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ABSTRACT 

Il contenuto d’acqua nel suolo svolge un ruolo fondamentale all’interno di numerosi 

processi che avvengono sulla superficie terrestre, ed in particolare di quelli che fanno 

parte del ciclo idrologico. In tal senso il contenuto d’acqua nel suolo rappresenta una 

variabile chiave anche nell’ambito della generazione dei deflussi nei bacini idrografici 

per effetto degli eventi pluviometrici, e la corretta caratterizzazione della sua evoluzione 

temporale risulta estremamente funzionale ad una efficace previsione degli eventi di 

piena. Dato il ruolo di estremo interesse occupato nell’evoluzione dei processi non solo 

idrologici ma anche ad esempio climatici e agricoli, crescente attenzione è stata dedicata 

alla modellazione del contenuto d’acqua nel suolo ai diversi fini applicativi, nonché al 

monitoraggio strumentale della grandezza, che avviene sia in situ, a scala 

sostanzialmente puntuale con sensori caratterizzati da elevata accuratezza e risoluzione 

temporale, che da remoto. Con riferimento al secondo caso, il monitoraggio da satellite 

ha avuto notevoli sviluppi negli ultimi anni, arrivando a fornire informazioni su scala 

globale che si distinguono per risoluzioni spaziali e temporali sempre più spinte, anche 

se riferite ai soli primi centimetri di suolo. Queste tre opzioni per la descrizione 

dell’andamento del contenuto d’acqua nel suolo devono essere viste come 

complementari, in virtù delle loro diverse peculiarità, nonché delle limitazioni e degli 

errori che le caratterizzano. In tal senso, un’interessante opportunità è costituita dalle 

tecniche di data assimilation sviluppate per integrare in maniera ottimale, sulla base 

delle relative incertezze, le osservazioni con le previsioni da modello.  

Una potenziale applicazione è l’assimilazione delle osservazioni da satellite all’interno 

dei modelli afflussi-deflussi, al fine di migliorare le stime delle variabili di stato che 

rappresentano il contenuto d’acqua nel suolo, e da queste la simulazione delle portate 

fluviali. Numerosi studi sono stati svolti sul tema, con risultati spesso contrastanti, 

evidenziando un grande potenziale per questo genere di applicazione, ma anche la 

necessità di approfondire le numerose scelte procedurali tipicamente richieste in un 

lavoro di data assimilation. Le tecniche di data assimilation comunemente usate 

forniscono soluzioni ottime per problemi con precise ipotesi di base (ad esempio 

l’assenza di errori sistematici), attraverso il confronto fra osservazioni e stime da 

modello (che devono essere eventualmente ‘mappate’ qualora rappresentino grandezze 

diverse, ad esempio contenuto d’acqua riferito a diversi volumi/spessori di suolo) basato 



 

4 
 
 

sulle relative varianze d’errore. Numerose soluzioni sono state proposte per affrontare i 

vari steps richiesti dal data assimilation, che si sono dimostrati avere un ruolo decisivo 

sui risultati finali. Le soluzioni proposte riguardano tanto i modelli, ad esempio 

attraverso una migliorata rappresentazione delle incertezze di stima o con modifiche alla 

struttura che siano funzionali all’assimilazione delle osservazioni satellitari, che le 

osservazioni.  

Le operazioni condotte sulle osservazioni ai fini della successiva integrazione in modelli 

previsionali hanno costituito il tema principale di questo lavoro. Generalmente, nelle 

fasi che precedono l’assimilazione delle misure da satellite di contenuto d’acqua nel 

suolo sono analizzate le seguenti questioni: la verifica della qualità delle osservazioni 

satellitari, la differenza fra gli spessori di terreno indagato dal sensore e riprodotto nel 

modello, la correzione delle differenze sistematiche fra i dataset di osservazioni e 

simulazioni da modello, la caratterizzazione delle varianze degli errori random. 

Procedure di quality check sono messe a punto per scartare osservazioni ritenute troppo 

poco attendibili; in tal senso sono fondamentali gli indicatori inclusi nei dataset 

satellitari, che, fornendo ad esempio informazioni sulle condizioni ambientali durante la 

misura o feedback dall’algoritmo di stima, consentono una caratterizzazione della 

qualità del dato. Il setup delle procedure di quality check è funzione ovviamente 

dell’applicazione finale, tenendo conto degli effetti derivanti tanto dall’utilizzo di un 

dato poco accurato che dalla sua eliminazione. 

Un altro aspetto di cui tenere conto riguarda la profondità di suolo in cui è rilevato il 

dato di contenuto d’acqua da satellite, limitata a pochi centimetri, laddove i volumi di 

controllo dei modelli sono generalmente maggiori. A tal fine, la struttura di alcuni 

modelli è stata modificata inserendo uno strato superficiale di spessore ridotto. Una 

soluzione di uso comune (talvolta anche nel caso di modelli multilayer) è la 

propagazione dell’informazione superficiale allo spessore di interesse attraverso un 

filtro esponenziale, che restituisce un indice indicato come SWI (soil water index). La 

semplicità di questo approccio, basato su un unico parametro, ne ha determinato 

un’ampia diffusione in vari ambiti applicativi, e dataset globali di contenuto d’acqua da 

satellite ottenuti con questo metodo sono attualmente in distribuzione. 

L’eventuale presenza di differenze sistematiche fra il dato da satellite in corso di 

processamento e la stima da modello deve essere poi corretta, andando ad inficiare in 

caso contrario le prestazioni del generico sistema di data assimilation, finalizzato alla 
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sola riduzione degli errori random. Diversi approcci sono al riguardo disponibili; quelli 

di uso predominante risultano indirizzati al matching delle caratteristiche complessive 

dei due dataset (ad esempio in termini di varianza). Tuttavia, quando la correzione 

risulta preliminare al data assimilation, pare più appropriato l’uso di tecniche che 

cerchino di tenere conto della struttura di errore dei due dataset, in modo da effettuare il 

matching della sola parte informativa (anche nota come segnale), separando quindi i 

contributi legati all’errore. 

Sull’osservazione così preprocessata si effettua, quindi, una stima della varianza degli 

errori random, che contribuirà a determinare il suo peso quando sarà combinata con la 

previsione ‘a priori’ del modello. Una inadeguata caratterizzazione in questa fase 

impedisce di giungere al valore di ‘analisi’ ottimale, caratterizzato cioè da varianza di 

errore minima, e può portare anche al peggioramento delle performance iniziali del 

modello. Anche per questo step sono stati suggeriti diversi approcci, fra cui quello di 

uso consolidato è denominato Triple Collocation (TC), e si basa sull’utilizzo di tre 

dataset indipendenti per i quali si assume la stazionarietà della varianza di errore. Un 

metodo alternativo, in grado di fornire una stima tempovariabile della grandezza qui 

indagata, è la propagazione analitica degli errori (EP, error propagation) associati agli 

input e ai parametri attraverso le equazioni del modello da cui deriva l’osservazione (la 

misura da satellite del contenuto d’acqua non è in alcun caso diretta ma prevede il 

processamento delle grandezze effettivamente misurate dai sensori di bordo). Questo 

secondo approccio tuttavia non garantisce stime in magnitudo plausibili come la TC, 

non tenendo conto del contributo degli errori dovuti alla struttura del modello.    

L’analisi delle operazioni di preprocessing e caratterizzazione degli errori delle 

osservazioni da satellite di contenuto d’acqua nel suolo è stata principalmente svolta 

attraverso lo sviluppo di due applicazioni.  

Nella prima applicazione sono trattati i temi del quality check delle osservazioni 

satellitari e, soprattutto, del trasferimento dell’osservazione superficiale di contenuto 

d’acqua da satellite a spessori di suolo di maggiore interesse applicativo, usando 

l’approccio del filtro esponenziale di largo uso in letteratura, in un contesto di verifica 

della capacità della stima derivata da dati satellitari di riprodurre l’andamento osservato 

in situ del contenuto d’acqua su strati di spessore maggiore. L’aspetto innovativo 

introdotto nel lavoro di tesi è costituito dalla messa a punto di uno schema di 

propagazione degli errori originale, finalizzato alla caratterizzazione per via analitica 
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dell’andamento temporale delle varianze degli errori random del SWI. Le equazioni di 

propagazione degli errori sono state ricavate e poste in una pratica forma ricorsiva, 

consentendo di tenere in conto fattori che notoriamente introducono inaccuratezze negli 

output del filtro esponenziale. Con l’approccio proposto diventa, infatti, possibile 

propagare le varianze d’errore tempovariabili disponibili in alcuni dataset satellitari di 

contenuto d’acqua superficiale, nonché valutare gli effetti sul SWI in termini di varianza 

di errore legati alla disponibilità temporale di misure in input e all’incertezza nel 

parametro del filtro. Una valutazione preliminare della procedura di propagazione degli 

errori proposta è stata effettuata verificando l’effettiva corrispondenza fra varianza 

d’errore del SWI stimata ed effettivi scostamenti rispetto a misure in situ di riferimento; 

contestualmente sono state anche testate diverse configurazioni della procedura di 

quality check usando gli indicatori disponibili per il prodotto satellitare usato. 

Nella seconda applicazione sono trattati i temi della correzione delle differenze 

sistematiche fra i dataset di osservazioni e simulazioni da modello, e della 

caratterizzazione delle varianze degli errori random nelle osservazioni, ai fini della 

valutazione degli effetti dell’assimilazione di misure satellitari di contenuto d’acqua del 

suolo sulle performance di modelli afflussi-deflussi. Lo studio, svolto durante un 

soggiorno di ricerca presso il gruppo di Idrologia del CNR-IRPI di Perugia ed in 

particolare con i ricercatori Luca Brocca e Christian Massari, presenta diversi aspetti 

innovativi, il primo dei quali è costituito dall’elevato numero (diverse centinaia) di 

bacini di studio, distribuiti nel continente europeo e complessivamente rappresentativi 

di diverse condizioni climatiche e fisiografiche, laddove i lavori precedenti su queste 

tematiche coinvolgevano generalmente aree geografiche ridotte e/o un numero 

contenuto di bacini. Il dataset di partenza, inclusivo di valori di portata, precipitazione, 

temperatura e osservazioni satellitari di contenuto d’acqua nel suolo per quasi 900 

bacini, è stato costruito dal gruppo di Idrologia del CNR-IRPI. Un secondo aspetto 

d’interesse riguarda l’aver considerato, oltre ad osservazioni da sensori di tipo sia attivo 

che passivo provenienti da diverse missioni spaziali, diverse scelte procedurali per le 

fasi di rimozione delle differenze sistematiche e di caratterizzazione degli errori delle 

osservazioni. Nel complesso, sebbene le metodologie utilizzate costituiscano delle 

pratiche riconosciute e usate in questi ambiti, l’utilizzo di procedure comuni per un così 

largo numero di bacini rappresenta un’applicazione raramente riscontrata in letteratura 

che ha come principale pregio quello di consentire di superare le soggettività introdotte 
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con la scelta di soluzioni sito-specifiche sovente fatte in precedenti studi su scala più 

ridotta e talvolta orientate all’ottimizzazione dei risultati finali della procedura di data 

assimilation. Un terzo tema analizzato, oggetto di attenzione recente nella letteratura del 

settore, è legato alla presenza di bias di tipo ‘moltiplicativo’ nelle serie temporali di 

contenuto d’acqua nel suolo da modello e derivate da satellite, ancora presenti in 

seguito alla fase di rimozione delle differenze sistematiche, e al suo effetto sugli output 

di portata ottenuti assimilando l’osservazione. Con riferimento all’obiettivo generale del 

miglioramento della previsione idrologica, in questa applicazione i benefici 

dell’assimilazione dei dati da satellite sono apparsi variabili, confermando in qualche 

modo i risultati contrastanti presenti in letteratura. Quale contributo a questo dibattito, 

lo studio fornisce indicazioni sulla bontà dell’assimilazione di diversi prodotti satellitari 

in diverse aree geografiche e sotto diverse condizioni preliminari (ad esempio differenti 

regimi climatici ma anche differenti accuratezze degli input pluviometrici disponibili), e 

sugli effetti dei diversi approcci metodologici usati per le operazioni preliminari 

all’assimilazione nel modello. 

La tesi è strutturata come segue. Il capitolo 1 è costituito da una breve introduzione alle 

tematiche del lavoro, mentre il capitolo 2 ha per oggetto il contenuto d’acqua del suolo 

(definizioni, fattori e processi che ne determinano le dinamiche spaziali e temporali, 

cenni al ruolo nelle varie applicazioni incluse quelle idrologiche) e le caratteristiche dei 

vari approcci con cui ne viene descritta l’evoluzione (modellazione, misure in situ e da 

remoto). Il capitolo 3 è incentrato sul data assimilation, fornendo una panoramica dei 

diversi approcci, una sintesi di risultati ed evidenze relativi all’assimilazione delle 

misure di contenuto d’acqua nel suolo, e la formulazione matematica dei metodi più 

comunemente utilizzati per tale scopo. Nel capitolo 4 è fornito un inquadramento 

teorico su problematiche e metodologie relative alle operazioni di preprocessing e di 

caratterizzazione degli errori delle osservazioni. Nei capitoli 5 e 6 sono mostrate nel 

dettaglio le due applicazioni sopra descritte che costituiscono l’aspetto peculiare di 

questa tesi.  
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1. INTRODUCTION 

 

Soil moisture (SM) is a key state variable modulating energy and water exchanges at the 

land and atmosphere interface. Knowledge of the temporal and spatial variability of soil 

moisture is essential for a multitude of applications, for example those related to climate 

and agriculture. Soil moisture also plays an important role in the hydrological cycle, as 

it controls the partitioning of precipitation into runoff and infiltration, with effects in 

runoff modelling and flood forecasting. For this reason SM data are considered a 

valuable information to be integrated in flood early warning systems. 

Currently, three different approaches are used for the monitoring of soil moisture from 

the point to the global scales: in situ observations, prediction models, and remote 

sensing. In particular, soil moisture data from remote sensing observations are attracting 

increasing interest, with global coarse-scale retrievals that are obtained from active and 

passive sensors on board several space missions, including dedicated ones; however, 

remote sensing measurements can be related to the surface soil moisture (SSM), with a 

contributing depth of just few centimetres. Prediction models and in situ and remote 

sensing observations have different characteristics and must be seen as complementary: 

their integrated use allows to improve our monitoring capabilities of soil moisture 

dynamics, as well as our knowledge about important natural processes. 

In this sense, SM measurements could have a great potential in improving flood 

simulation through data assimilation (DA) techniques, that allow for updating the model 

soil moisture states in an optimal way, by considering the respective uncertainties. 

In recent years, increasing availability of satellite observations with improved spatial 

and temporal resolutions has brought great interest into this kind of application; 

however, it still remains controversial if satellite SM assimilation introduces added-

value in runoff modelling, and much more research is still needed. The contrasting 

results obtained in various studies revealed a number of scientific and practical issues 

that might have a significant impact on the performance of DA systems. These critical 

aspects are still under-research and need to be further addressed, although several 

approaches have been developed to overcome them. 

Some of these issues concern the satellite observations, such as the low quality of soil 

moisture retrievals under certain surface conditions (e.g. dense vegetation, frozen soils, 
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open water), the mismatch between soil depth simulated in the model and observed by 

the remote sensor, the bias between satellite data and model states, the assessment of the 

magnitude and the structure of the observation errors.  

In this sense, a preprocessing phase (generally including procedures for quality check, 

propagation of surface information to deeper layers, bias correction, and ultimately 

aimed to the mapping between observed and modelled variables) and error 

characterization of satellite-based soil moisture measurements are necessary to their 

subsequent assimilation in prediction models. These operations constituted the main 

theme of this work. 

The analysis was mainly carried out through two applications. In the first application an 

analytical error propagation (EP) scheme was proposed for the exponential filter, that is 

a widespread approach to extend SSM information to deeper layers (like those in model 

simulations). The EP scheme is aimed to assess the time-variant error variance of the 

exponential filter outputs and allows to take in account some shortcomings of the 

method. 

In the second application, a data assimilation experiment was made on a large number 

of catchments located across Europe, in order to assess the effects of integrating 

remotely sensed SM on a rainfall-runoff model performances. Both passive and active 

remote sensing products are used, two alternative approaches are considered for satellite 

data bias correction, as well as different configurations for the method (i.e. the Triple 

Collocation) which is selected for observation error characterization. 

The two applications related to the assessment of satellite soil moisture preprocessing 

and error characterization practices are showed in chapters 5 and 6, respectively. Prior 

to the applications description, a theoretical background of the work is given in the 

following chapters. The main aspects related to soil moisture estimation, including the 

characteristics of the different monitoring approaches, are discussed in chapter 2; an 

overview of the data assimilation approaches is provided in chapter 3; finally, the main 

methods for observation preprocessing and error characterization are summarized in 

chapter 4. 
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2. SOIL MOISTURE ESTIMATION 

 

2.1 Introduction 

Accurate knowledge of soil moisture is widely recognized as essential for a multitude of 

applications, including hydrological studies and flood forecasting, numerical weather 

prediction and climate monitoring, agricultural applications, drought risk assessments, 

vegetative stress predictions as well as ecosystem preservation. 

This chapter is about some important aspects related to the monitoring of soil moisture. 

Firstly, soil moisture definition and units are given, and processes and factors are 

showed that determine its spatial and temporal evolution at different scales. Some 

applications where soil moisture plays an important role are then described, with 

particular regard to its influence in runoff modelling.  

Three different approaches are used for the monitoring of soil moisture, i.e. simulation 

models and in situ and remote sensing observations. These approaches have different 

characteristics, also in terms of spatial and temporal resolution, and are described 

highlighting advantages and limitations. They must be seen as complementary and their 

integrated use allows to improve our monitoring capabilities of soil moisture dynamics, 

as well as our knowledge about important natural processes. 

 

2.2 Soil moisture definition and units 

Soil moisture (SM) is the content of water in the soil, held in the spaces between soil 

particles, and is generally referred in terms of average conditions with regard to a given 

soil volume (or to the corresponding depth range). A part of the soil total volume is in 

fact composed by pores that can be filled with air or water. The porosity is introduced to 

represent the fraction of the volume of voids, 𝑉𝑣, over the total volume, 𝑉𝑡: 

𝑛 =
𝑉𝑣

𝑉𝑡
           (2.1) 

with 𝑛 values that are typically less than 0.5. 

Soil moisture is usually expressed as the volumetric fraction of water in a given soil 

volume (e.g. m
3
 water per m

3
 soil):  

𝜃𝑣𝑜𝑙 =
𝑉𝑤

𝑉𝑡
          (2.2) 
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and ranges from 0 (soil completely dry) to 𝑛 (saturated soil). Soil moisture can also be 

expressed in terms of saturation degree: 

𝜃𝑆𝐷 =
𝑉𝑤

𝑉𝑣
          (2.3) 

varying between 0 (no water content) and 1 (full saturation).  

The porosity is needed to convert the saturation degree into volumetric soil moisture, 

and vice versa: 

𝜃𝑣𝑜𝑙 = 𝑛 ∙ 𝜃𝑆𝐷          (2.4) 

Two characteristic soil moisture values are the field capacity and the wilting point, both 

depending on soil properties such as soil texture. Field capacity is the amount of water a 

soil can hold against gravity, i.e. volume of water retained after drainage due to gravity 

from a thoroughly saturated soil. Wilting point is the minimal soil moisture the plant 

requires not to wilt, i.e. below which water is held too strongly by the soil matrix that 

roots of plants cannot uptake it. 

 

2.3 Soil moisture processes and variability 

SM is a key state variable modulating energy and water exchanges at the land and 

atmosphere interface and derived from hydrological processes such as rainfall and 

snowmelt infiltration, evaporation and plant transpiration, movement of water 

in unsaturated zone (i.e. between soil surface and groundwater level) due to vertical 

percolation, lateral throughflow, capillary attraction from groundwater, or also ground-

water movements (Western et al., 2002). 

Figure 2.1a illustrates a standard one-dimensional conceptualization of the soil profile 

and the fluxes that influence the soil moisture. Generally, the exchanges between the 

atmosphere and the soil dominate water content dynamics, with the soil moisture being 

primarily replenished by infiltration and depleted by soil evaporation and plant 

transpiration. Fluxes between the soil and groundwater are also important. Drainage 

from the soil profile is the primary source of recharge for many groundwater systems, 

and capillary rise from shallow groundwater tables can be an important source of water 

replenishing the soil water store during drier periods. Included in Figure 2.1a is an 

example of soil moisture profiles measured at different times in the same ground 

station. Both the amount of soil moisture and its dynamics change with depth. In the 

upper 50 cm, soil moisture is strongly influenced by the fluxes between the active root 
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zone and the atmosphere; the moisture here is more variable than the moisture at depth. 

Surface soil moisture also responds more quickly and so has both short and long 

timescale variability, whereas the moisture at depth is less responsive to short term 

variations in the fluxes across the soil-atmosphere interface. 

Figure 2.1b illustrates a standard conceptualization of a hillslope. The key difference 

with Figure 2.1a is in lateral flows (particularly in saturated zone) acting to redistribute 

soil water and also influence runoff processes. For significant lateral drainage to occur 

some conditions are necessary, such as topographic relief and an impeding layer 

limiting vertical drainage or anisotropy in hydraulic conductivity, as well as the process 

is more pronounced during wet conditions. In higher parts of the landscape lateral 

drainage can deplete the soil moisture store; this lateral drainage collects in convergent 

parts of the hillslope and replenishes the soil moisture store in those areas, often leading 

to soil saturation and generation of saturation excess runoff.  

Thus, soil moisture is generally highly variable not only in time but also in space, both 

vertically and horizontally, and the proper SM description across spatial and temporal 

scales constitutes an important challenge, given a large variety of soil moisture 

applications requiring data from local (e.g., for agricultural support) to global scales 

(e.g., for climate change studies). 

Considerable analysis efforts have been put on horizontal spatial SM variations, 

especially in the surface layer (also for what is said commenting on the Figure 2.1a), 

with several approaches proposed for problems such as the changes in variable values 

across scales (i.e. the upscaling and downscaling problems) or the choice of sites 

representative of larger area average behaviour. Regarding vertical changes within soil 

profiles, there is a lack of detailed analysis, with few studies that for example providing 

recommendations for a sampling strategy that accounts for hydrologically relevant 

profile sections (e.g. Pachepsky et al., 2005; Schwen et al., 2014). 

Spatial variability can be random (i.e. not predictable in detail but showing predictable 

statistical properties) or organized (i.e. characterized by consistent spatial patterns) or a 

combination of the two (Western et al., 2003). The characteristics of spatial patterns 

change between landscapes and over time as different static and dynamic factors 

influence the soil moisture variations (Petropoulos et al., 2013). Previous studies 

highlighted that the main factors generally influencing the SM spatial variability are soil 

properties, topography, vegetation and climate (e.g. Mohanty & Skaggs, 2001; Wilson 
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et al., 2004; Crow et al., 2012), whose effects on SM determining processes are detailed 

below. 

 

 

Figure 2.1. Figure taken from Western et al. (2002). (a) On the left: one-dimensional conceptualization of water 
fluxes affecting soil moisture, with also shown the related surface energy fluxes. On the right: soil moisture-depth 
profile series from an experimental site. (b) A two-dimensional conceptualization of fluxes affecting soil moisture 
in a hillslope. 
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Soil properties 

Soil heterogeneity affects the distribution of soil moisture through variations in texture, 

organic matter content, porosity, structure, and macroporosity (Crow et al., 2012). 

Significant soil moisture variations may therefore exist over small spatial distances due 

to variations in soil particle and pore size distributions. The impact of soil hydraulic 

conductivity on soil moisture spatial patterns was demonstrated in numerous studies 

(e.g. Mohanty & Skaggs, 2001). Texture, in particular, can control the nature of water 

transmission and retention in the soil. Coarsely textured soils with a high proportion of 

sand will drain better than finely textured soils such as clays, and as such, will have a 

lower water-holding capacity and lower SM. Thus, soils with higher sand content 

exhibited persistently drier soil moisture conditions than soils with lower sand content. 

In addition, the organic matter content of soils directly influences soil albedo (and thus 

reflectance), in an inversely proportional way. By controlling soil albedo, soil organic 

matter influences evaporation rates especially from bare or lightly vegetated soil 

(Famiglietti et al., 1998). Soil colour can also influence albedo. 

 

Topography 

Topography-related parameters that affect the distribution of SM include slope, aspect, 

curvature, specific contributing area, and relative elevation (Petropoulos et al., 2013; 

Famiglietti et al. 1998). Slope influences processes such as infiltration, subsurface 

drainage, and runoff. Aspect and slope have been shown to have a direct control on the 

solar irradiance received, which, in turn, affects the rate of evapotranspiration from the 

land surface and, as a result, soil moisture. Land surface curvature is a measure of the 

landscape convexity or concavity and influences the convergence of overland flow. 

Areas characterized by high curvature tend to be characterized by a larger heterogeneity 

in SM than areas in which plan curvature is low. The specific contributing area is 

defined as the upslope surface area that drains through a unit length of contour on a 

hillslope. This parameter controls the potential volume of subsurface moisture that 

flows from a particular point on the land surface, affecting the distribution of soil 

surface moisture. Locations with larger contributing areas are generally expected to be 

wetter in comparison to locations with smaller contributing areas. Last but not least, 

relative elevation (so-called slope location) affects soil surface moisture directly by 
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affecting the degree to which orographic precipitation contributes to SM as well as 

indirectly due to its effect on soil water redistribution.  

 
Vegetation 

Vegetation type, density, and uniformity have all a strong effect on SM variability 

(Crow et al., 2012), which increased as a function of decreasing vegetation cover. 

Furthermore, the influence of vegetation on spatial variation in soil moisture is more 

dynamic as compared to soil and topographic factors. The presence and amount of 

vegetation influence the concentration of surface SM by adding organic matter to the 

soil surface layer and also by extracting water from the soil to be used for vegetation 

transpiration. The presence of vegetation cover also influences soil moisture via the 

throughfall pattern and shading of the soil layer that is imposed by the vegetation 

canopy, which, in turn, influences the rate of evaporation from the soil and soil 

hydraulic conductivity via the impact of root activity (Famiglietti et al., 1998). Effect of 

vegetation on SM variability is more pronounced during the growing season. In a field 

campaign reported in Panciera (2009), land cover was found to have a strong influence 

on soil moisture distribution; specifically, cropped areas exhibited persistently wetter-

than-average conditions, and forested areas exhibited drier-than-average conditions, 

while grassland sites were more representative of the area average soil moisture 

conditions. 

 

Climate  

Space-time dynamics of SM are strongly influenced by a variety of climatological and 

meteorological factors, including incoming solar radiation, wind, humidity, and, most 

importantly, precipitation (Crow et al., 2012). Variations of incoming solar radiation 

and wind can both influence the rate of evapotranspiration from soils, either increasing 

or decreasing SM. At its most simple state, the characteristics of surface runoff, 

subsurface flow, and soil moisture depend on the characteristics of precipitation (phase, 

intensity, duration, etc.). In this sense climate, particularly the balance between potential 

evapotranspiration and rainfall at seasonal time scales, largely determines the seasonal 

average temporal pattern of soil moisture. The climatological factors, of course, 

strongly influence the dominant vegetation and soil type and the type of land use that 
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can be utilized in that location and are, in turn, themselves influenced by those factors 

as well as by topography (Famiglietti et al., 1998; Western et al., 1999).  

 

Soil moisture variability generally reflects a combination of the effects of more than one 

of the above factors, and the processes that are dominant in determining the spatial 

pattern of soil moisture can change over time; moreover, factors controlling SM 

variations work on different spatial scales (Fig. 2.2), also affecting SM correlation 

structure and length. Thus, the significance of the exact relationship between SM and 

the different factors is variable and difficult to quantify precisely.  

 

 

Figure 2.2. Figure taken from Crow et al. (2012), representing the dominant physical controls on soil moisture 
spatial variability as a function of scale (‘land cover patterns’ refer to vegetation characteristics). The grey 
shading of bars reflects the relative importance of each control at various scales with increasing intensity 
according to importance. 

 

A large number of studies investigated the role of factors influencing soil moisture 

variability, both in time (e.g. Porporato et al., 2004) and in space (e.g. Riley & Shen, 

2014), across the various scales. In time, soil moisture is mainly driven by precipitation 

and evapotranspiration, and its temporal variability is also a function of soil 

characteristics, vegetation, topography and groundwater (Porporato et al., 2004; 

Rosenbaum et al., 2002). In space, the same meteorological factors, i.e., precipitation 

and evapotranspiration, have a clear impact on soil moisture patterns at large scales. At 

finer spatial scales, static factors such as land cover, topography and soil 

texture/structure affects soil moisture spatial variability. Several authors compared soil 
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spatial patterns with these static factors (e.g. Brocca et al., 2007; Western et al., 1999) 

obtaining moderate to low predictive capability, largely varying across sites and 

climates. Therefore, our knowledge about the factors influencing spatial variability of 

soil moisture is still limited (Brocca et al., 2017b). 

Currently, three different approaches are used for the monitoring of soil moisture from 

the point to the global scales: in situ observations, hydrological or land surface models, 

and remote sensing; they have different characteristics and will be described in detail 

below. 

As mentioned, the various applications that need soil moisture information are focused 

on different spatial scales; in this sense, the high SM variability has important 

implications on modelling and measurement operations. Blöschl & Sivapalan (1995) 

suggested that both the measurement and the modelling scale can be defined as a scale 

triplet consisting of spacing, extent, and support (Fig. 2.3). Spacing is the separation 

between points at which measurements are made or between computational points in a 

model. Extent refers to the total coverage of the measurements or model. Support is the 

area over which a measurement averages the underlying variations, or over which a 

model assumes homogenous conditions.  

 

 

Figure 2.3. Figure taken from Western & Blöschl (1999), representing the definition of the scale triplet (spacing, 
extent and support). This scale triplet can apply to samples (i.e. measurement scale) or to a model (i.e. modelling 
scale). 
 

The effect of measurement or model scale should be viewed as relative to the scale of 

interest of the process (e.g. point scale, watershed scale SM), in order to verify its 

consistency in investigating SM dynamics. In this sense, consideration of the scale 

triplet is important for example in both the choice of the monitoring approaches and the 

development of the sampling scheme. For example, in order to monitor the SM spatial 

variability in a plot (i.e. the extent), in situ instruments can be used (as they are 
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characterized by a small support) with a suitable number of measurement points (to 

contain the spacing and do not lost the small-scale variability); the direct use of remote 

sensing observations would not be equally appropriate, as they are commonly 

characterized by a large support (i.e. footprint sizes of several kilometres), where small-

scale variations are averaged and lost. 

 

2.4 Soil moisture key applications 

Knowledge of the temporal and spatial variability of soil moisture is critical for 

understanding and predicting processes which are significantly influenced by this 

variable. Soil moisture has been widely recognized to have a fundamental impact on 

water, energy, and carbon cycles and, hence, plays a crucial role in the climate system 

and thus was included in the list of Essential Climate Variables (ECVs) (e.g. Dorigo et 

al., 2015). Soil moisture availability, in conjunction with atmospheric conditions, 

controls evaporation from bare soils and evapotranspiration from vegetated soils and the 

partitioning of incoming solar energy into latent and sensible heat fluxes (Seneviratne et 

al., 2010) (surface energy balance components are shown in Figure 2.1a in addition to 

the moisture fluxes). Because of the effects on atmospheric heating and moisture 

content, land-surface interaction and the role of soil moisture in this interaction have 

become an area of great interest to atmospheric modellers. Energy and water fluxes 

controlled by SM have important impacts on the atmospheric boundary layer dynamics 

and in turn on climate and weather and the prediction of each. Thus, soil moisture is 

deemed to be an essential variable to improve the accuracy of long term as well as 

seasonal scale numerical weather forecasts (de Rosnay et al., 2013; Dirmeyer & Halder 

2016; Drusch & Viterbo, 2007). Several studies also analysed the role of SM on 

evapotranspiration (e.g. Martens et al., 2015; Miralles et al., 2011; Seneviratne et al., 

2006), air temperature (e.g. Hirschi et al., 2014; Miralles et al., 2012, 2014), generation 

and location of precipitation (e.g. Findell et al., 2011; Guillod et al., 2015; Taylor et al., 

2012), occurrence of heat waves (e.g. Ciais et al., 2005; Hirschi et al., 2011). 

Then, soil moisture has an important influence on agricultural and ecological processes, 

as it plays a crucial role in the plant growth and hence in primary production in 

terrestrial ecosystems. By regulating plant growth, soil moisture is a valuable indicator 

for agricultural monitoring and crop yields forecast (also supporting management 
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practices), as well as for drought risk assessment. Moreover, SM has an important 

influence on a variety of soil processes including erosion (by controlling runoff), soil 

chemical processes and solute transport, and ultimately pedogenesis. Finally, soil 

moisture is also a regulator for various processes such as photosynthesis and soil 

respiration (e.g. Reichstein & Beer, 2008) and makes a strong control on variations in 

the global carbon cycle (e.g. Ahlström et al., 2013). 

Soil moisture is also an important state variable for the quantification of the different 

components of the hydrological cycle. SM controls the partitioning of precipitation into 

runoff and infiltration, also playing a fundamental role in runoff modelling and flood 

forecasting. For this reason SM data are considered a valuable information to be 

integrated in flood early warning systems (e.g. Norbiato et al., 2008; Javelle et al., 2010; 

Van Steenbergen & Willems, 2013). The degree of prior saturation is an important 

control on catchment response to rainfall and subsequent flood generation, with 

overland flow being larger and occurring more quickly on wetter soils and in 

catchments where areas of saturated soils are more extensive (e.g. Petropoulos et al., 

2013). Thus, knowledge of soil moisture dynamics allows to more accurately model and 

forecast streamflow and flood events, and more generally the watershed dynamics. 

Several studies analysed the role of soil moisture conditions in determining the 

hydrological response of a basin during extreme events such as floods (e.g. Berthet et 

al., 2009; Massari et al., 2014a), also in comparison with other potentially relevant 

runoff controlling factors and by considering different environments (e.g. Castillo et al., 

2003; Penna et al., 2011; Zehe et al., 2010). In many cases the soil moisture conditions 

turned out to be a key factor in runoff production and explain much of the observed 

hydrological response (e.g. Zehe et al., 2010; Rodríguez-Blanco et al., 2012).  

The sensitivity of the catchment response to soil moisture is influenced by the 

predominant runoff mechanisms, with the wetness conditions having a critical role on 

both surface and subsurface runoff generation. With regards to surface runoff 

component, there are two generation processes. Saturation excess runoff occurs when a 

drainage constraint combined with large accumulated rainfall depths results in a water 

table that reaches the surface, causing the whole profile to saturate and the production of 

runoff. Infiltration excess runoff occurs when the rainfall intensity exceeds the capacity 

of the surface soil to transmit infiltrating water, causing the soil surface to saturate and 

the production of runoff. In the case of infiltration excess runoff, for example, the actual 
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impact of the wetness conditions takes shape through the storm intensity relative to the 

current infiltration rates (e.g. Castillo et al., 2003). Specifically, when rainfall intensities 

are much larger or smaller than infiltration rates, initial wetness conditions are not 

critical; when these are of similar magnitude, runoff becomes highly sensitive to initial 

conditions. Thus, the relative influence of SM on peak discharge, response time and 

runoff volume can also depend on the characteristics of both the storm and the basin 

(e.g. topography, soil properties, presence of vegetation) (e.g. Penna et al., 2011); 

anyway, the various studies generally agree on the utility of having good estimators of 

soil moisture, as lack in models about soil water content representation typically results 

in substantial errors in runoff predictions (e.g. Berthet et al., 2009; Massari et al., 

2014a). 

The effect of wetness conditions on the runoff response was studied by using 

hydrological models (e.g. Castillo et al., 2003), observations (e.g. Zehe et al., 2010) or 

both (e.g. Massari et al., 2014b). Non-linear empirical relationship (e.g. Brocca et al., 

2008) as well as neural networks (e.g. Tayfur et al., 2014) were proposed to link some 

runoff characteristics with both rainfall and pre-event wetness indicators. Simplified 

approaches such as the Soil Conservation Service (1972) infiltration method also 

compute the runoff depth associated to a rainfall event through a variable representing 

the soil retention capacity, which depends on the previous moisture conditions. The use 

of modelled or measured soil moisture was generally found more reliable in 

characterizing the basin antecedent wetness conditions during flood simulations, with 

respect to other proxies such as the antecedent precipitation and baseflow indices (e.g. 

Brocca et al., 2008, 2009). 

Most of the basins showed a non-linear behaviour when prior wetness conditions and 

runoff characteristics are compared on an event basis, resulting characterized by a 

typical threshold relationship, with runoff coefficients (i.e. the ratio between runoff and 

rainfall volume) significantly increasing when a certain soil moisture value was 

exceeded (e.g. Western & Grayson, 1998; Zehe et al., 2010), as showed in Fig. 2.4. This 

behaviour was found in catchments with different topographic, climatic and land use 

characteristics, with varying values of the moisture threshold, likely due to factors such 

as soil type, soil depth and climatic conditions (Penna et al., 2011). 
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Figure 2.4. Figure taken from Penna et al. (2011), representing the threshold behaviour in the relationship 
between soil moisture prior to the rainfall event and the corresponding runoff coefficient.   

 

These considerations suggest that the dynamics of soil moisture represents an important 

topic to be investigated to explain many processes of major significance in hydrological 

practice, especially the rainfall-runoff transformation. In this sense, the benefit of using 

soil moisture observations is not only limited to a proper initial conditions 

characterization in an event-based modelling approach (e.g. with respect to other 

wetness conditions proxies). Indeed, SM measurements could have a great potential in 

improving flood simulation through data assimilation techniques, that allow for 

updating the model soil moisture states in an optimal way.  

 

2.5 Soil moisture modelling 

Numerical simulations can be valuable practical tools for prediction and understanding 

of a system behaviour. In this sense, many types of models have been developed to 

represent soil moisture dynamics as effect of basic processes such as precipitation, 

evapotranspiration, infiltration, and drainage. Models predict relationships between 

physical system variables as a solution of specific mathematical structures, like simple 

algebraic equations or differential equations, which in this case reproduce the stores and 

fluxes within the system of interest. Given the specific model structure, accurate forcing 

and ancillary datasets are necessary, and model parameters need to be properly 

calibrated, representing characteristics of the system that are constant in time, or that 

can be assumed constant over the time scales of interest. 
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Models are usually developed to interpret a specific scientific question or solve a 

prescribed practical problem, so being very different in terms of model structure, spatial 

(horizontal and vertical) and temporal discretization, ways to simulate physical 

processes and corresponding parameterization, required inputs and then modelled soil 

moisture output. However, according to Koster et al. (2009), simulated soil moisture 

does not have an unambiguous meaning. It is a strongly model-specific quantity, 

essentially an “index” of the moisture state, with a dynamic range defined by the 

specific formulations utilized by the given model (Koster & Milly, 1997), in addition to 

model-specific soil parameters such as porosity, hydraulic conductivity, wilting point, 

and layer depth. Large differences are seen in the soil moisture products generated by 

different models, even when the models are driven with precisely the same 

meteorological forcing (Dirmeyer et al., 2006), owing to differences in physics and the 

meaning of parameters; however, once systematic deviations such as the different 

climatological statistics are accounted for, the different models tend to produce very 

similar information on temporal soil moisture variability (Koster et al., 2009). 

Land surface models (LSMs) used in applications such as numerical weather prediction 

keep track of the soil moisture dynamics through state variables typically defined at a 

number of vertical subsurface levels, typically on a horizontal regular grid; these LSMs 

are addressed to simulate energy and water fluxes at the land surface to provide a lower 

boundary condition for the atmospheric model that is used to predict the weather. 

Hydrological models for rainfall-runoff simulations were instead characterized by a 

different processes representation and focused on basin scale. An analysis of the 

different approaches between land surface modelling in hydrology and meteorology can 

be found in Graham & Bergstrom (2000), and here summarized. Meteorologists are 

concerned primarily with solving the energy balance, whereas hydrologists are most 

interested in the water balance. Meteorological climate models typically have multi-

layered soil parameterisation that solves temperature fluxes numerically with diffusive 

equations. Hydrological models are not usually so interested in soil temperatures, but 

must provide a reasonable representation of soil moisture to get runoff right. To treat the 

heterogeneity of the soil, many hydrological models use only one layer with a statistical 

representation of soil variability. Such a model can be used on large scales while taking 

sub-grid variability into account. Hydrological models also include lateral transport of 

water, which is an imperative if river discharge is to be estimated.  
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Examples of models simulating soil moisture that are developed for weather and climate 

modelling (e.g. Moran et al., 2004) are: NOAA-Noah Model (Chen et al., 1996; Koren 

et al., 1999), TOPMODEL-based land surface atmosphere transfer scheme (TOPLATS) 

(Famiglietti & Wood, 1994a; 1994b; Peters-Lidard et al., 1997), variable infiltration 

capacity model (VIC) (Liang et al., 1994, 1996), NCAR Community Land Model 

(CLM) (Bonan, 1998; Dickinson et al., 2006), Catchment LSM (Koster et al., 2000), 

Mosaic (Koster & Suarez 1996); examples of models developed for hydrological 

applications (e.g. Moran et al., 2004) include HYDRUS 1D and 2D models (Simunek et 

al., 1998; Simunek & van Genuchten, 1999), MIKE-SHE (Refsgaard & Storm, 1995), 

soil and water assessment tool (SWAT) (Srinivasan & Arnold, 1994; Arnold et al., 

1998).  

In general, models are able to provide regular soil moisture estimates, at the desired 

temporal and spatial resolution (e.g., subhourly and 100 m; de Rosnay et al., 2014; 

Bierkens et al., 2015). In the case of hydrological models, they can treat the basin as a 

single unit (lumped models) or discretize it into smaller units (distributed models), for 

example by introducing a regular grid, to take in account the spatial variability of 

forcings, ancillary data or parameters. 

Models have so filled the gap in spatial (and also temporal) scales between in situ and 

remote sensing observations (Robinson et al., 2008), providing data at an intermediate 

scales that can be proper for the different applications, e.g. the basin scale in 

hydrological studies. In addition, model development can assist in interpreting 

observations (Western et al., 2003). 

However, model predictions are affected by errors in model physics, parameters, input 

data (i.e., meteorological observations and ancillary information as soil type and land 

use), as well as by an inadequate treatment of sub-grid scale spatial variability (Walker 

& Houser, 2005; Reichle et al., 2004; Brocca et al., 2017a). 

Not only the quality but also the resolution of meteorological observations (in space and 

time) and static information such as land use and soil texture maps plays a very 

important role, as they have to be consistent with the spatial and temporal resolution of 

the model (e.g. Brocca et al., 2017b). Models must anyway deal with scale effects 

related to the variability of soil moisture in an appropriate manner if they are to 

represent the system behaviour effectively (Western et al., 2003).  
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Models are being built with a higher degree of complexity in order to better represent 

processes; however, more complex modelling structure results in more parameters to be 

estimated, and may lead to overparameterized given the data available for parameter 

calibration (Walker & Houser, 2005). For instance, the saturated hydraulic conductivity, 

affecting the vertical and lateral movement of the water in the soil, is characterized by 

large variability (e.g. Morbidelli et al., 2006) and it cannot be observed over large areas 

and at different depths as it would be required (Hopmans et al., 2002). The same applies 

to other soil hydrological properties, e.g., porosity, pore size distribution. Additionally, 

many key hydrologic processes are extremely difficult to parameterize (e.g., irrigation, 

snow melting, and interception). 

Therefore, modelled soil moisture data surely represents an important dataset that, 

however, needs to be used with caution. In order to remedy for the uncertainties in 

model estimates, data assimilation systems combine the complementary information 

from observations and the spatially and temporally complete information given by 

models into a superior estimate of soil moisture (e.g., Reichle & Koster, 2005). 

Soil moisture is represented in models with two most widespread approaches, i.e. by 

solving the Richards equation or by using a bucket representation (Western et al., 2003; 

Romano, 2014; Veerecken et al., 2008). Their main features are briefly discussed. 

Models based on the well-known Richards equation, or simplifications thereof, 

represent the vertical distribution of soil moisture and the movement of liquid water 

under the influence of gravitational and capillary (suction) gradients. Richards equation 

solution requires that hydraulic conductivity and water retention functions of soil matric 

potential, as well as the initial and boundary conditions, have to be defined. Such 

models are often applied at a point (the scale for which they were originally derived) 

and try to represent the physical processes and physically realistic soil moisture values. 

They assume that vertical flow is via the soil matrix and usually not consider lateral 

flow. Two- or even three-dimensional descriptions of water flow processes might be 

warranted when lateral processes such as overland and subsurface flow determine soil 

moisture dynamics. Flow in macropores and cracks can be important and needs 

additional model components for its representation. The Richards equation in one or 

more dimensions has been successfully applied to describe soil water fluxes at scales 

ranging from field (e.g. Clemente et al., 1994) to catchment (e.g. Schoups et al., 2005). 

Despite these successful applications, the appropriateness of the Richards equation is 
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still under debate. A detailed investigation of its validity is hampered by the inherent 

spatial variability of soils, the current inability to obtain spatially averaged 

measurements of matric potential, and the difficulty of accurately measuring boundary 

conditions at larger spatial scales. Often such models are used to represent spatial 

average soil moisture content over larger areas (such as in numerical weather prediction 

models), with spatial variability being largely ignored and uniform soil parameter 

values being used. Then, soil moisture data are often analysed using one-dimensional 

models, which assume that flow occurs only vertically; this for the sake of 

computational simplicity and because of the inability to appropriately populate 

multidimensional models with hydraulic properties, and the absence of reliable 

information about spatially varying boundary conditions. However, inappropriate 

selection of model dimensionality can reduce the accuracy of model predictions of soil 

moisture. Examples where consideration of horizontal flow might be important include 

analysis of soil profile moisture in humid landscapes were lateral flow is an important 

contribution to runoff.  

In alternative, soil moisture is typically modelled by simplified water balance equations 

(e.g. Montaldo & Albertson, 2003), that are similar to the capacity type bucket models 

often used in conceptual rainfall-runoff models. Soil water balance models do not try to 

represent physical soil moisture that can be measured in the field but rather to represent 

the temporal variation in the depth-integrated content of the soil water store; they 

directly address moisture content as the variable of interest and assume gravity as the 

driving force for water flow, whereas models using the Richards equation also include 

the role of matric potential. This approach does not require a full characterization of the 

hydraulic conductivity and water retention functions.  

With reference to a single-layer bucket model without lateral fluxes, the nonlinear 

differential equation of water balance for a soil layer of depth 𝑍𝑟 is usually written as 

follows (Milly, 2001; Rodríguez-Iturbe & Porporato, 2004): 

𝑛𝑍𝑟
d𝜃𝑆𝐷(𝑡)

d𝑡
= 𝐼[𝜃𝑆𝐷(𝑡), 𝑡] − 𝐸[𝜃𝑆𝐷(𝑡)] − 𝑇[𝜃𝑆𝐷(𝑡)] − 𝐿[𝜃𝑆𝐷(𝑡)]   (2.5) 

Soil thickness 𝑍𝑟 is the control volume, 𝑛 is the soil porosity, 𝜃𝑆𝐷 is the degree of soil 

saturation (i.e., the volumetric soil water content normalized by soil porosity), 𝐼 is 

actual infiltration rate from rainfall, 𝐸 is actual evaporation rate, 𝑇 is actual transpiration 

rate, and 𝐿 is actual leakage rate from the bottom of the bucket. It is worth noting that 
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evaporation, transpiration and leakage rates are considered as a function of average soil 

saturation, 𝜃𝑆𝐷, whereas the surface runoff is generated only when the total rainfall rate 

𝑟(𝑡) exceeds the infiltration capacity (which also depends from 𝜃𝑆𝐷) and only a fraction 

of the incoming precipitation is able to infiltrate into soil. Unlike the Richards equation, 

the bucketing approach incorporates a more simplistic representation of soil moisture 

dynamics and not fully resolve the local vertical variations in soil water contents.  

Most of the models used to predict floods are based on these simplified “bucket style” 

models. Conceptual buckets connected in series are also sometimes used to represent 

shallow and deep layers within the soil profile. Such single- or multiple-layer bucket 

models can be applied at a point, but more often they are used within conceptual 

catchment models to represent soil moisture storage, averaged over the whole 

catchment (i.e. lumped models) or referred to a single grid cell or subcatchment (i.e. 

distributed models). Conceptual hydrological models describe in a simplified manner 

the processes that are assumed to dominate the hydrologic response of a system; using a 

distributed approach allows for the spatial variation of the simulated processes within 

the catchment while overcoming the inherent difficulties in the mathematical 

formulation and parameterization of the processes required instead by the models based 

on the Richards equation. In distributed models the soil water balance is implemented 

independently for each discrete element of the catchment, with lateral fluxes between 

stores taken in account in small scale applications. 

