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Sommario

LA tesi di dottorato è stata sviluppata attraverso uno studio sperimentale e nu-
merico delle forze idrodinamiche orizzontali e verticali indotte da onde solitarie
su un cilindro sommerso ad asse orizzontale.

I test di laboratorio sono stati effettuati presso il canale ondogeno del Laboratorio
Grandi Modelli Idraulici (GMI) del Dipartimento di Ingegneria Civile dell’Università
della Calabria. Nella fase di progettazione del modello fisico, sono stati posizionati
una serie di trasduttori di pressione in corrispondenza della superficie esterna del cilin-
dro. Inoltre, sono state installate quattro sonde resistive per misurare l’elevazione della
superficie libera in prossimità del cilindro. Per verificare il corretto spostamento del
generatore d’onda si è inserito un sensore ad ultrasuoni dietro la pala ondogena. I test
di laboratorio sono stati eseguiti variando gli attacchi ondosi e la posizione verticale
del cilindro rispetto al fondo. Complessivamente, considerando tutti gli affondamenti
esaminati, sono stati effettuati un totale di 134 test sperimentali.

Le simulazioni numeriche sono state invece effettuate utilizzando due diversi mod-
elli. Esse, a differenza dei test sperimentali, hanno permesso di studiare in dettaglio il
campo di moto vicino al cilindro e di estendere i campi di misura sperimentale. Il primo
è un modello SPH per fluido debolmente comprimibile. Al fine di migliorare i risultati
numerici ed evitare campi di moto spuri nei pressi del cilindro, un cosiddetto algoritmo
di packing è stato adoperato per inizializzare le particelle lagrangiane del modello SPH.
La componente acustica del campo di pressione numerico è stata filtrata utilizzando la
trasformata Wavelet. Il modello lagrangiano SPH è stato adoperato solo per il primo
affondamento, quello in cui il cilindro è posizionato a metà profondità rispetto al tirante
idrico. L’alto onere computazionale del modello SPH ha indotto l’utilizzo di un sec-
ondo modello numerico. Il modello utilizzato per confrontare i risultati sperimentali
per gli altri affondamenti è il modello open source OlaFlow. Dopo aver validato i mod-
elli numerici, è stato possibile allargare l’intervallo di calcolo effettuando simulazioni
aggiuntive. Considerando l’intero dataset, sono state effettuate un totale di 176 simu-
lazioni numeriche.

Il buon accordo tra le forze sperimentali e numeriche e il campo cinematico indis-
turbato in corrispondenza dell’asse trasversale del cilindro hanno permesso la corretta
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calibrazione dei coefficienti idrodinamici nelle equazioni semi-empiriche di Morison e
trasversale attraverso diversi metodi nel dominio del tempo. La tesi inoltre presenta un
metodo alternativo (Gurnari e Filianoti, 2017) per stimare la forza idrodinamica oriz-
zontale. Tale metodo si basa sul concetto che un’onda solitaria, passando sul cilindro,
rallenta la propria velocità. La corretta applicazione di tale modello è possibile dopo la
calibrazione del cosiddetto fattore di rallentamento. Nel presente lavoro di tesi, viene
proposta una nuova formulazione del metodo semi-analitico trasversale utilizzando una
formula diversa per il calcolo della forza di lift. Tale formulazione risulta efficace per
stimare in modo corretto il picco della forza verticale per due affondamenti del cilindro
prossimi al fondo. Le analisi sperimentali e numeriche hanno mostrato il confronto tra
gli andamenti temporali delle forze sperimentali e numeriche per ogni affondamento
considerato di due test rappresentativi. Globalmente, sono stati analizzati i picchi di
forza in funzione delle diverse ampiezze dell’onda solitaria. Sono stati analizzati in-
oltre i contributi delle singole componenti di forza rispetto ai valori massimi della forza
orizzontale e verticale. Le variazioni nel tempo della forza orizzontale sperimentale
sono state confrontate con la soluzione di Gurnari e Filianoti (2017) per i casi estremi
esaminati (cilindro a metà profondità e cilindro sul fondo). Il confronto tra gli es-
perimenti e l’equazione di Gurnari e Filianoti (2017) è stato effettuato in relazione ai
picchi di forza orizzontale per tutti i test relativi ai due affondamenti precedentemente
menzionati.
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Abstract

THE present thesis deals with an experimental and numerical study on the horizon-
tal and vertical hydrodynamic forces induced by solitary waves on submerged
horizontal circular cylinders.

Laboratory tests were performed in the wave flume of the University of Calabria. A
battery of pressure transducers was mounted along the external contour of a cylinder
while four wave gauges were located close to the cylinder. The correct displacement
of the wavemaker was checked by an ultrasonic sensor located behind the paddle. A
number of 134 experimental tests were conducted in the wave channel taking into ac-
count different wave attacks and five depths of the cylinder location ranging between
half water depth and the bottom of the flume.

From the numerical viewpoint, two different numerical models were adopted. The
first one is the diffusive weakly-compressible Smoothed Particle Hydrodynamics (SPH)
model. To improve the results and prevent spurious flows near the cylindrical contour,
a packing algorithm has been applied to initialize the SPH fluid particles. The acoustic
components occurring in the numerical pressure field were filtered through the applica-
tion of Wavelet Transform. The numerical simulations provided to investigate in detail
the flow field near the cylinder not modeled by the laboratory investigation. This La-
grangian model was used only in the case where the cylinder was placed at half water
depth. The high time consuming of the SPH simulations led to adopt another numerical
approach. In this context, the Eulerian OlaFlow model was used to investigate the other
four depths of the cylinder. With respect to the experimental tests, additional numerical
simulations were performed to extend the range of the analysis. Considering all the five
positions of the cylinder, a total of 176 numerical simulations were carried out.

The good agreement between experimental and numerical forces and kinematics at
the cylinder has allowed the calibration of the hydrodynamic coefficients in the Mori-
son and transverse semi-empirical equations by different time-domain methods. The
present thesis has showed an alternative method (Gurnari and Filianoti, 2017) to as-
sess the horizontal forces. Based on the concept that a solitary wave is subjected to a
slowdown passing over the cylinder, this formulation was used after the experimental
calibration of the speed drop factor. In this work, an extension of the transverse for-
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mulation which considered a new form of the lift force was also presented. For two
specific depths, this formulation resulted necessary to model correctly the peaks and
the phase shifts of the vertical forces.

The experimental and numerical analysis were presented comparing the time varia-
tion of the experimental and numerical simulations for two test cases at each depth. The
overall analysis of the peaks forces was evaluated as a function of the wave amplitude.
In addition, the weight of the different force components, i.e. drag, lift and horizontal
and vertical inertia, was evaluated and analyzed with respect to the maximum values of
the horizontal and vertical force. The time variation of the horizontal forces calculated
by the Gurnari and Filianoti (2017) solution was compared with the experimental ones
for the two vertical extreme positions of the cylinder. The comparison between the ex-
perimental and the Gurnari and Filianoti (2017) equation was performed in relation to
the horizontal force peaks.
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CHAPTER1
Introduction

1.1 Solitary waves and cylindrical structures in marine environment

Recent catastrophic events, such as those that occurred in the Indian Ocean and Japan a
few years ago, brought increasing attention of the scientific community to analyze the
tsunami properties and their interaction with structures.

Tsunamis are very long waves that are principally generated by earthquakes, land-
slides or volcanic eruptions. These waves propagate with high celerity across the ocean
for long distances. In deep waters, the wavelength of a tsunami can reach hundreds of
kilometers with speeds higher than 800 km/h. The wave height, that in deep ocean is
usually lower than one meter, grow up when the wave approaches the shoreline. The
shoaling effect reduces the speed of the wave and increase the wave height. Tsunami
waves have an enormous energy, indeed they can penetrate inland for a long distance,
erode sediments from the seafloor, cause loss of life and produce damages to the coastal
and marine infrastructures (Fig. 1.1).

In this context, in the present thesis the attention is focused to study the interac-
tion between tsunami waves and a particular type of marine structures, the horizontal
cylindrical ones. The horizontal cylindrical bodies are abundantly present in the ma-
rine environment in the offshore platforms that usually are employed in oil industry,
in platforms for broadcasting, radar surveillance, space operations and oceanographic
research. Over the past few decades, with the development of marine engineering, sev-
eral types of offshore facilities and marine pipelines have had a rapid growth (Fig. 1.2).
Moreover, another horizontal cylindrical structure, which has recently attracted the in-
terest of many researchers, is the Submerged Floating Tunnels (SFT) (e.g., [68], [66]).
This tunnel is an innovative concept for crossing waterways, utilizing the law of buoy-
ancy to support the structure at a moderate depth. Nowadays, this structure, known
as Archimedes bridge, has never been used before even for small length but recently
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1.1. Solitary waves and cylindrical structures in marine environment

Figure 1.1: Tsunami in Japan 2011.

engineers seem to agree that this elegant solution offers answers to specific problems,
such as that of Norwegian fjords (Fig. 1.3).

The occurrence of tsunami events in coastal areas is a source of additional risk for
already-vulnerable marine structures subjected to the action of wind waves and/or cur-
rents. Hence, the stability of marine structures under tsunami action depends on the
accurate assessment of the hydrodynamic forces. The reproduction of catastrophic
tsunami waves was observed to be dependent upon the magnitude of the specific source,
and the resulting shapes of surface elevation can be quite different to lead to a gener-
alized modeling of tsunami waves (e.g., [22, 64]). Owing to its robust and suitable
approach, the modeling of the leading wave of a tsunami event is usually reproduced
by the generation of solitary waves both experimentally (e.g., [60]) and numerically
(e.g., [80]). Indeed, if the tsunami in the open ocean has approximately a sinusoidal
shape, it become more peaked when tsunami waves approach the coast. As a result, the
wave trough disappears and only a positive peak remains. However, the simulation of
tsunami-like waves can also be performed for instance by bores characterized by un-
steady flow fields (e.g., [76]) or by rigid or deformable bodies falling into water masses
(e.g. [22]).

(a) (b)

Figure 1.2: (a) Offshore platform; (b) submarine pipeline.
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1.1. Solitary waves and cylindrical structures in marine environment

Several numerical and experimental studies have been performed to analyze the in-
teraction between solitary waves and structures in marine environment such as break-
waters [45], bottom-mounted rectangular blocks [26] or flat plates [65]. In the case
of cylindrical structures, the flow field generated by the presence of a semi-circular
cylinder placed on the bed was analyzed by Gsell et al. [31] through the coupling of
VOF with IBM approaches. A FEM model was developed by Zhao et al. [82] to in-
vestigate the solitary wave scattering by a circular cylinder array and by Sun et al. [72]
to study the impact of solitary waves at single and twin vertical rectangular cylinders.
Even if many analytical, numerical and experimental approaches have been presented
in literature for horizontal circular cylinders subjected to current flows or regular and
irregular waves (see, e.g., the comprehensive books of Sarpkaya and Isaacson [62] and
Sumer and Fredsoe [69]), little attention was addressed to the case of solitary waves.
For bottom-mounted cylinders under the above kind of incident flows, i.e. currents and
wind waves, values of hydrodynamic coefficients in Morison-type equations (e.g., [54])
were deduced from field tests [30] as well as small- and large-scale laboratory exper-
iments, and for wide ranges of Keulegan–Carpenter (KC) and Reynolds (Re) num-
bers [5, 7, 14, 16, 17, 55, 63]. More complex models as compared to Morison-type ones
and dealing with an improved description of flow-cylinder interaction processes have
been also developed [6].

A first pioneering work on solitary waves acting on horizontal cylinders refers to
the experimental investigation performed by Sibley et al. [67] where the solitary wave
was reproduced manually using a rigid vertical barrier. Consequently, a well-defined
assessment of only horizontal hydrodynamic forces was lacking in the above study.
Regarding numerical studies, Xiao et al. [81] have analyzed a solitary wave hitting a
horizontal cylinder located just below the free surface by a VOF model, while Lin and
Liao [43] used a vortex method to simulate the interaction of solitary waves with a
horizontal cylinder located near the bed. The latter study was restricted to a unique
forcing by changing only the distance of the cylinder from the bottom.

Figure 1.3: Rendering of the Submerged Floating Tunnels by Norwegian Public Road Administration.
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1.2. Structure of the contents

1.2 Structure of the contents

The contents of the thesis are presented in the following way. In chapter 2, the adopted
equations to reproduce a solitary wave in the flume are recalled. Here, it is shown the
time variation of the surface elevation, the free steam kinematic field at the transversal
axis of the cylinder and the law to generate a solitary wave

In chapter 3, a review of the hydrodynamics around the horizontal circular cylinder
is illustrated. Specifically, this chapter describes the near flow field induced by regular,
irregular and solitary waves. In this section, the classical Morison and transverse semi-
empirical equations to calculate the horizontal and vertical hydrodynamic forces are
introduced. An alternative equation called GF2017, based on the concept that a solitary
wave is subjected to a slowdown passing over the cylinder, is presented in order to
calculate the horizontal loads. In addition, an extension of the transverse formulation
which considers a new form of the lift force is proposed.

In chapter 4 the experimental campaign in a wave channel to study the solitary wave
forces on a horizontal cylinder is described. The hardware/software instrumentation,
the experimental setup and the characteristics of the laboratory tests are presented in
this section. Chapter 4 also indicates all the details to calculate the experimental hydro-
dynamic forces from the dynamic pressure deduced by the transducer records.

Chapter 5 illustrates two different numerical approaches to support and extend the
experimental research and investigate the near flow field not modeled by the laboratory
investigation. The first numerical model adopted to reproduce the interaction between
the cylinder and the solitary waves is the Lagrangian meshless method Smoothed Par-
ticle Hydrodynamics (SPH). To prevent spurious flows near the cylindrical contour, a
packing algorithm is applied to initialize the Lagrangian fluid particles. The acoustic
components occurring in the numerical pressure field are filtered through the applica-
tion of Wavelet Transform. The other numerical model used in the present thesis is the
free and open source Eulerian method OlaFlow.

Finally, chapter 6 describes the numerical and experimental results on the features
of horizontal and vertical forces at the horizontal cylinder for the action of solitary
waves, the resulting near flow field, the calibration of the hydrodynamic coefficients in
the Morison and transverse models as well as in the GF2017 scheme and their appli-
cation to analyze the effect of drag, inertia and lift force components. Five different
depths of the cylinder are evaluated both experimentally and numerically. The analysis
of the interaction between solitary wave and horizontal cylinder concerns 134 experi-
mental tests and 176 numerical simulations. Indeed, additional numerical simulations
are performed to extend the range of the analysis.
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CHAPTER2
Theory of solitary waves

2.1 Introduction

Although some differences have been highlighted in simulating tsunami-like waves in
coastal waters [57], the reproduction of a leading wave of a tsunami event is commonly
performed through the generation of solitary waves both through laboratory experi-
ments (e.g., [60]) and numerical simulations (e.g., [80]). The use of solitary waves is
due to the strong analytical background of this theory.

The solitary wave is represented as a single elevation of water above the undisturbed
water level which propagates without changing its shape in a plane channel, as repre-
sented in the xz domain of Fig. 2.1, in which η is the surface elevation, A is the wave
amplitude, d is the depth and c is the celerity.

Figure 2.1: Sketch of solitary wave in constant water depth.

In 1834, solitary waves were first identified by John Scott Russell. The Scottish en-
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2.2. Surface elevation

gineer, while conducting his experiments in hydrodynamics, discovered this new phe-
nomenon that he called "Wave of Translation". In 1845, he generated solitary waves
in a long narrow water flume. After the experimental investigation, Russel obtained a
relationship between the water depth, the celerity and the wave amplitude [61]:

c =
√
g(d+ A) (2.1)

The extensive investigation conducted by the author directed him to discover some
characteristics of the solitary wave. He noticed, as expressed in Eq. 2.1, that the celerity
depends on the size of the wave. Moreover, Russel observed that the solitary waves
which cross each other do not change their shape but undergo a phase shift.

In those years, his contemporaries did not understand the importance of his experi-
ments because seemed in contrast with the classical theories of hydrodynamics. Only
in the 1871, Joseph Boussinesq published the first mathematical theory to support Rus-
sell’s experimental observation [11], and in 1877 introduced the KdV equations [12].
In 1876, Lord Rayleigh in his work [59] mentioned Scott Russell’s name and also ad-
mitted that the first theoretical treatment was by Joseph Boussinesq. Some years later,
in 1876, Korteweg and de Vries assumed that the wave was independent of the cross-
channel direction and also that the horizontal current was independent of the depth [41].
The authors obtained a non-linear equation to describe the Russell’s experiments. This
work, although was not the first theoretical treatment of this subject, represents a sig-
nificant event in the history of the development of soliton theory.

2.2 Surface elevation

Boussinesq [11] and Rayleigh [59] showed that the surface elevation, η, is equal to:

η(t) = Asech2(βct/2) (2.2)

where β represents the outskirts decay coefficient and c is the wave celerity. The
value of the outskirts decay coefficient changes in the different historical approaches
(e.g., [11] [59] [29]). In according with the Boussinesq theory, Goring [29] defines the
outskirts decay coefficient as:

βB = 2

√
3A

4d3
(2.3)

The Rayleigh formulation is slightly different and the β coefficient is evaluated as:

βR = 2

√
3A

4d2(A+ d)
(2.4)

The value of βR is smaller than βB and this involves more volume of water in the wave.
The comparison between the different surface elevation formulas are shown in Fig. 2.2

In addition, the β coefficient is linked also with the wave number, k, through the
following relationship:

β = 2k (2.5)
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2.3. Kinematic field

Figure 2.2: Surface elevation. Comparison between Boussinesq and Rayleigh formulation for a repre-
sentative test case (A/d = 0.175).

The length of a solitary wave is theoretically infinite, so it is necessary to define an
apparent wave length, L = 2π/k. The apparent wave length is deduced considering that
at a distance of L/2 away from the wave crest, the value of η is reduced to 1% of its
maximum value (e.g., [23]). Note that other heuristic approaches to define the finite
wave length (e.g., [46]) lead to negligible differences in defining a finite time window
to study the investigated phenomenon, i.e. the wave forces induced by solitary waves
on horizontal circular cylinders. In this context, an apparent wave period is then defined
as T = L/c.

2.3 Kinematic field

In accordance with the Rayleigh’s theory and for A/d < 0.25, the values of horizontal,
u, and vertical, v, velocity are determined as follows (e.g., [42]):



u(t)
c

=
{
A
d

+ 3
(
A
d

)2
[

1
6
− 1

2

(
z
d

)2
]}

η(t)
A

−
(
A
d

)2
[

7
4
− 9

4

(
z
d

)2
] (

η(t)
A

)2

v(t)
c

=
√

3A
d

(
z
d

) (η(t)
A

)
tanh

(
−
√

3A
4d

ct
d

){
1 + A

2d

[
1− 7η(t)

A
−
(
z
d

)2
(

1− 3η(t)
A

)]} (2.6)

where z is the vertical coordinate taken from the bottom (see Fig. 2.1). The time varia-
tion of the horizontal an vertical velocities are shown in Fig. 2.3 for the representative
test case A/d = 0.175 and z = 0.2 m.

It is worth noting that Eqs. 2.6 represent a second-order solution which provides
for a small velocity gradient along the depth. By considering the mentioned apparent
wave length, this is in agreement with finite water depth conditions close to shallow
ones which will be reproduced both experimentally and numerically. The undisturbed
kinematic field at the transversal cylinder axis will be successively adopted in semi-
empirical formulas for the calibration of the hydrodynamic coefficients to assess the
wave forces well. With reference to a value of z = 0.2 m, the values of the horizontal
acceleration, aH , and the vertical acceleration, aV , are respectively derived from u and
v and displayed in Fig. 2.4.
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2.3. Kinematic field

(a)

(b)

Figure 2.3: Time variation of free stream kinematic field for A/d = 0.175. (a) Horizontal velocity, u; (b)
Vertical velocity, v .

