ b
a dxρ (x)

= lim
N→∞

1

N

N∑

n=1

f (xn) . (3.1)

MC methods must then reside on the possibility of simulating the process of transition

of the system among its possible states in such a way that the probability for the system

to be in a given state after some steps of transition is equal, provided the equilibrium

has been reached, to the weight of that state in the partition function for the real

system i.e. to its Boltzmann weight. In this way the dof of our system will follow the
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correct distribution and this is a peculiar property of the Markov processes. A stochastic

sequence of N states is a Markov chain if the sequence is ergodic, aperiodic and if

states are positive. Provided these three conditions hold, together with the sufficient

condition called “detailed balance”1, we are sure that for N →∞ a unique equilibrium

distribution exists being a fixed point of the Markov process. If, once the equilibrium

has been reached, we compute the average of a generic observable over a sufficiently long

range of computer time, i.e over a sufficiently long sequence of equilibrium states, we

will get a good estimate of the ensemble average for that observable [6, 13, 14, 21–25].

The design of a MC algorithm basically consists in identifying the correct Markov pro-

cess, i.e. the correct set of transition probabilities between successive states of the system

P (µ→ ν), satisfying ergodicity and the detailed balance condition for the Boltzmann

distribution. This may be a hard task, but there is some freedom to be exploited: first

of all detailed balance condition only fixes the ratio P (µ→ν)/P (ν→µ), secondly it is auto-

matically satisfied for the trivial transition µ→ µ. The problem can then be rephrased

by decomposing the transition probabilities into the product of a selection probability

g (µ→ ν) for our system to generate the state ν being fed the state ν, and an acceptance

ratio A (µ→ ν) that is the probability to accept the µ→ ν transition rather than reject

it. There is, this way, complete freedom on how to choice selection probabilities, while

acceptance ratios have to be tuned for the detailed balance condition to hold. Of course

the higher the acceptance ratios, the better to speed up the algorithm.

The strategy to be followed is the following:

• Given the initial state µ, a candidate state ν is proposed that differs from the

initial state by the change of some local variable (es. spin flip on sites, change of

links). The state ν is chosen according to a selection probability g (µ→ ν) with

the requirement that it satisfies ergodicity;

• The acceptance probability for the transition µ→ ν is chosen with the requirement

to fulfill the detailed balance condition and the state of the system is updated to

ν or stays µ accordingly.

Different MC methods are simply different recipes on: how to select dof to be changed

on the lattices (local or not), how to choice selection probabilities and acceptance ratios

depending on the specific system under study.

Historically, modern Monte Carlo methods have their birth in the 1940s thanks to the

studies of Fermi, Ulam, von Neumann, Metropolis et al.

1If we indicate by µ and ν, two generic states of our system that are connected by a transition in the
Markov chain, the detailed balance condition is e−βEµP (µ→ ν) = e−βEνP (ν → µ).
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3.1.1 Metropolis algorithm

The first example of thermal importance sampling method has been introduced by Nico-

las Metropolis and his co-workers in their paper on hard sphere gases, dating back to

1953 [26], where they proposed an algorithm, known by then as Metropolis algorithm

and being by then the most widely used among the MC algorithms.

The “Metropolis recipe” is the following:

• Update a single variable at a time (single-spin flip, single-link update);

• Equal selection probability of 1/N for all the N states accessible in the updating

procedure (as many as spins/links);

• Acceptance ratios, fulfilling detailed balance

A (µ→ ν) =




e−β(Eν−Eµ), if Eν − Eµ > 0;

1, otherwise.
(3.2)

Being a local updating procedure, in order to achieve ergodicity one has to perform a

so-called sweep over all variables (sites, or links) of the lattice.

Let us now briefly analyze the reasons behind these choices and their consequences.

Local changes involving only one variable allows for transitions to states not too far

within each other and this mimic the behavior of systems at thermal equilibrium for

which energy fluctuations are so small that the system only visits a subset of its possible

states in a narrow energy range. The acceptance ratios are maximized by the choice in

Eq. (3.2). The consequence of this choice is that the transition to a new state of equal or

lower energy is always accepted, but also transitions to states with higher energy are at a

certain rate accepted and in this way the algorithm incorporates quantum fluctuations.

3.1.2 Overrelaxation

The method called overrelaxation may be thought of as just a particular way of choos-

ing the candidate variable for updates, within a Metropolis-like algorithm. It, indeed,

exploits the fact that Metropolis accept-reject step always allows transitions to states of

equal energy. Then one can change a single variable as much as possible, provided that

a new one with the same probability weight is selected, and speed up the motion of the

system in its configuration space.
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A remark is in order, about the non-ergodicity of the overrelaxation algorithm: it only

samples subspaces of constant action within the configuration space, hence generating

a microcanonical ensemble of states. This problem can, of course, be circumvented by

interposing overrelaxation steps between some ergodic updating procedure.

Overrelaxation is quite easy to be implemented for gauge field theories as U(1) and

SU(2) and can also be implemented for SU(3) [27].

3.1.3 Heat-bath algorithm

The heat bath Monte Carlo algorithm (Yang, 1963) owes its name to the fact that it

is based on the idea of regarding the computer just as if it was a heat bath which is

successively put in contact with each variable to be updated on our lattice. The variable

being updated, as a response to this contact, fluctuates thermally throughout the group

manifold until, when the thermal source is removed, it is left in one of its allowed states

with a probability given by the associated Boltzmann weight.

To better understand how it works, the “heat-bath recipe” is the following:

• Update a single variable at a time (single-spin flip, single-link update);

• Selection probability for the µ → ν transition given by the canonical equilibrium

distribution for the µ state of the system

g (µ→ ν) =
e−βEµ

Z
, (3.3)

so that detailed balance condition is automatically fulfilled;

• Acceptance ratios A (µ→ ν) = 1 as a consequence: variable always change!

The numerical task in the implementation of the heat bath is to generate the desired

distribution out of a sequence of uniformly distributed random numbers.

For some well behaved distributions this can be done via transformation method by com-

puting and inverting the cumulative distribution function corresponding to our target

distribution. However, in many practical applications for which it is too difficult to do so

analytically, a useful alternative is von Neumann’s acceptance-rejection technique [28].

Basically, for a real valued variable to be updated according to a 1D probability distri-

bution function (p.d.f.), one just identifies a curve, g (x), enclosing the desired p.d.f. for

which the transformation method is easily applicable (the step function, at worst, may

do the job). After the generation of a random number distributed according to g (x) (our
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selection probability), to satisfy detailed balance, one has to perform an accept-reject

step via the generation of a second random number uniformly in [0, g (x)] and accept x

in case this second number lies below the p.d.f. value for x.

Implementing heat bath for gauge field theories is an involved task: while one can design

an algorithm directly producing SU(2) variables, this is not the case for SU(3) where

one has to apply a pseudo heat-bath method by iteratively performing the heat bath on

the SU(2) subgroups of SU(3) [29].

3.1.4 HMC algorithm

QCD with fermions is an interacting fermion-boson quantum field theory, but it can

be simulated in terms of bosonic variables alone, after having performed the Gaussian

integrals over the fermion variables. Integration is mandatory if we want to apply the

algorithmic ideas just introduced that cannot be directly applied to Grassman numbers.

A relevant problem affecting fermion-boson interacting theories, however, is that the

effective bosonic action is non-local and this implies that if we try to apply single-

link Metropolis update, the simulation would be really slow since we would have to

evaluate the determinant of the fermion matrix many times. The algorithmic cost would,

moreover, not decrease considering global updates because of very low acceptance rates.

Classical dynamics algorithms (based on discretized differential equations) are a solution

to this problem because they allow changes of all variables in every updating step, with

the number of necessary quark matrix inversions not depending on the number of links

being changed and the acceptance rate not becoming too small. Such algorithms were

proposed for pure gauge field theory by Callaway and Rahman [30] and later on used

for fermionic quantum field theories as suggested by Polonyi and Wyld [31].

Basically, one uses the fact that the Euclidean path integral associated with a quantum

theory can be rewritten as the partition function for a classical statistical mechanical

system in four spatial dimensions with a canonical Hamiltonian governing the dynamics

in the simulation time. This makes the expectation values of observables computable (in

the thermodynamic limit) in terms of microcanonical ensemble averages at fixed energy.

Ergodicity then allows us to approximate these ensemble averages by simulation-time

averages over sufficiently long “classical” trajectories2.

Clearly an exact solution to the so-called molecular dynamics (MD) equations of motion

would produce a time series of configurations all belonging to the same equal-energy

2By “classical” trajectory here one means a sequence in simulation time of configurations generated
by iterating the discretized version of classical dynamics equations corresponding to the Hamiltonian.
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hypersurface and, in a Monte Carlo simulation all such candidate configurations would

be accepted, but the equations of motion have to be discretized and solved numerically,

so that the value of the Hamiltonian on the new configuration is just close (not equal)

to its value on the starting configuration. Either an extrapolation to vanishing discrete

step size, or a Metropolis accept-reject step against the known exact probability weight

of the configuration, are then needed to avoid the propagation of numerical errors.

To move to the actual implementation of the hybrid Monte Carlo algorithm, we con-

sider lattice QCD with two degenerate flavors of quarks in the Wilson formulation (see

Sec. 2.2.3). The lattice action is given by:

S [U, φ] = Sg [U ] +
∑

n,m∈Λ

(
φ†n

[
DD†

]−1

nm
φm

)
≡ Sg [U ] +

(
φ†
[
DD†

]−1
φ

)
, (3.4)

where with φ we indicate the pseudofermion fields introduced to rewrite the fermionic

determinant 3 [32]. As outlined above, the strategy is to introduce conjugate momenta

for our field variables in order to build the Hamiltonian that will govern the updating

process. With πn conjugate momenta for φn fields (both complex valued spinors at fixed

flavor) and Pnµi real momentum variables conjugate to the parameters ωnµi appearing

in the exponential map for the gauge fields Un,µ ∈ SU(3), the Hamiltonian takes the

form

H[P, π, U, φ] =
1

2

∑

n,µ,j

P 2
nµj +

1

2

∑

n

π†nπn + S [U, φ] , (3.5)

with the j-index in the sum over P 2
nµj running on the eight components of Pnµ as an

element of LSU(3). In this context the lattice action acts like a potential and our

expectation values can be calculated in this extended path integral representation as

〈O〉 =

∫
DPDUDπDπ†DφDφ†O [U, φ] e−H[P,π,U,φ]

∫
DPDUDπDπ†DφDφ† e−H[P,π,U,φ]

. (3.6)

By solving numerically the Hamilton equations in the simulation time governed by

H[P, π, U, φ] in terms of Unµ(τ), we will sample an almost-microcanonical subset of

configurations. Ergodicity and canonical-microcanonical equivalence tell us that 〈O〉
can be obtained as time-average over sufficiently long configuration-trajectories.

In the HMC algorithm the fields that are updated in a MD trajectory are the gauge

fields U . For the MD evolution, some appropriate integration scheme as to be adopted,

for instance the leapfrog or second order minimal (2MN) scheme [33].

Performing the integration process is not enough since ergodicity must be ensured, and

this is done in the hybrid algorithm by combining the classical dynamics algorithm with

3Flavor, color and spinor indices are not displayed.



Chapter 2. Numerical methods 47

the stochastic Langevin approach as suggested by Duane [34]: Gaussian-distributed

conjugate momenta are generated randomly at the beginning of every MD trajectory.

Finally the problem of how to update the fermionic fields φ has to be addressed. One

could use a MD update also for these variables, but, as a faster alternative, one can

generate fermion fields configurations in terms of a new set of variables ξ =
(
K†
)−1

φ. By

generating a complex vector ξ with Gaussian distribution e−ξ
†ξ and calculating φ = K†ξ,

one obtains an ensemble of the fermionic fields φ distributed according to e−φ
†(DD†)

−1
φ.

We are now in a position to summarize what has been discussed up to here in the “HMC

recipe”:

• Update all variables at a time;

• Selection probability according to the MD integration process that takes as in-

put Gaussian-distributed conjugate momenta and pseudofermion fields (to ensure

ergodicity);

• Acceptance ratios tuned to fulfill detailed balance condition

A
(
U, φ→ U ′φ′

)
=




e−(H[P ′,π′,U ′,φ′]−H[P,π,U,φ]), if H [P ′, π′, U ′, φ′] > H [P, π, U, φ];

1, otherwise.

(3.7)

Here

H
[
P ′, π′, U ′, φ′

]
−H [P, π, U, φ]

= tr
[
P 2
]
− tr

[
P ′2
]

+ SG [U ]− SG
[
U ′
]

+ φ†
((

DD†
)−1
−
(
D′D′†

)−1
)
φ. (3.8)

The hybrid Monte Carlo algorithm implemented as described above has the advantage

of being fast in exploring the configuration space while allowing for high acceptance

rates if the accuracy of the MD is well tuned through the choice of the time step. Fixed

the “temporal length” of the HMC trajectory, it has been proven to be advantageous to

use a multiple timescales approach [35] consisting in the choice of different number of

integration steps (i.e. different step sizes) for the different contributions to the action

requiring higher accuracy for the cheaper contributions.

What slows down the algorithm is the necessity to compute the vector
(
D′D′†

)−1
φ while

integrating MD equations. This can be done by the iterative procedure called conjugate

gradient method for the solution of the system
(
D′D′†

)
x = φ. It is a Krylov space based

method for which convergence is ensured after N steps for a N × N real, symmetric,
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positive definite matrix. Depending on the requested accuracy, sometimes much fewer

steps are necessary.

3.2 Smoothing methods: the smearing procedure

Being, generally, interested in the behavior of long distance correlators and in physical

signals produced by stable or metastable configurations on our lattice, we are faced with

the problem that these signals are washed out by the quantum short-distance fluctuations

typical of the gauge field.

Smoothing methods have been designed with the exact purpose of locally suppressing

UV fluctuations to disentangle the signal from the noise, so that one can carry out

reliable measurements with a relatively small statistics. Here, we focus our attention on

some smearing techniques that have been used in our studies.

Smearing a configuration basically means replacing each link variable by a linear com-

bination of itself and a local average of products of other links along specific paths

(commonly staples) connecting the endpoints of the link being smeared. The local aver-

age and the original link are assigned a specific weight in the combination that produces

what is called a fat link. Fat links are then used in the construction of operators/corre-

lators to be measured. Such a procedure can be iterated.

Thanks to the smearing techniques the ground state overlap is enhanced while contam-

inations due to excited states are more and more suppressed. One must, nevertheless,

take into account that through subsequent iterations smearing involves links over in-

creasingly larger distances and physical signals may be affected. Moreover, smearing

leads out of the gauge group SU(3) we are dealing with, and in both the variants of

smearing that will be introduced in what follows a projection of the link variable back

to SU(3) is implemented.

3.2.1 APE smearing

Already introduced in the late eighties [36], the APE smearing techniques consists in the

substitution of a link variable by a weighted combination of itself and products of links

over 2(D − 2) + 2 perpendicular staples (D is the dimension of the lattice) connecting

its endpoints. On a 4D lattice this means:

Ũµ(x) = (1− α)Uµ(x) +
α

6

∑

µ 6=ν
Cµν(x), (3.9)
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where

Cµν(x) = Uν(x)Uµ(x+ ν̂)U †ν (x+ µ̂) (3.10)

+ U †ν (x− ν̂)Uµ(x− ν̂)Uν(x− ν̂ + µ̂). (3.11)

The parameter α represent the smearing fraction and is the one to be tuned, together

with the number of iterations of the procedure. The algorithm is implemented in two

steps:

• The combination in Eq. (3.9) is computed;

• The link variable Ũµ(x) is reunitarized by a projection to SU(3) which is done

by maximizing the quantity Re tr
[
XŨµ(x)†

]
for X ∈ SU(3): then we have that

X = U ′µ(x) = PSU(3)[Ũµ(x)].

Performing this transformation over all links in our lattice defines an APE smearing

sweep to be, possibly, iterated. Studies measuring the average plaquette and the distri-

bution of the smallest plaquette, as indicators of the quality of smearing, show that the

single APE-smearing step is optimal for α = 0.75

3.2.2 HYP smearing

Also in the case of HYP smearing [37] gauge configurations are smoothed through the

substitution of links by linear combination of themselves and a path of “neighboring”

links, but with these paths lying within a hypercube containing the original link. The

fact that links beyond the hypercube are not involved in the smearing procedure ensures

a minimal distortion even of the short distance properties of configurations. On a 4D

lattice the fat HYP-links are built in a three steps procedure that we illustrate backwards:

• The final HYP-smeared link is constructed via projected APE blocking out of

already fattened links

U ′µ(x) = PSU(3)[(1−α1)Uµ(x) +
α2

6

∑

±ν 6=µ
Ũν;µ(x)Ũµ;ν(x+ ν̂)Ũ †ν;µ(x+ µ̂))]; (3.12)

• The intermediate step is another projected APE blocking out of already fattened

links, but only staples in four (out of six possible) directions are involved

Ũµ;ν(x) = PSU(3)[(1− α2)Uµ(x) +
α2

4

∑

±ρ 6=ν,µ
Ūρ;ν,µ(x)Ūµ;ρ,ν(x+ ρ̂)Ū †ρ;ν,µ(x+ µ̂))];

(3.13)
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• The initial step is a projected APE blocking out of links of the original configura-

tion, but only two staples in a given direction are used

Ūµ;νρ(x) = PSU(3)[(1−α3)Uµ(x) +
α3

2

∑

±η 6=ρ,ν,µ
Uη(x)Uµ(x+ η̂)U †η(x+ µ̂))]; (3.14)

In all steps Uµ(x) is the original thin links and the directions indicated in subscripts

after the colon symbol indicate that the corresponding links are not “decorated” with

staples extending in that direction. Also in the case of HYP smearing a way to optimize

the set of three smearing parameters (α1, α2, α3) is to check which combination of them

produces an approximate maximization of the average plaquette (or maximal shift in

the distribution of smallest plaquette) and this yields (α1 = 0.75, α2 = 0.60, α3 =

0.30) as the optimal choice. One can similarly tune the three parameters by requiring

approximate minimization of the noise-to-signal ratio of the static-light pseudoscalar

corelation function and this leads to the choice (α1 = 1.00, α2 = 1.00, α3 = 0.50).

3.3 Statistical analysis of data

The result of our lattice simulation is a sample of measurements {o1, o2, . . . , oN} of a

given observable taken over a subset of states in the canonical ensemble of possible states

for our system.

To proceed to the purpose of quoting a final result for our observable, a statistical

treatment of lattice data is necessary in order to extract the best estimate of it, out of

our data, and the corresponding statistical error. The assumption is that our measured

quantities are random variables that are normally distributed around the true value 〈O〉,
with variance σ2

O. Suppose we are extracting our observable out of N measurements:

as an unbiased estimator for the mean we just take the sample average Ô and the

corresponding statistical error will be the standard deviation of the mean σÔ = 1√
N
σO.

