


Sommario

Il vento solare è un flusso di plasma supersonico e super-alfvénico di origine
solare che si propaga nello spazio fino alla Terra e nel resto dell’eliosfera rag-
giungendo velocità di circa 400− 800 km · s−1. Esso permea l’intera eliosfera
e rappresenta un fantastico laboratorio per la fisica del plasma, in quanto è
l’unico ambiente astrofisico in cui le sonde possono misurare in situ i parametri
fisici rilevanti. Il plasma del vento solare trasporta con sé il campo magnetico
del Sole generando nello spazio un campo magnetico interplanetario. L’intera-
zione del campo interplanetario con quello terrestre determina la formazione
di una magnetosfera, nella quale il campo magnetico della Terra è confinato,
delimitata da una discontinuità tra i due campi, detta magnetopausa. Il ma-
gnetismo è alla base della maggior parte dei fenomeni che vengono osservati
nei vari strati dell’atmosfera solare, raggruppati sotto il nome di attività sola-
re. I brillamenti (flares) e le espulsioni di massa coronale (CMEs) sono alcune
della manifestazioni più spettacolari e più interessanti dell’attività solare che
possono generare onde di shock (shock waves) nello spazio interplanetario.
Uno shock è una discontinuità, caratterizzata da un brusco cambiamento in
pressione, temperatura e densità del mezzo.
I brillamenti solari e le CMEs possono rilasciare particelle energetiche (Solar
Energetic Particles - SEPs) che viaggiano con una velocità maggiore di quella
delle particelle già presenti nel plasma spaziale. Le SEPs, seguendo il campo
magnetico interplanetario, possono raggiungere la Terra in un’ora o anche me-
no e sono di particolare interesse perché, specialmente le particelle con energia
maggiore di 40 MeV, possono provocare danni alla strumentazione elettronica
a bordo delle sonde spaziali, influenzare le comunicazioni e i sistemi di navi-
gazione e mettere a rischio la vita degli astronauti in orbita.
Durante la sua espansione, il vento solare sviluppa un forte carattere turbo-
lento, che evolve verso un stato simile a quello della turbolenza idrodinamica,
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descritta da Kolmogorov (1941). Le fluttuazioni a bassa frequenza nel vento
solare vengono generalmente descritte dalla magnetoidrodinamica (MHD). La
turbolenza magnetoidrodinamica nel vento solare è stata studiata in grande
dettaglio negli ultimi anni, grazie alle numerose sonde spaziali che si sono
inoltrate nello spazio interplanetario dall’inizio dell’era spaziale.

Questo lavoro di tesi riguarda lo studio delle particelle energetiche (in
particolare protoni) agli shock interplanetari, i meccanismi di accelerazione
che le producono e la connessione con la turbolenza magnetica nelle regioni
upstream e downstream degli shock.

In particolare, viene effettuata un’analisi di correlazione tra gli aumenti di
flusso delle particelle energetiche e la turbolenza del campo magnetico osser-
vata nelle regioni “upstream” e “downstream” degli shock interplanetari.
I dati analizzati sono stati acquisiti dalla sonda spaziale Stereo A e coprono
un periodo che va dal 2009 al 2016. Gli shock interplanetari presi in esame
sono stati divisi in due liste: la prima racchiude 24 eventi che mostrano un
aumento di flusso a piccola distanza dallo shock stesso; la seconda, invece,
comprende 14 eventi che presentano aumenti di flusso a maggiore distanza
dallo shock. Per dare una misura quantitativa della turbolenza magnetica è
stato utilizzato il total wave power, calcolato a partire dall’analisi spettrale. A
causa della bassa correlazione ottenuta, gli eventi della prima lista sono stati
suddivisi ulteriormente a seconda se gli shock si verificavano sulla scia o meno
di un evento SEP. Al contrario, ciò non è stato possibile per gli shock della
seconda lista visto il minor numero di eventi presenti.
Un’analisi di correlazione parametrica e non parametrica è stata effettuata
anche per studiare il grado di compressibilità nelle regioni upstream e down-
stream degli shock interplanetari per entrambe le liste di eventi selezionati,
utilizzando la varianza del campo magnetico.
Inoltre, per avere informazioni sulla propagazione e sull’accelerazione di parti-
celle nello spazio interplanetario, sono stati studiati gli spettri di energia degli
shock associati agli eventi SEP della prima lista. In particolare, è stato possi-
bile individuare due tipi di distribuzione che fittano bene gli spettri analizzati:
una distribuzione di tipo Weibull, ottenuta per gli shock quasi-perpendicolari e
una doppia legge di potenza nel caso degli shock quasi-paralleli. Grazie anche
allo studio combinato del flusso di protoni energetici con il numero di Mach
e l’angolo tra il campo magnetico e la normale allo shock, è stato possibile
individuare il meccanismo di accelerazione dello “shock surfing” come mec-
canismo capace di spiegare gli spettri di particelle agli shock interplanetari
quasi-perpendicolari.

Infine, per quanto riguarda le fluttuazioni del campo magnetico nello spa-
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zio interplanetario, è stata studiata la dinamica ad alte frequenze, un problema
ancora aperto e non del tutto chiaro. Al contrario delle fluttuazioni magneti-
che nel range di scale cinetiche, quelle a basse frequenze sono state ampiamente
trattate e mostrano un comportamento di scala universale descritto nell’am-
bito della cascata turbolenta di energia.
A piccole scale (alte frequenze), invece, la dinamica del plasma nello spazio
interplanetario è estremamente complessa, dal momento che mostra contem-
poraneamente un comportamento dispersivo e dissipativo. Perciò viene in-
trodotto un approccio di tipo browniano che fornisce un quadro generale che
unifica le diverse dinamiche presenti nelle fluttuazioni a piccola scala e per-
mette di riprodurre con successo l’andamento degli spettri delle fluttuazioni
osservate ad alte frequenze. Questo approccio permette un’interpretazione de-
gli spettri magnetici osservati ad alta frequenza senza alcuna assunzione circa
le relazioni di dispersione dalla teoria della turbolenza.
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Abstract

The solar wind is a supersonic and super-alfvenic flow of plasma that propa-
gates in space up to the Earth and throughout the heliosphere reaching speeds
of about 400 − 800 km · s−1. It permeates the heliosphere and is a fantastic
laboratory for plasma physics, since it is the only astrophysical environment
in which spacecrafts can provide in situ measurements of the relevant physical
parameters. Embedded within the solar wind plasma is the interplanetary
magnetic field. The interaction of the interplanetary field with the magnetic
field of the Earth determines the formation of a magnetosphere, in which the
magnetic field of the Earth is confined, bounded by a discontinuity between
the two fields, called magnetopause. Magnetic field is at the origin of most
of the phenomena that are observed in the various layers of the solar atmo-
sphere, called solar activity. Flares and coronal mass ejections (CMEs) are
some of the most spectacular and interesting manifestations of solar activity
that can generate shock waves in interplanetary space. A shock is a disconti-
nuity, characterized by a sudden change in pressure, temperature and density
of the medium.
Solar flares and CMEs can release energetic particles (Solar Energetic Particles
- SEPs) that travel faster than the particles already present in the interplan-
etary space plasma. SEPs, following the interplanetary magnetic field, can
reach the Earth in an hour or less and are of particular interest because they
can cause damage to the electronic instruments on board the space probes,
influence communications and navigation systems and endanger astronauts’
life in orbit, especially the particles with energy greater than 40 MeV.
During its expansion, the solar wind develops a strong turbulent character,
which evolves towards a state similar to that of hydrodynamic turbulence,
described by Kolmogorov (1941). The low frequency fluctuations are gener-
ally described by magnetohydrodynamics (MHD). The magnetohydrodynamic
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turbulence in the solar wind has been studied in great detail in recent years,
thanks to the numerous spacecrafts that have been launched in the interplan-
etary space since the beginning of the space age.

This work concerns the study of energetic protons at interplanetary shocks,
the related acceleration mechanisms and the connection to magnetic turbu-
lence in the upstream and downstream regions of the shocks.

In particular, we performed a correlation analysis between the particle flux
enhancements and the magnetic field turbulence observed in the upstream and
downstream regions of interplanetary shocks.
The data used in the analysis are taken by the Stereo Ahead spacecraft and
cover a period from 2009 to 2016. The interplanetary shocks selected are di-
vided into two lists: the first contains 24 events that show an increase of the
proton flux close to the shock itself; instead, the second includes 14 events that
present flux enhancements more distant from the shocks. In order to quantify
the magnetic field turbulence, we used the total wave power, calculated from
the standard spectral analysis methods. Because of the low correlation ob-
tained, in the case of the first list we separated shocks occurring on the wake
of a SEP event from NO SEP events. On the contrary, this is not possible for
the shocks of the second list due to the smaller number of events.
We also performed a parametric and non-parametric correlation analysis to
study the degree of compressibility in the upstream and downstream regions
of interplanetary shocks for both lists of selected events, using the variance of
the magnetic field.
Moreover, in order to have information on the propagation and acceleration of
particles in the interplanetary space, we studied the evolution of the particle
energy spectra for shocks associated with the SEP events of the first list. In
particular, we identify two types of distribution that well fit the spectra: a
Weibull functional form, obtained for quasi-perpendicular shocks and a double
power law in the case of quasi-parallel shocks. Thanks also to the combined
study of the proton flux enhancements with the Mach number and the shock
angle, we identify the shock surfing acceleration as the acceleration mechanism
suitable to explain the particle spectra at interplanetary quasi-perpendicular
shocks.

Finally, concerning fluctuations of the magnetic field in the interplanetary
space, we studied high-frequency dynamics, a problem that is still open and
not entirely clear. Unlike magnetic fluctuations in the range of kinetic scales,
those at low frequencies have been extensively investigated and show a uni-
versal scaling behavior, described in the nonlinear turbulent energy cascade
framework.
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At small scales (high frequencies), instead, the plasma dynamics in the in-
terplanetary space is extremely complex, since it exhibits simultaneously a
dispersive and dissipative character. Therefore, we introduced a Brownian
approach that provides a simple description of the high-frequency dynamics
of magnetic fluctuations, which is able to successfully reproduce the spectra
of the fluctuations observed at high frequencies. This framework allows an
interpretation of the observed high frequency magnetic spectra with no as-
sumptions about dispersion relations from plasma turbulence theory.
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Chapter 1

The heliosphere

The solar wind is a stream of charged particles that is continuously released
from the Sun and which pervades the interplanetary space and affects also the
Earth’s magnetosphere. The wind is produced by the expansion of the solar
corona and, in its radial motion, carries with it the magnetic field of the Sun,
giving rise to the interplanetary magnetic field, which permeates a region
surrounding the Sun having dimensions of over 100 AU, called heliosphere.

1.1 Heliosphere

The heliosphere is the bubble-like region of space that contains the solar
system, the solar magnetic field and the solar wind. The heliosphere partially
deflects cosmic rays and it was previously thought that its shape is not per-
fectly spherical but elongated like the tail of a comet, molded by the ambient
flow of the interstellar medium. However, recent observations showed that
this model is incorrect and the heliosphere’s shape is more complex.

The structure of the heliosphere depends on the interaction of two plasmas:
the solar wind, which radially expands from the Sun at supersonic velocity (of
the order of 400 km · s−1), and interstellar plasma (an ionized gas that fills
the interstellar spaces) in motion with respect to the Sun at a speed of about
20 km · s−1. Both plasmas are permeated by magnetic fields (the interplane-
tary magnetic field and the interstellar magnetic field, respectively), so there
exists a surface of separation (discontinuity) between them, because they can
not merged. This surface, called heliopause, forms the boundary of the helio-
sphere. Because of the limited data available, it has not yet been possible to
establish the real extension of the heliosphere.
The supersonic solar wind encountering the interstellar medium slows to a
stop. The point where the solar wind becomes slower than the speed of sound
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CHAPTER 1.

Figure 1.1: Diagram of the heliosphere as it travels through the interstellar medium.
Image credit: https://www.nasa.gov/.

(subsonic) is called the termination shock, a standing shock wave; the solar
wind continues to slow as it passes through a transitional region, called he-
liosheath leading to the heliopause, where the interstellar medium and solar
wind pressures balance.

Heliospheric plasma mostly consists of ions and electrons. They extend
from the lower regions of the solar corona to the interface of the heliosphere
with the interstellar medium. To these particles are added also the Galactic
Cosmic Rays (GCRs), which do not originate in the heliosphere but they come
from interstellar space. There are different types of energetic populations:
the population of the Solar Energetic Particles (SEPs) originating from the
Sun; the Energetic Storm Particles (ESPs) associated to the Coronal Mass
Ejections driven by shock waves; corotating energetic ion events related with
the shocks surrounding the Corotating Interaction Regions (CIRs) in the solar
wind; the Anomalous Cosmic Rays (ACRs) associated with termination shocks
and which are outside the heliosphere.

1.1.1 Termination shock

The termination shock is the region of the heliosphere where the solar wind
slows down to subsonic speed due to interactions with the interstellar medium
(Local InterStellar Medium or LISM). This causes compression, heating, and
a change in the magnetic field.
It is believed to be between 75 and 90 AU from the Sun. According to some
observations presented by E.C. Stone at the meeting of the American Geophys-
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ical Union of May 2005 (Stone et al., 2005), the Voyager 1 spacecraft passed
the termination shock in December 2004, when it was about 94 AU from the
Sun. Instead, the Voyager 2 began detecting returning particles when it was
only 76 AU from the Sun, in May 2006. This implies that the heliosphere may
be irregularly shaped, extending outwards in the Sun’s northern hemisphere
and pushed inward in the south.

The shock arises because solar wind particles are emitted from the Sun
at about 400 km · s−1, while the speed of sound in the interstellar medium
is about 100 km · s−1 (the exact speed depends on the density, which varies
considerably). The interstellar medium, although not very dense, has an al-
most constant pressure; the pressure of the solar wind, on the other hand,
decreases with the distance from the Sun. Thus, at a certain distance from
the Sun, when the pressure of the solar wind drops cannot maintain anymore
supersonic flow against the pressure of the interstellar medium, the solar wind
slows to below its speed of sound, causing a shock wave.
A similar phenomenon is the bow shock, a shock wave that occurs when the
interstellar wind hits the heliosphere. It slows down and creates a region of
turbulence located on the border with the heliopause at a distance of 230 AU.

1.1.2 Heliosheath

The heliosheath is the region of the heliosphere beyond the termination
shock. Here the solar wind is further slowed, compressed and made turbulent
by its interaction with the interstellar medium. Its distance from the Sun is
approximately between 80 and 100 AU and its thickness is estimated to be
between 10 and 100 AU.

The Voyager 1 and Voyager 2 spacecraft have studied the heliosheath. To-
wards the end of 2010, Voyager 1 reached a region of the heliosheath where the
solar wind’s velocity had dropped to zero. The next year, it was announced
that the Voyagers had determined that the heliosheath is not smooth, but is
filled with 100 million-mile-wide bubbles created by the impact of the solar
wind and the interstellar medium. Voyager 1 and 2 began detecting evidence
for the bubbles in 2007 and 2008, respectively. The bubbles probably rep-
resent self-contained structures that have detached from the interplanetary
magnetic field and they are formed by magnetic reconnection between op-
positely oriented sectors of the solar magnetic field as the solar wind slows
down.
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1.1.3 Heliopause

The heliopause is the theoretical boundary where the Sun’s solar wind is
stopped by the interstellar medium. Here, the solar wind’s strength is no
longer great enough to push back the stellar winds of the surrounding stars.
This is the boundary where the interstellar medium and solar wind pressures
balance. The crossing of the heliopause should be signaled by an abrupt
drop in the temperature of charged particles, a change in the direction of the
magnetic field, and an increase in the number of galactic cosmic rays. In
2012, Voyager 1 detected a rapid increase in such cosmic rays, suggesting it
was approaching the heliopause. In fact, after some months, NASA announced
that Voyager 1 had crossed the heliopause and that it is at a distance of 121

AU from the Sun.

1.2 Solar wind

The hypothesis that the Sun emitted plasma clouds was already advanced
in the first decades of the XX century by some geophysicists (K. Birkeland, S.
Chapman, V.C.A. Ferraro) to explain the geomagnetic storms.
In 1951, the German scientist L. Biermann studied the comets and the fact
that their tail always pointed in the opposite direction with respect to the
Sun. He postulated that this was due to the Sun’s emission of a constant
stream of particles capable of push away some particles of the comet, forming
its tail. In 1957, E.N. Parker provided the theoretical basis for such plasma
stream, introducing the term solar wind to describe the phenomenon. Soon
the observations provided by instruments on space probes clearly confirmed
the existence of the solar wind and its magnetic field, demonstrating its fun-
damental role in the control of geomagnetic activity.
The solar wind has constantly been the object of interest of the scientific com-
munity, probably due to two important aspects. The first concerns its role in
the Sun-Earth relations, in fact the solar wind is significantly influenced by
changes in the solar magnetic field and transmits this influence to the planets,
comets, cosmic rays that are in the wind itself. The second aspect concerns
the physical processes that take place in the formation of the solar wind.

1.2.1 Solar wind properties

The solar wind is a stream of charged particles released from the solar
corona. This plasma consists of mostly protons, electrons (about 95%) and
5% of alpha particles, with traces of nuclei of heavier elements.
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Figure 1.2: Ulysses observations of solar wind speed as a function of helio latitude
during solar minimum. Image credit: https://en.wikipedia.org/.

Near the Earth, the speed of the solar wind varies from 400 km·s−1 to 700 km·
s−1, while its density varies from some units to tens of particles per cubic
centimeter.
The solar wind is observed to exist in two fundamental states, represented in
figure 1.2: the slow solar wind, mainly originating from a region around the
Sun’s equatorial belt, where magnetic field produces bright-loop like structures
(coronal streamers), with speeds up to 400 km · s−1 at 1 AU, and the fast
solar wind, coming from the coronal holes (characterized by open magnetic
field lines), that travels at around 700 km · s−1.

The most extensive and detailed observations of the solar wind were made
by space probes near the Earth’s orbit. Some of the physical properties of the
plasma and the magnetic field at this distance from the Sun (1 AU = 1.5×1013

cm) are summarized in table 1.1a.
The pressure in an ionized gas with equal proton and electron density (n)

is
pgas = nkB(Tp + Te) ,

where kB is the Boltzmann constant, Tp and Te are the proton and electron
temperatures. Then

pgas = 3× 10−10dyn · cm−2

= 30 pPa .

Sound waves in an ionized gas with pressure pgas and mass density ρ = n(mp+
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me), wheremp andme are the proton and electron masses respectively, travels
at a speed

cs =

[
γp

ρ

] 1
2

=

[
γkB

mp +me
(Tp + Te)

] 1
2

,

where γ is the ratio of specific heats at a constant pressure and constant vol-
ume and cs is the speed of sound. Using γ = 5

3 for an ionized hydrogen gas
and temperatures from table 1.1a, we find cs ≈ 60 km · s−1.
Consequently, the solar wind is highly supersonic beacause its speed (400 km ·
s−1) is almost an order of magnitude greater than cs at 1 AU.
Furthermore, the presence of a magnetic field can lead to hydromagnetic ef-
fects. It exerts a pressure

pmag =
B2

2µ0

and using the average magnetic field reported in table 1.1a, we find a magnetic
pressure near 1 AU of

pmag ≈ 1.5× 10−10dyn · cm−2

≈ 15 pPa .

This value is comparable to the gas pressure, indicating that magnetic effects
will be as important as pressure effects in the solar wind plasma.

Proton density 6.6 cm−3

Electron density 7.1 cm−3

He2+ density 0.25 cm−3

Flow speed 450 km · s−1

Proton temperature 1.2× 105 K
Electron temperature 1.4× 105 K
Magnetic field 7× 10−9 T

(a)

Gas pressure 30 pPa
Sound speed 60 km · s−1

Magnetic pressure 19 pPa
Alfvén speed 40 km · s−1

Proton gyroradius 80 km
Proton-proton time collision 4× 106 s
Electron-electron time collision 3× 105 s

(b)

Table 1.1: Properties of the solar wind observed (a) and derived (b) near the Earth’s
orbit (1 AU).
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To understand the origin of the solar wind, it is necessary to know some
properties of the solar corona. The temperature of the Sun decreases from
about 15×106 K in its core to about 5000 K on the visible surface of the Sun,
where the atmosphere becomes thin enough to let the photons escape. At even
higher heights in the atmosphere, the temperature rises again, coming back to
around 106 K, and then it decreases very slowly as the height increases in the
corona. This slow temperature variation is the principal feature of the corona
and the physical reason for the formation of the solar wind.
The absence of large Doppler displacements in the low corona emission lines
is a proof that the flow velocity is small, especially if compared to the sound
velocity of about 160 km ·s−1 (considering a temperature of ∼ 106 K). Finally,
the models of the solar magnetic field observed on the surface of the corona
indicate a force of the mean field of a few milliTesla at the base of the corona.
This field is sufficiently strong, so that the magnetic pressure in this region
(pmag ≈ 10 mPa) is larger than the gas pressure (pgas ≈ 4 mPa). Therefore,
it is expected that the magnetic effects dominate this region where the solar
wind originates.
Comparing the density and temperature values in the corona and at 1 AU we
can conclude that these quantities vary with the distance from the Sun. The
values shown here are average values or typical values of the region; moreover,
at a certain distance from the Sun, solar wind properties can vary greatly over
different time scales.

