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User behavioral problems
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Over the past two decades, we witnessed the advent and the rapid growth of
numerous social networking platforms. Their pervasive diffusion dramatically
changed the way we communicate and socialize with each other. They intro-
duce new paradigms and impose new constraints within their scope. On the
other hand, online social networks (OSNs) provide scientists an unprecedented
opportunity to observe, in a controlled way, human behaviors. The goal of the
research project described in this thesis is to design and develop tools in the
context of network science and machine learning, to analyze, characterize and
ultimately describe user behaviors in OSNs.

After a brief review of network-science centrality measures and ranking al-
gorithms, we examine the role of trust in OSNs, by proposing a new inference
method for controversial situations. Afterward, we delve into social boundary
spanning theory and define a ranking algorithm to rank and consequently iden-
tify users characterized by alternate behavior across OSNs. The second part of
this thesis deals with machine-learning-based approaches to solve problems of
learning a ranking function to identify lurkers and bots in OSNs. In the last
part of this thesis, we discuss methods and techniques on how to learn a new
representational space of entities in a multilayer social network.
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“Behavior analysis is not merely the sum of its basic and applied research and
conceptual programs. It is their interrelationship, wherein each branch draws
strength and integrity from the others. With the unity of behavior analysis
clarified, the whole of behavior analysis emerges as greater than the sum of its
parts.”

Edward K. Morris
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Chapter 1

Introduction

“In an information-rich world, the wealth of information means a dearth of
something else: a scarcity of whatever it is that information consumes. What
information consumes is rather obvious: it consumes the attention of its recip-
ients. Hence a wealth of information creates a poverty of attention and a need
to allocate that attention efficiently among the overabundance of information
sources that might consume it.”

Herbert Alexander Simon

1.1 Behaviorism in the modern era
Over the past two decades, we witnessed the advent and the rapid growth of nu-
merous social networking platforms. Their extensive diffusion across the globe
and in our lives dramatically changed the way we communicate and socialize
with each other. These platforms introduced new paradigms and imposed new
constraints within their boundaries. Conversely, online social networks (OSNs)
provide to scientist an unprecedented opportunity to observe, in a controlled
way, human behaviors.

1.1.1 Behaviorism

Behaviorism focuses on observable behavior as a means of studying the human
psyche. The primary principle of behaviorism is that psychology should concern
itself with the observable behavior of people and animals, rather than intan-
gible events that take place in their minds. While the behaviorists criticized
the mentalists for their inability to demonstrate empirical evidence to support
their claims, the behaviorist school of thought claims that behaviors can be
described scientifically without requiring either to internal physiological events
or to hypothetical constructs such as thoughts and beliefs, making behavior a
more productive area of focus for understanding human or animal psychology.

During the first half of the twentieth century, John B. Watson devised
methodological behaviorism, which rejected introspective methods and sought
to understand behavior by only measuring observable behaviors and events.
The main contributors to behaviorist psychology were Ivan Pavlov, who inves-
tigated classical conditioning [1], Edward Lee Thorndike, who introduced the
concept of reinforcement [2], [3] and was the first to apply psychological prin-
ciples to learning; John B. Watson, who rejected introspective methods and
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sought to restrict psychology to experimental methods [4], [5]; and Burrhus
Frederic Skinner, who conducted research on operant conditioning [6], [7].

Pavlov’s findings support the idea that we develop responses to certain stim-
uli that are not naturally occurring. For instance, when we touch a hot stove,
our reflex pulls our hand back. We do this instinctively, with no learning in-
volved. This reflex is merely a survival instinct. Pavlov discovered that we
make associations that cause us to generalize our response to one stimulus onto
a neutral stimulus it is paired with. Many of our behaviors today are shaped
by the pairing of stimuli. The smell of cologne, the sound of a certain song,
or the occurrence of a specific day of the year can trigger distinct memories,
emotions, and associations. When we make these types of associations, we are
experiencing classical conditioning [1].

Operant conditioning is another type of learning that refers to how an or-
ganism operates on the environment or how it responds to what is presented to
it in the environment. The stimuli at the basis of operant conditioning are re-
inforcement and punishment. Reinforcement means to strengthen, and is used
in psychology to refer to any stimulus, both positive (e.g., giving a treat) or
negative (e.g., studying to avoid getting a bad grade), which strengthens or
increases the probability of a specific response. Whereas punishment aims to
weaken a behavior by positive (e.g., spanking a child) or negative stimulus (e.g.,
telling the child to go to his room) [6], [7].

Among the several types of stimuli at the basis of operant conditioning, pos-
itive reinforcement has been found to be the most powerful. Adding a positive
reinforcement to increase a response not only works better but allows both par-
ties to focus on the positive aspects of the situation. Punishment, when applied
immediately following the negative behavior, can be effective, but results in ex-
tinction when it is not applied consistently. Punishment can also invoke other
negative responses such as anger and resentment.

John B. Watson promoted a change in psychology through his behavior-
ist approach and conducted research on animal behavior, child rearing, and
advertising while gaining notoriety for the controversial “Little Albert” experi-
ment. This experiment set out to show how the recently discovered principles
of classical conditioning could be applied to condition fear into Little Albert,
an 11-month-old boy.

Burrhus Frederic Skinner called his particular brand of behaviorism radical
behaviorism. Radical behaviorism is the philosophy of the science of behavior.
It seeks to understand behavior as a function of environmental histories of
reinforcing consequences. This applied behaviorism does not accept private
events such as thinking, perceptions, and unobservable emotions in a causal
account of an organism’s behavior.

Skinner invented the operant conditioning chamber, popularly referred to
as the Skinner box (Figure 1.1), used to measure responses of organisms and
their orderly interactions with the environment. The box had a lever and a
food tray, and a hungry animal inside the box could get food delivered to the
tray by pressing the lever. Skinner observed that when an animal was first put
into the box, it would wander around, sniffing and exploring, and would usually
press the bar by accident, at which point a food pellet would drop into the tray.
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Figure 1.1: Illustration of the Skinner Box

After that happened, the rate of bar pressing would increase dramatically and
remain high until the animal was no longer hungry.

Negative reinforcement was also exemplified by Skinner placing animals into
an electrified chamber that delivered unpleasant shocks. Levers to cut the power
were placed inside these boxes. By running a current through the box, Skinner
noticed that the animals, after accidentally pressing the lever in a frantic bid
to escape, quickly learned the effects of the lever and consequently used this
knowledge to stop the currents both during and prior to electrical shock. These
two learned responses are known as escape learning and avoidance learning [6].
The Skinner box led to the principle of reinforcement, which is the probability
of something occurring based on the consequences of a behavior.

1.1.2 The rise of online social networks

Ahead of its time, in 1997 the website Six Degrees, which is said to be the first
ever online social network site, was created. Two years later it was purchased
for only 125 million dollars, and after another two years, Six degrees was shut
down. The origin of OSNs that are still in use today can be traced back to the
early 2000s, when OSNs such as Linkedin (2002), Friendster (2002), Myspace
(2003), and finally Facebook (2004), Reddit (2005), Youtube (2005) and Twitter
(2006) were founded and revealed to the public.

Generally, a social network can be defined as a web-based service that allows
its users to i) construct a public or semi-public profile within a bounded system,
ii) articulate a list of other users with whom they share a connection, and iii)
view and traverse their list of connections and those made by others within
the system. The nomenclature and name of these connections may vary from
platform to platform. Depending on the social network, members may be able



4 Chapter 1. Introduction

to contact any other member, or in other cases, members can contact anyone
they have a connection to. Some services require members to have a preexisting
connection to contact other members. While social networking has gone on
almost as long as societies themselves have existed, the unparalleled potential
of the World Wide Web to facilitate such connections has led to an exponential
and ongoing expansion of that phenomenon.

Other than personal, social networks can be also used by business purposes,
such as increase brand recognition and loyalty by making the company more
accessible to new customers and more recognizable for existing customers, or
help promote a brand’s voice and content by spreading information about its
products or services. In the end, social networks have proved to be an essential
tool for businesses, particularly to help companies to find and retain their share
of the market and their customers.

The vast majority of OSNs cannot be considered to be generalist platforms
since they are limited to a specific niche or purpose (e.g., photos, work-related,
video, etc.). Even Facebook, which is now considered by most the ultimate tool
for social interactions, at its start was not more than a dating site, and later a
“face book” (i.e., a student directory featuring photos and basic information).
Therefore, with the exception of today’s Facebook platform, each social network
tries to leverage the need for social interaction in a distinctive way. However,
the reasons that push a user to join a social network seems to be driven by
the trend of the moment rather than a more significant added value, or public
utility (see Figure 1.2).

Figure 1.2: Relative search interest smoothed by a six-month
average (Data from Google Trends)

As often stated, the alleged final goal of a social network is to easily con-
nect people and enable new fast ways to share information and experiences.
However, from a less naive and more pragmatic perspective, user profiling and
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hence marketing remain the fundamentals of their business models. In the end,
a social network platform is merely a tool that enables the tool-owner to extract
information from the actual product, the user. Businesses that base their rev-
enue on such models have been defined as attention merchants, platforms that
evaluate their success on measures like time spent on the platform, number of
access per day, and so on, are characterized by a single goal, that is profit.

Furthermore, the monopoly that Facebook created and its continuous effort
to provide a complete suite of tools limits the needs and reasons for which its
users could feel the need to leave the platform. This could result in limiting
the online experience to one single platform, which increases the chances to be
confined in an echo chamber. An echo chamber (also known as filter bubble),
is commonly defined as a metaphorical description of a situation in which be-
liefs are amplified or reinforced by communication and repetition inside a closed
system, represented, in this case, by friends and relatives present on the plat-
form. Other examples of echo chamber are those caused by the excessive use of
personalization algorithms, which generates personalized e-comfort zones (i.e.,
feedback loops in which biases are reinforced rather than dismantled or simply
confronted) for each one of us. Being confined in an echo chamber may increase
political and social polarization and extremism, and limit the opportunities of
changing idea or even thinking about a personal belief.

Conversely, the massive pervasiveness of these platforms gives to scientists
the unprecedented opportunity of analyzing human behavior in a controlled
environment and in a quantitative way. Similarly to a Skinner box1.1, a social
network platform can be considered a digital box, in which human behavior is
constantly monitored and rewards are in the form of instant gratification (e.g.,
notifications).

1.2 Objectives and organization of this thesis
In the fast-growing research area of social network analysis, by leveraging rank-
ing and machine-learned-based methods, we focus our attention to the identi-
fication of users characterized by a specific type of behavior (i.e., automated,
lurking, etc.), and also to users that show multiple, opposite behaviors in more
than one social media platforms, as well as learning new representation of graph
data in order to enable the application of a vast and variegated type of methods.

The aim of this research project is the development of method and algo-
rithms that can have a high potential impact on the users of one or more social
networks. For instance, methods able to identify lurkers can be used to put
in practice policies of user engagement. Conversely, detecting users who act
as a bridge between multiple social networks can help to identify real content
creators by unmasking plagiarism behaviors.

In the following chapters, we firstly describe well-studied measures used in
the context of network science to characterize user behavior. Then, we devoted
the third chapter to the social boundary spanning theory, with the goal of
identifying users which share and transfer their knowledge across the borders
of a social network, we describe our approach to alternate behaviors ranking
in multilayer social networks. The fourth chapter contains the description of
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two applications of the supervised learning framework Learning-to-rank (LTR)
in the context of OSNs. More in detail, through leveraging state-of-the-art
LTR algorithms, we aim to learn a ranking function to identify and rank users
according to their bot or lurking status. In the last chapter of this dissertation,
in the context of supervised learning, we try to advanced research on the network
embedding problem, by developing and testing several new methods designed
to be able to deal with multilayer networks.
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Chapter 2

User behavior in network science

In the first part of this chapter, we describe well-known centrality measures and
ranking algorithms in order to introduce, by a more technical point of view, the
following chapters. In the second part of the chapter, we focus our attention on
the problem of trust inference in controversial situations.

2.1 Ranking and centrality measures
Hyperlinks provide a valuable source of information for web search. In fact, the
analysis of the hyperlink structure of the Web, commonly called link analysis ,
has been successfully used for improving both the retrieving of web documents
(i.e., which webpages to crawl) and the scoring of web documents according to
some notion of “quality” (i.e., how to rank webpages). The latter is in general
meant either as the relevance of the documents with respect to a user query
or as some query-independent, intrinsic notion of centrality . In network theory
and analysis, the identification of the “most central” nodes in the network (e.g.,
documents in the web network, actors in a social network, etc.) represents a
core task.

The term centrality commonly resembles that of importance or prominence
of a vertex in a network, i.e., the status of being located in strategic locations
within the network. However, there is no unique definition of centrality, as for
instance one may postulate that a vertex is important if it is involved in many
direct interactions, or if it connects two large components (i.e., if it acts as a
bridge), or if it allows for quick transfer of the information also by accounting
for indirect paths that involve intermediaries. Consequently, there are only very
few desiderata for a centrality measure, which can be expressed as follows:

• A vertex centrality is a function that assigns a real-valued score to each
vertex in a network. The higher the score, the more important or promi-
nent the vertex is for the network.

• If two graphs G1, G2 are isomorphic and m(v) denotes the mapping func-
tion from a node v in G1 to some node v′ in G2, then the centrality of v
in G1 needs to be the same as the centrality of m(v) = v′ in G2. In other
terms, the centrality of a vertex is only depending on the structure of the
network.

The term centrality is originally designed for undirected networks. In the
case of directional relations, which imply directed networks, the term centrality
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is still used and refers to the “choices made”, or out-degrees of vertices, while
the term prestige is introduced to examine the “choices received”, or in-degrees
of vertices [8]. Moreover, the vertex centrality scores can be aggregated over
all vertices in order to obtain a single, network-level measure of centrality, or
alternatively centralization, which aims to provide a clue on the variability of
the individual vertex centrality scores with respect to a given centrality notion.
In the following, we will overview the most prominent measures of centrality
and prestige, and their definitions for undirected and directed networks. Partic-
ularly, we will focus on two well-known methods, namely PageRank and Hubs
& Authorities, which have been widely applied to web search contexts.

Through the rest of this section and in the subsequent sections of this chap-
ter, we will denote with G = (V,E) a network graph, which consists of two sets
V and E, such that V 6= ∅ and E is a set of pairs of elements of V . If the
pairs in E are ordered the graph is said directed, otherwise is undirected. The
elements in V are the vertices (or nodes) of G, while the elements in E are the
edges (or links) of G.

2.1.1 Basic measures

Vertex-level centrality. The most intuitive measure of centrality for any
vertex v ∈ V is the degree centrality, which is defined as the number of edges
incident with v, or degree of v:

cD(v) = deg(v). (2.1)

Being dependent only on adjacent neighbors of a vertex, this type of centrality
focuses on the most “visible” vertices in the network, as those that act as major
point of relational information; by contrast, vertices with low degrees are pe-
ripheral in the network. Moreover, the degree centrality depends on the graph
size: indeed, since the highest degree for a network (without loops) is |V |−1,
the relative degree centrality is:

ĉD(v) =
cD(v)

|V |−1
=
deg(v)

|V |−1
. (2.2)

The above measure is independent on the graph size, and hence it can be com-
pared across networks of different sizes.

The definitions of both absolute and relative degree centrality and degree
prestige of a vertex in a directed network are straightforward. In that case,
the degree and the set of neighbors have two components: we denote with
Bi = {vj|(vj, vi) ∈ E} the set of in-neighbors (or “backward” vertices) of vi,
and with Ri = {vj|(vi, vj) ∈ E} the set of out-neighbors (or “reference” vertices)
of vi. The sizes of sets Bi and Ri are the in-degree and the out-degree of vi,
denoted as in(vi) and out(vi), respectively.

Note also that the degree centrality is also the starting point for various
other measures; for instance, the span of a vertex, which is defined as the
fraction of links in the network that involves the vertex or its neighbors, and
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the ego density, which is the ratio of the degree of the vertex to the theoretical
maximum number of links in the network.

Unlike degree centrality, closeness centrality takes also into account indirect
links between vertices in the network, in order to score higher those vertices
that can quickly interact with all others because of their lower distance to the
other vertices [9]:

cC(v) =
1∑

u∈V d(v, u)
, (2.3)

where d(v, u) denotes the graph theoretic, or geodesic, distance (i.e., length of
shortest path) between vertices v, u. Since a vertex has the highest closeness
if it has all the other vertices as neighbors, the relative closeness centrality is
defined as:

ĉC(v) = (|V |−1)cC(v) =
|V |−1∑
u∈V d(v, u)

. (2.4)

In the case of directed networks, closeness centrality and prestige can be com-
puted according to outgoing links (i.e., how many hops are needed to reach all
other vertices from the selected one) or incoming links (i.e., how many hops are
needed to reach the selected vertex from all other vertices), respectively. Note
that the closeness centrality is only meaningful for a connected network—in
fact, the geodesics to a vertex that is not reachable from any other vertex are
infinitely long. One remedy to this issue is to define closeness by focusing on
distances from the vertex v to only the vertices that are in the influence range
of v (i.e., the set of vertices reachable from v) [8].

Besides (shortest) distance, another important property refers to the ability
of a vertex to have control over the flow of information in the network. The
idea behind betweenness centrality is to compute the centrality of a vertex v as
the fraction of the shortest paths between all pairs of vertices that pass through
v [10]:

cB(v) =
∑

u,z∈V,u6=v,z 6=v

mu,z(v)

mu,z(V )
, (2.5)

where mu,z(v) is the number of shortest paths between u and z and passing
through v, and mu,z(V ) is the total number of shortest paths between u and
z. This centrality is minimum (zero) when the vertex does not fall on any
geodesic, and maximum when the vertex falls on all geodesics, which is equal
to (|V |−1)(|V |−2)/2. Analogously to the other centrality measures, it’s rec-
ommended to standardize the betweenness to obtain a relative betweenness
centrality:

ĉB(v) =
2cB(v)

(|V |−1)(|V |−2)
, (2.6)

which should be divided by 2 for directed networks. Note that, unlike closeness,
betweenness can be computed even if the network is disconnected.

It should be noted that the computation of betweenness centrality is the
most resource-intensive among the above-discussed measures: while standard
algorithms based on Dijkstra’s or breadth-first search methods require O(|V |3)
time and O(|V |2) space, algorithms designed for large, sparse networks require
O(|V |+|E|) space andO(|V ||E|) andO(|V ||E|+|V |2log|V |) time on unweighted
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and weighted networks, respectively [11]. A number of variants of betweenness
centrality have also been investigated; for instance, in [12], an extension of
betweenness to edges is obtained by replacing the termmu,z(v) in equation (2.5)
by a term mu,z(e) calculating the number of shortest (u, z)-paths containing
the edge e. An application of this version of edge betweenness is the clustering
approach by Newman and Girvan [13], where edges of maximum betweenness
are removed iteratively to decompose a graph into relatively dense subgraphs.

Besides computational complexity issue, a criticism to betweenness central-
ity is that it assumes that all geodesics are equally likely when calculating if a
vertex falls on a particular geodesic. However, a vertex with large in-degree is
more likely to be found on a geodesic. Moreover, in many contexts, there may
be equally likely that other paths than geodesics are chosen for the information
propagation, therefore the paths between vertices should be weighted depend-
ing on their length. The index defined by Stephenson and Zelen [14] builds
upon the above generalization, by accounting for all paths, including geodesics,
and assigning them with weights, which are computed as the inverse of the
path lengths (geodesics are given unitary weights). The same researchers also
developed an information centrality measure, which focuses on the information
contained in all paths that originate and end at a specific vertex. The informa-
tion of a vertex is a function of all the information for paths flowing out from
the vertex, which in turn is inversely related to the variance in the transmission
of a signal from a vertex to another. Formally, given an undirected network,
possibly with weighted edges, a |V |×|V | matrix X is computed as follows: the
i-th diagonal entry is equal to 1 plus the sum of weights for all incoming links
to vertex vi, and the (i, j)-th off-diagonal entry is equal to 1, if vi and vj are
not adjacent, otherwise is equal to 1 minus the weight of the edge between vi
and vj. For any vertex vi, the information centrality is defined as:

cI(vi) =
1

yii + 1
|V |(
∑

vj∈V yjj − 2
∑

vj∈V yij)
, (2.7)

where {yij} are the entries of the matrix Y = X−1. Since function cI is only
lower bounded (the minimum is zero), the relative information centrality for
any vertex vi is obtained by dividing cI(vi) by the sum of the cI values for all
vertices.

Network-level centrality. A basic network-level measure of degree cen-
trality is simply derived by taking into account the (standardized) average of
the degrees: ∑

v∈V cD(v)

|V ||V − 1|
=

∑
v∈V ĉD(v)

|V |
, (2.8)

which is exactly the density of the network.
Focusing on a global notion of closeness, a simplification of this type of

centrality stems from the graph-theoretic center of a network. This is in turn
based on the notion of eccentricity of a vertex v, i.e., the distance to a vertex
farthest to v. Specifically, the Jordan center of a network is the subset of vertices
that have the lowest maximum distance to all other vertices, i.e., the subset of
vertices within the radius of a network.
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A unifying view of network-level centrality is based on the notion of network
centralization, which expresses how the vertices in the network graph G differ
in centrality [15]:

C(G) =

∑
v∈V maxC− C(v)

max
∑

v∈V maxC− C(v)
, (2.9)

where C(·) is a function that expresses a selected measure of relative centrality,
and maxC is the maximum value of relative centrality over all vertices in the
network graph. Therefore, centralization is lower when more vertices have sim-
ilar centrality, and higher when one or few vertices dominate the other vertices;
as extreme cases, a star network and a regular (e.g., cycle) network have cen-
tralization equal to 1 and 0, respectively. According to the type of centrality
considered, the network centralization assumes different form. More specifically,
considering the degree, closeness, and betweenness centralities, the denominator
in equation (2.9) is equal to (n−1)(n−2), (n−1)(n−2)/(2n−3), and (n−1),
respectively.

2.1.2 Eigenvector centrality and prestige

None of the previously discussed measures reflects the importance of the ver-
tices that interact with the target vertex when looking at (in)degree or distance
aspects. Intuitively, if the influence range of a vertex involves many prestigious
vertices, then the prestige of that vertex should also be high; conversely, the
prestige should be low if the involved vertices are peripheral. Generally speak-
ing, a vertex’s prestige should depend on the prestige of the vertices that point
to it, and their prestige should also depend on the vertices that point to them,
and so “ad infinitum” [16]. It should be noted that the literature usually refers
to the above property as status , or rank .

The idea behind status or rank prestige by Seeley, denoted by function r(·),
can be formalized as follows:

r(v) =
∑
u∈V

A(u, v)r(u), (2.10)

where A(u, v) is equal to 1 if u points to v (i.e., u is an in-neighbor of v), and
0 otherwise. Equation (2.10) corresponds to a set of |V | linear equations (with
|V | unknowns) which can be rewritten as:

r = ATr, (2.11)

where r is a vector of size |V | storing all rank scores, and A is the adjacency
matrix. Or, rearranging terms, we obtain (I−AT)r = 0, where I is the identity
matrix of size |V |.

Katz [17] first recommended to manipulate the matrix A by constraining
every row in A to have sum equal to 1, thus enabling equation (2.11) to have
finite solution. In effect, equation (2.11) is a characteristic equation used to find
the eigensystem of a matrix, in which r is an eigenvector of AT corresponding to
an eigenvalue of 1. In general, equation (2.11) has no non-zero solution unless
AT has an eigenvalue of 1.
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A generalization of equation (2.11) was suggested by Bonacich [18], where
the assumption is that the status of each vertex is proportional (but not neces-
sarily equal) to the weighted sum of the vertices to whom it is connected. The
result, known as eigenvector centrality, is expressed as follows:

λr = ATr. (2.12)

Note that the above equation has |V | solutions corresponding to |V | values of
λ. Therefore, the general solution can be expressed as a matrix equation:

λR = ATR, (2.13)

where R is a |V |×|V | matrix whose columns are the eigenvectors of AT and λ
is a diagonal matrix of eigenvalues.

Katz [17] also proposed to introduce in equation (2.11) an “attenuation pa-
rameter” α ∈ (0, 1) to adjust for the lower importance of longer paths be-
tween vertices. The result, known as Katz centrality, measures the prestige as
a weighted sum of all the powers of the adjacency matrix:

r =
∞∑
i=1

αiATir. (2.14)

When α is small, Katz centrality tends to probe only the local structure of
the network; as α grows, more distant vertices contribute to the centrality of a
given vertex. Note also that the infinite sum in the above equation converges
to r = [(I− αAT)−1 − I]1 as long as |α|< 1/λ1, where λ1 is the first eigenvalue
of AT.

All the above measures may fail in producing meaningful results for networks
that contain vertices with null in-degree: in fact, according to the assumption
that a vertex has no status if it does not receive choices from other vertices,
vertices with null in-degree do not contribute to the status of any other vertex. A
solution to this problem is to allow every vertex some status that is independent
of its connections to other vertices. The Bonacich & Lloyd centrality [19],
probably better known as alpha-centrality, is defined as:

r = αATr + e, (2.15)

where e is a |V |-dimensional vector reflecting exogenous source of information or
status, which is assumed to a vector of ones. Moreover, parameter α here reflects
the relative importance of endogenous versus exogenous factors in determining
the vertex prestige. The solution of equation (2.15) is:

r = (I− αAT)−1e. (2.16)

It can easily be proved that equation (2.16) and equation (2.14) differ only by
a constant (i.e., one) [19].
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2.1.3 PageRank

In [20], Brin and Page presented PageRank , the Google’s patented ranking
algorithm. There are four key ideas behind PageRank. The first two are also
shared with the previously discussed eigenvector centrality methods, that is: a
page is prestigious if it is chosen (pointed to) by other pages, and the prestige of
a page is determined by summing the prestige values of all pages that point to
that page. The third idea is that the prestige of a page is propagated to its out-
neighbors as distributed proportionally. Let W be a |V |×|V | matrix such that
columns refer to those vertices whose status is determined by the connections
received from the row vertices:

W (i, j) =

{
1/out(vi) if (vi, vj) ∈ E
0 otherwise. (2.17)

Note that W = D−1
outA, where A is the adjacency matrix and Dout is a diagonal

matrix storing the out-degrees of the vertices (i.e., Dout = diag(A1)). Using
matrix W, the first three ideas underlying the PageRank can be expressed as
r = WTr, or equivalently, for every vi ∈ V :

r(vi) =
∑
vj∈Bi

r(vj)

out(vj)
. (2.18)

Therefore, vector r is the unique eigenvector of the matrix corresponding to
eigenvalue 1. It should be noted that equation (2.18) is well-defined only if the
graph is strongly connected (i.e., every vertex can be reached from any other
vertex). Under this assumption, this equation has an interpretation based on
random walks, called the random surfer model [20]. It can be shown that vector
r is proportional to the stationary probability distribution of the random walk
on the underlying graph. It should be remarked that, in contrast to PageRank,
alpha-centrality does not have a natural interpretation in terms of probabil-
ity distribution, i.e., the sum of the values in the alpha-centrality vector (cf.
equation (2.15)) is not necessarily equal to 1.

However, the assumption of graph connectivity behind equation (2.18) needs
to be relaxed for practical application of PageRank, since the Web and, in gen-
eral, real-world networks are far from being strongly connected. It might be
useful to recall here that the Web and many other directed networks have a
structure which is characterized by five types of components (cf., e.g., [21]):
(i) a large strongly connected component (SCC), (ii) an in-component, which
contains vertices that can reach the SCC but are not reachable from the SCC,
and an out-component, which contains vertices that are reachable from the SCC
but cannot reach the SCC, (iii) in-tendrils and out-tendrils, which are vertices
that are only connected to the out-component (via out-links) and vertices that
are only connected to the in-component (via in-links), (iv) tubes, which are
vertices reachable from the in-component and able to reach the out-component,
but have neither in-links nor out-links with the SCC, and (v) isolated compo-
nents, which contain vertices that are disconnected from each of the previous
components. Most of these components violate the assumptions needed for the
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convergence of a Markov process. In particular, when a random surfer enters
the out-component, she will eventually get stuck in it; as a result, vertices that
are not in the out-component will receive a zero rank, i.e., one cannot distin-
guish the prestige of such vertices. More specifically, equation (2.18) needs to
be modified to prevent anomalies that are caused by two types of structures:
rank sinks , or “spider traps”, and rank leaks , or “dead ends”. The former are
sets of vertices that have no links outwards, the latter are individual vertices
with no out-links.

If leak vertices would be directly represented in matrix W, then they would
correspond to rows of zero, thus making W substochastic: as a result, by re-
iterating equation (2.18) for a certain number k of times (i.e., by computing
WTkr), then some or all of the entries in r will go to 0. To solve this issue, two
approaches can be suggested: (i) modification of the network structure, and (ii)
modification of the random surfer behavior. In the first case, leak vertices could
be removed from the network so that they will receive zero rank; alternatively,
leak vertices could be “virtually” linked back to their in-neighbors, or even to all
other vertices. The result will be a row-stochastic matrix, that is, a matrix that
is identical to W except that it will have the columns corresponding to leak
vertices that sum to 1. If we denote with d a vector indexing the leak vertices
(i.e., d(i) = 1 if vi has no outlinks, and d(i) = 0 otherwise), this row-stochastic
matrix S is defined as:

S = W + d1T/|V |. (2.19)

However, equation (2.19) will not solve the problem of sinks. Therefore, Page
and Brin [20] also proposed to modify the random surfer behavior by allowing
for teleportation, i.e., the random surfer who gets stuck in a sink, or simply gets
“bored” occasionally, she can move by randomly jumping to any other vertex in
the network. This is the fourth idea behind the PageRank measure, which is
implemented by a damping factor α ∈ (0, 1) that enables to weigh the mixture
of random walk and random teleportation:

r = αSTr + (1− α)p. (2.20)

Above, vector p, usually called personalization vector , is by default set to 1/|V |,
but it can be any probability vector. Equation (2.20) can be rewritten as:

G = αS + (1− α)E, (2.21)

where E = 1pT = 11T/|V |. The convex combination of S and E makes the
resulting “Google matrix” G to be both stochastic and irreducible.1 This is
important to ensure (i) the existence and uniqueness of the PageRank vector as
stationary probability distribution π, and (ii) the convergence of the underlying
Markov chain (at a certain iteration k, i.e., π(k+1) = Gπ(k)) independently of
the initialization of the rank vector.2

1A matrix is said irreducible if every vertex in its graph is reachable from every other
vertex.

2Recall that the property of irreducibility of a matrix is related to those of primitivity and
aperiodicity. A nonnegative, irreducible matrix is said primitive if it has only one eigenvalue
on its spectral circle; a simple test by Frobenius states that a matrix X is primitive if and only
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Computing PageRank. As previously indicated, the computation of
PageRank requires to solve equation (2.21), which is equivalent to find the
principal eigenvector of matrix G. Therefore, similarly to other eigenvector
centrality methods, the power iteration algorithm is commonly used. Start-
ing from any random vector r(0), it iterates through equation (2.20) until some
termination criterion is met; typically, the power method is assumed to termi-
nate when the residual (as measured by the difference of successive iterations)
is below some predetermined threshold. Actually, as first observed by Haveli-
wala (cf. [23]), the ranking of the PageRank scores are more important than
the scores themselves, that is, the power method can be iterated until ranking
stability is achieved, thus leading to a significant saving of iterations on some
datasets.

The power iteration method lends itself to efficient implementation thanks
to the sparsity of real-world network graphs. Indeed, computing and storing
matrix S (cf. equation (2.19)), and hence G, is not required, since the power
method can be rewritten as [23]:

πT(k+1) = πT(k)G = απT(k)W + (απT(k)d)1T/|V |+(1− α)pT, (2.22)

which indicates that only sparse vector/matrix multiplications are required.
When implemented in this way, each step of the power iteration method requires
nonzero(W) operations, where nonzero(W) is the number of nonzero entries
in W, which approximates to O(|V |).

Choosing the damping factor. The damping factor α is by default set
to 0.85. This choice actually finds several explanations. One is intuitively based
on the empirical observation that a web surfer is likely to navigate following 6
hyperlinks (before discontinuing this navigation chain and randomly jumping
on another page), which corresponds to a probability α = 1 − (1/6) ≈ 0.85.
In addition, there are also computational reasons. With the default value of
0.85, the power method is expected to converge in about 114 iterations for
a termination tolerance threshold of 1.0E-8 [23]. Moreover, since the second
largest eigenvalue of G is α [22], it can be shown that the asymptotic rate
of convergence of the power method is − log10 0.85 ≈ 0.07, which means that
about 14 iterations are needed for each step of accuracy improvement (in terms
of digits).

In general, higher values of α imply that the hyperlink structure is more ac-
curately taken into account, however along with slower convergence and higher
sensitivity issues. In fact, experiments with various settings of α have shown
that there can be significant variation in rankings produced by different values
of α, especially when α approaches 1; more precisely, significant variations are
usually observed for mid-low ranks, while the top of the ranking is usually only
slightly affected [23], [24].

Choosing the personalization vector. As previously discussed, the
personalization vector p can be replaced with any vector whose non-negative

if Xk > 0 for some k > 0, which is useful to determine whether the power method applied to
X will converge [22]. An irreducible Markov chain with a primitive transition matrix is called
an aperiodic chain.
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components sum up to 1. This hence includes the possibility that the vertices
in V might be differently considered when the random surfer restarts her chain
by selecting a vertex v with probability p(v), which is not necessarily uniform
over all the vertices.

The teleportation probability p(v) can be determined to be proportional
to the score the vertex v obtains with respect to an external criterion of im-
portance, or to the contribution that the vertex gives to a certain topological
characteristic of the network. For instance, one may want to assign any ver-
tex with a teleportation probability that is proportional to the in-degree of the
vertex, i.e.,

p(v) =
in(v)∑
u∈V in(u)

.

The personalization vector can also be used to boost the PageRank score
for a specific subset of vertices that are relevant to a certain topic, thus making
the PageRank to be topic-sensitive.