At least, what just stated would be correct, and the statistical error would decrease as

1/
√
N if our N measurements were uncorrelated, which is not the case, unfortunately.

Our sample is, indeed, the series of measurements extracted on the i-th step of a Markov

process: autocorrelation between measurements can not be neglected, rather has to be

correctly estimated in terms of the autocorrelation function defined, at equilibrium, as

ΓO (t) ≡ 〈(Oi − 〈Oi〉) (Oi+t − 〈Oi+t〉)〉
σ2
O

. (3.15)
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The estimator for the variance of our data can then be computed to be, up to some

approximation,

σ2
Ô

=
σ2
O

N
2 τO,int where τO,int =

1

2
+

N∑

t=1

ΓO (t) , (3.16)

and it is a factor 2 τO,int bigger than the variance for a sample of the same number

of uncorrelated measurements. Rephrased, this means that our statistics is effectively

decreased by the same factor, leaving us with just N/2 τO,int uncorrelated data. The

quantity τO,int can be computed as described in [38, 39], but as an alternative our

sample of autocorrelated data can be reduced to a sample of uncorrelated via data-

blocking methods.

The sample is split into sub-samples of a size M that can be tuned by looking for a

plateau in the dependence of σO on it. The presence of such a plateau is the hint

that the standard deviation starts to show the 1/
√
M behavior expected for uncorrelated

samples. In combination with blocking the jackknife method can be used for the error

analysis. It consists in computing the averages over subsamples

ôi =
1

M

iM∑

j=(i−1)M+1

oi, with 1 < i < n = N/M (3.17)

and the so-called partial jackknife averages over the all-but-one subsample averages

ôJi =
1

n− 1

∑

j 6=1

ôi, (3.18)

because these are the ingredients to compute the unbiased jackknife estimate of the

observable

OJK = nÔ − n− 1

n

n∑

i=1

ôJi , (3.19)

and its variance

σ2
O = (n− 1)

[
1

n

n∑

i=1

(
ôJi − ôJi

)2
]
. (3.20)

Further details on the analysis of lattice simulation data can be found in textbooks [13,

14, 21].



Chapter 4

Numerical study of the

confinement phenomenon

The color confinement phenomenon accounts for our inability to detect colored parti-

cles in nature, with the QCD spectrum consisting in color singlets particle states only.

Whereas the mechanism producing such a phenomenon has not been explained from

first principles yet, color confinement can be interpreted within a few possible scenarios.

Lattice QCD numerical studies are then relevant in order to verify/disprove the validity

of the proposed models.

The picture for confinement that is discussed in this work is the dual superconductor

model.

It was conceived, by ’t Hooft [40] and Mandelstam [41], that the vacuum of QCD could

be modeled as a coherent state of color magnetic monopoles, called dual superconductor

since the condensation of color magnetic monopoles in the QCD vacuum is thought to be

analogous to the formation of Cooper pairs in the BCS theory of superconductivity. A

dual superconductor is basically a superconductor in which the roles of the electric and

magnetic fields are exchanged. The analogy is suggested both by the the absence of free

quarks, and by the fact that meson resonances lie approximately on Regge trajectories

indicating that a quark-antiquark pair is connected by a string [42], with a constant

string tension i.e. an energy that increases linearly with the distance R between the

color charges (linearly confining pontential). The non-perturbative dynamics at large

distances must then squeeze the chromoelectric and chromomagnetic fields giving rise

to color-field flux tubes connecting the two charges and being the footprint of color

confinement [43, 44].

52
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On a qualitative ground the formation of color flux tubes can, then, be interpreted as the

dual analog of the Meissner effect in an ordinary superconductor. In a normal medium,

the chromoelectric field would be described by a Coulomb potential, the energy of the

system would vary, with the charge q and distance R, as −q2/R and field lines would

spread out radially while connecting the two charges.

In a dual superconductor, instead, the Meissner effect attempts to eliminate the chro-

moelectric field. The vacuum, anyway, contains the color sources so that the Gauss law

prevents the complete disappearance of the chromoelectric field. As a result a thin flux

tube of color field lines connecting the quark and the antiquark is formed.

Although the mechanism for the dynamical formation of color magnetic monopoles is

not explained yet, over the years, Monte Carlo simulations of lattice QCD, allowing a

nonperturbative study of the chromoelectric fields between static quarks, have provided

many evidences for the condensation of color magnetic charges in the QCD vacuum [45–

50].

Moreover, again by MC simulations in lattice QCD, the tubelike distribution of color

fields in presence of static quarks in the QCD vacuum has been studied nonperturba-

tively [51–67].

One of the research subjects addressed in this work is the study of quark confinement

in SU(3) pure gauge theory at zero and nonzero temperature. Special emphasis is put

on the behavior of flux tubes across the deconfinement transition.

Before illustrating the results of numeric investigations in Sec. 4.5 and Sec. 4.6, a short

description of the ordinary superconductivity will be given in Sec. 4.1, followed by an

introduction on dual superconductivity in Sec. 4.2. Moreover, the numerical strategy in

the study of flux tubes will be illustrated in Sec. 4.3, with particular reference to the

implementation of the field-measuring procedure within the MILC code 1 discussed in

Sec. 4.4 and Sec. 4.4.1.

4.1 Aspects of superconductivity

Here a short summary of a few aspects of the theory of superconductivity is given for

later convenience. Much more detailed discussions can be found, for example, in [68, 69].

Superconductivity was discovered at the beginning of the twentieth century when H. K.

Onnes, after having successfully liquefied helium, started to investigate resistivity of

1This work was in part based on the MILC collaboration’s public lattice gauge theory code. See
http://physics.utah.edu/~detar/milc.html

http://physics.utah.edu/~detar/milc.html
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mercury at low temperatures. He found that the resistivity suddenly dropped to small

values of the order of ρ = 10−6Ω, at 4.2K. A transition to a new state, which was called

superconducting state, was then found to happen in many conductors under a certain

critical temperature, below which zero electrical resistance is achieved. The aim of

explaining this phenomenon from a theoretical point of view was pursued and achieved

by Bardeen, Cooper and Schrieffer [70, 71] who developed a quantum mechanically

based, microscopic theory named, after them, the BCS theory. However, the macroscopic

behavior of superconductors had already been successfully described, to some extent,

within the classical London Model [72] and through the Ginzburg-Landau theory (GL)

for the conductor-superconductor phase transition in the context of the macroscopic

quantum model for superconductors [73].

As concerns the macroscopic magnetic behavior of a superconductor, which is the feature

that distinguish it from a perfect conductor, it has to do with the Meissner effect. Also in

pure perfect superconductors, indeed, electrical resistance drops to minimal values at low

temperature. The difference is that, while superconductors and perfect conductors react

in exactly the same way, i.e. expelling the magnetic field, if they are cooled and then

immersed in an external field, what changes in the two cases is that superconductors

do not behave as classical electrodynamics predicts if they are first subjected to the

application of an external magnetic field and then cooled under Tc.

In this situation, in which the material already has a constant magnetic field through

it, when it is cooled trough the superconducting transition, the magnetic field would

be expected to remain, due to the zero-resistance condition alone and according to

the Ohm and Faraday’s laws ( ~E = ρ ~J and ∇ × ~E = −∂ ~B/∂t respectively). What

happens, instead, is that a superconducting material, unlike a perfect conductor, has

~B = µ0 (H +M) = 0 inside, because of the presence of persistent superficial electric

currents also in this case, hence regardless of the order of the operations of cooling and

application of an external constant field (superconductivity is a thermodynamic state).

The Meissner effect is just this kind of magnetic screening effect with the expulsion of the

magnetic field which is constrained outside the superconductor in the low-T nonzero-

H case. The superconductor shows both zero resistivity and perfect diamagnetism:

the magnetization totally cancels the external field inside the material. Unlike the

diamagnetism of normal material caused by microscopic magnetic moments induced in

the material by the external field, however, the magnetization of the superconductor is

caused by macroscopic supercurrents flowing close to the surface of the specimen.

Screening currents flow in a thin surface layer. Indeed, according to London theory of

superconductivity the magnetic flux density decays exponentially in the superconductor

taking 1/e of its value at the surface at a distance λ which constitutes the so-called London
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penetration depth. This result can be easily derived by use of the second London equation

− ~∇×
(
ms

nsq2
s

~Js

)
= ~B, (4.1)

where the subscript s indicates that mass, density, charge and current refers to the

superelectrons, later identified with the Cooper pairs in the BCS theory. In the case of

a static and uniform ~B field, parallel to the surface of a semi-infinite superconductor,

one gets

~∇2 ~B =
1

λ2
~B with λ =

√
ms

nsq2
s

. (4.2)

The London penetration depth is found to be nearly independent of temperature at low

temperatures. At temperatures of the order of about the 80% of the critical temperature

Tc, instead, λ increases rapidly and approaches infinity as T → Tc. The observed trend

can be fitted well by the expression

λ (T ) =
λ (T = 0)√
1−

(
T
Tc

)4
. (4.3)

So far, we have assumed that magnetic field is completely expelled, by supercurrents,

in the surface of the superconductor. This is what happens in type-I superconductors,

but there exists, instead, type-II superconductors in which magnetic field can somehow

access the inside of the material.

For the type-I material in absence of demagnetization effects, the superconductivity

breaks down above a critical value for the field Hc. For H > Hc, the external field

completely penetrates the sample and the magnetization of the sample vanishes. For

H < Hc, the material is superconducting and its magnetization exactly compensates the

external field such that the inner of the material is field-free.

There exists, however, type-II superconductors. In this second case, two are the critical

magnetic fields to be considered: the lower critical field Hc1 and upper one Hc2. Below

Hc1 the material behaves exactly as a type-I superconductor. In Fig. 4.1 we show

the H, T phase diagrams for the different cases of type-I and type-II superconductors.

The magnetic fluxes begin to penetrate into the superconductor in a quantized form

as soon as the applied field exceeds Hc1 so that the superconductor is said to be in

a mixed or Abrikosov state. When the applied field exceeds the value Hc2, instead,

superconductivity is destroyed and the material comes back to its normal conducting

state.

The sense of the word “mixed” resides on the fact that the whole material is divided

into normal and superconducting regions. Magnetic flux tubes can, for Hc1 < H < Hc2,
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Figure 4.1: Phase diagrams for type-I and type-II superconductors (figures from [74]).

penetrate the material, but only in narrow flux tubes as shown in Fig. 4.2. This tubes

are called Abrikosov flux tubes and their separation decreases with increasing external

fields until the whole material is crossed by the field. The condition for the mixed state

to be favored energetically is determined by the ratio of the London penetration length,

to a new scale, the coherence length.

The coherence length, which is the second characteristic length scale of superconduc-

tivity appearing in the GL theory of superconductors, is a measure of the variation in

space of the Cooper-pair (superelectron) density. The GL theory has been proposed as

an extension of the London theory, based on the Landau theory for second order phase

transitions, such that the condition of constant and uniform number density of super-

conducting carriers can be released. One of the assumptions behind GL theory is that

the behavior of superelectrons can be described in terms of a complex order parameter

ψ = |ψ| eiθ, which is a kind of “effective wave function” whose square amplitude is the

superdensity |ψ|2 = ns. Moreover, it is assumed that the variation of free energy be-

tween normal (fn) and superconducting (fs) state, can be expanded in powers of the of

the amplitude of the order parameter and of its gradient

fs − fn = α |ψ|2 +
β

2
|ψ|4 + γ

∣∣∣~∇ψ
∣∣∣
2

+ . . . . (4.4)

The terms and phenomenological coefficients, α, β, γ, in this expansion are constrained

by symmetry arguments and by the requirement of having a minimum for the free energy

at some finite value for |ψ|. In a homogeneous superconductor and in absence of external

magnetic field, the last term in Eq. (4.4) can be neglected and the two possibilities for

the minima of free energy, see Fig. 4.3 are: |ψ|2 = 0 for α > 0, hence in the disordered

normal state at T > TC , and |ψ|2 = −α/β for α < 0, hence in the ordered superconductive

phase at T < TC .
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Figure 4.2: Schematic illustration of the mixed state in an ideal type-II supercon-
ductor. (a) Magnetic flux distribution penetrating into the superconductor. A circle
with an arrow indicates the screening current flowing around a quantized flux line. The
magnetic fluxes are distributed so as to form a close-packed regular triangular lattice.
(b) Number density distribution of the superconducting electrons, where 2ξ represents
the coherence length. (c) Magnetic flux density distribution, where 2λ represents the

penetration depth. This illustration is taken from [75].

Figure 4.3: Ginzburg-Landau free-energy functions for T > TC (α > 0) and for
T < TC (α < 0). Heavy dots indicate equilibrium positions. This illustration is taken

from [68].

Following this kind of reasoning, it emerges that, for α < 0, fs < fn and the change of

sign in α at T = TC (suggesting the validity of the expansion α (T ) = α0 (T − TC), with
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α0 > 0) unveils a discontinuity in the specific heat that tells us the transition is at least

second order.

The GL equations are derived, instead, for the case in which an external magnetic field

is applied. The free energy expansion then takes the form

fs − fn = α |ψ|2 +
β

2
|ψ|4 +

1

2ms

∣∣∣
(
−i~∇− es ~A

)
ψ
∣∣∣
2

+
~B2

2
.. (4.5)

Through a minimization procedure of the free energy δ (fs − fn) = 0 with respect to

variations in the complex order parameter ψ, rather than in the vector potential ~A, the

two GL equations turn out to be

αψ + β |ψ|2 ψ +
1

2ms

(
−i~∇− qs ~A

)2
ψ = 0 (4.6)

~Js =
qs

2ims

(
ψ∗~∇ψ − ψ~∇ψ∗

)
− q2

s

ms
|ψ|2 ~A. (4.7)

The coherence length emerges from the first GL equation under the condition ~A = 0

ξ2~∇2ψ̃ + ψ̃ − ψ̃
∣∣∣ψ̃
∣∣∣
2

= 0, with ξ (T ) =
1√

2ms |α (T )|
, (4.8)

where ψ̃ = ψ/|ψ0|, with |ψ0|2 = −α/β (α < 0). It measures the scale of distance of the

variations of the order parameter in the superconductor.

Also the London penetration depth can be obtained within the GL theory since in the

limit of weak applied field, by computing the curl of Js the London equation is recovered

with

λ (T ) =

√
msβ

q2
s |α (T )| . (4.9)

Both the length scales we have just introduced, λ (T ) and ξ (T ), are T -dependent quan-

tities diverging towards the critical temperature as (1− T/TC)
−1/2, so that their ratio,

i.e. the so-called Ginzburg Landau parameter κ = λ/ξ is a T -independent quantity. Such

a quantity characterizes the type of superconductivity according to the criterion:

κ <
1√
2
←→ type I superconductors

κ >
1√
2
←→ type II superconductors

for κ ' 1√
2

the superconductor is in a mixed state consisting of the Meissner and mixed

phase at the same time. The criterion is derived considering an infinite superconductive

medium embedded in a uniform external field Bext. Above a given threshold for Bext
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the medium becomes a normal conductor and |ψ|2 = 0. One can imagine to gradually

decrease the applied field until the nucleation of superconducting regions starts to occur.

Then |ψ| ' 0 allows the linearization of the first GL equation (it takes the form of a

Schrödinger equation for a particle subject to harmonic potential) to be solved for the

highest possible field at which superconductivity appears. The critical field turns out to

be

Bc2 =
2ms |α|
|es|

, (4.10)

and can be compared to the thermodynamic critical field

Bc =

√
α2

β
, (4.11)

defined as the maximum applied field from the relation fn − fs = B2
c/2. By use of

equations Eq. (4.8) and Eq. (4.9) one gets

Bc2 =
κ√
2
Bc. (4.12)

Finally, the linearization of GL equations is admitted also slightly below Bc2. Abrikosov

wrote a general solution for the first GL equation also taking into account periodicity

in a plane perpendicular to ~B, hence predicting that the flux tubes formed in type-II

superconductors are arranged in a regular array, with each tube carrying one quantized

unit of magnetic flux φ0 = hc/2e, in CGS units, called fluxoid [76].

4.2 Aspects of dual superconductivity

To move to the dual analog of superconductivity and its connection to the description of

the confinement mechanism in QCD, the superconductive behavior observed for solids

has to be set within a field-theoretical context. It has been observed that, from a field-

theoretical point of view, one can describe a phenomenon with the characteristics shown

by the superconductivity phase transition as a Higgs phenomenon corresponding to a

spontaneous symmetry breaking.

Moreover, the BCS theory assumes that the attractive force between electrons, that

arises thanks to the electron-phonon interaction, determines the production of bound

electron pairs (Cooper pairs) in which the individual electrons carry opposite spin. Then

the fundamental state of these pairs can be seen as particles with zero spin and 2e charge

and, in the theoretical background of the Higgs mechanism, can be seen as the analog

of the excitations of an Higgs field.
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This interpretation was pursued by ’t Hooft who showed how, in QED (gauge group

U(1)), the transition from a superconductive to a normal phase may be described as a

spontaneous breaking of the gauge symmetry. Also for the case of QCD it is speculated

that the vacuum can be described in terms of a Landau-Ginzburg model of a dual

superconductor, also called dual Abelian Higgs model, and that a spontaneous symmetry

breaking is involved in the deconfining phase transition.

Let us then explain the meaning of the adjective “dual” referred to superconductivity. A

dual superconductor is a superconductor in which the roles of the electric and magnetic

fields are exchanged. Whereas, in usual superconductors, electric charges are condensed

in the form of Cooper pairs, in a dual superconductor, the condensed charges are the

magnetic ones. A similar exchange in the roles of the field makes it natural to express

the Lagrangian of the model in terms of the dual field tensor F̃µν , which is obtained by

the exchange

~E → ~H, ~H → − ~E, (4.13)

of the electric and magnetic fields.

On a qualitative ground, in a static quark-antiquark configuration in which the particles

are separated by a distance R a static chromoelectric field is generated whose lines

connecting the two charged particles cannot spread in space as if they would do in

a non-superconducting medium. On the contrary, as the qq̄ pair is embedded in a

dual superconductor the chromoelectric field lines are compressed in a thin flux tube

connecting the two sources by means of the dual Meissner effect. As already mentioned,

the geometry of the flux tube ensures that the energy increases linearly with R creating

a linearly confining potential between the quark and the antiquark.

The main goal in this work is to investigate the formation of chromoelectric flux tubes in

the case of an SU(3) pure gauge field theory, and analyze how some of their properties

are affected by changes in temperature towards and above the critical value at which

the deconfinement phase transition is expected to take place. This aim is pursued

by studying the shape of chromoelectric longitudinal field in the transverse directions

and then fit this shape with adequate functions based both on the London and on the

Ginzburg-Landau description of superconductivity (in both cases tube-like structures

arise as a solution of the equations relating electric, magnetic fields and the current in

the superconductive medium).