1.2.2 Expansion and structure

The solar corona is an extremely complex system, but we can try to give
a rough description through a simple physical model. This theory can be
illustrated starting from the equations describing the conservation of mass (or
continuity equation) and momentum in an ideal fluid, shown below

∂ρ

∂t
+∇ · (ρv) = 0 (1.1)

ρ

[
∂

∂t
+ (v · ∇)

]
v = −∇p+

1

c
j×B− GM�ρ

r2
. (1.2)

For the pressure we use the ideal gas law, p = nkBT , and in the hypothesis of
an isothermal atmosphere (constant T ) we obtain

p =
kBT

m
ρ . (1.3)
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To simplify the solution of these equations we make some assumptions: static
corona, system in spherical symmetry and negligible magnetic effects. Then,
the mechanical equilibrium of the corona implies that the equation of the
hydrostastic equilibrium obtained from equation (1.2) must be satisfied,

dp(r)

dr
+
GM�
r2

ρ(r) = 0 . (1.4)

Substituting equation (1.3) in (1.4) we obtain

kBT

m
· dρ(r)

dr
= −GM�

r2
ρ(r) (1.5)

from which
dρ(r)

ρ(r)
= −GM�m

kBT
· dr
r2
.

Assuming that the corona is isothermal, the previous equation for ρ(r) can be
easily integrated, obtaining that the mass density decreases with the increase
of r to give

ln ρ′
∣∣∣∣ρ
ρ0

=
GM�m

kBT
· 1

r′

∣∣∣∣r
R�

.

Then
ρ(r) = ρ0 exp

[
GM�m

kBT

(
1

r
− 1

R�

)]
and for r →∞ we have

ρ∞ = ρ0 exp
[
−GM�m

kBT
· 1

R�

]
' 10−5ρ0 .

Since pressure and density are proportional, we get a similar equation for p

p∞ = p0 exp
[
−GM�m

kBT
· 1

R�

]
' 10−5p0 .

But the value of ρ∞ is too big to be realistic. Considering that at the base
of the solar corona (r = R�) we have a mass density equal to ρ0 ' 8 ×
10−16 g · cm−3, ρ∞ would be of the order of 10−20 g · cm−3 which is about 4

orders of magnitude higher than the typical density of the interstellar medium
(' 10−24 g·cm−3). From these considerations, we can deduce the impossibility
of the existence of an isothermal static corona.

We leave the hypothesis of isothermal corona and assume that the temper-
ature decreases in the corona with increasing distance from the center of the
Sun, which is certainly more realistic. A simple model to estimate the behav-
ior of T (r) is to suppose that the heating occurs substantially at the base of

10
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the corona and that the outer corona is maintained at high temperatures by
the transport of energy by conduction. Then, the temperature has a slowly
decreasing trend with r; denoting the temperature at the base of the corona
with T0, it is obtained

T (r) = T0

(
R�
r

) 2
7

.

So, using the temperature trend T (r) in the relation

ρ(r) =
m

kB

p(r)

T (r)
,

equation (1.4) for the pressure becomes

dp(r)

dr
= −GM�m

kBT0

(
r

R�

) 2
7 p(r)

r2
.

The solution to this differential equation for p(r) is

p(r) = p0 exp

[
−7

5
· GM�m
kBT0R

2/7
�

(
1

R
5/7
�
− 1

r5/7

)]
,

for r →∞, we have

p∞ = p0 exp
[
−7

5
· GM�m
kBT0

· 1

R�

]
' 10−7p0 ,

which again is too large to be realistic. On the basis of these considerations, the
hypothesis of a static corona must be abandoned and we must move towards
theories that involve a dynamic balance of the corona. The theoretical problem
was solved by Parker in the 1958 (Parker, 1958).

Parker’s theory

To overcome the contradictions of the static corona model, a dynamic
corona is introduced, continuously expanding outwards and in stationary equi-
librium. For simplicity, the magnetic effects are kept negligible, as well as the
hypotheses of spherical symmetry and isothermality.
Indicating with v(r) the coronal gas velocity at the distance r, the continuity
equation (1.1) is written in the form

dFmat

dr
=

d

dr

[
4πr2ρ(r)v(r)

]
= 0 ,

11
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where Fmat is the matter’s flow, constant with r. From this equation we have
r2ρ(r)v(r) = const = Ṁ , where Ṁ is the loss of the star’s mass equal to

Ṁ =
dM

dt
= 4πr2ρ(r)v(r) .

The following momentum equation replaces the relation of hydrostatic equi-
librium

ρ(r)v(r)
dv(r)

dr
= −dp(r)

dr
− GM�ρ(r)

r2
. (1.6)

The two equations can be combined with the ideal gas law

dp(r)

dr
=
kBT

m
· dρ(r)

dr
,

so the equation (1.6) becomes

ρ(r)v(r)
dv(r)

dr
= −v2

th
dρ(r)

dr
− GM�ρ(r)

r2
, (1.7)

where vth =
(
kBT
m

) 1
2 is the thermal velocity. Since ρ(r) = Ṁ

4πr2v(r)
and con-

sidering that Ṁ is constant, we obtain

dρ(r)

dr
=
Ṁ

4π

d

dr

[
1

r2v(r)

]
= −ρ(r)

[
2

r
+

1

v(r)

dv(r)

dr

]
. (1.8)

After using equation (1.8) in (1.7), through simple steps, we get the dynamic
Parker equation

v2(r)− v2
th

v(r)

dv(r)

dr
=

2v2
th
r
− GM�

r2
. (1.9)

At this point we indicate with r∗ = GM�
2v2th

the critical distance from the Sun
to which a particle of the gas composing the solar corona has a gravitational
energy equal to thermal energy.
The solutions of the Parker’s equation can be one of the four types showed in
figure 1.3. It is necessary to determine which ones are physically acceptable
by imposing the following conditions

v(r ' R�) ' 0

ρ(r →∞) ' 0 .

So, from equation (1.9) we obtain the following solutions

v2(r)

v2
th
− ln

[
v2(r)

v2
th

]
= 4 ln

(
r

R�

)
+ 4

r∗
r

+ C . (1.10)
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Figure 1.3: Trend of solutions of the Parker’s differential equation. Image credit:
http://www.physics.usyd.edu.au/.

The classes of solution 3 and 4 can be discarded because they do not satisfy
the previous boundary conditions; while for solutions of type 1, for r → ∞,
v2(r)� v2

th, so the equation (1.10) becomes

v(r) ' vth
(
R�
r

)2

∼ 1

r2
.

These solutions are characterized by a subsonic velocity and a constant den-
sity; thus they can be excluded because this class does not agree with the
observations.
In the case of the solutions of class 2, if r →∞, v2(r)� v2

th, we obtain

v(r) = ±2vth

[
ln

(
r

R�

)] 1
2

ρ(r) =
Ṁ

4πv(r)r2
→ 0 .

This solution has a supersonic speed over a critical distance (r∗ ' 10 R�),
which marks the transition from a subsonic to a supersonic regime.
If we consider a temperature of T = 106 K, we get vth ' 100 km · s−1, from
which it is possible to calculate the speed of solar wind at a distance of 1 AU,
in agreement with the observed solar wind velocity (vsw ' 400 km · s−1).
Therefore, according to the isotermal corona model proposed by Parker, the
solar corona is in a state of dynamic equilibrium that leads it to expand, with
speeds of several hundred of kilometers per second in the interplanetary space.
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1.2.3 Magnetic field

Parker’s theory, despite its simplicity, provides a satisfactory description
of the solar wind. However, it can not provide an accurate description of the
observed solar wind properties, since the magnetic field must also be intro-
duced in the model.
The strength and the structure of the magnetic field are determined by the
differential rotation of the Sun, which produces a toroidal field, and by the
turbulent motion of the plasma and charged particles of the convective region.
In a plasma, at low frequency and large scale, the equations of magnetohy-
drodynamics are valid and in the ideal case Alfvèn theorem holds. It can be
expressed by cnsidering, at a fixed instant, an arbitrary surface on a closed cir-
cuit and evaluating the flux of the magnetic field vector through this surface.
The surface moves and change in time, since it is transported by the motion
of the plasma. The flux of the magnetic field through this moving surface
remains constant. Moreover, since this flux is proportional to the number of
field lines that cross the surface itself, it can be thought that the lines are
rigidly connected to the moving plasma, that is magnetic field lines are frozen
into the plasma and have to move along with it.

The classical picture of the interplanetary magnetic field is a simple ap-
plication of the frozen-in condition. Applying this concept to a model of
a spherically symmetric, radially expanding solar wind, the result is an ex-
tremely simple interplanetary magnetic field. If we define a flux tube with an
infinitesimal area dA0 at the base of the corona (r = R�), the uniform radial
outflow would form a tube whose cross section, at each radius r , would be a
simple map of the original dA0, but stretched due to the spherical geometry of
the expansion, as shown in figure 1.4a. Conservation of magnetic flux within
the tube allows us to obtain

B(r) = B0

(
R�
r

)2

, (1.11)

where B0 is the radial magnetic field at the base of flux tube.
It is necessary to consider that the Sun rotates around an axis that is nearly
perpendicular to the ecliptic plane (plane of the Earth’s orbit). The rotation
speed varies with latitude in a system of heliographic coordinates where the
solar rotation axis is used to define the positions in space of the solar poles.
Near the solar equator, the solar corona and each plasma element of area dA0

rotate with an angular velocity of

Ω� = 2.7× 10−6rad · s−1 .

14
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(a) (b)

Figure 1.4: Geometry of a flux tube defined by magnetic lines in the radial direction
(a); image credit: Kivelson and Russell (1995). Schematic representation of the spiral
magnetic field frozen into the solar wind (b); image credit: https://slideplayer.
com/.

The effect of this rotation on the previous description of the flux tubes is that
a plasma element, from a fixed source at the base of the corona, moves and
takes the shape of a spiral. So, magnetic field lines frozen into the plasma
must assume this same spiral configuration.
The shape of these field lines of force can be expressed mathematically, using
a spherical polar coordinate system (r, θ, φ) that rotates with the Sun, as

r −R� = − vr
Ω� sin(θ)

(φ− φ0) ,

known as the spiral of Archimedes. Then, we have the following relations for
the components of the magnetic field

Br(r) = B0

(
R�
r

)2

Bθ = 0

Bφ(r) = −B0
R2
�Ω� sin(θ)

rv

As the heliocentric distance increases, the lines become more and more trans-
verse, forming an angle of about 90◦ with the radial direction, because the
radial component decreases more rapidly (Br ∼ 1/r2) than the longitudinal
one (Bφ ∼ 1/r).
Figure 1.4b shows the spiral geometry of the interplanetary magnetic field lines
for a constant solar wind speed of 400 km · s−1. Outside the equatorial plane
the field lines wrap around themselves and, moving away from the equator,
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they gradually become less enveloping and settle on a conical surface. When
these lines come from the poles, they remain almost purely radial.

1.3 Interplanetary shocks

The debate on interplanetary (IP) shock waves and their nature have been
of special interest to the space science community in the last few decades be-
cause they have a crucial role in space weather since they are responsible for
most of the particle acceleration in the solar wind.
Quantitative theoretical models of shock propagation through the interplan-
etary medium were first developed by Parker (1961). Since the first direct
observation of such a shock by the Mariner 2 spacecraft in 1962, many studies,
both theoretical and observational, have been done for interplanetary shock
waves. This investigation focused, on one side, on the detailed and local
characteristics of the shock front and, on the other side, on the relation of
interplanetary shocks with large scale solar wind disturbances (solar activity)
with which they are connected. In fact, significant releases of plasma and
magnetic field from the solar corona, the so called CMEs, can drive different
kind of interplanetary shock waves from the vicinity of the Sun to large dis-
tances.
One of the most important examples of interplanetary shock wave is the bow
shock, which develops in front of the Earth due to the encounter of the su-
personic solar wind with the obstacle to its flow presented by the Earth’s
magnetic field. A bow shock is also formed in front of other planets with
a magnetophere and comets where the solar wind interacts with neutral gas
from the comet itself.

1.3.1 Classification of IP shocks

Shocks are transition layers across which there is a transport of particles
and where the plasma change from one equilibrium state to another. They
are characterized by abrupt changes in plasma properties such as flow speed,
density, magnetic field strength and temperature. Due to the collisionless
nature of space plasmas, these discontinuities produce a great collection of
different shock types.
Shocks in the solar wind can be classified into fast shocks and slow shocks
depending on whether the magnetic field strength increases or decreases at
the shock, respectively. In both cases, when an interplanetary shock moves
away from the Sun in the solar wind frame of reference it is called a forward
shock, while in the case a shock moves towards the Sun it is called a reverse
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shock. Most IP shocks in the solar wind are fast forward shocks while slow
shocks are only rarely observed. Close to 1 AU nearly all fast forward shocks in
the solar wind are driven by ICMEs (Interplanetary Coronal Mass Ejections).
So, interplanetary shock waves can be divided into four categories based on
the variation of the proton plasma temperature T, number density of the solar
wind plasma N, plasma speed V and the magnitude of the magnetic field B.
Another feature of interplanetary shocks is the direction of the magnetic field

Figure 1.5: Solar wind pa-
rameters changes for the four
types of interplanetary shocks.
Image credit: https://wind.
nasa.gov/.

with respect to the shock normal (normal to
the shock surface). Then, it is possible to
make a classification of shocks in terms of the
shock angle (θBn) between the interplanetary
magnetic field (IMF) upstream of the shock
and the shock normal. Therefore, a shock is
parallel when θBn = 0, perpendicular when
θBn = 90◦ and oblique when 0◦ < θBn <

90◦. If the shock angle does not deviate too
much from the parallel and perpendicular di-
rection then a shock is called quasi-parallel
(θBn < 45◦) and quasi-perpendicular shock
(θBn > 45◦), respectively.
The two kinds of shock are quite different in
their structure and behavior. In the case of
perpendicular shocks, the transition from up-
stream to downstream is stable and character-
ized by a steep rise in magnetic field strength
known as the ramp. In addition, the magnetic
field lines are parallel to the shock surface, therefore particle motions along the
field do not let particles escape away from the shock. In contrast, at parallel
shocks the transition from the upstream state to the downstream state occurs
over a broad and turbulent region and the motion of the particles along the
field lines will move them through and away from the shock.

1.4 Solar energetic particles

Solar Energetic Particles (SEPs) are high-energy particles coming from
the Sun which had been first observed in the early 1940 s. They consist of
protons, electrons and heavy ions with energy ranging from a few tens of keV
to many GeV. They are of particular interest and importance because they
can constitute a danger for spacecraft systems and human activities in space,
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especially particles above 40 MeV.
SEPs can originate either from a solar flare site or from shock waves asso-
ciated with Coronal Mass Ejections (CMEs), though only about 1% of the
CMEs produce strong SEP events. These particles are produced by acceler-
ation processes in the solar atmosphere associated with solar flares, and in
coronal and interplanetary shocks created by the interaction of CMEs with
the solar wind. In fact, a CME that is evolving may generate an IP shock
which propagates in space, deforming the interplanetary magnetic field lines.
Energetic particles may escape from their acceleration sites and propagate
along these magnetic field lines into the interplanetary space.

SEP events are conventionally classified into two categories, impulsive and
gradual, based on the duration of the event itself. The events of the first
type have durations from few hours up to a day and they are often associated
with flare acceleration processes. These events are related to short-duration
of soft X-ray emission and are characterised by low particle fluxes, abundance
of heavy elements and 3He enrichment. On the contrary, gradual events have
a longer duration (several days) and are accompanied by long-term soft X-ray
emission. This type of events shows large intensities in particle fluxes and the
composition is similar to solar wind and corona.
The intensity profiles of SEP events show a great variability from one event
to another, depending on the different spatial and temporal characteristics,
such as the energy of the particles, the presence of seed particle polulations,
the efficiency of the shock to accelerate the particles, the transport processes
and the position of the source region with respect to the spacecraft location.
The high energy particles can also be produced by shock waves in the helio-
spheric environment, as it happens for ESP (Energetic Storm Particle) events,
related to the passage of a CME-driven shock in the interplanetary space,
and those associated with shocks that bound Corotating Interaction Regions
(CIRs), produced by the interaction between fast and slow solar wind flows.

For SEP events, the acceleration of particles to high energies occurs in a
part of the solar corona that is not yet accessible to in situ measurements
and until now remote sensing is not able to establish the different mechanisms
at work during an acceleration process. However, information on the source
of SEP events can be obtained by studying the time evolution of the energy
spectra derived from the particle flux recorded in the interplanetary space,
provided that the processes of particle release and transport in the interplan-
etary medium do not distort their original form. In the case of impulsive SEP
events, the particle spectrum should be representative of the source spectrum
because they should propagate fast enough that the changes in energy can be
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neglected (Dröge, 2000). Instead, during gradual SEP events the spectrum
should be linked to the characteristics of the CME-driven shock and therefore
it can be variable due to the propagation effects. The principal mechanism
of acceleration that explains gradual SEP events is the diffusive shock accel-
eration (Lee, 1983), which predicts a power law energy spectrum. Often the
double power law is also used to describe the observed SEP spectra (Tylka
et al., 2005), although it is not yet clear the origin of the spectral breaks. Re-
cently, Laurenza et al. (2013) found that the Weibull distribution is the best
fit compared to previous models and this distribution can be associated with
shock acceleration in terms of a stochastic multiplicative process (Pallocchia
et al., 2017).
However, much remains to be learned about the spatial and temporal evolu-
tion of the SEP sources and about the basic SEP acceleration and transport
processes.

1.5 Earth’s magnetosphere

A magnetosphere is the region of space, around a planet, that is controlled
by the planet’s magnetic field. A planetary magnetic field constitutes an al-
most impenetrable obstacle to the solar wind plasma. The dynamic pressure
of the solar wind presses on the magnetic field, confining it in a magneto-
spheric cavity that has a long tail.
The solar wind is highly supersonic before reaching the planets, so a shock is
formed in front of the obstacle. Most of the solar wind particles are heated
and slowed at the bow shock and detour around the Earth in the magne-
tosheath. The outer boundary of Earth’s confined geomagnetic field is called
the magnetopause. The interaction of the solar wind with the magnetosphere
is a complex process.

1.5.1 Magnetosphere’s characteristics

The Earth’s magnetosphere is a highly dynamic structure that responds
dramatically to changes in the dynamic pressure of the solar wind and the
orientation of the interplanetary magnetic field. Solar wind exerts an outward
force on every obstacle it encounters, such as the Earth’s magnetic field, since
both the magnetic field of the Earth and that of the solar wind are frozen in
their plasmas. Thus, the solar wind exerts a pressure on the magnetoshere.
In a stationary situation, the solar wind force against the magnetosphere and
the magnetosphere force against the solar wind are in equilibrium.
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The interaction with the solar wind deforms the dipolar magnetic field
of the Earth, compressing the field lines on the dayside and stretching them
out to form a long tail (the magnetotail) on the nightside. If there are no
viscosity, that is, if there are no tangential stress or drag on the boundary,
but only forces along the normal to the surface, one would expect the shape
of a drop, considering that the magnetic field behind the Earth weakens with
distance. The exact form, even in this approximation, is difficult to determine
due to the non-linear nature of the postshock region. However, it is neces-
sary to consider the tangential stress which transfers the momentum to the
magnetospheric plasma and causes it to flow towards the tail. This stress can
be transferred by various processes that operate to transfer magnetic plasma
from the dayside to the nightside magnetosphere and so have the potential to
alter the shape of the magnetosphere. Reconnection is one of these processes,
in which the interplanetary magnetic field lines connect with the planetary
ones when the interplanetary and planetary fields are in opposite directions.
In the Earth’s magnetoshere, reconnection takes place in the magnetopause
and in the magnetotail, two regions characterized by relatively thin sheets of
electric current separate zones with different magnetic fields.
A current sheet can be defined as a thin surface through which the strength
of the magnetic field and/or the direction can change substantially.

Magnetopause

The magnetopause is the name given to the outer boundary that contains
within it the magnetosphere; it separates the geomagnetic field and plasma
of terrestrial origin from the solar wind plasma. The existence of the mag-
netopause was proposed for the first time by Chapman and Ferraro (1931),
although in terms of an intermittent corpuscular stream from the Sun that
was present only during periods of solar activity; however, subsequent studies
have shown that the magnetopause is a permanent feature (Dungey, 1954).

The position of the magnetopause can be calculated by requiring the total
pressure on the two sides of the boundary to be equal. To a good approxima-
tion, the pressure in the magnetosphere, which is mainly magnetic pressure,
must correspond to the pressure in the magnetosheath1, given by the combi-
nation of the thermal pressure and the magnetic pressure. The pressure terms

1Region of space between the magnetopause and the bow shock. This area of space
contains the solar wind plasma that has been heated by the shock wave that the solar wind
forms when it meets the magnetosphere.
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Figure 1.6: Section of the magnetosphere in which the geomagnetic field is perfectly
confined by the current sheets flowing on the magnetopause. A second current sheet
flows through the midplane of the magnetotail and connects with the magnetopause
currents of the flanks of the tail. The solar wind flux is deflected at the bow shock
and flows around the magnetosphere, forming the magnetosheath. Image credit:
http://www.physics.usyd.edu.au/.

in the solar wind and on the nose of the magnetosphere are roughly balanced

(ρv2)sw ∼
(
B2

2µ0

)
E

. (1.12)

The intensity of the magnetic field immediately inside the equatorial dayside
magnetopause is greater than twice that of the dipole field at the same posi-
tion. This happens because the magnetopause current cancels the dipole field
outside the magnetopause, and so it must create an equal field, but in the
opposite direction, just inside the magnetopause, which is added to the dipole
field, doubling it. When a sudden increase in the dynamic pressure of the
solar wind, as often follows the passage of an interplanetary shock, reaches
the Earth, the magnetosphere is compressed; the magnetopause moves closer
to the Earth, and at the same time the magnetopause current intensifies. The
movement and intensification of the current are detected on the Earth’s sur-
face as a sudden increase in the intensity of the geomagnetic field of a few tens
of nanoTesla.