Thus, there are several reasons for favouring a soil water balance approach. The 

estimation of effective soil water fluxes using Richards-based approaches heavily relies 

on knowledge of effective soil hydraulic parameters at the scale of interest and the 

validity of a capillary-based concept at larger scales. Although upscaling approaches 

enable estimation of effective properties from local-scale hydraulic properties, their 

validity is mostly limited to specific flow conditions. In contrast, simple water balance 

approaches have been postulated that may be considered scale-invariant, robust and 

parsimonious in terms of parameter specification and estimation. Then, it is very 

difficult to have information on soil matric potential, that is measured only at the point 

scale, in a destructive manner, and conventionally only covering the wet part of the 

moisture retention characteristic.  

Despite these advantages, closure of the soil water balance models still requires 

constitutive equations for the unknown fluxes, such as lateral flow, capillary rise and 
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evaporation (Reggiani et al., 2000). These fluxes are usually derived on the basis of flux 

potential gradient relationships such as Darcy’s law. However, this equation requires the 

specification of the hydraulic conductivity relationship, which is difficult to obtain. Also 

the prediction of root water uptake requires adequate knowledge of both the hydraulic 

conductivity and the water retention functions. Therefore, the issue of closing the water 

balance is often solved by using simplified descriptions that neglect specific processes 

(e.g. lateral flow and capillary rise in (2.5)) or by linearization of the constitutive 

equations, and to what extent this limits the validity of the obtained results is not really 

known.  

An overview of comparative studies carried out on the Richards equation and the bucket 

scheme, for the purpose of highlighting the major advantages and limitations of these 

models, can be found in Romano (2014). Problems regarding the representation of SM 

variability in models (including the subgrid variability, also in distributed models), the 

modelling of spatial patterns, as well as the specific challenges that come out in large-

scale SM simulations, are well discussed in Western et al. (2003). 

 

2.6 In situ soil moisture observations 

Ground monitoring networks have an important role in further understanding the 

processes influenced by soil moisture. In situ sensors have been predominantly 

developed to provide soil moisture data for monitoring agricultural and ecohydrological 

processes, generally controlled by field-scale soil water dynamics (Robinson et al., 

2008). Common ground-based methods can be applied over any depth, accurately 

calibrated, and logged at any time scale. The high accuracy of in situ measurements also 

makes them a potential reference for calibrating and validating land surface models and 

satellite-based soil moisture retrievals. However, ground-based measurement techniques 

generally monitor soil moisture at the point scale, as they usually have <1 m
2
 support 

(Ochsner et al., 2013). Thus, in situ sensors are generally characterized by a very 

limited spatial representativeness, as there is a substantial amount of spatial variability 

in soil moisture (Western et al., 2002). It is worthy to highlight that some novel in situ 

techniques provide soil moisture measurements which are representative of the field 

scale (e.g. ground-penetrating radar, cosmic-ray neutron probes) (Jonard et al., 2018); 
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however, their broader applications still requires further research and technical 

investigations (Brocca et al., 2017b).  

Given the small support and large spacing of typical ground-based networks, 

interpretation of the measurements at larger scales is challenging. A possible approach 

is to make a large number of measurements with sufficiently high spatial resolution to 

describe the spatial variability (e.g. Western & Grayson, 1998); an alternative is to 

relate the point scale measurements to areal soil moisture (e.g. Vachaud et al., 1985), 

which requires that a predictable time-stable relationship exist between point soil 

moisture and the spatial mean. 

Comprehensive ground-based soil moisture observational networks are still very scarce, 

and only in few countries (e.g. United States) a good coverage of in situ stations is 

present. On a worldwide basis the number of networks and stations measuring soil 

moisture, in particular on a continuous basis, is relatively limited. Observation networks 

that measure in situ soil moisture are heterogeneous in terms of measurement principle 

and device, calibration techniques and installation methods, depth and placement of the 

sensors, and available measurement period. In many cases it is difficult to gain access to 

these datasets. Besides, there is a general lack of standardization of methods and 

protocolling which complicates the combined use of multiple networks in global 

studies. Furthermore, not every network applies quality control procedures to their data 

and if quality control mechanisms exist, they are not consistent. 

Many of the available networks have been recently collected and harmonized as part of 

the International Soil Moisture Network (ISMN; Dorigo et al., 2011), which was 

initiated to establish and maintain a global in situ soil moisture database (Fig. 2.5). 

ISMN serves as a centralized data hosting facility where in situ soil moisture 

measurements from a large variety of individually operating networks are collected, 

harmonized, quality-controlled and made available to users. Incoming datasets provided 

by participating networks are harmonized in time and measurement units. For the ISMN 

a temporal resolution of 1 hour was considered sufficient for the common 

application purposes; observation datasets which are available at sub-hourly sampling 

rates have been thinned selecting the individual measurements at the hourly UTC 

reference time step. About the measurement units, soil moisture data provided to the 

ISMN are stored in the database as volumetric soil moisture (m
3
 m

−3
). Most current 

networks provide their data in volumetric soil moisture so often no conversion is 
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needed. If the data need to be converted, additional metadata (like bulk density or soil 

porosity) are required. Datasets contained in the ISMN are subjected to an automated 

quality control (Dorigo et al., 2013) and spurious observations are flagged, without 

modifying or removing it. There are two types of quality control procedures. The first 

category is based on the geophysical range and consistency of the measurements. About 

geophysical range, a threshold method is applied to flag values exceeding a plausibility 

range (0.0 to 0.6 m
3
 m

−3
) or the local saturation point. To check the geophysical 

consistency, soil moisture measurements are confronted with precipitation and soil 

temperature. The second category of procedures (spectrum-based approaches) analyzes 

the shape of the soil moisture time series to detect outliers (spikes), positive and 

negative breaks, saturation of the signal, and unresponsive sensors. In 2015, the ISMN 

contained the data provided through 1400 measurement stations operated by 40 

different networks (Dorigo et al., 2015). Available datasets include recently established 

operational networks as well as historical observations, like those contained in the 

Global Soil Moisture Data Bank (GSMDB; Robock et al., 2000), which was the first 

action to offer a centralized access point for globally available datasets and has now 

been closed. 

 

 
Figure 2.5. Figure taken from Ochsner et al. (2013), representing an overview of soil moisture stations contained 
in the International Soil Moisture Network (ISMN). Green dots show the stations from operational networks, red 
dots the stations that were imported from the Global Soil Moisture Data Bank. New networks have been added 
to the ISMN in the meantime. 

 

As mentioned, several techniques are available for measuring soil moisture content in 

situ. The number of SM measurement methods has significantly increased over the last 
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years, with also the emergence of novel techniques. Most commonly, electromagnetic 

sensors (e.g. TDR) are used to establish continuous in situ soil moisture networks. 

Verstraeten et al. (2008) in their overview of the available conventional methods 

employed in estimating soil moisture concluded that even today there is not a single, 

clearly superior method suitable under all circumstances for measuring SM. As Dorigo 

et al. (2011) noted, even when one technique is consistently employed, SM 

measurements can be strongly influenced by several other factors including, for 

example instrument calibration, the installation conditions (e.g., installation depth and 

sensor placement), as well as the spatial resolution, geographical coverage, and 

representativeness of the measurements obtained, which are key factors for large area 

studies. Generally, required accuracy in the measurement of SM is subject to the 

considered application. Even though most sensor manufacturers claim to achieve the 

common accuracy requirement, these specifications are usually made for a default 

calibration, which is only valid for “typical conditions” achieved under laboratory 

conditions. A field-specific calibration (in place of universal calibration functions 

provided by the manufacturers) and accuracy assessment is indispensable to exploit the 

potential quality of the sensor and to quantify the actual accuracy. Additionally, an 

underrepresented but important issue of in situ sensors is related to their maintenance. 

Indeed, it is highly difficult to find long-term in situ soil moisture time series with good 

quality and consistency over time. 

Overviews of the different in situ techniques have been given, for example, by Robock 

(2000), Robinson et al. (2008), Verstraeten et al. (2008), Dorigo et al. (2011), Dobriyal 

et al. (2012), Jonard et al. (2018), Romano (2014), Petropoulos et al. (2013). Some 

conventional frequently used methods, as well as some promising emerging techniques, 

are discussed below; however, this section does not aim to be comprehensive. The basic 

principles and the main characteristics of the different techniques, are presented, 

outlining its relative advantages and limitations.  

 

Gravimetric method  

Gravimetry refers to the measurement of soil water content by measuring the difference 

in weight between a soil sample before and after drying. Implementation of this 

technique is based on extracting a soil sample (usually 60 cm3) from the field which is 

then transferred to a soil analysis laboratory, where it is put into a drying oven at 105°C. 
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The soil sample is considered to be dry when its weight remains constant (usually after 

24-48 h). The concentration of water in the soil is determined by subtracting the oven-

dry weight from the initial field weight. The difference in mass gives the total soil 

moisture in the sample, which is converted to volumetric units using the density of the 

soil. Many different types of sampling equipment, as well as special drying ovens and 

balances, have been developed and used for this method. The gravimetric method is the 

oldest, the most direct and the most accurate method of measuring moisture content in 

the soil and remains the standard against which other methods (providing systematic 

measurements) are calibrated and compared. However, it cannot be used to obtain a 

continuous record of soil moisture at any one location because of the necessity of 

removing the samples from the ground for laboratory work. The key advantages of this 

approach are that it is easily and straightforwardly implemented using low cost 

technology and equipment. Nevertheless, the method has several disadvantages. It is a 

destructive method that precludes repeat sampling from exactly the same point. 

Furthermore, its implementation is generally time-consuming and labour-intensive, and 

difficult with rocky soils.  

 

Neutron scattering 

In this indirect method, the amount of water in a volume of soil is estimated by 

measuring the amount of hydrogen it contains, expressed as a percentage. Because most 

hydrogen atoms in the soil are components of water molecules, the backscatter of the 

slow neutrons after emission of fast neutrons from a radioactive source directly 

corresponds to water content in the soil, as the energy loss is much greater in neutron 

collisions with atoms of low atomic weight (i.e. hydrogen). A relationship with 

volumetric soil moisture content is obtained by calibrating the slow neutron counts with 

gravimetric samples. The soil volume measured by a neutron probe is bulb-shaped and 

has a radius of 1 to 4 m, according to the moisture content and the activity of the source. 

The neutron probe allows a rapid, accurate, repeatable measurement of soil moisture 

content to be made at several depths and locations. However, there are disadvantages 

such as the use of radioactive material requiring a licensed and extensively trained 

operator, the high equipment cost and the extensive calibration required for each site, as 

probes need to be calibrated to soil types and zones over a period of time with different 

soil moisture fractions. Furthermore, and perhaps most importantly, the probe’s 
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relatively large volume of influence makes observations near the surface (top 20 cm) 

prone to errors, because fast neutrons can escape into the atmosphere, as well as 

adjoining air is also sampled. This technique is not common when frequent and 

automated observations are required, and its use has been proven most useful in 

measuring relative soil moisture differences rather than absolute SM (Dorigo et al. 

2011). 

 

Dielectric constant methods 

Dielectric measurement takes advantage of the differences in dielectric constant 

(permittivity) values between different soil phases (solid, liquid, and gas). The dielectric 

permittivity is a measure of the capacity of a non-conducting material (such as soil) to 

transmit electromagnetic waves or pulses. Liquid water has a dielectric constant value 

of ~80 (depending on temperature, electrolyte solution, and frequency), air has a 

dielectric constant value of ~1, and the solid phase of 2 to 16. This contrast makes the 

apparent dielectric constant of soil very sensitive to variation in SM. The measurement 

of the apparent dielectric constant is then used to obtain the volumetric water content 

through calibration curves. 

The first approach to be developed for measuring the soil dielectric constant and 

estimating the soil volumetric water content was the Time Domain Reflectometry 

(TDR) proposed by Topp et al. (1980). The TDR approach was found to provide 

accurate measurements for a wide range of soils and settings, also creating for the first 

time the possibility of automated in situ monitoring, and thus became the dominant 

technology for measuring soil moisture (Ochsner et al., 2013). Then, the emergence of 

capacitance type probes followed (Robinson et al., 2008).  

The TDR measurement principle is based on the propagation velocity of guided 

electromagnetic waves emitted by a pulse generator and propagated along the 

waveguides of the TDR probe into the soil. The propagation velocity is determined 

from the measured travel time along the TDR probe (with a known length) which is 

dependent on the soil electromagnetic properties. The faster the propagation velocity, 

the lower the dielectric constant and thus lower soil moisture.  

Capacitance probe electrodes and their adjacent soil form a capacitor with a capacitance 

that is a function of the permittivity of the soil and thus, also of the soil moisture 

content. In capacitance sensors based on Frequency Domain Reflectometry (FDR) 
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technique, an electromagnetic signal is propagated across the capacitor, and capacitance 

is evaluated by analysing changes in the reflected electromagnetic wave in the 

frequency domain. 

Both type of sensors can be permanently installed to provide water content at different 

depths. Measurements are fast and easy, but they are very sensitive to installation 

because the sphere of influence is relatively small. The soil disruption can change water 

movement and water extraction patterns, resulting in erroneous data. Prongs can be 

damaged in hard or rocky soils. Accuracy is generally good and can be improved by 

specific calibration. 

The capacitance probes typically operate at frequencies much lower than the effective 

frequency of TDR, and are also more sensitive to soil salinity and temperature errors. 

As a result, these probes are simpler and less expensive but also less accurate than TDR 

(Ochsner et al., 2013; Jonard et al., 2018). Because of the spatial variability of soil 

moisture, for some applications it has been suggested to use less accurate but cheaper 

sensors in order to increase the density of measurements within soil moisture networks. 

In addition to their cost, the high power consumption of TDR instruments may be 

another dissuasive argument for their use if a site has to be e.g. operated with stand-

alone power supply. 

 

Measurement of soil thermal properties 

Heat dissipation and heat flux sensors make use of the principle that the thermal 

behaviour of the soil is closely related to its water content (e.g. Bittelli, 2011). 

The heat dissipation technique uses a heat source (usually a heated needle) and 

temperature sensors (thermocouples or thermistors), immersed into a porous, ceramic 

block that equilibrates with the surrounding soil at a given water content. The needle is 

heated, and the rate of heat dissipation is measured by the temperature sensors. The 

thermal conductivity is then obtained, which depends on the block water content. 

In the heat flux method, the pulse of heat is applied at one location and its arrival at 

another location is determined by measuring the soil temperature at the other location. 

The time required for the pulse of heat to travel to the second location is a function of 

soil thermal conductivity, which is related to water content.  

As heat transport depends on soil thermal properties and so on water content, soil 

moisture can be also estimated from the distributed temperature sensing (DTS) method 
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(e.g. Ochsner et al., 2013), where fiber-optic cables work as linear sensors, with 

temperatures being recorded along the cable with a typical spatial resolution of 1 m, on 

measurement distances of also several kilometres. DTS uses a laser pulse emitted into 

the fiber-optic cable and partly scattered back all along the cable; some characteristics 

of the backscattered signal are temperature dependent, and the corresponding position 

on the cable can be determined from the travel time. Observing temperature dynamics 

with more DTS cables can provide a way to determine the soil moisture. Temperature 

changes can be due to the diurnal radiation cycle (the passive DTS method described in 

Steele‐Dunne et al., 2010) or due to a heat pulse transmitted from the metal housing of 

one of the cables (the active DTS method proposed in Sayde et al., 2010). The main 

advantages are the large spatial extent and resolution that this technique offers and the 

low power requirements. Disadvantages include the difficulty of placing the fibers, for 

example at consistent depths; passive DTS remains challenging under conditions where 

the thermal response to the diurnal temperature cycle is not large enough to allow 

accurate estimation of soil moisture content (e.g., under dense vegetative canopy, at 

depths beyond the top few centimetres of the soil column, cloudy days). 

 

Gamma-ray attenuation 

Gamma ray attenuation is a radioactive method capable of determining the moisture 

content in the upper soil layers. The intensity of a gamma ray that passes through a soil 

section undergoes an exponential decrease that principally depends on the apparent 

density of the soil (assumed constant), the water contained in the soil and the 

coefficients of attenuation of the soil and of the water (both constants). The method 

consists of concurrently lowering a gamma-ray source (generally Caesium 137) and a 

gamma-ray detector (scintillator-photomultiplier) down a pair of parallel access tubes 

that have been installed in the soil. At each measurement level, the signal can be 

translated into the apparent wet density of the soil or, if the apparent dry bulk density of 

the soil is known, the signal can be converted into a measure of the volumetric soil-

moisture content. The measuring equipment permits tracking of the evolution of wet 

density profiles and of the volumetric soil moisture at several centimetres of depth 

below the soil surface if the dry density does not vary with time. Gamma ray attenuation 

is unaffected by the state of moisture in the soil and can be also be used with frozen soil. 

Additionally, this technique is much easier to calibrate as it does not have to be site 
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specific. However, the measurements are not specific to water alone, as the apparent 

variations in dry density can confound the measurements of soil moisture. Then, its 

implementation requires the use of relatively expensive instrumentation and a greater 

level of user expertise. The high cost and difficulty of use limit the applicability of this 

technique in the field. In highly stratified soils, large variations in the bulk density and 

moisture content have been noticed while using this technique (Pires et al., 2005). 

 

Nuclear Magnetic Resonance 

Nuclear magnetic resonance (NMR) is a physical phenomenon that can yield molecular 

properties of matter by irradiating atomic nuclei, in a magnetic field, with 

electromagnetic radio waves (Blümich et al., 2011). NMR is particularly sensitive to the 

presence of hydrogen protons and is therefore suited to investigate processes that 

involve water. When applied to the study of soil, NMR can be used to infer soil water 

content, total porosity, and pore-size distribution and to quantify bound and free fluid 

fractions. This technique subjects water in the soil to both a static and an oscillating 

magnetic field perpendicular to each other. A radio frequency detection coil, turning 

capacitor, and electromagnetic coil are used as sensors to measure the spin echo and 

free induction decays. Generally, advantages and disadvantages of this technique are 

similar to those of the neutron scattering technique discussed earlier. 

 

Cosmic-ray neutrons 

Recently, a non-invasive method has been proposed based on SM relationship with low-

energy cosmic-ray neutrons (CNR) that are generated within the soil and diffused back 

to the atmosphere (Zreda et al., 2008, 2012). More specifically, secondary high-energy 

cosmic-rays neutrons (originated by primary cosmic-rays interaction with atmosphere) 

penetrate the ground surface and interact with nuclei in soil to generate fast neutrons. 

The number of fast neutrons above the soil surface depends strongly on the number of 

hydrogen atoms in the surroundings because hydrogen atoms have a very high capacity 

to moderate fast cosmic-ray neutrons (that means to slow them down and turn them into 

low-energy thermal neutrons, so effectively removing the fast neutrons from the 

system). The number of hydrogen atoms increases with increasing soil water content 

and hence soils with high water contents re-emit fewer fast neutrons than soils with low 

water content. Thus CRN sensors can infer soil water dynamics from the change of fast 
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neutron intensity with time in near-surface environment. Portable neutron detectors are 

placed a few meters above the soil surface and allow for a sampling interval of several 

minutes to hours. About supporting volume, soil moisture information is inferred over a 

depth of 10 to 70 cm below surface (Zreda et al., 2008), depending on soil type, water 

content and distance from the sensor (Köhli et al., 2015). In contrast to the methods 

presented above, cosmic-ray measurements integrate soil moisture measurements over 

much larger horizontal scales (i.e. areas of a few hundred square meters, with radius that 

can decrease with increasing air density and humidity, with increasing vegetation 

density and with increasing soil moisture, according to Köhli et al., 2015) and hence 

have the potential to bridge the spatial mismatch between point measurements using 

contact methods and remote sensing estimates over large areas. Limitations include the 

need to isolate the signal of SM from other sources of hydrogen source cosmic rays 

such as some minerals (e.g., clay), vegetation, and organic matter as well as surface and 

atmospheric water. Measurements of these variables are required in order to calibrate 

the soil moisture measurements.  

 

Ground penetrating radar  

Ground Penetrating Radar (GPR) measurements are based on the transmission and 

reflection of an electromagnetic wave in the soil (Chanzy et al., 1996). The transmitter 

antenna of the radar systems generates radio-waves propagating in a broad beam. The 

receiver detects variations in the electrical properties of the sub-surface by detecting the 

part of the transmitted signal that is reflected. A number of radar antennas are moved 

over the ground surface simultaneously when assessing moisture content. GPR is a fast 

and non-destructive technique with high resolution that can penetrate beyond the 

surface layer and is capable of covering large areas with differential hydrological 

conditions in a short time. Soil volume estimations are relatively quick. This method 

bridges the gap between point measurements and remote sensing. The performance of 

GPR varies across soil types (Doolittle & Collins, 1995). Many soil types, due to their 

high electrical conductivity, are radar opaque and dissipate radar energy, thus restricting 

its use (Doolittle & Collins, 1995). Steep and rocky slopes limit its use due to the large 

sizes of the antennas. The use of GPR in forests is difficult because trees behave as 

reflectors generating erroneous data (Schrott & Sass, 2008). 
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2.7 Remote sensing soil moisture observations 

Soil moisture estimate from remote sensing has experienced a growing development 

over the last four decades (Karthikeyan et al., 2017a, 2017b; McCabe et al., 2017; 

Paloscia & Santi, 2013). Satellite observations are attracting increasing interest because 

of their continuous monitoring of land surface over very large areas, with frequent 

revisiting time. Global coarse-scale surface soil moisture (SSM) retrievals are obtained 

from sensors on board polar satellites, through algorithms that estimate SSM states from 

raw measured variables such as backscattering coefficient or brightness temperature, in 

order to obtain products for research and operational purposes. Although not 

specifically designed for measuring soil moisture, several satellite instruments have 

proved to be very useful for this purpose over the years, most notably microwave 

sensors operating at suboptimal frequencies (e.g. ASCAT, AMSR-E), with good 

correspondences being found between satellite retrievals and ground observations taken 

over a large variety of environmental conditions (e.g. Albergel et al., 2009; Brocca et 

al., 2010b, 2011a; Jackson et al., 2010), and in recent years two soil moisture 

monitoring dedicated missions have been launched, i.e. Soil Moisture Ocean Salinity 

(SMOS) in 2009 and Soil Moisture Active Passive (SMAP) in 2015. Significant 

developments have been made in SSM retrieval algorithms accuracies, as well as in 

increasing the temporal and spatial resolutions (that are usually approximately daily and 

of the order of some tens of kilometers, respectively) of the most widely used satellite 

measurements; in this regard, current research strives to further improvements, also by 

exploring the blending of data from different sensors to overcome the single specific 

limitations (e.g. Entekhabi et al., 2010b; Liu et al., 2012a). 

A variety of studies has shown that SM at the surface layer can be measured to some 

degree by all regions of the electromagnetic spectrum (Petropoulos et al., 2015); in 

particular, different methods were developed for the retrieval of soil moisture from 

microwave, optical and thermal satellite sensors.  

Optical remote sensing techniques based on soil surface reflectance measurements make 

use of visible, near-infrared (NIR), shortwave infrared (SWIR) bands, with spectral 

information being related to SSM as a function of spectral absorption features. Given 

that water absorbs energy, a soil with higher SM will, in theory, have less reflective 

intensity than soils containing less moisture. Various studies have explored the 
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relationship between spectral reflectance and soil moisture (e.g. Stoner & Baumgardner, 

1981; Lobell & Asner, 2002) and have confirmed that, for bare soils, increase in SSM 

generally leads to a decrease in soil reflectance, although Liu et al. (2002) found that the 

opposite was true at high moisture levels. In addition to moisture content, reflectance 

measurements are also strongly affected e.g. by the soil composition and physical 

structure. 

The estimation of SSM can be also made by measuring the thermal infrared (TIR) 

emittance, related to the land surface temperature. The common scheme most often 

utilised in thermal remote sensing of SSM is to decouple the surface thermal properties 

from ambient temperature (daily temperature cycle) by calculating the thermal inertia 

(i.e. a physical property that characterises the surface resistance to ambient temperature 

change) (Petropoulos et al., 2015). The thermal inertia, in turn, is dependent upon the 

thermal conductivity and the heat capacity, which both increase with soil moisture. 

However, the relationship between thermal infrared signal and soil water content is a 

function of soil type and is largely limited to bare soil conditions (e.g. van de Griend et 

al., 1985; Zhao & Li, 2013). 

Optical and thermal sensing of surface soil moisture have several limitations, that 

include the shallow soil penetration (only the top millimetres of the surface) and the 

poor temporal resolution (e.g. Moran et al., 2004; Zhang & Zhou, 2016). Then, the 

relationships to soil water content are weak in presence of vegetation cover. 

Furthermore, unlike the longer microwave wavelengths, optical and thermal signals 

have limited ability to penetrate clouds and vegetation canopy. Optical methods are not 

suitable to be applied at night time, while SSM retrievals from TIR methods are highly 

influenced by atmospheric effects (Barrett & Petropoulos, 2013). Efforts to retrieve 

SSM have achieved success only when models are fit for specific soil types in the 

absence of vegetation cover (Petropoulos et al., 2015), and most of the models are 

empirical in nature and thus vary across time and land cover types and are a function of 

local meteorological conditions (Moran et al., 2004), with lack of transferability to other 

regions. 

However, recent advances in thermal and optical remote sensing methods for soil 

moisture estimation have been made (e.g. Kustas & Anderson, 2009; Rahimzadeh-

Bajgiran & Berg, 2016; Zhang & Zhou, 2016), in addition to the good spatial resolution 

and the presence of multiple operating satellites, showing promises also related to the 
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availability of hyperspectral sensors for reflectance-based methods, as well as to the 

strong relation between TIR signal and SSM in thermal methods. Furthermore, other 

opportunities are provide by the synergistic use of measurements from optical and 

thermal bands, as well as of optical/TIR with microwave data (e.g. Barrett & 

Petropoulos, 2013). 

Most progress has been made utilising the microwave domain of the electromagnetic 

spectrum (Engman & Chauhan, 1995; Njoku & Entekhabi, 1996; Jackson et al., 1996; 

Shutko, 1982; Ulaby et al., 1996), particularly within the low frequency range (<6GHz), 

where microwave sensors can detect fine changes within the dielectric permittivity of 

the soil, and the penetration depth through soil and vegetation is higher. Microwave 

observations are not limited by clouds, daytime and/or atmospheric conditions, but are 

influenced by the vegetation cover and the roughness of the soil surface; however, at 

lower frequencies the effects of vegetation and roughness on the remote sensing signal 

decrease (Robinson et al., 2008). Microwave measurements are the most widely used 

for SSM retrievals (Fig. 2.6), also providing operational products (e.g. Wagner et al., 

2013b; Mecklenburg et al., 2016).  

 

 

Figure 2.6. Active and passive microwave sensors contributing to soil moisture monitoring (adapted from 
http://www.esa-soilmoisture-cci.org/). 

http://www.esa-soilmoisture-cci.org/
http://www.esa-soilmoisture-cci.org/
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On the basis of their energy source, microwave sensors can be grouped into two 

categories: active (radar, scatterometer) and passive (radiometer) sensors. The passive 

sensors detect the natural microwave radiations emitted from the land surface in the 

form of brightness temperature measurements (TB). The active sensors send microwave 

pulses towards the land surface and detect the reflected and scattered signals as 

backscattering coefficients (σ0). Microwave measurements are sensitive to soil moisture 

due to the large contrast between dielectric constants of dry soil (typically ~3.5) and 

water (~80). The brightness temperature of the soil surface is proportional to the 

emissivity, ε, while the backscattering coefficient is related to the reflectivity, R. 

Emissivity, according to the Kirchhoff’s law, complements the surface reflectivity, 

ε=1−R, and both are strongly influenced by dielectric properties of soil surface and thus 

by soil moisture variations. More precisely, increase in SSM leads to increases in R and 

σ0 and to decreases in ε and TB.  

From a user’s perspective, passive microwave radiometers offer the advantage of 

overpassing the same surface almost every day; however, they are hampered by the 

coarse spatial resolution, which generally is not below 25 km. Among active microwave 

sensors, it is important to distinguish between Synthetic Aperture Radars (SARs) and 

scatterometers. The former (SAR) are able to detect land surface information at a high 

spatial resolution (e.g. <1 km) but with a long revisit period (e.g. >10 days). The latter 

(scatterometer) are characterized by nearly the same spatial-temporal resolution of 

radiometers.  

Different portions of the microwave region of the electromagnetic spectrum were 

commonly used for estimating soil moisture, i.e. X (8-12 GHz), C (4-8 GHz), and L (1-

2 GHz), with the latter identified as optimal (e.g. Kerr et al., 2012). In particular, 

observations within L-band at 1.4 GHz show the maximum sensitivity to surface soil 

moisture (Njoku & Chan, 2006), minimizing the impacts of vegetation and surface 

roughness on the signal; for this reason, radiometers onboard the dedicated missions 

SMOS and SMAP operate at this specific frequency. 

The depth of the investigated surface layer is not precisely defined, since differences in 

microwave frequencies and soil moisture conditions primarily lead to different emitting 

or penetration depths. Several studies suggest that the contributing depth for microwave 

sensing is between 0.1 and 0.25 times the wavelength (Jackson et al., 1996). In practice, 
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the thickness of the layer whose moisture is estimated by L-band sensor is usually 

assumed of the order of 5 cm, while for C-band (~5 GHz) and X-band (~10 GHz) it is 

not higher than 2 and 1 centimetres, respectively. The measuring depth of microwave 

sensors also depends on the soil moisture profile: it was noted that the effective retrieval 

depth is shallowest during wet soil moisture conditions (e.g. Escorihuela et al., 2010). 

Furthermore, other factors influenced the effective contributing depth, such as the soil 

characteristics and temperature profile (e.g. Shutko, 1982; Lv et al., 2018). 

Microwave measurements generally depend on both soil surface characteristics and 

known sensor configuration (such as frequency, polarization and incidence angle). An 

important practical issue for soil moisture retrieval is that the part of microwave signal 

related to soil surface characteristics responds to the dielectric constant (largely 

determined by soil moisture) but also to other factors such as the soil surface roughness 

and the vegetation canopy, making it difficult to separate the soil moisture contribution 

to the signal from other factors. In this sense, the retrieval of SSM from microwave 

measurements can be considered an ill-posed problem, because, in general, more than 

one combination of SSM, roughness and vegetation cover has the same electromagnetic 

response (e.g. Paloscia et al., 2008); several retrieval algorithms were developed, that 

address the problem with different approaches (see Sect. 2.7.1 and 2.7.2). 

Soil surface roughness tends to decrease the sensitivity of both σ0 and TB to the soil 

water content (e.g. Robinson et al., 2008). Vegetation has a double effect on the surface 

emission and backscatter, both attenuating the signal from the soil and adding its own 

contributions, and may eventually completely obscure the soil moisture signal above 

wavelength-dependent vegetation water content density thresholds (Dorigo et al., 2017). 

More precisely, the masking effect of vegetation increases with frequency, and it is 

generally considered that soil moisture can be monitored for levels of vegetation water 

content lower than about 3-5 kg/m
2
 at L-band and 1.5 kg/m

2
 at C-band (Wagner et al., 

2007). With regard to passive sensors, attenuation is due to both vegetation absorption 

and scattering, that can be effectively modelled with two parameters, the vegetation 

optical depth and the single-scattering albedo, respectively (Mo et al., 1982). With 

regard to active sensors, total backscatter from vegetated surfaces is composed not only 

from underlying ground surface backscatter (subject to attenuation in the canopy), but 

also from canopy volume scattering and multiple path interactions between canopy and 

ground. In this case the vegetation geometric structure is also a key factor; dense forests 
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and shrubs are usually opaque to C-band radar (which is the common frequency of the 

considered active sensors), while sparse forest, grassland and agricultural crops are 

partly transparent (Wagner et al., 2013b).  

Then, retrievals are impossible under snow and ice or when the soil is frozen (as 

dielectric properties of the water changes dramatically), while complex topography, 

surface water, and urban structures have an adverse effect on the retrieval quality (e.g. 

Dorigo et al., 2017). Passive microwave observations can also be affected by human-

induced Radio Frequency Interference (RFI). Flags and attributes are usually included 

in SSM datasets to detect retrievals impacted by these factors. 

Currently, SSM data are provided from the following quasi-operational (i.e. with data 

available either in near real time or few days after sensing) coarse resolution satellite 

sensors (Brocca et al., 2017b):  

(1) the Soil Moisture Active and Passive (SMAP) mission (L-band radiometer) starting 

from April 2015 with ~36 km/2-day spatial/temporal resolution (Entekhabi et al., 

2010b);  

(2) the Advanced Microwave Scanning Radiometer 2 (AMSR2) onboard the Global 

Change Observation Mission for Water, GCOM-W1, satellite (C- and X-band 

radiometers) starting from July 2012 with ~25 km/1-day spatial/temporal resolution 

(Kim et al., 2015);  

(3) the Soil Moisture and Ocean Salinity (SMOS) mission product (L-band radiometer) 

starting from January 2010 with ~50 km/2-day spatial/temporal resolution (Kerr et 

al., 2016);  

(4) the Advanced SCATterometer (ASCAT) onboard MetOp satellites (C-band 

scatterometer) starting from January 2007 with ~25 km/1-day spatial/temporal 

resolution (Wagner et al., 2013b). 

It is worthy to note that the National Aeronautics and Space Administration (NASA) 

SMAP mission originally involved the synergistic use of active and passive instruments; 

unfortunately, active radar on SMAP stopped working after only 3 months of operation, 

so only radiometer data are currently available. 

Additionally, global soil moisture products were released within the ESA (European 

Space Agency) Climate Change Initiative (CCI), by merging multiple active and 

passive microwave sensors (Liu et al., 2012a; Dorigo et al., 2017), providing a nearly 

daily dataset starting from 1978 with a grid spacing of 0.25°. 
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In the next months, higher resolution (~1 km) soil moisture products will become 

available from SARs on Sentinel-1 satellites in the framework of the Copernicus Global 

Land Service (Bauer-Marschallinger et al., 2019); it is worthy to note that thus far a 

high-resolution soil moisture product from SAR sensors has never been made available. 

Others satellite sensors can be currently employed for soil moisture retrieval, but 

without the delivery of the corresponding soil moisture products. 

Several processing levels are typically adopted, according to the definitions provided by 

the Committee on Earth Observation Satellites (CEOS). Each level represents a step in 

the abstraction process by which data relevant to physical information (e.g. 

backscattering coefficient) are turned into data relevant to geophysical information (e.g. 

surface soil moisture), and finally turned into data relevant to thematic information (e.g. 

root zone soil moisture). CEOS (http://ceos.org/) has identified five levels of data 

products: 

– Raw Data - Data in their original packets, as received from a satellite.  

– Level 0 - Reconstructed unprocessed instrument data at full space time resolution 

with all available supplemental information to be used in subsequent processing 

appended.  

– Level 1 - Unpacked, reformatted level 0 data, with all supplemental information to 

be used in subsequent processing appended. Optional radiometric and geometric 

correction applied to produce parameters in physical units. Data generally presented 

as full time/space resolution. A wide variety of sub level products are possible.  

– Level 2 - Retrieved environmental variables (e.g. soil moisture) at the same 

resolution and location as the level 1 source data.  

– Level 3 - Data or retrieved environmental variables which have been spatially 

and/or temporally re-sampled (i.e. derived from level 1 or 2 products). Such re-

sampling may include averaging and compositing. 

– Level 4 - Model output or results from analyses of lower level data (i.e. variables 

that are not directly measured by the instruments, but are derived from these 

measurements).  
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2.7.1 Active microwave sensing of surface soil moisture 

Active microwave sensors for SSM retrieval can be classified into two categories, 

imaging and non-imaging sensors. Radio detection and ranging (radar) is the most 

common imaging sensor; with the Synthetic Aperture Radar (SAR) technique, 

backscattered signals from short coherent microwave pulses are processed together to 

simulate a very long aperture capable of high surface resolution. Scatterometers 

(designed to measure wind speed and direction over the sea surface but also used for 

SSM retrieval) are distinguished as non-imaging sensors.  

While scatterometers are characterized by nearly the same spatial-temporal resolution of 

radiometers, i.e. approximately daily revisit time and coarse scale (~25 km), SAR 

systems are designed to acquire high spatial resolution backscatter images and allow for 

soil moisture mapping at fine scales without recurring to downscaling procedures. SARs 

provide data with pixel sizes in the order of tens of meters, although aggregation is 

required to overcome the problem of noise and fulfil the accuracy required by many 

applications. This increases the effective pixel size (e.g. 500 m - 1 km), which however 

remains much lower than those derived from radiometers and scatterometers. However, 

spaceborne SAR systems were generally not designed to obtain repetitive and 

continuous coverage (Pathe et al., 2009). A significant limitation of SAR was that 

satellites provide only weekly repeat coverage and even longer for the same orbital 

path; for example, the first generation SAR systems onboard the European Remote 

Sensing satellites (ERS-1/2) had a scheduled repeat pass every 35 days for the same 

orbital path. Moreover, SAR systems usually alternatively operate in different 

‘conflicting’ modes (generally acquiring data with different spatial resolutions and 

swath widths), and due to high power consumption the number of fine spatial 

acquisitions per orbit was limited, further worsening the temporal resolution. More 

generally, spaceborne SAR systems have to reach compromises between spatial 

coverage, spatial resolution and revisit time, that are hardly compatible with an 

operational use of SSM retrievals. Due to this reason, despite the large volume of 

research conducted on the derivation of soil moisture from SAR, routinely produced soil 

moisture maps have long been unavailable and few literature studies addressed the 

problem of operational soil moisture monitoring using SAR (e.g. Pierdicca et al., 2013). 

However, due to recent advancements in observational capabilities (in terms of 

spatial/temporal resolution, radiometric accuracy, very large swath) that characterize the 
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European Space Agency (ESA) Sentinel-1 (S-1) mission (Torres et al., 2012), SAR soil 

moisture products will be made available in the near future (Bauer-Marschallinger et al., 

2019). 

At present, most active remote sensing systems operate only at the C-band, which is not 

the best band for retrieving SSM, as at this frequency the effects of surface roughness 

and vegetation cover on the backscattering coefficient are high and an estimate of SSM 

with the accuracy required by many applications is still problematic (Satalino et al., 

2002; Kerr, 2007; Paloscia et al., 2008). 

Several backscattering models have been suggested for retrieving the surface soil 

moisture from active microwave measurements. According to a common classification 

(Petropoulos et al., 2015; Karthikeyan et al., 2017a), these models can be grouped into 

four classes: theoretical or physical, semi-empirical, empirical and change detection 

models. 

Theoretical models allows for simulating the backscattering coefficients by providing a 

physical-based description of the interactions between microwave radiation and soil; the 

dielectric constant of the soil surface, and hence the SSM, is estimated from the 

mathematical inversion of these models. Amongst their advantages is the independence 

on local site conditions and sensor characteristics, while downsides include the 

requirement for a large number of input parameters which make their parameterisation 

difficult and complex (Moran et al., 2004). A dominant physical based radiative transfer 

model is the Integral Equation Model (IEM) originally developed by Fung et al. (1992), 

that essentially quantifies the backscattering coefficient of a bare soil as a function of 

the unknown dielectric constant, surface roughness, and known sensor configuration 

(wavelength, polarisation and local incidence angle). Application of IEM to real world 

simulations has generally shown mixed results (e.g. Baghdadi & Zribi, 2006; Álvarez-

Mozos et al., 2007; Paloscia et al., 2008), with the main difficulty being related to the 

sensitivity to the surface roughness parameters and the difficulty associated with their 

correct characterization (Zribi & Dechambre, 2003), which is only achievable through 

intensive roughness measurement campaigns over large regions. 

Semi-empirical backscattering models offer a compromise between the complexity of 

the theoretical backscattering models and the simplicity of the empirical models. They 

provide relatively simple relationships between surface properties and backscatter 

metrics that reflect, to a certain extent, the physics of the scattering mechanisms. Their 
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main advantage is that they are not site dependent and may be applied when little or no 

information on surface roughness is available. The most widely used semi-empirical 

models are those developed by Oh et al. (1992) and Dubois et al. (1995). The Oh model 

(Oh et al. 1992, 2002; Oh, 2004) relates the ratios of radar backscatter in separate 

polarizations (HH, HV, and VV) to volumetric soil moisture and soil surface roughness. 

The main advantage of the Oh model is that only one surface parameter is required, and 

when multipolarized data are available, both the dielectric constant and surface 

roughness can be inverted without the need for field measurements (Álvarez-Mozos et 

al., 2007). Similar to the Oh model, the Dubois model accounts for copolarized 

backscatter only (HH and VV) and do not require fully polarimetric systems. Both Oh 

and Dubois models are generally valid only over bare soil surfaces and has shown 

mixed results in real applications (van Oevelen & Hoekman, 1999; Baghdadi & Zribi, 

2006; Álvarez-Mozos et al., 2007; Panciera et al., 2014), although some studies have 

reported good results over sparsely vegetated soil surfaces (e.g. Neusch & Sties, 1999).  

Empirical backscattering models, generally based on experimental measurements, gain 

insight into the interaction of microwaves with natural surfaces through simple retrieval 

algorithms (e.g. Mathieu et al., 2003; Holah et al., 2005; Álvarez-Mozos et al., 2007). 

For example, many of those empirically based studies have shown that a linear 

relationship between the backscattering coefficient and SSM is a reliable approximation 

for one study site under bare soil conditions, assuming that roughness does not change 

between successive radar measurements. The use of empirical backscattering models is 

characterised by some limitations. Due to the lack of a physical basis, empirical models 

are generally confined to the local specific datasets and implementation conditions for 

which they were derived (i.e. surface conditions and radar parameters at the time of the 

experiments) (Chen et al., 1995). However, various authors have proposed calibration 

approaches for adjusting those empirical models to other implementation conditions 

(e.g. Baghdadi et al., 2008; Zribi et al., 2005). Another limitation is that empirical 

models require many high-quality in situ soil moisture measurements, obtained over 

time, for calibration, which could be a costly and challenging task, and not always 

attainable; in particular, large databases over a variety of study sites are essential to 

ensure that developed models are robust and transferable (Baghdadi et al., 2002). 

The models described under physical, semi-empirical and empirical approaches are 

valid only under bare soil conditions. The contribution of vegetation on backscatter 
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coefficient can be taken into account by coupling a vegetation scattering models. 

Models are of variable complexity and accuracy and their application is based on 

availability of the required in situ data (Kornelsen & Coulibaly, 2013). Models such as 

the Michigan Microwave Canopy Scattering (MIMICS) (Ulaby et al., 1990) and that of 

Bracaglia et al. (1995) can simulate a variety of species within a vegetation type; more 

complex models exist (e.g. Stiles & Sarabandi, 2000) that reproduce a single crop type 

in a highly physically representative manner, however they are not often used due to the 

extensive parameterization of the vegetation. A significantly less complicated model is 

the Water-Cloud Model (WCM) (Attema & Ulaby, 1978), which is semi-empirical with 

some vegetation parameters locally calibrated (e.g. Bindlish & Barros, 2001), and has 

found widespread use in a variety of vegetation and climate regimes (Kornelsen & 

Coulibaly, 2013). 

While the physical, semi-empirical and empirical models rely on backscatter coefficient 

information obtained in a single time period, change detection approaches use the multi-

temporal passes made by an active sensor at a location to obtain the relative change in 

soil moisture, i.e. these techniques try to interpret backscatter changes without 

attempting to explain the absolute backscatter level. These approaches are based on the 

assumption that the temporal variability of surface roughness and vegetation biomass is 

generally present at a much longer time scale than that of soil moisture; therefore, the 

change in backscatter coefficient between repeat passes results from change in soil 

moisture conditions. Thus, a multi-temporal radar dataset can be used to minimise the 

influence of surface roughness and vegetation biomass, and maximise the sensitivity of 

radar backscatter to changes in SSM. Change detection is an attractive technique 

because it presents a simple way of accounting for surface roughness and vegetation 

effects; however, it has some drawbacks. It should be noted that such methods are not 

easy to apply for cultivated areas, as surface roughness and vegetation biomass change 

dramatically over short time periods. Until recently, significant limitations were related 

to the SAR applications due to their coarse repeat coverage time, that means lack of 

dense and long-term time series of acquisitions with the same sensor configuration. 

Finally, one big challenge remains the characterization of the influence of seasonally 

changing vegetation on the backscatter signal. Several change detection methods have 

been proposed (Barrett et al., 2009). In particular, change detection algorithms were 

developed to obtain SSM retrievals from spaceborne scatterometers such as ASCAT 
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(Naeimi et al., 2009), that currently provides several soil moisture operational products 

(Wagner et al., 2013b). The so-called TU-Wien change detection model, originally 

proposed for the ERS scatterometer by Wagner et al. (1999) and based on a 

normalization that accounts for both roughness (assumed to be constant over time at 

scatterometer spatial scale) and vegetation seasonal effects (considered invariant from 

year to year), is used for this purpose. The model parameters, describing maximum dry 

and wet soil conditions in term of backscatter values at a reference incidence angle for 

the different days of the year, are locally calibrated through the statistical analysis of 

long-term radar observations time series; for the relative soil moisture estimation, the 

actual backscatter value is normalized to the reference incidence angle and then 

compared with dry and wet backscatter references for that day of the year.  

With regard to the space programs contributing to global scale soil moisture retrievals 

through active microwave sensors, the first influential one was the ESA European 

Remote Sensing (ERS). ESA's two ERS satellites, ERS-1 and -2, were launched in 1991 

and 1995, and ended in 2000 and 2011, respectively. ERS was the first ESA program in 

Earth observation with the overall objectives to provide environmental monitoring. 

Satellites payloads included the Active Microwave Instrument (AMI), that incorporated 

two separate radars (Attema, 1991): a Synthetic Aperture Radar (SAR) and a wind 

scatterometer (SCAT), both in the C-band. AMI-SAR and -SCAT observations were 

also used for SSM retrievals (e.g. Moran et al., 2000; Wagner et al., 1999). Both ERS-1 

and ERS-2 satellites have a standard orbit repeat cycle of 35 days, with a revisit time on 

a location of 2–7 days (Karthikeyan et al., 2017b); AMI scatterometer mode cannot be 

operated in parallel to the AMI-SAR modes (Pathe et al., 2009). 

The follow-up mission of ERS, that was initially conceived to cover research aspects of 

environment as well as provide operational meteorological data, was splitted by ESA 

into the dedicated Environmental Satellite (EnviSat) and Meteorological Operational 

(MetOp) satellites programmes.  

MetOp series include three operating satellites (launched respectively in 2006, 2012 and 

2018) carrying the Advanced Scatterometer (ASCAT). Even though ASCAT was not 

designed for soil moisture monitoring, it currently provide SSM retrievals for 

operational uses (see Sect. 2.7.1.1), and the continuation of the soil moisture products is 

also ensured in a long-term perspective by scatterometers onboard the MetOp Second 
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Generation (MetOp-SG) satellites (Brocca et al., 2017a), which will be launched in the 

next years. 

EnviSat was launched in 2002 and ended in 2012; it carried the Advanced Synthetic 

Aperture Radar (ASAR), operating in C-band. Different methods were proposed to 

retrieve SSM from EnviSat ASAR measurements (e.g. Paloscia et al., 2008; Pathe et al., 

2009). EnviSat was replaced by the ESA Sentinel series of satellites, which are elements 

of the European Global Monitoring for Environment and Security (GMES) program 

currently known as Copernicus; in particular, the Sentinel-1 (S-1) mission has taken 

over the SAR duties of EnviSat. 

In contrast to the ERS and EnviSat missions, Sentinel-1 is based upon an operational 

concept, resulting in revisit time and spatial coverage that are dramatically improved 

and also providing high reliability and rapid data dissemination (Torres et al., 2012). 

The S-1 mission currently comprises a constellation of two polar-orbiting satellites (1A 

and 1B, launched in 2014 and 2016, respectively), each of them carrying a C-band (5.4 

GHz) SAR sensor. Sentinel 1A and 1B share the same orbit plane with a 180° orbital 

phasing difference, offering altogether six days exact repeat. Over land, radar data will 

be predominantly acquired in the Interferometric Wide-swath mode (IW), in either 

VV+VH or HH+HV dual polarization, combining a large swath width (250 km) with a 

high spatial resolution (5×20 m on ground). Currently, several algorithms have been 

proposed to retrieve soil moisture operationally from Sentinel-1 data (e.g. Hornacek et 

al., 2012; Paloscia et al., 2013; Pierdicca et al., 2014). Change detection techniques can 

provide a good compromise between retrieval accuracy and processing time, thus 

allowing compliance with the timeliness requirements; in the framework of Copernicus 

Global Land Service, a SSM product at 1 km resolution will be made available, 

retrieved from S-1 data following the TU-Wien change detection method (Bauer-

Marschallinger et al., 2019). 