Up to now, one of the things that has been discovered about flux tubes is that they are

almost completely formed by the longitudinal chromoelectric field El, which is constant

along the tube axis and decreases rapidly in the transverse direction that we denote by

xt. As for the transverse shape of El, many proposals were advanced over the years
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about the function according to which a good fit could be obtained. In this work, we

take into consideration two of these proposals.

The fact that the formation of the chromoelectric flux tubes can be interpreted as dual

Meissner effect and the chromoelectric field distribution should resemble the dual version

of the Abrikosov vortex field distribution led to the proposal [60–64] to fit the transverse

shape of the longitudinal chromoelectric field according to

El (xt) =
Φ

2π
µ2K0 (µxt) , xt > 0. (4.14)

In Eq. (4.14) K0 is the modified Bessel function of order zero, Φ is the external flux

and µ is the inverse of the London penetration length. The condition for λ = 1/µ

under which Eq. (4.14) holds, is that λ� ξ, where ξ is the above mentioned coherence

length in the superconductivity theory that, within the dual superconductor model,

measures the coherence of the magnetic monopole condensate. We deduce that a fit

with Eq. (4.14) can be applied if we are dealing with a type-II dual superconductor.

However, some lattice studies, e.g. [57], indicated that the vacuum behaves like an

effective dual superconductor with κ ∼ 1, hence belonging to the borderline between a

type-I and type-II superconductor nearly invalidating the use of Eq. (4.14).

As a second possibility, in Ref. [77] it has been suggested a different fitting function by

exploiting the results in Ref. [78]. There, from the assumption of a simple variational

model for the magnitude of the normalized order parameter of an isolated vortex, ana-

lytic expressions for magnetic field and supercurrent density are derived, that solve the

Ampere’s law and the Ginzburg-Landau equations. By dual analogy

El (xt) =
Φ

2π

µ2

α

K0

[(
µ2x2

t + α2
)1/2
]

K1 [α]
, (4.15)

where µ has the same meaning as before and α = ξν/λ is the ratio of the penetration

length to the variational core radius parameter. Realistic values of the fields in this

second case are yielded also near the flux tube axis. Eq. (4.15) is equivalent to

El(xt) =
φ

2π

µ2

α

K0[(µ2x2
t + α2)1/2]

K1[α]
, µ =

1

λ
,

1

α
=

λ

ξv
. (4.16)

By fitting Eq. (4.16) to El(xt) data, one can extract both the penetration length λ and

λ/ξv. The Ginzburg-Landau κ parameter can then be obtained by

κ =
λ

ξ
=

√
2

α

[
1−K2

0 (α)/K2
1 (α)

]1/2
, (4.17)
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and, the coherence length ξ can be deduced. It has been shown in [79] that the two pos-

sible fitting functions for El(xt) can be traced back under different assumptions to either

the London model or the Ginzburg-Landau theory for the ordinary superconductivity.

4.3 Observables and simulation setup

The spatial distribution of color fields produced by a pair of static sources, in SU(3)

pure gauge theory vacuum at zero and nonzero temperature has to be analyzed. We

will only consider static sources living in the fundamental representation of SU(3), for

instance a quark and an antiquark. To measure the field, the correlation of a plaquette

UP with two Polyakov loops will be used, as a natural modification of the connected

correlation of a plaquette with a Wilson loop, that has already been used in studies

on the zero-temperature behavior of flux tubes. The most suitable lattice operator for

the detection of flux tubes is given, in particular, by a connected correlation between

the above-mentioned pairs of objects, in which the connection is realized by means of a

Schwinger line L. A simplified structure for the used operators is shown in Fig. 4.4.

Figure 4.4: From the left to the right: the connected correlator between the pla-
quette UP and the Wilson loop and the correlator between two Polyakov loops, one of
which connected to a plaquette UP . Connections are realized by Schwinger lines. The

subtraction in Eq. (4.18) and Eq. (4.19) is not explicitly drawn.

The reason for the connection via Schwinger lines lies in the fact that the corresponding

disconnected expressions are sensitive to the squared field and are much noisier.
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It can, instead, be shown that the lattice connected correlators

ρconnW =

〈
tr
(
WLUPL

†)〉

〈tr (W )〉 − 1

N

〈tr (W ) tr (UP )〉
〈tr (W )〉 , T = 0 (4.18)

ρconnP =

〈
tr
(
P (n)LUPL

†) trP (y)
〉

〈tr (P (n)) tr (P (y))〉 − 1

N

〈tr (P (n)) tr (P (y)) tr (UP )〉
〈tr (P (n)) tr (P (y))〉 , T 6= 0, (4.19)

by measuring the fields rather than their squares [56], fluctuate less and seem to be the

natural operators for studying flux tubes. In the above formulas N is the number of

colors, while UP = Uµν(n) is the plaquette in the (µ, ν) plane, connected to the Wilson

loop W , or to the Polyakov loop P , by a Schwinger line L.

The linearity of ρconnW and ρconnP in the field, in the SU(3) case holds up to terms of

order a2 in the lattice spacing2. The linear term in Fµν , then, dictates the dominant

behavior of our correlators in the continuum limit. This becomes clear if one exploits the

exponential map connecting any element of a Lie group to a vector in the corresponding

Lie algebra. One simply has to expand the expressions for W̃ = L†WL and UP as follows

tr

{
W̃

[
UP − tr

(
UP
3

)
1

]}
= tr

{
W̃

[
eiga

2FaµνT
a − 1

3
tr
(
eiga

2FaµνT
a
)
1

]}

' tr

{
W̃

[
1+ iga2F aµνT

a − g2a4

2
F aµνT

aF bµνT
b+

− 1

3
tr

(
1+ iga2F aµνT

a − g2a4

2
F aµνT

aF bµνT
b

)]}
=

= tr
{
ein

aTa
[
iga2F aµνT

a +O
(
a4
)]}

. (4.20)

A few remarks are in order, about the linearity of our lattice observable in the com-

ponents of the field strength tensor. Those components are elements of the LSU(3)

algebra, hence 8-vectors in color space, while our connected correlator is a gauge invari-

ant quantity that, as such, is not sensitive to the underlying color structure of the field

in the sense that it cannot single out and probe any given color component in the field

structure. The Wilson/Polyakov loop connected to the plaquette is, indeed, the source

of a color field which points, in average, onto an unknown direction (in color space) given

by the loop itself (there is no preferred direction). What we measure is the average pro-

jection of the color field onto that direction, which is what has been indicated by na in

Eq. (4.20). The color indices of the Schwinger lines are contracted with the loop which

is the source of the field and realize the color parallel transport between the source loop

and the plaquette position.

2In SU(2), the linearity in the field is easier to show and holds in general. There, indeed, the plaquette
can be written as a linear combination of the identity and the Pauli matrices σi: UP = U0

P + iσiU iP .
It becomes then clear that the quantity ρconnW = 〈tr(WLiσiUiPL

†)〉/〈tr(W )〉, changes its sign under the
transformation UP → U†P .
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Taken in mind the above considerations on the linearity, a symbolic expression for the

naive continuum limit of the connected correlator in Eq. (4.19) is

ρconn
W

a→0−→ a2g
[〈
naF aµν

〉
qq̄

]
, (4.21)

where 〈 〉qq̄ denotes the average of the field projection in the presence of a static qq̄

pair and β = 2N/g2 is the coupling constant. The components of the field strength tensor

can, then, be extracted as

F aµν (x)na =

√
β

2N
ρconnW (x) . (4.22)

The same can be said about the ρconnP correlator.

A numerical check of the linearity in the field of ρconnP in the scaling region was also

accomplished, by connecting the source loop to either the plaquette or its hermitian

conjugate and comparing the measured field in the two cases. The result of such a test

is shown in Fig. 4.5. As a last comment on the physical interpretation ρconnP , we mention

the analytical results in [80], where, through the derivation of the analog of the Gauss

law for QCD, a prescription on how to calculate the field strength as a gauge invariant

quantity in lattice simulation is given, that leads to Eq. (4.18).
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Figure 4.5: Longitudinal chromoelectric field for the two different orientations of the
plaquette entering the definition of the connected correlator given in Eq. (4.19).

The way to probe the color field distribution of the flux tube and, in particular, the

spatial dependence of color fields, in a direction that is perpendicular to the axis of the



Chapter 4. Numerical study of the confinement phenomenon 65

flux tube joining the quark and anti-quark, is by varying the position and the orientation

of the plaquette with respect to the loop.

Our final aim is to extend previous studies of the structure of flux tubes performed at

zero temperature to the case of SU(3) pure gauge theory at finite temperatures. The

reason is that the nonperturbative investigation of flux tubes generated by static color

sources at finite temperature is directly relevant to clarify the formation of cc̄ and bb̄

bound states in heavy ion collisions at high energies. To pursue this goal, the connected

correlator in Eq. (4.19) has to be employed rather than the correlator involving the

Wilson loop.

Moreover a smoothing procedure is necessary in order to enhance the signal-to-noise

ratio through a suppression of lattice artifacts at the scale of the cutoff. At T 6= 0,

an important restriction on how to implement smoothing is that thermal fluctuations

must be preserved. To achieve this result, smearing techniques [36, 37] have been used.

The way smearing is implemented can, indeed, be easily specialized to links different

directions. Hence, a single HYP smearing step is realized on links in the temporal

direction (which is the relevant direction for thermal fluctuations), while tens of space-

only (3D) APE smearing steps are realized in the spatial directions.

The strategy is to preliminarily check that results at T = 0, employing ρconnP (x) and

smearing, are consistent with previous studies obtained with Wilson loops and cool-

ing [77].

4.4 Flux tubes studies within the MILC software

Investigations in lattice QCD are computationally intensive tasks: they require an as

efficient as possible numerical implementation. In some cases the results of the efforts

spent, within the lattice community, in making numerical computations more and more

efficient have been made available. Quoting its manual, “The MILC Code is a body of

high performance research software written in C for doing SU(3) lattice gauge theory

on several different (MIMD) parallel computers in current use. In scalar mode, it runs

on a variety of workstations making it extremely versatile for both production and

exploratory applications”. It is developed by the MIMD Lattice Computation (MILC)

collaboration.

Admittedly, pure gauge is not the most intensive theory to be simulated, but in view of

future developments and in order to exploit parallelization to speed up simulations, the

choice has been made, to implement all measurements described in Sec. 4.3 within the

MILC Code. Therefore, while the zero-temperature results shown in this work have been
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obtained through a serial fortran code, the finite-temperature study is entirely carried

out by use of a MILC Code application, which has been written on purpose.

The MILC “pure gauge” application simulates the unimproved pure gauge theory, using

microcanonical over-relaxed and quasi-heat bath algorithms. By admission of the same

MILC manual, “not much is measured” within this application, except for plaquette

and Polyakov loop measurements, possibly in a chosen gauge, or without gauge fixing.

However, “pure gauge” application is the most suited ground for the implementation of

flux tube measurements. A new application, called “flux tubes”, was then created. It

shares all the updating algorithms with the pure gauge application, but no gauge fixing

is available, since it is not needed for our purpose, while APE and HYP smearing have

been made available and many different targets were created for flux-tube measurements.

The list of all targets is the following:

• su3 ora wilson implements Wilson connected correlator and isotropic (4D APE)

smearing (suited for T = 0 studies);

• su3 ora wilson anisotropic smearing implements Wilson connected correlator and

anisotropic (3D APE) smearing (suited for T 6= 0 studies in the chromomagnetic

sector);

• su3 ora polyakov implements Polyakov connected correlator and isotropic (4D

APE) smearing (suited for T = 0 studies);

• su3 ora polyakov nonzeroT implements Polyakov connected correlator and anisotropic

(3D APE and temporal HYP) smearing (suited for T 6= 0 studies).

All of the targets use overrelaxed/quasi heat bath algorithm for configurations updating.

4.4.1 Aspects of the implementation

The code we used in this work has three main duties: it generates and, step by step,

updates the configuration of fields over all links in the lattice, it iteratively smears the

gauge configuration and alternates to smearing the computation of the observable values,

which are the output we need for our statistical analysis.

As for the first above mentioned duty, Cabibbo-Marinari heat bath algorithm and over-

relaxation algorithm in a ratio of 1 : 4 steps are used. Thermalization is achieved by

avoiding the use, for the measuring process, of a sequence of 10K configurations until

the system has lost memory of the starting configuration. Ten decorrelation updating

steps are also realized between two subsequent measurements.
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As already mentioned, the smearing procedure is implemented differently, depending on

the specific target being run.

In the construction, on the lattice, of the connected correlators (see Fig. 4.4) the lattice

symmetry is always exploited to build as many copies of the correlator as possible, for

each smeared configuration. At finite temperature (NT � NS), the temporal direction

is fixed as the one around which the Polyakov loops in Eq. (4.19) wind around. P (x)

and P (y) are separated by a distance, denoted as ∆Si in Fig. 4.4, in any of the three

spatial directions (1,2,3), for instance 1. The Schwinger line L is then displaced in that

direction until it reaches the center between the two loops. To allow measurements of the

field at finite distances from the axis connecting the two loops in transverse direction 1,

the Scwhwinger line must be lengthened in any of the remaining two spatial directions,

say 2. The maximum displacement considered in this direction was of 10a. The field

has sometimes been measured also at non-integer distances from the axis, by extending

the Schwinger line in the last available spatial direction, that is 3 (over a distance of

1, 2a). Any permutation of (1,2,3) is considered to increase statistics. Moreover, when

the Schwinger line is extended to the third (and possibly fourth) direction, we average

over positive or negative displacements on that direction, exploiting, in this way, the

cylindrical symmetry of the flux tube. Until now we have considered the length of the

Schwinger line that tells us at what distance we are measuring the field. What is the

component of the field strength tensor that we are measuring depends, instead, on the

orientation of the plaquette connected to the Schwinger lines.

Analogous considerations can be made in the zero-temperature, NT = NS case, unless

that the symmetry of the lattice is extended to the fourth direction, can be exploited to

produce a bigger number of copies of our correlators.

As for our studies in the chromomagnetic sector, we have less freedom in the possible

orientations of the Wilson connected correlator in Eq. (4.18) since the correlator is

built in the spatial sublattice with links in the temporal direction excluded from the

construction.

4.5 Flux tubes in SU(3) at zero temperature

What follows is based on [81, 82].

Numerical simulations were performed on 204 lattices using the Wilson action with peri-

odic boundary conditions and the Cabibbo-Marinari algorithm [29] combined with over-

relaxation on SU(2) subgroups to update the configurations. We considered Polyakov

lines separated by ∆ = 4a, 6a, 8a (where a is the lattice spacing) for four different values
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of the gauge coupling β in the range 5.9 ÷ 6.1. In order to reduce the autocorrelation

time, measurements were taken after 10 updatings. The error analysis was performed by

the jackknife method over bins at different blocking levels. To reduce statistical errors

we employed the isotropic (4D) APE smearing procedure [36], with smearing param-

eter ε = 0.5. It was checked that numerical results are stable, within the statistical

uncertainties, under small variations of the parameter ε.

Results confirm that the flux tube is almost completely formed by the longitudinal

chromoelectric field El, which is constant along the flux axis and decreases rapidly in

the transverse direction xt. Measurements are realized at the middle point (labeled by

xt = 0) of the line connecting the static color sources and at various distances xt > 0

from this point along one of the transverse spatial directions until xt = NS/2. To check

rotational invariance, also points calculated at noninteger distances were considered at

β = 6.0. Data were fitted to Eq. (4.16). In Fig. 4.9 the transverse distribution of the

longitudinal chromoelectric field is displayed. The full line is the curve fitting the data.

Eq. (4.16) appears to be able to reproduce accurately the transverse distribution of the

longitudinal chromoelectric field, noninteger measurements included, but an attempt to

restrict the fit only to points at integer distances yielded consistent values for the fit

parameters, with a sensible reduction of the reduced chi-square, χ2
r .

To save CPU time, the strategy was, then, to measure the connected correlator, Eq. (4.19),

for integer transverse distances only at β = 5.9, 6.0, 6.05, 6.1. To reduce statistical fluc-

tuations in gauge field configurations we performed measurements after several smearing

steps. For each smearing, we fitted our data for the transverse shape of the longitudi-

nal chromoelectric field to Eq. (4.16). As a result, we obtained the fit parameters for

different smearing steps. This allowed us to check the dependence of these parameters

on the number of smearing steps. In fact, we found well defined plateaux in the ex-

tracted parameter values versus the smearing steps. Table 4.1 reports the values of the

fit parameters for smearing steps ranging from 16 up to 50. The parameters refer to the

fit of the field strength tensor, corresponding to the connected correlator Eq. (4.19) at

β = 6.0 and ∆ = 6a.

Note that the parameters φ, µ and ξv were obtained by the fitting procedure, while the

Ginzburg-Landau parameter κ is evaluated by means of Eq. (4.17). We looked also for

contamination effects on the longitudinal chromoelectric field due to the presence of the

static color sources. To do this, we varied the distance ∆ between the Polyakov lines:

we found that the fitting parameters µ and λ/ξv for ∆ = 4a were systematically higher

than for ∆ = 6a, 8a. On the other hand, we obtained parameters consistent within the

statistical uncertainties for the distances ∆ = 6a and 8a (see Fig. 4.8).
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Table 4.1: Summary of the fit values at β = 6.0 for ∆ = 6a. The last column gives
the reduced chi-square.

Smearing φ µ λ/ξv κ χ2
r

16 6.191(141) 0.621(79) 0.309(95) 0.213(91) 0.018
18 6.218(125) 0.622(76) 0.287(82) 0.192(77) 0.011
20 6.227(109) 0.617(68) 0.277(72) 0.183(66) 0.010
22 6.222(98) 0.608(61) 0.271(64) 0.178(58) 0.010
24 6.207(88) 0.597(55) 0.269(58) 0.176(53) 0.011
26 6.184(81) 0.587(50) 0.269(54) 0.175(49) 0.011
28 6.155(75) 0.576(47) 0.269(51) 0.176(46) 0.011
30 6.122(70) 0.566(44) 0.270(48) 0.176(44) 0.010
32 6.087(66) 0.557(41) 0.271(46) 0.177(42) 0.009
34 6.049(63) 0.549(39) 0.271(45) 0.178(41) 0.008
36 6.011(60) 0.541(37) 0.272(43) 0.179(40) 0.007
38 5.973(58) 0.534(36) 0.273(42) 0.179(39) 0.005
40 5.935(56) 0.527(35) 0.274(42) 0.180(38) 0.004
42 5.897(54) 0.521(34) 0.274(41) 0.180(37) 0.003
44 5.859(53) 0.515(33) 0.275(40) 0.181(37) 0.003
46 5.822(51) 0.510(32) 0.275(40) 0.181(37) 0.002
48 5.786(50) 0.505(31) 0.276(39) 0.182(36) 0.002
50 5.751(49) 0.500(31) 0.277(39) 0.182(36) 0.001

Since for ∆ = 8a our estimate of the fitting parameters was affected by large statistical

errors, we focused on the distance ∆ = 6a as a good compromise between the absence

of spurious contamination effects due to the static color sources and a reasonable signal-

to-noise ratio.

