


Abstract

In questo lavoro vengono affrontati alcuni problemi ancora non risolti che
riguardano la fisica dell’eliosfera. Nell’introduzione vengono esposti i risul-
tati finora raggiunti nella ricerca in questo campo e presentate le tematiche,
ancora oggetto di dibattito scientifico, che vengono affrontate nel lavoro.

Il primo capitolo riguarda la messa a punto di un codice numerico per
la risoluzione delle equazioni della magnetoidrodinamica (MHD) in configu-
razione 2.5 dimensionale; in particolare, sono state implementate delle con-
dizioni al contorno che simulano l’ingresso di onde mediante moti trasver-
sali, oppure bordi aperti, in entrambi i casi utilizzando un metodo basato
sulle caratteristiche proiettate. Tale codice è stato usato per modellizzare
l’interazione tra onde e strutture di equilibrio disomogenee alla base dei
“buchi coronali”, ossia quelle regioni dell’atmosfera solare da cui si origina
il vento solare. Il modello ha mostrato la formazione precoce di uno spettro,
con formazione di piccole scale localizzate lungo le separatrici magnetiche
oppure in vicinanza dei punti neutri ad X, ove ha luogo un fenomeno di
riconnessione magnetica alternata.

Il secondo capitolo è dedicato allo studio della generazione di Kinetic
Alfvén Waves a seguito della propagazione di onde di Alfvén in mezzi di-
somogenei. Tale lavoro è stato svolto sia tramite l’impiego di simulazioni
Hall-MHD, sia di simulazioni cinetiche di tipo Vlasov-ibrido; queste ultime
hanno permesso di evidenziare la formazione di strutture non-termiche nella
funzione di distribuzione degli ioni, come anisotropie di temperatura e fasci
di particelle accelerate.

Nel terzo capitolo viene affrontato il problema della accelerazione di par-
ticelle in turbolenza. Attraverso simulazioni di tipo “test particle” viene
studiato il processo di accelerazione di particelle in una turbolenza 3D ot-
tenuta in approssimazione di MHD ridotta. I risultati prelimanari mostrano
una prevalenza di accelerazione nella direzione del campo magnetico medio e
una dipendenza dell’accelerazione dal numero di Reynolds del sistema fisico
considerato.

Il quarto capitolo rigurda il problema del trasporto di particelle in tur-
bolenza MHD. Utilizzando un modello di turbolenza sintetica, è stato con-
dotto uno studio parametrico che ha evidenziato come i coefficienti di dif-
fusione parallelo e perpendicolare al campo magnetico medio dipendono da
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parametri quali la lunghezza dello spettro, l’ampiezza delle fluttuazioni e il
livello di intermittenza. I risultati ottenuti trovano applicazione a numerosi
problemi riguardanti la diffusione di particelle energetiche nell’eliosfera.

Infine, nelle conclusioni vengono riassunti brevemente i risultati ottenuti
e presentati i possibili sviluppi delle ricerche effettuate.

La presente tesi è cofinanziata con il sostegno della Commissione
Europea, Fondo Sociale Europeo e della Regione Calabria. L’autore
è il solo responsabile di questa tesi e la Commissione Europea e la
Regione Calabria declinano ogni responsabilità sull’uso che potrà
essere fatto delle informazioni in essa contenute.

2



Contents

Introduction 4

1 Evolution of magnetohydrodynamic waves in low layers of a
coronal hole 8
1.1 The model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.2 Numerical method . . . . . . . . . . . . . . . . . . . . . . . . 20
1.3 The method of projected characteristics . . . . . . . . . . . . 25

1.3.1 Lower Boundary . . . . . . . . . . . . . . . . . . . . . 30
1.3.2 Upper Boundary . . . . . . . . . . . . . . . . . . . . . 32

1.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . 34
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Introduction

The Heliosphere is the region of influence of our star, the Sun. It contains all

the solar system and extends beyond it. It is formed by the continuous flux

of particles that emanates from Sun surface, called solar wind, and stops

its expansion where the solar wind pressure is balanced by the pressure

of the interstellar medium. The Sun, that is the main character in the

Heliosphere, determines its feature and the majority of its dynamics. Matter

in the heliosphere is principally present in the form of plasma, an ionized

gas where positive ions and electrons are not bounded to form atoms. The

Sun, the solar wind and the interplanetary medium are made of plasma.

The exploration of the heliosphere has been one of the most exciting sci-

entific challenge of the last decades. Starting from the sixties of last century

many satellites have been launched to study the medium that surrounds

Earth. In these missions a huge amount of data have been collected. Sun

and planets imaging, measures of electric and magnetic field and particle

distribution functions in the solar wind, have been the legacy of this techni-

cal and scientific effort. Many new phenomena arises from these observation,

to which in the last few decades the scientific community has tried to give

an answer.

The observations showed that the heliosphere is not an homogeneous

medium. The plasma characteristic quantities, like density and tempera-
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ture, and the background electric and magnetic field varies in space and

time in a broad range of scales. This is not only due to the presence of

waves that propagates in such an homogeneous medium, but also to turbu-

lence that is the phenomenon responsible for the transport of energy from

bigger to smaller scales. Moreover, the heliospheric plasma is not at thermal

equilibrium. It is in fact populated by suprathermal particles whose energies

are sometimes even relativistic.

In this work we study the interaction of these features, in particular

waves and particles, with typical inhomogeneous structures present in the

heliosphere. To tackle this kind of problem, since the equation involved

in the plasma mathematical description cannot be solved analytically, a

numerical approach is required in all the cases.

The first chapter regards the problem of the interaction of magnetohy-

drodynamics (MHD) waves with the inhomogeneous magnetic field of a low

layers of a coronal hole. A 2.5D numerical model with a method of pro-

jected characteristics for simulating open boundaries is employed to study

the propagation of such a waves in a potential magnetic field with open and

closed field lines where also an X-point is present. A section of the chapter is

dedicated to describe the simulation setup with a particular attention payed

in the description of the method of characteristics employed. Then results

are presented comparing the two different phenomenology that arises from

injecting magnetosonic or Alfvén modes.

The second chapter is devoted to the study of a problem at smaller

scales. The propagation of an Alfvén wave in a pressure-balanced structure

is considered in the linear case using an Hall MHD model and in the non

linear case using an Hybrid Vlasov-Maxwell model. The aim of the study is

to characterize what kind of fluctuations arises from this interaction, when
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fluctuations at scales comparable to the proton inertial length are considered.

The third and fourth chapters are dedicated to the problem of particle

acceleration and diffusion respectively. For the first one we use a test particle

approach to track the energization of particles in an electromagnetic field

generated by a 3D Reduced MHD turbulence. For the second one a different

approach is used in the modeling. In fact a synthetic turbulence model is

proposed for generating the magnetic field and diffusion of test particle in

such a field are performed in order to single out how the characteristics of

the turbulence affect transport.

In the conclusion, the results obtained in all the problem studied are

summarized and possible future works are discussed

The appendices are dedicated to more numerical aspects. In the first

one we describe how the vector potential of the equilibrium magnetic field

considered in Chapter 1 is calculated. The second one is devoted to the

comparison among different numerical scheme that can be employed to solve

the Lorentz equations in test particle simulations. In the third one the

numerical code realized for test particle simulations presented in Chapter 3

and 4 is described in terms of capability and performances.
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Chapter 1

Evolution of

magnetohydrodynamic waves

in low layers of a coronal hole

Low-frequency fluctuations in the domain of magnetohydrodynamics (MHD)

are believed to populate the plasma of the solar corona. These fluctuations

originate from photospheric motions and propagate up to the corona along

the magnetic field that permeates the solar atmosphere. In situ measure-

ments have revealed MHD fluctuations in the solar wind for several decades

(Belcher & Davis, 1971): this is considered to be an indirect indication of the

presence of the same kind of fluctuations in the corona, from where the solar

wind emanates. Evidence of velocity fluctuations of the order δv ∼ 30 − 50

km s−1 in the corona at unresolved spatial and temporal scales has been

deduced from nonthermal broadening of coronal lines (Acton et al., 1981;

Warren et al., 1997; Chae et al., 1998). In recent years, velocity fluctuations

have also been ubiquitously detected in the corona (Tomczyk et al., 2007;

Tomczyk & McIntosh, 2009). Such fluctuations appear to propagate along

8



magnetic lines at a speed that is consistent with estimations of the Alfvén

velocity; thus they are considered to be Alfvén waves, although a differ-

ent interpretation has also been proposed in terms of kink magnetoacoustic

waves (Van Doorsselaere et al., 2008). More recently, Alfvén waves with

energy sufficient to power the quiet corona and fast solar wind have been

found (McIntosh et al., 2011). Moreover, indirect evidences of Alfvén waves

in coronal holes have also been reported (see (Banerjee et al., 2011) for a

review).

Waves and turbulence are considered to be one of the energy sources

responsible for solar wind expansion (Sorriso-Valvo et al., 2007; Marino et

al., 2011; Hellinger et al., 2013). For instance, observed variations of proton

temperature with the heliocentric distance are inconsistent with a simple

adiabatic expansion, which instead requires a continuous heat deposition

along the solar wind path (e.g., Matthaeus et al. (1999a)). Turbulence rep-

resents the best candidate to explain such an extended heating. Moreover,

turbulence formation has been proposed as a mechanism responsible for so-

lar wind acceleration in the near-Sun region. The main idea is that waves

produced by photospheric motions propagate upward in coronal open-field

regions, which is where the solar wind originates. As a result of vertical

stratification and magnetic field expansion, these waves are partially re-

flected downward. Nonlinear interactions between MHD waves propagating

in two opposite directions generate an energy cascade toward small scales,

eventually dissipating part of the wave energy, which would then be re-

sponsible for both coronal heating and wind acceleration (Matthaeus et al.,

1999b). Several models have been proposed within such a framework: a

model of Alfvén wave propagation in the chromosphere and the corona, in

which heating and acceleration are a consequence of compressive waves and
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shocks formation (Suzuki & Inutsuka, 2005); a model ranging from the chro-

mosphere to the corona, which includes the effects of pressure and acoustic

wave gradients (Cranmer et al., 2007); models where nonlinear effects are

modeled by phenomenological terms (Verdini & Velli, 2007), by a simplified

representation of the wavevector space (shell model, Verdini et al. (2009)),

or a strong turbulence closure (Verdini et al., 2010).

In these models, the background structure where perturbations propa-

gate contains a unipolar magnetic field possibly varying on a relatively large

spatial scale, at least in the coronal part of the considered domain. Indeed,

coronal holes and solar wind are both characterized by a mainly unipolar

magnetic field (McComas et al., 2000). However, magnetograms taken in

coronal hole regions show a complex structure at low altitudes that is charac-

terized by areas of both magnetic polarities (Zhang et al., 2006). Thus, the

magnetic field at low altitude in a coronal hole has a complex 3D structure

containing open fieldlines extending to larger altitudes and closed fieldlines

connecting regions of opposite polarities (Ito et al., 2010). Perturbations

generated by photospheric motions, which cross this complex structure when

propagating upward, couple with gradients of the background. As a result,

small scales are generated in the perturbations. The present chapter focuses

on the mechanism of small-scale formation due to the coupling between per-

turbation and background inhomogeneity, which has not been considered in

the previously cited models.

The evolution of hydromagnetic perturbations propagating in an inho-

mogeneous background has been widely studied. In a 2D inhomogeneous

background, where the Alfvén velocity varies in directions perpendicular to

the magnetic field, two mechanisms have been investigated in detail: (1)

phase-mixing (Heyvaerts & Priest, 1983), in which differences in group ve-
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locity at different locations progressively bend wavefronts; and (2) resonant

absorption that concentrates the wave energy in a narrow layer where the

local wave frequency matches a characteristic frequency (Alfvén or cusp).

These processes have been studied by investigating normal modes of the in-

homogeneous structure (Kappraff & Tataronis, 1977; Mok & Einaudi, 1985;

Steinolfson, 1985; Davila, 1987; Hollweg, 1987; Califano et al., 1990, 1992)

and by considering the evolution of an initial disturbance (Lee & Roberts,

1986; Malara et al., 1992, 1996). The effects of density stratification and

magnetic line divergence (Ruderman et al., 1998), as well as nonlinear cou-

pling with compressive modes Nakariakov et al. (1997, 1998), have also been

considered. The propagation of MHD waves in magnetic fields containing

null points has been studied in detail too (Landi et al., 2005) (see also

McLaughlin et al. (2010) for a review).

Studing the evolution of MHD perturbations in 3D structures is more

complex. In particular, the evolution of Alfvén waves has been studied using

a simplified approach based on a WKB method first proposed by Similon &

Sudan (1989), and was also studied in detail both from a general point of

view (Petkaki et al., 1998; Malara et al., 2000, 2003) and in the context of

the coronal heating problem (Malara et al., 2005, 2007). The same method

was used by Malara et al. (2012), and in more detail by Malara (2013), to

study the evolution of Alfvén waves propagating in a 3D magnetic field that

models the magnetic structure in an open fieldline region with the previously

described features (Ito et al., 2010). The results showed that small scales

form in the Alfvénic perturbation at very low altitudes (∼ 105 km above the

coronal base) as a consequence of its interactions with specified equilibrium

field inhomogeneities. Such small scales are located at magnetic separatrices

and the resulting spectra of the perturbation have a power-law dependence,
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with a large prevalence of wavevectors perpendicular to the magnetic field.

The main limitations in the model by Malara (2013) are due to the WKB

approximation, which assumes that the perturbation wavelength λ is much

smaller than the scale of variation of the equilibrium structure, which is of

the order of Leq ∼ 3× 104 km. Assuming a typical Alfvén velocity cA ∼ 500

km s−1 and a timescale of perturbations τ ∼ 500 s, the wavelength in the

direction parallel to the magnetic field is λ|| = cAτ ∼ 2.5 × 105 km. Thus,

the assumption of small wavelength is somewhat questionable. Moreover,

all compressive effects have been neglected in this model.

In the present work we try to overcome these limitations of the WKB

method by using full compressible MHD simulations instead. In particular,

a simplified 2D version of the equilibrium magnetic field used in Malara

(2013) is considered, in which both Alfvénic and magnetosonic fluctuations

are generated by transverse motions at the base of the domain. The dynam-

ics of the system and the generation of small scales in perturbations after

crossing the background inhomogeneity are investigated. Most of the results

obtained by the WKB approach are recovered, along with new effects, which

are mainly related to the compressive component of perturbations. The im-

plications for the problem of solar wind acceleration and understanding the

presence of density fluctuations in the open fieldline corona are discussed.

1.1 The model

We consider an open-field line region of the solar corona. The configuration

is given by an inhomogeneous MHD equilibrium with superimposed fluctua-

tions that propagate in the upward direction. We study the dynamics of the

interaction between fluctuations and the inhomogeneous background using

numerical simulations.
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The spatial domain represents a small portion of a coronal hole that is

located just above the coronal base. We indicate all quantities relating to the

equilibrium configuration by the upper index “(0)”. A detailed description

of the equilibrium magnetic field B(0) is available elsewhere (Malara, 2013);

in the following we summarize the assumptions and describe the derivation.

Although a coronal hole is characterized by an essentially unipolar magnetic

field, magnetograms of coronal hole regions (Zhang et al., 2006; Ito et al.,

2010) show that there are low lying regions where the photospheric mag-

netic field has a polarity opposite to the dominant one. The areas of the

two polarities appear to be intermixed, forming a complex structure with

different spatial scales ranging from ∼ 109 cm down to the resolution limit.

The area corresponding to the flux with the dominant polarity represents

∼ 70% of the total area, whereas the remaining 30% corresponds to the op-

posite polarity (Zhang et al., 2006). The coronal magnetic field above such

regions should also have a complex structure: magnetic lines connecting the

regions of opposite polarity should be present, along with open magnetic

lines emanating from dominant polarity regions. At sufficiently high alti-

tudes only open magnetic lines should be found, with the magnetic field

structure becoming less complex (Zhang et al., 2006; Ito et al., 2010). The

magnetic field model considered here ctries to represent the above described

features in a very simplified form.

Due to the smallness of the considered spatial domain, we neglect cur-

vature effects due to the spherical geometry, and use a Cartesian refer-

ence frame XY Z in which the Y Z plane corresponds the coronal base,

while the X-axis is directed vertically upward. The spatial domain is D =

{(X,Y,Z)} = [0, L]× [0, RyL]× [0, RzL], where L is of the order of the char-

acteristic scale of the magnetic field at the coronal base, while the aspect
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ratios Ry and Rz are quantities of order 1. The magnetic field structure is

more complex at low altitudes, while the influence of boundary conditions

at the base X = 0 decreases with increasing altitude X. Then, we assume

that the equilibrium magnetic field B(0)(r) becomes uniform and vertically

directed at large altitudes X:

lim
X→+∞

B(0)(X,Y,Z) = B0ex (1.1)

where B0 is a constant and ex is the unit vector in the X-direction. More-

over, we choose B0 > 0 corresponding to a positive polarity at sufficiently

high altitudes. Periodicity in the horizontal Y and Z directions is assumed.

Because the coronal plasma has a low β, the equilibrium condition requires

that B(0) is a force-free magnetic field:

∇×B(0) = αB(0) (1.2)

where the scalar quantity α is constant along fieldlines. The condition (1.1)

implies that α is vanishing at large altitudes and along open fieldlines. Thus,

the simplest choice is to assume that α = 0 in the whole domain. This

assumption is expressed by the condition:

B(0) = −∇Φ (1.3)

where the scalar potential Φ must satisfy the Laplace equation

∇2Φ = 0 (1.4)

which follows from the divergence-free condition for B(0). Using periodicity,
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Φ can be expanded in a Fourier series along Y and Z

Φ(X,Y,Z) =
∑

ky ,kz

Φ̂ky,kz(X) ei(kyY+kzZ) (1.5)

where ky = 2πn/(RyL) and kz = 2πm/(RzL), with n and m integers.

The Laplace Equation (1.4) gives an equation for the Fourier coefficients

Φ̂ky,kz(X):

d2Φ̂ky,kz(X)

dX2
= −

(

k2y + k2z
)

Φ̂ky,kz(X) (1.6)

The solution of Equation (1.6) for ky = kz = 0 is:

Φ̂0,0(X) = a+ bX (1.7)

with a and b constants, corresponding to a homogeneous magnetic field.

We can set a = 0 without lack of generality, while we choose b = −B0.

The latter condition is related to the assumption (1.1). The solution for

(ky, kz) 6= (0, 0) is:

Φ̂ky,kz(X) = Aky,kze
−h(ky,kz)X + Cky,kze

h(ky,kz)X (1.8)

with

h(ky , kz) =
√

k2y + k2z (1.9)

and Aky,kz and Cky,kz constants. The term proportional to Cky ,kz would give

a magnetic field that diverges in the limit X → +∞. For this reason we

discard this solution and choose Cky,kz = 0. Then, using expressions (1.7)

and (1.8), we get:

Φ(X,Y,Z) =
∑

ky,kz 6=(0,0)

Aky,kze
−h(ky,kz)X+i(kyY+kzZ) −B0X (1.10)
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The last equation can be simplified because Φ is a real quantity, which

implies that A−ky ,−kz = A∗
ky,kz

, where the asterisk indicates complex conju-

gate. Using this condition, expression (1.10) can be written in the following

form containing only real quantities:

Φ(X,Y,X) =
∑

(ky,kz) 6=(0,0)
kz≥0

φky,kz cos(kyY + kzZ + γky,kz)e
−h(ky ,kz)X −B0X

(1.11)

where φky ,kz = 2ℜ(Aky ,kz) and the phases γky,kz can be chosen in the interval

[0, 2π]. Finally, using expression (1.11) for the potential from Equation (1.3),

we can calculate the components of the equilibrium magnetic field:

B(0)
x (X,Y,Z) =

∑

(ky,kz) 6=(0,0)
kz≥0

[

h(ky, kz)φky,kz×

cos
(

kyY + kzZ + γky,kz
)

e−h(ky ,kz)X

]

+B0 (1.12)

B(0)
y (X,Y,Z) =

∑

(ky,kz) 6=(0,0)
kz≥0

kyφky,kz sin
(

kyY + kzZ + γky,kz
)

e−h(ky,kz)X

(1.13)

B(0)
z (X,Y,Z) =

∑

(ky,kz) 6=(0,0)
kz≥0

kzφky,kz sin
(

kyY + kzZ + γky,kz
)

e−h(ky ,kz)X

(1.14)

Note that the above expressions satisfy condition (1.1). The equilibrium

magnetic field (1.12)-(1.14), which is equivalent to the form used by Malara

(2013), is a superposition of different harmonics at a given spatial scale

determined by the wavevector (ky, kz). When many harmonics are present,

the resulting magnetic field has a complex structure containing both open

and closed fieldlines, with the latter connecting regions of opposite polarity

at the base X = 0. Magnetic null points and separatrices are also present
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(Malara, 2013). The details of the magnetic structure are determined by

the choice of parameters (B0, φky ,kz and γky,kz). In the present case, the

dynamics of the system are studied numerically for a 2D configuration in

which all quantities depend only on X and Z. In order to better exploit

the finite resolution allowed by the spatial grid we use a form for B(0) that

is as simple as possible, where only one single term is retained in the sums

contained of Equations (1.12)-(1.14). This term corresponds to the smallest

wavevector (ky, kz) = (0, k1z), with k1z = 2π/(RzL):

B(0)
x (X,Z) = B0[1 + b1 cos(k1zZ)e−k1zX ] (1.15)

B(0)
y = 0 (1.16)

B(0)
z (X,Z) = B0b1 sin(k1zZ)e−k1zX (1.17)

where b1 = k1zφ0,k1z/B0 and it has been chosen that γ0,k1z = 0. The above

expressions contain two dimensionless quantities: the relative amplitude

b1 of the inhomogeneous component and the aspect ratio Rz. They are

determined by requiring the fulfilment of two conditions: (1) the vertical

component B
(0)
x must change sign along the base X = 0 of the spatial

domain, which corresponds to the inequality |b1| > 1. In this case there is a

magnetic null point above the coronal base (X > 0) located at the position

(X0, Z0) = (ln b1/k1z, π/k1z) for b1 > 0, or (X0, Z0) = (ln(−b1)/k1z , 0) for

b1 < 0. We also require that (2) the null point is inside the considered

domain (i.e., X0 < L). Conditions (1) and (2) correspond to

1 < |b1| < e2π/Rz (1.18)

In particular, we have chosen b1 = 2 and Rz = π, which satisfy the in-
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equalities (1.18). In this case the magnetic null point is located at the

position (X0, Z0) = (L ln 2/2, Lπ/2). The magnetic field (1.15)-(1.17) can

be expressed in terms of a vector potential: B(0) = ∇× (A(0)ey), where

A(0)(X,Z) = −B0b1
k1z

sin(k1zZ)e−k1zX −B0Z (1.19)

In Figure 1.1 magnetic lines of the equilibrium magnetic field B(0) are

+   +   +   +   +    -   -   -   -    +   +   +   +   +
 0  0.5  1  1.5  2  2.5  3

z

 0

 0.2

 0.4

 0.6

 0.8

 1

x

Figure 1.1: Magnetic lines of the equilibrium magnetic field b(0) in the xz plane.
The symbols “+” and “−” represent the polarity of the field at x = 0.

represented in theXZ-plane. This plot is obtained by drawing the isolines of

the vector potential A(0) (Equation (1.19)). It can be seen that B
(0)
x changes

sign along the base X = 0; it is positive on the left and the right sides and

negative in the central part. In the lower part of the domain both open and

closed fieldlines are present, whereas only open fieldlines are found in the

upper part of D. An X-type magnetic null point is located at the position

(X0, Z0). Four separatrices intersect at the X-point: those starting from the
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base of D separate the two regions of closed and open fieldlines, whereas

the separatrix extending above the X-point separates open fieldlines coming

from distant parts of the base. Finally, B(0) tends to become uniform and

vertically directed in the uppermost part of D, as required by the condition

(1.1). Thus, despite its simple form, B(0) reproduces all the features we

want to model.

A magnetic field similar to that of our model is typically found at much

larger scales in pseudostreamers, which are thin coronal structures extending

radially up to several solar radii (Wang et al., 2007). A pair of loop arcades

with an X-neutral line in between underlay a pseudostreamer, which is sup-

posed to develop along the vertical separatrix (Wang et al., 2012). Thus

the equilibrium magnetic field of our model can be considered a small-scale

version of the magnetic structures commonly observed in the corona.

The equilibrium mass density and pressure are assumed to be uniform

ρ(0)m (X,Z) = ρm0 = const , P (0)(X,Z) = const (1.20)

thus neglecting any stratification generated by gravity, whereas the equilib-

rium velocity is vanishing, V(0) = 0.

MHD waves are superposed on the above described equilibrium. No

waves are present at the initial time τ = 0, but they are continuously gener-

ated by imposing the velocity at the base X = 0. This boundary condition

is intended to represent the effects of the motion of underlying denser layers

on the coronal plasma, and are specified in the next sections.

19



1.2 Numerical method

In order to describe the evolution of the model, we numerically solve the

nonlinear, compressible, non-ideal, 2D MHD equations:

∂ρm
∂t

+∇ · (ρmV) = 0, (1.21)

∂V

∂t
+ (V · ∇)V = − 1

ρm
∇P +

1

4πρm
(∇×B)×B+

ν̃

ρm
∇ · ~~Π,(1.22)

∂B

∂t
= ∇× (V×B) +

c2η̃

4π
∇2B, (1.23)

∂P

∂t
+∇ · (PV) + (γ − 1)P (∇ ·V) =

κ̃∇2T + (γ − 1)

[

c2η̃

(4π)2
(∇×B)2 +

ν̃

2
~~Π :

~~Π

]

(1.24)

with

T =
µmp

kB

P

ρm
(1.25)

and the components of the tensor
~~Π are

Πij =
∂Vi

∂Xj
+

∂Vj

∂Xi
− 2

3
δij

∂Vk

∂Xk
(1.26)

In the above equations ρm, P , T , V, and B are the mass density, pressure,

temperature, velocity and magnetic field, respectively. All physical quanti-

ties are functions of the spatial variables X and Z and of the time t. ν̃, η̃,

and κ̃ are the dynamic viscosity, resistivity, and thermal conductivity, re-

spectively, and are assumed constant. kb is the Boltzmann constant, c is the

speed of light, mp is the proton mass, µ ∼ 1 is the mean molecular weight.

We introduce dimensionless quantities:

x =
X

L
; z =

Z

L
; τ =

cA0

L
t; ρ =

ρm
ρm0

;
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v =
V

cA0
; b =

B

B0
; p =

P

ρm0c
2
A0

In these expressions L = 109 cm is the typical size of structures in coronal

hole magnetograms (Zhang et al., 2006); ρm0 = 5 × 10−16 g cm−3 is a

typical density; cA0 = 2.5 × 107 cm s−1 is a typical value of Alfvén velocity

in coronal holes (McIntosh et al., 2011); and B0 = cA0
√
4πρm0. Using the

dimensionless variables, Equations (1.21)-(1.24) take the following form:

∂ρ

∂τ
+∇ · (ρv) = 0, (1.27)

∂v

∂τ
+ (v · ∇)v = −1

ρ
∇p+

1

ρ
(∇× b)× b+

ν

ρ
∇ · ~~σ, (1.28)

∂b

∂τ
= ∇× (v× b) + η∇2b, (1.29)

∂p

∂τ
+∇ · (pv) + (γ − 1) p (∇ · v) =

κ∇2

(

p

ρ

)

+ (γ − 1)
[

η(∇× b)2 +
ν

2
~~σ : ~~σ

]

(1.30)

with

σij =
∂vi

∂xj
+

∂vj

∂xi
− 2

3
δij

∂vk

∂xk
(1.31)

and ν = ν̃/(Lρm0cA0), η = η̃c2/(4πcA0L), κ = κ̃µmp/(κbLρm0cA0).