 

2.7.1.1 ASCAT  

The Advanced Scatterometer (ASCAT) is the successor of scatterometers deployed on 

ERS, and currently is one of the instruments flown on board the MetOp satellites (Figa-

Saldaña et al., 2002).  



 

54 
 
 

The MetOp is a series of three meteorological satellites developed by ESA and operated 

by the European Organisation for the Exploitation of Meteorological Satellites 

(EUMETSAT). MetOp satellites are in a near-circular sun-synchronous polar orbit, with 

equator crossing time at ∼9:30 (local solar time) A.M. and P.M. in descending and 

ascending orbit direction, respectively. The first satellite, MetOp-A, was launched in 

2006. The temporal coverage was irregular, ranging from 0 to 2 acquisitions on a single 

day, with an average revisit time of 1–2 days. In 2012 MetOp-B was launched, doubling 

the coverage frequency; finally, the third and last satellite, MetOp-C, has been launched 

in November 2018. 

ASCAT is a real aperture C-band (5.3 GHz) radar that uses two sets of three antennas in 

VV polarization to continuously illuminate separated 550 km wide swaths on either side 

of the satellite ground track. In each swath, a regular grid of points (nodes) is defined, 

with one triplet of independent backscatter measurements per node, taken at different 

azimuthal and incidence angles. The nominal spatial resolution of the ASCAT 

backscatter measurements is 50 km on a nodal grid of 25 km, however a research 

product at a higher resolution of about 25 km (actual resolution varies somewhat across 

the swath from 25 to 34 km) on a 12.5 km nodal grid is also available (Wagner et al. 

2013b). 

ASCAT is developed with the primary objective of determine wind vector fields at sea 

surface on a global basis; however, it is also proven to be very useful in monitoring soil 

moisture. ASCAT measurements are used to generate high-quality soil moisture 

products for operational hydrological applications within the framework of the Satellite 

Application Facility on Support to Operational Hydrology and Water Management (H-

SAF) programme, which is part of the EUMETSAT application ground segment. 

Detailed reviews of ASCAT soil moisture products are given in Wagner et al. (2013b) 

and in Brocca et al. (2017a).  

ASCAT backscatter measurements can be related to soil moisture content in the first 2 

cm below the surface. SSM retrievals, in degree of saturation between 0 and 100, are 

obtained through the TU-Wien change detection method, originally developed by 

Wagner et al. (1999) and subsequently improved for ASCAT by Naeimi et al. (2009). 

The soil moisture retrieval algorithm is implemented within a processing software 

called Water Retrieval Package (WARP). 
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In the framework of the H-SAF project (http://hsaf.meteoam.it/) several soil moisture 

products are generated on a regular basis and distributed to users.  

ASCAT measurements at the highest spatial resolution (25–34 km) are processed via 

the offline WARP chain in order to obtain the SSM time series on a discrete global grid 

(identified as WARP5 and characterized by a 12.5 km grid spacing). More details about 

the retrieval algorithm and processing strategy can be read in H-SAF (2014). 

Operational near-real-time (NRT) SSM products are generated soon after each satellite 

(currently MetOp-A or -B) orbit completion, and given in swath geometry (at both 25 

and 12.5 km sampling), by using a dedicated software package called WARP-NRT, that 

employs the model parameters derived off-line within WARP (Wagner et al., 2013b). 

A small scale NRT SSM product (1 km resolution) results from downscaling of ASCAT 

SSM NRT data, based on a high-resolution, static backscattering characterization layer, 

computed from statistical analysis of multi-annual EnviSat ASAR imagery (Wagner et 

al., 2008). However, the added value of this product is not very clear, given that the 

downscaling parameters are static and all information about the soil moisture temporal 

variability still comes from the large scale ASCAT measurements (Wagner et al., 

2013b). 

Finally, two root-zone soil moisture products (a near-real-time one and an offline time 

series) have been developed, both based on the assimilation of ASCAT SSM 

observations into the ECMWF Land Data Assimilation System (de Rosnay et al., 2013), 

providing global daily soil moisture estimates at a spatial resolution of 25 km for four 

soil layers (0-7, 7-28, 28-100 and 100-289 cm). 

 

2.7.2 Passive microwave sensing of surface soil moisture 

Passive microwave remote sensing utilizes highly sensitive radiometers to measure the 

naturally emitted microwave radiation at a particular wavelength, expressed as 

brightness temperature (TB). Differences of nearly 100 K in brightness temperature can 

be observed between very dry and wet soils, that is large in relation to the precision of a 

typical microwave radiometer (≤1 K), making it possible to measure changes in SSM of 

less than 1% (e.g. Robinson et al., 2008). All of these instruments are typically char-

acterized by broad spatial coverage and high temporal resolution but coarse spatial 

resolutions (25–50 km), because, in order to detect the low quantities of emitted 
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radiation, the field of view for passive sensors must be large enough to detect sufficient 

energy to record a signal, resulting in a low spatial resolution (Barrett & Petropoulos, 

2013).  

The emitted energy detected by microwave radiometers generally includes contributions 

from the atmosphere (that also attenuates the emission from soil surfaces); however, 

atmospheric effects (that can be accounted for, e.g. Kerr et al., 2012) are considered 

negligible at low microwave frequencies, i.e. λ > 5 cm (Jackson et al., 1996). The 

interpretation and use of passive microwave signatures is still made complex by the 

influence of surface variables, e.g. the increase in soil roughness and vegetation biomass 

that reduce the sensitivity of TB to soil moisture. However, towards the longer-

wavelength region of the microwave spectrum (i.e. λ > 10 cm), the effects of vegetation 

and roughness are greatly reduced (e.g. Petropoulos et al., 2015), and L-band at 1.4 

GHz was identified as optimal, as previously mentioned. Another main surface variable 

that should be accounted for in the retrieval method is the surface temperature (e.g. 

Wigneron et al., 2003); a general model assumption is that, for vegetated surface, the 

temperatures of soil and vegetation are approximately the same (Karthikeyan et al., 

2017a). Soil texture and variability in the temperature of both soil and vegetation also 

affect microwave retrieval, yet have much less of an influence (Guerriero et al., 2012).  

Different soil moisture retrieval approaches have been developed to deal with the 

various effects contributing to the surface microwave emission (Wigneron et al., 2003; 

Paloscia & Santi, 2013; Petropoulos et al., 2015; Karthikeyan et al., 2017a). 

The radiative transfer theory is the basis of most SSM retrieval algorithms from passive 

microwave observations, with a radiative transfer model (RTM) being used to relate TB 

with soil emissivity. The latter can be in turn related with the soil dielectric constant, 

through the Fresnel reflectivity equations for smooth soil surface, eventually adjusted to 

take in account the soil roughness, e.g. with the model proposed by Wang & Choudhury 

(1981). Finally, soil dielectric constant are linked with soil moisture using a dielectric 

mixing model, chosen among the several ones available in literature (e.g. Wang & 

Schmugge, 1980; Topp et al.; 1980; Hallikainen et al.; 1985). 

With regard to the RTMs, Mo et al. (1982) developed a simplified form of the radiative 

transfer theory to quantify vegetation effects, known as the “tau-omega” model. In the 

tau-omega model, the brightness temperature, as observed from above the canopy for a 

given polarization, is due to the sum of three terms: (1) the radiation from the soil 
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attenuated by overlying vegetation, (2) the upward radiation directly from the 

vegetation, (3) the downward radiation from the vegetation, reflected upward by the soil 

and again attenuated by the canopy. The model is based on two parameters, the single-

scattering albedo (ω) and the vegetation optical depth (τ). The former describes the ratio 

of scattering efficiency to total extinction efficiency of the soil emissivity within 

vegetation layer, and is a function of the vegetation type and the leaf characteristics (van 

de Griend & Wigneron, 2004). It is generally assumed that the scattering effects are 

minimal in the case of low frequency microwave emissions, resulting in low values 

being assigned to ω (Karthikeyan et al., 2017a); computations of the single-scattering 

albedo gave a range of values from 0.04 to about 0.13 (Mo et al., 1982; Owe et al., 

2001). The vegetation optical depth (VOD) parameterizes the vegetation transmissivity, 

that also depends on the known sensor view angle; for frequencies lower than 10 GHz, τ 

can be expressed as a linear function of vegetation water content (Jackson et al., 1982). 

Over some vegetation water content thresholds, e.g. 1.5 kg/m
2
 at C-band (Paloscia & 

Santi, 2013), the signal becomes totally saturated by vegetation components and 

retrieval of soil moisture is not possible. The tau-omega model involves the use of soil 

and canopy physical temperature. The surface temperature is dependent on soil 

properties and moisture content. Hence, some algorithms compute soil temperature as a 

function of soil type, soil temperature at surface and at a depth, soil moisture or soil 

dielectric constant, and frequency of radiation (these inputs are obtained from ancillary 

data sources) (Choudhury et al., 1982; Holmes et al., 2006; Raju et al., 1995; Wigneron 

et al., 2008; Wigneron et al., 2001). In general, soil and canopy temperature are 

assumed to be approximately equal (as previously mentioned), although few methods 

use temperature values obtained from independent sources for soil moisture retrievals 

(e.g. Wigneron et al., 2007). 

The tau-omega model acts as a baseline for many retrieval algorithms (e.g. Jackson, 

1993; Wigneron et al., 2007; Owe et al., 2008; Kerr et al., 2012), with main differences 

usually lie in the treatment of the observations (e.g. by using different frequencies, 

polarizations, or multiple overpasses or view angles), in the methods used to account for 

the effects of the main geophysical variables (soil roughness, vegetation, surface 

temperature), and finally in the conversion of the soil dielectric constant to soil moisture 

(i.e. the adopted dielectric mixing model) (Paloscia & Santi, 2013; Dorigo et al., 2017).  
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The first generation retrieval methods were developed for airborne observations with a 

mono-configuration sensor (i.e., single polarization/frequency channel and view angle) 

(Wigneron et al., 2003) and were found capable of very accurate analysis over well-

defined and well-controlled areas (Petropoulos et al., 2015). These algorithms retrieve 

only soil moisture with an objective of minimizing the error between observed and 

modelled brightness temperatures in the horizontal or the vertical polarization. Physical 

parameters such as surface temperature, vegetation optical depth and surface roughness 

were typically obtained from ancillary data or empirical sources; however, the task 

became very challenging when these retrieval techniques were adapted to satellite 

instead of airborne observations.  

An example of the algorithms proposed in this regard is the Single Channel Algorithm 

(SCA) by Jackson (1993), initially developed to support the relatively simple instrument 

configurations that were available on aircraft platforms. This approach assumes that the 

single-scattering albedo is negligible and that the atmospheric contributions are 

minimal, thus significantly simplifying the tau-omega model. The soil moisture is 

therefore estimated by sequentially performing temperature normalization, removing the 

attenuating effects of the overlaying canopy and atmosphere, and estimating the 

associated smooth (i.e. removed surface roughness effects) surface emissivity using 

ancillary data.  

Since the passive microwave satellite sensors can usually provide multi-configuration 

measurements (i.e. measurements for several configuration systems of the sensor in 

terms of polarization, view angle, and microwave frequency), other parameters such as 

vegetation attenuation effects and surface temperature can be retrieved along with soil 

moisture, and therefore, less ancillary information is required in the retrieval process. 

Since the vegetation optical depth is the most important variable that needs to be 

computed in the retrieval process, certain algorithms such as the Dual Channel 

Algorithm (DCA) (Owe et al., 2001), the 2-Parameter L-band Microwave Emission of 

the Biosphere (L-MEB) model (Wigneron et al., 2000), the Land Parameter Retrieval 

Algorithm (LPRM) (Owe et al., 2008), and the revised Land Surface Microwave 

Emission Model (LSMEM) (Pan et al., 2014), made the retrieval of VOD possible by 

the aforementioned procedure. They are called two-parameter retrieval models, to 

distinct them from algorithms that also estimate the surface temperature (e.g. Njoku & 

Li, 1999), i.e. the three-parameter retrieval models (Wigneron et al., 2003). 
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Furthermore, the effects of retrieving parameters such as surface roughness (Parrens et 

al., 2016) and single-scattering albedo (Konings et al., 2016), along with soil moisture 

and VOD have also been successfully explored. The two-parameter retrieval algorithms 

obtain surface temperature data from ancillary sources of thermal infrared or high-

frequency microwave brightness temperature measurements (Karthikeyan et al., 2017a). 

However, implementation of this kind of approach requires a good parameterisation of 

the dependence of retrieved surface variables on the sensor configuration parameters 

(Wigneron et al., 2003). Numerous studies have reported good retrieval accuracies and 

relatively low error distribution in comparison to in-situ and modelled observations (Li 

& Rodell, 2013; de Jeu et al., 2014; Mladenova et al., 2014). Generally such studies 

have indicated that model performance is generally higher over sparse to moderately 

vegetated regions, where a decrease in accuracy is evident when transitioning to denser 

vegetated regions (Petropoulos et al., 2015). 

Apart from the models having physical basis in the radiative transfer theory, soil 

moisture is derived from passive microwave measurements using statistical regression 

techniques towards a reference soil moisture dataset. Some regression models are 

derived from standard RTM (e.g. Al-Yaari et al., 2016), while few models involve 

either simple linear relationship (e.g. Jackson et al., 1999) or neural network based 

procedures (e.g. Rodríguez-Fernández et al., 2015).  

Passive microwave remote sensing has been extensively used to retrieve soil moisture, 

with C- and X-band measurements that date back to 1978. A range of radiometers have 

indeed been in operation (Paloscia & Santi, 2013; Karthikeyan et al., 2017b), starting 

from the Scanning Multichannel Microwave Radiometer (SMMR), the Special Sensor 

Microwave Imager (SSM/I), and the Tropical Rainfall Measuring Mission (TRMM) 

Microwave Imager (TMI). These sensors were essentially devoted to meteorological 

applications due to the relatively high frequency employed and the very coarse ground 

resolution; however, the possibility of obtaining surface feature information gave rise to 

both theoretical and experimental research. 

The Scanning Multichannel Microwave Radiometer (SMMR), launched onboard the 

NASA Nimbus-7 satellite in 1978, was the first passive microwave satellite sensor that 

had the capability of retrieving surface soil moisture. Primarily, it was launched for 

obtaining sea surface temperature, surface wind speed, water vapor, and cloud liquid 

water content information. Brightness temperature was measured at five dual-polarized 
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frequencies from 6.6 to 37 GHz, and the global repeat coverage was up to six days. 

SMMR continued to provide data until 1987.  

The Special Sensor Microwave Imager (SSM/I) carried aboard the United States Air 

Force Defense Meteorological Satellite Program (DMSP) satellites continued the legacy 

of SMMR since 1987. Its purpose was to obtain ocean surface wind speed, water vapor, 

cloud liquid water, and rain rate information. Measurements are made at four 

frequencies (19.3, 22.2, 37.0 and 85.5 GHz) in both horizontal and 

vertical polarizations, except the 22.2 GHz which is sampled in the vertical only. With 

an improved swath width and reduced power consumption, SSM/I achieved global 

coverage almost daily.  

The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI) was one 

of the sensors onboard the TRMM satellite launched in 1997 jointly by NASA and 

Japan Aerospace Exploration Agency (JAXA). The satellite was launched primarily for 

measuring rainfall and energy exchange in the tropical and subtropical regions; TMI 

provides information on the integrated column precipitation content, cloud liquid water, 

cloud ice, rain intensity, and rainfall types (e.g. stratiform or convective). The TMI 

operated at five frequencies: 10.7, 19.3, 37, and 85.5 GHz at dual polarization and 22.2 

GHz at vertical polarization. The satellite made two daily passes (ascending and 

descending) at a location with a near-equatorial orbit. The TMI had a higher spatial 

resolution than that of SSM/I due to its larger antenna and lower orbital altitude, and 

provided data until 2015. 

The goal of estimating surface soil moisture became more attainable with the launch of 

the Advanced Microwave Scanning Radiometer for the Earth Observing System 

(AMSR-E), onboard the NASA’s Aqua satellite that was launched in 2002. Aqua is 

along a sun-synchronous orbit and overpass times are near 1:30 A.M. (in descending 

orbit) and P.M. (ascending) local time at the equator. The AMSR-E instrument, that 

stopped operating in 2011 due to an antenna failure, measured geophysical variables 

related to the earth's water cycle, including: precipitation rate, cloud water, water vapor, 

sea surface winds, sea surface temperature, sea ice concentration, snow water 

equivalent, and also soil moisture. AMSR-E was developed jointly by JAXA and 

NASA. The sensor measured microwave emissivity in six frequencies (6.9, 10.7, 18.7, 

23.8, 36.5, and 89.0 GHz) in both horizontal and vertical polarizations. The polar 

orbiting AMSR-E achieved global coverage within two days separately for ascending 
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and descending passes. Spatial resolution varied depending on the frequency, from 5.4 

km at 89.0 GHz to 56 km at 6.9 GHz, and improved significantly over SMMR (from 

150 km to 50 km for C-band radiometer) while also containing all channels of the 

previous sensors (SMMR, SSM/I and TMI).  

AMSR-E was the first satellite sensor to incorporate soil moisture as a standard product, 

also specifying an accuracy goal less than 0.06 m
3
m

-3
 (Jackson et al., 2010). Several 

retrieval algorithms (using different physical formulations, parameters, ancillary data, 

and AMSR-E channels) have been developed to provide soil moisture products, by 

NASA (Njoku et al., 2003; Njoku & Chan, 2006) and JAXA (Koike et al., 2004; Lu et 

al., 2009) and other research groups, e.g. the previously mentioned LPRM, developed 

by the Vrije Universiteit Amsterdam (VUA) in collaboration with NASA (Owe et al., 

2008). 

Another sensor that contributed to SSM monitoring is the WindSat onboard the Coriolis 

satellite, launched in 2003 and developed by the Naval Research Laboratory Remote 

Sensing Division, the Naval Center for Space Technology for the U.S. Navy and the 

National Polar-orbiting Operational Environmental Satellite System (NPOESS) 

Integrated Program Office (IPO). WindSat was meant to demonstrate the capabilities of 

a fully polarimetric radiometer to measure the ocean surface wind vector. In addition to 

wind speed and direction, the instrument also measures other parameters such as sea 

surface temperature, total precipitable water, integrated cloud liquid water, and rain rate 

over the ocean. The radiometer operates in 5 frequencies (6.8, 10.7, 18.7, 23.8 and 37.0 

GHz); all of them are fully polarimetric (i.e. in the six principal polarizations: V/H, ±45º 

linear, and left/right circular), except the 6.8 and 23.8 GHz that have only dual 

polarization (vertical and horizontal). The revisit time is almost daily, and the horizontal 

resolution is 25 km. A SSM retrieval algorithm was specifically developed for WindSat 

by Li et al. (2010), while Parinussa et al. (2012) adapted the LPRM to WindSat 

observations in order to obtain SSM retrievals that were consistent with the soil 

moisture products derived from AMSR-E (so potentially increasing the overall temporal 

resolution). 

With the sensors shown so far, the SSM retrieval was obtained from brightness 

temperature measurements taken in C- and X-bands. More recently, the launch of the 

dedicated soil moisture missions SMOS and SMAP, in 2009 and 2015 respectively, 

marked significant improvements because of their more suitable observation frequency 
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(L-band at 1.4 GHz). At the same time, continuity of previously existing products is 

guaranteed by the follow-up of AMSR-E, i.e. the AMSR2 sensor, launched in 2012 on 

the Global Change Observation Mission for Water research (GCOM-W1) satellite. 

 

2.7.2.1 SMOS 

The Soil Moisture Ocean Salinity (SMOS) is the first dedicated mission intended for 

global scale soil moisture and ocean salinity retrievals (Kerr et al., 2001). SMOS is a 

sun-synchronous polar orbiting satellite, launched in 2009 by ESA, with a revisit period 

of 1–3 days and equatorial ascending/descending overpasses at 6:00 A.M./P.M. local 

solar time. SMOS carries a single payload, a novel two-dimensional L-band (1.4 GHz) 

interferometric radiometer (Microwave Imaging Radiometer with Aperture Synthesis, 

MIRAS), with dual polarization and multiangular (0°–55°) viewing capabilities. The 

horizontal spatial resolution of the instrument is in the range of 30-50 km, while the 

usage of L-band wavelength results in an ability to retrieve soil moisture from greater 

depth (~5 cm). 

The SMOS retrieval algorithm was described by Kerr et al. (2012). In order to account 

for the effects of canopy layer and soil roughness to land emissivity, the algorithm 

makes full use of the SMOS dual-polarised and multiangular brightness temperature 

acquisitions to retrieve soil moisture and vegetation optical depth, through the inversion 

of the L-band Microwave Emission of Biosphere (L-MEB) model (Wigneron et al., 

2007). Soil moisture units are m
3
m

-3
, with a project target accuracy of 0.04 m

3
m

-3
.  

SMOS Level 2 soil moisture products are generated in the SMOS Data Processing 

Ground Segment (DPGS) located at the European Space Astronomy Centre (ESAC), 

and distributed through the ESA SMOS Online Dissemination Service (https://smos-

diss.eo.esa.int/oads/access/). The latest processor version of the SMOS retrieval 

algorithm is employed to generate reprocessed and operational (with a latency of 8-12 

hours) SMOS Level 2 soil moisture (L2SM). L2SM contains the retrieved soil moisture, 

vegetation optical depth and other ancillary data derived during processing (surface 

temperature, roughness parameter, dielectric constant and brightness temperature 

retrieved at top of atmosphere and at surface) with their corresponding uncertainties. A 

near-real-time product is also generated, that meet the requirement of data provision 

within 3-4 hours from sensing. It uses the SMOS NRT brightness temperature product 
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as an input to a neural network that was trained on historical time series of L2SM data 

(Rodriguez-Fernandez et al., 2015). NRT product also provides an estimation of the soil 

moisture uncertainty and the probability that a soil moisture value is contaminated by 

Radio Frequency Interference. For both L2SM and NRT products, swath measurements 

are geo-located in 15 km ISEA 4H9 equal-area grid system.  

SMOS Level 3 and 4 soil moisture products are also generated and distributed, by the 

Centre Aval de Traitement des Données SMOS (CATDS) (http://www.catds.fr/) and the 

Barcelona Expert Centre (BEC) (http://bec.icm.csic.es/). 

Level 3 CATDS products firstly include daily global maps of soil moisture and its 

associated parameters (e.g. vegetation optical depth, dielectric constant), for ascending 

and descending orbits processed separately. The product is derived with a multi-orbit 

approach. The retrieval is done using three successive orbits within a seven-day moving 

window. When several retrievals are available for a given day, the best estimation of 

soil moisture is selected for each grid point. Then, some aggregated products are 

generated from these daily global maps, i.e. the 3-day, 10-day and monthly global map 

products of soil moisture and its associated parameters. The CATDS also hosts the 

Level 3 SMOS INRA-CESBIO (SMOS-IC) product. The SMOS-IC algorithm 

(Fernandez-Moran et al., 2017) was designed by INRA (Institut National de la 

Recherche Agronomique) and CESBIO (Centre d’Etudes Spatiales de la BIOsphère). It 

is based on the two-parameter inversion of the L-MEB model, similarly to the L2SM 

retrieval approach but using some simplifications and with a reduced set of auxiliary 

information. The product contains daily global map of soil moisture and vegetation 

optical depth, for ascending and descending orbits. All Level 3 CATDS products are 

provided over the 25 km Equal-Area Scalable Earth Grid (EASE-Grid). 

Level 3 BEC products firstly include daily global maps of soil moisture, vegetation 

optical depth and dielectric constant for ascending and descending orbits. The product is 

available on 15 km (ISEA 4H9) and 25 km (EASE) grids. The product on ISEA 4H9 

grid is derived from the SMOS L2SM data without spatial or temporal averaging. The 

product on EASE-Grid is derived by quality-filtering, quality weighting and re-gridding 

the L2SM data. The 3-day, 9-day, monthly and annual products are generated by 

performing a temporal aggregation of the daily maps on the 25 km EASE-Grid for 

ascending and descending orbits. 

http://www.catds.fr/
http://bec.icm.csic.es/
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Level 4 CATDS products consist in data obtained from SMOS Level 3 CATDS 

products combined with data from other sensors or models. Two Level 4 soil moisture 

products are currently available, both provided on the 25 km Ease-Grid. The first is a 

daily global map of root zone soil moisture at 0-1 m depth, for ascending and 

descending orbits, derived from the Level 3 CATDS soil moisture data and through the 

usage of surface temperature information from ECMWF model reanalysis. The second 

is a long term consistent dataset of daily global SSM maps, consisting of AMSR-E 

retrievals for the period 2003-2010 and SMOS Level 3 retrievals for the period 2010-

2017. SSM retrievals from AMSR-E brightness temperatures are obtained through 

neural networks, trained on SMOS Level 3 data on the concurrent missions period (~1.5 

years) and then applied to the past AMSR-E observations (Rodriguez-Fernandez et al., 

2016). 

Level 4 BEC products include a high resolution soil moisture dataset over Iberian 

Peninsula, with daily map at 1 km resolution for ascending and descending orbits. The 

product is derived from SMOS brightness temperature data and the use of land surface 

temperature and vegetation index obtained from models (ECMWF ERA-interim) and 

satellite observations (NASA Terra/Aqua MODIS).  

 

2.7.2.2 SMAP 

The Soil Moisture Active Passive (SMAP) satellite mission is the most recent dedicated 

to soil moisture monitoring (Entekhabi et al., 2010b). It was launched in 2015 by 

NASA, with the objective of generating global fields of soil moisture and landscape 

freeze/thaw state. The spacecraft is in a sun-synchronous near-polar orbit, with equator 

crossings at 6:00 A.M. (descending node) and 6:00 P.M. (ascending node) local time.  

SMAP was designed with two components: an active L-band SAR (1.2 GHz with VV, 

HH, and HV polarizations) and a passive L-band radiometer (1.4 GHz with dual 

polarizations). The instruments share a rotating conically scanning antenna system with 

a surface incidence angle of 40°. The wide swath (1000 km) provides near-global revisit 

every 2–3 days. The radiometer provides accurate soil moisture data at moderate spatial 

resolutions (~40 km), while the SAR was designed to provide measurements with high 

spatial resolution (1-3 km over outer 70% of swath) but resulting more influenced by 

roughness and vegetation. The mission concept was to combine the attributes of the 
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radar (higher spatial resolution but lower soil moisture accuracy) and radiometer 

observations (higher soil moisture accuracy but lower spatial resolution): the concurrent 

coincident measurements were expected to provide soil moisture accuracy approaching 

radiometer-based retrievals but with intermediate spatial resolution (~10 km) 

approaching radar-based one. The target accuracy of SMAP mission is 0.04 m
3
m

-3
. 

Unfortunately, after 11 weeks of operation, the radar instrument encountered a failure, 

while the radiometer continues its operations. 

The SMAP project generally aimed to produce three types of surface soil moisture 

products (also including ancillary data and quality-assessment flags), i.e. retrieved from 

passive, active, and active-passive measurements, respectively. They are based on the 

resampling of sensors measurements on the Equal-Area Scalable Earth Grid version 2.0 

(EASE-Grid 2.0) at different spatial resolutions, i.e. 36 km for the passive, 3 km for the 

active, and 9 km for the active-passive soil moisture products. Level 2 products contain 

SSM retrievals based on half orbits (with a temporal resolution of 49 minutes), so only 

cells that are covered by the actual swath are written in the product; Level 3 products 

are daily global composites of the Level 2 soil moisture data; finally, a Level 4 product 

provides root-zone soil moisture based on the assimilation of SMAP observations into a 

land surface model.  

The SMAP project consider several retrieval algorithms, with a designated baseline. For 

example, five retrieval algorithms were selected for brightness temperature 

measurements: the Single Channel Algorithm considering horizontally or vertically 

polarized data respectively (SCA-H and SCA-V), the Dual Channel Algorithm (DCA), 

the Microwave Polarization Ratio Algorithm (MPRA), and the Extended Dual Channel 

Algorithm (E-DCA). They are all based on the tau-omega model but differing in their 

approaches to solve for soil moisture. The SCA-H, designated as pre-launch baseline 

retrieval algorithm, was replaced by the SCA-V due to its better performances in 

preliminary Calibration/Validation (Cal/Val) analyses (Chan et al., 2016). However, all 

five algorithms are continuously assessed and the choice of the operational algorithm 

for the validated release of the product is evaluated on a regular basis as analyses of 

new observations and Cal/Val data become available, and algorithm parameters are 

tuned based on a longer SMAP radiometer brightness temperature time series record. 

The baseline retrieval algorithm for SMAP radar measurements inverts a forward 

scattering model, through a multichannel approach based on a look-up table 
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representation (Kim et al. 2012; Kim et al. 2014). Finally, the active-passive algorithm 

(Das et al., 2014) is based on the disaggregation of the radiometer brightness 

temperatures using the radar backscatter spatial patterns within the radiometer footprint; 

once the disaggregated brightness temperatures are produced, the retrieval algorithm 

used for the radiometer-only soil moisture product is also here applied.   

SMAP soil moisture products are made available publicly through NASA National 

Snow and Ice Data Center (NSIDC, https://nsidc.org/daac/). The following products, 

among those initially planned, are currently generated: Level 2 and Level 3 Passive 

(L2_SM_P and L3_SM_P) and Level 4 Surface and Root-Zone (L4_SM) Soil Moisture 

products. The SMAP L4_SM product is currently generated by assimilating SMAP 

brightness temperature observations into the NASA Catchment land surface model; the 

product provides estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture 

at 9 km grid resolution. Then, other SMAP soil moisture products were introduced, i.e. 

the enhanced Level 2 and Level 3 passive (L2_SM_P_E and L3_SM_P_E) and the 

Level 2 SMAP/Sentinel active-passive (L2_SM_SP) products. The new products are 

developed post launch to recover capabilities lost when the SMAP radar ceased 

operation. In the enhanced Level 2 passive product, SSM retrievals are derived from 

brightness temperatures interpolated at 9 km grid resolution (Chan et al., 2018), while 

the enhanced Level 3 is the daily global composite of the enhanced Level 2 data. The 

SMAP/Sentinel active-passive product is based on the SMAP active-passive algorithm 

accommodated to use collocated Sentinel-1A and -1B data as backscatter fields for 

SMAP brightness temperature disaggregation and high-resolution soil moisture 

retrieval. The product is provided on global 3-km and 1- km EASE-Grid 2.0; the less 

frequent coverage of Sentinel-1 data results in more gaps for this match-up product than 

in the standard SMAP time series. 

 

2.7.2.3 AMSR2 

The Advanced Microwave Scanning Radiometer 2 (AMSR2), developed jointly by 

NASA and JAXA, was launched in 2012 onboard the JAXA’s Global Change 

Observation Mission - Water satellite (GCOM-W1, also nicknamed “SHIZUKU”), as a 

continuation to AMSR-E (Imaoka et al., 2010). The general objective of the mission is 

still to observe the global water cycle variables: integrated water vapor, integrated cloud 
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liquid content, precipitation, sea surface temperature, sea surface wind speed, sea ice 

concentration, snow depth and soil moisture. The satellite has a revisit time of one day 

and is in a sun-synchronous orbit, with equator crossing time at 1:30 P.M. (local time on 

ascending node) and 1:30 A.M. (descending), to continue the AMRS-E observations. 

AMSR-2 succeeded most of the characteristics of AMSR-E: it has all the frequency 

channels and similar sensor configuration with an additional C-band (7.3 GHz) dual 

polarization frequency to improve the mitigation of the Radio Frequency Interference 

(RFI).  

Several SSM products are available, generated with different retrieval algorithms, and 

specifically the JAXA standard algorithm, the Single Channel Algorithm (SCA), the 

Normalized Polarization Difference algorithm (NPD) and the Land Parameter Retrieval 

Model (LPRM). Due to RFI issues observed in the C-band, especially over the U.S., the 

soil moisture products are mainly derived using X-band brightness temperature data 

from the lowest frequency available, i.e. 10.65 GHz. However, LPRM products provide 

soil moisture retrievals also for the C-band, employing the frequency (6.9 or 7.3 GHz) 

less contaminated by RFI (Parinussa et al., 2015). In addition, 36.5 GHz data are also 

employed in some retrieval algorithms, e.g. to retrieve land surface temperature 

(Holmes et al., 2009). The footprint size at 10.65 GHz is 24 x 42 km, while for C-band 

it is 35 x 62 km. 

JAXA generates SSM products using a modified version of its retrieval algorithm 

developed for AMSR-E, with vegetation fractional area as ancillary data (Koike et al., 

2004; Fujii et al., 2009). The method utilizes the polarization ratio at 10.65 GHz and the 

normalized brightness temperature difference between the 36.5 and 10.65 GHz 

horizontal channels. JAXA Level 2 soil moisture product is distributed near-real-time in 

swath geometry at ~50 km spatial resolution, while Level 3 products are provided as 

daily and monthly temporal average grid data with 0.1° and 0.25° spatial resolutions in 

Equidistant Cylindrical Projection. JAXA standard products are currently distributed 

through its Globe Portal System (https://gportal.jaxa.jp/gpr/index/index). 

NASA, using JAXA near-real-time brightness temperatures as input, provides several 

SSM products. Two products are distributed by NASA National Snow and Ice Data 

Center (NSIDC) (https://nsidc.org/), with input brightness temperatures being 

resampled to the global cylindrical EASE-Grid with a nominal grid spacing of 25 km. In 

the first product SSM is retrieved by SCA (Jackson, 1993), using horizontally polarized 
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brightness temperature observations at 10.65 GHz. In the second one, SSM is obtained 

with the NPD algorithm, that is an updated version of the NASA AMSR-E standard 

algorithm (Njoku & Chan, 2006), involving both polarizations at 10.65 GHz frequency.  

Then, NASA and VUA provide soil moisture products retrieved with LPRM (Owe et 

al., 2008) and distributed through the NASA Goddard Earth Sciences Data and 

Information Services Center (GES DISC) (https://disc.gsfc.nasa.gov/). Here, LPRM 

uses the dual-polarized 6.9/7.3 or 10.65 GHz data for the retrieval of both surface soil 

moisture and vegetation water content, while the land surface temperature is derived 

separately from the vertically polarized 36.5 GHz channel. Level 2 datasets are 

provided in swath geometry, at 46 and 31 km spatial resolutions for C and X bands, 

respectively, as well as downscaled to 10 km by 10 km by using a smoothing filter-

based intensity modulation technique. Level 3 gridded datasets are also distributed, at 

daily temporal resolution and 10 km and 25 km grid resolutions, with separate products 

for ascending (day-time) and descending (night-time) satellite passes, as the geophysical 

conditions are different and so the expected SSM retrievals characteristics. 

 

2.7.3 ESA-CCI soil moisture products 

ESA CCI SM (https://www.esa-soilmoisture-cci.org/) combines various single-sensor 

active and passive microwave soil moisture datasets into three harmonised global 

products: a merged ACTIVE, a merged PASSIVE, and a COMBINED that is obtained 

by merging the ACTIVE and PASSIVE ones. The origins of the ESA CCI SM products 

date back to the inclusion of soil moisture in the list of Essential Climate Variables 

(ECVs) identified by the Global Climate Observing System (GCOS), due to its critical 

role to the characterization of the climate system and its changes (Dorigo et al., 2015, 

2017). A minimum record length of 30 years was among the required specifications for 

satellite-based soil moisture climate data record, and individual satellite missions are 

too short to fulfil it. Besides, differences in system and mission design as well as the use 

of different retrieval algorithms have led to varying quality and consistency over space 

and time. Yet, various studies have indicated the complementarity of active and passive 

products over different land cover types, with generally a better performance of 

radiometers over dry areas, a better performance obtained by scatterometers over more 
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densely vegetated areas, and a similar performance over semi-arid regions (Albergel et 

al., 2012; de Jeu et al., 2008; Dorigo et al., 2010; Taylor et al., 2012). 

A first attempt to utilize the synergy between different active and passive microwave 

products and merge them into a single multi-decadal soil moisture dataset was made by 

Liu et al. (2011, 2012). The product, which was initially developed under ESA Water 

Cycle Multi-Mission Observation Strategy (WACMOS) project, is then being extended 

and improved within ESA Climate Change Initiative (CCI) (Wagner et al., 2012), with 

the first version of ESA CCI SM being released in 2012. Later versions of ESA CCI SM 

included a large number of enhancements, incorporated various new satellite sensors, 

and extended the products temporal coverage. In Dorigo et al. (2017) the version v03.2, 

covering the period 1978–2015, was presented, which is also used in the application 

reported in Chapter 6 and is therefore described here. 

The architecture for the ESA CCI SM v03.2 production system (Fig. 2.7) is partly 

similar to the one originally proposed by Liu et al. (2011, 2012) and Wagner et al. 

(2012), with the main algorithmic improvement lying in the merging step.  

In the original scheme (Liu et al., 2012), used for the previous ESA CCI SM releases, a 

simpler approach was applied to merge the several input time series. The ACTIVE and 

PASSIVE products were generated by choosing the (expected) highest quality 

observations in the intervals where more than one input product was available at pixel 

scale, e.g. the lower the measurement frequency, the more accurate soil moisture 

retrievals can be expected from passive sensors. Similarly, the merging of ACTIVE and 

PASSIVE into the COMBINED product was based on their expected relative 

performances with respect to the vegetation density. Over areas with a low vegetation 

the PASSIVE product was chosen, while over areas with moderate vegetation density 

the ACTIVE one was considered; in transition areas, both products were being used in a 

synergistic way: on time steps where only one of the products was available, the 

estimate of the respective product was used, while on days where both provided an 

estimate, their observations are averaged (Dorigo et al., 2015). The vegetation density 

classification was based on the vegetation optical depth values obtained from reference 

AMSR-E C-band observations. The original merging scheme was suboptimal from a 

merging perspective as it ignores the information contained in the retrievals that are not 

selected; moreover, it resulted in several product issues (Dorigo et al., 2017), in terms of 

data coverage and quality.  
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The merging scheme in ESA CCI SM v03.2 is instead based on the error 

characterization of the input datasets (Gruber et al., 2017), made through the triple 

collocation analysis (Stoffelen, 1998). The method involves the use of three collocated 

datasets with independent random errors (e.g. SSM estimates from a Land Surface 

Model and retrievals from active and passive sensors, respectively) in order to estimate 

the random error variance for each of them (see Sect. 4.6.2 for details on triple 

collocation analysis). In ESA CCI SM production system the triple collocation is 

applied to estimate the error variances of the individual input products, as well as of the 

ACTIVE and PASSIVE datasets, for each blending period separately. Surface soil 

moisture estimates from the GLDAS-Noah v1 LSM (Rodell et al., 2004) provide the 

third dataset. A weighted average of all available measurements is made to compute the 

merged soil moisture estimate in an optimal way (i.e. resulting in lowest output error 

variance), with weights inversely proportional to the random error variances of the input 

datasets. It is worthy to note that the triple collocation cannot be used to characterize the 

errors of the final COMBINED dataset, since after blending ACTIVE and PASSIVE an 

additional dataset with independent error structures would be required to complement 

the triplet. In this case, random error variances for COMBINED product are however 

computed through a classical error propagation scheme, i.e. by propagating the error 

variance estimates of inputs ACTIVE and PASSIVE through the merging scheme (error 

propagation approach is described in Sect. 4.6.3). 

 

 

Figure 2.7. Figure taken from Dorigo et al. (2017), representing the schematic overview of ESA CCI SM v03.2 
production system.  
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As showed in Fig. 2.7, the ESA CCI SM approach starts from publicly available Level 2 

soil moisture retrieval data records, while the several merging steps are preceded by the 

rescaling and error characterization of the input products. Active microwave soil 

moisture products retrieved with the TU Wien change detection method and passive 

microwave products generated with the Land Parameter Retrieval Model are used 

because of their consistency in methodology across sensors. In v03.2 passive 

microwave observations come from SMMR, SSM/I, TMI, WindSat, AMSR-E, AMSR2 

and SMOS, while active microwave observations derive from ERS-1/2 AMI wind 

scatterometers and MetOp-A and -B ASCAT. Retrievals based on synthetic aperture 

radars (SARs) yield higher spatial resolutions but at the expense of reduced revisit times 

and are therefore not considered appropriate for global climate data record production 

(Dorigo et al., 2017). 

The input Level 2 SSM products undergo the following processing steps, which are 

described below:  

1. Temporal Resampling  

2. Spatial Resampling  

3. Rescaling passive and active Level 2 observations into radiometer and scatterometer 

climatology, respectively  

4. Error characterisation of rescaled passive and active Level 2 products  

5. Merging rescaled passive and active time series into PASSIVE and ACTIVE 

products, respectively  

6. Rescaling PASSIVE and ACTIVE products sets into common climatology  

7. Error characterisation of PASSIVE and ACTIVE  

8. Combining rescaled PASSIVE and ACTIVE products into single COMBINED 

product  

ESA CCI SM datasets are provided on a regular grid with a spatial resolution of 0.25° in 

both latitude and longitude extension, and have a daily temporal resolution with time 

stamp centred at 0:00 UTC (however, the actual data availability varies in space and 

time due to the varying spatial and temporal availability of the single-sensor input 

products). For this reason, the first processing steps are the temporal and spatial 

resampling. All input observations are assigned to the closest daily 0:00 UTC reference 

time step and resampled to the 0.25° regular grid points (steps 1 and 2). 
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Then, on a pixel basis the temporally rebinned passive and active soil moisture datasets 

are scaled into a common radiometer and scatterometer climatology, respectively, by 

applying a propagating cumulative distribution function (CDF) matching approach (step 

3). CDF-matching technique is described in Sect. 4.5.2; in this case, AMSR-E and 

ASCAT observations at pixel scale are used as ‘initial’ scaling references for the other 

passive and active datasets, respectively. The earlier datasets are successively matched 

to the references; in case the overlapping period between sensors is too short to allow 

for a direct scaling, e.g. for ERS with ASCAT, the datasets are matched based on their 

assumed similarity in seasonality (Liu et al., 2012).  

The error characterisation of the rescaled passive and active input products was made by 

triple collocation (step 4), as previously described. Finally, the rescaled passive and 

active input datasets are respectively merged into a single radiometer- (PASSIVE) and 

scatterometer-based (ACTIVE) soil moisture products (step 5), according to the 

weighted blending scheme that takes into account the estimated input error variances. 

The units of measurement of ACTIVE is degree [%] of saturation while PASSIVE is 

provided in volumetric units [m
3
m

−3
], according to the input SSM retrievals. 

Subsequently, the systematic differences between ACTIVE and PASSIVE products 

(including the different units) are corrected for by matching for the CDF of each pixel 

against long-term volumetric soil moisture estimates from a Land Surface Model, by 

using GLDAS-Noah v1 as reference (step 6). The choice of using a modelled soil 

moisture product and not one of the microwave-based products as scaling reference has 

been motivated by the fact that none of the latter has global coverage and spatially 

consistent quality; even though the rescaling procedure affects the absolute soil 

moisture values, temporal variability and trends of the original datasets are generally 

well preserved (Liu et al., 2012). Triple collocation is then performed on rescaled 

PASSIVE and ACTIVE products (step 7). 

In the final step (8), the rescaled ACTIVE and PASSIVE products are merged into the 

COMBINED one, again based on their error characteristics. The units of measurement 

of COMBINED is volumetric units [m
3
m

−3
]. Error variance estimates for the 

COMBINED product are computed by error propagation. 
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3. DATA ASSIMILATION METHODS 

 

3.1 Introduction 

Data assimilation (DA) procedures are developed to combine complementary 

information from model simulations and independent observations to find the best 

representation of the dynamic behaviour of a system. 

Data assimilation was originally used for meteorology and oceanography, while its 

application in hydrology is relatively recent; the development of remote sensing 

significantly enhance the application of DA. 

In hydrology DA is widely applied in order to update the model state variables; it is also 

used to improve model parameter estimates or to update model output to match the 

latest observations, but these aspects will not be detailed here. 

Data assimilation methods are designed to optimally merge state estimates from model 

and observations (both containing errors) considering the respective uncertainties, in 

order to minimize the error in analysis state estimates. The information contained in the 

observations is so also propagated forward or backward in time, depending on the 

specific application and therefore on the appropriately chosen DA method. 

Many assimilation techniques have been developed, generally differing in their 

numerical cost, optimality, and suitability for given applications, with the sophistication 

of the merging algorithm that can vary widely. 

In this chapter an overview of data assimilation methods is given, according to different 

classification criteria, and some commonly used techniques are introduced. Then the 

topic of soil moisture data assimilation is discussed, particularly with regard to the 

integration of remotely sensed observations into hydrological models in order to 

improve streamflow predictions. Finally, the mathematical approach is illustrated for 

the techniques used in most of the soil moisture DA applications. 

 

3.2 An overview of data assimilation methods 

The DA process can be generally divided into two phases: (1) a propagation step which 

evaluates changes in state estimates according to the dynamical model, and (2) an 
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analysis (or update) step which modifies state estimates to account for information 

contained in measurements (Evensen, 2009). 

DA methods generally rely on the assumption of unbiased errors, i.e. errors must be 

strictly random and on average the model estimates and the observations must agree 

with the true fields (Reichle, 2008). The goal to combine model predictions and 

observations to determine an error variance minimizing estimate of the true state of the 

system (analysis) can be achieved by solving an appropriate least-squares minimization 

problem (Todini & Biondi, 2016). 

Most assimilation algorithms are based on updated states that are a linear combination 

of the observation and the model estimates (Lahoz & Schneider, 2014). In other terms, 

analysis estimates are defined by corrections to the background (i.e. the a priori model 

estimates) which depend linearly on background-observation departures, weighted by a 

gain operator. The optimal gain operator corresponds to the BLUE (Best Linear 

Unbiased Estimator) solution. The BLUE analysis can be equivalently obtained as a 

solution to the variational optimization problem where a cost function is minimized, 

having two terms which account for the distance between the state vector and the 

background and observation vectors respectively (see Sect. 3.4). 

The DA methods can be classified according to different criteria, starting from the way 

in which the analysis values are obtained. 

In methods such as the Kalman Filter (KF) and its derivatives (Kalman, 1960; Evensen, 

2009), the solution of BLUE problem is calculated using explicit linear algebra for the 

direct determination of the gain operator (also called Kalman gain matrix); this allows 

also to update the error covariance, then explicitly propagated in time to obtain its 

background value for the next assimilation step. 

In large systems, like those in the present meteorological and oceanographical 

applications, the computional load associated with the dimension of the problem makes 

the use of numerical solutions preferable (Bouttier & Courtier, 1999). Methods such as 

the three-dimensional variational (3D-VAR) and four-dimensional variational (4D-

VAR) were developed, with analysis solution numerically obtained by using iterative 

minimization techniques on the variational cost function. In 3D-VAR the 3 space 

dimensions are considered at the fixed time and model error covariance is considered to 

be static (so matrix is inverted just one time); in 4D-VAR the time is considered as the 

4th dimension, with error covariance that implicitly evolves within an assimilation 
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interval (i.e. the analysis estimates are obtained without ever explicitly computing their 

error covariance).  

Another distinction can be made concerning the assimilation interval in which the 

analysis is performed (Figure 3.1). In filtering problems, observations are assimilated 

sequentially, i.e. the analysis estimation is done for any instant a new observation is 

available, which is usually technically convenient. Examples are the KFs (detailed 

below) and the 3D-VAR. 

In smoothing problems, observation distributed within a time window are considered, 

and the correction to the analysed state is smooth in time, which is physically more 

realistic. An example is the 4D-VAR, whose standard formulation assumes model is 

perfect (also known as strong-constraint 4D-VAR, i.e. the model physic is imposed as a 

strong-constraint in the minimization of the cost function), so it reduces to finding the 

initial condition that produces the trajectory that fits observations best throughout the 

whole assimilation window (Ide et al., 1997). Weak-constraint 4D-VAR methods are 

being developed to relax the assumption that the model is perfect (Reichle, 2008), by 

including an additional term in the cost function involving errors in the model 

formulation (in this case it is not enough to find an optimal initial condition, since it 

does not uniquely determine the trajectory). 

When assimilation is based on filtering, there is propagation of the information 

contained in the observations only from the past into the future, i.e. after analysis step 

each observation influences the estimated states only at later times; in smoothing 

assimilation the system is instead updated in times that precede the most recent 

observation. 

 

Figure 3.1. Figure taken from Reichle (2008), representing schematic of continually operating data assimilation 
systems based on (a) filtering (for example 3D-VAR, Kalman filter) and (b) smoothing (for example 4D-VAR). 
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In literature, the filtering and smoothing assimilation problems (McLaughlin, 2002; 

Reichle, 2008) are often referred respectively to as sequential and variational (implicit 

meaning through time) (e.g. Ide et al., 1997; Talagrand, 1997), or also as direct and 

dynamic observer (Walker & Houser, 2005) assimilation. 