In Fig. 4.6 we display the fitting parameters φ, µ and λ/ξv for different values of gauge

coupling β and smearing step. We see, at least for β ≥ 6.0, that our estimate for

the fitting parameters seems to be reliable and independent of the number of smearing

steps. The same holds also for the Ginzburg-Landau parameter κ as obtained from

Eq. (4.17). As for β = 5.9, we observe a slower approach of the fitting parameters to a

plateau, although this effects overcomes the statistical uncertainties only in the case of

the parameter φ. A possible reason for this phenomenon could be the presence of lattice

artifacts which need a larger number of smearing steps to be washed out and spoil also

the continuum scaling, as will be confirmed in what follows.

Within our approach the shape of the longitudinal chromoelectric field is fully charac-

terized by the London penetration depth, λ, and the coherence length, ξ. Thus, in view

of phenomenological applications in hadron physics, it is important to estimate these

lengths in physical units. Firstly, we need to study the scaling of the plateau values of

aµ with the string tension. For this purpose, we expressed these values of aµ in units of
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Figure 4.9: (Left) Longitudinal chromoelectric field El versus xt , in lattice units
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steps. The full line is the best fit using Eq. (4.16)

√
σ, using the parameterization [83]:

√
σ(g) = fSU(3)(g

2)[1 + 0.2731 â2(g) (4.23)

− 0.01545 â4(g) + 0.01975 â6(g)]/0.01364 ,

â(g) =
fSU(3)(g

2)

fSU(3)(g2(β = 6))
, β =

6

g2
, 5.6 ≤ β ≤ 6.5 ,

where

fSU(3)(g
2) =

(
b0g

2
)−b1/2b20 exp

(
− 1

2b0g2

)
, (4.24)

b0 =
11

(4π)2
, b1 =

102

(4π)4
.
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In Fig. 4.7 (Left) we show the ratio µ/
√
σ for different values of the gauge coupling.

We see that for β ≥ 6.0, µ scales according to the string tension. Fitting the data in the

scaling window with a constant we get

µ√
σ

= 2.684(97) . (4.25)

Likewise, the dimensionless Ginzburg-Landau parameter κ scales in the same interval of

β (see Fig. 4.7 (Right)). Again, fitting with a constant gives

κ = 0.178(21) . (4.26)

Our determinations, Eq. (4.25)) and Eq. (4.26), are in good agreement with the values

reported in [77], namely

µ√
σ

= 2.799(38) , κ = 0.243(88) , (4.27)

obtained using the connected correlator built with the Wilson loop, Eq. (4.18).

Assuming the standard value for the string tension,
√
σ = 420 MeV, from Eq. (4.25) we

get

λ =
1

µ
= 0.1750(63) fm . (4.28)

Combining Eq. (4.28) and Eq. (4.26) we readily obtain

ξ = 0.983(121) fm . (4.29)

Finally, it is interesting to display the transverse structure of the longitudinal chromo-

electric field produced by a static quark-antiquark pair in physical units, see Fig. 4.9.

4.6 Flux tubes in SU(3) at nonzero temperature

What follows is based on [84, 85].

Our zero-temperature study has revealed how the peculiar tube-like shape of the chro-

moelectric field between a static quark-antiquark pair can be nicely described within the

dual superconductor scenario for the QCD confining vacuum.

What follows concerns, instead, our investigations on the way growing temperature

affects the tube-like shape and, in particular, on the fate of chromoelectric flux tubes

across the deconfinement transition.
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Again the study calls for the measurement of the Polyakov connected correlator, with

some novelties on how the smoothing of configurations is accomplished, due to the

necessity of preserving thermal fluctuations.

Also in this case simulations were performed using the Wilson action with periodic

boundary conditions and the Cabibbo-Marinari algorithm [29] combined with overrelax-

ation on SU(2) subgroups to update the configurations.

Lattice sizes were chosen in a way to investigate a sufficiently wide range of temperatures

around the deconfinement one (TC = 260 MeV), while staying within the range of

validity of the parameterization [83] (see Sec. 4.5), which we use to fix the scale. In

particular, we performed numerical simulation at finite temperatures on lattices with

temporal extension ranging from NT = 6 up to NT = 12 and spatial size NS , with aspect

ratio NS/NT ≥ 4. Simulated temperatures lie in the range 0.8TC ÷ 1.5TC according to:

T =
1

a(β)NT
. (4.30)

In order to reduce the autocorrelation time, measurements were taken after 10 updat-

ings. The error analysis was performed by the jackknife method over bins at different

blocking levels. To reduce statistical errors we employed a single HYP smearing step

over links in the temporal directions and several steps of anisotropic (3D) APE smearing

procedure [36], with smearing parameter ε = 0.67, over links in the spatial directions.

Measurements are realized at the middle point (labeled by xt = 0) of the line connecting

the static color sources, and at various distances xt > 0 from this point along one of the

transverse spatial directions until xt = 10a. Only integer distances were considered in

this case.

All field components were measured, but results confirm that, even at finite temperature,

the flux tube is almost completely formed by the longitudinal chromoelectric field El,

which is constant along the flux axis and decreases rapidly in the transverse direction

xt.

For each smearing, we fitted our data for the transverse shape of the longitudinal chro-

moelectric field to Eq. (4.16). As a result, we obtained the fit parameters for different

smearing steps.

Smearing plays a crucial role in the extraction of our physical signal, and a criterion has

to be determined in order to have our measurements maximally amplified at different

β, T , ∆. Since the effect of smearing consists into an increase in the intensity of the

measured field at each fixed distance, we realized that the plateau, that is always found
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Figure 4.10: φ vs smearing for measurements of the Polyakov (Left) and Wilson
(Right) connected correlator at T 6= 0, on a 403 × 10 lattice.

in the φ versus smearing behavior and that is shown in Fig. 4.10, is a good hint that the

signal has reached its maximum before the physical signal gets spoiled by an excess of

smearing.

A scaling analysis was performed, at least for T = 0.8TC , to check that the coupling

corresponding to that fixed temperature, for various NT , lies within the scaling region.

The scaling analysis gets complicated with respect to the T = 0 case. The reason is that

for T 6= 0 the changes in the coupling constant, to get to the continuum limit, have to

be accomplished at fixed temperature, which implies considering multiple NT . Changes

in NT , on the other hand, imply big steps in β that affects appreciably the physical

distance between the two sources, if one insists on keeping fixed that distance in lattice

units 3. Under small changes in the physical distance, as in the T = 0 case, only the

parameter φ appeared to be affected and this indicated a change in the intensity of the

field while its profile was left unchanged.

What we have found, and that confirms our previous findings, is that ∆ has to be chosen

in a way that for all considered couplings (for instance, to keep T = 0.8TC we had to

consider β = 6.050, 6.170, 6.370 respectively for NT = 10, 12, 16) the distance in physical

units has to be beyond half a fermi. Our initial difficulty in getting to the scaling window

was again due to distortion effects brought about by the proximity of color sources: they

got nearer and nearer, while increasing the coupling, until they eventually were less than

∼ 0.5 fm apart, that is below the onset of the linear behavior in the static potential. This

deeply affected the quality of our fits and produced sensible changes in all fit parameters.

3In the zero temperature study, the physical distance between the quark and the antiquark, due to
changes in the coupling, varied by around 10% at fixed distance in lattice units.
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Figure 4.11: (Left) Longitudinal chromoelectric field El versus xt , in physical units,
for β = 6.050, 6.170, 6.370, ∆ = 8a, 10a, 12a respectively, and after 100,140,180 smear-
ing steps respectively. (Right) The same but with the field values at β = 6.170 rescaled

by the factor φavg/φβ=6.170.

Once understood the “distance effect”, being clear that the highest coupling requires the

biggest distance in lattice units, there are two possibilities: either we fix the distance

in lattice units to the one corresponding to the highest β, or one requires the physical

distance between the sources to be approximately constant. We did both. Within the

first approach, the scaling holds for the physical parameters µ/
√
σ and κ (exactly as shown

at T = 0), but the second approach has the advantage that less statistics is needed for

smaller couplings (since ∆ is decreased and the signal is increased consistently) and the

achievement of the continuum limit can be shown already at the level of the measured

field.

Then, at T = 0.8TC , we considered Polyakov lines separated by ∆ = 8a, 10a, 12a for

gauge couplings β = 6.050, 6.170, 6.370, respectively. Scaling appears to be achieved

already at β = 6.050 with the field at β = 6.170 not overlapping with the others just

because the physical distance in that case is slightly bigger. However, both µ/
√
σ and κ

display a nice scaling behavior and it is enough to multiply the field by the ratio between

the average φ from the other two sets and the φ value at β = 6.170 in order to get a very

nice overlap of all field profiles. This fact is a further argument in favor of the above

analysis of the “distance effect”.

Having selected the gauge coupling region were there is indication of continuum scaling,

we focused on the temperature dependence of the longitudinal chromoelectric field. We

measured the connected correlator Eq. (4.19) on 403 × 10 lattices for physical tempera-

tures ranging from 0.8Tc up to 1.2Tc. We chose the distance between the two Polyakov

lines such that ∆ > 0.7 fm. In Table 4.2 we summarize the simulation setup and the

corresponding best-fit values of the parameters.
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Table 4.2: Simulation parameters for the lattice NS ×NT = 403× 10, fitted values of
the parameters, and reduced chi-square χ2.

β ∆ [fm] T/TC φ µ ξv χ2
r

6.050 0.761 0.8 6.201(68) 0.382(13) 3.117(191) 0.02
6.125 0.761 0.9 5.941(101) 0.337(20) 3.652(360) 0.01
6.200 0.756 1.0 2.061(45) 0.328(22) 3.312(389) 0.01
6.265 0.757 1.1 1.359(9) 0.344(7) 4.286(131) 0.06
6.325 0.760 1.2 1.324(11) 0.332(8) 4.248(142) 0.06
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Figure 4.12: Behavior of the longitudinal chromoelectric field at a fixed lattice size
403 × 10 and various gauge couplings in the scaling region vs the transverse distance.

In Fig. 4.12 we display the transverse distribution of the longitudinal chromoelectric

field for the different temperatures used in the present study. From Fig. 4.12 we infer

that, as the temperature is increased towards and above the deconfinement temperature

Tc, the strength of the flux-tube chromoelectric field decreases very quickly, while the

size of the flux tube does not seem to vary appreciably. This behavior suggest that, by

increasing the temperature above the critical temperature, the flux tube is evaporating

while almost preserving his shape.

This scenario with flux-tube evaporation above Tc has no correspondence in ordinary

type-II superconductivity, where instead the transition to the phase with normal con-

ductivity is characterized by a divergent fattening of flux tubes as the transition tem-

perature is approached from below. To better characterize this point, it is fundamental

to inquire on the temperature dependence of both the penetration depth and coherence
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length, since within our approach the shape of the longitudinal chromoelectric field is

fully characterized by the London penetration depth and the coherence length.
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Figure 4.13: (Left) London penetration depth λ vs T/Tc. The λT=0 = 0.1750(63)
value is included. (Right) Coherence length ξ vs T/Tc. The ξT=0 = 0.983(121) value is

included.

The penetration depth and the coherence length, in physical units, versus the reduced

temperature T/Tc are displayed in Fig. 4.13. We also report the values of these length

at zero temperature obtained previously on 204 lattices [81]. As concern the London

penetration length, Fig. 4.13 shows that this length seems to slightly increases with

respect to the zero-temperature values for temperatures T < Tc, and then it decreases

above the critical temperature. However, the overall variation of λ is rather modest.

So that, we can safely affirm that the London penetration length is almost temperature

independent. On the other hand, at finite temperatures the coherence length suffers

a rather drastic reduction with respect to the zero-temperature value. After that, we

see from Fig. 4.13 that ξ is almost constant across the deconfinement temperature. In

any case, these results indicate clearly that the flux tube survives even after the color

deconfinement transition.

4.7 Flux tubes in SU(3) at nonzero temperature in the

magnetic sector

In this Section we would like to investigate the structure of QCD in the high temperature

regime [86, 87]. At high temperatures, through dimensional reduction, QCD can be

reformulated as an effective 3D theory with the scale of the effective couplings given in

terms of the temperature. However, the QCD effective theory is quite complicated even

at high temperatures since straightforward perturbation theory does not work due to the

presence of infrared singularities in the magnetic sector. These nonperturbative effects
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will manifest themselves in correlation functions for the spatial components of gauge

fields. In fact, it is known since long time that gauge invariant correlation functions

for spatial components of the gauge fields, the spatial Wilson loops, obey an area law

behavior in the high temperature phase with a nonzero spatial string tension σs [88, 89].

An analysis of the temperature dependence of the spatial string tension thus yields

information on the importance of the non-static sector for long-distance properties of

high temperature QCD. It turns out that, for temperatures larger than 2Tc the spatial

string tension is consistent with the behavior:

√
σs = γ g(T ) T , (4.31)

where g(T ) is the temperature dependent coupling constant running according to the

two-loop β-function, and γ is a constant; γ = 0.586 ± 0.045 for SU(3) [89], and γ =

0.369± 0.015 for SU(2) [88].

We see, thus, that for a better understanding of the nonperturbative structure of QCD

at high temperature it is fundamental to arrive at a quantitative description of the prop-

erties of the spatial string tension. To this end, we considered the connected correlator

build with gauge links belonging to the spatial sub-lattice. Obviously, in this case the

field strength tensor Eq. (4.18) corresponds to the chromomagnetic field. As in the

previous study, we performed simulations on 403× 10 lattices for physical temperatures

ranging from 0.8Tc up to 1.5Tc. We chose Wilson loops such that ∆ > 0.7 fm where,

now, ∆ is the length of the Wilson loop (see Table 4.3 for the summary of our simulation

setup).

Table 4.3: Simulation parameters for the lattice NS ×NT = 403× 10, fitted values of
the parameters, and reduced chi-square χ2.

β ∆ [fm] T/TC φ µ ξv χ2
r

6.050 0.761 0.8 7.600(14) 0.653(5) 3.313(6) 1.52
6.125 0.761 0.9 8.164(7) 0.593(3) 5.978(38) 2.90
6.200 0.756 1.0 7.887(11) 0.544(4) 6.413(76) 1.27
6.265 0.757 1.1 8.085(12) 0.498(6) 7.572(117) 0.45
6.490 0.759 1.5 9.475(80) 0.393(23) 10.793(721) 0.01

Remarkably, we found that even in this case the chromomagnetic flux tube is built from

the longitudinal chromomagnetic field only. Moreover, the longitudinal chromomagnetic

field profile in the transverse directions is accounted for by Eq. (4.15). In fact, in Ta-

ble 4.3 we report the values of the fitted parameters together with reduced chi-square.

The transverse profiles of the longitudinal chromomagnetic field for different temper-

atures are displayed in Fig. 4.14. Unlike the longitudinal chromoelectric field, we see
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Figure 4.14: Transverse profile of the longitudinal chromomagnetic field vs the trans-
verse distance across the deconfinement temperature.

that the strength of the longitudinal chromomagnetic field and the size of the flux tube

increase with the temperature. Moreover, it turns out that the temperature behavior

of the chromomagnetic flux tube is consistent with the observed increase of the spatial

string tension. In fact, we evaluated the spatial string tension reconstructed from the

profile of the chromomagnetic field according to Ref. [77] and found results which are in

agreement with the direct, standard determination from spatial Wilson loops, Eq. (4.31)

for SU(3), as reported in Ref. [89].

4.8 Summary and outlook

The confinement phenomenon and the deconfinement transition have been addressed,

in this work, within the dual superconductor scenario. In such a context confinement

is characterized by the existence and properties of the flux tubes generated by the

interaction of static sources in the QCD vacuum.

In its first part, the purpose of our research was just to confirm the validity of dual

superconductivity at T = 0. The relevance of such a test depends on the fact that the

Wilson connected correlator used in previous studies was substituted by the Polyakov

connected correlator as well as the cooling procedure was replaced by smearing. Those

two changes were essential aiming at finite temperature studies, but, before proceeding



Chapter 4. Numerical study of the confinement phenomenon 80

to the T 6= 0 case, it was our duty to ensure the agreement of the two approaches at

T = 0. As shown in Sec. 4.5, the agreement was found and results were published in [81].

As a further remark, we observe that what we called “penetration length” could match

the “intrinsic width” of the flux tube as defined in Ref. [90], where the adopted probe

observable was the disconnected correlator of two Polyakov lines and a plaquette.

Our result is also in good agreement with studies performed with the connected corre-

lator with Wilson loop, and confirm that the SU(3) vacuum behaves as a type-I dual

superconductor. This conclusion is shared with Ref. [91], where the non-Abelian dual

Meissner effect is investigated within the so-called “restricted field dominance”. Finally,

we observe that our estimate of the London penetration length is in good agreement with

the recent determination in Ref. [92], obtained using correlators of plaquette and Wil-

son loop not connected by the Schwinger line, thus leading to the (more noisy) squared

chromoelectric and chromomagnetic fields.

Afterwards, we turned our attention to the nonzero temperature case. Here, the final

purpose was to check the temperature dependence of the London penetration depth and

coherence lenght and the survival of flux tubes structures beyond the critical temperature

at which deconfinement is expected to happen in SU(3) pure gauge theory. It is not

obvious, indeed, how far does the dual superconductor analogy holds.

There are both phenomenological and theoretical hints suggesting that flux-tube struc-

tures should survive the deconfinement temperature.

On a phenomenological and experimental ground it is known that the dissociation of

quarkonia (cc̄, bb̄) states takes place at temperatures beyond the critical one depending

on the binding energy, hence typical radii, of these hadrons. For instance, the typical

binding radii of the ground states of J/ψ and Υ are rQ ' 0.1 − 0.2 fm. We know

that Debye charge screening radius rD in QGP decreases strongly with the temperature

above TC causing a striking decrease of the range of strong interactions, but it is only

for rD � rQ, possibly also far beyond TC , that the two heavy quarks stop interacting

and the bound state melts.

Furthermore, a new picture for finite T − µ QCD phase diagram, based on a compe-

tition between electrically and magnetically charged quasiparticles has been proposed

recently [93], from which a different scenario for confinement follows. In the proposed

phase diagram, a “magnetically dominated”, low-temperature region and an “electrically

dominated”, high-temperature one are identified and separated by an equilibrium region

at intermediate T −µ depending on the coupling strength of both electric and magnetic

interactions. It is the “magnetically dominated” region at low-T (and low-µ) that can,

in turn, be subdivided into a “confining part”, in which electric field is confined into
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quantized flux tubes surrounded by the condensate of magnetic quasiparticles (form-

ing t’Hooft-Mandelstamm “dual superconductor”), and a “postconfinement” region at

T > TC , but below the equilibrium temperature, in which electric quasiparticles are still

strongly coupled and connected by the electric flux tubes.