Using the new variables the spatial domain D is transformed into the

domain D′ = {(x, z)} = [0, 1] × [0, Rz ]. It is worth noting that for the as-

pect ratio we used, the value Rz = π, corresponds to the horizontal length

Lz ≃ 3 × 109 cm. The initial condition is given by the equilibrium struc-

ture specified in the previous section. The initial dimensionless density and

pressure are ρ = 1 and p = 0.05, respectively, with the latter corresponding

to a plasma beta value:

β = p

[

1

Rz

∫

D′

b2

2
dxdz

]−1

≈ 5× 10−2. (1.32)
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Concerning boundary conditions, the lower boundary x = 0 represents

the border through which perturbations coming from layers underlying the

corona are entering. On this boundary we impose the value of the velocity

field. In particular, we consider two cases:

(a) uniform oscillatory motion at the base directed in the y-direction, v(x =

0, z, τ) = v1 sin(ωτ)ey, where v1 and ω are the velocity amplitude and fre-

quency, respectively. This boundary condition generates fluctuations prop-

agating inside the domain with a polarization (y), which is perpendicular

both to the equilibrium magnetic field b(0) and the perturbation wavevector

(which is in the xz-plane). For this reason we refer to this kind of fluctuation

as Alfvénic.

(b) uniform oscillatory motion at the base directed in the z-direction, v(x =

0, z, τ) = v1 sin(ωτ)ez. In this case generated fluctuations are polarized in

the plane containing both b(0) and the wavevector. We refer to this kind of

fluctuation as magnetosonic.

In both cases we used the value ω = π/2 for the frequency, corresponding

to a waveperiod tw = 160s and v1 = 0.1 corresponding to the amplitude

V1 = 2.5 × 106 cm s−1, in accordance with observations (McIntosh et al.,

2011). The value of other physical quantities at x = 0 is calculated using a

method of projected characteristics (Nakagawa et al., 1987; Sun et al., 1995;

Poinsot & Lele, 1993; Grappin et al., 2000; Landi et al., 2005). In our case,

we use this method to evaluate ρ, p, and b in a way that is consistent with

the values specified for the velocity field and with the MHD equations. A

detailed description of this procedure is given in the next section.

The upper boundary x = 1 is a free boundary that must allow pertur-

bations propagating inside the domain to exit without reflection. Again,

the method of projected characteristics has been implemented on the upper
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boundary to simulate this physical condition. The details of boundary con-

ditions at x = 1 are given in the next section. Finally, periodic boundary

conditions are imposed in the horizontal z-direction.

Equations (1.27)-(1.30), with the specified boundary conditions, are nu-

merically solved by employing a Cartesian 2D version of a compressible MHD

code that was originally written for 3D cylindrical configurations with time-

dependent boundary conditions (Onofri et al., 2007). The uniform spatial

grid is formed by nx×nz points (nx = 1024, nz = 256). A sixth-order finite

difference method in the x-direction and a pseudospectral Fourier method in

the z-direction are used. Time derivatives are calculated using a third-order

Runge-Kutta scheme. Viscosity, resistivity, and thermal conductivity are

uniform over the domain and constant: ν = η = κ = 10−3.

The Equation (1.30) can be rewritten in the form of an evolution equa-

tion for the internal energy density u = p/(γ − 1):

∂u

∂τ
+∇ · (uv) + (γ − 1) u (∇ · v) = κ∇2

(

p

ρ

)

+ Pη + Pν (1.33)

where

Pη = η(∇× b)2; Pν =
ν

2
~~σ : ~~σ (1.34)

are the dissipated power per unit volume due to resistivity and to viscosity,

respectively. Other useful quantities are defined by

wη(τ) =

∫

D′

Pη(x, z, τ) dxdz ; wν(τ) =

∫

D′

Pν(x, z, τ) dxdz (1.35)

which represent the dissipated resistive and viscous power integrated over

the domain D′. Using Equations (1.27)-(1.29) and (1.33) it is possible to

write a conservation law for total energy density in a differential form. In-
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tegrating this equation on the domain D′ and using the divengerce theorem

gives the energy conservation equation:

dE

dτ
+Φ = 0 (1.36)

where

E =

∫

D′

(

1

2
ρ|v|2 + |b|2

2
+ u

)

dxdz (1.37)

is the total energy per unit length in the domain D′, and

Φ =

∮

∂D′

[(

1

2
ρ|v|2 + γu

)

v+ S+ ν ((v · ∇)v− (∇ · v)v)− κ∇
(

p

ρ

)]

· n̂dl

(1.38)

In this expression S = |b|2v− (v ·b)b+η(∇×b)×b is the Poynting vector,

∂D′ is the contour of D′, n̂ is the outer-pointing normal to ∂D′, and dl

is an infinitesimal piece of ∂D′. The quantity (1.38) represents the energy

flux through the boundary that is due to four different effects: advection

of matter, Poynting vector flux, viscous forces work along the boundaries,

and heat flux. In our particular configuration, the net flux through the

boundaries z = 0 and z = Rz = π is null because of periodicity. Thus, we

can write the total flux in the form Φ = Φ0 +Φ1, where Φ0 and Φ1 are the

fluxes through the boundaries x = 0 and x = 1, respectively. Taking into

account the form of boundary conditions imposed at these boundaries (see

next section) we find:

Φ0 =

∫

x=0

[

−η (b · ∇) bx + η
∂

∂x

(

|b|2
2

)

+ (v · b) bx
]

dz (1.39)
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Φ1 =

∫

x=1

[

(

1

2
ρ|v|2 + γu

)

vx + η

(

(b · ∇) bx −
∂

∂x

(

|b|2
2

))

+ |b|2vx−

(v · b) bx + ν

(

2vx
∂vx
∂x

+ vy
∂vx
∂y

+ vz
∂vx
∂z

+ vx
∂vy
∂y

+ vx
∂vz
∂z

)

]

dz (1.40)

.

1.3 The method of projected characteristics

The method of characteristics can be used to build boundary conditions that

are consistent with the hyperbolic structure of fluid or MHD equations. It

is based on the decomposition of solutions of the Equations (1.27)-(1.30)

into characteristic modes that cross the domain boundary propagating from

inside to outside, or the reverse. We employed a version of the method

that has been formulated by Sun et al. (1995) and was used to simulate

the entrance and exit of Alfvénic perturbations both in a large-scale coronal

model (Grappin et al., 2000) and in an equilibrium structure with an X-

point (Landi et al., 2005). In these cases the entrance of Alfvén waves

was obtained by imposing the amplitude of incoming perturbations at the

boundary. In the present case we follow a different approach, i.e., the input

of perturbations is obtained by imposing a time-dependent velocity field on

the lower boundary x = 0. We use the method of projected characteristics to

deduce the time evolution of the other physical quantities (density, pressure,

and magnetic field) at the same boundary in a way that is consistent with

the MHD equations. At the upper boundary x = 1, the method is used

to simulate the free exit of perturbations by imposing that no perturbation

enters the domain through that boundary (Grappin et al., 2000; Landi et

al., 2005).

We write the compressible, non-ideal, MHD Equations (1.27)-(1.30) sep-
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arating the terms containing first-order derivatives with respect to x from

the other terms:

∂Ui

∂τ
+Aij

∂Uj

∂x
+ Ti = 0 , i = 1, ..., 7 (1.41)

where Ut = (ρ, vx, vy, vz, by, bz, p) and the vector T contain all the terms

with derivatives with respect to y and z and the non-ideal terms. Hereafter,

summation over dummy indices is understood. We eliminated the equation

for bx in the system (1.41) because we calculate its value at the boundaries

x = 0 and x = 1 by using the divergence free condition. The matrix A has

the following form:

A =











































vx ρ 0 0 0 0 0

0 vx 0 0
by
ρ

bz
ρ

1

ρ

0 0 vx 0 −bx
ρ

0 0

0 0 0 vx 0 −bx
ρ

0

0 by −bx 0 vx 0 0

0 bz 0 −bx 0 vx 0

0 γp 0 0 0 0 vx











































The eigenvalues of the matrix A are: λ(1) = vx, λ
(2) = vx+cax, λ

(3) = vx+cf ,

λ(4) = vx + cs, λ(5) = vx − cax, λ(6) = vx − cf , λ(7) = vx − cs, where

cax = bx/
√
ρ is the Alfvén speed along the x-direction,

cf = 1/
√
2

(
√

(ca2 + a2) + 1/2
√

(ca2 + a2)− 4cax2a2
)

and

cs = 1/
√
2

(
√

(ca2 + a2)− 1/2
√

(ca2 + a2)− 4cax2a2
)
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are the fast and slow magnetosonic speeds, with a2 =
√

γP/ρ and ca
2 =

b2/ρ. The eigenvalues λ(k) represent the propagation velocities of the seven

different waves (Alfvén, fast and slow magnetosonic, and entropy waves)

crossing the boundary in both senses. For each of the two boundaries we

distinguish between incoming perturbations (corresponding to positive λ(k)

at x = 0, or negative λ(k) at x = 1) and outgoing perturbations (correspond-

ing to negative λ(k) at x = 0, or positive λ(k) at x = 1).

We indicate by ξ(k) and η(k) the right and left eigenvector of the matrix

A corresponding to the k-th eigenvalue λ(k):

Aijξj
(k) = λ(k)ξi

(k) ηi
(k)Aij = λ(k)ηj

(k)1 k = 1, . . . , 7 (1.42)

A right (left) eigenvector and a left (right) eigenvector corresponding to

different eigenvalues are mutually orthogonal. Moreover, we choose to nor-

malize eigenvectors so that:

ξi
(k)ηi

(l) = δkl (1.43)

In the following we illustrate the procedure in the most general case, in

which all magnetic field components are non vanishing at the given grid

point on the boundary. The two particular cases in which bx = 0 or b⊥ =
(

b2y + b2z
)1/2

= 0 have been treated in a similar way. The explicit expressions

of left eigenvectors are:

η(1) =

(

1

ρ
, 0, 0, 0, 0, 0,− 1

γp

)

(1.44)

η(2) =

(

0, 0,−σ

√
ρbz

2b2⊥
, σ

√
ρby

2b2⊥
,
bz
2b2⊥

,− by
2b2⊥

, 0

)

(1.45)

1No summation is to be intended over the upper index in parenthesis (k)
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η(3) =

(

0,
1

2γf cf
,− by

2bxαfγfcf
,− bz

2bxαfγfcf
,

by
2b2xαfγf

,
bz

2b2xαfγf
,

1

2ργfc
2
f

)

(1.46)

η(4) =

(

0,
1

2γscs
,− by

2bxαsγscs
,− bz

2bxαsγscs
,

by
2b2xαsγs

,
bz

2b2xαsγs
,

1

2ργsc2s

)

(1.47)

η(5) =

(

0, 0, σ

√
ρbz

2b2⊥
,−σ

√
ρby

2b2⊥
,
bz
2b2⊥

,− by
2b2⊥

, 0

)

(1.48)

η(6) =

(

0,− 1

2γf cf
,

by
2bxαfγf cf

,
bz

2bxαfγf cf
,

by
2b2xαfγf

,
bz

2b2xαfγf
,

1

2ργf c
2
f

)

(1.49)

η(7) =

(

0,− 1

2γscs
,

by
2bxαsγscs

,
bz

2bxαsγscs
,

by
2b2xαsγs

,
bz

2b2xαsγs
,

1

2ργsc2s

)

(1.50)

while the right eigenvectors are:

ξ(1) = (ρ, 0, 0, 0, 0, 0, 0) (1.51)

ξ(2) =

(

0, 0,−σ
bz√
ρ
, σ

by√
ρ
, bz,−by, 0

)

(1.52)

ξ(3) =

(

ρ
c2ax
c2f

αf , cf
c2ax
c2f

αf ,−
bxby
ρcf

,−bxbz
ρcf

, by, bz,
c2ax
c2f

γpαf

)

(1.53)

ξ(4) =

(

ρ
c2ax
c2s

αs, cs
c2ax
c2s

αs,−
bxby
ρcs

,−bxbz
ρcs

, by, bz,
c2ax
c2s

γpαs

)

(1.54)

ξ(5) =

(

0, 0, σ
bz√
ρ
,−σ

by√
ρ
, bz,−by, 0

)

(1.55)

ξ(6) =

(

ρ
c2ax
c2f

αf ,−cf
c2ax
c2f

αf ,
bxby
ρcf

,
bxbz
ρcf

, by, bz,
c2ax
c2f

γpαf

)

(1.56)

ξ(7) =

(

ρ
c2ax
c2s

αs,−cs
c2ax
c2s

αs,
bxby
ρcs

,
bxbz
ρcs

, by, bz ,
c2ax
c2s

γpαs

)

(1.57)
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The symbols used in the above expressions are defined as

b⊥ =
√

b2y + b2z, αf =

(

c2f
c2ax

− 1

)

, γf =

(

1− c2axa
2

c4f

)

σ =
bx
|bx|

, αs =

(

c2s
c2ax

− 1

)

, γs =

(

1− c2axa
2

c4s

)

The right eigenvectors (1.51)-(1.57) (as the left eigenvectors) are linearly

independent, so they form a complete set of vectors in a seven dimensional

space. This allows us to write the second term in the MHD Equations (1.41)

as a linear combination of the ξi
(k):

Aij
∂Uj

∂x
=
∑

k

L(k)ξi
(k) (1.58)

The left-hand side of Equation (1.58) contains the advective terms repre-

senting the propagation of perturbations in the x-direction (i.e., across the

boundary). In this equation the contribution of the different modes to the

propagation is singled out as the coefficients L(k) representing the weight of

each mode. Using expression (1.58), we re-write the Equation (1.41) in the

form

∂Ui

∂τ
= −

∑

k
L(k)ξi

(k) − Ti (1.59)

where the time derivatives of the fields Ui are expressed in terms of the

coefficients L(k). Multiplying Equation (1.59) by η
(k)
i and using the condition

(1.43) we obtain the projected Equation

L(k) = −ηi
(k) ∂Ui

∂τ
− ηi

(k)Ti (1.60)

in which the coefficients L(k) are expressed as functions of the time deriva-
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tives ∂Ui/∂τ . Finally, another expression for L(k) is obtained by multiplying

Equation (1.58) by η
(k)
i :

L(k) = λ(k)ηi
(k) ∂Ui

∂x
(1.61)

where we used Equation (1.42) and the condition (1.43). In Equation (1.61)

the coefficients L(k) are expressed in terms of the normal derivatives of the

fields. Boundary conditions are determined using Equations (1.59)-(1.61)

evaluated at the boundaries. In particular, Equation (1.59) allows us calcu-

late the time evolution of the fields Ui at the boundaries once the coefficients

L(k) have been determined.

Concerning the determination of L(k), we observe that boundary condi-

tions can influence only incoming perturbations, whereas outgoing pertur-

bations are entirely determined by the field configuration inside the domain.

Therefore, the number of boundary conditions we can impose is equal to

number of incoming modes. The first step of the procedure consists of

calculating the sign of each eigenvalue λ(k) at the given gridpoint on the

boundary, in order to distinguish between the L(k) corresponding to incom-

ing perturbations and those corresponding to outgoing perturbations. Since

the former coefficients are determined by boundary conditions, we must dis-

tinguish between the lower and the upper boundary.

1.3.1 Lower Boundary

On the lower boundary x = 0 we impose the value of the three components

of the velocity field. In particular, we choose vx(x = 0, z, τ) = 0. In that case

we have only three positive eigenvalues (λ(2), λ(3), and λ(4)) corresponding

to incoming Alfvén, fast and slow magnetosonic perturbations, three nega-
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tive eigenvalues (λ(5), λ(6), and λ(7)), while λ(1) = 0. Since λ(1) = 0 we can

look at the entropy mode as an outgoing mode with null speed. The coeffi-

cients L(1), L(5), L(6), and L(7) corresponding to outgoing perturbations are

calculated using Equation (1.61). The explicit expressions are the following:

L(1) = 0 (1.62)

L(5) = −σ
bx√
ρ

[

σ

√
ρbz

2b⊥
2

(

∂vy
∂x

)

+

− σ

√
ρby

2b⊥
2

(

∂vz
∂x

)

+

+

bz

2b⊥
2

(

∂by
∂x

)

+

− by

2b⊥
2

(

∂bz
∂x

)

+

]

(1.63)

L(6) = −cf

[

− 1

2γfcf

(

∂vx
∂x

)

+

+
by

2bxαfγf cf

(

∂vy
∂x

)

+

+

bz
2bxαfγfcf

(

∂vz
∂x

)

+

+
by

2bx
2αfγf

(

∂by
∂x

)

+

+

bz

2bx
2αfγf

(

∂bz
∂x

)

+

+
1

2ργf cf 2

(

∂p

∂x

)

+

]

(1.64)

L(7) = −cs

[

− 1

2γscs

(

∂vx
∂x

)

+

+
by

2bxαsγscs

(

∂vy
∂x

)

+

+

bz
2bxαsγscs

(

∂vz
∂x

)

+

+
by

2bx
2αsγs

(

∂by
∂x

)

+

+

bz

2bx
2αsγs

(

∂bz
∂x

)

+

+
1

2ργscs2

(

∂p

∂x

)

+

]

(1.65)

In these equations the lower symbol “+” indicates right x-derivatives, which

are calculated using boundary and internal gridpoints by a forward finite dif-

ference method. Thus, the internal configuration determines the coefficients
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L(5), L(6), and L(7) through these derivatives. The coefficients L(2), L(3),

and L(4), corresponding to incoming perturbations, are determined by the

velocity field imposed at the boundary by means of Equations (1.59)-(1.60),

with i = 2, 3, 4, where L(2), L(3), and L(4) are treated as unknown. Solving

these three equations, we find the explicit expressions for L(2), L(3), and

L(4):

L(2) =
σ
√
ρbz

b⊥
2

(

∂vy
∂τ

+ T3

)

− σ
√
ρby

b⊥
2

(

∂vz
∂τ

+ T4

)

+ L(5) (1.66)

L(3) = − 1

γfcf
T2 +

by
bxαfγfcf

(

∂vy
∂τ

+ T3

)

+
bz

bxαfγfcf

(

∂vz
∂τ

+ T4

)

+ L(6)

(1.67)

L(4) = − 1

γscs
T2 +

by
bxαsγscs

(

∂vy
∂τ

+ T3

)

+
bz

bxαsγscs

(

∂vz
∂τ

+ T4

)

+ L(7)

(1.68)

The quantities in the right-hand side of Equations (1.66)-(1.68) (velocity

component time derivatives ∂vy/∂τ , ∂vz/∂τ ; outgoing perturbation coeffi-

cients L(5), L(6), and L(7); and the quantities T2, T3, and T4) are determined

by the velocity field imposed at the boundary or by the configuration of

fields in the interior of the domain. Thus, equations (1.66)-(1.68) repre-

sent the compatibility conditions. Finally, the coefficients L(k) calculated

by Equations (1.62)-(1.68) at a given time are used in Equation (1.59) with

i = 1, 5, 6, 7 to calculate the time advance of ρ, by, bz, and p at the boundary

x = 0.

1.3.2 Upper Boundary

The upper boundary x = 1 represents an open boundary that can be freely

crossed by matter and/or outgoing perturbations. No velocity field is im-

posed on that boundary. Instead, boundary conditions correspond to the
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requirement that no incoming perturbations cross that boundary. In this

case, since vx can have any sign, the number of incoming or outgoing waves

on a given gridpoint cannot be determined a priori. As for the lower bound-

ary, coefficients L(k) corresponding to outgoing perturbations are determined

by Equation (1.61) that we write in the form

L
(k)

out = λ(k)ηi
(k)

(

∂Ui

∂x

)

−

, for (k) such that λ(k) ≥ 0 (1.69)

The lower symbol “-” indicates left x-derivatives which are calculated using

boundary and internal gridpoints by a backward finite difference method.

Coefficients L(k) corresponding to incoming perturbations are calculated us-

ing the projected MHD Equation (1.60). In this equation we set

η
(k)
i

∂Ui

∂τ
= 0 , for (k) such that λ(k) < 0 (1.70)

where only values of the index (k) corresponding to a negative eigenvalue

λ(k) are considered. Equation (1.70) represents the boundary conditions

and corresponds to the requirement that incoming perturbations alone do

not generate any time evolution of the fields Ui. Note that the number of

boundary conditions (1.70) is equal to the number of incoming perturbations

at the given gridpoint. Using Equation (1.70) into Equation (1.60) we get the

expression for the coefficients L(k) corresponding to incoming perturbations:

L
(k)

in = −η
(k)
i Ti , for (k) such that λ(k) < 0 (1.71)

Finally, by inserting the coefficients L(k) (Equations (1.69) and (1.71) into

the Equation (1.59), the time advance of all the fields Ui at the boundary

x = 1 is calculated.
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As claimed by Poinsot & Lele (1993), who applied this method for a fluid

case in order to guarantee stability and/or well-posedness it is necessary

to add further boundary conditions. In our case, we impose that some

diffusive terms in Equations (1.27)-(1.30) (κ[∂2(p/ρ)/∂x2], η∇2by, η∇2bz)

are vanishing at x = 0 and x = 1.

1.4 Numerical results

In the following we describe the results obtained in numerical simulations.

We first consider the case of the Alfvénic perturbation.

1.4.1 Alfvénic Perturbation

In this case the velocity component directed perpendicularly to the plane

of the simulation vy is directly excited by boundary conditions at the lower

boundary. Magnetic lines are locally bent in the y-direction and a non-

vanishing by magnetic field component is generated at x = 0. The y-

components of the velocity and magnetic field represent the main Alfvénic

wave component of the fluctuation generated at the lower boundary. Such a

wave propagates inside the domain following magnetic lines. In Figure 1.2
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Figure 1.2: Components vy and by at time τ = 10 in the case of Alfvénic perturba-
tions, with isolines.
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the velocity vy and magnetic field by components are plotted at the time

τ = 10. At that time, the perturbation continuously produced at x = 0 has

filled the whole spatial domain. We can discriminate two different behaviors

of fluctuations in open or closed fieldline regions. In the former regions,

fluctuations cross the domain in the upward direction and eventually exit

from the top. We verified that no significant reflection takes place at the up-

per boundary; this shows that an open boundary is well reproduced by the

method of characteristics. Open fieldline regions are separated in the lower

part of the domain, but they come in contact in the upper part through

the vertical separatrix which is above the X-point (see Figure 1.1); thus,

upward-propagating waves completely fill the upper part of the domain. In

this region vy and by appear to be anticorrelated (Figure 1.2), as required

for Alfvén waves propagating in the direction of the background magnetic

field. Since the Alfvén speed is not uniform, the wave propagates faster at

the flanks than in the middle of the domain, thus producing phase-mixing

(Heyvaerts & Priest, 1983). This can be seen in Figure 1.2, where wavefronts

(indicated by the isolines of vy and by), which are nearly horizontal in the

lower domain, approach one another and become nearly vertical in the upper

central part. This effect increases the wavevector component perpendicular

to the background magnetic field; b(0) is nearly vertical at large x, so small

scales in the horizontal z-direction are produced in the upper part of the do-

main. This effect is more significant around the vertical separatrix, because

fluctuations traveling in this region have passed near the X-point, where the

Alfvén velocity vanishes. As a result, small scales in the upper part of the

domain are concentrated in the central region around the separatrix.

In closed fieldline regions the perturbation generated at the lower bound-

ary remains confined beneath the separatrices and cannot propagate higher.
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In this region waves coming from different parts of the lower boundary prop-

agate along magnetic lines in opposite directions. In these waves vy and by

can be either positively correlated or anticorrelated, according to the sense

of propagation. As a consequence, no particular correlation between vy and

by is observed in the closed fieldline regions, where these two kinds of waves

are superposed (Figure 1.2). However, all waves propagating close to the

curved separatrices pass close to the X-point where the Alfvén velocity van-

ishes and undergo an intense phase-mixing. Then, small scales form around

the separatrices that are also in closed fieldline regions. This phenomenon

had been previously reported by McLaughlin et al. (2010).

The formation of small scales can be visualized by plotting the spatial

distribution of the heat-source terms Pη and Pν due to resistive and vis-

cous dissipation, as defined in Equation (1.34). In fact, dissipation becomes

stronger at locations where small scales are present. In Figure 1.3 Pη(x, z, τ)
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Figure 1.3: Dissipated power per unit volume due to viscosity Pν (left panel) and
resistivity Pη (right panel) in the xz plane at the time τ = 10 for the Alfvénic
perturbation.

and Pν(x, z, τ) are plotted at the time τ = 10. As expected, most of the

dissipated power is concentrated around the four separatrices. Around the

upper separatrix we found that Pη ≃ Pν , which is a consequence of the

velocity-magnetic field correlation (vy ≃ −by) found in that region along
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with the choice that viscosity ν and resistivity η are equal. On the contrary,

around the other separatrices vy and by are no longer correlated, so Pη and

Pν can be different. In particular, we found that Pη is slightly larger than

Pν .
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8x10-4

1.2x10-3

1.6x10-3

2x10-3

 0  2  4  6  8  10

w
η,

 w
ν,

 w

τ

Figure 1.4: Integrated dissipated power due to viscosity wν (dashed line), to resis-
tivity wη (dash-dotted line), and total w (solid line), plotted as functions of time
for the Alfvénic perturbation.

To obtain a quantitative evaluation of the dissipated power, we cal-

culated the integrated dissipated power wη(τ), wν(τ) defined in Equation

(1.35), and their sum w(τ) = wη(τ) + wν(τ). These quantities are plot-

ted in Figure 1.4 as functions of time τ . The dissipated power is initially

null and grows until the time τ ∼ 3, when it reaches a quasi-stationary

state where it oscillates around a mean value 〈w〉 ≃ 0.0017. Comparing

this value with the mean input energy flux 〈Φ0〉 calculated at the lower

boundary x = 0, we found that 〈w〉/〈Φ0〉 ∼ 0.15 for ν = η = 10−2 whereas

〈w〉/〈Φ0〉 ∼ 0.1 for ν = η = 10−3. Then, for the considered values of the

dissipative coefficient, about 10% of the power that enters the domain in
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form of Alfvén waves is dissipated inside the domain (i.e., at very low levels

in the corona). However, the above results do not allow us to obtain an

evaluation of the ratio 〈w〉/〈Φ0〉 for more realistic values of dissipative coef-

ficient, which are much lower in the coronal plasma than the values we used

in the simulation. Comparing resistive and viscous dissipated power, we see

that wη(τ) > wν(τ) (i.e., more magnetic energy is dissipated than kinetic

energy). Within the linear approximation we can assume that velocity and

magnetic field perturbations are polarized along the y-direction. Since the

equilibrium magnetic field b(0) is a current-free field, dissipated powers in

the region around separatrices dissipated powers can be estimated by

Pη ≃ η (∇by)
2 ∼ η

(δby)
2

ℓ2
, Pν ≃ ν (∇vy)

2 ∼ ν
(δvy)

2

ℓ2
(1.72)

where ℓ is the dissipative scale and δby and δvy are local amplitudes of mag-

netic field and velocity fluctuations, respectively. Around the upper separa-

trix only upward-propagating waves are present with δby ≃ δvy. In contrast,

around the lower separatrices where waves propagate in both senses, we ob-

serve that δby > δvy. Thus, the slight unbalance between wη(τ) and wν(τ)

could be due to lack of fluctuating magnetic and kinetic energy equipartition

in the region of closed magnetic fieldlines.