DA methods were developed to take also in account the characteristics of the dynamical 

model, which influences the propagation step. 

Focusing on filtering problem (which is the most common case in hydrological DA), for 

linear systems the optimal sequential assimilation method is the Kalman filter (KF), 

originally proposed by Kalman (1960), which introduces an equation for the time 

evolution of the error covariance matrix. However, there are not many cases in which 

the linear KF could be applied to complex hydrological models (Sun et al., 2016). 

The Extended KF (EKF) (e.g. Jazwinski, 1970) and the Ensemble KF (EnKF) (Evensen, 

1994) were both developed to extend the application of the KF to nonlinear systems; 

also, they are the two major descendants of the linear KF. 

The EKF applies a straightforward Taylor extension scheme to linearize the nonlinear 

system, but often becomes unstable when applied to complex nonlinear hydrological 

models (e.g. Reichle et al., 2002a). The EnKF avoids direct linearization by introducing 

an appropriate ensemble to represent the statistical properties of the model states with a 

Monte Carlo approach (essentially, the covariance matrix is replaced by the sample 

covariance). The EnKF avoids many of the problems associated with the EKF and is 

one of the most widely used hydrological DA methods (Moradkhani, 2008). 

If the background and observation error pdfs are Gaussian (fully characterized by their 

error covariances, having assumed unbiased errors), the KF analysis scheme 

corresponds to the maximum likelihood estimator of the true state (the same applies to 

KF variants, within the limits of the approximations introduced) (Bouttier & Courtier, 

1999; Evensen, 2009).  

Other filtering techniques, such as Particle Filter (PF) (e.g. Moradkhani, 2008), avoid 

the restrictive assumption of normal distribution of errors in state variables, and the 

corresponding characterization in time of error covariance only. PF aims at providing a 

complete representation of the posterior probability distribution of state variables given 

the model and the measurements, by using a set of discrete random samples (called 

particles). Model estimates are not updated but rather their probability distributions are 

evolved through time. The prediction phase implies routing the samples through the 
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dynamical model; the probability distribution of model predictions is then calculated as 

weighted combination of the ensemble members, with associated weights that 

essentially are the normalised value of the pdf of the observation given the model 

estimates. 

More generally, in DA algorithms there are other common assumptions on the errors 

statistical properties that are often violated in the practical application. 

The assumption that observation and model errors are unbiased to the truth is the most 

restrictive assumption, most commonly violated assumption, and most detrimental 

assumption in terms of predictive performance (Walker & Houser, 2005). In practice 

there are often significant biases in the background fields and in the observations which 

is difficult to remove prior to data assimilation (Reichle, 2008). The common data 

assimilation systems designed to correct random, zero-mean errors are called bias-blind; 

it is not possible to produce an unbiased analysis from a biased background and/or 

biased observations with a bias-blind analysis method (Dee, 2005). Bias-aware 

assimilation methods instead incorporate specific assumptions about the source and 

nature of (some of) the biases in the system, characterized in terms of some well-

defined set of parameters, in order to estimate and correct them during the analysis step 

(Dee & da Silva, 1998). The first challenge for these methods is to correctly attribute a 

detected bias to its source; then they require the formulation of a useful model for the 

bias, as well as a reference dataset from which to estimate the bias model parameters 

(both requirements involve difficult choices). In practice, however, it is extremely 

difficult, if not impossible to attribute the bias conclusively to either the model or the 

observations, and subjective assumptions need to be made. If the source of an evident 

bias is uncertain, bias-blind assimilation may be the safest option (Dee, 2005). 

Another common assumption is in model and observation random errors to be 

uncorrelated with the true state, mutually uncorrelated and uncorrelated in time (white 

noise) (e.g. Reichle et al, 2002a, 2002b). The hypothesis of mutually uncorrelated errors 

is the most justifiable because the causes of errors in the background and in the 

observations are supposed to be completely independent. However, one must be careful 

about observation preprocessing practices that use the background field in a way that 

biases the observations toward the background: it might reduce the apparent background 

departures, but it will cause the analysis to be suboptimal.  
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3.3 Data assimilation of soil moisture 

Effective quantification and reduction of uncertainties are fundamental for a 

comprehensive and reliable forecasting of hydrological variables, such as river 

discharge (Li et al., 2016). Rainfall-runoff models are used to predict streamflow at 

future time given knowledge of the current state of the system; in this respect, good 

estimates of the state variables are necessary to enable the model to produce relatively 

accurate and reliable flow forecasts (Liu et al., 2012b). The application of data 

assimilation in hydrology holds considerable potential for improving prediction 

accuracy and quantifying uncertainty, also as a consequence of the abundance of new 

hydrologic observations (in-situ or remotely sensed) (Montzka, 2013). In recent years, 

increasing availability of satellite observations with appropriate spatial and temporal 

resolutions has brought great interest into assimilating remotely sensed retrievals of 

various quantities, such as soil moisture (Ni-Meister, 2008). Due to the important role 

of soil moisture in hydrologic, meteorological and ecological cycles, soil moisture data 

assimilation has received increasing attention; drought monitoring, runoff modelling 

and flood forecasting, numerical weather prediction, land surface and climate models 

assessment, agricultural monitoring and crop yield forecast are among the most 

important applications benefiting from assimilation of soil moisture observations 

(Brocca et al., 2017b). In-situ techniques provide fairly accurate soil moisture 

measurements at the point-scale for a suitable depth; however potential benefits in 

assimilating this kind of observations are restricted due to the very limited spatial 

coverage coupled with the very small spatial support. In a recent work by Gruber et al. 

(2018), in situ soil moisture measurements from a large-scale monitoring network are 

assimilated into a continuous model domain, with results demonstrating that a fourfold 

increase in existing station density is needed to provide a level of skill comparable to 

that provided by existing satellite-based surface soil moisture retrievals. In fact, most 

DA applications employ remotely sensed soil moisture observations at the surface layer 

(1–5 cm). However, information on the moisture condition in the root zone and 

subsurface layers is more critical for understanding and simulating many hydrologic 

processes including evapotranspiration and surface runoff (Han et al., 2012; Vereecken 

et al., 2008). By the utilization of satellite SSM observations in a DA framework 

containing a hydrological or land surface model, it is possible not only to update SSM 
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model states but also to improve the prediction of soil moisture profiles. An important 

prerequisite is that the water content of the near-surface soil layer be coupled with the 

deep soil layer (Brocca et al., 2012a; Flores et al., 2012; Walker et al., 2002), otherwise 

the soil moisture profile cannot be retrieved. A decoupling can for example be observed 

during extended drying periods when a divergence between the drying rates at the soil 

surface and deeper levels occurs; moreover, frozen soil conditions manifest in the data 

as low soil moisture observations, which can have a significant detrimental impact on 

the assimilation and need to be excluded (Draper et al., 2011). There are basically two 

different options to assimilate remotely sensed soil moisture observations: (1) direct 

assimilation of (not always available) high-level data products, i.e. SSM (eventually 

preprocessed), and (2) direct assimilation of raw or low-level sensor data (brightness 

temperatures or backscatter) (Montzka, 2013). The advantage of direct assimilation of 

high-level products is that it is not necessary to implement an additional SSM retrieval 

model or a complex observation operator to internally calculate soil moisture (Reichle, 

2008). 

Many applications rely on assimilating SSM observations into land surface models to 

improve soil moisture simulations. While the impact of SSM DA for the estimation of 

soil moisture profile is reported to be generally positive, it still remains controversial if 

it introduces added value for further hydrological applications such as the runoff 

prediction (Montzka, 2013; Brocca et al., 2017b). 

As soil moisture is a key control variable in runoff modelling, it is a logical step to 

update soil moisture states into the models through satellite observations assimilation. 

Addressing uncertainties in state variables can improve streamflow simulations, also by 

enhancing the estimation of model initial conditions for flood forecasting. 

However, as most operational models are highly conceptualized, it is not promised that 

addressing errors in soil moisture states is the most beneficial approach to maximizing 

the benefit in streamflow forecasts (Li et al., 2016). Different from streamflow data 

assimilation, soil moisture affects the flow forecasts through the catchment hydrologic 

processes, which are typically not fully represented by forecasting models. Therefore, 

improvement in soil moisture estimates does not necessarily lead to improvement in 

streamflow predictions.  

The analysis of the scientific literature reveals that the actual added-value in using 

satellite soil moisture for runoff modelling is still unclear (e.g. Matgen et al., 2012; 
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Massari et al., 2015). Some authors obtained moderate to significant improvement 

through the assimilation of satellite data soil moisture in hydrological modelling, while 

in other studies degradation of performances was reported. 

Brocca et al. (2012a) showed that the assimilation of satellite-derived root-zone soil 

moisture has a stronger impact than direct assimilation of SSM products on streamflow 

prediction. Draper et al. (2011) found that the assimilation of SSM data improved the 

streamflow prediction to some extent, but the improvement may mainly result from the 

correction of large bias from precipitation, which was suggested to be addressed 

through bias-aware data assimilation approaches. Han et al. (2012) found that the 

improvements in streamflow were much weaker than in soil moisture, and not 

consistent in all sub-areas. Matgen et al. (2012) showed that satellite-derived root-zone 

soil moisture was not able to enhance runoff prediction if the model is well calibrated 

by streamflow gauges. Chen et al. (2011) obtained in a synthetic experiment moderate 

results in evapotranspiration estimation, while deeper soil moisture, surface runoff, as 

well as stream flow predictions were not improved; the results of the real-world 

experiment were also not successful, caused by significant underprediction of the 

vertical soil water coupling. Alvarez-Garreton et al. (2014, 2015) applied satellite soil 

moisture assimilation for both lumped and semi-distributed models, but runoff 

prediction was not strongly improved; when assimilation were performed in distributed 

models (Wanders et al., 2014; Lievens et al., 2015), improvements were identified 

especially in ungauged areas. Ridler et al. (2014) showed that assimilation of SSM 

products resulted in overcorrection of errors in streamflow and flood peaks, which may 

be caused by the bias between observations and model estimates.  

These contrasting results have to be attributed to the inherent uncertainties and issues 

involved in the use of satellite soil moisture data in hydrological modelling, including 

the bias between remote sensing data and model states, the discrepancy between soil 

moisture depth in the model and the depth observed by remote sensing data, the spatial 

mismatch between the model and the remote sensing products, the particular model 

structure, the assessment of the magnitude and the structure of the errors in the 

hydrological model and in the observations (Brocca et al., 2017b). These issues are still 

under-research and need to be further addressed before remote sensing data can be 

operationally implemented to constrain the flood forecasting models. It is important to 

understand whether and how much benefit can be achieved when a single issue is 
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addressed. There will be a greater potential to improve flood forecasting when better 

understanding and more effective solutions to those specific challenges are achieved 

(Massari et al., 2015). 

Even the choice of the most appropriate DA technique can have a significant impact on 

final results. DA algorithms are becoming increasingly sophisticated, from simple rule-

based, direct insertion methods (i.e. the forecast model states are directly replaced with 

the observations) to advanced smoothing and sequential techniques as well as the 

various variants of these techniques (Li et al., 2016). 

After pioneering works by Goodrich et al. (1994) and Ottlé & Vidal-Madjar (1994), 

who simply integrated remotely sensed SM retrievals into a hydrological model through 

direct insertion, several other studies followed (Houser et al., 1998; Galantowicz et al., 

1999; Li & Islam, 1999; Margulis et al., 2002; Montaldo et al., 2001; Pauwels et al., 

2002; Walker et al., 2002), not only focused on runoff modelling. This stage was mainly 

characterized by the use of data such as the ERS/SAR measurements, with low temporal 

frequency (i.e. about 35 days) resulting in an insufficient impacts on flow simulation. At 

that period, various approaches were examined in order to identify what type of data 

assimilation methods are most suitable for satellite SM assimilation, including direct 

insertion, statistical correction, successive correction, Newtonian nudging (Houser et 

al., 1998; Walker & Houser, 2005). 

Along with the development of high temporal resolution satellites (with revisits of 1–3 

days), it was gradually realized that Kalman filtering approaches are relatively strong in 

both uncertainty reduction ability and computational efficiency (Li et al., 2016).  

Although traditionally dominant in numerical weather forecasts, variational methods 

have not been widely used in hydrological soil moisture assimilation (Sun et al., 2016), 

and there are few studies available in this regard (e.g. Reichle et al., 2001; Jones et al., 

2004; Yang et al., 2007; Calvet & Noilhan, 2000; Sabater et al., 2007).  

The majority of studies chose the Ensemble Kalman Filter (EnKF) (e.g. Reichle et al., 

2002b; Alvarez-Garreton, 2015; Brocca et al., 2012a; Chen et al., 2014; Han et al., 

2014; Lievens et al., 2015; Loizu et al., 2018), while a minor part used the Extended 

Kalman Filter (EKF) (e.g. Draper et al., 2011), and also simple nudging approaches 

(e.g., Brocca et al., 2010a) where the expected weights of model and observation are 

assumed constant in time. The Particle Filter (PF) could be a strong alternative to EnKF, 

which is subject to some limitations including the linear updating rule and assumption 
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of jointly normal distribution of errors in state variables and observation (Moradkhani, 

2008; Matgen et al., 2012; Montzka, 2013). However, the PF has not been widely 

implemented in flood forecasting studies. One reason is that the PF can lead to 

ensemble collapse and needs to be resampled for ensemble forecasting, while the EnKF 

is more efficient to meet the operational requirement of low computational cost (Li et 

al., 2016). 

 

3.4 System formulation and analysis scheme 

Considering two unbiased estimates related to the true state vector 𝑥𝑡 at a given time, 

defined by: 

𝑥𝑏 = 𝑥𝑡 + 𝜂𝑏          (3.1) 

𝑦 = H𝑥𝑡 + 𝜀          (3.2) 

where: 

– 𝑥𝑏 is the background model state vector;  

– 𝜂𝑏 is the (unknown) background model state error, with zero-mean and (known) 

covariance matrix P𝑏; 

– 𝑦 is the observations vector (there are usually fewer observations than variables in 

the model); 

– H is the ‘observation operator’ (here considered linear as in the Kalman filter theory) 

that relates states to observations; 

– 𝜀 is the (unknown) observation error, with zero-mean and (known) covariance matrix 

R; 

– model and observation errors are mutually uncorrelated. 

The Best Linear Unbiased Estimator (BLUE) of the true state, that provides 𝑥𝑎, the 

analysis estimate of 𝑥𝑡:  

𝑥𝑎 = 𝑥𝑡 + 𝜂𝑎          (3.3) 

by requiring that the total analysis error variances are minimum, is determined by the 

following equation: 

𝑥𝑎 = 𝑥𝑏 + G(𝑦 − H𝑥𝑏)             (3.4) 

where the linear operator G is the gain matrix (also called Kalman gain matrix), given 

by: 

G = P𝑏HT(HP𝑏HT + R)−1        (3.5) 
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The error covariance of the analysed model state vector, P𝑎, is reduced with respect to 

the error covariance of the background state as: 

P𝑎 = (I − GH)P𝑏         (3.6) 

The BLUE analysis is equivalently obtained as a solution to the variational optimization 

problem: 

𝑥𝑎 = argmin[𝐽(𝑥)]         (3.7) 

with: 

𝐽(𝑥) =
1

2
(𝑥 − 𝑥𝑏)T(P𝑏)−1(𝑥 − 𝑥𝑏) +

1

2
(𝑦 − H𝑥)TR−1(𝑦 − H𝑥)   (3.8) 

where 𝐽 is called the variational cost function and measures, in a weighted sense, the 

distance between an estimate 𝑥 and the forecast 𝑥𝑏, plus the distance between the 

estimate and the observations 𝑦. 

The analysis problem can be also formalized using the conditional probabilities, i.e. by 

looking for the maximum of the conditional probability of the model state given the 

observations. If the background and observation error pdfs are Gaussian, then the error 

variance minimizing estimate 𝑥𝑎 is also the maximum likelihood estimate of the true 

state. 

The observation operator, representing functions from model state space to observation 

space such as interpolation operators from the model discretization to the observation 

points, or conversions from model variables to the observed parameters, in practice may 

not be linear, i.e. 𝐻(𝑥) and not H. 𝐻(𝑥) can be used to the predicted measurement from 

the predicted state in (3.4), but cannot be applied directly in (3.5) to derive the gain 

operator. It usually makes physical sense to linearize the observation operator 𝐻(𝑥) in 

the vicinity of the background state (Bouttier & Courtier, 1999), introducing the tangent 

linear operator H, i.e. assuming that the variations of the observation operator in the 

vicinity of the background state are linear: for any 𝑥 close enough to 𝑥𝑏, then 𝐻(𝑥) −

𝐻(𝑥𝑏) ≈ H(𝑥 − 𝑥𝑏). The effects of approximations in the observation operator may in 

any case be represented in the observation error covariance; the observation operator 

indeed generates the values that the observations would take in the absence of any error, 

according to (3.2). 
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3.5 Sequential data assimilation 

Sequential data assimilation methods use the analysis scheme previously described to 

update the model state when new observations become available. A major issue 

concerns the time evolution of the forecast error covariance P𝑏, according to the 

assigned dynamical model. 

 

3.5.1 Linear dynamics: the Kalman Filter 

For linear dynamics the optimal sequential assimilation method is the Kalman filter 

(KF), originally proposed by Kalman (1960), which introduces an equation to predict 

error statistics for the model background.  

Given a best estimate for 𝑥𝑡 at time 𝑡𝑘−1, 𝑥𝑘−1
𝑎 , a forecast 𝑥𝑏 is calculated at time 𝑡𝑘, as: 

𝑥𝑘
𝑏 = M𝑥𝑘−1

𝑎           (3.9) 

where M is a linear model operator, including the model parameters and forcings. 

It is assumed that the true state vector 𝑥𝑡 evolves according to: 

𝑥𝑘
𝑡 = M𝑥𝑘−1

𝑡 + 𝑞𝑘−1         (3.10) 

where 𝑞𝑘−1 is the (unknown) model error over one time step, with model error 

covariance matrix Q𝑘−1. The unbiased model error summarizes all the uncertainties in 

model formulation, parameters, forcing data, initial conditions. 

Subtracting (3.9) to (3.10) results in: 

𝑥𝑘
𝑡 − 𝑥𝑘

𝑏 = M(𝑥𝑘−1
𝑡 − 𝑥𝑘−1

𝑎 ) + 𝑞𝑘−1       (3.11) 

The error covariance matrix for the background at time 𝑡𝑘 becomes: 

P𝑘
𝑏 = MP𝑘−1

𝑎 MT + Q𝑘−1        (3.12) 

At times when new observations are available: 

𝑦𝑘 = H𝑥𝑘
𝑡 + 𝜀𝑘         (3.13) 

it is thus possible to calculate the gain matrix with the (3.4) and then update the state 

and the error covariance using (3.5) and (3.6), respectively. 

 

3.5.2 Nonlinear dynamics 

Considering now a nonlinear model: 

𝑥𝑘
𝑡 = ℳ(𝑥𝑘−1

𝑡 ) + 𝑞𝑘−1        (3.14) 



 

85 
 
 

where ℳ(𝑥) is a nonlinear model operator and 𝑞 is again the unknown model error 

over one time step. 

For nonlinear dynamics the Extended Kalman filter (EKF) may be applied, in which an 

approximate linearized equation is used for the prediction of error statistics. 

A prerequisite to apply the EKF is that the nonlinear model should be continuously 

differentiable. Under this condition, it is possible to obtain the converted linear dynamic 

matrix by expanding the nonlinear functions at the estimated point. 

The tangent linear operator is applied: 

ℳ′𝑘−1 =
𝜕ℳ(𝑥)

𝜕𝑥
|

𝑥𝑘−1

         (3.15) 

assuming that the contribution from higher order terms are negligible.  

Similarly to (3.12), the following equation is then used for error covariance 

propagation: 

P𝑘
𝑏 = ℳ′𝑘−1P𝑘−1

𝑎 ℳ′𝑘−1
T + Q𝑘−1       (3.16) 

which represents an approximate solution due to the linearization and the discarding 

higher order terms (closure approximation). Thus, the usefulness of the EKF will 

depend on the properties of the model dynamics, with approximations that could be too 

severe for strongly nonlinear dynamics (Moradkhani, 2008). 

In many cases, nonlinear systems do not have explicit analytical solutions and the 

derivatives can only be calculated numerically (Sun et al., 2016). 

The Ensemble Kalman Filter (EnKF) was originally proposed as a stochastic or Monte 

Carlo alternative to the deterministic EKF by Evensen (1994). 

The EnKF is based on representation of the state error covariance needed at analysis 

times through the statistical properties of an appropriate ensemble of model states, 

randomly generated and propagated through the model operator independently. 

The EnKF has gained popularity because of its simple conceptual formulation and 

relative ease of implementation for practical applications (Evensen, 2003). It avoids the 

need to linearize the model equations for the propagation of the error covariance, so 

there are no derivation of a tangent linear operator nor closure approximation used; 

moreover it requires no storing a full error covariance matrix nor its propagation in 

time, making the computational demand feasible also for high-dimensional state 

vectors. A critical aspect is the size of the ensemble, which determines the difference 
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between the ensemble covariance and the error covariance. However, in many cases a 

limited ensemble size provides a sufficient representation (Sun et al., 2016). 

 

3.5.2.1 Ensemble Kalman Filter 

The EnKF is based on the representation of error statistics at a given time by using an 

ensemble of model states. 

While the error covariance matrices for the background and the analysed estimate are in 

the Kalman filter defined in terms of the true state as: 

P𝑏 = (𝑥𝑏 − 𝑥𝑡)(𝑥𝑏 − 𝑥𝑡)T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅         (3.17) 

P𝑎 = (𝑥𝑎 − 𝑥𝑡)(𝑥𝑎 − 𝑥𝑡)T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅         (3.18) 

where the overbar denotes an expectation value, in EnKF since the true state is not 

known, it is more convenient to consider ensemble covariance matrices around the 

ensemble mean �̅�: 

P𝑒
𝑏 = (𝑥𝑏 − 𝑥𝑏̅̅ ̅)(𝑥𝑏 − 𝑥𝑏̅̅ ̅)

T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅
        (3.19) 

P𝑒
𝑎 = (𝑥𝑎 − 𝑥𝑎̅̅ ̅)(𝑥𝑎 − 𝑥𝑎̅̅ ̅)T̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅        (3.20) 

where now the overbar denotes an average over the ensemble.  

This leads to an interpretation of the EnKF as a purely statistical Monte Carlo method 

where the ensemble of model states evolves in state space with the mean as the best 

estimate and the spreading of the ensemble as the error covariance.  

Therefore the EnKF does not need to store a full error covariance matrix, nor its 

propagation is necessary for the prediction of error statistics, as the time evolution of the 

probability density of the model state is represented by integrating ensemble members 

forward in time according to the model dynamics till the next observation time. 

At analysis times, observations are treated as random variables (Burgers et al., 1998) by 

adding random perturbations drawn from a distribution with zero mean and covariance 

equal to the measurement error covariance matrix: 

𝑦𝑗 = 𝑦 + 𝜀𝑗          (3.21) 

where j counts from 1 to the number of model state ensemble members N. In this way 

an ensemble of observations is generated, from a distribution with mean equal to the 

actual measurements and covariance equal to R, that then is used in updating the 

ensemble of model states.  
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The Kalman gain matrix is calculated as in (3.5) apart from the use of P𝑒
𝑏 instead of P𝑏: 

G𝑒 = P𝑒
𝑏HT(HP𝑒

𝑏HT + R)−1        (3.22) 

A new ensemble representing the analysed state is then generated by updating each 

ensemble member individually using the traditional analysis equation: 

𝑥𝑗
𝑎 = 𝑥𝑗

𝑏 + G𝑒(𝑦𝑗 − H𝑥𝑗
𝑏)        (3.23) 

that implies: 

𝑥𝑎̅̅ ̅ = 𝑥𝑏̅̅ ̅ + G𝑒(𝑦 − H𝑥𝑏̅̅ ̅)        (3.24) 

As an effect of the use of perturbed observations, the analysed error covariance is: 

P𝑒
𝑎 = (I − G𝑒H)P𝑒

𝑏         (3.25) 

resulting to be consistent with (3.6). 

The general idea of the EnKF is illustrated in Figure 3.2. 

 

 

Figure 3.2. Figure taken from Moradkhani et al. (2005), representing EnKF schematic. 𝒙𝒕
𝒊−: forecasted state 

ensemble member and 𝒙𝒕
𝒊+: updated state ensemble member. 
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4. OBSERVATION PREPROCESSING AND ERROR 

CHARACTERIZATION 

 

4.1 Introduction 

Some operations on surface soil moisture retrievals are typically necessary for the 

purpose of an effective data assimilation, in order to consistently compare the satellite-

based data with the model estimates, as well as to obtain optimal analysis solutions. 

As showed in the previous chapter, an observation operator, H, is introduced that maps 

the model variables into observation space, which then must be in a linear form in order 

to calculate the gain matrix. DA provides optimal solutions according to underlying 

hypothesis on the observation error structure: observations are assumed to be unbiased 

with additive zero-mean random errors, temporally-uncorrelated and mutually 

uncorrelated with the analogous model errors. The use of the actual observation error 

variance guarantees the optimal weighting of model backgrounds and observations.  

In this sense, the preprocessing and error characterization of satellite-based soil 

moisture observations are crucial for the successful implementation of data assimilation 

systems, and represent a challenge also in terms of compatibility with the underlying 

hypothesis of the common DA techniques. 

Following a common practice in soil moisture DA, an ‘inverse’ observation operator 

can be used to process the satellite observations into model variables, with these 

‘preprocessed’ observations being subsequently considered in DA analysis scheme. 

During DA, the correspondent observation operator thus assumes the form of a matrix 

with elements being equal to 0 or 1 (depending on whether the observation is 

convertible or not in state vector elements) and can be used in order to compute gain 

matrix. More generally, the preprocessing is addressed to face up to a number of known 

weaknesses which can affect the optimality of the DA, including the masking of low 

quality observations and the reduction of relative biases between model and satellite-

based estimates. The preprocessed observations are then analysed in the error 

characterization step, aimed to assess their actual random error variance prior to DA.  

All these tasks can be performed by choosing among different methodologies, and final 

choices can determine not only the optimality of DA experiments but even the ability to 

improve the background model estimates. In the following, some important issues 



 

89 
 
 

involved in remotely sensed soil moisture DA process are summarized, with a focus to 

those concerning the satellite observations and to the corresponding commonly used 

solving strategies. Then, for the identified steps (i.e. quality check, propagation to 

deeper layers, bias correction, error characterization) the most used approaches are 

described. 

 

4.2 Overview of steps prior to data assimilation 

As discussed in the previous chapter, the relative improvement of assimilating remotely 

sensed soil moisture into flood forecasting models is yet difficult to be quantified (e.g. 

Matgen et al., 2012), and much more research is still needed to understand the benefits 

and limitations in streamflow prediction by integrating satellite soil moisture data. The 

contrasting results obtained in various studies also revealed a number of scientific and 

practical issues involved in the use of satellite soil moisture data in hydrological 

modelling that should be addressed. A big challenge is concerned with the “mapping” 

between observed and modelled variables, as their characteristics rarely coincide. In this 

sense issues include the bias between remote sensing data and model states, the 

discrepancy between soil moisture depth in the model and the shallow layer observed by 

remote sensors, and also the spatial mismatch between observations and modelled data. 

Then, other critical aspects are related to the very low quality of soil moisture retrievals 

under certain surface conditions (e.g. dense vegetation, frozen soils, snow, urban areas, 

open water), the particular model structure, and the assessment of the errors magnitude 

and structure in the hydrological model and in the observations.  

While these limitations may prevent the use of remotely sensed soil moisture in 

practical applications, some approaches have been already developed to overcome these 

issues. In this sense, several choices can be made in a data assimilation study and they 

might have a significant impact on final results, with even the same relevance of the 

considered observational dataset or data assimilation algorithm (Massari et al., 2015). 

With regards to the model structure, it is worthy to highlight the development of 

rainfall-runoff models specifically targeted to the assimilation of satellite data, e.g. by 

considering a thin soil layer close to the surface. The assimilation of soil moisture data 

is also useful to identify and overcome structural deficiencies in the hydrologic models 

themselves. For example, in Chen et al. (2011) the calibrated SWAT model 
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significantly underestimated the vertical coupling of soil moisture between upper and 

lower soil layers, and the SSM assimilation was not effective in improving estimates of 

deep soil moisture and then streamflow. The particular challenge of correctly 

representing linkages between soil moisture across two or more soil layers has been 

identified as a key concern. 

DA methodologies even rely on a proper representation of model errors, based for 

example on the statistical descriptions of errors in model parameters and forcings. 

However, model error characterization is often made in a somewhat arbitrary or 

subjective fashion, depending on uncertain, user-defined error assumptions; as a result, 

the relative weighting applied to modelled and observed soil moisture information is 

arguably subjective and does not necessarily reflect an optimized integration of 

independent data sources (e.g. Crow & Van Loon, 2006). Efforts have been made to 

overcome this weakness; for example, in EnKF applications several ensemble 

verification metrics can be used to assess the ensemble representation of SM while 

considering model uncertainty, also in order to verify or calibrate error assumptions on 

parameters and forcings. 

The remaining of this chapter is focused on the issues related to preprocessing (i.e. 

quality check, propagation to deeper layers, bias correction) and error characterization 

of satellite-based soil moisture observations, aimed at their subsequent assimilation in 

prediction models. 

As already mentioned, remotely sensed observations can have different levels of 

quality, due to various factors involved in the processing that can affect the accuracy of 

retrievals. Thus, before being used, observations are generally subjected to a quality 

control aimed to reject particularly poor measurements. Since no observation is free of 

error, the challenge is to mask only those observations that are below acceptable quality 

thresholds while providing reliable error estimates for the remainder. SSM products 

usually include several additional data fields, containing attributes and flags which can 

be useful in judging the reliability of remotely sensed estimates. Using these indicators, 

quality check procedures can be set for specific applications. For example, sets of 

threshold values are used to check SSM values preliminarily to their assimilation in land 

surface models into numerical weather prediction systems (e.g. Dharssi et al., 2011; de 

Rosnay et al., 2013), in order to detect areas where retrieval methods do not work well 

or to mask single spurious SSM observations.  
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Another critical issue is related to how propagate information from the surface layer 

observed by satellite sensors to a deeper layer. The sensing depth of satellite sensors is 

very shallow, around 2 and 5 cm for the used C-band and L-band sensors, respectively, 

and also varying with wetness conditions. These depths are much lower than that 

generally considered by models which simulate soil moisture states for various 

applications. When sensor and model are not representing the same geophysical 

variable (i.e. soil moisture states at a given depth), a mapping becomes necessary before 

the comparison. The task to propagate remotely sensed surface soil moisture 

information to the deeper layers was targeted in many ways, as several application 

fields require knowledge of soil moisture in the so-called root-zone. Contributions to the 

estimation of root-zone soil moisture from surface measurements include regressive 

relationships (e.g. Arya et al., 1983; Srivastava et al., 1997), filtering approaches 

(Brocca et al., 2013) such as the exponential filter (Wagner et al., 1999), physically-

based formulations (Manfreda et al., 2014), data driven methods (e.g. Kornelsen & 

Coulibaly, 2014; Pal et al., 2016). These approaches can potentially be used to convert 

observations to model state space, before data assimilation. However, by modifying the 

structure of the models including a shallow soil layer close to the surface, satellite soil 

moisture information can be extended to the root zone in a data assimilation framework, 

with surface observations directly integrated that also update the root-zone soil moisture 

states. In all cases, if surface and root-zone soil moisture levels are decoupled, as 

usually occurs in very dry conditions, the use of satellite measurements can be of 

limited utility. A simplified method such as the exponential filter was also used when 

prediction model already includes a surface soil layer (Fairbairn et al., 2017; Massari et 

al., 2018); this because, in order to avoid numerical problems, the assigned model 

surface layers usually have a minimum thickness (typically 10 cm) that is greater than 

satellite sensing depth (Manfreda et al., 2014). 

Even if the model has a surface layer, or the remote sensing data have been converted to 

the root-zone SM estimates, there may still be significant bias between modelled and 

remotely sensed soil moisture. Following typical SM DA practices, these systematic 

differences are corrected prior to data assimilation, in order to compare consistent 

information; this facilitates data assimilation corrections for random errors, otherwise 

analysis estimates will be affected by biases between the compared datasets. It is worthy 

to remember that DA methods usually rely on observations and model estimates that are 
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unbiased with respect to the unknown “truth”; thus, the proper treatment of bias is 

critically important to the success of a data assimilation system. As mentioned in the 

previous chapter, modelling the bias respect to truth is a difficult task, and in practice it 

is not possible to attribute the bias to either the model or the observations, as both are 

likely to be affected by systematic errors. Some types of systematic differences between 

model and observation are usually removed, making subjective assumptions with the 

risks to lose some information in the bias-corrected datasets. The common approach is 

to rescale the observations in order to match some statistical properties of the model 

estimates. These so-called a priori rescaling methods are easy to implement as a 

preprocessing step to the data assimilation system, and different techniques are 

available, generally requiring a relatively long-term of record to properly derive the 

rescaling statistics. 

Finally, another challenge is the error characterization of remote sensing observations, 

which is a prerequisite for DA analysis. Error is defined as the difference between the 

measured (or estimated by a model) value and the corresponding (unknown) true value. 

In general, all estimates of a variable are considered to be affected by errors, both those 

obtained by model and by measurement (in situ or remotely sensed). Error can be 

viewed as having two components, a random and a systematic one. As already seen, 

proper corrections for systematic errors could be made with reliable bias modelling, 

alternatively some types of systematic differences with a reference dataset can be 

effectively removed. Random errors reduction is instead the main target of data 

assimilation methods, which optimally combine model and observation information. 

The success of data assimilation also relies on an adequate representation of observation 

errors, while on the contrary an incorrect error characterization can seriously degrade 

the prediction model performance. Because of a general lack of information on the 

errors magnitude and structure, usually simplistic assumptions are made, with DA 

results being related to the reliability of the errors assumption/estimation. Several error 

characterization methods are available, generally not only limited at quantifying the 

observation random error variance which is usually needed for DA applications. 

Different methods are based on different error assumptions and provides different 

information. In the following it will be described how the error characterization is 

carried out by the use of standard statistical measurements (like the correlation 



 

93 
 
 

coefficient or the root-mean-square-error) and by the triple collocation and the error 

propagation methods. 

 

4.3 Quality check 

Data assimilation techniques can fail in estimating the true fields if observations grossly 

inconsistent with the model state are used (Waller et al., 2018). The presence of 

measurements affected by gross errors (or more generally by errors that can be 

considered characterized by different statistics compared to the rest of observational 

dataset) can be due to various causes. With regards to remotely sensed soil moisture, the 

quality of individual observations is impacted on one hand by factors related to the 

sensor properties and operation, as well as to the retrieval algorithm skill. On the other 

hand, the quality can be also affected by many environmental conditions, which are 

variable through space (e.g., topography), time, or both (e.g., frozen soil conditions, 

vegetation cover). Some factors may entirely impede a realistic retrieval (e.g., snow/ice 

coverage) while the majority adds some degree of random error and bias to the obtained 

estimate, the amount of which depends on the nature, intensity, and subpixel area 

affected by the specific factor (e.g., vegetation, open water) (Dorigo et al., 2017). 

To make the measurements useful to users, information on data quality are included in 

many satellite-based soil moisture datasets. Data quality information are provided as 

additional data fields, in the form of flags (referred to some specific environmental 

condition or retrieval process aspect) or also quantitative uncertainty measures. 

According to Wagner et al. (2013b), these indicators can be grouped into ‘quality flags’ 

and ‘advisory flags’ with respect to their functionality. The quality flags are directly 

derived from the data processing and describe the intrinsic quality of the soil moisture 

retrieval (e.g., noise, processing, and correction flags in ASCAT SSM). On the other 

side, the advisory flags support the user in judging the validity of the soil moisture 

product in those situations that could not have been identified during the retrieval (e.g., 

snow, frozen soil, topography, wetland); therefore this second kind of flags originates 

from external datasets and complements the quality flags.  

Elementary quality control operations are commonly performed by applying thresholds 

to quality level descriptors or uncertainty information, to determine which data to use. 

For example, Numerical Weather Prediction (NWP) centres adopted a suitable set of 
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quality flags, which allows automatic selection of data of sufficient quality for 

assimilation; hence quality screened data are preferred at the cost of some data loss 

(Wagner et al., 2013b). The decisions made in this context are generally application 

specific and may also be based on the amount of available data, as they may result in a 

reduction in spatiotemporal coverage and can affect the representativeness of the dataset 

(Loew et al., 2017).  

In hydrological DA applications, quality check (QC) procedures were also set up for 

remotely sensed SM data, aimed at recognizing the effects of known sources of error, 

peculiars to the active and passive sensors. QC procedures differ for attributes 

considered and threshold values adopted. Then, there is another aspect that is usually 

taken into consideration, in addition to the provided quality indicators of SSM 

estimates. Surface observations occurred during night and early morning passes are 

expected to be more appropriate in order to update the soil moisture profile, because the 

soil is most likely to be in hydrologic equilibrium conditions, avoiding daytime 

decoupling due to various factors such as evaporation (e.g. Albergel et al., 2008; 

Wanders et al., 2012). Depending on the specific polar satellite, ascending and 

descending passes occurred in specific hours of the day, and a check can so be made on 

the observation orbit direction. 

However, such a priori quality controls may not be sufficient for the success of data 

assimilation (Lahoz et al, 2014). According to Reichle (2008) data assimilation systems 

should include on-line quality control routines, which cross-compare observations, 

incorporate information from the geophysical model, and discard inconsistent 

observations. More generally, additional checks may be necessary such as checking the 

physical plausibility of a given measurement, visual inspection of the data, or tests for 

temporal consistency. 

In this sense, Walker et al. (2005) suggested the following additional checks: 

- consistency or sanity checks, to see if the observation absolute value or time rate of 

change is physically realistic; 

- buddy checks, which compare the observation with comparable nearby (space and 

time) observations of the same type and reject the questioned observation if it exceeds a 

predefined level of difference; 
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- background checks, which examine if the observation is changing similarly to the 

model prediction. If the user has some reasonable confidence in the model, observations 

that result in anomalous observation-minus-background residuals are discarded.  

 

4.4 Surface soil moisture propagation to deeper layers  

Root-zone soil moisture dynamics are a key factor in numerical weather prediction 

(NWP), rainfall–runoff processes, agricultural applications, drought risk assessment, 

ecosystem health. Significant efforts are therefore being made to extend satellite based 

surface soil moisture data into the root zone. In this sense, a first key challenge was to 

identify or create models that are structured in a way that is optimal for the assimilation 

of surface soil moisture data.  

The first user community to be attracted by opportunities offered by satellite soil 

moisture observations was the NWP community, due to importance of soil moisture for 

modelling land-atmosphere interactions. In particular, root zone soil moisture influences 

the energy and water exchange occurs continuously at the interface between the land 

surface and the lower atmosphere. Given the recognized role in weather forecasts 

played by land surface processes, the NWP community started to invest in developing 

more physically based Land Surface Models, which also accurately simulate the profile 

soil moisture dynamics. Hence, efforts have been made in the integration of 

observations to improve soil moisture representation, also by assimilating remotely 

sensed surface soil moisture together with conventional measurements of screen-level 

(near surface) air temperature and relative humidity. For example, the European Centre 

for Medium Range Weather Forecasting (ECMWF) and the UK Met Office (UKMO) 

started to operationally assimilate ASCAT SSM data (de Rosnay et al., 2013; Dharssi et 

al., 2011) with sequential schemes in the shallow layer of their LSMs (7 cm depth for 

ECMWF, 10 cm for UKMO), after a bias correction phase which makes satellite data 

consistent with the model. A great challenge faced by soil moisture assimilation in 

NWP is that improving the soil moisture estimates may not immediately improve 

atmospheric forecasts due to errors in the model physics; in this sense, the assimilation 

of satellite data can help to identify and address errors in the model surface flux 

processes (Ochsner et al., 2013). 
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Using satellite SSM data assimilation to improve the modelled profile soil water 

content, some root-zone soil moisture analysis products were released. In the context of 

EUMETSAT H-SAF, ASCAT-based root zone soil moisture products have been 

developed through the ECMWF Land Data Assimilation System (de Rosnay et al., 

2013). These products are referred to as SM-DAS-2 or H14 (a near-real-time product) 

and SM-DAS-3 or H27 (an offline product, currently from 1992 to 2014 also using ERS 

scatterometer data) and provide estimates for four soil layers from surface down to 3 

meters. In both products remotely sensed SSM data are assimilated in H-TESSEL Land 

Surface Model through an Extended Kalman Filter; screen-level temperature and 

humidity observations are also used in the analysis. Another product is the SMAP Level 

4 Surface and Root-Zone Soil Moisture (L4_SM), which is instead generated by 

assimilating SMAP brightness temperature observations into the NASA Catchment land 

surface model using an Ensemble Kalman Filter. The SMAP Level 4 product provides 

estimates of surface (0-5 cm) and root-zone (0-100 cm) soil moisture. There are some 

limits (e.g. the fixed soil depths) in the use of these root-zone products as observations 

in a data assimilation framework with a second prediction model, above all the fact that 

products provide analysis estimates, thus including the first model errors. This could be 

reflected in errors correlated with the second model background estimates, if both 

models share some elements in physics, parameters or forcings. 

In some cases, also the structure of hydrologic models was modified to maximize the 

benefits of SSM integration. Soil moisture is indeed one of the key variables in flood 

forecasting models, as it plays an important role in partitioning rainfall into runoff and 

infiltration. Different remotely sensed soil moisture products are used along with 

various hydrologic models, including conceptual models where the representation of 

physical processes is simplified compared to that in LSMs, for example by typically 

simulating the water storage of a single soil column to represent the unsaturated zone. 

As satellite data requires a model tailored to their use, some conceptual hydrological 

models were modified by introducing a surface soil layer, such as the GRHUM 

(Loumagne et al., 2001), GRKAL (Francois et al., 2003) and MISDc-2L (Brocca et al., 

2012a), making possible to directly assimilate surface data. During DA analysis steps, 

also deeper layers are usually updated; however, in some cases (e.g. Lievens et al., 

2015, 2016) bottom layers SM were not included in state vector to avoid stability 

problems. According to Kumar et al. (2009), the effectiveness of deeper layer SM 
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updates via surface assimilation depends on vertical coupling between soil layers, which 

is, in turn, determined by the specific model used, model parameters and climate. 

However, the quality of various layers updates has different impact in runoff 

improvement, as each individual SM layer can have a different control on runoff. Using 

an alternative approach, in Brocca et al. (2012a) root-zone SM was estimated from 

surface data through the application of an exponential filter, and both satellite-based 

surface and root-zone data were then assimilated into a two-layer rainfall-runoff model. 

In their study the assimilation of satellite-based root-zone estimates in the bottom layer 

produced a significant positive impact on runoff simulation, while assimilation of SSM 

product in the top layer had only a small effect. 

Other methods were proposed to propagate SSM information to the depths of interest 

for the model, including the exponential filter, regressive relationships, artificial neural 

networks, and physically based formulations. 

A widely used approach is the above mentioned exponential filter (Wagner et al., 1999) 

to obtain a root-zone soil moisture estimate, typically referred to as soil water index, 

SWI, from available remotely-sensed surface measurements. The method is widespread 

for its simplicity as it involves using only one parameter, and has been extensively 

employed also to evaluate satellite-based root-zone soil moisture estimates by 

comparison with in situ and modelled data (e.g. Ceballos et al., 2005, Albergelet al., 

2008, Paulik et al., 2014, Cho2015, Tobin2017). The exponential filter is the 

predominantly used within a more general category of filtering techniques (Brocca et 

al., 2013), which infer the root zone estimate from the available SSM values. The 

Copernicus Global Land Service provides a SWI product from ASCAT SSM datasets 

(Paulik et al., 2014), according to different exponential filter parameter values in order 

to represent soil moisture at various depths; with respect to the previous mentioned 

satellite-based root zone products, SWI is much closer to the original satellite 

measurements because it is obtained without the use of a complex land surface 

modelling scheme. Satellite-based SWI was used as indicator or variable in forecasting 

models for drought and crop production (e.g. de Wit & van Diepen, 2007; Zhao et al., 

2008; Zribi et al., 2010; Amri et al., 2012; Qiu et al., 2014; González-Zamora et al., 

2016), landslide (Brocca et al., 2012b) and soil loss (Todisco et al., 2015). The 

exponential filter is also commonly used to obtain root-zone soil moisture observations 

for data assimilation in hydrological models (e.g. Brocca et al., 2010a, 2012a; Matgen et 
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al., 2012; Alvarez-Garreton et al., 2014, 2015, 2016; Massari et al., 2015; Laiolo et al., 

2016; Cenci et al., 2016, 2017; Loizu et al., 2018), as the SWI method is easy to be 

implemented for all conceptual models without requiring modifications to soil layers 

structure. 

Regression approaches simply fit mathematical relationship between surface and deeper 

soil moisture, while artificial neural networks (ANN) are a data-driven method that uses 

interconnected processing elements to represent the nonlinear and heterogeneous nature 

of the soil moisture variation across depths. ANN approaches usually requires 

multisource information (e.g. meteorological variables) to enhance model accuracy, 

and/or the use of a land surface model for the training (e.g. Kornelsen & Coulibaly, 

2014). In a comparative study using in situ data, Zhang et al. (2017) obtained that 

exponential filter performs better than linear regression and ANN for vertical 

extrapolation of soil moisture. Although the ANN performances depend significantly on 

the used configuration, they are more computationally demanding and requiring higher 

amount of input data when compared to other considered methods. 

Finally, a simple physically based approach for estimating root-zone soil moisture from 

surface observations was proposed by Manfreda et al. (2014). The method, referred to 

as SMAR, requires the identification of few parameters that are related to the physical 

characteristics of the area under investigation. The SMAR method is not designed to be 

followed by a bias correction of root zone estimates, unlike the exponential filter where 

SWI mainly works as trend indicator of the profile soil moisture. Both remotely sensed 

SSM and in situ surface measurements are used within the SMAR model, obtaining a 

good description of root zone soil moisture dynamics after proper calibrations (Faridani 

et al., 2016). In Baldwin et al. (2017) an ensemble Kalman filter was used to support 

SMAR, by estimating a regional-scale satellite bias parameter using reference in situ 

data. The bias parameter is added to input SSM retrievals before their use in SMAR; in 

this way, the optimized SMAR-EnKF model predicted root zone soil moisture with a 

lower degree of error respect to previous SMAR calibration efforts.  

 

4.4.1 The exponential filter 

Wagner et al. (1999) proposed an exponential filter to estimate root-zone SWI from 

remotely sensed SSM time series, making use of one parameter only, T, representing a 
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characteristic time length. The method has the effect of smoothing and retarding the 

SSM time series, mimicking the diffusion process of the water into the deeper soil 

layers. In this sense, the exponential filter reproduces a simple two-layer water-balance 

model, where the soil moisture dynamics of the lower layer are captured by convoluting 

the input top layer SM measurements. In the soil water balance equation the water 

fluxes between the two layers are controlled by a constant pseudodiffusivity term and 

assumed to be linearly related to the difference in soil water content; many important 

processes like transpiration are not explicitly considered. The soil water index at time tn, 

SWIn, is defined by equation (4.1), where SSMi is the surface soil moisture at time ti: 

SWI𝑛 = (∑ SSM𝑖e
−(

𝑡𝑛−𝑡𝑖
𝑇

)𝑛
𝑖 ) (∑ e−(

𝑡𝑛−𝑡𝑖
𝑇

)𝑛
𝑖 )⁄   (4.1) 

In alternative, the SWI can be calculated using a mathematically equivalent recursive 

formulation (Albergel et al., 2008): 

SWI𝑛 = SWI𝑛−1 + 𝐾𝑛(SSM𝑛 − SWI𝑛−1)   (4.2) 

with the gain Kn, comprised in the interval 0÷1, also expressed in a recursive form:  

𝐾𝑛 = 𝐾𝑛−1 (𝐾𝑛−1 + e−(
𝑡𝑛−𝑡𝑛−1

𝑇
))⁄   (4.3)  

In this recursive formulation, initial values SWI0 and K0 are set to SSM0 and 1, 

respectively.  

A comprehensive analysis of the exponential filter was made by Ceballos et al. (2005). 