Magnetotail

The geomagnetic tail is the region of the Earth’s magnetosphere that
stretches away from the Sun behind the Earth. It is a region of great im-
portance for the magnetosphere, because it acts as a reservoir of plasma and

21

http://www.physics.usyd.edu.au/


CHAPTER 1.

energy, which are released into the inner magnetosphere aperiodically. A cur-
rent sheet lies in the center of the tail, embedded within a region of hot plasma,
the plasma sheet, which separates two zones called tail lobes. These two lobes
connect magnetically to the two polar regions of the Earth and are identified
as the north and south lobes. The magnetic field in the north (south) lobe is
directed towards (away from) the Earth; hence the need for a current sheet to
separate these two regions with a magnetic fields in opposite direction.

In a static tail, there must be satisfied pressure balance between the tail
lobe and both the plasma sheet and the solar wind. This can be used to
estimate the properties of the plasma sheet and the geometry of the distant
tail.

22



Chapter 2

Magnetohydrodynamic
turbulence

This chapter presents some of the most important general properties of
the magnetohydrodynamic turbulence.
Turbulence is an ubiquitous phenomenon, which each of us can observe di-
rectly. The arabesques formed by the smoke of a cigarette or by the coffee
poured into a glass of milk, the whirling motion of a river or the motion of the
meteorological perturbations observed by satellite are examples of turbulence.
Scientifically, the term turbulence is used to indicate the motion of an irreg-
ular and apparently random fluid both in space and time. The simplest way
to illustrate this phenomenon is to consider a cylinder around which a fluid
flows. When the fluid velocity is relatively low, it flows around the cylinder in
a regural way. As speed increases, a series of vortices is generated in the fluid
and the motion becomes irregular and chaotic.

The presence of these turbulent structures was recognized long time ago
by Leonardo da Vinci. By studying the movement of water in the rivers, he
was the first to use the term turbulence to describe the swirling motion of a
fluid.
Turbulence became an experimental science at the end of 19th century, thanks
to the research of Reynolds, who made a systematic study of the transition
from the laminar regime to the turbulent regime in a fluid. He noticed that the
behavior of the fluid can be classified through the value of a parameter, now
called Reynolds number, given by the combination of the viscosity coefficient of
the fluid µ, the mass density ρ, a characteristic velocity U and a characteristic
length L

Re =
ULρ

µ
.
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Figure 2.1: Original pictures by Reynolds showing the transition from a laminar
to a turbulent state from top to bottom (Reynolds, 1883). Image credit: https:
//en.wikipedia.org/.

When Re . 1, the flow is regular and the motion is laminar. As the Reynolds
number increases, the transition from a laminar to a turbulent state occurs.
The value of Re for which this transition occurs depends on the configuration
considered. In the limit Re → ∞ the turbulence is said to be in a fully
developed state.

From a stationary and laminar flow, we pass, through successive stages,
to a turbulent current, characterized by vortical structures in 3D, by an high
level of non-stationarity and a highly unstable nature.

When a fluid is electrically conductive, the turbulent motions are accom-
panied by fluctuations in the magnetic field. The discipline that studies the
dynamics of these fluids is magnetohydrodynamics, indicated briefly with the
acronym MHD. Conductive fluids are rare in the terrestrial world, where elec-
trical conductors are generally solid. The most common conductive fluids are
ionized gases, called plasmas, abundant in the extraterrestrial world. In fact,
about 99% of all the material in the universe exists in the plasma state. Nat-
ural plasmas, as well as laboratory plasmas, are often in a turbulent state,
where dynamics become chaotic and unpredictable. At the scales where the
plasma can be described by the equations of magnetohydrodynamics, we have
magnetohydrodynamic turbulence.
Magnetohydrodynamic turbulence plays a fundamental role in the dynamics
of astrophysical plasmas in very different environments and on a very wide
range of scales, from kilometer to kiloparsec 1 and beyond.

The dynamics of turbulence can not be studied by solving the fluid or
1The parsec (pc) is a unit of length used to measure large distances to astronomical

objects outside the solar system. It is defined as the distance from the Earth (or the
Sun) of a star that has an annual parallax of 1 arcsecond; therefore, 1 pc corresponds to
≈ 3.08567758× 1016 m.
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MHD equations analytically, but rather through numerical simulations. For
this reason it is good to know the physical and elementary mechanisms that
contribute to determine the complexity of the fluid.

2.1 MHD equations

The physical evolution of a conductive fluid can be described by a sys-
tem of partial differential equations, the equations of magnetohydrodynamics,
which can be obtained directly from hydrodynamics and taking into account
Maxwell’s equations to define the magnetic field and the currents. For the
description of the fluid both scalar and vector fields are used.

The first equation to consider in MHD is the continuity equation that
expresses the conservation of mass

∂ρ

∂t
+∇ · (ρu) = 0 . (2.1)

Instead, the momentum equation can be obtained by considering the forces
that act on a fluid element δV with mass equal to ρδV , where ρ is the mass
density.

• The Lorentz force. In an electromagnetic field, a particle of charge qi
is subjected to the Lorentz force qj(E + uj × B/c). The force on a
macroscopic fluid element is equal to the sum of the forces acting on the
individual particles δqE + δj × B/c, where δq is the net charge and δj
the electric current carried by the fluid element. Since in most of the
fluids both charge signs are present, which lead to a situation of global
neutrality δq ' 0 (called quasi-neutrality and does not imply the disap-
pearance of the electrostatic field), only the magnetic part contributes
to the Lorentz force,

1

c
j×B , (2.2)

where j is the current density.

• The pressure force. If we assumed that, under conditions of local thermo-
dynamic equilibrium, the pressure tensor is isotropic, the force exerted
is

−∇p . (2.3)
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• Gravitational force2. The force results

ρg , (2.4)

where g = −∇φg.

• The viscous force. If the viscosity coefficient is indicated with µ, this
force takes the form of

µ

[
∇2u +

1

3
∇(∇ · u)

]
. (2.5)

Combining the contributions of these forces we obtain the momentum equation
or equation of motion

ρ

[
∂u

∂t
+ (u · ∇)u

]
= −∇p+

1

c
j×B + ρg + µ

[
∇2u +

1

3
∇(∇ · u)

]
. (2.6)

Since the current density j is related to the magnetic field by Ampère’s law,

∇×B =
4π

c
j ,

substituting j in the (2.2), the Lorentz force can be written as follows

1

c
j×B = − 1

8π
∇B2 +

1

4π
B · ∇B . (2.7)

The first term in the right-hand member acts as a pressure force, so it can be
added to the (2.3) to get the total pressure

P = p+
B2

8π
(2.8)

and the ratio between the two pressures,

β =
8πp

B2
,

is an important parameter characterizing the strength of the magnetic field in
a plasma.

The dynamics of the magnetic field follows from Faraday’s law

∂B

∂t
= −c∇×E ,

where the electric field E is determined by the generalized Ohm’s law (obtained
2In a magnetized plasma gravity is often negligible compared with the Lorentz force.
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by considering a fluid in motion)

E +
1

c
u×B =

1

σ
j ,

where σ is the electrical conductivity of the fluid.
Substituting E into Faraday’s equation and assuming uniform conductivity,
we obtain the advection-diffusion equation that describes the evolution of
magnetic field over time

∂B

∂t
= ∇× (u×B) + η∇2B , (2.9)

where η = c2/(4πσ) is the magnetic diffusivity.
Finally, it remains to find the dynamic equation for the pressure. Under

conditions of local thermodynamic equilibrium the pressure p is coupled to
the density ρ and temperature T by the equation of state. Therefore, we may
assume the validity of the ideal gas law and in the case of plasma the equation
is written in the form

p = 2nkBT ,

where n = ni = ne is the particle number density and kB is the Boltzmann
constant. Since heat conduction is a diffusive process, at sufficiently large
scales it can be neglected, so that the change of state in a fluid element is
adiabatic,

d(pρ−γ)

dt
= 0 ,

which is equivalent to a constant entropy transformation, where the entropy
of an ideal gas is s = cv ln(pρ−γ). As a result we get

∂p

∂t
+ u · ∇p+ γp∇ · u = 0 , (2.10)

where the parameter γ = cp/cv is the adiabatic exponent, given by the ratio
of the specific heats at constant pressure and volume.
However, if the heat conduction is not negligible, an equation for energy con-
servation is needed

ρT

[
∂s

∂t
+ (u · ∇)s

]
= ∇ · (χ∇T ) +

µ

2

(
∂ui
∂xk

+
∂uk
∂xi
− 2

3
δik∇ · u

)2

, (2.11)

where χ is the heat diffusivity.
The above equations can be greatly simplified if we consider the hypothesis

of incompressible fluid: ρ = cost. Starting from the equation of motion (3.1),
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neglecting the terms of gravity and magnetic field, we obtain the Navier-Stokes
equation3 (NS)

∂u

∂t
+ (u · ∇)u = −

(
∇p
ρ

)
+ ν∇2u , (2.12)

where the coefficient ν = µ/ρ is the kinematic viscosity. The incompressibil-
ity of the flow translates into a condition on the velocity field, ∇ · u = 0.
This condition eliminates all high frequency sound waves and is called the
incompressible limit.

Using the velocity scale U and the length scale L, we define the dimension-
less independent variables r = r′L (hence ∇ = ∇′/L ), t = t′(L/U), u = u′U

and p = p′U2ρ, using them in the equation (2.12), we obtain

∂u′

∂t′
+ (u′ · ∇′)u′ = −∇′p′ +Re−1∇′2u′ . (2.13)

The Reynolds number Re = UL/ν is clearly the only parameter that controls
the flow of the fluid and represents a measure of the relative strength between
the non-linear convective term (u·∇)u and the viscous term ν∇2u that appear
in the equation (2.12). For high values of the Reynolds number, the non-linear
term dominates, and this indicates that in the dynamics of the fluid flow,
turbulence is a non-linear phenomenon.
A particular simplified form of the Navier-Stokes equation is the Euler equation
and is obtained in the ideal limit in which the flow has negligible viscosity or
ν = 0.

In the incompressible case MHD equations can be reduced to

∂u

∂t
+ (u · ∇)u = −∇Ptot + ν∇2u + (b · ∇)b (2.14)

and
∂b

∂t
+ (u · ∇)b = −(b · ∇)u + η∇2b , (2.15)

where we introduced Ptot = P/ρ and the variable b = B/
√

4πρ, which repre-
sents the normalized magnetic field so to have the dimensions of a velocity.

Like the the usual Reynolds number, we can define a Lundquist number

S =
cAL0

η
,

with cA = B0/
√

4πρ the Alfvén velocity related to the large-scale L0 magnetic
field B0.

3The equation to describe the flow of an incompressible real fluid was first introduced
by Claude-Louis Navier in 1823 and later improved by George Gabriel Stokes.
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In absence of dissipative terms, the incompressible MHD theory presents
three conservation equations. There are two classes of invariants, one that
involves fluid variables and one that involves the magnetic field.
The first invariant of interest describes the conservation of the total energy,
given by the sum of kinetic and magnetic energy

E =

∫
V

(u2 + b2) d3r . (2.16)

Another important conserved quantity in MHD theory is the cross-helicity,
which represents a measure of the degree of correlations between velocity and
magnetic fields

HC =

∫
V
u · b d3r . (2.17)

While E and HC involve both fluid and magnetic contributions, the last in-
variant, the magnetic helicity, contains only magnetic terms. Considering that
the magnetic field is frozen in the plasma, its structures can become very com-
plicated and this invariant offers a measure of this complexity, in particular
the degree of connection between the magnetic flux tubes

HM =

∫
V
a · b d3r , (2.18)

where b = ∇ · a, with a the vector potential.
In the case of an incompressible fluid it is of particular interest to write

the MHD equations in terms of the so-called Elsässer variables

Z± = u± b ,

to obtain a more symmetrical form of the equations MHD (2.14) and (2.15)

∂Z±

∂t
+(Z∓ ·∇)Z± = −∇Ptot+

1

2
(ν+η)∇2Z±+

1

2
(ν−η)∇2Z∓+F± . (2.19)

To complete the set of equations the relations

∇ · Z± = 0

are added to the (2.19).
In the plasma reference system, the Elsässer variables take the form

z± = u± b′ ,

where b′ = b + cA. It follows that the equation (2.19) can be written in the

29



CHAPTER 2.

form

∂z±

∂t
∓ (cA ·∇)z±+ (z∓ ·∇)z± = −∇Ptot+ν±∇2z±+ν∓∇2z∓+F± , (2.20)

where 2ν± = ν ± η are the dissipative coefficients, obtained from the combi-
nation of the kinematic viscosity coefficient and magnetic diffusivity, and F±

are eventual external forcing terms.
On linearizing the equation (2.20) and neglecting the viscous and the external
forcing terms, we have

∂z±

∂t
∓ (cA · ∇)z± ' 0 . (2.21)

The equations (2.21) have solutions of the type z−(x − cAt) and z+(x +

cAt) that describe respectively the Alfvénic fluctuations propagating in the
direction of the magnetic field B0 and those that propagate in the opposite
direction to B0. Note that MHD equations (2.19) have the same structure as
the Navier-Stokes equation; the main difference derives from the fact that non-
linear coupling occurs only between fluctuations propagating in the opposite
direction and this influences the description of turbulence.

Since the Elsässer variables are very important in the incompressible MHD
theory, ideal invariants can be expressed using this formalism. The energy E
and the cross-helicity HC become respectively

E =
1

4

∫
V

[
(z+)2 + (z−)2

]
d3r , (2.22)

HC =
1

4

∫
V

[
(z+)2 − (z−)2

]
d3r , (2.23)

while it is not convenient to express the magnetic helicity HM in terms of
the Elsässer variables. Therefore, we introduce a quantity which, although
is not an invariant, plays an important role in MHD turbulence, that is the
difference between kinetic energy and magnetic energy, called residual energy,
which can be written in the following form

ER =
1

2

∫
V

(u2 − b2) d3r =
1

2

∫
V

(z+ · z−) d3r . (2.24)

It is worth to remark that in classical hydrodynamics, dissipative processes
are defined through the viscosity and the heat diffusivity. In the magnetohy-
drodynamic case the number of coefficients increases considerably and, apart
from some additional electric coefficients, there is a large-scale magnetic field
B0. This makes the MHD equations intrinsically anisotropic.
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2.2 Turbulence phenomenology

The problem of developed turbulence, which occurs at high Reynolds num-
bers, is of great importance in meteorology, aeronautical engineering, etc., and
plays a central role also in theoretical physics, in connection with the study
of the phenomena that present scaling invariance.

Due to the high number of degrees of freedom involved and the strong
dependence on initial conditions typical of chaotic systems, it is necessary to
give up a detailed description of the velocity field (determined by the initial
conditions and the boundary conditions) to describe the systems under a de-
veloped turbulence regime; in fact, it is impossible to predict the evolution of
the system despite the laws of dynamics are deterministic. We can attempt to
construct a statistical theory of turbulent states: the velocity field becomes a
stochastic variable and probabilistic forecasts can be obtained, which become
exact by making temporal averages over long intervals. This marks the pas-
sage from a deterministic description to a statistical description of turbulence.
A statistical theory of turbulence can only be proposed if we assume that, at
high Reynolds numbers, the statistical properties are universal, that is, inde-
pendent of the mechanism that produces turbulence and of the way in which
kinetic energy of the fluid is dissipated.

The theoretically simplest case is that of an incompressible fluid (already
assumed in the previous paragraph), homogeneous and isotropic; the homo-
geneity regards the composition of the fluid, which must not have spatial
variations while the isotropy is a more general characteristic and concerns
the properties of deformation, elasticity, propagation, etc., which must be the
same in each direction.
On a global scale turbulence is generally not homogeneous, however, far
from strongly non-homogeneous boundary layers, the variations of the average
quantities are usually rather weak, so that a limited region of space can be
considered homogeneous. The isotropy assumption is made because the fluid
quickly forgets the way, often anisotropic, in which turbulence is generated.
The experimental results on hydrodynamic turbulence show that isotropy is
usually (but not always) satisfied, even if the addition of a background mag-
netic field in a plasma has a decisive influence on the dynamics of turbulence;
consequently the conditions for isotropy are rarely satisfied.

In fully developed turbulence the dissipation rate of energy is finite, even
for very small values of the coefficients ν and η, such that the conditions are
different from the ideal case, in which ν vanishes completely, that is the limit
ν → 0 differs from the behavior for ν = 0. However, important information
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about non-linear transfer processes can be obtained by considering the sta-
tistical equilibrium properties of the ideal system, which is characterized by
some integral quantities, namely the ideal invariants.
In order to apply the formalism of statistical mechanics to continuum fluid
turbulence, it is convenient to introduce a discretization in the Fourier space
by limiting the number of modes included. In the theory of homogeneous
turbulence we truncate the Fourier series.

In general, the ideal invariants of the continuum system are not strictly
conserved in the truncated system. Quadratic invariants, however, and pre-
sumably only these, are sufficiently “robust” to survive truncation. This prop-
erty is based on the validity of a conservation relation for a set of wave vectors
k, p, q forming a triangle, satisfying k + p + q = 0. In the presence of only
three modes, the conservation relation is

Ėk + Ėp + Ėq = T (k,p,q) + T (p,q,k) + T (q,k,p) = 0 , (2.25)

where T is called the non-linear transfer function, which follows from the
dynamic equation. The validity of this relation, and of the similar ones for
the cross-helicity HC

k and for the magnetic helicity HM
k , can be verified by

direct calculations starting from the MHD equations written in the Fourier
space. In the incompressible case they can be written as

u̇k = −i
(
I− kk

k2

)
·
∑
p

[up(k · uk−p)− bp(k · bk−p)] , (2.26)

ḃk = −i
(
I− kk

k2

)
·
∑
p

[bp(k · uk−p)− up(k · bk−p)] . (2.27)

Multiplying the (2.26) for uk and the (2.27) for b−k and adding the results, we
obtain the explicit form of the energy-transfer function, from which the equi-
librium relation (2.25) is derived, assuming that there are only three modes.

If we suppose to have an ensemble of ideal, truncated and equivalent turbu-
lent systems, the statistical theory shows that the distribution of probabilities
at equilibrium (absolute equilibrium) in phase space is given by the Gibbs’
functional

ρG = Z−1 exp(−W ) , W = αE + βHM + γHC ,

where α, β and γ are the Lagrange multipliers that are determined from the
invariants, Z is a normalization factor and E, HC and HM , defined respec-
tively in the relations (2.16), (2.17) and (2.18), respectively, can be rewritten
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as follows using the variables in the phase space

E =
1

2

∑
k

(uk · u−k + bk · b−k) ,

HC =
∑
k

uk · bk ,

HM =
∑
k

i(k× bk) · b−k/k2 .

After some algebraic passages, we obtain the following ideal spectral densities

EKk =
4πk2

α

(
1 +

k2 tan2 φ

k2 − k2
0

)
,

EMk =
4πk2

α
· k

2 sec2 φ

k2 − k2
0

.

Then

Ek =
4πk2

α

[
1 +

k2(tan2 φ+ sec2 φ)

k2 − k2
0

]
,

HC
k = − 8πk2γ

α2 cos2 φ
· k2

k2 − k2
0

= −2γ

α
EMk ,

HM
k = − 8πk2

α cos2 φ
· k0

k2 − k2
0

= −2k0

k2
EMk ,

with sinφ = γ/(2α), k0 = β/(α cos2 φ) and E =
∫ kmax
kmin

Ek dk and similarly
for HC and HM . The values of the multipliers α, β and γ are limited by the
condition that ρG must be integrable, which means that W must be defined
positive; in particular, EKk and EMk must be positive for any k belonging to
the interval kmin ≤ k ≤ kmax, from which the conditions follow

α > 0 , |γ| < 2α , k2
0 < k2

min .

The ratio β/α is a measure of the magnetic helicity, whereas γ/α is a measure
of cross-helicity. It should be noted that the residual energy spectrum, the
difference of kinetic and magnetic energies, is always negative

ERk = EKk − EMk = −4πk2

α
· k2

0

k2 − k2
0

.

Thus the ideal energy spectrum is dominated by the magnetic contribution,
especially at high wavelengths.
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2.2.1 Energy cascade

In the approximation of homogeneous and isotropic turbulence, it is worth
to mention the great contribution given by Richardson (1922) and Kolmogorov
(1941). Their works constitute an important description of the phenomenon
of turbulence. The first has the merit of having introduced the concepts that
underlie the theory of energy cascade. According to Richardson, turbulence is
made by a collection of eddies at all scales.
The energy is injected at a length scale L and it is transferred, without dissi-
pation, by non-linear processes to small scales until it reaches a characteristic
scale ld, where dissipation takes place. The principal idea is that at very
high Reynolds numbers, the injection scale L and the dissipative scale ld are
completely separated. In a stationary situation, the rate of energy injection
must be balanced by the energy dissipation rate and must also be equal to the
energy transfer rate measured at any scale l in the inertial range ld � l� L.
In the case of large Reynolds numbers, the fluid system is unable to dissipate
all the energy input at the scale L. Therefore, the excess energy must be dis-
sipated at smaller scales where the dissipation process is much more efficient.
This is the physical origin for the energy cascade.
Richardson assumed that large-scale turbulent structures are unstable and
tend to break up by transferring their kinetic energy to smaller eddies, which
in turn propagate the same phenomenon to even smaller scales. This cas-
cade phenomenon repeats itself until the Reynolds number, relative to these
structures, is sufficiently small, so the viscous terms determine the dissipation.