In order to illustrate the presence of small scales in the fluctuations leav-

ing the domain from the upper boundary, we calculated the spectrum of the

velocity component vy. As explained previously, we expect that small scales

formation due to phase-mixing takes place only in the direction perpendic-

ular to b(0) (i.e., mainly in the horizontal direction). Thus, we calculated

a 1D spectrum giving the energy distribution at the various scales in the

z-direction. The velocity y-component calculated at the upper boundary
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x = 1 is expanded in the Fourier series

vy(1, z, τ) =
∑

kz

v̂y(kz, τ)e
ikzz (1.73)

The time-dependent spectrum is given by |v̂y(kz, τ)|2. We found that the

shape of such a spectrum varies quasi-periodically in time according to the

instantaneous value of the wave phase. For this reason it is suitable to

consider a spectrum averaged in time over a wave period T = 2π/ω:

evy (kz) =
1

T

∫

T
|v̂y(kz, τ)|2dτ. (1.74)

The time-averaged velocity spectrum is plotted in Figure 1.5 in logarithmic
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Figure 1.5: Time-averaged velocity y-component spectrum evy (kz) calculated at
x = 1 for the Alfvénic perturbation (crosses), and a power-law function that fits
the spectrum in the low-wavenumber range (dashed line) are plotted in logarithmic
scale.

scale. It can be seen that evy (kz) follows a power law remarkably well,

up to wavevectors kz ∼ 30. For larger wavevectors the spectrum becomes
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curved, which is probably due to dissipation. In the power-law range, the

spectrum is well fitted by a law ∝ kz
−2.3. A very similar spectrum has

also been found for the magnetic fluctuation by. Thus, the effect of the

inhomogeneous magnetic field b(0) where the Alfvénic fluctuation propagates

is to create a power-law spectrum in the initially uniform perturbation.

We point out that the power-law spectrum we found is steeper than the

Kolmogorov spectrum. We note that the same result, with a similar value for

the spectral slope, has also been found by Malara (2013) in a model based on

the WKB approximation, in which small-wavelength Alfvén waves propagate

along magnetic lines at the local Alfvén speed. McLaughlin et al. (2010)

showed that a small-amplitude Alfvén wave in a 2D equilibrium magnetic

field with a uniform density follows magnetic lines with the local Alfvén

speed, regardless of its wavelength. Thus, the formation in our simulation

of a spectrum similar to that found in the WKB limit was expected.

The wave amplitude is small with respect to the background magnetic

field, being by/b
(0) ∼ 0.1. Thus, it could be expected that nonlinear effects

depending on the square of the wave amplitude, such as the generation

of compressive fluctuations, should be negligible when compared with the

Alfvénic fluctuation. However, magnetic pressure gradients could locally be

large enough to drive significant compressible fluctuations. This happens

around separatrices, because of the presence of small-scale structures in the

wave profile. The Laplace force associated with the total magnetic field

b = [b(0) + byey] is f = (∇ × b) × b. Taking into account the condition

∇× b(0) = 0, f has the form

f = − ∂

∂x

(

b2y
2

)

ex +

(

b(0)x

∂by
∂x

+ b(0)z

∂by
∂z

)

ey −
∂

∂z

(

b2y
2

)

ez (1.75)
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Thus, the components of f in the xz-plane are opposite to the magnetic pres-

sure gradient associated with the perturbation field by. These components

can reach significant values at locations where small scales form (i.e., around

the separatrices). In Figure 1.6 the magnetic pressure pM = b2y/2 due to the

by
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Figure 1.6: Magnetic pressure pM associated with the Alfvénic perturbation (left
panel) and density ρ (right panel) calculated at the time τ = 8.5

perturbation of the magnetic field component by, and the density ρ are plot-

ted at time τ = 8.5 in the left and right panels, respectively. We observe an

increase of magnetic pressure on both sides of the vertical separatrix above

the X-point, with lower values of pM in between. This is due to the accumu-

lation of wavefronts of the Alfvén wave caused by phase-mixing. This results

in strong localized gradients of pM that push the fluid toward the separatrix

from both sides. The result is the formation of a dense, vertically elongated

“bubble” localized on the separatrix, where the density reaches values up to

∼ 10− 15% larger than the unperturbed value. This compressive structure

can be seen in the right panel of Figure 1.6. The compressive perturbation

evolves in time propagating upward, pushed by the magnetic pressure of the

Alfvén wave. This time evolution is represented in Figure 1.7, where the

density profile is plotted as a function of x along the separatrix at z = π/2

for different times. At the time τ = 8 a maximum of density, where ρ reaches
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Figure 1.7: Density profiles as functions of x along the vertical separatrix z = π/2
at different times.

the value ≃ 1.12 is located above the X-point, at x ≃ 0.59. This fluctuation

propagates upward with a speed ∼ 0.3− 0.4 (in dimensionless units), which

increases with increasing x, whereas the fluctuation amplitude slightly de-

creases. The Alfvén velocity on the separatrix at x = 1 is cA ≃ 0.26, even

if it increases on the two sides of the separatrix. Eventually, the density

perturbation exits the domain through the boundary x = 1, while a new

compression forms above the X-point (time τ = 9.5). We verified that the

period of the compressive fluctuations is ∼ 2, which is 1/2 the period of

the Alfvénic perturbation. Summarizing, in the vicinity of the separatrix

nonlinear effects generate density fluctuations with an amplitude δρ/ρ of

the same order as the amplitude of the Alfvén wave. Such fluctuations are

driven by the Alfvén wave magnetic pressure gradient and propagate along

the magnetic field at a speed comparable with the Alfvén velocity.
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1.4.2 Magnetosonic Perturbation

In this case a velocity perturbation polarized in the z-direction is imposed

at the lower boundary. This motion locally distorts the equilibrium field

magnetic lines, generating a perturbation of both x and z magnetic field

components. At variance with the previous case, no perturbation y com-

ponents is generated. Then, the perturbation produced at the boundary

belongs to the magnetosonic mode. We shall see that the behaviour of the

system is different from the previous case, with a more important role played

by the X-point.

vx

 0  0.5  1  1.5  2  2.5  3

z

 0

 0.2

 0.4

 0.6

 0.8

 1

x

-0.05
-0.04
-0.03
-0.02
-0.01
 0
 0.01
 0.02
 0.03
 0.04
 0.05

vz

 0  0.5  1  1.5  2  2.5  3

z

 0
 0.02
 0.04
 0.06
 0.08
 0.1
 0.12
 0.14
 0.16
 0.18

Figure 1.8: Velocity components vx and vz at time τ = 2 for the magnetosonic
perturbation.

In Figure 1.8 the velocity components vy and vz are plotted at the time

τ = 2. It can be seen that the distribution of the velocity field is no longer

symmetric. Moreover, the spatial distribution of v is smoother and more

isotropic than in the Alfvénic case. No small scales appear to be present

in the upper part of the domain (i.e. in the region where the perturbation

leaves the domain). We then calculated the time-averaged spectra of the

x and z components of the velocity and magnetic field. In the same way

as the Alfvénic perturbation case, these spectra are calculated using the

profiles of the above quantities taken along the upper boundary x = 1. The
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averaged spectra evx , evz , ebx and ebz , are plotted in Figure 1.9. All such
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Figure 1.9: Velocity evx(kz) (crosses), evz(kz) (“x” symbols) and magnetic field
ebx(kz) (stars), ebz(kz) (squares). Time-averaged spectra calculated at x = 1 are
plotted with power laws fits (lines).

spectra are much steeper than those found for the Alfvénic perturbation. We

can conclude that no relevant small scales are present in the magnetosonic

perturbations that leave the domain through the upper boundary.

Indeed, small scales are present in the domain, but only in a limited re-

gion around the X-point. This confirms a finding by McLaughlin et al. (2010)

who reported that magnetosonic perturbations are diffracted by the back-

ground inhomogeneities, and, in the presence of an X-point, wrap around

it locally generating small scales. Because of the imposed vz at the lower

boundary and the frozen-in law, magnetic fieldlines at the lower boundary

are forced to follow the oscillatory motion at the base. We remember that

44



the magnetic field is not imposed at the boundary, but is calculated using a

method of projected characteristics that takes into account physical condi-

tions imposed for the velocity. The oscillation of the value of vz along the

lower boundary causes a distortion of the magnetic structure, which is also

oscillatory. In Figure 1.10 magnetic field lines are plotted at two different
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Figure 1.10: Magnetic field lines in the xz plane at times τ = 2 (left panel) and
τ = 3.5 (right panel).

times. Each plot is obtained by drawing the isolines of the vector poten-

tial A(x, z). In Appendix A we describe the method we used to calculate

A(x, z). By comparing Figure 1.1 we can see the distortion of the magnetic

lines generated by the perturbation. In particular, the separatrices cross-

ing at the X-point have collapsed – they no longer form right angles in the

distorted configuration of Figure 1.10. This implies that a current directed

along the y-direction is localized at the X-point. The current density com-

ponent jy = ∂bx/∂z − ∂bz/∂x is plotted in Figure 1.11 at the time τ = 2

(corresponding to the left panel of Figure 1.10). This figure represents a

zoom of the region around the X-point. We can see that jy has a maxi-

mum at the X-point and it is flattened along an oblique direction, which

is between separatrices. Such an elongated X-point becomes a site of mag-

netic reconnection. The presence of magnetic reconnection can be revealed
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Figure 1.11: Current component jy (left panel) and vorticity component ωy (right
panel) in the xz plane around the X-point at the time τ = 2.

by plotting the vorticity y component ωy = ∂vx/∂z − ∂vz/∂x (Figure 1.11,

right panel); ωy displays a quadrupolar structure that is typical of mag-

netic reconnection (Matthaeus , 1982): two opposite inflows carry magnetic

flux that reconnects at the X-point and is carried away by two opposite

outflows. Thus, the magnetic field distortion produced by the perturbation

works as a trigger for the magnetic reconnection. This goes on until the

change of sign in the velocity vz at the base pulls fieldlines in the opposite

direction, causing the X-point to become currentless and stopping the re-

connection for a moment. The distortion continues until the configuration

shown in the right panel of Figure 1.10 is formed, which is specular to the

previous one. In this new configuration reconnection starts again, but is

opposite to the previous case – previous inflows turn into outflows, and vice

versa. This cycle of reconnection reversals continues periodically. In our

simulation reconnection is oscillatory in time, which is a consequence of the

periodic motion imposed at the lower boundary. The presence of oscilla-

tory reconnection in a magnetic X-point perturbed by a magnetosonic was

previously reported by McLaughlin et al. (2009). These authors considered

an X-point at the center of a cylindrical domain, where a single δ-like mag-

netosonic pulse coming from the boundary converges to the X-point. The
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pulse generates a sequence of alternate reconnections decaying in time that

are caused by the increase of kinetic pressure in the outflow regions of the

reconnection. In our simulation, we considered magnetosonic waves with a

well-defined frequency, so that oscillatory reconnection goes on indefinitely

without decaying. Moreover, our results show that this phenomenon can

also act in more general (less symmetrical) configurations, provided that an

initially potential X-point is solicited by some perturbation polarized in the

same plane as the background magnetic field.

1.5 Discussion

In this chapter we studied the propagation of MHD waves in the lower lay-

ers of a coronal hole, through 2D MHD numerical simulations. Such waves

are supposed to be generated by photospheric motions and propagate up-

ward reaching higher regions of the corona and the solar wind. The main

motivation is to study the formation of small scales in fluctuations, as a

consequence of their interaction with features of the inhomogeneous back-

ground magnetic field, such as separatrices and X-points. Indeed, although

a coronal hole is characterized by a dominant magnetic polarity, magne-

tograms have revealed the presence of several regions of opposite polarity

(Zhang et al., 2006; Ito et al., 2010), with a typical size of the order of 104

km. This suggests that at low altitudes the magnetic field has a complex

structure containing both open and closed fieldlines, the latter connecting

regions of opposite polarity at the base. When a fluctuation crosses such

a complex structure, small scales are generated. These effects have been

neglected in the models of solar wind acceleration, where only large-scale

inhomogeneities due to vertical stratification and spherical expansion have

been included.
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We considered magnetic structures with a typical size L = 104 km

≪ 1 R⊙. Then, in our model we neglected curvature effects due to the

spherical geometry, instead using a simpler Cartesian geometry. The equilib-

rium magnetic field we considered tries to reproduce the above observational

features – it is a simple inhomogeneous 2D current-free field, whose vertical

component bx changes sign when moving along the base x = 0. In the model

there are both open and closed fieldlines at small x, while only open field-

lines with a single polarity are present at large x. The magnetic structure

contains separatrices that intersect at an X-point; the separatrices and the

X-point play a key role in the dynamics of perturbations. The equilibrium

density is supposed to be uniform. The scale height Hρ of the density in

the corona can be estimated by assuming an uniform temperature and an

equilibrium between gravity and pressure gradient. Hρ ≃ κBT
(0)/(mpg),

where κB is the Boltzmann constant, mp the proton mass, g ≃ 2.74 × 104

cm s−2 the surface gravity of the Sun, and T (0) ≃ 106 K. Using these values,

we find Hρ ≃ 3 × 104 km, which is larger than the vertical size L of our

domain. Thus, a uniform density is a reasonable approximation.

Fluctuations are produced by imposing a velocity vy or vz at the base

x = 0 of the domain. This is intended to represent movements of lower

denser layers of the solar atmosphere. In consequence of the frozen-in condi-

tion, magnetic fieldlines are carried by these motions, thus generating MHD

waves that propagate from the base into the domain. The time evolution

of magnetic field, density, and pressure at the base has been calculated con-

sistently with MHD equations using a method of projected characteristics.

The same method allows perturbations to exit without reflection through

the upper boundary x = 1. Since the background magnetic field is 2D, it

is possible to distinguish between Alfvénic and magnetosonic perturbations,
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according to the polarization (y or xz) of the generated fluctuations.

In the case of Alfvénic perturbation we found that the formation of small

scale structures takes mainly place along the separatrices. This holds both

for the lower separatrices, where trapped perturbations propagates back and

forth, and for the upper separatrix in the open fieldline region where fluc-

tuations leave the domain propagating upwards. Small scales form both

in the magnetic field and in the velocity perturbation. The generation of

small scales along the separatrices confirms the results of previous studies,

carried out using various approaches (analytical, WKB, simulation), con-

cerning Alfvén wave propagation around an X-point (see, e.g., McLaughlin

et al. (2010) for a review). The separatrices are also the places where the en-

ergy carried by the waves is trasformed into heat through dissipative effects.

During the time evolution the dissipated power reaches a quasi-stationary

state after an initial transient. In this quasi-stationary situation we have

estimated that ∼ 10% of the energy flux entering from the base is dissipated

in the domain and the rest is carried out with the waves. This percentage de-

creases with decreasing the dissipative coefficients which in our simulations

are necessarely much higher than in the coronal plasma. A more detailed

analysis of this point is left for a future work. On the other hand, we can

expect that if the domain had a larger extension in the x-direction, the

ratio of dissipated to incoming power would be larger. In our simulation

more power is dissipated by resistivity than by viscosity; this difference is

due to the behaviour of waves trapped in the region of closed fieldlines,

where magnetic perturbations are larger than velocity perturbations. The

dominance of magnetic perturbations has been observed for low-frequency

perturbations in models of turbulence in coronal loops (Nigro et al., 2004;

Buchlin et al., 2007). As in our case, in these models a fluctuating velocity
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is imposed at the boundaries, while outgoing perturbations are free to leave

the spatial domain. The observed unbalance between velocity and magnetic

field perturbations in closed fieldline regions of our model could be ascribed

to a mechanism similar to that found in the models by Nigro et al. (2004);

Buchlin et al. (2007), though the excitation of “in phase” fluctuations at

the footpoints of closed fieldlines could also play a role in determining the

excess of magnetic fluctuations.

In analysing the spectrum of the perturbation exiting from the top, we

found that the energy is distributed as a power law ∝ kz
−2.3, at least at scales

sufficiently large to neglect dissipative effects. kz represents the main com-

ponent of the wavevector, which is essentially perpendicular to b(0). Then,

the interaction of an initially spatially uniform Alfvénic perturbation with

the background inhomogeneity produces an anisotropic power-law spectrum

that mainly extends in the direction perpendicular to the magnetic field.

This spectrum forms at low altitudes in the corona – at X = L = 104 km

above the coronal base the spectrum is completely formed. These results

largely confirm what has been found by Malara et al. (2012) and Malara

(2013). However, while these authors employed a WKB approximation in a

3D configuration, our results are based on a direct MHD simulation in a 2D

equilibrium. The above features of the spectrum are reminiscent of what

happens in MHD turbulence, where nonlinear couplings generate power-law

spectra with an energy cascade that mainly flows in the direction perpen-

dicular to the mean magnetic field (e.g., Shebalin et al. (1983); Carbone &

Veltri (1990)). In the present model this anisotropy is generated by the cou-

pling between the perturbation and the inhomogeneous background, instead

of nonlinear effects. However, the slope α ≃ 2.3 of the pertubation spectrum

that we find is definitely larger than what is typically found in turbulence
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(e.g., 1.5 or 1.66 for a Kraichnan or a Kolmogorov spectrum, respectively).

Thus, the present model cannot account for the formation of a fully devel-

oped spectrum. However, models studying the evolution of fluctuations from

the corona to the solar wind, or the solar wind acceleration by dissipation of

wave energy should take the phenomenon we studied here into account. For

instance, Verdini et al. (2009) presented a model of turbulence formation in

the sub-Alfvénic solar wind, where Alfvén waves on large scales are injected

at the base and partially reflected by the vertical stratification. Although a

turbulence spectrum forms as a consequence of nonlinear wave-wave inter-

actions, the produced heat seems to be deposited at greater distances than

what is needed to sustain the background wind. Our model suggests that

upward-propagating waves start forming small scales at very low altitudes.

Such a phenomenon can decrease the altitude of heat deposition, thus lead-

ing to a better agreement between the results of the turbulence model and

the background wind structure.

The relative amplitude of perturbations we considered is low (δv/cA ∼

10−1), so that nonlinear effects should be mostly negligible. Nevertheless,

the magnetic pressure gradient associated with the perturbation can locally

reach larger values at locations where small scales form. As a consequence,

in the vicinity of the vertical separatrix we observed the formation of density

fluctuations with a relative amplitude (δρ/ρ ∼ 10−1) comparable with that

of the Alfvén wave. These fluctuations are sort of localized “bubbles” that

propagate upward along the separatrix at a speed (∼ 100 km s−1) compa-

rable with the local Alvén velocity pushed by the magnetic pressure of the

Alfvén wave. The presence of density fluctuations in coronal holes with a

period ∼ 6 minutes has been revealed by Ofman et al. (1997). DeForest &

Gurman (1998) found compressive waves in polar plumes with waveperiods
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of ∼ 10 minutes, propagating upward at a speed ∼ 75− 150 km s−1, where

the density fluctuation is 5%− 10% of the background value, interpreted as

slow magnetosonic fluctuations (Ofman et al., 1999). On the other hand,

magnetograms reveal the presence of small regions of magnetic polarity op-

posite the dominant plume polarity located all around the plume footpoint

(DeForest et al., 1997). This could give rise to magnetic separatrix surfaces

associated with the plume boundary. Our model suggests an alternative

interpretation of the observed density fluctuations – namely, compressive

waves, nonlinearly driven by Alfvénic fluctuations, which propagate upward

along such magnetic separatrices. Finally, we noted an analogy between

our magnetic structure and that of pseudostreamers (Wang et al., 2012). A

certain activity has been observed in the form of faint density structures ra-

dially propagating along pseudostreamers up to distances ∼ 3R⊙ (Wang et

al., 2007). The similarity with our model would suggest that such structures

could be generated by steep magnetic pressure gradients of Alfvén waves that

concentrate around the magnetic separatrix. However, since pseudostream-

ers can extend up to about few solar radii density stratification and spherical

geometry are no longer negligible. These effects could somehow modify the

wave dynamics with respect to that found in our model.

The phenomenology of magnetosonic fluctuations is completely differ-

ent. First, no relevant small scales formation is observed in the waves that

leave the domain through the upper boundary: spectra of velocity and mag-

netic field components at x = 1 are much steeper than for Alfvénic fluc-

tuations, with slopes ranging from ≃ −3.0 to ≃ −5.2. We can conclude

that only Alfvénic fluctuations contribute to the formation of small scales

in waves that leave the domain, at least in the considered 2D configura-

tion. However, in the magnetosonic case small scales do actually form and
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dissipation takes place, but only around the X-point. The magnetic field

is perturbed by the magnetosonic fluctuation so that an elongated current

jy forms at the initially potential X-point; the separatrices collapse and

reconnection starts. In this scenario, fluctuations work as a trigger for re-

connection. With increasing time, the motion at the base is reversed until

magnetic lines at the X-point reach a configuration specular to the previous

one: the reconnection pattern is reversed, with outflows turned into inflows,

and vice versa. The oscillatory motion imposed at the base gives rise to an

oscillatory reconnection. The phenomenon of oscillatory reconnection has

been observed by Murray et al. (2009) in simulations of an emerging flux

tube within a coronal hole. McLaughlin et al. (2009) studied oscillatory

reconnection when a magnetosonic pulse propagates on a potential X-point.

However, while these authors considered a single δ-like pulse generating a

self-sustained time-decaying sequence of reconnections, in our simulation

alternate reconnection indefinitely goes on driven by a continuous wave in-

jection. Moreover, the configuration studied by McLaughlin et al. (2009)

is more particular than ours, since these authors considered a cylindrically

symmetric pulse converging toward the X-point. In this respect, we can say

that our results extend the findings by McLaughlin et al. (2009) to more

general configurations that are not necessarily constrained by cylindrical

symmetry assumptions. Oscillatory reconnection has been invoked (Mur-

ray et al., 2009) to explain oscillatory emission observed during flares (e.g.,

Mitra-Kraev et al. (2005); McAteer et al. (2005); Inglis et al. (2008)), as

well as swaying outflow jets observed above emitting loops (Cirtain et al.,

2007; Shibata et al., 2007). Our results indicate that oscillatory reconnec-

tion should be a general phenomenon taking place every time a current-free

X-point is stressed by a quasi-periodic perturbation.

53



Despite its simplicity, we believe that the present model has allowed us

to gain some insight in the mechanism of small-scale formation into per-

turbations that propagate in the lower layers of a coronal hole. Possible

improvements that we are planning for future work include both the exten-

sion to a more complex 3D structure and a more realistic representation of

motions at the coronal base, which takes into account the observed temporal

spectrum of photospheric motions.
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Chapter 2

From Alfvén waves to kinetic

Alfvén waves in an

inhomogeneous equilibrium

structure

Solar wind turbulence at scales much larger than the proton inertial length

is dominated by Alfvénic fluctuations, which are characterized by highly-

correlated velocity and magnetic field fluctuations and by low-level (with

respect to the background values) density and magnetic field intensity vari-

ations (Belcher & Davis, 1971). Several indications have been found of the

presence of Alfvén waves also in the solar corona (Tomczyk et al., 2007;

Tomczyk & McIntosh, 2009) from where the solar wind emanates. In the

scenario of solar wind turbulence, the role of spectral anisotropy must be

taken into account. Theoretical studies, indeed, have shown that in a mag-

neohydrodynamic (MHD) turbulence the energy cascade preferentially takes
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place perpendicularly to the background magnetic field B0 (e.g., Shebalin

et al. (1983); Carbone & Veltri (1990); Oughton et al. (1994)). Then, it

is expected that at smaller scales the fluctuation energy tends to concen-

trate in nearly perpendicular wavevectors. In fact, observations show that

the distribution of wavevectors of magnetic fluctuations has a significant

population quasi-perpendicular to the mean magnetic field (Matthaeus et

al., 1986, 1990). Moreover, all the above features, such as Alfvénic correla-

tions and spectral anisotropy, as well as the presence of several characteristic

lengthscales, can interact with large scale structures such as shears and mag-

netic equilibria, with a subsequent generation of wave-like activity. The a

description of the full picture is a complex task, which could be addressed

by means of simplified models.

Waves belonging to the Alfvén branch, with wavelengths comparable

with the proton inertial length dp and wavevectors nearly perpendicular

to the mean magnetic field are often indicated as “kinetic Alfvén waves”

(KAWs). During the last decades, KAWs have received considerable atten-

tion and have been studied in detail due to their possible role in a wave

description of the turbulent cascade. Since the MHD cascade favours nearly

perpendicular wavevectors, the expectation within a wave perspective would

be that KAWs are naturally present at scales of the order of dp. An exten-

sive analysis in KAW physics is found in Hollweg (1999) (see also references

therein for a more complete view on the subject). Many solar wind observa-

tional analyses (Bale et al., 2005; Sahraoui et al., 2009; Podesta & Tenbarge,

2012; Salem et al., 2012; Chen et al., 2013; Kiyani et al., 2013), theoretical

works (Howes et al., 2008a; Schekochihin et al., 2009; Sahraoui et al., 2012)

as well as numerical simulations (Gary & Nishimura, 2004; Howes et al.,

2008b; TenBarge & Howes, 2012) have suggested that fluctuations near the
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end of the magnetohydrodynamics inertial cascade range may consist pri-

marily of KAWs, and that such kind od fluctuations can play an important

role in the dissipation of turbulent energy. Due to a nonvanishing electric

field parallel component associated with KAWs, these waves have also been

considered in the problem of particle acceleration (Voitenko & Goossens,

2004; Décamp & Malara, 2006). Recently, Vásconez et al. (2014) have stud-

ied collisionless Landau damping and wave-particle resonant interactions in

KAWs.

There are also situations simpler than fully developed turbulence where

formation of small scales in the direction perpendicular to a background

magnetic field could take place. For instance, this effect appears in the

context of nonlinear MHD when imposed parallel propagating waves inter-

act with with an inhomogeneous background consisting either of pressure

balanced structures or velocity shears (Ghosh et al., 1998). In 2D inhomo-

geneous equilibria, where quantities vary in the direction transverse to the

magnetic field, small amplitude waves can be subject to phase-mixing (Hey-

vaerts & Priest, 1983), in which differences in group velocity at different

locations progressively bend wavefronts, thus generating small scales in the

perpendicular direction. Another mechanism is resonant absorption which

concentrates the wave energy in a narrow layer where the wave frequency

locally matches a characteristic frequency. These processes have been stud-

ied both by a normal modes approach (Kappraff & Tataronis, 1977; Mok

& Einaudi, 1985; Steinolfson, 1985; Davila, 1987; Hollweg, 1987; Califano et

al., 1990, 1992) and by considering the evolution of an initial disturbance

(Lee & Roberts, 1986; Malara et al., 1992, 1996). Effects of density strat-

ification and magnetic line divergence (Ruderman et al., 1998), as well as

nonlinear coupling with compressive modes (Nakariakov et al., 1997, 1998),
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and evolution of localized pulses (Tsiklauri & Nakariakov, 2002; Tsiklauri et

al.,, 2003) have been considered. The propagation of MHD waves in inhomo-

geneous magnetic fields containing null points has also been studied in detail

(Landi et al., 2005; McLaughlin et al., 2010; Pucci et al., 2014), finding a fast

formation of small scales perpendicular to the ambient magnetic field. In

3D inhomogeneous equilibria this process has been considered in the small

wavelength limit (Similon & Sudan, 1989; Petkaki et al., 1998; Malara et al.,

2000), also within the problem of coronal heating (Malara et al., 2003, 2005,

2007). Particle acceleration in phase-mixing of Alfvén waves in a dispersive

regime has been studied both in 2D (Tsiklauri et al., 2005; Tsiklauri, 2011)

and in 3D (Tsiklauri, 2012) configurations. Finally, instabilities generating

KAWs in plasma with transverse density modulations have been considered

by Wu & Chen (2013). Similar ideas involving dissipative mechanisms re-

lated to interaction of Alfvén waves or KAWs and phase mixing have been

examined in the context of the magnetospheric plasma sheet (Lysak & Song,

2011) and in coronal loops (Ofman & Aschwanden, 2002).