Remarkably, in the present study we found that also at finite temperatures the flux tube

is formed by the longitudinal chromoelectric field only. Moreover, we found that the flux

tube structure survives to the deconfinement transition. However, the behavior of the

flux-tube chromoelectric field across the deconfinement transition does not match the

dual version of the effective Ginzburg-Landau description of ordinary type-II supercon-

ductors. In particular, the Ginzburg-Landau parameter κ is seen to be κ � 1 at zero

temperature, while κ ' 1 near the deconfinement critical temperature. Indeed, we found

that as the temperature is increased towards and above the deconfinement temperature

Tc, the amplitude of the field inside the flux tube gets smaller, while the shape of the

flux tube does not vary appreciably across the deconfinement temperature leading to a

scenario which resembles an evaporation of the flux tube.

We, also, investigated the chromomagnetic sector which is relevant for the QCD effective

theory at high temperatures. We focused on the chromomagnetic flux tube which is

responsible for the nonzero spatial string tension. Even in the chromomagnetic sector

we found that the flux tube is built mainly from the longitudinal chromomagnetic field.

Our results showed that the strength and the size of the chromomagnetic flux tube

increase with the temperature, consistently with the temperature behavior of the spatial

string tension. Our findings, then, confirm the importance of long-range chromomagnetic

correlations in high-temperature QCD.

Finally, it is worthwhile to stress that our results could have important phenomenological

applications in hadron physics. In particular, we believe that our findings are relevant to

clarify the nature of the initial state of the quark-gluon plasma in heavy-ion collisions.

However, before attempting phenomenological applications, it is important to extend

the present study to full QCD, i.e. to SU(3) lattice gauge theory with improved gauge

action and dynamical quarks with masses at (almost) the physical point.

Therefore, a new MILC application was created. Our measurements will be performed in

QCD with Nf = 2 + 1 staggered fermions. The adopted discretization is the HISQ/tree

action as implemented in the MILC code. It will be also possible to investigate flux

tubes on a line of constant physics by appropriate tuning of the couplings. At the time

of writing the targets created for the new application are:

• su3 rhmc hisq wilson implements Wilson connected correlator and isotropic (4D

APE) smearing (suited for T = 0 studies);
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• su3 rhmc hisq wilson hyp implements Wilson connected correlator and anisotropic

(3D APE and temporal HYP) smearing (suited for T = 0 studies);

• su3 rhmc hisq wilson anisotropic smearing implements Wilson connected correla-

tor and anisotropic (3D APE) smearing (suited for T 6= 0 studies in the chromo-

magnetic sector);

• su3 rhmc hisq polyakov implements Polyakov connected correlator and isotropic

(4D APE) smearing (suited for T = 0 studies);

• su3 rhmc hisq polyakov nonzeroT implements Polyakov connected correlator and

anisotropic (3D APE and temporal HYP) smearing (suited for T 6= 0 studies).



Chapter 5

Numerical study of the

Roberge-Weiss transition

The Roberge-Weiss (RW) transition at imaginary chemical potential, in Nf = 2 flavors

QCD with Wilson fermions, with particular reference to the nature of the RW endpoint,

will be the subject of the present chapter.

What makes studies in the (unphysical) imaginary chemical potential region interesting,

and physically relevant, is the fact that they can be used to constrain the QCD phase

diagram at zero and (real) finite chemical potential µ, which is useful to clarify, for

instance, the currently unknown nature of the phase transition in the two flavor chiral

limit at zero chemical potential and the existence of a critical endpoint in the µ−T phase

diagram of QCD. The nonzero real µ region is, indeed, not directly accessible to lattice

QCD studies because of the sign problem already introduced in Chap. 2. At imaginary

chemical potential, instead, there is no sign problem preventing the investigation of the

phase structure via lattice simulations.

Previous studies using both staggered and Wilson fermions, revealed that the RW end-

point, that is the point at which the center RW transition changes from first order to

crossover, depends in a non-trivial way on the masses of the quarks included in the

model: for high and low masses, it is a triple point at the intersection with the decon-

finement and chiral transitions lines, respectively. For intermediate mass values, instead,

it is found to be a second order endpoint. The two different mass regions are separated

by two values of mass for which the RW endpoint is a tricritical point.

As a meaningful extension of a previous study on the critical RW endpoint for Nf = 2

Wilson fermion QCD, on NT = 4 lattices [94], the same analysis at NT = 6, hence on

finer lattices, has been carried out. The obtained results will be described in Sec. 6.4,

83
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after a general discussion on the phase diagram of QCD at imaginary chemical potential

in Sec. 5.1, and the description of the measured observables and the simulation setup in

Sec. 5.2.

What follows is mainly based on [95, 96].

5.1 QCD phase diagram at imaginary chemical potential

As already discussed in Sec. 2.1.2, the QCD phase diagram in the T − µi plane is

characterized by the RW symmetry of the QCD partition function in a way that, in

addition to the transition lines corresponding to the chiral/deconfinement transition,

phase transitions between adjacent Z(3) sectors take place, in correspondence to the

critical values for the imaginary chemical potential given by µcI/T = (2k + 1)π/3, with

k ∈ Z (the so called Roberge-Weiss transitions). Such periodic transitions are first order

phase transitions at high temperature until they become crossovers at low temperatures,

where the RW periodicity in the QCD action is smoothly realized [9]. The first order

lines end in a critical endpoint, which is what we call “RW endpoint”.

As it has been numerically clarified, the analytic continuation to imaginary chemical

potential of the thermal deconfinement/chiral transition line characterizing the real-µ

phase structure, meets the RW endpoint of the RW transition lines. Furthermore, what

characterizes the QCD phase structure at nonzero imaginary chemical potential is its

dependence on the value of the masses of the quarks included in the theory. In the

present case, dependence is on the mass mu,d of the up and down quarks, that are

considered degenerate.

What is, by symmetry, mass-independent is the fact that a true phase transition takes

place at the RW endpoint. This is because, at critical values for the imaginary poten-

tial µcI , the system possesses an exact center symmetry, which undergoes spontaneous

breaking while the temperature grows and the system selects one, out of two equivalent,

specific center sector. Still, the nature of such a genuine transition is not fixed by sym-

metry and is found to depend on the quark masses. One has to think about a 3D phase

diagram having T, µi and mu,d on its axes, to have a clearer qualitative picture, at least

for the Nf = 2 case.

The transition at the RW endpoint can either be a second order transition in the univer-

sality class of the 3D Ising model, or a first order phase transition as it is in the quenched

(infinite quark mass) limit. In this latter case, the RW endpoint is a triple point at the

intersection of three first order critical lines. Of the two further critical lines, beyond

the RW critical line, the one extending towards the µi = 0 axis is interpreted as the
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Figure 5.1: Schematic phase diagram for Nf = 2 + 1 QCD in the ms −mu,d plane
at µ = 0. On finer lattices, the chiral critical line moves towards smaller quark masses
shrinking the first order region at the bottom left corner. This figure is taken from [97].

analytic continuation, to imaginary chemical potential, of the physical transition line,

in agreement with the expectation that this last meets the RW line on its endpoint.

At lower masses for the two light quarks (as shown in the Columbia plot in Fig. 5.1), at

least for finite ms values, the µ = 0 transition becomes a crossover passing through the

second order line. In the analytic continuation to imaginary chemical potential, there

must then be a second order endpoint separating the crossover region from the, above

mentioned, first order critical line. It is such endpoint, that approaches the RW endpoint

while quark masses are varied. Said in other words, the first order line departing from

the RW endpoint has a second order critical endpoint, whose vicinity to the µ = 0 axis

depends on the quark masses.

In such a scenario there exists a mass value at which the RW endpoint becomes a

tricritical point. This marks the endpoint of the line of triple points in the mass direction.

The corresponding phase structure in the T −µi plane can be schematically represented

as in Fig. 5.2 for the region of high masses, and, according to previous findings, the same

phase structure is realized starting from the chiral limit of zero masses and increasing

them.

That this is really the case, at least for finite lattice spacing, has been confirmed by

recent studies carried out both for Nf = 2 [94, 98] and Nf = 3 (degenerate) [99] quark

flavors. Two tricritical quark masses separating the first order regime from the second

order one, have been identified.

Plotting the nature of the RW endpoint in a T −mu,d plane, one would then have two

lines of triple points outside the range [mtric
light,m

tric
heavy], whose edges are the two tricritical

masses mtric
light and mtric

heavy, and a line of a second order critical endpoints inside that

range.
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Figure 5.2: QCD phase diagram in the T−µI plane. The solid vertical lines represent
the RW transitions at the edge center Z(3) sectors characterized by a fixed phase in
the Polyakov loop. The dots at the end of RW critical lines, are the RW endpoints and
can be triple points, tricritical points or second-order critical endpoints. The dashed
lines represent the chiral/deconfinement transition and the way their nature is changed
by the quark mass value, which is decreased clockwise from the top left corner. This

figure is taken from [94].

It is appropriate to reaffirm here, that the presence of the low-mass critical point in

the T −mu,d plane at µ = 0 and for Nf = 2 has not been clarified yet and that both

the masses and the number of considered flavors play a role in determining the order

of the chiral/deconfinement transition. However, within the just described scenario, it

has been conjectured [100] that the nature of the transition at µ = 0, as a function of

the quark masses, may depend just on the nature of the RW endpoint, being first order

only when the first order line departing from the RW triple endpoint is able to reach

the µ = 0 axis.

The just described phase structure can be nicely depicted, see Fig. 5.4 (Left), in a 3D

plot having mu,d,ms and (µ/T)2 as axis, so that for (µ/T)2 = 0 we simply have the

Columbia plot, but the effect of non-vanishing imaginary chemical is displayed with the

Z(2) second order critical lines (µ = 0) spanning critical surfaces that end in tricritical

lines at (µ/T)2 = −(π/3)2.
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Figure 5.3: QCD phase diagram in the T −mu,d plane at a fixed critical imaginary
chemical potential µI = µcI . This figure is taken from [94].

Moreover, it is worth remarking that the position of the tricritical points, as identified

in the studies at imaginary chemical potential, changes as the continuum limit is ap-

proached. According to previous findings, the two tricritical points are both expected

to shift towards lower masses, as one approaches the continuum limit [97], in agreement

also with what indicated, for the µ = 0 case in Fig. 5.1 and as depicted in Fig. 5.4

(Right).
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Figure 5.4: (Left) 3D mu,d−ms−(µ/T)2 phase diagram. (Right) Bottom plane of the
same phase diagram where the expected shift, in the continuum limit, of the tricritical

lines at µcI/T towards lower masses is displayed. This figures are taken from [95].

5.2 Observables and simulation setup

The QCD grand canonical partition function with Nf = 2 mass-degenerate quarks at

imaginary chemical potential µI , once the integration over the fermionic dof has been
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performed, is given by

Z(T, µI) =

∫
DUe−SG[U ]

(
detD[U, µI ]

)2
, (5.1)

where SG[U ] is the gauge part of the action and D[U, µI ] is the fermion matrix. In the

present study the standard Wilson gauge action,

SG[U ] = β
∑

n

∑

µ<ν

(
1− 1

3
Re TrUµν(n)

)
, (5.2)

where Uµν(n) is the elementary plaquette and β = 2Nc/g2 with Nc = 3, has been used

along with the the standard Wilson discretization of dynamical fermions, whose fermion

matrix is given by

Dn,m = δn,m − κ
±3∑

i=±1

[
(1− γi)Ui(n) δn+î,m

]

− κ
{

(1− γ0)e+aµU0(n)δn+0̂,m + (1 + γ0)e−aµU †0(m)δn−0̂,m

}
. (5.3)

In the last equation n and m refer to lattice sites, î and 0̂ are unit vectors on the lattice

and a is the lattice spacing. Moreover, γ−i ≡ −γi and U−i(n) ≡ U †i (n − î). The quark

mass mu,d is contained in the expression for the hopping parameter κ via

κ =
1

2(amu,d + 4)
. (5.4)

The observable used to distinguish between the Z(3) center sectors is the phase of the

Polyakov loop L. In particular, the shifted phase φ = ϕ− µI/T of the Polyakov loop is

an order parameter to distinguish between the low-T (disordered) phase and the high-T

(ordered) phase. Furthermore, choosing µI/T = π ± 2πk, k ∈ Z as it is done in this

study, it is the imaginary part of the Polyakov loop itself, that can be used as order

parameter.

Given that the temperature on the lattice varies with a and NT according to

T =
1

a(β)NT
, (5.5)

we set aµI = π/6 for NT = 6.

It is now clear that the main observable of interest in this study is the order parameter

for the transition under investigation that, as already stated, is the imaginary part of

the spatially averaged Polyakov loop: LIm. It is worth remarking, however, that also
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Crossover 1st triple Tricritical 3D Ising

B4 3 1.5 2 1.604
ν − 1/3 1/2 0.6301(4)
γ − 1 1 1.2372(5)

Table 5.1: Critical values of ν, γ and B4 ≡ B4(X) for some universality classes [101].

the spatially averaged square norm of the Polyakov loop, ‖L‖, as an order parameter

for the thermal phase transition, has been measured and taken into account .

The nature of the Roberge-Weiss endpoint is, however, only clarified downstream a finite

size scaling analysis, which is needed, since only in the thermodynamic limit V → ∞
true nonanalytic phase transitions can occur. This is the reason why the distribution of

the order parameter as well as all its relevant cumulants, around the critical coupling

βc, are measured on a set of different spatial lattice sizes NS .

The finite size scaling analysis is, in particular, applied to the susceptibility of the order

parameter. For a generic observable X, it is defined as

χ(X) ≡ N3
S

〈
(X − 〈X〉)2

〉
. (5.6)

Around the critical coupling βc, χ(X) is expected to scale according to

χ = N
γ/ν
S f

(
β − βc
βc

N
1/ν
S

)
, (5.7)

where f a universal scaling function and γ and ν are the critical exponents, whose value

depends on the universality class of the transition, again according to Table 5.1.

This means that, with the critical exponents γ and ν and the critical coupling fixed

to the correct values, in plots of χ/Nγ/ν
S vs tN

1/ν
S , sets of data at different NS should

collapse onto each other.

As another observable, relevant for the location and identification of the transition,

the Binder cumulant [102] of the order parameter has been considered. For a generic

observable X, the Binder cumulant is defined as

B4(X) ≡
〈
(X − 〈X〉)4

〉
〈
(X − 〈X〉)2

〉2
, (5.8)

In the thermodynamic limit V →∞, the Binder cumulant is a step function and takes

different values depending on the nature of the phase transition (see Table 5.1). At finite
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volume, instead, the Binder cumulant becomes a smooth function whose slope increases

with NS . In the vicinity of the critical coupling βc, moreover, the Binder cumulant

shows a scaling behavior, becoming a function of (β − βc)N1/ν
S only. As already seen

for the susceptibility, once again, in a plot of the Binder cumulant B4 vs (β − βc)N1/ν
S ,

if the critical exponents, as well as the critical coupling, are set to the correct values,

sets of data at different NS collapse onto each other. Notice that, in this case, the NS

dependence appears in the scaling variable only.

Moreover, in the Taylor expansion of the Binder around β = βc, the leading finite-size

corrections are given by

B4(β,NS) = B4(βc,∞) + a1 (β − βc)N1/ν
S + a2 ((β − βc)N1/ν

S )2 + . . . . (5.9)

Toward the thermodynamic limit, the intersection of Binder cumulants for different NS

gives βc and the critical exponent ν takes its universal value, unveiling the type of

transition according to Table 5.1.

We observe that, at the critical value µI = π T , the Binder cumulant is close to 3 (1)

for low (high) temperatures.

Following the same strategy as in [94], the distribution of the order parameter along

with all the relevant cumulants, around the critical coupling βc, are measured on a set

of different κ values. Once identified the critical coupling from the crossing point of

Binder cumulants of LIm at various lattice sizes, or from the peak of the susceptibility of

‖L‖, a first hint on the order of the transition is obtained by looking at the susceptibility

and Binder collapse plots. The actual value of the critical exponent ν is, however, finally

extracted out of a fitting procedure applied to the Binder cumulant by using Eq. (5.9).

Afterwards, the location of the tricritical κ values is identified by looking at the behavior

of ν while κ is varied.

Simulations have been performed at the fixed temporal lattice extent NT = 6 (aµI =

π/6) and for 3-4 different NS , for 9 values of the bare quark masses between κ = 0.1

and κ = 0.165. A minimal aspect ratio of almost 3 has been kept in the choice of

NS . An adequate number of couplings β around the critical one have been considered

and for each β 40k up to 500k standard (unit length) HMC [34] trajectories have been

collected (and on each of them the relevant observables have been measured) after at

least 5k trajectories of thermalization. In each run the acceptance rate was tuned to

∼75%. The statistics for each κ,NS , β has been accumulated almost always in 4 different

Markov chains and this allowed us to judge, based on the overlap in the determinations
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of observables for each single chain, weather our sample was wide enough. Ferrenberg-

Swendsen reweighting [103] was used as a smoothing tool for our data or/and to add

some new β to our sets.

All numerical simulations have been performed by use of the publicly available Open-

CLbased code CL2QCD [104]1, optimized to run efficiently on GPUs.

5.3 Results

According to the just outlined strategy a first hint on the order of the transition can be

obtained by the collapse plots produced, for the susceptibility of the norm of the Polyakov

loop, ‖L‖, and for the Binder cumulant of LIm, measured at fixed mass, and various

couplings and spatial volumes, for all considered masses. This analysis requires an as

precise as possible determination of the critical coupling to be extracted, respectively,

by the susceptibility peaks, or by the crossing of the Binder cumulant for various lattice

sizes.

Although large statistical errors and the similarity in the ratio γ/ν of critical exponents

for tricritical and 3D Ising (second order) universality classes can make the collapse plot

analysis inconclusive, it is usually accurate enough, especially for the Binder cumulant,

to discriminate at least between first and second order phase transitions. Examples of

collapse plots are given in Fig. 5.5 and Fig. 5.6.

In the thermodynamic limit a plot of ν vs κ, in presence of two tricritical points

mtric
light,m

tric
heavy (ν = 0.5), would be a rectangular function (ν = 0.6301 for mtric

light <

m < mtric
heavy, ν = 0.3 for m < mtric

light and m > mtric
heavy). However, at finite lattice vol-

ume, the rectangular profile is smoothed out and ν can take any value in between the

universal ones.

That is why, beyond the qualitative picture provided by the collapse plot analysis, a

quantitative determination of the critical indices calls for a different kind of analysis:

the fit of the Binder cumulant data according to Eq. (5.9) is adequate in this sense, since

it provides both the critical coupling and the ν exponent as a fits parameters, together

with an estimate of the value of the Binder cumulant at the critical coupling in the

thermodynamic limit B4(βc,∞).

Again in Fig. 5.7 an example of such analysis is given.

1Which is now available at github.com/CL2QCD
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Figure 5.5: Example of collapse plots of the susceptibility of the square norm of the
Polyakov loop, for κ = 0.13.

In agreement with what found in previous studies both with staggered fermions [99] and

with Wilson fermions [94], also here it has been found that large finite volume corrections

push B4(βc,∞) to slightly higher values, than the universal one.