The transfer process described above can be represented by a transfer pro-
cess of a quantity that is conserved. In fact, in the non-linear interactions, the
spectral densities of ideal invariants are conserved, as shown in the conserva-
tion relations such as (2.25). If the interactions are local, that is dominated by
wavenumbers k, p, q of similar magnitude, the transfer in the k-space occurs
in relatively small steps, such that many steps are needed from the injection
range to the dissipation range.

In turbulence two types of cascade can occur:

direct cascade which describes the spectral transfer from kin to larger wavenum-
bers; it is also called normal, since this is the well known transfer in
ordinary hydrodynamic turbulence (the Richardson’s cascade);

inverse cascade where the transfer proceeds from kin to smaller wavenum-
bers.

The directions of the cascade can be determined by the structure of the ideal
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invariants of the system. Although the states of absolute equilibrium are far
from the dissipative turbulence, they indicate the direction of the spectral
evolution in a real system, since the non-linear dynamics is identical. A direct
cascade is expected for the spectral density of some ideal invariant if the ideal
spectrum has a peak at high k since, when it is injected in some intermediate
spectral range, the quantity relaxes towards larger wavenumbers. In the op-
posite case of an ideal spectrum peaked at low k, the quantity should have an
inverse cascade. By controlling the ideal spectra for the MHD invariants Ek,
HC
k and HM

k , it is found that Ek and HC
k should have direct cascades, while

HM
k should have an inverse cascade. The existence of an inverse cascade of

the magnetic helicity was first discussed by Frisch et al. (1975). A condition
to have an inverse cascade seems to be that, in the presence of dissipation,
the decay of turbulence is selective, that is one of the ideal invariants decays
much slower than the other.

2.3 Energy spectra

The hypothesis of an energy cascade, discussed in the previous paragraph,
allows us to try understanding the fundamental mechanisms that occur in
a turbulent flow and it is compatible with the invariance with respect to
scale transformations that appears in the Navier-Stokes equations when the
Reynolds number goes to infinity.

Introducing a length scale l, it is easy to verify that the scaling transfor-
mations l → λl′ and u→ λhu′ (where λ is a scaling factor and h is a scaling
index) leave invariant the non-viscous Navier-Stokes equation for any scaling
exponent h, as long as p→ λ2hp′.
When the dissipative term is taken into account, there is a characteristic length
scale, i.e. ld. As already mentioned above, from a phenomenological point of
view, this is the length scale where the dissipative effects begin to take place.
Of course, since ν is generally very low, ld is expected to be very small. In
fact, there exists a simple relationship for the scaling of ld and the Reynolds
number Re, which is ld ∼ LRe−3/4.

Ideal MHD equations, as is easy to verify, show similar scaling character-
istics; in fact, the following scaling transformations u→ λhu′ and B→ λβB′

(where β is a new scaling index different from h) leave the inviscid MHD equa-
tions unchanged, providing p → λ2βp′, T → λ2hT ′ and ρ → λ2(β−h)ρ′. This
means that velocity and magnetic variables have different scalings, in other
words h 6= β, only when the density scaling is taken into account. In the
incompressible case, however, we cannot distinguish between scaling laws for
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velocity and magnetic variables.
Furthermore, it is expected that the statistical properties of turbulence

at small length scales follow universal scaling laws, independent of boundary
conditions.

2.3.1 Kolmogorov theory

Richardson’s study of turbulence, and in particular the intuition about the
mechanism which is at the base of the energy cascade phenomenon, has been
taken up and continued by Kolmogorov, who has contributed most to this
model.

The first formal theory of turbulence was obtained by a statistical approach
from Kolmogorov in 1941. Through hypotheses on the statistical and physical
nature of velocity fields, the 1941 Kolmogorov theory (K41) is able to describe
the trend of the energy spectrum of the velocity field. He proposed a developed
turbulence approach based on a global scale invariance hypothesis, where it
is assumed that, in the cascade process, the energy transfer rate does not
depend on the length scale l, in the range [ld, L] (called inertial range, since
it is dominated by the inertial forces), and that the energy dissipation rate is
uniform in space.

According to this work it is possible to recognize, within homogeneous and
isotropic turbulence, numerous whirling structures which can be divided into
three main families 2.2:

injection region on large-scale, created by the energy injection mechanism;

inertial region in which energy is transferred to increasingly smaller scales;

Figure 2.2: Schematic picture of the energy cascade. Image credit: http://astro.
physics.ncsu.edu/.
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dissipative region in which energy is dissipated due to viscous effects.

Kolmogorov has defined as a large scale the integral scale L, equivalent
to the typical dimensions of the physical system under examination, which
generates the production of turbulence. In addition, the larger-scale eddy
structures, with typical dimensions of the order of L, are characterized by
high Reynolds numbers, so the viscous term is negligible, from which it is
obtained that the large structures do not dissipate, but extract energy from
the mean motion to produce turbulent kinetic energy.

Concerning the turbulent structures in the inertial region, they occur on
the intermediate scales and are generated by the non-linear instabilities of
the larger eddies. It should be noted that their role is fundamental, since
they transfer the turbulent kinetic energy produced at the integral scales to
the smaller eddies, without having any significant effect on dissipation. The
importance of intermediate scales lies in their universality property since they
do not depend on the type of flux in which they evolve.

Finally, at the level of the dissipative scale, the (smaller) eddies are dom-
inated by viscous phenomena. These phenomena have short characteristic
times and are the fundamental contributors to the dissipation of kinetic en-
ergy coming from the larger scales.

Similarity properties give rise to a power law spectrum in the inertial range.
In the case of a direct cascade, the inertial range is defined by

kin � k � kd ,

where kin and kd indicate the wavenumbers related to the injection process
and to the dissipation process, respectively. The inertial range is taken as the
interval within which the spectrum exhibits a power law behavior. A typical
spectrum is shown schematically in figure 2.3.
In the presence of an inverse cascade there is a second inertial range

L−1 � k � kin ,

where the lower limit is geometrically determined by the size of the system.
The dynamics of the turbulence is controlled by energy injection with a

rate of εin ∼ U2/τL where U is the velocity scale and τL is a characteristic
time for the process of energy injection, which results to be τL ∼ L/U . In the
case of a stationary situation the balance between the rates at different scales
must be satisfied

εin = εt = εd = ε , (2.28)
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Figure 2.3: Logarithmic plot of a typical energy spectrum. Image credit: https:
//slideplayer.com/.

where εt is the transfer rate measured at any scale l, in the range ld � l� L,
and εd ∼ U2/τd is the energy dissipation rate at the scale L, where τd is the
characteristic dissipation time which, starting from the Navier-Stokes equation
(2.12), is estimated to be of the order of τd ∼ L2/ν.
The relation (2.28) holds, to a good approximation, even when the injection
rate varies with time, since the rapid small-scale dynamics in the inertial
and dissipation ranges regulate the spectrum almost instantaneously at large
scales, characterized by slower changes.

Considering a scale ln in the range ld � ln � L, associated with the
wavenumber kn ∼ l−1

n , we can write the typical time required for the transfer
of energy between two nearby scales

τn ∼
ln
δun

, (2.29)

where δun is the difference in velocity between the two scales ln and ln+1.
Because the energy flow is constant over the whole inertial range,

En
τn
∼ δu3

n

ln
∼ ε , (2.30)

we found the scaling relation

δun ∼ ε1/3l1/3n . (2.31)

Then, with dimensional arguments, we can derive a law for the turbulent ki-
netic energy in the inertial range. This relation can be expressed as a function
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of the wavenumber and the energy-transfer rate

E(k) = Ek = CKε
2/3k−5/3 , (2.32)

which is the well-known Kolmogorov spectrum, widely observed in all experi-
mental investigations of turbulence and considered as the main result of the
K41 phenomenology of turbulence. The numerical factor CK, the Kolmogorov
constant, is not determined by scaling arguments but requires a dynamic the-
ory. The Kolmogorov spectrum has been observed in many types of turbulent
flows, since it is independent of the geometry of the system and the way in
which turbulence is generated, and also the value of the Kolmogorov constant
seems to be universal, in particular it is independent of the Reynolds number.
The data collected by Sreenivasan (1995) from many experiments, showed that
CK is invariant with a small statistical scatter

CK = 1.6 − 1.7 ,

over a broad range of Reynolds numbers, 30 ≤ Re ≤ 3 × 104; the authors
of recent high-resolution numerical simulations have found a value of CK =

1.65± 0.05 for Re ' 500 (Gotoh and Fukayama, 2001).

2.3.2 Iroshnikov-Kraichnan spectrum

The phenomenology of developed turbulence in the case dominated by the
magnetic field has been studied by Iroshnikov (1963) and Kraichnan (1965)
and then developed by Dobrowolny et al. (1980), to try to explain the oc-
currence of the observed alfvénic turbulence. In MHD turbulence the Alfvén
effect4 modifies the inertial range scale. According to this effect, small-scale
fluctuations are not independent of the macro-state but are strongly influ-
enced by the large-scale magnetic field, which causes the fluctuations to be-
have roughly like Alfven’s waves.
Since non-linear interactions occur only between the fluctuations that prop-
agate in the opposite direction along the magnetic field, the energy cascade
undergoes a slowdown. This means that the characteristic time Tl, needed to
efficiently transfer energy from one eddy to another at smaller scales, cannot
be the time τl of the hydrodynamic turbulence (2.29), but it must be increased
by a factor τl/τA (where τA ∼ l/cA is the Alfvén time, that is the interaction

4According to the Alfvén effect, only the Alfvén waves that propagate in the opposite
direction along a driving magnetic field interact.
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time of two wave packets δz+
l and δz−l ), so

Tl ∼
(τl)

2

τA
. (2.33)

Doing the substitution τl → Tl in the (2.30) gives

δz4
l τA
l2

∼ ε .

In other words both ± modes are transferred at the same rate to small scales
(ε+ ∼ ε− ∼ ε). This is not completely correct, because the Alfven effect
causes that the energy transfer rates have the same scaling laws for ± modes
but nothing can be said about the amplitudes of ε+ and ε−. However, when
the energy transfer rate is constant, there is a scaling law different from that
of Kolmogorov, in particular

δzl ∼ (εcA)1/4l1/4 , (2.34)

which corresponds to the energy spectrum

Ek = CIK(εcA)1/2k−3/2 , (2.35)

the Iroshnikov-Kraichnan spectrum (IK) of MHD turbulence. The coefficient
CIK (Iroshnikov-Kraichnan constant) should be different from CK.
The spectrum is less steep than the Kolmogorov spectrum, since the factor
τl/τA, by which the energy transfer time is longer, increases with decreasing of
l, and therefore more and more high amplitudes are required, compared with
the hydrodynamic case, in order to produce the same energy transfer.
Moreover, contrary to the Kolmogorov spectrum, which depends only on the
quantity ε, the MHD energy spectrum depends also on the macroscopic quan-
tity cA and thus cannot be derived from a dimensional analysis without further
assumptions.

2.4 Intermittency

Turbulence is usually associated with the idea of self-similarity, which
means that the spatial distribution of turbulence eddies is equal on any scale
in the inertial range. This is a primary assumption in the phenomenology of
Kolmogorov K41 and, on the same line, in the phenomenology of Iroshnikov-
Kraichnan IK. Nevertheless, it is known that this picture is not exactly true,
since it ignores the fact that small scale structures cannot be equally dis-
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tributed so as to fill the whole space. In fact, the numerical simulations in the
turbulence field show that the smaller eddies, those corresponding to higher
frequencies, become more and more sparse in time and in space as the scale
decreases. This behavior is called intermittent and apparently violates self-
similarity.

A system is called self-similar or scale-invariant if it is reproduced by an
enlargement of some part of it. Self-similarity is a widespread phenomenon
both in physics and in biology, but it should be kept in mind that while
a mathematical system can be exactly self-similar, in nature this property
exists only for a certain range of scale.

2.4.1 Structure functions

To give a quantitative description of the turbulence, it is not enough just
to take into account the behavior of the eddies of a certain size, but it is also
necessary to consider the increase of the velocity, or some other field,

δu(x, l) = u(x + l)− u(x)

between two points separated by l. Thus, it is obtained a longitudinal com-
ponent

δu‖ = δu(x, l) · l
l

and two transverse, or lateral, components δu⊥. The statistical distribution of
the velocity of eddies of size l is described by the moments of the increments
called structure functions, both longitudinal and lateral

S(n)(l) = 〈[δu‖(l)]n〉 , U (n)(l) = 〈[δu⊥(l)]n〉 ,

where it is assumed that the turbulence is homogeneous and isotropic, such
that the moments depend only on the distance l, and both transverse mo-
ments are equal. The set of moments S(n)(l) is equivalent to the probability
distribution function (PDF) of the velocity increments.

The structure functions are related to the correlation functions

〈u1(x)u2(x) · · ·uk(x)〉 ,

in particular to the longitudinal correlation functions

〈u‖(x)n−1u‖(x + l)〉 = C(n)(l)
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and the simplest relations are

S(2)(l) = 2
[
C(2)(0)− C(2)(l)

]
, S(3)(l) = 6C(3)(l) , (2.36)

which can easily be verified. In the same way, we can found the relations
between the lateral structure functions and the correlation functions of the
transverse velocity components.

At the second order, the structure functions and correlation functions are
related to the energy spectrum E(k). In particular, it is obtained

C(2)(l) = 2

∫ ∞
0

[
−cos(kl)

(kl)2
+

sin(kl)

(kl)3

]
E(k) dk

and using the (2.36),

S(2)(l) = 4

∫ ∞
0

[
1

3
+

cos(kl)

(kl)2
− sin(kl)

(kl)3

]
E(k) dk . (2.37)

If the energy spectrum follows a power law of the type Ek ∼ k−α, it is easy
to verify that S(2) ∼ lα−1, since the relation (2.37), with κ = kl, becomes

S(2) ∼ lα−1

∫ ∞
0

[
1

3
+

cosκ

κ2
− sinκ

κ3

]
κ−α dκ , (2.38)

where the integral converges for 1 < α < 3.
Higher-order structure functions play a crucial role in the theory of turbu-

lence. The interest in structure functions derives from their scaling properties,
unlike correlation functions that generally do not show scaling behavior. Thus
in the inertial interval we get

S(n)(l) = anl
ζn . (2.39)

This scaling property ensures that the complete information, in the inertial
range, is contained in the set of scaling exponents ζn and in the coefficients
an, fixed by the values of S(n) at some l = l0. Self-similarity requires that the
scaling exponents are linear in n

ζn = cn , c > 0 .

Note that the more general linear relation ζn = an + b, b 6= 0, does not cor-
respond to a self-similar behavior, but describes an intermittent system. The
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phenomenology of Kolmogorov K41, δu(l) ∼ l1/3, implies the linear relation

ζn = n/3 ,

while for the Iroshnikov-Kraichnan IK phenomenology

ζn = n/4 .

The information obtained from the direct simulations of the Navier-Stokes
equation have allowed to reformulate the theoretical framework originally pro-
posed by Kolmogorov. While the first experimental results and the first nu-
merical simulations were in agreement with Kolmogorov’s predictions, more
accurate analysis showed small but significant deviations. In fact, the exper-
imental data showed that the energy dissipation occurred intermittently and
not uniformly as expected by Kolmogorov, that is the local dissipation rate
varies rapidly in space and in time

ε(x) =
1

2
ν
∑
t,j

(∂tuj + ∂jut)
2 .

This give rise to some doubt about the rigorous validity of the K41 phe-
nomenology (2.31),an inconsistency already noted by Landau after the publi-
cation of the Kolmogorov theory. Based on the criticism of Landau, Obukhov
(1962) proposed that 〈ε〉 in the K41 relation should be replaced by

εl =
1

Vl

∫
Vl

ε(x)dV ,

obtaining the following scaling law

δul ∼ ε
1/3
l l1/3 ,

from which
S

(n)
‖ (l) = 〈[δu‖(l)]n〉 = dn〈εn/3l 〉l

n/3 . (2.40)

Indicating with µn the exponents of εl

〈εnl 〉 ∼ lµn ,

if we put the (2.40) into (2.39) we get the relation

ζn =
1

3
n+ µn/3 . (2.41)
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2.4.2 Exact relations of turbulence

The phenomenological approach, such as the K41 theory and the more
general framework of structure functions, is based exclusively on some sym-
metry properties of turbulence without a direct reference to dynamics, such
as the Navier-Stokes equations.
There are, however, some exact relationships derived from the equations of
dynamics, which require only the homogeneity and the isotropy of turbulence
and are extremely useful when one wants to verify the validity of the hypothe-
ses. Below we analyze three exact relations: the 4/5 law of Kolmogorov for the
turbulence of Navier-Stokes, the 4/3 law of Yaglom for the scalar convection,
and a relation for MHD turbulence.
The first relation was obtained by Kolmogorov (1941, 1991) and derives from
the Navier-Stokes equation. So, from equation (2.40), for the third order
structure function (n = 3), we obtain

S(3)(l) = 〈(δu‖(l))3〉 = −4

5
εl , (2.42)

where ε = 〈εl〉 is the mean energy dissipation per unit mass, which is indepen-
dent of the statistics εl. Since the relation (2.42) is valid in the inertial range
for homogeneous and isotropic Navier-Stokes turbulence, it is often used to
define the extension of the inertial range in observations and numerical simu-
lations of turbulence.
For thermal convection Yaglom (1949) derived the 4/3 law in which the tem-
perature (T ) or any passive scalar5(θ) follows a simple advection-diffusion
equation. Using the properties of homogeneity and isotropy, we obtain

〈δu‖(δθ)2〉 = − 4

D
εθl , (2.43)

which is Yaglom’s 4/3 law for scalar turbulence, with D = 3, where εθ is the
scalar dissipation rate.
In the case of MHD turbulence we get

〈δz−‖ δz
+
i δz

+
i 〉 = − 4

D
ε+l (2.44)

with ε+ the dissipation rate. This relation represents the Yaglom’s law for
MHD turbulence, as obtained from Politano and Pouquet (1998), and is for-
mally similar to both Yaglom’s law for convection of a scalar field and to the

5With passive scalar we mean a scalar quantity that does not influence the state of
velocity field; in other words, the velocity field influences the dynamics of the scalar, while
the opposite does not happen.
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Kolmogorov law for hydrodynamic turbulence. The main difference with re-
spect to the latter is that the MHD relation (2.44) contains both longitudinal
and lateral structure functions.

2.5 High frequency spectra

Magnetic fluctuations in solar wind have been studied in the past, based
on the frozen-in approximation (Taylor’s approximation) and its underlying
hypothesis is that the advection due to turbulent fluctuations on small scales
can be neglected and the advection of a turbulent field is considered solely due
to the largest scales, since in turbulence most of the energy is contained in
large integral scales. This hypothesis allows to interpret time series, measured
at a single point in space, as spatial variations in the mean flow.
In a typical solar wind turbulence power spectrum (as shown in figure 2.4)
three length scales can be identified: the Correlation or integral length λC

represents the largest separation distance over which eddies are still correlated,
the Taylor scale λT is the scale at which viscous dissipation begins to affect
the eddies and the Kolmogorov scale λK characterizes the smallest dissipation-
scale eddies.

The energy of very large-scale magnetic fluctuations is transported down
to small scales by a turbulent cascade, into the kinetic range where the tur-
bulent fluctuations can be dissipated by some mechanism. While the inertial
range in solar wind can be described more or less in a way similar to the hy-
drodynamic turbulence, the dissipative region is likely to operate differently

Figure 2.4: Typical power spectrum of interplanetary magnetic field at 1 AU. The
low-frequency range refers to the Helios 2 observations (Bruno et al., 2009) while the
high-frequency to WIND observations (Leamon et al., 1998). Image credit: Bruno
and Carbone (2013).
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from its fluid counterpart. The main reason for this is the fact that the solar
wind behaves formally like a collisionless plasma, that is the usual viscous
dissipation is negligible. At the same time, in a magnetized plasma there is
a certain number of characteristic scales, then understanding the physics of
the generation of small-scale region of turbulence is an important topic for the
basic plasma physics.
With small scales we indicate scales that vary between the ion-cyclotron fre-
quency fci = eB/mi (or the ion inertial length λi = c/ωpi) and the electron-
cyclotron frequency. Below the ion-cyclotron frequency, the spectrum follow
the usual power law f−α with a spectral index close to the Kolmogorov value
of α ' 5/3, while at higher frequencies the spectrum steepens significantly
(typically α ' 7/3) and Leamon et al. (1998) attribute this steepening to the
occurrence of a dissipative range. However, how magnetic energy dissipates
in the energy cascade still remains an open question.