The above considerations suggest (Hollweg, 1999) that the interaction

of Alfvén waves with inhomogeneous background structures might represent

a mechanism to produce KAWs, when the wavelength of waves becomes

enough small to be comparable with the proton inertial length dp. This ef-

fect could work, for instance, in the solar corona where the background mag-

netic field is clearly nonuniform and where the presence of Alfvén waves has

been ascertained, or in the solar wind where large-scale inhomogeneities like

current sheets and velocity shears are present. In a recent paper Vásconez

et al. (2015) have studied a problem in which phase-mixing acting on an ini-

tial Alfvén wave generates KAWs localized in regions where the background

is inhomogeneous. In this study, both fluid and kinetic simulations have
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been employed; in particular, it has been found that the KAWs produced

by this mechanism can modify the ion distribution function, generating tem-

perature anisotropy and beams of particles moving parallel to the magnetic

field. In the configuration considered by Vásconez et al. (2015) the initial

perturbation is propagating parallel to the background magnetic field B(0)

and it is linearly polarized along a direction which is perpendicular both to

B(0) and to the inhomogeneity direction. As a consequence, the polariza-

tion remains transverse to the wavevector up to the time in which dispersive

effects become active. This gives a smooth evolution of the initial Alfvén

wave towards a KAW.

Clearly, the situation considered by Vásconez et al. (2015) is a particular

case, and there are other possible configurations in which an initial Alfvén

wave propagates in a transverse inhomogeneous structure. The aim of this

work is to generalize the results of Vásconez et al. (2015) by extending the

study to such different configurations, thus investigating the possibility to

generate KAWs in a more general case. In particular, we want to clarify the

role of phase-mixing in the generation of KAWs, by considering situations

where phase-mixing may be active or not. Both fluid (Hall-MHD) and ki-

netic (Hybrid Vlasov-Maxwell) simulations will be employed in the present

study, considering both small and large amplitude cases to investigate pos-

sible effects of nonlinearities.

In Section 1 the two models (fluid and kinetic) are presented; in section

2 we recall the main features of linear waves in Hall MHD; the results of

simulations are described in Section 3, while a discussion and a summary of

results are given in Section 4.
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2.1 Hall-MHD and hybrid Vlasov–Maxwell numer-

ical simulations

We study the evolution of Alfvén waves propagating in an inhomogeneous

equilibrium pressure–balanced structure by means of 2.5D numerical sim-

ulations. Perturbations wavelength is large enough to make dispersive ef-

fects initially negligible. During the time evolution, the interaction between

the perturbation and the equilibrium inhomogeneity generates small scales

structures in which both dispersive and kinetic effects play an important role.

We first study the linear case, where the perturbation amplitude is small

compared with the equilibrium quantities, using an Hall-MHD (HMHD)

numerical code. Then we move to the nonlinear case in which we use an

hybrid Vlasov–Maxwell (HVM) code in order to single out the role of kinetic

effects in the evolution of the proton distribution function. In this section

we present the two models and describe the simulation initial conditions.

The HMHD description of a plasma composed by protons and electrons is

valid under the following assumptions: the plasma is quasi–neutral (np ≃ ne,

with ne and np the number density of protons and electrons), the temper-

ature of the two species are the same Tp = Te = T0, the scale considered

are sufficiently large to neglect the electron mass (me ≪ mp) and the char-

acteristic plasma speed is small compared to the speed of light, so that the

displacement–current term in the Ampere equation can be neglected. Un-

der these assumptions the plasma can be described by the HMHD equations,

here written in non-dimensional form:

∂ρ

∂t
+∇ · (ρv) = 0 (2.1)
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∂v

∂t
+ (v · ∇)v = − β̃

2ρ
∇(ρT ) +

1

ρ
[(∇×B)×B] (2.2)

∂B

∂t
= ∇×

[

v ×B− ǫ̃

ρ
(∇×B)×B

]

(2.3)

∂T

∂t
+ (v · ∇)T + (γ − 1)T (∇ · v) = 0 (2.4)

In Equations (2.1)–(2.4) the mass density ρ (which is only due to protons)

is normalized to a typical density ρ̃, temperature T to a typical value T̃ , the

pressure p = ρT due to both protons and electrons is normalized to the

value p̃ = 2κB ρ̃T̃ /mp, being κB the Boltzmann constant and mp the proton

mass. The spatial coordinates x = (x, y) are normalized to a typical length

L̃, magnetic field B is normalized to a typical magnetic field B̃, fluid velocity

v to the typical Alfvén speed c̃A = B̃/(4πρ̃)1/2, time t to the Alfvén time

t̃A = L̃/c̃A. Moreover, β̃ = p̃/(B̃2/8π) is a typical value for the kinetic to

magnetic pressure ratio; γ = 5/3 is the adiabatic index; ǫ̃ = d̃p/L̃ = 0.125 is

the Hall parameter measuring the relative amplitude of the Hall term with

respect to the v × B term in the Ohm’s law, d̃p = c̃A/Ω̃cp = c̃Ampc/(qB̃)

being the proton inertial length.

It is worth to note that Equations (2.1)–(2.4) are ideal and adiabatic;

however, to ensure numerical stability, we included an hyperviscosity and

an hyperesistivity term in Equation (2.2) and in Equation (2.3), respec-

tively. Details about the numerical algorithm can be found in Vásconez et

al. (2015).

The nonlinear simulations have been performed by using an HVM code

(Valentini et al.,, 2007) in which the Vlasov equation for protons is solved

in a 2D–3V (two dimensional in physical space and three dimensional in

velocity space) phase space, while electrons are represented as an isothermal

fluid. Equations solved by the HVM code in non dimensional units are the
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following:

∂f

∂t
+ u · ∇f +

1

ǫ̃
(E+ u×B) · ∂f

∂u
= 0 (2.5)

E = −v×B+
ǫ̃

n

(

j×B− β̃

2
∇Pe

)

(2.6)

∂B

∂t
= −∇×E ; ∇×B = j (2.7)

where f = f(x,u, t) is the proton distribution function, n =
∫

d3u f is the

proton number density normalized to ñ = ρ̃/mp, B is the magnetic field

normalized to B̃, v = n−1
∫

d3uf u is the proton bulk velocity normalized

to c̃a, E is the electric field normalized to Ẽ = (c̃aB̃)/c (where c is the speed

of light), the spatial coordinates are normalized to L̃, time is normalized to

t̃a = L̃/c̃a, j is the current density normalized to j̃ = cB̃/(4πd̃p), and Pe is

the electron pressure normalized to p̃. These equations are obtained under

the assumption of quasi neutrality, and in the low–frequency regime where

the displacement current in Ampere equation can be neglected. The value of

their pressure is set equal to the initial value of the proton pressure and their

inertia effects are neglected. The numerical grid is discretized with 256 ×

1024 points in the physical domain and 513 points in the velocity domain.

Stability is ensured by Landau damping and by dissipation inherent in the

finite difference methods employed in the HVM algorithm. Periodicity is

imposed in the physical space, while in the velocity domain the distribution

function f is set equal to zero for |ui| > umax (i = x, y, z), where umax =

5vth,p, being vth,p the proton thermal speed. A detailed description of the

numerical method employed to solve Equations (2.5)–(2.7) can be found in

Valentini et al., (2007).

For both models we choose a spatial domain D(x, y) = [0, 2π] × [0, 2π]

and we set the same initial condition, which consists in a pressure–balanced
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equilibrium structure with a perturbation superposed on it. The equilibrium

magnetic field, that varies only in the y direction, has this form:

B(0) = B(0)(y) cos(θ)ex +B(0)(y) sin(θ)ez (2.8)

where:

B(0)(y) = 1 +
bm − 1

1 +

(

y − π

2πh

)r + α
( y

π
− 1
)2

(2.9)

ex and ez are the unit vector along x and z, θ is the angle that B(0) forms

with ex, bm = 1.5, h = 0.2, r = 10 and

α =
(bm − 1)r

2(2h)r
[

1 +

(

1

2h

)r]2
≃ 2.62 × 10−4. (2.10)

The value of α has been set in order to make the first derivatives of B(0)(y)

null at the two boundaries y = 0 and y = 2π. The field B(0)(y) is symmetri-

cal with respect to y = π, that is the middle of the domain, where it reaches

the maximum value bm. It is worth to note that the B(0)(y) intensity is

almost homogeneous in the central part of the domain, while moving to the

sides it rapidly decreases to a smaller value. The two shear regions where

B(0)(y) sharply varies can be seen in Figure 2.1 and have a width ∆y ∼ 1.

In these regions two strong current sheets in the z direction are present. The

temperature is homogeneous, its value being T (0) = 1, and the velocity is

null at the initial time. The mass density ρ(0) is set to guarantee equilibrium

between kinetic and magnetic pressure:

β̃

2
ρ(0)(y)T (0) +

B(0)2(y)

2
= P

(0)
T (2.11)
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Figure 2.1: Alfvén velocity (red solid line) and plasma β (black solid line) in the
equilibrium structure in function of y. The dashed blue lines delimit the two shear
region.

where P
(0)
T = 1.748 and β̃ = 2. The initial Alfvén velocity

ca
(0) = B(0)(y)/(ρ(0))1/2(y)

and plasma β:

β(0)(y) = [cs
(0)/ca

(0)]2

profiles (where cs
(0) = [γT (0)]1/2 is the sound speed) are plotted in Figure 2.1

as functions of y. The Alfvén velocity is larger in the middle of the domain

and decreases in the shears to reach a lower value on the two sides. On

the other hand, the plasma β has an opposite trend: it varies from smaller

values β < 1 in the middle of the domain to higher values β > 1 in the two

side regions. (Vásconez et al., 2015) considered this equilibrium structure

in the particular case where θ = 0. This case corresponds to an in-plane

equilibrium magnetic field.

The initial perturbation represents a linearly polarized Alfvén wave.
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Table 2.1: Numerical parameters in simulations (Hall parameter ǫ̃ = 0.125).

RUN Type Spatial Resolution (nx × ny) Amplitude (a) θ

1 HMHD 256 × 256 0.01 0
2 HMHD 256 × 256 0.01 π/4
3 HVM 256 × 1024 0.25 0
4 HVM 256 × 1024 0.25 π/4

Thus, the polarization direction must be perpendicular both to B(0) and

to the initial wavevector k0. In the initial condition k0 is oriented along

x, while B(0) is in the xz plane. Thus, the initial perturbation must be

polarized along y, at least for θ 6= 0. Then, we choose the following form for

the initial velocity and magnetic field perturbation:

B(1)(x, y, t = 0) = a cos(x)ey, v(1)(x, y, t = 0) = −a[ρ(0)(y)]−1/2 cos(x)ey

(2.12)

where a gives the perturbation amplitude and k0 = 1.

In the case θ = 0 (in-plane magnetic fild), B(0) and k0 are parallel and

directed along x, so the initial polarization could be directed along any

direction in the yz plane. In practice, for θ = 0 it is sufficient to consider

only two independent orientations for the initial polarization: the first one

is along y and has again the form (2.12); the second one is along z and has

the form (2.12) in which the unit vector ey is replaced by the unit vector ez.

The latter case corresponds to the configuration studied by Vásconez et al.

(2015). Then, in the present work we will consider the other two possibilities,

using the form (2.12) for the velocity and magnetic field perturbation and

considering both the case θ = 0 and a case with θ 6= 0, for which we set

θ = π/4. In both cases, the initial density and temperature fluctuations

are vanishing: ρ(1)(x, y, t = 0) = 0, T (1)(x, y, t = 0) = 0. The numerical
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parameter of the various simulation performed are summarized in Table 2.1.

Note that the wave amplitude chosen for the HMHD runs is a = 0.01, while

we set a = 0.25 for the HVM simulations in order to make the effects on the

particle distribution function more visible. We will refer to the to HMHD

simulation with θ = 0 and θ = π/4 as RUN 1 and RUN 2, respectively, and

to the corresponding HVM simulation as RUN 3 and RUN 4, respectively.

2.2 Linear waves in Hall MHD

This section is devoted to describe the main feature of the linear waves

that are normal modes in Hall MHD. We start from Equations (2.1)-(2.4)

and consider an homogeneous plasma with dimensionless density ρ0 and

temperature T0, that is permeated by an homogeneous magnetic field B0.

The plasma is at rest at the beginning: v0 = 0. We perturb this equilibrium

structure with a small amplitude fluctuation and linearize the equations get-

ting equations for the fluctuations. Then we write the unknown fluctuations

as a superposition of plane waves and we get the equation for the fluctua-

tions amplitudes. Imposing non vanishing amplitudes leads to an equation

of this type:

ω6 + C1ω
4 + C2ω

2 + C3 = 0 (2.13)

with

C1 = −k2‖
(

2c2A0 + c2s0
)

− k2⊥
(

c2A0 + c2s0
)

−
c4A0k

2
‖

(

k2‖ + k2⊥

)

ω2
p0

(2.14)

C2 = c2A0k
2
‖

(

c2A0 + 2c2s0
)

(

k2‖ + k2⊥

)

+
c4A0c

2
s0k

2
‖

(

k4‖ + 2k2‖k
2
⊥ + k4⊥

)

ω2
p0

(2.15)

C3 = −c4A0c
2
s0k

4
‖

(

k2‖ + k2⊥

)

(2.16)
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In Equations (2.13)-(2.16), k‖ and k⊥ are the wavevector component par-

allel and perpendicular to B0, respectively, normalized to a typical length

L̃; cA0 = B0/(4πρ0)
1/2 and cs0 = (β̃γT0/2)

1/2 are the Alfvén and sound

speed associated with the equilibrium structure, respectively, where β̃ is the

typical ratio between the kinetic and magnetic pressure; ω is the frequency

normalized to t̃−1
A = L̃/c̃A0 and ωp0 = (qB̃B0/(mpc))(L̃/c̃A) is the normal-

ized proton gyrofrequency. The expression (2.13)-(2.16) are equivalent to

what found by Vásconez et al. (2014) in a two fluid model if the electron

inertia is neglected. Equation (2.13) has been analytically solved (Vásconez

et al., 2014) using the Vieta’s substitution method (Birkhoff & Mac Lane,

1977) for the calculation of the complex roots of a third-degree algebraic

equation. For given values of k‖ and k⊥ three real and positive solutions are

found for ω2, corresponding to the Alfvén, fast magnetosonic (FM) and slow

magnetosonic (SM) branches, respectively. In particular, KAWs correspond

to the Alfvén branch for k‖ ≪ k⊥ ∼ ωp0/cA0.

It is possible to calculate the expression of the fluctuations amplitudes

from linear analysis. If a reference frame is considered where the x-axis is

along B0 and the wavevector k is in the xy plane, the perturbation compo-

nents for a wave with wavevector k = k‖ex + k⊥ey can be expressed in the

following form:

v1x = a
c2A0c

2
s0k

2
‖k⊥ωp0

ω2
(

ω2 − c2s0k
2
)

(

1− ω2

c2A0k
2
‖

)

sin(k‖x+ k⊥y − ωt+ φ) (2.17)

v1y = a
c2A0k‖ωp0

(

ω2 − c2s0k
2
‖

)

ω2
(

ω2 − c2s0k
2
)

(

1− ω2

c2A0k
2
‖

)

sin(k‖x+k⊥y−ωt+φ) (2.18)

v1z = −a
c2A0k‖

ω
cos(k‖x+ k⊥y − ωt+ φ) (2.19)
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B1x = aB0

k‖k⊥ωp0

ωk2

(

1− ω2

c2A0k
2
‖

)

sin(k‖x+ k⊥y − ωt+ φ) (2.20)

B1y = −aB0

k2‖ωp0

ωk2

(

1− ω2

c2A0k
2
‖

)

sin(k‖x+ k⊥y − ωt+ φ) (2.21)

B1z = aB0 cos(k‖x+ k⊥y − ωt+ φ) (2.22)

where a is the perturbation amplitude, φ ∈ [0, 2π] is the phase and ω = ω(k)

is derived from the dispersion relation (2.13). From (2.13) it is also possible

to find the expression for the parallel and perpendicular group velocity. We

consider Equation (2.13) written in the implicit form:

F (ω(k‖, k⊥), k‖, k⊥) ≡ 0 (2.23)

which holds for any value of k‖ and k⊥. The total derivative of Equation

(2.23) respect to k‖ is:

dF

dk‖
=

∂F

∂ω

∂ω

∂k‖
+

∂F

∂k‖
= 0

from which we obtain

vg‖ =
∂ω

∂k‖
= −

∂F/∂k‖

∂F/∂ω
. (2.24)

where vg‖ is the parallel group velocity. In a similar way we obtain the

perpendicular group velocity:

vg⊥ =
∂ω

∂k⊥
= −∂F/∂k⊥

∂F/∂ω
. (2.25)

The derivatives of F appearing in equations (2.24-2.25) calculated by using
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Equation (2.13) are:

∂F

∂k‖
= −2

[

k‖
(

2c2A0 + c2s0
)

+
cA0

2

ωp0
2

(

2k3‖ + k‖k
2
⊥

)

]

ω4+

2

[

(

2c2s0c
2
A0 + c4A0

)

(

2k3‖ + k‖k
2
⊥

)

+
cA0

4cs0
2

ω2
p0

(

3k5‖ + k4‖k
2
⊥ + k‖k

4
⊥

)

]

ω2−

2c2s0c
4
A0

(

3k5‖ + 2k3‖k
2
⊥

)

(2.26)

∂F

∂k⊥
= −2

[

k⊥
(

c2A0 + c2s0
)

+
k⊥k

2
‖c

4
A0

ω2
p0

]

ω4+

2



k⊥k
2
‖

(

2c2s0c
2
A0 + c4A0

)

+ 2

(

k⊥k
4
‖ + k3⊥k

2
‖

)

c4A0c
2
s0

ω2
p0



ω2 − 2k⊥k
4
‖c

2
s0c

4
A0

(2.27)

∂F

∂ω
= 6ω5 − 4

[

k2
(

c2A0 + c2s0
)

+ k2‖c
2
A0 +

k2k2‖c
2
A0

ω4
p0

]

ω3 +

2

[

k2k2‖
(

2c2s0c
2
A0 + c4a0

)

+
k2‖k

4c4A0c
2
s0

ω2
p0

]

ω (2.28)

where k2 = k2‖+k2⊥. Since in the simulation considered in this work fluctua-

tions at large k⊥ develops during the system evolution we plotted in Figure

2.2 the parallel and perpendicular velocities in function of k⊥ for k‖ = 1 and

for two different values of β0 corresponding to the shear and homogeneous

side regions of the equilibrium structure considered. We can see that in the

parallel direction the group velocities are positive for all the three modes. In

particular parallel group velocity increases with k⊥ for KAW and decreases

for FM and SM modes. Perpendicular group velocity increases for all the

three modes at increasing k⊥ rapidly reaching an asymptotic value. It is
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Figure 2.2: Parallel group velocity (left panel), perpendicular group velocity (middle
panel), and σ (right panel) as functions of k⊥, for k‖ = 1 (RUN 1). Red lines
correspond to Fast mode, black lines to kinetic Alfvén wave and blue lines to Slow
mode. Dashed lines for β = 1.25, full lines for β = 2.08.

always positive for KAW and FM and negative for SM. It is worth noting

perpendicular group velocity for FM is much more bigger than for KAW.

We notice also that the group velocities are similar for the two values of β0

considered for all the three modes. Finally in Figure 2.2 (right panel) we

plotted the quantity:

σ = 1− ω2

c2A0k
2
‖

. (2.29)

that appears in Equations (2.17)-(2.22). If the condition ky ≫ kx holds, that

in our configuration means k⊥ ≫ k‖, ∇ ·B = 0 implies that the dominant

components of a quasi-oblique fluctuation will be B1x and B1z. Equations

(2.17)-(2.22) indicates that in this case such fluctuation is elliptically polar-

ized. For positive k‖ and k⊥ and given values of t and x, as one increases

the y coordinate, the perturbation magnetic field rotates clockwise (coun-

terclockwise) in the zx plane for negative (positive) values of σ. Since the

sign of σ is unique for the three modes, positive for SM and negative for

KAW and FM, the polarization of the magnetic field perturbation can be

used, along with information about group velocity, to distinguish one mode

from the other.
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2.3 Numerical results

We first summarize results obtained by Vásconez et al. (2015) in order to

make a comparison with the new configuration here considered. In Vásconez

et al. (2015) the initial Alfvénic perturbation, which propagates in the in-

homogeneous equilibrium structure, undergoes phase-mixing, as predicted

by the linear MHD theory (Heyvaerts & Priest, 1983). Phase-mixing is

localized in the two shear layers, where the Alfvén velocity is inhomoge-

neous. The wavevector of the initial perturbation is k0 = k‖ = 1 ≪ ε̃−1,

so that dispersive effects are initially negligible. However, in consequence

of phase-mixing, within the shear layers the perpendicular wavevector k⊥

of the perturbation increases in time, while the parallel wavevector k‖ re-

mains constant. When the condition k⊥ ∼ dp
−1 ≫ k‖ is satisfied, the Alfvén

wave becomes a kinetic Alfvén wave (KAW), in which dispersive effects are

no longer negligible. In particular, the initial linear polarization is trans-

formed into an elliptical polarization. KAWs formed by this mechanisms are

initially localized within the shear layers; however, due to a non-vanishing

perpendicular group velocity vg⊥, KAWs drift laterally and move into the

homogeneous regions. This time evolution is observed in the low-amplitude

case and a similar behavior is found also in the non-linear case, both in

HMHD and in HVM simulations. Moreover, in the kinetic simulation a de-

parture of the proton distribution function from a Maxwellian is observed to

take place, but only in the regions where KAWs are present: while f remains

essentially gyrotropic in the velocity space, the parallel temperature T‖ can

locally become either larger or smaller than the perpendicular temperature

T⊥, according to the phase of the KAW. In regions where T‖ is particularly

large, a well-distinct protons beam moving parallel to the local magnetic

field is recovered. The beam velocity is comparable with the KAW parallel
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velocity of propagation, indicating that KAWs can accelerate protons along

the magnetic field, at least for a large-amplitude initial perturbation. KAWs

are also characterized by a parallel electric field E‖, due to electron pressure

gradients. The related electric potential energy modulation is of the order of

the proton thermal energy; thus indicating that the observed particle beams

are probably generated by E‖ associated with KAW.

2.3.1 HMHD simulation in the in-plane B
(0) case

We discuss now the results relative to RUN 1. In this case both the initial

perturbation and the equilibrium magnetic field are in the plane xy. In this

run the phenomenology is more complex and richer than that observed by

Vásconez et al. (2015), though KAWs formation of is found also in this case.

Since the equilibrium structure quantities depend only on y, we define quan-

tities relative to the perturbation at any time as δg = g− < g >x, where

g indicates any physical quantity and < g >x is its average in the x direc-

tion. At the beginning of the simulation a rapid formation of compressive

fluctuations is observed in the two shear layers. In particular, density per-

turbations are generated. This phenomenon, which was absent in Vásconez

et al. (2015), is due both to the perturbation y-polarization and to the back-

ground density inhomogeneity; in fact, from the continuity equation at the

initial time we derive:

∂ρ

∂t

∣

∣

∣

∣

t=0

= −∂
(

v(1)ρ(0)
)

∂y
= − a cos(x)

2
√

ρ(0)(y)

dρ(0)

dy
(2.30)

where we used Equations (2.12). Equation (2.30) indicates that density fluc-

tuations are initially generated at positions where ρ(0) is inhomogeneous,

with the same periodicity in the x direction as the initial wave and a width
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Figure 2.3: Entropy waves in shear regions: time averaged density fluctuation δρt
(a) and temperature fluctuation δTt (b) (RUN 1).

in the y direction of the order of the shear layer width 2πh ∼ 1. At sub-

sequent times this perturbation remains partially confined within the shear

layers. This density perturbation has a non-vanishing time average, which

is indicated as δtρ = 〈δρ〉t, where the average is calculated over the whole

simulation time. δtρ represents a static component of the density pertur-

bation and it is plotted in Fig. 2.3, along with the time-averaged tempera-

ture fluctuation δtT = 〈δT 〉t. It can be seen that the static components of

density and temperature fluctuations are perfectly anti-correlated; then we

can interpret such fluctuations as entropy waves, which are static pressure-

balanced structures in which no velocity and magnetic field fluctuations are

involved. The amplitude of the entropy waves is ∼ 5×10−3, which is ∼ 25%

of the amplitude of the density perturbation in the shear layers. The re-

maining part corresponds to a density perturbation which propagates along

x remaining essentially confined within the shear layers. This perturbation

could tentatively be attributed to a slow-mode wave, whose group velocity

is directed along B(0) in the MHD limit.
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Figure 2.4: Fast wave generation at initial times (RUN 1). δBy is plotted at the
time t = 0.5 (a), t = 1.0 (b), t = 1.5 (c), t = 2.0 (d).

Another phenomenon that develops starting from the initial time is the

formation of fast-mode perturbations which have origin at the shear layers

and propagates perpendicularly to the background magnetic field. In Figure

2.4 the rapid formation and propagation of this structure is showed. We can

see that at time t = 2 this kind of waves are exiting the domain and, because

of periodicity, they enter from the other side. This propagation of a fast-

mode perturbation goes on along all the simulation and involves only vector

components in the xy plane.

To summarize, in the first stage of the time evolution the initial pertur-

bation couples with the background inhomogeneity producing compressive

perturbations belonging to the three compressive MHD modes (fast, slow

and entropy waves). We note that a similar behavior was also found in pre-

vious purely MHD simulations (Malara et al., 1996). These features were

not found in the linear simulations by Vásconez et al. (2015), except for
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Figure 2.5: δρ (a), δT (b), δjz (c), δvx (d), δvy (e), δvz (f), δBx (g), δBy (h), δBz

(i) at time t = 15.0 (RUN 1).

much smaller compressive fluctuations generated by higher-order nonlinear

couplings. As time goes on, other dynamical features can be appreciated.

In Figure 2.5 various quantities are represented at time t = 15 for RUN 1.

A relevant characteristic is the lack of phase-mixing of the initial wave, as

it can be seen in the plots of δvy and δBy. This is an important difference

with respect to the configuration considered in Vásconez et al. (2015), where

phase-mixing is present and produces small scales. The lack of phase-mixing

in this configuration has been found also in purely MHD simulations (Malara

et al., 1996). In Fig. 2.5 the formation of fluctuations in the z direction can

be observed: this phenomenon can only be due to dispersive effects, since
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in the MHD limit an initial 2D configuration must necessarily remains 2D

for subsequent times. Dispersive effects are more relevant at small scales,

and in RUN 1 the velocity and magnetic field z components are present in

structures which have a small transverse size and are localized at the shear

layers. These structures are still visible at subsequent times (t = 15, Fig.