(a)

(b)

Figure 2.4: Time variation of free stream kinematic field for A/d = 0.175. (a) Horizontal acceleration,
aH ; (b) Vertical acceleration, aV .
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2.4. Generation at laboratory scale

2.4 Generation at laboratory scale

The first experiments were performed by Russell [61], who generated solitary waves by
allowing a square block to fall into the water. Many years later, Daily and Stephan [21]
obtained a solitary wave moving in vertical direction a piston rising from the bottom of
the tank. The first studies in which the solitary wave was generated using a piston-type
wavemaker were performed by Goring [29]. The classical procedure for solitary wave
generation consists in matching the paddle velocity at each position in time with the
vertically averaged horizontal velocity of the wave. From a mathematical viewpoint,
this is expressed as:

dX/dt = ū(X, t) (2.7)

where X is the paddle displacement and ū is the average velocity over the depth. Rear-
ranging Eq. 2.7 after a change of variables from x,t to θ = ct-X , t, we obtain:

dX/dθ =
ū((θ(X))

c− ū((θ(X))
(2.8)

In according to the Boussinesq [11] and Rayleigh [59] solitary wave theory, the depth-
averaged horizontal velocity has the form:

ū(θ) =
cη(θ)

d+ η(θ)
(2.9)

Integrating Eq. 2.8 with Eqs. 2.2 and 2.9, the paddle motion of the piston-type wave-
maker suitable to reproduce a solitary wave follows the expression [32]:

X(t) =
2A

βd
tanh{β[ct−X(t)]/2} (2.10)

The total stroke of the paddle S can be deduced analytically from Eq. 2.10 and is equal
to:

S =
4A

βd
(2.11)

After the truncation of the infinite theoretical law of motion, the duration τ of the paddle
displacement can be written as:

τ =
4

βc

(
tanh−1(0.999) +

A

d

)
(2.12)

Goring [29], in his research, first addressed the problem of the minimizing trailing
waves in solitary wave generation. Usually, after the passage of the solitary wave,
spurious non-linear oscillations are observed in the wave flume. The author adopted the
procedure based on the Boussinesq theory and by referring Eqs. 2.1 and 2.3 obtained
the following simplified paddle law motion:

XB(t) = SGtanh

[
7.6

(
t

τ
− 1

2

)]
(2.13)

where the total stoke of the paddle results:
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2.4. Generation at laboratory scale

SG = 4

√
Ad

3
(2.14)

Guzien and Barthelemy [32], with the aim to generate a solitary wave as pure as possi-
ble, used Rayleigh theory to reproduce this wave along a plane channel. The purpose
of the researchers was to minimize the trailing waves but also to generate a wave with
a stable amplitude during its propagation. Their study showed that, using the Rayleigh
theory, the reproduced solitary wave was higher and moved faster than the Boussinesq
generated waves [32]. The total stroke of the paddle for the Rayleigh theory is given
by:

SR = 4

√
A(A+ d)

3
(2.15)

while the paddle position XR is expressed by Eq. 2.10 where the outskirts decay co-
efficient is βR. For small displacements, after linearization, the paddle position can be
assumed as:

XR(t) =
2A

dβR

d tanh(βRct/2)

d+ A [1− tanh2(βRct/2)]
(2.16)

In the present thesis, the non-linear form of the horizontal motion law deduced by the
Rayleigh’s solution is chosen to reproduce the solitary wave (see Eq. 2.10). The time
law of the horizontal displacement of the wavemaker for a representative test case (A/d
= 0.175) is illustrated in Figure 2.5 where the time tX = 0 corresponds to a wavemaker
displacement X = S/2.

Figure 2.5: Time law of horizontal displacement of wavemaker, X , for A/d = 0.175.
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CHAPTER3
Horizontal circular cylinders

3.1 Hydrodynamics around horizontal circular cylinders

The hydrodynamic aspects for a circular cylinder subject to wave action are essential
for the definition of the flow field. The oscillatory flow changes the trajectory and
overtakes the obstacle when meets a cylinder. When the flow shows not negligible
velocities, patterns of vortices are present in the wake region. The vortex formation
in this context is very important to understand the physical problem and assess the
hydrodynamic forces. In the shallow (d/L < 0.04) and intermediate (0.04 < d/L < 0.5)
waters, where d is the water depth and L the wave length, the effect of the wave motion
occurs for the entire depth. Indeed, for the deep waters (d/L > 0.5), the flow field
around the cylindrical structures placed on the bottom derive from the high hydrostatic
pressure. In this section a brief recall of the hydrodynamics around the circular cylinder
will be presented.

3.2 Near flow field induced by regular waves

The flow field induced by waves on cylindrical structures depends on the values of two
non-dimensional parameters, the Reynolds number, Re, and the Keulegan-Carpenter
number, KC. These parameters are defined as:

Re =
umaxD

ν
(3.1)

KC =
umaxT

D
(3.2)

in which umax is the maximum velocity, T is the period of the oscillatory flow, D is
the diameter of the cylinder and ν is the kinematic viscosity of the fluid. Low values of
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3.2. Near flow field induced by regular waves

KC number mean that the orbital motion of the water particles is small in comparison
with the total width of the cylinder. When KC number is large, the water particles
travel quite big distances related to the diameter of the cylinder. So, for a low KC
number, separation behind the cylinder may not even occur. Instead, for a large KC
the flow results in separation and subsequent vortex shedding. In Figure 3.1 Sumer
and Fredsoe [69] summarize the changes occurring in the flow as the KC number is
increased from zero. In this case, the value of the Re number is 103.

Figure 3.1: Regimes of flow around a circular cylinder in oscillatory flow [69].

As shown in Fig. 3.1a for very small values of KC no separation occurs and the
flow is creeping. When KC is increased to 1.1, the first separation appears. For 1.1
< KC < 1.6 (Fig. 3.1b), the flow regime is defined for the Honji instability [38]. In
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3.2. Near flow field induced by regular waves

this range of KC, the two-dimensional flow over the cylinder surface breaks into a
three-dimensional flow pattern. These regular streaks present mushroom-shape vor-
tices. With a further increase of KC, separation occurs in the form of a pair of sym-
metric vortices as show in Fig. 3.1c. For KC = 2.1 is possible to observe turbulence
over the cylinder (Fig. 3.1d). In the range 4 < KC < 7 the symmetry between the two
attached vortices breaks down. In this flow regime appears the lift force and this is
due to the asymmetry in the vortices (Fig. 3.1e). For KC > 7 the flow regime is called
vortex-shedding regime. In this context it is well underline that other authors ( [62], [9])
fix this value at KC = 6. The vortex-shedding regimes present a different configuration
as a function of the KC number. In these flow regimes the vortex shedding appears
during the course of each half period of the oscillatory motion. Williamson [78], after
an extensive investigation, defines different vortex-shedding regimes. In particular, for
7 < KC < 15, the vortex-shedding is characterized by a single-pair regime. The single-
pair regime presents a subrange 7 < KC < 13 which is known as the transverse-vortex
street regime. In this case, a series of vortices convect out to one side of the cylinder
in the form of a street. The difference in the other subrange (13 < KC < 15) is that the
wake consists of a series of pairs convecting away each cycle at around 45◦ to the wave
direction and this occurs at one side only. A double-pair vortex-shedding regime re-
garding the portion of the KC ranges between 15 and 24. This flow regime is featured
by two vortex pairs convecting away from the cylinder. A schematic classification into
three fundamental classes of vortex-flow regimes in regular waves grouped by Sumer
and Fredsoe [69] is reported in Figure 3.2.

Figure 3.2: Classification of vortex-flow regime in regular waves [69].

For further flow regimes, the number of vortex pairs will be increased by one each
time the KC number is changed to a higher one. In the case of 24 < KC < 32 the
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3.3. Near flow field induced by irregular waves

number of vortex pairs will be three, four in the range of 32 < KC < 40 and five in
the range between 40 and 48. Hence, for every change of regime, there will be two
more vortex sheddings in one full period. The vortex path in the transverse direction
has a strong influence on the time series of the vertical hydrodynamic force acting on
the cylinder. The peaks of the lift force are linked to the vortices around the cylindrical
structure. In particular, the peak of the force which occurs after the flow reversal is
related to the return of the shed vortex to the cylinder. The rest of the peaks in the lift
direction is linked with the vortex shedding. For this reason, the lift force frequency is
not the same to the vortex-shedding frequency.

3.2.1 Effect of wall proximity on flow regimes

There are mainly two effects of the wall proximity on the flow on a cylinder: the break-
up of symmetry in the flow and the suppression of vortex shedding. These changes
depend on the different values of the incoming wave height and on the distance between
the wall and the cylinder. An investigation on the effect of the gap height was performed
by Sumer et al. [70]. Figure 3.3 shows the vortex formation during regular waves with
KC = 4 for different values of the gap-to-diameter ratio e/D, where e is the distance
between the wall and the lower part of the cylinder.

The symmetry observed by the the authors in the formation and the motion of the
vortices is clear in Figure 3.3a, when the cylinder is far from the sea bed (e/D = 2).
In the other two cases, the asymmetry of the vortex evolution was highlighted by the
arrows drawn by the authors. When the cylinder is placed on the bottom (e/D = 0), the
vortex grows behind the cylinder each half period and is washed-over in the following
half period [70].

The effect of the bottom on the flow field is clear also for higher values of KC
number. The development of vortex patterns was illustrated in Figure 3.4 for KC =
10. In this flow regime, for a cylinder far from the bottom and under regular waves, the
flow field is characterized by the formation of the transverse vortex street regime. This
particular regime disappears when the gap-to-diameter ratio becomes less than about
1.7-1.8 [70]. In the case of e/D = 0, in comparison with Figure 3.3c, the evolution of
vortex motion remains the same, regardless of the range of KC.

3.3 Near flow field induced by irregular waves

The flow regimes induced by irregular waves on horizontal circular cylinder are de-
fined by the Re and KC numbers calculated considering the spectral characteristics
of the random oscillatory flow. In the case of irregular waves, these non-dimensional
parameters are evaluated as:

Re =
um0D

ν
(3.3)

KC =
um0Tp
D

(3.4)

where um0 is the significant velocity at the transversal axis of the cylinder ( [13], [14])
and Tp is the peak wave period. The representative value for the velocity amplitude for
random waves is given by:
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3.3. Near flow field induced by irregular waves

Figure 3.3: Evolution of vortex in regular waves. KC = 4. (a) e/D = 2; (b) e/D = 0.1; (c) e/D = 0 [69].
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3.3. Near flow field induced by irregular waves

Figure 3.4: Evolution of vortex in regular waves. KC = 10. (a) e/D = 1; (b) e/D = 0.1; (c) e/D = 0 [69].
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3.4. Near flow field induced by solitary waves

um0 =
√

2σu (3.5)

where σu is the root-mean square value of the fluid velocity evaluated at the transversal
axis of the cylinder.

The vortex-flow regime with the irregular waves is slightly different from the case
of sinusoidal oscillatory flow. Sumer and Kozakiewicz [71] performed an experimental
investigation to analyze the variation in the vortex-flow regimes. The authors, starting
with a sinusoidal oscillatory flow, have reproduced random oscillatory flow with a nar-
row and broad band spectrum. A JONSWAP-type spectrum was used in the mentioned
study. When the flow changes from regular oscillatory flow to random oscillatory flow,
the degree of irregularity increases with the increasing of the spectral width parameter.
Overall, an increasing of the irregularity of the waves reduces the occurrence of the
fundamental vortex regimes. Only in the case of the transverse vortex street (7 < KC
< 15) there is a repeatable interaction between vortices of two successive half periods
in sinusoidal flow. Nevertheless, this interaction is partially or at time completely pre-
vented due to the randomly changing successive half periods of the motion. The reason
is that the irregular waves break up the regular vortex regimes.

3.4 Near flow field induced by solitary waves

The flow field induced by solitary waves was studied in relation with the gap-to-diameter
ratio. As performed by several authors who studied the interaction between solitary
waves and marine structures (e.g., [26], [65], [72]), the non-dimensional wave ampli-
tude, A/d, is considered as simple representative parameter to evaluate the features of
the wave forces and coefficients with respect toRe andKC. The flow regime from soli-
tary wave acting on circular cylinders has been numerically studied by Xiao et al. [81],
Qu et al. [57] and Lin and Liao [43].

In the first two papers the authors have investigated the interaction between the soli-
tary waves and the horizontal circular cylinder near the free surface. A representative
test case in which the cylinder is near the free surface and quite far from the bottom is
shown in Figure 3.5. The snapshots of vorticity contour were displayed in the time in-
stant in which the surface elevation approaches its maximum value. In these numerical
simulations [57], the values ofA/d is equal to 0.2 while the gap-to-diameter ratio, e/D,
ranges between 9.5 to 5.5 (Fig. 3.5). The incident solitary wave generated a pair of de-
tached vortices in all numerical simulations. In the first case (Fig. 3.5a) is evident the
influence of the free surface in the formation of the asymmetric vortices. In the other
snapshots of the vorticity field the size of the two vortices, which rotate in the opposite
direction, is similar. This flow field generated by the solitary waves, for this value of
A/d, presents only a pair of vortices. This configuration is similar to the vortex-pair
regime in the regular oscillation flow when the value of the Keulegan-Carpenter number
is lower than 7.

Lio and Liao [43] focused their studies in analyzing the effects of gap-to-diameter
ratio and incident wave height on vorticity patterns when a solitary wave is passing
over a circular cylinder near the bottom. Figure 3.6 shows the vorticity field for dif-
ferent e/D and for a unique wave forcing, i.e. A/d = 0.3. During the passage of the
solitary wave crest, the separated shear layer from the upper half of the cylinder rolls up
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3.4. Near flow field induced by solitary waves

(a)

(b)

(c)

(d)

(e)

Figure 3.5: Vorticity field with different gap-to-diameter ratio. A/d = 0.2. (a) e/D = 9.5; (b) e/D = 8.5
(c) e/D = 7.5; (d) e/D = 6.5; (e) e/D = 5.5 [57].
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3.4. Near flow field induced by solitary waves

Figure 3.6: Vorticity field with different gap-to-diameter ratio. A/d = 0.3. (a) e/D = 0.1; (b) e/D = 0.3
(c) e/D = 0.5; (d) e/D = 0.8 [43].
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3.5. Classical semi-empirical equations of hydrodynamic forces

and forms a main vortex with clockwise (negative) vorticity behind the cylinder. In this
recirculating region, when the wave crest is already passed with respect to the cylin-
der, the secondary vortex with counterclockwise (positive) vorticity vertically passes
through the main shear layer from the cylinder (Fig. 3.6a). An increasing of the gap
height, i.e. e/D = 0.3, induces a stretching of the secondary vortex along the bottom.
With the leaving of the wave crest (t ≥ 18 s) the secondary vortex is cut off by the
clockwise vorticity. In the last two time instants (Fig. 3.6b, t = 19 s and t = 20 s) the
primary and the secondary vortices work like a vortex dipole that moves in ascending
way. Figure 3.6(c) and (d) show that with the increasing of the value of e/D the in-
teraction between the cylinder and the seabed is weaker. Nevertheless, also in these
cases, the vortices move upward like a vortex dipole similarly to the previous case [43].
Taking into account the effect of wave height in the vortices formation, the increasing
in the values of A/d induces an enhance of the strength of the vortices. In all the cases,
the vortices, that result well developed when the wave crest is away from the cylinder,
influence the loads exerted on the cylindrical structure.

3.5 Classical semi-empirical equations of hydrodynamic forces

For the purposes of studying the hydrodynamic forces acting on a circular cylindrical
structure, it is necessary to characterize the force regimes derived from the incident
waves. In this context, it is significant to underline the differences between large and
small bodies. Sarpkaya and Isaacson [62] described the generation mechanism of the
wave forces on a cylindrical structure. The dominant cause of wave force generation
is specified as a function of two non-dimensional parameters: KC and the diffraction
parameter, D/L (Fig. 3.7).

The diffraction parameter is related to the intensity of scattered waves. The critical
value of D/L which divides a small and a large body is about 0.2. In this case, KC
becomes 2 at the most for the range of D/L > 0.2 due to the wave breaking. For this
low value ofKC number, the flow separation effect may be neglected in the wave force
calculation. According to several authors ( [62], [15], [69]), for D/L > 0.2 and KC <
4, the wave diffraction of the incident wave on the structure in a wide area prevails and
the inertia forces result dominant. The loads on the large body are usually calculated
using the diffraction theory (e.g., [9]). On the other hand, when the bodies are small,
the Morison-type equations can be applied (e.g., [54]). In this case, the influence of the
cylinder is bounded to a narrow area around the structure. For D/L < 0.2 and KC >
4 the hydrodynamic forces have two components: drag and inertia forces in horizontal
direction, and lift and inertia forces in vertical direction.

3.5.1 The Morison equation

The Morison equation [54] represents an easy and widespread tool for predicting the
horizontal force induced by waves and currents on cylindrical structures. The in-line
force, FH , is evaluated as the sum of a drag component, FD, due to the resistance of an
obstacle to the fluid motion, and an inertia component, FHI , depending on the presence
of an external horizontal acceleration at the body section. The expression for FH reads
as:
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3.5. Classical semi-empirical equations of hydrodynamic forces

Figure 3.7: Wave force regimes [62].

FH(t) = FD(t) + FHI(t) =
1

2
ρDCDu(t)|u(t)|+ π

4
D2ρCMHaH(t) (3.6)

where CD is the drag coefficient and CMH is the horizontal inertia coefficient, while u
and aH represent the undisturbed horizontal velocity and acceleration at the traversal
axis of the cylinder, respectively.

3.5.2 The transverse equation

Along the lines of the Morison scheme, the transverse equation (e.g., [16]) allows for
calculating the vertical force, FV , as the sum of a lift component, FL, generated by
the increased velocity across the cylinder induced by the blocking of the flow, and an
inertia component, FV I , depending on the vertical acceleration of the external flow. The
transverse force is then written as:

FV (t) = FL(t) + FV I(t) =
1

2
ρDCLu

2(t) +
π

4
D2ρCMV aV (t) (3.7)

where CL is the lift coefficient and CMV is the vertical inertia coefficient, while aV is
the free stream vertical acceleration at the mentioned location.

The free stream kinematic field in the Morison and transverse formulas has been
here calculated analytically by system 2.6 from the numerical and experimental values
of the surface elevation, η, at the vertical section of the cylinder.
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3.6. Alternative semi-empirical equations of hydrodynamic forces

3.6 Alternative semi-empirical equations of hydrodynamic forces

3.6.1 The Gurnari and Filianoti equation

The analytical solution is derived by the original approach proposed by Filianoti and
Piscopo [27] for a rectangular submerged barrier, and reformulated by Gurnari and
Filianoti [33] for the case of a horizontal cylinder. The methodology for calculating
the horizontal force exerted by solitary waves on submerged cylindrical obstacles is
based on the speed drop factor, Fr. With reference to Figure 3.8, the time lag ∆tFr
spent by the pressure fluctuation to cover the distance from point 1’ to point 2’, both
lying on the surface of a solid obstacle (i.e., a horizontal cylinder), is greater than the
time ∆t spent to cover the same distance between the points 1 and 2 in the absence of
the obstacle. Let us indicate by Fr (> 1) the reduction factor in the propagation speed.
The existence of Fr let us to explain why the horizontal force on the solid body is
different from the Froude-Krylov force, even if amplitudes of pressure fluctuations are
unchanged on points 1’ and 1, and on 2’ and 2. The same phenomenon occurs in the

Figure 3.8: Definition sketch for the speed drop factor Fr. Upper panel: pressure time series at points
1 and 2 on the equivalent wates mass. Lower panel: pressure time series at points 1’ and 2’ on the
solid body represent by the cylinder.

interaction between wind waves and cylinders with arbitrary position. The speed c∆p

of pressure head waves propagating across the cylinder can be calculated dividing the
diameter D by the time spent by the wave crest to cover this distance. The value of c∆p

in the undisturbed field is constant and it can be calculated measuring the time spent by
the wave crest to cover the distance between points 1 and 2. The ratio c∆p/c∆p is equal
to the speed drop factor Fr. The horizontal component of the unitary force acting on
the water cylinder during the passage of the solitary wave can be calculated as:

FH(t) = FHA(t)− FHB(t) (3.8)

where FHA and FHB are the horizontal forces acting on semi-cylinder A and B, respec-
tively:

FHA(t) =

∫ π/2

−π/2
∆p(−ε/2, t)rcosβdβ (3.9)
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FHB(t) =

∫ π/2

−π/2
∆p(ε/2, t)rcosβdβ (3.10)

where ∆p is the wave pressure on the semi-cylinder, β is the angle defined in Figure
3.9, and ε is the phase angle for the water (3.11) and the solid (3.12) cylinder:

Figure 3.9: Definition of angle β.