2.1.4 Hubs and authorities

A different approach to the computation of vertex prestige is based on the no-
tions of hubs and authorities . In a web search context, given a user query,
authority pages are ones most likely to be relevant to the query, while hub
pages act as indices of authority pages without being necessarily authorities
themselves. These two types of webpages are related to each other by a mutual
reinforcement mechanism: in fact, if a page is relevant to a query, one would ex-
pect that it will be pointed to by many other pages; moreover, pages pointing to
a relevant page are likely to point as well to other relevant pages, thus inducing
a kind of bipartite graph where pages that are relevant by content (authorities)
are endorsed by special pages that are relevant because they contain hyperlinks
to locate relevant contents (hubs)—although, it may be the case that a page is
both an authority and a hub.

The above intuition is implemented by the Kleinberg’s HITS (Hyperlink In-
duced Topic Search) algorithm [25], [26]. Like PageRank and other eigenvector
centrality methods, HITS still handles an iterative computation of a fix-point
involving eigenvector equations; however, it originally views the prestige of a
page as a two-dimensional notion, thus resulting in two ranking scores for every
vertex in the network. Also in contrast to PageRank, HITS produces ranking
scores that are query-dependent. In fact, HITS assumes that hubs and au-
thorities are identified and ranked for vertices that belong to a query-focused
sub-network. This is usually formed by an initial set of randomly selected pages
containing the query terms, which is expanded by also including the neighbor-
hoods of those pages.

Let a and h be two vectors storing the authority and hub scores, respectively.
The hub score of a vertex can be expressed as proportional to the sum of the
authority scores of its out-neighbors; analogously, the authority score of a vertex
can be expressed as proportional to the sum of the hub scores of its in-neighbors.
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Formally, HITS equations are defined as:

a = µATh (2.23)

h = λAa, (2.24)

where µ, λ are two (unknown) scaling constants that are needed to avoid that
the authority and hub scores will grow beyond bounds; in practice, a and h
are normalized so that the largest value in each of the vectors equals 1 (or,
alternatively, all values in each of the vectors sum up to 1). Therefore, HITS
works as follows:

1. For every vertex in the expanded query-focused subnetwork, initialize hub
and authority score (e.g., to 1).

2. Compute the following steps until convergence (i.e., a termination toler-
ance threshold is reached):

(a) authority vector a using equation (2.23);

(b) hub vector h using equation (2.24);

(c) normalize a and h.

Note that, at the first iteration, a and h are none other than the vertex in-
degrees and the out-degrees, respectively.

By substituting equation (2.23) and equation (2.24) in each other, hub and
authority can in principle be computed independently of each other, through the
computation of AAT (for the hub vector) and ATA (for the authority vector).
Note that, the (i, j)-th entry in matrix AAT corresponds to the number of
pages jointly referred by pages i and j; analogously, the (i, j)-th entry in matrix
ATA corresponds to the number of pages that jointly point to pages i and j.
However, both matrix products lead to matrices that are not as sparse, hence
the only convenient way to compute a and h is iteratively in a mutual fashion
as described above. In this regard, just as in the case of PageRank, the rate
of convergence of HITS depends on the eigenvalue gap, and the ordering of
hubs and authorities becomes stable with much fewer iterations than the actual
scores.

It should be noted that the assumption of identifying authorities by means
of hubs might not hold in other information networks other than the Web; for
instance, in citation networks, important authors typically acknowledge other
important authors. This has somehow impacted on the probably less popularity
of HITS with respect to PageRank—which, conversely, has been successfully
applied to many other contexts, including citation and collaboration networks,
lexical/semantic networks inferred from natural language texts, recommender
systems, and social networks.

The TKC effect. Beyond limited applicability, HITS seems to suffer from
two issues that are related to both the precision and coverage of the query search
results. More precisely, while the coverage of search results directly affects
the size of the subnetwork, the precision can significantly impact the tightly
knit communities (TKC) effect, which occurs when relatively many pages are
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Figure 2.1: Comparison of ranking performance of different
centrality methods on the same example graph. Node size is

proportional to the node degree. Lighter gray-levels correspond
to higher rank scores.

identified as authoritative via link analysis although they actually pertain to
one aspect of the target topic; for instance, this is the case when hubs point
both to actual relevant pages and to pages that are instead relevant to “related
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topics” [27]. The latter phenomenon is also called topic drift .
While the TKC effect can be attenuated by accounting for the analysis of

contents and/or the anchor texts of the webpages (e.g., [28], [29]), other link
analysis approaches have been developed to avoid overly favoring the authorities
of tightly knit communities. Lempel and Morgan [27] propose the Stochastic
Approach for Link Structure Analysis, dubbed SALSA. This is a variation of
Kleinberg’s algorithm: it constructs an expanded query-focused subnetwork in
the same way as HITS, and likewise, it computes an authority and a hub score
for each vertex in the neighborhood graph (and these scores can be viewed
as the principal eigenvectors of two matrices). However, instead of using the
straight adjacency matrix, SALSA weighs the entries according to their in and
out-degrees. More precisely, the authority scores are determined by the sta-
tionary distribution of a two-step Markov chain through random walking over
in-neighbors of a page and then random walking over out-neighbors of a page,
while the hub scores are determined similarly with inverted order of the two
steps in the Markov chain. Formally, the Markov chain for authority scores has
transition probabilities:

pa(i, j) =
∑

vq∈Bi∩Bj

1

in(vi)

1

out(vk)
(2.25)

and the Markov chain for hub scores has transition probabilities:

ph(i, j) =
∑

vq∈Ri∩Rj

1

out(vi)

1

in(vk)
. (2.26)

Lempel and Morgan proved that the authority stationary distribution a is
such that a(vi) = in(vi)/

⋃
v∈V in(v), and that the hub stationary distribution h

is such that h(vi) = out(vi)/
⋃
v∈V out(v). Therefore, SALSA does not follow the

mutual reinforcement principle used in HITS, since hub and authority scores of
a vertex depend only on the local links of the vertex. Also, in the special case
of a single-component network, SALSA can be seen as a one-step truncated
version of HITS [30]. Nevertheless, the TKC effect is overcome in SALSA
through random walks on the hub-authority bipartite network, which implies
that authorities can be identified by looking at different communities.

Figure 2.1 shows an illustrative comparison of various centrality methods
discussed in this section, on the same example network graph. The nodes in the
graph are colored using a gray palette, such that lighter gray-levels correspond
to higher rank scores that a particular centrality method has produced over
that graph.

2.1.5 SimRank

SimRank [31] is a general, iteratively mutual reinforced similarity measure on
a link graph, which is applicable in any domain with object-to-object relation-
ships. The main intuition behind SimRank is that “two objects are similar if
they are related to similar objects”. For instance, on a hyperlinked document
domain like the Web, two webpages can be regarded as similar if there exist
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hyperlinks between them, or in a recommender system, we might say that two
users are similar if they rate similar items (and, in a mutual reinforcement fash-
ion, two items are similar if they are rated by similar users). The underlying
model of SimRank is the “random surfer-pairs model”, i.e., SimRank yields a
ranking of vertex pairs. The basic SimRank equation formalizes the intuition
that two objects are similar if they are referenced by similar objects. Given any
two vertices u and v, their similarity, denoted as S(u, v), is defined as 1 if u = v,
otherwise an iterative process is performed, in which the similarity between u
and v is recursively calculated in terms of in-neighbors of u and v, respectively.
The generic step of random walk of this process is defined as:

S(u, v) = α
1

|Bu||Bv|
∑
i∈Bu

∑
j∈Bv

S(i, j), (2.27)

where α is a constant between 0 and 1. As a particular case, if either u or v
has no in-neighbors, then S(u, v) = 0. It should be noted that equation (2.27)
expresses the average similarity between in-neighbors of u and in-neighbors of
v. Moreover, it is easy to see that SimRank scores are symmetric.

The basic SimRank equation lends itself to several variations, which account
for different contingencies in a network graph. One of these variations allows
for resembling the HITS algorithm (cf. Section 2.1.4), since it considers that
vertices in a graph may take on different roles, like hub and authority for im-
portance. Within this view, equation (2.27) can be replaced by two mutually
reinforcing functions that express the similarity of any two vertices in terms of
either their in-neighbors or out-neighbors:

S1(u, v) = α1
1

|Ru||Rv|
∑
i∈Ru

∑
j∈Rv

S2(i, j) (2.28)

and
S2(u, v) = α2

1

|Bu||Bv|
∑
i∈Bu

∑
j∈Bv

S1(i, j), (2.29)

where constants α1, α2 have the same semantics as α in equation (2.27). Another
variation of SimRank is themin-max variation, which captures the commonality
underlying two similarity notions that express the endorsement of one vertex
towards the choices of another vertex, and vice versa. Given vertices u, v, two
intermediate terms are defined as:

Su(u, v) = α
1

|Ru|
∑
i∈Ru

max
j∈Rv

S(i, j) (2.30)

and
Sv(u, v) = α

1

|Rv|
∑
i∈Rv

max
j∈Ru

S(i, j), (2.31)

with final similarity score computed as S(u, v) = min{Su(u, v), Sv(u, v)}, which
ensures that each vertex chooses the other’s choices.

SimRank is a computationally expensive method. The space required for
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each iteration is simply O(|V |2), whereas the time required is O(I|V |2d), where
d denotes the average of |Bu||Bv| over all vertex-pairs u, v, and I is the number
of iterations. One way to reduce the computational burden is to prune the
link graph, which avoids to compute the similarity for every vertex-pair by con-
sidering only vertex-pairs within a certain radius from each other [31]. Many
other methods to speed up the SimRank computation have been developed in
the literature. For instance, Fogaras and Racz [32] proposed a probabilistic
approximation based on the Monte Carlo method. Lizorkin et al. [33] proposed
different optimization techniques, including partial sums memoization that can
reduce repeated calculations of the similarity among different pairs by caching
part of similarity summations for later reuse. Antonellis et al. [34] extended
SimRank using evidence factor for incident nodes and link weights. More re-
cently, Yu et al. [35] proposed a fine-grained memoization method to share the
common parts among different partial sums; the same authors also studied ef-
ficient incremental SimRank computation over evolving graphs. At the time of
writing of this chapter, the most recent study is that by Du et al. [36], which
have focused on SimRank problems in uncertain graphs.

In this section we discuss main approaches to make the process of rank-
ing web documents, or similarly their corresponding users, topic-sensitive. The
general goal is to drive the ranking mechanism in such a way that the obtained
ordering and scoring reflects a target scenario in which the vertices in the net-
work are to be evaluated based on their relevance to a topic of interest. The
term topic is here intentionally used with two different meanings, which corre-
spond to different perspectives of quality of web resources: the one normally
refers to the content of web documents, whereas the other one refers to the
relation of web documents with web spammers, and more specifically to their
trustworthiness, or likelihood of not being a spammer’s target.

2.1.6 Content as topic

As previously mentioned, the PageRank personalization vector p can be re-
placed with any probability vector defined to boost the PageRank score for a
specific subset of vertices that are relevant to a certain topic of interest.

A natural way to implement the above idea is to make the teleportation
query-dependent, in such a way that a vertex (page) is more likely to be chosen
if it covers the query terms. More precisely, if we denote with B ⊆ V a subset
of vertices of interest, then p = 1/|V | is replaced with another vector biased
by B, pB whose entries are set to 1/|B| only for those vertices that belong to
B, and zero otherwise. Because of the concentration of random walk restarts at
vertices from B, these vertices will obtain a higher PageRank score than they
obtained using a conventional (non-topic-biased) PageRank.

Intuitively, this way of altering the behavior of random surfing reflects the
different preferences and interests that the random surfer may have and specify
as terms in a query. Moreover, for efficient indexing and computation, the subset
B usually corresponds to a relatively small selection of vertices that cover some
small number of topics. For instance, one might want to constrain the restart
of the random walk to select only pages that are classified under one or more
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categories (e.g., “politics”, “sports”, “technology”, and so on) of the Wikipedia
topic classification system3 or any other publicly available web directory. The
consequence of this topic-biased selection is that not only the random surfer
will be at pages that are identified as relevant to the selected topics, but also
any neighbor page and any page reachable along a short path (from one of the
known relevant pages) will be likely relevant as well.

Topic affinity and user ranking. Determining topic affinity in web
sources is central to identifying webpages that are related to a set of target
pages. Topic affinity can be measured by using one or combination of the
following three main approaches.

• Text-based methods. Besides cosine similarity in vector space models
(e.g., [37]), text-based approaches can also involve resemblance measures
(e.g., Jaccard or Dice coefficients) which are defined in terms of the overlap
between two documents modeled as sets of text chunks [38].

• Link-based methods. The link-based topic affinity approach has tradi-
tionally borrowed from citation analysis, since the hyperlinking system
of endorsement is in analogy with the citation mechanism in research
collaboration networks. Particularly, co-citation analysis is effective in
detecting cores of articles or authors given a particular subject matter.
Early applications of co-citation analysis to topical affinity detection and
web document clustering include [39]–[41]. Essentially, a citation-based
measure of topic affinity can be formalized as co-citation strength or, alter-
nately, as bibliographic-coupling (also called co-reference) strength; i.e.,
two documents are related proportionally to the frequency with which
they are cited together (resp., the frequency with which they have refer-
ences in common). Furthermore, similarity between two documents can
be also evaluated in terms of number of direct paths between the two
documents.

• Usage-based methods. Finally, the usage-based topic affinity approach is
based on the assumption that the interaction of users with web resources
(stored via user access and activity logs) can aid to improve the quality
of content, thus increasing the performance of web search systems. This
approach is strictly related to techniques of web personalization and adap-
tivity based on customization or optimization of the users’ navigational
experiences, as originally studied by Perkowitz and Etzioni [42], [43].

Topic affinity detection is however not only essential to characterize sim-
ilarity and relatedness of webpages by content but also helpful to drive the
topic-sensitive ranking of web sources and their users.

TwitterRank. Topic-sensitive ranking in combination with topic affinity
measures is in fact widely used in online user communities, such as social media
networks and collaboration networks. An exemplary method is represented
by the TwitterRank algorithm [44], which was originally designed to compute

3http://en.wikipedia.org/wiki/Category:Main_topic_classifications.



2.1. Ranking and centrality measures 23

the prestige or influence of users in the Twitter environment; the algorithm
can however be applied to other platforms similar to Twitter, or in general to
any social network providing microblogging services. A directed graph G =
(V,E) is used to model followship relations among users in Twitter, i.e., there
is an edge from vertex vi to vertex vj if the i-th user follows the j-th user.
Therefore, according to PageRank, the higher the number and influence of the
followers, the higher the influence of a user in Twitter. Besides the PageRank
principle, a key assumption in TwitterRank is that, since followship presumes
content consumption (i.e., reading, or replying to tweets), the influence a user
has on each follower is determined by the relative amount of content the follower
received from her. This means that in TwitterRank a random surfer performs
a topic-specific random walk. Moreover, since users generally have different
interests in various topics, influence of Twitter users also vary with respect to
different topics. Formally, the (stochastic) transition probability matrix Pt used
in TwitterRank is specified contextually to a topic t, and defined in such a way
that, for any users vi, vj:

Pt(i, j) =
|Tj|∑

(vi,vk)∈E|Tk|
simt(i, j), (2.32)

where Tj is the set of tweets published by user vj, and simt(i, j) is the similarity
between vi and vj with respect to topic t.

To compute the similarity between two users conditionally to a given topic,
TwitterRank evaluates the difference between the probability that the two users
are interested in the same topic t:

simt(i, j) = 1− |D̂T it − D̂T jt|, (2.33)

where D̂T is the row-normalized version of the document-topic matrix DT,
whose (i, t)-th entry stores the number of times a word in the tweets by user
vi has been assigned to topic t. The document-topic matrix represents a low-
dimensional representation of a collection of documents, where a document here
corresponds to the set of tweets of a user. This document representation can in
principle be obtained by using some linear projection technique, such as LSI,
which is able to provide a low dimensional mapping from a high dimensional
vector space, using an orthogonal transformation based on singular value de-
composition to convert a set of observations of possibly correlated variables into
a set of linearly uncorrelated variables (or components). A document-topic rep-
resentation can also be obtained via statistical topic modeling , which assumes
that a document can be represented as a mixture of probability distributions
over its constituent terms, where each component of the mixture refers to a main
topic. While still using a “bag of words” assumption (a document is treated as a
vector of word counts), the document representation is obtained by a generative
process, i.e., a probabilistic process that expresses document features as being
generated by a number of latent variables. Compared to conventional vector-
space modeling, statistical topic models are generally able to involve (latent)
semantic aspects underlying correlations between words to leverage the struc-
ture of topics within a document. TwitterRank utilizes the well-known Latent
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Dirichlet Allocation (LDA) method [45].
As a variant of topic-biased PageRank, TwitterRank equation, for a given

topic t, is defined as:
rt = αPtrt + (1− α)et, (2.34)

where et is the t-th (normalized) column vector of the DT matrix. By aggre-
gating over all topics, the global TwitterRank vector is given as: r =

∑
t ωtrt,

where ωt is the weight associated to topic t. The authors of TwitterRank suggest
a number of ways to compute these topic weights. One of these ways is to set
ωt as the prior probabilities of the various topics, estimated proportionally to
the number of times unique words have been assigned to corresponding topics.
Alternatively, rt can be set as the probabilities that a particular user vi is inter-
ested in different topics, which are calculated according to the number of times
words in vi’s tweets have been assigned to corresponding topics as captured in
DT.

2.1.7 Trust as topic

PageRank is vulnerable to adversarial information retrieval. In fact, link spam-
ming techniques can enable webpages to achieve higher score than what they
actually deserve. To do this, spammers normally create the so-called spam
farms, i.e., collections of pages whose role is to support the artificial increase of
the PageRank score of target pages. In a typical scenario, a spam farm owns
a certain number n of supporting pages, each of which has a bidirectional con-
nection only with the target page. Moreover, the target page has also incoming
links from outside the spam farm; this is made possible by applying one or
more link spamming strategies, such as inviting others to post comments on the
spammer site (target page). It can easily be demonstrated that the PageRank
score r(s) of the spammer’s target page can be computed as:

r(s) =
r(ns)

1− α2
+

α

1 + α

n

N
, (2.35)

assuming that a certain amount r(ns) of PageRank comes from outside the spam
farm (i.e., from the pages not owned by the spammer but linked to the target
page), and that there are N pages on the Web. Therefore, the size and structure
of the spam farm can be manipulated to amplify the PageRank score of the
spammer’s target page.

Combating link spam has been a necessary task for developers of web search
systems in the last years. One approach is to locate the spam farms, knowing
that, as we previously discussed, they may have a typical structure where one
page links to a very large number of pages, each of which links back to it.
However, this approach is not scalable since spammers can always develop farm
structures that differ from the known ones.

TrustRank. A different approach is instead to make the PageRank aware
of spam or, in general, untrustworthy pages, by inducing topic-sensitivity in
order to lower the score of those pages. Within this view, a well-known method
that was introduced to combat web spam and finally detect trustworthy pages
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is TrustRank [46]. Basically, the algorithm first selects a small seed set of pages
whose “spam status” needs to be determined. A human expert then examines
the seed pages, and tells the algorithm if they are spam (bad pages) or not
(good pages). Finally, the algorithm identifies other pages that are likely to be
good based on their connectivity with the good seed pages. The pages in the
seed set are classified using a function called oracle, which is as:

O(p) =

{
0 if p is bad
1 if p is good. (2.36)

However, at a large scale, oracle invocations are expensive, and in fact it is
used only over the seed set. Therefore, to evaluate pages without relying on the
oracle function, the likelihood that a given page p is good will be estimated.
A key assumption used in TrustRank to identify good pages is the so-called
approximate isolation principle, that is, “high-quality pages are unlikely to point
to spam or low-quality pages”. Upon this principle, a trust function T is defined
that yields a range of values between 0 (bad) and 1 (good). Ideally, for any page
p, T (p) gives the probability that p is good: T (p) = Pr[O(p) = 1]. Desirable
properties for the trust function are:

• Ordered Trust Property:

T (p) < T (q)⇔ Pr[O(p) = 1] < Pr[O(q) = 1]

T (p) = T (q)⇔ Pr[O(p) = 1] = Pr[O(q) = 1]

• Threshold Trust Property:

T (p) > δ ⇔ O(p) = 1.

Given the network graph G = (V,E), TrustRank first computes the seed set,
characterized by a vector s, via the following iterative equation:

s = βUs + (1− β)
1

|V |
1, (2.37)

where β is a decaying factor ranging between 0 and 1, and U is the “inverse”
connectivity matrix of the graph:

U(i, j) =

{
1/in(vj) if (vi, vj) ∈ E
0 otherwise. (2.38)

Note that pages in the seed set should be well-connected to other pages in order
to propagate trust to many pages quickly. Therefore, they are chosen among
those that have a large out-degree. For this purpose, PageRank is computed by
reversing the in-links with out-links in the graph; here a high PageRank score
will indicate that trust can flow with a small number of hops along out-links.

Once the s vector is computed, it is sorted in decreasing order according to
the probability that every vertex belongs to the seed set. Only the top-L vertices
are retained in the seed set. The next step consists in the computation of the
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personalization vector p, such that p(vi) = 1 if the vertex vi belongs to the seed
set and is a good page, and 0 otherwise. The TrustRank vector is finally com-
puted using the basic PageRank equation (cf. Section 2.1.2, equation (2.20)),
with personalization vector set to the normalized p.

2.1.8 Heterogeneous networks

So far we have discussed information networks under the common assumption
of representation as homogeneous networks, i.e., nodes are objects of the same
entity type (e.g., webpages, users) and links are relationships of the same type
(e.g., hypertext linkage, friendship). However, nodes and node relations can
be of different types. For instance, in a research publication network context,
nodes can represent authors, publications and venues, while relations can be
of type “written by” (between publication nodes and author nodes), “cited by”
(between publication nodes), co-authorship (between author nodes), and so on.
As another example, an online social network consists not only of persons, but
also of different objects like photos, tags, texts, and so on; moreover, different
kinds of relations may occur among different objects (e.g., a photo may be
labeled with a certain tag, a person can upload a photo, write a text or request
friendship to another person). Similar scenarios can be found in a variety of
application domains, including online e-commerce systems, medical systems,
and many others. Consequently, such real-world networks might be conveniently
modeled as heterogeneous or typed networks, in order to better capture the
(possibly subtly) different semantics underlying the different types of entities
and relationships.

Following [47], given a set of vertex types T and a set of edge types R, a
heterogeneous information network (HIN) is defined as a directed graph G =
(V,E) with a vertex type mapping function τ : V → T and an edge type
mapping function φ : E → R, where each vertex v ∈ V belongs to one
particular vertex type τ(v) ∈ T , each edge e ∈ E belongs to a particular
relation φ(e) ∈ R. If two edges belong to the same relation type, they share the
same starting vertex type as well as the ending vertex type. Moreover, it holds
that either |T |> 1 or |R|> 1; otherwise, as a particular case, the information
network is homogeneous.

The network schema, denoted as SG = (T ,R), is a meta template for a
heterogeneous network G = (V,E) with set of vertex types T and set of edge
types R.

In [47], Sun and Han provide a set of suggestions to guide systematic analysis
of HINs, which are reported as follows.

1. Information propagation. A first challenge is how to propagate informa-
tion across heterogeneous types of nodes and links; in particular, how to
compute ranking scores, similarity scores, and clusters, and how to make
good use of class labels, across heterogeneous nodes and links. Objects
in HINs are interdependent and knowledge can only be mined using the
holistic information in a network.
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2. Exploring network meta structures. The network schema provides a meta
structure of the information network. It provides guidance of search and
mining of the network and helps analyze and understand the semantic
meaning of the objects and relations in the network. Meta-path-based
similarity search and mining methods can be useful to explore network
meta structures.

3. User-guided exploration of information networks. A certain weighted com-
bination of relations or meta-paths may best fit a specific application for
a particular user. Therefore, it is often desirable to automatically select
the right relation (or meta-path) combinations with appropriate weights
for a particular search or mining task based on user’s guidance or feed-
back. User-guided or feedback-based network exploration can be a useful
strategy.

2.1.9 Ranking in heterogeneous information networks

Ranking models are central to address the new challenges in managing and
mining large-scale heterogeneous information networks. In fact many proposals
have been developed for a variety of tasks such as keyword search in databases
(e.g., [48]), Web object ranking (e.g., [49]), expert search in digital libraries
(e.g., [50]–[52]), link prediction (e.g., [53], [54]), recommender systems and Web
personalization (e.g., [55]–[57]), sense ranking in tree-structured data [58]. Some
work has also been developed using path-level features in the ranking models,
such as path-constrained random walk [59] and PathSim [60] for top-k similarity
search based on meta-paths. Moreover, there has been an increasing interest in
integrating ranking with mining tasks, like the case of ranking-based clustering
addressed by RankClus [61] and NetClus [62] methods. In the following, we
focus on ranking in heterogeneous information networks and provide a brief
overview of main methods.

ObjectRank. One of the first attempts to use a random-walk model over a
heterogeneous network is represented by ObjectRank [48]. The algorithm is an
adaptation of topic-sensitive PageRank to a keyword search task in databases
modeled as labeled graphs.

The HIN framework in ObjectRank consists of a data graph, a schema graph
and an authority transfer graph. The data graph GD(VD, ED) is a labeled di-
rected graph where every node v has a label λ(v) and a set of keywords. Nodes
in VD represent database objects which may have a sub-structure (i.e., each
node has a tuple of attribute name/attribute value pairs). Moreover, each edge
e ∈ ED is labeled with a “role” λ(e) which describes the relation between the
connected nodes.

The schema graph GS(VS, ES), is a directed graph which describes the struc-
ture of GD, i.e., it defines the set of node and edge labels. A data graph
GD(VD, ED) conforms to a schema graph GS(VS, ES) if there is a unique assign-
ment µ such that:

1. for every node v ∈ VD there is a node µ(v) ∈ VS such that λ(v) = λ(µ(v));
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2. for every edge e ∈ ED from node u to node v there is an edge µ(e) ∈ ES
from µ(u) to µ(v) and λ(e) = λ(µ(e)).

The authority transfer graph can refer to both a schema graph or a data graph.
The authority transfer schema graph GA(VS, EA) reflects the authority flow
through the edges of the graph. In particular, for each edge in ES two authority
transfer edges are created, which carry the label of the schema graph edge
forward and backward and are annotated with a (potentially different) authority
transfer rate. The authority transfer schema graph can be based on a trial and
error process or on a domain expert task.

A data graph conforms to an authority transfer schema graph if it conforms
to the corresponding schema graph. From a data graph GD(VD, ED) and a
conforming authority transfer schema graph GA(VS, EA) an authority transfer
data graph GAD(VD, EAD) can be derived. Edges of the authority transfer data
graph are annotated with authority transfer rates as well, controlled by a for-
mula which propagates the authority from a node based on the number of its
outgoing edges.

ObjectRank can be used to obtain a keyword-specific ranking as well as a
global ranking. Given a keyword w, the keyword-specific ObjectRank is a biased
PageRank in which the base set is built upon the set of nodes containing the
keyword w:

rw = αArw +
1− α
|S(w)|

s, (2.39)

where S(w) denotes the base set specific to w, and si = 1 if vi ∈ S(w) and
si = 0 otherwise. The global ObjectRank is basically a standard PageRank.
The final score of a node given a keyword w is then obtained by combining the
keyword-specific rank and the global rank.

In [48], Balmin et al. also discussed an optimization of the ranking task
in the case of directed acyclic graphs (DAGs). More specifically, the authors
showed how to serialize the ObjectRank evaluation over single-pass ObjectRank
calculations for disjoint, non-empty subsets L1, . . . , Lq obtained by partitioning
the original set of vertices in a DAG. Upon a topological ordering of Lh (h = 1..q)
that imposes no backlink from every vertex in Lj to any vertex in Li, with i < j,
the ranking of nodes is first computed on L1 ignoring the rest of the graph, then
only the ranking scores of vertices in L1 connected to vertices in L2 are reused
to calculate ObjectRank for L2, and so on.

PopRank. In [49], PopRank is proposed to rank heterogeneous web objects
of a specific domain by using both web links and object relationship links.
The rank of an object is calculated based on the ranks of objects of different
types connected to it, and a parameter called popularity propagation factor is
associated to every type of relation between objects of different types.

The PopRank score vector rτ for objects of type τ0 is defined as a combina-
tion of the individual popularity r and influence from objects of other types:

rτ = αr + (1− α)
∑
τt

γτtτ0M
T
τtτ0

rτt (2.40)
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where γτtτ0 is the popularity propagation factor of the relationship link from
an object of type τt to an object of type τ0 and

∑
τt
γτtτ0 = 1, Mτtτ0 is the

row-normalized adjacency matrix between type τt and type τ0 , and rτt is the
PopRank score vector for type τt. In order to learn the popularity propagation
factor γτtτ0 , a simulated annealing-based algorithm is proposed, according to
partial ranking lists given by domain experts.

Bipartite SimRank. The SimRank algorithm discussed in Section 2.1.5
can naturally be extended to bipartite networks such as, e.g., user-item rating
networks. Intuitively, the similarity of users and the similarity of items are mu-
tually reinforcing notions that can be formalized by two equations analytically
similar to equation (2.28) and equation (2.29). More precisely, assuming that
edges are directed from vertices of type 1 (e.g., users) to vertices of type 2 (e.g.,
items), and using superscripts (1) and (2) to denote the two types of vertices,
respectively, we have the following equations:

S(u(1), v(1)) = α1
1

|Ru(1)||Rv(1)|
∑

i∈R
u(1)

∑
j∈R

v(1)

S(i, j), (2.41)

and
S(u(2), v(2)) = α2

1

|Bu(2)||Bv(2)|
∑

i∈B
u(2)

∑
j∈B

v(2)

S(i, j), (2.42)

where constants α1, α2 have the same semantics as α in equation (2.27). Equa-
tion (2.41) corresponds to the similarity between vertices of type-1 is the average
similarity between the vertices (of type-2) that they refer to (e.g., items that the
two users rated), whereas equation (2.42) corresponds to the similarity between
vertices of type-2 is the average similarity between the vertices (of type-1) that
they are referred to (e.g., the users who rated the two items).

2.1.10 Ranking-based clustering

Given the diversity of node and link types that characterizes HINs, it is also
important to understand how the various nodes of different types can be grouped
together. An effective solution is to “integrate” ranking and clustering tasks.
This is the basic idea behind methods such as RankClus and NetClus, which
will be discussed next.

RankClus. In [61], the RankClus algorithm is introduced, which integrates
clustering and ranking on a bi-typed information network G = (V,E), such that
V = V0 ∪ V1, with V0 ∩ V1 = ∅. Hence, the nodes in the network belong to one
of two predetermined types, hereinafter denoted as τ0, τ1. The authors use a
bibliographic network as running example, which contains venues and authors
as nodes. Two types of links are considered: author-venue publication links,
with edge weights indicating the number of papers an author has published in
a venue, and co-authorship links, with edge weights indicating the number of
times two authors have collaborated. A formal definition of bi-typed information
network is reported as follows.
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A key issue in clustering tasks over network objects is that, unlike in tra-
ditional attribute based datasets, object features are not explicit. RankClus
explores rank distribution for each cluster to generate new measures for target
objects, which are low-dimensional. The clusters are improved under the new
measure space. More importantly, this measure can be further enhanced during
the iterations of the algorithm, so that the quality of clustering and ranking can
be mutually enhanced in RankClus.

Two ranking functions over bi-typed bibliographic network are defined in [61]:
Simple Ranking and Authority Ranking. Simple Ranking is based on the num-
ber of publications, which is proportional to the number of papers accepted
by a venue or published by an author. Using this measure, authors publishing
more papers will have higher rank score, even if these papers are all in junk
venues. Authority Ranking is defined to give an object higher rank score if it
has more authority. Iterative rank score formulas for authors and venues are
defined based on two principles: (i) highly ranked authors publish many papers
in highly ranked venues, and (ii) highly ranked venues attract many papers from
highly ranked authors. When considering the co-author information, the rank
of an author is enhanced if s/he co-authors with many highly ranked authors.

Differently from Simple Ranking (which takes into account only the neigh-
borhood of a node), the score of an object with Authority Ranking is based on
the score propagation over the whole network. Assuming to have an initial (e.g.,
random) partition of K clusters {Ck}Kk=1 of nodes of target type τ0 of a bi-typed
information network, the conditional rank of τ1-type nodes should be very differ-
ent for each of the K clusters of τ0-type nodes (e.g., in the bibliographic network
case, the rank of authors should be different for each venue-cluster). The idea is
that, for each cluster Ck, conditional rank of V1, rV1|Ck

, can be viewed as a rank
distribution of V1 , which in fact is a measure for cluster Ck. Then, for each
node v ∈ V0, the distribution of object u ∈ V1 can be viewed as a mixture model
over K conditional ranks of V1, and thus can be represented as a K dimensional
vector in the new space [61]. The authors use an expectation-maximization
algorithm to estimate parameters of the mixture model for each target object,
and then define a cosine similarity based distance measure between an object
and a cluster.

Given a bi-typed information networkG = (V0∪V1, E), the ranking functions
for V0 and V1, and a number K of clusters, RankClus produces K clusters over
V0 with conditional rank scores for each v ∈ V0, and conditional rank scores for
each u ∈ V1. The main steps of the RankClus algorithm are summarized as
follows [47].

• Step 0 - Initialization: Assign each target node with a cluster label from
1 to K randomly.

• Step 1 - Ranking for each cluster: Calculate conditional ranks for nodes
of type V1 and V0 and within-cluster ranks for nodes of type V0. If any
cluster is empty, the algorithm needs to restart in order to produce K
clusters.
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• Step 2 - Estimation of the cluster membership vectors for the target ob-
jects: Estimate the parameter of the mixture model, obtain new represen-
tations for each target object and centers for each target cluster: sv and
sCk

.

• Step 3 - Cluster adjustment: Calculate the distance from each object to
each cluster center and assign it to the closest cluster.

• Repeat Steps 1, 2 and 3 until clusters are stable or change by a very small
ratio ε, or until a predefined maximum number of iterations.

NetClus. NetClus [62] extends RankClus from bi-type information net-
works to multi-typed heterogeneous networks with a star network schema, where
the objects of different types are connected via a unique “center” type. An in-
formation network, G = (V,E,W ), with T + 1 types of objects such that V =
{Vt}Tt=0, has a star network schema if ∀ e = (vi, vj) ∈ E, vi ∈ V0 ∧ vj ∈ Vt(t 6= 0)
or vice versa. Type τ0 is called the center or target type, whereas τt(t 6= 0) are
attribute types.