However, the application of the described fitting procedure to all the simulated κ values

allows us to draw the ν vs κ plot from which the approximate position of the tricritical

κ values can be inferred. Such result is shown in Fig. 5.8.
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Figure 5.6: Example of collapse plots of the Binder cumulant of the imaginary part
of the Polyakov loop, for κ = 0.13.

In this study, up to current results, the tricritical κ values are found to be

κtric
heavy = 0.110(10) and κtric

light = 0.1625(25) , (5.10)

The error on the κtric
light is estimated so that the range around the best estimate extends

within κ values for which the critical index ν was clearly indicating a first order, rather

than second order, phase transition. For what concerns κtric
heavy, for one of the simulated

masses, the extracted ν was compatible within one standard deviation with the one

characterizing the tricritical universality class. We have used that κ for our best estimate
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Figure 5.7: Plot of the Binder cumulant of the imaginary part of the Polyakov loop,
for κ = 0.1 and NS = 16, 20, 24. The multibranch fit according to the linear part of
the fit ansatz in Eq. (5.9) for βc = 5.8698 gives: ν = 0.4285 ± 0.0313, B4(βc,∞) =
2.1406 ± 0.0270, a1 = −0.0885 ± 0.0435 with reduced chi-square χ2

r = 1.034745 and
quality Q = 41.51%. The β ranges, at fixed NS for which the fit is realized are chosen
to be as overlapping with each other as possible and as symmetric as possible around

the βc.

and the quoted error coincides with the resolution in κ at which the simulations where

performed.
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Figure 5.8: Critical exponent ν as function of κ. The horizontal lines are the critical
values of ν for the relevant universality classes. This plot comes from Ref. [95] and

includes data from Ref. [94] obtained on NT = 4 lattices.
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5.4 Summary and outlook

This work is placed in the context of the research line investigating the peculiar phase

structure observed for QCD (here, in particular, Nf = 2 QCD) at imaginary values of

the quark chemical potential and, precisely, at the critical values µcI/T = (2k+ 1)π/Nc,

with Nc = 3 and k ∈ Z, of such potential. Many previous studies in this direction were

carried out using the staggered discretization for fermions. In the present work, the

study made in [94], employing Wilson, rather than staggered, fermions, is repeated on

a finer lattice (Nτ=6, instead of Nτ=4).

It is a meaningful extension since a continuum scaling analysis is needed to verify the

reliability, beyond cut-off effects, of the scenario with first order RW endpoint both for

heavy and light quarks. The final aim is then to take a step forward toward the possibility

of extrapolating finite lattice size results to the continuum limit. It is however, not the

last step in that direction: the lattice spacing will have to be further reduced, and

more and more expensive simulations will be required, in order to get fully quantitative

predictions.

Costs will grow, not only because of the growing lattice size, but also because of the

already observed shift in the position of the tricritical points, toward smaller masses.

As for the current investigation, it is being extended by an estimation of the pion mass

mπ at the light tricritical point. Such a measurement is needed to quantify the mass

shift of the light tricritical point, with respect to previous findings.



Chapter 6

Numerical study of 2D U(N) and

SU(N) spin models

In what follows we are going to deal with 2D U(N) and SU(N) spin models and with

manifestations in these models of Berezinskii-Kosterlitz-Thouless (BKT) phase tran-

sitions. As already stated in Chap. 1, BKT transitions can take place, in some low

dimensionality systems, despite a symmetry breaking in those systems is forbidden by

the energetics of the system itself. Their main characteristic is an essential singularity

in the thermodynamic potential, while its derivatives of whatever order are continu-

ous. The mechanism behind such an infinite order transition is understood to be the

unbinding of topological objects [105–107].

It is, in particular, argued that 2D SU(N) spin models may posses two BKT phase

transitions with an intermediate phase resembling the massless low-temperature phase

of the 2D XY model. This expectation is justified by Berezinskii-like calculations of the

two-point correlation function in SU(N) spin models and, for U(N), by the symmetry

argument that the corresponding action has a U(1) global symmetry which cannot be

broken spontaneously in two dimensions. The problem of identifying BKT transitions

and their universality character in spin models can be faced both analytically via, for

instance, Kosterlitz-Thouless RG techniques and numerically via Monte Carlo simula-

tions of such spin models. We were concerned with the latter case. Analytical prediction

were taken as input for a purely numerical investigation.

Moreover, the motivation for studying 2D spin models is at least twofold: beyond be-

ing interesting on their own as models of magnetism, there is a direct match between

transitions in 2D spin model with global symmetry group G and deconfinement phase

transition in 3D Lattice Gauge Theory (LGT) with periodic boundary conditions and

gauge group G. It was indeed conjectured by Svetitsky and Yaffe in 1982 [108] that if

96
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continuous phase transitions are met in the former, then the deconfinement transition

in the latter will belong to the same universality class of the order/disorder transition

in the corresponding spin model.

The first two sections in this chapter, Sec. 6.1 and Sec. 6.2, will be devoted to clarify

why one looks for BKT-type transitions in 2D spin models and what are the main

characteristics of such transitions. The numerical setup and the observables measured

in our numerical investigations are discussed in Sec. 6.3. Sec. 6.4 contains our results on

evidences for BKT phase transitions both in U(2) and in SU(N) (N = 5, 8) spin models

and our conclusions are drawn in Sec. 6.5.

What follows is mainly based on [109].

6.1 2D models

The ultimate goal in our investigations about spin models is to establish their phase

diagram identifying all possible phases and the nature of transitions among them. The

degrees of freedom and the interactions (hence the symmetry) of our spin models being

the same, still the existence and nature of phase transitions in that model depends on

its dimensionality. That is where the concepts of lower critical dimensionality and upper

critical dimensionality come from. To be more specific the upper critical dimensionality

is the number of dimensions of the models beyond which the mean field theory gives

a correct description of the critical phenomena for that system. We are however more

interested in the lower critical dimensionality that defines the lowest possible dimension

for a given model to show a long-range order phase at nonzero finite temperature. As

the spatial dimensionality d of a spin model decreases, the energetic of that system

changes favoring the entropy over the energy in the free energy cost of introducing more

disorder in the model. The reason is simply that the number of neighbor degrees of

freedom involved in the interaction is reduced, with the dimensionality weakening the

effect of the interaction itself. The lower critical dimensionality depends not only on

the interactions in the partition function for the system (and in what follows we only

consider models of short range interactions), but also on whether the degrees of freedom

and symmetries are discrete or continuous. In the former case, the so called Peierls

argument can be used to determine the lower critical dimensionality, in the latter case

the Mermin-Wagner theorem applies.

As an example of applications of the Peierls argument, we can consider the 1D Ising

model and the free energy cost, given the fully aligned ground state of the system, of

introducing a kink configuration that breaks only one bond in the chain and gives the
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lowest excited state. To such flip it corresponds a finite positive variation in the energy

of the system due to the broken bond at the domain wall. On the other hand we can

have as many kink configurations as possible positions for the domain wall, i.e. N − 1

in a system of N spins: the corresponding variation in entropy is kln(N − 1) so that for

sufficiently large N and all T 6= 0 we have ∆F < 0 and any disordered excited state is

energetically favored. The long-range ordered state is easily destroyed at any arbitrarily

small temperature.

Analogous considerations on the stability of a state with a spontaneous magnetization,

can be made for the 2D Ising model. In this case, however, the energy cost corresponding

to the creation of a domain of flipped spins starting from the fully aligned ground state

amounts to ∆E = 2JL, where J is the coupling of the nearest-neighbor interaction and L

is the perimeter of the flipped domain. Again, to estimate the entropy variation, one has

to consider the many possible positions and shapes of the flipped domains. For this we

can think of the domain-contour formation as a non-backtracking random walk in which,

to each step it corresponds a number µ < 3 (the contour as to be a closed polygon in

the end) of possible choices of direction. The corresponding variation of the free energy

is then ∆F = L(2J −kTµ). Even though, for sufficiently low temperatures, the ordered

phase is stable against the formation of domains of flipped spins of whatever perimeter,

there is a critical temperature, precisely Tc ' 2.269J/k, above which the disordered

phase becomes energetically favored.

While for the Ising model the lower critical dimensionality is dl = 1, for most system

characterized by a continuous symmetry the fluctuations that brings the system into a

disordered phase are more severe because the order parameter can change its direction

more easily with little cost in free energy and one finds dl = 2. This is the result of the

already mentioned Mermin-Wagner theorem. In terms of domain walls formation, an

heuristic argument can also be given. In this case we can think about the formation of a

domain of size l, but with the involved spin having a distance O(l) over which to relax in

a way that the spins near the centre of the domain point in the opposite direction from

those away from the centre. Being continuous, the relative angle between neighboring

spins will be O(1/l), the energy density will be quadratic in the relative angle O(1/l2)

and the whole volume of the domain O(ld) has to be taken into account (instead of

O(ld−1) as in the discrete case). As a result, the entropic effects are dominant for d ≤ 2.

The long-range order of system with continuous degrees of freedom and symmetries such

as the XY model is, hence, absent at finite temperature in d = 2.
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BKT transition in 2D XY model

The 2D XY model, also known as planar Heisenberg model, is a model of two-component

classical spins (Sx, Sy) normalized to unit length S2
x + S2

y = 1. Nearest-neighbor inter-

actions between the spins are encoded in the partition function of the model, which is

given by

Z =

∫ ∏

i

dθi
2π

exp
[
β
∑

〈ij〉

cos(θi − θj)
]
, (6.1)

where β = 1/(kBT ) and spin variables are described by angles defined modulo 2π. The

interaction is ferromagnetic: it favors configurations of equal θi’s. The corresponding

global rotational symmetry is O(2), or U(1) in terms of the θi’s variables that are

continuous and can be all translated of the same amount θi → θi + α leaving the

model invariant. According to the arguments given in the previous section, the XY

model in two dimensions, because of its continuous degrees of freedom and symmetry,

does not display macroscopic spontaneous magnetization (long-range order) at any finite

temperature. However, the XY model in two dimensions undergoes the peculiar BKT

phase transition at a finite nonzero critical temperature. The main characteristics of

such a transitions are that:

• There is no spontaneous symmetry breaking;

• There is no non-analyticity neither in the free energy nor in any of its derivatives;

• Correlation length shows an essential singularity in the vicinity of the critical point

where it diverges exponentially.

From low(high)-temperature expansions it can be observed that, in the high-temperature

phase, correlation function falls off exponentially in the distance between any two spins.

On the other hand, a low-temperature phase exists in which the use of a spin-wave (Gaus-

sian) approximation unveils a power-law decay for correlation functions with distance,

which is reminiscent of what happens at the critical point of an ordinary Landau-type

phase transition, just as if every temperature below a critical one was critical on its own.

It is then said that although the model does not display long-range order at any finite

nonzero temperature, it does show a quasi-long-range order over a finite temperature

range 0 < T < Tc.

To be more specific, in the low-temperature phase of the model, the absence of significant

thermal fluctuations and the ferromagnetic nature of the interaction suggest that θi−θj
is small enough to approximate the cosine in Eq. (6.1) to second order. Moreover our

interest in the large-scale behavior of the system allows us to switch to the continuum,
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where the effective Hamiltonian of our system, reads

H ≈ −β
∑

〈ij〉

(
1− 1

2
(θi − θj)2

)
≈ −β

2

∫
dr(∇θ)2 (6.2)

in the already mentioned spin-wave approximation, where the periodicity in the, now

continuous, angular variables θ is irrelevant. It is obtained that the spin configurations

which are stable under the spin wave approximation are the ones satisfying the Laplace

equation of motion ∇2θ(r) = 0, hence in particular, the uniformly rotated state within

given boundary conditions. The correlation function in this approximation is found to

decay according to a power law

〈
ei(θ(r)−θ(0))

〉
=
〈

cos
(
θ(r)− θ(0)

)〉
≈ r1/2πβ, (6.3)

with a non-universal exponent depending explicitly on the temperature.

In the high-T regime, instead, the correlation function behaves as

〈
ei(θ(r)−θ(0))

〉
≈ e−|n|lnβ. (6.4)

Consistently with the observation of such a disordered high-T phase, it must happen

that the angle variables vary in a more pronounced way, with growing temperature,

and the spin-wave approximation breaks. In this sense, one observes that the Laplace

equation also admits topological vortex solutions that are singular in the continuum

and cannot be taken into account within the spin-wave approximation. These vortex

configuration are able at a critical temperature value to destroy the quasi-long-range

order of the model.

To see this, one considers a vortex spin configuration of winding number q = 1, i.e.

satisfying
∮
∇θ · dl = 2π. A plausibility argument by Kosterlitz and Thouless suggests

that vortices can drive the phase transition with the ground state of the model for

T > Tc being a vortex condensate. The argument is based on the evaluation of the

energy variation corresponding to a vortex configuration with respect to the ground

state configuration, which is

∆E ' πln

(
R

a

)
, (6.5)

where R is the linear size of the 2D system, while a is the lattice spacing. Thus the vortex

energy has a divergence in the limits a→ 0 and R→∞. Now the free energy variation

induced by the presence of a vortex can be estimated knowing that the entropy is just

the logarithm of the multiplicity of available vortex configurations, i.e. the number of
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sites of the system. Therefore,

∆F = (π − 2β)ln

(
R

a

)
. (6.6)

There exist, hence, a critical temperature value Tc = π/2kB for which ∆F = 0 and for

any T ≥ Tc, as a consequence, the vortex formation is energetically favored. It is just

the competition between the logarithmic dependence on the system size of both the

energy and entropy, that makes possible a vortex unbinding transition. The nature and

mechanism behind such a peculiar phase transition, already discussed by Berezinskii,

was identified by Kosterlitz and Thouless in 1973 [105–107]. The Kosterlitz-Thouless

picture predicts power-law decay of the spin-spin correlation function at low-T when the

only relevant configurations are spin waves and bound states of vortex-antivortex pairs

that affecting spins only over small regions hence leaving the system ordered until, at

T = Tc, the size of the vortex-antivortex bound diverges. Beyond Tc the ground state

is a vortex condensate, the model is disordered and the spin-spin correlation functions

falls off exponentially.

6.2 BKT phase transitions in non-Abelian spin models

The interaction in a model of non-Abelian spins defined onto a 2D lattice Λ is described

by the partition function

Z(β,N) =

∫ ∏

x

dW (x) exp

[
β
∑

x,n

ReTrW (x)TrW †(x+ en)

]
, (6.7)

where x = (x1, x2) ∈ Λ, n = 1, 2 and en is a unit vector in n-th direction. The matrices

W (x) are elements of either U(N) or SU(N) group and we suppose that the trace in the

Boltzmann weight is taken in the fundamental representation and is normalized by 1/N .

Then, in the diagonal representation for W (x) the action for both U(N) and SU(N)

has the form

ReTrW (x)TrW †(x+ en) =
1

N2

N∑

i,j=1

cos [ωi(x)− ωj(x+ en)] . (6.8)

The invariant measure for U(N) is given by

∫
dW =

∫ 2π

0
D(ω)D?(ω)

N∏

k=1

dωk , (6.9)
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where

D(ω) =
∏

k<l

(
eiωk − eiωl

)
. (6.10)

The SU(N) measure coincides with U(N) one up to additional constraint

N∏

k=1

exp[iωk] = 1 , (6.11)

which is implemented into the partition function Eq. (6.7) with the help of the periodic

delta-function
∞∑

n=−∞
exp

[
in

N∑

k=1

ωk

]
. (6.12)

Due to this constraint, the SU(N) model is invariant only under global discrete shift

ωk(x)→ ωk(x)+ 2πn
N for all k and x. This is just global symmetry under transformations

in the center of the SU(N) group which is constituted by Z(N) transformations.

The partition function Eq. (6.7) can be regarded as the simplest effective model for

the Polyakov loops which can be derived in the strong coupling region of 3D SU(N)

LGT at finite temperature. The full effective model is more complicated including

summation over all representations, but the expectation is that if there is a BKT-type

phase transition at large N it should manifest itself even in this simple model.

Hints on the existence in the introduced models of BKT phase transitions are to be

found in the behavior of the two-point correlation function given by

ΓN (β,R) =
1

N2

N∑

i,j=1

cos [ωi(0)− ωj(R)] , (6.13)

respectively in the weak and strong coupling regime. When β is sufficiently small one can

use the conventional strong coupling expansion to demonstrate the exponential decay of

the correlation function.

To compute the correlation function at large β one has to adapt an argument by Berezin-

skii [106]. In the context of SU(N) model this means applying two approximations.

First, we replace the cosine function in the Boltzmann weight by its Taylor expansion

since, when β grows system becomes more and more ordered. Second, the invariant mea-

sure D(ω)D?(ω) is treated as a smooth function. Calculations lead to the identification

of two possible cases:
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• β � N2 in which case only small nx matter in the overall sum. Then we can

estimate ΓN (β,R) by calculating the nx = 0 component of the sum,

ΓN (β � N2, R) =
1

Z
exp

[
− 1

2β
(2G(0)− 2G(R)− 1)

]
∼ R−

1
2πβ . (6.14)

Thus, in this case correlation functions decays with a power law.

• β � N2. In this case we may replace summation over nx by integration. Using the

Poisson summation formula and neglecting exponentially small terms one finds

ΓN (β � N2, R) ∼ 1

Z
exp

[
1

2β

]
. (6.15)

As is seen, in this case the correlation function remains constant at large distances

what is clear signal of the spontaneous symmetry breaking.

Thus, similar to 2D Z(N) vector Potts models, SU(N) spin models should possess an

intermediate phase when 1 � β � N2 which is characterized by the power-like decay

of the correlation function.

To get to the actually simulated model, a dual formulation of the spin model corre-

sponding to the partition function in Eq. (6.7) has been built and the partition function

of the dual model has then been found to be equivalent, for the specific case of a U(2)

spin model, to

Z(β,N = 2) =

∫ 2π

0

∏

x

dω(x)

2π

∫ 1

0

∏

x

(1− t2(x))1/2 dt(x)

exp

[
β
∑

x,n

t(x)t(x+ en) cos(ω(x)− ω(x+ en))

]
. (6.16)

written on the original lattice. This is the partition function we have considered and

implemented for our investigations of the U(2) spin model, where t(x) variables are

SU(2) characters restricted to positive values, i.e. real numbers in the range [0, 1]

(and it can be numerically verified that extending the range to [−1, 1] while keeping

ω(x) variables “frozen” the features of SU(2) spin models are reproduced), while ω(x)

variables are angular variables in [0, 2π] (and it can be numerically verified that our

model reproduce a U(1) spin model for “frozen” t(x) variables).