Indeed, Perri et al. (2009) investigated the scaling behavior of the eigen-
values of the variance matrix of magnetic fluctuations, which give information
on the anisotropy of the high-frequency region. The results indicate that
this region is strongly anisotropic, since the minimum variance direction is
almost parallel to the background magnetic field at scales larger than the
ion-cyclotron scale. Another interesting result, below this scale, is that the
eigenvalues of the variance matrix have a strong intermittent behavior with
high localized fluctuations; this behavior generates a cross-scale effect in mag-
netic turbulence. The probability density functions of the eigenvalues evolve
with the scale, becoming power laws at scales smaller than the ion-cyclotron
scale. Then, it is not possible to define a characteristic value for the eigenval-
ues of the variance matrix at small scales. As a consequence, the absence of
a characteristic value indicates that a typical power spectrum at small scales
cannot be defined.

2.5.1 The dispersive range

The existence of a magnetic power spectrum with a slope close to 7/3 sug-
gests that the high-frequency region can be interpreted as an energy cascade
due to dispersive effects. So, in this region the Hall-MHD model can be used
for the description of turbulence, since it is the most simple model to study
dispersive effects in a fluid-like structure. Taking into account the effect of ion
inertia, the generalized Ohm’s law gives

E = −u×B +
mi

ρe
(∇×B)×B , (2.45)
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where the second term oh the right is the Hall term. Therefore, the equation
(2.9) that describe the evolution of magnetic field over time becomes

∂B

∂t
= ∇×

[
u×B− mi

ρe
(∇×B)×B + η∇×B

]
, (2.46)

which contains three different processes and then three different times. Intro-
ducing a length scale l, we have characteristic fluctuations ρl, Bl and ul and
we can define the eddy-turnover time TNL ∼ l/ul related to the convective
process, an Hall time TH ∼ ρll2/Bl and a dissipative time TD ∼ l2/η.
The alfvénic turbulent cascade at large scales is realized in a time TNL, while
at small scales dissipation takes place. Instead, at intermediate scales the cas-
cade is realized in a time TH and the mean volume rate of the energy transfer
becomes εV ∼ B2

l /TH ∼ B3
l /l

2ρl because at these scales density fluctuations
are important.

Since the energy cascade is considered as a hierarchy of eddies at different
scales, we can write the ratio of the mass density between two successive levels
ln > ln+1

ρn
ρn+1

∼
(

ln
ln+1

)−3r

with 0 ≤ |r| ≤ 1 a measure of the degree of compression; then, the spectral
energy density becomes

E(k) ∼ k−7/3+r . (2.47)

The scaling exponents observed in solar wind in the range 2 ≤ α ≤ 4 (Leamon
et al., 1998), can be reproduced by degree of compression between −5/6 and
1/6.
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Acceleration of energetic
protons at interplanetary shocks

Populations of energetic particles are an important component of the he-
liospheric environment and they are distributed from the lower corona to the
interface of the heliosphere with the interstellar medium. The majority of
these energetic particles are accelerated by the variety of shock waves present
in the solar wind. Solar energetic particles can originate either from a solar
flare site or by shock waves associated with CMEs (Reames, 1999). In partic-
ular, CME driven shock waves in the corona and in the interplanetary space
are thought to be the main locataions for the acceleration of SEPs in gradual
events. An increase in the intensity of energetic charged particles observed
in concomitance with an interplanetary shock (ESP) has been referred to as
an energetic storm particle event. There are a wide variety of different types
of ESP events: classical, spike, step-like or irregular according to their time
profile (Lario et al., 2003). In any case the proton intensity increases are more
frequently observed in the low-energy ion fluxes. Another important pop-
ulation of energetic particles are those associated at Corotating Interaction
Region (CIR) related shock waves, where CIRs are produced by the interac-
tion between fast and slow solar wind streams.
The association of energetic particles with collisionless shocks implies an ac-
celeration mechanism that is related with the shock itself.
In this work we performed a correlation analysis between the energetic pro-
ton flux enhancements and the magnetic field turbulence observed in the up-
stream and downstream regions of interplanetary shocks, by using in situ
data recorded by instruments onboard the STEREO Ahead spacecraft to un-
derstand if turbulence can play a role in particle acceleration. Hence, we
investigated the energy spectra of the protons measured during enhancements
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at shock waves, that give information on the propagation and acceleration of
the particles in the interplanetary space to possibly discuss the acceleration
mechanisms at work.
We remark that it is very important to study the populations of energetic
particles in order to understand the particle acceleration mechanisms, which
is still an unsolved key fundamental problem in Astrophysics and fundamental
Physics. Moreover, solar energetic particles are very important in the space
weather contest as they can impact on the Earth’s magnetosphere and this
can affect short-circuiting power grids that cause blackouts, disrupting com-
munications, damaging satellites, and endangering astronauts with radiation.

3.1 Acceleration mechanisms

One of the most interesting questions of astrophysics concerns the processes
that can accelerate particles to high energies in space plasmas. All acceleration
mechanisms are electromagnetic in nature. The acceleration process, in the
most general situation, is described by the equation of motion for a charged
particle

d

dt
(γmv) = q (E + v×B) (3.1)

where γ = 1/
√

1− v2/c2 is the Lorentz factor, m is the proton mass, q is the
proton charge, v is the velocity, E and B are the electric and magnetic fields,
respectively. The acceleration of particles is due to magnetic fields variable
over time. In fact, in completely ionized gases, the electric fields can not be
maintained stationary because free charged particles, recombining, cancel any
other electric field. Therefore, only changing magnetic fields, which determine
the formation of induced electric fields, can lead to acceleration mechanisms.
Acceleration can occur in very extensive sources and with not much intense
magnetic fields, like the waves produced in the explosion of supernovae, or
in extremely compact objects with rapidly variable magnetic fields, such as
rotating neutron stars and pulsars with very small periods of rotation.

The acceleration of the particles can be regular or stochastic. The first
acceleration mechanism is very fast but occurs in regions with extremely high
density, in which the loss of energy for collisions becomes important.
On the other hand, stochastic acceleration mechanisms they are characterized
by a continuous but gradual increase in energy of the particles, following suc-
cessive crossings of a region with non homogeneous magnetic field. Processes
of this type, even if they are rather slow, have the advantage of producing
energy spectra that can cover several decades.
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3.1.1 Stochastic and diffusive shock acceleration

Diffusion of charged particles in the turbulent magnetic fields carried along
with a moving plasma is a possible mechanism for energy gains and losses.
Fermi (1949) first postulated that the particles are accelerated via diffusion as
a result of collisions with non-uniform magnetic fields in random motion in the
interstellar medium. This perturbation of the field behaves like a magnetic
mirror, in motion with a speed v = βc, where c is the light speed. Following
each reflection on this mirror, the particles can either gain or lose energy in a
given encounter, depending on whether the particle-cloud scattering is head-
on or tail-on. After many encounters there is a net gain of energy, so that
particles would, on average, be accelerated.
This process is called second-order Fermi acceleration, or stochastic accelera-
tion because the mean energy gain per bounce depends on the mirror velocity
squared, β2. This is thought to be the primary mechanism by which particles
gain non thermal energies in many astrophysical environments, such as radio
galaxies, solar flares, the interstellar medium, and supernova remnants.

The mechanism just described is considered to be inefficient in accelerating
particles to high energies. A more efficient mechanism is the first-order Fermi
acceleration, or diffusive shock acceleration (DSA), in which the particles are
accelerated by a shock wave and in this case the energy gain is proportional
to β.
Shock waves typically have magnetic inhomogeneities in the upstream and
downstream regions. Consider the case of a charged particle traveling through
the shock wave (from upstream to downstream). If it encounters a change in
the magnetic field, this can reflect it back through the shock (downstream
to upstream) at increased velocity. If a similar process occurs upstream, the
particle will again gain energy. These successive reflections greatly increase
its energy. This mechanism only requires the existence of a shock and of scat-
tering processes on both sides of the shock wave. Another important aspect
is the perfect symmetry between the processes occurring both upstream and
downstream of the shock.
The energy spectrum of particles undergoing this process turns out to be a
power law, that explain the observed cosmic ray spectrum up to about 1015

eV (Blandford and Eichler, 1987).
Furthermore, Giacalone (2012), in a study of particle acceleration at inter-
planetary shock, highlighted that the energy spectra are consistent with a
power law dependence at low energies (in the range from a few tens up to a
few hundred of keV), in agreement with that predicted by DSA. However, this
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acceleration mechanism does not fully address the several problems related to
the phenomenon.
Moreover, observations of Solar Energetic Particle (SEP) events have shown
that the predicted power law is valid on a limited energy interval (Mewaldt
et al., 2005), below a characteristic energy where the spectrum has a rollover.
This rollover energy is supposed to depend on various conditions at the inter-
planetary shock. In fact, the form of the energy spectral rollover is affected
by the rate of ion escape upstream of the foreshock and by the nonlinear
evolution and magnetic field amplification in the foreshock, that controls the
acceleration timescale (Lee et al., 2012).
Ellison and Ramaty (1985) argued that the power law spectra should rollover
at high energies due to increasing diffusion coefficient with energy and intro-
duced an exponential decay to take into account this feature.
Moreover, at quasi-perpendicular shock the upstream wave energy density
which is responsible for particle scattering may to be not sufficient. For in-
stance, Zank et al. (2006) developed a basic theory for particle acceleration at
highly perpendicular shocks based on the convection of solar wind turbulence
into the shock. Assuming that the particles can be injected and accelerated
diffusively at the shock, they showed how the injection energy increases with
increasing obliquity; in fact, quasi-perpendicular shocks require much higher
energies than quasi-parallel shocks. Perpendicular interplanetary shocks are
more probable to accelerate a preexisting energetic particle population, such
as flare accelerated particles, than in situ solar wind particles. Diffusive shock
acceleration is difficult at nearly perpendicular shocks.

3.1.2 Shock drift and shock surfing acceleration

Since the diffusive shock acceleration requires the ions to cross the shock
front many times, quasi-perpendicular shocks present a theoretical problem
because the magnetic field prevents the ions from coming back upstream.
It has been shown that a minimum velocity, equal to a few times that of the
upstream solar wind plasma, is sufficient to overcome this barrier (Webb et al.,
1995). In other words, Larmor radii must be large enough to allow the orbits
to reach the shock front after turbulent backscattering collisions. Considering
that ions within the upstream region are not sufficiently heated to satisfy this
criterion, a pre-injection mechanism is required.
Two non-Fermi mechanisms, that can give particles pre-acceleration to reach
the energy threshold required to start the DSA at quasi-perpendicular shocks,
have been proposed: shock drift, SDA, (Pesses et al. (1982); Decker (1988))
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(a) (b)

Figure 3.1: Panel (a) shows a pattern of a perpendicular shock geometry and the
orientations of electric and magnetic fields. Panel (b) is a plot of the trajectories of
particles in shock surfing and drift shock acceleration, respectively from the top to
the bottom. Image credit: Lever et al. (2001).

and shock surfing, SSA, (Sagdeev (1966); Lee et al. (1996); Zank et al. (1996)).
Consider a perpendicular shock with the orientation of the fields as shown

in figure 3.1a, where the solar wind velocity u is in the x direction, u = ux̂,
the magnetic field is along z, B = Bẑ and the shock normal is n = −x̂,
namely positive x is downstream. In the shock stationary frame, the flowing
magnetized plasma produces a convective electric field, Ec = −u ×B/c. So,
the ion guiding centers drift downstream at the mean plasma velocity without
movement perpendicular to the bulk flow.
In the shock drift acceleration, the central source for the displacement of the
guiding center is the magnetic field gradient at the shock ramp. It causes a
drift of particle guiding centers so that the particles can gain energy moving
along the direction of the convective electric field as they proceed downstream
through the front. In other words, the electric potential energy is converted
in kinetic energy.

In the shock surfing model, particles may be trapped upstream of the shock
(they surf the wave) and accelerated, along the shock front and perpendicu-
larly to the magnetic field, through the combined action of the electrostatic
potential gradient and the Lorentz force. Particles are de-trapped when reach
enough kinetic energy to breach the potential barrier and escape downstream
(figure 3.1b). The speed

v ' vA
(
mp

me

)1/2

(MA − 1)3/2 , (3.2)
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where vA is the Alfvén velocity, mp/me is the ratio between the ion and elec-
tron mass and MA is the Alfvén Mach number (Ohsawa, 1987).
It is found from a nonlinear wave theory based on a two-fluid cold plasma
model that in a magnetosonic shock wave a potential jump (eϕ ' 2mpv

2
A(MA−

1)) is formed; its dependence on the propagation angle θ is rather weak. On
the other hand, the width of a quasi-perpendicular shock is of the order of
the electron inertial length (∆ ∼ (c/ωpe)[2(MA − 1)]−1/2) for shocks having
propagation angles in the region θc . θ 5 90◦, where θc is 88.7◦ for a proton
plasma. Hence, the electric field strength normal to the wave front (E ∼ ϕ/∆)
is very strong. Since the particles trapped by a quasi perpendicular shock can
be accelerated to the drift speed, v ∼ cE/B, they can be accelerated up to
the speed given by equation (3.2). For the oblique shocks with θ � θc, the
width of shock is rather large and, then, the resonant acceleration is about
(mp/me)

1/2 times smaller than that in a quasi-perpendicular shock.
Trapped ions move in the direction of the wave propagation with a speed simi-
lar to that of the shock wave. So, an ion velocity along the wave front increases
with the time t as v ' ωpvsht, where ωp is the proton cyclotron frequency and
vsh = MAvA is the propagation speed of the shock. Consequently, also the
kinetic energy increases with the time, according to the relation

E ' mp

2
ω2
pv

2
sht

2 . (3.3)

Therefore, the trapped ions can be accelerated up to the maximum velocity
given by equation (3.2) in a time

tmax '
(
mp

me

)1/2

ω−1
p M−1

A , (3.4)

obtained using the electric field normal to the wave front (E ∼ (mp/qp)v
2
A

(c/ωpe)
−1(MA − 1)3/2, where ωpe is the electron plasma frequency).

So, it is as if the surfing ion is temporarily delayed by the quasi perpendicular
shock and accelerated during its permanence at the shock front when it feels
the convective electric field.

3.2 Datasets

3.2.1 STEREO spacecraft

STEREO (Solar TErrestrial RElations Observatory) is a solar observa-
tion mission, the third in NASA’s Solar Terrestrial Probes program (STP).
It consists of two nearly identical probes launched into orbits that provide
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Figure 3.2: Orbits of STEREO observatories and Earth. Image credit: https:
//it.wikipedia.org/.

stereoscopic images of the Sun. Because the satellites are at different points
along the Earth’s orbit, but distant from the Earth (figure 3.2), they can pho-
tograph parts of the Sun that are not visible from the Earth. This permits to
directly monitor the far side of the Sun, instead of deducing the activity on
the far side from data that can be obtained from Earth’s view of the Sun.
In particular, STEREO’s scientific objectives are to understand the causes
and mechanisms of coronal mass ejections (CMEs) start and to describe their
propagation through the heliosphere, to discover the mechanisms and sites
of energetic particle acceleration in the low corona and the interplanetary
medium and, overall, to better interpret the structure of the solar wind. Be-
fore STEREO, the detection of the sunspots that are associated with CMEs
on the far side of the Sun was only possible using helioseismology, which gives
low-resolution maps of the solar activity. Considering the Sun rotates every
25 days, some detail on the far side was invisible to Earth; so this was one of
the principal reasons for the STEREO mission.

The two STEREO spacecraft were launched on October 26, 2006, from
Cape Canaveral Air Force Station in Florida, on a Delta II rocket into highly
elliptical geocentric orbits. The two space probes were in slightly different
orbits, the "ahead" (A) spacecraft was ejected to a heliocentric orbit inside
Earth’s orbit while the "behind" (B) spacecraft, being released in the opposite
direction from spacecraft A, entered a heliocentric orbit outside the Earth’s
orbit. STEREO A takes 347 days to complete one revolution of the Sun and
STEREO B takes 387 days.
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The following four instrument packages are mounted on each spacecraft:

• The Sun-Earth Connection Coronal and Heliospheric Investigation (SEC-
CHI) pictures and studies coronal mass ejections during their entire
journey;

• STEREO/WAVES (SWAVES) instrument monitors radio disturbances
travelling from Sun to Earth;

• PLAsma and SupraThermal Ion Composition (PLASTIC) studies CME
particles (protons, alpha particles and heavy ions);

• In-situ Measurements of Particles and CME Transients (IMPACT) sam-
ples the three-dimensional distribution of solar wind electrons, energetic
particles and interplanetary magnetic field.

Plasma characteristics of protons, alpha particles and heavy ions are pro-
vided by PLASTIC instrument. This experiment gives measurements of mass
and charge state composition of heavy ions, distinguishing the CME plasma
from ambient coronal plasma.
IMPACT samples the 3-D distribution of solar wind plasma electrons, the
characteristics of the solar energetic particles (SEP) ions and electrons accel-
erated in coronal mass ejections and solar flares, and the local magnetic field
vector. It is a suite of seven instruments:

• SWEA (Solar Wind Electron Analyzer) is designed to measure the dis-
tribution function of the solar wind electrons from below 1 eV to several
keV, with high spectral and angular resolution;

• STE (Suprathermal Electron Telescope) detects electrons in the energy
range 2− 20 keV, which are the superhalo component of the solar wind
electron distribution;

Figure 3.3: The scientific instrumentation on board the two STEREO probes.
Image credit: https://it.wikipedia.org/.
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• MAG (Magnetometer) is a tri-axial flux gate with sensors that use a
ring core geometry;

• SEPT (Solar Electron Proton Telescope) consists of two telescopes that
separate and measure electrons in the energy range 20 − 400 keV and
protons from 20 to 7000 keV;

• SIT (Suprathermal Ion Telescope) is a time-of-flight ion mass spectrom-
eter that determines elemental composition of He-Fe ions over the energy
range 30 keV/nucleon to 2 MeV/nucleon;

• LET (Low Energy Telescope) is made up of 14 detectors designed to mea-
sure protons and helium ions from 1.5 to 13 MeV/nucleon, and heavier
ions from 2 to 30 MeV/nucleon;

• HET (High Energy Telescope) consists of six detectors designed to esti-
mate protons and helium ions to 100 MeV/nucleon, and energetic elec-
trons to 5 MeV.

The first three of these are located on the IMPACT boom/mast that extends
a total of 4.5 meters antisunward on each spacecraft, while the latter four
instruments make up the SEP subsystem which is mounted on the spacecraft
body.

3.2.2 Selection of events

We studied particle enhancements at interplanetary shocks, by using STEREO
A data over the period 2009 − 2016. The events studied have been se-
lected by comparing two interplanetary shock lists. The first is the He-
liospheric Shock Database generated and maintained at the University of
Helsinki, http://ipshocks.fi/database/; while the second can be found at
the following link, http://www-ssc.igpp.ucla.edu/forms/stereo/stereo_
level_3.html, compiled by Jian et al. (2013).
These lists include the time of each shock passage at the spacecraft and differ-
ent characteristics of the shock, such as the magnetosonic Mach number, the
compression ratio, the shock-normal angle and the plasma beta. In addition,
the lists give information about the type of the shock, forward or reverse,
and the source of the shock, such as a SIR (Stream Interaction Region) or an
ICME (Interplanetary Coronal Mass Ejection).

We selected only shocks at which an effective enhancement in proton flux
is observed at energies 4− 6 MeV. We used the 4− 6 MeV LET data because
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it is an intermediate energy range above > 1 MeV where particle accelera-
tion might be produced by a different mechanism that work at few hundreds
keV (Kallenrode, 1996). Nevertheless, it is not too huge to prevent a good
statistical sample of events given that the occurrence frequency of ESPs is a
decreasing function of the energy (Dresing et al., 2016). To evaluate the real
increase in proton flux, we used a pre-increase flux (background) value (before
the shock passage time) where the solar wind is almost undisturbed. Thus, if
jpeak indicates the maximum proton flux value within few hours around the
shock, and jbackground is the background value, the relative increase in proton
flux is given by the

jnormalized =
jpeak

jbackground
. (3.5)

To simplify the notation, hereinafter we will use jp, jb and jn instead of jpeak,
jbackground and jnormalized, respectively.
If the value of jn was higher than 1.5, the event was considered as a ESP
event. We recorded the data referred to the selected shocks in two separate
lists, depending on how much the peak is close to the shock, in order to study
its correlation with the shock itself: in the List 1 the events that present a
peak within three hours before or after the shock passage time, in order to
include most of the events of shock-spike type and those with increases of
longer duration (table 3.1); while in the List 2 we collected those with the
increment detected more than three hours before or after the shock up to 15

hours (table 3.2).
Finally, the identified ESP events were cross-checked with the list of solar ener-
getic particle events, https://umbra.nascom.nasa.gov/SEP/. Consequently,
we reported in the two tables if a SEP was in progress at the shock arrival
(hereafter, we call these cases as SEP) or if it is not present at the shock
passage (NO SEP). A number of 24 ESP events was identified in List 1, 16

of which are SEP whereas, 8 are not associated. List 2, instead, includes 14

ESP events, 9 are SEP while 5 are associated at NO SEP events.
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Figures 3.4 and 3.5 show two examples of events (SEP and NO SEP asso-
ciated) with ion intensities taken, respectively, from SEPT instrument in the
top panel, from LET in the middle panel and from HET instrument in the
lower panel.
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Figure 3.4: Ion intensities around the shock crossing on 28 May 2012, 02 : 48 UT
(shock #10 of the List 1), observed by STEREO A. The upper panel shows data
recorded by SEPT instrument in the energy range of 84.1 − 6500.0 keV, the middle
panel displays proton intensties taken from LET in the energy range of 4.0−12.0 MeV
and the lower panel shows data in the energy range of 13.6 − 29.7 MeV from HET.
The vertical dotted line indicates the time of the shock passage over the spacecraft.
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Figure 3.5: Ion intensities around the shock crossing on 25 January 2013, 00 : 14
UT (shock #13 of the List 1), observed by STEREO A. The upper panel shows data
recorded by SEPT instrument in the energy range of 84.1 − 6500.0 keV, the middle
panel displays proton intensties taken from LET in the energy range of 4.0 − 12.0
MeV and the lower panel shows data in the energy range of 13.6 − 29.7 MeV from
HET (there are no data for this energy range). The vertical dotted line indicates the
time of the shock passage over the spacecraft.
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3.2.3 Magnetic field and proton flux data

We performed the analysis of magnetic field turbulence around the shock
using the two sets of data (List 3.1 and List 3.2) distinguishing between ESPs
occurring during an SEP event and NO SEP events. The magnetic field data
used in this study are provided in the RTN coordinate system. It is a coor-
dinate system centered into the spacecraft. The Radial component, R, points
from the spacecraft to the Sun, the Tangential component, T, is the cross
product of the solar rotational axis and R axis, and lies in the solar equatorial
plane and the Normal component, N, completes right handed triad.
We used magnetic field data with a high time resolution of 0.125 s from IM-
PACT/MAG instrument onboard STEREO A spacecraft, available at https:
//cdaweb.sci.gsfc.nasa.gov/index.html/. Instead, for the energetic pro-
ton flux enhancements we retrieved 1-hour averaged data of energetic particle
intensities (#/cm2 s sr MeV) in the energy range 4−6 MeV measured by LET
sensor onboard STEREO A, http://www.srl.caltech.edu/STEREO/. Figure
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Figure 3.6: Magnetic field components and magnitude in solar-polar coordinates
(RTN) with a time resolution of 0.125 s of the shock that occurred on 11 June 2014,
00 : 14 UT (shock #20 of the List 1).
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(3.6) shows an example of the magnetic field measurements for the magnitude
and the RTN-components for one of the selected shocks, denoted with the
number #20 in the first List and occurred on 11 June 2014, 00 : 14 UT.