Examples of star networks are tagging networks, usually centered on a tag-
ging event, and bibliographic networks, which are centered on papers. In gen-
eral, a star network schema can be used to map any n-nary relation set (e.g.,
records in a relational database, with each tuple in the relation as the center
object and all attribute entities linking to the center object).

NetClus aims to discover a set of sub-network clusters, and within each clus-
ter a generative model for target objects is built given the ranking distributions
of attribute objects in the network. This ranking distribution is calculated using
an authority ranking process based on a power iteration method that combines
the weight matrices defined between the various types and the center type.
The clusters generated are not groups of single typed objects but a set of sub-
networks with the same topology as the input network, called net-clusters. Each
net-cluster is a sub-layer representing a concept of community of the network,
which is an induced network from the clustered target objects, and attached
with statistic information for each object in the network.

NetClus maps each target object, i.e., that from the center type, into a
K-dimensional vector measure, where K is the number of clusters specified
by the user. The probabilistic generative model for the target objects in each
net-cluster is ranking-based, which factorizes a net-cluster into T independent
components, where T is the number of attribute types. NetClus uses the same
ranking functions defined for RankClus (Simple Ranking and Authority Rank-
ing) adapted to the star network case. The core steps of the NetClus algorithm,
given the desired number of clusters K, are summarized as follows [47].

• Step 0: Generate initial partitions for target objects and induce initial
net-clusters from the original network according to these partitions, i.e.,
{C0

k}Kk=1.

• Step 1: For each net-cluster, build ranking-based probabilistic generative
model, i.e., {P (v|Ct

k)}Kk=1.
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• Step 2: For each target object, calculate the posterior probabilities (P (Ct
k|v))

and update their cluster assignment according to the new measure defined
by the posterior probabilities to each cluster.

• Step 3: Repeat Step 1 and 2 until the clusters do not change significantly,
i.e., {C∗k}Kk=1 = {Ct

k}Kk=1 = {Ct−1
k }Kk=1.

• Step 4: Calculate the posterior probabilities for each attribute object
(P (C∗k |v)) in each net-cluster.

2.2 Trust inference in controversial conditions
In this section, we delve into the role of trust in the context of social inter-
actions, with the final goal of developing an inference algorithm to deal with
disambiguation of controversial situations i.e., cases where trust opinions widely
differ, without a strong unanimous consensus. In this context, we suggest that
a mindful use of local and global information can help the user decide whether
to trust or not to trust the other user.

2.2.1 Introduction

Nowadays, online social networks (OSNs) and web communities have imposed
their central role in the life of millions of people as the preferred mean to share
information, experiences and opinions through continuous interactions. Social
interactions happen without any geographical or temporal limit, and the infor-
mation that anyone shares can easily reach a vast crowd, mainly composed by
people which do not have a real direct knowledge of each other (e.g., unlike
what usually happens in off-line small communities). In this scenario, it be-
comes necessary to introduce a mechanism for validating and filtering content,
discerning the veracity of the information and selecting the appropriate people
with whom to share opinions and preferences. A popular way to address this
problem is to take into account the concept of trust, i.e., modeling information
about how much trustworthy each user considers the other ones. OSNs con-
taining information about trust relationships between pair of users are generally
referred to as trust networks.

A large body of work exists which focuses on the definition of trust inference
algorithms, i.e., methods capable of inferring the level of trust between users
not directly connected to each other [63], [64]. Trust inference algorithms are
typically classified into two main categories: local and global methods. Local
methods infer the trust from a source node to a sink (i.e., target) node by
modeling the trust propagation flow across the paths connecting the two nodes.
This approach preserves the subjectivity of the trust statements, i.e., inferred
trust values for the same target user can be completely different when coming
from different source nodes. Conversely, global approaches are based on the
calculation of a single trust evaluation for each user, which should reflect the
opinion of the entire community; the notion of trust, which in this case can
also be referred to as reputation, is considered as a global ranking of the users
[65]–[67].
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Controversial situations can easily arise in trust networks because of the
discordance between personal (subjective) opinions [68]–[71]. These situations
may occur when there is no agreement in the trust statements towards a user,
leading to interpretation and reliability problems in the trust inference pro-
cess. Local trust inference approaches have been proved to be more effective in
presence of controversial conditions [69].

The aim of this work is to highlight the improvements that can be obtained
in this context by combining information coming from both local and global
trust aspects in the disambiguation of controversial situations, i.e., cases where
the trust opinions widely differ from each other, without a strong unanimous
consensus. Our key ideas and contributions are the following:

• We analyze several controversial cases, considering the use of both global
and local methods to improve performances in terms of error prediction
and accuracy.

• We propose a novel trust inference algorithm, namely TrustZic, which
takes into consideration both local and global trust aspects, i.e., prop-
agating trust evaluations proportionally to the global reputation of the
trustor nodes.

• We provide explanatory examples and experimental results in a real dataset,
proving the effectiveness and significance of the proposed TrustZic in solv-
ing controversial situations.

The remainder of the work is organized as follows. Section 2.2.2 introduces
the scenario which motivates our proposal, Section 2.2.3 discusses related works,
and in the following section we introduce the proposed algorithm TrustZic.

2.2.2 The motivating scenario

This section introduces a typical scenario that highlights the motivations un-
derneath the proposed research work. Figure 2.2 shows a simple controversial
condition that can happen in a social network context. Paul needs to hire a new
employee for his company. After advertising the open position, Paul receives an
application from Ken. Unfortunately, Paul does not know anything about Ken,
but he is in touch with John and Mark, who had previous work experiences with
Ken. Paul is happy because he can now take a decision based on the experiences
reported by John and Mark. After asking them, he receives two controversial
opinions about Ken. In fact, John recommends Ken as a good choice for filling
the job position, while Mark reports negative experiences about the behavior
of Ken at work. As Paul has the same consideration of John and Mark, he is
unable to take a decision about Ken.

This is a typical situation of trust controversy, where trusted users report
contrasting opinions. A reasonable decision about trusting or not a user in such
a controversial situation is not possible, since the trusting paths connecting
source and target nodes are propagating opposite opinions.
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Paul

John

Ken

Mark

Trusts

Trusts Does not trust

Trusts

Figure 2.2: A typical trust controversy case: it is not possible
to infer whether or not Paul should trust Ken.

The main idea of our proposed approach to solve this problem is to exploit
information from the rest of the trust network in order to find a way for solv-
ing the controversial situation. To this purpose, it is necessary to introduce a
criterion of discernment. The most natural way to differentiate the reported
trust opinions is to give a different weight depending on the reputation of the
trustors. In fact, each user has a different influence with respect to the rep-
utation built in the specific context. The reputation influences the way the
opinions, suggestions and recommendations are considered.

Figure 2.3 reports an extended version of the previous example, where the
focus is broadened to include more the network. In this case, the global rep-
utation of the nodes can be used to take a reasonable decision about whether
Paul should or should not trust Ken. The extended scenario shows that John
is trusted by all his in-neighbors, while Mark received both trust and no-trust
statements: in this condition it is clear that John has a higher reputation than
Mark. After considering the different reputations of John and Mark, Paul de-
cides to take a final resolution about Ken. In fact, Paul finds that the reputation
of John is much higher than that of Mark, so he decides to consider the opin-
ion coming from John more reliable, and finally hires Ken. According to the
reported considerations, in the proposed approach the reputation will be used
as a discerning weighting factor in controversial situations.
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Figure 2.3: A controversy case addressed in a global scenario,
where the size of the user figures is proportional to their

reputation.

2.2.3 Related work

Trust inference

A trust network is usually modeled as a directed graph G = 〈V,E, T 〉, consisting
of a set V of nodes (users), a set of links (edges) that represent relations between
users, and an edge weighting function T modeling the corresponding trust level
of the edges.

The trust network is derived directly from a social network when users are
requested to rate each other. Epinions4 is a premier consumer reviews platform
on the Web based on the recommendation and the trust among the users who
review commercial products. In the Epinions Web of Trust technology, users
can specify their trust in other users for receiving notifications when the latter
ones review new products. In [72], the Friend-Of-A-Friend (FOAF) project5
aimed at building a Web of acquaintances, was extended in order to include
information of the level of trust on a scale of 1-9 that users can indicate with
respect to the people they know.

Whenever there is no information about how much a user rates other users,
the trust network can be derived by evaluating trust statements and interac-
tions among users [73]–[75]. In [75], an algorithm based on the communication
behavior in social communication networks is proposed in order to measure the

4http://www.epinions.com
5http://www.foaf-project.org/
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trust among users. The trust is measured by quantifying the behavior in terms
of length and frequency of communications, and propagation of information
among users. Experiments were conducted on Twitter, where the mechanism of
retweet was used for measuring the trust contribution coming from propagation.

The purpose of a generic trust inference algorithm IT is to compute a pre-
diction of the trust from a source node u to a sink node v when there is no
direct link between the two nodes, i.e., (u, v) /∈ E. Obviously, there is no
need to calculate a prediction when an explicit trust statement was issued,
i.e., IT (u, v) = T (u, v) if (u, v) ∈ E. Several trust inference algorithms have
been proposed in literature for prediction purposes with different characteris-
tics and performances. The trust inference algorithms can be classified into
two main categories: global and local methods [76]. Global algorithms compute
an overall evaluation, here commonly named reputation, for each user of the
trust network; thus, the reputation can be considered as the synthesis of the
trust evaluations from the entire network with respect to a single user. The
well-known PageRank [77] can be considered as a basis for the development of
global trust methods [65].

Nevertheless, global trust inference methods are not suited to preserve the
characteristic of personalization in the subjective expression of an opinion,
which can instead be achieved by using local trust inference algorithms. One of
the most popular local trust inference algorithms is TidalTrust [76], which com-
putes the trust between non-adjacent nodes by considering only shortest paths
through trusted neighbors. Another local method is proposed in [78], namely
TISoN (Trust Inference within online Social Networks). In this case a selection
of the trust paths from a source node to a sink node is performed with respect
to two criteria: the maximum allowed depth of the path, and the minimum
threshold level allowed for the trust edges in the path. Then the inferred trust
is computed selecting the most trustable path, based on the average of the trust
edges in the path, the path variance of the trust edges w.r.t. the average, and a
path weight based on its length. As regards other approaches, a detailed survey
of trust inference algorithms in literature is presented in [64].

Trust controversy

As trust statements reflect subjective opinions built on personal experiences, it
is often the case that users report contrasting and different trust opinions about
the same target. When trust statements differ too much from each other, it be-
comes challenging to derive affordable inferred trust information. The presence
of controversial conditions makes the trust inference problem more complex to
address. Thus, the identification of controversial conditions requires to be ex-
plicitly taken into account when dealing with trust networks. The concept of
controversy in trust networks has been widely studied in literature [68]–[71].

In [68], the controversy is referred to as single users that are trusted and
distrusted by many, i.e., without a global agreement as regards their trustwor-
thiness. The level of controversy for a generic user u is defined by two metrics,
controversiality level (cl) and controversiality percentage (cp) as follows:

cl(u) = min(#rt(u),#rd(u)) (2.43)
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cp(u) =
#rt(u)−#rd(u)

#rt(u) + #rd(u)
(2.44)

where the received trust (#rt) and the received distrust (#rd) represent the
number of trust and distrust edges to the node u, respectively.

Controversy was studied by [70] and [79] in the context of recommender
systems, where controversial reviews are defined as those reviews that receive
a variety of high and low scores, reflecting disagreement about reviews. Those
studies introduced a measure of controversy in terms of standard deviation σ
of the reviews of an item i and the level of disagreement α defined as follows:

α(∆, i) = 1− max
α∈{1,...,m−∆+1}

(

∑a+∆−1
s=a fi(s)∑m
s=1 fi(s)

) (2.45)

where ∆ is the level of a discrete rating scale from 1 to m, and fi(s) is the
number of times that the item i received a rating of score s.

In this work, we will use the metric proposed in [71] in order to evaluate the
controversy of the trust inferred from a source node A to a generic sink node Z.
The main idea is to consider the controversy as the variance among the trust
opinions of the predecessors of the source nodes. To this purpose, the mean
trust TM(A,Z) is calculated as follows:

TM(A,Z) =

∑
Pi∈Pred(Z) IT (A,Pi)× T (Pi, Z)∑

Pi∈Pred(Z) IT (A,Pi)
(2.46)

where Pred(Z) is the set of predecessors of the node Z, IT indicates the inferred
trust values and T the original trust weights.

According to Equation 2.46, the mean trust is the weighted average of the
trust values assigned by the predecessors Pi of node Z, where the weights are
the inferred trusts from the source node A to the predecessor nodes Pi. As the
controversy measure is related to the level of discordance among the different
trust opinions reported to the source node through the trust chains up to the
sink node, the controversy measure TC(A,Z) is defined as the weighted variance
of the inferred trust paths, as reported in the following:

TC(A,Z) =

∑
Pi∈Pred(Z)

IT (A,Pi)× (T (Pi, Z)− TM(A,Z))2

∑
Pi∈Pred(Z)

IT (A,Pi)
(2.47)

The normalized trust controversy measure (NTC), introduced to bring TC
into the range [0, 1], can be computed as follows:

NTC(A,Z) =
TC(A,Z)

((Tmax− Tmin)/2)2
(2.48)

where Tmin and Tmax are the extremes of the trust range.
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Local vs. global methods

How global and local methods should be used to solve different trust inference
problems was widely explored in [80]. An interesting comparison of local and
global trust metrics is reported in [68], where the characteristics of the two
approaches are argued in detail. Results on real datasets proved that global
methods show intrinsic limit when controversial users (i.e. users judged in dif-
ferent ways by other users) are analyzed, while local methods are more suitable
in contexts where opinions are more subjective like in the controversial condi-
tions. The study in [69] showed how local trust metrics outperform global ones
when predicting the trustworthiness of users characterized by both trust and
distrust evaluations.

The idea of improving the performance of prediction systems by exploiting
both global and local trust metrics is not new in literature. A hybrid global-
local method was introduced by [81] in the context of service recommendation
systems. The scenario depicted in [81] is different from the one discussed in this
work, as it considers a recommendation system consisting of different services
rated by users integrated with a trust network. The trust network is used to
support the computation of the personalized rating prediction PT (u, s) of a
service s from a user u as the weighted average reported in Equation 2.49 of the
global r(s) and local T (u, s) rating evaluation of the service s, where wl and
wr are the weights used for properly tuning the local and global contributions,
respectively:

PT (u, s) =
r(s)× wr + T (u, s)× wl

wr + wl
(2.49)

The promising results obtained by exploiting both global and local per-
spectives in recommendation systems have encouraged us to investigate how
combining the two approaches can be beneficial for improving the performance
of trust inference algorithms in controversial conditions.

2.2.4 The TrustZic algorithm

The proposed trust inference method, namely TrustZic, aims at solving prob-
lems arising when trying to infer trust values in controversial cases, by exploit-
ing global and local trust information in a combined solution. In the proposed
approach, the level of trust inferred from the source to the sink will still be
personalized because it depends on the propagation of trust along the paths
between the source and the sink across the trust graph. Nevertheless, the nodes
in the traversed paths are not equally considered, but they exert a different bias
on the trust propagation, i.e., proportional to their reputation which is obtained
by applying a global trust method.

Figure 2.4 shows the main steps of the TrustZic approach: in the first step
a global ranking is calculated from the trust graph in order to get a reputation
value r(i) for each node i. The trust-reputation network is obtained from the
trust network by adding the reputation information on the nodes. In the second
step, the trust between nodes not directly connected in the trust network is
inferred. The trust inference method propagates the trust from the source node



2.2. Trust inference in controversial conditions 39

to the sink through the trust paths weighted based upon the reputation of
each node traversed across the path. The resulting trust inference network is a
complete graph in which nodes are connected by trust relations (solid edges) or
inferred trust relations (dashed edges). In the following, we will give detailed
information on how we perform these steps.

Step 1: computation of the global trust values. A PageRank -like
algorithm is here used to implement the first step of the proposed method (i.e.,
obtaining the global ranking of all the nodes in the network). The stochastic
matrix M is obtained as the transpose and normalized version of the trust
matrix T , as shown in (2.50).

M [i, j] =
T [j, i]∑

k∈adj(j)
T [j, k]

(2.50)

The vector r of reputations for all the N nodes is calculated as in (2.51),
where α is a smoothing factor (by default set to 0.85) and p is the column vector
with the initial reputation value (by default p = 1, i.e., the column vector of
ones).

r = αMr +
1− α
N

p (2.51)

We then adopt the final PageRank solution (i.e., vector of the stationary
distribution of PageRank scores at convergence) to assign reputation values to
the nodes in the network. However, this can be thought of as a general workflow,
where different global ranking methods can be used in theory at this step.

Step 2: local trust inference propagation. The second step consists
in propagating the trust from a source node to a sink node by taking into
consideration not only the trust T but also the reputation r. The inferred trust
IT (i, j) from the source node i to the sink node j is computed as reported in
(2.52), where d ∈ (0, 1] is the decay trust factor, introduced for modeling the
fact that the trust generally decreases when increasing the distance from the
source node.

IT (i, j) =


T (i, j) if there is a direct trust∑
k∈neighbor(i)

r(k)×d×T (i,k)×IT (k,j)∑
k∈neighbour(i)

r(k)×T (i,k)
otherwise (2.52)

In order to disambiguate controversy, trust is propagated from the source
node through all the different paths reaching the sink node, without excluding
the contribution of low trusted paths. Starting from the source node, the trust
inference is calculated by averaging the trust (direct or inferred) for the sink
node reported by all the directly connected trusted nodes (neighbors). More in
detail, the aggregation of the trust coming from the different paths is obtained
as a weighted average, where the reported trust is weighted by the reputation of
the neighbors. The trust inference function is recursively computed along the
paths in order to propagate the trust up to the target node.
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Figure 2.4: Main steps of the TrustZic algorithm.
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Handling controversial cases with TrustZic

In this section we will give some preliminary numerical examples in order to
show how TrustZic is able to address controversial cases by exploiting the rep-
utation of the intermediate nodes. We consider a trust range TR = [0, 1], so
that T (i, j) ∈ [0, 1] ∀(i, j) ∈ E. T (i, j) = 1 means that user i fully trusts user
j, while T (i, j) = 0 means lack of trust.

For the sake of simplicity and to isolate the reputation effect, only in this
explanatory example, all the trust opinions will be considered equal to 1, while
the lack of trust is uniformly considered equal to 0, and the effect of the trust
decay with the path length is neglected (d = 1).

Figures 2.5, 2.6 and 2.7 show three different controversial cases. In the first
case (Fig. 2.5), a node Z receives two opposite trust opinions from nodes B and
C, propagated up to node A. In this case, the reputation of nodes B and C is
the same due to the symmetric configuration, thus the resulting inferred trust
is exactly the mean of the two reported trust opinions (IT (A,Z) = 0.5).

This is a critical situation when trust inference is used to make decisions.
In fact, trust inference can be used as a decision support system by setting a
trust threshold value for delimiting the trusting by the no-trusting zones. A
generic node X decides to trust another node Y only if the inferred trust from
the network is above a fixed threshold. In this specific example, if the threshold
is reasonably set to the intermediate value (Thres = 0.5) of the [0, 1] trust
range, no decisions can be taken because the inferred trust is exactly equal to
the threshold (IT (A, Z ) = 0.5 = Thres).

The second and the third cases (Figures 2.6 and 2.7) consider the connections
of the rest of the trust network with nodes B and C, and their effects on their
reputation. In the second case, the reputation of node B is higher (r(B) = 0.28)
than that of C (r(C ) = 0.13) because of the two nodes (D and E ) trusting
B. In the third case, the reputation of node C is further decreased (r(C ) =
0.12) as a consequence of the 0-trust inner edge from (F ). The effects of the
reputation changes become relevant for the resolution of the controversial case
in the inferred trust between nodes A and Z. In fact, in the cases reported in
Figures 2.6 and 2.7, the inferred trust allows to easily take decisions: node A
will trust node Z because the reputation of node B, reporting a positive opinion,
is higher than that of node C, reporting a lack of trust opinion.
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Figure 2.5: An undecidable controversial case.
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Figure 2.6: The controversial case resolved by TrustZic due
to the increased reputation of node B.
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Figure 2.7: The controversial case resolved by TrustZic due
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2.3 Conclusion
Trust regulates relations among people, in offline relations as well as in online
social networks and web communities, where the interaction among users in
the absence of any direct connection can easily happen. In this context, trust
inference algorithms are a fundamental tool to estimate missing trust evalu-
ations. Controversial situations caused by disagreement in the existing trust
statements towards a user need to be specifically taken into account during the
inference process. The trust inference algorithm TrustZic, in which global and
local trust aspects are combined to infer reliable trust values also in presence of
controversial situations, has shown significance and effectiveness of its approach
in solving critical trust inference scenarios (experimental results can be found
at [71]).
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Chapter 3

Alternate behaviors in multilayer
social networks

3.1 Introduction
Online user behaviors have been traditionally investigated in function of the
role(s) that a user takes as a member of a single web-based social environment.
This often corresponds to focusing on online social networks (OSNs) that are
built on a single type of user relation type (e.g., followship, liking/rating, com-
menting) or platform context. However, nowadays it is naturally occurring that
an individual has multiple accounts across different OSNs. This makes it impor-
tant to link distributed user profiles belonging to the same user from multiple
platforms, which can be beneficial for several applications; for instance, per-
sonalized Web services such as recommendation systems can take advantage of
the aggregation of user profiles to alleviate the cold-start problem. A further
scenario comes out by considering that real-life relations (e.g., working relation-
ship, having lunch, etc.) can be available for the same population of an OSN,
and hence they should be profitably exploited to enhance our understanding of
the individuals and their relations in an OSN [82].

The above scenarios and furthermore others correspond to complex real-
world network systems, which are indeed pervasive in many fields of science.
Such systems can effectively be studied using a multilayer network model, which
especially in social computing, has been recognized as a powerful tool to better
(i.e., more realistically) understand the characteristics and dynamics of different,
interconnected types of user relations [82]–[84].

3.1.1 Motivations

The dichotomy between production and consumption of resources in
OSNs. Regardless of the peculiarities of the scenarios above discussed, the
intrinsic complexity of a multilayer network system, in which users and their
relations are represented, inevitably impacts on the motivational factors that
ultimately determine the users’ behavioral profiles. According to the unified
model proposed in [85], there are essentially four categories of factors influenc-
ing user behaviors: environmental factors — which affect the user’s feeling of
the community and therefore influences the user’s willingness to spend time or
to contribute to the community; commitment factors and quality requirement
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factors — which are based on the relationship between the users and the com-
munity; and, of course, individual factors — which refer to the personalities of
the users and their purpose of joining the community, such as needs and ex-
pectations, but also self-efficacy, extroversion/introversion, self-disclosure, etc.
Through the combination of these factors, the resulting online behaviors can be
analyzed from three broad perspectives: the development and spread of com-
munity norms, the contribution of valuable resources, and the consumption of
resources.

Let us focus on the dichotomy between contribution and consumption of
information resources. In this respect, depending on one or many of the influ-
encing factors discussed above, the same user may take different roles in terms
of contribution and consumption of resources. This is even more intuitive in a
multilayer network context, where each layer corresponds to a distinct social
environment that might significantly differ from that of the other layers. For
instance, consider a multilayer network representing users that are members
of many OSNs: it is not surprising that a user can frequently post contents
and/or actively interact with other users in one or more layer OSNs, and on the
contrary, s/he may be less involved in tangible participation and interactions
with other members, thus assuming a silent behavior on other OSNs. Generally
speaking, in the first case the user is producing resources, while in the other
case s/he is rather consuming resources. Here we leave out of consideration the
inactivity status, since users that are subscribers of an OSN without accessing it
should not be considered as real members of the underlying online community.

The value of lurkers. Unlike inactive users, silent users actually gain
benefit from the community, since they observe the user-generated communica-
tions though rarely visibly participating in them and contributing information
themselves. For this reason, they are also called as lurkers. Lurking behaviors
have been widely studied in social science, and the importance of analyzing it
as a valuable form of online behavior has been definitively recognized [85], [86].
Moreover, lurking is strictly related to legitimate peripheral participation to
learn the netiquette and social norms [87], individual information strategy of
microlearning [88] and knowledge sharing barriers [89], individual motivation
for interpersonal surveillance [90]. According to the model by [85] previously
mentioned, reasons for lurking include environmental influence (e.g., bad usabil-
ity/interaction design, information overload, low response rate, low reciprocity),
personal aspects (e.g., introversion, bashfulness, lack of self-efficacy, no need to
post – only seeking for information), lack of commitment to the community (e.g.,
low verbal and affective intimacy with others, unwillingness to spend too much
time to maintain a commitment), or security concerns (e.g., worrying about
the violation of private information, perception of poor quality requirements of
security). The latter aspect is particularly crucial as related to the challenging
design of defense strategies in the cyberspace, especially of social network plat-
forms whose common habit is rather to encourage their users to self-disclose
their personal information. In fact, as studied in [91], lurking can be explained
as a conservative communication strategy adopted by users to protect their per-
sonal information while, in the form of passive participation, still connected in
online communities; also, users having lack of computer self-efficacy may resort
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to lurking, thus keeping themselves as part of the online communications but
without causing any harm to themselves or to members of their social network.

The coexistence of contributor and lurker behaviors. By getting
information from other members of an OSN, lurkers become aware of the ex-
istence of different perspectives and may make use of these perspectives in
order to form their own ideas, opinions, and even competence. Therefore, lurk-
ers have the potential of exploiting the acquired knowledge outside their own
OSN. On the other hand, when users decide to contribute to the community
by performing a social action, often they may have formed their decision from
exogenous sources of ubiquitous and/or specialist knowledge. In this regard,
social boundary spanning theory [92], [93] explains how OSN users may natu-
rally get knowledge from some of their social contacts and span it from one or
more components to others in the network. A key role is played by those users
that lay on the boundary of a component and act as bridges over other com-
ponents. Relations have been studied not only between bridges and influential
contributor users (e.g., [94]–[96]), but also between lurkers and bridges. For
instance, Morales et al. [95] highlight the importance of bridges in spreading
messages throughout a Twitter network organized into an event-driven commu-
nity structure, where information-producers are found to create communities
of information-consumers around them. In our previous work [97], we explain
the relation between lurkers and community bridges identified through perco-
lation analysis based on directed topological overlap. In another study [98],
lurkers are found more likely to acquire information from outside their own
community than to spread information towards other communities; this finding
is also complementary to an important result of the application of an influence-
maximization method of lurker engagement developed in [98], whereby active
users who might help in engaging lurkers could be identified among members
of communities external to those of lurkers. Major principles underlying the
social boundary spanning theory can also be extended to a multilayer network,
where the layers correspond to the boundaries in the complex system.

Following the above intuition, in this work we focus on the understanding
of the knowledge flow across different layers of a complex network, from the
perspective of both contributors and lurkers. Given the different contingencies
occurring in the various layers and, consequently, the different behavioral pro-
files the same user can have therein, we leverage the importance of studying
the behavior of users which may alternately take the role of contributors and
lurkers over different layer networks.

Applications. The analysis of such alternate behaviors is of crucial im-
portance in order to deeply understand how information and knowledge are
produced, consumed, and shared through multiple OSNs. We believe that the
development of effective methods for the problem under consideration can sup-
port several classes of applications. One of these concerns information filtering
and propagation for advertising, marketing campaigns and related applications.
For instance, in tasks of influence maximization [99], we can reasonably assume
that contributors are candidates to be selected as initial influencers (i.e., seed
users), and lurkers as potential targets of the information to be propagated;
in a multilayer context, in order to invest on a more socially diversified set of
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promoters, it would be useful to learn the seeds not only among the (indirect)
social contacts of a target in a layer network, but also among her/his contacts
over other layers. Analogously, the identification of users that may consume
information from a specific network and subsequently spread it across different
platforms would also be beneficial in campaigns of information containment.
This is also important for security reasons, e.g., to control that specific (e.g.,
sensitive) information be shielded from certain users, to cope with the diffusion
of fake news through different web sources, etc.

Another class of applications concerns user engagement. OSNs encourage
users to self-disclose their own opinions and actively contribute to the com-
munity life. This requires the development of so-called “delurking” strategies,
such as providing rewards (i.e., grants to be offered to the users for their active
contributions to the community) [100], enhancing users’ commitment to the
community [101], making lurkers understand the necessity of their contribu-
tion [102], learning or improving usability of the system [103]. Generalizing to
a complex system, valuable indications might be provided from the platform(s)
on which a user is an active contributor to tailor a suitable strategy for engaging
her/him on other platforms.

From a broader perspective, identifying alternate behaviors in multiple OSN
contexts can be a key tool to enhance the development of effective communica-
tion strategies through different online social environments, and ultimately to
face challenges in today’s knowledge management systems that concern users’
motivations for online participation in different forms (i.e., active vs. passive
participation).

3.1.2 Contributions

In this work, we address the novel problem of identifying and characterizing
users who alternately behave as contributors and as lurkers over multiple layer
networks in a complex system.

To the best of our knowledge, we are the first to study the dichotomy between
information-producers (i.e., contributors) and information-consumers (i.e., lurk-
ers) and their interplay over a multilayer network. To support this claim of nov-
elty, note that while research on the identification and ranking of contributors
and users with related roles (i.e., influencers, leaders, experts, etc.) in multilayer
networks has recently gained momentum (e.g., [83], [84], [104]–[108]), none of
these studies addresses problems of analysis of opposite and alternately occur-
ring behaviors. Moreover, computational approaches to the analysis of lurking
behaviors have been developed only for monoplex networks [97], [98], [109]–
[112]. By contrast, in this work, we take into consideration both behavioral
“opposites”, leveraging on their duality and possible, “alternate” manifestations
over many, interconnected layers of the same complex network system. This rep-
resents a major novelty aspect of our approach, which introduces a previously
unexplored notion of centrality or prominence in multilayer network that can
effectively be used to support emerging and challenging applications in complex
network systems, as previously discussed in Sect. 3.1.1.
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Our proposed approach is devised in terms of a twofold, mutually reinforcing
ranking model, which can capture the interplay of the two behavioral roles over
a multilayer network. The meaning of “alternate” stands for the contingency
that the behavior of the same user can be regarded as lurking in one layer and
as active participation in one or many of the other layers, or vice versa. We
formally define the alternate lurker-contributor behavior status of any node in
a multilayer network, conditionally to a given layer, following interrelated prin-
ciples of cross-layer lurker behavior and cross-layer contributor behavior. Upon
this, the proposed Alternate Lurker-Contributor Ranking method (mlALCR) is
mathematically expressed as two mutually dependent equation systems, where
one system determines the layer-specific lurking score and the other system de-
termines the layer-specific contributor score for all nodes in the interconnected
layers of the complex network.

Our mlALCR has been extensively evaluated on four real-world multilayer
networks, specifically two cross-platform user multi-relational networks, a single-
platform user multi-relational network, and a single-platform temporal multi-
slice network. We assessed significance and meaningfulness of mlALCR both
quantitatively and qualitatively. Experimentation also includes comparison of
mlALCR with the basic (i.e., monoplex) lurker ranking method, its extension to
multilayer networks — originally proposed in this work — ranking aggregation
methods, and the Multiplex PageRank method. Results show the unique abil-
ity of mlALCR to effectively determine the two behavioral opposites in terms
of information-production and information-consumption that a user may take
over different layers of a complex network.

The remainder of this chapter is organized as follows. Section 3.2 briefly
discusses related work, focusing on approaches to the measurement of node
centrality in multilayer networks. Section 3.3 introduces to the identification
of contributors in multilayer networks and the analysis of lurking behaviors.
Section 3.4 is devoted to our proposed mlALCR method. Sections 3.5 and 3.6
present experimental methodology and results. Section 3.7 concludes the chap-
ter.

3.2 Related Work
The notion of centrality commonly resembles the importance or prominence
of a node in a network, i.e., the status of being located in strategic locations
within the network. Concerning multilayer networks, we can distinguish two
main approaches in the literature, which mainly differ from each other in the
way they handle the additional complexity introduced by inter-layer edges. One
approach is based on some strategy of aggregation, i.e., projection of the mul-
tilayer network to a single aggregated layer or aggregation of layer-wise results
independently generated. The other approach comprises techniques which are
designed to take into account both intra- and inter-layer connections.

Aggregation and projection-based approaches. Brodka et al. propose
a definition of degree centrality for multilayer networks in [113]. The cross-layer
degree centrality of a node v is measured as proportional to the weighted sum of
edges connecting v with the members of its multilayered neighborhood, which is
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the set of nodes directly connected with v on at least a certain number of layers.
In [106], De Domenico et al. study main factors influencing the navigability of
multilayer networks, using random walks over a layer-aggregated network. The
authors find that navigability is influenced by both structural characteristics
and exploration strategies, and that a multilayer network is more resilient to
random failures than the single layers separately. In general, when dealing
with centrality scores produced at distinct layer networks, the use of different
aggregation and normalization techniques is shown to strongly bias the final
results [114].

Cross-layer approaches. Sole et al. [105] define a multilayer extension of
the betweenness centrality by taking into account shortest paths which include
inter-layer edges. This measure is shown to favor nodes which act as bridges be-
tween layers, allowing to connect individuals which are disconnected inside the
layers. A cross-layer betweenness centrality is proposed in [115], also includ-
ing applications of the proposed measure to multilayer community detection
and message spreading tasks. Two classes of multilayer degree-biased random
walks are proposed in [116], in order to analyze to what extent this kind of
random walks can make the exploration of multilayer networks more efficient.
The two classes refer to extensive walkers (i.e., biased w.r.t. node properties
independently considered for each layer) and intensive walkers (i.e., the bias is
proportional to intrinsically multilayer features, as the overlapping degree and
the participation coefficient). Kuncheva and Montana [117] also employ multi-
layer random walks for community detection purposes. Their method utilizes
inter-layer transition probabilities that depend on local topological similarity
between corresponding nodes, in order to facilitate the discovery of cross-layer
communities. A hierarchical clustering method is finally used to produce the
communities based on the outcome of a random walk process. An important
mention here regards the multilayer extension of the well-known PageRank al-
gorithm proposed in [104], which we shall discuss in detail in Sect. 3.3.2 and that
will be used as one of the competing methods in our experimental evaluation.