Given its high variability, SSM time series resembles a white-noise process 

(uncorrelated in time), while the derived SWI time series has a spectrum similar to that 

of a red-noise process (serially correlated in time). The characteristic time length T acts 

a surrogate parameter that takes into account the different processes that affect the 

temporal scale of soil moisture (layer depth, soil hydraulic properties, evaporation, 

transpiration, runoff, soil layers, etc.); given the limited understanding of seasonal 

effects on soil moisture time scales, T is usually treated as a constant, although it is 

expected to vary seasonally.  

In practice, T is usually determined by optimizing the correlation between SWI and 

reference root-zone soil moisture data, e.g. model estimates. Despite its simplicity, the 

exponential filter has been found to approximate the profile soil moisture content quite 

well, with T depending mainly on the soil depth.  

In the case of extensive temporal SSM data gaps relative to the filter parameter T, 

equation (4.3) shows that the gain for the next available observation tends toward unity. 
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As a result, when a new SSM value is available, the previous SWI estimate is 

disregarded and the SWI estimate at that time takes the value of the new SSM 

observation. It is evident in the recursive formulation that the SWI estimated through 

the exponential filter approach suffers from prolonged data gaps in SSM data, compared 

to the filter parameter value T. Conversely, a sufficiently low gain Kn implicitly 

indicates an adequate number of input observations in the temporal range of interest for 

the filter estimation. 

It is worth noting that, although widely used in DA frameworks, SWI estimates present 

time-correlated errors that, theoretically, are not compatible with the common data 

assimilation assumptions. 

 

4.4.2 The SMAR method 

Manfreda et al. (2014) proposed a soil moisture analytical relationship (referred to as 

SMAR) to infer the root zone state from surface data. The method is derived from a 

simplified two-layer soil water balance and involves a limited number of physically 

consistent parameters. It provides a solution that may be considered particularly reliable 

in dry areas, as a linear soil water loss function is assumed in the bottom layer to 

represent both evapotranspiration and percolation, which implies some limitations in the 

use in humid environments. 

The relative saturation in the deeper layer at time 𝑡𝑗, given by the ratio between soil 

water content and porosity and indicated as 𝑆2,𝑗, is obtained from its previous estimate 

𝑆2,𝑗−1 and the current relative saturation in the surface layer, 𝑆1,𝑗. For this purpose, 

SMAR use the following seven parameters that can be related to physical characteristics 

of the soil profile: 

- 𝑛1 and 𝑛2 are the soil porosity of the top and bottom layers, respectively; 

- 𝑍𝑅1 and 𝑍𝑅2 are the depth of the top and bottom layers, respectively; 

- 𝑉2 is the soil water loss coefficient of the bottom layer, accounting for both 

evapotranspiration and percolation losses; 

- 𝑆𝐶1is the relative saturation at field capacity of the top layer; 

- 𝑆𝑊2is the relative saturation at wilting point of the bottom layer. 
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The soil water balance of the deeper soil layer is controlled by infiltration from the first 

layer and soil water losses (other processes such as horizontal lateral flows are assumed 

negligible).  

The water flux from the top layer can be considered significant only when the soil 

moisture exceeds field capacity: 

𝑦𝑗 = {
𝑆1,𝑗 − 𝑆𝐶1

0
       

𝑆1,𝑗≥𝑆𝐶1

𝑆1,𝑗<𝑆𝐶1
        (4.4) 

where 𝑦𝑗 is the fraction of soil saturation infiltrating in the lower layer at time 𝑡𝑗. 

As mentioned, a linear function is assumed to describe soil water losses, varying from 

the maximum value 𝑉2 under well-watered conditions to 0 at the wilting point. 

Introducing the normalized coefficients: 

𝑎 =
𝑉2

(1−𝑆𝑊2)𝑛2𝑍𝑅2
         (4.5) 

𝑏 =
𝑛1𝑍𝑅1

(1−𝑆𝑊2)𝑛2𝑍𝑅2
         (4.6) 

the analytical relationship can be written as: 

𝑆2,𝑗 = 𝑆𝑊2 + (𝑆2,𝑗−1 − 𝑆𝑊2)𝑒−𝑎(𝑡𝑗−𝑡𝑗−1) + 𝑏(1 − 𝑆𝑊2)𝑦𝑗(𝑡𝑗 − 𝑡𝑗−1)  (4.7) 

having reduced the number of parameters from seven to four (𝑎, 𝑏, 𝑆𝐶1, 𝑆𝑊2). All these 

parameters may be estimated from the soil texture, the soil depth, and the soil water 

losses, or also calibrated using reference root-zone data. The relative saturation at field 

capacity can be set as initial value for the soil moisture in the second soil layer. It 

should be noted that SMAR may produce values higher than 1 and that these must 

automatically set equal to 1. 

A modified version of SMAR was recently proposed (Faridani et al., 2017), by 

including a non-linear soil water loss function explicitly describing deep percolation and 

evapotranspiration dynamics.  

 

4.5 Bias correction methods 

Soil moisture observations are integrated in prediction models through the commonly 

used data assimilation methods, which provide optimal statistical solutions in terms of 

error minimization having made specific assumptions on the observation error structure, 

such as the independence between error and true state realizations, the absence of any 

other type of systematic error, observations and model estimates that on average agree 
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with the true states. In reality, however, biases are unavoidable and it is difficult to 

attribute the bias to the model or the observations.  

In this sense, a more general linear error structure is often used for soil moisture 

datasets: 

𝑋𝑖 = 𝛼 + 𝛽T𝑖 + 𝜀𝑖         (4.8) 

where 𝑋𝑖 and T𝑖 are the estimate and the true state value at time i, respectively. The 

other terms, on the right-hand side, represent three separate types of errors, with the first 

two jointly quantify the systematic error. The term 𝛼 represents a constant deviation, 

while the term 𝛽 generates a scale error when deviates from unit. Finally, the third term, 

𝜀𝑖, indicates the independent random error, typically assumed as Gaussian distributed, 

with zero mean value and a standard deviation of 𝜎𝜀. In terms of statistical moments, 𝑋 

is biased in both mean and variance with respect to T: 

𝜇𝑋 = 𝛼 + 𝛽𝜇T          (4.9) 

𝜎𝑋
2 = 𝛽2𝜎T

2+𝜎𝜀
2         (4.10) 

The proper treatment of systematic errors is critical for the success of data assimilation 

systems (Dee & da Silva, 1998). Without bias correction, it is not possible to conduct 

optimal data assimilation, and neither meaningful comparisons between datasets for 

evaluation purposes. Many studies have been generally devoted to addressing the 

discrepancies between observed and modelled soil moisture, focusing on the removal of 

the bias in observations or model states before or during data assimilation. In this sense, 

Dee (2005) characterizes the data assimilation systems as either “bias blind” or “bias 

aware” on the basis of their treatment of systematic errors. 

As discussed in the previous chapter, dynamically bias-aware assimilation systems 

incorporate specific assumptions about the nature of biases and are specifically built to 

estimate and correct them during data assimilation procedures; these strategies typically 

attribute the bias to either the model or the observations.  

The bias-blind DA systems assumes the absence of bias in both datasets and are 

designed to only correct random, zero-mean errors, so they require an a priori bias 

correction strategy. 

Implicitly assuming no biases in the observation data, a first alternative is to calibrate 

the model parameters against the satellite-based measurements, in order to minimize the 

bias between model forecasts and observations, and then perform data assimilation for 
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the calibrated model (e.g. Kumar et al., 2012). However, this a priori calibration 

approach has not been widely implemented. 

The second, most adopted solution is to perform bias-correction of the remote sensing 

data to conform them to the model, with the implicit outcome that all bias is attributed 

to the observations. Several a priori scaling methods have been proposed, often based 

on the match between datasets statistical moments. Many of them have been extensively 

used for the purpose of homogenization between datasets before comparison, for 

example in validation activities against a reference. In this sense, methods have been 

addressed to remove systematic differences such biases in both mean and amplitude of 

variations (as expressed in the statistical variance) between datasets, without any 

particular assumption on the error structure. The most widely used rescaling technique 

is the cumulative distribution function (CDF) matching approach (Reichle & Koster, 

2004), that allows matching the complete CDF of satellite and model estimates by 

applying a nonlinear operator. Several studies employed simple linear techniques (e.g. 

Scipal et al., 2008a; Jackson et al., 2010) that are expected to be more robust as they 

require a lower number of parameters. A comprehensive overview of rescaling methods 

can be found in Afshar & Yilmaz (2017), who compared 31 different linear and 

nonlinear approaches, highlighting how the nonlinear ones perform better in reducing 

differences between rescaled and reference data. 

However, the goal of the rescaling efforts can be different depending on the applications 

and their underlying assumptions. In the framework of data assimilation, both model 

estimate and observation are considered containing an ‘useful’ part related to the true 

state information (also called signal) and an error component (also called noise); in this 

sense the rescaling should be addressed to match only the signal part between datasets. 

This contrasts, for example, with rescaling methods that match the total variance, as 

model estimates and observations rescaled in model-space are expected to have 

different total variances, being both characterized by additive random error with distinct 

error variances. In this sense, common techniques such as CDF matching can induce 

artificial biases in the signal component of the satellite data and thus become sub-

optimal in order to remove the biases; more generally, systematic differences between 

model estimates and rescaled observations can persist and degrade DA performances. 

For example, Kornelsen & Coulibaly (2015) highlighted how the common rescaling 

techniques are not effective in correcting multiplicative bias between datasets, which 
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involves that assimilation tends to systematically increase or decrease the background 

estimates depending on state value, instead of only reducing random errors. Rescaling 

techniques proper for DA have to take in account the error structure of datasets; for 

example the triple collocation analysis (Stoffelen, 1998) considers the error structure 

defined in (4.8) and provides linear rescaling solutions that allow to match the signal 

components of the datasets. Yilmaz & Crow (2013), showing that DA accuracy depends 

on the degree to which the signal component of observations are rescaled to the signal 

component of the model, demonstrated that triple collocation analysis is an optimal 

solution in an assimilation framework and a better rescaling method than other widely 

used linear techniques. Finally, triple collocation should be effective in reducing the 

multiplicative bias between datasets, as this problem can be intuitively associated to 

differences between the respective 𝛽 terms in (4.8), persisting when common 

techniques are used and instead corrected with the signal matching approach. The triple 

collocation is a widely used method for random error characterization, and as such 

discussed in detail in Sect. 4.6.2, both in assumptions and formulations. 

Four different rescaling techniques are illustrated in the following, three linear methods 

(linear regression, mean and variance matching, triple collocation analysis, then referred 

to as REG, VAR and TCA, respectively) and the (nonlinear) CDF matching approach. 

REG, VAR and CDF matching were widely implemented in satellite-based soil 

moisture rescaling prior to hydrological DA; about which technique performs better, 

contrasting results are reported in literature when they are used in a comparative way 

(e.g. Alvarez-Garreton et al., 2014; Lievens et al., 2015; Massari et al., 2015; Loizu et 

al., 2018). There are instead few studies in which the assimilated observations were 

rescaled with the triple collocation analysis (e.g. Alvarez-Garreton et al., 2015), 

although the method is extensively used prior to DA for the observation error 

characterization. 

 

4.5.1 Linear methods 

Linear approaches can be described with the common form: 

𝑋∗ = 𝜇𝑌 + 𝑐(𝑋 − 𝜇𝑋)        (4.11) 
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where 𝜇 is the dataset mean, 𝑌 denotes the model dataset, 𝑐 is a scalar rescaling factor, 

while 𝑋 and 𝑋∗ are the unscaled and rescaled versions of the observation dataset, 

respectively. 

The linear regression method (e.g. Jackson et al., 2010) is based on the application of a 

regression equation between the satellite and model soil moisture time series, i.e. 

𝑋∗ = 𝑚𝑋 + 𝑞 with regression parameters that minimizes the squared-differences 

between 𝑌 and 𝑋∗. Referring to (4.11), this provides: 

𝑐𝑅𝐸𝐺 = 𝜌𝑋𝑌
𝜎𝑌

𝜎𝑋
          (4.12) 

where 𝜌 and 𝜎 denote the correlation and the standard deviation, respectively. The 

linear regression method only matches the mean of the two datasets. 

The mean and variance matching (e.g. Scipal et al., 2008a), often reported as linear 

scaling, allows to match the first two moments of datasets. Referring to (4.11), this 

gives: 

𝑐𝑉𝐴𝑅 =
𝜎𝑌

𝜎𝑋
          (4.13) 

According to Scipal et al. (2008a), the impact of ignoring differences in higher-order 

moments is compensated by the robustness of the method, as it requires a lower 

parameterization. 

Finally, the triple collocation analysis requires a third independent dataset, 𝑍, which 

works as instrumental variable. It is assumed that all three datasets are related to the true 

state value through an additive and a multiplicative bias components and a random error 

term, as in (4.8). According to this error structure, the total variance of a dataset has the 

two additive components showed in (4.10), related to true state and random error 

variances respectively. A rescaling can be made in order to isolate differences between 

datasets due to only random errors. In order to match the systematic component of 𝑌, 𝑋 

can be rescaled using the (4.11) with the following covariance ratio: 

𝑐𝑇𝐶𝐴 =
𝜎𝑌𝑍

𝜎𝑋𝑍
          (4.14) 

Triple Collocation approach allows 𝑋∗ to match 𝑌 in the mean and in the variance 

component related to true values (signal variance), i.e. the first term on the right-hand 

side in (4.10). Random errors in 𝑋 are rescaled in the 𝑌-space, and 𝑋∗ and 𝑌 generally 

have different total variances, due to the general difference between their random error 

variances. Details on triple collocation approach, also as scaling method, can be found 

in Sect. 4.6.2. 
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4.5.2 CDF matching 

The CDF matching (Reichle & Koster, 2004) is a non-linear method that allows to 

match the CDF of the satellite-derived data to the CDF of the model estimates. 

Conceptually, the observational dataset 𝑋 is converted to 𝑋∗ according to: 

𝐶𝐷𝐹𝑌(𝑋∗) = 𝐶𝐷𝐹𝑋(𝑋)        (4.15) 

where 𝑌 denotes the model dataset, as also schematically showed by the arrows in Fig. 

4.1. CDF matching generally corrects all moments of the distribution function 

regardless of its shape.  

 

 

Figure 4.1. Figure taken from Drusch et al. (2005), representing CDF matching schematic. The arrows illustrate 
how the satellite SM data (here obtained from TMI sensor) are scaled to match the distribution of model data 
(here obtained from ECMWF simulations). 

 

Technically, a common way to apply this method was proposed by Drusch et al. (2005). 

The two datasets (modelled soil moisture and observations) have to be ranked; 

consecutively, the differences in soil moisture between the corresponding elements of 

each ranked data set have to be calculated; finally, a polynomial function f is computed 

to fit the relationship between the ranked differences and satellite data. The polynomial 

function f is then used to calculate the CDF-corrected soil moisture datasets: 

𝑋∗ = 𝑋 + 𝑓(𝑋)         (4.16) 
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Drusch et al. (2005) proposed a third-order polynomial for f; in Brocca et al. (2013) the 

use of a fifth-order polynomial function was found more suitable.  

 

4.6 Error characterization methods for evaluation and data 

assimilation of satellite soil moisture 

As already discussed, bias-blind DA methods are used in the most of applications, 

implicitly assumed to target only the random errors, by optimally reducing their error 

variance with analysis schemes; systematic differences between model and observations 

are typically reduced prior to DA with bias correction techniques. In DA, random errors 

are typically modelled as additive, temporally-uncorrelated and Gaussian-distributed, 

with zero-mean and usually time-invariant known error variance. Then, an effective 

characterization of observation random error variance is fundamental in order to obtain 

optimal data assimilation results, i.e. analysis estimates actually characterized by the 

minimum error variance. However, in real cases the observation error structure is likely 

to be different from that typically assumed, in terms of both random errors modelling 

and systematic errors absence; an example is the error structure showed in (4.8). 

More generally, error characterization constitutes a fundamental step to assess the 

suitability of observations for a specific application or also a decision-making process. 

Therefore, error assessment was one of the primary objectives of satellite-based soil 

moisture evaluation activities, even more so recently when dedicated missions and 

products have been developed with specific target accuracy. For remotely sensed soil 

moisture observations, validation activities have been finalized to error assessment 

through comparison with other soil moisture datasets, which are in turn affected by 

errors; furthermore, it would be better to use the term “evaluation” rather than 

“validation”, and to refer to “differences” rather than to “errors”.  

Several approaches are available for error characterization, also provided by the widely 

used evaluation practices, which in this case well combine with soil moisture DA 

purposes. In the following it will be described how the error characterization is carried 

out by the use of standard statistical measurements and by the triple collocation and the 

error propagation methods. 

The first, extensively used approach to evaluate remote sensing soil moisture is based 

on comparison with an independent dataset, considered more reliable and used as a 
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reference, by computing a common set of performance metrics that summarize the 

similarity and difference between the two time series. The most commonly used 

performance metrics are the correlation coefficient (r), the root-mean-square difference 

(RMSD), the bias (Bias), and the unbiased root-mean-square difference (ubRMSD) 

(Albergel et al., 2013); they are related and provide complementary information 

(Entekhabi et al., 2010a). In particular, r measures the relative agreement, while the 

others focus on absolute differences, with RMSD being the most comprehensive one.  

In situ measurements are generally considered the most reliable to act like reference 

dataset (e.g. Chan et al., 2016), as they might be highly accurate on a point scale, 

provided that a proper calibration has been performed to contain instrumental errors. 

However, given the strong difference in spatial support, ground sensor measurements 

could be affected by significant errors in the footprint scale soil moisture representation. 

In situ representativeness errors could then generate misleading results when sparse 

ground networks are considered in evaluation. The footprint scale soil moisture 

variability can instead be better characterized in dense networks (also referred to as core 

validation sites, CVS), with multiple calibrated stations within a satellite pixel: in this 

case it is possible to choose the most representative site (e.g. Vachaud et al., 1985) or to 

aggregate the local in situ measurements at the coarse scale (e.g. Teuling et al., 2006). 

However, core validation sites are very limited in number on a global scale. Model 

estimates are also used as reference dataset (e.g. Brocca et al., 2011a), especially in 

areas where no suitable ground data are available; models can be tuned to match the 

scale of the satellite data, but, of course, the interpretation of the results will always be 

hampered by the modelled soil moisture accuracy, influenced for example by model 

imperfections and errors in input data (precipitation, soil properties, etc.).  

RMSD generally takes in account the effect of random and systematic errors in the two 

datasets. Considering the case of the error structure described in (4.8), if there are no 

systematic differences (i.e. the two datasets have the same values of α and β) and 

random errors are mutually independent, then the mean square difference (MSD) ideally 

corresponds to the sum of random error variances of satellite and reference. Systematic 

differences between satellite and reference dataset can be reduced in preprocessing. 

While differences in mean (i.e. the Bias) can be easily corrected or taken in account 

(focusing on ubRMSD rather than RMSD), other systematic deviations, such as the 

state-dependent ones, cannot be completely removed by the common bias correction 
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techniques based on total variance matching (such as linear scaling or CDF-matching). 

Then, residual systematic differences can also contribute in computed RMSD. 

Assuming that random errors in chosen reference data are negligible (approximation 

usually accepted for CVS) and systematic differences with satellite measurements were 

previously effectively corrected, then the root-mean-square error (RMSE), here used 

rather than RMSD and coincident with the ubRMSE value, provides an estimate of the 

variance of the additive zero-mean random errors in remotely sensed soil moisture 

observations.  

In this sense, the RMSE evaluated using in situ data from CVS (or the ubRMSE if no 

bias correction was performed on satellite data) is considered the fundamental 

benchmark in error characterization of many satellite soil moisture datasets, such as 

retrievals from AMSR-E (Jackson et al., 2010), SMOS (Jackson et al., 2012; Kerr et al., 

2016) and SMAP (Chan et al., 2016; Colliander et al., 2017) missions.    

For example, the dedicated SMAP mission target accuracy of 0.04 m
3
/m

3
 volumetric 

soil moisture is evaluated against in situ surface observations according to two 

approaches (Chan et al., 2016), with the first one being to compute ubRMSE on selected 

CVS (Colliander et al., 2017). In this case, point-scale measurements were aggregate to 

satellite pixel; the time-variant uncertainty in representing the spatial distribution of soil 

moisture was also computed, with information used only to verify that a threshold has 

not been exceeded during the CVS candidates selection (i.e. errors in ground estimate 

are limited, so differences between datasets are mainly due to retrieval errors). The 

second approach for evaluation of SMAP target accuracy considers instead sparse 

ground networks applying the Triple Collocation method (Chen et al., 2017), which will 

be discussed later. 

The RMSE is not only the metric specified for remote sensing target accuracies: it is 

also useful for specifying observation error variances for data assimilation. In many DA 

applications it was used a RMSE value (or more likely RMSD, depending on the 

assessment methods), locally computed using a reference dataset or taken from 

literature for the considered satellite-based soil moisture product, although estimated 

elsewhere (e.g. Draper et al., 2011; Laiolo et al., 2016).  

An alternative to the a priori assignment of a plausible value is the direct optimization 

of the observation error variance in order to obtain the best DA performance. When the 
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DA procedure is iteratively used to assess the observation error, then the ‘optimal’ 

result is essentially case-specific. 

Making an example in which the application goal is to improve streamflow predictions, 

for the same catchment and assimilated satellite SM product the ‘calibrated’ error 

variance could be very variable depending on the considered observation preprocessing 

procedure, hydrological model structure and performance, DA implementation (e.g. 

Loizu et al., 2018); similarly, with equal these last factors, adjacent and similar 

catchments could have very different optimal observation errors for the same satellite 

product (e.g. Massari et al., 2015). 

One approach which aims to overcome some of the difficulties encountered when 

comparing only two data sets is the so-called Triple Collocation (TC) technique, 

introduced by Stoffelen (1998) and firstly applied in soil moisture datasets evaluation 

by Scipal et al. (2008b). TC is based on the assumption that a SM estimate is related to 

the hypothetical but unknown real SM content through an additive and a multiplicative 

bias components and a random error term, as in (4.8); considering three independent 

collocated datasets, TC allows an estimation of their random error variances. The 

method assumes independent error structures, which means that the errors must not 

have the same origin. This is true when using any combination of in situ measurements, 

active or passive satellite observations, and land surface model estimates, provided that 

the model is not driven by one of the other dataset. TC can provide realistic error 

variance estimates and is able to successfully distinguish spatial error trends, not being 

limited by the availability of CVS (more generally TC does not require the availability 

of a high-quality reference dataset). The method has been widely recognized as a 

powerful tool for estimating random error variances of coarse-resolution SM datasets 

and was extensively used in DA applications (e.g. Chen et al., 2014; Alvarez-Garreton 

et al., 2015; Massari et al., 2018). Nevertheless, studies also showed that the result is 

highly sensitive to the input configuration (Loew & Schlenz, 2011; Zwieback et al., 

2012), including different scales and represented physical quantities of the sources, the 

use of SM absolute values or anomalies, the time span under observation, and the 

available number of measurement triplets. About the last point, a sufficient long data 

record is needed for robust estimations (100 triplets is the minimum boundary, 500 is 

advised). Zwieback et al. (2012) showed that the robustness of the TC is closely related 

to the strict application of its basic assumptions, while Gruber et al. (2016a) provide a 
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comprehensive discussion of these assumptions, highlighting how on one hand some of 

them are not always met, while on the other hand the same assumptions are also 

implicitly made in the application of conventional performance metrics, e.g. temporally 

uncorrelated (white) random errors and stationarity of the random error variance. 

Recently, several studies proposed improvements or variations to the TC method, 

originally developed for solving the random error variances of three independent 

datasets. McColl et al. (2014) introduced Extended Triple Collocation (ETC): using the 

same assumptions of TC, they derive the correlation coefficients of the datasets with 

respect to the unknown true states, that provides a complementary perspective 

compared to the random error variances. Pierdicca et al. (2015) proposed to extend TC 

analysis with a fourth dataset and to solve this Quadruple Collocation (QC) problem as 

an overdetermined system through a least squares minimization, in order to provide a 

more robust solution for the error variance estimates; QC still requires uncorrelated 

errors between all four data sets. Following Zwieback et al. (2012), where three systems 

were used to estimate the error variance, and a fourth one was exploited to estimate the 

cross-correlation among system errors, Gruber et al. (2016b) proposed a method, 

referred to as Extended Collocation (EC), for estimating error cross-correlations by 

generalizing the TC method to an arbitrary number (>3) of datasets and relaxing the 

therein made assumption of zero error cross-correlation for a limited number of dataset 

combinations, depending on the number of datasets used and their assumed underlying 

error structure; this implies that the systems with correlated errors must be known a 

priori. Pierdicca et al. (2017) presented an Extended Quadruple Collocation (E-QC) 

method, actually applicable to a generic number of datasets, that considers the 

possibility of an error cross-correlation between two products; E-QC allows an 

automatic detection of the couples of error cross-correlated systems, provided that one 

system is known to be independent from the others. Dong & Crow (2017) proposed a 

Generalized Triple Collocation analysis algorithm (GTC) which statistically 

decomposes the total random error variance into its autocorrelated and white error 

components. Nearing et al. (2017) presented a nonparametric triple collocation that 

alleviates the need for some of the original assumptions, such as the linear form 

presented in (4.8) and the independence of true state and random error; indeed no 

particular form of the error structure was assumed, it is only required that there be a 
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joint probability distribution between the truth and all three measurements. TC and all 

its variants are in any case based on error stationarity assumption. 

Another technique used to assess the soil moisture error is the error propagation (EP), 

which does not involve a comparison with other datasets. The method is based on the 

propagation of random error variances in input variables and model parameters through 

the model equation (e.g. the retrieval algorithm), in order to calculate the error variances 

related to each individual model output. The main advantage of error propagation 

technique is that it allows for calculating an error variance estimate for each individual 

observation, unlike the previous methods which assume error stationarity. The method 

requires the error characterization of inputs and soil moisture model parameters, 

generally in the form of an error covariance matrix; the propagation to the model output 

is then carried out through analytical solutions or methods such as Monte Carlo 

simulations, mainly depending on the model complexity. EP do not consider the model 

structure uncertainty (Dorigo et al., 2010), which also contributes to the output error 

budget; this can lead to unrealistic error estimates, especially in the case of increasingly 

accurate inputs and model parameters. Studies comparing the suitability of EP e TC 

methods in satellite SM assessment indicate that, given their peculiarities, the two 

techniques should be seen as complementary (Dorigo et al., 2010; Draper et al., 2013). 

Error propagation schemes have been developed for both passive and active remote 

sensing SSM retrieval algorithms. Parinussa et al. (2011) introduced an analytical 

solution for estimating the error variance of soil moisture retrievals from radiometers 

based on the Land Parameter Retrieval Model (Owe et al., 2008), obtaining results 

similar to those of a Monte Carlo approach in an application on AMSR-E 

measurements. Naeimi et al. (2009) and Pathe et al. (2009) set error propagation models 

in parallel to the development of the TU-Wien change detection method (Wagner et al., 

1999) versions for ERS scatterometer and ASCAT and for Advanced Synthetic 

Aperture Radar (ASAR) on-board Environmental Satellite (EnviSat), respectively.  

Few studies analysed the reliability, both in magnitude and in spatial patterns, of SSM 

error variances estimated by EP. Naeimi et al. (2009) observed high values of averaged 

ASCAT SSM error variance in correspondence of globe areas where the retrieval 

algorithm is not expected to work properly, e.g. areas with dense vegetation cover. 

Doubková et al. (2012) analysed the capability of ASAR SSM error variances to predict 

the difference observed between satellite and modelled SSM estimates over Australia, 
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finding a strong correspondence in spatial patterns as well as a good quantitative 

agreement. By comparing ASCAT and AMSR-E SSM anomalies from the mean 

seasonal cycle over North America using both TC method and error propagation 

estimates, Draper et al. (2013) highlighted that EP can accurately detect the large scale 

variability in soil moisture errors; however the magnitude of the EP output could be not 

generally informative: in their study ASCAT estimated error variances appear to be 

approximately correct, while the AMSR-E ones are unrealistically large.  

SSM error variances estimated by EP were used to perform quality check of SSM 

retrievals (e.g. Scipal et al., 2008a; Mahfouf, 2010; Dharssi et al., 2011; Draper et al., 

2011, 2013; Paulik et al., 2014) i.e. to detect areas where the retrieval method does not 

work well or to mask single spurious SSM observations.  

There are few applications of EP estimates as observation error variances in DA. This is 

due to the fact that the error stationarity is usually assumed in soil moisture DA 

applications, although several studies (e.g. Loew & Schlenz, 2011; Su et al., 2014b) 

highlighted that this assumption seldom hold, mainly due to imperfections in the 

treatment of seasonalities of contributing processes (e.g. vegetation growth) in the 

retrieval model (Gruber et al., 2016a). In Draper et al. (2011) the time-variant EP 

estimates provided in ASCAT product were used to characterize the observation errors 

during the SSM assimilation into an operational hydrological model. Time-variant 

observation error variance was also assumed by Lievens et al. (2015, 2016) during the 

assimilation of SMOS soil moisture data in both hydrological and land surface models: 

in these studies the error estimates were derived from a linear combination of product 

flags, including the time-variant Data Quality indeX (DQX). DQX represents the SSM 

error standard deviation (provided in volumetric soil moisture) obtained with a more 

comprehensive approach, that includes the propagation of the errors in inputs and 

algorithm parameters but also embed other sources of errors (such as the Radio 

Frequency Interference, RFI).  

 

4.6.1 Standard statistical measurements 

A common approach to evaluate the accuracy of a dataset (that will be here referred to 

as the “test”) is by comparison with a second one, considered more reliable (the 

“reference”), quantifying how closely the test resembles the reference. Evaluation is 
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made by computing some metrics which statistically quantifies pattern similarity and 

differences. 

The statistic most often used to quantify pattern similarity is the Pearson’s correlation 

coefficient 𝑟, which well describes the ability of the test dataset to capture temporal soil 

moisture changes in the reference (Entekhabi et al., 2010a). Considering the two 

datasets 𝑥𝑇𝐸𝑆𝑇 and 𝑥𝑅𝐸𝐹  defined at 𝑁 discrete times, 𝑟 is expressed by: 

𝑟 =
1

𝑁
∑ (𝑥𝑇𝐸𝑆𝑇,𝑖−𝜇𝑇𝐸𝑆𝑇)(𝑥𝑅𝐸𝐹,𝑖−𝜇𝑅𝐸𝐹)𝑁

𝑖=1

𝜎𝑇𝐸𝑆𝑇𝜎𝑅𝐸𝐹
         (4.17) 

where 𝜎𝑇𝐸𝑆𝑇 and 𝜎𝑅𝐸𝐹 are the standard deviation and 𝜇𝑇𝐸𝑆𝑇 and 𝜇𝑅𝐸𝐹 the mean values 

of the two datasets. The correlation coefficient, which ranges from −1 to 1, is an index 

of the degree of linear relationship between the two datasets. If 𝑟 = 0, no linear 

relationship exists; if 𝑟 = 1 or −1, a perfect positive or negative linear relationship 

exists. The correlation coefficient captures the correspondence in phase between the two 

datasets and does not take in account the additive and proportional differences, i.e. 𝑟 

does not allow determining whether 𝑥𝑇𝐸𝑆𝑇 and 𝑥𝑅𝐸𝐹 have the same amplitude of 

fluctuations (as expressed in the statistical variance) and/or the same average values. 

The statistic most often used to quantify differences in two datasets is the root-mean-

square difference (𝑅𝑀𝑆𝐷), expressed as: 

𝑅𝑀𝑆𝐷 = √
1

𝑁
∑ (𝑥𝑇𝐸𝑆𝑇,𝑖 − 𝑥𝑅𝐸𝐹,𝑖)

2𝑁
𝑖=1       (4.18) 

It gives the average magnitude of differences, weighted according to their squares. 

𝑅𝑀𝑆𝐷 value is in the same unit of the two datasets, and varies on the interval [0 to inf], 

where values of 0 indicate a perfect fit. 

Biases in the mean and/or differences in the amplitude of fluctuations (i.e. biases in the 

variance) between datasets will lead to high 𝑅𝑀𝑆𝐷 values. In order to isolate the 

differences in the means of the two datasets, 𝑅𝑀𝑆𝐷 can be resolved into two 

components, the bias (𝐵𝑖𝑎𝑠) and the unbiased root-mean-square difference (𝑢𝑏𝑅𝑀𝑆𝐷). 

The bias can be expressed as: 

𝐵𝑖𝑎𝑠 = 𝜇𝑇𝐸𝑆𝑇 − 𝜇𝑅𝐸𝐹         (4.19) 

With this convention, a negative bias indicates that the test underestimates the reference 

on average and a positive bias the other way around.  

The unbiased root-mean-square difference is expressed by: 
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𝑢𝑏𝑅𝑀𝑆𝐷 = √1

𝑁
∑ ((𝑥𝑇𝐸𝑆𝑇,𝑖 − 𝜇𝑇𝐸𝑆𝑇) − (𝑥𝑅𝐸𝐹,𝑖 − 𝜇𝑅𝐸𝐹))

2
𝑁
𝑖=1    (4.20) 

The two components add quadratically to yield the full mean square difference: 

𝑅𝑀𝑆𝐷2 = 𝐵𝑖𝑎𝑠2 + 𝑢𝑏𝑅𝑀𝑆𝐷2        (4.21) 

For a given value of 𝑢𝑏𝑅𝑀𝑆𝐷 it is impossible to determine how much of the error is 

due to a difference in structure and phase and how much is simply due to a difference in 

the amplitude of the variations.  

The correlation coefficient and the root-mean-square difference provide complementary 

information quantifying the correspondence between two patterns and are also linked to 

each other (e.g. Murphy, 1988; Gupta et al., 2009). 

In particular, the following relationship exists: 

𝑢𝑏𝑅𝑀𝑆𝐷2 = 𝜎𝑇𝐸𝑆𝑇
2 + 𝜎𝑅𝐸𝐹

2 − 2𝜎𝑇𝐸𝑆𝑇𝜎𝑅𝐸𝐹𝑟     (4.22) 

so the 𝑅𝑀𝑆𝐷 can be easily decomposed into a bias-in-mean, bias-in-variance, and a 

correlation-dependent component: 

𝑅𝑀𝑆𝐷2 = (𝜇𝑇𝐸𝑆𝑇 − 𝜇𝑅𝐸𝐹)2 + (𝜎𝑇𝐸𝑆𝑇 − 𝜎𝑅𝐸𝐹)2 + 2𝜎𝑇𝐸𝑆𝑇𝜎𝑅𝐸𝐹(1 − 𝑟)  (4.23) 

With specific reference to soil moisture, temporal variations are often dominated by 

seasonal patterns of alternating dry and wet periods, which to a high degree determine 

the 𝑟 values; therefore anomaly correlations are also computed, to exclude the seasonal 

cycle and evaluate the relative agreement between short-term fluctuations proceeding 

with a much weaker magnitude (Scipal et al., 2008a). Soil moisture anomalies are 

computed in two ways. In a first approach, anomalies are defined as the deviations from 

a simple moving average, considering a centred time window of appropriate extension, 

usually 35 days (Albergel et al., 2009). When multiple years coverage are available for 

both datasets, anomaly can be defined as the deviation from the long term 

climatological expectation; the latter is computed for a given day of the year (DOY) 

through averaging of multiyear data within a centred window of appropriate extension, 

usually 31 days (e.g. Dorigo et al., 2010). 

 

4.6.2 Triple collocation 

The Triple Collocation (TC) was originally proposed by Stoffelen (1998) in order to 

study the error characteristics of near-surface wind vector data derived from a model, 

buoy measurements and scatterometer observations, and is now widely used not only in 
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oceanography but also in hydrology, especially in the field of satellite-based soil 

moisture evaluation (McColl et al., 2014). 

The TC method does not require the specification of a “true” reference dataset and is 

based on the availability of three spatially and temporally collocated, independent 

datasets (𝑋, 𝑌, 𝑍) which can be assumed to represent the same geophysical variable. 

Each dataset is assumed to be related by a linear form equivalent to (4.8) with the 

unknown true state, here indicated as T: 

𝑋 = 𝛼𝑋 + 𝛽𝑋T + 𝜀𝑋         (4.24) 

𝑌 = 𝛼𝑌 + 𝛽𝑌T + 𝜀𝑌 

𝑍 = 𝛼𝑍 + 𝛽𝑍T + 𝜀𝑍 

where 𝛼 and 𝛽 are additive and multiplicative bias terms (sometimes indicated as 

calibration constants), respectively, and 𝜀 is the zero-mean random error, with error 

variance 𝜎𝜀
2. 

The following underlying assumptions are required in TC method: 1) stationarity of 

signal and error statistics, 2) independency between the errors and the true state values 

(error orthogonality), and 3) independency between the errors of 𝑋, 𝑌 and 𝑍 (zero error 

cross-correlation). 

There are two mathematically equivalent approaches to solve for the 𝜎𝜀
2 (Stoffelen, 

1998). The first way is by cross-multiplying differences between the three a-priori 

rescaled data sets, while an alternative formulation is based on combinations of the 

covariances between the datasets; the former approach can be denoted as difference 

notation and the latter as covariance notation (Gruber et al., 2016a). 

For the difference notation, one dataset is arbitrarily chosen as reference dataset (this 

will be dataset 𝑋 for the following, as the choice of the reference not have impact on the 

error estimates), against which the other two datasets are linearly rescaled: 

𝑌𝑋 = 𝛽𝑌
∗(𝑌 − �̅�) + �̅�         (4.25) 

𝑍𝑋 = 𝛽𝑍
∗(𝑍 − �̅�) + �̅� 

where the overbar denotes the mean value, while 𝛽𝑌
∗ = 𝛽𝑋 𝛽𝑌⁄  and 𝛽𝑍

∗ = 𝛽𝑋 𝛽𝑍⁄ , which 

implies: 

𝑋 = 𝛼𝑋 + 𝛽𝑋𝑇 + 𝜀𝑋         (4.26) 

𝑌𝑋 = 𝛼𝑋 + 𝛽𝑋𝑇 + 𝛽𝑌
∗𝜀𝑌 

𝑍𝑋 = 𝛼𝑋 + 𝛽𝑋𝑇 + 𝛽𝑍
∗𝜀𝑍 
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that means the same systematic errors between dataset (so relative differences, 

expressed in a common data space, can be used to characterize random error variances). 

Given the underlying TC assumptions, the multiplicative rescaling parameters 𝛽𝑌
∗ and 

𝛽𝑍
∗ can be derived by combining the three datasets in the following way: 

𝛽𝑌
∗ =

𝛽𝑋

𝛽𝑌
=

〈(𝑋−�̅�)(𝑍−𝑍)〉

〈(𝑌−�̅�)(𝑍−𝑍)〉
=

𝜎𝑋𝑍

𝜎𝑌𝑍
       (4.27) 

𝛽𝑍
∗ =

𝛽𝑋

𝛽𝑍
=

〈(𝑋−�̅�)(𝑌−�̅�)〉

〈(𝑍−𝑍)(𝑌−�̅�)〉
=

𝜎𝑋𝑌

𝜎𝑌𝑍
  

where 〈∙〉 indicates the temporal average and 𝜎 the covariance between two datasets, 

while the error variances can be estimated in the data space of the chosen scaling 

reference, i.e. 𝑋, as: 

𝜎𝜀𝑋
2 = 〈(𝑋 − 𝑌𝑋)(𝑋 − 𝑍𝑋)〉        (4.28) 

𝜎
𝜀𝑌

𝑋
2 = 〈(𝑌𝑋 − 𝑋)(𝑌𝑋 − 𝑍𝑋)〉 

𝜎
𝜀𝑍

𝑋
2 = 〈(𝑍𝑋 − 𝑋)(𝑍𝑋 − 𝑌𝑋)〉 

and then converted back into their own data space as: 

𝜎𝜀𝑌
2 =

1

(𝛽𝑌
∗ )

2 𝜎
𝜀𝑌

𝑋
2          (4.29) 

𝜎𝜀𝑍
2 =

1

(𝛽𝑍
∗ )

2 𝜎
𝜀𝑍

𝑋
2   

In the covariance notation error variances can be directly estimated as: 

𝜎𝜀𝑋
2 = 𝜎𝑋

2 −
𝜎𝑋𝑌𝜎𝑋𝑍

𝜎𝑌𝑍
         (4.30) 

𝜎𝜀𝑌
2 = 𝜎𝑌

2 −
𝜎𝑋𝑌𝜎𝑌𝑍

𝜎𝑋𝑍
  

𝜎𝜀𝑍
2 = 𝜎𝑍

2 −
𝜎𝑌𝑍𝜎𝑋𝑍

𝜎𝑋𝑌
  

The covariance notation does not require an a priori rescaling of the datasets, however it 

also allows for the direct estimation of the linear rescaling parameters using the 

relationships (4.27). 

In summary, both the difference and the covariance notation can be used to estimate 

random error variances as well as rescaling parameters. In the difference notation, error 

variances are estimated within a common (arbitrarily chosen) reference data space, 

having the possibility of converting them back using the a priori estimated scaling 

parameters. The covariance notation, on the other hand, directly estimates unscaled 

error variances, which could be then scaled into a common data space using a posteriori 

(optionally) estimated scaling parameters. 
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An appropriate number of triplets must be available to obtain reliable estimates, 

regardless of the chosen approach; while more than 500 samples were recommended 

(Zwieback et al., 2012), several authors adopted a pragmatic threshold of 100 

observations (e.g. Dorigo et al., 2010; Scipal et al., 2008b). 

TC can be applied either to the original soil moisture absolute values (e.g. Scipal et al., 

2008b) or to the anomalies from the long-term climatology (e.g. Dorigo et al., 2010). 

While using original values provides information on the capability of the soil moisture 

products in representing general temporal patterns of soil wetting and drying, the 

anomaly-based approach gives us more accurate information on the ability of the 

different datasets to capture single events of drying and wetting (e.g. due to rainfall). As 

a consequence, the anomaly-based approach tells us less about absolute deviations 

between datasets, e.g. like induced by a deviating seasonality.  

TC can be regarded as a form of instrumental variable (IV) regression, where a third 

variable is used as an instrument to resolve the relationship between erroneous 

measurements of two variables. An alternative form of IV implementation is to use a 

lagged variable (LV) (i.e., a temporally shifted version) as third dataset in TC so that 

only two datasets are required (Su et al., 2014a). This particular implementation is 

possible when the geophysical variable of interest (e.g. soil moisture) had been sampled 

at time intervals shorter than their temporal correlation length, and under the condition 

of weakly autocorrelated errors in the lagged variable it can also provide consistent 

error variance estimates. The lag-based approach is suitable for practical circumstances 

where an adequate third collocated dataset is unavailable. 

 

4.6.3 Error propagation 

The error propagation method allows to evaluate the error variance of a model output 

through the propagation of error variances in input variables and model parameters.  

Let output vector Y be determined through a model ℱ from the vector X, i.e. Y = ℱ(X). 

X generally includes model inputs and parameters, with random errors that are fully 

characterized by the known error covariance matrix CX, assuming a zero-mean Gaussian 

distribution and not excluding the possibilities of mutually correlated errors. 
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Random errors in X can be propagated through linear and nearly linear models by the 

analytic error propagation method, in order to characterize the output error covariance 

matrix, CY. 

If ℱ is a linear model of the form Y = AX + B, then the output error covariance matrix 

is computed as: 

CY = ACXAT          (4.31) 

If, on the other hand, ℱ is a non-linear model, a linearization can be made by 

considering its first order Taylor approximation locally evaluated, that is: 

Y = ℱ(X0) + J(X − X0)        (4.32) 

having introduced the Jacobian matrix J, where J𝑖𝑗 = (𝜕𝑓𝑖 𝜕𝑥𝑗⁄ ) quantifies the influence 

that the j-th input in X has on the i-th output in Y, with 𝑓𝑖 coming from ℱ in order to 

compute 𝑦𝑖. The first-order approximation can be considered valid if errors in X are 

sufficiently small that ℱ is linear over their likely ranges. 

The output error covariance matrix can then be obtained as:  

CY = JCXJT          (4.33) 

For a scalar output variable 𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑛) it gives the commonly encountered 

formula: 

𝜎𝜀
2(𝑦) = ∑ (

𝜕𝑓

𝜕𝑥𝑖
)

2

𝜎𝜀
2(𝑥𝑖) +𝑛

𝑖=1 ∑ ∑ (
𝜕𝑓

𝜕𝑥𝑖
) (

𝜕𝑓

𝜕𝑥𝑗
) 𝜎𝜀(𝑥𝑖, 𝑥𝑗)𝑛

𝑗=1
𝑗≠𝑖

𝑛
𝑖=1    (4.34) 

where 𝜎𝜀 indicates the error covariance. 

Error propagation is a general, conceptually simple and widely used technique for 

obtaining error characterisations, as in the conventional analytical form it only requires 

that J can be computed and CX is known. For non-Gaussian error distributions and/or 

models that are significantly non-linear over the input error ranges, as well as when J is 

not easy to obtain due to model complexity and/or error correlations exist (non-diagonal 

terms in CX) and are difficult to characterize, then numerical techniques such as the 

Monte Carlo approach could be employed. 
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5. ERROR PROPAGATION IN EXPONENTIAL FILTER 

APPROACH 

 

5.1 Introduction 

This chapter describes the first of two applications related to the assessment of satellite 

soil moisture preprocessing and error characterization practices. 

The current application is made up of two studies subsequently carried out, having in 

common the topic of error propagation in the exponential filter approach. 

The exponential filter is a widespread method to obtain a root-zone soil water index 

(SWI) from remotely-sensed surface soil moisture observations; however, the impact of 

some factors involved in SWI formulation, that can introduce inaccuracies in the 

outputs, have not been adequately detailed up to now. 

In the following, some critical aspects of the exponential filter approach are showed, as 

well as the two mentioned studies are introduced. Then, the error propagation equations 

(expressed also in a practical recursive form) are proposed to analytically compute the 

SWI error variances. The study area, the materials and the experimental setup are 

described, being essentially common in the two studies. Finally, the specific results are 

analysed and discussed, highlighting the major outcomes. 

 

5.2 Factors involved in SWI errors 

The exponential filter proposed by Wagner et al. (1999) was previously described, here 

some main features are however briefly reported. The approach involves only one 

parameter, T, representing a characteristic time length, and implicitly taking into 

account the different factors that affect the temporal scale of soil moisture (layer depth, 

soil hydraulic properties, evapotranspiration etc.). The exponential filter smooths the 

SSM series to reproduce the soil moisture trend in deeper layers, according to the T 

value. The method has a greater ability in capturing the seasonal soil moisture 

behaviour rather than short time-scale fluctuations, and suffers from prolonged gaps in 

input data, up to be reinitialized. 

The SWI found use in many applications where an estimate of the root-zone SM state is 

required, and even inside data assimilation frameworks, where the observation error 
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characterization is a critical factor. The great value of the exponential filter lies in the 

simplicity of its mathematical structure, which also implies the possibility to 

analytically propagate inputs and parameter error variances to the output SWI estimates. 

However, the uncertainty of SWI estimates has been poorly analysed.  

SWI accuracy can be related to three factors. The first is the time distribution of input 

SSM data, i.e. the availability, for the single SWI estimate, of a sufficient number of 

measurements relative to the filter time scale. The exponential filter basically makes a 

weighted average of SSM inputs within a certain time interval, related to T, so the 

reliability of SWI output increases with an adequate SSM temporal distribution, and 

decreases when few inputs are available or in presence of SSM data gaps, due to revisit 

time but also to data masking procedures, e.g. for frozen or snow covered surface 

conditions. In literature some empirical criteria were proposed which address the 

problem. For example, referring to the original formulation (4.1), Wagner et al. (1999) 

suggested to calculate SWI value if there is at least one SSM measurement in the time 

interval [t-T, t] and at least three measurements in the interval [t-5T, t], while in Pellarin 

et al. (2006) all measurements taken within a period [t-3T, t] are considered if at least 

four measurements have been recorded within the most recent time period [t-T, t]. These 

kind of criteria cannot be applied with the widely used recursive formulation (4.2), 

proposed by Albergel et al. (2008); however, information about the availability of SSM 

measurements used for SWI estimate is implicitly contained in the gain value, Kn, 

initialized to 1 and in general tends toward unity in the presence of extensive temporal 

data gaps (relative to the T value). So a relatively low value of the gain Kn indicates the 

presence of an adequate number of SSM observations in the temporal range of interest 

for the SWI computation. For example, in the Copernicus Global Land Service SWI 

daily products a quality indicator (qflag) is introduced to take in account the number of 

available SSM measurements really used for SWI calculation; this quality flag is 

updated with a formulation similar to (4.3) but resulting inversely proportional to Kn.  

As a second factor, SWI estimates are also influenced by random errors in SSM inputs. 