ε = D |cosβ| (3.11)

ε = FrD |cosβ| (3.12)

Considering the weighted average value of cosβ in the phase angle ε, we obtain:

β̄ =

∫ π/2
−π/2 cos

2βdβ∫ π/2
−π/2 cosβdβ

= π/4 (3.13)

which once substituted in Eqs. 3.11 and 3.12 permit us to integrate Eqs. 3.9 and 3.10,
obtaining:

FHA(t) = −ρgADtanh2
[
−k
(
Fr
π

2
D + ct

)]
(3.14)

FHB(t) = −ρgADtanh2
[
k
(
Fr
π

2
D − ct

)]
(3.15)

The speed drop factor Fr depends on the relative amplitude A/d of the solitary wave,
for a given diameter D of the cylinder and draft of its center.

3.6.2 The shifted transverse equation

The shifted transverse equation represents a proposed extension of the transverse for-
mulation (see Eq. 3.7) for a cylinder near the bottom to well model the peaks and the
phase shifts of the hydrodynamic forces. Historically, the transverse forces are more
strongly affected than the horizontal ones by the formation and shedding of vortices
close to a cylindrical structure [69]. In particular, the original form of the lift compo-
nent did not model the forward phase shift in the observed experimental and numerical
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time series of the vertical loads when a horizontal cylinder is placed near the bed. In
this context, a new form of the lift force is proposed which takes the following form:

FL(t) =
1

2
ρDCL[u(t+ ts)]

2 (3.16)

where ts is a time interval between the occurrence of the wave crest and that related to
the peak of the observed vertical force. The proposed time shift is expressed as:

ts =
Tφ

2π
(3.17)

where the phase angle, φ, is assumed to be dependent on the wave amplitude and water
depth. The values of the phase angle will be illustrated in Section 6.4.
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CHAPTER4
Laboratory investigation

The laboratory investigation was performed in the wave channel of the GMI Laboratory
at the Department of Civil Engineering of the University of Calabria.

4.1 Description of the wave flume

The wave flume is 41.0 m long, 1.2 m deep and 1.0 m wide. It is composed by a steel
framework with glass walls, divided into 15 modules with a length of 2.7 m each and a
flat glass bottom, appropriately jointed between the channel modules (Fig. 4.1).

It is equipped with a piston-type wavemaker moved by a servo-controller hydraulic
actuator and a rubble mound breakwater made by concrete blocks and natural stones
(slope of 1:4) to dissipate the incident waves in the final part.

4.2 Hardware/software instrumentation

This section provides an overview about the hardware/software instrumentation used in
the experiments.

As for the hardware side, there are two main units: the paddle movement controller
and the level sensor array. The first unit is represented by the block diagram showed
in Figure 4.2 and it has the typical configuration of an analog feed-back control system
[28]. The paddle movement is controlled indirectly by the rotation of a joint of the
mechanical chain, that is connected to the paddle. The rotation angle is measured
with a resistive encoder that provides a proportion analog voltage signal. This signal
is processed, as well as the set-point signal, by a properly tuned Proportional Integral
Derivative (PID) controller [56]. The PID acts in order to minimize the error, i.e. the
difference between the set-point and the feedback signals. The output of the PID is
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Figure 4.1: Wave flume in the GMI Laboratory.

PID Actuator Encoder
Ultrasonic
sensor

Mech.chain Paddle

DAQ board NI PCI-6503

DAC ADC
Timer
Counter

PC

Setpoint

Feedback

PCI bus

Figure 4.2: Block diagram of paddle movement controller unit.

26



4.2. Hardware/software instrumentation

connected to the kinematic chain through a hydro-pneumatic actuator. The set-point
signal is generated by a Data AcQuision Board (DAQ), thanks to a Digital-to-Analog
Converter (DAC). The DAQ board (NI PCI-6503) is physically installed into the PCI
bus of a personal computer and it also provides other electronic peripherals, such us an
Analog-to-Digital Converter (ADC) and several digital timer/counter units. The ADC
is used to acquire the feedback signal, whereas the timer/counters are used to manage
an ultrasonic sensor placed on the back side of the paddle. More specifically, one
timer/counter is used to generate a train of pulse in order to trigger the ultrasonic wave
emission and the second timer/counter is used to measure the pulse width of the echo
signal. The ultrasonic sensor allows a more precise estimation of the paddle movement,
because it has a well known calibration equation that relates the measured echo with the
effective distance. The sensor array unit is represented by the block diagram showed in
Figure 4.3.

PC
NI-9205
module

Wave
gauges

Pressure
trans-
ducers

Ethernet
NI cDAQ-9184

DAQ board

...

Figure 4.3: Block diagram of sensor array unit.

A second DAQ board (a NI cDAQ9184 chassis with a NI-9205 module) is connected
to the same personal computer of the previous unit, by an ethernet cable, in order to
guarantee a good synchronism and noise rejection. Two different kind of resistive sen-
sors have been used: 12 Druck PDCR1830 pressure transducers, which are acquired in
differential mode due the Wheatstone-bridge configuration and 4 Edif Instrument wave
gauges, which are acquired in single-ended mode.

As for the software side, the wave flume operations are remotely controlled by a
specifically designed LabVIEW application. Interacting with its simple Graphical-
User-Interface (GUI), it is possible to set-up the wavemaker input signal and assign
particular wave shapes, start/stop the experiment, and monitor all sensors data in real-
time mode. This application is a high-level interface to the hardware modules described
previously.

The twelve pressure transducer and the four wave gauges were calibrated before
their installation in the wave channel. The relationship between the values in Volts and
the values in meters is perfectly linear for both the instruments.
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Figure 4.4: Sketch of the experimental setup. (a) Longitudinal profile; (b) Plan view.

4.3 Experimental set-up

The longitudinal profile and the general plan view of the experimental layout are re-
spectively depicted in Figs. 4.4a and 4.4b .

At a distance of about 9 m from the paddle, a rigid circular cylinder having a di-
ameter D = 0.127 m and longitudinal axis parallel to the cross flume axis was placed.
It was mounted in the flume by a steel support equipped by a pulley system able to
move it to a specific depth. In particular, five depths of the cylinder location were taken
into account, ranging between 0.2 m and 0 (cylinder at the bottom). In the last case, a
special glue was adopted to fix the cylinder at the bottom in order to inhibit the passage
of water flows below it. To inhibit corrosion, an electrolytic zinc plating was used to
coat the surface of the iron cylinder. Twelve pressure transducers were mounted along
the external surface of the cylinder at 30◦ intervals. Following similar experimental
investigations in the presence of cylinders ( [70] [6] [7]), the adopted sensors (length
of about 0.1 m) were slightly staggered along the longitudinal axis due to construction
constraints and to avoid the use of a too large diameter. Specifically, they were placed
in the central part of the cylinder for a total length of 0.33 m and a mutual distance
of 0.03 m, as highlighted in the plan view of Fig. 4.5a where the while holes indicate
the external position of the transducer heads and the grey ones indicate their internal
position. This arrangement was possible because of the cylindrical fronts of the solitary
waves propagating along the channel, leading to the study of the present 2D process.
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Details of the cylinder placement and the assembling of the transducers inside it are
respectively illustrated in Figs. 4.5b and 4.5c.

Figure 4.5: (a) Plan view of the staggered arrangement of the transducers in the central part of the
cylinder (case with e/D = 1); (b) Front view from the wavemaker of the cylinder placement in the
wave flume; (c) Detail of the installation of the transducers inside the cylinder; (d) Representative
cross section of the transducers around the cylinder.

The dynamic pressures, ∆p, deduced from the pressure records were calculated as
a function of the position of the transducers. Each value of dynamic pressure was
assumed constant over the influence area for the evaluation of the experimental force
components. Consequently, the horizontal, FH , and vertical, FV , hydrodynamic forces
were calculated as:
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FH = a1 (∆p1 + ∆p6 −∆p7 −∆p12) +

+a2 (∆p2 + ∆p5 −∆p8 −∆p11) +

+a3 (∆p3 + ∆p4 −∆p9 −∆p10)

FV = a1 (∆p3 + ∆p10 −∆p4 −∆p9) +

+a2 (∆p2 + ∆p11 −∆p5 −∆p8) +

+a3 (∆p1 + ∆p12 −∆p6 −∆p7)

(4.1)

where the influence areas a1, a2 and a3 are respectively equal to:

a1 =

∫ π/2

π/3

D

2
cosβdβ, a2 =

∫ π/3

π/6

D

2
cosβdβ, a3 =

∫ π/6

0

D

2
cosβdβ (4.2)

The angle, β, was taken from the left side of the cylinder in a clockwise direction. The
enumeration of transducers followed the reference system and is shown in Fig. 4.5d.

Two wave gauges were located in correspondence of the vertical axis of the cylinder
to measure the surface elevation and other two 1.1 m before and after this section. The
sampling frequency, fs, of transducers and gauges was set at 1000 Hz. To check the
correct generation of the desired solitary wave by applying Eq. 2.10, the horizontal
displacement of the piston, X , was measured by an ultrasonic sensor located 0.55 m
behind the position at rest of the paddle using fs = 50 Hz.

Figure 4.6: Solitary wave in the laboratory channel (e/D = 0.1).
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4.4 Characteristics of laboratory tests

A set of 134 experimental tests with different solitary waves in terms of wave amplitude
acting on the horizontal cylinder and five different vertical position of the cylinder was
performed. The still water depth d of the experimental tests was fixed at 0.4 m. The
tests were performed with five depths, so that the gap-to-diameter ratio assumed the
values of e/D = 1, e/D = 0.5, e/D = 0.25, e/D = 0.1 and e/D = 0 (Fig.4.6). As
previously mentioned, the value of e represents the distance between the bottom of
the cylinder and the bed (Fig. 4.4). In the possible range of the experimental stroke
S of the piston-type wavemaker and for the adopted five values of e/D, Tables 4.1,
4.2, 4.3, 4.4, 4.5 show the experimental values of A, T , A/d, KC = umaxT/D, Re
= umaxD/ν and d/L (relative depth), where umax is the maximum horizontal velocity
at the transversal axis of the cylinder and ν is the kinematic viscosity. With respect
to the theoretical wave period which increases when A decreases, the experimental
values of T , in some cases, show a small deviation for this tendency because of the
large spreading of η near SWL due to the occurrence of trailing waves [32]. It can
also be noticed that the range of d/L refers to intermediate water depths quite close
to shallow ones allowing for the use of Eq. 2.6 to represent the free stream velocity
field at the cylinder. As performed by several authors who have studied the interaction
between solitary waves and marine structures (e.g., [26] [65] [72]), the non-dimensional
wave amplitude, A/d, will be considered as simple representative parameter to evaluate
the features of the wave forces and coefficients with respect to Re and KC in the
considered experimental and numerical dataset. A particular note can be referred to the
magnitude of KC number, a largely adopted parameter to describe the flow field near
the cylinder and the features of the hydrodynamic forces and coefficients in the presence
of oscillatory flows (e.g., [69]). Indeed, owing to the dependence of the arbitrary finite
wave period to model the solitary wave, also an apparent Keulegan-Carpenter number
should be defined. To better analyze the occurrence of the force components due to the
wave-cylinder interaction, the obtained results will be illustrated also considering the
obtained values of KC.

The range of the involved physical quantities refers to small-scale experiments with
approximate Froude scale of 1:100. This leads to real conditions characterized by lead-
ing waves of tsunamis with amplitudes up to 8 m and periods up to 44 s propagating on
a water depth of 40 m and acting a circular cylinder having a diameter of 12.7 m whose
size is comparable with an underwater floating tunnel.
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Test Number A (m) T (s) A/d KC Re d/L

1A 0.031 4.10 0.079 4.82 1.81×104 0.047
2A 0.032 4.34 0.081 5.22 1.85×104 0.045
3A 0.038 4.38 0.096 6.15 2.15×104 0.044
4A 0.039 4.12 0.097 5.89 2.19×104 0.047
5A 0.046 3.86 0.116 6.48 2.57×104 0.049
6A 0.047 4.04 0.117 6.78 2.58×104 0.047
7A 0.051 3.79 0.127 6.89 2.80×104 0.050
8A 0.052 3.35 0.128 6.11 2.80×104 0.057
9A 0.053 4.02 0.133 7.62 2.91×104 0.047
10A 0.054 3.32 0.135 6.39 2.95×104 0.057
11A 0.057 3.88 0.143 7.87 3.11×104 0.049
12A 0.059 3.64 0.146 7.52 3.17×104 0.052
13A 0.062 3.26 0.156 7.11 3.35×104 0.058
14A 0.071 3.21 0.177 7.81 3.74×104 0.058
15A 0.078 2.98 0.196 7.86 4.06×104 0.062
16A 0.079 3.15 0.197 8.37 4.09×104 0.059

Table 4.1: Characteristics of laboratory tests with e/D = 1.
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Test Number A (m) T (s) A/d KC Re d/L

1B 0.033 3.87 0.083 4.65 1.85×104 0.050
2B 0.033 4.02 0.083 4.89 1.87×104 0.048
3B 0.035 3.82 0.088 4.86 1.95×104 0.051
4B 0.035 3.75 0.088 4.82 1.98×104 0.052
5B 0.037 3.76 0.093 4.99 2.04×104 0.051
6B 0.040 3.80 0.100 5.43 2.20×104 0.051
7B 0.040 3.78 0.100 5.42 2.20×104 0.051
8B 0.041 3.74 0.103 5.48 2.25×104 0.052
9B 0.043 3.60 0.108 5.53 2.36×104 0.053
10B 0.043 3.85 0.108 5.94 2.37×104 0.050
11B 0.044 3.89 0.110 6.11 2.41×104 0.049
12B 0.045 3.62 0.113 5.84 2.48×104 0.053
13B 0.046 4.12 0.115 6.79 2.54×104 0.047
14B 0.047 3.98 0.118 6.62 2.56×104 0.048
15B 0.050 3.80 0.125 6.68 2.70×104 0.050
16B 0.050 3.56 0.125 6.28 2.71×104 0.054
17B 0.050 3.53 0.125 6.28 2.73×104 0.054
18B 0.053 3.44 0.133 6.40 2.85×104 0.055
19B 0.053 3.86 0.133 7.21 2.87×104 0.049
20B 0.054 3.79 0.135 7.17 2.91×104 0.050
21B 0.058 3.55 0.145 7.10 3.07×104 0.053
22B 0.058 3.31 0.145 6.63 3.07×104 0.057
23B 0.058 3.25 0.145 6.54 3.09×104 0.058
24B 0.062 3.08 0.155 6.58 3.28×104 0.061
25B 0.064 3.25 0.160 7.05 3.33×104 0.058
26B 0.064 3.33 0.160 7.24 3.35×104 0.056
27B 0.066 3.61 0.165 8.03 3.42×104 0.052
28B 0.068 3.22 0.170 7.43 3.54×104 0.058
29B 0.069 3.16 0.173 7.35 3.57×104 0.059
30B 0.069 3.05 0.173 7.11 3.59×104 0.061
31B 0.070 3.21 0.175 7.55 3.62×104 0.058

Table 4.2: Characteristics of laboratory tests with e/D = 0.5.
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Test Number A (m) T (s) A/d KC Re d/L

1C 0.031 4.30 0.077 4.86 1.74×104 0.045
2C 0.031 3.81 0.077 4.35 1.75×104 0.051
3C 0.032 3.76 0.080 4.37 1.79×104 0.052
4C 0.032 4.13 0.080 4.82 1.79×104 0.047
5C 0.034 4.09 0.085 5.10 1.92×104 0.047
6C 0.035 3.85 0.088 4.94 1.97×104 0.050
7C 0.039 4.34 0.098 6.11 2.16×104 0.044
8C 0.040 3.92 0.100 5.57 2.18×104 0.049
9C 0.043 3.44 0.108 5.26 2.35×104 0.056
10C 0.043 3.53 0.108 5.42 2.36×104 0.054
11C 0.046 4.03 0.115 6.58 2.50×104 0.047
12C 0.047 3.75 0.118 6.18 2.53×104 0.051
13C 0.047 3.76 0.118 6.27 2.56×104 0.051
14C 0.050 3.52 0.125 6.13 2.68×104 0.054
15C 0.051 3.78 0.128 6.69 2.72×104 0.050
16C 0.051 3.68 0.128 6.54 2.73×104 0.052
17C 0.054 3.39 0.135 6.33 2.87×104 0.056
18C 0.054 3.58 0.135 6.76 2.90×104 0.053
19C 0.055 3.77 0.138 7.16 2.92×104 0.050
20C 0.058 3.49 0.145 6.98 3.07×104 0.054
21C 0.059 3.74 0.148 7.56 3.11×104 0.051
22C 0.060 3.81 0.150 7.86 3.17×104 0.049
23C 0.064 3.09 0.160 6.73 3.35×104 0.061
24C 0.065 3.39 0.163 7.49 3.39×104 0.055
25C 0.066 3.38 0.165 7.49 3.40×104 0.055
26C 0.070 3.20 0.175 7.46 3.58×104 0.058
27C 0.070 3.41 0.175 7.95 3.58×104 0.055
28C 0.070 3.11 0.175 7.26 3.59×104 0.060

Table 4.3: Characteristics of laboratory tests with e/D = 0.25.

34
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Test Number A (m) T (s) A/d KC Re d/L

1D 0.032 3.74 0.080 4.39 1.80×104 0.052
2D 0.033 3.84 0.083 4.56 1.82×104 0.051
3D 0.034 3.85 0.085 4.74 1.89×104 0.050
4D 0.035 3.89 0.088 4.94 1.95×104 0.050
5D 0.035 4.02 0.088 5.17 1.98×104 0.048
6D 0.036 4.05 0.090 5.27 2.00×104 0.048
7D 0.038 3.55 0.095 4.89 2.12×104 0.054
8D 0.038 3.73 0.095 5.17 2.13×104 0.052
9D 0.043 3.52 0.108 5.35 2.33×104 0.055
10D 0.043 3.50 0.108 5.35 2.35×104 0.055
11D 0.044 3.54 0.110 5.57 2.40×104 0.054
12D 0.047 3.95 0.118 6.50 2.53×104 0.048
13D 0.047 3.60 0.118 5.99 2.56×104 0.053
14D 0.050 3.47 0.125 6.04 2.67×104 0.055
15D 0.050 3.67 0.125 6.43 2.69×104 0.052
16D 0.051 3.60 0.128 6.37 2.71×104 0.053
17D 0.053 3.40 0.133 6.29 2.84×104 0.056
18D 0.054 3.43 0.135 6.40 2.86×104 0.055
19D 0.055 3.54 0.138 6.72 2.92×104 0.054
20D 0.059 3.37 0.148 6.76 3.08×104 0.056
21D 0.060 3.40 0.150 6.93 3.13×104 0.055
22D 0.060 3.39 0.150 6.94 3.14×104 0.056
23D 0.060 3.15 0.150 6.46 3.15×104 0.060
24D 0.062 3.31 0.155 6.93 3.22×104 0.057
25D 0.062 3.31 0.155 6.98 3.24×104 0.057
26D 0.063 3.34 0.158 7.11 3.27×104 0.056
27D 0.068 3.02 0.170 6.86 3.49×104 0.062
28D 0.071 3.04 0.178 7.14 3.60×104 0.061
29D 0.072 3.17 0.180 7.51 3.64×104 0.059

Table 4.4: Characteristics of laboratory tests with e/D = 0.1.
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Test Number A (m) T (s) A/d KC Re d/L

1E 0.033 3.73 0.083 4.43 1.83×104 0.052
2E 0.034 3.84 0.085 4.69 1.87×104 0.051
3E 0.034 3.82 0.085 4.74 1.91×104 0.051
4E 0.035 3.83 0.088 4.86 1.95×104 0.051
5E 0.037 3.91 0.093 5.17 2.03×104 0.050
6E 0.041 3.99 0.103 5.86 2.26×104 0.048
7E 0.041 3.78 0.103 5.60 2.27×104 0.051
8E 0.042 3.87 0.105 5.76 2.29×104 0.050
9E 0.042 4.06 0.105 6.06 2.29×104 0.047
10E 0.043 3.37 0.108 5.10 2.33×104 0.057
11E 0.044 3.73 0.110 5.77 2.38×104 0.051
12E 0.044 3.64 0.110 5.70 2.41×104 0.053
13E 0.045 3.90 0.113 6.19 2.44×104 0.049
14E 0.046 3.79 0.115 6.17 2.50×104 0.050
15E 0.046 3.47 0.115 5.67 2.51×104 0.055
16E 0.048 4.05 0.120 6.87 2.61×104 0.047
17E 0.049 3.88 0.123 6.66 2.64×104 0.049
18E 0.052 3.86 0.130 7.00 2.78×104 0.049
19E 0.054 3.56 0.135 6.62 2.86×104 0.053
20E 0.055 3.59 0.138 6.84 2.92×104 0.053
21E 0.055 3.69 0.138 7.03 2.93×104 0.051
22E 0.058 3.26 0.145 6.45 3.04×104 0.058
23E 0.058 3.58 0.145 7.14 3.06×104 0.053
24E 0.058 3.36 0.145 6.71 3.07×104 0.056
25E 0.064 3.22 0.160 6.99 3.33×104 0.058
26E 0.065 3.26 0.163 7.11 3.35×104 0.058
27E 0.065 3.28 0.163 7.18 3.36×104 0.057
28E 0.066 3.09 0.165 6.87 3.42×104 0.061
29E 0.071 3.01 0.178 7.07 3.61×104 0.062
30E 0.071 2.86 0.178 6.74 3.62×104 0.065

Table 4.5: Characteristics of the experimental tests with e/D = 0.
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CHAPTER5
Numerical modeling

5.1 Introduction

Another approach to analyze fluid dynamic problems is furnished by numerical model-
ing. In this section 5, two different numerical approaches will be described to support
and extend the experimental investigation as well as to discover physical insights of the
near flow field not modeled by the laboratory investigation.