It should be noted that all the aforementioned approaches are either exten-
sion of classic centrality measures to a multilayer context [105], [113], [115], or
approaches which exploit random walk models on multilayer networks to extend
eigenvector centrality [104], [116] or to use it for specific tasks (e.g., community
detection [115], [117]). By contrast, we propose a new ranking method explic-
itly designed to model opposite behaviors and their interplay over the multiple
layers of a complex network system, leveraging information coming from user
interactions through the different layers.

3.3 Lurker and contributor behaviors in multi-
layer networks

3.3.1 Multilayer network model

Let L = {L1, . . . , L`} be a set of layers, with size equal to or greater than two.
Each layer corresponds to a particular user relational context. Given a set V
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of entities (i.e., users), for each choice of user in V and layer in L, we need to
indicate whether the user is present in that layer. We denote with VL ⊆ V × L
the set containing the user-layer combinations (i.e., tuples) in which a user is
present in the corresponding layer. The set EL ⊆ VL× VL contains the directed
links between user-layer tuples. Note that, when all layers refer to the same
aspect or dimension (e.g., same temporal dimension, same group of interactions,
etc.) like in our setting, the elements in VL simply correspond to pairs 〈node,
layer〉. We hence denote with GL = (VL, EL,V ,L) the multilayer network graph
with set of entities V and set of layers L.

For every layer Li ∈ L, let VLi
=
⋃
v∈V(v, Li) be the set of pairs expressing

the occurrences of entities in the graph of Li, and ELi
⊆ VLi

× VLi
be the

set of edges in Li; to simplify notations, we will also refer to VLi
and ELi

as
Vi and Ei, respectively. Moreover, we will use notation v ∈ Vi to indicate
v ∈ V s.t. ∃(v, Li) ∈ Vi. For any node v ∈ Vi, we denote with N in

i (v) = {u ∈
Vi|((u, Li), (v, Li)) ∈ Ei} the set of nodes that are in-neighbors of v within the
same layer of v, and with N in

¬i(v) =
⋃
j 6=i{u ∈ Vj|(u, Lj), (v, Lj) ∈ Ej} the set

of nodes that are in-neighbors of v within any of the other layers. Analogous
definitions hold for the out-neighbor sets N out

i (v) and N out
¬i (v).

Note that while entities (i.e., elements of V) are not required to participate
in all layers, each entity has to appear in at least one layer. Moreover, the only
inter-layer edges are regarded as “couplings” of nodes representing the same
entity between different layers, according to a multiplex network representation.
Table 3.1 summarizes main notations used throughout this chapter.

3.3.2 Identifying contributors in multilayer networks

When modeling asymmetric relations in OSNs, centrality is more intuitively
used to refer to the social endorsement received by a user, which represents a
statement of the way other users (e.g., followers) support one’s activity in the
network. In this regard, the well-known PageRank has been widely recognized
as an effective method to rank users according to their influential activity (i.e.,
contribution) status.

As mentioned in Sect. 3.2, Multiplex PageRank (mpxPR) is an extension
of PageRank to multilayer networks developed by Halu et al. in [104]. The
basic idea underlying mpxPR is that, given two layers in a predetermined order,
the PageRank score a node has in one layer affects the PageRank score of the
node in another layer. The authors introduce two main definitions of multilayer
PageRank. The first definition corresponds to a personalized PageRank in which
the bias to one layer lies in the random teleportation towards any node in
another layer. The method is dubbed “additive” as the effect of a layer Li on
another layer Lj is exerted by adding some value to the PageRank score the
nodes have in Lj proportionally to the PageRank in Li. The second method,
dubbed “multiplicative”, refers to the case in which the effect of layer Li on layer
Lj lies in multiplying the relevance a node receives from its in-neighbors in Lj
by a factor proportional to the node’s PageRank in Li. The two types of bias
can also be integrated to provide a “combined” variant of mpxPR.
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notation description
V Set of entities (i.e., users)

L; L; ` Layer; set of layers; number of layers
VL Set of user-layer tuples (i.e., pairs)
EL Set of directed links between user-layer tuples
GL Multilayer network graph

VLi
(or Vi) Set of users in layer Li

N in
i (v) Set of users that are in-neighbors of v within Li

N in
¬i(v) Set of users that are in-neighbors of v outside Li

N out
i (v) Set of users that are out-neighbors of v within Li

N out
¬i (v) Set of users that are out-neighbors of v outside Li

ωi (i = 1..`) Layer relevance coefficients
mlLR(v) Multilayer LurkerRank score of v ∈ V

mlALCR(v) Alternate Lurker-Contributor Ranking score of v ∈ VL
Rlurk
i (v) Cross-layer lurking score of v ∈ VL

(or L-mlALCR)
Rcontrib
i (v) Cross-layer contributor score of v ∈ VL

(or C-mlALCR)
αl, αc ∈ (0, 1) Damping factors in the mlALCR method

α〈x〉 Setting αl = αc = x, with x ∈ (0, 1)
(C,L) Pair of C-mlALCR and L-mlALCR solutions

name(Li) Label of layer Li
C_name(Li) Projection of C-mlALCR to name(Li)
L_name(Li) Projection of L-mlALCR to name(Li)

mlALCR-VarL(v) Cross-layer variability of the deviations of L-mlALCR
ranks of v from the median ranks

mlALCR-VarC(v) Cross-layer variability of the deviations of C-mlALCR
ranks of v from the median ranks

mlALCRmax(v), mlALCR score of v corresponding to its highest (max),
mlALCRmin(v), lowest (min), or median (med) ranking position
mlALCRmed(v)

Table 3.1: Main notations used in this paper

Although mpxPR was specifically designed for a duplex network, the authors
also discuss an extension to the general case with more than two layers, by
exploiting a cascade of single-layer PageRank instances (i.e., the PageRank on
a layer contributes to the PageRank on the next layer in the ordering, in a
recursive way).

3.3.3 LurkerRank and its extension to multilayer networks

In [97], [110], the authors have originally brought the concept of centrality in the
context of lurking behavior analysis, with the goal of characterizing and ranking
the users according to their degree of lurking in an OSN. Following an unsuper-
vised learning paradigm, the lurker ranking models utilize only the topology in-
formation of an OSN (like PageRank and other classic ranking methods), which
is seen as a directed graph where any edge (u, v) means that v is “consuming”
or “receiving” information from u. Upon the assumption that lurking behaviors
build on the amount of information a node consumes, the key intuition is that
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the strength of a user’s lurking status can be determined based on three basic
principles, which are here informally summarized as follows: overconsumption
(i.e., the excess of information-consumption over information-production, esti-
mated proportionally to the in/out-degree ratio of a node), the authoritativeness
of the information received from the in-neighbors, and the non-authoritativeness
of the information produced, i.e., sent to the out-neighbors. These principles
form the basis for three ranking models, whereby a complete specification was
provided in terms of PageRank and alpha-centrality based formulations. For
the sake of brevity here, and throughout this chapter, we will refer to only one
of the formulations described in [97], [110], which is that based on the in-out-
neighbors-driven lurker ranking, hereinafter referred to as LurkerRank (LR).

Given a directed graphG = (V,E), and a node v ∈ V , letN in(v) andN out(v)
denote the set of in-neighbors and the set of out-neighbors of v, respectively.
For any node v, the LurkerRank score LR(v) is defined as follows [97]:

LR(v) = α[Rin(v) (1 +Rout(v))] + (1− α)p(v) (3.1)

where Rin(v) is the in-neighbors-driven lurking function:

Rin(v) =
1

|N out(v)|
∑

u∈N in(v)

|N out(u)|
|N in(u)|

LR(u) (3.2)

and Rout(v) is the out-neighbors-driven lurking function:

Rout(v) =
|N in(v)|∑

u∈Nout(v)|N in(u)|
∑

u∈Nout(v)

|N in(u)|
|N out(u)|

LR(u) (3.3)

Above, p(v) is the value for v in the personalization vector, which is by default
set to 1/|V |, and α is a damping factor ranging within [0,1], usually set to 0.85.
The ratio underlying the Rin(·) model is that the score of a node increases
with the number of its in-neighbors and with their likelihood of being non-
lurkers (i.e., having relatively high out/in-degree); also, this model incorporates
a factor that is inversely proportional to the node’s out-degree, thus finally
accounting for both the contribution of the node’s in-neighbors and its own
in/out-degree property. Concerning the Rout(·) model, the lurking score of a
node increases with the tendency of its out-neighbors of being lurkers; also this
model incorporates a factor that penalizes the node’s scores if it receives less
than what its out-neighbors receive. Note also that the combination of the
two models is such that the strength of non-lurking behavior of in-neighbors is
dominant, which ensures a better fit of the hypothetical likelihood function for
a given node, as demonstrated in [97]. The interested reader is referred to [97]
for further details.

We propose here an adaptation of the original (i.e., monoplex) LurkerRank
formulation to deal with multiple layers. Following the lead of [118], the key
idea is to make the underlying random-walk model be expressed by as many
transition probability matrices as the different layers. These matrices are then
linearly combined, using a proper weighting scheme (e.g., weights following a
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probability distribution, or reflecting some user preference or knowledge on the
relevance of the various layers).

Given a multilayer graph GL = (VL, EL,V ,L), we define the multilayer
LurkerRank, hereinafter denoted as mlLR, by the following system of equations,
for all v ∈ V :

mlLR(v) = α[Rin(v) (1 +Rout(v))] + (1− α)p(v) (3.4)

where Rin(v) is the multilayer in-neighbors-driven lurking function:

Rin(v) =
∑
Li∈L

wi
|N out

i (v)|
∑

u∈N in
i (v)

|N out
i (u)|
|N in

i (u)|
mlLR(u), (3.5)

Rout(v) is the multilayer out-neighbors-driven lurking function:

Rout(v)=
∑
Li∈L

wi|N in
i (v)|∑

u∈Nout
i (v)|N in

i (u)|
∑

u∈Nout
i (v)

|N in
i (u)|

|Nout
i (u)|

mlLR(u) (3.6)

and the layer weighting scheme is specified by non-negative real-valued coef-
ficients ω1, . . . , ω`, such that

∑
Li∈L ωi = 1. Note that, with the exception of

(i) the specification of layer in the summation terms and (ii) the layer-specific
weighting coefficient (for the linear combination), the analytical forms Eq. 5
and Eq. 6 in mlLR are identical to those of the basic LurkerRank method, i.e.,
Eq. 2 and Eq. 3, respectively.

3.4 Multilayer Alternate Lurker-Contributor Rank-
ing

The previously discussed methods offer proper solutions to problems of char-
acterization of the user prominence, in terms of either lurking or contributor
behaviors, that is somehow embedded in a multilayer network. These methods
provide a useful opportunity for detecting properties related to the behavior of
users that would otherwise remain unveiled if each of the layer networks was
analyzed in isolation. However, they are not designed to identify and rank users
according to opposite (i.e., lurking and contributor) behaviors they can alter-
nately show across interconnected layer networks, which is the main problem
under consideration in this work.

Motivating Example 1. Consider the example multilayer social network shown
in Fig. 3.1. We might suppose that layers correspond to three distinct OSNs to
which users participate using their respective multiple accounts. We use symbols
L1, L2, L3 to denote the layers, from top to bottom. The meaning of edge (u, v)
on any layer is that v endorses u, or consumes information produced by u (e.g.,
v follows u, or v likes/comments contents posted by u, etc.).

At first, let us focus on simple topological characteristics, particularly on the
ratio between in-neighbors and out-neighbors (hereinafter in/out-degree ratio)
the nodes have on each of the layers. In layer L1, users 2, 5 and, 6 appear to
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Figure 3.1: Example multilayer social network, which
illustrates eighteen users located over three layer networks.

behave as contributors, since their in/out-degree ratio is lower than one (i.e.,
0.33); by contrast, users 3, 4, 7, 10, 11 and 8 are potential lurkers since their
in/out-degree is equal to 2. In layer L2, users 1, 2, 5, 6, 10, 11 have the highest
in/out-degree ratio (i.e., 2), so they are candidate lurkers in this specific layer.
While users 0, 3, 7, 4 have the lowest ratio, and hence should be regarded as
contributors. In layer L3, candidate contributors are 13, 2, 4, 6, 14, 8 with
in/out-degree ratio greater than one, while candidate lurkers are 0, 3, 7 with
in/out-degree ratio equal to 3, and 1, 5, 15 with in/out-degree ratio equal to 2.

As previously discussed, there is however much more to be considered than
a trivial in/out-degree ratio to effectively analyze lurking behaviors (and dually,
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contributor behaviors), which further complicates in a multilayer network. For
instance, user 8 receives information from two main components while providing
limited information to a smaller component in L1 and L2, thus behaving as a
lurker. By contrast, it is evident that the same user in L3 acts as a major
contributor by feeding various components; while not being the most active user
in the layer (he is only the 6th if we consider the in/out degree ratio), user 8
might have the most distinctive alternate behavior in the multilayer network.

Also, user 3 receives information from her/his membership component in
layer L1 (which includes a local top-contributor such as 2), while in layer L3 is
fed by users 2, 7, and above all by the top-contributor user 8. By contrast, in L2,
user 3 is top-contributor in her/his turn, as s/he receives information only from
user 7 and feeds her/his component and user 8. Therefore, user 3 seems to show
an important alternate behavior, which is strengthened by the effect of linkage
to top-contributors/lurkers in all the three layers, and also nicely dovetails with
the alternate behavior of user 8.

As another example, user 0 plays a marginal role in layer L1, where she has
only one outgoing link and one incoming link both limited to her/his component,
and so s/he should not be identified either as a relevant lurker or contributor.
Nevertheless, in the other layers s/he shows an alternate role: in layer L3,
s/he receives information from her/his own component, from user 8 and from
previously unseen user 14; in layer L2, s/he provides information to user 8 and
towards her/his component.

We translate and generalize the requirements and intuitions underlying the
above illustrated example to formulate a new ranking problem in multilayer
networks, named Alternate Lurker-Contributor Ranking. In doing so, we adopt
an unsupervised learning approach, based solely on structural information of the
multilayer network. The reason behind this choice is that we do not want our
method relies on any a-priori knowledge on influencing factors, topical expertise,
or exogenous sources which, while contributing to some extent to forming the
individual’s behavior, they cannot easily be determined and measured.

Our basic assumption is that the lurker (resp. contributor) status of a user
relies on the contributor (resp. lurker) status of some of her/his neighbors.
Upon this, the key idea underlying the proposed approach is to determine the
lurker and contributor behaviors of users in terms of two functions, each of which
characterizes one role and is contextualized to a specific layer. The behavior to
be identified is expected to be “alternated” over the various layers, in the sense
that a user may act as a lurker (resp. contributor) in one layer while conversely
behaving as a contributor (resp. lurker) in one or many of the other layers.
Moreover, since the two behavioral properties are inter-related, we want that
the scores determined by one of such functions depend on the scores by the
other function.

Definition 1 (Alternate Lurker-Contributor Ranking). Let GL = (VL, EL,V ,L)
be a multilayer OSN graph, and let us consider any user in V that appears in a
non-empty, non-singleton subset of L. Let v ∈ VL denote the particular instance
of the user in a specific layer Li ∈ L. The alternate lurker-contributor behavior
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status of node v in GL conditionally to its membership layer Li follows two
principles, each expressed by two mutually reinforcing terms:

• Principle 1 – Cross-layer lurker behavior, whose strength is proportional
to the v’s status as lurker in Li, and to the v’s status as contributor in a
non-empty subset L′ of layers other than Li;

• Principle 2 – Cross-layer contributor behavior, whose strength is propor-
tional to the the v’s status as contributor in Li, and to the v’s status as
lurker in a non-empty subset L′′ of layers other than Li;

More formally, by denoting with φL and φC two scoring functions respectively
for the lurker and contributor status of nodes conditionally to a given (set of)
layers, we want to determine the ranking solutions rankL and rankC, such that
for any v ∈ VL in Li ∈ L:

• rankL(v) is higher by simultaneously increasing φL(v;Li, φ
C) and φC(v;L′, φL),

• rankC(v) is higher by simultaneously increasing φC(v;Li, φ
L) and φL(v;L′′, φC),

where L′, L′′ ⊆ L \ {Li}.

Upon the above stated problem, we define the Alternate Lurker-Contributor
Ranking method (mlALCR), which solves two mutually dependent systems of
equations that are computed simultaneously (in the style of classic Kleinberg’s
HITS algorithm for the ranking of hubs and authorities in web pages [26]):
one system determines the layer-specific lurking score and the other system
determines the layer-specific contributor score for all nodes in the layers of the
complex network. According to the principles stated in Def. 1, we devise each
of the role scoring functions (i.e., equation systems) as a linear combination of
two terms: the one measuring the user’s behavior locally to his/her membership
layer, and the other measuring the opposite behavior the same user might show
externally to his/her membership layer.

Given a multilayer graph GL = (VL, EL,V ,L), each layer is modeled as a
directed graph according to the lurking-oriented direction of edges, i.e., (u, v)
means that v endorses u by implicitly consuming/receiving information from
u. For any node v ∈ VL located in layer Li ∈ L, the cross-layer lurking score
of v w.r.t. Li, denoted as Rlurk

i (v), is determined by two terms: the one is
(i) proportional to the number of v’s in-neighbors and their status as cross-
layer contributor in Li, and (ii) inversely proportional to the number of v’s
out-neighbors in Li; the second term is (i) proportional to the number of v’s
out-neighbors and their status as cross-layer lurker in each of the remaining
layers Lj (with j 6= i), and (ii) inversely proportional to the number of v’s
in-neighbors in each Lj.
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Rlurk
i (v) = αl

ωi
|N out

i (v)|
∑

u∈N in
i (v)

Rcontrib
i (u)

|N out
¬i (u)|︸ ︷︷ ︸

v as lurker in Li

+

(1− αl)
∑
Lj∈L

 ωj
|N in

j (v)|
∑

u∈Nout
j (v)

Rlurk
j (u)

|N in
i (u)|


︸ ︷︷ ︸

v as contributor in Lj , with j 6= i

(3.7)

Dually, the cross-layer contributor score of v w.r.t. Li, denoted asRcontrib
i (v),

is determined by two terms: the one is (i) proportional to the number of v’s
out-neighbors and their status as cross-layer lurker in Li, and (ii) inversely
proportional to the number of v’s in-neighbors in Li; the second term is (i)
proportional to the number of v’s in-neighbors and their status as cross-layer
contributor in each of the remaining layers Lj (with j 6= i), and (ii) inversely
proportional to the number of v’s out-neighbors in each Lj.

Rcontrib
i (v) = αc

ωi
|N in

i (v)|
∑

u∈Nout
i (v)

Rlurk
i (u)

|N in
¬i(u)|︸ ︷︷ ︸

v as contributor in Li

+

(1− αc)
∑
Lj∈L

 ωj
|N out

j (v)|
∑

u∈N in
j (v)

Rcontrib
j (u)

|N out
i (u)|


︸ ︷︷ ︸

v as lurker in Lj , with j 6= i

(3.8)

In both Eqs. 3.7–3.8, αl, αc ∈ (0, 1) are damping factors that control the
contribution of the “within-layer” behavior against the “outside-layer” opposite
behavior. Moreover, ωi (with Li ∈ L) are non-negative coefficients, such that∑

Li∈L ωi = 1, which embed some relevance scheme that might be assigned
to the various layers in the network. Note that, in order to avoid divergence
of values and hence guarantee convergence of the algorithm, both Rlurk and
Rcontrib score vectors are normalized after each iteration.

3.5 Evaluation

3.5.1 mlALCR settings and notations

The damping factors αl and αc will be varied in the set of values {0.5, 0.85};
specifically, we will present results that correspond to the following settings:
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αl = αc = 0.5, balanced setting, used as default; αl = αc = 0.85, which weights
more the user’s behavior locally to the layer graph in which s/he is located. We
will use shortcut α〈x〉 to indicate the setting αl = αc = x; for example, α〈0.85〉
corresponds to αl = αc = 0.85.

As concerns the layer weighting scheme in mlALCR, we consider two cases:
uniform weighting, used as default, and proportional to the edge-set size of each
layer, i.e., ωi = |Ei|/|EL| (with Li ∈ L), also referred to as layer-proportional
weighting.

We will use prefixes C- and L- to denote the mlALCR contributor ranking
(Eq. 3.8) and the lurker ranking (Eq. 3.7) solution, respectively. To refer to a
pair of C-solutions and L-solutions, for any given setting of mlALCR, we will
also use short notation (C,L). Moreover, we will denote with C_name(Li)
(resp. L_name(Li)) the projection of the contributor (resp. lurker) mlALCR
ranking solution to a particular layer Li labeled as name(Li), i.e., the selection
of a ranking solution corresponding to nodes that belong to Li.

Our proposed mlALCR is computed using a power iteration method, for
which we set up the termination threshold for score convergence as 1.0e-5.

3.5.2 Competing methods

We compare our proposed mlALCR with five methods: the Multiplex Page-
Rank (mpxPR), the basic (i.e., monoplex) LurkerRank (LR), its extension to
multilayer networks (mlLR) proposed in this work, and two ranking aggregation
methods, originally presented here as well. Methods mpxPR, LR, and mlLR have
been discussed in Sect. 3.3; as concerns their experimental setting, the damping
factors α will be set to the default value, i.e., 0.85. In the following we describe
the proposed ranking aggregation methods.

LR-aggregation methods. We define two ranking aggregation methods
that leverage on the ranking solutions provided by the basic LR on every layer.
These methods are designed to manipulate the rank assigned by LR to every
node of each layer, in order to account for the heterogeneous distribution of the
LR ranks of a node over the layers. We introduce notation ranki(v) to denote
the rank (not the ranking score) assigned by LR to node v in layer Li.

The first method, hereinafter denoted as LRa1i (with Li ∈ L), computes a
score for every node v ∈ VL in Li, by summing two terms: the first increasing
for higher rank (i.e., lower values of rank function) of the node in Li, and the
second increasing for lower rank of the node in the other layers (Lj 6= Li) in
which it appears:

LRa1i(v) =
|Vi|−ranki(v) + 1

|Vi|
+

1

|L|−1

∑
Lj , j 6=i

rankj(v)

|Vj|
(3.9)

The second method, hereinafter denoted as LRa2, computes a global score
for every v ∈ V appearing in two or more layers. It expresses the variability
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over the layers of the deviations of the LR rank of v from the median rank:

LRa2(v) = VarLi∈L

(
ranki(v)− |Vi|/2

|Vi|

)
(3.10)

where Var is the variance operator.

3.5.3 Assessment criteria

Significance of mlALCR. We exploit the analytical form of Eq. 3.10 to also
determine the variability of the L-mlALCR ranks and C-mlALCR ranks that a
node has over the layers of a network. Specifically, for each v ∈ V appearing in
two or more layers, we compute the cross-layer variability of the deviations of
L-mlALCR ranks of v from the median ranks as:

mlALCR-VarL(v) = VarLi∈L

(
rankLi (v)− |Vi|/2

|Vi|

)
(3.11)

where rankLi (v) is the v’s rank in the projection to layer Li of the L-mlALCR so-
lution; analogously, for the contributor role, we define function mlALCR-VarC(v).

We use the above measures to characterize the significance of the alter-
nate lurker-contributor behavior of each user so that the higher the value of
mlALCR-VarL(v) (resp. mlALCR-VarC(v)), the stronger the cross-layer lurker
(resp. contributor) behavior of the node.

Comparison with competing methods. To evaluate mlALCR against
competing methods, we used two well-known ranking assessment criteria, namely
Kendall rank correlation coefficient [119] and Fagin’s intersection metric [120].

Kendall correlation evaluates the similarity between two rankings, expressed
as sets of ordered pairs, based on the number of inversions of pairs which are
needed to transform one ranking into the other. Formally: τ(R′,R′′) = 1 −
2∆(P(R′),P(R′′))

M(M−1)
, where R′ and R′′ are the two rankings to be compared, M =

|R′|= |R′′| and ∆(P(R′),P(R′′)) is the symmetric difference distance between
the two rankings, calculated as the number of unshared pairs between the two
lists. The score returned by τ is in the interval [−1, 1], where a value of 1 means
that the two rankings are identical and a value of −1 means that one ranking
is the reverse of the other.

Fagin measure determines how well two ranking lists are in agreement with
each other, by accounting for the problem of comparing “partial rankings”, i.e.,
assuming that elements in one list may not be present in the other list. More-
over, it expresses top-weightedness, i.e., the top of the list gets higher weight
than the tail. Given two k-size lists R′,R′′, the Fagin score is defined as:
F (R′,R′′, k) = (1/k)

∑k
q=1(|R′:q ∩ R′′:q|)/q, where R:q denotes the sets of nodes

from the 1st to the qth position in the ranking. Therefore, F is the average over
the sum of the weighted overlaps based on the first k nodes in both rankings.
F is within [0, 1], whereby values closer to 1 correspond to better scores. For
the experiments discussed in the following, we setup k to 100, for short denoted
as Fagin-100.
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Note that all methods under consideration in this work compute a local (i.e.,
layer-specific) score for any node in VL, whereas LRa2 and mlLR compute a global
score for any element of V . To enable comparison of the latter methods with
mlALCR, we will evaluate the status of any v ∈ V in the ranking of LRa2 or mlLR
through three cases: the status of v corresponding to its highest (max), lowest
(min), or median (med) ranking position occurring in a solution provided by
mlALCR. We will use notations mlALCRmax, mlALCRmin, mlALCRmed to denote
the three different cases.

3.5.4 Datasets

We used four real-world multilayer OSNs, which correspond to three different
categories, as described next.1

Cross-platform, user multi-relational networks. We used two datasets
in which the graphs of different OSNs are modeled as layers: FF-TW-YT
(stands for FriendFeed, Twitter, and YouTube) [82] and GH-SO-TW (stands for
GitHub, StackOverflow and Twitter) [121]. The former was built by exploiting
the feature of FriendFeed as social media aggregator to align registered users
who were also members of Twitter and YouTube. The latter is a dataset origi-
nally built to characterize specialist expertise of users engaged in Web-mediated
professional activities. Inter-layer edges link the same user across the different
networks. Within-layer edges express followships (i.e., “who follows whom”),
with the exception of StackOverflow in GH-SO-TW which is a help network
built around questions and answers of the users, hence the meaning of edges is
“who answers to whom”.

(Single-platform) User multi-relational network. HiggsTW is a Twit-
ter dataset built through 2012 to collect user interactions about the event of the
announcement of the discovery of the Higgs boson [122]. The meaning of the
four layers is “who retweets/mentions/replies to/follows whom”, respectively.

(Single-platform) Temporal multi-slice network. Flickr refers to the
Flickr dataset studied in [123], [124] which contains time information about the
favorite markings assigned to the uploaded photos. We used the correspond-
ing timestamped interaction network whose links express “who puts a favorite-
marking to a photo of whom”. We extracted the layers on a month-basis and
aggregated every six (or more) months to achieve a quite balanced multilayer
network.2

Table 3.2 reports for each dataset, the size of set V , the number of edges in
all layers, the description of layers along with the percentage of nodes in each
particular layer, the average coverage of node set (i.e., 1/|L|

∑
Li∈L(|Vi|/|V|)),

and the average coverage of edge set (i.e., 1/|L|
∑

Li∈L(|Ei|/
∑

Li
|Ei|)).

We also calculated basic, monoplex structural statistics, such as in-degree,
average path length, and clustering coefficient, for the layer networks of each

1Our evaluation datasets can be retrieved from the web page supporting this manuscript,
available at http://people.dimes.unical.it/andreatagarelli/mlalcr/.

2We point out that, though some interpretability issue may arise about mutual dependence
underlying the time slices extracted from the same network, here we assume not to analyze the
system as a time-evolving network, rather as comprised of time steps which are all observed
as a whole at the last time available in the network.
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dataset #nodes #edges layer notation and description node set edge set
(w/ % nodes) coverage coverage

GH-SO-TW 55 140 1 551 842 gh: Github (68.6%) 0.68 0.36
so: StackOverflow (40.8%)
tw: Twitter (94.5%)

FF-TW-YT 6 407 106 299 ff: FriendFeed (86.5%) 0.62 0.40
tw: Twitter (89%)
yt: YouTube (10.4%)

HiggsTW 456 626 15 367 315 fw: followship (100%) 0.48 0.26
mt: mention (25.5%)
rp: reply (8.5%)
rt: retweet (56.2%)

Flickr 789 019 17 071 325 t1: Aug 2004-Mar 2005 (4.6%) 0.33 0.22
t2: Apr-Sep 2005 (14.1%)
t3: Oct 2005-Mar 2006 (26.9%)
t4: Apr-Sep 2006 (49.3%)
t5: Oct 2006-Mar 2007 (69.2%)

Table 3.2: Main characteristics of evaluation datasets

dataset (results not shown). Notably, according to all statistics, we observed
much higher structural similarity between the layers in Flickr (e.g., clustering
coefficient and average path length consistently around 0.03–0.04 and 3.8–3.9,
respectively) than between the layers in each of the other datasets.

Graph representation. As discussed in Sect. 3.4, in order to directly
input a multilayer network graph to our mlALCR, the orientation of edges is
modeled according to the information that flows from the producer to the con-
sumer. Therefore, we inverted the original orientation of the edges in each layer
and dataset, so that an edge (u, v) means that v follows/likes/retweets u; one
exception is for HiggsTW where we left the original orientation in layers re-
ply and mention, i.e., (u, v) means u replies to/mentions v: the rationale here
is that u is required to be actively involved in producing content for replying
to/mentioning v, which in turn due to causality is stimulated to consume this
content. We advocate that, in general, this may apply to any type of user in-
teraction that is more likely to express both production and consumption of
information in a bidirectional way, than least-effort relations/interactions like
followships, liking, and retweeting.

3.6 Results
We organize the presentation of experimental results according to the following
evaluation goals:

• Significance of mlALCR.We determine the strength of the alternate lurker-
contributor behavior of users, and investigate how this is related to the
different per-layer positions that users have in the ranking provided by
mlALCR for each role (Sect. 3.6.1). We also investigate attachment distri-
butions of lurkers versus contributors, and vice versa (Sect. 3.6.1).

• Analysis of the performance of mlALCR. We study the dichotomy of the
lurker and contributor ranking solutions provided by mlALCR, through an
extensive analysis of correlation (Sect. 3.6.1). We also assess the effect of
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(a) GH-SO-TW (b) FF-TW-YT

(c) HiggsTW (d) Flickr

Figure 3.2: Density distributions of mlALCR-VarL and
mlALCR-VarC on the various network datasets. (Best viewed in

color version, available in electronic format)

the various configurations of mlALCR on its performance and convergence
aspects (Sect. 3.6.1).

• Meaningfulness of the solutions provided by mlALCR. We investigate how
the actual behavior of mlALCR reflects the theoretically expected one
by manually inspecting the online profile of the top-ranked users with
alternate lurker-contributor behavior (Sect. 3.6.1).

• Uniqueness of mlALCR. We present different stages of comparative eval-
uation with other methods (i.e., LR, LR-aggregation methods, mlLR, and
mpxPR), in order to demonstrate the unique ability of mlALCR to deter-
mine alternate behaviors of lurking and active participation in multilayer
networks (Sect. 3.6.2).

3.6.1 Evaluation of mlALCR

Distribution of cross-layer rank variability

We analyzed the density distributions of mlALCR-VarL and mlALCR-VarC , which
are shown in Fig. 3.2. (Results correspond to the default setting of mlALCR, i.e.,
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α〈0.5〉 and uniform weighting). As we expected, all distributions are positively
skewed, meaning that highest density corresponds to users which show small
or negligible variability in their cross-layer lurker/contributor behavior. While
no particular difference in shape occurs between per-dataset mlALCR-VarL and
mlALCR-VarC distributions, the densities are quite different over the datasets,
withGH-SO-TW and Flickr corresponding to the least and most skewness/peakedness,
respectively. More interestingly, all distributions are also found to be heavy-
tailed (leptokurtic), with range up to around 0.25, which confirms the presence
of users with significant variability in their cross-layer lurker/contributor be-
havior.

Moreover, we gained an insight into the users corresponding to the head and
tail of the distributions, by analyzing the quartile position that a user has in
each layer-specific projection of the L-mlALCR and C-mlALCR solutions. The
rationale here is that the higher the distance between the layer-specific quartiles
the same user has in the L-mlALCR (resp. C-mlALCR) solution, the stronger
the cross-layer lurker (resp. contributor) behavior of the user. In particular,
for each role and corresponding mlALCR-Var distribution, we expect that users
in the tail are likely to alternate their rank in distant positions (e.g., the 3rd
and 1st quartiles) of the layer-specific projections of mlALCR; at the same time,
we expect that users with low value of mlALCR-VarL (resp. mlALCR-VarC)
tend to be ranked more uniformly, possibly over the same and lower quartile of
L-mlALCR (resp. C-mlALCR).

Results have fully confirmed our above hypothesis, since in all datasets
the top-ranked users (located in the 3rd quartile) in both mlALCR-VarL and
mlALCR-VarC have always an alternate behavior; in particular, considering the
fraction of those users who are ranked alternately among the 3rd and 1st quar-
tiles of the layer-specific projections of mlALCR, GH-SO-TW offers the highest
percentage of users with such strong alternate behavior (14.5%), followed by
HiggsTW (8.2%), FF-TW-YT (6.1%), and Flickr (4.9%). Moreover, the lower
quartile of mlALCR-VarL (resp. mlALCR-VarC) only contains users who are
located over either the 1st or 2nd quartile of L-mlALCR (resp. C-mlALCR).

Attachment distributions

We discuss here our evaluation of the attachment between lurkers and contrib-
utors. We conducted two stages of analysis of the attachment distributions of
lurkers and contributors based on the solutions provided by mlALCR. The two
analyses mainly differ from each other in the way we selected the set of lurkers
and the set of contributors under examination.