2.5), outside the shear layers where they have drifted in the meanwhile.

However, since no phase-mixing is present, another kind of coupling be-

tween the initial wave and the background inhomogeneity must be respon-

sible for such a small-scale structure formation. We will show that these

structures can be identified as the z component of KAW fluctuations. The

typical transverse size of such structures is of the order of the shear layer

width ∼ 1, while it was smaller for the configuration considered in Vásconez

et al. (2015), where phase-mixing was active. To study in more detail the

nature of this perturbation we plotted the profile of δBz as a function of

x at y = 5 for different times (left panel in Figure 2.6). These profiles are

sinusoidal with a wavelength equal to the domain size (2π), propagating in

the direction of increasing x; their amplitude is not constant in time, but
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it is modulated changing periodically between a maximum and a minimum

value. We can interpret this behavior as due to the superposition of two

waves with different amplitudes; these two waves have the same wavevector

kx but opposite frequencies ±ω, so their profiles appear to oppositely propa-

gate along x. The wave with the largest (smallest) amplitude propagates in

the direction of increasing (decreasing) x. At the time of maximum ampli-

tude the two waves are in phase, while they are out of phase by π when the

amplitude of δBz is minimum. To prove this interpretation we considered

the following analytical expression:

b(x, t) = A1 sin [kxx− ω(t− t0) + φ1]−A2 sin [kxx+ ω(t− t0) + φ2] (2.31)

that represents the two waves propagating in the opposite direction, and

we tried to choose the free parameters in the above expression in a way to

reproduce the time evolution of the δBz profile. In Figure 2.6 (right panel)

the function b(x, t) is plotted at the same times as in the left panel, for the

following values of the parameters: A1 = 6.5×103, A2 = 2.5×10−3, ω = 1.2,

φ1 = −(2/3)π, φ2 = π/3 and t0 = 13. By comparing the two panels of Fig.

2.6, we can see that b(x, t) reproduces remarkably well the time evolution

of the δBz profile. Then, we conclude that the δBz perturbation is formed

by two opposite propagating waves. The wave with the largest amplitude

propagates along x in the same direction as the initial perturbation.

In order to identify these waves, we followed the following procedure.

First we estimated the perpendicular wavenumber of the δBz perturbation

finding k⊥ ≃ 6.24. This means that these waves propagate highly oblique

to the direction of the background magnetic field. The angle between the

wavevector and the background magnetic field direction (x direction) is θ =
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arctan(k⊥/k‖) ≃ 81◦. Considering ω ≃ 1.2 and k‖ = 1 we can estimate a

parallel velocity of propagation as v‖ = ω/k‖ ≃ 1.2. We have also estimated

the perpendicular velocity of propagation of this kind of structures in the

following way. We identify the position of the structure in the y direction

at time t as ym(t) ± δy, where ym is the point where δBz is minimum and

δy = 0.1 is an estimation of the incertitude of the minimum position; this

incertitude is partially due to the fact that the two opposite-propagating

perturbations are not exactly superposed along y . Then, we measure the

displacement ∆ym = ym(t1)− ym(t1 +∆t) of the minimum, where t1 is the

initial time of an oscillation period and ∆t is the period duration. Finally,

we estimate the perpendicular velocity as v⊥ = ∆ym/∆t finding the value

v⊥ = (5.32 ± 2.8) × 102. The above values found for the parallel v‖ and

perpendicular v⊥ propagation velocities of the observed structures have been

respectively compared with the parallel vg‖ and perpendicular vg⊥ group

velocities of propagating modes, derived from the linear HMHD theory. The

details on the calculation of the explicit expressions for vg‖ and vg⊥ have

been given in Section 2.2. The two components of the group velocity depend

on k‖, k⊥ and β (equations (2.24)-(2.28)); for k‖ and k⊥ we used the above-

estimated values, while we used β = 2.08 corresponding to the value of

β(0) at the position y = 5 where the considered perturbations are localized.

The corresponding values of the ω and of the group velocities vg‖ and vg⊥

calculated by Equations (2.24)-(2.28) are given in Table 2.2. We can see that

the parallel and perpendicular propagation velocities, along with the value

of the frequency ω, are in agreement with the values predicted by linear

theory for KAW. It is also important to notice that the estimated values of

ω, v‖ and v⊥ are very different from the corresponding values obtained from

the linear theory for the Fast Magnetosonic (FM) and Slow Magnetosonic
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Table 2.2: Frequency ω, group velocities vg‖ and vg⊥, and parallel phase velocity
vφ‖ = ω/k‖, for k‖ = 1, k⊥ = 6.24, β = 2.08, for kinetic Alfvén wave (KAW), fast
magnetosonic (FM) and slow magnetosonic (SM) wave. The velocities values are
normalized to the local Alfvén velocity.

ω vg‖ vg⊥ vφ‖
KAW 1.30 1.31 0.066 1.30

FM 11.0 0.23 1.74 11.1

SM 0.062 0.62 −0.032 0.62

(SM) modes. For example, the FM velocity in the perpendicular direction

would be much greater, and the SM velocity, even if of the same order,

would be directed in the opposite direction. Then, the observed localized

structure behaves as a KAW, as long as frequency and propagation velocities

are concerned.

A further evidence concerning the nature of this perturbation can be

deduced on the base of the magnetic field polarization. In Fig. 2.7 we have

plotted an hodogram of the perturbation, where the two components δBx

and δBz are plotted as functions of y. We selected these two components

because they are almost transverse to the wavevector orientation, which is

almost aligned in the y direction. The hodogram shows that the magnetic

field in the considered perturbation turns clockwise when moving in the

wavevector direction. On the other hand, from the linear theory (see section

2.2) we can deduce that the magnetic field perturbation is elliptical and it

turns clockwise for KAW and FM waves, while it turns counterclockwise

for SM waves. Then, the sense of polarization of the localized δBx-δBz

perturbation is coherent with that of a KAW.

On the base of the above considerations, we conclude that this pertur-

bation belongs to the KAW mode. In particular, this perturbation contains

two distinct KAWs, with amplitudes of the same order, which propagate
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in opposite directions along x, but drifting in the same direction along y.

This condition can be obtained assuming that the two KAWs have the same

parallel wavenumber k‖, opposite frequency ω and opposite perpendicular

wavevector k⊥. In fact, from Equations (2.13)-(2.16) we see that the dis-

persion relation does not changes under the transformation k⊥ → −k⊥.

Moreover, from Equations (2.24)-(2.28) we see that vg‖ changes sign and

vg⊥ remains unchanged under the transformation k⊥ → −k⊥, ω → −ω.

Finally, we note that, from Equations (2.20) and (2.22), the sense of polar-

ization remains unchanged under the above transformation; then, we can

deduce that the two KAWs forming the considered perturbation have the

same sense of polarization.

In conclusion, the simulation shows that in the considered configura-

tion KAWs are formed from the initial Alfvénic perturbation. This happens

even in this case in which phase-mixing is not present. Since the equilib-
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rium structure is not homogeneous in the perpendicular direction, there is

a coupling between the initial perturbation with wavevector kx with a ky

associated with the equilibrium structure. This is also confirmed by the fact

that the estimated k⊥ of the KAW is of the order of 2π/δys where δys is the

size of the shear layers.

2.3.2 HMHD simulation in the out-of-plane B
(0) case

Now we discuss the results obtained in RUN 2. Comparing with the case

of RUN 1 where equilibrium magnetic field was aligned with the initial

wavevector, in this new configuration B(0) is oriented with an angle of π/4

with respect to the initial k, while the initial perturbation is still linearly

polarized in the y direction, perpendicular to both B(0) and k. In this re-

spect, the initial perturbation is an Alfvén wave. The fluctuation of the

various quantities at time t = 15 for this run are plotted in Figure 2.8. The

most evident difference with respect to the previous case is that in this case

phase-mixing is recovered. This can be seen looking for example at δBx and

δBz component. This process is slower than what observed in the simula-

tion by Vásconez et al. (2015) since the in-plane Alfvén velocity is smaller,

due to the x component of B(0) that is now reduced by a factor cos(π/4).

Another particular feature of this configuration is that the evolution is not

symmetrical any more respect to the line y = π. This lack of symmetry

is a consequence of the nonvanishing B
(0)
z component. In fact, considering

the linearized HMHD Equations in the case of in-plane B(0) (θ = 0), and

calculating all the terms on the RHSs of Equations (2.2) and (2.3) at the

initial time, it is found that each component of the RHS has a well-defined

symmetry (symmetrical or antisymmetrical) with respect to the line y = π.

But, this property does not hold anymore if θ 6= 0. This explains why the
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Figure 2.8: δρ (a), δT (b), δjz (c), δvx (d), δvy (e), δvz (f), δBx (g), δBy (h), δBz

(i) at time t = 15.0 (RUN 2).
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results in the configuration corresponding to RUN 2 are not symmetric.

Similar as in the previous case, a localized perturbation in the x and

z components of velocity and magnetic field perturbation develops in the

two shear layers. In this case, such perturbations appear to be progres-

sively stretched along an oblique direction, due to phase-mixing, so that

the perpendicular wavevector tends to increase until it becomes of the or-

der of ε̃−1. We characterized the nature of the fluctuations that arise in

the two shear regions. First, we estimated the value of the perpendicular

wavevector as k⊥ = 9.94 at the time instant t = 15. Then we estimated

the velocity of propagation in parallel and perpendicular direction. We did

it through a similar approach as that used for RUN 1. We identified the

minimum of δBz in the space region where 4.0 < y < 5.0 and followed its

position for five computational times. Then, we linearly interpolated the

x and y components of the position of the minimum as functions of time,

finding the following two values for the propagation velocity along the x

and y directions: vx = 0.8 and vy = 2.2 × 10−2. In order to compare these

velocities with the predictions of the linear theory, the specific geometry of

this configuration has to be taken into account. The background magnetic

field direction is given by: b̂ = cos θêx + sin θêz and the direction of the

wavevector is given by: k̂ = (kxêx + kyêy)/k, where k =
√

kx
2 + ky

2. From

the previous two equations we get k‖ = kx cos θ and, using the condition

ky ≫ kx, we can make the following approximation k⊥ ≃ ky. Hence, the

estimated velocities are v‖ = vx/ cos θ ≃ 1.12 and v⊥ ≃ vy ≃ 2.2 × 10−2.

By comparing these values with the linear modes group speeds vg‖ and vg⊥

(see Table 2.3), we found that the propagation velocity estimated from the

simulation results is compatible with the KAWs group velocity, while it does

not agree with the group velocity of FM and SM waves. We remark that the
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Table 2.3: Frequency ω, group velocities vg‖ and vg⊥, and parallel phase velocity

vφ‖ = ω/k‖, for k‖ =
√
2/2, k⊥ = 9.94, β = 1.25, for kinetic Alfvén wave (KAW),

fast magnetosonic (FM) and slow magnetosonic (SM) wave. The velocities values
are normalized to the local Alfvén velocity.

ω vg‖ vg⊥ vφ‖
KAW 0.96 1.47 0.047 1.36

FM 14.88 0.11 1.49 21.04

SM 0.36 0.51 −0.016 0.51

values presented in Table 2.3 have been calculated using β = 1.25, which

corresponds to the value at the center of the shear layers, where the per-

turbation is localized. The hodogram plotted in Figure 2.9 confirms the

interpretation of the observed magnetic fluctuations as KAWs. It fact, it

shows a polarization that turns clockwise when moving in the y direction,

as expected from linear theory. We can conclude that also in this case the

initial large amplitude Alfvén mode is locally converted into a KAW; in this

case phase-mixing plays a role in the formation of small scales. The forma-

tion of transverse propagating fast waves is observed also in this case, but

this phenomenom is less evident and plays a minor role in the dynamics of

the physical system.

2.3.3 Kinetic effects

In this Section, we show the results of the kinetic simulations for the cases:

in-plane B(0) (RUN 3) and out-of-plane B(0) (RUN 4). As in the HMHD

cases, also here small-scale magnetic fields fluctuations form in the shear

regions. Furthermore, since HVM simulations are nonlinear, the proton

velocity distribution function (VDF) f displays non-Maxwellian features

due to wave-particle interactions where these small-scale are present. To

quantify these deformations, we computed the L2–norm difference (Greco
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Figure 2.9: Hodogram of δBz and δBx for π ≤ y ≤ 2π at x = π and t = 13.0 (black
line). The purple cross indicates the value at y = π, shear region values are plotted
with blue asterisks and out of shear values with red squares (RUN 2).

et al., 2012):

ε(x, y, t) =
1

n

√

∫

[f(x,u, t)− fM (x,u, t)]2 d3u (2.32)

where fM (x,u, t) is the Maxwellian distribution function associated with

f(x,u, t), constructed in a way that density, bulk velocity and total tem-

perature of the two VDFs are the same. Figure 2.10 shows the evolution of

εmax(t) = max(x,y)∈D ε(x, y, t) as a function of time. Red stars, black tri-

angles and blue diamonds respectively indicate RUN 3, RUN 4 and, finally,

the case performed by Vásconez et al. (2015), which has been included in

Figure 2.10 for a better comparison.

In the case considered by Vásconez et al. (2015), εmax(t) smoothly in-

creases and saturates at εsat ≃ 0.035. On the other hand in both RUN 3

and RUN 4 cases, εmax(t) rapidly increases for times t < td ≃ 8 (indicated
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Figure 2.10: Quantity εmax(t) plotted as a function of time in Vásconez et al. (2015)
(blue diamonds), RUN 3 (red stars) and RUN 4 (black triangles).
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in Figure 2.10 with a orange dashed line) reaching values about two times

bigger than εsat. Then, for t > td it decreases and finally approaches a

value comparable with εsat. We remark that td is the time necessary for the

phase-mixing process to form transverse wavevectors comparable with d̃−1
p

in Vásconez et al. (2015) configuration.

As well as for the case considered in Vásconez et al. (2015), KAW-like

fluctuations produce modifications of the VDFs in both RUN 3 and RUN

4 cases. However, both the new cases of study suggest the presence of a

transient period where kinetic effects are stronger compared to what ob-

served by Vásconez et al. (2015). In order to characterize the nature of

this transient and the nature of the asymptotic behavior, we analyze in

detail two time instants: i) t = 7.5, which corresponds to the time where

εmax(t) = maxt εmax(t) and is equivalent to 60Ω−1
cp and ii) that t = 15, which

is the final instant of the simulation and corresponds to 120Ω−1
cp . Figure 2.11

shows the 2D contour plots of ε(x, y) at t = 7.5 (top panels) and t = 15

(bottom panels) as a function of x and y for the two runs. The intensity of

ε(x, y) is slightly smaller in the RUN 3 case compared with the RUN 4 case.

Moreover, the ε(x, y) shape is more structured in the RUN 3 case than in

the RUN 4 case. Indeed in the in-plane B(0) case (RUN 3), at both t = 7.5

[panel (a)] and t = 15 [panel (c)], ε(x, y) presents some ripples towards the

external sides of the y domain. These deformations are clearly visible at

t = 15 [panel (c)] where at least two strong regions of non-Maxwellianity

are recovered. On the other hand, in the out-of-plane B(0) case (RUN 4), the

region where ε(x, y) is significantly not null is more uniform and confined

within the shear. Moreover for both RUN 3 and RUN 4 cases, ε(x, y) is not

zero in two slab-like regions at t = 7.5 [see Figures 2.11(a)–(c)], while, at

t = 15 [see Figures 2.11(b)–(d)], it is concentrated into bubble-like areas. We
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Figure 2.11: Contour plots of ε(x, y) at time t = 7.5 (top panels) and t = 15
(bottom panels). Left column refers to RUN 3, while right column indicates RUN
4.
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Figure 2.12: Contour plots of R(x, y) at time t = 7.5 (top panels) and t = 15
(bottom panels). Left column refers to RUN 3, while right column indicates RUN
4.

suggest the following interpretation for these features: at t = 7.5 the large

amplitude initial perturbation is interacting with the background structure

modifying the VDFs in the shear layer. This interaction gives rise to the

formation of KAWs that, at bigger times, remain the only actors responsible

for the VDFs deformations. Indeed, the region where at time t = 15 the

distribution function departs from the Maxwellian shape are associated with

the presence of KAWs. Departures of the proton distribution function from

the Maxwellian form can be also identified with the temperature anisotropy

index (Perrone et al., 2013), R(x, y, t) = 1 − Tp⊥(x, y, t)/Tp||(x, y, t), being

Tp⊥ and Tp‖ respectively the proton perpendicular and parallel tempera-

tures evaluated respect to the local magnetic field B. Figures 2.12 shows

instantaneous spatial distribution of R(x, y) at t = 7.5 (top panels), and
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at t = 15 (bottom panels); corresponding to RUN 3 (left panels) and RUN

4 (right panels). This figure confirms a previous result by Vásconez et al.

(2015): KAWs produce both R > 0 and R < 0 regions, corresponding to

anisotropic VDFs in the parallel and perpendicular directions. A clear cor-

relation between the kinetic deformations of f and the spatial distribution of

the index R is recovered and both the parameters R and ε recall the shape

of the magnetic field fluctuations [see Figures 2.5(i) and 2.8(i)].

In order to display the effects of wave-particle resonances on the distribu-

tion function, we present in Figure 2.13 the 3D iso-surface plots (f = 0.015)

of the VDFs for t = 7.5 (top panels) and t = 15 (bottom panels) taken at

the spatial point where ε is maximum. Left panels refer to RUN 3, while

right panels refer to RUN 4. In all cases, VDFs are clearly gyrotropic respect

to the local magnetic field. Moreover at t = 7.5 VDFs presents deforma-

tions towards both positive and negative velocities [see Figures 2.13(a)–(b)],

while, at t = 15, a single beam is present in the positive velocity direction

[see Figures 2.13(c)–(d)]. At this time, the VDFs shape shares a lot of char-

acteristics with the VDFs showed in Vásconez et al. (2015), such as rings

perpendicular to the direction of local magnetic field and a beam directed

in the parallel direction. In order to single out the VDFs non-Maxwellian

features, we show in Figures 2.14(a–d) the 2D contour plots of the VDFs in

the plane uB−u⊥B , being uB and u⊥B respectively the parallel and perpen-

dicular velocities respect to the local magnetic field direction. We remark

that the VDFs showed in Figures 2.14(a–d) are the same of the ones showed

in Figures 2.13(a–d). At t = 7.5 [top panels of Figures 2.14] two beam-like

deformations are recovered in the VDFs for both positive and negative ve-

locities. On the other hand, at t = 15 [bottom panels of Figures 2.14], a

distinct proton beam is recovered in the distribution function shape in the
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Figure 2.13: Three-dimensional iso-surface plot of the VDFs at time t = 7.5 (top
panels) and t = 15 (bottom panels), where ε is maximum. Left column refers to
RUN 3, while right column indicates RUN 4.
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Figure 2.14: 2D iso-surface plot of the VDFs at time t = 7.5 (top panels) and t = 15
(bottom panels), where ε is maximum and in the plane uB − −u⊥B. Left column
refers to RUN 3, while right column indicates RUN 4.
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direction parallel to B. Beam velocities {vb ≃ 1.1 for RUN 3 [panel (c)] and

vb ≃ 1.5 for RUN 4 [panel (d)]} are in good agreement with the linear theory

values for the KAWs parallel group velocities presented in Tables 2.2–2.3,

suggesting particle resonances with this kind of waves.

2.4 Discussion

In this chapter we have studied the evolution of an initial Alfvénic per-

turbation propagating in an inhomogeneous equilibrium pressure-balanced

structure, in which the equilibrium quantities vary in a direction (y) per-

pendicular to the magnetic field B(0) orientation. Dispersive and kinetic

effects have been included using a HMHD and a HVM numerical model,

respectively. The same problem has been already studied (Vásconez et al.,

2015) in a particular case in which the initial perturbation wavevector k0 is

parallel to B(0) and the initial polarization is perpenducular both to B(0)

and to the inhomogeneity y direction. In the present paper we have gener-

alized the results of Vásconez et al. (2015), considering two different initial

conditions: in the first case (in-plane B(0)), k0 is parallel to B(0), but the

polarization is along the inhomogeneity direction; in the second case (out-of-

plane B(0)), k0 is at an angle θ = π/4 with B(0), and the wave is polarized

in the direction perpendicular to both k0 and B(0), which coincides with

the inhomogeneity y direction. Both configurations are inherently different

from that considered by Vásconez et al. (2015); in fact, during the time

evolution, the coupling between the perturbation and the background inho-

mogeneity makes the local wavevector k to increase and rotate toward the y

direction. Then, in both cases here considered, the initial polarization is no

longer perpendicular to k with increasing time. This generates compressive

fluctuations in the shear regions, whose amplitude is of the same order as
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the initial Alfvénic perturbation. In constrast, in the case considered by

Vásconez et al. (2015), the polarization remains perpendicular to k, i.e.,

the perturbation remains non-compressive, at least until the wavevector k

becomes large enough to make dispersive effects no longer neglibible.

In the Vásconez et al. (2015) configuration, the results have shown that

in the shear regions the initial Alfvén wave is subject to phase-mixing that

gradually transform such a perturbation into a KAW. One of the aims of

this study is to verify whether KAWs are generated also in the new con-

sidered configurations. In the in-plane B(0) case, no phase-mixing has been

found, similar to what observed in a purely MHD case (Malara et al., 1996);

nevertheless, we have found the formation of KAWs in the shear regions.

KAWs have been identified both comparing their propagation velocity with

the group velocity of dispersive modes, and by considering their polariza-

tion. However, the transverse wavelength λ⊥ of these perturbations is of

the order of the shear layer width 2πh ∼ 1, i.e., it is slightly larger than

those found in Vásconez et al. (2015). This indicates that a coupling be-

tween the initial wave and the background inhomogeneity, different from

phase-mixing, is responsible for the KAW formation in this case. In our

simulations the proton inertial length is dp = 0.125 (in normalized units), so

that k⊥dp = 2πdp/λ⊥ ∼ dp/h ≃ 0.6, so that the perpendicular wavelength is

comparable with dp; this explains why dispersive effects, which characterize

KAWs, play a major role in the observed dynamics. However, in a case

where the proton inertial length were much smaller than the shear width,

it remains unclear whether KAWs would form in the in-plane B(0) config-

uration. In the out-of-plane B(0) case, we observed that the perturbation

is subject to phase-mixing, which generates fluctuations in the shear layers

at scales even smaller than the shear layer width. Also in this case, such
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flucuations have been identified as KAWs. The most general initial config-

uration for a linearly polarized Alfvén wave can be considered as a linear

combination of the three case here discussed. Then, we conclude that when

an Alfén wave propagates in transverse inhomogeneous structures, KAWs

are eventually produced regardless of the initial wave polarization and of

the propagation angle θ.

The large-amplitude simulations performed by the HVM model have

shown that at KAW locations the ion distribution function is progressively

modified with respect to the initial Maxwellian. Temperature anisotropies

are generated, with T|| > T⊥ or the reverse, according to the phase of the

KAW. The shape of the distribution function reveals resonant wave-particle

interactions. At locations where T|| is particularly large, a beam of ions

moving along the magnetic field in the propagation direction of the initial

wave is observed.

These results have been derived within a simplified context, where it

is possible to distinguish between a single well-defined wave an the inho-

mogeneous background. However, some indications about the possibility of

generating KAWs in more complex situations, like in turbulence, can be de-

duced. In fact, the wave-inhomogeneity coupling considered in this study is

of a similar nature as the nonlinear coupling between fluctuations which gen-

erates the turbulent cascade in MHD: the phenomenon we studied is closely

related to the mechanism that favours perpendicular spectral transfer in the

nonlinear cascade (Shebalin et al., 1983). Then, our results give a positive

indication about the possibility to generate KAW-like fluctuations at proton

scales within a turbulent cascade, as suggested by solar wind observations

(Bale et al., 2005; Sahraoui et al., 2012).
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Chapter 3

Particle dynamics in RMHD

decaying turbulence

The heliospheric plasma is not in thermodynamic equilibrium. It is in fact

populated by suprathermal particles whose energies are sometimes even rel-

ativistic. Particle energization in the heliosphere happens for example in the

solar corona during solar flare events, but also in the interplanetary shocks,

near coronal mass ejections, and in planetary magnetosphere. The mech-

anisms responsible for the acceleration of particles are still in debate (see,

e.g., Reames (1999); Verkhoglyadova et al. (2015)). Processes related to

turbulence has been proposed to be contributors to mechanisms that drive

particle acceleration. Turbulence is a phenomena that involves interaction

among structures at different scales with a net energy cascade from larger

to smaller scales. When turbulence is at play the electromagnetic field is

not random in space, but the turbulent dynamics organizes the fluctuations

in coherent structures like magnetic islands, flux tubes and current sheets

(Greco et al., 2009). When a particle encounters one of these current sheets

produced by turbulence, it can be accelerated especially if this current sheet
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is associated with a magnetic island or a flux tube where the particle can be

trapped, and if the electric fields in or near the current sheet are enhanced

by ongoing flux pileup or magnetic reconnection (Ambrosiano et al., 1988).

The latter effect is thought to be particularly important in explosive events

in the corona, such as flares and coronal mass ejections, in which the energy

released is provided by magnetic reconnection. During an event of mag-

netic reconnection magnetic energy is converted into fluid motion and also

to particle acceleration (Priest and Forbes, 2007). In a turbulent medium

many magnetic reconnection events happens in the vicinity of X-points, i.

e. those points where the magnetic field is zero and the magnetic lines near

that point are X shaped (Wan et al., 2013). Another mechanism that can

be responsible for particles acceleration in the corona and in the heliosphere

is the interaction of particles with waves (Hollweg and Isenberg, 2002; Cran-

mer and van Ballegooijen, 2003; Gary & Nishimura, 2004). An example of

such a mechanism has been given in the previous chapter of this thesis where

we have shown that KAW propagating in a plasma can generate a beam of

accelerated particles in the direction parallel to the background magnetic

field. Usually particle acceleration in particle-wave interactions are associ-

ated with resonances phenomena, so in order to have acceleration the typical

spatial and time scale of variation of particle motion, like gyroradius and

gyroperiod, have to be comparable to the scale of variation of the waves.

This two mechanism, turbulence and waves, are not in contradiction to one

another; they coexist and can both contribute to acceleration.

The mechanism for acceleration proposed in the present section is related

to turbulence. We present results from test particle simulations in a 3D

reduced version of magnetohydrodynamics in a plasma where turbulence

activity is started by large scale perturbation present at the initial time and
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then decays in time. When turbulence has evolved and formed coherent

structures particles are placed in the system and their trajectory is then

followed for a few non linear times during which the turbulence continues

to evolve and decay.

First we describe the reduced MHD model and simulations and how to

use results from this model in test particle simulations. Then we describe

the set up of test particle simulations and we show preliminary results on

energization, particle velocity distribution function and the influence that

the Reynolds number of the fluid model considered can have on particle

acceleration. Finally we discuss the results obtained and compare them to

previous works.

3.1 From Reduced MHD to test particle simula-

tions

Many heliospheric plasmas, for example solar corona, are permeated by a

strong large scale magnetic field. In this kind of plasmas, in which the tur-

bulence can be considered quasi-2D, the parallel gradients of the turbulent

fluctuations with respect to the background magnetic field are small com-

pared to the perpendicular gradients. In such a physical situation a good

description of the dynamics has been proposed to be a reduced version of

classical Magnetohydrodynamics (MHD) called Reduced MHD (RMHD).