The first numerical model adopted to reproduce the interaction between the cylinder
and the solitary waves is the Smoothed Particle Hydrodynamics (SPH). In SPH the
flow evolution is described following the motion of a set of fluid particles, resulting in
a Lagrangian representation of the fluid. The SPH particles represent a finite mass of the
discretised continuum and carry the information about all physical variables which are
evaluated at their positions. This numerical model is based on a meshless grid, which
represents an advantage when dealing with cases where the structures have a complex
geometry and large fluid deformations occur. The other numerical model, used in this
thesis, is the OlaFlow model. This Eulerian model is based on a rigid mesh grid. In this
case, the correct solution of the problem depends on the mesh generation. Nowadays,
grid-based numerical methods are widely applied to different fields of computational
fluid mechanics and represent the dominant approach to solve fluid dynamic problems.
In addition, the use of OlaFlow model, which is free and open source, enables a less
time consuming compared to SPH. In particular, the mean CPU time cost needed to run
OlaFlow is about 1/10 of the time iteration cost using SPH. For this reason, just the first
test case with e/D about equal to 1 was inspected through SPH.
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5.2 Smoothed Particle Hydrodynamics

Owing to the capabilities in simulating complex physical phenomena and the interac-
tion with structures, a diffusive weakly-compressible Smoothed Particle Hydrodynam-
ics (SPH) scheme was adopted to study the present hydrodynamic process and give
insights about physical phenomena not analyzed by laboratory tests. SPH currently
represents one of the most popular meshless Lagrangian particle model (e.g., [75]) and,
over the course of recent decades, has been applied to a broad range of flow processes
and fluid-structure interaction problems (e.g., [4], [50]). Due to the presence of a cir-
cular shape at the fluid-solid interface, the spatial arrangement of fluid particles in the
present SPH model was assessed by a packing algorithm [18]. This procedure has
been applied with the aim of reducing the occurrence of unphysical currents altering
the near flow field during the flow evolution. To well assess the hydrodynamic forces
acting on the cylinder, the acoustic component occurring in the pressure field due to
the weakly-compressibility assumption was filtered here through the use of Wavelet
Transform (WT) following the recent approach proposed by Meringolo et al. [51].

5.2.1 Weakly-compressible Navier-Stokes equations

Considering a weakly-compressible fluid, the evolution of the flow field is described by
means of Navier-Stokes equations written in the following form (e.g., [52]):

Dρ
Dt

= −ρ∇ · u

Du
Dt

= −1
ρ
∇p+ g + 1

ρ
∇ · V

p = c2
0 (ρ− ρ0)

(5.1)

where u represents the fluid velocity, p the pressure, ρ the flow density, g the mass
force, ρ0 the initial density at the free surface, c0 the initial sound speed and V the
viscous stress tensor.

In System 5.1, a linear state equation, obtained as a truncation to the first order
of the Taylor expansion of the so-called Tait equation, links the pressure field to the
density one [3]. Under the weakly-compressible assumption (i.e. density variations
lower than 1%ρ0 [53]), the differences between the linearized state equation and the
Tait one are in practice negligible. Regarding the artificial speed of sound adopted for
the simulations, the following constraint has be to satisfied in order to guarantee the
weakly-compressible regime (e.g., [53] [19]):

c0 = max {10 max(|u|), 10
√
gd} (5.2)

For the involved hydrodynamic problem, the characteristic velocity u of Eq. (5.2) is
represented by the wave celerity c [50].

5.2.2 Discretization of weakly-compressible Navier-Stokes equations

The weakly-compressible Navier-Stokes equations given by system 5.1 are here dis-
cretized by the δ-SPH model [3] which represents a widely adopted SPH scheme in
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different hydrodynamic contexts (e.g., [4] [73] [50] [10]). This formulation presents a
diffusive term added to the continuity equation that acts to smooth out a relevant amount
of the high-frequency acoustic perturbations occurring in the pressure field. Moreover,
it is able to preserve the hydrostatic component with respect to other diffusive schemes
in SPH literature (e.g., [52]). As well as the standard SPH models (e.g., [53] [19]), the
δ-SPH is able to preserve the mass and conserve both linear and angular momenta. The
discrete equations of the δ-SPH model are:

Dρi
Dt

= −ρi
∑

j(uj − ui) · ∇iWij Vj + Di

Dui

Dt
= − 1

ρi

∑
j (pi + pj)∇iWij Vj + gi + α c0 h

ρ0
ρi

∑
j πij∇iWij Vj

Dri
Dt

= ui + εX
∑

j(uj − ui)Wij Vj

pi = c2
0 (ρi − ρ0) , Vi = mi

ρi

(5.3)

In system 5.3, the quantities ρi, ui, pi and ri are respectively the density, the velocity,
the pressure and the position associated with the i-th particle. The gradient taken with
respect to the coordinates of particle i is given by the symbol ∇i. The particle volume
Vi is a function of the density in which the mass mi is taken constant during the flow
evolution. The quantity Wij represents the kernel function, chosen here as Gaussian
(e.g., [52]) with a cut-off radius r = 3h, where h is the smoothing length. A ratio h/∆x
= 4/3 is adopted, where ∆x is the initial particle spacing. The artificial viscosity term
πij in the momentum equation is added to stabilize the scheme being [3]:

πij =
(uj − ui) · (rj − ri)

|rj − ri|2 + 0.01h2
. (5.4)

considering α an empirical coefficient that defines its magnitude.
The mentioned diffusive contribution in the δ-SPH model is given by the quantity

Di that reads as:
Di = 2δhc0

∑
j ψij

(rj −ri)·∇iWj

|rj−ri|2
Vj,

ψij = (ρj − ρi) − 1
2

(
∇ρLj +∇ρLi

)
· (rj − ri) ,

(5.5)

where the magnitude of the diffusive term is given by the parameter δ, while 〈∇ρ〉Li and
〈∇ρ〉Lj are the renormalized density gradients [3].

The updating of particle position was corrected through the application of an XSPH
numerical filter in which the parameter εX represents its magnitude in this correction
on the velocity field [53]. System 5.3 was solved using a 4th-order Runge-Kutta inte-
gration scheme with a frozen diffusive approach [50]. The time step ∆t was calculated
on the basis of restrictive conditions linked to the time steps ∆tv, ∆td and ∆tc due re-
spectively to the presence of diffusive, advective and viscosity terms and was evaluated
as follows:
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∆tv =
ρh2

8µ
, ∆td = 0.425

h

δc0

, ∆tc = 2.2 min
i

(
h

c0 + |ui|+ hmaxj πij

)
(5.6)

To simulate the solid boundaries (i.e., cylinder, bottom flume, wavemaker and final
wall), the technique of the fixed ghost particles was implemented [47]. In particular, the
left wall of the channel was modeled by moving fixed ghost particles and implemented
with Eq. 2.10 to simulate the paddle for wave generation and mobile interpolation
nodes follow this solid boundary condition [50]. It is worth noting that near solid bod-
ies the support of the kernel function is cut by the body profile and the interpolation
accuracy decreases due to the fact that the sum of kernel function is not equal to 1. For
this reason, the adopted technique was applied to make up for the loss of mass and, at
the same time, to impose correct boundary conditions. To calculate the physical quan-
tities attributed to each fixed ghost particle at each time step, a Moving Least Square
(MLS) interpolation over the fluid particles values centered on their interpolation nodes
was carried out (e.g., [8]).

5.2.3 Hydrodynamic forces at body profile

The numerical horizontal and vertical hydrodynamic forces were evaluated on the basis
of the dynamic pressures acting on the circular cylinder and measured by virtual gauges.
For the m-th numerical pressure gauge located along the body profile, the following
discrete formulation was adopted to evaluate ∆p [50]:

∆pm =
∑
jεΓ

[pj − (d− zj)ρ0g] W̃ (rm − r′
j)Vj. (5.7)

where Γ is the support area involving j-th fluid particles, r is the position of the numer-
ical gauge and r′ is the position of the considered fluid particle. As performed to model
the solid boundaries through the fixed ghost particle approach, the dynamic pressures
at body profile are obtained in Eq. 5.7 considering a weighting function, W̃ , corrected
with an MLS technique [8]. The interpolating function and the type of support area are
the same as those adopted in the governing equations (see section 5.2.2). Along the
lines of the experimental approach (see Eq. 4.1), the numerical forces, FH and FV , are
then evaluated as:



FH =

n/4∑
m

am[∆pm + ∆pn/2−m+1 −∆pn/2+m −∆pn−m+1]

FV =

n/4∑
m

am[∆pn/4−m+1 + ∆p3n/4+m −∆pn/4+m −∆p3n/4−m+1]

(5.8)

where n is the total number of pressure gauges, while the influence areas, am, are
evaluated as:
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Figure 5.1: Solid particles simulating the cylinder and associated interpolation nodes.

am =

∫ π/2−(m−1)2π/n

π/2−m2π/n

D

2
cosβdβ for m = 1, n/4 (5.9)

where Eq. (4.1) adopted for laboratory tests is recovered for n = 12.
Fig. 5.1 shows the placement of the solid particles simulating the cylinder in a

Cartesian grid with the associated interpolation nodes mirrored with respect to the cir-
cular shape of the body profile. To accurately calculate the hydrodynamic forces at the
body profile, the mutual distance of pressure gauges belonging the body profile of the
cylinder was assumed at an arc length, s, greater than ∆x.

5.2.4 Particle Packing Algorithm

Using canonical tessellations in SPH to initialize the spatial placement of the fluid par-
ticles (Cartesian, triangular, hexagonal, etc.), the presence of a not-straight shape, i.e.
the circular cylinder, coupled with the truncation of kernel support leads to the gen-
eration of a spurious and sometimes significant kinematic field close to the boundary.
This drawback is induced by the inaccuracy in modeling the pressure gradient through
SPH (e.g., [58]). In the present context, the resulting flow motion around the cylinder
induced by the action of a solitary wave is then affected by the presence of a superim-
posed particle resettlement.

To have an initial equilibrium position of the particles, the Particle Packing Algo-
rithm (PPA) developed by Colagrossi et al. [18] allows for recovery of the consistency
of the SPH pressure operator. This procedure was applied before the use of system 5.3.
The first operation is to close all the boundaries of the computational domain including
the free surface, while the second one refers to the assumption of constant values of
density ρ0, pressure p0 and volume V0. The last quantity is given by the ratio between
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the total fluid volume and the total fluid particles, while p0 and ρ0 can be arbitrarily
set. Since the static solution must be reached, the above PPA is only governed by the
following momentum equation written for 2D problems as:



ρi
Dui
Dt

= −β
∑
j

∇iW (rij)V0 − ζui

Dri
Dt

= ui

(5.10)

in which β = 2p0/ρ0 and ζ represents a linear damping term given by:

ζ = αp

√
β

V0

(5.11)

where the parameter αp represents the magnitude of the damping term. Colagrossi
et al. [18] heuristically found that a good choice for the coefficient dealing with the
magnitude of the damping term, αp, ranges between 10−3 and 5*10−3. We observed
that values of αp in this range give same results (i.e. convergence toward a stable parti-
cle configuration) and very small differences in the computation cost to run PPA were
related to the time to reach the fixed velocity threshold which is dependent on the mag-
nitude of the velocity field of the specific problem. Then, a mean value of αp = 3*10−3

was here chosen. Note that the updating of particles position is not filtered through
the XSPH correction (see system 5.3) since the application of PPA is not addressed to
smooth out the velocity field. For 2D cases, the used time step is calculated as follows:

∆tp = CFLp

√
V0

β
(5.12)

where CFLp = 1 [18].
With reference of the magnitude of the velocity field at the cylinder of the involved

numerical and experimental tests (maximum velocity of order of 10−1 m/s), the packing
procedure is stopped when the maximum velocity of the particles is lower than 10−4

m/s. Fig. 5.2a illustrates the time evolution of the resettlement process of fluid particles,
initially placed in a Cartesian grid and subjected to PPA, in terms of maximum intensity
of velocity, maxi|ui|, occurring in the fluid domain. The symbol tp refers to the time
evaluated through the specific ∆tp of PPA by Eq. 5.12. As expected, a progressive
decreasing of the velocity can be observed until the set threshold velocity, highlighted
with a horizontal dashed line, is reached. The final arrangement of the water particles
in a stable position around the cylinder is highlighted in Fig. 5.2b. After the application
of PPA, the solid boundary covering the free-surface is deleted and the hydrostatic
pressure is assigned, allowing for the possibility to start the SPH simulation using the
final configuration of the stabilized fluid particles of Fig. 5.2b. The differences between
a simulation run with and without the initialization of the fluid particles through the
packing algorithm are illustrated in Fig. 5.2c by inspecting the maximum intensity of
velocity in a control area 0.2 m x 0.2 m surrounding the cylinder. The results refer to
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(b)

(d)

Figure 5.2: (a) Time variation of maximum intensity of velocity of SPH fluid particles when subjected to
PPA; (b) Arrangement of SPH fluid particles around the cylinder at the end of the application of PPA;
(c) Time variation of maximum intensity of velocity of SPH fluid particles in hydrostatic conditions
with and without PPA; (d) Velocity vectors of SPH fluid particles around the cylinder without PPA
for t = 0.

a hydrostatic test (no wave generation from the paddle) for a time window comparable
with the studied wave-structure process. The reference time t = 0, highlighted with a
vertical dashed line, corresponds to the time instant in which, in the case of a wave
generation, the wave crest would have passed at the vertical axis of the cylinder. This
assumption is in accordance with the successive definition of t = 0 in the analyses
involving solitary waves. In the SPH simulation with PPA, the magnitude of velocity
is just above the threshold adopted for PPA with values close to 10−4 m/s. Conversely,
a random velocity field due to the particle resettlement of order of 10−2 m/s is noticed
in the SPH simulation without PPA. For t = 0, the velocity field and the associated
velocity vectors without the application of PPA is shown in Fig. 5.2d where spurious
current fields occurring around the cylinder would influence the real flow due to the
wave motion. In the case of the use of PPA, the particles configuration at t = 0 remains
practically unchanged with respect that in Fig. 5.2b. It can be finally observed that the
mean CPU time cost needed to run PPA is about 1/20 of the whole time iteration cost.
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5.2.5 Filtering of pressure data

The assumption of an artificial compressibility is the basic hypothesis for most of the
weakly-compressible SPH models where the artificial sound speed is chosen as much
lower than the real one but much higher than the characteristic flow velocity to fulfill
the weakly-compressible assumption [53]. As observed by Meringolo et al. [51], the
pressure field can be expressed as the superimposition of an incompressible solution
and an acoustic perturbation in the limit of Ma (Mach number) → 0. As a result,
the acoustic pressure perturbations in this Lagrangian variant are related with the ficti-
tious value of c0 resulting in a non-physical contribution. The pressure solution is then
affected by these acoustic oscillations which should be correctly removed.

A suitable tool to provide the operation to split the hydrodynamic and the acoustic
components can be represented by the Wavelet Transform (WT) [24]. In the presence of
non-stationary pressure signals and possible spurious effects due to the trailing waves
represented as irregular wave packets, the WT proves to be an efficient instrument to re-
move these unwanted fluctuations and also allows expression of the frequency contents
in time. In this sense, the wavelet analysis offers also an advantage in directly control-
ling the cut-off frequency. The nature of hydrodynamic problems contains frequently
unsteady and irregular characteristics that makes the classical Fourier analysis unfruit-
ful for these purposes. Indeed, the Fourier Transform (FT) is suitable for analyzing
periodic signals but is less useful when the signal becomes non-stationary. Moreover,
when transforming to the frequency domain with the FT, time information is lost un-
less moving time-window algorithms are used. For example, moving average filters
(MAF) are based on specific functions and a study should be done in order to find suit-
able functions for the MAF. Furthermore, an appropriate setting of parameters is also
needed, the main one is the time window span where the averages are evaluated. In-
deed, the choice of the time window span could be linked to known quantities such as
the initial sound speed and the spatial resolution in order to give a practical method to
well decompose the incompressible solution from the acoustic one. A first example of
filtering procedure using MAF was carried out by Wei and Dalrymple [77] where SPH
was successfully compared with an analytical solution in the case of a hydrostatic force
acting on a vertical wall of a water tank.

Among the families of shape functions adopted in the wavelet framework for fluid
dynamic problems, a Mexican hat wavelet is heuristically selected (e.g., [34]). This is
motivated by two reasons: the curvature of the observed solitary wave forces better re-
sembles that related to its basic function and the spurious "Gibbs-like" effect is avoided
in the presence of fast changes of pressure (see, for more details, [51]). The mother
wavelet, ψ, of the Mexican hat is represented by the negative Laplacian of a Gaussian
function:

ψ = (1− t2)e(−t
2/2) (5.13)

The decomposition between the acoustic components and the exact incompressible
solution proves to be difficult matter for cases involving strong wave impacts on struc-
tures since very short-time pressure impulses occur. Therefore, the inertial and acoustic
components cannot be decoupled. Here, a pressure wave interacts with a submerged
obstacle with resulting slower dynamics. In this case, the spurious acoustic waves can
be easily filtered by setting the following cut-off frequency, fcut:
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Figure 5.3: (a) Wavelet coefficients of raw numerical horizontal force, FH (test no. 13A), (b) Wavelet
coefficients of raw numerical vertical force, FV (test no. 13A), (c) Raw and filtered numerical signal
of horizontal force, FH (test no. 13A), (d) Raw and filtered numerical signal of vertical force, FV

(test no. 13A).

fcut = c0/λ (5.14)

that represents the lowest frequency in which the spurious acoustic oscillations arise in
the pressure solution. In particular, fcut is the frequency associated to the length of the
fluid domain, λ = 2Lc, being Lc the length of the numerical channel.

In a weakly-compressible SPH model, the numerical oscillations linked to the acous-
tic components appears in the frequency band ranging from fcut to fmax = c0/2∆x, be-
ing the latter the highest frequency that is related to the interparticle distance [2]. The
adopted spatial resolution and the choice of the artificial sound speed have ensured a
well-defined splitting between the physical pressure solution and numerical noise. We
also highlight that a Savitzky-Golay FIR smoothing filter is also adopted choosing a
polynomial of order 3 with a span of about 300 points using c0 = 50 m/s and a spatial
resolution d/∆x = 175. This approach leads to similar results to those given by the use
of a Mexican hat wavelet, even if depending on the adopted SPH variant (in this case,
the δ-SPH model).