• In the first stage of analysis, we have kept one layer fixed at a time, thus
considering within-layer attachment. To this purpose, we selected the
same portion (i.e., 25%) of the head from the layer-specific projections
of L-mlALCR and C-mlALCR in order to choose the set of top-ranked
lurkers and the set of top-ranked contributors, respectively. Then, we
calculated two distributions for every layer: (i) complementary cumulative
distribution of the number of contributors followed by lurkers, and (ii)



3.6. Results 65

1 5 10 50 500

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

no. contributors followed by lurkers

C
D
F

power law fit
log normal fit
exponential fit

1 5 10 50 500

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

no. contributors following outside contributors

C
D
F

power law fit
log normal fit
exponential fit

(a) (b)

1 5 10 50 500

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

no. contributors following outside contributors

C
D
F

power law fit
log normal fit
exponential fit

1 5 10 50 500

0.
02

0.
05

0.
10

0.
20

0.
50

1.
00

no. lurkers followed by outside lurkers

C
D
F

power law fit
log normal fit
exponential fit

(c) (d)

Figure 3.3: Complementary cumulative distributions of
lurker-contributor attachment, on GH-SO-TW : (a)-(b)

within-layer attachment in Twitter and (c)-(d) cross-layer
attachment in GitHub. (Best viewed in color version, available

in electronic format)

complementary cumulative distribution of the number of lurkers following
contributors within-layer the same layer.

• In the second stage of analysis, we have instead considered cross-layer
attachment. For a given layer Li, we selected the top-25% of users ranked
in the projection of L-mlALCR and considered their linkage, in the graphs
of each of the remaining layers Lj (with i 6= j), with users appearing
in the top-25% of the projection of L-mlALCR for each of layers Lj. We
repeated the same selection process for the C-mlALCR solutions. Then, we
calculated two distributions for every layer: (i) complementary cumulative
distribution of the number of contributors following outside contributors,
and (ii) complementary cumulative distribution of the number of lurkers
followed by outside lurkers. Note that the orientation of the followship
relation is here explained since, according to the logic of mlALCR, a top-
ranked contributor in a layer is expected to behave as a lurker in the other
layers, and vice versa.

Afterwards, for each of the two stages, we tried to fit (discrete) power-
law, log-normal and exponential distributions to each of the observed data, via
maximum likelihood estimation.

Figure 3.3 shows part of the results obtained on GH-SO-TW , which are
however indicative of the general trends we observed in both cases of attach-
ment, for all layers and datasets. A first evident result is that the exponential
distribution is definitely not appropriate for the analyzed data. The power-law
distribution can fairly fit the data in many cases, although only for relatively
high regimes of the values; the Kolmogorov-Smirnov test indeed confirmed the
statistical significance of fitting only for high values of the minimal threshold
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Figure 3.4: Per-layer evaluation of (C,L)-solutions, for each
setting of αs, with uniform weighting scheme: Fagin-100

intersection heatmaps on the various layers of GH-SO-TW ,
FF-TW-YT, HiggsTW , and Flickr (from top to bottom). (Best

viewed in color version, available in electronic format)

for fitting, xmin; for instance, considering the plots in Fig. 3.3, the following
pairs (xmin, γ) were computed, with γ here denoting the exponent of the fitted
power-law distribution: (a) (96, 2.04), (b) (74, 1.94), (c) (300, 2.73), and (d)
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Figure 3.5: Per-αs-setting evaluation of (C,L)-solutions, for
each layer, with uniform weighting scheme: Fagin-100

intersection heatmaps corresponding to (left) α〈0.5〉 and (right)
α〈0.85〉. (Best viewed in color version, available in electronic

format)

(35, 1.65). By contrast, as we observe from the plots, a much more reasonable
fit was provided by log-normal distributions, which is also confirmed by the
Shapiro-Wilk test of (log-)normality on our data.

Role correlation analysis

We analyzed how the 2-role mlALCR ranking solutions are correlated to each
other. While varying the setting of damping factors, we first measured corre-
lation at a layer level, i.e., between the layer-specific projections of the lurker
and contributor mlALCR solutions obtained on each dataset; for this analysis,
we present results corresponding to uniform weighting of layers. Then, we ex-
tended our analysis to the whole C-mlALCR ranking and L-mlALCR ranking
solutions (i.e., ranking lists over all nodes and layers, ordered by decreasing
score).
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Kendall
Fagin-100

L, α〈0.5〉 C, α〈0.5〉 L, α〈0.85〉 C, α〈0.85〉 L, α〈0.5〉, C, α〈0.5〉, L, α〈0.85〉, C, α〈0.85〉,

u-weighted u-weighted u-weighted u-weighted lp-weighted lp-weighted lp-weighted lp-weighted
L, α〈0.5〉, u-weighted 1.000 0.000 0.892 0.000 0.892 0.000 0.891 0.000
C, α〈0.5〉, u-weighted -0.044 1.000 0.000 0.878 0.000 0.808 0.000 0.878
L, α〈0.85〉, u-weighted 0.731 -0.129 1.000 0.000 1.000 0.000 1.000 0.000
C, α〈0.85〉, u-weighted -0.051 0.873 -0.120 1.000 0.000 0.691 0.000 0.990
L, α〈0.5〉, lp-weighted 0.535 -0.206 0.659 -0.172 1.000 0.000 1.000 0.000
C, α〈0.5〉, lp-weighted -0.072 0.677 -0.210 0.638 -0.382 1.000 0.000 0.696
L, α〈0.85〉, lp-weighted 0.637 -0.173 0.837 -0.159 0.671 -0.271 1.000 0.000
C, α〈0.85〉, lp-weighted -0.053 0.749 -0.117 0.865 -0.161 0.647 -0.155 1.000

Kendall
Fagin-100

L, α〈0.5〉 C, α〈0.5〉 L, α〈0.85〉 C, α〈0.85〉 L, α〈0.5〉, C, α〈0.5〉, L, α〈0.85〉, C, α〈0.85〉,

u-weighted u-weighted u-weighted u-weighted lp-weighted lp-weighted lp-weighted lp-weighted
L, α〈0.5〉, u-weighted 1.000 0.000 0.653 0.000 0.672 0.000 0.665 0.000
C, α〈0.5〉, u-weighted -0.361 1.000 0.000 0.413 0.000 0.934 0.000 0.434
L, α〈0.85〉, u-weighted 0.732 -0.354 1.000 0.000 0.808 0.000 0.901 0.000
C, α〈0.85〉, u-weighted -0.320 0.652 -0.321 1.000 0.000 0.413 0.000 0.977
L, α〈0.5〉, lp-weighted 0.834 -0.466 0.745 -0.395 1.000 0.000 0.906 0.000
C, α〈0.5〉, lp-weighted -0.372 0.942 -0.366 0.644 -0.480 1.000 0.000 0.434
L, α〈0.85〉, lp-weighted 0.625 -0.419 0.858 -0.370 0.729 -0.434 1.000 0.000
C, α〈0.85〉, lp-weighted -0.323 0.626 -0.334 0.942 -0.395 0.641 -0.383 1.000

Table 3.3: Kendall correlation and Fagin-100 intersection on
whole mlALCR ranking solutions obtained on GH-SO-TW (top)

and HiggsTW (bottom). (Prefixes “u” and “lp” stand
respectively for uniform weighting scheme and

layer-proportional weighting scheme.)

Per-layer correlation. By varying the setting of αs and considering one
layer at a time, we first evaluated Kendall correlation between pairs of layer-
projected (C,L)-solutions (results not shown). On all layers of GH-SO-TW ,
layers mention and followship of HiggsTW , and layer t5 of Flickr, results are
equal to or very close to zero, thus indicating total lack of correlation between
the rankings of the two roles. In the remaining cases, Kendall correlation tends
to be higher, up to values in the range 0.2–0.3 for FF-TW-YT and layers t1–
t4 in Flickr. Note however that Kendall correlation does not discriminate the
head from the tail of the rankings being compared; furthermore, the above
contingencies actually correspond to the presence of one or more layers that are
clearly under-dimensioned and/or have topological similarity (e.g., YouTube
in FF-TW-YT, early time slices in Flickr) with respect to the others in the
network (cf. Sect. 3.5.4).

To support the above intuition and verify that any degree of correlation does
not regard the head of rankings, we analyzed the top-ranked users from each
of the layer-projected (C,L)-solutions in terms of Fagin intersection (Fig. 3.4).
As we hypothesized, results show zero-correlation between any pair of (C,L)-
solutions on GH-SO-TW , HiggsTW and Flickr for all layers and both settings
of αs, while on FF-TW-YT Fagin-100 values are positive (0.14) only for the
under-dimensioned layer YouTube.

Per-αs-setting correlation. In addition to the previous analysis, we
studied the correlation between layer-projected (C,L)-solutions by varying the
layers and considering one setting of the αs at a time. To indicate the layers of
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a dataset network, we will refer to their short notation (reported in Table 3.1).
We discuss here Fagin-100 values, shown in Fig. 3.5.

At a first glance, by comparing the plots corresponding to α〈0.5〉 with those
corresponding to α〈0.85〉, we observe few differences from C-solutions vs. L-
solutions. More in detail, on GH-SO-TW , some differences occur between
C_tw and L_gh (0.44 for α〈0.5〉 and 0.28 for α〈0.85〉), and between C_tw
and L_so (0.36 for α〈0.5〉 and 0.13 for α〈0.85〉). Interestingly, the peak value
(0.47) between C_gh and L_tw is yielded for both settings of αs. On the
other cross-platform dataset, FF-TW-YT, high Fagin intersection corresponds
to C_ff vs. L_tw (0.80 for α〈0.5〉 and 0.62 for α〈0.85〉) and to C_tw vs. L_ff
(0.86 for α〈0.5〉 and 0.61 for α〈0.85〉). On Flickr, Fagin-100 values between
(C,L)-pairs of different layers tend to be above zero mostly for temporally con-
secutive pairs of layers, with peaks between C_t4 and L_t5 (0.49, for α〈0.5〉),
and between L_t4 and C_t5 (0.47). Considering HiggsTW , for α〈0.5〉, signif-
icant correlation occurs between L_fw and C_rt (0.31), and between C_fw
and L_mt (0.16). These are further strengthened for α〈0.85〉: (i) 0.47 between
L_fw and C_rt, whereas (ii) C_fw reveals to be highly correlated also with
L_rt (0.97) and L_rp (0.82), besides with L_mt (0.74). The former correla-
tion can reasonably be explained based on a least-effort economy principle of
user interactional behavior: user tend to adopt the retweeting behavior more
than producing contents (on which mentioning other users), in line with the
intuition that a greater effort (in terms of time and communication economy)
must be done to drive the social interaction towards active participation. The
latter correlations instead would hint for a strong characterization of users that
are mainly active as producers of social content (which explains their granted
endorsement) from those who transfer others’ information.

Whole ranking correlation. In a further stage of analysis, we studied
ranking correlation by considering the whole solutions provided by mlALCR
for each role and configuration of parameters. Table 3.3 summarizes Kendall
and Fagin-100 results obtained on GH-SO-TW and HiggsTW (here chosen as
representatives of a scenario that is substantially consistent over all datasets in
general).

Considering pairs of (C,L)-solutions, we observed lack of positive correla-
tion, for any setting of αs and weighting scheme. More specifically, Fagin-100
values are consistently equal to zero whereas Kendall values tend to be nega-
tive, with range -0.38–0 on GH-SO-TW and -0.48–0 on HiggsTW . This clearly
indicates that, as expected, the lack or difference in correlation between the
contributor and lurker rankings obtained by mlALCR are exacerbated when
considering the entire solutions over all layers.

Impact of settings of αs

From the previous stage of evaluation of C-solutions vs. L-solutions, we ob-
served no clear differences due to the setting of αs. In effect, looking at Table 3.3
and considering each role at a time, we find both high Kendall correlation and
Fagin intersection between C-solutions as well as between L-solutions, for any
fixed weighting scheme and varying the setting of αs. Interestingly, in most
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role, αs config. GH-SO-TW FF-TW-YT HiggsTW Flickr
gh so tw ff tw yt fw mt rp rt t1 t2 t3 t4 t5

L α〈0.5〉 0.728 0.589 0.799 0.917 0.928 0.750 0.887 0.880 0.815 0.911 0.928 0.945 0.951 0.955 0.951
C α〈0.5〉 0.713 0.864 0.807 0.905 0.907 0.938 0.923 0.868 0.839 0.945 0.882 0.916 0.936 0.947 0.974
L α〈0.85〉 0.771 0.714 0.945 0.947 0.926 0.799 0.976 0.833 0.588 0.620 0.936 0.951 0.958 0.963 0.959
C α〈0.85〉 0.794 0.911 0.883 0.914 0.928 0.919 0.927 0.932 0.887 0.933 0.864 0.911 0.939 0.954 0.987

Table 3.4: Kendall correlation for comparison of the weighting
schemes: uniform vs. proportional to layer edge-set size.

cases values corresponding to the comparison of L-solutions are significantly
higher than those corresponding to the comparison of C-solutions, for both
assessment criteria.

Considering layer-projected solutions, again it stands up the good correla-
tion between any two C-solutions (resp. L-solutions) corresponding to α〈0.85〉
and α〈0.5〉, over all datasets. Let us next provide details concerning Kendall cor-
relation. On FF-TW-YT, correlation values for L-solutions are quite uniform
and range from 0.84 on YouTube to 0.88 on Twitter and FriendFeed, whereas
C-solutions for different αs have correlation of 0.91 on YouTube, 0.83 on Twit-
ter, and 0.68 on FriendFeed. On GH-SO-TW , there is a tendency of higher
correlation between C-solutions than between L-solutions on GitHub (0.93 vs.
0.8) and StackOverflow (0.95 vs. 0.76), while similar values are obtained on
Twitter (around 0.87). An opposite tendency occurs in Flickr, where correla-
tion between L-solutions ranges from 0.93 to 0.96 whereas correlation between
C-solutions ranges from 0.88 to 0.94. On HiggsTW , there is an interesting ten-
dency in the difference between comparisons of L-solutions and comparisons of
C-solutions, which relies on the followship layer. In fact, C-solutions for differ-
ent αs are characterized by higher correlation values (0.91, 0.91, 0.86) on layers
retweet, mention, and reply respectively, while layer followship corresponds to
correlation of about 0.28; conversely, L-solutions have high correlation only for
followship, while on mention, retweet, and reply the values are relatively lower
(0.49, 0.48, 0.25, respectively).

Impact of layer weighting scheme

We also compared the solutions of mlALCR corresponding to the two layer
weighting schemes, i.e., uniform and proportional to each layer edge-set size, in
order to understand their impact on the ranking performance.

Considering whole ranking solutions, we generally observed very high values
of both assessment criteria, for any fixed role and setting of αs; for instance,
from Table 3.3, Kendall correlation is above 0.53 on GH-SO-TW and 0.83 on
HiggsTW , whereas Fagin-100 intersection is above 0.9 in most cases. Analo-
gously, correlation is moderate or very high also in the case of layer-projected
solutions, as reported in Table 3.4 for Kendall correlation.

Let us next consider, for each layer, the mean and standard deviation over
the two roles and setting of αs. On FF-TW-YT, Kendall (resp. Fagin-100) mean
values are 0.92 (resp. 0.9) for FriendFeed, 0.85 (resp. 0.86) for YouTube, 0.92
(resp. 0.93) for Twitter, with standard deviation below 0.09 in all cases. Similar
situation occurs for Flickr, whereas some exception is observed on HiggsTW :
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while Kendall mean is 0.93 for followship, and 0.88 for mention with standard
deviation always above 0.04, for layers reply and retweet we observe very high
correlation (0.81 or above) for the C-mlALCR solutions and, with α〈0.5〉, also for
the L-mlALCR solutions (quite lower values, between 0.59 and 0.62, correspond
to L-mlALCR solutions with α〈0.85〉).

It should be noted that using one scheme relies on the choice of the proper
weight to assign the size of any particular layer: the uniform weighting scheme
considers the actual proportion of the layer to the complex system, while the
layer-proportional scheme should be used to normalize the above effect. In
Sect. 3.6.2, where we comparatively evaluate mlALCR with other methods, we
will refer to the use of uniform weights, unless using the layer-proportional
scheme would yield to significant difference in the relative performances of the
methods.

Convergence aspects

mlALCR can achieve score convergence in few tens of iterations, in most of our
evaluation cases (results not shown). In particular, on FF-TW-YT, the al-
gorithm converged in 90 or fewer iterations, down below 40 with α〈0.85〉 and
layer-proportional weighting scheme. While the weighting scheme, however,
does not seem to impact on the convergence rate, we observed instead a signif-
icant reduction in the execution of mlALCR for the setting of αs to 0.85. This
suggests that accounting more for the user’s behavior locally to the membership
layer would contribute to make mlALCR reach its equilibrium faster than in the
balanced setting (i.e., α〈0.5〉).

mlALCR also showed to be relatively robust when the presence of users with
strong alternate lurker-contributor behavior over the layers is less evident, like
in the case of Flickr; on this dataset, mlALCR converged slowly, but within
about 150 iterations with α〈0.85〉.

Qualitative evaluation

We investigated the meaningfulness of the ranking solutions produced by mlALCR
in order to get evidence of that our proposed approach actually behaves as the-
oretically expected. For this purpose, we retrieved the publicly available web
pages of top-ranked users, for both lurker and contributor mlALCR solutions,
and manually inspected their profiles.

For this analysis we focused on GH-SO-TW , mainly because of three rea-
sons: freshness, richness, and significance. Among our evaluation datasets, it is
the most recently crawled one, which ensures better consistency with the user
relations exploited to build the multilayer network. It is also the richest dataset
in terms of variety and number of user features that can intuitively be seen
as indicators of the users’ online activities, both in terms of production and
consumption of information. Specifically, from each network and user page,
we selected and extracted (via Rest API) quantitative as well as qualitative
information, which are reported next:
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• from Twitter: number of tweets, number of lists the user belongs to,
number of likes provided to posts of other users, membership date;

• from GitHub: number of commits during the last week, number of contri-
butions during the last year, number of starred repositories, current and
last streak (days-in-a-row) if any, membership date, time of last contri-
bution, duration of the longest streak (in days), and date of the longest
streak;

• from StackOverflow: number of the people reached, number of profile
views, number of badges or medals (gold, silver, and bronze), date of the
last access, top-overall percentage and reputation score, number of top
posts, score relative to the top tags, and a description of the user profile.

Moreover, GH-SO-TW is particularly suitable for our analysis because it
represents a prototype online social environment for sharing knowledge across
different levels of expertise of the users, through various and sophisticated ways
of endorsement and interaction among them, which opens to different user be-
havioral scenarios.

One of these scenarios concerns users who might want to exploit Twitter to
create and spread information related to software development (e.g., for market-
ing reasons) but, perhaps due to the higher cost of contribution when specialist
expertise is required, without contributing to the domain to which the expertise
pertains. Indeed, we actually found several cases of users that are very active on
Twitter, while behaving as lurkers on the other two platforms. Taking as case
in point user S. K. which is a top-ranked user in the L-mlALCR solution over
the GitHub layer, he joined GitHub on November 2012, counts a high number
of followees (177) but a low number of followers (12), and has starred (in recent
times) a good number (27) of repositories; the latter aspect indicates the will-
ingness of the user of being recognized as member of the GitHub community,
though as observer rather than as content producer (his last contribution is in
fact dated October 2015). The same user shows an even more consumption-
oriented behavior on StackOverflow, whereas he appears to be very active and
popular on Twitter, with more than 10k tweets produced, only 185 followees
and almost 8k followers.

Among the top-ranked users, we also identified several cases of people which
are active on Twitter as well as they show a strong preference towards one
particular developer community, i.e., they are active contributors on GitHub
while showing lurking behaviors on StackOverflow, or vice versa. One example
is given by user C. H., which is top-ranked in the C-mlALCR solution over
Twitter. He joined the platform on April 2009 and he has only 64 followees,
more than 10k followers and more than 4k tweets. He is definitely a contributor
also on GitHub, with unbalanced counts of followers (2.8k) and followees (54).
He has starred more than 300 repositories and his last contribution is quite
recent (January 2016). It should be noted that his high score in the C-mlALCR
ranking is explained not only by his active contribution on Twitter, but also
from his lurking status on StackOverflow, where he shows low reputation (64),
asked only 4 questions and answered none.
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Other users might seek to gain benefits for their profession by actively par-
ticipating in the StackOverflow and/or GitHub developer communities, while
not being much interested in posting tweets. This is the case, for example, of
user R. B., which appears to be a master on StackOverflow and GitHub, but
relatively inactive on Twitter. He indeed shows an extremely active/influent
behavior on StackOverflow, where he has numerous badges and more than 10
(resp., 100, 200) gold (resp. silver, bronze) medals. He shows extremely high
reputation (above 40k), reaching about 2.7M people, answering almost 1k ques-
tions and asking more than 200 questions. However, his status is different on
GitHub, where he provided a few contributions over the last year, and on Twit-
ter, showing in both platforms quite a low level of socialization.

Summary of mlALCR evaluation

We summarize here our main findings from the evaluation of mlALCR.

• We have pointed out the meaningfulness of the problem under study
on real-world multilayer networks, which indeed contain users that are
characterized by evident variability in their cross-layer lurker/contributor
behavior. Our mlALCR has shown to be able to identify users showing
alternate behavior over the different layer networks.

• Both within-layer and cross-layer attachment distributions of lurkers vs.
contributors, and vice versa, are better fitted by log-normal distributions
than power-law ones.

• Lurker and contributor mlALCR solutions are clearly uncorrelated over
the same network. When considering layer-specific projections of the so-
lutions, there is a total disagreement in matching between the top-ranked
users of C-mlALCR and L-mlALCR over the same layer, while correlation
gets high for any pair of layers characterized by the presence of users with
alternate lurker-contributor behavior.

• Neither the setting of damping factors αl and αc nor the weighting scheme
has heavy effect on the ranking solutions of mlALCR; however, the setting
of αs impacts on the convergence of mlALCR, whereby accounting more
for the user’s behavior locally to the membership layer (i.e., α〈0.85〉) leads
mlALCR converge faster.

• Empirical evidence based on manual inspection of top-ranked users has
confirmed the ability of mlALCR in detecting users that simultaneously
exhibit lurking behavior on one layer (e.g., OSN platform) while they
spread the acquired knowledge acting as contributor on other layers, or
vice versa.
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3.6.2 Comparative evaluations

Comparison with LurkerRank

In order to understand how mlALCR differs from the basic monoplex LR method,
we analyzed the LR solution obtained on each layer of a network and the cor-
responding layer projections of mlALCR. Here we discuss Kendall correlation
results (not shown).

In two datasets, namely FF-TW-YT and Flickr, correlation is very close to
zero and does not significantly vary with the choice of role and layer, and with
the setting of αs. Specifically, on FF-TW-YT, correlation values are mostly in
the range ±1.0e-3 for Twitter and FriendFeed, and tend to be slightly negative
for YouTube (around -3.0e-2). On Flickr, correlation with LR is in the same
range (0.07) for both L- and C-solutions on layers t1, t2, t3, while is lower on
layer t4. The most recent time slot (t5) presents a negative correlation with
L-solutions and a positive correlation with C-solutions both in the range of
0.01.

In the other two datasets, we mostly observed a few cases of significant
negative (resp. positive) correlation between LR and C-solutions (resp. L-
solutions) of mlALCR. For instance, for Twitter on GH-SO-TW , correlation
values range from -0.26 to -0.16 w.r.t. C-solutions, and from 0.44 to 0.56 w.r.t.
L-solutions, which indicates a tendency of having lurkers in Twitter that are
likely to be active in the other platforms; further analysis in terms of Fagin-100,
with values below 0.06, however shows that such correlation is not determined
by the top-ranked lurkers.

More interesting is the situation analyzed on HiggsTW . Here there is a
significant negative correlation between LR and C-solutions over each layer;
specifically, up to -0.26 on followship, -0.23 on mention, and -0.20 on reply .
This clearly characterizes a strong mismatching between lurkers determined
by LR according to a given user relation and the corresponding contributors
determined by mlALCR for the same relation, which might behave as lurkers
for other relations. Considering L-solutions, we observed relatively discordant
results depending on the setting of αs: positive, up to 0.32 (resp. negative, up to
-0.21) for solutions with α〈0.5〉 on retweet (resp. reply), and conversely slightly
negative, up to -0.14 (resp. positive, up to 0.32) for solutions with α〈0.85〉. By
contrast, on followship and mention, we observed good correlation (0.60 and
0.33, respectively); this is also strengthened by significant matching in terms of
Fagin-100 results: 0.22–0.27 for followship and 0.12–0.39 for mention, which is
in line with our analysis of results on HiggsTW presented in Sect. 3.6.1.

Comparison with LR-aggregation methods

We compared the mlALCR solutions (by varying the role, configuration of (αc, αl)
and weighting scheme) with each of the two proposed ranking aggregation meth-
ods. For this evaluation, we discuss Fagin-100 results (not shown).

In general, we observe that the comparison with both ranking aggregation
methods is characterized by near-zero or zero Fagin-100 with L-mlALCR as well
as with C-mlALCR. More in detail, considering first LRa1, values are zero on
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Flickr and GH-SO-TW (in all cases). On FF-TW-YT, Fagin-100 is 0.021 on av-
erage, with peak of 0.04, w.r.t. C-solutions, and 0.023 on average, with peak of
0.02, w.r.t. L-solutions. While on HiggsTW , Fagin-100 values range from 0 to
0.02 (the latter obtained w.r.t. C-solution with α〈0.85〉). Comparing mlALCR to
LRa2, all of non-zero Fagin-100 values correspond to mlALCRmax, being around
0.03 for C-solutions and around 0.07 for L-solutions on GH-SO-TW . On Hig-
gsTW , Fagin-100 is always zero w.r.t. mlALCRmin for C-solutions, while non-
zero values are equal to 0.02 (resp. 0.12) for mlALCRmed (resp. mlALCRmax);
concerning L-solutions there is no matching w.r.t. mlALCRmin and mlALCRmed,
while mlALCRmax values are close to 0.18. On FF-TW-YT, in regard to C-
solutions all non-zero values are below 0.1 except for mlALCRmed w.r.t. α〈0.5〉
and non-uniform weighting with values equal to 0.16 (resp. 0.23) for C-solution
(resp. L-solution). No matching at all is observed between mlALCR and LRa2
on Flickr.

Overall, we find out that the statistical manipulation of ranks over the layers
provided by both LRa1 and LRa2 leads to no significant matching with top-
ranked users by mlALCR.

Comparison with Multilayer LurkerRank

Comparing mlALCR with mlLR (results not shown), we observed some cases
of positive Kendall correlation over the datasets. On FF-TW-YT, maximum
correlation is obtained between L-mlALCRmax (for any setting of αs) and mlLR
ranging from 0.57 to 0.61, which decreases down below 0.5 when compared with
mlALCRmed. On the other datasets, the maximum correlation corresponds al-
ways to comparison with L-mlALCRmax, but with lower values (on GH-SO-TW ,
0.33 with α〈0.85〉, and 0.26 with α〈0.5〉; on HiggsTW , between 0.27 and 0.4 with
α〈0.5〉). Minimum correlation is always obtained with mlALCRmin (between 0.12
and 0.16 on GH-SO-TW , around 0.08 on FF-TW-YT, 0.04 on HiggsTW , while
it varies from -0.08 to 0.1 considering C-solutions and L-solutions, respectively,
on Flickr).

The observation of Fagin-100 results sheds light on the evidence that, over
all datasets and regardless of the role and setting of αs, matching is always
close to zero (below 0.07 on HiggsTW , 0.05 on GH-SO-TW and FF-TW-YT,
0.01 on Flickr). Coupled with the previously given observations about Kendall
correlation, this indicates that mlALCR and mlLR might be relatively correlated
though mainly along the tail.

Comparison with Multiplex PageRank

Our final stage of evaluation concerns a twofold comparison between mlALCR
and the Multiplex PageRank method, in all of its three variants (Sect. 3.5.2).
On the one hand, analogously to the previous analyses, we want to understand
whether mpxPR solutions can be, to a certain extent, correlated to L-mlALCR,
i.e., whether mpxPR can be able to discover users that behave as lurkers in
one layer and as contributors in other layers; on the other hand, we want to
capitalize on the actual nature of mpxPR (i.e., searching for high PageRank users



76 Chapter 3. Alternate behaviors in multilayer social networks

in a multilayer context), and hence we compared it with C-mlALCR solutions to
determine any affinity in the identification of contributors on individual layers.
In the latter case, to properly set the input for mpxPR for this task, we reversed
the orientation of the layer graphs, in the classic influence-oriented centrality
model (i.e., edge (u, v) expresses endorsement of u to v).

We used FF-TW-YT and GH-SO-TW as cases in point. This implies that,
being the number of layers equal to three in both datasets, there are six different
layer configurations (two per layer) for the application of any of the variants of
mpxPR. (Recall that mpxPR is dependent on the layer ordering.)

On FF-TW-YT, for both C- and L-solutions values are near-zero or zero
for all three variants of mpxPR, for both assessment criteria. More variegated is
instead the situation on GH-SO-TW . Considering L-solutions, Kendall correla-
tion and Fagin-100 intersection range from -0.15 to 0.05 and from 0.16 to 0.18,
respectively, with the exception of GitHub where Fagin-100 has a peak around
0.5 when comparing with the combined variant of mpxPR. Considering the com-
parison with C-solutions, all variants of mpxPR again tend to yield near-zero
correlation with C-mlALCR by Kendall, and between 0.07 and 0.18 in terms of
Fagin-100.

This can intuitively be explained since users that are highly central (i.e.,
contributors in the case of comparison with C-mlALCR, lurkers in the other
case) on one layer L′, and less central on the others, are more likely to receive a
final ranking score from mpxPR which is substantially determined by the score
on L′. Therefore, for all users determined by mlALCR as contributors (resp.
lurkers) on L′ but who do not show a strong alternate behavior elsewhere, there
might be a relatively higher correlation with those users’ ranking obtained by
mpxPR.

It should also be noted that all variants of mpxPR are sensitive to the or-
dering of the layers: as an example, for the comparison with L-mlALCR and
final ranking on Twitter, we observed two controversial results yielded by the
additive variant: Kendall of 0.005 for the sequence tw←so←gh but -0.12 for
tw←gh←so.

Summary of comparative evaluation

Comparing mlALCR with other methods allowed us to draw the following main
remarks:

• Within-layer lurkers identified by LR have generally no correlation (resp.
strong mismatching) with cross-layer lurkers (resp. contributors) identi-
fied by mlALCR in the same layer. However, some correlation might be
observed when lurkers in a given layer are likely to behave actively on
other layers (for example, in single-platform contexts like HiggsTW this
might occur for followship vs. retweet, according to a least-effort economy
principle of interactional behavior).

• No significant matching is found between mlALCR and any of the ag-
gregation methods which statistically manipulate the layer-specific ranks
obtained by LR.
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• Top-ranked users in mlALCR and in the multilayer LR (mlLR) have no
matching, while any positive correlation that may occur by comparing
the entire ranking solutions depends on their respective tails.

• Upon testing in both lurking-oriented and contributor/influential-oriented
user relation models, mpxPR can reward a user only according to the same
role s/he consistently has over the layers of a network (though biased by
the ordering of examination of the layers), while in any case it cannot
detect cross-layer opposite roles.

Overall, the conducted comparative evaluation has shown the uniqueness
of mlALCR in mining alternate lurker-contributor behaviors on a multilayer
network.

3.7 Conclusions
In this work we focused on the dichotomy between contribution and consump-
tion of information over multilayer OSNs. In this respect, we addressed the novel
problem of identification and characterization of opposite behaviors that users
may alternately exhibit over the multiple layers of a complex network. We pro-
posed the first topology-driven ranking method for alternate lurker-contributor
behaviors on a multilayer OSN, named mlALCR, which is designed to identify
users that behave as lurkers (resp. contributors) in one layer while conversely
acting as contributors (resp. lurker) in one or many of the other layers. Signifi-
cance and uniqueness of mlALCR have been empirically demonstrated over four
real-world multilayer networks. We have also discussed a number of applications
that might benefit from the proposed approach, including user engagement, vi-
ral marketing and information containment.

Natural extensions of our mlALCR include the embedding of the temporal
dimension and content information into the mlALCR ranking model. It would be
interesting to study relations between the alternate lurker-contributor behaviors
and properties of assortativity at network level [125] or at node level [126] which
might be defined based on suitable notions of cross-layer centrality. Optimal-
convergence analysis for specific settings of the α parameters would also repre-
sent an interesting theoretical investigation, which could be effectively addressed
via gradient-based optimization (e.g., [127]). In addition, we believe it would
be interesting to integrate mlALCR into a task of community detection in order
to analyze knowledge transfer flows between cross-layer communities.
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Chapter 4

A supervised approach to user
behavioral problems

4.1 Introduction
Learning-to-rank (LTR), i.e., using machine learning to automatically build a
ranking model, has become one of the key technologies for modern web search,
retrieval and personalization [128], [129]. As in traditional ranking functions, a
partial ordering (i.e., ranking) is provided for a set of objects, according to their
degree of relevance to a given query; in LTR, the ranking function is learned
from training data given in the form of 〈query, object, relevance label〉 tuples. In
this chapter, we investigate whether learning-to-rank (LTR) can be successfully
applied to ranking problems in OSNs. In particular we concentrate our effort
to the detection of two specific types of online behavior: automated (i.e., bots)
and lurking.

Automated behavior. Bots have often been regarded as harmless pro-
grams confined within the cyberspace. However, recent events in our society
proved that they can have important effects on real life as well. Bots have in fact
become one of the key tools for disseminating information through online so-
cial networks (OSNs), influencing their members and eventually changing their
opinions. With a focus on classification, social bot detection has lately emerged
as a major topic in OSN analysis; nevertheless more research is needed to en-
hance our understanding of such automated behaviors, particularly to unveil
the characteristics that better differentiate legitimate accounts from bots. We
argue that this demands for learning behavioral models that should be trained
using a large and heterogeneous set of behavioral features, so to detect and
characterize OSN accounts according to their status as bots. Within this view,
in Sect. 4.3 we push forward research on bot analysis by proposing a machine-
learning framework for identifying and ranking OSN accounts based on their
degree of bot relevance.

Lurking behavior. While being long researched in social science and com-
puter human interaction, lurking behaviors in online social networks (OSNs)
have been computationally studied only in recent years. Remarkably, deter-
mining lurking behaviors has been modeled as an unsupervised, eigenvector-
centrality-based ranking problem, and it has been shown that lurkers can effec-
tively be ranked according to the link structure of an OSN graph. Although this
approach has enabled researchers to overcome the lack of ground-truth data at
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a large scale, the complexity of the problem hints at the opportunity of learn-
ing from past lurking experiences as well as of using a variety of behavioral
features, including any available, possibly platform-specific information on the
activity and interaction of lurkers in an OSN. In this work, we leverage this
opportunity in a principled way, by proposing a machine-learning framework
which, once trained on lurking/non-lurking examples from multiple OSNs, al-
lows us to predict the ranking of unseen lurking behaviors, ultimately enabling
the prioritization of user engagement tasks.