As showed in the previous chapter, an estimate of SSM error variance can be obtained 

in different ways, usually assuming its time stationarity. However, using an error 

propagation (EP) approach for SWI error characterization, it is also possible to exploit 

the time-variant SSM error variance estimates, provided in some satellite products and 

computed by EP through SSM retrieval algorithm, which are typically underemployed. 
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Finally, there is the uncertainty on T parameter, which determines the SWI dynamics for 

a given SSM input time series. T represents different static and dynamic processes that 

affect the temporal scale of soil moisture (layer depth, soil hydraulic properties, 

evapotranspiration, infiltration etc.) but is typically approximated as a constant. The 

potential impact of T error on SWI estimates under different conditions has also been 

poorly studied. 

The use of an EP approach allows to take in account the effects of these different factors 

on the single SWI estimates, so considered to be characterized by a time-variant error 

variance; the issue was addressed here through the two studies described below. 

However, EP do not consider the intrinsic model error, which also contributes to the 

output error budget; this can lead to unrealistic error estimates, especially in the case of 

increasingly accurate inputs and model parameters. 

The first study involved the evaluation of a satellite SSM product from an ongoing 

mission, by local comparison with in situ measurements collected in Italy and hosted on 

the International Soil Moisture Network (ISMN). Given the limited availability of 

ground data, in term of both time coverage and observation depth, the ASCAT SSM 

retrievals were chosen as satellite dataset, with the exponential filter used to propagate 

the remotely sensed surface states to the in situ measurements layers. Ten sites were 

selected with a sufficient observation period, also used in previous satellite SM 

evaluation studies and assumed to be representative at coarse scale. The capability of 

ASCAT-derived SWI to reproduce observed SM values in root-zone (implicitly 

considered as truth) was here analysed through commonly used performance metrics. 

Then, the effect of different data masking procedures were considered, based on 

controls on additional data fields available in SSM product. ASCAT retrievals also 

include standard error estimates, indicated as ‘soil moisture noise’, whose information 

content was rarely considered. 

A first, immediate use of ‘soil moisture noise’ (from now referred to as SSM noise) data 

is in a quality check framework, applying a threshold value to mask less reliable data: 

this can be a proper choice when SSM is used to update continuous model SM estimates 

in a data assimilation system. However, using the exponential filter approach, the 

attempt to propagate the SSM standard error information to SWI estimates appears 

more appropriate.  
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The first approach (i.e. threshold on SSM noise) implies the loss of SWI updates and the 

introduction of temporal gaps in input series that as seen can be critical for the 

successive SWI estimates. Then, masked SSM data anyway contain some informative 

content that in this way will end up lost; moreover, due to its mathematical structure, 

exponential filter tends to suppress high random errors, proportionally to the value 

assumed by T, so limiting the consequence of using less reliable data.  

In alternative, by propagating surface errors to root zone estimates without applying a 

priori masking, the impact of SSM standard error on SWI outputs can still be 

monitored. For this purpose, a simplified error propagation scheme (as it do not 

consider the uncertainty in the model parameter T) was proposed, aimed at estimating 

an index (referred to as SWI noise) which takes in account both standard errors and 

availability of the input SSM data actually used for each single SWI estimate. The 

usefulness of this approach, compared to the a priori SSM noise thresholds, has been 

verified by applying some comparable a posteriori SWI noise thresholds, in order to 

investigate the relative capabilities to remove SWI data that do not fits well in situ 

observations. In this sense, the use of SWI noise information outperforms the a priori 

SSM noise thresholds. However, the results of this first study were influenced by 

seasonal patterns in SSM error variance estimates which characterize the employed 

ASCAT product release (DR2015), limiting the analysis to summer periods where a 

good agreement exists between SWI and ground observations, mainly due to the limited 

rainfall events. According to Draper et al. (2013), these patterns were associated with 

the seasonal cycle in the sensitivity of SSM retrieval model parameters to various 

errors, rather than with the high noise level of the input backscatter measurements.  

In the second study the successive ASCAT product release was used (DR2016), where 

seasonal patterns are considerably reduced; moreover, SWI error variances are 

estimated by error propagation equations including the effect of exponential filter 

parameter uncertainty. A preliminarily assessment of the computed error estimates was 

carried out similarly to the first study, by data masking in the comparison between 

satellite-derived SWI and root-zone in situ measurements. In this case the EP scheme 

showed skills in detecting potentially less reliable SWI values in the study sites, 

improving the agreement with reference data with respect to the configuration without 

quality controls. The proposed approach not only provided simultaneous estimates of 
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time-variant SWI error variance, but also allowed a better understanding of the 

exponential filter shortcomings.  

When T is low, SWI outputs are more sensitive to SSM temporal gaps and random 

errors (this is properly taken in account by the terms included in the SWI noise index). 

High T values can instead led to excessive smoothed SWI time series, with short-scale 

SSM variations being suppressed during the weighted average that generally involves 

many observations, and this can be associated to the known limitations of exponential 

filter in modelling the short-time fluctuations observed in root zone SM. With regard to 

the corresponding SWI error variance estimates obtained by EP, the filter structure 

tends to average and compensate random errors in the underlying SSM data, resulting in 

an inputs contribution to error budget that appears to be inversely proportional to T (or 

more appropriately to the number of SSM measurements actually used for the SWI 

calculation). On the other hand, the error contribution due to uncertainty considerations 

on T parameter can be remarkable during SM transitions, also for high T values. The 

observed root-zone short-time fluctuations are usually associated to variations in surface 

SM data, that is the circumstance where the SWI output is more sensitive to T value, 

which in turn determines how much to weigh these recent inputs that differ from the 

previous ones. Approximation in the constant T estimate can explain the short time-

scale deviations between the reference data and the smoothed SWI. Thus, limitations 

due to the simple model structure of exponential filter can be partially taken in account 

through considerations on its parameter uncertainty effect. 

 

5.3 Soil water index error variance estimates 

Referring to Equation (4.1) and assuming that errors in SSM measurements and in 

parameter 𝑇 are normally distributed and uncorrelated, the random error variance of 

SWI at time 𝑡𝑛, 𝜎2(SWI𝑛), can be estimated by the error propagation approach as: 

𝜎2(SWI𝑛) = ∑ (
𝜕SWI𝑛

𝜕SSM𝑖
)

2

𝜎2(SSM𝑖)
𝑛
𝑖=1 + (

𝜕SWI𝑛

𝜕𝑇
)

2

𝜎2(𝑇)    (5.1) 

where: 

𝜕SWI𝑛

𝜕SSM𝑖
=

𝑒
−

𝑡𝑛−𝑡𝑖
𝑇

∑ 𝑒
−

𝑡𝑛−𝑡𝑖
𝑇𝑛

𝑖

         (5.2) 
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𝜕SWI𝑛

𝜕𝑇
=

1
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−
𝑡𝑛−𝑡𝑖

𝑇 (∑ 𝑒
−
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𝑖

(∑ 𝑒
−
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𝑇𝑛

𝑖 )

2       (5.3) 

Equation (5.1) can be written in recursive form as:  

𝜎2(SWI𝑛) = ∆𝑛
2 + (

𝜕SWI𝑛

𝜕𝑇
)

2

𝜎2(𝑇)       (5.4) 

where: 

∆𝑛
2 = 𝐾𝑛

2𝜎2(SSM𝑛) + (1 − 𝐾𝑛)2∆𝑛−1
2       (5.5) 

𝜕SWI𝑛

𝜕𝑇
=

𝐾𝑛

𝑇
[𝐺𝑛(SWI𝑛−1 − SWI𝑛) + 𝑒−

𝑡𝑛−𝑡𝑛−1
𝑇

𝑇

𝐾𝑛−1

𝜕SWI𝑛−1

𝜕𝑇
]   (5.6) 

having defined 𝐺𝑛 as: 

𝐺𝑛 = 𝑒−
𝑡𝑛−𝑡𝑛−1

𝑇 (𝐺𝑛−1 +
1

𝐾𝑛−1
∙

𝑡𝑛−𝑡𝑛−1

𝑇
)      (5.7) 

while 𝐾𝑛 comes from Equation (4.3). Initial value Δ0 is set to σ(SSM0), while 

(∂SWI0/∂T) and G0 are set to 0.  

In the first study, the error variance of the exponential filter parameter, 𝜎2(𝑇), was not 

considered; thus, 𝜎(SWI) was coincident with the term Δ (and referred to as SWI 

noise), that considers only the effect of SSM uncertainties and also takes into account 

the effect of possible prolonged temporal gaps in input SSM data, related on the T 

value, as this information is implicitly contained in the gain value 𝐾𝑛. 

In the second study the term 𝜎(𝑇) was included in the analysis, and so the jacobian term 

(∂SWI/∂T) that assumes high values proportionally to the latest SSM inputs variability 

on a time-scale related to the T parameter, which reflects in SWI value significant 

changes, e.g. state transition from dry to wet conditions. 

 

5.4 Case study  

5.4.1 Study areas and in situ observations 

The in situ soil moisture dataset used in the following investigations comes from ten 

sites located in 3 Regions (Calabria, Campania and Umbria) across Italy (Fig. 5.1). The 

selected sites are included in the International Soil Moisture Network (ISMN); 

measurements collected in the ISMN database are distributed with a temporal resolution 

of one hour. Selected sites have at least three years of observation during the period 

2007-2014, at depths ranging from 20 to 60 cm. 
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The main characteristics for each measurement location are given in Table 5.1. 

Volumetric soil moisture (m
3
m

-3
) is measured through electromagnetic sensors, 

specifically ML2X Theta probes, with the exception of site 10 where a TRASE-BE 

device is installed. Nine out of ten sites are part of the Regional hydro-meteorological 

monitoring networks for Civil Protection activities aimed at flood and landslide risk 

mitigation managed by the “Centro Funzionale Decentrato” of Calabria (sites 1-5), 

Campania (site 6) and Umbria (sites 7-9) respectively. Site 10 corresponds to one 

(Perugia - Field 1) of the two fields which constitute the HYDROL-NET network, 

located in Umbria and settled up by the University of Perugia (Morbidelli et al., 2014). 

All sites mainly experience a Mediterranean semi-humid climate, with rainy periods 

coinciding with fall and winter months, while summers are hot and dry, strongly 

affecting the seasonal runoff regime of streams.  

Soil texture and organic carbon contents from Harmonized World Soil Database v1.1 

are reported by ISMN. According to the soil characteristics and USDA (United States 

Department of Agriculture) classification, the texture class of soil for almost all sites is 

loam, with the exception of sites 4 and 5 where soil is classified as sandy loam and clay 

loam, respectively.  

ISMN datasets are subjected to an automated quality control to flag spurious 

observations (Dorigo et al., 2013). The selected dataset was found to be substantially 

affected by: 1) values exceeding the expected saturation water content; 2) spikes, 

typically defined as unanticipated significant rises or drops lasting only one time step, 

due for example to temporary sensor failure or reduced current supply; 3) positive 

jumps, which typify sudden increases in the registered soil moisture value, usually from 

one time unit to the next, and 4) constant high values usually corresponding to situations 

when the soil moisture content exceeds the upper limit of the sensor sensitivity. Each 

flagged observation was visually examined and compared to neighbouring observations 

(in depth and time) and, when necessary, to available rainfall time series, to remove the 

most probable spurious observations. Only spikes at sites 1 and 2, which did not show a 

link with rainfall patterns, were removed from the dataset. Other typologies of flagged 

data were retained for the subsequent investigations, as they were considered 

sufficiently reliable. On the other hand, although not flagged, 30 cm depth 

measurements for the second half-year of 2012 for site 1 and 20 cm depth 
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measurements for the first half-year of 2010 for site 9, were removed as they are 

generally characterized by high implausible values.  

Data from selected sites have already been partially used in previous studies aimed at 

evaluate the satellite-based SWI (Brocca et al., 2010b, 2011a), where an analysis of in 

situ observations was performed to establish the representativeness at footprint scales. 

As part of the ISMN, measurements from the four considered Italian networks were also 

used in global studies aimed to validate the ASCAT SWI (Paulik et al., 2014) and to 

analyse the coarse scale representativeness of in situ data (Gruber et al., 2013). In the 

last study, random errors in coarse-scale representation are characterized by triple 

collocation, comparing in situ point-scale data with two independent coarse-scale 

datasets; as showed in Fig 5.2, “Calabria” sites show lower error values than stations in 

other considered networks. Thus, the selected study sites are considered sufficiently 

suitable for comparison with coarse-scale SWI, although with different levels of quality 

in representing soil moisture at footprint scales. 

 

 

Figure 5.1. Location of the study sites in Italy. 
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Table 5.1. Main characteristics of study sites. 

Code Station name Network 
Latitude 

(°) 

Longitude 

(°) 

Depth 

(cm) 
Observation period 

1 Fitterizzi Calabria 39.52 16.14 30, 60 1 Jan 2001 - 31 Dec 2012 

2 Mongrassano Calabria 39.53 16.22 30, 60 1 Jan 2001 - 16 May 2011 

3 Torano Calabria 39.50 16.21 30, 60 1 Jan 2001 - 31 Dec 2012 

4 Chiaravalle C.le Calabria 38.67 16.41 30, 60 1 Jan 2001 - 31 Dec 2012 

5 Satriano Calabria 38.68 16.54 30, 60 1 Jan 2001 - 31 Dec 2012 

6 Bagnoli Campania 40.83 15.07 30 1 Dec 2000 - 21 Nov 2012 

7 Cerbara Umbria 43.56 12.38 20, 40 30 Oct 2009 - 31 Jul 2014 

8 Petrelle Umbria 43.35 12.17 20, 40 30 Oct 2009 - 31 Jul 2014 

9 Torre Olmo Umbria 43.32 12.70 20, 40 23 Sep 2009 - 31 Jul 2014 

10 Perugia (Field1)  HYDROL-NET 43.12 12.35 25, 35 1 Jan 2010 - 31 Dec 2013 

 

 

Figure 5.2. Figure adapted from Gruber et al. (2013). Box-Whiskers plots summarizing the TC results in the 

different networks. Single standard error estimates were obtained for each in situ time series (i.e. for a given 

station at a given depth). Values in brackets show the average number of triplets used for the error estimate/the 

total number of error estimates represented in the boxplot. 

 

5.4.2 Remote sensing observations and quality flags 

The SSM time series derived on WARP5 discrete global grid (grid spacing of 12.5 km) 

from ASCAT backscatter measurements via the offline WARP processing chain 

(Naeimi et al., 2009) were employed. ASCAT SSM unit is degree of saturation, and 

several additional data fields are provided, including standard error estimates computed 

by an EP approach and denoted as ‘soil moisture noise’. Two releases of the product 

were used, both distributed within the framework of the H-SAF project, and specifically 

the DR2015 version (distributed as H25 product) in the first study and the DR2016 
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version (H109 product) in the second one. Only data from the ASCAT sensor on board 

the MetOp-A satellite were here considered. 

The nearest neighbour technique was used to obtain a correspondence between ASCAT 

grid points and in situ stations (Table 5.2), and the hourly in situ measurements 

associated with the closest temporal match to the acquisition time of SSM data were 

selected. 

 

Table 5.2 - Selection of ASCAT time series datasets, identified by WARP5 Grid Point Index (GPI). 

In situ stations Corresponding ASCAT time series datasets 

Code Station name GPI  
Latitude 

(°) 

Longitude 

(°) 

Topographic 

complexity (%) 

Wetland 

fraction (%) 

1 Fitterizzi 2069259 39.51 16.13 20 0 

2 Mongrassano 2069263 39.51 16.28 20 0 

3 Torano 2069263 39.51 16.28 20 0 

4 Chiaravalle C.le 2034369 38.72 16.39 16 0 

5 Satriano 2034373 38.72 16.53 15 34 

6 Bagnoli 2128143 40.86 15.12 19 0 

7 Cerbara 2242295 43.56 12.38 10 0 

8 Petrelle 2232959 43.34 12.18 10 0 

9 Torre Olmo 2232971 43.34 12.64 12 0 

10 Perugia (Field1) 2223595 43.11 12.29 7 5 

 

 

ASCAT SSM data can have different levels of intrinsic quality, due to various factors 

involved in the processing that can affect the accuracy of retrievals. Thus, SSM 

products include several additional data fields, containing attributes and flags which can 

be useful in judging the reliability of remotely sensed estimates and should be taken into 

account depending on the specific application. The attributes considered in this study 

are briefly described below. 
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ASCAT datasets include wetland fraction and topographic complexity advisory flags. 

These two static indicators are derived from external datasets and are useful in detecting 

areas where the retrieval method does not work properly because of the influence from 

open water or orographic effects in the satellite footprint. In several global data masking 

applications, observations at satellite grid points with a wetland fraction larger than 15% 

or topographic complexity larger than 20% were considered as inaccurate (Scipal et al., 

2008a; Dharssi et al., 2011; Paulik et al., 2014).  

The surface state flag (SSF) returned by the algorithm developed by Naeimi et al. 

(2012) indicates the temporary surface conditions and detects any backscatter 

measurements from snow covered or frozen land surfaces which can lead to an incorrect 

determination of soil moisture. Soil moisture estimates occurring when soil is not 

unfrozen are as a rule rejected.  

The processing flag comprises information on internal quality checks and specific 

processing details (H-SAF, 2014). In some cases, the extrapolated backscatter at the 

reference incidence angle can exceed the dry or the wet backscatter reference. As a 

result, the surface soil moisture is outside the nominal range of 0 - 100%. However, 

when it is still within certain limits, it is set to the extremes of 0% or 100% during the 

processing. In these cases, the processing flag is not set to its default value, namely 0, 

thus highlighting restrictions in data interpretation and use.  

The orbit direction attribute provides information on the satellite passing time. The use 

of morning surface observations is considered more appropriate to calculate the SWI in 

deeper layers, because the soil is most likely to be in hydrologic equilibrium conditions, 

avoiding daytime decoupling due to evapotranspiration (Jackson, 1980, as quoted in 

Albergel et al., 2008; Wanders et al., 2012). Thus, the highest correlations between 

ground-based measurements and SWI have been experimentally obtained in several 

studies using only morning satellite measurements (e.g., Wagner et al., 1999). In 

ASCAT data, morning passes are associated with a descending orbit. 

The field ‘soil moisture noise’, here referred to as SSM noise to avoid ambiguity, 

contains an estimate of the standard error in soil moisture retrievals, expressed in 

degrees of saturation [%]. Errors from the scatterometer observations, as well as the 

uncertainties associated with model parameters are taken into account and propagated 

through the retrieval algorithm to determine SSM noise. High values of average SSM 

noise were observed in areas where the retrieval algorithm is not expected to work 
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properly, e.g. areas covered by dense vegetation (Naeimi et al., 2009). In the literature, 

depending on the specific application, threshold values on SSM noise usually ranging 

from 5% to 30% are fixed for different ASCAT soil moisture products (near real time or 

offline time series) and processor versions, to detect areas where retrieval methods do 

not work well or to mask single spurious SSM observations (e.g. Mahfouf, 2010; 

Dharssi et al., 2011; Draper et al., 2011, 2012, 2013; Paulik et al., 2014). 

 

5.4.3 Experimental setup 

SWI time series were computed from SSM datasets, estimating the optimal T value that 

maximizes the correlation coefficient r between in situ and satellite-based soil moisture 

observations, where r is generally dominated by the strong seasonal pattern in time 

series; after linearly rescaling SWI with the mean and variance matching technique, the 

root-mean-square-difference (RMSD) was calculated.  

In the first study, the correlation coefficient ranom was also computed by considering in 

situ and SWI anomalies, in order to evaluate the capability of ASCAT-derived SWI to 

capture not only the seasonal trend but also the short-term variability in soil moisture. 

The dimensionless soil moisture anomalies, 𝜃anom(𝑡), were evaluated as suggested by 

Albergel et al. (2009): 

𝜃anom(𝑡) =
𝜃(𝑡)−mean(𝜃(𝑡−17:𝑡+17))

std(𝜃(𝑡−17:𝑡+17))
   (5.8) 

where 𝜃(𝑡) is the in situ observation or SWI value at time t, while mean(𝜃(𝑡 − 17: 𝑡 +

17)) and std(𝜃(𝑡 − 17: 𝑡 + 17)) are the mean and the standard deviation of 𝜃(𝑡), 

respectively, for a time window of 35 days (corresponding to five weeks) centred on 

time t and defined by t±17 days. The 𝜃anom(𝑡) is computed if there are at least five 

measurements in the sliding window.  

 

5.5 Application of EP equations neglecting the error in SWI parameter 

In the first study, a simplified SWI standard error estimate was used, referred to as SWI 

noise, which implicitly takes into account both the noise of SSM data actually used for 

the SWI calculation and their availability in a relatively sufficient number. SWI noise 



 

132 
 
 

was addressed to be used in a quality check framework, in the context of a more general 

evaluation of the impacts of different data masking procedures. 

For each station, in situ measurements (indicated as OBS plus corresponding depth in 

cm, and as OBSmean when referring to the mean of more depths) were compared to SWI 

estimated under different configurations. The comparison results are first illustrated 

(Sect. 5.5.1) by considering standard controls based on available ASCAT attributes. The 

outcomes derived from considering a posteriori control on the SWI noise are then 

discussed in Sect. 5.5.2. 

Regarding the SSM static advisory flags, according to the previously mentioned 

thresholds (15% for the wetland fraction and 20% for the topographic complexity), as 

can be inferred from Table 5.2, only the grid point associated with site 5 (which is 

located near the Ionian Sea coast) is characterized by a wetland fraction over the 

assumed threshold. However, site 5 was retained in the following analysis, considering 

that the corresponding SSM time series also have relatively low values of SSM noise. In 

addition, the closest grid point with appropriate values on both advisory flags could not 

be considered representative as it is too far from the site location. 

 

5.5.1 Data masking on ASCAT product attributes  

Four different data masking configurations on remote sensing data were here 

considered. Specifically, the effects of using the processing flag and different orbit 

directions to mask SSM observations before the SWI computation were evaluated in 

terms of the agreement between satellite-derived and in situ soil moisture time series. 

The adopted data masking configurations are identified as follows: 

DM0 - is a reference basic configuration where no controls are carried out; 

DM1 - only SSM values corresponding to the default value for the processing flag (i.e. 

processing flag value equal to 0) were retained in the SWI computation; 

DM2 - considers only SSM observed in the morning (satellite descending orbit); 

DM3 - considers only SSM observed in the evening (satellite ascending orbit). 

In each of these configurations, SSM retrievals with invalid SSF values have been 

preliminarily masked. Regarding no-default processing flag values, in Calabria and 

Campania datasets we found almost exclusively situations of surface soil moisture 

below the dry reference value and artificially set to 0%, that were mainly concentrated 
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during the summer months and particularly in July and August. In the grid point close to 

station 5 there are twice as many occurrences than at the other remote sensing datasets 

and they are significantly distributed over a longer period (from April to October). In 

Umbria region, instead, there are also situations of SSM retrievals above the wet 

reference, albeit to a lesser extent, that are concentrated during winter months; the 

frequency of soil moisture estimates below the dry reference is similar to 

abovementioned sites, but distributed over a longer summer-centred period, especially 

in site 10 which has a similar behaviour to site 5. 

The results obtained under the assumed DM configurations at the most superficial 

observation depths are illustrated for each site in Table 5.3. The rescaled SWI is 

indicated as SWI
*
. Figures 5.3 and 5.4 report in situ and satellite derived SWI

*
 time 

series and scatterplots for six of the selected sites, referring to DM0 configuration at the 

most superficial observation depth. The data generally show a good ability of the 

ASCAT derived SWI to reproduce temporal patterns and absolute values of ground 

observations. Results regarding the four remaining stations substantially confirm the 

same outcomes.  

 

 

Figure 5.3. Time series of satellite-based SWI* and in situ measurements at the most superficial observation 
depth, for a selection of six sites in DM0 configuration. 
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Table 5.3. Results of the different “a priori” data masking procedures, in terms of exponential filter T value and performance scores. Nobs and Nanom refer to the number of observations 

and anomalies respectively. 

  T  

(days) 

r RMSD 

(m
3
m

-3
) 

ranom Nobs Nanom   T  

(days) 

r RMSD 

(m
3
m

-3
) 

ranom Nobs Nanom 

Site 1 DM0 6 0.851 0.019 0.522 1565 1539 Site 6 DM0 5 0.745 0.038 0.539 933 897 

OBS30 DM1 7 0.815 0.020 0.536 1428 1402 OBS30 DM1 5 0.727 0.039 0.529 874 838 

 
DM2 7 0.855 0.019 0.554 779 765 

 
DM2 9 0.757 0.038 0.463 447 428 

 
DM3 9 0.836 0.020 0.498 786 772 

 
DM3 5 0.723 0.040 0.562 486 468 

Site 2 DM0 15 0.864 0.025 0.522 1266 1239 Site 7 DM0 4 0.718 0.061 0.497 1601 1562 

OBS30 DM1 17 0.823 0.025 0.524 1145 1118 OBS20 DM1 4 0.712 0.060 0.484 1523 1485 

 
DM2 16 0.865 0.025 0.554 621 607 

 
DM2 5 0.712 0.062 0.464 799 780 

 
DM3 17 0.855 0.026 0.494 645 629 

 
DM3 5 0.710 0.062 0.482 802 781 

Site 3 DM0 10 0.884 0.023 0.464 1768 1740 Site 8 DM0 18 0.823 0.042 0.415 1536 1497 

OBS30 DM1 12 0.870 0.024 0.483 1620 1592 OBS20 DM1 18 0.820 0.041 0.417 1498 1460 

 
DM2 11 0.884 0.023 0.476 874 859 

 
DM2 21 0.815 0.043 0.418 805 785 

 
DM3 13 0.870 0.025 0.443 894 879 

 
DM3 17 0.824 0.041 0.399 731 711 

Site 4 DM0 4 0.831 0.023 0.452 1473 1451 Site 9 DM0 20 0.670 0.017 0.302 1390 1354 

OBS30 DM1 3 0.813 0.024 0.464 1390 1368 OBS20 DM1 18 0.656 0.017 0.323 1298 1263 

 
DM2 4 0.827 0.024 0.438 728 715 

 
DM2 19 0.681 0.017 0.356 688 667 

 
DM3 7 0.822 0.024 0.388 745 729 

 
DM3 21 0.658 0.017 0.312 702 685 

Site 5 DM0 6 0.841 0.024 0.304 1768 1740 Site 10 DM0 38 0.585 0.057 0.419 1048 1021 

OBS30 DM1 8 0.807 0.026 0.313 1506 1478 OBS25 DM1 36 0.622 0.055 0.407 957 930 

 
DM2 7 0.833 0.025 0.337 878 863 

 
DM2 39 0.591 0.057 0.443 526 512 

 
DM3 10 0.826 0.025 0.227 890 875 

 
DM3 39 0.577 0.057 0.394 522 508 
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Figure 5.4. Scatterplots of satellite-based SWI* and in situ measurements for a selection of six sites in DM0 
configuration. Correlation coefficients r, rwinter and rsummer are referred to measurements occurred in the entire 
observation period or in winter (from October to March) or summer (from April to September) respectively. 

 

Optimal T values in Table 5.3 are consistent with results obtained in the literature for 

similar soil thicknesses (e.g. Wagner et al., 1999; Albergel et al., 2008, 2009; Brocca et 

al., 2010a, 2010b, 2011a; Ford et al., 2014) and show relatively small variations under 

different masking criteria.  

About absolute values performance scores, the obtained r and RMSD values generally 

indicate a good agreement between SWI and ground data in the DM0 configuration. In 

sites 1-8, r is always over 0.7, while RMSD ranges between 0.019 and 0.061 m
3
m

-3
. 

Sites 9 and 10 show lower correlation coefficient values (0.670 and 0.585 respectively). 

In Umbria and HYDROL-NET networks the performance scores are generally worse 

than in the other sites: this could be attributed to higher in situ errors in coarse-scale 

representation, rather than a local inadequacy of satellite-derived soil moisture, as 
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evaluated in Gruber et al. (2013) introducing a third independent large scale dataset 

(Fig. 5.2).  

Based on the anomalies of in situ and estimated SWI, ranom was also computed. The 

ranom values are lower than the absolute time series correlations (varying between 0.302 

and 0.539 for the DM0 configuration at the most superficial depth), similarly to other 

studies (e.g., Brocca et al., 2010b, 2011; Paulik et al., 2014) and do not show any 

particular geographical pattern. However, as for absolute time series, p-value 

(measuring the probability of null correlation) indicate that all the correlations obtained 

for anomalies time series are statistically significant at the 0.05 level of significance. 

The ranom is found to sensibly decrease with depth in all sites (exception being sites 9 

and 10 where it slightly improves), in line with the outcomes of Paulik et al. (2014). In 

this sense, the decrease in the anomaly correlation with depth is due to the effect of the 

exponential filter with higher T values, which tends to smooth short-time variations 

observed in SSM series.  

A calibration of the exponential filter parameter was also performed (not shown here for 

the sake of brevity) by maximizing ranom: generally, significantly lower T values are 

obtained; nevertheless, ranom do not show noteworthy variations compared to values in 

Table 5.3, implying a low ability of the exponential filter approach to mimic the less 

prominent short-term fluctuations rather than seasonal variability. As an example of this 

evidence, the results obtained in site 1 for DM0, show that optimizing ranom instead of r 

implies variations in T from 6 to 3 days, while ranom increases from 0.522 to 0.531 and r 

decreases from 0.851 to 0.841. 

It is worth noting that the goodness of agreement between satellite-derived and in situ 

measurements in maximizing r strongly depends on the seasons of the year. Splitting 

the sample into a summer period, April - September, and a winter period, October - 

March, a better correlation is generally obtained considering the warm months 

(indicated as rsummer in Figure 5.4) compared to the one calculated considering the rest 

of the year (i.e., rwinter). The correlation coefficients rsummer and rwinter are in most cases 

lower than r.  

By performing an analogue analysis on the anomalies time series, it is not possible to 

identify a similar common behaviour; moreover, the best ‘seasonal’ correlation 

coefficient is frequently higher than ranom calculated over the entire observation period. 
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The effects of different masking criteria were evaluated taking the DM0 configuration 

as a reference. Masking SSM observations with the no-default processing flag value 

(DM1) prior to the SWI estimation has a negative effect in terms of performance 

metrics over all the analysed sites with the exception of site 10. In fact, discarded 

observations are almost all concentrated in summer periods, where although probably 

not quantitatively accurate, neglected data provide a qualitative indication of dry 

conditions, and their informational content has been found to improve SWI estimates. 

Concerning the orbit direction, using only satellite morning passes (DM2) for some sites 

(sites 1, 2, 3, 6, 9 and 10 in Table 5.3) slightly improves the performance scores, but 

always at the cost of halving the number of obtained SWI estimates and degrading the 

temporal coverage of the product. The DM3 control, considering only ascending passes, 

as expected, results in lower performance compared to DM0 and DM2, with limited 

exceptions, as some scores in sites 6 and 8. 

 

5.5.2 Data masking based on SSM noise and SWI noise  

The effect of removing the SWI estimates characterized by low accuracy through a 

threshold on SWI noise was examined. The analysis was conducted by comparing three 

different approaches:   

– SSM-1) Setting a threshold on SSM noise and then identifying the optimal T 

according to the best r performance of SWI in reproducing the corresponding 

subset of in situ measurements. Different SSM noise thresholds are considered, 

varying from its [median value+1] to the [maximum value-1] encountered in the 

time series, that correspond to a specific number of discarded data with higher 

noises that are not employed in the SWI estimation;  

– SWI-2) Generating a SWI noise time series according to Equation (5.5), having 

assumed the same optimal T value obtained in SSM-1. SWI noise thresholds 

were ‘a posteriori’ assumed, corresponding to SWI series with the same amount 

of discarded data resulting in the previous approach from the application of SSM 

noise thresholds; 

– SWI-3) Recalibrating the optimal exponential filter parameter T according to a 

SWI time series obtained by setting a threshold on SWI noise to remove the 

same number of SWI data as the corresponding ‘a priori’ control on SSM. The T 
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parameter is optimized considering only SWI values characterized by noise 

below the threshold on the basis of the correlation coefficient with in situ 

measurements. 

To illustrate the smoothing effect of the exponential filter and its dependency on the 

optimized T value, Figure 5.5 shows for site 4, the time series of SSM, SWI, SSM noise 

and SWI noise for two different T values. The SWI noise seasonal pattern reflects the 

seasonality in SSM noise whose highest values occur in summer months.  

 

 

Figure 5.5. Time series of SSM and SWI (calculated for T=4 and T=30 days) and their corresponding noises σ, 
estimated for the ASCAT grid point nearest to site 4. 

 

For the sake of brevity, only the results obtained for site 4 are shown in detail in Table 

5.4, where, to facilitate the comparison, performance scores of the DM0 configuration 

are also reported. Five different thresholds, based on SSM or SWI noise values are 

assumed and referred to as ‘Threshold 1’ - ‘Threshold 5’, where increasing indexes 

correspond to lower critical noise values and consequently more discarded data. Figure 

5.6 shows the results in terms of the ratio between the obtained r and the one 
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corresponding to the DM0 configuration, for different noise thresholds expressed in 

terms of the percentage of removed data, either SSM or SWI, for six of the selected 

sites. Observed ranges for r values obtained from the application of different thresholds 

for the three approaches, are summarized in Figure 5.7a; Figures 5.7b, 5.7c and 5.7d 

illustrates the same analysis in terms of RMSD, ranom and T.  

 

 

 

Figure 5.6. Comparison between effects of assuming different SSM and SWI noise thresholds on correlation 
coefficients.  
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Table 5.4. Results of application of the different thresholds on SSM and SWI noise for site 4, compared to DM0 configuration (no quality check). T expressed in days, RMSD in m
3
m

-3
.  

  
DM0 

Threshold 1 Threshold 2 Threshold 3 Threshold 4 Threshold 5 

  SSM-1 SWI-2 SWI-3 SSM-1 SWI-2 SWI-3 SSM-1 SWI-2 SWI-3 SSM-1 SWI-2 SWI-3 SSM-1 SWI-2 SWI-3 

Site 4 

OBS30 

σthreshold - 15 6.34 6.49 14 5.68 5.72 13 5.23 5.70 12 5.95 6.05 11 5.94 6.61 

T  3.6 3.6 3.6 3.4 3.5 3.5 3.4 3.1 3.1 2.6 2.0 2.0 1.9 1.8 1.8 1.4 

r 0.831 0.823 0.831 0.831 0.805 0.825 0.825 0.748 0.787 0.790 0.661 0.757 0.761 0.584 0.727 0.732 

RMSD 0.023 0.024 0.023 0.023 0.024 0.024 0.024 0.026 0.024 0.024 0.027 0.024 0.024 0.027 0.025 0.025 

ranom 0.452 0.457 0.462 0.464 0.480 0.479 0.480 0.507 0.500 0.515 0.543 0.535 0.535 0.538 0.551 0.565 

Nobs 1473 1433 1433 1433 1339 1339 1339 1112 1112 1112 949 949 949 830 830 830 

Site 4 

OBS60 

σthreshold - 15 5.11 5.74 14 4.75 4.25 13 5.07 5.08 12 5.99 5.46 11 5.78 6.07 

T  5.5 5.2 5.2 4.3 4.9 4.9 6.1 3.3 3.3 3.3 2.0 2.0 2.4 1.9 1.9 1.7 

r 0.816 0.805 0.816 0.816 0.783 0.808 0.810 0.715 0.767 0.767 0.628 0.734 0.737 0.562 0.710 0.718 

RMSD 0.021 0.022 0.021 0.021 0.022 0.022 0.022 0.024 0.023 0.023 0.026 0.023 0.023 0.025 0.023 0.023 

ranom 0.364 0.369 0.376 0.380 0.394 0.380 0.380 0.425 0.420 0.419 0.473 0.446 0.455 0.463 0.485 0.488 

Nobs 1475 1435 1435 1435 1341 1341 1341 1114 1114 1114 951 951 951 832 832 832 

Site 4 

OBSmean 

σthreshold - 15 5.79 6.53 14 5.28 5.60 13 5.16 5.62 12 5.98 6.05 11 5.88 6.06 

T  4.3 4.2 4.2 3.4 4.0 4.0 3.6 3.2 3.2 2.7 2.0 2.0 1.9 1.8 1.8 1.7 

r 0.840 0.831 0.840 0.840 0.813 0.833 0.834 0.754 0.796 0.798 0.669 0.768 0.771 0.596 0.741 0.746 

RMSD 0.021 0.021 0.021 0.021 0.022 0.021 0.021 0.023 0.022 0.022 0.024 0.022 0.022 0.024 0.022 0.022 

ranom 0.454 0.459 0.466 0.469 0.480 0.478 0.481 0.499 0.499 0.507 0.540 0.518 0.520 0.535 0.548 0.554 

Nobs 1473 1433 1433 1433 1339 1339 1339 1112 1112 1112 949 949 949 830 830 830 
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Figure 5.7 – Effects of the different SSM and SWI noise thresholds, for all sites at the most superficial observation 
depth, on ranges of: a) r; b) RMSD; c) ranom; d) T parameter. 

 

Discarding ASCAT data based on SSM noise (SSM-1) generally lead to the lower 

performances of SWI in reproducing in situ measurements, in terms of r and RMSD, as 

shown in Figures 5.7a and 5.7b. On the other hand, optimizing T without masking 

underlying SSM input (SWI-3), always outperforms the other tested approach.  

In every case, p-value confirm that the correlations obtained are statistically significant 

for both absolute and anomalies time series at the 0.05 level of significance. Differences 

between correlation coefficients obtained with the three approaches are also checked 

performing two significance tests based on the well-known Fisher's Z-transformation 

and on Zou’s (2007) confidence interval respectively. As expected, significant 

differences are obtained comparing the SSM-1 approach to SWI-2 or SWI-3, both 

implying the use of a threshold on the proposed SWI noise and differing only for T 

parameter estimation. Moreover, the differences between correlation coefficients 

become significant for decreasing threshold values that remove larger amount of data.  
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Focusing on the SWI-3 approach, the use of more restrictive thresholds, i.e. lower 

values, on SWI noise generally leads to performance worsening compared to DM0 

configuration, with the exceptions of sites 9 and 10 characterized by lower reference 

values rDM0. For example, referring to OBS30 at site 4 (Table 5.4), r decreases from 

0.831 to 0.790, 0.761 and 0.732, while RMSD increases from 0.023 to 0.024 and 0.025 

m
3
m

-3
, for Thresholds 3, 4 and 5 respectively. A possible explanation of this 

deterioration is that restrictive thresholds tend to remove SWI estimates characterized 

by high noise in underlying SSM measurements rather than by insufficient input 

availability; as evidenced by Figure 5.5, according to the observed SSM noise seasonal 

pattern, the removal of SWI values is mainly concentrated in the summer months, 

generally characterized by a better relative agreement with in situ measurements. 

This evidence does not emerge in the analysis of the anomalies: the use of more 

restrictive thresholds on SSM noise and SWI noise, actually, can either results in better 

or worse performance in terms of ranom. The dependence of ranom on the seasonality of 

the root-zone soil moisture obtained for the DM0 configuration is less evident as 

already stated. Furthermore, comparing the ranom results obtained for the investigated 

sites, the three approaches show similar performances; SWI-3 approach clearly 

outperforms the SSM-1 one only in site 10, as shown in Figure 5.7c.  

Finally, Figure 5.7d highlights the key role played in this analysis by the exponential 

filter parameter. Sensible differences in T values estimated from SSM and SWI noise 

thresholds obviously affect the performance metrics too. As expected, lower T, 

associated to more irregular SWI series, correspond to marked improvement in the skill 

of the anomaly correlation. This evidence is carried to extreme in site 6: sensibly higher 

T values estimated with the SWI-3 methodology, although associated to valuable 

performance in terms of r for the absolute time series, similar to those obtained with the 

SWI-2 approach, correspond to ranom significantly worse than the other two approaches. 

 

5.6 Application of EP equations considering the error in SWI 

parameter 

In the second study an updated ASCAT data records release was used, in which the 

SSM error estimates show much lower magnitude and considerably reduced seasonal 

patterns. The latest product version benefits from several updates, mostly in instrument 
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calibration, model parameters, and algorithms; consequently, no prominent seasonal 

patterns are reflected in estimated SWI standard error time series, as it happened instead 

in the previous study.  

The comparison between SWI and in situ measurements generally confirms the results 

obtained using the previous ASCAT SSM product version (e.g. optimal T values 

reported in Table 5.5). 

 

Table 5.5. Estimated T values at different depths for the considered study sites. 

Code, 

depth 

(cm) 

T  

(days) 

Code, 

depth 

(cm) 

T 

(days) 

Code, 

depth 

(cm) 

T 

(days) 

Code, 

depth 

(cm) 

T 

(days) 

Code, 

depth 

(cm) 

T 

(days) 

#1, 30 6 #3, 30 10 #5, 30 7 #7, 20 4 #9, 20 23 

    , 60 17     , 60 25     , 60 19     , 40 5     , 40 31 

#2, 30 13 #4, 30 4 #6, 30 4 #8, 20 18 #10, 25 38 

    , 60 34     , 60 6       , 40 19      , 35 40 

 

 

In parallel SWI error variance time series were estimated with the approach described in 

Sect. 5.3, assuming σ(T) equal to the 10% of the estimated T value: although it is rather 

arbitrary, this is a commonly used value for error analysis when parameters do not have 

well-defined accuracy (Parinussa et al. 2011, Pathe et al. 2009). As shown in Figure 5.8, 

the differences in computed uncertainty due to the introduction of the term related to the 

parameter T can be remarkable.  

 

 

Figure 5.8. Example of estimated SWI uncertainties time series (in red the values calculated by considering only 
input uncertainties). 

 

In this study, a preliminarily assessment of estimated SWI uncertainties was carried out, 

by focusing only on the highest values in the time series, investigating the 
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correspondence with potentially less reliable SWI data, i.e. with data that do not fits 

well in situ observations. The correspondence between observed deviations and SWI 

random error realizations theoretically holds well as long as the latter is the main error 

term. Ground measurements, used as reference for the evaluation of coarse-scale SWI, 

also contain random errors (instrumental and representativeness); furthermore, residual 

systematic differences are to be expected, as mean and variance matching technique 

constitutes a suboptimal rescaling solution (Yilmaz & Crow, 2013). 

The more uncertain SWI values are firstly masked by setting four σ(SWI) thresholds to 

remove fixed percentage of data (5, 10, 15 and 20%), and then a linear scaling was 

performed to remaining SWI data; finally, performance metrics r and RMSD are 

recomputed to check whether the discarded data contributed positively or not to the 

overall agreement between the in situ and satellite-based soil moisture time series.  

The masked data are deemed to be mainly those characterized by high (∂SWI/∂T) 

values and correspond to significant changes in the SWI value, which occurring during 

seasonal or sub-seasonal (short-time) fluctuations due to high or low T parameter 

respectively (Figure 5.9). When SWI well describes the observed soil moisture 

dynamics (representative sites, good r and RMSD values) just showing the known 

exponential filter limitations in modelling sub-seasonal fluctuations, it is expected that 

σ(SWI) thresholds improve performance scores as they identify the situations of actual 

lower agreement between SWI and ground data. About the role of exponential filter 

parameter, as stated above the smoothed SWI time series obtained for high T values 

show well localized uncertainty seasonal patterns (Fig. 5.9 for T = 25 days).  

To examine the role played by parameter uncertainty, the described procedure was also 

performed by applying thresholds on Δ, whose value depends on SSM error variance 

patterns and temporal availability on a time-scale related to the T value. The obtained r 

and RMSD values are shown in Tables 5.6 and 5.7 respectively, while Figure 5.10 

summarizes the results for 9 sites at the most superficial observation depth. 
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Figure 5.9. Example of SWI estimates over σ(SWI) thresholds (on the left) and corresponding in situ 
measurements (on the right), for different T values, before mean and variance matching. 

 

Table 5.6. r values for the different error thresholds. 

Code, 

depth (cm) 
No thr. 

Data removed by σ(SWI) threshold: Data removed by Δ threshold: 

5% 10% 15% 20% 5% 10% 15% 20% 

#1, 30 0.858 0.863 0.866 0.869 0.873 0.862 0.866 0.865 0.861 

    , 60 0.876 0.878 0.883 0.889 0.894 0.876 0.875 0.879 0.881 

#2, 30 0.864 0.872 0.881 0.885 0.889 0.864 0.866 0.864 0.854 

    , 60 0.899 0.899 0.900 0.905 0.910 0.898 0.897 0.895 0.895 

#3, 30 0.885 0.896 0.908 0.914 0.918 0.886 0.888 0.887 0.883 

    , 60 0.854 0.857 0.867 0.875 0.889 0.853 0.852 0.851 0.849 

#4, 30 0.831 0.834 0.837 0.837 0.834 0.832 0.833 0.829 0.825 

    , 60 0.816 0.825 0.832 0.840 0.845 0.818 0.818 0.812 0.808 

#5, 30 0.840 0.842 0.845 0.850 0.849 0.843 0.844 0.843 0.841 

    , 60 0.853 0.860 0.862 0.866 0.872 0.853 0.854 0.855 0.857 

#6, 30 0.743 0.763 0.776 0.777 0.785 0.760 0.773 0.773 0.779 

#7, 20 0.721 0.731 0.741 0.749 0.765 0.732 0.740 0.747 0.749 

    , 40 0.721 0.735 0.748 0.754 0.765 0.738 0.747 0.755 0.760 

#8, 20 0.824 0.827 0.831 0.833 0.832 0.842 0.849 0.853 0.853 

    , 40 0.817 0.819 0.823 0.826 0.822 0.826 0.828 0.830 0.832 

#9, 20 0.624 0.637 0.647 0.653 0.664 0.683 0.687 0.697 0.694 

    , 40 0.802 0.803 0.802 0.809 0.809 0.795 0.800 0.805 0.807 

#10, 25 0.589 0.577 0.567 0.555 0.549 0.591 0.592 0.586 0.583 

     , 35 0.625 0.611 0.599 0.592 0.588 0.623 0.623 0.617 0.611 
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Table 5.7 RMSD (m
3
/m

3
) values for the different error thresholds. 

Code, 

depth (cm) 
No thr. 

Data removed by σ(SWI) threshold: Data removed by Δ threshold: 

5% 10% 15% 20% 5% 10% 15% 20% 

#1, 30 0.0185 0.0184 0.0184 0.0184 0.0182 0.0185 0.0185 0.0186 0.0187 

    , 60 0.0275 0.0275 0.0272 0.0268 0.0263 0.0276 0.0279 0.0275 0.0274 

#2, 30 0.0248 0.0241 0.0235 0.0234 0.0233 0.0253 0.0256 0.0257 0.0261 

    , 60 0.0267 0.0268 0.0267 0.0263 0.0258 0.0272 0.0277 0.0283 0.0289 

#3, 30 0.0231 0.0221 0.0209 0.0203 0.0199 0.0233 0.0233 0.0234 0.0237 

    , 60 0.0279 0.0275 0.0265 0.0257 0.0243 0.0283 0.0286 0.0290 0.0294 

#4, 30 0.0233 0.0231 0.0227 0.0227 0.0229 0.0233 0.0232 0.0234 0.0235 

    , 60 0.0211 0.0203 0.0200 0.0194 0.0191 0.0212 0.0214 0.0217 0.0218 

#5, 30 0.0241 0.0237 0.0235 0.0234 0.0232 0.0240 0.0241 0.0243 0.0246 

    , 60 0.0230 0.0225 0.0225 0.0224 0.0221 0.0234 0.0235 0.0237 0.0235 

#6, 30 0.0386 0.0369 0.0359 0.0359 0.0352 0.0373 0.0365 0.0363 0.0361 

#7, 20 0.0607 0.0600 0.0596 0.0592 0.0575 0.0603 0.0599 0.0592 0.0591 

    , 40 0.0575 0.0565 0.0555 0.0554 0.0543 0.0565 0.0559 0.0554 0.0551 

#8, 20 0.0414 0.0409 0.0409 0.0412 0.0418 0.0394 0.0385 0.0381 0.0384 

    , 40 0.0297 0.0297 0.0296 0.0298 0.0302 0.0292 0.0289 0.0288 0.0287 

#9, 20 0.0184 0.0177 0.0175 0.0175 0.0174 0.0170 0.0170 0.0166 0.0167 

    , 40 0.0727 0.0731 0.0736 0.0718 0.0716 0.0744 0.0741 0.0737 0.0735 

#10, 25 0.0569 0.0580 0.0591 0.0605 0.0617 0.0571 0.0577 0.0589 0.0597 

     , 35 0.0592 0.0604 0.0616 0.0625 0.0635 0.0596 0.0602 0.0614 0.0622 

 

 

 

Figure 5.10. Effects of the different error thresholds on correlation coefficient R and RMSD values. 
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The obtained correspondence between the removing more uncertain SWI values and the 

improving the observed performance metrics is generally in agreement with the 

expected. Increasing thresholds on σ(SWI) seem to lead to a systematic better 

correlation between remaining SWI data and reference ground measurements. The only 

exception is the site 10 (HYDROL-NET network), characterized by the lowest r starting 

values, probably indicating that also in situ errors contribute significantly on observed 

deviations between time series; in this site the highest optimal T values are also 

obtained. Marked performance improvements are observed in sites 1-5 (Calabria) and 

also in 6 (Campania), both in terms of r and RMSD. In Umbria network, where the 

starting performance scores are generally lower, the procedure gave good results on site 

7, characterized by the lowest T values, with σ(SWI) thresholds detecting short-time soil 

moisture variations substantially distributed in all seasons of the year. In the remaining 

sites (8 and 9), where T values are higher and masked observations show the expected 

seasonal patterns, the performance improvements are less evident (it is worth to note 

that RMSD is also influenced by the trend in the variance of remaining reference 

ground data). 