The RMHD model has been widely studied theoretically (Strauss, 1976;

Montgomery, 1982; Zank and Matthaeus, 1992) and applied to the study

of coronal heating in open fieldline regions (Oughton et al., 2001) and in

coronal loops dynamics (Rappazzo et al., 2007, 2008). In order to derive

RMHD equations one has to make the following assumptions. The back-
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ground magnetic field is homogeneous and its intensity is much stronger

than the intensity of turbulent fluctuations, the typical scale of variation of

the fluctuations in the direction parallel to the background magnetic field

is much larger than the parallel scale. Furthermore only low frequency dy-

namics is considered and therefore magnetosonic activity is eliminated by

suppressing fluctuations with polarization parallel to the background field;

therefore in the leading order the plasma is incompressible. If we suppose

that the strong guide field B0 is directed in the z direction, the RMHD

equations in non dimensional form read:

∂V̄

∂t
+
(

V̄ · ∇
)

V̄ = −∇P +
(

B̄ · ∇
)

B̄+ ca
∂B̄

∂z
+

1

Re
∇2V̄ (3.1)

∂B̄

∂t
+
(

V̄ · ∇
)

B̄ =
(

B̄ · ∇
)

V̄ + ca
∂V̄

∂z
+

1

Rem
∇2B̄ (3.2)

∇ · V̄ = ∇ · B̄ = 0 (3.3)

where B̄ is the magnetic field normalized to a typical value of magnetic

field fluctuation δb, V̄ is the fluid velocity normalized to the typical value of

velocity fluctuations δv, P is the sum of the magnetic and kinetic pressure

normalized to δb2, cA is the Alfvén velocity normalized to δb/
√
4πρ0 (where

ρ0 is the plasma mass density), lengths are normalized to a typical length

in the direction perpendicular to the background magnetic field L⊥, t is

normalized to the non linear time tnl = L⊥/δv. Moreover, the gradients and

Laplacian in Equation (3.1)-(3.3) are directed in the xy plane, along with

the fluctuating components of the magnetic and velocity fields. (Recall that

magnetic and velocity fluctuations directed in the parallel direction would

represent magnetosonic activity). Finally, Re and Rem are the kinetic and
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magnetic Reynolds numbers given by:

Re =
ρ0L⊥δv

ν
, Rem =

4πL⊥δv

ηc2
(3.4)

where ν is the dynamic viscosity and η is the resistivity. In Equations (3.1)-

(3.3) the magnetic field and velocity field have the form:

B̄(x, y, z, t) = B0 + b = (bx, by, B0) (3.5)

and

V̄(x, y, z, t) = (Vx,Vy, 0). (3.6)

where B0 is the magnitude of the guiding field and bx, by and vx, vy are

the magnetic and velocity fluctuations in the perpendicular direction. An

important parameter in RMHD is the Kubo number K defined as:

K =
δb

B0

L‖

L⊥
(3.7)

where L‖ is the typical scale in the parallel direction and the relation L‖ ≫

L⊥ holds (for further discussion of the role of Kubo number see, e.g., Shalchi

(2015)). In the cases we are going to consider the Kubo number is set equal

to 1.

Test particle simulations consist of evolving the trajectory of a charged

particle in an electromagnetic field, solving the Lorentz equations, here re-

ported in cgs units:

dr

dt
= v, (3.8)

dv

dt
=

q

m

(v

c
×B+E

)

. (3.9)

Here r(t) is the particle position at time t, v(t) is particle velocity at time
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t, q is the particle charge, m is the particle mass, B(r(t), t) and E(r(t), t)

are the magnetic and electric field, and c is the speed of light. In order

to solve Equations (3.8)-(3.9) the electric and magnetic field have to be

provided externally in some way. One way is using a synthetic model that

defines the fields at each time and position. An example of this approach

can be found in the next chapter of this thesis. The other possibility is to

use data from numerical simulations defined on a spatial and temporal grid.

This approach has been widely used in literature both using data obtained in

MHD simulations (Ambrosiano et al., 1988; Dmitruk et al., 2003a; Turkmani

et al., 2005) and RMHD data (Dalena et al., 2014). Since simulations data

are usually defined on a spatial grid and represented in discrete time steps,

in a test particle code the values of these fields have to be interpolated in

space and time in order to get the actual values of E and B at r(t) at time t.

Another crucial operation is to translate the value of the field coming from

simulation, and so defined in certain “code units”, to the units of the test

particle code. How we did the last operation is explained in the following.

First of all the expression of the electric field in RMHD, in dimensional form,

is:

E(x, y, z, t) = −V×B

c
+ ηJ, (3.10)

where η is the resistivity, and J = c
4π∇ × B is the current. This makes

Equation (3.9) become:

dv

dt
=

q

m

(

v

c
×B− V ×B

c
+ ηJ

)

. (3.11)

Then we normalized the dimensional quantities using RMHD normalization

quantities in the following way: v = δvṽ, b = δbb̃, t = tnl t̃, J = δb/(L⊥c)J̃

and η = L⊥δv/c
2η̃, where all “∼” values represent now variables written in
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the test particle code unit. Substituting in the Lorentz Equations we get:

L⊥
L⊥

δv

dr̃

dt̃
= δvṽ, (3.12)

δv2

L⊥

dv

dt
=

q δb δv

mc

(

ṽ × b̃− Ṽ × B̃+ η̃J̃
)

. (3.13)

Simplifying common factors and dropping the “∼” yields to two simple

nondimensional equations:

dr

dt
= v, (3.14)

dv

dt
= α (v ×B−V ×B+ ηJ) , (3.15)

with

α =
q δb L⊥

m c δv
. (3.16)

Using the relation δb/B0 = δv/vA, which is true for purely Alfvénic fluctu-

ation, and approximately true for RMHD, it is possible to write α in this

way:

α =
L⊥

dp
,

where dp = (qB0/mc)vA is the ion inertial length. Consequently α in a

turbulence picture is a parameter that measures the ratio between the large

scale where energy is injected and the small scale where energy is dissipated.

If coronal parameter are used α ≃ 105. Such a broad band scale resolution

is not achievable in numerical simulations, so using such a value of α in our

simulation would not be consistent with the turbulence RMHD model. In

order to be consistent with the RMHD simulations we identify the dissipa-

tion scale in the RMHD model with dp. When turbulence is present, then

one can therefore relate the ion inertial scale and energy containing scale to
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the Reynolds number (Matthaeus et al., 2005) using the relation

dp = L⊥Re−3/4,

and consequently one finds that

α = Re3/4.

In this way we obtained an expression for α that depends only on the RMHD

Reynolds number and scales with the resolution of RMHD simulations. In

the next section we present briefly the RMHD simulations from which mag-

netic and electric field data are obtained and then we display all the results

related to the test particle simulations performed.

3.2 Numerical simulations and results

The initial conditions of RMHD simulations are set in order to generate a

turbulent cascade. Large scale modes are superposed to the background

magnetic field at the beginning. At t = 0 the typical mean square val-

ues of velocity and magnetic fluctuations are v2 = b2 = 1 with a cross

helicity σc = 0.015. Excited wavevectors have 4 ≤ k⊥ ≤ 15 with approx-

imately equal energy in each kz, where k⊥ and kz are the wavevectors in

perpendicular and parallel direction, respectively. The initial values of kz

go from 0 to 5. The spectrum knee due to this fluctuations is at k0 = 6 with

an asymptotic high-k slope q = −2.333. Periodic conditions are imposed

at the boundaries, the computational domain in test particle code unit is

D(x, y, z) = [0, 2π] × [0, 2π] × [0, 20π], and the background magnetic field

intensity is B0 = 10. The spectral magnetic and kinetic energy is the same
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for each mode and the modes have random phases. In less than one non lin-

ear time turbulence develops in the computational domain forming coherent

structures like current sheets, then as the time passes, these structures are

dissipated by resistivity. There is no external forcing applied on the plasma;

rather the energy is supplied only by the initial perturbation. We used data

from different simulations where we changed the Reynolds number keeping

the same large scale configuration at the beginning. The number of grid

points used along with Reynolds numbers and corresponding α are reported

in Table 3.1. We used data sampled from RMHD simulation with a time

nx ny nz η, ν Re α

256 256 128 5× 10−3 200 53.18

512 512 256 2.2 × 10−3 454.54 98.44

1024 1024 256 1.2 × 10−3 833.33 155.10

Table 3.1: Number of point and Reynolds numbers in RHMD simulations, and
corresponding α value is test particle simulation.

spacing of 0.1 non linear time. 105 particles are injected at time t = 0.5

when turbulence is at play and their trajectories are followed for 3 non lin-

ear times up to t = 3.5. The particles are placed in random position with a

specified initial speed and random directions. We performed runs for initial

speed vi = 0, vi = 1 (the typical turbulent velocity), vi = 10 (the typical

Alfvén velocity) and vi = 100. Electric and magnetic field are interpolated

in space and linearly interpolated in time. The time step is chosen in order

to resolve the particle gyromotion along the background magnetic field. We

first present results obtained for simulations with the smallest values of α,

i.e. α = 53.18. These results do not change qualitatively, for the values of

α used in this work, when the value of α is changed. The effects of vary-

ing α are discussed later. In Figure 3.1 the PDFs of the particle energies

are plotted for a selection of times, for cases with different initial particle
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Figure 3.1: Energy PDFs at different times, for different initial velocities: vi = 0
(top left), vi = 1 (top right), vi = 10 (bottom left), vi = 100 (bottom right).

speeds. We can see that for every initial condition, particles are energized.

This effect is more evident when the initial velocity is small. In Figure 3.2

the PDF of perpendicular velocity are shown. If we look at the case when

vi = 0, we can see that the width of the PDF of particle velocity in the

perpendicular directions shrinks as time goes on. This effect even if less

evident, because of the larger initial velocity, is present also in the other

cases. We will try to give an explanation to that later. The evolution of

parallel velocity PDFs, showed in Figure 3.3 is completely different. As the

time goes on the tail of the parallel velocity PDFs extend to larger values

for both positive and negative velocities. We believe that this behavior is
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Figure 3.2: Perpendicular velocity (x-direction) PDFs at different times, for differ-
ent initial velocities: vi = 0 (top left), vi = 1 (top right), vi = 10 (bottom left),
vi = 100 (bottom right).

due to the parallel electric field given by current sheets that can accelerate

particles in both directions depending on the sign of the current. This effect

is less evident when the initial velocity is larger. This is due to the fact

that particle with larger velocities cannot stay on a current sheet for a long

period, because they are fast, and so they interact with current sheets for a

very short time, and because their Larmor radius is large compared to the

typical current sheet thickness. The fact that particle are accelerated more

in parallel than in perpendicular direction is confirmed by Figure 3.4. In

Figure 3.4 the 1% most energetic particles distribution functions are plotted

for different times for each different initial conditions. We can see that the
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Figure 3.3: Parallel velocity PDFs at different times, for different initial velocities:
vi = 0 (top left), vi = 1 (top right), vi = 10 (bottom left), vi = 100 (bottom right).

distribution functions are elongated in the direction of the parallel velocity

when the initial speed is small compared to the Alfvén speed, in the other

two cases they are more isotropic, but none of the most energetic particles

is found to have a small parallel velocity. We can also see that as time goes

on the distribution function, especially when the initial speed is low, moves

to higher values of v‖ without expanding in v⊥. The effect of varying α is

showed in Figure 3.5 where the average energy per particle in function of

time is plotted. We can see that when α is bigger particles are more ener-

gized on average. This result is interesting because when α becomes bigger

the Reynolds number is increasing and the resistivity is decreasing. One of
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Figure 3.4: Velocity distribution function of the 1% most energetic particles at
different times, for different initial velocities: vi = 0 (top left), vi = 1 (top right),
vi = 10 (bottom left), vi = 100 (bottom right).

the limitation of our model is, in fact, that the value of resistivity, that is

related to the Reynolds number, is very far from the physical values that

one can find for example in solar corona. This non physical resistivity can

be responsible for non realistic parallel acceleration. In our case even if the

resistivity becomes lower the average energization increases. We have also to

say that this bigger energization does not happen in the same physical time

since the non linear times increases with α. It is interesting also to focus on

energization at the very initial time. The observed oscillating behavior of

Figure 3.5 is zoomed in Figure 3.6, for the case vi = 0 (the other cases show

the same behavior). We can see how the average energy oscillates between
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Figure 3.5: Average particle kinetic energy in function of time for α = 53.18 (red),
98.44 (green), and 155.10 (blue).

< E >= 0 and < E >= 0.8. This happens because when particle are placed

in the system they are immediately affected by the E×B drift, where

E⊥ ≈ −V ×B (3.17)

is the inductive electric field associated with RMHD dynamical activity, and

B is, at the leading order, the background magnetic field. The drift velocity

is given by:

vd =
E⊥ ×B

B2
(3.18)
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Figure 3.6: Particle avarage energy during the pick-up process.

and the energy associated to the drift is Ed = δv2/2, that is comparable to

the average of the two values between which the energy oscillates. Moreover

the period of energy oscillation is the same of the typical particle gyroperiod

and this confirms that E × B drift is actually at play. When the particles

start gyrating their phases are coherent, but eventually after half non linear

time this coherency is lost and energy starts growing without oscillating.

The E×B can be responsible for the shape of perpendicular velocity PDF.

In fact if these PDF are due to the drift the reason why they shrink can be

explained by the decaying of turbulent fluctuation amplitudes. In order to

evaluate how much energy, not due to the initial pick-up process, is gained on

average by a particle we plotted in Figure 3.7 the gained energy < ∆E(t) >

defined as:

< ∆E(t) >=< E(t) >T −Ed − Ei

where Ed is the energy associated to the drift and Ei is the initial energy.

Particle with smaller initial speed are on average more energized and this is
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Figure 3.7

in accordance with what we said previously about the weaker interaction of

faster particles with current sheets. Finally in Figure 3.8, the average power

transferred to a single particle averaged on the last non linear time is plotted

in function of α. Also this quantity increases with increasing α suggests that

larger systems will more greatly energize particles. The important question,

concerning how this increased energization scales to very large, physically

relevant astrophysical systems, will be more deeply investigated in future

works.
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Figure 3.8: Average power transferred to a single particle averaged on the last non
linear time (2.5 ≤ t ≤ 3.5 for α = 53.18 (red), 98.44 (green), and 155.10 (blue)).

3.3 Discussion

The preliminary results of this work on particle acceleration in 3D RMHD

decaying turbulence have shown that particles are preferentially accelerated

in the parallel direction. This phenomenon is due to the presence of current

sheets where a strong electric field parallel to the background magnetic field

B0 is present. Particles with an higher initial velocity, that also have a bigger

Larmor radius, weakly interact with these coherent structures and are less

energized on average. When particles are injected in the system they are

immediately subject to a drift caused by the electric field perpendicular to

B0 given by the turbulent perpendicular fluctuations. The energy associated
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to this drift is of the order of the fluctuations energy. The pick-up process

makes particle gyrating in phase at the very initial times, then this coherent

phenomenon vanish because of the electric field change in space and time.

The E × B drift shapes the PDF of perpendicular velocity. We considered

also the effect of varying the Reynolds number. As we showed previously,

Reynolds number is connected to the value of α, the constant appearing in

the rhs in Equation 3.15, by the Equation

α = Re3/4. (3.19)

An increasing Reynolds number means an increasing α. If we suppose that

in our experiment the same particle are considered, and so q/m is fixed,

and that the typical level of fluctuations considered δv and δb are kept the

same for each RMHD numerical experiment, the value of α depends only

on the box size. The results of our test particle numerical simulations show

that particles are more energized in bigger boxes in time comparable to the

typical system non linear times. It is also important to notice that when α

increases resistivity goes down, approaching a more realistic physical value.

We have also shown that the average power transferred to particles increases

with α. It is interesting to compare our results with the results obtained

by Dmitruk et al. (2004). In that work numerical experiments of test par-

ticle energization in turbulent magnetic and electric fields obtained from

pseudospectral direct numerical solutions of compressible three-dimensional

MHD equations with a strong background magnetic field were presented.

The authors found that in the configuration considered electrons were more

accelerated in the parallel directions and protons in the perpendicular di-

rection. The second of these results seems to be in contrast to what was
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found in the numerical experiments here presented. The two configuration,

our and the one from Dmitruk et al. (2004), are somewhat similar from a

physical point of view, since a strong background magnetic field is present

in both cases. Nevertheless there are differences that can play an important

role. The first one is that in our case electric and magnetic field are changing

in time, while instead, in Dmitruk et al. (2004), a static field is considered.

Another important feature that makes our case different from the other is

that in RMHD approximations the effect of compressibility is completely

ruled out. This effect is instead present in a full MHD model, along with

the presence of fluctuations in the direction parallel to B0. The different

results found in the two cases may well be specifically associated with one

of these differences in the models; however, the clarification and validation

of this hypothesis will be left to future work on this problem.

114



Chapter 4

Particle diffusion in synthetic

turbulence

The transport of energetic particles in the heliosphere and in solar plasmas

where turbulence is present is an important but difficult problem of astro-

physics. Understanding transport is relevant for electron transport in solar

coronal loops (Galloway et al., 2006), for particle transport parallel to the

magnetic field in the solar wind, where regimes ranging from scatter free (or

ballistic) to diffusive (determinated by pitch angle diffusion) are reported

(Lin, 1974; Dalla et al., 2003; Zhang et al., 2003; McKibben, 2005; Perri and

Zimbardo, 2007, 2009), and for the transport and the acceleration of cosmic

rays, which sensitively depends on the “diffusion” induced by turbulence

(Duffy et al., 1995; Perri and Zimbardo, 2012a; Zimbardo and Perri, 2013;

Lazarian and Yan, 2014).

In this chapter we concentrate on transport induced by magnetic turbu-

lence: this is one of the main factors influencing energetic particle transport

in astrophysical plasmas. Basically, magnetic fluctuations give rise to a ran-

dom walk of magnetic field lines which causes the cross field transport of
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plasma particles, and, for the strong fluctuation levels and large Larmor radii

found in astrophysical plasma, to non adiabatic changes of parallel velocity

corresponding to pitch angle diffusion. Many studies have addressed these

issues, both from the theoretical (Giacalone and Jokipii, 1999; Pommois et

al., 2001; Teufel and Schlickeiser, 2002; Matthaeus et al., 2003; Shalchi et

al., 2004) and from the observational point of view (Reames, 1999; Mazur

et al., 2000) but a clear understanding is still lacking.

A large number of numerical studies has been devoted to the calculation

of particle diffusion coefficients Di (i = x, y, z), both for transport paral-

lel and perpendicular to the average magnetic field (Giacalone and Jokipii,

1999; Casse et al., 2001). Anomalous, non Gaussian regimes which encom-

pass a nonlinear scaling with time of the mean square deviation are also pos-

sible (Zimbardo, 2005; Zimbardo et al., 2006; Pommois et al., 2007; Shalchi

and Kourakis, 2007). In the case of low frequency, long wavelength, magnetic

turbulence, the possibility has also been considered of subdiffusive perpen-

dicular transport due to particles retracing their trajectories after collisions

or pitch angle diffusion (Rechester and Rosenbluth, 1978; Kota and Jokipii,

2000; Shalchi, 2010). This process, called compound diffusion, is essentially

non-Markovian (Kota and Jokipii, 2000), due to the memory effect induced

by tracing backwards the (magnetostatic) field lines, and corresponding to

an anticorrelation of perpendicular particle motion.

Several parameters can influence the transport regime of energetic par-

ticles, like the turbulence level δB/B0, the extension of the turbulence spec-

trum, the anisotropy of turbulence, and the ratio between the particle Lar-

mor radius RL and the turbulence correlation length lc. In recent years, it

has been shown that solar wind turbulence is very intermittent, too. Indeed,

intermittency is one of the most typical properties of the turbulent energy
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cascade, and it manifests itself as highly localized and intense magnetic

field fluctuations with magnitude distributed according to a power law. In

the present work we present a new numerical code where, beside the other

parameters, the level of intermittency can also be tuned, and perform a nu-

merical effort in order to understand what is the influence of the length of

the turbulence spectrum, of the turbulence intermittency, and of δB/B0 on

the transport regimes.

4.1 Synthetic turbulence model

In our problem, the largest scale can be assumed as the correlation length in

the solar wind turbulence lmax = lc ∼ 5× 106 km. To include the energetic

proton Larmor radius RL within the range of spatial scales, the condition

ξ > 1/ρ should be satisfied, where ξ = lmax/lmin is the largest to smallest

scale ratio, referred to as spectral width, and ρ = RL/lmax is the rigidity

parameter. In particular, RL = mpcv/(eB) ∼ 2×104 km, corresponding to a

rigidity parameter value ρ = RL/lmax ∼ 4×10−3. Thus, the above condition

implies a spectral width between two and three decades (ξ > 250).

A representation of the turbulent magnetic field can be derived from the

numerical solution of the MHD equations. This approach has the advantage

of being based on first principles. However, in the most performant 3-D

MHD simulations the spectral width ξ is of the order of 103. Then, studies

of test particle diffusion based on numerical simulations with a realistic ex-

tention of the spatial scale range would require high-resolution 3-D samples,

obtained with big computational efforts and large computing resources. For

these reasons, it can be useful to adopt different approaches, referred to

as ”synthetic turbulence”, which give a description of a turbulent magnetic

field as realistic as possible, but with much lower computational effort than
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direct simulations. A simple method to obtain a fluctuating magnetic field

B is to superpose Fourier harmonics with a prescribed spectrum, random

phases and with a polarization such as to satisfy the condition ∇ · B = 0

(Casse et al., 2001; Pommois et al., 2001, 2007). Since a regular grid in the

wavevector space is employed, the number Nh of Fourier harmonics is pro-

portional to ξ3. For instance, in Zimbardo et al. (2006) up to Nh = 220.000

harmonics where used, corresponding to ξ = 12. This value is still too low

for a realistic extention of the spectral range. Moreover, the randomness

of phases does not allow to describe effects due to coherent interactions in

turbulence, such as intermittency, i.e., the presence of strong localized fluc-

tuations at small scales. In principle, intermittency could have an effect on

particle diffusion.

Juneja et al. (1994) proposed a ”wavelet-based” synthetic turbulence

model which produces a function with the statistical properties of a signal

measured along a line in a turbulent field; in particular, intermittency is

reproduced. A generalization in 3D of the model by Juneja et al. (1994) has

been proposed by Cametti et al. (1998); however, it suffers for strong limita-

tions due to large memory requirements when increasing the spectral width

ξ. In the present work we use a 3D model which has many aspects similar

as in the model by Cametti et al. (1998), but with important differences.

In particular, we employ a different algorithm which allows us to reproduce

very large spectral widths (up to ξ ∼ 105) with very low memory require-

ments and short computation times. In the following we outline the main

features and properties of our synthetic turbulence model (STM); a more

detailed description and discussion will be presented elsewhere (Malara &

Sorriso-Valvo, paper in preparation).

The turbulence phenomenology includes an energy cascade, in which the
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energy is trasferred from large to smaller scales due to nonlinear effects. In

our STM we consider a 3D spatial domain in form of a parallelepiped D =

{(x, y, z)} = [0, Lx]× [0, Ly]× [0, Lz ], where a periodic solenoidal turbulent

field B = (Bx, By, Bz) is defined. To simulate the turbulent cascade, a

hierarchy of cells is built at different spatial scales: at the largest scale

ℓ0 we have only one cell, which coincide with the whole domain D; thus,

the corresponding typical size is ℓ0 = (LxLyLz)
1/3. The cells relative to the

next scale ℓ1 are obtained by dividing the sides of D in two equal parts, thus

obtaining eight equal parallelepipeds, each occupying 1/8 of the volume V0 of

D. Such a process is recursively repeated a number Ns of times, where Ns is

the number of scales considered in the model; thus, at the scale ℓm = 2−mℓ0

(m = 0, . . . Ns) we have 23m cells, each occupying a volume Vm = 2−3mV0.

All the cells at any given scale ℓm form a 3D lattice filling the whole domain

D. We indicate the cells by

C(i,j,k;m) = {(x, y, z)} =

[

(i− 1)
Lx

2m
, i
Lx

2m

]

×
[

(j − 1)
Ly

2m
, j

Ly

2m

]

×
[

(k − 1)
Lz

2m
, k

Lz

2m

]

(4.1)

where m = 0, . . . , Ns identifies the scale ℓm; hereafter the indexes i, j, k =

1, . . . , 2m will identify the cell position within the 3D lattice at the m-th

scale. The smallest scale is ℓNs = 2−Nsℓ0. For instance, using Ns = 16 we

have a spectral width ξ = ℓ0/ℓNs = 216 ≃ 6.5× 104, while the total number

of cells is

Ncell =

Ns
∑

m=0

23m ≃ 3× 1014 (4.2)

The turbulent field is modelled as a superposition of spatially-localized ed-

dies. Each eddy is associated with a cell, so the total number of eddies

concides with Ncell. We indicate by δB(i,j,k;m) the field of the eddy associ-
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ated with the cell C(i,j,k;m). Since the field is solenoidal, we write it in the

form δB(i,j,k;m) = ∇ × A(i,j,k;m). Both δB(i,j,k;m) and the vector potential

A(i,j,k;m)(x, y, z) are defined in the subdomain

D(i,j,k;m) = {(x, y, z)} =

[(

i− 3

2

)

Lx

2m
,

(

i+
1

2

)

Lx

2m

]

×
[(

j − 3

2

)

Ly

2m
,

(

j +
1

2

)

Ly

2m

]

× (4.3)

[(

k − 3

2

)

Lz

2m
,

(

k +
1

2

)

Lz

2m

]

and are vanishing outside D(i,j,k;m). Comparing Equations (4.1) and (4.3)

we see that the subdomain D(i,j,k;m) is wider than the corresponding cell

C(i,j,k;m) by a factor 2 along each space direction. Thus, the fields of adjacent

cells partially overlap. Indeed, if D(i,j,k;m) and C(i,j,k;m) were coincident,

the fluctuating field at a given scale would vanish at any surface border of

adjacent cells. Thus, eddy overlapping is implemented in order to obtain

a statistically homogeneous fluctuating field. Within a given subdomain

D(i,j,k;m) a set of linearly rescaled local spatial coordinates are defined by

the relations:

X(i;m) = X(i;m)(x) =
2m−1

Lx

[

x−
(

i− 1

2

)

Lx

2m

]

Y (j;m) = Y (j;m)(y) =
2m−1

Ly

[

y −
(

j − 1

2

)

Ly

2m

]

(4.4)

Z(k;m) = Z(k;m)(z) =
2m−1

Lz

[

z −
(

k − 1

2

)

Lz

2m

]

The origin (X(i;m), Y (j;m), Z(k;m)) = (0, 0, 0) of rescaled coordinates corre-

sponds to the center of the subdomain D(i,j,k;m), while each rescaled coordi-

nate varies in the interval [−1/2, 1/2] when the point (x, y, z) varies inside

D(i,j,k;m).
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The explicit form of the vector potential is given in terms of the rescaled

coordinates in the following form

A(i,j,k;m)(x, y, z) = a(i,j,k;m)F (ξ)F (η)F (ζ) (4.5)

where a(i,j,k;m) is the eddy amplitude and F (t) is a polynomial function

which determines the spatial profile of the eddy. We used the form:

F (t) = 256t8 − 256t6 + 96t4 − 16t2 + 1 , for − 1

2
≤ t ≤ 1

2

F (t) = 0 , elsewhere

The function F (t) has one single maximum at t = 0 (F (0) = 1) and vanishes

with its derivatives up to the 4-th order at t = ±1/2. Then, it represents

a localized eddy which matches with neighbouring eddies with continuous

derivatives up to the 4-th order. The variables ξ, η and ζ are related to the

rescaled coordinates by the nonlinear relations:

ξ = X(i;m) + α(i,j,k;m)
x

(

X(i;m)2 − 1

4

)

η = Y (j;m) + α(i,j,k;m)
y

(

Y (j;m)2 − 1

4

)

(4.6)

ζ = Z(k;m) + α(i,j,k;m)
z

(

Z(k;m)2 − 1

4

)

where α
(i,j,k;m)
x , α

(i,j,k;m)
y , α

(i,j,k;m)
z are constants which are randomly chosen

in the interval [−1, 1]. The nonlinear mapping (4.6) introduces a distortion

in the spatial profile of the eddy along the three spatial directions, whose

entity is determined by the three random numbers α
(i,j,k;m)
x , α

(i,j,k;m)
y and

α
(i,j,k;m)
z . This effect has been introduced in order to improve the statis-

tical homogeneity of the fluctuating field. Note that the above regularity
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properties of the vector potential are preserved by the mapping (4.6).