4.2 Learning to rank methods
Learning-to-rank (LTR) is a supervised learning approach to build a ranking
model. LTR methods are commonly organized into three categories, namely
pointwise, pairwise and listwise [128], which correspond to different modeling
of the input data and types of loss function to be minimized. Pointwise meth-
ods assume that every query-object pair is a learning instance, whose score has
to be predicted. Ordinal scales are mapped into numeric values, therefore the
ranking problem is seen as regression or ordinal classification. Object pairs are
the learning instances in pairwise methods, which hence aim to learn which ob-
ject in a pair precedes the other in the ranking. Optimization here consists in
minimizing the number of switched/misclassified object pairs. In listwise meth-
ods, a learning instance is comprised of a query and its objects, and a quality
criterion is optimized over all queries in the training data. Unlike the other
two types of LTR, listwise methods take into consideration that the selection of
features is not unbiased, since they depend on the queries, which in turn vary,
so that some objects or object pairs might not be comparable with each other.

Several LTR methods have been developed since the last fifteen years [128],
[130]. Here, for the purpose of this research, we focus on pairwise and list-
wise methods, which have shown to perform generally better than the earlier
pointwise ones, and we briefly recall some of the most representative methods.

RankNet [131] is a pairwise method, which has become popular in commer-
cial search engines (e.g., Microsoft Bing R©). In RankNet, the training scheme
is based on a neural network with two hidden layers and one output node, and
back-propagation is used to minimize the following cost function, which rep-
resents the pair-wise cross entropy between the target probability P̄ij and the
modeled probability Pij, for each pair objects i, j:

Cij = −P̄ij log(Pij)− (1− P̄ij) log(1− Pij) (4.1)

Coordinate Ascent [132] is a listwise method, where the scores of the query-
object pairs are computed as weighted combination of the features values. The
weights are tuned by using coordinate ascent optimization, a derivative-free
optimization technique, in which the objective function can be any arbitrary
IR evaluation criterion, and such that the optimization is performed in one
dimension at a time while keeping the other dimensions fixed. If we denote
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with λi the i-th parameter to learn, then the update rule is given by:

λ′i = arg max
λi

E(R∆, T ) (4.2)

where R∆ is the set of rankings induced over all of the queries, T is the training
data, and E(·, ·) denotes an evaluation function.

AdaRank [133] is a listwise boosting method inspired by the classification
algorithm AdaBoost [134]. Through the use of a stepwise greedy optimization
technique, it maximizes a chosen IR evaluation criterion by repeatedly building
“weak rankers” on the basis of re-weighted training data. These weak rankers are
finally linearly combined to produce the ranking predictions. One key aspect in
AdaRank is that higher weights are assigned to queries whose relevant objects
are more difficult to rank, whereas already learned queries are associated with
lower weights on the basis of the forward stage-wise additive modeling paradigm.
The objective function to be minimized has the form:

min
ht∈H
αt∈R+

L(ht, αt) =
m∑
i=1

exp(−E(π(qi,di, ft−1 + αtht),yi)) (4.3)

where E is the quality criterion function, π represents the permutation for the
i-th query qi, the list di of retrieved documents for qi, and the ranking model f .
Moreover, yi corresponds to the relevance labels (i.e., desired ranks), H denotes
the set of possible weak rankers ht, and αt is a positive weight.

LambdaMART [135] is an ensemble method that combines LambdaRank [136]
and MART [137]. The former performs optimization via the gradient of the loss
function, while the latter is a boosted regression tree model in which the output
is a linear combination of the outputs of a set of regression trees. LambdaRank
is based on a neural network, like RankNet, and it stands out for one main
aspect: instead of focusing on the definition of a less expensive cost function,
it takes into account the gradient of the cost function directly, avoiding the
additional computational cost introduced by sorting operations [138]. For each
pair of objects i, j, the λ-gradient is defined as:

λij = Sij

∣∣∣∣∣ ∆Zij
∂Cij

∂(si − sj)

∣∣∣∣∣ (4.4)

where si − sj is the difference of ranking scores of the two objects w.r.t. a
query, Cij = si− sj + log(1 + exp(si− sj)) is the cross-entropy cost, ∆Zij is the
evaluation value gained by swapping the two objects, and Sij is equal to +1 if
object i is more relevant than object j, −1 otherwise.

4.3 Bot detection
Software robots, or bots, are computer programs designed to carry out one or
more specific automated tasks. Social bots are a particular type of chat-bots
employed in social media platforms to automatically interact with members
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and generate contents. Bots can be used to provide useful services such as
customer support, meeting scheduling, tracking of product shippings, and so
on. On the other hand, social bots often mimic a human being by controlling
a social media account, and when acting as a group (i.e., botnet) they can also
pursue malevolent intents, such as fostering fame [139], [140], biasing public
opinion [141], [142], spamming or limiting free speech by submerging important
messages with a deluge of automated bot messages [143].

In the last years, also thanks to minimal skill requirements, the use of auto-
mated accounts has seen an unprecedented rise [144]–[146]. Remarkably, groups
of orchestrated bots are being used to steer public opinion and influence the
electoral audience through the spread of (mis)information and fake news [147];
the most representative example is related to the latest US presidential elec-
tion [141], [142], but several other cases can be listed [148]–[151].

Bot detection is a challenging problem, also due to the variety of strategies
implemented by bots. For instance, they can mimic human behavior in order
to blend in among legitimate accounts (i.e., users) and earn their trust, making
bot detection more difficult [152], [153]. Bots can also achieve an amplifying
effect by replicating contents related to a specific topic in order to distort the
perception of its popularity, or create the appearance of grassroots support for
a position (i.e., astroturfing) by over-promoting that point of view [154], [155].

The software behind social botnets is constantly evolving, introducing new
expedients that result in sophisticated simulations of human behavior in OSNs [145],
[146], [156], making the identification of automated accounts ever more com-
plicated. Therefore, there is an emergence for the development of effective
methods able to better understanding the behavioral patterns that characterize
automated OSN accounts.

Research questions. Despite several approaches have been developed
to detect bots in OSNs, a single method often covers only one specific pattern
of automated behavior, leaving the identification challenge open. Taking in-
spiration from ensemble learning theory, whereby multiple weak learners are
combined together in order to boost prediction performance, in this work we
aim at developing a more general framework for the identification of bots that
can exploit different sources of information and be capable of learning from mul-
tiple type of bot detection methods. Within this view, we raise the following
questions:

• How can we exploit previously identified automated accounts to tune a
model for detecting and ranking bots?

• How can we successfully combine several bot identification methods to cap-
ture different behavioral patterns?

• How can we incorporate into a bot ranking model various “signals” that
can be used as behavioral features, upon which the evaluation of any user-
account w.r.t. a given context is performed?

Motivations. We believe that LTR is particularly suitable for address-
ing the aforementioned problem, helping us to improve our understanding of
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automated behaviors in online social environment. The inherent complexity of
the bot detection problem hints at the exploitation of techniques capable of de-
termining the status as bot of a (suspected) OSN account, rather than simply
indicating whether or not an account is a bot. In fact, LTR adopts a supervised
approach to learn from past user experiences, which might be annotated accord-
ing to the degree of bot relevance. LTR training is accomplished according to a
set of features which, being of different types, can be useful predictors capturing
different aspects of automated behaviors. LTR also offers unprecedented oppor-
tunities for incremental scenarios: once trained a learning-to-bot-rank model,
this can be used to assign any previously unobserved account with a bot rele-
vance score.

Contributions. In this work, we propose the first LTR framework to
detect and characterize social bots in OSNs. We develop a learning-to-rank-
social-bot methodology based on state-of-the-art LTR methods that exploits,
in the process of feature extraction, information of different type (such as, user
profile, user’s activity rate, media content) and is supported by three state-of-
the-art bot-detection methods, namely DeBot, BotWalk, and BotOrNot. Re-
sults obtained on four state-of-art datasets have shown the significance of our
approach, confirming our initial hypothesis that LTR can be effective for un-
veiling automated behaviors.

The remainder of this chapter is organized as follows. Section 4.3.1 briefly
discusses related work, whereas Section 4.2 describes LTR and bot-detection
methods utilized in our framework. Section 4.3.2 is devoted to the proposed
LTRSB framework. Section 4.3.3 presents experimental results and Section 4.3.4
concludes the chapter.

4.3.1 Related work

Bot detection Currently adopted approaches for bot detection belong to
three main categories: graph-based, time-series-analysis-based, and hybrid meth-
ods. The former group utilizes network information (e.g., contacts, interactions,
(re)tweets) in order to discern between legitimate accounts and bots [157]–[159].
The second group of methods focuses on identifying distinctive temporal behav-
ioral patterns of bots (e.g., burst of interactions, non-stop activity, etc.) [160]–
[164]. The third group includes software systems that are designed to use fea-
tures of different type to train one classifier [165]–[167] or an ensemble of classi-
fiers [168]. A different perspective is taken from BotWalk [169], which computes
an aggregated anomaly score based on an ensemble of unsupervised anomaly
detection methods.

Remarkably, most of existing methods aim to detect bots either focusing
on a specific aspect of automated behavior, and for this reason they cannot
be considered general enough, or by exploiting features of different type while,
however, focusing on binary classification problems.

Learning-to-rank in OSNs Originally developed to meet the rising needs
of modern web retrieval systems, LTR techniques have also been exploited in
OSN analysis contexts. In particular, LTR frameworks have been developed to
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Figure 4.1: Main modules and data flows of our proposed
learning-to-rank-social-bot (LTRSB) framework

tackle problems such as hashtag recommendation [170], credibility assessment
of tweet content [171], ranking answers in large online question/answer collec-
tions [172], and also to address behavioral problems as user engagement [173],
[174]. Nevertheless, to the best of our knowledge, LTR has never been used so
far to address bot detection problems.

Bot detection methods

We focus our attention on three of the most relevant and recent methods for bot
classification, namely BotOrNot [166], [167], DeBot [164], and BotWalk [169].

Given a Twitter screen-name as input, BotOrNot [166], [167] retrieves in-
formation about the activity of the account to generate a fairly extensive set
of features. BotOrNot resorts to a classifier to compute a score describing the
likelihood that an account is a bot. Various standard classification models were
tested in [166], including AdaBoost, logistic regression, decision trees, and Ran-
dom Forest; the latter models, which relies on an ensemble learning approach
to combine many decision trees, was found the most accurate to produce bot-
likelihood scores.

DeBot [164] approach is to detect accounts characterized by high temporally
correlated activities. Each account timeline is represented by a time series of
the tweet/retweet actions performed by the account at each time step. To
compare time series, DeBot defines a correlation measure based on dynamic-
time-warping (DTW) [175], a widely used method to compute the distance
between two sequences by warping them locally to the same length (i.e., it
allows one-to-many mappings between series to stretch a sequence, or many-to-
one mappings to compress a sequence). The DTW-based correlation between
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two (normalized) time series x̂ and ŷ is defined as:

wC(x, y) = 1− DTW 2(x̂, ŷ)

2P
(4.5)

where P is the number of squared errors that are added to obtain a distance
(i.e., the path length) [164]. DeBot performs a 4-stage workflow: first, tweets
that contain selected keywords are gathered for a period of T hours, then it
assembles the time series for each user. These series are processed based on
a hash index in order to identify correlated activity patterns between two or
multiple accounts. Third, the activity of suspected accounts is closely monitored
through the stream Twitter API. The last step computes a pairwise warped
correlation matrix, over the newly generated time series, and generates clusters
of highly correlated users.

BotWalk [169] is a near real-time adaptive bot-identification method based
on an ensemble of anomaly detection methods. Like DeBot, BotWalk adopts an
unsupervised approach and focuses on specific distinguish patterns of automated
behavior. In addition, BotWalk utilizes 130 features extracted from network,
content, temporal and metadata information. Starting from a seed-bot and a
set of random accounts, BotWalk retrieves each account’s details, timeline, and
one-hop follower neighborhood, with the goal of maximizing the likelihood of
reaching other bots across the OSN. The output of the method is represented
by an aggregated score, obtained by combining four different anomaly detection
scores.

4.3.2 Proposed Framework

Overview

Figure 4.1 shows a schematic illustration of the proposed Learning-To-Rank-
Social-Bots (LTRSB) framework.

We are given a database storing information about legitimate accounts and
bots gathered from heterogeneous sources. This database feeds information to
a component that is in charge of (i) repeatedly selecting a subset of accounts to
define queries for the LTR module, and (ii) extracting static as well as dynamic
features of different types, as we shall describe later.

In this work we use Twitter as case in point, although our framework is in
principle designed to be versatile and applicable to other OSN platforms. The
feature extraction step is performed through Twitter API as well as through
retrieving functionalities provided by BotOrNot, BotWalk and DeBot methods.
In particular, Twitter API and BotOrNot are used to retrieve static and aggre-
gate features, whereas BotWalk and DeBot are used to compute query-based
features. More in detail, each DeBot run is characterized by a time-window of
fixed length, in which all the users belonging to the query are being listened in
order to compute clusters. Clusters are then examined to compute the warped
correlation matrix and, finally, the DeBot features.
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bots non-bots source annotations

452 970 [166] human generated
1254 1595 [177] human generated
5937 2819 [143] human generated
2371 2567 [176] honeypot-based
1420 - DeBot runs DTW-based
11434 7951 Total

Table 4.1: Composition of the Account DB

Account DB

Table 3.2 shows main characteristics of our evaluation data, for a total of about
19K accounts, 11K of which correspond to bots and the remaining to non-bots.
Most of the account instances are from datasets originally built and analyzed in
recent studies [143], [166], [176], [177], although from each of these datasets we
removed accounts that are suspended by Twitter or no longer active; moreover,
we gathered additional bot instances from Twitter through several DeBot runs.

The account instances stored in the database were originally annotated with
a binary ground-truth label (i.e., bot or non-bot) according to three different
approaches. The majority of instances were labeled by human experts. Ac-
counts from [176] were instead labeled depending on whether an account is a
follower of a target honeypot account. (Since honeypots are designed in such a
way that a human can immediately tell if they are bots, any user in the network
that connects to a honeypot will be considered as a bot). In addition to the
datasets available from other studies, we exploited DeBot, which has shown to
provide almost null false-positive rate, to further collect bot instances having
correlation score of 0.995 or above.

Training Data

LTR training data consists of triplets 〈query, object, relevance label〉. We are
given n queries, each corresponding to a subset ofm. Each object is an account’s
feature vector, and the relevance label denotes one or several grades of bot status,
so that higher grades correspond to more likely bots.

Relevance labeling We devised three approaches for bot relevance labeling,
depending on the selection of relevant/non-relevant instances, and the type of
relevance label:

• In the first configuration, dubbed BB, we considered binary relevance,
i.e., bot and non-bot, and performed a balanced selection of relevant and
non-relevant accounts.

• In the second configuration, dubbed UB, we again considered binary rel-
evance, and performed unbalanced selection of relevant (30%) and non-
relevant (70%) accounts.
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• In the third configuration, dubbed Grad, we considered balanced selection
of relevant and non-relevant accounts, but seven grades of bot status.

The first two configurations of relevance labeling correspond to the use the
original binary-annotation information in the datasets reported in Table 4.1.
For the Grad configuration, we computed the relevance labels as follows. First,
we uniformed the feature representation for all the accounts in our database
to the BotOrNot model, by retrieving from Twitter missing information for all
the accounts not previously processed by BotOrNot. Second, we applied the
BotOrNot-RandomForest classifier to produce the bot likelihood score for each
instance, which varies within [0, 1]. Third, we discretized the bot scores in seven
intervals, with the interval [0, 0.3] corresponding to legitimate accounts, subse-
quent intervals with increment of 0.1, and [0.8, 1] corresponding to definitely a
bot account.

Feature set We organize the set of features extracted from our evaluation
data into five categories: aggregate, user-based, network-based, content-based,
and temporal.

Table 4.4 provides a concise description of the features. The first group is
comprised of nine aggregate indicators provided by BotOrNot (i.e., from A.1 to
A.9) and a query-wise score produced by the BotWalk anomaly detection task.
User-based features describe Twitter account settings and basic information,
such as account lifetime, time-zone and language, and whether the account
was verified or not. Network-based features describe node-wise properties of a
user in the social network graph, and include indicators of the user’s centrality,
popularity and role. Content-based features represent the largest group and
include several indicators illustrating the diversity and alleged quality of the
content created by a user. Considering normal human-limitations in terms of
time spent on social-media platforms, we defined several activity-rate features
as indicators of overproduction. We also included basic statistics on the inter-
arrival time of consecutive tweets, and on user activity distributions to gain
insights into content production patterns of social bots.

Note that, to ensure comparability across queries, all feature values were
scaled between 0 and 1, through min-max normalization.

Feature informativeness We investigated about the usefulness or informa-
tiveness of the features, with a twofold goal: to discover possible correlation
between features (possibly w.r.t. the relevance class attribute), and to esti-
mate their impact on the ranking prediction performance. For this purpose,
we resorted to five standard methods used in feature selection tasks: principal
component analysis (PCA), information gain, Pearson’s correlation coefficient,
correlation-based feature selection (CFS) [178], and learner-based feature selec-
tion exploiting J48 decision tree model.

The outcome of the analysis confirmed the significance of most of the fea-
ture categories, namely content-based, aggregate, network-based and temporal
features. However, it also highlighted the necessity of diversifying features in
such a context. As we shall declare in our evaluation goals (cf. Section 4.3.2),
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C.1 Number of favorites/likes
U.2 Number of links appearing in the description C.2 Number of tweets
U.3 URL website (Boolean value) C.3 Number of tweets with at least one hashtag
U.4 Verified account (Boolean value) C.4 Number of tweets with at least one URL
U.5 Number of lists created by the user C.5 Number of retweets performed
U.6 Number of posts (tweets) C.6 Number of URLs
U.7 Account lifetime C.7 Number of domains
U.8 Geo enabled (Boolean value) C.8 Number of hashtags
U.9 Time zone (ID number) C.9 Number of retweets received
U.10 Language (ID number) C.10 Number of duplicate URLs
U.11 Default profile & background (Boolean value) C.11 Number of duplicate domains
U.12 Default profile image (Boolean value) C.12 Number of duplicate hashtags

N
et
w
or
k-
b
as
ed

N.1 Number of followers C.13 Mean of the Jaccard similarity of inter-tweet bag-of-words
N.2 Number of friends (followees) C.14 Minimum of the Jaccard similarity of inter-tweet bag-of-words
N.3 Number of tweets with at least one mention C.15 Maximum of the Jaccard similarity of inter-tweet bag-of-words
N.4 Number of mentions C.16 Standard deviation of the Jaccard similarity of inter-tweet bag-of-words
N.5 Number of duplicate mentions C.17 Average number of special characters
N.6 Follower / followee ratio C.18 Minimum number of special characters
N.7 Mention / tweet ratio C.19 Maximum number of special characters

T
em
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al

T.1 Duration of the longest tweet session without breaks longer than 10 minutes C.20 Standard deviation of number of special characters
T.2 Mean (µ) of the inter-arrival time of consecutive tweets C.21 Average of tweet lengths
T.3 Minimum of the inter-arrival time of consecutive tweets C.22 Minimum of tweet lengths
T.4 Maximum of the inter-arrival time of consecutive tweets C.23 Maximum of tweet lengths
T.5 Standard deviation (σ) of the inter-arrival time of consecutive tweets C.24 Standard deviation of tweet lengths
T.6 Burstiness, i.e., (σ − µ)/(σ + µ) C.25 Retweets / tweets ratio
T.7 χ2 second-of-minute, refers to tweet distributions across time C.26 Number of URLs on tweets
T.8 χ2 minute-of-hour, refers to tweet distributions across time C.27 Number of hashtags on tweets
T.9 χ2 hour-of-day, refers to tweet distributions across time C.28 Number of media files (photos or videos) on tweets
T.10 Average number of tweets per day C.29 Average number of retweets received per tweet
T.11 Maximum number of tweets per day C.30 Average number of likes/favorites received per tweet

T.12 Minimum number of tweets per day

A
gg
re
ga
te

A.1 Content indicator (based on statistics about length and
entropy of shared text, POS tagging, etc.) [BotOrNot]

T.13 Standard deviation of number of tweets per day A.2 Friend indicator (based on follower-friend relations,
number of replies, etc.) [BotOrNot]

T.14 Entropy inter-arrival time A.3 Network indicator (based on mentions, retweets, and
hashtags) [BotOrNot]

T.15 Average number of likes per day A.4 Sentiment indicator (based on several sentiment
extraction techniques) [BotOrNot]

T.16 Average number of tweets per day A.5 Temporal indicator [BotOrNot]
T.17 Query-wise average DTW-based Correlation [DeBot] A.6 User’s basic information [BotOrNot]
T.18 Query-wise DTW-based Correlation offset [DeBot] A.7 Universal score (overall score for universal language) [BotOrNot]
T.19 Query-wise activity rate [DeBot] A.8 English score (overall score for English language) [BotOrNot]

A.9 Overall score (average value between universal and
English score) [BotOrNot]

A.10 Query-wise aggregated anomaly score [BotWalk]

Table 4.2: Extracted features and their description.
(∗) Statistics about content-based features refer to the recent activity of a user.
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this prompted us to focus the evaluation of our framework on using either the
full space of features or different subsets of feature categories.

Quality criteria

Most LTR methods minimize a loss function, which is related to standard IR
measures for ranking evaluation [128], [179]. These are used as quality criteria
in the optimization and/or evaluation of an LTR model. We will consider the
most widely used criteria, namely P@k, MAP and nDCG@k.

Given a rank threshold k, precision on the top-k objects (P@k) is defined
as the fraction of objects in the first k positions that are relevant to the query.
Unlike P@k, mean average precision (MAP ) considers also objects ranked after
the k-th position: for each query q from a set Q of queries, it first computes
P@k with k corresponding to the rank position of each relevant object, then
these precision values are averaged, and average precision values are further
averaged over all queries:

MAP =

∑Q
q=1AP (q)

Q
(4.6)

with AP = 1
m

∑n
k=1 P@k ·rel(k), where n andm are the number of retrieved ob-

jects and relevant objects, respectively, and rel(k) denotes an indicator function
that yields 1 if the object at rank k is relevant, zero otherwise.

Normalized discounted cumulative gain (nDCG) uses graded relevance labels
to measure the goodness of the ranking of each object. It is defined as the ratio
between the discounted cumulative gain (DCG) [180] to its ideal ranking, taking
into account the top-k objects in the two rankings.

nDCG@k =
DCG@k

DCGmax@k
(4.7)

with DCG@k equal to:

DCG@k =
k∑
i=1

2rel(i) − 1

log2(i+ 1)
(4.8)

DCG is based on the assumption that highly relevant objects appearing in lower
positions should be more penalized as the graded relevance value is reduced
logarithmically proportional to the position in the ranking.

Framework setting

In our evaluation we included all the LTR methods discussed in Section 4.2.
We used the Java implementations of RankLib under the Lemur Project, with
default settings.1 We trained and tested through 5-cross-validation each of the
LTR methods using MAP , P@k, and nDCG@k, with k ∈ {10, 100}, both for
optimization (except for RankNet) and evaluation. We defined n = 20 queries,

1http://www.lemurproject.org
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each of which corresponding to m = 1000 instances. Also, we set to 15 minutes
the width of the listening time-window in DeBot executions.

Evaluation goals

We pursue two main evaluation goals.

• Performance on feature subsets: We are interested in evaluating the use-
fulness and informative richness of aggregate, user-based, network-based,
content-based, and temporal features sets w.r.t. the ability to characterize
automated behavior in OSNs. We tested each group of features sepa-
rately in order to evaluate the support provided in the characterization of
automated behavior.

• Performance on the whole feature space: We want to assess the capability
of our LTRSB framework to detect several automated behavioral patterns
and its ability to leverage the whole feature space. Therefore, we evaluated
its performance on all available data, using all the methods described in
Section 4.2.

4.3.3 Experimental Results

We organize the presentation of experimental results according to the previ-
ously discussed evaluation goals. For each stage of evaluation, we will summa-
rize results through heatmaps, with numerical detail on the performance scores
corresponding to the various assessment criteria, by varying LTR method and
setting. Note that, for the sake of readability, particularly to avoid cluttering
of the figures, we have intentionally hidden entries in every heatmap that refer
to optimal performance values (i.e., equal to 1).

Evaluation w.r.t. feature subsets

At a first glance looking at Figures 4.2–4.4, we observe a variegate situation,
whereby the status of bot can be successfully determined only for some partic-
ular configurations.

Results corresponding to the balanced binary relevance setting (Fig. 4.2)
show that Coordinate Ascent and LambdaMART can achieve good or near-
optimal performance for most of the configurations of the assessment criteria
and feature subsets. This would suggest their ability in the BB scenario to learn
enough information for the construction of the ranking model from every subset
of features. By contrast, there is an evident emergence for a more comprehensive
feature space for methods like RankNet and AdaRank.

In general, it is not straightforward to recognize the most informative subset
of features, already for the BB scenario which is expected to be the simplest
among the three we devised. The variability of performance across feature
groups seems to suggest that, due to the inherent difficulty of the detection
task at hand, a single subset (i.e., type) of features is not sufficient to learn a
proper ranking function capable of identifying different behavioral patterns.
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Under the UB, we aimed to stress the LTRSB ability to learn from fewer
examples of bots, thus making the ranking task more difficult. Results shown
in Fig. 4.3 confirm the above-mentioned difficulty. Overall, quite poor per-
formance characterizes RankNet, especially when using aggregate features only,
and AdaRank, with user-based and network-based features only. LambdaMART
and Coordinate Ascent show to be able to learn a ranking model that can suc-
cessfully rank the top-10 instances, using any subset of features, though their
performance in terms of all assessment criteria significantly decrease when con-
sidering top-100 or all instances.

As previously stated, the third scenario (Grad) corresponds to a balanced
selection of relevant and non-relevant instances, with graded relevance labels
derived from the bot probabilities computed by BotOrNot. We observe some
difficulty in discerning between different levels of bot status; in particular, in
terms of nDCG@10 and nDCG@100 criteria, almost all methods are affected by
poor performance when only one subset of features is used. The only significant
exception is represented by LambdaMART and Coordinate Ascent which, when
trained on the subspace of aggregate features, are able to achieve optimal or
very good ranking prediction accuracy. This might be explained since aggregate
features includes highly descriptive features derived from BotOrNot as well as
from BotWalk.

Evaluation w.r.t. all features

Figure 4.5 reports on LTRSB performance results on all datasets, exploiting
the whole space of features, with different selections of relevant/non-relevant
instances, and both graded and binary relevance labels.

One general remark is that, in most cases, LTRSB can achieve good per-
formance, with any LTR method, especially in the case of balanced settings
with both binary and graded relevance labels. Under the balanced binary rel-
evance setting, small variations in terms of performance are observed between
the methods. Performance results vary from 0.883 to 1, with two exceptions cor-
responding to AdaRank (0.578) and LambdaMART (0.67) according to MAP .
For Grad, Coordinate Ascent and LambdaMART show to be robust w.r.t. the
assessment criteria, with scores above 0.88 and, in most case, close or equal to
1. RankNet (resp. AdaRank) can also achieve optimal (resp. near-optimal)
performance, according to P@10 and P@100, but perform poorly in terms of
nDCG@10.

The unbalanced setting is characterized by a high variance across all assess-
ment criteria and methods, with evidence of some difficulty in ordering instances
belonging to the tail of the ranking solution; in particular, according to MAP
and P@100, AdaRank, LambdaMART, and RankNet perform quite poor (i.e.,
< 0.5). Coordinate Ascent achieves best overall performance ranging from a
minimum value of about 0.6 to the near optimal 0.957.

Discussion

Detecting and characterizing bot accounts in OSNs is a non-trivial learning
problem. On the one hand, OSN platforms like Twitter only recently took
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more serious actions in order to ban, and better regulate bots within their
boundaries. On the other hand, bot-masters are developing more sophisticated
tools in order to better mimic human behaviors, thus increasing their potential
to influence people, bias public opinion, and even pursue malevolent intents. For
those reasons, it is strongly recommended to develop software systems that can
exploit all the information available, and leverage useful “signals” of different
type, in order to unveil suspicious bot activities.

Answering the research questions stated in the Introduction:

• Our proposed LTRSB framework is designed to learn from examples of bots
and non-bots in order to detect and rank previously unseen bot accounts;
when equipped with Coordinate Ascent or LambdaMART, LTRSB can
achieve optimal ranking performance.

• LTRSB demonstrates that different methods for bot detection, developed
upon different criteria and models, can be incorporated into a unifying
machine-learning framework for determining the status of OSN accounts
at various levels of bot status.

• LTRSB evaluation has shown that leveraging a large and heterogeneous
space of features is beneficial and, in most cases, essential to effectively
detect and rank bots, whose traits might in general refer to different be-
havioral patterns.

4.3.4 Conclusion

In this work, we advanced research on bot behavior analysis by developing a
robust, supervised ranking model, leveraging different behavioral signals of bot
activity. Our learning-to-rank framework, named LTRSB, exploits the most
relevant existing methods on bot detection for enhanced feature extraction,
and state-of-the-art learning-to-rank methods for the optimization. LTRSB was
evaluated using ground-truth data, according to different assessment criteria.

As future work, it would be interesting to evaluate LTRSB using queries and
ground-truth data that correspond to multiple classes of bots, from harmless
(e.g., advertisement bots, entertainment bots) to malicious bots (e.g., spambots,
scraper bots).
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(a) User-based features

(b) Network-based features

(c) Temporal features

(d) Content-based features

(e) Aggregate features

Figure 4.2: LTRSB performance on all data, with balanced
binary relevance (BB), and using different feature subsets.
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(a) User-based features

(b) Network-based features

(c) Temporal features

(d) Content-based features

(e) Aggregate features

Figure 4.3: LTRSB performance on all data, with unbalanced
binary relevance (UB), and using different feature subsets.
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(a) User-based features

(b) Network-based features

(c) Temporal features

(d) Content-based features

(e) Aggregate features

Figure 4.4: LTRSB performance on all data, with graded
relevance setting (Grad), and using different feature subsets.
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(a) BB

(b) UB

(c) Grad
Figure 4.5: LTRSB performance on all data and whole feature

space, using different relevance labeling settings.
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4.4 Learning to rank Lurkers
Lurking in an online social network (OSN) characterizes those users in the crowd
who do not significantly take an active and tangible role in the interaction with
other members [85], [86], [181], [182]. Such users are referred to as lurkers, since
they gain benefit from information produced by others, though their presence
is legitimated [87], expected and even welcome [101], [183]. More importantly,
lurkers might hold potential social capital, because they acquire knowledge from
the OSN: by observing user-generated communications, they can form their
own opinions and even expertise, though they rarely will let other people know
their “value”. Therefore, it might be desirable to make lurkers’ social capital
available to other users [184]. This can be accomplished through mechanisms
of engagement [102], [103], [185]–[187], ultimately encouraging lurkers to more
actively participate in the OSN life.

In [97], [110], the authors presented the first tool, namely LurkerRank, for
automatically bringing order into the crowd of users that may show lurking
behaviors at varying degrees. LurkerRank adopts a query-independent, eigen-
vector-centrality based approach that utilizes the link graph structure underly-
ing user relationships (e.g., followships, like/comment interactions). Its ranking
solution can enable a way to prioritize the engagement of (top-ranked) lurk-
ers. LurkerRank has also been adapted as query-dependent (e.g., trust-biased)
ranking method [97], [112], extended to handle time-evolving networks [111], or
exploited for targeting users in an influence maximization task [188].

Research questions. Nevertheless, several challenges remain open, since
the complexity of lurking behaviors hints at the opportunity of using any avail-
able, possibly platform-specific information on the activity and interaction of
lurkers in an OSN. In particular, the following questions may arise:

• Can we incorporate into a lurker ranking model various “signals” that can
be used as behavioral features, upon which the evaluation of the degree of
lurking of any user w.r.t. a given context (i.e., online environment) is
performed?

• Can we enable a lurker ranking model to accurately be tuned by exploiting
past lurking experiences?

• What if information on lurking behaviors is available from populations of
different networks?

• Can we predict the lurking behavior of a previously unexamined user by
avoiding to rank from scratch all users?

The LTR opportunity. In this work we aim at answering the above ques-
tions by developing a principled, machine-learning-based ranking framework for
the analysis of lurking behaviors. Learning-to-rank (LTR), i.e., using machine
learning to automatically build a ranking model, has become one of the key
technologies for modern web search, retrieval and personalization [128], [129].
As in traditional ranking functions, a partial ordering (ranking) is provided for
a set of objects, according to their degree of relevance to a given query; in LTR,
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the ranking function is learned from training data given in the form of 〈query,
object, relevance label〉 tuples.

Motivations. We believe that LTR is particularly suitable for addressing
the aforementioned research questions, thus helping us to improve our under-
standing of a behavioral analysis problem that is inherently dynamic as well as
sensitive to many aspects. In fact, LTR adopts a supervised approach to learn
from past user experiences, which might be annotated according to the degree
of lurking behavior. LTR training is accomplished according to a set of features
which, being possibly of different types, would capture different aspects that
can be useful predictors of lurking behaviors.

Due to learning from different, properly engineered features, LTR is a robust
approach in cases where it would be difficult to gather sufficient and significant
lurking information from the graph of user relationships: this would lead to a
weak or sparse link structure, which negatively affects the effectiveness of any
graph-based lurker ranking method. In addition, by inheriting robustness to
outliers of some machine learning methods, LTR models can effectively handle
inconsistent or false lurking behaviors (e.g., those shown by users that are to-
tally inactive in the online platform). To a more general extent, by treating
multiple OSN platforms as different queries and building an LTR model from
instances (users) that belong to the various platforms, lurker ranking results can
be compared through different OSNs, thus generalizing the concept of lurking
to multiple networks.

Last, but not least, LTR offers unprecedented opportunities for incremental
lurking scenarios: once trained a learning-to-lurker-rank model, this can be used
to assign any previously unobserved user with a lurking score, thus avoiding the
calculation from scratch of a ranking scheme over the entire OSN graph.