Regarding Δ, data masking generally shows reduced performance improvements, often 

limited to the removal of a moderate percentage of SWI values (that include those 

corresponding to exponential filter initializations); however, in sites 8-10, where σ(SWI) 

thresholds gave less positive results, the control on Δ performs better, due to different 

temporal patterns in masked data, confirming that in this sites SWI seasonal transitions 

are not the most critical periods in reproducing ground data. 

The performance improvements obtained in applying σ(SWI) thresholds can be 

therefore explained by the removal of data that testify the limited skills of exponential 

filter in detecting short time-scale fluctuations, including those that occur in 

correspondence of seasonal state variation. According to results obtained in some 

representative sites, the seasonal state variation proved to be situation where 

exponential filter shows modelling limits. The proposed EP scheme thus succeeds in 

identifying SWI estimates that potentially do not capture properly soil moisture state 

transition and deviate considerably from reference ground measurements.  
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5.7 Conclusions 

An error propagation approach was proposed to characterize the time-variant SWI error 

variance. 

In a first study, a simplified scheme was used, taking into account the errors as well as 

the availability of the underlying SSM data in SWI estimate, but neglecting the 

uncertainty in T parameter. In this study, ASCAT-derived SWI showed a good 

agreement with reference root zone ground data, even when no quality control was 

performed, with the exponential filter generally showing a greater ability in capturing 

the seasonal soil moisture behaviour rather than short time-scale fluctuations. Different 

SSM data masking procedures, based on several indicators available for the ASCAT 

product, were analysed; however, they did not necessarily led to a more accurate 

description of the root-zone water content in terms of agreement with in situ 

observations. Regarding the EP scheme, the use of thresholds on SWI noise led to 

performance worsening compared to the configuration without quality controls, due to 

SSM noise seasonal pattern that implies the removal of SWI values mainly concentrated 

in a season characterized by a better relative agreement with in situ measurements. 

However, removing data according to ‘a posteriori’ control on SWI noise generally 

improved the performance metrics with respect to ‘a priori’ SSM noise threshold 

application. 

In the second study, error in T was taken in account, and a successive release of ASCAT 

SSM dataset was employed, with no prominent seasonal patterns in SSM noise. In this 

case, the proposed EP scheme has shown capabilities to identify potentially less reliable 

SWI values in the selected study sites, improving performance metrics respect to the 

configuration without quality controls. The preliminary results suggest the utility of EP 

approach in the SWI evaluation, in the comprehension of the exponential filter 

shortcomings, and in the time-variant SWI error characterization. Due to the 

exponential filter mathematical structure, error estimates could be not reliable in 

magnitude; however, they can help to discriminate more and less certain data. The 

information provided by analytical error propagation equations can be suitable not only 

for a preliminary screening analysis, but also to reproduce the trend, rather than the 

actual values, of satellite-based SM error variance. However, with regard to data 

assimilation applications, the role of observation error temporal structure on analysis 
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performances is still under research: there are few studies in which the temporal 

variability in error variance is not neglected, and the experiments generally did not 

exhibit significant variations in assimilation results with respect to the stationary case 

(e.g. Alvarez-Garreton et al., 2013). 
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6. EFFECTS OF DIFFERENT RESCALING AND ERROR 

CHARACTERIZATION SCHEMES IN AN EXTENSIVE DATA 

ASSIMILATION EXPERIMENT 

 

6.1 Introduction 

This chapter describes a second application related to the assessment of satellite soil 

moisture preprocessing and error characterization practices, carried out during a 

research period at CNR-IRPI with the Hydrology group, that provided datasets and 

support. 

In this study, the effects of remotely sensed soil moisture assimilation on hydrological 

model performances have been extensively explored, over a large number of catchments 

located across Europe. The benefit from integrating satellite SSM in rainfall-runoff 

modelling is potentially very high, however several studies have shown ambiguous 

results in terms of actual improvements in runoff predictions (see Sect. 3.3). This can be 

attributed to two main factors: 1) the actual quality of the several satellite products 

under different climatic and physiographic conditions; 2) some methodological issues 

like those related to the observations preprocessing and the error characterization phases 

(see Sect. 4.2). In this application these aspects are investigated in the following way. 

Different ESA CCI SM products are used, that merge several available active and 

passive measurements, in order to evaluate the role of the sensors on DA performances. 

In the preprocessing phase, satellite datasets are rescaled to the reference according to 

two alternative approaches, i.e. CDF-matching and Triple Collocation analysis (TC), 

that imply the matching of total variance and only signal component, respectively. 

Then, TC is also used for observation error characterization, considering distinct triplet 

configurations also in order to test the impact of different observation weights in data 

assimilation system performances. These different procedure setups do not involve any 

DA performance optimizations on the individual catchments.  

A previous DA experiment on the same dataset was made by CNR-IRPI Hydrology 

group, using mean and variance matching for rescaling and then a nudging scheme with 

gain calibrated by optimizing the DA system performance; the experiment showed only 

limited model performance improvements after assimilation on a moderate percentage 

of catchments, with ‘optimal’ gains less than 0.1 in most cases (that means high errors 
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attributed to satellite with respect to the model, small weight to observation in state 

updating, and finally limited corrections and analysis error variance improvements). 

Here we use the Ensemble Kalman Filter (EnKF), which properly takes in account 

background error evolution. The EnKF has been widely used for SM DA given its 

computational efficiency and the strongly nonlinear dynamics of hydrological 

processes. Kalman Filter and its variants provide an optimal solution in minimizing the 

error variance of analysis state variable, relying on the assumption of background and 

observation errors strictly random and correctly characterized in statistical terms, as 

well as mutually uncorrelated and white (uncorrelated in time). 

The role of the rescaling approach has been analysed also considering its effect in terms 

of multiplicative bias between rescaled satellite-based and reference model SM 

estimates (i.e. differences between datasets that show a systematic relationship with the 

estimate values), as the existence of multiplicative bias components between satellite-

based and model data may provide non-optimal assimilation results. In this respect, 

CDF-matching is not targeted to correct multiplicative bias (Kornelsen & Coulibaly, 

2015), although it exhibits good performances in fitting the reference dataset. Triple 

Collocation analysis was proposed as optimal rescaling solution for data assimilation 

framework (Yilmaz & Crow, 2013), as it takes into account the existence of 

multiplicative error terms in dataset error structures; the resulting rescaled dataset 

should show less evidence of multiplicative bias, although it reproduces less well the 

model reference. 

In the following paragraphs are firstly described the study catchments and the provided 

datasets, then the MISDc-2L model (Brocca et al., 2012a) used for the simulation of 

hydrological response, the methodologies adopted for observation preprocessing and 

error characterization, the assumptions made for the representation of model errors, the 

EnKF implementation, and finally the data assimilation results. 

 

6.2 Study catchments and datasets 

6.2.1 Study catchments and hydrological data 

This study makes use of a hydrological dataset originally including 881 catchments 

located across Europe; however, only a subset of 729 is actually employed for the data 

assimilation experiments (Fig. 6.1), selected considering a threshold on hydrological 
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model calibration performance. Data refer to the study period 2002-2011, chosen by 

intersecting the temporal availability of runoff and satellite SM observations. Daily 

discharge data and basin characteristics have been obtained from the Global Runoff 

Data Centre (GRDC, https://www.bafg.de/GRDC). Catchment areas range from 150 to 

150000 km
2
. The list of study catchments is in Annex 1. 

 

 

Figure 6.1. Study catchments (red points indicate the river gauge). 

 

6.2.2 Climatic data 

Ground-based daily rainfall and mean temperature data have been collected from the 

European Climate Assessment & Dataset E-OBS (https://www.ecad.eu/) (Haylock et 

al., 2008). E-OBS gridded products are delivered for the European domain on four 

spatial resolutions, including 0.25° by 0.25° on a regular latitude-longitude grid. The 

gridded data are obtained from daily station observations by using different appropriate 

methods for the spatial interpolation of the several climate variables (Hofstra et al., 

2008), in order to provide the best estimate of grid box averages. Additionally, 

uncertainty estimates are available, provided as standard errors, that only represent 

interpolation errors and are shown to be largely dependent on the number of 

contributing observations (Haylock et al., 2008). According to Hofstra et al. (2009), the 

https://www.bafg.de/GRDC
https://www.ecad.eu/
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provided standard errors significantly underestimate the true interpolation errors when 

cross-validated with ground data and therefore will similarly underestimate the 

interpolation errors in the gridded E-OBS data. E-OBS gridded daily data for the study 

period have been averaged over the catchment areas; rainfall standard error estimates 

are instead used only to visually assess the presence of spatial uncertainty patterns 

within the study catchments (Fig. 6.2). 

 

 

Figure 6.2. E-OBS rainfall standard error averaged over selected study catchments. Provided errors show a clear 

spatial pattern, with higher values in Mediterranean area than at northern latitudes. 

 

6.2.3 Remotely-sensed soil moisture data 

The satellite surface soil moisture observations have been derived from the European 

Space Agency (ESA) Climate Change Initiative (CCI), which provides active, passive 

and combined merging products with a spatial resolution of 0.25° and a daily temporal 

sampling (Liu et al., 2012a; Dorigo et al., 2017). The version v03.2 has been here 

employed. The quality indicators provided within the SSM dataset have been used to 

mask unreliable estimates (e.g. from snow cover or frozen soil), and then the mean daily 

SSM values have been computed for each study catchment. Regarding the merged 

sensors data, active product is based on backscatter measurements from the ERS 

scatterometers (characterized by a revisit time of several days) until 2006 and then from 
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ASCAT on board MetOp-A satellite (with an almost daily resolution). In the selected 

study period, passive product consists in measurements of AMSR-E sensor on Aqua 

satellite, WindSat on Coriolis, and from the dedicated SMOS mission launched in 

November 2009. For a more objective comparison between the different satellite 

products peformance, some DA results will be presented referring to two separate eras, 

i.e. 2003-2006 and 2007-2011 periods, due to the different temporal availability of 

observations in ESA-CCI datasets. 

 

6.3 Hydrological model and calibration results 

MISDc (Modello Idrologico Semi-Distribuito in continuo) is a continuous semi-

distributed rainfall-runoff model developed by Brocca et al. (2011b). A two layers 

version, MISDc-2L, was proposed in Brocca et al. (2012a), which incorporates a thin 

surface soil layer and is specifically addressed to the assimilation of remotely sensed 

SSM (Fig. 6.3). Here the MISDc-2L variant used in Massari et al. (2018) is employed, 

that also includes a snow module.  

The model is applied in a lumped mode, with a daily time-step. It uses rainfall and 

temperature data as inputs and simulates the temporal evolution of the soil water states 

in layer 1 (i.e. the surface one) and 2, W1 and W2, expressed in water depth and limited 

to Wmax,1 and Wmax,2, respectively. Processes that determine water balance in layer 1 are 

rainfall infiltration, percolation to layer 2, and actual evapotranspiration. The saturation 

degree in the first layer, W1%=W1/Wmax,1, determines the partitioning of rainfall in 

infiltration and surface runoff contribute (infiltration excess) and the percolation rate, 

both through power law functions, as well as the actual evapotranspiration, through a 

linear relationship with the potential one, that is calculated in function of the 

temperature using a modified version of the Blaney & Criddle method (Blaney & 

Criddle, 1950). Similarly, percolation from layer 2 is related to saturation degree in the 

second layer and constitutes the subsurface runoff component. Saturation excesses in 

layers 1 and 2 occur when water content W exceeds the water capacity Wmax. Surface 

runoff generated from infiltration and saturation excess is convoluted through a 

Geomorphological Instantaneous Unit Hydrograph (GIUH) while the subsurface runoff 

is transferred to the outlet section by a linear reservoir approach. For both routing 

schemes, the lag time is evaluated by the relationship proposed by Melone et al. (2002). 
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Wmax,1 is fixed at 150 mm (which roughly corresponds to a minimum of 30 cm soil 

depth by assuming a porosity value of 0.5), while the following parameters are 

calibrated for each study catchment: 

– Wmax,2 (total water capacity in 2nd layer); 

– m1 (exponent of percolation in 1st layer); 

– m2 (exponent of percolation in 2nd layer);  

– Ks,1 (hydraulic conductivity in 1st layer); 

– Ks,2 (hydraulic conductivity in 2nd layer); 

– η (coefficient lag time - area relationship); 

– Kc (potential evapotranspiration parameter);  

– δ (exponent of infiltration relationship); 

– Cm (snow module parameter).  

 

 

Figure 6.3. Conceptual scheme of MISDc-2L model (figure adapted from Brocca et al., 2012a). 

 

An initial observation period (i.e. the year 2002) was used for model “warmup”, while 

the years 2003-2011 were considered for parameters calibration. The calibration was 

performed by optimizing the Kling-Gupta Efficiency index, 𝐾𝐺𝐸 (Gupta et al., 2009). 

𝐾𝐺𝐸 is formulated by computing the Euclidian distance (𝐸𝐷) from the ideal point of 

three components, i.e. correlation and differences in mean and variability: 
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𝐾𝐺𝐸 = 1 − 𝐸𝐷         (6.1) 

with: 

𝐸𝐷 = √(𝑟 − 1)2 + (𝛼 − 1)2 + (𝛽 − 1)2      (6.2) 

𝛼 = 𝜎𝑠 𝜎𝑜⁄           (6.3) 

𝛽 = 𝜇𝑠 𝜇𝑜⁄           (6.4) 

where 𝑟 is the correlation coefficient, 𝜎𝑠 and 𝜎𝑜 the standard deviation and 𝜇𝑠 and 𝜇𝑜 

the mean of the simulated and observed runoff, respectively. 𝐾𝐺𝐸 ranges between -∞ 

and 1 (optimal value). 

The model calibration performances are reported in Fig. 6.4. All selected catchments 

have KGE over 0.6, with a median value of 0.84. In this respect, model performance 

can be considered relatively good, and this ensures the robustness of the model for 

streamflow simulations. It is worthy to note that patterns in 𝐾𝐺𝐸 index show some 

similarities with those of interpolation errors in precipitation dataset shown in Fig. 6.2. 

Time series of the degree of saturation in the first layer, W1%, obtained during the 

deterministic run with optimal parameters, are then used as reference data for the 

remotely sensed SSM preprocessing. 

 

 

Figure 6.4. KGE values obtained during MISDc-2L calibration. 
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6.4 Observation preprocessing and error characterization 

The ESA-CCI SM estimates, related to few centimetres below the soil surface, are 

mapped into the W1% model variable space through two steps. Firstly, the exponential 

filter is used to address the depth mismatch, converting the SSM observations into SWI 

values; the parameter T is estimated by optimizing the correlation coefficient between 

SWI and the reference W1% time series obtained from calibration. Then, two approaches 

are considered to address the systematic differences between SWI and W1% data, i.e. the 

CDF-matching and the Triple Collocation (TC). The random error variance σε
2
 of the 

rescaled SWI, indicated as SWI*, is in both cases computed by TC. A graphical 

representation of the two methodologies followed for preprocessing and error 

characterization is reported in Fig. 6.5. 

 

 

Figure 6.5. Schemes describing the two methodologies followed for preprocessing and error characterization. 

 

In the first case, CDF-matching is used to obtain the SWI* that will be assimilated 

during the update of model states. The CDF-matching is a non-linear technique, that 

involves the matching of the total variances between reference and rescaled data. 

Following the method described in Sect. 4.5.2, a 4th order polynomial function is here 

used to correct the distribution differences. The SWI* random error variance will be 

then computed by TC with the Equation (4.30), including in the analysis three 

independent datasets, according to the configurations later described. 

In the second case, Triple Collocation is used to simultaneously rescale SWI and 

compute SWI* random error variance. In TC analysis a linear rescaling is made, in 
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order to match only the variance part due to the signal. To obtain SWI*, the model 

dataset is chosen as reference dataset, against which the other two considered datasets 

are rescaled, according to Equations (4.25) and (4.27). The SWI* error variance is 

instead estimated (in the data space of the model reference) with the Equation (4.28). 

With regard to the choice of the three independent datasets to be used in TC, two 

configuration types are considered. The first configuration includes model estimates and 

active and passive satellite-based observations, excluding the combined ESA-CCI 

product which is retrieved by merging the two others satellite datasets. Random 

standard error estimates obtained for this triplet configuration are showed in Figures 6.6 

(CDF-matching rescaling) and 6.7 (TC rescaling).  

 

 

Figure 6.6. Random standard error estimates by TC, with the triplet consisting of model and active and passive 

based SWI* (from left to right), previously rescaled by CDF-matching. 

 

 

Figure 6.7. Random standard error estimates by TC, with the triplet consisting of model and active and passive 

based SWI* (from left to right), simultaneously rescaled by TC. 

 

In alternative to this first TC configuration, the lagged variable (LV) approach proposed 

by Su et al. (2014a) is also used. In this case, a triplet is considered consisting of model, 

satellite observation (active or passive or combined), and 2 day-lagged model dataset as 

third variable. Results of LV approach for active and passive datasets are showed in Fig. 

6.8, in order to make a comparison with those obtained with the first triplet 
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configuration. When lagged model is used as third variable, higher error variance are 

estimated for satellite-based datasets, that means lower gains in data assimilation 

analysis steps.  

 

 

Figure 6.8. Random standard error estimates obtained by TC using the LV approach. The considered satellite data 

in the triplet is, from top left clockwise: active based SWI* rescaled by CDF-matching, passive based SWI* 

rescaled by CDF-matching, passive based SWI* rescaled by TC, and active based SWI* rescaled by TC. 

 

In this study TC is always applied on climatological anomalies, after removing long-

term 31 day moving average (e.g. Chen et al., 2014), as illustrated in Sect. 4.6.1. A 

minimum triplet size of 300 elements is imposed in order to obtain reliable error 

variance estimates, and a threshold is also set on correlation coefficient (𝑟 > 0.5) 

between SWI* and the first layer modelled soil moisture. For this reason, depending on 

rescaling approach and TC triplet configuration, the number of catchments actually used 

can be slightly different. 

The obtained error variances will then be used in EnKF to compute Kalman gain and to 

perturb the observation (Burgers et al., 1998).   



 

160 
 
 

The different rescaling approaches (i.e. CDF-matching and Triple Collocation) are also 

evaluated in terms of ability to correct the multiplicative bias between SWI* and model 

estimates (see Sect. 4.5). Following Kornelsen & Coulibaly (2015), the slope of a linear 

fit between modelled soil moisture and its differences with SWI* is computed and used 

as indicator of multiplicative bias magnitude. As expected, TC analysis results to be 

more effective in reducing the multiplicative bias between satellite and reference 

datasets as quantified by this slope (Fig. 6.9); this is mainly because TC makes 

assumptions on (linear) error structure of datasets and aims to the matching of the signal 

part (that includes multiplicative bias terms). Positive slope values are always observed, 

indicating a tendency of SWI* to under- and overestimate the larger and smaller 

modelled SM value occurrences, respectively. 

 

 

Figure 6.9. Slope of the linear fit between reference modelled soil moisture and its differences with SWI*. The 

considered satellite data is, from top left clockwise: active based SWI* rescaled by CDF-matching, passive based 

SWI* rescaled by CDF-matching, passive based SWI* rescaled by TC (LV approach), and active based SWI* 

rescaled by TC (LV approach). 
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6.5 Model error representation 

As the Ensemble Kalman Filter technique was selected for the assimilation of satellite-

based SWI*, a proper ensemble of model SM states is needed to represent the model 

background error covariance matrix. Errors in model representation of state variables 

are a consequence of both errors in forcing data and errors in parameters and structure 

of the model itself. A common approach is to represent both parameter and model 

structural errors by directly perturbing model states (e.g. Alvarez-Garreton et al., 2014; 

Massari et al., 2018); thus, in this study model errors are reproduced through 

perturbation of climate forcing (i.e. rainfall and temperature inputs) and soil moisture 

states (W1 and W2 model variables) according to appropriate error distributions. All 

generated errors are assumed temporally independent. 

A multiplicative error is considered for precipitation (Tian et al., 2013), coming from a 

lognormal distribution with mean 1 and standard deviation σP. Inaccuracies in 

precipitation data are typically considered as the main error source in soil moisture 

modelling (e.g. Han et al., 2014; Massari et al., 2018). Given the high impact of rainfall 

on SM and runoff variability, the dimensionless σP value is calibrated for every 

catchment in order to satisfy the following ensemble test on discharges. If the ensemble 

spread is large enough, the temporal average of the ensemble skill, ⟨𝑠𝑘⟩, should be 

similar to the temporal average of the ensemble spread, ⟨𝑠𝑝⟩, i.e. ⟨𝑠𝑝⟩ ⟨𝑠𝑘⟩⁄ ≅ 1 (De 

Lannoy et al., 2006), with: 

⟨𝑠𝑝⟩ =
1

𝑇𝑝
∑ {

1

𝑁
∑ (𝑄𝑖,𝑘 − ⟨𝑄⟩𝑘)

2𝑁
𝑖=1 }

𝑇𝑝

𝑘=1       (6.5) 

⟨𝑠𝑘⟩ =
1

𝑇𝑝
∑ {(⟨𝑄⟩𝑘 − 𝑄𝑜𝑏𝑠,𝑘)

2
}

𝑇𝑝

𝑘=1        (6.6) 

where 𝑄𝑖,𝑘 is the simulated discharge of the i-th ensemble member at time 𝑡𝑘, ⟨𝑄⟩ the 

mean over the ensemble, 𝑄𝑜𝑏𝑠 the observed discharge, 𝑁 the ensemble size and 𝑇𝑝  the 

number of time intervals. The ensemble size in this work was set to 100 members. The 

estimated σP value show spatial pattern similarities with Fig. 6.2, confirming differences 

in rainfall data accuracy within the study area. 

For the other considered errors, an additive model is used, according to a zero-mean 

Gaussian distribution. With regard to temperature uncertainties, error standard deviation 

σT is fixed equal to 1° C. The state vector consisting of both 𝑊1 and 𝑊2 model 

variables, here expressed in saturation degree: 
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x = [𝑊1% 𝑊2%]         (6.7) 

is instead perturbed similarly to Han et al. (2014), according to the error covariance 

matrix Σ: 

Σ = [
𝛴 𝛾𝛴𝑟

𝛾𝛴𝑟 𝛾2𝛴
]         (6.8) 

where error variance 𝛴 here corresponds to an error standard deviation of 1% in 

saturation degrees, 𝑟 indicates the vertical correlation between perturbations applied to 

each soil layer and is assumed to be equal to 1 (as in Han et al., 2014) and 𝛾 reflects the 

ratio of 2nd to 1st layer error standard deviation. Here, 𝛾 is assumed equal to the ratio of 

covariance between 𝑊1% and 𝑊2% time series, to variance in 𝑊1%, both observed 

during the deterministic run. Assuming the presence of correlation between 

perturbations in the two soil layers implies an artificial increase in covariance between 

perturbed 𝑊1% and 𝑊2%, and consequently an increase of the gain term during the 

update of 2nd layer SM variable. 

The correction of unintended perturbation bias proposed by Ryu et al. (2009) is also 

integrated in model ensemble. The method consisted of running a single unperturbed 

model prediction in parallel with the perturbed model ensemble: at each time step, the 

bias between ensemble mean and unperturbed forecast is computed and then subtracted 

from each ensemble member (Fig. 6.10). 

 

 

Figure 6.10. Figure adapted from Ryu et al. (2009), representing the procedure to correct the unintended 
perturbation bias. 
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6.6 EnKF implementation 

The EnKF theory was described in Sect. 3.5.2.1, here its implementation for the current 

application is briefly showed. 

Considering the following vector of states for the i-th ensemble member: 

x𝑖 = [𝑊1%
𝑖 𝑊2%

𝑖 ]
𝑇
         (6.9) 

if observation 𝑦 (i.e. SWI*) is available at time 𝑡𝑘 the state updating can be expressed 

as: 

x𝑘
𝑖+ = x𝑘

𝑖− + G𝑘(𝑦𝑘 + 𝑣𝑘
𝑖 − Hx𝑘

𝑖−)       (6.10) 

where: 

– x𝑘
𝑖− and x𝑘

𝑖+ refer to the background and analysis states, respectively; 

– H = [1 0] is the observation operator; 

– 𝑣𝑘
𝑖  is the observation perturbation for the i-th ensemble member, coherently with 

the observation error variance; 

– G𝑘 is the 2x1 Kalman gain matrix. 

The Kalman gain matrix is obtained as: 

G𝑘 = P𝑘
−H𝑇/(HP𝑘

−H𝑇 + 𝑅)        (6.11) 

where 𝑅 is the observation error variance (in this case the scalar and stationary value 

previously estimated by TC) and P𝑘
− is the 2x2 background error covariance matrix, 

defined as: 

P𝑘
− =

1

𝑁−1
D𝑘D𝑘

T         (6.12) 

with: 

D𝑘 = [x𝑘
1− − x̅𝑘

−, … , x𝑘
𝑁− − x̅𝑘

−]       (6.13) 

x̅𝑘
− =

1

𝑁
∑ x𝑘

𝑖−𝑁
𝑖=1          (6.14) 

where 𝑁 is the ensemble size. 

 

6.7 Results and discussion 

The impacts of assimilating SWI* obtained from different satellite products and 

rescaling procedures, with random error variance values depending on TC triplet 

configuration, are here showed. The effects of DA are evaluated by comparison with the 

open loop (OL) simulations, with model ensembles obtained as described in Sect. 6.5 
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which run without assimilation. The Root Mean Squared Error (RMSE) between 

simulated (in terms of ensemble mean) and observed discharges is chosen as reference 

metric, proposed in a standardized (and dimensionless) form to represent the results in a 

homogeneous way between the various basins, characterized by very different runoff 

regimes. The performance metric is indicated as fractional RMSE (Draper et al., 2013): 

fRMSE = RMSE 𝜎𝑜⁄          (6.15) 

where 𝜎𝑜 is the standard deviation of observed runoff time series. The Nash-Sutcliffe 

efficiency index (NSE), which is one of the most common criteria to evaluate 

hydrological model performances, can be directly obtained from fRMSE, as: 

NSE = 1 − fRMSE2         (6.16) 

OL reference performances are showed in Fig. 6.11, computed by splitting the 

observation period in two eras, where ‘era 1’ and ‘era 2’ are 2003-2006 and 2007-2011 

years respectively, to take in account the low temporal density of active observations in 

era 1, as mentioned in Sect. 6.2. 

 

  

Figure 6.11. Model ensembles performances in open loop configuration, in terms of fractional RMSE, for the 
periods 2003-2006 (left) and 2007-2011 (right). 

 

Figures 6.12-6.17 show variations of fRMSE due to DA, for active (only considering era 

2) and passive products, according to both CDF-matching and TC rescaling methods, 

when LV approach is used for triplet configuration and error variance estimation. The 

use of combined ESA-CCI product (not showed) leads to similar results to those of 

active and passive datasets, at the same conditions of rescaling and error 

characterization approaches. In scatterplots, the points where the red lines cross refer to 

the medians while the red line edges represent the 25th and the 75th percentiles.  
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Figure 6.12. Effects of assimilating active-based SWI*, rescaled with CDF-matching approach, during era 2. 

 

  

Figure 6.13. Effects of assimilating passive-based SWI*, rescaled with CDF-matching approach, during era 1. 

 

  

Figure 6.14. Effects of assimilating passive-based SWI*, rescaled with CDF-matching approach, during era 2. 
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Figure 6.15. Effects of assimilating active-based SWI*, rescaled with TC approach, during era 2. 

 

  

Figure 6.16. Effects of assimilating passive-based SWI*, rescaled with TC approach, during era 1. 

 

  

Figure 6.17. Effects of assimilating passive-based SWI*, rescaled with TC approach, during era 2. 
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The assimilation results generally show a degradation of OL model performance, with 

improvements limited to a moderate percentage of catchments, well localized around 

Mediterranean area (Iberian peninsula, Italy, south of France). Increment of fRMSE due 

to DA are instead systematically observed at northern latitudes. Spatial patterns in DA 

performances are consistent with those obtained during model calibration (in a reverse 

way, Fig. 6.4), as well as with those related to rainfall uncertainty, as it results from 

both E-OBS interpolation errors and ensemble test results described in Sect. 6.5. In this 

sense, assimilation of satellite SM confirms a greater potential in catchments where 

model does not work so well and/or precipitation data (which can be the main error 

source in runoff modelling) are not so accurate, with these two situations being often 

coupled in practice. On the other hand, when there is less evidence of errors in forcing 

data and in model parameters and structure, the added-value of remotely sensed SM 

observations appears to be very limited. However, the reasons why this happens must be 

deepened, identifying specific critical aspects and possible solutions, even in terms of 

preprocessing and error characterization procedures. The possibility of spatial 

variability in satellite SM products quality should also be considered, due to the 

different conditions which characterize the study catchments. 

There are no remarkable differences in fRMSE performances attributable to the different 

ESA-CCI products or rescaling procedures (i.e. CDF-matching and TC). With regard to 

the triplet configuration in TC, the use of lagged variable approach lead to better results, 

as it assigns a lower weight to satellite observations in DA. In this sense, not only the 

quality of satellite-based data but also its proper characterization plays a key role during 

assimilation. With triplet made of model, active and passive dataset, lower satellite error 

variances are estimated with respect to the model in TC (Sect. 6.4), maybe due to 

similarities in errors generated during the processing of SSM datasets (e.g. introduced 

through exponential filter); if TC is performed prior to DA, the use of LV approach 

proved to be a valid alternative to characterize the relative uncertainty between model 

and observations. 

Results obtained in era 2 are summarized in Fig. 6.18, where a performance comparison 

is made between different products (active and passive) and rescaling methods (CDF-

matching and TC). 
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Figure 6.18. Comparison of DA performances in era 2 when different products (active, ACT, and passive, PAS) and 

rescaling methods (CDF-matching and TC) were used. 

 

Finally, the two rescaling approaches are evaluated in terms of multiplicative bias in 

simulated discharge, by checking for the evidence of a state-dependent systematic error 

in runoff. With this regard, it is worth noting that efficiency indexes commonly used for 

the hydrologic models calibration (e.g. NSE, KGE) introduce a tendency to 

underestimate runoff peaks (Gupta et al., 2009). Then, DA techniques that correct for 

random errors in states also reduces the total variability of analysis estimates with 

respect to the background model predictions; this could reflect on model outputs, 

although a non-linear relationship exists between SM states and runoff in hydrological 

models. The impact of DA techniques on analysis values variability is a current research 

topic (Seo et al., 2018).  

In Figures 6.19-6.21 simulated runoff is compared with the observed one, with 

discharges being normalized and a representative selection of fractiles being plotted; 

simulated DA discharges are those obtained through LV approach. As showed, adopting 

TC for rescaling led to better results in comparison with the use of the classical CDF-

matching approach, and this can intuitively be traced back to a) the higher SWI* total 

variability generally obtained by matching only the signal part of variance with model 

estimates, b) the limited multiplicative biases between SWI* and model SM estimates 

as quantified by the magnitude of the positive slope values computed in Sect. 6.4. 

 



 

169 
 
 

 

Figure 6.19. Quantile-quantile plot of simulated against observed runoff, obtained during era 2 by assimilating 

the active product.  

 

 

Figure 6.20. Quantile-quantile plot of simulated against observed runoff, obtained during era 1 by assimilating 

the passive product.  
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Figure 6.21. Quantile-quantile plot of simulated against observed runoff, obtained during era 2 by assimilating 

the passive product.  

 

6.8 Conclusions 

In this study, the effects of remotely sensed soil moisture assimilation in rainfall-runoff 

modelling have been extensively explored, through a large experiment involving  

numerous catchments located across Europe, and the use of different observations 

preprocessing and error characterization approaches. 

The model performance in open loop can be considered generally good, while the 

effects of assimilation are contrasting. The improvements due to DA are substantially 

limited to catchments in Mediterranean area, while a degradation of model results is 

almost systematically observed at northern latitudes. Spatial patterns in DA 

performances are inversely related to those of model calibration performances and 

rainfall accuracies; in this sense assimilation of satellite SM shows skills where model 

does not work so well and/or higher errors in precipitation data could be expected. 

There are no remarkable differences in performances attributable to the different ESA-

CCI products or rescaling procedures (i.e. CDF-matching and TC), as showed in Fig. 

6.18. However, adopting TC for rescaling appears to be more effective in limiting 

multiplicative bias evidences in simulated discharges. The use of lagged model as third 

variable in error variance characterization by TC, that in this case implies higher 
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uncertainties attributed to satellite-based observations, lead to better DA results with 

respect to the integration of two satellite-based datasets in the triplet configuration. 

Some critical aspects for DA performances are here seen to be the presence of bias 

between datasets and the incorrect observation error variance evaluation. Even the 

preprocessing phase (e.g. exponential filter, rescaling method) can introduce further 

errors in observation dataset (including systematic ones not addressed by the DA 

system) or worsen conflict situations between real cases and EnKF analysis scheme and 

assumptions. For example, here in all the preprocessing configurations the exponential 

filter was used, although it may have considerable limitations for DA applications, such 

as the loss of signal variability at short-time scale due to too high smoothing effects or 

the presence of time-correlated errors in SWI due to filter structure (while EnKF 

requires observation white noise). 

In conclusion, this study confirms in some way the contrasting available results on 

satellite SM data assimilation in hydrological models. Here, the integration of remote 

sensing data seems suitable for specific areas, and shows a high potential to correct for 

uncertainties associated with rainfall estimates. However, there is a wide presence of 

negative DA performance occurrences (although often associated with already good OL 

model results that are difficult to improve) that must be deepened, identifying the 

factors that lead to non-optimal solutions, including local conditions and methodology 

issues. 
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7. CONCLUSIONS 

 

Accurate knowledge of soil moisture (SM) is widely recognized as essential for a 

multitude of applications, including hydrological modelling and flood forecasting. In 

recent years, increasing availability of satellite data has brought great interest in the use 

of remotely sensed SM in data assimilation (DA) frameworks, in order to improve 

runoff simulations. However, contrasting results are obtained about added-value of 

satellite SM observations in hydrological modelling. This can be related to the 

reliability of satellite retrievals, as well as to some methodological issues.  

In particular, this work concerns some of these issues that are related to the satellite 

observations, such as the low quality of soil moisture retrievals under certain conditions, 

the mismatch between soil depth simulated in the model and observed by the remote 

sensor, the bias between satellite data and model states, the assessment of the magnitude 

and the structure of the observation errors. Several approaches have been proposed to 

take these issues into account during observations preprocessing and error 

characterization phases that take place before DA in prediction models. However, 

although the significant impact on final DA performances, this general theme is still 

under-research. 

After providing a theoretical background on soil moisture modelling and monitoring 

approaches, data assimilation techniques, satellite data preprocessing and error 

characterization methods, here the results of two applications are described, involving 

the use of different satellite products and an evaluation based on ground data of soil 

moisture and river discharge. 

The first application is made up of two studies subsequently carried out, having in 

common the topic of error propagation in the exponential filter approach. The 

exponential filter is a widespread method to obtain a root-zone soil water index (SWI) 

from remotely-sensed surface soil moisture (SSM) observations; however, the impact of 

some factors involved in SWI formulation, that can introduce inaccuracies in the 

outputs, have not been adequately detailed up to now. An analytical error propagation 

(EP) scheme was proposed, aimed to assess the time-variant error variance of the 

exponential filter outputs taking due consideration of some shortcomings of the method. 

In the first study, a simplified scheme was used, taking into account the errors as well as 
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the availability of the underlying SSM data in SWI estimate, but neglecting the 

uncertainty in exponential filter parameter, to obtain a standard error estimate indicated 

as SWI noise. ASCAT SSM retrievals were employed to test the proposed EP scheme, 

with datasets that include time-variant standard error estimates (referred to as SSM 

noise). The SWI noise was addressed to be used in a quality check framework, in the 

context of a more general evaluation of the impacts of different data masking 

procedures. ASCAT-derived SWI showed a good agreement with reference root zone 

ground data, even when no quality control was performed, with the exponential filter 

generally showing a greater ability in capturing the seasonal soil moisture behaviour 

rather than short time-scale fluctuations. Different SSM data masking procedures, based 

on other indicators available for the ASCAT product, were analysed; however, they did 

not necessarily led to a more accurate description of the root-zone water content in 

terms of agreement with in situ observations. Regarding the EP scheme, the use of 

thresholds on SWI noise led to performance worsening compared to the configuration 

without quality controls, due to SSM noise seasonal pattern that implies the removal of 

SWI values mainly concentrated in a season characterized by a better relative agreement 

with in situ measurements. However, removing data according to ‘a posteriori’ control 

on SWI noise generally improved the performance metrics with respect to ‘a priori’ 

SSM noise threshold application. In the second study, error in exponential filter 

parameter was taken in account, and a successive release of ASCAT SSM dataset was 

employed, with no prominent seasonal patterns in SSM noise. In this case, the proposed 

EP scheme has shown capabilities to identify potentially less reliable SWI values in the 

selected study sites, improving performance metrics respect to the configuration without 

quality controls. The preliminary results suggest the utility of EP approach in the SWI 

evaluation, in the comprehension of the exponential filter shortcomings, and in the time-

variant SWI error characterization. Due to the exponential filter mathematical structure, 

error estimates could be not reliable in magnitude; however, they can help to 

discriminate more and less certain data. The information provided by analytical error 

propagation equations can be suitable not only for a preliminary screening analysis, but 

also to reproduce the trend, rather than the actual values, of satellite-based SM error 

variance.  

The second application was mainly carried out during a research period at CNR-IRPI 

with the Hydrology group, that provides datasets and support. In this study, a data 
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assimilation experiment was made on a large number of catchments located across 

Europe, in order to assess the effects of integrating remotely sensed SM on a rainfall-

runoff model performances, and the use of different observations preprocessing and 

error characterization approaches has been tested. ESA-CCI SM products are employed, 

that merged several available active and passive measurements, in order to also evaluate 

the role of the sensors on DA performances. In the preprocessing phase, the exponential 

filter is used to address the depth mismatch, while two alternative approaches are 

considered for satellite data rescaling, i.e. CDF-matching and Triple Collocation 

analysis (TC), that imply the matching of total variance and only signal component, 

respectively, between reference and rescaled datasets. Then, TC is also used for 

observation error characterization, considering different triplet configurations also in 

order to test the impact of different observation weights in data assimilation system 

performances. Finally, the Ensemble Kalman Filter (EnKF) is employed to assimilate 

the rescaled satellite-based SWI into the MISDc-2L hydrological model. The model 

performance in open loop can be considered generally good, while the effects of 

assimilation are contrasting. The improvements due to DA are substantially limited to 

catchments in Mediterranean area, while a degradation of model results is almost 

systematically observed at northern latitudes. Spatial patterns in DA performances are 

inversely related to those of model calibration performances and rainfall accuracies; in 

this sense assimilation of satellite SM shows skills where model does not work so well 

and/or higher errors in precipitation data could be expected. There are no remarkable 

differences in performances attributable to the different ESA-CCI products or rescaling 

procedures (i.e. CDF-matching and TC). However, adopting TC for rescaling appears to 

be more effective in limiting multiplicative bias evidences in simulated discharges. The 

use of lagged model as third variable in error variance characterization by TC, that in 

this case implies higher uncertainties attributed to satellite-based observations, lead to 

better DA results with respect to the integration of two satellite-based datasets in the 

triplet configuration. In conclusion, the second application confirms in some way the 

contrasting available results on satellite SM data assimilation in hydrological models. 

Here, the integration of remote sensing data seems suitable for specific areas, and shows 

a high potential to correct for uncertainties associated with rainfall estimates. However, 

there is a wide presence of negative DA performance occurrences (although often 

associated with already good OL model results that are difficult to improve) that must 
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be deepened, identifying the factors that lead to non-optimal solutions, including local 

conditions and methodology issues. Some critical aspects for DA performances are here 

seen to be the presence of bias between datasets and the incorrect observation error 

variance evaluation.  

The issues related to observation preprocessing and error characterization are confirmed 

to have a great impact on the performance of data assimilation systems, with even the 

same relevance of the considered observational soil moisture dataset or data 

assimilation algorithm. In this sense, it seems necessary to put a lot of efforts into these 

aspects to fully utilize the great potential offered by remote sensing data for specific 

applications such as runoff modelling. The results of this study indicate that a more 

aware and critical use of existing procedures is appropriate, as they have advantages and 

limitations also depending to the specific application (e.g. assimilation in rainfall-runoff 

for extreme predictions), without excluding the opportunity to propose new solutions 

also on the basis of the experiences provided by those currently used. 
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ANNEX 1 

 

ID River (GRDC name) 
Station    Area 

(km
2
) Code Country Lat (°) Lon (°) 

1 YVEL FR_6118015 France 47.99 -2.37 315 

2 EVEL FR_6118060 France 47.90 -2.98 316 

3 MEU FR_6118210 France 48.13 -1.94 468 

4 GAVE DE PAU FR_6119010 France 43.51 -0.85 2575 

5 GAVE D'OSSAU FR_6119020 France 43.19 -0.60 488 

6 SAISON FR_6119040 France 43.25 -0.87 480 

7 ARROS FR_6119120 France 43.13 0.26 173 

8 LEYRE FR_6119200 France 44.55 -0.87 1650 

9 SEINE FR_6122102 France 47.41 3.49 371 

10 OISE (TRIB. SEINE) FR_6122141 France 49.56 2.99 4290 

11 EURE FR_6122150 France 48.45 1.29 330 

12 OURCE FR_6122200 France 47.35 3.96 248 

13 ERDRE FR_6123170 France 47.46 -1.48 472 

14 ERDRE FR_6123171 France 47.56 -1.05 169 

15 LAYON FR_6123180 France 47.32 -0.63 920 

16 LAYON FR_6123181 France 47.19 -0.37 250 

17 JOUANNE FR_6123190 France 48.03 -0.71 410 

18 ERNEE FR_6123200 France 48.17 -0.78 375 

19 BRAYE FR_6123220 France 48.01 0.82 270 

20 INDRE FR_6123250 France 47.02 1.13 1712 

21 SAULDRE FR_6123350 France 47.29 1.53 2254 

22 VIENNE FR_6123400 France 47.05 0.54 19920 

23 GLANE FR_6123420 France 45.91 0.92 288 

24 BRIANCE FR_6123430 France 45.76 1.24 597 

25 CREUSE FR_6123450 France 46.38 1.68 1235 

26 CREUSE FR_6123451 France 45.89 2.17 165 

27 PETITE CREUSE FR_6123460 France 46.39 1.69 850 

28 ROZEILLE FR_6123470 France 45.93 2.18 186 

29 ALAGNON FR_6123640 France 45.38 3.26 984 

30 ALAGNON FR_6123641 France 45.16 3.03 310 

31 SENOUIRE FR_6123650 France 45.20 3.52 155 

32 DUNIERE FR_6123770 France 45.21 4.21 228 

33 VINCOU FR_6123800 France 46.13 1.02 286 

34 GARTEMPE FR_6123820 France 46.11 1.43 570 

35 CEOU FR_6124300 France 44.79 1.17 603 

36 VEZERE FR_6124501 France 44.90 0.96 3736 

37 RUISSEAU ALZOU FR_6125610 France 44.36 2.05 199 

38 AVEYRON FR_6125620 France 44.40 2.85 270 

39 GIFFOU FR_6125720 France 44.11 2.43 175 

40 AUDE FR_6128100 France 43.21 2.36 1770 

41 LERGUE FR_6128350 France 43.73 3.32 228 
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ID River (GRDC name) 
Station    Area 

(km
2
) Code Country Lat (°) Lon (°) 

42 ARRE FR_6128380 France 44.00 3.66 159 

43 REAL MARTIN FR_6128630 France 43.19 6.11 277 

44 SEILLE (TRIB. MOSELLE) FR_6136100 France 49.10 6.19 1280 

45 MADON FR_6136150 France 48.54 6.13 940 

46 MEURTHE FR_6136160 France 48.28 6.96 374 

47 MOSELLE RIVER FR_6136200 France 48.16 6.45 1220 

48 MOSELLE RIVER FR_6136201 France 48.07 6.61 621 

49 MOSELLE RIVER FR_6136202 France 47.91 6.69 153 

50 GARDON DE SAINT-JEAN FR_6139060 France 44.07 3.96 263 

51 BEZ FR_6139130 France 44.69 5.49 227 

52 ROUBION FR_6139220 France 44.63 5.02 186 

53 BES (TRIB. RHONE) FR_6139255 France 44.22 6.28 165 

54 UBAYE FR_6139260 France 44.45 6.40 946 

55 AZERGUES FR_6139360 France 45.89 4.62 336 

56 AZERGUES FR_6139361 France 45.86 4.69 792 

57 BREVENNE FR_6139365 France 45.81 4.60 219 

58 OGNON (TRIB. RHONE) FR_6139681 France 47.41 6.18 1250 

59 LOUE FR_6139790 France 47.04 5.81 1380 

60 LISON FR_6139795 France 47.03 5.96 217 

61 CHERAN FR_6139825 France 45.72 6.10 249 

62 BEROUNKA CZ_6140250 Czech Rep. 49.96 14.09 8284 

63 OTAVA CZ_6140300 Czech Rep. 49.30 14.15 2913 

64 ELBE RIVER CZ_6140400 Czech Rep. 50.79 14.23 51123 

65 SAZAVA CZ_6140450 Czech Rep. 49.74 15.10 1421 

66 JIZERA CZ_6140480 Czech Rep. 50.24 14.78 2159 

67 JIZERA CZ_6140500 Czech Rep. 50.64 15.28 791 

68 DIVOKA ORLICE CZ_6140700 Czech Rep. 50.07 16.55 182 

69 MORAVA CZ_6142100 Czech Rep. 49.75 16.97 1559 

70 THAYA CZ_6142110 Czech Rep. 48.80 16.86 12283 

71 MORAVA CZ_6142120 Czech Rep. 48.93 17.32 9146 

72 BECVA CZ_6142300 Czech Rep. 49.53 17.75 1275 

73 ODER RIVER CZ_6157100 Czech Rep. 49.92 18.33 4665 

74 ENNINGDALSAELVEN SE_6229100 Sweden 58.88 11.54 624.1 

75 GOETA AELV SE_6229500 Sweden 58.36 12.37 46885.5 

76 VISKAN SE_6233100 Sweden 57.24 12.31 2160.2 

77 KLINGAVAELSAN SE_6233140 Sweden 55.64 13.54 191.6 

78 FYLLEAN SE_6233150 Sweden 56.72 13.12 259.7 

79 KAEVLINGEAN SE_6233160 Sweden 55.65 13.82 262.3 

80 LAGAN (SWEDEN) SE_6233170 Sweden 56.49 13.51 5479.5 

81 HOEJE A SE_6233190 Sweden 55.70 13.15 237 

82 GROETSJOEN SE_6233200 Sweden 61.81 12.44 565 

83 DALAELVEN SE_6233201 Sweden 60.56 17.44 28920.5 

84 TAENNAN SE_6233220 Sweden 62.54 12.35 226.6 

85 LJUSNAN SE_6233227 Sweden 62.55 12.60 340.3 

86 HOERLINGEAN SE_6233230 Sweden 56.19 13.68 202.7 
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ID River (GRDC name) 
Station    Area 

(km
2
) Code Country Lat (°) Lon (°) 