The amplitudes a(i,j,k;m) of the eddies are determined considering the

phenomenology of the turbulent cascade. In a stationary situation, the

mean energy transfer rate 〈ǫ〉 at a given spatial scale ℓ is independent of ℓ

(Kolmogorov, 1941), angular parentheses indicating a spatial average. As-

suming 〈ǫ〉 ∼ [δB(ℓ)]3/ℓ, implies that the mean fluctuation at the scale ℓ

is δB(ℓ) ∝ ℓ1/3. This scaling law corresponds to the Kolmogorov spec-

trum, where the spectral energy density e(k) ∝ k−5/3. However, the energy

transfer rate ǫ is not spatially uniform, but can change from place to place

according to the effectiveness of nonlinear couplings (Kolmogorov, 1962).

As a result, the amplitude of fluctuations is not spatially uniform, but fluc-

tuations stronger than the average value 〈δB(ℓ)〉 form, which are separated

by regions where fluctuations are weaker. This feature propagates to smaller

scales through a multiplicative process, becoming more and more relevant

with decreasing ℓ. Thus, at the smallest scale the field is characterized by

very strong and localized fluctuations with wide ”quiet” regions in between:

this is the phenomenology of intermittency.

In our STM such a process is modelled as in the ”p-model” by Menevau

& Sreenivasan (1987), where p is a fixed parameter chosen in the interval

[1/2, 1]. Energy flows from large to smaller eddies with an unequal rate ǫ:

each ”parent” eddy at a scale ℓm gives energy to its eight ”daughter” eddies

at the scale ℓm+1 with two possible rates; namely, ǫm+1 = 2pǫm ≥ ǫm for four

daughter eddies and ǫm+1 = 2(1−p)ǫm ≤ ǫm for the remaining four daughter

eddies. For p = 1/2 we have ǫm+1 = ǫm, i.e., the rate ǫ is equal at all

the scales and positions; this corresponds to a non-intermittent fluctuating

field. With increasing p above the value 1/2, differences between the rates

increase and the level of intermittency increases, as well. In our STM p
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is a free parameter that we use to investigate the effects of intermittency.

More specifically, the transfer rate is recursively determined for the daughter

eddies of the ”(i, j, k;m)” parent eddy by:

ǫm+1,n = 2p ǫm β(i,j,k;m)
n + 2(1− p) ǫm (1− β(i,j,k;m)

n ),

m = 0, . . . , Ns , n = 1, . . . , 8 (4.7)

where β
(i,j,k;m)
n = 1 for four randomly chosen daughters (for instance, n =

3, 5, 7, 8) which receive more energy, while β(i,j,k;m) = 0 for the remaining

four daughters (n = 1, 2, 4, 6) which receive less energy. Finally, the ampli-

tude of any eddy is given by

a(i,j,k;m) = σ(i,j,k;m)a0

[

ǫ
(i,j,k;m)
m

ǫ0

ℓm
ℓ0

]α

(4.8)

where a0 = a(1,1,1;0) and ǫ0 = ǫ(1,1,1;0) are the amplitude and the energy

transfer rate at the largest scale, respectively. The exponent α is related to

the spectral slope: the Kolmogorov spectrum corresponds to α = 1/3. The

quantity σ(i,j,k;m) represents the sign of the eddy and it is randomly chosen

as σ(i,j,k;m) = 1 or σ(i,j,k;m) = −1. In conclusion, the fluctuating field is

given by

B = B0 +

Ns
∑

m=0

2m
∑

i,j,k=1

∇×A(i,j,k;m) (4.9)

where B0 is a uniform component representing a mean field, while A(i,j,k;m)

and related quantities are defined in Equations (4.5)-(4.8).

The quantities A(i,j,k;m) depend only upon a set of randomly determined

parameters; namely: (i) α
(i,j,k;m)
n , which define the distortion of each eddy

(Equation (4.6)) ; (ii) the sign σ(i,j,k;m) of each eddy (Equation (4.8)); (iii)

β
(i,j,k;m)
l which define the energy transfer rate of each eddy in terms of the
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rate of its parent eddy (Equation (4.7)). Such parameters are determined in

the following way: for any given cell an integer l(i,j,k;m) is calculated using

the expression:

l(i,j,k;m) = i+ (j − 1)2m + (k − 1)22m + f(m) (4.10)

where f(m) is defined as follows:

f(m) =















0 if m = 0;
m−1
∑

n=0

23m if m ≥ 1.
(4.11)

It can be verified that the expression (4.10) generates all the integers be-

tween 1 and Ncell, thus defining a one-to-one corrispondence between the

set {1 ≤ l ≤ Ncell, l integer} and the set of cells. In other words, l(i,j,k;m)

represent the absolute address of any cell. The integer l(i,j,k;m) is used as

a seed for a random-number generating routine, which produces the above

parameters (i), (ii) and (iii). We note that the total number Ncell of values

of l(i,j,k;m) is, in practice, extremely high (Equation (4.2)). This ensures a

global randomness of the parameters defining the structure of single eddies.

The evaluation of the field B at a given point P = (x.y, z) would in

principle to be done through the expression (4.9), where the sum on the

RHS includes a number of terms as high an Ncell. However, since each

eddy occupy a finite volume, only a small number Nterm of terms must be

considered in this sum: in particular, these are the terms corresponding to

eddies whose subdomain D(i,j,k;m) contains the point P . Due to the eddy

overlapping, the number of terms to be calculated varies in the interval

Ns ≤ Nterm ≤ 8Ns. For instance, using a number Ns = 16 of scales,

corresponding to a spectral width ξ ≃ 6.5 × 104, the number of terms to
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be considered is not larger than 128. This makes the evaluation of the field

very fast. Moreover, both Nterm and the computation time are proportional

to the number of scales Ns; for instance, increasing Ns by a factor 2 would

increase the spectral range by a factor 2Ns while the computation time

would simply be increased by a factor 2. Another important property of

our STM is that it does not require large memory storage. Indeed, in the

above-described algorithm nothing needs to be kept in memory: each time

the field needs to be calculated at a point P , this is done deducing all the

properties of the Nterm involved eddies directly from their absolute address

l(i,j,k;m). Moreover, the field B has the same regularity properties as that

of single eddies: namely, it is continuous with all space derivatives up to

the 3-rd order. Finally, at variance with other methods, no spatial grids are

involved; on the contrary the field is directly calculated at any spatial point

without any interpolation process.

4.2 Numerical simulations and results

We perform test particle simulations integrating the Lorentz Equations for

the trajectories and velocities of Np = 1000 protons of fixed energy ∼ 1 MeV

using the Boris method as time stepper (Qin et al. (2013), Webb (2014)). In

every simulation the particles are placed with equal speed v = 2× 104 km/s

and random directions and positions inside a cubic box of length L = 4lc,

where lc = 5× 106 km is the solar wind turbulence correlation length. The

magnetic field is computed at each step through the STM described in the

previous section and it has this analytical form:

B(x, y, z) = B0ẑ+ δB(x, y, z)
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where B0 = 10−4G is a constant value and δB(x, y, z) is given by Equation

(4.9) and represents a 3-D isotropic turbulent field with zero mean. In this

configuration we can define the diffusion coefficients parallel and perpendic-

ular to the mean magnetic field as:

D‖(t) =
1

2Npt

Np
∑

i=1

(zi(t)− zi(0))
2 (4.12)

D⊥(t) =
1

2Npt

Np
∑

i=1

(xi(t)− xi(0))
2 + (yi(t)− yi(0))

2 (4.13)

where ri(t) = (xi(t), yi(t), zi(t)) is the position of the i-th particle in function

of time. Through the simulations we would like to investigate how transport

is affected by three different features of the STM: the spectral width, the

amplitude of the turbulence and the level of intermittency. Each of these

is controlled by a single parameter: ξ = lc/lmin controls the spectral width;

η = δB/B0, where δB is the root mean square of the turbulent fluctua-

tion sampled and averaged over the domain, controls the amplitude of the

turbulence; p the p-model parameter controls the level of intermittency.

4.2.1 Varying the spectral width

In the simultations discussed in this section we consider a large ampli-

tude turbulence configuration (η = 1), typical of astrophysical plasmas,

first without intermittency (p = 0.5). We have defined ξ = lc/lmin as the

spectral width and we can vary this parameter varying the smallest scale

of the STM. It is interesting to consider the value of ξ in relation to the

inverse of the ”rigidity” ρ = RL/lmax. To include the energetic proton

Larmor radius RL within the range of spatial scales of the STM spectrum,

the condition ξ > 1/ρ must be satisfied. In particular in our simulation
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RL = mpcv/(eB0) ∼ 2 × 104 km, corresponding to a rigidity parameter

value ρ = RL/lmax ∼ 4 × 10−3. Thus, the above condition implies that for

ξ > 250 the Larmor scale is inside the STM inertial range, and it is out-

side that range for ξ < 250. In Figure 4.1 the diffusion coefficients in the
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Figure 4.1: Parallel and perpendicular diffusion coefficients in function of time for
different spectral width: ξ = 4 (red), ξ = 128 (green), ξ = 256 (blue), ξ = 1024
(purple) and ξ = 16384 (light blue).

direction parallel and perpendicular to the mean magnetic field in function

of time are plotted for different values of ξ. We can notice how the value

of ξ actually affects transport. When the Larmor scale is way smaller than

the smallest scale of the spectrum (ξ = 4) the diffusion is enhanced both in

parallel and in perpendicular direction. In this case (red curve) a regime of

normal diffusion is reached for parallel transport at a time t ∼ 105s, while

subdiffusion is observed in the perpendicular direction for long times. If the

minimum scale approches the Larmor scale both diffusion coefficients be-

come smaller. We observe also that normal diffusion regime in the parallel

direction is reached earlier, at a time t ∼ 103s, and that in the perpendicular

direction normal diffusion is recovered for long times, while a subdiffusive

regime can be identified for 103s < t < 105s (see the discussion below).

Moreover, when the spectrum extends far beyond the Larmor scale the dif-
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fusion coefficients do not change anymore, meaning that all the fluctuations

at a scale smaller than the Larmor radius are averaged over a gyration (pur-

ple and light blue curves), see also (Pommois et al., 2007). In Figure 4.2
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Figure 4.2: PDF of the inversion time τ for different spectral width: ξ = 4 (red),
ξ = 128 (green), ξ = 256 (blue), ξ = 1024 (purple) and ξ = 16384 (light blue) and
power laws linear fits (black).

the PDFs of the inversion time τ , i.e. the elapsed time between two sign

inversion of the pitch angle cosine, are plotted for different ξ. We notice

that for ξ = 4 the inversion times extend up to τ ∼ 105 that is also the time

that needs to reach normal diffusion in the parallel direction. The PDF in

this case has a maximun at τ ∼ 102 and then dicreases with an average

slope ≃ −2.36. All the other cases at higher ξ present similar PDFs of τ .

for these cases it is possible to identify a power law with slope ≃ −1.4 that

has a break at times 102 < τ < 103. We notice that the time of the break

corresponds to the time when the normal diffusion regime sets up in par-

allel transport and it moves to smaller τ as ξ increases. In Figure 4.3 two

samples of the trajectory of a single particle in the case ξ = 4 and ξ = 1024

are shown. The plots are meant to show how trajectories and picth an-

gle scattering change qualitatively when the condition ξ > 1/ρ is satisfied.
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Figure 4.3: Sample of trajectory (red line) and pitch angle scattering sites (green
crosses) for ξ = 4 (left panel) and ξ = 1024 (right panel). In the right panel
the gyration motion is not visible because is small compared to the guiding center
motion.

We selected two samples where multiple events of picth angle scattering are

present. We can see how in the ξ = 4 case (left panel) the particle scatter

due to magnetic mirroring. Instead in the case of ξ = 1024 (right panel)

the pitch angle scattering events are concetrated in particular sites, possibly

associated with magnetic mirroring, too. When a particle encounter one of

this sites goes through multiple pitch angle scattering; it eventually exits

the site and “fly” until it is not trapped again by another site.

4.2.2 Varying the amplitude of the turbulence

In the simulation described in this section we keep the Larmor scale inside

the spectrum setting ξ = 1024 and consider a non intermittent turbulence
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(p = 0.5). The amplitude of the turbulence is controlled by the parameter η,

that is the ratio between the root mean square of the turbulent fluctuations

and the background magnetic field amplitude. In Figure 4.4 parallel and

1019

1020

1021

1022

1 10 102 103 104 105 106

D
|| 

(c
m

2 /s
)

t(s)

1018

1019

1 10 102 103 104 105 106

D
⊥

 (
cm

2 /s
)

t(s)

Figure 4.4: Parallel and perpendicular diffusion coefficients in function for different
level of the turbulence: η = 1.0 (red), η = 0.75 (green), η = 0.5 (blue), η = 0.2
(purple).

perpendicular diffusion coefficients as a function of time are shown for dif-

ferent η. In every case a diffusive regime is eventually reached in the parallel

direction. We have to notice that this happens the later when the level of the

turbulence is the lower. The asymptotic value of the coefficient descreases

when η increase meaning that strong turbulence reduces parallel transport.

In the perpendicular direction the situation is more complex. In the η = 1.0

case there is an indication of recovery of diffusion at long times, instead for

η = 0.2 the behaviour is clearly subdiffusive at long times. An intermedi-

ate behaviour is obtained in the intermediate cases η = 0.75 and η = 0.5,

where there is an increase of the subdiffusive behaviour with the decrease

of η. These results can be understood in terms of compound diffusion, a

basically subdiffusive regime (Zimbardo, 2005; Webb et al., 2006; Pommois

et al., 2007; Tautz and Shalchi, 2010; Bitane et al., 2010; Giacalone, 2013),

which is due to particles tracing back their field lines after pitch angle dif-
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fusion. In such a case, the perpendicular spreading of particles is reduced,

since particles perform an effectively anti-persistent random walk (Perrone

et al., 2013; Zimbardo et al., 2015), which leads to subdiffusion. On the

other hand, when the level of turbulence increases, the stochastic separation

of magnetic field lines increases, too, to the point that pitch angle scattered

particles do not trace back the ”original” field line, but another field line

which is diverging exponentially. This exponential divergence is quantified

by the Kolmogorov entropy and by the Kubo number (Rechester and Rosen-

bluth, 1978; Zimbardo et al., 2009; Bitane et al., 2010), and indeed it can

be shown that it depends on the level of turbulence and on the turbulence

anisotropy. Therefore, for large turbulence levels and for magnetic fluctu-

ations with enough perpendicular structure, normal diffusion is recovered

(e.g., Qin et al., 2002a,b). In Figure 4.5 the PDF of τ are plotted. We can
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Figure 4.5: PDF of the inversion time τ for different level of the turbulence: η = 1.0
(red), η = 0.75 (green), η = 0.5 (blue), η = 0.2 (purple) and corresponding power
laws linear fits (same colors).

see that as η decreases the PDFs extend to larger values of τ . A power law

of the type ∝ τ−1.4 fits the PDF for small value of τ for η = 1.0, instead for

smaller value of η it is more difficult to find a power law dependence that
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fits the data for at least one decade of the plot.

4.2.3 Varying the level of the intermittency

The last part of the numerical investigations is related to the influence of

intermittency on transport. For all this set of simulations we fix ξ = 16, 384

in order to keep the Larmor scale inside the STM inertial range and we

consider a large amplitude turbulence (η = 1). In the section dedicated

to the STM we have explained how intermittency is reproduced through a

p-model. We recall that in our model p = 0.5 means no intermittency and

p = 1.0 means extremely strong intermittency. In Figure 4.6 the evolution

of diffusion coefficients as a function of time is plotted for different value of

p. In the parallel direction, a normal diffusion regime is reached at a time

t = 103s for all p but, interestingly, the asymptotic value of the diffusion

coefficients increases with an increasing level of intermittency. In the per-

pendicular direction, changing the value of p does not make such a great

difference, the transport appears to be subdiffusive up to 105 s and becomes

eventually diffusive, with all the curves converging to the same asymptotic

value. A possible explanation for why intermittency has the effect of en-

hancing parallel diffusion can be found in Figure 4.7 where the PDFs of τ

are plotted. We can see that the shape of the PDFs does not change qual-

itatively when p varies. They all present a power law dependence of the

type ∝ τ−1.4 at small τ and an exponential decay at larger τ . What does

change is the position of the break of the power law that moves to larger

τ as p increases. This means that in presence of intermittency a particle

has a greater probability to travel for longer times without inverting its mo-

tion than the case where intermittency is absent. We believe that is related

to the fact that intermittency appears as strong burst in the magnetic field
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Figure 4.6: Parallel and perpendicular diffusion coefficients in function of time for
different level of the intermittency: p = 0.5 (red), p = 0.7 (green), p = 0.8 (blue),
p = 0.9 (purple).

fluctuations at small scales. A stronger intermittency means that this bursts

are stronger and more localized in space and this allows a particle to travel

longer without changing the direction of its motion, as it is shown in Figure

4.7.

4.3 Discussion

The numerical simulations performed showed very interesting and new re-

sults. In the perpendicular direction, in every case considered, the transport

is normal. There is no evidence of superdiffusive transport along the mag-

netic field. In the perpendicular direction we found normal diffusion or

subdiffusion, depending on the stochasticity of the field lines. When the

intensity of the turbulent fluctuations is comparable to the intensity of the

background magnetic field the diffusion in the perpendicular direction is

normal. A subdiffusive regime in the perpendicular transport, instead, is

found when the level of turbulence is low or when the fluctuation energy at

the Larmor scale is small. We showed that the latter, that is related to the
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Figure 4.7: PDF of the inversion time τ for different level of the intermittency:
p = 0.5 (red), p = 0.7 (green), p = 0.8 (blue), p = 0.9 (purple) and power law linear
fit (black).

length of the intertial range, plays an important role in transport. When

a spectrum that extend up to the Larmor scale is considered both parallel

and perpendicular diffusion coefficients become smaller than the case were

the Larmor scale kL = 1/RL is beyond the smallest scale of the turbulence

inertial range. The STM used for these simulation was crucial to achive this

results, because of its capability in reproducing broad band turbulence with

small computational costs. Another important feature of the STM model

considered was the possibility to reproduce intermittency through a pmodel.

We showed here the first result of the effect that intermittency can have in

particle transport. The results of our simulation showed how an increasing

level of intermittency enhances parallel transport. Our explanation for this

phenomenon is that the presence of intermittency can be seen as the pres-

ence of concetrated bursts of magnetic field intensity. More intermittency

means that these coherent structures are more strong and concentrated in

space. This gives to a particle the possibility to diffuse more between two in-

teraction with these kind of structure of this type, during which the particle
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goes through pitch angle scattering. We didn’t find any effect of intermit-

tency in the perpendicular transport. In a future work it will be interesting

to compare the power law PDF reported in Figure 4.7 with the power law

distributions of scattering times found in the solar wind by Perri and Zim-

bardo (2012b). In that case, magnetic field measurements by the Ulysses

spacecraft at 5 AU were used, and the scattering time was obtained from the

inverse of the magnetic variance, using the quasi-linear theory expression for

the pitch angle diffusion coefficient. A comparison of this type could give

more information about how appropriate the use of linear theory is to study

this kind of phenomena. Another possible future work is the study of the

role of intermittency in influencing the perpendicular transport when low

level turbulence is considered. Finally the case of anisotropic turbulence as

to be taken into account. It has been shown, in fact, that in astrophysi-

cal plasmas, for example in solar wind, the turbulence spectrum is highly

anisotropic, the turbulent cascade favoring the formation of smallest scale

in the direction perpendicular to the local magnetic field.
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Chapter 5

Conclusion

We would like to summarize briefly the results achieved in this work and

discuss possible future works.

The numerical simulations of the dynamics of low layers of solar corona

have revealed that the phenomenology of this region is highly influenced

by the kind of waves that propagates through it. We showed that when

an Alfvén wave is injected, an anisotropic power-law spectrum forms with

a dominance of perpendicular wavevectors at altitudes ∼ 104 km. Den-

sity fluctuations are generated near the X-point by Alfvén wave magnetic

pressure, and propagate along open field lines at a speed comparable with

the local Alfvén velocity. In the magnetosonic case, small scales form only

around the X-point, where a phenomenon of oscillating magnetic reconnec-

tion is observed to be induced by the periodic deformation of the magnetic

structure due to incoming waves. There are several future steps that could

be taken in the study of this problem. The first one is to consider a more

realistic 3D configuration. Moreover, considering a system that extends to

higher altitude, where longitudinal gradient like density stratification can-

not be neglected, can be another possible improvement. A study of this
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kind could be used to predict what feature will be observed by the future

mission Solar Probe Plus when it will go beyond the Alfvénic point. Fi-

nally, the method of projected characteristic developed is a valuable tool

that can be used to simulate open structures in the heliosphere overcoming

the limitation of periodical boundary conditions.

In the second chapter we showed that when an Alfvén wave propagate

in a 2D pressure-balanced structure where the magnetic field intensity has a

perpendicular gradient, kinetic Alfvén waves are produced. Kinetic Alfvén

waves have been shown to be responsible for the distortion of the distribu-

tion function and consequent generation of kinetic temperature anisotropy.

In particular kinetic Alfvén waves resonate with particles producing beams

in the proton velocity distribution function directed in the direction parallel

to the background magnetic field. In the work here presented we showed

that in certain configurations the phenomenon of phase-mixing can be re-

sponsible for kinetic Alfvén waves generation. A future work will be to

study the dynamics of propagation of an Alfvén wave in a configuration

where the background quantities (density, temperature and magnetic field)

are homogenous, and a parallel velocity field with a perpendicular shear is

present. This set up is intented to represent, for instance, microstreams in

the solar wind. In this case, phase-mixing would also be at play and this

could lead to kinetic Alfvén wave generation, this time in a medium where

the Alfvén velocity and the plasma β are homogeneous.

Preliminary results in the work of particle acceleration in 3D Reduced

MHD decaying turbulence have shown that in such configuration particles

are preferentially accelerated in the parallel direction. As discussed at the

end of the chapter this results are very different to what previously found in

a similar configuration where a 3D compressible MHD model with a strong
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background magnetic field has been considered. The cause of this differ-

ences have to be investigated more deeply in future works. Moreover, un-

derstanding how particles energization scales with the Reynolds number of

the turbulent system considered will be important to compare our results

with physical heliospheric environments, like solar corona, where Reynolds

number values are too high to be reproduced in numerical experiments.

In the fourth chapter the problem of particle diffusion in turbulence was

studied through test particle simulation in a magnetic field produced by a

synthetic turbulence model. This model gave us the possibility to consider a

magnetic field with a broad band inertial range with a small computational

cost and to reproduce intermittency. Our numerical experiments showed

the first evidence that intermittency can influence particle transport in tur-

bulent medium. In particular we found that the role of intermittency, in

presence of strong turbulence, is to enhance parallel diffusion. No effect

due to intermittency have been observed in the perpendicular transport.

The turbulence considered in this work was isotropic and embedded in a

strong background magnetic field. The future work on this problem will

be considering an anisotropic spectrum where at small scales perpendicular

wavevectors dominate on parallel ones, since it has been shown that such

an asymmetry can be a results of turbulence evolution in the presence of a

strong background magnetic field.
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Appendix A

Numerical calculation of the

vector potential

The magnetic field of our model can be expressed in terms of a vector po-

tential A(x, z) = A(x, z)ey :

b(x, z) = ∇× (A(x, z)ey) (A.1)

where the following equations hold for the magnetic field components:

bx(x, z) = −∂A(x, z)

∂z
(A.2)

bz(x, z) =
∂A(x, z)

∂x
(A.3)

We derive an analytical expression for A(x, z) as a function of the magnetic

field components using the periodicity of bx and bz along the z-direction.
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The magnetic field components can be written as:

bx(x, z) =
∑

kz

b̂x(x, kz)e
ikzz (A.4)

bz(x, z) =
∑

kz

b̂z(x, kz)e
ikzz. (A.5)

Equations (A.2)-(A.5) establish that the partial derivatives of A(x, z) have

to be periodical functions of the variable z. The most general form of A(x, z)

that fulfills this condition is:

A(x, z) =
∑

kz

Â(x, kz)e
ikzz + cz +A0 (A.6)

where c and A0 are both constants. The value of c and of the coefficients

Â(x, kz) define A univocally. We can calculate them by substituting expres-

sion (A.6) and the Equations (A.4) and (A.5) in the Equations (A.2) and

(A.3):

∑

kz

b̂x(x, kz)e
ikzz = −

∑

kz

ikzÂ(x, kz)e
ikzz − c (A.7)

∑

kz

b̂z(x, kz)e
ikzz =

∑

kz

∂Â(x, kz)

∂x
eikzz. (A.8)

From the Equation (A.7) we get:

Â(x, kz) =
b̂x(x, kz)

−ikz
∀kz 6= 0 (A.9)

c = −b̂x(x, 0) (A.10)

and from the Equation (A.8) we obtain the expression for Â(x, 0):

Â(x, 0) =

∫ x

0
b̂z(x

′, 0)dx′. (A.11)
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Using the Equations (A.9),(A.10) and (A.11) we have the analytical solution

for A(x, z):

A(x, z) =

∫ x

0
b̂z(x

′, 0)dx′ +
∑

kz 6=0

b̂x(x, kz)

−ikz
eikzz − b̂x(x, 0)z +A0 (A.12)

where the constant A0 is completely arbitrary. The vector potential A(x, z)

at any given time τ is numerically calculated using Equation (A.12) where

the Fourier coefficients b̂x(x, 0) and b̂z(x, kz) are obtained by an FFT algo-

rithm and the integral is computed with the Simpson’s rule.
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Appendix B

Numerical tests on different

time steppers for test

particle simulations

This appendix is devoted to show the test done on several time stepper in

order to find the best one to deal with the problem of particle diffusion in

the synthetic turbulence model presented in Chapter 4.