Contributions. In this work, we propose the first LTR framework to
analyze lurkers in OSNs. Note that LTR has been previously used to address
behavioral problems, in particular user engagement. For instance, the study
in [173] aims at ranking tweets by the amount of user participation in them;
however, identifying and ranking lurkers is a more complex problem, which
requires proper modeling of users and their behavioral features.

By exploiting state-of-the-art LTR methods, we develop a learning-to-lurker-
rank methodology which exploits the unsupervised LurkerRank method to de-
rive binary or graded relevance labels, and a feature engineering phase that
accounts for relational (i.e., topology-based), media-based, activity rate, and
platform-specific information on the commitment and interaction of users from
different OSNs. Results obtained on 23 network datasets, which were built from
7 OSNs, have shown the significance of our approach, confirming our initial hy-
pothesis that LTR can be effective for ranking lurking behaviors.

4.4.1 Lurker ranking

In [97], [110], the authors have originally brought the concept of centrality in the
context of lurking behavior analysis, with the goal of characterizing and ranking
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top-lurkers mid users top-active users

top-lurkers mid users top-active users

Figure 4.6: Localization of lurkers and non-lurkers in Twitter
professional-oriented followship graph. (Best viewed in color)

top-lurkers mid users top-active users

top-lurkers mid users top-active users

Figure 4.7: Localization of lurkers and non-lurkers in
Twitter-Higgs followship graph. (Best viewed in color)
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top-lurkers mid users top-active users

top-lurkers mid users top-active users

Figure 4.8: Localization of lurkers and non-lurkers in Flickr
like-based interaction graph. (Best viewed in color)

the users according to their degree of lurking in an OSN. Following an unsuper-
vised learning paradigm, the lurker ranking models utilize only the topology in-
formation of an OSN (like PageRank and other classic ranking methods), which
is seen as a directed graph where any edge (u, v) means that v is “consuming”
or “receiving” information from u. Upon the assumption that lurking behaviors
build on the amount of information a node consumes, the key intuition is that
the strength of a user’s lurking status can be determined based on three basic
principles, which are here informally summarized as follows: overconsumption
(i.e., the excess of information-consumption over information-production, esti-
mated proportionally to the in/out-degree ratio of a node), the authoritativeness
of the information received from the in-neighbors, and the non-authoritativeness
of the information produced, i.e., sent to the out-neighbors. These principles
form the basis for three ranking models, whereby a complete specification was
provided in terms of PageRank and alpha-centrality based formulations. For
the sake of brevity here, and throughout this chapter, we will refer to only one
of the formulations described in [97], [110], which is that based on the in-out-
neighbors-driven lurker ranking, hereinafter referred to as LurkerRank (LR).

Given a directed graphG = (V,E), and a node v ∈ V , letN in(v) andN out(v)
denote the set of in-neighbors and the set of out-neighbors of v, respectively.
For any node v, the LurkerRank score LR(v) is defined as follows [97]:

LR(v) = α[Rin(v) (1 +Rout(v))] + (1− α)p(v) (4.9)
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where Rin(v) is the in-neighbors-driven lurking function:

Rin(v) =
1

|N out(v)|
∑

u∈N in(v)

|N out(u)|
|N in(u)|

LR(u) (4.10)

and Rout(v) is the out-neighbors-driven lurking function:

Rout(v) =
|N in(v)|∑

u∈Nout(v)|N in(u)|
∑

u∈Nout(v)

|N in(u)|
|N out(u)|

LR(u) (4.11)

Above, p(v) is the value for v in the personalization vector, which is by default
set to 1/|V |, and α is a damping factor ranging within [0,1], usually set to 0.85.

It should be noted that, although the principles underlying LR are generic
and applicable to any OSN, the particular type of social context managed by
the online platform, the semantics of user relations therein, and the structural
properties of the corresponding graph(s) modeling the user relations in the
platform, can have different impact on the understanding of lurking behaviors,
and consequently on how lurkers relate themselves to the other (i.e., active)
users.

Figure 4.8 shows three examples of social network graphs, in which differ-
ent colors are assigned to nodes in order to distinguish between lurkers and
users that can be regarded as moderately or highly active in the corresponding
network. For every network, we first computed the LurkerRank score for each
node, then we determined the weight of each edge (u, v) proportionally to the
fraction of the original lurking score of v given by its in-neighbor u, exploit-
ing the notion of influence probability defined in [188]. Node colors are chosen
according to the quartile of membership in the LurkerRank ranking solution:
nodes belonging to the 3rd quartile, i.e., the top-25% lurkers, are colored in
red, whereas nodes in the 1st quartile, i.e., the top-25% active users, are col-
ored in green, and the remaining nodes (mid users) in black. We generated the
graph plots using the force-directed layout OpenOrd [189], which is well-suited
to display the formation of agglomerations around nodes that, in our setting,
receive incoming connections with higher weights. Looking at the figure, lurkers
can be differently influenced by few or many groups of active users, presumably
depending on the popularity and appealingness of the topics discussed. The
leftmost graph plot represents a Twitter subnetwork of developers (which also
have an account on GitHub and StackOverflow; cf. Sect. 4.4.2). Here, the local-
ization of lurkers tends to be around a few groups of the developers, depending
on the attractiveness of the software development project the active users are
working on. The middle graph plot corresponds to a portion of Twitter focused
on a single main theme, i.e., the announcement of the Higgs boson. Compared
to the previous example graph, lurkers tend even more to agglomerate with
only some of the active users, the latter presumably being the most visible (i.e.,
popular) users that are active in the spreading of information about Higgs bo-
son. The rightmost graph plot corresponds to favorite/like-based interactions of
users in Flickr. Here we observe many micro-agglomerations that imply a quite
diversified configuration in terms of localization of lurkers and active users, due
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Figure 4.9: Illustration of our proposed
learning-to-lurker-rank (LTLR) framework

to higher heterogeneity of the topics discussed in the network (i.e., photo-driven
themes); moreover, according to previous studies on lurking behaviors in sce-
narios of least-effort types of interaction [111], the difference between lurkers
and active users is much less evident than in two other graphs.

The above-presented example points out an emergence for enhancing a
generic, topology-based ranking model for lurking behaviors by leveraging the
peculiarities of user relations and media-based properties that are specific to
the OSN under examination. Within this view, in this work we take an oppor-
tunity for the development of a new framework that is able to learn from user
behavioral features and past pieces of evidence of lurking states, over multiple
OSNs, to predict and rank previously unseen lurking states.

4.4.2 Learning to lurker rank framework

In this section we describe our proposed learning-to-lurker-rank (LTLR) frame-
work. Figure 4.9 provides a schematic illustration, which sheds light on the main
modules and data flows involved in the framework. In this regard, we assume
that a number of social media sources are available (e.g., Twitter, Instagram,
etc.), from which three types of information are extracted and organized into
three main components, namely user-relational (i.e., topological) network data,
media data, and platform-specific meta-data. These are processed to build the
feature space for the representation of the training data. The learning-to-rank
system is designed to work with training data instances, each of which is anno-
tated with a relevance label expressing the degree of lurking of the corresponding
user (module LurkerRank-based labeling, on the top-right corner of the internal
box shown in the figure). In the following, we elaborate on each of the main
aspects of the proposed LTLR framework.
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network #users #edges types of user relation
Flickr-s1 36 362 261 192 timestamped favorites/like
Flickr-s2 111 281 1 178 865 timestamped favorites/like
Flickr-s3 212 031 2 642 354 timestamped favorites/like
Flickr-s4 388 667 5 200 581 timestamped favorites/like
Flickr-s5 546 143 7 788 333 timestamped favorites/like
FriendFeed 493 020 19 153 367 like and comment
GitHub 37 829 443 792 induced followship
GooglePlus 13 673 251 13 673 251 followship
Instagram-t1 43 925 536 370 topic-biased comments relations
Instagram-t2 33 548 314 496 topic-biased comments relations
Instagram-t3 30 384 152 590 topic-biased comments relations
Instagram-t4 31 458 187 025 topic-biased comments relations
Instagram-t5 44 915 745 604 topic-biased comments relations
Instagram-t6 33 071 325 369 topic-biased comments relations
Instagram-t7 33 797 278 081 topic-biased comments relations
Instagram-t8 41 476 624 489 topic-biased comments relations
Instagram-t9 44 484 696 956 topic-biased comments relations
StackOverflow 22 507 88 277 Q&A help
Twitter 52 126 2 412 523 followship
Twitter-Higgs-soc 456 627 14 855 842 followship
Twitter-Higgs-mt 116 409 150 818 mention
Twitter-Higgs-rp 38 919 32 523 reply
Twitter-Higgs-rt 256 492 328 132 retweet

Table 4.3: User relational characteristics in our evaluation
networks

Datasets

We built our evaluation datasets from 23 user-relation networks and media
databases gathered from Twitter (5), Instagram (9), Flickr (5), FriendFeed,
GooglePlus, StackOverflow, and GitHub. Table 4.3 summarizes main charac-
teristics relating to the size of the networks and type of user relations. Note
that our selection of network data is quite diversified both in terms of number
of users involved (ranging from a few tens of thousands, in StackOverflow, to
several million, in GooglePlus) and types of user relations, which vary from ex-
plicit or induced followship to least-effort interactions (e.g., favorites, likes) and
most-effort actions like comments and answers. Moreover, our network data
embed information about the users’ participation, in terms of both production
and consumption of social content, reputation, and influence. These will be ex-
ploited to generate features of different types, as we shall describe later in this
section. It should also be noted that all of the selected networks are publicly
available and have been used in early works on lurking analysis [97], [111], [190];
in addition, user behaviors in StackOverflow and GitHub datasets, and in the
Twitter-Higgs networks, were originally studied in [121] and [122], respectively.
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Training data

LTR training data consists of triplets 〈query, object, relevance label〉. In our
setting, any query corresponds to one of the 23 networks above introduced, any
object corresponds to a user’s feature vector, and the relevance label denotes
one or several grades of lurking, so that the higher grade a user has, the more
lurker the user is.

Relevance labeling We used LurkerRank [97], [110] (cf. Section 4.4.1) to
produce lurking scores upon which we derived the relevance labels in the train-
ing data. Basically, users at top-p% ranked and bottom-q% ranked portions of a
LurkerRank solution were labeled as relevant (i.e., lurkers) and non-relevant
(i.e., not-lurkers), respectively. Besides binary labeling, we also considered
graded relevance by a finer-grain segmentation of the selected sublist of lurkers,
as we shall discuss later in Section 4.4.2.

Feature engineering

Table 4.4 provides a concise description of the features extracted from our eval-
uation data. We organize them into four categories: relational, media-based,
activity-rate, and platform-specific.

Relational features correspond to local properties of a node in a graph (i.e.,
user in a network), which we devise according to the three principles at the
basis of the topology-driven lurking model proposed in [97], [110], previously
discussed in Section 4.4.1. Within this view, relational features might include
information about a node’s in-neighbors, out-neighbors, and their ratio (which
would reflect the lurking principle of overconsumption).

Media-based features describe actions that a user performed or underwent in
relation to her/his media in the OSN (e.g., posts, images). We advise that one
convenient way to organize such features is based on whether these actions are
perceived as manifestations of a user’s active participation or passive participa-
tion, i.e., we might distinguish between latent actions (e.g., views/clicks) and
visible actions; the latter, in turn, can be divided into least-effort actions (e.g.,
likes, favorites, mentions), and most-effort actions (e.g., comments, replies).
Accordingly, to extract media-based features, we might include the number of
actions performed or underwent, for each of the action types. Moreover, it
would be important to measure some notion of user’s influence based on the
amount of endorsement shown by other users in relation to the media contents
produced.

Activity rate features are aimed to capture temporal aspects of a user’s
activity, in terms of frequency as well as latency [111]. Therefore, features
of this type are expected to include information about the length of the time
period between two temporally consecutive actions, or the average frequency of
media created, or latent/least-/most-effort actions performed.

The fourth category of features we devise concerns platform-specific indi-
cators of the degree of a user’s commitment and engagement to the social life
in the online platform. For instance, features falling into this category might
include information relating badges or other forms of rewards for the user, the



4.4. Learning to rank Lurkers 105

id description
re
la
ti
on

al
R.1 #in-neighbors
R.2 (1 + #out-neighbors)−1

R.3 #in-neighbors / #out-neighbors
R.4 (1 + #in-neighbors of a user’s in-neighbors)−1

R.5 #out-neighbors of a user’s in-neighbors
R.6 #out-neighbors / #in-neighbors of a user’s in-neighbors
R.7 #in-neighbors of a user’s out-neighbors
R.8 (1 + #out-neighbors of a user’s out-neighbors)−1

R.9 #in-neighbors / #out-neighbors of a user’s out-neighbors

m
ed

ia
b
as
ed

M.1 #latent actions performed
M.2 (1 + #least-effort actions performed)−1

M.3 (1 + #most-effort actions performed)−1

M.4 (#latent actions performed )/(1 + #least-effort actions performed)
M.5 (#latent actions performed )/(1 + #most-effort actions performed)
M.6 Inv. exp. of EI defined on least-effort actions received for media created
M.7 Inv. exp. of EI defined on most-effort actions received for media created

ac
ti
vi
ty
-r
at
e

A.1 Mean per-day #latent actions performed
A.2 (1 + mean per-day #least-effort actions performed)−1

A.3 (1 + mean per-day #most-effort actions performed)−1

A.4 A.1 * A.2
A.5 A.1 * A.3
A.6 Mean #days between two consecutive actions of new content production
A.7 (1 + mean #days between two consecutive actions of content consumption))−1

p
la
tf
or
m
-s
p
ec
ifi
c

P.1 (1 + #times the user was tagged)−1 [Instagram]
P.2 (1 + #days in a row of current active contribution)−1 [GitHub]
P.3 #days in a row of last active contribution [GitHub]
P.4 (1 + #days of the longest active contribution)−1 [GitHub]
P.5 (1 + reputation score earned)−1 [StackOverflow]
P.6 (1 + top-overall percentage)−1 [StackOverflow]
P.7 (1 + #people reached)−1 [StackOverflow]
P.8 (1 + #profile views)−1 [StackOverflow]
P.9 (1 + #gold badges received)−1 [StackOverflow]
P.10 (1 + #silver badges received)−1 [StackOverflow]
P.11 (1 + #bronze badges received)−1 [StackOverflow]
P.12 (1 + #top answers given)−1 [StackOverflow]
P.13 (1 + #lists the user belongs to)−1 [Twitter]
P.14 (1 + #tweets)−1 [Twitter]

Table 4.4: Extracted features and their description

number of lists a user belongs to, or the length of time period for intensively
active contribution.

)

Framework setting

In our evaluation we included all the LTR methods discussed in Sect. 4.2. We
used the Java implementations of RankLib under the The Lemur Project, with



106 Chapter 4. A supervised approach to user behavioral problems

default settings.2 We trained and tested through 5-cross-validation each of the
LTR methods usingMAP , P@k, and nDCG@k, with k ∈ {10, 100, 1000}, both
for optimization (except for RankNet) and evaluation.

From our built evaluation datasets (cf. Table 4.3), we devised three cases
depending on the selection of relevant/non-relevant instances:

• In the first case, dubbed BB, we considered binary relevance, i.e., lurking
and not-lurking, and performed a balanced selection of relevant and not-
relevant users.

• In the second case, dubbed UB, we performed unbalanced selection of
relevant/not-relevant.

• In the third case, dubbed Grad, we considered m grades of relevance of
lurking users. We will present results based on the setting of BB cor-
responding to top-5% and bottom-5% users by LurkerRank as relevant
and not-relevant, resp., the setting of UB corresponding to top-5% and
bottom-25% users by LR as relevant and not-relevant, resp., and the set-
ting of Grad with m = 3 corresponding to top-5% (relevance 3), second
5% (relevance 2), third 5% (relevance 1) as relevant and bottom-25% as
not-relevant.

Table 4.4 provides a concise description of the features extracted from our
evaluation datasets. The first group of features (i.e., from R.1 to R.9) describes
network-topology-based indicators of user relations, whose strength would pro-
portionally increase with the lurking status of a user. Features from M.1 to
M.7 capture the user’s behavior from the perspective of the production and
consumption of media. Note that, except for M.6 and M.7, we chose inverse
linear function (for those features requiring inverse proportionality to a certain
statistic count) for smoother numerical decrease. Symbol EI in features M.5–
M.7 stands for empirical influence, a measure used to estimate a user’s influence
based on the amount of information s/he produced and that her/his followers
have stated to endorse (e.g., liked, replied, etc.) [97], [191]. The third group of
features contains measurements of the production and consumption activities of
a user, including aggregate indicators such as the mean per-day ratio between
latent and least-effort (resp. most-effort) actions. The last group of features
refers to a number of aspects, including user’s reputation, popularity, and ac-
tivity, that are specific to a single-platform. Finally, it should be noted that
to ensure comparability across queries, all feature values were scaled between 0
and 1, through min-max normalization.

Mapping the selected datasets (Table 4.3) with the features in Table 4.4, we
derived the following subsets of data:

1. D1: Flickr networks are associated with relational features (i.e., from R.1
to R.9) plus M.2, M.6, A.2, and A.7.

2. D2: Flickr and Instagram networks are associated with relational features
plus A.2 and A.7.

2http://www.lemurproject.org
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3. D3: Flickr and FriendFeed networks are associated with relational fea-
tures plus M.2 and M.6.

4. D4: GitHub network is associated with relational features plus P.2, P.3,
and P.4.

5. D5: StackOverflow network is associated with relational features plus P.2,
and from P.5 to P.12.

6. D6: Twitter networks are associated with relational features plus P.13.

Feature informativeness

We investigated about the usefulness or informativeness of the selected features,
with a twofold goal: to discover possible correlations between features (possibly
w.r.t. the lurking-relevance class attribute), and to estimate their impact on the
ranking prediction performance. For this purpose, we resorted to five standard
methods used in feature selection tasks: principal component analysis (PCA),
information gain, Pearson’s correlation coefficient, correlation-based feature se-
lection (CFS) [178], and learner-based feature selection exploiting J48 decision
tree model.

Using PCA, we found that in most cases the first principal component is
a linear combination of relational features (among which, R.2, R.5, and R.8
are often characterized by the highest variance), however several exceptions are
present. For instance, on StackOverflow data, the built-in reputation system
(i.e., features P.5, P.9, P10, and P.11) corresponds to the first principal compo-
nent, while the subsequent components consist of various linear combinations
of mostly relational features. On Flickr data, the first principal component is a
combination of non-relational (M.2 and M.6) and relational features (R.1–R.9).

By employing the information gain method, unlike in PCA, we could take
into account the class of relevance, both for the binary and graded relevance
settings. As expected, since that the constituent parts of the defining principles
of LR are topology-driven, the most informative features w.r.t. to the lurking
relevance labels are relational as well (in particular, from R.1 to R.8), for all
the analyzed networks. Nevertheless, non-relational features such as M.6, A.6,
and P.14 (which are of media-based, activity-rate, and platform-specific type,
respectively) are the subsequent most informative features.

Similarly, an analysis based on Pearson’s correlation recognizes relational
features as the most relevant, followed by the number of tweets posted and the
number of lists a user belongs to (P.13 and P.14) in Twitter, the reputation
system and medals present in StackOverflow (P.5, P.9, P.10, P.11), the number
of days in a row of active contribution and the number of least-effort actions
performed (P.3, M.2) in GitHub. As concerns the CFS method, while being con-
sistent with the other methods regarding the relational features, its selection of
most informative non-relational features includes A.6, for the setting of graded
relevance label, and P.5, M.3 for the binary settings. Finally, J48 confirms
the overall scenario described by the other methods, where relational features
(in particular, R.3, R.5, and R.6) strongly correlate with the lurking-relevance
class, followed by M.6 and P.9.
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Pearson’s correlation coefficient also deals with both the class of relevance
and the feature under examination, it treats them like random variables while
measuring the linear correlation between them.

To sum up, relational (i.e., topological) features revealed to take an essential
role in predicting the lurking status of users, although different subsets of non-
relational were found as equally informative. This prompted us to focus our
empirical evaluation of LTLR on two main settings: the one with relational
features only, or non-relational features only, and the other one corresponding
to the full space of features.

Evaluation goals

We organize the presentation of experimental results according to the following
evaluation goals.

• Performance on followship network data, with relational features:

With the intent of setting an initial benchmark we tested our LTLR frame-
work on followship network data represented over the space of relational
features only (Section 4.4.3), which are the primary features as they cor-
respond to the constituent factors of the topology-driven lurking notion
upon which the LurkerRank method is built.

• Performance on heterogeneous data:

In order to assess the capability of the LTLR framework to generalize the
lurking behavior across different domains and its ability to leverage the
whole features space we evaluate its performance on all available data,
corresponding to the various evaluation networks and represented in the
full space of features (Section 4.4.3).

• Relevance of non-relational features:

We were interested in evaluating the usefulness and informative richness
of media-based, activity-rate and platform-specific features sets w.r.t. the
ability to predict lurking behavior in OSNs. We focused on a compari-
son between the use of non-relational features only (which may vary from
platform to platform) and all features together for the training data (Sec-
tion 4.4.3).

• Performance on distinct networks:

We also investigated whether the ranking model learned from a specific
platform, could be successfully applied to another network sharing the
same feature space. To verify and evaluate this ability, we selected the
data subsets composed of at least two networks, and for each subset, we
trained all the LTR algorithms on one network and tested on the other,
and vice-versa (Section 4.4.3).
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4.4.3 Experimental results

We organize the presentation of experimental results according to the previ-
ously discussed evaluation goals. For each stage of evaluation, we will summa-
rize results through heatmaps with numerical detail on the performance scores
corresponding to the various assessment criteria, by varying LTLR method and
setting. Note that, for the sake of readability, particularly to avoid cluttering
of the figures, we have intentionally hidden entries in every heatmap that refer
to optimal performance values (i.e., equal or very close to 1).

Evaluation on followship network data with relational features only

In the first stage of analysis, we tested our framework on followship networks
only, i.e., GitHub, GooglePlus, and Twitter networks, focusing on relational
features. Results are shown in Fig. 4.10. One general remark is that in many
cases LTLR can achieve optimal or near-optimal performance. More specifically,
in line with the current literature, LambdaMART and Coordinate Ascent reveal
to be highly effective in learning to rank lurkers, regardless of the assessment
criterion (except for P@1000) and setting. RankNet shows good performance
as well, except for P@1000 and for nDCG with Grad setting. By contrast,
AdaRank achieves quality results around 0.5 for the BB setting (with a peak of
0.875 for nDCG@1000), but much lower scores for UB (all criteria) and Grad
(nDCG).

In general, LTLR methods tend to achieve the highest scores according to
nDCG@1000 and the worst ones with P@1000. This would suggest that the
heads of the ranking solutions are effectively detected in most cases, while the
methods exhibit some difficulty in ranking most of the relevant users in the
top-k positions, especially in the UB case.

Evaluation on heterogeneous network data

Figure 4.11 reports on LTLR performance results on all network data, which
are divided into two representation settings: the one corresponding to rela-
tional features only (first three columns in the heatmap) and the other one
corresponding to all features. At a first glance, we observe a variegate situa-
tion, whereby the lurking status of users can be successfully determined only
for some of the methods and settings. Among the LTLR methods, the high-
est scores are again achieved by LambdaMART and Coordinate Ascent, which
are equally able to perform nearly optimally with all settings of distribution of
relevant/non-relevant instances, when only relational features are used. Also,
these methods seem not to gain any particular benefit from the use of all the
features, with few positive exceptions (e.g., Coordinate Ascent with nDCG) and
negative exceptions (e.g., LambdaMART with MAP and P@1000). Competi-
tive behavior is also shown by the representative pairwise approach, RankNet,
which appears to benefit from the use of all networks and features, especially
for the binary relevance cases (BB and UB) and withMAP and nDCG criteria;
for the graded relevance case, however, despite the improvement w.r.t. the pre-
vious evaluation scenario with followship networks and relational features, the
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Figure 4.10: LTLR performance on followship network data
with relational features only
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Figure 4.11: LTLR performance on all network data, using
either relational features only (leftmost 3-column group) or all

features (rightmost 3-column group)
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RankNet scores remain far lower than LambdaMART and Coordinate Ascent.
The other listwise method, AdaRank, again is found to perform quite poorly in
most cases (below 0.7), with a minimum score of 0.168 (UB, P@100). We tend
to ascribe this to an inability of the method of selecting good enough subspaces
of features for the building of weak learners and their subsequent combination.

Overall, comparing the performances of LTLR methods on heterogeneous
data against those obtained on followship networks and relational features only,
we conclude that training and testing from heterogeneous data, by exploit-
ing various types of features, does not undermine the significance of the LTLR
framework. Moreover, since the general performance trends by the methods
are similar to the restricted case of followship networks with relational features,
the basic topology-driven principles underlying LurkerRank (and hence the def-
inition of the relevance labels in the training data) are applicable in different
platform contexts.

Relevance of non-relational features

Figures 4.12–4.17 show the prediction capabilities obtained with the use of
media-based, activity-rate, and platform-specific features, with and without
the addition of relational features, on specific subsets of network data (D1–D6,
cf. Section 4.4.2). As a general remark, LambdaMART and, to some extent,
Coordinate Ascent do not gain any benefit from the extension of the feature
space, while AdaRank and RankNet show significant improvement in most cases.
More specifically, concerning subsets D1–D3 (Figs. 4.12–4.14), all the LTLR
methods show none or negligible variation in performances when including or
not the relational features, in most cases. This would suggest that, for relatively
homogeneous sets of network data, non-relational features can induce most or
all of the lurker-ranking prediction ability exhibited by LTLR, i.e., topological
information could become redundant. On the other hand, it also indicates
that the topology-driven formulation of LurkerRank is able to capture user’s
behavioral patterns that are consistent with the production and consumption
of contents, and relating activity-rate.

On D4–D6 (Figs. 4.15–4.17), we observe a more diversified situation. While
LambdaMART and Coordinate Ascent are still able to extract all the needed in-
formation from few non-relational features and induce a well-performing ranking
model (with the usual exception regarding P@1000), AdaRank and RankNet
offer poor performance.

Figures 4.18-a)–4.18-d) provide further insights into the behavior of AdaRank
and RankNet, showing the percentage increase in performance when using all
features compared to a representation of network data based on non-relational
features only.

As anticipated before, most of the percentage values are actually nearly zero
or negative. For instance, in Fig. 4.18-a), RankNet shows a relatively small
decrease in performance for all settings, while AdaRank takes little advantage
in using all features for the UB setting;

in Fig. 4.18-c), with the exception of RankNet nDCG@10 in the Grad
setting, whereby using all the features is extremely advantageous (200% of in-
crease), the variations turn out to be positive but negligible for AdaRank, while
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Figure 4.12: LTLR performance on subset D1 (Flickr
networks)
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Figure 4.13: LTLR performance on subset D2 (Flickr and
Instagram networks)
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Figure 4.14: LTLR performance on subset D3 (Flickr and
FriendFeed networks)
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Figure 4.15: LTLR performance on subset D4 (GitHub
network)
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Figure 4.16: LTLR performance on subset D5 (StackOverflow
network)
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Figure 4.17: LTLR performance on subset D6 (Twitter
networks)
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being significant and disadvantageous for RankNet for all the settings. Similar,
but extended to AdaRank as well, is the situation corresponding to Fig. 4.18-d)
relating to Twitter data. Overall, in the majority of the cases, the BB setting
seems to be the least affected by the extension of the feature set, while most
and higher variations are observed for UB and Grad. Note however that the
above outcomes should be taken with a grain of salt, since the two weakest
LTR methods among those selected particularly suffer from a limited amount
of training data, which affects their inability to generalize from the available
examples.

Evaluation on distinct networks

Figures 4.21-4.20 report on the performance of LTLR methods on test data,
after training on network data belonging to different platforms/contexts. One
general remark that stands out is the ability of LambdaMART and Coordinate
Ascent to effectively learn a ranking function from a specific network, even from
relatively few instances, and use it to successfully rank lurkers that belong to
another network. As expected, the other two methods may have mid-to-low
performance especially when there is unbalancing towards the size of test data
(i.e., Fig. 4.21 and Fig. 4.20), in which case the use of all features could be
beneficial. More interestingly, in the opposite case (i.e., when Flickr network
data is used as training), AdaRank and RankNet yield as optimal performance
as LambdaMART and Coordinate Ascent, with the exception of Grad setting
and nDCG criterion (which might be explained since the grain of relevance
labels corresponding to the training instances could be coarse in some cases);
note also that the performance of each method does not vary depending on
whether all features or only non-relational-features are used.

4.4.4 Discussion

Results have shown that LTLR can be effective in learning to rank lurkers. More
precisely, some LTLR methods are able to predict the ranking of lurkers once
trained according to the (graded or not) relevance labels originally provided
by LurkerRank. While best-performing LambdaMART and Coordinate Ascent
can optimally predict the correct rank on test data even with few media-based,
activity-rate or platform-specific features, a general trend is that a combina-
tion between relational and additional features should be used to improve ac-
curacy and ranking performance, especially for worst-performing methods like
AdaRank and RankNet.

Our preliminary evaluation on the feature informativeness (cf. Section 4.4.2)
indicated that relational features are the most important to estimate the pre-
diction capability of the LTLR framework: while this is not actually surpris-
ing, since the training annotations in our network data were originally defined
upon topological information, it is partially contradicted by our comprehen-
sive evaluation of the performance of the learning-to-rank methods used in our
framework. In fact, the most effective methods can equally perform by using
non-relational features only or all features, whereas less effective LTR methods
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might take advantage from the use of all features compared to either relational
or non-relational features only.

As a final remark, it should be noted that, though LambdaMART offers
the best overall performance in our LTLR framework, it also turns out to need
the highest memory requirements as well as to be the slowest method along
with RankNet, being several order of magnitude slower than AdaRank and
Coordinate Ascent. While the former, despite its efficiency, has not shown to
generate a robust ranking model in most cases, Coordinate Ascent offers the
best trade-off between accuracy and execution time.

4.4.5 Conclusion

In this work, we advanced research on the topic of lurking behavior analysis,
by pursuing the goal of developing a robust, multi-platform, supervised lurker-
ranking model upon the unsupervised, eigenvector-centrality-based models ex-
isting in the literature. To this end, we proposed a learning-to-rank frame-
work, named LTLR, whose key aspect is the capability of exploiting different
types of information available from multiple OSNs in order to build training
data tuples over different subspaces of features. These features include media-
based, activity-rate and platform specific characteristics, besides topological
information underlying lurking principles in OSNs. The proposed framework
is versatile w.r.t. the learning-to-rank method. Experiments conducted on 23
network datasets and involving four state-of-the-art learning-to-rank methods
have shown the meaningfulness of LTLR, which often corresponded to highly
effective ranking.

It should be noted that our proposed framework is also versatile w.r.t. the
methodology for labeling the training data: while LurkerRank methods were
used in this work to compensate for the lack of human-generated relevance
labels, we nonetheless advocate for the use of ground-truth scores to assign with
observed lurking behaviors. Moreover, it would be interesting to enhance LTLR
to learn from cross-platform features, in order to improve our understanding
of behavioral profiles of users who may act as lurkers in one network and,
conversely, as contributors in one or more other networks [190].
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a) Flickr and FriendFeed

b) GitHub

c) StackOverflow

d) Twitter

Figure 4.18: AdaRank and RankNet performance increase
due to the use of all features compared to the use of

non-relational features only
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Figure 4.19: LTLR performance on subset D2, with training
on Flickr and testing on Instagram
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Figure 4.20: LTLR performance on subset D2, with training
on Instagram and testing on Flickr
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Figure 4.21: LTLR performance on subset D3, with training
on FriendFeed and testing on Flickr
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Figure 4.22: LTLR performance on subset D3, with training
on Flickr and testing on FriendFeed





127

Chapter 5

Enhancing the modeling of
complex social networks via
embedding

5.1 Introduction
Graph embedding techniques aim to transform a graph in a low-dimensional
representation, enabling the use of a rich set of tools mostly based on state-
of-the-art machine-learning methods [192]. A clear advantage in obtaining a
low-dimensional representation is to reduce the memory-footprint requirements
while retaining relevant information for the task at hand [193]. Example tasks
include node classification, node clustering, node recommendation, retrieval and
ranking, link (i.e., edge) prediction, and graph classification [194]. Moreover,
since the embedding corresponds to a vectorial representation, vector operations
on the learned model might in principle be computationally more convenient
than graph operations.

The general goal of a graph embedding process is to learn a function f that
maps one or many features of the network (i.e., nodes, edges, or the whole
graph) to a new d-dimensional space Rd. For instance, in the case of node
embedding for a multilayer network, the function to learn can be of the form
f : A → Rd or f : V → Rd where A and V denote respectively the set of
actors and the set of nodes. In effect, graph embedding approaches can be
classified based on the constituent(s) of a graph they are designed for. Several
works have been recently developed for nodes [195], [196], edges [197], subgraphs
(e.g., communities [198], [199]), and whole-graph embedding[200]–[202].

Matrix factorization based algorithms [203]–[205] are the pioneering meth-
ods in graph embedding, since they apply a decomposition technique to a ma-
trix representation of an input graph. There are mainly two types of matrix-
factorization-based graph embedding: factorization of graph Laplacian eigen-
maps, and direct factorization of the node proximity matrix [192]. One of the
earliest methods designed for multilayer networks, specifically for community
detection purposes, is Principled Modularity Maximization (PMM) [206]. PMM
infers a latent community structure for the nodes in a multilayer network by
performing a two-step methodology. Firstly, PMM extracts low dimensional
vectors from each layer through modularity maximization and aggregates the
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extracted information through cross-dimension integration. Finally, a simple k-
means is carried out on the learned representation to find out the communities
of the network.

From a different perspective, in the LINE method [207], two functions are
defined for both first- and second-order proximities, where first-order proximity
refers to edge weights and second-order proximity refers to neighborhood sim-
ilarity. LINE defines two joint probability distributions for each pair of nodes
and minimizes the Kullback–Leibler divergence of these two distributions.

More recently, there has been momentum for the development of deep-
learning-oriented techniques. DeepWalk [195] and Node2Vec [196] are two ex-
emplary random-walk-based methods. According to the Skip-gram [208] model,
these methods treat nodes as words and paths as sentences, then apply deep
learning to the sampled random-walk paths. As the skip-gram model aims to
maximize the co-occurrence probability among the words that appear within a
window in the same sentence, the resulting graph embedding by DeepWalk and
Node2Vec preserves first- and second-order proximity of nodes.