The filtering using the Mexican hat wavelet is therefore applied by cutting the energy
contents linked with frequencies higher than fcut. For the representative numerical test
no. 13A (e/D = 1), Figs. 5.3a and 5.3b show respectively the wavelet coefficients, Tw,
occurring in the time variation of the simulated horizontal and vertical forces acting on
the horizontal cylinder for the passage of a solitary wave. The horizontal dashed line
corresponds to fcut given by Eq. 5.14. The time window related to the occurrence of
the hydrodynamic loads given by the passage of the solitary wave on the cylinder is
followed by low-energetic spurious wave forces, highlighted through a black ellipse in
Figs. 5.3a and 5.3b. These unwanted contributions are induced by the trailing waves
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at the free surface which are derived from the truncation in the time law of the mobile
solid boundary simulating the paddle motion [32]. With reference to the log scale of
the wavelet coefficients, the highest positive values of Tw appear in correspondence
of the peaks of the horizontal and vertical hydrodynamic loads. High positive values
of the wavelet coefficients mean either a positive or negative correlation between the
numerical signal and the wavelet for a given frequency f (i.e. when signal and wavelet
are in phase or anti-phase). The negative values of Tw are linked to the numerical noise.
Figs. 5.3c and 5.3d illustrate respectively the rough and filtered SPH horizontal and
vertical wave loads for the above reference test. The reconstruction of the filtered force
signals is obtained by means of the Inverse Continuous Wavelet Transform (ICWT)
[74]. It can be noticed that the numerical noise related to the vertical force is higher
than the horizontal one since its magnitude is generally lower, as better illustrated in
the chapter 6.

5.3 OlaFlow

OlaFlow is a free and open source numerical model which uses the latest advances
in the simulation of wave dynamics to the OpenFOAM R© and FOAM-extend com-
munities. The model allows to generate and absorb water waves and simulate their
interaction with coastal structures. OlaFlow is the development of the two previous
versions, IHFOAM and OLAFOAM (see, e.g., [36]). This project is a continuation of
the work by Higuera et al. [37] and has overcome limitations and errors in the origi-
nal OpenFOAM R© code. The authors, in this new version, added new functionalities
increasing the performance of the solver like the generation of waves and currents si-
multaneously and the reproduction of multi-paddle piston or flap-type wave generators
including the active wave absorption.

5.3.1 Navier-Stokes equations

The OlaFlow CFD suite solves the three-dimensional Reynolds Averaged Navier-Stokes
equations (RANS). These equations are solved using a volume of fluid (VOF) tech-
nique, through a finite volume discretization. Under the assumption of incompressible
fluid, the evolution of the flow field is described by the continuity and momentum con-
servation equations that are written in the following form [35]:

∇ · U = 0 (5.15)

∂U

∂t
+∇· (ρUU)−∇ · (µeff∇U) = −∇p∗−g ·X∇ρ+∇U ·∇µeff +σκ∇α (5.16)

where U is the velocity vector, ρ is the density, g is the gravity acceleration, X is the
position vector, p∗ is the pseudodynamic pressure and µeff is the efficient dynamic
viscosity, which takes into account the molecular dynamic viscosity and the turbulence
effects. The last term of the equation represents the effect of surface tension, where,
σ is the surface tension coefficient, κ is the curvature of the interface and α is the
indicator function defined as the quantity of water per unit of volume at each cell. The
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last parameter, α, is considered equal to 1 in this work since one-phase flow, i.e. water,
is involved to study the present physical process.

The Eqs. 5.15 and 5.16 are solved with a two-step method (predictor-corrector
scheme). The turbulence effects are accounted in the equations as an additional eddy
viscosity. OlaFlow permits to use different turbulence models. In this thesis the sim-
ulations were performed using a k - ε model which is one of the most widely used in
CFD (e.g., [36], [81]).
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CHAPTER6
Experimental and numerical results

6.1 Introduction

The experimental and numerical forces induced by the interaction between solitary
waves and submerged circular cylinders will be first compared and then analyzed. Suc-
cessively, the validated SPH and OlaFlow results will be adopted to calibrate the hy-
drodynamic coefficients in Morison and transverse semi-empirical relationships.

On the basis of the comparison between experimental and numerical results, the pa-
rameters involved in the SPH equations are calibrated as: α = 0.01, εX = 0.25 and δ =
0.1. The diffusive term, the artificial viscosity and the XSPH correction go to zero as the
spatial resolution increases (i.e. when h goes to zero), recovering the consistency with
the weakly-compressible Navier-Stokes equations (e.g., [48] [51]). For this reason, dif-
ferent spatial resolutions were tested to heuristically check the numerical convergence
of the present Lagrangian variant. In particular, spatial resolutions using d/∆x = 100,
140, 160 and 175 were adopted to verify the performances of the numerical model and
then to reach a solution sufficiently close to the convergent limit. We noticed that the
SPH results of surface elevations and pressures at the cylinder adopting d/∆x = 160
and 175 were practically superimposed and this guarantees that the influence of the
above empirical parameters is negligible. The adopted spatial resolution d/∆x = 175
leads to a resulting number of pressure gauges along the body profile of the cylinder
equal to 144. The initial sound speed c0 = 50 m/s is here chosen under the constraint
expressed by Eq. 5.2 and considered as a reliable value to perform a good filtering of
pressure data from the numerical noise. Free-slip conditions are implemented along all
solid boundaries of the computational domain. All SPH simulations reproducing about
10 s of the involved wave-structure interaction process take a CPU time of about 6
days through a single 3.4 GHz Intel(R) i7-3770 core with 8GB RAM. The computation
domain is smaller than the experimental one (see section 4.3) to overcome disadvan-
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tages in terms of CPU time. On the basis of the wave celerity of the solitary wave, the
length of the numerical flume is taken equal to 12 m so that the reflected waves reach
the cylinder section after the time window of the investigated phenomenon. It can be
also observed that a parallelized version of the numerical code could be adopted using
MPI-OpenMP programming models (e.g., [48]) or GPUs (e.g., [1] [20]) to reduce the
overall computation cost.

As regards the OlaFlow model, the length of the numerical flume is taken equal to
12 m as in the SPH model. The longitudinal spatial resolution changes as a function of
the distance respect to the cylinder position. At the ends of the mesh grid, ∆x is equal
to 2 cm, while near the cylinder it is 2 mm. Regarding the vertical spatial resolution,
the value of ∆z is always 2 mm. The refinement of the mesh grid was necessary to
obtain an accurate solution of the incident flow field and the hydrodynamic forces. The
changes of the spatial resolution is step-by-step in the transition zones. Also in this
case, the numerical convergence was checked by changing the spatial resolution. A
sketch of mesh grid using OlaFlow with all the distances and the spatial resolutions is
shown in Fig. 6.1. For a total time of 10 s, the OlaFlow simulations take a CPU time of
about 6 hours through a 3.7 GHz Intel(R) Xeon(R) E5-1620 core v2 with 8GB RAM.

Except the analysis of the wavemaker displacement, the reference time t = 0 corre-
sponds to the passage of the solitary wave crest at the vertical section of the cylinder.

Figure 6.1: Sketch of mesh grid using OlaFlow.

6.2 Incident flow field

The assessment of the hydrodynamic forces acting on the horizontal cylinder proves to
be dependent on the correct generation and propagation of the incident solitary wave.
The suitability of the incident flow field is here checked in terms of generation of the
solitary waves by the piston-type wavemaker and of the values of surface elevation and
kinematic field in correspondence with the vertical axis of the cylinder.

With reference to the representative experimental test no. 14A (see Tab. 4.1, e/D =
1), the experimental horizontal displacement of the paddle deduced from the ultrasonic
sensor located behind it is compared with the reference analytical solution given by Eq.
2.10. Note that the time tX = 0 corresponds to a wavemaker displacement, X = S/2.
An overall good agreement between experimental and analytical displacement can be
observed in Fig. 6.2. The time law of the piston is forced in the SPH and in OlaFlow
by discretizing the analytical solution with the numerical time step.
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Figure 6.2: Time law of horizontal displacement of wavemaker, X: comparison between analytical
solution and experiments (test no. 14A)

Fig. 6.3 shows the comparison between the analytical solution given by Eq. 2.2, the
experimental and SPH numerical values of the surface elevation at the vertical axis of
the cylinder (test no. 14A).

Figure 6.3: Time variation of surface elevation, η, in correspondence with the vertical axis of the cylin-
der: comparison between analytical solution, experiments and SPH (test no. 14A)

A comparison between the surface elevation given by the OlaFlow model, the ana-
lytical solution and the experimental values are shown in Fig. 6.4 (test no. 30E).

A general agreement between the approaches in terms of shape and magnitude of
the incident solitary wave can be noticed. For both experimental and numerical data,
the occurrence of spurious trailing waves, due to the instantaneous truncation in the
time law of the paddle motion, were minimized at values within 3% of the incident
wave amplitude for both crests and troughs and in any case lower than the critical
threshold of 5% suggested by Guizien and Barthélemy [32]. For the mentioned test no.
14A, Fig. 6.5 shows the comparison between analytical solution, experiments and SPH
regarding the time history of the undisturbed kinematic field in correspondence with
the transversal axis of the cylinder.

Starting from surface elevations displayed in the previous Fig. 6.3, the three so-
lutions are deduced from the application of the Eqs. 2.6 in which aH and aV are
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Figure 6.4: Time variation of surface elevation, η, in correspondence with the vertical axis of the cylin-
der: comparison between analytical solution, experiments and OlaFlow (test no. 30E)

Figure 6.5: Time variation of free stream kinematic field at the transversal axis of the cylinder: compar-
ison between analytical solution, experiments and SPH (test no. 14A). (a) Horizontal velocity, u; (b)
horizontal acceleration, aH ; (c) vertical acceleration, aV .

respectively derived from u and v. The specific depth (z = D/2) is chosen since the
semi-analytical Morison and transverse approaches depend on the kinematic field at
this location (see Eqs. 3.6 and 3.7). The same approach is used for the OlaFlow model
and for the other four values of e/D, and a comparison between the analytical solution,
the experiments and OlaFlow is shown in Fig. 6.6 for a representative test case (test no.
30E). The horizontal velocity u is highlighted in Figs. 6.5a and 6.6a where its shape
follows η. The horizontal acceleration, aH , presents equal positive and negative peaks
(Figs. 6.5b 6.6b), while the vertical acceleration, aV , presents a double positive peak
and a greater negative one (Figs. 6.5c 6.6c). The main aim of this analysis is to high-
light the shape of u, aH and aV and how they influence the consequent feature of the
experimental and numerical solitary wave loads in both direction as a function of the
considered range ofA/d. The importance of the kinematic field will also be highlighted
in the application of semi-empirical force models in which the different horizontal and
vertical force components prove to be directly proportional to the shapes of u, aH and
aV . The general accordance observed in Figs. 6.3 and 6.4 for η can be also observed for
the kinematics at the cylinder apart a small deviation of the experimental and numerical
free stream kinematics with respect to the analytical solutions during the decay phase.
This allows for the possibility to adopt the free stream kinematic field to calibrate the
hydrodynamic coefficients in the Morison and transverse schemes as well as to apply
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Figure 6.6: Time variation of free stream kinematic field at the transversal axis of the cylinder: compar-
ison between analytical solution, experiments and OlaFlow (test no. 30E). (a) Horizontal velocity,
u; (b) horizontal acceleration, aH ; (c) vertical acceleration, aV .

it to reproduce the performed experimental and numerical tests in a simplified way. It
can be noticed that the suitability of Eq. 2.6 is also checked at the transversal axis of
the cylinder by using SPH and OlaFlow without the presence of the involved structure.

6.3 Hydrodynamic forces

In this section the experimental and numerical forces will be compared and analyzed.
In particular, in the first subparagraph, the comparison between SPH and experiments
in the case of e/D = 1 will be presented. Then, for the other four depths (e/D = 0.5,
e/D = 0.25, e/D = 0.1 and e/D = 0) the comparison between the OlaFlow model and
the experimental values will be showed.

6.3.1 Experimental and SPH forces - e/D = 1

The time variation of the solitary wave-induced forces acting on the horizontal cylinder
from the analyzed laboratory tests and SPH simulations in the case where e/D = 1 is
here illustrated. As presented in Fig. 6.7, two experimental and numerical test cases
are taken into account. The first one refers to a smaller wave attack (test no. 1A, A =
0.032 m and T = 4.10 s), while the second one is characterized by a greater wave attack
(test no. 14A, A = 0.071 m and T = 3.21 s). The agreement between experiments and
SPH is quite satisfactory on the magnitude and the related phase shift of the maximum
loads in both cases, particularly for the higher wave attack. It can be noticed that the
maximum peak of the horizontal force is greater than the vertical one, revealing that
the cylinder is substantially subjected to the action of the forward motion of the solitary
wave for e/D = 1. With reference to the wave crest at the cylinder section highlighted
as vertical dashed lines in Fig. 6.7, the positive peak of the horizontal force is back
shifted, while the negative one is forward shifted. The maximum peaks of FH and
FV tend to the maximum values of aH and aV , respectively. In particular, the lower
wave attack shows these peaks much close to aH and aV . Thus, the inertia component
dominates the characteristics of the horizontal and vertical wave forces in the present
range of A/d. Indeed, the shapes of the total wave loads tend to follow those related to
the undisturbed accelerations at the cylinder (see Fig. 6.5), with smaller contributions
given by the drag and the lift forces. In particular, the drag component tends to reduce
the negative peak of the horizontal force, while the lift one leads to a slight decrease of
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the maximum negative peak. These findings are strictly linked to what appears when
regular or irregular waves interact with horizontal cylinders in a similar range of the
parameter KC in which the inertia components strongly influence the characteristics
of the total forces (e.g., [69] [6] [7]). The weight of the different force components will
be better analyzed through the successive application of the semi-empirical equations
allowing to reconstruct the components acting on both directions.

Figure 6.7: Time variation of experimental and numerical hydrodynamic forces, FH and FV (e/D = 1).
(a) Horizontal force (test no. 1A); (b) vertical force (test no. 1A); (c) horizontal force (test no. 14A);
(d) vertical force (test no. 14A).

Considering the whole experimental and numerical dataset (Tab. 4.1, e/D = 1), the
positive and negative maximum horizontal, FHmax,p and FHmax,n, and vertical, FV max,p
and FV max,n, forces as a function of A/d are respectively plotted in Figs. 6.8a and 6.8b.
The force peaks are respectively normalized with respect to the maximum (positive)
peak of the horizontal force, FHmax*, and the maximum (negative) peak of the vertical
force, FV max*. In the overall good agreement between the laboratory tests and SPH,
it is possible to observe higher experimental values of FHmax,p if compared to the cor-
responding numerical ones and higher numerical values of FHmax,n compared to the
corresponding experimental ones. It has been observed that the first positive peaks of
the vertical force are slightly greater than the second ones and therefore considered in
the present analysis. The positive and negative peaks in both directions increase pro-
portionally to A/d with a greater variation for higher wave amplitudes. In the analyzed
range of A/d, FHmax,p shows a general increase of 72% and FHmax,n of 24%, while
FV max,p and FV max,n also growth of about 50% and 92%, respectively. The successive
Fig. 6.8c illustrates the weight of the maximum vertical force with respect to the hori-
zontal one as a function ofA/d. With reference to FHmax,p, the contribution of FV max,n
ranges from 14% for smaller A/d to 27% for larger A/d. A better-defined trend can be
noticed by the SPH results.

An additional analysis to check the observed features of the total wave loads was
carried out in terms of horizontal and vertical forces acting on each half part of the
cylinder. Laboratory tests were considered to analyze the features of the wave forces in
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Figure 6.8: Maximum positive and negative peaks of experimental and numerical hydrodynamic forces
vs. A/d (e/D = 1). (a) horizontal force; (b) vertical force; (c) weight of vertical force with respect to
horizontal one.

this condition. As shown in Fig. 6.9a, the horizontal force, FH , acting on the cylinder
can be given by the difference between the horizontal component acting on the wave
beaten half-cylinder A, FHA, and that related to the sheltered half-cylinder B, FHB. The
pressure transducers are numbered from 1 to 6 on the wave beaten half-cylinder A and
from 7 to 12 on the sheltered half-cylinder B. On the basis of the experimental pressure
sensors belonging to each half-cylinder, the values of FHA and FHB are calculated as:


FHA = a1 (∆p1 + ∆p6) + a2 (∆p2 + ∆p5) + a3 (∆p3 + ∆p4)

FHB = a1 (∆p7 + ∆p12) + a2 (∆p8 + ∆p11) + a3 (∆p9 + ∆p10)

(6.1)

Fig. 6.9b highlights the time variation of the experimental horizontal forces on the
half-cylinders, FHA and FHB, for the tests no. 1A and 14A. The forces are plotted with
the respect to the maximum force, Fmax, given by test no. 14A. With respect to the oc-
currence of the wave crest centered at t = 0, the magnitude of the peaks is back shifted
for the half-cylinder A and forward shifted for the half-cylinder B. In the expected
time shift, a small reduction of the maximum value of the horizontal force compo-
nent appears. This effect is given by the resistance offered by the cylindrical body to
the incoming wave pressure field (i.e. the appearing of a drag force component and
possible additional effects induced by the wave reflection for the presence of the solid
obstacle and the occurrence of trailing waves at the free surface). The resulting wave
loads deviate therefore from a fully inertia regime, where only a phase shift should be
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noticed between FHA and FHB. Indeed, the inertia load is dependent on the horizontal
acceleration whose shape is anti-symmetrical compared to t = 0 (i.e. equal positive and
negative peaks). The vertical force, FV , can be conversely represented by the differ-
ence between the vertical component acting on the lower half-cylinder A, FV A, and that
related to the upper half-cylinder B, FHB. Following the image of Fig. 6.9c where the
pressure transducers are numbered from 10 to 3 on the lower half-cylinder A and from
4 to 9 on the upper half-cylinder B, FV A and FV B are given by:


FV A = a1 (∆p3 + ∆p10) + a2 (∆p2 + ∆p11) + a3 (∆p1 + ∆p12)

FV B = a1 (∆p4 + ∆p9) + a2 (∆p5 + ∆p8) + a3 (∆p6 + ∆p7)

(6.2)

The time history of FV A and FV B at the semi-cylinders is shown in Fig. 6.9d for the
tests no. 1A and 14A deduced by laboratory experiments. In this case, the deviation
from a pure inertia load appearing along the depth is lower than that noticed for FH .
The observed small increase and forward shift of the peak force when passing from
FV A to FV B can be related to the contribution of the lift force acting towards the free
surface.

(a)

(c)

(b)

(d)

Figure 6.9: (a) Sketch of the half-cylinders A (blue) and B (cyan) for calculating the horizontal forces.
(b) Time variation of the experimental horizontal forces on the half-cylinders, FHA and FHB , for
the experimental tests no. 1A and 14A. (c) Sketch of the half-cylinders A (blue) and B (cyan) for
calculating the vertical forces. (d) Time variation of the experimental vertical forces on the half-
cylinders, FV A and FV B , for the experimental tests no. 1A and 14A.

The occurrence of drag and lift forces is linked to the formation of vortex patterns
behind the cylinder and the consequent deviation from a pure inertial field instead char-
acterized by a potential flow. An insight on the features of the flow field generated by
a solitary wave at the horizontal cylinder is given through four significant time instants
of the SPH simulations for numerical tests no. 1A and 14A. As highlighted in Fig.
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6.10, the selected instants for the involved two cases refer to the passage of the solitary
wave crest at the vertical section of the cylinder (t = 0), to the central part (t = 0.7 s)
and to the final part (t = 1.5 s) of the descending phase of η. The last instant t = 2.8 s
is representative of the complete passage of the solitary wave across the cylinder. The
values of η are represented with the respect the maximum wave amplitude, Amax, given
by test no. 14A.

Figure 6.10: Detail of the surface elevation, η, for numerical tests no. 1A and 14A (significant time
instants adopted for SPH simulations are highlighted by vertical dashed lines).

9 9.1 9.2 9.3 9.4

Figure 6.11: SPH simulations of vorticity field, ω, and associate streamlines near the cylinder for nu-
merical test no. 1A at t = 0 (a), 0.7 s (b), 1.5 s (c) and 2.8 s (d).

With reference to the selected time instants, Figs. 6.11 and 6.12 describe the SPH
simulations of the vorticity field, ω, and the streamlines around the cylinder for test
no. 1A with KC = 4.82 and Re = 1.81*104 and no. 14A with KC = 7.81 and Re =
3.74*104, respectively. Note that in Figs. 6.11 and 6.12 and in the successive Fig. 6.13
the values of ω are converted to unity by D/c.