87 HELGE A SE_6233250 Sweden 56.10 14.13 3664.5 

88 MOTALA STROEM SE_6233301 Sweden 58.59 16.17 15384 

89 ALSTERAN SE_6233350 Sweden 57.01 16.16 1332.7 

90 EMAN SE_6233360 Sweden 57.14 16.45 4446 

91 FYRSJOEN SE_6233400 Sweden 63.52 15.39 2428.4 

92 MAELAREN SE_6233410 Sweden 59.30 18.08 22638.8 

93 ANKARVATTNET SE_6233450 Sweden 64.86 14.21 427.8 

94 VATTHOLMAAN SE_6233600 Sweden 60.02 17.73 293.8 

95 KALIXAELVEN SE_6233850 Sweden 66.17 22.82 23102.9 

96 TORNEAELVEN, TORNIONJOKI SE_6233911 Sweden 67.23 23.35 11038.1 

97 BREGENZER ACH AT_6235100 Austria 47.36 9.88 228.6 

98 ALM AT_6242110 Austria 48.05 13.92 445 

99 ILZBACH AT_6242200 Austria 47.08 15.94 190.1 

100 SALZA AT_6242240 Austria 47.74 15.31 280 

101 ENNS AT_6242250 Austria 48.04 14.43 5915.4 

102 STEYR AT_6242260 Austria 47.77 14.17 184.9 

103 PALTENBACH AT_6242290 Austria 47.55 14.31 368.7 

104 DANUBE RIVER AT_6242401 Austria 48.38 15.46 95970 

105 KREMS AT_6242420 Austria 48.45 15.57 305.9 

106 DANUBE RIVER AT_6242501 Austria 48.36 16.34 101536.6 

107 TRAUN (TRIB. DANUBE) AT_6242600 Austria 47.81 13.77 1257.6 

108 KITZBUEHLER ACHE AT_6243200 Austria 47.46 12.39 153 

109 KITZBUEHLER ACHE AT_6243201 Austria 47.52 12.42 332.4 

110 BERCHDESGADENER ACHE AT_6243240 Austria 47.73 13.04 428.2 

111 BRIXENTALER ACHE AT_6243300 Austria 47.49 12.10 322.3 

112 OETZTALER ACHE AT_6243400 Austria 47.16 10.91 785.5 

113 ANTIESEN AT_6243800 Austria 48.27 13.45 164.9 

114 INN AT_6243850 Austria 48.44 13.44 25663.8 

115 LIESINGBACH AT_6246100 Austria 47.39 14.91 265.6 

116 LAVANT AT_6246110 Austria 46.66 14.95 954.5 

117 GAIL AT_6246130 Austria 46.62 13.25 594.9 

118 ISEL AT_6246160 Austria 46.97 12.55 518.4 

119 SCHWARZACH AT_6246170 Austria 46.92 12.51 268.1 

120 MUR AT_6246611 Austria 47.16 15.32 6791.5 

121 MUR AT_6246612 Austria 47.41 15.28 6214 

122 TAURACH AT_6246630 Austria 47.14 13.80 377.9 

123 MUERZ AT_6246700 Austria 47.53 15.47 727.7 

124 MUERZ AT_6246701 Austria 47.66 15.59 229.4 

125 RHINE RIVER DE_6335020 Germany 51.76 6.40 159300 

126 RUHR DE_6335030 Germany 51.40 7.16 4078 

127 RUHR DE_6335031 Germany 51.44 7.58 1988 

128 RUHR DE_6335032 Germany 51.35 8.28 425 

129 SWIST DE_6335040 Germany 50.77 6.85 285 

130 SIEG DE_6335045 Germany 50.80 7.16 2832 

131 SIEG DE_6335046 Germany 50.78 7.44 1472 
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ID River (GRDC name) 
Station    Area 

(km
2
) Code Country Lat (°) Lon (°) 

132 RHINE RIVER DE_6335050 Germany 51.23 6.77 147680 

133 RHINE RIVER DE_6335060 Germany 50.94 6.96 144232 

134 RHINE RIVER DE_6335070 Germany 50.44 7.39 139549 

135 WIED DE_6335076 Germany 50.50 7.45 697 

136 LIPPE DE_6335081 Germany 51.66 8.09 2005 

137 LIPPE DE_6335082 Germany 51.75 8.63 1018 

138 RHINE RIVER DE_6335100 Germany 50.09 7.76 103488 

139 NAHE DE_6335115 Germany 49.91 7.91 4013 

140 NAHE DE_6335116 Germany 49.78 7.72 2832 

141 ALSENZ DE_6335117 Germany 49.78 7.83 318 

142 KINZIG (TRIB. RHEIN) DE_6335125 Germany 48.39 8.03 954 

143 RHINE RIVER DE_6335150 Germany 50.00 8.28 98206 

144 RHINE RIVER DE_6335170 Germany 49.32 8.45 53131 

145 RHINE RIVER DE_6335180 Germany 49.64 8.38 68827 

146 MAIN DE_6335240 Germany 49.72 9.22 21505 

147 KOCHER DE_6335290 Germany 49.26 9.29 1929 

148 KOCHER DE_6335291 Germany 49.00 9.77 726 

149 MAIN DE_6335301 Germany 50.03 10.22 12715 

150 MAIN DE_6335302 Germany 50.01 9.60 17914 

151 MAIN DE_6335303 Germany 49.93 10.76 12010 

152 MAIN DE_6335304 Germany 50.11 8.71 24764 

153 LAHN DE_6335350 Germany 50.55 8.36 3571 

154 LAHN DE_6335351 Germany 50.80 8.76 1667 

155 RHINE RIVER DE_6335400 Germany 47.56 7.80 34550 

156 WUTACH DE_6335410 Germany 47.62 8.33 627.13 

157 ARGEN DE_6335450 Germany 47.63 9.60 639.34 

158 SCHUSSEN DE_6335460 Germany 47.67 9.53 782.01 

159 MAIN DE_6335500 Germany 49.80 9.93 14031 

160 TAUBER DE_6335520 Germany 49.63 9.67 1584 

161 REGNITZ DE_6335530 Germany 49.83 10.94 7005 

162 RODACH DE_6335540 Germany 50.18 11.23 713 

163 NECKAR DE_6335600 Germany 49.44 9.01 12710 

164 NECKAR DE_6335601 Germany 49.07 9.15 7916 

165 PFINZ DE_6335640 Germany 49.01 8.52 235 

166 ENZ DE_6335660 Germany 48.90 8.73 1476 

167 MURR DE_6335675 Germany 48.96 9.26 506 

168 JAGST DE_6335680 Germany 48.93 10.14 178.59 

169 JAGST DE_6335681 Germany 49.27 9.22 1825 

170 REMS DE_6335690 Germany 48.85 9.32 569 

171 MURG DE_6335710 Germany 48.82 8.30 468.8 

172 WIESE DE_6335730 Germany 47.70 7.85 209 

173 MAIN DE_6335800 Germany 49.95 10.87 4251 

174 KRAICHBACH DE_6335830 Germany 49.16 8.63 161.1 

175 MOSELLE RIVER DE_6336050 Germany 50.14 7.17 27088 

176 MOSELLE RIVER DE_6336500 Germany 49.73 6.63 23857 
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ID River (GRDC name) 
Station    Area 

(km
2
) Code Country Lat (°) Lon (°) 

177 MOSELLE RIVER DE_6336800 Germany 49.47 6.37 11522 

178 SAAR RIVER DE_6336900 Germany 49.41 6.65 6983 

179 NIED DE_6336910 Germany 49.34 6.59 1337.4 

180 HUNTE DE_6337050 Germany 52.83 8.47 1313 

181 WUEMME DE_6337060 Germany 53.08 9.21 955 

182 WESER DE_6337100 Germany 52.18 8.86 17618 

183 ALLER DE_6337250 Germany 52.79 9.38 14730 

184 HASEL DE_6337340 Germany 50.55 10.48 321 

185 SCHLEUSE DE_6337350 Germany 50.50 10.72 256 

186 WESER DE_6337400 Germany 51.43 9.64 12442 

187 HAUNE DE_6337410 Germany 50.81 9.73 421.8 

188 ALLER DE_6337501 Germany 52.68 9.70 7209 

189 EDER DE_6337504 Germany 51.16 8.90 1202 

190 EDER DE_6337505 Germany 51.17 9.09 1452 

191 FULDA DE_6337506 Germany 51.19 9.50 2975 

192 FULDA DE_6337507 Germany 51.23 9.47 6366 

193 FULDA DE_6337508 Germany 51.00 9.72 2523 

194 LEINE DE_6337509 Germany 52.39 9.68 5304 

195 LEINE DE_6337510 Germany 52.68 9.60 6443 

196 WERRA DE_6337512 Germany 51.13 10.20 4302 

197 WERRA DE_6337513 Germany 51.41 9.71 5487 

198 WESER DE_6337514 Germany 51.97 9.52 15924 

199 WESER DE_6337515 Germany 52.85 9.21 22110 

200 WESER DE_6337516 Germany 51.65 9.44 14794 

201 WESER DE_6337517 Germany 52.59 9.11 19910 

202 WESER DE_6337518 Germany 52.25 8.92 19162 

203 WESER DE_6337519 Germany 51.63 9.52 12996 

204 EDER DE_6337520 Germany 51.04 8.62 489.7 

205 LEINE DE_6337542 Germany 51.38 9.97 275 

206 GROSSE AUE DE_6337550 Germany 52.60 8.90 1014 

207 WERRE DE_6337570 Germany 52.13 8.67 874 

208 SCHWALM (DE-HE) DE_6337600 Germany 50.85 9.28 250 

209 EMS DE_6338100 Germany 52.74 7.24 8369 

210 EMS DE_6338110 Germany 52.60 7.25 4981 

211 EMS DE_6338120 Germany 52.09 7.60 2842 

212 EMS DE_6338130 Germany 52.29 7.43 3740 

213 EMS DE_6338150 Germany 51.97 7.90 1499 

214 OSTE DE_6338250 Germany 53.34 9.17 604 

215 SOHOLMER AU DE_6338270 Germany 54.70 9.02 352 

216 TREENE DE_6338800 Germany 54.51 9.32 481 

217 ILMENAU DE_6340050 Germany 53.15 10.46 1434 

218 ELBE RIVER DE_6340110 Germany 53.23 10.89 131950 

219 ELBE RIVER DE_6340120 Germany 51.06 13.74 53096 

220 ELBE RIVER DE_6340130 Germany 51.86 12.65 61879 

221 ELBE RIVER DE_6340140 Germany 51.99 11.88 94060 
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222 ELBE RIVER DE_6340150 Germany 52.99 11.76 123532 

223 ELBE RIVER DE_6340160 Germany 52.55 11.98 97780 

224 ELBE RIVER DE_6340170 Germany 51.86 12.06 70093 

225 ELBE RIVER DE_6340180 Germany 52.14 11.64 94942 

226 ELBE RIVER DE_6340190 Germany 51.56 13.01 55211 

227 UNSTRUT DE_6340200 Germany 51.23 11.68 6218 

228 ALSTER (BINNEN-ALSTER) DE_6340210 Germany 53.66 10.09 320.5 

229 SAALE DE_6340300 Germany 51.92 11.81 23719 

230 SAALE DE_6340301 Germany 51.52 11.95 17979 

231 SAALE DE_6340303 Germany 50.32 11.91 521 

232 ZORGE DE_6340315 Germany 51.51 10.78 303.6 

233 ILM DE_6340320 Germany 51.07 11.58 894.3 

234 MUEGLITZ DE_6340410 Germany 50.95 13.85 198 

235 WESENITZ DE_6340420 Germany 51.02 13.99 227 

236 LACHSBACH DE_6340430 Germany 50.94 14.13 267 

237 HAVEL DE_6340501 Germany 52.61 12.35 19288 

238 HAVEL DE_6340510 Germany 52.48 12.85 16173 

239 VEREINIGTE MULDE DE_6340600 Germany 51.59 12.58 6171 

240 SPREE DE_6340610 Germany 52.37 14.00 6171 

241 SPREE DE_6340611 Germany 52.51 13.41 9707 

242 SPREE DE_6340612 Germany 51.16 14.41 275.9 

243 ZWICKAUER MULDE DE_6340621 Germany 50.74 12.49 1029.7 

244 FLOEHA / FLAJSKY PATOK DE_6340628 Germany 50.70 13.24 385 

245 PRESSNITZ DE_6340635 Germany 50.63 13.08 206 

246 WEISSE ELSTER DE_6340670 Germany 50.33 12.26 171 

247 SCHWARZE ELSTER DE_6340700 Germany 51.52 13.40 3184 

248 SPREE DE_6340800 Germany 51.58 14.37 2092 

249 TOLLENSE DE_6341500 Germany 53.79 13.31 1403 

250 WOERNITZ DE_6342130 Germany 48.78 10.69 1578 

251 ILLER DE_6342200 Germany 47.73 10.32 954.6 

252 AITRACH DE_6342230 Germany 47.88 10.04 308.1 

253 DANUBE RIVER DE_6342502 Germany 48.27 9.73 4036 

254 LECH DE_6342510 Germany 48.41 10.89 3800 

255 LECH DE_6342512 Germany 47.70 10.80 1713.9 

256 LECH DE_6342513 Germany 48.04 10.88 2295 

257 DANUBE RIVER DE_6342600 Germany 49.02 12.14 35399 

258 NAAB DE_6342610 Germany 49.12 11.94 5426 

259 NAAB DE_6342611 Germany 49.54 12.15 2004 

260 AMPER DE_6342650 Germany 48.46 11.87 3043 

261 GLONN DE_6342655 Germany 48.42 11.52 392 

262 VILS DE_6342670 Germany 48.61 12.69 719.5 

263 DANUBE RIVER DE_6342800 Germany 48.68 13.12 47496 

264 SCHMIECHA DE_6342810 Germany 48.09 9.15 155 

265 ILZ DE_6342830 Germany 48.69 13.45 762 

266 DANUBE RIVER DE_6342900 Germany 48.58 13.50 76653 
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267 DANUBE RIVER DE_6342920 Germany 48.88 12.75 37687 

268 ISAR DE_6342925 Germany 48.67 12.69 8467 

269 ISAR DE_6342927 Germany 47.78 11.54 1558.8 

270 ISAR DE_6342928 Germany 47.44 11.27 404 

271 LOISACH DE_6342931 Germany 47.50 11.06 393.5 

272 DANUBE RIVER DE_6342970 Germany 48.07 9.40 2647.01 

273 INN DE_6343100 Germany 48.06 12.23 11983 

274 SALZACH DE_6343500 Germany 48.16 12.83 6649 

275 TRAUN (TRIB. INN) DE_6343530 Germany 47.99 12.54 367.4 

276 INN DE_6343900 Germany 48.56 13.44 26084 

277 PO IT_6348400 Italy 45.02 9.67 42030 

278 PO IT_6348500 Italy 44.90 10.55 55183 

279 PO IT_6348800 Italy 44.88 11.60 70091 

280 ODER RIVER DE_6357010 Germany 52.87 14.14 109564 

281 ODER RIVER DE_6357500 Germany 52.15 14.69 52033 

282 NEISSE RIVER / NYSA LUZYCKA DE_6357501 Germany 51.97 14.71 4125 

283 NEISSE RIVER / NYSA LUZYCKA DE_6357502 Germany 51.16 15.00 1621 

284 NEISSE RIVER / NYSA LUZYCKA DE_6357503 Germany 50.87 14.82 376 

285 PLIESSNITZ DE_6357510 Germany 51.06 14.94 162 

286 MEUSE NL_6421102 Netherlands 51.38 6.17 26040 

287 MEUSE NL_6421500 Netherlands 50.87 5.72 21301 

288 MEUSE NL_6421501 Netherlands 51.82 5.54 28980 

289 RHINE RIVER NL_6435060 Netherlands 51.84 6.11 160800 

290 SAVA SI_6545050 Slovenia 45.89 15.61 10186 

291 SAVA SI_6545101 Slovenia 46.12 15.09 5177 

292 SAVA SI_6545102 Slovenia 46.08 14.58 2285 

293 SAVA SI_6545190 Slovenia 46.34 14.17 908 

294 SAVINJA SI_6545300 Slovenia 46.09 15.18 1842 

295 KOLPA SI_6545500 Slovenia 45.63 15.32 2002 

296 KOLPA SI_6545501 Slovenia 45.46 14.85 460 

297 SAVINJA SI_6545600 Slovenia 46.15 15.23 1664 

298 SAVINJA SI_6545601 Slovenia 46.23 15.26 1189 

299 MUR SI_6546610 Slovenia 46.68 16.00 10197 

300 PESNICA SI_6546810 Slovenia 46.41 16.03 478 

301 SOCA / INSONZO SI_6549100 Slovenia 45.98 13.66 1573 

302 SOCA / INSONZO SI_6549180 Slovenia 46.33 13.58 325 

303 CAMOWEN GB_6603100 UK 54.61 -7.29 276.6 

304 MOURNE GB_6603120 UK 54.82 -7.46 1843.8 

305 SILLEES GB_6603130 UK 54.31 -7.68 166.3 

306 LOWER BANN GB_6603300 UK 54.98 -6.54 5209.8 

307 MOYOLA GB_6603310 UK 54.76 -6.51 304.3 

308 BLACKWATER (N. IRELAND) GB_6603320 UK 54.41 -6.73 970.2 

309 SIX-MILE WATER GB_6603350 UK 54.72 -6.23 277.6 

310 LAGAN GB_6603500 UK 54.56 -5.95 491.6 

311 EWE GB_6604100 UK 57.76 -5.60 441.1 
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312 SHIEL GB_6604160 UK 56.77 -5.82 256 

313 ORCHY GB_6604180 UK 56.44 -4.86 251.2 

314 CLYDE (SCOTLAND) GB_6604201 UK 55.80 -4.07 1704.2 

315 LEVEN (SCOTLAND) GB_6604220 UK 55.99 -4.58 784.3 

316 IRVINE GB_6604230 UK 55.60 -4.63 380.7 

317 GIRVAN GB_6604240 UK 55.26 -4.81 245.5 

318 LUCE GB_6604250 UK 54.90 -4.84 171 

319 CREE (SCOTLAND) GB_6604260 UK 54.96 -4.48 368 

320 URR GB_6604270 UK 54.93 -3.84 199 

321 NITH (SCOTLAND) GB_6604280 UK 55.28 -3.80 471 

322 ANNAN GB_6604500 UK 55.02 -3.27 925 

323 LYON GB_6604605 UK 56.61 -3.98 391.1 

324 TAY GB_6604610 UK 56.51 -3.39 4587.1 

325 NORTH ESK (SCOTLAND) GB_6604620 UK 56.77 -2.49 732 

326 EARN GB_6604630 UK 56.35 -3.55 782.2 

327 TEITH GB_6604640 UK 56.19 -4.06 517.7 

328 ALLAN WATER GB_6604645 UK 56.22 -3.95 161 

329 SPEY (SCOTLAND) GB_6604650 UK 57.55 -3.14 2861.2 

330 DULNAIN GB_6604655 UK 57.30 -3.70 272.2 

331 TWEED (SCOTLAND) GB_6604690 UK 55.59 -2.80 1500 

332 LYNE WATER GB_6604710 UK 55.65 -3.28 175 

333 TWEED (SCOTLAND) GB_6604750 UK 55.72 -2.16 4390 

334 WHITEADDER WATER GB_6604760 UK 55.79 -2.19 503 

335 DEE (SCOTLAND) GB_6604800 UK 57.05 -2.60 1370 

336 GAIRN GB_6604815 UK 57.06 -3.08 150 

337 DEE (SCOTLAND) GB_6604820 UK 57.08 -2.33 1844 

338 DON (SCOTLAND) GB_6604830 UK 57.22 -2.19 1273 

339 UGIE GB_6604840 UK 57.53 -1.83 325 

340 DEVERON GB_6604850 UK 57.54 -2.49 954.9 

341 FINDHORN GB_6604860 UK 57.60 -3.64 781.9 

342 CONON GB_6604880 UK 57.56 -4.54 961.8 

343 TEVIOT GB_6604920 UK 55.43 -2.76 323 

344 OYKEL GB_6604950 UK 57.96 -4.70 330.7 

345 HALLADALE GB_6604960 UK 58.48 -3.90 204.6 

346 RIBBLE GB_6605100 UK 53.78 -2.63 1145 

347 MERSEY GB_6605210 UK 53.44 -2.34 660 

348 TYNE GB_6605300 UK 54.95 -1.94 2175.6 

349 SOUTH TYNE GB_6605310 UK 54.94 -2.51 321.9 

350 BLYTH GB_6605320 UK 55.11 -1.62 269.4 

351 COQUET GB_6605330 UK 55.33 -1.63 569.8 

352 LIDDEL WATER GB_6605350 UK 55.07 -2.92 319 

353 EDEN (N. ENGLAND) GB_6605360 UK 54.91 -2.95 2286.5 

354 LEVEN (TRIB. IRISH SEA) GB_6605390 UK 54.27 -2.97 247 

355 DERWENT (TRIB. NORTH SEA) GB_6605420 UK 54.02 -0.88 1586 

356 AIRE GB_6605440 UK 53.91 -1.98 282.3 
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357 LUNE GB_6605450 UK 54.08 -2.72 983 

358 WHARFE GB_6605550 UK 53.92 -1.36 758.9 

359 URE GB_6605560 UK 54.10 -1.46 914.6 

360 OUSE GB_6605570 UK 53.99 -1.13 3315 

361 NIDD GB_6605575 UK 53.97 -1.35 484.3 

362 TEES GB_6605590 UK 54.52 -1.60 818.4 

363 TRENT (N. ENGLAND) GB_6605600 UK 52.95 -1.08 7486 

364 IDLE GB_6605610 UK 53.40 -0.96 529 

365 DERWENT (TRIB. TRENT) GB_6605620 UK 52.93 -1.47 1054 

366 DOVE (TRIB. TRENT) GB_6605630 UK 52.86 -1.65 883.2 

367 WEAKE GB_6605640 UK 52.71 -1.09 413.8 

368 SOAR GB_6605650 UK 52.57 -1.20 183.9 

369 ANKER GB_6605660 UK 52.63 -1.61 368 

370 SOW GB_6605680 UK 52.84 -2.17 163 

371 BROWNEY GB_6605700 UK 54.74 -1.60 179 

372 WEAR GB_6605730 UK 54.73 -1.59 657.8 

373 LITTLE OUSE GB_6606250 UK 52.43 0.72 688.5 

374 ISE BROOK GB_6606300 UK 52.33 -0.68 194 

375 BEDFORD OUSE GB_6606400 UK 52.13 -0.46 1460 

376 BEDFORD OUSE GB_6606401 UK 52.16 -0.32 1660 

377 GLEN GB_6606560 UK 52.72 -0.36 341.9 

378 WITHAM GB_6606590 UK 53.00 -0.76 297.9 

379 CAM GB_6606700 UK 52.13 0.14 198 

380 IVEL GB_6606720 UK 52.14 -0.32 541.3 

381 CHELMER GB_6606790 UK 51.74 0.48 190.3 

382 STOUR (E. ENGLAND) GB_6606850 UK 51.97 0.94 578 

383 BURE GB_6606880 UK 52.82 1.25 164.7 

384 WAVENEY GB_6606900 UK 52.38 1.28 370 

385 COLNE GB_6606950 UK 51.90 0.85 238.2 

386 DART GB_6607100 UK 50.48 -3.76 247.6 

387 CAMEL GB_6607115 UK 50.48 -4.80 208.8 

388 FOWEY GB_6607120 UK 50.43 -4.68 169.1 

389 TORRIDGE GB_6607140 UK 50.95 -4.14 663 

390 TAW GB_6607150 UK 51.00 -3.98 826.2 

391 EXE GB_6607200 UK 50.80 -3.51 600.9 

392 CULM GB_6607210 UK 50.84 -3.39 226.1 

393 AXE GB_6607220 UK 50.75 -3.05 288.5 

394 OTTER GB_6607225 UK 50.69 -3.29 202.5 

395 TONE (S. ENGLAND) GB_6607230 UK 51.02 -3.13 202 

396 PIDDLE GB_6607250 UK 50.69 -2.12 183.1 

397 BLACKWATER (S. ENGLAND) GB_6607330 UK 51.38 -0.95 354.8 

398 CHERWELL GB_6607340 UK 51.86 -1.30 551.7 

399 KENNET GB_6607345 UK 51.43 -1.07 1033.4 

400 LAMBOURN GB_6607347 UK 51.41 -1.32 234.1 

401 STOUR (S. ENGLAND) GB_6607500 UK 50.76 -1.84 1073 
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402 TEST GB_6607520 UK 50.97 -1.50 1040 

403 ITCHEN GB_6607550 UK 50.99 -1.34 360 

404 THAMES GB_6607651 UK 51.41 -0.31 9948 

405 THAMES GB_6607701 UK 51.64 -1.18 3445 

406 NADDER GB_6607705 UK 51.08 -1.87 220.6 

407 AVON (S. ENGLAND) GB_6607710 UK 51.17 -1.78 323.7 

408 DARENT GB_6607800 UK 51.42 0.23 191.4 

409 LEE RIVER GB_6607830 UK 51.76 0.01 1036 

410 RODING GB_6607840 UK 51.58 0.04 303.3 

411 BEULT GB_6607850 UK 51.20 0.52 277.1 

412 GREAT STOUR GB_6607950 UK 51.26 1.03 345 

413 DEE (WALES) GB_6608100 UK 52.97 -2.97 1019.3 

414 ALYN GB_6608110 UK 53.09 -2.99 227.1 

415 DYFI GB_6608170 UK 52.60 -3.85 471.3 

416 YSTWYTH GB_6608190 UK 52.38 -4.07 169.6 

417 TEIFI GB_6608200 UK 52.04 -4.56 893.6 

418 TYWI GB_6608210 UK 51.86 -4.20 1090.4 

419 COTHI GB_6608220 UK 51.88 -4.17 297.8 

420 RHYMNEY GB_6608240 UK 51.53 -3.12 178.7 

421 WYE (WALES) GB_6608500 UK 52.30 -3.50 174 

422 WYE (WALES) GB_6608501 UK 51.80 -2.68 4010 

423 LUGG GB_6608520 UK 52.28 -2.93 203.3 

424 ELWY GB_6608530 UK 53.24 -3.57 194 

425 LEADON GB_6609110 UK 51.91 -2.32 293 

426 AVON (CENTRAL ENGLAND) GB_6609400 UK 52.09 -1.94 2210 

427 SEVERN (CENTRAL ENGLAND) GB_6609500 UK 52.38 -2.32 4325 

428 WORFE GB_6609520 UK 52.56 -2.38 258 

429 PERRY GB_6609530 UK 52.77 -2.84 180.8 

430 TANAT GB_6609538 UK 52.80 -3.11 229 

431 RODEN GB_6609540 UK 52.72 -2.61 259 

432 AVON (CENTRAL ENGLAND) GB_6609560 UK 52.34 -1.51 347 

433 REA BROOK GB_6609570 UK 52.68 -2.79 178 

434 LYGNA NO_6731250 Norway 58.40 7.23 266 

435 AUSTENA NO_6731280 Norway 58.84 8.10 286 

436 JONDALSELV NO_6731320 Norway 59.70 9.55 150 

437 NEIDEN NO_6731330 Norway 59.37 8.53 2911 

438 HOBOLELV NO_6731350 Norway 59.55 10.87 297 

439 GLAMA NO_6731401 Norway 60.88 11.56 15426 

440 GLAMA NO_6731402 Norway 60.25 11.68 20300 

441 ATNA NO_6731410 Norway 61.85 10.22 465 

442 LAKSELV (E) NO_6731900 Norway 69.23 17.78 178 

443 KOKEMAENJOKI FI_6854101 Finland 61.34 22.11 26117 

444 KOKEMAENJOKI FI_6854102 Finland 61.31 23.75 8641 

445 KOKEMAENJOKI FI_6854103 Finland 61.50 23.76 7672 

446 KOKEMAENJOKI FI_6854104 Finland 61.85 23.91 6102 
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447 KOKEMAENJOKI FI_6854105 Finland 61.14 22.69 2652 

448 KOKEMAENJOKI FI_6854107 Finland 62.28 24.04 546 

449 EURAJOKI FI_6854150 Finland 61.20 21.75 1229 

450 LESTIJOKI FI_6854301 Finland 63.99 23.76 1283 

451 OULUJOKI FI_6854593 Finland 64.40 29.85 403 

452 SIMOJOKI FI_6854620 Finland 65.69 25.09 3109 

453 KYRONJOKI FI_6854900 Finland 63.14 21.84 4833 

454 LAPVAEAERTINJOKI FI_6854950 Finland 62.24 21.58 976 

455 VANTAA / VANDA A FI_6855100 Finland 60.23 24.98 1680 

456 KYMIJOKI FI_6855200 Finland 60.70 26.82 36275 

457 KYMIJOKI FI_6855201 Finland 61.57 26.04 1421 

458 KYMIJOKI FI_6855250 Finland 62.24 25.89 17684 

459 KYMIJOKI FI_6855272 Finland 62.75 24.84 409 

460 PORVOONJOKI FI_6855300 Finland 60.47 25.61 1128 

461 VIROJOKI FI_6855320 Finland 60.62 27.63 328 

462 VUOKSI FI_6855401 Finland 62.77 30.13 20816 

463 VUOKSI FI_6855402 Finland 62.55 27.77 16270 

464 VUOKSI FI_6855409 Finland 63.10 31.03 596 

465 VUOKSI FI_6855412 Finland 61.84 28.30 788 

466 AARE CH_6935020 Switzerland 46.93 7.45 2945 

467 RHINE RIVER CH_6935053 Switzerland 47.56 7.80 34526 

468 RHINE RIVER CH_6935054 Switzerland 47.57 8.33 14718 

469 RHINE RIVER CH_6935055 Switzerland 47.68 8.63 11887 

470 BIRSE CH_6935060 Switzerland 47.28 7.38 183 

471 SUZE CH_6935065 Switzerland 47.20 7.17 150 

472 ERGOLZ CH_6935070 Switzerland 47.49 7.73 261 

473 RHINE RIVER CH_6935145 Switzerland 46.84 9.46 3229 

474 AARE CH_6935300 Switzerland 47.52 8.23 17601 

475 AARE CH_6935301 Switzerland 47.48 8.19 11726 

476 AARE CH_6935302 Switzerland 47.27 7.83 10119 

477 EMME CH_6935320 Switzerland 46.97 7.74 443 

478 SIMME CH_6935330 Switzerland 46.66 7.44 344 

479 SENSE CH_6935350 Switzerland 46.89 7.35 352 

480 THUR (CH) CH_6935400 Switzerland 47.60 8.68 1696 

481 THUR (CH) CH_6935401 Switzerland 47.53 9.17 1085 

482 SITTER CH_6935410 Switzerland 47.41 9.32 261 

483 RHINE RIVER CH_6935500 Switzerland 47.38 9.64 6119 

484 LANDQUART CH_6935540 Switzerland 46.97 9.61 616 

485 TOESS CH_6935560 Switzerland 47.52 8.65 342 

486 PLESSUR CH_6935600 Switzerland 46.86 9.51 263 

487 RHONE CH_6939200 Switzerland 46.35 6.89 5244 

488 RHONE CH_6939500 Switzerland 46.13 7.09 3752 

489 MASSA CH_6939510 Switzerland 46.39 8.01 195 

490 LUETSCHINE CH_6939540 Switzerland 46.66 7.87 379 

491 WEISSE LUETSCHINE CH_6939541 Switzerland 46.63 7.90 164 
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492 INN CH_6943100 Switzerland 46.89 10.47 1945 

493 TICINO CH_6948100 Switzerland 46.19 9.01 1515 

494 POSCHIAVINO CH_6948110 Switzerland 46.30 10.08 169 

495 MAGGIA (TRIB. PO) CH_6948120 Switzerland 46.16 8.79 926 

496 VENTA LV_6973010 Latvia 56.97 21.98 8320 

497 DAUGAVA LV_6973300 Latvia 55.88 26.53 64500 

498 ORIA  ES_1080 Spain 43.23 -2.03 765 

499 URUMEA  ES_1105 Spain 43.24 -1.94 215 

500 BIDASOA  ES_1106 Spain 43.30 -1.73 681 

501 IBAIZABAL  ES_1163 Spain 43.21 -2.75 251 

502 ASON  ES_1196 Spain 43.33 -3.43 485 

503 PAS  ES_1215 Spain 43.30 -3.97 357 

504 CARES  ES_1276 Spain 43.32 -4.68 455 

505 PILOÃ‘A  ES_1302 Spain 43.37 -5.18 486 

506 NORA  ES_1343 Spain 43.42 -5.89 314 

507 NARCEA  ES_1353 Spain 43.19 -6.54 531 

508 PIGÃœEÃ‘A  ES_1358 Spain 43.35 -6.20 403 

509 NARCEA  ES_1359 Spain 43.37 -6.15 1705 

510 ALLER  ES_1365 Spain 43.17 -5.73 265 

511 CAUDAL  ES_1369 Spain 43.28 -5.87 893 

512 CUBIA  ES_1378 Spain 43.39 -6.07 210 

513 ESVA O NARAVAL  ES_1395 Spain 43.50 -6.44 411 

514 IBIAS  ES_1404 Spain 43.06 -6.87 294 

515 EO  ES_1427 Spain 43.41 -7.14 712 

516 ORO  ES_1433 Spain 43.56 -7.38 163 

517 LANDRO  ES_1438 Spain 43.62 -7.59 198 

518 MANDEO  ES_1464 Spain 43.25 -8.05 248 

519 ALLONES  ES_1485 Spain 43.23 -8.89 438 

520 FURELOS  ES_1542 Spain 42.86 -8.02 150 

521 ULLA  ES_1544 Spain 42.85 -8.02 516 

522 DEZA  ES_1552 Spain 42.78 -8.34 545 

523 UMIA  ES_1564 Spain 42.60 -8.64 190 

524 MIÃ‘O  ES_1607 Spain 43.14 -7.60 999 

525 PARGA  ES_1617 Spain 43.17 -7.79 301 

526 LADRA  ES_1619 Spain 43.15 -7.69 843 

527 TEA  ES_1645 Spain 42.18 -8.51 286 

528 LOURO  ES_1647 Spain 42.07 -8.63 150 

529 CUA  ES_1724 Spain 42.65 -6.73 482 

530 CABRERA  ES_1734 Spain 42.42 -6.81 558 

531 SIL  ES_1739 Spain 42.42 -6.96 4268 

532 CABE  ES_1765 Spain 42.56 -7.48 353 

533 LIMIA  ES_1805 Spain 42.02 -7.88 684 

534 DUERO  ES_2002 Spain 41.80 -2.45 1500 

535 DUERO  ES_2004 Spain 41.49 -3.01 5055 

536 UCERO  ES_2005 Spain 41.58 -3.08 900 
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537 DURATON  ES_2012 Spain 41.30 -3.74 480 

538 DUERO  ES_2013 Spain 41.66 -3.68 7356 

539 DUERO  ES_2015 Spain 41.57 -4.67 12740 

540 CEGA  ES_2016 Spain 41.17 -3.85 280 

541 ODRA  ES_2018 Spain 42.25 -4.20 796 

542 PISUERGA  ES_2029 Spain 42.12 -4.25 4227 

543 ARLANZA  ES_2030 Spain 42.06 -3.51 1200 

544 ARLANZA  ES_2031 Spain 42.08 -4.07 2413 

545 ARLANZA  ES_2036 Spain 42.06 -4.24 5256 

546 UCIEZA  ES_2041 Spain 42.32 -4.52 312 

547 CARRION  ES_2042 Spain 42.05 -4.55 2222 

548 PISUERGA  ES_2043 Spain 41.74 -4.64 14283 

549 ESGUEVA  ES_2044 Spain 41.67 -4.72 997 

550 ADAJA  ES_2046 Spain 40.65 -4.71 770 

551 ERESMA  ES_2048 Spain 41.33 -4.62 2746 

552 ERESMA  ES_2050 Spain 40.95 -4.15 252 

553 MOROS  ES_2052 Spain 40.82 -4.28 252 

554 DUERO  ES_2054 Spain 41.51 -4.93 36570 

555 ADAJA  ES_2056 Spain 41.49 -4.77 5202 

556 PIRON  ES_2057 Spain 41.11 -4.12 172 

557 DUERO  ES_2062 Spain 41.52 -5.41 41808 

558 CURUEÃ‘O  ES_2068 Spain 42.90 -5.40 154 

559 BERNESGA  ES_2070 Spain 42.81 -5.63 340 

560 ESLA  ES_2074 Spain 41.98 -5.64 6783 

561 OMAÃ‘AS  ES_2076 Spain 42.70 -5.90 481 

562 TORMES  ES_2085 Spain 40.36 -5.53 900 

563 TORMES  ES_2087 Spain 40.96 -5.65 4010 

564 ERIA  ES_2089 Spain 42.22 -6.25 280 

565 ESLA  ES_2095 Spain 41.87 -5.76 14263 

566 PISUERGA  ES_2097 Spain 41.66 -4.73 15638 

567 TERA  ES_2099 Spain 41.94 -5.78 2350 

568 CEA  ES_2104 Spain 42.66 -5.03 355 

569 VALDERADUEY  ES_2105 Spain 42.22 -5.10 283 

570 NEGRO  ES_2113 Spain 42.04 -6.27 391 

571 ARLANZON  ES_2116 Spain 42.27 -3.89 1702 

572 UBIERNA  ES_2125 Spain 42.42 -3.68 281 

573 DUERO  ES_2132 Spain 41.63 -4.36 12093 

574 ORBIGO  ES_2145 Spain 42.04 -5.74 4959 

575 VALDERADUEY  ES_2148 Spain 41.54 -5.70 3546 

576 ALHANDIGA  ES_2149 Spain 40.71 -5.60 255 

577 TORIO  ES_2150 Spain 42.84 -5.52 222 

578 DURATON  ES_2161 Spain 41.44 -3.97 1125 

579 DUERO  ES_2162 Spain 41.67 -2.39 1717 

580 DUERO  ES_2163 Spain 41.50 -2.51 2959 

581 ESLA  ES_2710 Spain 42.40 -5.55 3980 
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582 TAMEGA  ES_2818 Spain 41.85 -7.43 719 

583 TAJO  ES_3001 Spain 40.60 -1.93 410 

584 TAJO  ES_3005 Spain 40.70 -2.58 3253 

585 TAJO  ES_3015 Spain 39.96 -4.81 33849 

586 GALLO  ES_3030 Spain 40.83 -1.96 944 

587 GUADIELA  ES_3041 Spain 40.51 -2.32 666 

588 ESCABAS  ES_3045 Spain 40.44 -2.31 345 

589 HENARES  ES_3060 Spain 40.95 -2.92 1036 

590 HENARES  ES_3062 Spain 40.46 -3.42 4031 

591 TAJUÃ‘A  ES_3082 Spain 40.31 -3.19 2029 

592 GUADARRAMA  ES_3100 Spain 40.63 -4.00 234 

593 GUADARRAMA  ES_3102 Spain 39.99 -4.03 1353 

594 AMBROZ  ES_3144 Spain 40.17 -6.10 386 

595 JERTE  ES_3146 Spain 40.11 -5.94 313 

596 JERTE  ES_3147 Spain 39.98 -6.27 631 

597 SORBE  ES_3159 Spain 40.99 -3.20 439 

598 TIETAR  ES_3161 Spain 40.15 -5.04 730 

599 ERJAS  ES_3163 Spain 39.82 -6.98 887 

600 ALMONTE  ES_3168 Spain 39.66 -5.96 787 

601 MAYOR  ES_3172 Spain 40.17 -2.69 430 

602 MANZANARES  ES_3177 Spain 40.33 -3.55 1240 

603 COFIO  ES_3180 Spain 40.41 -4.32 629 

604 ALAGON  ES_3182 Spain 40.50 -5.95 426 

605 TIETAR  ES_3184 Spain 39.93 -5.90 4090 

606 TRABAQUE  ES_3186 Spain 40.43 -2.33 361 

607 GUADARRAMA  ES_3194 Spain 40.49 -3.94 366 

608 PERALES  ES_3198 Spain 40.37 -4.14 261 

609 PUSA  ES_3212 Spain 39.92 -4.58 423 

610 GEBALO  ES_3213 Spain 39.77 -4.85 196 

611 SANGUSIN  ES_3217 Spain 40.43 -5.89 177 

612 TAMUJA  ES_3220 Spain 39.50 -6.11 457 

613 IBOR  ES_3221 Spain 39.77 -5.52 266 

614 GUALIJA  ES_3222 Spain 39.76 -5.42 184 

615 ALBERCHE  ES_3231 Spain 40.41 -4.70 698 

616 GUAZALETE  ES_3233 Spain 39.89 -3.89 256 

617 ARRAGO  ES_3238 Spain 40.06 -6.63 469 

618 AYUELA  ES_3246 Spain 39.34 -6.49 252 

619 MAGASCA  ES_3250 Spain 39.46 -5.92 231 

620 SANGRERAS  ES_3251 Spain 39.92 -4.70 223 

621 DULCE  ES_3254 Spain 40.96 -2.73 263 

622 ALBURREL  ES_3278 Spain 39.47 -7.21 169 

623 TOZO  ES_3279 Spain 39.61 -5.91 260 

624 ALAGON  ES_3940 Spain 39.98 -6.30 2672 

625 GUADIANA  ES_4004 Spain 38.98 -2.89 856 

626 GUADIANA  ES_4030 Spain 38.86 -7.02 48530 
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627 TIRTEAFUERA  ES_4108 Spain 38.89 -4.40 734 

628 ALBUERA  ES_4165 Spain 38.88 -6.78 430 

629 ARDILA  ES_4174 Spain 38.23 -6.88 1800 

630 BULLAQUE  ES_4214 Spain 38.99 -4.29 2029 

631 ZANCARA  ES_4224 Spain 39.36 -2.58 2020 

632 ALJUCEN  ES_4257 Spain 39.07 -6.29 228 

633 GUADIANA  ES_4904 Spain 39.20 -3.59 10319 

634 GUADALQUIVIR  ES_5004 Spain 37.99 -3.80 16166 

635 GUADAJOZ O ALMEDINILLA  ES_5016 Spain 37.82 -4.80 2420 

636 FRAILES  ES_5042 Spain 37.26 -3.77 357 

637 GENIL  ES_5048 Spain 37.56 -5.08 8028 

638 GUADIAMAR  ES_5056 Spain 37.53 -6.19 240 

639 GUADAIRA  ES_5057 Spain 37.35 -5.96 1318 

640 GUADIAMAR  ES_5076 Spain 37.30 -6.26 960 

641 CORBONES  ES_5125 Spain 37.57 -5.61 1377 

642 GUADAHORTUNA  ES_5133 Spain 37.60 -3.12 403 

643 OJAILEN  ES_5138 Spain 38.66 -4.02 228 

644 FARDES  ES_5140 Spain 37.54 -3.10 1685 

645 SEGURA  ES_7001 Spain 38.39 -2.21 1218 

646 SEGURA  ES_7057 Spain 38.41 -2.01 2185 

647 TURIA O GUADALAVIAR  ES_8018 Spain 39.84 -1.15 4052 

648 JUCAR  ES_8032 Spain 40.07 -2.14 984 

649 MARIMOTA  ES_8087 Spain 39.82 -2.34 187 

650 CABRIEL  ES_8090 Spain 39.94 -1.71 829 

651 JUCAR  ES_8091 Spain 39.85 -2.29 1793 

652 OJOS DE MOYA  ES_8092 Spain 39.67 -1.56 720 

653 EBRON  ES_8104 Spain 40.11 -1.29 241 

654 JUCAR  ES_8126 Spain 40.22 -1.85 250 

655 MIJARES  ES_8134 Spain 40.12 -0.60 1396 

656 LEZUZA  ES_8137 Spain 38.90 -2.25 217 

657 CABRIEL  ES_8139 Spain 39.74 -1.63 1255 

658 EBRO  ES_9001 Spain 42.69 -2.95 5481 

659 EBRO  ES_9002 Spain 42.18 -1.69 25194 

660 EGA I  ES_9003 Spain 42.38 -1.95 1445 

661 ARAGON  ES_9005 Spain 42.34 -1.65 5469 

662 PIEDRA  ES_9008 Spain 41.20 -1.79 732 

663 JILOCA  ES_9010 Spain 41.11 -1.42 2202 

664 ESERA  ES_9013 Spain 42.21 0.35 893 

665 GUADALOPE  ES_9015 Spain 41.06 -0.13 3476 

666 GARONA  ES_9019 Spain 42.74 0.74 440 

667 VALIRA  ES_9022 Spain 42.36 1.45 559 

668 SEGRE  ES_9025 Spain 41.45 0.42 12782 

669 GUATIZALEMA  ES_9032 Spain 41.91 -0.13 362 

670 ALCANADRE  ES_9033 Spain 41.91 -0.12 765 

671 NAJERILLA  ES_9038 Spain 42.50 -2.68 1090 
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672 CIDACOS  ES_9044 Spain 42.11 -2.33 223 

673 ISABENA  ES_9047 Spain 42.20 0.40 426 

674 NAJERILLA  ES_9048 Spain 42.26 -2.78 541 

675 TIRON  ES_9050 Spain 42.54 -2.97 698 

676 JILOCA  ES_9055 Spain 41.25 -1.58 2502 

677 MESA  ES_9056 Spain 41.19 -1.88 537 

678 JALON  ES_9058 Spain 41.20 -2.34 196 

679 GALLEGO  ES_9059 Spain 42.27 -0.75 1901 

680 VERAL  ES_9062 Spain 42.66 -0.78 161 

681 ESCA  ES_9063 Spain 42.65 -1.01 506 

682 SALAZAR  ES_9064 Spain 42.72 -1.16 396 

683 IRATI  ES_9065 Spain 42.62 -1.29 1546 

684 IRATI  ES_9066 Spain 42.95 -1.25 236 

685 ULZAMA  ES_9067 Spain 42.89 -1.61 240 

686 ARAQUIL  ES_9068 Spain 42.83 -1.79 782 

687 ARGA  ES_9069 Spain 42.79 -1.79 1756 

688 EGA I  ES_9071 Spain 42.67 -2.03 943 

689 ONSELLA  ES_9073 Spain 42.55 -1.25 275 

690 ZADORRA  ES_9074 Spain 42.68 -2.90 1357 

691 AYUDA  ES_9075 Spain 42.68 -2.88 307 

692 ERRO  ES_9079 Spain 42.77 -1.41 180 

693 JALON  ES_9087 Spain 41.73 -1.17 9694 

694 GALLEGO  ES_9089 Spain 41.67 -0.84 4008 

695 ALCANADRE  ES_9091 Spain 42.09 -0.11 501 

696 NELA  ES_9092 Spain 42.80 -3.40 1093 

697 OCA  ES_9093 Spain 42.74 -3.41 1051 

698 GUADALOPE  ES_9099 Spain 41.21 0.01 3845 

699 HUERVA  ES_9105 Spain 41.43 -1.08 620 

700 SEGRE  ES_9111 Spain 42.23 1.34 2384 

701 EBRO  ES_9120 Spain 42.42 -2.20 12010 

702 GALLEGO  ES_9123 Spain 42.41 -0.65 1391 

703 HUERVA  ES_9124 Spain 41.30 -1.08 456 

704 NOGUERA RIBAGORZANA  ES_9137 Spain 42.40 0.74 558 

705 LINARES  ES_9139 Spain 42.08 -2.01 326 

706 TIRON  ES_9158 Spain 42.39 -3.21 192 

707 ARGA  ES_9159 Spain 42.84 -1.59 178 

708 EBRO  ES_9163 Spain 41.19 0.57 82245 

709 BAYAS  ES_9165 Spain 42.69 -2.93 318 

710 JEREA  ES_9166 Spain 42.81 -3.36 290 

711 QUEILES  ES_9174 Spain 41.88 -1.78 194 

712 ALHAMA  ES_9185 Spain 42.08 -1.81 1120 

713 ARBA DE BIEL  ES_9187 Spain 42.12 -0.95 336 

714 OMECILLO  ES_9188 Spain 42.78 -3.04 350 

715 ORONCILLO O GRILLERA  ES_9189 Spain 42.67 -2.98 217 

716 FLUMEN  ES_9190 Spain 42.14 -0.35 160 
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717 FLUMEN  ES_9191 Spain 41.98 -0.42 534 

718 HUERVA  ES_9215 Spain 41.22 -1.21 315 

719 NOGUERA PALLARESA  ES_9252 Spain 42.55 1.16 444 

720 CIDACOS  ES_9253 Spain 42.22 -2.23 405 

721 TRUEBA  ES_9254 Spain 42.93 -3.48 465 

722 ARBA DE LUESIA  ES_9260 Spain 41.91 -1.28 2193 

723 ESCA  ES_9268 Spain 42.86 -0.93 188 

724 ASSINO IT_0001 Italy 43.32 12.39 165 

725 CAINA IT_0003 Italy 43.02 12.26 230 

726 CERFONE IT_0004 Italy 43.49 12.17 284 

727 CHIANI IT_0005 Italy 42.76 12.10 457 

728 MARROGGIA IT_0009 Italy 42.81 12.76 258 

729 NESTORE IT_0011 Italy 42.92 12.34 725 
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