Deep-learning-oriented methods include the use of autoencoders and their
variants (i.e., denoising, variational, etc.), which aim to maximize the recon-
struction accuracy of the input graph, by applying a decoder block to the latent
representation learned by an encoder [209]–[211]. Another deep-learning com-
mon approach is to directly apply a convolutional neural network (CNN) to
Euclidean data generated from a graph [212], or to adapt CNN to graphs [213],
[214]. In addition to this group of methods, GraphSAGE [215] aims to learn a
function that generates embeddings by sampling and aggregating features from
a node’s local neighborhood. GraphSAGE, which can be seen as an extension
of the GCN [213] framework to the inductive setting, can deal with evolving
graphs and can easily generate embedding vectors for previously unseen nodes.

5.1.1 Graph embedding for multilayer networks

At the time of writing of this thesis, there is a relatively small corpus of deep-
learning-oriented methods of graph embedding specifically conceived for multi-
layer networks, namely: PMNE [216], MNE [217], and MELL [218].

The first two methods adapt and extend the Word2Vec [219], [220] model
to multilayer and multiplex networks, respectively. The input sentences (i.e.,
paths) are generated by a second-order random walk process, which is con-
strained to explore one layer at the time, with the exception of PMNE Layer
co-analysis method in which the random walker gains the ability to jump from
a layer to another. As depicted in Fig.5.1, PMNE includes three different ap-
proaches: two naive baselines, and one natively multilayer. In the Network
Aggregation approach, the multilayer network is merged into a single weighted
network (where multiple edges between two nodes are not allowed) and the em-
beddings for actors are computed on the aggregated network, i.e., f : A → Rd.
In the Results Aggregation approach, the embeddings are computed separately
on each layer and then successively concatenated together, i.e., fl : V → Rdl

and f = f1||f2|| · · · ||f|L| with f : V → Rd′|L|. Unlike the previous two ap-
proaches, in the Layer Co-analysis approach the second-order random walker
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(a)

(b)

(c)

Figure 5.1: Architecture of PMNE: (a) Network Aggregation,
(b) Results Aggregation, (c) Layer Co-analysis [216].

acquires the ability to jump across layers, allowing the generation of walks that
are not limited to a single layer of the network, i.e., f : V → Rd. In all of the
three approaches, the Node2Vec model is chosen to be applied to the generated
paths.

MNE generates a layer-wise embedding vin, for every node n and layer i,
which consists of an embedding bn shared across all the layers and that describes
the node n globally, and a local (i.e., layer-wise) embedding uin:

vin = bn + wi ·XiTuin.

In the above equation, wi denotes the importance of layer i, and XiT is a
transformation matrix that aligns the global and local embedding vectors.

MELL is based on a regression framework, and unlike the previously de-
scribed methods, it also takes into account the directionality of the edges (i.e.,
(u, v) 6= (v, u)) by using two vectors for each node vH and vT . Node embed-
dings belonging to the same node are enforced to be close to each other through
a regularization term. In addition to node embedding, MELL also learns a set
of layer vectors representing layers’ connectivity, in order to differentiate edge
probabilities in each layer. The probability between two nodes vli and vlj, both
belonging to the layer l, is equal to:
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p(vli,v
l
j) =

1

1 + exp
(
−(vli + rl)T · vlj

)
where vli (resp. vlj) denotes the embedding vector for vli (resp. vlj), and rl is

the vector embedding for the l-th layer.
Both MELL and MNE are well-suited to link prediction and node classi-

fication, where high order proximity information, extracted through random
walk, reveal to be particularly expressive. MELL should be preferred when the
information carried by edge directionality is valuable for the task at hand. Con-
versely, MNE should be preferred when having both global and local embedding
for each node is important.

5.2 From Word2Vec to Node2Vec and beyond
The Word2Vec model [221], [222] and its extensions have recently raised a great
deal of attention in the machine learning community. In [221], [222] Mikolov et
al. presented two complementary models: i) Continuous Bag of Words (CBOW)
with the goal of predicting a word given a context, and ii) the Skip-gram model
that conversely tries to predict the context given an input word. Here we are
going to describe the Skip-gram model only, both for sake of brevity and also
because it is the base model used by different graph embedding methods.

Figure 5.2: Example application of Skip-gram model for the
generation of training-data for a text corpus.

As already seen in other learning-based models, Word2Vec trains the weights
of its shallow neural network for a prediction task. In other words, while the
final goal is learning a new representation of a given corpus of text, and at the
same time retaining most of the information, the fake task that is being carried
out consists of predicting the context, within a predefined window, given an
input word w.

The cost function being maximized by Word2Vec is the following:

arg max
θ

∏
(w,c)∈D

p(c|w; θ) (5.1)
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whereD is the set of all word-context pairs extracted from the input text corpus.
The conditional probability p(c|w; θ) is defined as:

p(c|w; θ) =
evc·vw∑

c′∈C vc′ · vw
(5.2)

where vc and vw ∈ Rd are vector representations of the context c and the word
w respectively, and C represents the set of all available contexts.

Starting from a text corpus given in input, the model generates a vocabu-
lary containing all the words encountered into the training data. During the
generation of training data (Fig. 5.2), a window, in this case of size two, is
used to slide over the sentence generating the word-context pairs. Each of these
words is represented through one-hot encoding by a vector; this means that
supposing a vocabulary of size n, each one-hot vector will have a size equal
to n, with n − 1 components set to zero and one component equal to one, as
shown in Fig. 5.3. The adoption of one-hot encoding has an impact on the size
of all the one-hot vectors, that will be equal to the number of words contained
into the vocabulary. On the other hand, using this type of encoding allows,
through multiplying the input word vector vw by the hidden-layer weight ma-
trix, to select a single row of the hidden-layer weight matrix that represents the
vectorial representation of the word w in the new representational space. More
specifically, the hidden-layer weight matrix is used as a simple look-up table.

The shallow neural network is composed of one hidden layer and one output
layer. The number of neurons that compose the hidden layer represents the
number of features f that characterize each word. Therefore, the hidden layer
is represented by a matrix with n rows and f columns. Where f represents a
hyper-parameter of the model and should be tuned in order to achieve the best
trade-off in terms of performance and efficiency.

Figure 5.3: Example of Word2Vec neural network
architecture.
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The output vector consists of n components, but differently from the input,
does not use one-hot encoding: more than one component can be greater than
zero, and their value ∈ [0, 1] represents the probability that the word corre-
sponding to that position will be part of the context of the input word within
a predefined window. The output layer, thanks to the use of softmax function,
achieves two desirable characteristics of the output of the neural network: all
the values are in the range [0, 1], and all the values sum up to one.

It is important to notice that the model does not learn a different set of
weights whether the words belonging to the context are usually found before or
after the word w.

In Fig. 5.4 we show, through an example, how Word2Vec computes the
probability that the word dog will be selected randomly to be nearby the word
fox. As reported before, the one-hot encoding vector of the word fox selects the
word vector vfox, which is then multiplied by the context vector vcontext, in this
case of the word dog (i.e., vdog), and finally, the softmax function is in charge
of normalizing the output of the model. It is important to remember that the
weights learned are going to reflect the frequency of occurrence for each pair of
words-context present in the training data.

Figure 5.4: Example of Word2Vec computing the probability
that the word dog will appear nearby the word fox.

Depending on the number of features f and the number of unique words n
contained in the input data, the number of weights that compose the shallow
neural network can be relatively high. For instance, if we use f = 100 and a
corpus with 10, 000 unique words, the number of weights will be equal to two
million, i.e., one million for the hidden layer and another million for the output
layer.

In order to improve efficiency, scalability and the performance of theWord2Vec
model, Mikolov et al. introduce three main modifications: i) to treat common
word pairs or phrases as single “words” (i.e., New_York instead of New and
York), ii) to sub-sample frequent words in order to decrease the number of
training examples, iii) “negative sampling” is applied mainly in order to limit
the number of weights that are being updated while processing new training
data.
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Treat common word pairs as single words reflect the differences in terms
of meaning between the two words the compose the pair, if taken separately,
and the pair itself. For example, the word pair “Boston Globe” (a newspaper)
has a different meaning than the individual words “Boston” and “Globe”. This
approach should not be limited to bi-grams, and can be extended to n-grams
(e.g., New_York_Times instead of New York Times).

As shown in Fig. 5.2, very common words such as the stop-word the in the
example, will be present in several training instances without adding meaning or
useful information to the word pair. Also, given the frequency of words such as
the in a generic corpus, we will have a higher number of training instances con-
taining the word the than needed. In [221], to address this problem Word2Vec
implements a “sub-sampling” scheme, where for each word encountered in the
training text, there is a chance that the word will be effectively deleted from
the text, and the probability of cutting the word is related to its frequency. The
probability that defines whether Word2Vec will keep the word wi is:

Pkeep(wi) =

(√
z(wi)

0.001
+ 1

)
· 0.001

z(wi)
(5.3)

where z(wi) represents the ratio between the number of occurrences of the word
wi over the total number of words.

Training a neural network generally means to take several training examples,
and for each one of them, slightly adjust all the weights using stochastic gradient
descent (or other optimization techniques), in order to improve the accuracy of
the model by learning from the processed data. As discussed above, the size of
the vocabulary, and consequentially the number of weights, could range from one
to several million, all of which would need to be updated while processing every
training sample. Mikolov et al. overcome this scalability issue by updating only
a small portion of the weights for each training example. For instance, when
training the neural network on the word pair fox-quick we aim to modify the
weights of the network in order to have in output a one in correspondence of
the word quick when the input word is fox, and zero for all the other words.

Based on Noise Contrastive Estimation [223], [224], negative sampling aims
to update a small portion of the weights of the neural network. In addition to the
“positive” weight, we randomly select just a small number k of “negative” words
for which the weights are updated. With the term negative is intended a word
for which the desired output is zero with the current input word. The selection
of the negative samples relies on a unigram distribution, and the probability for
selecting a word as a negative sample is related to its frequency. In particular,
more frequent words are more likely to be selected as negative samples, as
described by the following equation:

Pnegative(wi) =
freq(wi)

3/4∑n
j=0(freq(wi)3/4)

(5.4)

where freq(wi) indicates the frequency of the word wi.
Probably one of the most significant properties of the vectors learned by

Word2Vec is that the vector representing a specific word carries also its semantic
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meaning, and more surprisingly the representation tends to obey to the law of
analogy, as shown by the well-known example “Woman is to queen as man is to
king”, corresponding to:

vqueen − vwoman + vman ≈ vking (5.5)

where vqueen, vwoman, vman ,and vking are the vector representation of the words
queen, woman, man, and king respectively.

5.2.1 Node2Vec

The first work in which the Skip-gram model has been applied to a graph is by
Perozzi et al. in [195], followed by Grover and Leskovec with Node2Vec in [196].
Since Node2Vec can be considered a generalization of the DeepWalk algorithm,
therefore we will concentrate our focus on Node2Vec only.

The main challenge in applying Word2Vec to a graph is represented by the
transformation of a graph in a corpus. In particular, the structure of a group
of nodes does not resemble the one of a sentence, a paragraph, or a document:
while, in a generic corpus, each word is linked to t previous (resp. consecutive)
words, in the case of a graph, the structure is usually more complex, allowing
connections potentially between every two nodes.

Node2Vec adds to the Skip-gram model a pre-processing step in charge of
generating a set of sentences from a graph by applying a specific sampling
strategy. More in detail, Grover and Leskovec resorted to a second-order random
walk with two parameters p and q, which guide the walk through the graph.
Depending on the values assigned to p and q, the exploration can be carried out
in a breadth-first sampling or depth-first sampling fashion.

The return parameter p controls the likelihood of immediately revisiting a
node in the walk. Setting it to a high value (> max(q, 1)) ensures that we are
less likely to sample an already-visited node in the following two steps (unless
the next node in the walk had no other neighbor). This strategy encourages
moderate exploration and avoids 2-hop redundancy in sampling. On the other
hand, if p is low (< min(q, 1)), it would lead the walk to backtrack a step
(Figure 5.5) and this would keep the walk “local” close to the starting node
u [196].

The In-out parameter q allows the search to differentiate between “inward”
and “outward” nodes. Going back to Figure 5.5, if q > 1, the random walk is
biased towards nodes close to node t. Such walks obtain a local view of the
underlying graph with respect to the start node in the walk and approximate
Breadth-first Sampling behavior in the sense that our samples comprise of nodes
within a small locality. In contrast, if q < 1, the walk is more inclined to visit
nodes which are further away from the node t. Such behavior is reflective of
Depth-first Sampling which encourages outward exploration [196].

For every node u in the graph, n walks, of fixed length l are being simulated.
With the starting node c0 = u, the nodes ci are sampled by the following
distribution:
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P (ci = x|Ci−1 = v) =

{
πvx
Z

if(v, x) ∈ E
0 otherwise

(5.6)

where πvx represents the unnormalized transition probability between nodes v
and x, and Z is the normalizing constant. The unnormalized transition proba-
bility is set to πvx = αp,q(t, x) · wvx, where:

αp,q(t, x) =

{ 1
p
ifdtx = 0

1ifdtx = 1
1
q
ifdtx = 2

(5.7)

and wvx represents the weight of the edge that links x and v, dtx denotes the
shortest path distance between nodes t and x.

Figure 5.5: Node2Vec sampling strategy (from [196])

The use of random walks, to sample neighbors from a graph, brings efficiency
advantages both in terms of space and time. The complexity to store the im-
mediate neighbors of every node is O(|E|), whereas for a second-order random
walks, which stores the interconnections between the neighbors of every node,
the space complexity is O(a2|V |), where a represents the average degree of the
graph. Concerning time complexity, the main advantage of random-walks-based
methods is the ability to reuse samples across different starting nodes.

5.2.2 Node2Vec for multilayer networks

With the goal of conceiving a method able to deal with multilayer networks, we
started by devising four variations of Node2Vec, that can be organized into two
groups, i) method based on a multilayer random walk, and ii) methods based
on local (i.e., single-layer) random walk.

Neighborhood-similarity-based methods. In the first group, with the
names Sim-ngh (i.e., similar neighborhood) and Dissim-ngh (i.e., dissimilar
neighborhood) we identify two Node2Vec implementations inspired by the com-
munity detection method dubbed LART (Locally Adaptive Random Transi-
tions) [225]. The similarity between these two methods and the community
detection one is limited to how the inter-layers weights are computed. These
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weights are needed because, differently from Node2Vec algorithm, the second-
order random walker present in Sim-ngh (resp. Dissim-ngh) has gained the
ability to jump across layers, and in this case, the probability of changing layer
is defined to be proportional to the similarity (resp. dissimilarity) of the neigh-
borhood of the current node in the two layers under consideration (i.e. the
starting layer and the supposed destination layer). This probability is associ-
ated to the inter-layer weight that reflects the similarity (resp. dissimilarity) in
local topology between vki and vli and it is defined as the number of edges that
the two nodes have in common between the two layers:

wi;kl = |Ni,k ∩Ni,l|

In order to express dissimilarity among the numerous tested inversion func-
tions we selected:

winvertedi;kl =
1

1 + |Ni,k ∩Ni,l|
Furthermore, it is important to notice that the weights are in the range ∈ [0, 1]
due to a normalization step.

Context-mixing-based methods. To introduce the other two methods,
dubbed Lcm and Ncm, we need to briefly restate the basics of Word2Vec frame-
work, on which Node2Vec and all these variations are based. In Word2Vec the
conditional probabilities at the core of the optimization problem are:

p(c|w; θ) =
evc·vw∑

c′∈C e
vc′ ·vw

(5.8)

where vc and vw ∈ Rd are vector representations for the context c and the word
w, and C is the set of all available contexts.

We define Lcm (Layer-based context-mixing) and Ncm (Neighborhood-based
context-mixing) upon the notion of context mixing, i.e., integrating node-context
with information from other layers, depending on a layer-wise (resp. neighborhood-
wise) similarity measure. More in detail, Lcm mixes the node’s context with
information coming from other layers, proportionally to layer similarity. Con-
versely, by evaluating neighborhood similarity Ncm decides to mix the context
by a finer grain w.t.r. to Lcm.

In summary, we propose four variations of Node2Vec, based on the notion of
neighborhood similarity (resp. context-mixing), namely Sim-ngh and Dissim-
ngh (resp. Lcm and Ncm).

5.3 Evaluation
In order to assess the effectiveness of the proposed methods, we compared their
performance with that of two graph embedding methods available designed to
deal with multilayer networks, namely Effective Embedding Method for Mul-
tiplex Networks (MELL) [218] and Principled Multilayer Network Embedding
(PMNE) [216], presented in Sec. 5.1.1.
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Our evaluation consists of a twofold comparison that concerns the ability of
each method to predict the missing edges from every dataset in Table 5.2 and
the alleged quality of the embeddings in terms of information retained.

Concerning the link prediction task, for each dataset we split the set of
existing edges into train and testing sets: the former is used to train each
model and the latter to test its link prediction performance. Moreover, all the
edges belonging to the test set involve nodes that already exist on the specific
layer. We tested all the methods on four train-test split percentages, 60%-40%,
70%-30%, 80%-20%, and 90%-10%.

To assess the presumed existence of an edge, from the point of view of the
newly learned representation, we compute the distance for each node pairs in
the test edge set, ordered the list of distance values in ascending order (i.e.,
lower values at the top), and selected the top-10% as predicted edges.

For the second task of the evaluation process, we resort to the CS-Aarhus [226]
dataset. The reason behind the use of this dataset relies upon the existence of
ground-truth values for all the actors present in the network; ground-truth val-
ues represent the membership to a specific research group or department.

We learned a new vectorial representation with all the methods discussed
above on increasing training rate in the classification testbed and on all edge
available i.e., with a training rate equal to 100% in the clustering testbed.
Starting from the newly learned representations, we tested several classification
and clustering algorithms and compared their results with the available ground-
truth.

5.3.1 Framework setting

To perform a fair comparison, given the high number of parameters that char-
acterize Node2Vec and thus its variants, we tuned each method’s parameter in
order to obtain the best performance.

For both competing methods and Node2Vec variants, we assumed the em-
bedding dimension to be constant and equal to 128, whereas in the case of
MELL, since the embedding vector consists of three components, a head and
a tail vector, and a layer vector; considering the size of the layer vector to be
negligible, we set the size of both head and tail vectors to be d/2 (i.e., 64).
Concerning the rest of the parameters of the MELL method, we optimized the
number of negative samples k, the regularization coefficient of embedding vec-
tor λ, the regularization coefficient of the variance β, and the regularization
coefficient for the layer vector γ. For the rest of the methods (i.e., PMNE and
the Node2Vec variants) we tuned the following parameters: the length of each
walk l, the number of walks per node n, the size of the context window cw,
and the parameters that control the exploration of the multilayer graph (i.e., p,
q, and r). Please note that the parameter r in PMNE and Node2Vec variants
represents the probability to change layer. The best set of parameters for each
pair of dataset-method is reported in Table 5.1.
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Dataset Method Set of best parameters
CS-Aarhus

MELL
k = 1, λ = 10, β = 1, γ = 4

Pierre Auger Collaboration k = 8, λ = 10, β = 1, γ = 4
C.Elegans Connectome k = 4, λ = 10, β = 100, γ = 1

CS-Aarhus
PMNE

l = 100, n = 20, cw = 14, p = 0.15, q = 0.15, r = 0.15
Pierre Auger Collaboration l = 50, n = 16, cw = 14, p = 0.15, q = 0.95, r = 0.6
C.Elegans Connectome l = 50, n = 18, cw = 10, p = 0.95, q = 0.15, r = 0.95

CS-Aarhus
Sim-ngh

l = 100, n = 20, cw = 14, p = 0.25, q = 0.25, r = 0.15
Pierre Auger Collaboration l = 50, n = 16, cw = 14, p = 0.15, q = 0.95, r = 0.8
C.Elegans Connectome l = 50, n = 18, cw = 10, p = 0.95, q = 0.15, r = 0.95

CS-Aarhus
Dissim-ngh

l = 100, n = 20, cw = 14, p = 0.15, q = 0.25, r = 0.15
Pierre Auger Collaboration l = 50, n = 16, cw = 10, p = 0.15, q = 0.95, r = 0.6
C.Elegans Connectome l = 50, n = 16, cw = 10, p = 0.6, q = 0.15, r = 0.95

CS-Aarhus
Node2Vec

l = 100, n = 20, cw = 14, p = 0.8, q = 0.15
Pierre Auger Collaboration l = 100, n = 16, cw = 12, p = 0.15, q = 0.95
C.Elegans Connectome l = 100, n = 16, cw = 10, p = 0.8, q = 0.15

CS-Aarhus
Lcm

l = 100, n = 20, cw = 14, p = 0.6, q = 0.15, r = 0.15
Pierre Auger Collaboration l = 50, n = 16, cw = 12, p = 0.15, q = 0.95, r = 0.8
C.Elegans Connectome l = 50, n = 16, cw = 10, p = 0.8, q = 0.15, r = 0.95

CS-Aarhus
Ncm

l = 100, n = 20, cw = 14, p = 0.95, q = 0.25, r = 0.15
Pierre Auger Collaboration l = 50, n = 16, cw = 12, p = 0.15, q = 0.95, r = 0.8
C.Elegans Connectome l = 50, n = 16, cw = 10, p = 0.8, q = 0.15, r = 0.95

Table 5.1: Optimal parameters for MELL, PMNE , and
Node2Vec variants.

5.3.2 Assessment criteria

We resort to well-known evaluation measures for both tasks. Given the class
imbalance nature of the test, in the link prediction testbed, we compared per-
formance results in terms of the area under the precision-recall curve (AUPR),
summarized by the trapezoidal rule. Despite being well-known, for the sake of
self-sufficiency, we briefly describe their definitions.

The Precision-Recall curve is defined as the plot of the precision versus the
recall values, and the area under this curve well summarizes the performance of
the classifier under evaluation. The comparison in the classification test relies
on two common measures, macro- and micro-average of the F1-score, dubbed
micro-F1 and micro-F1. The F1 score is defined as:

F1 =
2 ∗ (precision ∗ recall)

(precision + recall)
(5.9)

Conversely, the assessment of the performance on the K-means algorithms
relies on Normalized Mutual Information (NMI) and Adjusted Mutual Informa-
tion (AMI) measures. NMI is a normalization of the Mutual Information (MI)
score to scale the results between 0 and 1.

NMI(Y,C) =
2 · I(Y ;C)

[H(Y ) +H(C)]
(5.10)

AMI is an adjustment of the mutual information score to account for chance.
It accounts for the fact that the mutual information is generally higher for
two clusterings with a larger number of clusters, regardless of whether there is
actually more information shared. For two clusterings U and V , the AMI is
given as:
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dataset #nodes #edges #layer directionality
CS-Aarhus [226] 61 620 5 undirected
Pierre Auger Collaboration [229] 514 7153 16 undirected
C.Elegans Connectome [227], [228] 279 5863 3 directed

Table 5.2: Main characteristics of evaluation datasets

AMI(U, V ) =
[MI(U, V )− E(MI(U, V ))]

[avg(H(U), H(V ))− E(MI(U, V ))]
(5.11)

where H represents the entropy associated with the partitioning U , and E is
the expected mutual information.

5.3.3 Datasets

Table 5.2 reports the size of set V , the number of edges in all layers, the num-
ber of layers, and the directionality of network (i.e., directed or undirected).
We used three real-world multilayer networks of different type, namely social,
co-authorship, and neural. The first dataset, dubbed AUCS [226], is a social
network that includes both online and offline connections for a total of 5 layers.
The 61 nodes in the multilayer network represent professors, postdoctoral re-
searchers, Ph.D. students and administrative staff of a university department.
The second dataset is a co-authorship network, where the layers represent the
main topic/keyword of the publication. The network is composed by 16 layers,
relating to topics ranging from neutrinos to astrophysical-scenarios. The third
dataset, dubbed Caenorhabditis elegans connectome [227], [228] is a neural net-
work where layers correspond to different synaptic junctions: electric, chemical
monadic, and chemical polyadic.

5.4 Experimental Results
In this section we show preliminary results of ongoing experiments concerning
the extension of Node2Vec framework and the competing methods presented in
Sect. 5.2.2. According to what previously stated in Sect. 5.3, we organize the
presentation of the results into two parts: i) link prediction performance and ii)
performance comparison of all the methods described in the previous sections,
in terms of embedding quality, corresponding to information retained.

5.4.1 Link prediction

As previously described in Sect. 5.3, we compared the performance of Sim-
ngh, Dissim-ngh, Lcm, and Ncm to the competing methods Node2Vec, PMNE,
and MELL. We used four training rates, namely 60%, 70%, 80%, and 90%, and
incremented the number of epochs from 1 to 250. To improve readability AUPR
scores for varying training-rate and different methods, are reported in heatmap
format.

One general remark is that MELL achieves the best overall performance at
the cost of efficiency, i.e., in order to achieve best results MELL needs a number
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Figure 5.6: Performance results on CS-Aarhus data with an increasing number of epochs. (Best viewed in color version, available
in electronic format)
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Figure 5.7: Performance results on C.Elegans Connectome data with an increasing number of epochs (i.e., 1, 10, 25, 50, 100, and
250).
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Figure 5.8: Performance results on Pierre Auger Collaboration data with an increasing number of epochs (i.e., 1, 10, 25, 50, 100,
and 250).
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of epochs equal to or higher than 100, and in general the higher the better.
Conversely, Node2Vec-based methods generally achieve the best performance
with just 1 epoch, and increasing the number of iterations rarely leads to an
increase in performance.

In all three datasets, CS-Aarhus, C.Elegans Connectome, and Pierre Auger
Collaboration network, we see two recurrent patterns. While the MELL algo-
rithm increases its performance with a growing number of epochs, at the same
time Node2Vec-based algorithms slightly decrease their performance with an
increasing number of epochs and usually, the best result is achieved with 1, 10
or at most 25 epochs.

Figure 5.6 reports performance results on CS-Aarhus data. Among all meth-
ods, the best performance result with only 1 epoch is achieved by Dissim-ngh
in correspondence of a 90% training rate with a 0.915 of AUPR, closely fol-
lowed by PMNE and Sim-ngh. The other algorithms are separated by 0.1,
with the exception of MELL, that sets the bar between 0.61 and 0.56. Among
the Node2Vec-based methods, we see a distinctive pattern, where Sim-ngh and
Dissim-ngh, albeit defined on opposite intuitions, have similar results and lead
the rank, whereas Lcm and Ncm are relegated to the bottom of the rank. No-
tice that in this case, 25 epochs are enough for MELL algorithm to find a
good arrangement of its embedding structure and become the best performing
method.

The inherent complexity of the C.Elegans Connectome data requires a higher
number of epochs needed for all the methods (see Figure 5.7). In particular,
MELL needs 100 epochs to achieve the best result for 60% and 70% training
rate, and 250 epochs in the case of 90% training rate. However, for the remaining
case, i.e., a training rate equal to 80%, 250 iterations are not enough to exceed
the other methods. Conversely, Sim-ngh and Dissim-ngh start, with 1 epoch,
among the best with the PMNE algorithm, but are then reached by Lcm and
Ncm at 10 iterations and then outperformed by Lcm and Ncm.

The Pierre Auger Collaboration data seems to be easy to learn and make
prediction on by Node2Vec-based algorithms. With only 1 iteration they achieve
near-optimal performance with a minimum AUPR value of 0.954 (Lcm method
and 60% training rate) and a maximum value of 0.981 in correspondence of a
training rate of 80% and the Dissim-ngh method (results shown in Figure 5.8).
On the other hand, with the maximum number of iterations, all methods, in-
cluding MELL, achieve near-optimal performance in all cases, ranging from
around 0.96 to 0.998.

5.4.2 Classification and Clustering

In this subsection, we describe the performance results obtained in the classi-
fication and clustering task described in Section 5.3. In the former task, after
learning a new representation, we tested six well-known classification algorithms
comparing their prediction to the ground-truth values. In particular, we resort
to macro-F1 and micro-F1 measures and to the following classification meth-
ods: k-nearest neighbors [230], linear support vector classifier [231], decision
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Figure 5.9: Classification performance results of the following classifiers with the macro-F1 measure: a) decision tree classifier, b)
linear support vector classifier, c) gaussian naive Bayes classifier, d) k-nearest neighbors, e) multi-layer perceptron classifier, and f)

random forest classifier.
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Figure 5.10: Classification performance results of the following classifiers with the micro-F1 measure: a) decision tree classifier, b)
linear support vector classifier, c) gaussian naive Bayes classifier, d) k-nearest neighbors, e) multi-layer perceptron classifier, and f)

random forest classifier.
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(a)

(b)

Figure 5.11: K-means performance results on CS-Aarhus
datasets with AMI a) and NMI b) evaluation metric.

tree classifier [232], random forest classifier [233], multi-layer perceptron clas-
sifier [234], [235], and gaussian naive Bayes classifier [236].

Analyzing the results in Figure 5.9 and Figure 5.10, and putting aside the
comparison between the different classifiers, we concentrate our effort to esti-
mate how easily and with which results, a generic classifier can correctly predict
the class of membership with only the information contained into the learned
representation at its disposable.

One general remark is that, for both evaluation metrics, all the methods
based on random walks and the Word2Vec model are characterized by inferior
performance than MELL algorithm. However, it is important to point out
that in most cases all methods, including MELL, show worse performance with
an increasing training rate, highlighting the limitations of this approach for
complex data. Among Node2Vec-based algorithms, Sim-ngh, Dissim-ngh, and
PMNE show consistently better performance than Node2Vec, Ncm, and Lcm.

5.5 Conclusion
In this chapter, we described some preliminary results in pursuing the devel-
opment of a new network-embedding method for multilayer networks. To this
end, we proposed several extensions of the Node2Vec algorithm. While per-
formance results, in the link prediction task, are similar among the proposed
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methods and their competitors, the classification and clustering testbeds shed
light about the inability of random-walk-based algorithms to extrapolate useful
information about every single actor of the network to build a new representa-
tion able to predict the class of membership.

In most cases, better results are obtained by MELL algorithm, especially
in the classification and clustering task. Albeit MELL is based on a regression
framework, and is less efficient than Node2Vec and its variants (PMNE in-
cluded), in terms of number of epochs needed to achieve the best performance,
MELL algorithm resulted to be a better choice for both the link prediction task
and especially the quality of its embeddings.
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Chapter 6

Conclusions and future work

6.1 Conclusions
The research presented in this thesis focused on the development of methods
in the context of complex network systems to investigate and characterize, in
a quantitative manner, user behaviors in OSNs. One of the main contributions
of this work is represented by the mlALCR ranking algorithm, which tackles the
novel problem of identifying and characterizing opposite behaviors that users
may alternately exhibit over the multiple layers of a complex network. In this
respect, we proposed the first topology-driven ranking method for alternate
lurker-contributor behaviors on a multilayer OSN, which is designed to identify
users that behave as lurkers (resp. contributors) in one layer while conversely
acting as contributors (resp. lurker) in one or many of the other layers. We
empirically demonstrated, over four real-world multilayer networks, the signifi-
cance and uniqueness of mlALCR solutions.

The second part of this research project has been devoted to leveraging
machine-learning techniques to learn models from data in the context of behav-
ioral analysis. In this context, we faced the tasks of identifying and ranking
both lurking and automated (i.e., bot) behaviors in OSNs. Tackling the for-
mer problem, we developed a robust, multi-platform, supervised lurker-ranking
model upon the unsupervised, eigenvector-centrality-based models existing in
the literature. To this end, we proposed a learning-to-rank framework, named
LTLR, whose key aspect is the capability of exploiting different types of infor-
mation available from multiple OSNs in order to build training data tuples over
different subspaces of features. Regarding the latter problem, we developed a
supervised ranking model, that leverages different behavioral signals of bot ac-
tivity. The proposed learning-to-rank framework, dubbed LTRSB, exploits the
most relevant existing methods on bot detection for enhanced feature extrac-
tion, and state-of-the-art learning-to-rank methods for the optimization. We
proved the meaningfulness and effectiveness of both framework on real-world
data, according to different assessment criteria.

Finally, we described preliminary results in pursuing the development of a
new network-embedding method for multilayer networks. While performance
results, in the link prediction task, are similar for the proposed methods and
their competitors, the classification and clustering testbeds shed light about
the inability of random-walk-based algorithms to extrapolate enough useful
information about every single actor of the network in order to build a new
representation able to predict the class of membership.
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6.2 Future work
Over the past decades, we have witnessed the introduction of new technologies,
and while the ongoing digital transformation is improving our daily life, is also
creating new unprecedented challenges. The development of new tools and
platforms, their high diffusion and immediate accessibility, shape and transform
the world we know.

With the information era and the consequentially over-production of infor-
mation, it has become essential to properly select and assess the quality of the
information we consume each day. The risk of consuming untrue information
that aims to polarize our opinion is high and increasing. In this context, one
main challenge concerns the development of tools that can protect the end user
from the deluge of information, by helping her/him in the assessment of the
truthfulness and the allegedly quality of contents. The challenge includes the
conception of new business models that can promote the creation of high-quality
content and prevent the diffusion of click-baits and fake pieces of information by
leveraging new technologies. In this context, it is important also to evaluate the
role of automated behavior as an enabling factor in the process of information
dissemination.

In the last decade, thanks to the rapid diffusion of mobile technology, sep-
arating offline from the online experience has become more and more difficult.
Such problems as bullying, from being limited in the context of school or work,
recently it has expanded to digital space potentially losing its temporal and
spatial limitation. In this context, a socially relevant challenge is to tackle the
problem of cyber-bullying, with the goal of limiting or preventing stressful ex-
periences, especially to young adults and teenagers. Moreover, leveraging the
knowledge and the tools developed for the analysis of lurking behaviors could
be interesting to analyze and understand bystanders and devise methods to
increase their participation and thus preventing bullying acts.

In the past few years, the growing computational power of modern GPUs
and the availability of large datasets have allowed the successful application of
neural networks, characterized by a high number of layers, to Euclidean data.
While deep learning models have proven to be an effective and powerful tool
when dealing with data such as speech, images, or video, recently there has been
a growing interest in trying to apply deep learning on non-Euclidean data. In
this context, the development of emerging techniques attempting to generalize
deep neural models to domains such as graphs and manifolds, with the goal of
extending the application of deep learning models, represents a challenging line
of research.
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