This specific location of the cylinder at a half water depth (resulting e/D equal
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(a) (b)

(c) (d)

Figure 6.12: SPH simulations of vorticity field, ω, and associate streamlines near the cylinder for nu-
merical test no. 14A at t = 0 (a), 0.7 s (b), 1.5 s (c) and 2.8 s (d).

to 1) has not been investigated in literature unless that of the numerical simulations
performed by Lin and Liao [43]. However, in this study, the cylinder was set close to
the bottom and therefore the flow evolution was strongly affected by its presence, with
a resulting different near field and magnitude of horizontal and vertical forces. For test
no. 1A characterized by a lower A, a deviation from the irrotational flow due to the
shear layer at the upper and the lower side of the cylinder was noticed at the passage
of the crest of the solitary wave for t = 0 (Fig. 6.11a). The shear layer at both sides is
characterized by a strong clockwise (negative) and anti-clockwise (positive) vorticity.
At t = 0.7 s, the mentioned shear layer has rolled up inducing a primary lee-wake vortex
behind the structure and, for the interaction with the incident flow at the lower side, a
secondary vortex (Fig. 6.11b). Owing to the shape of the solitary wave, the vortex
in clockwise direction grows larger than the other in anti-clockwise direction. These
vortices are then progressively convected far from the cylinder. At t = 1.5 s, a growth
of the two vortices appears in a wider region behind the cylinder (Fig. 6.11c). At t =
2.8 s, the secondary vortex disappears while the primary one grows towards the free
surface and generally in the traverse direction (Fig. 6.11d). With reference to the test
no. 14A defined by a higher A, a just-formed primary vortex occurs behind the upper
side of the cylinder at the passage of the wave crest at its vertical section (Fig. 6.12a).
At t = 0.7 s, the higher incident flow field yields the growth of the primary vortex and
the arising of a secondary vortex close to the lower part of the cylinder (Fig. 6.12b), the
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amplitudes of which are higher than that observed for the test no. 1A (see Fig. 6.11b).
The resulting flow motion is directed towards the bottom because of the higher incident
motion. The subsequent time instant t = 1.5 s leads to a progressive increasing of the
size of the couple of counter-rotating cells covering the water depth behind the structure
where the lower one tends to interact with the bottom channel (Fig. 6.12c). The final
frame representing t = 2.8 s shows a similar feature of the previous time instant except
for a more significant interaction of the vortices with the bottom and the free surface
(Fig. 6.12d). With respect to the test no. 1A, the vortices are generally convected in
a downstream direction. The pair of asymmetric vortices with a successive shedding
regime highlighted for the two tests shows similarities with the case of regular waves
for a similar KC range (e.g., [70]). In the investigated range of Re of order of 104,
the generated wake proves to be completely turbulent and a laminar boundary layer
separation occurs in subcritical flow conditions (e.g., [69]).

Figure 6.13: Time evolution of maximum positive, ω+, and negative, ω−, vorticity around the circular
cylinder for numerical tests no. 1A and 14A.

However, the passage of a unique wave at the cylinder does not give the occurrence
of another vortices in an alternative manner as conversely appears in the presence of a
continuous flow, i.e. steady currents and regular or irregular wave trains. The current
couple of vortices tends progressively to decrease after the passage of the solitary wave
over the cylinder with a dissipation mechanism depending on the magnitude of incident
wave motion. This feature is highlighted in Figs. 6.13a and 6.13b in which the time
variation of maximum positive, ω+, and negative, ω−, vorticity is displayed for the
analyzed tests no. 1A and 14A, respectively. A rectangular control section starting
from the free side of the cylinder until 0.3 m behind it was considered, i.e. the expected
zone where a significant amount of vorticity given the wave-cylinder interaction tends
to grow and successively decay. Positive and negative peaks of maximum vorticity
occurring respectively at the lower and upper side of the cylinder are very close to the
passage of the wave crest, represented by vertical dashed line at t = 0, and then related
to the greatest horizontal velocity. This means that the force components (i.e. drag and
lift) due to the resistance offered by the cylindrical body are also maximum. Moreover,
it is noticed that the peak of ω− is slightly higher than the corresponding value of
ω+. For test no. 14A characterized by higher wave amplitude, the secondary peak of
maximum ω+ and ω− is related to the occurrence of relevant vorticity just behind the
cylinder when the two lee-wake vortex patterns tend to move far from it, as illustrated
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in Fig. 6.12c.

6.3.2 Experimental and OlaFlow forces - e/D = 0.5

The time history of solitary wave loads acting on the horizontal cylinder, in the case
where the gap-to-diameter ratio is equal to 0.5, is analyzed in this subsection. In par-
ticular, Fig. 6.14 highlights the experimental and OlaFlow values of the horizontal and
vertical hydrodynamic forces for the selected tests no. 6B and 31B (see Tab. 4.2),
respectively.

Figure 6.14: Time variation of experimental and numerical hydrodynamic forces, FH and FV (e/D =
0.5). (a) Horizontal force (test no. 6B); (b) vertical force (test no. 6B); (c) horizontal force (test no.
31B); (d) vertical force (test no. 31B).

The time variation of the horizontal force is comparable with the previous case an-
alyzed (e/D = 1), while the time variation of the vertical force is slightly different
and presents a second positive peak greater than the first one. The agreement between
the experiments and the numerical simulations of the horizontal hydrodynamic force is
good for both examined tests (Fig. 6.14a, Fig. 6.14c). Some differences can be noticed
in the vertical force in terms of peaks and associate phase shifts, particularly for the
lower wave attack (Fig. 6.14b). Similarity to the case of e/D = 1, the maximum peak
of the horizontal force is greater than the vertical one and is back shifted with respect
to the wave crest. On the contrary, the maximum peak of the vertical force is forward
shifted with respect to the solitary wave crest. Considering the whole experimental and
OlaFlow dataset (Tab. 4.2, e/D = 0.5), the positive and negative maximum horizontal,
FHmax,p and FHmax,n, and vertical, FV max,p and FV max,n, forces as a function of A/d
are respectively plotted in Figs. 6.15a and 6.15b. The force peaks are respectively nor-
malized with respect to the maximum peak of the horizontal force, FHmax*, and the
maximum peak of the vertical force, FV max*. The Figure 6.15a shows a good agree-
ment between the laboratory and numerical tests for FHmax,p. With reference to Fig.
6.15b, it is possible observe a little difference between the experimental and numerical
positive peak of the vertical force, especially for the highest wave attacks. Also in this
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case (e/D = 0.5), the positive and negative peaks of the forces increase proportionally
to A/d. As highlighted in Fig. 6.15c, the weight of the maximum vertical force with
respect to the horizontal one ranges from 5% for smaller A/d to 67% for the larger
A/d. The experimental weight of the maximum vertical force is slightly lower respect
the numerical one and Fig. 6.15c illustrates this little discrepancy.

Figure 6.15: Maximum positive and negative peaks of experimental and OlaFlow hydrodynamic forces
vs. A/d (e/D = 0.5). (a) horizontal force; (b) vertical force; (c) weight of vertical force with respect
to horizontal one.

6.3.3 Experimental and OlaFlow forces - e/D = 0.25

In this subsection the time variation of the solitary wave-induced forces acting on the
horizontal cylinder from the analyzed laboratory tests and OlaFlow simulations in the
case where e/D = 0.25 is illustrated. Along the lines of the previous depth, a com-
parison between the experimental and Olaflow forces is shown in Fig. 6.16 for two
representative test cases (see Tab. 4.3, test no. 7C and 28C). The difference between
experiments and OlaFlow is really small on the magnitude and the related phase shift
of the maximum forces in both cases. Some differences appear for the lower negative
peaks. The maximum peak of the horizontal force is greater than the vertical one al-
though in the greater wave attack this difference is less evident (Fig. 6.16d). Like in the
other different depths, the maximum peak of the horizontal force is back shifted respect
the wave crest. The maximum peak of the vertical force is forward shifted similarly to
the case where e/D= 0.5.
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Figure 6.16: Time variation of experimental and numerical hydrodynamic forces, FH and FV (e/D =
0.25). (a) Horizontal force (test no. 7C); (b) vertical force (test no. 7C); (c) horizontal force (test no.
28C); (d) vertical force (test no. 28C).

The comparison for the whole dataset of e/D = 0.25 in terms of positive and nega-
tive maximum horizontal force, FHmax,p and FHmax,n, and vertical ones, FV max,p and
FV max,n, as a function of A/d are respectively shown in Fig. 6.17. The force peaks are
normalized with respect to the maximum peak of the horizontal force, FHmax* (Fig.
6.17a) and the maximum peak of the vertical force, FV max* (Fig. 6.17b). In the over-
all good agreement between the laboratory tests and OlaFlow, it is possible to observe
slightly higher experimental values of FHmax,p if compared to the corresponding nu-
merical ones and higher numerical values of FHmax,n compared to the corresponding
experimental ones. Concerning the vertical peaks, the differences between experiments
and simulations are less evident if compared to the horizontal ones. The positive and
negative peaks in both directions increase proportionally to A/d with a greater vari-
ation for higher wave amplitudes. The value of FHmax,p shows a general increase of
63% and FHmax,n of 62%, while FV max,p and FV max,n also growth of about 77% and
73%. The weight of the FV max,p with respect to FHmax,p, like showed in Fig. 6.17c,
ranges between 40% and 100%, i.e. FHmax,p about equal to FV max,p for the greater
wave attacks.
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Figure 6.17: Maximum positive and negative peaks of experimental and OlaFlow hydrodynamic forces
vs. A/d (e/D = 0.25). (a) horizontal force; (b) vertical force; (c) weight of vertical force with respect
to horizontal one.

6.3.4 Experimental and OlaFlow forces - e/D = 0.1

The comparisons between the time variation of the hydrodynamic forces acting on the
horizontal cylinder from the analyzed laboratory tests and OlaFlow simulations in the
case where e/D = 0.1 are plotted in Fig. 6.18 for tests 6D and 29D.

The horizontal force changes its magnitude in a similar way to the previous cases and
also in this situation the largest positive peak is back shifted with respect to the wave
crest. The maximum peak of the vertical force is slightly forward shifted with respect to
the solitary wave crest. The agreement between the experimental and numerical values
is satisfactory. The positive and negative peaks of the horizontal and vertical forces
in the present case are shown respectively in Figs. 6.19a and b. The force peaks are
normalized with respect to the maximum peak of the horizontal force, FHmax*, and the
maximum peak of the vertical force, FV max*. Also for this gap-to-diameter ratio, the
force peaks increase with the increasing of the wave amplitude. In the present range
of A/d, the value of FHmax,p shows an increase of 61% and FHmax,n of 51%, while
FV max,p and FV max,n also growth of about 71% and 57%, respectively. Fig. 6.17c
highlights the weight of the horizontal force in relation to the vertical one. For this
specific depth, it is possible to observe that the peaks of the vertical force are greater
with respect to the horizontal ones for the higher wave amplitudes (A/d > 0.125) while
are lower for A/d < 0.125.
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Figure 6.18: Time variation of experimental and numerical hydrodynamic forces, FH and FV (e/D =
0.1). (a) Horizontal force (test no. 6D); (b) vertical force (test no. 6D); (c) horizontal force (test no.
29D); (d) vertical force (test no. 29D).

Figure 6.19: Maximum positive and negative peaks of experimental and OlaFlow hydrodynamic forces
vs. A/d (e/D = 0.1). (a) horizontal force; (b) vertical force; (c) weight of vertical force with respect
to horizontal one.

63



6.3. Hydrodynamic forces

6.3.5 Experimental and OlaFlow forces - e/D = 0

In this section, the time history of the solitary wave loads acting on the bottom-mounted
cylinder deduced from the experimental and numerical tests is analyzed. As previously
seen for the other depths, two reference test cases characterized by a different wave
amplitude and period are considered. Figure 6.20 highlights the experimental and nu-
merical values of the horizontal and vertical hydrodynamic forces induced by solitary
waves for tests 5E and 30E, respectively.

Figure 6.20: Time variation of experimental and numerical hydrodynamic forces, FH and FV (e/D =
0). (a) Horizontal force (test no. 5E); (b) vertical force (test no. 5E); (c) horizontal force (test no.
30E); (d) vertical force (test no. 30E).

It is interesting to observe that, in terms of maximum peaks, FH is slightly greater
than FV for test number 5E (lower solitary wave), while FV > FH for test number 30E
(higher solitary wave). Moreover, a prevalence of positive values of the forces can be
noticed, revealing that the cylinder is substantially subjected to the coupled action of
a forward motion in the direction of solitary wave propagation and a lift one towards
the free surface. The above findings are substantially in agreement with experimental
observations related to the interaction between regular or random waves and cylinders
placed on the bed when the parameter KC is considered (e.g., [49, 55]). It can be
observed that the shapes of FH generally follow those related to aH , with a less relevant
contribution of the drag force related to the decreasing of the negative peak of FH
and the forward shift of the positive peak of FH . Apart a small contribution of the
vertical inertia component for low values of FV , the shape of the vertical load, for the
reference tests no. 5E and 30E, follows that related to the horizontal velocity where
the peak appears very close to the solitary wave crest. This situation arises when an
external flow interacts with a bottom-mounted cylinder in which the lift component
dominates the features of FV (e.g., [7, 14]). The occurrence of drag and lift forces will
be better highlighted when Morison and transverse semi-empirical schemes are applied.
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However, it is important to notice that these contribution are linked to the formation of
vortex patterns around the cylinder and the consequent deviation from a pure inertial
field instead characterized by a potential flow (e.g., [25, 43]).

Taking into account all experimental tests, the positive and negative maximum hori-
zontal forces (FHmax,p and FHmax,n) and the positive maximum vertical forces (FV max)
as a function of A/d are respectively shown in Fig. 6.21. Note that these peaks are
respectively normalized with respect to the maximum peak of the horizontal force,
FHmax*, and the maximum peak of the vertical force, FV max*. In general, the positive
peaks increase almost linearly with A/d, while the negative ones highlight a higher
variation for A/d > 0.15. The values of FHmax,n are lower than the positive ones and
those referring to FV max. It is interesting to note that, for A/d < 0.105, FHmax,p values
are slightly greater than FV max, while FV max values are greater than FHmax,p values for
A/d > 0.105 and, particularly, for high A/d (Fig. 6.21c).

Figure 6.21: Maximum positive and negative peaks of experimental and OlaFlow hydrodynamic forces
vs. A/d (e/D = 0). (a) horizontal force; (b) vertical force; (c) weight of vertical force with respect to
horizontal one.

6.4 Morison and transverse hydrodynamic coefficients

For practical applications, the calibration of semi-empirical formulas to evaluate wave
forces consists in the assessment of the hydrodynamic coefficients which represent
time-constant parameters representative of the flow field around the cylinder. In or-
der to minimize the differences between experimental and numerical forces and those
calculated by Morison and transverse schemes within the adopted wave period, vari-
ous methods for evaluating the hydrodynamic coefficients have been analyzed. On the
basis of the undisturbed kinematics (horizontal velocity, and horizontal and vertical ac-
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celeration) at the cylinder center and the hydrodynamic loads at the cylinder deduced
by laboratory tests and numerical simulations, in-line CD and CMH , and transverse,
CL and CMV , hydrodynamic coefficients have been calculated using the ordinary and
weighted least square method (e.g., [79]). In the weighted least square method, the
difference between the measured/simulated and the semi-empirical force is multiplied
by F k

H , with k a positive index. The resulting hydrodynamic coefficients CD and CMH

are calculated as:
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where KD = 1
2
ρD and KM = 1

4
πD2ρ.

Similarly, the expressions to determine the hydrodynamic coefficients CL and CMV

for the transverse formula read as:
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where KL = KD and KMV = KMH . Equations 6.3 and 6.4 recover the ordinary least
square approach by setting k = 0.

The performances of the time domain methods for calculating in-line and transverse
coefficients are checked by the Mean Square Error Percent (MSEP) obtained from the
comparison between the semi-empirical Morison and transverse forces with the refer-
ence experimental and numerical ones as follows:

MSEP =
1

N

N∑
i=1

(
F r
i − F s

i

F r
i

)2

(6.5)

where F s represents the generic semi-empirical force and F r is the generic experimen-
tal or numerical force, while N is the number of force values within the wave period
of the solitary wave. For engineering purposes, attention is paid to the maximum peak
of the wave forces and the related phase shifts, φ = 2πtmax/T , where tmax represents
the occurrence time of the maximum peak. Figs. 6.22, 6.23, 6.24, 6.25 and 6.26 show,
for any depth, the mean values of MSEP for all the experimental and numerical tests
calculated by the ordinary least square (OLS) and the weighted least square using k =
1 (WLS1), k = 2 (WLS2), k = 3 (WLS3) and k = 4 (WLS4). In particular, the MSEP
is calculated considering the positive and negative maximum peaks of the horizontal
force and the negative (for e/D = 1) or positive (for the other cases) maximum peaks
of the vertical force.
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Figure 6.22: Experimental and numerical Mean Square Error Percent (MSEP) through OLS, WLS1,
WLS2, WLS3 and WLS4 methods (e/D = 1). (a) Maximum positive horizontal force, FHmax,p; (b)
Maximum negative horizontal force, FHmax,n; (c) Maximum vertical force, FVmax; (d) Phase shift,
φ, associated with FHmax,p; (e) Phase shift, φ, associated with FHmax,n; (f) Phase shift, φ, associ-
ated with FVmax. OLS: ordinary least square; WLS: weighted least square.

Figure 6.23: Experimental and numerical Mean Square Error Percent (MSEP) through OLS, WLS1,
WLS2, WLS3 and WLS4 methods (e/D = 0.5). (a) Maximum positive horizontal force, FHmax,p;
(b) Maximum negative horizontal force, FHmax,n; (c) Maximum vertical force, FVmax; (d) Phase
shift, φ, associated with FHmax,p; (e) Phase shift, φ, associated with FHmax,n; (f) Phase shift, φ,
associated with FVmax. OLS: ordinary least square; WLS: weighted least square.
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Figure 6.24: Experimental and numerical Mean Square Error Percent (MSEP) through OLS, WLS1,
WLS2, WLS3 and WLS4 methods (e/D = 0.25). (a) Maximum positive horizontal force, FHmax,p;
(b) Maximum negative horizontal force, FHmax,n; (c) Maximum vertical force, FVmax; (d) Phase
shift, φ, associated with FHmax,p; (e) Phase shift, φ, associated with FHmax,n; (f) Phase shift, φ,
associated with FVmax. OLS: ordinary least square; WLS: weighted least square.

Figure 6.25: Experimental and numerical Mean Square Error Percent (MSEP) through OLS, WLS1,
WLS2, WLS3 and WLS4 methods (e/D = 0.1). (a) Maximum positive horizontal force, FHmax,p;
(b) Maximum negative horizontal force, FHmax,n; (c) Maximum vertical force, FVmax; (d) Phase
shift, φ, associated with FHmax,p; (e) Phase shift, φ, associated with FHmax,n; (f) Phase shift, φ,
associated with FVmax. OLS: ordinary least square; WLS: weighted least square.
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Figure 6.26: Experimental and numerical Mean Square Error Percent (MSEP) through OLS, WLS1,
WLS2, WLS3 and WLS4 methods (e/D = 0). (a) Maximum positive horizontal force, FHmax,p; (b)
Maximum negative horizontal force, FHmax,n; (c) Maximum vertical force, FVmax; (d) Phase shift,
φ, associated with FHmax,p; (e) Phase shift, φ, associated with FHmax,n; (f) Phase shift, φ, associ-
ated with FVmax. OLS: ordinary least square; WLS: weighted least square.