For what concerns investigations of SU(N) spin models with N as large as 5 and 8, the

starting point has been again Eq. (6.7). However a further interaction term has been

included in a way that we have investigated SU(N) model with both fundamental and

“adjoint spins” in the space of two independent coupling constants. Once defined the
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“adjoint” SU(N) spin as

U(x) = TrW (x)TrW †(x) =
N∑

i,j=1

cos(ωi(x)− ωj(x)), (6.17)

which is Z(N) invariant, the interaction term in adjoint representation reads

λ
∑

x,n

U(x)U(x+ en) (6.18)

and has to be included in the Boltzmann factor in Eq. (6.7). The role of this interaction

term, is to enhance the tunnelling between Z(N) center sectors. The full partition

function in this case is

Z(β,N) =

∫ ∏

x

dW (x) exp

[
β
∑

x,n

ReTrW (x)TrW †(x+ en)+

+ λ
∑

x,n

U(x)U(x+ en)

]
. (6.19)

6.3 Observables and simulation setup

2D U(2) spin models

To study the existence and nature of phase transitions in our U(2) spin model, a code has

been written which implements a cluster algorithm for the update of ω(x) variables and

a heatbath algorithm for the update of t(x) variables. The model is studied on a square

L×L lattice Λ with periodic BC. Simulations were carried on for many different lattice

sizes, L = 16, 32, 64, 96, 128, 160, 192, 256, 384, 512, 768, 1024, in order to allow for a finite

size scaling (FSS) investigation of the identified transitions. The exponential divergence

of the correlation length in a BKT transition implies a very slow, logarithmic convergence

to the thermodynamic limit in the vicinity of the transition. As a consequence, very

large volumes are required in order to enter the scaling region and safely extract critical

indices. The partition function for this model is given in Eq. (6.16). For each run we

have ensured thermalization by discarding 50k configurations and then produced 106

configurations with measurements taken after 10 updating steps. The resolution in β of

our simulation is of 0.005. The observables we have considered are:

• Complex magnetization ML = |ML|eiψ defined as

ML =
1

L2

∑

x∈Λ

s(x) =
1

L2

∑

x∈Λ

t(x)eiω(x) (6.20)



Chapter 6. Numerical study of 2D U(N) and SU(N) spin models 105

• Magnetic susceptibility

χ
(ML)
L = L2

( 〈
M2
L

〉
− 〈ML〉2

)
(6.21)

• Binder cumulant

U
(ML)
L = 1− 〈|ML|4〉

3〈|ML|2〉2
, or BML

4 =
〈|ML|4〉
〈|ML|2〉2

(6.22)

• Second-moment correlation length defined as

ξ2 =
1

2sin(π/L)

( χ
F
− 1
)1/2

, (6.23)

where χ = 1
L2

∑
x s(x), and

F =
1

L2

∑

x,y

〈s(x)s(y)〉cos
(2π(y1 − x1)

L

)
(6.24)

is the Fourier transform of the correlation function at the smallest non-vanishing

momentum.

The statistical analysis of our data, for each of the above listed observables, has been

accomplished by use of the jackknife method over bins at different blocking levels.

2D SU(N) spin models: N = 5, 8

To study the existence and nature of phase transitions in SU(N) spin model with N =

5, 8 a code has been written which implements both a cluster and a Metropolis algorithm

for the update of ωi(x). The cluster updates have to be alternated with Metropolis

updates to achieve ergodicity, because the cluster algorithm would sample the center

group Z(N) only.

The model is studied on a square L × L lattice Λ with periodic BC. Simulations were

carried on for many different lattice sizes, L = 16, 32, 64, 96, 128. For each run we have

ensured thermalization by discarding 20k configurations and then produced 10 − 20k

configurations with measurements taken after 10 updating steps. The resolution in β of

our simulation ranges from 0.1 to 0.5. The partition function for this model is given in

Eq. (6.19).

The aim, in this second investigation of non-Abelian spin models, is simply that of

checking whether BKT transitions can take place in such models. The observables we

have considered are:
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Figure 6.1: Scatter plots of the complex magnetization ML at β = 2.53, 2.55, 2.57 in
U(2) on a 2562 lattice.

• Complex magnetization ML = |ML|eiψ defined as

ML =
1

NL2

∑

x∈Λ

N∑

i=1

eiωi(x); (6.25)

• Real part of the rotated magnetization MR = |ML|cos(Nψ);

• Magnetic susceptibilities of ML and MR

χ(ML,R) = L2
( 〈
M2
L,R

〉
− 〈ML,R〉2

)
. (6.26)

The statistical analysis of our data for each of the above listed observables has been

accomplished by use of the jackknife method over bins at different blocking levels.

6.4 Numerical evidences for a phase transition

2D U(2) spin models

The main aim of our numerical investigations is to check the existence of a BKT transi-

tion to a massless phase in our U(2) model. If a similar transition is found to happen,

then one has to locate it as precisely as possible and to check its universality character.

A clear indication of the two-phase structure is provided by scatter plots of the complex

magnetization ML at different values of β and all considered lattice sizes. Increasing β

we observe a transition from a disordered phase, characterized by a uniform distribu-

tion around zero, and a massless phase, characterized by a “ring distribution”. Such

observation is reported in Fig. 6.1 and Fig. 6.2, respectively for L = 256 and L = 512.
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Figure 6.2: Scatter plots of the complex magnetization ML at β = 2.55, 2.57, 2.575
in U(2) on a 5122 lattice.

The next step is the precise location of the phase transition, i.e. the identification of the

critical coupling βc. To accomplish this task, following [110, 111], we can make use of

appropriate fit ansätze both for the second-moment correlation length and for the Binder

cumulant versus the lattice size. The second-moment correlation length and the Binder

cumulant in correspondence to a BKT transition are indeed found to be RG-invariant

quantities and to take universal values that are known for the XY model [110, 111].

Also their FSS behavior has been studied within the 2D XY model providing us with

the following ansätze:

• For the second-moment correlation length

ξ2(β, L)

L
= a(β)− b(β)

ln(L) + c(β)
, (6.27)

where ac = a(βc) = 0.7506912 . . . and bc = b(βc) = 0.212430 . . . at the critical

point in XY model;

• For the Binder cumulant

B
(ML)
4 (β, L) = a(β)− b(β)

ln(L) + c(β)
+

d(β)

(ln(L) + c(β))2
, (6.28)

where ac = a(βc) = 1.018192 . . . and bc = b(βc) = 0.017922 . . . at the critical point

in XY model, and also subleading logarithmic corrections are indicated since they

are found to be important.

An example of the just discussed FSS behavior for the specific case of the second-moment

correlation length is given in Fig. 6.3.
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Figure 6.3: Second-moment correlation length ξ2 as a function of the lattice size

L, fitted to the universal ansatz ξ2(β,L)/L = a(β) − b(β)
ln(L)+c(β) . It is known that

ξ2(∞) = 0.7506912.

To extract the critical point from the scaling of ξ2 and B
(ML)
4 , with the lattice size L,

the following methods are used:

• At each fixed value of β the fit of ξ2 and B
(ML)
4 data is performed, respectively

via the ansatz in Eq. (6.27) or Eq. (6.28), fixing b(β) to the known value bc. An

estimate of βc is then given by the β-value at which a(β) = ac;

• The same procedure as before, but fixing a(β) = ac and extracting βc from the

requirement that b(βc) = bc.

Our results are illustrated in Fig. 6.4 and Fig. 6.5, respectively for the second-moment

correlation length and the Binder cumulant.
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(a) Fit parameter b(β) extracted from fits of ξ2 via Eq. (6.27) fixing a(β) to the known value
ac = 0.7506912. The horizontal red line marks the expected value bc.
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Figure 6.4: Determination of βc from fits of the second-moment correlation length ξ2
via Eq. (6.27). To be conservative one can quote βc = 2.59± 0.005. The horizontal red

line marks the expected value ac.
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Figure 6.5: Determination of βc from fits of the second-moment correlation length ξ2
via Eq. (6.28). To be conservative one can quote βc = 2.59± 0.005 also in this case.
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Table 6.1: Fit parameters a,−β/ν, r obtained from fits of the magnetization via
Eq. (6.29) realized over the size range [Lmin, Lmax = 1024].

βc Lmin a −β/ν r χ2
r

2.59 64 0.71025 ± 0.00328 -0.12527 ± 0.00120 0.04307 ± 0.00659 1.20
2.59 96 0.70055 ± 0.00286 -0.12836 ± 0.00098 0.06119 ± 0.00556 0.35
2.59 128 0.70089 ± 0.00469 -0.12826 ± 0.00151 0.06055 ± 0.00879 0.42
2.59 160 0.70915 ± 0.00381 -0.12587 ± 0.00116 0.04596 ± 0.00690 0.15
2.59 192 0.70738 ± 0.00575 -0.12635 ± 0.00168 0.04900 ± 0.01018 0.18
2.59 256 0.70322 ± 0.01075 -0.12746 ± 0.00299 0.05600 ± 0.01854 0.24

Table 6.2: Fit parameters a, γ/ν obtained from fits of the magnetic susceptibility via
Eq. (6.30) for r = 0, since including logarithmic corrections with r either free or fixed
to r = 0.125 did not help improving our fits. Fit were realized over the size range

[Lmin, Lmax = 1024].

βc Lmin a γ/ν χ2
r

2.59 160 0.00293 ± 0.00010 1.73455 ± 0.00585 2.69
2.59 192 0.00282 ± 0.00010 1.74060 ± 0.00581 1.82
2.59 256 0.00273 ± 0.00013 1.74527 ± 0.00765 1.87
2.59 384 0.00249 ± 0.00005 1.75966 ± 0.00314 0.14
2.59 512 0.00241 ± 0.00003 1.76431 ± 0.00180 0.02

As a remark about the fitting procedure, one can observe that its stability, with respect

to the volumes included in the fit, can be inspected by changing the range of lattice

sizes included in the fit and by checking that the extracted fit parameters are compatible

within errors once L is large enough. We have found that such a stability in the fits is

achieved as soon as the lowest size considered in the fits is L = 128− 160.

Once the critical coupling has been estimated, we are able to extract critical indices out

of the FSS behavior at the critical coupling of1:

• The magnetization |ML| that is expected to satisfy the scaling law

|ML| = aL−
β/νlnrL; (6.29)

• The susceptibility χ
(ML)
L that is expected to satisfy the scaling law

χ
(ML)
L = aL

γ/νlnrL; (6.30)

Results are summarized in Table 6.1 and Table 6.2 for the case of magnetization and

susceptibility respectively.

1The symbol β here denotes a critical index and not, as before, the coupling of the theory.
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2D SU(N) spin models: N = 5, 8

The main aim of this numerical investigations is to check the existence of a BKT transi-

tion to a massless phase in our SU(N) model within a three-phase structure: from the

disordered low-β phase, through a massless phase for β1
c < β < β2

c , to an ordered high-β

phase. We did not try to neither to locate the transition, nor to check its universality

character. What we have found is that the phase structure of our model significantly

depend on the coupling λ of the interaction term.

A clear indication of the three-phase structure emerges from scatter plots of the complex

magnetization ML at different values of β and all considered lattice sizes only for λ ≥ 20.

Such observation is reported in Fig. 6.9 and Fig. 6.2. We observe how the nature and

location(s) of the transition(s) is influenced by the intensity of the coupling corresponding

to the interaction term in the adjoint representation:

• When the interaction term is switched off by setting λ = 0, no evidence for a

three-phase structure or BKT transition is found. Only a strong, presumably first

order, phase transition from a disordered to the ordered phase takes place at β as

high as about 12;

• Also for nonzero coupling λ < 20 we were able to identify only two different phases

with the value of the critical β-coupling βc quickly decreasing;

• For λ ≥ 20, however, a ring distribution of the ordinary magnetization ML appears

at intermediate β values, which is interpreted as the footprint for a BKT transition.

Beyond what scatter plots show us, further information about the nature of the observed

transitions is provided by behaviors against β and for various fixed λ values, of the

ordinary and rotated magnetization and their susceptibilities. A remark is in order

about the necessity to introduce and measure the rotated magnetization [112]: what we

need is a quantity that is sensitive to the difference in the magnetization distribution

between the massless and ordered phase. However the two phases differ only for the

angular structure of the complex magnetization, hence the susceptibility and even the

Binder cumulant for the ordinary magnetization are not able to detect the massless-

ordered transition. The rotated magnetization, instead, yields a finite value when there

is a non-trivial angular structure, while it vanishes when ψ is isotropically distributed.

For what concerns the SU(8) spin model, exactly the same kind of investigation was

carried on and led to the results that also in that case a three-phase structure appears

only for nonzero λ and, in particular starting from a λmin ≈ 64.00 which is larger with

respect to the SU(5) case.
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Figure 6.6: Scatter plots of the complex magnetization ML in SU(5).
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Figure 6.7: Scatter plots of the complex magnetization ML in SU(5).
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Figure 6.8: Plots of the complex magnetization ML (Left) and the rotated magneti-
zation MR (Right) versus β in SU(5).
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Figure 6.9: Plots of the susceptibility of complex magnetization χ(ML) (Left) and of
the rotated magnetization χ(MR) (Right) versus β in SU(5).
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6.5 Summary and outlook

The just described investigation has been carried on with the final purpose of clarifying

numerically the possibility for an infinite order BKT transition to take place in non-

Abelian spin models. BKT transition have already been observed in a wide number

of 2D Abelian spin models and 3D gauge theories. We have found clear evidence for

such a transition in the U(2) model, where the critical coupling has been approximately

located at βc = 2.59 and the critical indices η and β have been extracted from fits of

the susceptibility and magnetization respectively to be

• η = 0.24034± 0.00314;

• β = −0.12746± 0.00299.

These values allow us to state that U(2) spin models undergo BKT phase transitions

in the universality class of the XY model, confirming the expectations coming from

Kosterlitz-Thouless type RG analysis.

Our conclusions about the SU(N) models are, instead, somehow preliminary in the

sense that an interaction term in the adjoint representation, enhancing the role of the

center Z(N) of the SU(N) group, had to be added and, currently, there is no compelling

numerical evidence about the minimal λ values at which BKT transitions appear in these

models. It would, indeed, be interesting to precisely locate λmin and also investigate

its dependence on N , hence on the size of the symmetry group. However, we were

able to identify a three-phase structure both in SU(5) and in SU(8) spin models, in

agreement, modulo the necessity of an extra interaction term, with the expectation that

BKT transitions are to be found in SU(N) models with nearest-neighbor interaction if

N is sufficiently large. Clearly, the precise location of the critical coupling β at fixed λ,

along with the extraction of the corresponding critical indices, would be the next step

in this study, but it calls for simulations on much larger lattices.



Conclusions

In this work we have addressed numerically three main questions connected to as many

phase transitions, which manifest themselves in the theory of strong interaction (de-

confinement phase transition, Roberge-Weiss phase transition) and in 2D spin models

characterized by non-Abelian symmetry groups (BKT phase transitions).

To conclude we briefly review our main results and the research perspectives of each

investigation, but we refer to Secs. 4.8, 5.4, and 6.5 for more detailed summaries.

Our investigation on SU(3) chromoelectric flux tubes (produced by the interaction of

a quark-antiquark pair in the QCD vacuum) has, first of all, confirmed the validity of

the dual superconductor model in the description of the confinement phenomenon at

zero temperature. Our final aim was, however, to shed light on the fate of flux tubes

across the deconfinement transition. In this respect, our results show that, despite a

sensible drop in the intensity of the field, flux tubes do survive, and their shape is

preserved, even in the deconfined phase. These findings suggest that the dual analogy

with superconductivity, which is the basis of the dual superconductor model, cannot

be pushed so far. It is reassuring, however, that there have been proposed alternative

scenarios, predicting the existence of flux tubes in a “postconfinement” region, which

is also expected on a phenomenological and experimental ground. The dedicated code

written to accomplish the just described analysis, as an application within the MILC

code for SU(3) lattice gauge theory, lend itself to a meaningful future extension of our

study to the case of full QCD, i.e. to SU(3) lattice gauge theory with improved gauge

action and dynamical quarks. Such an investigation could be relevant to clarify the

formation of heavy mesons bound states in heavy-ion collisions at high energies.

The nature of the deconfinement/chiral transition, in QCD with Nf = 2 flavors of

degenerate quarks, at imaginary chemical potential and, in particular, at the Roberge-

Weiss endpoint, where the first-order critical lines of the Roberge-Weiss transition meet

the continuation of the deconfinement/chiral transition lines at zero chemical potential,

was the main focus of the second investigation described in this work. Results show

that the order of the transition changes from first (triple) in the limit of infinite masses,
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to second order at intermediate masses, to first order again in the limit of zero masses.

Two tricritical masses were identified as in previous studies. This investigation represents

indeed a step towards the continuum limit of recent analogous analysis and it is currently

in progress.

Coming to our investigation on 2D spin models, where spins are traces of elements of

non-Abelian groups U(2) and SU(N) with N = 5, 8 and nearest-neighbor interactions

are considered, we were aiming at checking the existence of an infinite order BKT phase

transition. Against the general belief that there are no such phase transitions in these

models at any finite values of the coupling constants, we have found that U(2) spin

models do exhibit a BKT phase transition. Remarkably we have also found that the

BKT phase transition observed in U(2) spin models belongs to the universality class

of 2D XY model. Furthermore also SU(N) models are found to exhibit BKT phase

transitions if an appropriate interaction term is included in the partition function for

the system. The identification of the universality class for these phase transitions, as

well as the determination of the minimal coupling (of the interaction term) allowing for

BKT phase transitions call for future and more in-depth investigations.



Bibliography

[1] S. Elitzur (Dec 1975). ”Impossibility of spontaneously breaking local symmetries”.

Phys. Rev. D 12:3978–3982 (cited in section 1.1).

[2] H. Nishimori and G. Ortiz (2010). Elements of Phase Transitions and Critical

Phenomena. Oxford Graduate Texts. OUP Oxford (cited in section 1.2).

[3] J. Cardy (1996). Scaling and Renormalization in Statistical Physics. Cambridge

Lecture Notes in Physics. Cambridge University Press .

[4] G. Mussardo (2009). Statistical Field Theory: An Introduction to Exactly Solved

Models in Statistical Physics. Oxford Graduate Texts. OUP Oxford (cited in

section 1.2).

[5] C.-N. Yang and R. L. Mills (1954). ”Conservation of Isotopic Spin and Isotopic

Gauge Invariance”. Phys. Rev. 96:191–195 (cited in section 2.1).

[6] H. Rothe (2005). Lattice Gauge Theories: An Introduction. Lattice Gauge Theo-

ries: An Introduction. World Scientific (cited in sections 2.1.1, 2.2, and 3.1).

[7] L. D. McLerran and B. Svetitsky (1981). ”Quark Liberation at High Temperature:

A Monte Carlo Study of SU(2) Gauge Theory”. Phys. Rev. D24:450 (cited in

section 2.1.1).

[8] B. Svetitsky and L. G. Yaffe (1982). ”Critical Behavior at Finite Temperature

Confinement Transitions”. Nucl. Phys. B210:423 (cited in sections 2.1.1 and 2.1.1).

[9] A. Roberge and N. Weiss (1986). ”Gauge Theories With Imaginary Chemical

Potential and the Phases of QCD”. Nucl. Phys. B275:734 (cited in sections 2.1.2,

2.1.2, and 5.1).