3.3 Analysis of magnetic field turbulence and ener-
getic protons at interplanetary shocks

In this section we show the results obtained from the correlation analy-
sis between the energetic proton flux enhancements in the 4 − 6 MeV range
and the magnetic field turbulence observed in the upstream and downstream
regions of interplanetary shocks, by using in situ data recorded by the LET
and IMPACT/MAG instruments onboard the STEREO Ahead spacecraft as
described in the previous section.

3.3.1 Method of analysis

The spectral analysis at the selected shocks was performed both in the
upstream region and in the downstream region of the shock, using a total
sampling time of tmax = 4096 s with a resolution of tmin = 0.125 s.
In order to quantify the magnetic field turbulence we used the fast Fourier
transformation (Yuen and Fraser, 1979). In this standard method for spectral
analysis there are two frequency limits. First, an upper limit given by the
Nyquist frequency fmax = fNy = 1/2 tmin; secondly, the inverse of the total
sampling time fmin = 1/tmax as a lower limit. Since the resolution of the
IMPACT/MAG instrument is 0.125 s and the total sampling time of the mag-
netic field is 4096 s (that is approximatively 1 hour) we obtain a frequency
range of 2.4 · 10−4 Hz and 4 Hz.
In figure 3.7 we show an example of the spectra of the upstream turbulence
related to the shock #20 in table 3.1, obtained with a standard FFT proce-
dure for the magnitude and the RTN-components of the magnetic field. These
panels show a different behavior for the magnitude and for the single compo-
nents, but they do not display clearly distinct peaks.
Before the spectral analysis, it is essential to substract the mean value of the
magnetic field. Hence, since we are interested just in the turbulent fluctua-
tions, we define a turbulence measure as

T =

fmax∑
i=fmin

|F (i)| (3.6)
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Figure 3.7: Spectral anaysis of shock occurred on 11 June 2014 at 00 : 14 UT in the
upstream region for the magnitude and the RTN components of the magnetic field
on a double logarithmic scale.

as the sum of the magnitude of the Fourier coefficients F (i) obtained from the
magnetic field after removing average. This turbulence measure was calculated
both in the upstream and downstream regions of the shocks (Tup/down). The
measure of turbulence defined in equation (3.6) is the one used by Claßen
et al. (1999), but we obtained similar results for correlation coefficients if we
use the absolute square of the Fourier coefficients |F (i)|2 or the variance σ2.

Afterwards, we performed a correlation analysis between the 4 − 6 MeV
proton flux enhancements and the magnetic field turbulence. To this aim
we used the proton flux jn and the measure of turbulence T , as defined in
the equations (3.5) and (3.6), respectively. The study was done both for the
shocks belonging to the List 1 (see table 3.1) and those belonging to the List
2 (see table 3.2), making the distinction between the shocks occurring on the
wake of a SEP event and those taking place on a great background (NO SEP).
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Results for List 1

The following plots are obtained by applying the analysis described above for
all the shocks of the first list, plotting the 4−6 MeV proton flux enhancement
jn as a function of the turbulence measure T . This was done for all the
components and for the magnitude of the magnetic field and in each figure we
reported the correlation graphs of the upstream and downstream intervals of
the shocks. In addition to the parametric correlation analysis, represented by
the linear correlation coefficient r, we also performed a nonparametric analysis
(Spearman’s correlation), the results of which will be discussed later, although
we can note that:

• the correlation coefficients are very low in the upstream region for any
B components and magnitude;

• they are slightly better for the R and T components (i.e. those in the
equatorial plane of the Sun) and magnetic field magnitude in the down-
stream region.
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Figure 3.8: Proton flux enhancements in the 4− 6 MeV versus turbulence measure
for the R component of the magnetic field for the shocks of the first list. Panel (a)
shows the correlation in the upstream region of the shock while panel (b) in the
downstream region. r is the correlation coefficient of the linear fit indicated by the
green line.
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Figure 3.9: Proton flux enhancements in the 4− 6 MeV versus turbulence measure
for the T component of the magnetic field for the shocks of the first list. Panel (a)
shows the correlation in the upstream region of the shock while panel (b) in the
downstream region. r is the correlation coefficient of the linear fit indicated by the
green line.
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Figure 3.10: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the N component of the magnetic field for the shocks of the first list. Panel (a)
shows the correlation in the upstream region of the shock while panel (b) in the
downstream region. r is the correlation coefficient of the linear fit indicated by the
green line.
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Figure 3.11: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the magnitude of the magnetic field for the shocks of the first list. Panel (a) shows
the correlation in the upstream region of the shock while panel (b) in the downstream
region. r is the correlation coefficient of the linear fit indicated by the green line.
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Results for List 1: SEP events

Since the correlation coefficients obtained for all ESP events of List 1 are low,
we separate the events that occur on the wake of a SEP event from those
that are not associated with a SEP, in order to study the link between the
two considered quantities for the two groups of events, separately. We report
below the plots of the flux jn as a function of the total wave power T relative
to the shocks of the list 1 that occur in presence of SEP event in the upstream
and downstream regions of the interplanetary shocks. We did this correlation
analysis for the three components (R,T,N) and for magnitude of magnetic field
and we got:

• higher correlations in the downstream region than the upstream region;

• for downstream region, higher correlations for the R and T components
and magnitude than the N component of magnetic field.
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Figure 3.12: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the R component of the magnetic field for the shocks associated with SEP events.
Panel (a) shows the correlation in the upstream region of the shock while panel (b)
in the downstream region. r is the correlation coefficient of the linear fit indicated
by the green line.
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Figure 3.13: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the T component of the magnetic field for the shocks associated with SEP events.
Panel (a) shows the correlation in the upstream region of the shock while panel (b)
in the downstream region. r is the correlation coefficient of the linear fit indicated
by the green line.
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Figure 3.14: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the N component of the magnetic field for the shocks associated with SEP events.
Panel (a) shows the correlation in the upstream region of the shock while panel (b)
in the downstream region. r is the correlation coefficient of the linear fit indicated
by the green line.
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Figure 3.15: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the magnitude of the magnetic field for the shocks associated with SEP events.
Panel (a) shows the correlation in the upstream region of the shock while panel (b)
in the downstream region. r is the correlation coefficient of the linear fit indicated
by the green line.
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Results for List 1: NO SEP events

In the case of shocks that occur in absence of SEP events (NO SEP), we
obtained the results shown below with the panel (a) relative to the correlation
between the proton flux increases and the turbulence measure in the upstream
region and the panel (b) related to the downstream region of the interplanetary
shocks. Also in this case we have correlation coefficients greater than those
obtained when all the events (SEP and NO SEP) are considered, even if we
find clearly anti-correlation coefficients unlike the correlation values obtained
in the case of shocks that occur on the wake of SEP events. In particular we
got:

• anti-correlation for all the components and magnitude of the magnetic
field downstream;

• higher coefficients in the downstream region than the upstream region;

• the only positive correlation is found fo the upstream T component.
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Figure 3.16: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the R component of the magnetic field for the shocks without the presence of a
SEP event. Panel (a) shows the correlation in the upstream region of the shock while
panel (b) in the downstream region. r is the correlation coefficient of the linear fit
indicated by the green line.
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Figure 3.17: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the T component of the magnetic field for the shocks without the presence of a
SEP event. Panel (a) shows the correlation in the upstream region of the shock while
panel (b) in the downstream region. r is the correlation coefficient of the linear fit
indicated by the green line.

76



CHAPTER 3.

103 104 105 106

Tup

100

101

j n

NO SEP events - N component - upstream

r = -0.123

(a)

104 105 106 107

Tdown

100

101

j n

NO SEP events - N component - downstream

r = -0.628

(b)

Figure 3.18: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the N component of the magnetic field for the shocks without the presence of a
SEP event. Panel (a) shows the correlation in the upstream region of the shock while
panel (b) in the downstream region. r is the correlation coefficient of the linear fit
indicated by the green line.
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Figure 3.19: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the magnitude of the magnetic field for the shocks without the presence of a SEP
event. Panel (a) shows the correlation in the upstream region of the shock while
panel (b) in the downstream region. r is the correlation coefficient of the linear fit
indicated by the green line.
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Results for List 2

Then, we repeated the correlation analysis for the shocks belonging to List 2,
which refers to the events that presented an increment in an interval greater
than three hours before or after the shock passage time up to 15 hours. For
each component and for the magnitude of the magnetic field the top plot shows
the proton flux enhancements jn as a function of the turbulence measure T
in the upstream region while the plot below displays the same quantities in
the downstream region of the shocks. Also for the second list we made a
parametric and a nonparametric correlation analysis whose results are shown
later. In the case of list 2, we do not consider an event that present an high
value of jn (shock #8 of the list 2) that is an outlier point. We find:

• poor correlation in the upstream and downstream regions of interplane-
tary shocks;

• for downstream region, coefficients slightly higher for the R and T com-
ponents and magnitude of the magnetic field.

Therefore, due to the lower number of events compared to those of list 1, we
will not divide the events in SEP and NO SEP.
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Figure 3.20: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the R component of the magnetic field for the shocks of the second list. Panel
(a) shows the correlation in the upstream region of the shock while panel (b) in the
downstream region. r is the correlation coefficient of the linear fit indicated by the
green line.
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Figure 3.21: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the T component of the magnetic field for the shocks of the second list. Panel
(a) shows the correlation in the upstream region of the shock while panel (b) in the
downstream region. r is the correlation coefficient of the linear fit indicated by the
green line.
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Figure 3.22: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the N component of the magnetic field for the shocks of the second list. Panel
(a) shows the correlation in the upstream region of the shock while panel (b) in the
downstream region. r is the correlation coefficient of the linear fit indicated by the
green line.
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Figure 3.23: Proton flux enhancements in the 4−6 MeV versus turbulence measure
for the magnitude of the magnetic field for the shocks of the second list. Panel (a)
shows the correlation in the upstream region of the shock while panel (b) in the
downstream region. r is the correlation coefficient of the linear fit indicated by the
green line.
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3.3.2 Analysis of the correlation between proton flux enhance-
ments and magnetic field fluctuations

In this section we analyze the correlation significance between the energetic
proton flux enhancements and the magnetic field turbulence observed in the
upstream and downstream regions of interplanetary shocks.
Table 3.3 shows the correlation coefficients (r) and the p-values (probability
of occurrence by chance) for the shocks belonging to the List 1 while table 3.4
shows the same for List 2.

List 1 - Linear correlation

UP DOWN

rR= 0.092 pR= 0.669 rR= 0.365 pR= 0.079
rT= 0.179 pT= 0.402 rT= 0.261 pT= 0.217
rN= 0.042 pN= 0.845 rN= 0.098 pN= 0.648
r= 0.093 p= 0.665 r= 0.372 p= 0.073

(a) List 1

UP DOWN

rR= 0.288 pR= 0.279 rR= 0.569 pR= 0.021
rT= 0.123 pT= 0.650 rT= 0.471 pT= 0.066
rN= 0.157 pN= 0.562 rN= 0.344 pN= 0.192
r= 0.221 p= 0.410 r= 0.699 p= 0.003

(b) List 1: SEP

UP DOWN

rR= −0.448 pR= 0.266 rR= −0.776 pR= 0.024
rT= 0.480 pT= 0.229 rT= −0.665 pT= 0.072
rN= −0.123 pN= 0.771 rN= −0.628 pN= 0.095
r= −0.407 p= 0.317 r= −0.841 p= 0.009

(c) List 1: NO SEP

Table 3.3: Table (a) contains the correlation coefficients and the p-values related to
the shocks reported in the List 1, in the upstream and downstream regions. Table (b)
refers to the shocks associated with SEP events while table (c) to those that occur
in the absence of SEP (NO SEP).
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List 2 - Linear correlation

UP DOWN

rR= −0.090 pR= 0.770 rR= 0.373 pR= 0.209
rT= −0.201 pT= 0.510 rT= 0.367 pT= 0.218
rN= 0.106 pN= 0.730 rN= 0.033 pN= 0.914
r= −0.047 p= 0.880 r= 0.231 p= 0.447

Table 3.4: Correlation coefficients and the p-values related to the shocks reported
in the List 2, in the upstream and downstream regions.

In addition to the parametric correlation analysis performed by calculating
the linear correlation coefficient (r), we make a nonparametric correlation
analysis, through the Spearman’s correlation coefficient (ρs). It estimates
how well the relationship between two variables, in our case the proton flux
enhancement and the turbulence measure, can be described using a monotonic
function. We performed this statistical analysis for the three components
(R, T, N) and for the magnitude of the magnetic field relative to the events
belonging to the list 1 (see table 3.5) and then, we repeated the analysis for
the list 2 (see table 3.6). In each table, next to each Spearman’s coefficient we
reported the significance (p) of its deviation from zero. The significance is a
value in the interval [0.0, 1.0]; a small value indicates a significant correlation.
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List 1 - Spearman’s correlation

UP DOWN

ρR
s = 0.039 pR= 0.856 ρR

s = 0.113 pR= 0.599
ρT
s = 0.096 pT= 0.657 ρT

s = 0.139 pT= 0.517
ρN
s = 0.102 pN= 0.636 ρN

s = −0.009 pN= 0.968
ρ = 0.003 p= 0.987 ρ = 0.090 p= 0.674

(a) List 1

UP DOWN

ρR
s = 0.197 pR= 0.464 ρR

s = 0.291 pR= 0.274
ρT
s = −0.118 pT= 0.664 ρT

s = 0.282 pT= 0.289
ρN
s = 0.024 pN= 0.931 ρN

s = 0.079 pN= 0.770
ρ = 0.132 p= 0.625 ρ = 0.424 p= 0.102

(b) List 1: SEP

UP DOWN

ρR
s = −0.571 pR= 0.139 ρR

s = −0.738 pR= 0.037
ρT
s = 0.429 pT= 0.289 ρT

s = −0.452 pT= 0.260
ρN
s = −0.190 pN= 0.651 ρN

s = −0.571 pN= 0.139
ρ = −0.405 p= 0.320 ρ = −0.762 p= 0.028

(c) List 1: NO SEP

Table 3.5: Table (a) contains the Spearman’s coefficient correlation and its signifi-
cance related to the shocks reported in the List 1, in the upstream and downstream
regions. Table (b) refers to the shocks associated with SEP events while table (c) to
those that occur in the absence of SEP (NO SEP).

List 2 - Spearman’s correlation

UP DOWN

ρR
s = −0.174 pR= 0.553 ρR

s = 0.112 pR= 0.703
ρT
s = 0.042 pT= 0.887 ρT

s = 0.064 pT= 0.829
ρN
s = 0.033 pN= 0.911 ρN

s = −0.138 pN= 0.637
ρ = 0.191 p= 0.513 ρ = −0.015 p= 0.958

Table 3.6: Spearman’s coefficient correlation and its significance related to the
shocks reported in the List 2, in the upstream and downstream regions.

Overall, we have noticed that there is a good correlation between the mea-
sure of turbulence downstream and the flux of particles, and a poor correlation
between upstream turbulence and particle fluxes (Claßen et al., 1999). At this
point, if we choose as the threshold value 0.1 for the p-value in the case of
the linear correlation and for the significance in the case of the nonparamet-
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ric correlation through the Spearman’s coefficient, we obtain a not significant
correlation for all events in List 1.
To evaluate the level of correlation in the various cases of the List 1, we have
separated the shocks that occur on the wake of a SEP event from those where
a SEP is not present at the shock passage (NO SEP). In particular, as we can
see from the table 3.3b, we found a not significant correlation between the
upstream magnetic field turbulence and the particle fluxes, whereas a high
correlation between these quantities in the downstream region, except for the
N component that is not significant. In the case of Spearman’s correlation
(see table 3.5b) we obtain a not significant correlation coefficients upstream
and downstream, but they become in agreement with those obtained from
the parametric analysis if we increase the threshold value for the significance
to 0.3. On the other hand, in absence of a solar energetic particle event in
correspondence of the shock passage (see table 3.3c), we obtained a signifi-
cant anticorrelation in the downstream region; also in this case if we consider
a threshold of 0.3 for the significance the agreement with the linear correla-
tion increases (see table 3.5c). We obtain a correlation for SEP events and
an anticorrelation for NO SEP events, probably due to the influence of the
streaming of solar energetic particles at the shock. On the contrary, for the
shocks recorded in the List 2, we got a not significant correlation between the
magnetic field turbulence and the particles fluxes in the upstream and down-
stream regions of interplanetary shock (see table 3.4 or 3.6).
We discuss the results obtained in this section in the frame of particle accel-
eration processes, focusing on the role played by the magnetic turbulence.
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3.3.3 Analysis of the compressibility degree

We consider now also the degree of compressibility in the upstream and
downstream regions of interplanetary shocks of the two lists of selected events
(see tables 3.1 and 3.2).
In the interplanetary medium magnetic field and density show fluctuations
over all scales and the compression depends on both the scale and the nature
of the solar wind. In fact, slow wind is generally more compressive than fast
wind. Bavassano et al. (1982) used a variance analysis of Helios-2 magnetic
data to investigate statistical properties of incompressible fluctuations (eigen-
values and eigenvectors of the variance matrix of the fluctuating components)
associated with the trailing edge of the high-speed streams. They found that
the turbulence is not strictly incompressible and compressibility is relatively
more important away from the Sun.