The equations that describe the motion of a particle of mass m and

charge q in a magnetic field b are:

dv

dt
=

q

m

(v

c
× b

)

, (B.1)

dr

dt
= v, (B.2)

where c is the speed of light. Multiplying scalarly equation B.1 times v we

get that the kinetic energy of the particle is conserved, which also means

that the magnetic field does not make work on the particle. It just changes

its direction not modifing its speed. In order to study these equations nu-
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merically it is worth to write them in a non dimensional form. We can put

v = V0ṽ, b = B0b̃, r = L0r̃, and t = L0/V0t̃, where the˜variables are non

dimensional and are multiplied by characteristic quantities. Substituting in

B.1 and B.2 and dropping the tilde for non dimensional quantities yields to:

dv

dt
= β (v × b) , (B.3)

dr

dt
= v. (B.4)

These two equations are non dimensional. The parameter β can be espressed

in the following ways:

β =
qB0

mc

L0

V0
= ωLτ = L0/rL

where τ = L0/V0 is a characteristic time, and ωL = qB/mc and rL =

mcV0/qB are the Larmor frequency and radius, respectively. This parameter

represent how big is the gyromotion in space and time scales in respect of

the tipical time and spatial scales of the problem we are considering. A big

β means that the gyroperiod is small compared to the evolution time scale

of the particles motion or, alternatively, that the Lamor radius is small

compared to the typical spacial scale of the problem we are considering.

Viceversa a small beta means that the evolution of the system is significant

in a gyroperiod time scale or that the typical spacial scale of variation of

the magnetic field are less than a Larmor radius. Chosing β = 1 means

studying the evolution of the particle at the Larmor scale. In order to test

the usefulness of a numerical method to integrate equations B.3 and B.4

we think that the best choice is to put β = 1, because in this way we can

test whether the method is good to “capture” both the gyromotion and the

guiding center motion. The value of β, is the same used in the problem
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of particle diffusion presented in Chapter 4. We have tested four different

integrators:

I) Adams-Bashfort fourth order (AB)

II) Boris method

III) Runge Kutta fourth order (RK4)

IV) Runge Kutta fifth order with an adaptive time-step (ARK5)

whose main features are briefly reported below.

Adams-Bashforth

It is a fourth order backward method that advances the equations of motion

in this way:

ri+i = ri +
∆t

24
(55vi − 59vi−1 + 37vi−2 − 9vi−3) (B.5)

vi+i = Fi +
∆t

24
(55Fi − 59Fi−1 + 37Fi−2 − 9Fi−3) (B.6)

where ∆t is the step-size, ri ≡ r(ti), vi ≡ v(ti), ti ≡ i∆t, and Fi ≡ F(ti)

is the right hand side of Equation (B.4). The method has to be initialiazed

for the first three steps.

Boris method

This second order symplectic Webb (2014) method was developed by Boris in

1970. Given position and velocity at the i-th step, Boris algorithm computes

the i+ 1-th quantities solving these equations:
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ri+1 − ri
∆t

= vi+1 (B.7)

vi+1 − vi

∆t
=

q

m

[

Ei +
(vi+1 + vi)×Bi

2c

]

(B.8)

where ∆t is the step-size, ri ≡ r(ti), vi ≡ v(ti − ∆t/2), ti ≡ i∆t, Ei ≡

E(ri, ti), Bi ≡ B(ri, ti). The scheme can be made explicit solving analyti-

cally vi+1 in terms of vi. In the case we are considering Ei = 0.

RK4

The fourth order Runge Kutta method is a classical integrator for ordinary

differential equations. It requires four evaluations of the time derivative:

once at the initial and final points and twice at trial midpoints:

F1 = F (yi, t) Initial point

F2 = F

(

yi +
∆t

2
F1, t+

∆t

2

)

First trial midpoint

F3 = F

(

yi +
∆t

2
F2, t+

∆t

2

)

Second trial midpoint

F4 = F

(

yi +∆tF3, t+
∆t

2

)

Final point

where we put position and velocity at the i-th step in a six dimensional vec-

tor yi and now F is also six-dimensional containing the right hand sides of

Equation (B.3)-(B.4). Time is advanced using a weighted averaged deriva-

tive:

yi+1 = yi +∆t

(

F1

6
+

F2

3
+

F3

3
+

F4

6

)

(B.9)
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RK5 with an adaptive timestep

This method uses a fifth order Runge-Kutta with a RK4 method embedded

to advance in time. The difference between the advanced quantities at each

step for the two methods can be used to adjust the time step in order to

mantain a certain accuracy. If ∆ is this difference we can write it as:

∆ = φ(∆t)5

where φ is a real number. Now we can compare ∆ with a scaling quantity

yscal, the ratio of the two quantities being the accuracy ǫ:

∆ = ǫyscal.

We decided to define:

yscal =

∣

∣

∣

∣

∆t
dy

dt

∣

∣

∣

∣

(B.10)

and so

ǫ =
∆

yscal
=

φ∆t4
∣

∣

∣

dy
dt

∣

∣

∣

.

To have a good accuracy φ must be ∼ 1 and the maximun possible value for

yscal must be put in Equation (B.10). Considering that:

∣

∣

∣

∣

dy

dt

∣

∣

∣

∣

=











∣

∣

dr
dt

∣

∣ = |v| ≤ 10−3

∣

∣

dv
dt

∣

∣ = β|v||B| ≤ 10−3

we extimate max(yscal) = 10−3. In the case we are studying ∆t = 10−2 and

so we decide to set ǫ = 10−5. If we call ǫnum the numerical value of ǫ at a
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certain time step this condition must be fulfilled:

ǫnum ≥ ǫ.

If this doesn’t not happen the time step is reduced until the condition is

fulfilled, or until a minimum value for ∆tmin is reached. Instead, if it

does happen ∆t is increased, but never exciding the initial value. We fixed

∆tmin = 10−4.

We performed three different preliminar tests, with different background

magnetic field and initial conditions, but same number of time steps Nt =

108. The time-step value is ∆t = 10−2 (that can change in time only for the

ARK5). This value has been chosen to solve the gyromotion properly. The

magnitude of all this quatities has been chosen to simulate the features of

the particle diffusion problem we would like to study.

Test 1 (Synchroton)

v0x = 10−3, v0y = 0, v0z = 0;

bx = 0, by = 0, bz = 1;

x0 = 0, y0 = 0, z0 = 0;

This are the initial condition for a particle that moves circulary around

an homogeneous magnetic field. The motion is in the plane xy.

Test 2 (Spiral motion)

v0x = 10−3, v0y = 0, v0z = 10−3;
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bx = 0, by = 0, bz = 1;

x0 = 0, y0 = 0, z0 = 0;

This test is the same of Test 1, but with a not null component of the

initial velocity parallel to the background magnetic field. This changement

will result in a spiral motion of the particle along z.

Test 3 (Chaotic motion)

v0x = 10−3, v0y = 10−3, v0z = 10−3;

bx = a sin z + c cos y, by = b sinx+ a cos z, bz = c sin y + b cos x;

with a = 1/
√
3, b = 1, c =

√

2/3;

x0 = 0, y0 = 0, z0 = 0;

In this test we consider a ABC background magnetic field that is well known

to cause a chaotic dynamic of a charged particle that moves through it.

For the first two tests it is possible to compare the numerical solution

to the analitical one, this means that not only the conservation of energy,

but also the error on numerical trajectory can be monitored. This is the

analitical solution for Equations B.3 and B.4, in Test 1 and 2 where B0 =

(0, 0, 1):

x(t) =
v0x
β

sin(βt)− v0y
β

cos(βt) +
v0y
β

+ x0

y(t) =
v0y
β

sin(βt) +
v0x
β

cos(βt)− v0x
β

+ y0

z(t) = v0zt+ z0
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vx(t) = v0x cos(βt) + v0y sin(βt)

vy(t) = v0y cos(βt)− v0x sin(βt)

vz(t) = v0z

where r0 = (x0, y0, z0) and v0 = (v0x, v0y, v0z) are the intial position and

velocity. For Test 3 there is not an analytical solution for the particle motion
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Figure B.1: TEST 1. Difference of position for numerical and analitical solution
normalized to the lenght of the trajectory.

and so it is used only to test each method capability to conserve energy. We

report here a series of plots and tables that summarizes the results obtained.

In Figure B.1 we plot the error on the trajectory made by the four method

for Test 1. If we call r(t) the numerical solution and re(t) the exact analitical

solution at time t, we can define the relative error on the trajectory ∆r as:

∆r(t) = |r(t)− re(t)| .
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In order to have a relative error we normalize ∆r to the total distance

run by the particle, that considering the speed constant because of energy

conservation gives:

∆r

r
=

|r(t)− re(t)|
v∆tNt

.

The minimum value of the maximum error this time is owned by the RK4,

but the trends of the errors in time are very different one from the other.

RK4 and AB present a linear growing trend and Boris a periodic one. The

latter is due to the fact that Boris method makes a phase error Qin et al.

(2013) that sums at each step and periodically brings the error to oscillate

between a maxium value that corresponds to the diameter of the gyration

and a minimum value that is ∼ 10−9. It is worth to give a separate explana-

tion to what happens for the ARK5. We see that the relative error is almost

constant. It may look strange that the magnitude of the error is larger than

the RK4. This strange behaviour is due to the fact that at the first step the

fifth order method makes an error larger than the fourth order, after that

step its behaviour shows a better control on the trajectory error than the

RK4. This is an example that shows that it is not always true that higher

order leads to higher precision. In Figure B.2 we plot the error on energy. If

we call E(t) the numerical energy at time t and E the exact initial energy,

that should be conserved, we can define the error on energy as:

∆E

E
=

E(t)− E

E
.

We can see that for all the methods the error on energy grows linearly in

time in absolute value and that the Boris method best conserve energy. In

Figure B.3 and B.4 we have the two errors already discussed for Test 1 in

the case of Test 2 where a not null component of the velocity parallel to the
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Figure B.2: TEST 1. Relative error of the numerical energy compared to the initial
value.

magnetic field is added. Also in this case the RK methods better describe

the correct trajectory and the Boris method best conservs energy. In Figure

B.5 we plot the error on energy for Test 3. The motionof the particle in

this case is chaotic and this has a great impact in the conservation of energy

for the four methods. The Boris method beats the other method by several

order of magnitudes showing a very slow not linear growing. For the other

three method the error grows more rapidly in time in absolute value the

evolution presenting different growing rates. As a conclusion of this tests

we can say that for a periodic motion with only one scale involved the RK

methods better approximate the exact trajectory, but this represent a very

singular case. When the motion is not periodic and we cannot monitor the

trajectory error Boris method maintain the best conservation of energy. In

Tables B.1, B.2, and B.3 we have also reported the computational times of
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Figure B.3: TEST 2. Difference of position for numerical and analitical solution
normalized to the lenght of the trajectory.

each simulation, showing that for RK methods where multiple evaluation of

the derivative at each time step are involved, the computational time become

much larger and this makes them uncomfortable when a large number of time

step have to be taken (108 in our case).

Test 1 max(∆r/r) max(|∆E/E|) cpu time

Adam-Bashfort 3.5× 10−9 1.0× 10−2 2.5s
Boris 2.0× 10−6 1.2× 10−6 3.3s
RK4 8.0 × 10−11 1.4× 10−4 8.5s
adaptive RK5 9.0 × 10−11 3.0× 10−6 12.7s

Table B.1: Relative error in position and energy, and computational times for Test
1.
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Figure B.4: TEST 2. Relative error of the numerical energy compared to the initial
value.

Test 2 max(∆r/r) max(|∆E/E|) cpu time

Adam-Bashfort 2.5× 10−9 5.0× 10−3 2.6s
Boris 1.4× 10−6 6.0× 10−7 3.7s
RK4 1.3× 10−9 7.0× 10−5 8.6s
adaptive RK5 1.3× 10−9 1.4× 10−6 13.1s

Table B.2: Relative error in position and energy, and computational times for Test
2.

Tests on particle diffusion

Since we are interested in studying diffusion of a big number of particles it

is a good question to ask if one of the methods we have discussed enhanches

or reduces diffusion respect to another one. For this reason we performed

simulations of test particle diffusion in a magnetic field obtained by the

synthetic turbulence model described in Chapter 4. We inject 103 particles

with random initial position in a cubic box C = [0, 1] × [0, 1] × [0, 1], with
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Figure B.5: TEST 3. Relative error of the numerical energy compared to the initial
value.

Test 3 max(|∆E/E|) cpu time

Adam-Bashfort 1.7× 10−2 18.4s
Boris 4.0 × 10−10 19.7s
RK4 2.5× 10−4 1m12s
adaptive RK5 1.1× 10−5 1m48s

Table B.3: Relative error energy, and computational times for Test 3.

equal speed v = 10−3 and random directions, the time step is always ∆t =

10−2 and the total number of steps is 107. We consider a strong level of

turbulence η = 1, a magnetic spectrum that extends beyond the Larmor

scale ξ = 1024 and different level of intermittency (see Chapter 4). The first

thing we found is that the fourth other Adam-Bashfort is not stable for this

problem, the energy goes to infinity at large time. For this reason we decide

to discard this method. We discard also the RK4 method, since it can be

considered as a simplified version of the RK5 with adaptive time-step. The
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results of the test is plotted in Figure B.6. The diffusion coefficients D‖ and

D⊥ are defined as:

D‖(t) =
1

2Npt

Np
∑

i=1

(zi(t)− zi(0))
2

D⊥(t) =
1

2Npt

Np
∑

i=1

(xi(t)− xi(0))
2 + (yi(t)− yi(0))

2

where the index i refers to a single particle and N is the total number of

particles. The agreement between diffusion coefficients computed with Boris

method and the RK5 is good for all the value of intermittency considered.

This means that the two methods are interchangeable for this problem. The

reason why we didn’t run the simulation for 108 steps is that the computa-

tional time for the RK5 would have been too big.

At the end of all these analysis we decided to use the Boris method as

numerical integrator for our study on particle diffusion. This choice is based

on several reasons that came out from the various tests. First of all the

Boris method, being sympletic, is the best of the four in conserving energy,

expecially when particle dynamics is chaotic. It is also very fast in respect

of the RK methods and even if it makes a phase error while describing the

gyration of a particle this does not affect the diffusion coefficients evolution,

that is comparable to the one obtained with the RK5. Finally, the reason

why we decided to reject the AB method is that pushing it forward for 108

time steps it turns out to be unstable.

We decide also to took a different decision for the method used in the

problem of particle acceleration in RMHD, where we used the RK5 with

adaptive time step, that is the stepper commonly used for this type of prob-

lems in literature (Dmitruk et al., 2004; Dalena et al., 2014). In fact, this is
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a completely different problem, where the electric field is present and energy

is not conserved. Moreover, even if we consider a bigger number of particle

(105, compared to 103 for particle diffusion), the number of time step to

be taken for each particle in this simulation is way smaller (of the order of

104) and the evalution of the fields at each time step is faster than for the

STM. This makes the computational time using the RK5 reasonable for this

problem. Of course, the Boris method would have been way faster, but an

analysis similar to what done for the particle diffusion problem would have

been required in order to compare the results from the two methods. We

decided to leave this work for further studies.
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Figure B.6: Parallel and perpendicular diffusion coefficient computed using Boris
method (red lines) and RK5 (green lines), for the different values of the intermit-
tency parameter p used in Chapter 4 (p = 0.5 first row, p = 0.7 second row, p = 0.8
third row, and p = 0.9 fourth row).
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Appendix C

A numerical code for test

particle simulations

The numerical simulations relative to the studies of particle diffusion and

acceleration presented in this work have been performed using a numerical

code realized to run test particle simulations. In this appendix we describe

its features and discuss its performances. The code is parallized using the

Open Multiprocessing (OMP) paradigm. The reasons why we used OMP

instead of Message Passing Interface (MPI) are several. First of all test parti-

cle simulations consist in computing the solution of the Lorentz equation for

the motion of particles that are indipendent one to the other. This implies

that also the processes associated to each particle are indipendent one to

the other and do not need to exchange information, except if the calculation

of average quantities along the run is required. This is not required in our

case, and the calculus of average quantities is postponed at the end of each

run, while the output is analysed. For this reason an MPI architecture is not

strictly required by the nature of the computational problem. Secondly, an

OMP architecture is easier to deal with, it requires a few commands and can
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be implemented on an already existing serial code. What we did is to real-

ize a serial version of the code and then implement the parallelization using

OMP commands. An MPI parallelization would have required a completely

different approch and could not have been implemented on an already ex-

isting program. Finally, in the OMP approch the memory is shared among

all the processors and this turns out to be very useful for our case since

the private memory available on each processor in the machine we used was

not big. In our biggest simultions that involves the use of fields obtained

from Reduced MHD simulations data the common memory to be stored

was of the order of hundreds of GBs. Of course there are ways to overcome

this difficulties with the MPI architecture but they are more cumbersome to

implement. An MPI program is usually more powerful than an OMP one,

expecially if a big amount of computational power is available, but in our

particular case with limited computational resources an MPI parallelization

would have not produced a big gain in terms of computational time respect

to an OMP one. We think so because the OMP parallel region in the code

we realized is way bigger that the serial part, as we are going to explain

describing the structure of the MAIN.

The MAIN (reported below) uses the module omp lib that contains OMP

libraries, the module PARA that contains almost all the parameters used by

the program and the module INPUTMOD where the subroutine called in the

program along with other subroutines, cited below, are written. The initial-

ization part begins with the declaration of some variables and the creation

of the folder where the output will be written (the name of the folder is

written in the module PARA). Two integer values are assigned to the vari-

ables that represent the units of the files where the initial and final values

of position and velocities will be written. This files are open a little bit
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further in the initialization part and remain open along all the simulation.

Their name contain a label indicating which time stepper has been used in

the simulation. This label changes with the method, that is identified by an

integer number ODESTEP declarated in the module PARA. In the initialization

the arrays that contain the magnetic and electric field in space and time are

allocated and they are fill by the data from simultion by mean of the sub-

routine READ FIELDS. This part can be commented when a synthetic model

for computing the fields is used and no data has to be read, as in the case

of particle diffusion described in this work. The initial serial part ends with

the assignement of the value tin (declared in PARA) to the variable t repre-

senting time. The computing part that is the central and bigger part of the

code is where the OMP paralellization is set in. It consists in the loop of the

computation of the solution of the equation of a single particle nested into

the loop on each particles. The first one is parallelized with the OMP com-

mand OMP DO PARALLEL using a dynamic assignement of processes. Inside

this loop a file is open for each particle where the values of position, velocity,

energy and magnetic moment can be written at each chosen time (defined

by an integer parameter iprint). A different file unit is associated to each

particle. Particle position and velocity are initialized through the subrou-

tine INITIALIZE. A random number generator routine is supplemented to

this subroutine and can be used to assign a random initial position or veloc-

ity to the particle. After the initialization the initial energy and magnetic

moment are computed and are written along with position and velocity in

the initial conditions file. The magnetic moment is computed through the

subroutine FIELDS that gives the value of the electric and magnetic fields

at a given position and time. The form of this subroutine varies with the

problem studied. In the problem of particle diffusion described in this work
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the subroutine contains the synthetic turbulence model, instead in the prob-

lem of particle accelaration in RMHD fields the subroutine contains all the

operation necessary to interpolate the value of the fields in space and time.

In the inner loop the user has the possibility to choose among three differ-

ent time stepper: the Boris method (subroutine boris derivs), an adaptive

fifth order Runge-Kutta (subroutine odeint, see Press et al. (1992)), and a

forth-order Runge Kutta (subroutine RK4, see Press et al. (1992)).

These three scheme are described in Appendix B. In the closure part

the arrays where the fields are stored are deallocated, the final values of

position, velocity, and energy are written in the file opened at the beginning

and the computational time is computed.

This is the MAIN :

PROGRAM MAIN

USE INPUTMOD

USE omp_lib

USE para

IMPLICIT NONE

real*8 :: t

integer :: iline,i

integer, PARAMETER :: neq=6

real*8, dimension (neq) :: y ! position and velocity vector

real*8 :: Initial_Kenergy,kene ! kinetic energy

real*8 :: tinitial,tfinal,oinitial,ofinal ! computational time

integer :: istep

character (5) :: method

character (10) :: ciline

integer :: MythreadID, Numthreads

integer :: itve, iip, ife

real*8, dimension (1:NLINE,7) :: frve

real*8, dimension (1:NLINE,6) :: inipos

real*8, dimension (3) :: Ef,Bf
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real*8 :: mu,modv,modb,costh

integer :: ipart

call cpu_time(tinitial)

call system (’mkdir ’// dir)

call system (’mkdir ’// dir //’/results’)

iip=200+NLINE

ife=200+NLINE+1

SELECT CASE(ODESTEP)

CASE (1)

write(method,’(A1)’) ’B’

CASE (2)

write(method,’(A1)’) ’A’

CASE (3)

write(method,’(A3)’) ’RK4’

END SELECT

open (unit=iip, file=trim(dir)//’/’//trim(method)// &

’-ini.dat’, status=’UNKNOWN’)

open (unit=ife, file=trim(dir)//’/’//trim(method)//&

’-final_nrg.dat’, status=’UNKNOWN’)

!$ oinitial=omp_get_wtime()

ALLOCATE(Bfldx(NGRID(1),NGRID(2),NGRID(3),isamplein:isamplefin))

ALLOCATE(Bfldy(NGRID(1),NGRID(2),NGRID(3),isamplein:isamplefin))

ALLOCATE(Efldx(NGRID(1),NGRID(2),NGRID(3),isamplein:isamplefin))

ALLOCATE(Efldy(NGRID(1),NGRID(2),NGRID(3),isamplein:isamplefin))

ALLOCATE(Efldz(NGRID(1),NGRID(2),NGRID(3),isamplein:isamplefin))

CALL READ_FIELDS() ! fields reading

t=tin

!$omp parallel private (MYThreadID,iline,ciline,y,Initial_Kenergy, &

t,istep,kene,itve,Ef,Bf,modv,modb,costh,mu)

!$ MythreadID=omp_get_thread_num()
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!$ Numthreads=omp_get_num_threads()

!$omp do schedule (dynamic,1) ! parallel region beginning

DO iline = 1, NLINE ! cycle on the particles

IF (iline .lt. 10) then

write(ciline,’(A5,I1)’) ’00000’,iline

ELSE

IF (iline .lt. 100) then

write(ciline,’(A4,I2)’) ’0000’,iline

ELSE

IF (iline .lt. 1000) then

write(ciline,’(A3,I3)’) ’000’,iline

ELSE

IF (iline .lt. 10000) then

write(ciline,’(A2,I4)’) ’00’,iline

ELSE

IF (iline .lt. 100000) then

write(ciline,’(A1,I5)’) ’0’,iline

ELSE

write(ciline, ’(I6)’) iline

ENDIF

ENDIF

ENDIF

ENDIF

ENDIF

itve= 100+MythreadID

open (itve, file=trim(dir)//’/’//trim(method)//’-trajvelenemu’ &

//trim(ciline)//’.dat’, status=’UNKNOWN’)

CALL INITIALIZE (y,neq,iline) !particles initialization

t=tin

Initial_Kenergy=0.5d0*(y(4)*y(4)+y(5)*y(5)+y(6)*y(6))

CALL FIELDS(Ef,Bf,y,t)

modv=dsqrt(y(4)*y(4)+y(5)*y(5)+y(6)*y(6))

modb=dsqrt(Bf(1)*Bf(1)+Bf(2)*Bf(2)+Bf(3)*Bf(3))

costh=(y(4)*Bf(1)+y(5)*Bf(2)+y(6)*Bf(3))/(modv*modb)
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mu=(modv*modv*(1.d0-costh*costh))/(2*modb)

if (modv==0) then

mu=0.d0

endif

write(100+MythreadID,’(8F21.14)’) y(1), y(2), y(3), y(4),&

y(5), y(6), Initial_Kenergy, mu

inipos(iline,1)=y(1)

inipos(iline,2)=y(2)

inipos(iline,3)=y(3)

inipos(iline,4)=y(4)

inipos(iline,5)=y(5)

inipos(iline,6)=y(6)

DO istep = 1, NTMAX ! time cycle for each particle evolution

!CALL boris_derivs(y,dt,t)

CALL odeint(y,neq,t,t+dt,INTERR,dt_guessed,dt_min,derivs,rkqs)

!CALL rk4(y,neq,t,dt,derivs)

t=istep*dt+tin

kene=0.5d0*(y(4)*y(4)+y(5)*y(5)+y(6)*y(6))

IF (MOD(istep,iprint) == 0) THEN

modv=dsqrt(y(4)*y(4)+y(5)*y(5)+y(6)*y(6))

modb=dsqrt(Bf(1)*Bf(1)+Bf(2)*Bf(2)+Bf(3)*Bf(3))

costh=(y(4)*Bf(1)+y(5)*Bf(2)+y(6)*Bf(3))/(modv*modb)

mu=(modv*modv*(1.d0-costh*costh))/(2*modb)

write(itve,’(8F21.14)’) y(1), y(2), y(3), y(4),&

y(5), y(6), kene, mu

ENDIF

ENDDO

! write(*,*) ’iline=’, iline, MythreadID

frve(iline,1:3)=y(1:3)

frve(iline,4:6)=y(4:6)

frve(iline,7)=kene
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close(itve)

END DO ! time cycle ending

!$omp end do

!$omp end parallel ! parallel region ending

do i=1,NLINE

write(iip,’(6F21.14)’) inipos(i,1),inipos(i,2),inipos(i,3), &

inipos(i,4),inipos(i,5),inipos(i,6)

write(ife,’(7F21.14)’) frve(i,1),frve(i,2),frve(i,3), &

frve(i,4),frve(i,5),frve(i,6),frve(i,7)

enddo

DEALLOCATE (Bfldx,Bfldy,Efldx,Efldy,Efldz)

!$ ofinal=omp_get_wtime() ! computational time extimation

!$ write(*,’(" oTime = ",f6.3," seconds.")’), ofinal-oinitial

!$ write(*,’(" Number of threads=",I2)’),Numthreads

call cpu_time(tfinal)

END PROGRAM MAIN

The code performances have been tested. The first test consisted in a

simulation of 104 particles whose trajectories have been evolved for 103 time

steps with the adaptive Runge-Kutta scheme described in Appendix B using

RMHD data for the electric and magnetic fields. The second test consists

in a simulation of 102 particles whose trajectories have been evolved for

104 time steps with the Boris method using the synthetic turbulence model

presented in this work (see Chapter 4). Performances are evaluted plotting

the speed-up in function of the number of processes (or threads). Speed-up

Sp is defined as:

Sp =
Ts

Tp

where Ts is the computational time with one processor (serial) and Tp is
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the computational time for each processor when more than one processor

is used (parallel). Speed-up in OMP is relevant only in the case when the

majority of the computational time is spent in the parallel region. This

is what happen in our simultation, so speed-up actually represents a good

parameters to evalute our code performances. In Figure C.1 and C.2 the

speed-up is plotted for the problem of test particle in RMHD and for the

problem of test particle diffusion, along with the function Sp = np, the last

one representing the ideal case in which the speed-up grows linearly with the

number of processors. In the first case the speed-up grows less then linearly

with np and strats saturating to Sp ≈ 6.5 at np = 12. In the second case the

speed-up grows almost linearly with a small number of processors and then

strats saturating to Sp ≈ 13 at np = 16. Even if the number of processes at

which the speed-up saturates is not so high in both cases, it was sufficient

for us to run the simulation presented in this work in a couple of hours per

run.
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Figure C.1: Speed-up in function of the number of processors (thread), for 104

particles, 103 time steps per particle, and the adaptive fifth order Runge-Kutta as
time stepper, in a test particle simulation that uses RMHD data for electric and
magnetic fields.
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Figure C.2: Speed-up in function of the number of processors (thread), for 102

particles, 104 time steps per particle, and the Boris method as time stepper, in
a test particle simulation where the magnetic field is computed with the syntetic
turbulence model described in Chapter 4.
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