[10] G. ’t Hooft. The Renormalization procedure for Yang-Mills Fields. PhD thesis

Utrecht U. (1972) (cited in section 2.1.3).

[11] H. D. Politzer (1973). ”Reliable Perturbative Results for Strong Interactions?”.

Phys. Rev. Lett. 30:1346–1349 .

119



Bibliography 120

[12] D. J. Gross and F. Wilczek (1973). ”Ultraviolet Behavior of Nonabelian Gauge

Theories”. Phys. Rev. Lett. 30:1343–1346 (cited in section 2.1.3).

[13] C. Gattringer and C. Lang (2009). Quantum Chromodynamics on the Lattice: An

Introductory Presentation. Lecture Notes in Physics. Springer (cited in sections

2.2, 3.1, and 3.3).

[14] I. Montvay and G. Münster (1997). Quantum Fields on a Lattice. Cambridge

Monographs on Mathematical Physics. Cambridge University Press (cited in sec-

tions 2.2, 3.1, and 3.3).

[15] K. G. Wilson (1974). ”Confinement of Quarks”. Phys. Rev. D10:2445–2459 (cited

in section 2.2.1).

[16] C. Borgs and E. Seiler (1983). ”Lattice Yang-Mills Theory at Nonzero Temperature

and the Confinement Problem”. Commun. Math. Phys. 91:329 (cited in section

2.2.1).

[17] P. Hasenfratz and F. Karsch (1983). ”Chemical Potential on the Lattice”. Phys.

Lett. B125:308 (cited in section 2.2.4).

[18] H. Satz (2010). ”The Thermodynamics of Quarks and Gluons”. Lect. Notes Phys.

785:1–21 (cited in section 2.3).

[19] R. Hagedorn (1965). ”Statistical thermodynamics of strong interactions at high-

energies”. Nuovo Cim. Suppl. 3:147–186 (cited in section 2.3).

[20] Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo (2006). ”The QCD transition

temperature: Results with physical masses in the continuum limit”. Phys. Lett.

B643:46–54 (cited in section 2.3).

[21] E. Newman and G. Barkema (1999). Monte Carlo Methods in Statistical Physics.

Clarendon Press (cited in sections 3.1 and 3.3).

[22] D. Landau and K. Binder (2005). A Guide to Monte Carlo Simulations in Statis-

tical Physics. Cambridge University Press .

[23] G. Fishman (2013). Monte Carlo: Concepts, Algorithms, and Applications.

Springer Series in Operations Research and Financial Engineering. Springer New

York .

[24] A. Kennedy and B. Pendleton (1985). ”Improved Heat Bath Method for Monte

Carlo Calculations in Lattice Gauge Theories”. Phys.Lett. B156:393–399 .

[25] M. Creutz, L. Jacobs, and C. Rebbi (1983). ”Monte Carlo Computations in Lattice

Gauge Theories”. Phys.Rept. 95:201 (cited in section 3.1).



Bibliography 121

[26] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller

(1953). ”Equation of state calculations by fast computing machines”. J. Chem.

Phys. 21:1087–1092 (cited in section 3.1.1).

[27] R. Petronzio and E. Vicari (1990). ”An Overrelaxed Monte Carlo algorithm for

SU(3) lattice gauge theories”. Phys. Lett. B248:159–162 (cited in section 3.1.2).

[28] J. Von Neumann (1951). ”13. Various Techniques Used in Connection With Ran-

dom Digits” (cited in section 3.1.3).

[29] N. Cabibbo and E. Marinari (1982). ”A New Method for Updating SU(N) Matrices

in Computer Simulations of Gauge Theories”. Phys. Lett. B119:387–390 (cited in

sections 3.1.3, 4.5, and 4.6).

[30] D. J. E. Callaway and A. Rahman (1983). ”Lattice Gauge Theory in Microcanon-

ical Ensemble”. Phys. Rev. D28:1506 (cited in section 3.1.4).

[31] J. Polonyi and H. W. Wyld (1983). ”Microcanonical Simulation of Fermionic

Systems”. Phys. Rev. Lett. 51:2257. [Erratum: Phys. Rev. Lett.52,401(1984)]

(cited in section 3.1.4).

[32] D. H. Weingarten and D. N. Petcher (1981). ”Monte Carlo Integration for Lattice

Gauge Theories with Fermions”. Phys. Lett. B99:333 (cited in section 3.1.4).

[33] T. Takaishi and P. de Forcrand (2006). ”Testing and tuning new symplectic inte-

grators for hybrid Monte Carlo algorithm in lattice QCD”. Phys. Rev. E73:036706

(cited in section 3.1.4).

[34] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth (1987). ”Hybrid Monte

Carlo”. Phys. Lett. B195:216–222 (cited in sections 3.1.4 and 5.2).

[35] C. Urbach, K. Jansen, A. Shindler, and U. Wenger (2006). ”HMC algorithm

with multiple time scale integration and mass preconditioning”. Comput. Phys.

Commun. 174:87–98 (cited in section 3.1.4).

[36] M. Albanese et al. (1987). ”Glueball Masses and String Tension in Lattice QCD”.

Phys. Lett. B192:163–169 (cited in sections 3.2.1, 4.3, 4.5, and 4.6).

[37] A. Hasenfratz and F. Knechtli (2001). ”Flavor symmetry and the static potential

with hypercubic blocking”. Phys. Rev. D64:034504 (cited in sections 3.2.2 and 4.3).

[38] A. D. Sokal (1989). ”Monte Carlo mehtods in statistical mechanics: Foundations

and New Algorithms” (cited in section 3.3).

[39] S. Basak and A. K. De (1998). ”Kramers equation algorithm with Kogut-Susskind

fermions on lattice”. Phys. Lett. B430:320–325 (cited in section 3.3).



Bibliography 122

[40] G. t Hooft and A. Zichichi. High energy physics. In EPS International Conference,

Palermo page 455 (1975) (cited in section 4).

[41] S. Mandelstam (1976). ”Vortices and Quark Confinement in Nonabelian Gauge

Theories”. Phys. Rept. 23:245–249 (cited in section 4).

[42] P. Goddard, J. Goldstone, C. Rebbi, and C. B. Thorn (1973). ”Quantum dynamics

of a massless relativistic string”. Nucl. Phys. B56:109–135 (cited in section 4).

[43] M. Bander (1981). ”Theories of Quark Confinement”. Phys. Rept. 75:205 (cited

in section 4).

[44] J. Greensite (2003). ”The Confinement problem in lattice gauge theory”. Prog.

Part. Nucl. Phys. 51:1 (cited in section 4).

[45] N. Arasaki, S. Ejiri, S.-i. Kitahara, Y. Matsubara, and T. Suzuki (1997).

”Monopole action and monopole condensation in SU(3) lattice QCD”. Phys. Lett.

B395:275–282 (cited in section 4).

[46] P. Cea and L. Cosmai (2000). ”A Gauge invariant study of the monopole conden-

sation in nonAbelian lattice gauge theories”. Phys. Rev. D62:094510 .

[47] P. Cea and L. Cosmai (2001). ”Abelian monopole and vortex condensation in

lattice gauge theories”. JHEP 11:064 .

[48] A. Di Giacomo, B. Lucini, L. Montesi, and G. Paffuti (2000). ”Color confinement

and dual superconductivity of the vacuum. 2.”. Phys. Rev. D61:034504 .

[49] P. Cea, L. Cosmai, and M. D’Elia (2004). ”The Deconfining phase transition in

full QCD with two dynamical flavors”. JHEP 02:018 .

[50] A. D’Alessandro, M. D’Elia, and E. V. Shuryak (2010). ”Thermal Monopole

Condensation and Confinement in finite temperature Yang-Mills Theories”. Phys.

Rev. D81:094501 (cited in section 4).

[51] M. Fukugita and T. Niuya (1983). ”Distribution of Chromoelectric Flux in SU(2)

Lattice Gauge Theory”. Phys. Lett. B132:374 (cited in section 4).

[52] J. E. Kiskis and K. Sparks (1984). ”Illustrated Study of Flux Patterns in SU(2)

Lattice Gauge Theory”. Phys. Rev. D30:1326 .

[53] J. W. Flower and S. W. Otto (1985). ”The Field Distribution in SU(3) Lattice

Gauge Theory”. Phys. Lett. B160:128 .

[54] J. Wosiek and R. W. Haymaker (1987). ”On the Space Structure of Confining

Strings”. Phys. Rev. D36:3297 .



Bibliography 123

[55] A. Di Giacomo, M. Maggiore, and S. Olejnik (1990). ”Evidence for Flux Tubes

From Cooled QCD Configurations”. Phys. Lett. B236:199 .

[56] A. Di Giacomo, M. Maggiore, and S. Olejnik (1990). ”Confinement and Chromo-

electric Flux Tubes in Lattice QCD”. Nucl. Phys. B347:441–460 (cited in section

4.3).

[57] V. Singh, D. A. Browne, and R. W. Haymaker (1993). ”Structure of Abrikosov

vortices in SU(2) lattice gauge theory”. Phys. Lett. B306:115–119 (cited in section

4.2).

[58] P. Cea and L. Cosmai (1993). ”Lattice investigation of dual superconductor mech-

anism of confinement”. Nucl. Phys. Proc. Suppl. 30:572–575 .

[59] Y. Matsubara, S. Ejiri, and T. Suzuki (1994). ”The (dual) Meissner effect in SU(2)

and SU(3) QCD”. Nucl. Phys. Proc. Suppl. 34:176–178 .

[60] P. Cea and L. Cosmai (1994). ”Dual superconductor mechanism of confinement

on the lattice”. Nuovo Cim. A107:541–548 (cited in section 4.2).

[61] P. Cea and L. Cosmai (1994). ”On The Meissner effect in SU(2) lattice gauge

theory”. Nucl. Phys. Proc. Suppl. 34:219–221 .

[62] P. Cea and L. Cosmai (1995). ”Dual Meissner effect and string tension in SU(2)

lattice gauge theory”. Phys. Lett. B349:343–347 .

[63] P. Cea and L. Cosmai (1995). ”London penetration length and string tension in

SU(2) lattice gauge theory”. Nucl. Phys. Proc. Suppl. 42:225–227 .

[64] P. Cea and L. Cosmai (1995). ”Dual superconductivity in the SU(2) pure gauge

vacuum: A Lattice study”. Phys. Rev. D52:5152–5164 (cited in section 4.2).

[65] G. S. Bali, K. Schilling, and C. Schlichter (1995). ”Observing long color flux tubes

in SU(2) lattice gauge theory”. Phys. Rev. D51:5165–5198 .

[66] R. W. Haymaker and T. Matsuki (2007). ”Model independent approach to studies

of the confining dual Abrikosov vortex in SU(2) lattice gauge theory”. Phys. Rev.

D75:014501 .

[67] A. D’Alessandro, M. D’Elia, and L. Tagliacozzo (2007). ”Dual superconductivity

and vacuum properties in Yang-Mills theories”. Nucl. Phys. B774:168–181 (cited

in section 4).

[68] M. Tinkham (2004). Introduction to Superconductivity: Second Edition. Dover

Books on Physics. Dover Publications (cited in sections 4.1 and 4.3).



Bibliography 124

[69] S.-A. Zhou (1999). Electrodynamics of Solids and Microwave Superconductivity.

A Wiley interscience publication. Wiley (cited in section 4.1).

[70] J. Bardeen, L. N. Cooper, and J. R. Schrieffer (1957). ”Microscopic theory of

superconductivity”. Phys. Rev. 106:162 (cited in section 4.1).

[71] J. Bardeen, L. N. Cooper, and J. R. Schrieffer (1957). ”Theory of superconduc-

tivity”. Phys. Rev. 108:1175–1204 (cited in section 4.1).

[72] F. London and H. London (1935). ”The Electromagnetic Equations of the Supra-

conductor”. Proceedings of the Royal Society of London A: Mathematical, Physical

and Engineering Sciences 149(866):71–88. ISSN 0080-4630 (cited in section 4.1).

[73] V. Ginzburg and L. Landau (1950). ”On superconductivity theory”. Zhurnal

Eksperimental’noi i Teoreticheskoi Fiziki 20:1064 (cited in section 4.1).

[74] V. Moshchalkov (cited in section 4.1).

[75] A. Rose-Innes and E. Rhoderick (1978). Introduction to superconductivity. Inter-

national series in solid state physics. Pergamon Press (cited in section 4.2).

[76] A. A. Abrikosov (1957). ”On the Magnetic properties of superconductors of the

second group”. Sov. Phys. JETP 5:1174–1182. [Zh. Eksp. Teor. Fiz.32,1442(1957)]

(cited in section 4.1).

[77] P. Cea, L. Cosmai, and A. Papa (2012). ”Chromoelectric flux tubes and coherence

length in QCD”. Phys. Rev. D86:054501 (cited in sections 4.2, 4.3, 4.5, and 4.7).

[78] J. R. Clem (1975). ”Simple model for the vortex core in a type ii superconductor”.

Journal of low temperature physics 18(5-6):427–434 (cited in section 4.2).

[79] P. Cea, L. Cosmai, F. Cuteri, and A. Papa (2013). ”Flux tubes and coherence

length in the SU(3) vacuum”. PoS LATTICE2013:468 (cited in section 4.2).

[80] P. Skala, M. Faber, and M. Zach (1997). ”Magnetic monopoles and the dual

London equation in SU(3) lattice gauge theory”. Nucl. Phys. B494:293–311 (cited

in section 4.3).

[81] P. Cea, L. Cosmai, F. Cuteri, and A. Papa (2014). ”Flux tubes in the SU(3)

vacuum: London penetration depth and coherence length”. Phys. Rev. D89(9):

094505 (cited in sections 4.5, 4.6, and 4.8).

[82] P. Cea, L. Cosmai, F. Cuteri, and A. Papa (2014). ”London penetration depth

and coherence length of SU(3) vacuum flux tubes”. PoS LATTICE2014:350 (cited

in section 4.5).



Bibliography 125

[83] R. G. Edwards, U. M. Heller, and T. R. Klassen (1998). ”Accurate scale determi-

nations for the Wilson gauge action”. Nucl. Phys. B517:377–392 (cited in sections

4.5 and 4.6).

[84] P. Cea, L. Cosmai, F. Cuteri, and A. Papa (2015). ”Flux tubes at finite tempera-

ture”. arXiv:1511.01783 (cited in section 4.6).

[85] P. Cea, L. Cosmai, F. Cuteri, and A. Papa. ”Anatomy of SU(3) flux tubes at

finite temperature”. In Proceedings, 33rd International Symposium on Lattice

Field Theory (Lattice 2015) (2015). arXiv:1510.08993 (cited in section 4.6).

[86] O. K. Kalashnikov (1984). ”QCD at finite temperature”. Fortsch. Phys. 32:525

(cited in section 4.7).

[87] A. Nieto (1997). ”Perturbative QCD at high temperature”. Int. J. Mod. Phys.

A12:1431–1464 (cited in section 4.7).

[88] G. S. Bali, J. Fingberg, U. M. Heller, F. Karsch, and K. Schilling (1993). ”The

Spatial string tension in the deconfined phase of the (3+1)-dimensional SU(2)

gauge theory”. Phys. Rev. Lett. 71:3059–3062 (cited in sections 4.7 and 4.7).

[89] F. Karsch, E. Laermann, and M. Lutgemeier (1995). ”Three-dimensional SU(3)

gauge theory and the spatial string tension of the (3+1)-dimensional finite tem-

perature SU(3) gauge theory”. Phys. Lett. B346:94–98 (cited in sections 4.7, 4.7,

and 4.7).

[90] M. Caselle and P. Grinza (2012). ”On the intrinsic width of the chromoelectric

flux tube in finite temperature LGTs”. JHEP 11:174 (cited in section 4.8).

[91] A. Shibata, K.-I. Kondo, S. Kato, and T. Shinohara (2013). ”Non-Abelian dual

superconductivity in SU(3) Yang-Mills theory: dual Meissner effect and type of

the vacuum”. Phys. Rev. D87(5):054011 (cited in section 4.8).

[92] P. Bicudo, M. Cardoso, and N. Cardoso (2014). ”SU(3) quark-antiquark QCD

flux tube”. PoS LATTICE2013:495 (cited in section 4.8).

[93] J. Liao and E. Shuryak (2007). ”Strongly coupled plasma with electric and mag-

netic charges”. Phys. Rev. C75:054907 (cited in section 4.8).

[94] O. Philipsen and C. Pinke (2014). ”Nature of the Roberge-Weiss transition in

Nf = 2 QCD with Wilson fermions”. Phys. Rev. D89(9):094504 (cited in sections

5, 5.1, 5.2, 5.3, 5.2, 5.3, 5.8, and 5.4).



Bibliography 126

[95] F. Cuteri, C. Czaban, O. Philipsen, and C. Pinke. ”The Nf = 2 chiral phase

transition from imaginary chemical potential with Wilson Fermions”. In Proceed-

ings, 33rd International Symposium on Lattice Field Theory (Lattice 2015) (2015).

arXiv:1511.03105 (cited in sections 5, 5.4, and 5.8).

[96] F. Cuteri, C. Czaban, O. Philipsen, and C. Pinke. ”Roberge-Weiss transition in

Nf = 2 QCD with Wilson fermions and Nτ = 6”. To be published. (cited in

section 5).

[97] O. Philipsen (2012). ”Status of the QCD Phase Diagram from Lattice Calcula-

tions”. Acta Phys. Polon. Supp. 5:825–835 (cited in sections 5.1 and 5.1).

[98] C. Bonati, G. Cossu, M. D’Elia, and F. Sanfilippo (2011). ”The Roberge-Weiss

endpoint in Nf = 2 QCD”. Phys. Rev. D83:054505 (cited in section 5.1).

[99] P. de Forcrand and O. Philipsen (2010). ”Constraining the QCD phase diagram

by tricritical lines at imaginary chemical potential”. Phys. Rev. Lett. 105:152001

(cited in sections 5.1 and 5.3).

[100] M. D’Elia and F. Sanfilippo (2009). ”The Order of the Roberge-Weiss endpoint

(finite size transition) in QCD”. Phys. Rev. D80:111501 (cited in section 5.1).

[101] A. Pelissetto and E. Vicari (2002). ”Critical phenomena and renormalization group

theory”. Phys. Rept. 368:549–727 (cited in section 5.1).

[102] K. Binder (1981). ”Finite size scaling analysis of Ising model block distribution

functions”. Z. Phys. B43:119–140 (cited in section 5.2).

[103] A. M. Ferrenberg and R. H. Swendsen (1989). ”Optimized Monte Carlo analysis”.

Phys. Rev. Lett. 63:1195–1198 (cited in section 5.2).

[104] M. Bach, V. Lindenstruth, O. Philipsen, and C. Pinke (2013). ”Lattice QCD based

on OpenCL”. Comput. Phys. Commun. 184:2042–2052 (cited in section 5.2).
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