In order to study the degree of compressibility of the fluctuations associ-
ated with the proton flux enhancements, we used the quantity σ2

B/B
2, where

σ2
B is the variance in field magnitude and B is the average of the magnetic

field magnitude.
In particular, we analyzed the degree of compressibility for all the ESP events
of the first list, for the shocks that occur on the wake of an SEP event and
in the case of NO SEP events. We report in figures 3.24, 3.25 and 3.26 the
correlation analysis performed on the magnetic field magnitude that show
a correlation coefficient in the downstream region of interplanetary shocks
greater than the coefficient in the upstream region. We repeated this study
also for the three components of the magnetic field and we obtained similar
results in all cases (the correlation coefficients and the p-values are recorded
in table 3.7). If we choose as the threshold value for the p-value 0.1, we obtain
a not significant correlation for all events in List 1, except for the magnitude
of the magnetic field in the downstream region in the case of SEP and NO
SEP events, separately.
In addition to the parametric correlation analysis performed by calculating the
linear correlation coefficient (r), we make a nonparametric correlation anal-
ysis, through the Spearman’s correlation coefficient (ρs), whose results are
reported in table 3.8. In the case of Spearman’s coefficient, if we choose 0.1

as the threshold value for the significance, we only obtain a significant anti-
correlation for the magnitude in the downstream region for NO SEP events.
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List 1 - Linear correlation

UP DOWN

rR= 0.160 pR= 0.455 rR= 0.199 pR= 0.351
rT= 0.051 pT= 0.813 rT= 0.210 pT= 0.324
rN= 0.024 pN= 0.911 rN= −0.096 pN= 0.657
r= 0.053 p= 0.806 r= 0.266 p= 0.209

(a) List 1

UP DOWN

rR= 0.384 pR= 0.142 rR= 0.311 pR= 0.241
rT= −0.018 pT= 0.949 rT= 0.241 pT= 0.368
rN= 0.019 pN= 0.944 rN= 0.009 pN= 0.974
r= 0.125 p= 0.644 r= 0.493 p= 0.052

(b) List 1: SEP

UP DOWN

rR= −0.340 pR= 0.327 rR= −0.418 pR= 0.302
rT= 0.185 pT= 0.660 rT= 0.027 pT= 0.949
rN= 0.067 pN= 0.875 rN= −0.455 pR= 0.257
r= −0.280 p= 0.502 r= −0.627 p= 0.096

(c) List 1: NO SEP

Table 3.7: Table (a) contains the correlation coefficients and the p-values related
to the shocks reported in the List 1 between the proton flux enhancements and the
degree of compressibility in the upstream and downstream regions. Table (b) refers
to the shocks associated with SEP events while table (c) to those that occur in the
absence of SEP (NO SEP).
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List 1 - Spearman’s correlation

UP DOWN

ρR
s = −0.080 pR= 0.710 ρR

s = 0.021 pR= 0.923
ρT
s = −0.126 pT= 0.557 ρT

s = 0.178 pT= 0.405
ρN
s = 0.119 pN= 0.579 ρN

s = −0.223 pN= 0.296
ρ = −0.095 p= 0.659 ρ = 0.123 p= 0.565

(a) List 1

UP DOWN

ρR
s = 0.000 pR= 1.000 ρR

s = 0.159 pR= 0.557
ρT
s = −0.165 pT= 0.542 ρT

s = 0.191 pT= 0.478
ρN
s = 0.100 pN= 0.713 ρN

s = −0.241 pN= 0.368
ρ = −0.109 p= 0.688 ρ = 0.329 p= 0.213

(b) List 1: SEP

UP DOWN

ρR
s = −0.574 pR= 0.183 ρR

s = −0.381 pR= 0.352
ρT
s = 0.095 pT= 0.823 ρT

s = 0.190 pT= 0.651
ρN
s = −0.048 pN= 0.911 ρN

s = −0.452 pN= 0.260
ρ = −0.238 p= 0.570 ρ = −0.762 p= 0.028

(c) List 1: NO SEP

Table 3.8: Table (a) contains the Spearman’s coefficient correlation and its signifi-
cance related to the shocks reported in the List 1, in the upstream and downstream
regions. Table (b) refers to the shocks associated with SEP events while table (c) to
those that occur in the absence of SEP (NO SEP).
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Figure 3.24: Proton flux enhancements versus degree of compressibility for the
magnitude of the magnetic field for all the events of List 1. Panel (a) shows the
correlation in the upstream region of the shock while panel (b) in the downstream
region. r is the correlation coefficient of the linear fit indicated by the green line.
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Figure 3.25: Proton flux enhancements versus degree of compressibility for the
magnitude of the magnetic field for the shocks associated with SEP events. Panel
(a) shows the correlation in the upstream region of the shock while panel (b) in the
downstream region. r is the correlation coefficient of the linear fit indicated by the
green line.
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Figure 3.26: Proton flux enhancements versus degree of compressibility for the
magnitude of the magnetic field for the shocks without the presence of a SEP event.
Panel (a) shows the correlation in the upstream region of the shock while panel (b)
in the downstream region. r is the correlation coefficient of the linear fit indicated
by the green line.
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Therefore, we applied the same analysis described above on the degree of
compressibility to the shocks belonging to the second list (with the increment
of the proton flux in an interval greater than three hours before or after the
shock passage). Also in this case we show in figure 3.27 the correlation related
to the magnitude of the magnetic field, even if all the components present
such behavior. However, the results obtained with the parametric and non-
parametric analysis (see tables 3.9 and 3.10), show not significant correlations
in the upstream and downstream regions.

List 2 - Linear correlation

UP DOWN

rR= −0.090 pR= 0.770 rR= 0.373 pR= 0.209
rT= −0.201 pT= 0.510 rT= 0.367 pT= 0.218
rN= 0.106 pN= 0.730 rN= 0.033 pN= 0.914
r= −0.047 p= 0.880 r= 0.231 p= 0.447

Table 3.9: Correlation coefficients and the p-values between the proton flux en-
hancements and the degree of compressibility in the upstream and downstream re-
gions related to the shocks reported in the List 2.

List 2 - Spearman’s correlation

UP DOWN

rR= −0.090 pR= 0.770 rR= 0.373 pR= 0.209
rT= −0.201 pT= 0.510 rT= 0.367 pT= 0.218
rN= 0.106 pN= 0.730 rN= 0.033 pN= 0.914
r= −0.047 p= 0.880 r= 0.231 p= 0.447

Table 3.10: Spearman’s coefficient correlation and its significance between the pro-
ton flux enhancements and the degree of compressibility related to the shocks re-
ported in the List 2, in the upstream and downstream regions.
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Figure 3.27: Proton flux enhancements versus degree of compressibility for the
magnitude of the magnetic field for all the events of List 2. Panel (a) shows the
correlation in the upstream region of the shock while panel (b) in the downstream
region. r is the correlation coefficient of the linear fit indicated by the green line.
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3.4 Relation with the magnetosonic Mach number

At this point it is interesting to study also the relation between the the
turbulence measure and the proton flux enhanncements and the magnetosonic
mach number Mms that gives information about the strength of interplanetary
shocks.
In the case of the shocks of the List 1 (table 3.1) associated with the SEP
events, if we consider the turbulence measure T and the magnetosonic Mach
number Mms, we note that the turbulence measure in the downstream region
increases as the number of Mach increases, especially for quasi-perpendicular
shocks (see figure 3.29).

We performed a nonparametric correlation analysis (Spearman’s correla-
tion) between the turbulence measure and the magnetosonic Mach number
and the results are listed in table 3.11. From these values we can see a higher
correlation downstream compared to the upstream region of interplanetary
shocks, as shown in figures 3.28 and 3.29 related to the magnitude of the mag-
netic field, even if the correlation coefficients are not very significant except
the magnitude in the downstream region.

Spearman’s correlation

UP DOWN

ρR
s = 0.300 pR= 0.259 ρR

s = 0.328 pR= 0.215
ρT
s = −0.071 pT= 0.795 ρT

s = 0.418 pT= 0.107
ρN
s = 0.040 pN= 0.884 ρN

s = 0.325 pN= 0.219
ρ = 0.153 p= 0.571 ρ = 0.645 p= 0.007

Table 3.11: Spearman’s coefficient correlation between the turbulence measure and
the magnetosonic Mach number related to the shocks reported in the List 1 that
occur on the wake of a SEP event, in the upstream and downstream regions.

Then we plot the proton flux enhancements jn in the 4−6 MeV as a function
of the magnetosonic Mach number Mms for interplanetary quasi-perpendicular
shocks. From the figure 3.30 we can note a high level of correlation between
the two quantities (r1 = 0.80) and this value increases above a value of 1.6

(r2 = 0.86).
A good correlation is found between jn and the product between the shock-
normal angle θBn and the magnetosonic Mach number Mms. In fact in this
case (figure 3.31) we see that above the threshold the correlation between
proton flux enhancements jn and this quantity increases from r1 = 0.66 to
r2 = 0.84. Hence, both θBn and Mms seem to be critical parameters for the
shock acceleration efficiency at high energies (at least in the 4−6 MeV range).
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Figure 3.28: Turbulence measure T versus magnetosonic Mach number Mms for the
magnitude of the magnetic field in the upstream region of interplanetary shocks that
occur on the wake of a SEP event. The values with a θBn < 45◦, 45◦ < θBn < 65◦

and θBn > 65◦ are indicated in light blue, blue and dark blue, respectively.
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Figure 3.29: Turbulence measure T versus magnetosonic Mach number Mms for the
magnitude of the magnetic field in the downstream region of interplanetary shocks
that occur on the wake of a SEP event. The values with a θBn < 45◦, 45◦ < θBn < 65◦

and θBn > 65◦ are indicated in light blue, blue and dark blue, respectively.
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Figure 3.30: Proton flux enhancements jn versus magnetosonic Mach number Mms
for interplanetary quasi-perpendicular shocks (45◦ < θBn < 65◦ and θBn > 65◦ are
indicated blue and dark blue, respectively) that occur on the wake of a SEP event.
The dotted line indicates a critical value above which the correlation between the
two plotted quantities increases (r2 > r1).

40 60 80 100 120 140 160 180 200
θBn ∗Mms

10-1

100

101

102

j n

45 ◦ <θBn<65
◦

θBn>65
◦

r1 =  0.66
r2 =  0.84

Figure 3.31: Proton flux enhancements jn versus the product between the shock-
normal angle θBn and the magnetosonic Mach number Mms for interplanetary quasi-
perpendicular shocks (45◦ < θBn < 65◦ and θBn > 65◦ are indicated blue and dark
blue, respectively) that occur on the wake of a SEP event. The dotted line indicates a
critical value above which the correlation between the two plotted quantities increases
(r2 > r1).
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3.5 Kinetic energy spectra

In the second part of this chapter we focus the attention on the study of
the evolution of the kinetic energy spectra of the shocks associated with SEP
events. The results obtained are, then, discussed in the general framework of
acceleration mechanisms to shed light on the nature of particle acceleration
involved in this type of events.
In this section we performed the analysis of kinetic energy spectra of ESPs
associated with the SEP events of the List 1 (see table 3.1). The data used
to study these events are 1-minute averaged proton fluxes measured by the
three instruments (SEPT, LET and HET) aboard STEREO A spacecraft in
39 energy channels from 84.1 keV to 100 MeV.
The average differential flux (dJ/dE) was calculated over three hour intervals
around the shock. A calibration procedure was applied to compare the energy
channels of the three instruments. In particular, we compared the last channel
of SEPT (2.2 − 6.5 MeV) with the first one of LET (4.0 − 4.5 MeV) because
they have a comparable geometric mean energy, equal to 3.8 MeV and 4.2

MeV respectively. The second calibration was performed between the last
channel of LET (10.0 − 12.0 MeV) and the first of HET (13.6 − 15.1 MeV)
with a geometric mean energy of 11.0 MeV and 14.0 MeV, respectively. Then,
the LET and HET fluxes were rescaled by a factor obtained by performing a
linear regression between data from the first two channels and from the last
two channels, respectively (Laurenza et al., 2015).

3.5.1 Model fit for SEP events

These energy spectra can be fitted with the Weibull functional form (Lau-
renza et al., 2013), also known as the two-parameter stretched exponential
(Frisch and Sornette, 1997), defined as

N(E) = k

(
E

Eτ

)γ−1

e
−
(
E
Eτ

)γ
. (3.7)

Therefore, we take into account the conversion from the particle spectrum to
the differential flux, namely

dJ

dE
= A×N(E)× E1/2

and we obtain the following distribution

dJ

dE
= C

(
E

Eτ

)γ−1

E1/2 e
−
(
E
Eτ

)γ
, (3.8)
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where C, Eτ and γ are the free parameters of the fit.
The Weibull function (Weibull, 1951) is a distribution that has application

in many fields of research. In this case, the derivation of the Weibull spectrum
of energetic particles is based on truncated stochastic processes exhibiting a
power law growth in time. In the framework of particle acceleration, two
processes can be related to the Weibull spectra, shock surfing and stochastic
acceleration.
Weibull spectrum of energetic particles is essentially based on the connection
between the Weibull distribution and the “killed” processes exhibiting a power
law growth in time. We consider the simple case of a deterministic process
X(t) = tν truncated (“killed”) at a random time T which is exponentially dis-
tributed as f(T ) = e−T . The distribution of the killed state X(T ) = T ν is a
Weibull’s one g(X), as result of equating the probabilities g(X)dX = f(T )dT

with parameter 1/ν. In the shock surfing acceleration (SSA) mechanism, at
a quasi-perprendicular shocks, the particle energy augments as the power law
E(t) ∼ t2 (see section 3.1.2) and the acceleration efficiency decreasing with the
shock angle θBn. Consequently, from SSA mechanism the expected particle
spectrum is a Weibull distribution with parameter γ = 1/2.
An alternative interpretation is provided by stochastic acceleration. In fact,
Pallocchia et al. (2017), in order to derive the Weibull spectrum, assume that
a set of noninteracting particles is accelerated by a stochastic process.Starting
from the classical Fermi’s model, they consider particles stochastically accel-
erated by interactions with magnetic irregularities or turbulent fluctuations,
and they assume that the scattering gives to the particles an isotropic distri-
bution. The spatial region where the interactions occur is homogeneous and,
therefore, spatial diffusion is not considered. Then, the diffusion equation,
that describes the conservation of the number of particles in energy space in
the range between E and E + ∆E, is written as

∂N

∂t
=
∂[b(E)N ]

∂E
+

1

2

∂2[f(E)N ]

∂E2
− N

τ
+ qinδ(E) , (3.9)

where b(E) = −d〈E〉
dt is the mean acceleration rate, f(E) = d〈(∆E)2〉

dt , qin is the
rate of injection of particles with energy Ein in the acceleration process. The
first and the second term on the right-hand side of the equation are related to
the stochastic nature of the process, the third is connected with the particle
leakage from the acceleration region in a characteristic time τ and the last
term describes the source of praticle injection in the process. If the increase of
the particle energy in time is a power law as in the hypothesis of anomalous
diffusion in velocity (Bouchet et al., 2004) the ratio of the second over the first
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term tends to zero in the asymptotic limit (E → ∞). Then, equation (3.9)
becomes

N = −E
γ
τ

γ

∂(E1−γ −N)

∂E
(3.10)

in the case of a stationary state and its integration yields the Weibull spec-
trum (see equation (3.7)), that represents an exact equilibrium solution to the
diffusion-loss equation.

Another functional form can be used to fit the ESP spectra, i.e. the
double power law proposed by Band et al. (1993) which is commonly used to
fit particle spectra in SEP events (Mewaldt et al. (2012); Desai and Giacalone
(2016)). The equation for this spectral shape is given by

dJ

dE
= C E−γae

−
(
E
E0

)
forE ≤ (γb − γa)E0

dJ

dE
= C E−γb

{
[(γb − γa)E0](γb−γa) e(γa−γb)

}
forE ≥ (γb − γa)E0 (3.11)

where γa is the low energy power law slope and γb is the high energy power law
slope. The function is equal to the Ellison-Ramaty form (Ellison and Ramaty,
1985) below the transition energy, (γb−γa)E0. At higher energies, the double
power law makes a smooth transition to a second power law.

Energy spectra for SEP events in List 1

In figure from 3.32 to 3.45 we report the energy spectra and the best
fit of the ESP events (superposed on a SEP event) of the List 1 at quasi-
perpendicular shocks; in particular for 6 over the 14 ESP events (see figures
from 3.32 to 3.37) we obtain a Weibull functional form, while for 8 over the
14 ESP events in the wake of SEPs (see figures from 3.38 to 3.45) the Weibull
like shape fits only the high energy tail.
On the contrary, the two quasi-parallel shocks of the List 1 show a double
power law trend as we can see from figures 3.46 and 3.47.
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Figure 3.32: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2011 March 22 SEP event (#3 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curve is
the Weibull function used to fit the spectra. Data errors are within the marker size.
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Figure 3.33: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2011 September 11 SEP event (#4 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively (no data for HET).
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.34: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 January 29 SEP event (#7 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curve is
the Weibull function used to fit the spectra. Data errors are within the marker size.
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Figure 3.35: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 March 19 SEP event (#9 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curve is
the Weibull function used to fit the spectra. Data errors are within the marker size.
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Figure 3.36: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2013 December 1 SEP event (#16 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curve is
the Weibull function used to fit the spectra. Data errors are within the marker size.
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Figure 3.37: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2014 February 22 (at 23 : 06 UT) SEP event (#19 of the List 1). The
data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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The following 8 plots show the spectra that are fitted by the Weibull distri-
bution only at high energy, while at low energy we obtain a power law.
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Figure 3.38: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2011 March 9 SEP event (#2 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curves are
the power law (green) and the Weibull function (purple) used to fit the spectra. Data errors
are within the marker size.
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Figure 3.39: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2011 November 28 SEP event (#5 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curves are
the power law (green) and the Weibull function (purple) used to fit the spectra. Data errors
are within the marker size.
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Figure 3.40: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 March 18 SEP event (#8 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curves are
the power law (green) and the Weibull function (purple) used to fit the spectra. Data errors
are within the marker size.
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Figure 3.41: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 May 28 SEP event (#10 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curves are
the power law (green) and the Weibull function (purple) used to fit the spectra. Data errors
are within the marker size.
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Figure 3.42: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2014 February 22 (at 08 : 00 UT) SEP event (#18 of the List 1). The
data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curves are the power law (green) and the Weibull function (purple) used to fit the
spectra. Data errors are within the marker size.
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Figure 3.43: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2014 June 11 SEP event (#20 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curves are
the power law (green) and the Weibull function (purple) used to fit the spectra. Data errors
are within the marker size.
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Figure 3.44: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2014 July 12 SEP event (#21 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively (no data for HET).
The solid curves are the power law (green) and the Weibull function (purple) used to fit the
spectra. Data errors are within the marker size.
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Figure 3.45: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2016 January 9 SEP event (#23 of the List 1). The data from SEPT,
LET and HET are indicated in red, blue and light green, respectively. The solid curves are
the power law (green) and the Weibull function (purple) used to fit the spectra. Data errors
are within the marker size.
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As mentioned above, the spectra relating to quasi-parallel shocks, #6 and
#12 of the List 1 (see table 3.1), are described well at low energy by a power
law with an exponential cutoff and by a steeper power law at high energy
(double power law). Figures 3.46 and 3.47 show the spectra of these two
events.
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Figure 3.46: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 January 04 SEP event embedded with a SIR (#6 of the List 1).
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the double power law shape used to fit the spectra. Data errors are within
the marker size.
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Figure 3.47: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 July 09 SEP event embedded with a SIR (#12 of the List 1). The
data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the double power law shape used to fit the spectra. Data errors are within
the marker size.
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Energy spectra without the background for SEP events in List 1

Then, we performed the energy spectra of the ESPs associated with SEP
events of the List 1 after subtracting the background. We obtain similar results
as in the previous section: a Weibull functional form for 6 ESP events (see
figures from 3.48 to 3.53) and for 8 ESP events (see figures from 3.54 to 3.61)
we get the power law at low energy and the Weibull at high energy, except
for the events #18 and #19 (2014 February 22 at 08 : 00 UT and 23 : 06 UT,
respectively), that show a different behavior.
The two quasi-parallel shocks of the List 1 show also a double power law trend
when we subtract the background, as we can see from figures 3.62 and 3.63.
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Figure 3.48: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2011 March 22 SEP event (#3 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.49: Time averaged differential fluxes of energetic particles calculated around the
shock arrival on 2011 September 11 SEP event (#4 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively
(no data for HET). The solid curve is the Weibull function used to fit the spectra. Data
errors are within the marker size.
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Figure 3.50: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 January 29 SEP event (#7 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.51: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 March 18 SEP event (#8 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.52: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 March 19 SEP event (#9 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.53: Time averaged differential fluxes of energetic particles calculated around the
shock arrival on 2013 December 1 SEP event (#16 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Below we report figures from 3.54 to 3.61 that show a power law trend in the
range at low energy.
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Figure 3.54: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2011 March 9 SEP event (#2 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.55: Time averaged differential fluxes of energetic particles calculated around the
shock arrival on 2011 November 28 SEP event (#5 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.56: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 May 28 SEP event (#10 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.57: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2014 February 22 (at 08 : 00 UT) SEP event (#18 of the List 1) without
the background. The data from SEPT, LET and HET are indicated in red, blue and light
green, respectively (no data for LET and HET). The solid curve is the Weibull function
used to fit the spectra. Data errors are within the marker size.
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Figure 3.58: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2014 February 22 (at 23 : 06 UT) SEP event (#19 of the List 1) without
the background. The data from SEPT, LET and HET are indicated in red, blue and light
green, respectively (no data for LET and HET). The solid curve is the Weibull function
used to fit the spectra. Data errors are within the marker size.
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Figure 3.59: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2014 June 11 SEP event (#20 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the Weibull function used to fit the spectra. Data errors are within the
marker size.
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Figure 3.60: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2014 July 12 SEP event (#21 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively
(no data for HET). The solid curve is the Weibull function used to fit the spectra. Data
errors are within the marker size.
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Figure 3.61: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2016 January 9 SEP event (#23 of the List 1) without the background.
The data from SEPT, LET and HET are indicated in red, blue and light green, respectively
(no data for HET). The solid curve is the Weibull function used to fit the spectra. Data
errors are within the marker size.
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The spectra relating to quasi-parallel shocks, #6 and #12 of the List 1 (see
table 3.1), are described well by a double power law even when we subtract
the background value. Figures 3.62 and 3.63 show the spectra of these two
events.
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Figure 3.62: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 January 04 SEP event embedded with a SIR (#6 of the List 1)
without the background. The data from SEPT, LET and HET are indicated in red, blue
and light green, respectively (no data for HET). The solid curve is the double power law
shape used to fit the spectra. Data errors are within the marker size.
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Figure 3.63: Time averaged differential fluxes of energetic particles calculated around
the shock arrival on 2012 July 09 SEP event embedded with a SIR (#12 of the List 1)
without the background. The data from SEPT, LET and HET are indicated in red, blue
and light green, respectively. The solid curve is the double power law shape used to fit the
spectra. Data errors are within the marker size.
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3.5.2 Discussion

In this section we summarize the results obtained for the kinetic energy
spectra three hours around the shock arrival for SEP events. In the case of
quasi-perpendicular shocks, the Weibull shape was the best fit, while in the
case of quasi-parallel shocks (2 events) with a SIR (Stream Interaction Region)
a double power law form. In table 3.12 we report the parameters resulting
from the first kind of fit for quasi-perpendicular, where C is a normalization
factor, γ is the exponent and Eτ is a characteristic energy. The values of the
parameters derived in the background subtracted spectrum are listed in table
3.14. For quasi-parallel shocks, tables 3.13 and 3.15 report the parameters
of the double power law for the spectrum and the background subtracted
spectrum, respectively. The parameters are a normalization factor (C), the
low energy power law slope (γa), the high energy power law slope (γb) and the
energy break (E0).