Taking into account for all the methods calibrated both experimentally and numeri-
cally, in the case of e/D = 1, the mean MSEP of maximum horizontal peaks is of the
order of 2% while that related to the maximum vertical peaks is less than approximately
15%. The mean MSEP linked to the time shifts of the horizontal and vertical loads are
respectively lower than 4% and 7%. On the other hand, the mean MSEP of horizontal
negative peaks and the related MSEP of the time shifts are greater, especially for the
value of k > 1. Specifically, Fig. 6.22b shows that the MSEP of FHmax,n can reach
about 90% while the MSEP of the phase shift of FHmax,n about 10% (Fig. 6.22e). Ob-
serving the histograms related to the case of e/D = 0.5 (Fig. 6.23), the mean MSEP
of the vertical force results slightly higher with respect to the previous case. The mean
MSEP of FHmax,p and FV max is respectively about 2% and 17% while that related to
phase time shift are respectively 4% and 31%. The mean error of the maximum nega-
tive horizontal force is equal to 84% considering both experimental and numerical data.
Fig. 6.24 represents the MSEP of the dataset related to case of e/D = 0.25. Here again,
the mean MSEP of positive horizontal peak is low (4%) and the vertical peak is more
than approximately 5%. The mean MSEP linked to the time shifts of the horizontal and
vertical loads is lower than 5%. The MSEP of FHmax,n (e/D = 0.25) results lower with
respect to the previous cases, in particular in the ordinary least square method and the
weighted least square method using k = 1, i.e. 11% and 20%, respectively. Similarly,
Fig. 6.25 shows, for e/D = 0.1, a low value of the mean MSEP of horizontal nega-
tive peaks (about 5%) for the methods calibrated numerically with OlaFlow and less
than approximately 20% for the experiments. The mean MSEP of FHmax,p and FV max
is respectively about 2% and 4%, while the mean MSEP linked to the time shifts of
the horizontal and vertical loads is respectively lower than 2% and 1%. In the last
case (cylinder at the bottom, i.e. e/D = 0), the mean MSEP of FHmax,p and FV max is
about 2%, while the mean MSEP linked to the time shifts of the horizontal and vertical
loads is lower than 3%. The maximum MSEP, like in the other depths, is related to
the FHmax,n and reaches values of 40% in the methods calibrated experimentally and
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about 10% for the numerical ones. Comparing the above methods for all the involved
depths of the horizontal cylinder, WLS1 provides the lowest values of MSEP among all
involved approaches and, therefore the related hydrodynamic coefficients are adopted
in the Morison and transverse formulas. The mean MSEP of the maximum peak of the
horizontal and vertical force is about 2%, while the mean MSEP calculated with the
OLS method reaches higher values (10%). Conversely, the mean MSEP of the FHmax,n
tends to grow as k increases. The weighted least square method with k = 1 represents
the best compromise and moreover allows a better estimate on the time variation of the
vertical force, as shown in the next section 6.5.

As mentioned in chapter 3, for the case of e/D = 0.25 and e/D = 0.1 the lift compo-
nent did not model the forward phase shift in the observed experimental and numerical
time series of the vertical loads. This is due to the fact that the canonical lift force (see
Eq. 3.7) is proportional to the horizontal velocity and then to the maximum surface
elevation of the solitary wave at the vertical section of the cylinder. The Eqs. 3.16 and
3.17 show respectively the new lift force formulation and the time interval between the
occurrence of the wave crest and that related to the peak of the observed lift force. The
lift hydrodynamic coefficient, CL, was then calculated considering this new formula-
tion. The relationship between the time shift, ts, and the different physical quantities
of the experimental and numerical tests is shown in Figs. 6.27 and 6.28 for e/D = 0.25
and e/D = 0.1, respectively. The resulting fitting curve shows a good agreement be-
tween experimental and OlaFlow simulations and particularly for e/D = 0.25, leading
that a very small time shift occurs for the adopted two approaches. For e/D = 0.25, the
value of the phase angle, φ, is given by a power law as follows:

φ = a1

(
d

A

)b1
(6.6)

where a1 and b1 are two empirical constant. Considering the numerical values, a1 =
0.166 and b1 = 0.613 with a correlation coefficient R2 = 0.976.

Figure 6.27: Experimental and numerical values of the time shift ts vs. Td/2Aπ (e/D = 0.25).

For e/D = 0.1, the phase angle varies linearly with respect to A and d as follows:

φ = a2
d

A
(6.7)
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where a2, the empirical constant, assumed the value of 0.025 for the OlaFlow dataset
with a correlation coefficient R2 = 0.933.

Figure 6.28: Experimental and numerical values of the time shift ts vs. Td/2Aπ (e/D = 0.1).

After the validation of the numerical hydrodynamic coefficients with the experimen-
tal ones, supplementary numerical simulations were performed to extend the range of
A/d. In the first case (e/D = 1), the dataset was expanded through six numerical tests
with higher A/d (0.2, 0.21, 0.22, 0.23, 0.24 and 0.25) and three with lower A/d (0.05,
0.06 and 0.07). Other two SPH tests were conducted to better cover the initial exper-
imental range and corresponding to A/d = 0.085 and 0.165, for a total number of 27
numerical tests performed. In the additional simulations, it was noticed that the flow
regime is still characterized by a couple of vortices behind the cylinder (as those in
Figs. 6.11 and 6.12), with a lower vorticity associated to smaller values of A/d that
suggests that drag and lift forces still persist. Similarly, also for the other four depths,
additional numerical simulations were performed with OlaFlow to enlarge the calcula-
tion range of the hydrodynamic coefficients. The new simulations, in the case of e/D =
0.5, present the follow values of A/d: 0.072, 0.077, 0.186, 0.199, 0.212, 0.223, 0.235
and 0.245. The third analyzed depth (e/D = 0.25) was enlarged through the following
values of the A/d: 0.062, 0.072, 0.186, 0.199, 0.212, 0.223 and 0.245. The additional
numerical tests, in the case of e/D = 0.1 present the following values of A/d: 0.056,
0.066, 0.077, 0.186, 0.198, 0.211, 0.223, 0.235 and 0.245. The last dataset, related to
the case in which the cylinder is placed on the bottom (e/D = 0), was expanded through
the following values of A/d: 0.061, 0.071, 0.205, 0.217, 0.227 and 0.248. Considering
all the five depths, 176 numerical simulations were performed. The upper limit of the
simulations is fixed at A/d = 0.25 because of the limitation of the relationship adopted
to determine the free stream kinematic field at the transversal axis of the cylinder (see
Eq. 2.6). For A/d > 0.25, the application of Eq. 2.6 leads to unphysical singularities
in the shape of the velocities and accelerations which influence the correct assessment
of the hydrodynamic forces using the Morison and transverse semi-empirical schemes
and makes it impossible a comparison with the numerical data. Values of A/d < 0.05
were not considered since the solitary waves have low amplitudes and very long waves
(i.e. L greater than 15 m) leading to the use of a very extended channel with a raising
of the computational effort to run the numerical simulations. However, the actual range
of A/d proves to be comparable with other literature investigations dealing with the
interaction between solitary waves and marine structures (e.g., [45], [39], [26]).
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On the basis of the results obtained by the numerical simulations and the experi-
mental investigation, Figs. 6.29, 6.30, 6.31, 6.32 and 6.33 show respectively the exper-
imental and numerical values of CD, CMH , CL and CMV in the Morison and transverse
semi-empirical equations as a function of A/d ranging from approximately 0.05 to
0.25.

Figure 6.29: Experimental and numerical hydrodynamic coefficients vs. A/d (e/D = 1). (a) CD; (b)
CMH ; (c) CL; (d) CMV .

The horizontal and vertical inertia and the lift coefficients in the case of e/D = 1
(6.29) highlight a general decreasing trend when A/d increases, while the drag coef-
ficient tends to increase up to approximately A/d = 0.17 with a corresponding CD =
0.9, followed by a progressive reduction. The values of CL range between about 0.01
and 0.6. As previously observed, the inertia components dominate the total forces in
the horizontal and vertical direction for the present range of A/d. When A/d increases,
the ratio between horizontal inertia and drag coefficients, CMH/CD oscillates from 2
to 6, while the ratio between vertical inertia and lift coefficients, CMV /CL, ranges be-
tween about 5 and 30, revealing that the lift force component is generally weak when
the cylinder is placed quite far from the bottom as in the present case. Maximum CMH

and CMV reach values respectively of up to 1.7 and 2.8 for low A/d and minimum
CMH and CMV tend both to be approximately to 1.2 for high A/d. More stable values
of CMH and CMV are observed for low A/d presuming that an asymptotic behavior of
the inertia coefficients should be reached. When A/d→0, the resulting fully inertial
field leads to a negligible contribution of drag and lift forces (e.g., [16] [69]). This
feature of the hydrodynamic coefficients can also be viewed in terms of KC in which
the trend of the coefficients is substantially the same of that represented using A/d
apart a larger scattering due to dependency on the apparent wave period. The param-
eter KC ranges from 3.3 to 9.4 considering all numerical tests, confirming that the
inertia components play the major role in assessing the total loads. This feature was
widely noticed in various experimental activities in the case of horizontal cylinders sub-
jected to regular or irregular waves where KC is taken as the representative parameter
for wave-cylinder interaction problems (e.g., [62]). In particular, the increasing and
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the successive decreasing of CD was noticed for regular and irregular waves by Juste-
sen [40] and Longoria et al. [44] with the maximum CD occurring at about KC = 10
which is slightly higher that the current analysis (KC = 8.5). The change in the trend of
CD can be deduced from the SPH simulations represented in Figs. 6.11 and 6.12. In the
former case (KC = 4.82) characteristic of the increasing trend of CD, the greater vortex
appearing behind the cylinder after the passage of the solitary wave crest tend progres-
sively to move with a predominant transverse direction. In the latter case (KC = 7.81)
representative of the initial decreasing trend of CD, the vortices seem to show a result-
ing movement in the direction of the flow motion. Although the passage of a unique
solitary wave at the cylinder is investigated here, the above results show some simi-
larities with the experimental evidences for regular waves by Sumer and Fredsoe [69]
regarding the occurrence of a transverse vortex street and a successive convection of the
vortices away from the cylinder when KC increases. The lowest value of KC = 3.3 is
very close to the critical threshold for regular waves fixed at 2.2 [62] and related to the
transition from the potential flow regime to the vortex shedding one. The decreasing
trend of CMH and CMV is comparable with that observed in the considered KC range
by several authors in the case of oscillatory flows (e.g., [16]). In the case of a horizontal
cylinder subjected to regular waves for e/D = 1 and comparable with the present e/D
= 1.075, experimental asymptotic values occurring for a potential flow characterized
by only inertia loads are CMH = 2.1 [62] and CMV = 2.2 [16]. The above values are
then slightly different than the mentioned present values for A/d = 0.05. The trend and
magnitude of CL is similar of that experimentally observed by Sumer et al. [70] at e/D
= 1.

Fig. 6.30 shows the comparison between the experimental and numerical values
of the hydrodynamic coefficients for e/D = 0.5. The horizontal inertia coefficients
highlight an overall decreasing trend when A/d increases, while the drag, lift and the
vertical inertia coefficients generally tend to increase. Specifically, CMV , for values of
A/d > 0.2, undergoes a progressive reduction while CD, for the lower values of A/d
(A/d < 0.1) tends to reduce. Observing the values of CL, the numerical coefficients
show higher values if compared to the experimental ones.
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Figure 6.30: Experimental and numerical hydrodynamic coefficients vs. A/d (e/D = 0.5). (a) CD; (b)
CMH ; (c) CL; (d) CMV .

The hydrodynamic coefficients calculated for the gap-to-diameter ratio e/D = 0.25
are shown in Fig. 6.31. The horizontal inertia coefficients tend to reduce with the
increasing of A/d. Although present some differences between experimental and nu-
merical coefficients, the vertical inertia coefficients decrease with the increasing of the
wave amplitude. The values of CD increase with decreasing of A/d, while the lift co-
efficient tends to increase up to approximately A/d = 0.16 with a corresponding value
of CL = 2, followed by a progressive reduction.

Figure 6.31: Experimental and numerical hydrodynamic coefficients vs. A/d (e/D = 0.25). (a) CD; (b)
CMH ; (c) CL; (d) CMV .
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Fig. 6.32 illustrates the comparison between the experimental and numerical hydro-
dynamic coefficients when the gap-to-diameter ratio is equal to 0.1. In this case, it is
possible to observe a little discrepancy between the experiments and OlaFlow for the
drag coefficient. The numerical values of CD tend to reduce with the increasing of A/d
while the experimental ones seem to increase. However, the difference in term of mag-
nitude is really low. The horizontal inertia coefficients, as well as for the other cases,
decrease with the increasing of A/d. For the lower A/d, CMH presents the maximum
value, that in this case is equal to 2.5. Regarding the vertical hydrodynamic coefficients,
Fig. 6.32c and Fig. 6.32d show an initial increasing of the value of the coefficients and,
for A/d > 0.12, a subsequent decreasing.

Figure 6.32: Experimental and numerical hydrodynamic coefficients vs. A/d (e/D = 0.1). (a) CD; (b)
CMH ; (c) CL; (d) CMV .

The experimental and numerical hydrodynamic coefficients for e/D = 0 are plot-
ted in Fig. 6.33. The values of CMH and CL show a general decreasing trend when
A/d increases. It can be observed that the stable trend of horizontal inertia coefficient
is particularly evident for the analyzed all the gap-to-diameter ratios. In addition, the
mean value of CMH tends to grow with the decreasing of the depth of the cylinder. In
this case, considering the numerical coefficients, CMH ranges from 3.1 to 2.4 unlike the
first case (e/D = 1) where CMH ranges from 1.7 to 1.2. The drag coefficients present a
different trend. Indeed, CD tends to grow when A/d increases. Observing the variation
of CD in the other depths, is possible to note that, on average, the trends are always
increasing. The vertical inertia coefficient presents a scattered trend which seems to
decrease for low values of A/d, while a increasing trend for higher wave amplitudes
can be noticed. However, CMV is the more scattered coefficient with the highest uncer-
tainty, even if the inertia force component has a small weight in calculating the vertical
load as compared to the lift load, as successively highlighted in the application of semi-
empirical force models (see section 6.5). RegardingCL, this coefficient shows a general
decreasing trend when A/d increases.
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Figure 6.33: Experimental and numerical hydrodynamic coefficients vs. A/d (e/D = 0). (a) CD; (b)
CMH ; (c) CL; (d) CMV .

6.5 Application of Morison and transverse equations

The features of Morison and transverse equations calibrated by experimental and nu-
merical hydrodynamic coefficients from the WLS1 method are here displayed in the
time domain to show the contribution of the different force components. For the rep-
resentative test case no. 14A (e/D = 1), Figs. 6.34a and 6.34b show respectively the
comparisons between the time history of the experimental and numerical horizontal
force, FH , and that calculated by the calibrated Morison scheme from Eq. 3.6 through
the corresponding inertia, FHI , and drag, FD, force components. Figs. 6.34c and 6.34d
describe respectively the comparisons between the time history of the experimental
vertical force, FV , and that calculated by the transverse scheme from Eq. 3.7 with
the related inertia, FV I , and lift, FL, force components. Note that in Fig. 6.34 and in
the following Figs. 6.36, 6.38, 6.40 and 6.42 the Morison and transverse schemes are
respectively represented by the symbols M and T.
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Figure 6.34: Time variation of hydrodynamic forces calculated by semi-empirical equations, experi-
ments and SPH (e/D = 1, test no. 14A). (a) Comparison between experimental FH and Morison
FDM , FHIM and FHM calibrated by experiments; (b) Comparison between numerical FH and
Morison FDM , FHIM and FHM calibrated by SPH; (c) Comparison between experimental FV

and transverse FLT , FV IT and FV T calibrated by experiments; (d) Comparison between numeri-
cal FV , and transverse FLT , FV IT and FV T calibrated by SPH.

A general good correspondence between semi-empirical equations vs. experiments
and SPH simulations is observed particularly for the maximum peak of the horizontal
force modeled by the Morison scheme. A less accurate modeling of the peaks and
the phase shift of the vertical force can be seen in the application of the transverse
equation. The occurrence of the maximum horizontal and vertical forces is given by
the prevalence of the inertia forces depending on the horizontal and vertical acceleration
with respect to the drag and lift ones related to the horizontal velocity. The horizontal
force positive peak is greater than the negative one and its shape tends to follow the free
stream horizontal acceleration at the cylinder. The vertical force shows an additional
positive peak due to the shape of the vertical acceleration involved in the expression
of the vertical inertia. Moreover, a higher negative peak of vertical force appears quite
close to the maximum vertical inertia. As highlighted by the first analysis of MSEP
(see Fig. 6.22), a discrepancy in the magnitude of negative peak is noticed by the semi-
empirical models in reproducing the horizontal force as well as an overall back shift in
the time series of the vertical one.

The values of FD, FHI , FL and FV I adopted to determine the total horizontal and
vertical loads using the calibrated Morison and transverse formulas through SPH are
also analyzed in terms of positive and negative peaks. In order to show the variation
of the force components, the above considered 27 SPH simulations deduced from a
more extended range of A/d and previously verified by laboratory tests are taken into
account. In addition, a more stable trend of the numerical results compared with the
laboratory ones has been observed. The considered four force components are weighted
with respect to the corresponding maximum peak of the semi-empirical horizontal and
vertical force in order to exhibit their specific contribution. This behavior is illustrated
in Fig. 6.35 as a function of A/d. It is evident that the peaks of the horizontal and
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vertical forces are principally influenced by those related to the inertia components.
The greater weight is related to lower A/d which is close to a fully inertia regime
generally encountered for low KC (e.g. [62]). Specifically, the weight of the positive
peak of horizontal inertia force is always higher that 70% in the studied values of A/d.
For low A/d, the mentioned weight proves to be higher than 90%. The progressive
deviation from a fully inertia regime can be noticed by analyzing the drag contribution
which represents 6% of the horizontal force for lower A/d until 50% of the horizontal
force for higher A/d. It is worth noting that the ratio between the peaks of the vertical
inertia component and the total vertical one is generally greater than 1 and reaches
values of up to 2. This result is driven by the positive contribution of lift force which
acts to reduce the maximum negative peak of vertical force compared to the inertia
one. The contribution of the lift force conversely shows an overall decreasing when
A/d increases, ranging from about 9% to 53% of the resulting vertical force. As shown
in Fig. 6.29, the tendencies of the force peaks generally reflect the features of the
hydrodynamic coefficients.

Figure 6.35: (a) Peaks of Morison force components deduced from experiments and SPH vs. A/d (e/D
= 1): drag FDmax and inertia FHImax; (b) Peaks of transverse force components deduced from
experiments and SPH vs. A/d (e/D = 1): lift FLmax and inertia FV Imax.

For a representative test case (test no. 31B) related to the case of e/D = 0.5, the
comparisons between the time history of the experimental and OlaFlow horizontal force
and that calculated by the calibrated Morison scheme through the corresponding inertia
and drag force components are shown in Figs. 6.36a and 6.36b. Figs. 6.36c and 6.36d
describe respectively the comparisons between the time history of the experimental
vertical force, and that calculated by the transverse scheme with the related inertia
and lift force components. A general good correspondence between semi-empirical
equations vs. experiments and OlaFlow simulations is observed particularly for the
horizontal force modeled by the Morison scheme. The maximum peak of the horizontal
force is well modeled for both cases. In addition, Fig. 6.36b indicates that there is a
good correspondence also in the case of the negative maximum peak of the numerical
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horizontal force. For this specific gap-to-diameter ratio (e/D = 0.5), the modeling
of the vertical force is less accurate. Anyway, the transverse model reproduces well
the peak of the vertical force which is the most important target for engineering aims.
Fig. 6.36c and Fig. 6.36d indicate that the comparison between experimental FV and
FV T is satisfactory for the positive and negative peak of the vertical force, while the
comparison between the numerical FV and FV T is satisfactory only for the positive
peak.

Figure 6.36: Time variation of hydrodynamic forces calculated by semi-empirical equations, experi-
ments and OlaFlow (e/D = 0.5, test no. 31B). (a) Comparison between experimental FH and Mori-
son FDM , FHIM and FHM calibrated by experiments; (b) Comparison between numerical FH

and Morison FDM , FHIM and FHM calibrated by OlaFlow; (c) Comparison between experimen-
tal FV and transverse FLT , FV IT and FV T calibrated by experiments; (d) Comparison between
numerical FV , and transverse FLT , FV IT and FV T calibrated by OlaFlow.

The 28 experimental tests (see Tab. 4.2) and the 39 OlaFlow simulations were an-
alyzed in order to calculate the variation of the force components. As in the previous
case, the four components are weighted with respect to the corresponding maximum
peak of the semi-empirical horizontal and vertical force in order to exhibit their specific
contribution. Fig. 6.37 illustrates the variation of the force components as a function
of A/d. The weight of the peak of the horizontal inertia tends to decrease from about
85% to 52% with the increasing of A/d. Differently, the weight of the peak of the drag
force tends to increase from 30% to 80% for the higher values of the wave amplitude.
For a value of A/d about equal to 0.18, the two force components of the horizontal
force are equal. It is worth noting that in Fig. 6.36a, related to a test case where A/d
= 0.175, the weight of the peak of the inertia force is slightly higher with respect to
the drag one. Indeed, for A/d > 0.18, the drag force overcomes the inertia one. As
regards the vertical force components, Fig. 6.36b reveals that the higher weight is gen-
erally due to the lift component. To represent in a correct way the peak of the vertical
force, the contribution of the vertical inertia is needed. So, the lift component reaches
this highest value to balance the highest value of the vertical inertia at the passage of
the solitary wave on the vertical section of the cylinder (t = 0). The little discrepancy
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in the experimental and vertical CL and the small difference between the time varia-
tion of the experimental and numerical FV produces some dissimilarities between the
experimental and numerical weight of FLmax.

Figure 6.37: (a) Peaks of Morison force components deduced from experiments and OlaFlow vs. A/d
(e/D = 0.5): drag FDmax and inertia FHImax ; (b) Peaks of transverse force components deduced
from experiments and OlaFlow vs. A/d (e/D = 0.5): lift FLmax and inertia FV Imax.

Similarly to the previous cases (e/D = 0.5 and 1), Figs. 6.38a and 6.38b illustrate
the comparisons between the time history of the experimental and OlaFlow horizontal
force and that calculated by the calibrated Morison scheme through the corresponding
inertia and drag force components for the test no. 28C (e/D = 0.25). For the same
test case, Figs. 6.38c and 6.38d show the comparisons between the time history of the
experimental and OlaFlow vertical force, and that calculated by the transverse scheme
with the related inertia and modified lift force components. As regards the horizontal
force, like in the previous case (see Figs. 6.36a and 6.36b), the Morison model is able to
well reproduce the time variation of FH . Differently, the transverse model, considering
the Eq. 3.7, does not correctly reproduce the time variation of the vertical force. For
this reason, like previously mentioned, a new formulation of lift force was proposed
(see Eq. 3.16). Indeed, observing the Figs. 6.38c and 6.36d a good correspondence
between the new semi-empirical equation and the experimental and numerical varia-
tion of the vertical force can be noticed. Except for the negative peak of the vertical
force, that however results very small, the comparison between the positive peaks of
the vertical force is very satisfactory using the modified lift force calibrated both ex-
perimentally and numerically. The occurrence of the maximum vertical force is given
by the prevalence of the lift force which is forward shifted with respect to the solitary
wave crest.
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Figure 6.38: Time variation of hydrodynamic forces calculated by semi-empirical equations, experi-
ments and OlaFlow (e/D = 0.25, test no. 28C). (a) Comparison between experimental FH and
Morison FDM , FHIM and FHM calibrated by experiments; (b) Comparison between numerical
FH and Morison FDM , FHIM and FHM calibrated by OlaFlow; (c) Comparison between ex-
perimental FV and transverse FLT , FV IT and FV T calibrated by experiments; (d) Comparison
between numerical FV , and transverse FLT , FV IT and FV T calibrated by OlaFlow.

Considering all the 28 experimental tests (see Tab. 4.3) and the 36 numerical sim-
ulations performed by the OlaFlow model, a comparison between the weight of the
different force components is shown in Fig. 6.39. The trends of the weight of the peak
of the different components of the horizontal force present a similar behavior to the
case of e/D = 0.5. The weight of FDmax with respect to FHmax tends to grow with
the increasing of A/d (from 35% to 80%), while the weight of FHImax with respect
to FHmax tends to decrease (from 82% to 50%). The two force components reach the
same magnitude for a value of A/d about equal to 0.16. As regards the peaks of the
vertical loads (Fig. 6.39b), the major role is linked to the maximum lift force, FLmax.
The lift component ranges from approximately 100% to 90% while the inertia compo-
nent ranges from 0% to 20%. It can be observed that the numerical trend is more stable
than the experimental one.
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Figure 6.39: (a) Peaks of Morison force components deduced from experiments and OlaFlow vs. A/d
(e/D = 0.25): drag FDmax and inertia FHImax; (b) Peaks of transverse force components deduced
from experiments and OlaFlow vs. A/d (e/D = 0.25): lift FLmax and inertia FV Imax.

For the case of e/D = 0.1, the Morison and transverse semi-empirical equations
calibrated by experimental and numerical values of the hydrodynamic coefficients are
displayed in the time domain to analyze the feature of the different force components.
Fig. 6.40, shows, for the representative test case no. 29D, how to change the drag,
the horizontal inertia, the lift and the vertical inertia at the passage of the solitary wave
on the horizontal cylinder. A good agreement between the semi-empirical equations
and the experimental and numerical simulations is noticed. With reference to the hor-
izontal positive peak, the difference between the FH and the FHM is negligible both
experimentally and numerically. For this test, the positive peak of the horizontal inertia
component results slightly higher with respect to the drag one. As concerns the vertical
force, Figs. 6.40c and 6.40d illustrate the application of the transverse model with the
new formulation of lift force. The vertical force mainly depends on the lift component
and the vertical inertia gives a very low contribution to model this load. As with the
other depths, the weight of the force components as a function of A/d is shown in Fig.
6.41. It is clear that the peaks of the horizontal inertia are higher compared to the drag
ones for almost the whole range of A/d. In particular, the peaks of the inertia force
tend to reduce (from 80% to 65%) with the increasing of the wave amplitude, while
the peaks of the drag force tend to increase (from 40% to 70%). Only for the higher
values of A/d, the drag component results slightly higher than the inertia one. The
weight of the vertical force component is displayed in Fig. 6.41b. The peaks of the
transverse force components deduced from experiments and the OlaFlow simulations
show a higher weight of the lift force for all the range of A/d. Specifically, the weight
of the lift peak ranges between about 100% to 60% while the weight of FV Imax ranges
from 0% to 40%. However, a reduction of the peaks of lift component and a consequent
rise of the maximum inertia force for A/d > 0.15 can be observed.
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Figure 6.40: Time variation of hydrodynamic forces calculated by semi-empirical equations, experi-
ments and OlaFlow (e/D = 0.1, test no. 29D). (a) Comparison between experimental FH and Mori-
son FDM , FHIM and FHM calibrated by experiments; (b) Comparison between numerical FH

and Morison FDM , FHIM and FHM calibrated by OlaFlow; (c) Comparison between experimen-
tal FV and transverse FLT , FV IT and FV T calibrated by experiments; (d) Comparison between
numerical FV , and transverse FLT , FV IT and FV T calibrated by OlaFlow.

Figure 6.41: (a) Peaks of Morison force components deduced from experiments and OlaFlow vs. A/d
(e/D = 0.1): drag FDmax and inertia FHImax; (b) Peaks of transverse force components deduced
from experiments and OlaFlow vs. A/d (e/D = 0.1): lift FLmax and inertia FV Imax.

On the basis of the previous investigations, also in the case where the cylinder is
placed on the bottom, the Morison and transverse semi-empirical equations are applied
to model the horizontal and vertical loads. The feature of the different force compo-
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nents in both the directions are shown in Fig. 6.42 for test number 30E. An overall
good agreement between semi-empirical methods, experiments and OlaFlow simula-
tions is noticed. This is evident particularly for the maximum positive peak of the
horizontal and vertical force modeled by the Morison and transverse scheme. It can
be noted that the horizontal force is dominated by the inertia contribution depending
on the undisturbed horizontal acceleration if compared to the drag, which is related to
the free stream horizontal velocity. The vertical force field is conversely dominated by
the lift force and the effect of the vertical inertia is linked to a lowering of the former
contribution to give the modeling of the vertical load. In general, the shape of the ver-
tical force follows that related to the ambient horizontal velocity in which the peak is
substantially in phase with the surface elevation. Owing to the presence of spurious
trailing waves, it is also possible to observe a low contribution of a positive vertical
load in its final part that is not modeled by the transverse scheme.

Figure 6.42: Time variation of hydrodynamic forces calculated by semi-empirical equations, experi-
ments and OlaFlow (e/D = 0, test no. 30E). (a) Comparison between experimental FH and Morison
FDM , FHIM and FHM calibrated by experiments; (b) Comparison between numerical FH and
Morison FDM , FHIM and FHM calibrated by OlaFlow; (c) Comparison between experimental
FV and transverse FLT , FV IT and FV T calibrated by experiments; (d) Comparison between nu-
merical FV , and transverse FLT , FV IT and FV T calibrated by OlaFlow.

For e/D = 0, the four force components, i.e., FD, FHI , FL, and FV I are analysed
in terms of positive and negative peaks like in the previous cases. As highlighted in
Figure 6.43 as a function of A/d, the force components are weighted with respect to
the corresponding maximum peak of the semi-empirical horizontal and vertical force.
For the peaks of horizontal forces (see Fig. 6.43a), the inertia component ranges about
from 90% for low A/d to 70% for high A/d, leading to a progressive reduction of an
inertia-dominated regime and a growth of the weight of the drag up to 55%. Paying
attention to the peaks of vertical loads (see Fig. 6.43b), a major role is linked to the
maximum lift force, FLmax. It can be observed that the ratio between the peaks of
the lift component and the total vertical one is generally greater than 1. The weight
of FV Imax compared to the maximum vertical force is quite low. The contribution
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exhibits a very small increase when A/d increases. Specifically, the values of FV Imax
range about from 1% to 9%.

Figure 6.43: (a) Peaks of Morison force components deduced from experiments and OlaFlow vs. A/d
(e/D = 0): drag FDmax and inertia FHImax; (b) Peaks of transverse force components deduced
from experiments and OlaFlow vs. A/d (e/D = 0): lift FLmax, inertia FV Imax.

6.6 Application of Gurnari and Filianoti equation

The solitary wave loads on a submerged horizontal circular cylinder are also studied
by comparing the new semi-analytical method proposed by Gurnari and Filianoti with
the experimental data. As mentioned in section 3.6.1, this formulation is based on the
concept that a solitary wave is subjected to a slowdown passing over the cylinder. To
apply the semi-analytical method, it is necessary to calibrate the horizontal hydrody-
namic force (see Eq. 3.8) by calculating the speed drop factor, Fr. The experimental
evaluation of Fr is possible considering the phase difference between the wave pres-
sures using a couple of points horizontally aligned. The speed drop factor is generally
defined as:

Fr =
c∆p

c∆p

(6.8)

The value of c∆p was deduced from the time series of surface elevations measured
by the wave gauges as a function of the phase shifts and the mutual spatial locations.
The obtained wave celerity in free stream conditions proved to be very close to the
theoretical value given by Eq. 2.1, with a relative mean error of about 2% for all tests.
With a reasonable approximation, the mentioned analytical expression of celerity was
then considered in evaluating the speed drop factors. However, a slight reduction of
c, probably due to the resistance offered by the side walls to the propagation of the
solitary wave along the plane channel, was observed. The speeds of dynamic pressures
propagating across the cylinder, c∆p, were evaluated considering the position of the six
couples of transducers (Fig. 4.5d) at the same water depth located at the front and rear
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side of the cylinder (1-12, 2-11, 3-10, 4-9, 5-8 and 6-7) and the related phase shift, ∆t,
given by the time series of recorded pressures. Owing to the variability of the speed
drop factor along the vertical section of the cylinder because of the different horizontal
distance of the mentioned couples of pressure sensors, the reference value of Fr for
each experimental test is determined as a weighted average over all sensor positions
with respect to cosβ. Under this assumption, the speed drop factor for the sensors
located at a greater distance have an higher weight in calculating the resulting value of
Fr with respect to the couple of sensors placed at a lower distance. This is for avoiding
very large speed drop factors due to the short phase shifts measured by the transducers
close to the upper and lower side of the cylinder. Since three couples of transducers are
placed at the same vertical position, the speed drop factor Fr results:

Fr =
cos π

12
(Fr3−10 + Fr4−9) + cosπ

4
(Fr2−11 + Fr5−8) + cos5π

12
(Fr1−12 + Fr6−7)

2
[
cos π

12
+ cosπ

4
+ cos5π

12

]
(6.9)

where the subscripts in the local values of Fr refer to the position of the transducers
illustrated in Fig. 4.5d.

The speed drop factor obtained with the procedure above explained is respectively
calculated for e/D = 1 and 0 and shown in Fig. 6.44 as a function of A/d. The
experimental values of Fr show a slight decreasing trend when A/d increases for both
cases. It is interesting to notice that the order of magnitude of Fr is comparable (on
average, slightly higher) with the values of inertia coefficient, CMH , in the Morison
equation obtained by the same experimental dataset and numerical simulations.

Figure 6.44: Experimental speed drop factor Fr vs. A/d. (a) e/D = 1, (b) e/D = 0.

After the calibration of the coefficient Fr, it is possible to apply the Gurnari and
Filianoti semi-analytical model (GF2017). For two representative test cases (14A and
30E), the comparisons between the experimental horizontal force and the GF2017 equa-
tion (3.14, 3.15) are shown in Fig. 6.46. The semi-analytical model adequately follows
the trend of the experimental force only for the positive values. Indeed, the experi-
mental force exhibits a marked difference between maximum and minimum, with the
latter systematically lower (in absolute value) and flatter than the first. Considering the
overall dynamics, we can observe that all the positive half-wave is well interpreted by
the model, while, concerning the half-negative, we can observe that only the duration
is comparable, being the minimum force about 4 times greater (in absolute value) than
the measured value in the first case (Fig. 6.46a) and 2 times greater in the second case
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(Fig. 6.46b). However, the above results can be considered satisfactory by the engi-
neering viewpoint since the maximum horizontal peak is well modeled by the GF2017
equation.

Figure 6.45: Time variation of the experimental horizontal force and the GF2017 model. (a) test no.
14A, e/D = 1, (b) test no. 30E, e/D = 0.

A comparison in terms of the maximum values of the horizontal force FH between
the GF2017 solution and the experiments is shown in Fig. 6.46. The values obtained
in the wave flume are represented by the blue dots, while the values obtained by means
of the semi-analytical model are represented by orange dots. The peaks of the present
semi-empirical method were calculated using as an input the weighted average value of
speed drop factor Fr obtained experimentally by Eq. 6.44 for a given value ofA/d. The
force peaks are normalized with respect to the maximum positive peak of the horizon-
tal force, FHmax∗. The general agreement is beyond initial expectations considering
the simplicity of the model. In addition, to highlight the little discrepancy in term of
magnitude between the experimental values and the analytical solution, Figs. 6.46c and
6.46d show the relative error for both the analyzed cases (e/D = 1 and e/D = 0). The
semi-analytical model GF2017 produces a good estimate of the positive peak with a
mean relative error of 10% in the case of e/D = 1 and a mean error of 12% in the case
where the cylinder is placed on the bottom. Although the model tends to overestimate
the negative peak of the horizontal force, this simplified method can be used alterna-
tively to Morison to calculate with a good accuracy the positive peak of the horizontal
force. Moreover, to apply the GF2017 it is necessary to calibrate only one coefficient
which compared to the two coefficients of Morison equation represents an advantage.
Nevertheless, this semi-analytical solution is suitable only to estimate the horizontal
force and is not applicable to calculate the vertical one. As previously observed, when
the cylinder is placed at half water depth, the weight of vertical force with respect to
horizontal one reaches about 30% for the higher wave attacks. Reducing the distance
between the bottom of the flume and the position of the cylinder, the vertical component
tends to grow and, for the higher values of A/d, the vertical force results bigger with
respect to the horizontal one. Therefore, to estimate the maximum hydrodynamic force
induced by the solitary wave when the cylinder is far from the bottom, the alternative
model GF2017 is applicable. If the cylinder is placed on the bottom or in proxim-
ity to it, is better to calculate the hydrodynamic forces with the classical Morison and
transverse equations.
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Figure 6.46: Maximum positive peaks of experimental and GF2017 hydrodynamic forces vs. A/d. (a)
e/D = 1; (b) e/D = 0; (c) relative error (e/D = 1), (d) relative error (e/D = 0).
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THE thesis presented a two-dimensional experimental and numerical modeling of
the horizontal and vertical hydrodynamic forces induced by tsunami-like soli-
tary waves on a horizontal circular cylinder placed at different gap-to-diameter

ratios, i.e. e/D = 0, 0.1, 0.25, 0.5 and 1. By the experimental viewpoint, small-scale
laboratory tests were performed in a 2D wave flume equipped with a piston-type wave-
maker. Simultaneously, Lagrangian and Eulerian numerical approaches were used to
simulate the experimental wave forces in a more extended range with respect to the
experimental one and study the near flow field. Firstly, for e/D = 1 a diffusive weakly-
compressible SPH model including a packing algorithm to avoid spurious flow field
near the cylinder and a procedure to filter the raw pressure field was adopted. For
the other water depths, the open source numerical model OlaFlow, based on the well-
known OpenFOAM solver, was applied, enabling a less time consuming compared to
SPH.

On the basis of the experimental and numerical results in the involved flow regime
(A/d ranging from about 0.05 to 0.25, Re of order of 104 and low KC numbers), the
peaks and the shapes of the total wave forces in both directions were influenced by dif-
ferent force components as a function of e/D. For e/D = 1, the wave loads were largely
influenced by the inertia components and the maximum vertical loads showed values
ranging from 14% to 27% of those of the maximum horizontal loads and therefore
quite smaller for stability analysis purposes. The deviation from a fully inertia regime
due to the occurrence of the contributions of drag and lift forces, representative of all
adopted water depths, was highlighted for e/D = 1 through SPH by the occurrence
of a pair of asymmetric vortices behind the cylinder after the passage of the solitary
wave crest. For the other gap-to-diameter ratios, the resulting horizontal force was still
strongly influenced by the inertia component proportional to the horizontal accelera-
tion, even if a significant contribution of the drag force was observed when the cylinder
is near the bottom and for high values of A/d. At the same time, the vertical force was
characterized by a relevant contribution of the lift force when the cylinder was placed
near the bottom or, in particular, attached to it. The shape of the vertical force strongly
changes from e/D = 1 and e/D = 0. Indeed, for e/D = 1 it resembles the shape of the
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vertical acceleration, while for e/D = 0 it follows the shape of the horizontal velocity.
Moreover, the weight of the vertical force compared to the horizontal one tends to grow
when e/D tends to 0 and for high values of A/d. A forward shift of the vertical loads
was noticed for the cases of e/D equal to 0.1 and 0.25.

The good agreement between laboratory experiments and numerical simulations in
terms of incident flow field (surface elevation at the vertical section of the cylinder
and free stream kinematic field at the transversal axis of the cylinder) and wave loads
allowed the calibration of the hydrodynamic coefficients. These parameters, represen-
tative of the flow field around the cylinder, are involved in the canonical Morison and
transverse equations, and in the new semi-empirical models, i.e. the modified lift equa-
tion for e/D = 0.1 and 0.25, and the GF2017 equation for the horizontal loads. Paying
attention to the peaks of the wave loads and the related phase shifts, the calibration of
the Morison and transverse formulas has been executed using the weighted least square
method with k = 1 and through a weighted average of the dynamic pressures for the
GF2017 model.

With the aim of giving practical indications for the stability analysis of horizontal
cylinders placed in marine areas subjected to seismic risk, the analysis of the hydrody-
namic coefficients, i.e. CD, CL, CMH and CMV , showed particular features on the basis
of A/d and e/D. For e/D = 1, CD initially increases and then decreases when A/d
increases, while CMH , CL and CMV tend conversely to decrease. A general decrease
proportionally toA/dwas noticed for CMH , while CD, CL and CMV showed an inverse
tendency for e/D = 0.5. For e/D = 0.25, the inertia coefficients decreases when A/d
increases, CD increases, while CL shows an initial increase followed by a successive
decrease. For e/D = 0.1, CD and CL increases proportionally to A/d, CMH decreases,
while CMV is characterized by an initial increase and a successive decrease. For the
last depth, i.e. e/D = 0, CD and CMV tend to rise when A/d increases, while CMH and
CL present an inverse feature. In reference to the calibrated speed drop factor, Fr, in
the GF2017 formula, this coefficient tends to decrease when A/d increases. The order
of magnitude of Fr is comparable with the values of CMH in the Morison equation. For
all the investigated depths of the cylinder, the application of Morison, transverse and
GF2017 schemes led to a good assessment of the maximum peaks and the associated
phase shifts of the horizontal and vertical hydrodynamic forces with errors less that
10% both through the experiments and the numerical simulations.

Further experimental and numerical investigations will deal with the study of soli-
tary wave forces at cylinders placed close the free surface and at submerged barriers
with square and rectangular section.
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