As we found that the Weibull function reproduce well the observed en-
ergy spectra for the quasi-perpendicular interplanetary shocks at least at high
energies, we can possibly test the SSA vs the SA mechanisms by evaluating

Table 3.12: Fit parameters, by using the Weibull functional form, for the quasi-
perpedicular shocks associated with SEP events of the List 1.

# DATE C (× 105cm−2s−1sr−1MeV−1) γ Eτ (MeV)

2 09/03/2011 2.1± 1.9 0.40± 0.02 0.05± 0.02
3 22/03/2011 4.1± 0.4 0.460± 0.005 0.119± 0.008
4 11/09/2011 257.1± 239.5 0.34± 0.02 0.002± 0.001
5 28/11/2011 0.10± 0.01 0.576± 0.008 0.29± 0.02
7 29/01/2012 153.5± 21.9 0.330± 0.004 0.017± 0.002
8 18/03/2012 0.32± 0.08 0.47± 0.01 0.090± 0.002
9 19/03/2012 1.1± 0.1 0.511± 0.008 0.15± 0.01
10 28/05/2012 277.5± 253.5 0.45± 0.02 0.06± 0.02
16 01/12/2013 8.5± 2.3 0.403± 0.008 0.032± 0.005
18 22/02/2014 0.2± 0.2 0.46± 0.03 0.06± 0.02

at 08 : 00 : 03 UT
19 22/02/2014 7.6± 1.8 0.377± 0.007 0.014± 0.002

at 23 : 06 : 24 UT
20 11/06/2014 0.0006± 0.0003 0.45± 0.03 0.30± 0.09
21 12/07/2014 0.9± 0.4 0.48± 0.02 0.05± 0.01
23 09/01/2016 0.04± 0.03 0.43± 0.03 0.06± 0.02

Table 3.13: Fit parameters, by using the double power law spectrum, for the parallel
shocks associated with SEP events of the List 1.

# DATE C (cm−2s−1sr−1MeV−1) γa γb E0(MeV)

6 04/01/2012 98.4± 3.9 −2.85± 0.04 −4.15± 0.09 9.1± 1.1
12 09/07/2012 124.2± 3.1 −1.52± 0.02 −3.11± 0.07 3.5± 0.2
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the γ exponents. According to the shock surfing acceleration, the energy of
particles augments as the power law E(t) ∼ t2 (Ohsawa (1987), Lee et al.
(1996)). Consequently, we expect a particle spectrum of Weibull type with
γ = 1/2, that is in quite good agreement with the values obtained from the
fit procedure performed on the SEP events taken into consideration, as they
are close to 0.5, especially in the background subtracted spectrum which di-
rectly related to the acceleration at the shock passage. These results confirm
that shock acceleration can be associated with this kind of distribution, as
proposed by Laurenza et al. (2013). In particular, 6 spectra of ESP events on
the wake of SEPs (associated with shocks #3, #4, #7, #9, #16 and #19 of
the List 1) can be fitted by the Weibull distribution at low and high energies,
whereas, for 8 quasi-perpendicular shocks (#2, #5, #8, #10, #18, #20, #21

and #23) this function fits only the high energy tail. This last type of ESP
spectrum suggests that two acceleration mechanisms are at work in different
energy ranges, one of which seems to be the DSA at low energies and the

Without background

Table 3.14: Fit parameters, by using the Weibull functional form, for the quasi-
perpedicular shocks associated with SEP events of the List 1, after subtracting the
background.

# DATE C (× 105cm−2s−1sr−1MeV−1) γ Eτ (MeV)

2 09/03/2011 0.02± 0.02 0.52± 0.03 0.26± 0.09
3 22/03/2011 3.8± 1.1 0.46± 0.02 0.08± 0.02
4 11/09/2011 16.8± 11.6 0.41± 0.02 0.008± 0.003
5 28/11/2011 0.19± 0.05 0.52± 0.02 0.16± 0.03
7 29/01/2012 3.3± 1.9 0.43± 0.02 0.16± 0.05
8 18/03/2012 8.4± 0.01 0.51± 0.01 0.11± 0.01
9 19/03/2012 3.3± 0.2 0.53± 0.03 0.18± 0.06
10 28/05/2012 36.1± 32.5 0.54± 0.03 0.20± 0.07
16 01/12/2013 1.7± 1.0 0.42± 0.02 0.06± 0.02
18 22/02/2014 0.04± 0.02 0.57± 0.04 0.14± 0.04

at 08 : 00 : 03 UT
19 22/02/2014 � � �

at 23 : 06 : 24 UT
20 11/06/2014 0.004± 0.03 0.4± 0.3 0.1± 0.4
21 12/07/2014 0.3± 0.1 0.50± 0.02 0.07± 0.02
23 09/01/2016 0.02± 0.01 0.46± 0.03 0.06± 0.02

Without background

Table 3.15: Fit parameters, by using the double power law spectrum, for the parallel
shocks associated with SEP events of the List 1, after subtracting the background.

# DATE C (cm−2s−1sr−1MeV−1) γa γb E0(MeV)

6 04/01/2012 45.9± 3.9 −1.93± 0.08 −4.5± 0.3 2.5± 0.3
12 09/07/2012 126.4± 37.5 −1.1± 0.2 −2.58± 0.04 0.8± 0.2
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other is possibly acting as a re-acceleration process as it seems to contribute
at high energies. This process could resonably be the SSA, although stochastic
acceleration cannot be excluded.
In the case of quasi-parallel shocks (#4 and #12 of the List 1) the diffusive
shock acceleration seems to be at work, but modified at high energy by the
stochastic re-acceleration as proposed by Afanasiev et al. (2014),that gener-
ates the broken (double) power law, instead of simply a power law attributed
to the DSA mechanism.

These considerations still hold if we consider the spectra after subtracting
the background: they are still well reproduced by the Weibull distribution,
at least in the high energy range, except shocks #18 and #19, for which
remain only SEPT energy channels. These last two ESP events are fitted by
a power law and a Weibull for #18 and by a power law for #19. In this
case it is reasonable to assure that only DSA accelerates particles, without
any re-acceleration at high energies. Since the particle spectra of the ESPs
associated with the SEP events continue to be well described by the Weibull
functional form at quasi-perpendicular shocks and by the double power law
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Figure 3.64: Time averaged differential fluxes of energetic particles calculated
around the shock arrival on 2010 February 15 in absence of SEP event. The data
from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the power law with a slope of m = (−3.02 ± 0.03) used to fit the
spectra. Data errors are within the marker size.
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Figure 3.65: Time averaged differential fluxes of energetic particles calculated
around the shock arrival on 2013 November 01 in absence of SEP event. The data
from SEPT, LET and HET are indicated in red, blue and light green, respectively.
The solid curve is the power law with a slope of m = (−3.12 ± 0.03) used to fit the
spectra. Data errors are within the marker size.

at quasi-parallel shocks even when subtracting the background, this suggests
that the observed distributions are directly due to shock passage.

The Weibull form has not to be confused with a limited power law as we
got for the shocks at which SEP events was not in progress. Two examples
of which are shown in figures 3.64 and 3.65. From the linear fit we obtain
slopes of m = (−3.02 ± 0.03) and m = (−3.12 ± 0.03), respectively. We
found this same trend in all the spectra related to the shocks of the first list
which occur in absence of SEP event. A pure power law is the typical shape
of the classical diffusive shock acceleration, so in the case of interplanetary
shock waves without solar energetic particles this seems to be the mechanism
of acceleration at work. This result suggest that in order to have a second
mechanism at work (e.g. the SSA), as in the case of ESP associated with SEP
events, a high background of high energy particles should be present.
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3.6 Conclusions

From the study of the magnetic field turbulence in section 3.3, it is evident
that, at shock waves a substantial level of turbulent fluctuations is found.
Turbulent fluctuations are generally greater by one order of magnitude in the
downstream region compared to those in the upstream region. The proton flux
enhancements are more intense close to the shock region (List 1) as expected.
Indeed, in the case of List 2 there is not a clear increase in the proton flux
since the upstream and downstream intervals are more distant from the shock
than those considered for the List 1.

We can summarize the results obtained from the correlation study between
ESPs and turbulence level as follows.

• For all events of the List 1:

– not significant correlation between proton flux enhancements (jn)
and turbulence upstream (Tup) and downstream (Tdown) for sepa-
rated magnetic field components and its magnitude.

• For SEP associated events of the List 1:

– not significant correlation between jn and Tup for the three compo-
nents and the magnitude of the magnetic field;

– significant correlation between the particle flux and Tdown for R
and T components (i.e., those in the equatorial plane of the Sun)
and the magnitude.

• NO SEP associated events of the List 1:

– not significant anticorrelation between jn and Tup for all the com-
ponents and for the magnitude of the magnetic field;

– significant anticorrelation between the proton flux and the down-
stream magnetic field turbulence.

• For all events of the List 2:

– not significant correlation between the proton flux enhancements
and the turbulence upstream and downstream for all the compo-
nents and the magnitude.

Results for SEP associated events of List 1 could suggest that downstream
turbulence plays a direct role in the acceleration process. Nevertheless, this
is not supported by results in case of NO SEP events. The above correlation

123



CHAPTER 3.

could be the effect of the SEP streaming, increasing the turbulence level in
the shock region.

From the study of energy spectra, we found evidence that different mech-
anisms could account for the acceleration of the particles in the energy range
from few tens of keV up to hundreds of MeV. First of all, it should be noted
that in the case of spectra relating to the shocks in which the solar energetic
particles are absent (NO SEP events), a pure power law is obtained, typical
of the classical diffusive shock acceleration, but with low intensity at energies
& 1 MeV.
Instead, when we consider ESPs associated with SEP events, the shape of the
spectra is different. In fact, in the case of the two parallel shocks that occur
also in correspondence with a stream interaction region (SIR), the best fit is
a double power law, which indicates that the DSA is at work, but potentially
modified by SA (stochastic acceleration) at higher energies.
The results obtained for quasi-perpendicular shocks show that the particle
spectra associated with shock acceleration are well reproduced by the Weibull
functional form, at least in the high energy range (even when the background
is subtracted). Hence, high energy seed particles seem to enter into an addi-
tional acceleration mechanism producing the Weibull distribution.
According to the shock surfing acceleration (SSA), the expected particle spec-
trum is a Weibull one with γ = 1/2, that is in quite good agreement with the
values (between 0.41 and 0.57 in the background subtracted case) obtained
from the fit procedure performed on the SEP events taken into consideration.
Moreover, in section 3.4 we studied the relation between the proton flux en-
hancements in the intermediate energy range 4−6 MeV and the magnetosonic
Mach number and between the proton flux enhancements and the product of
the magnetosonic Mach number with the shock-normal angle. We analyzed
the correlations with these two parameters because Mms and θBn are critical
parameters in the SSA mechanism and we found a good correlation of these
two with the increases of energetic particles. Therefore, SSA seem to be a vi-
able re-acceleration mechanism to explain the high energy tail of the particle
spectra at interplanetary quasi-perpendicular shocks connected with shock-
spike events (SSEs). Nevertheless, the SA mechanism cannot be excluded,
given the positive correlation of both the particle increase and the Mms num-
ber with the downstream turbulence.
Further studies about the microphysics and turbulence around the shock front
and how it can affect the trapping and acceleration of energetic particles are
needed.
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On the origin of high frequency
magnetic fluctuations in the
interplanetary space

The description of the turbulent spectrum of magnetic field fluctuations in
the solar wind in the range of kinetic scales is not yet fully established. While
when we consider the spectrum at low frequencies, we can say that some form
of dissipation must exist at small scales, the almost collisionless character of
the solar wind cannot be avoided when we are dealing with small scales.
The full understanding of the physical mechanisms that allow the dissipation
of energy in the absence of collisional viscosity and the knowledge of the
dispersive properties would be crucial steps in the problem of high-frequency
turbulence in space plasmas.

In homogeneous, neutral and isotropic fluids the turbulent magnetic fluctu-
ations are unpredictable, but their statistics are universal; in fact, the spectral
energy density follows (assuming that the Taylor hypothesis is valid) the power
law E(ω) ∼ ω−5/3, explained by Kolmogorov assuming the self-similarity of
the fluctuations between the energy injection scale and the dissipation one.
Since the first measurements of magnetic fluctuations in the interplanetary
space (Coleman, 1968), it has been known that also the solar wind magnetic
energy density decays as E(ω) ∼ ω−5/3, confirming the validity of the tur-
bulence framework (Bruno and Carbone, 2016). This approach has been also
successfully applied to interpret anomalous scalings due to intermittency of
fluctuations through multifractal models (Burlaga (1991); Carbone (1993)),
and the nonlinear energy cascade, described by a Yaglom relation for the
mixed third-order moment of fluctuations (Sorriso-Valvo et al., 2007). In a
magnetized plasma, it is complicated to imagine self-similarity over all the
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scales where turbulent fluctuations are observed; in fact, the Kolmogorov be-
havior breaks down at a frequency fi, which corresponds approximately to
∼ 0.5 Hz (Leamon et al., 1998), comparable with the ion-cyclotron frequency,
where fluid and MHD regimes are no longer valid. Beyond the spectral break,
a steeper power spectrum is observed. In this region the magnetic energy
density decays as E(ω) ∼ ω−α, where the slope is strongly dependent on
the analyzed sample. From a statistical study of the energy spectra in the
frequency range [1, 180] Hz, Sahraoui et al. (2013) found that 75% of the ana-
lyzed spectra exhibit spectral slopes between 2.5 and 3.1 with a peak at about
α ' 2.8.
The presence of fluctuations at high frequencies has been attributed to dis-
persive phenomena generated by velocity-space effects and electron dynamics
(Marsch, 2006) and interpreted in terms of a further turbulent energy cas-
cade driven by wave-wave coupling, as for example a quasi two-dimensional
cascade of Kinetic Alfvén Waves (KAWs) (Sahraoui et al., 2009) for which
E(ω) ∼ ω−7/3. However, a clear detection of single wave modes in the
frequency-wavenumber diagram is difficult due to the presence of large scat-
tering, sideband modes, sporadic wave-trains as envelope solitons, and zero-
frequency modes (Narita et al. (2011), Perschke et al. (2016)). Moreover,
the situation is complicated by the failure of the Taylor hypothesis, implying
that measurements in the time domain cannot be simply translated into the
wave-vector domain (Narita, 2018). Another breakpoint in the magnetic en-
ergy power spectrum has been observed in Cluster spacecraft data at higher
frequencies, of the order of few tens of Hz, roughly corresponding to the elec-
tron gyro-frequency fe. This second breakpoint has been attributed to the
dissipation of KAWs.

Unlike low frequency fluctuations, succesfully described in the nonlinear
energy cascade framework, the interpretation of the high frequency spectrum
is less clear. The power spectrum for ω > ωi has been fitted either through
a function made by a combination of ω−8/3 decay and an exponential de-
cay, compatible with the proton Landau damping of magnetic fluctuations
(Alexandrova et al., 2012), or by a combination of two power laws (Sahraoui
et al. (2009), Sahraoui et al. (2013)), with the slopes of the secondary power
law, at ω > ωe , in the range α ∈ [3.5; 5.5] with a peak at about α ' 4.

4.1 Small-scale Turbulence scenarios

As it is known from basic plasma physics, the linear theory for collision-
less plasmas yields three types of modes at and below the proton cyclotron
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frequency Ωp. When Ωp > ωr (with ωr the real part of the frequency fluctu-
ations) and the wavevectors are transverse to the background magnetic field,
two modes are present, a left-hand polarized Alfvén cyclotron mode and a
right-hand polarized magnetosonic mode. The third mode is the ion-acoustic
one, that is damped except when Te � Ti, a condition which is rare in the
turbulence of the solar wind. At quasi-perpendicular propagation the alfvénic
modes evolves into Kinetic Alfvén Waves (KAW), while the magnetosonic
branch may propagate at Ωp � ωr as whistler modes. There is a debate
about the fact that turbulence follows the whistler mode or the KAW branch,
before it is dissipated at small scales.

The scenario of whistler modes involves a two-mode cascade process, both
alfvénic and magnetosonic modes, which are only weakly damped when β ≤ 1,
transfer energy to transverse propagating wavevectors. The KAW are damped
by Landau damping which is proportional to k2

⊥, so that they do not contribute
to the formation of the dispersive region, except for the fluctuations that prop-
agate in the perpendicular direction. Quasi-parallel magnetosonic modes are
not damped, then the right-hand polarized fluctuations can generate a disper-
sive region of whistler modes.
On the other hand, alfvénic turbulence at long wavelength transfer energy to
quasi-perpendicular propagation up to the thermal proton gyroradius where
fluctuations are subject to the proton Landau damping. The fluctuations con-
tinue the cascade to small scales as KAW at quasi-perpendicular propagation
(Sahraoui et al., 2009).

4.2 High frequency Magnetic energy spectra in Solar
Wind turbulence

The main question is not which mode is present, but rather what are the
conditions that favor one mode over the others in the high-frequency part of
the magnetic energy spectrum. Observations of small-scale turbulence show
that the electric field is strongly enhanced after the spectral break (Bale et
al., 2005). Consequently, the turbulence at these scales is essentially electro-
static in nature, even if there are weak magnetic fluctuations. The increase
of the electrostatic part strongly indicates the presence of KAW, as shown by
the gyrokinetic simulations (Howes et al., 2008). However, this behavior can
be well reproduced by Hall-MHD turbulence, without the presence of KAW
modes (Matthaeus et al., 2008). In particular, in the absence of viscous and
dissipative terms the statistical equilibrium ensemble of the Hall-MHD equa-
tions in the wave-vectors space is produced with an increase of the electric

127



CHAPTER 4.

Figure 4.1: Merging of the parallel and perpendicular magnetic spectra of FGM
data (plotted with black and red lines) with those of STAFF-SC data (green and blue
lines). The dashed and dotted lines indicate the STAFF-SC noise level measured
in laboratory and in-flight. The straight black lines are the power law fits of the
magnetic spectra and the arrows indicate frequencies of the breakpoints (image credit:
Sahraoui et al. (2009)).

field at large wavevectors and this results to be a statistical property of the
inviscid Hall-MHD (Servidio et al., 2008). Consequently, it is not certain that
the increase in the electrostatic part of the fluctuations is due to the presence
of the KAW in the dispersive region.

Apart for the break identified by Leamon et al. (1998) in the magnetic
spectrum, a new breakpoint is found in the solar wind turbulence using high-
frequencies (up to 100 Hz) data from Cluster spacecraft with the advan-
tage of high resolution (Sahraoui et al., 2009). These authors made a good
matching between the FGM (Flux Gate Magnetometer) data covering the
frequency spectrum up to 33 Hz and the STAFF-SC (Search Coil) data in
the range 1.5 < f < 225 Hz. Figure 4.1 shows two distinct spectral breaks
at fi ∼ 0.4 Hz and fe ∼ 35 Hz, which correspond, respectively to the pro-
ton and electron gyroscales (ρi,e = vthi,e/ωci,e). Using the Taylor frozen-in
flow hypotesis (ω ∼ kv), these scales are Doppler-shifted; in particular, the
ratio of the two frequencies ωe/ωi ∼ 35/0.4 ∼ 90 is very close to the ratio
ρi/ρe =

√
miTi/meTe ∼ 95.

Below fi, the spectrum follows a Kolmogorov scaling f−1.62 while above this
characteristic frequency the scaling becomes f−2.5, explained by dispersive
effects. Above the electron gyrofrequency, they found for the first time that
the spectrum has a steeper power law f−4, even if the fit is not very accu-
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rate because it extends over less than a decade due to the noise level of the
instrument. This description of dispersive cascade and dissipation at electron
scales appears consistent with KAW turbulence, as predicted by Howes et al.
(2008). Kinetic Alfvèn Waves turbulence has been observed by Bale et al.
(2005) only at large proton scales, while Sahraoui et al. (2009) have observed
this behavior down to electron scales where dissipation becomes evident.

It is interesting to note that the power spectrum at frequencies greater than
fi can be fitted through several functions: a double power law as emphasized
by Sahraoui et al. (2009), an exponential decay, an hybrid function made by a
combination of ω−8/3 and an exponential function, compatible with the pro-
ton Landau damping of magnetic fluctuations (Alexandrova et al., 2012) and
an asymptotic double power law (Sahraoui et al., 2013). These last authors
performed a statistical study of the magnetic energy spectra in the frequency
range [1, 180] Hz and they showed that the exponential model does not pro-
vide a good fit to the data as the others.
In particular, Sahraoui et al. (2013) (Figure 4.2) made a comparison of the
analyzed magnetic energy spectra with the fitting models discussed above and
they show that the double power law model fits the data better since it cap-
tures the observed spectral break.

Figure 4.2: Typical example of energy spectrum of the magnetic field measured
in the solar wind by the STAFF-SC instrument aboard Cluster 2 (black line); the
dashed line refers the estimated (in flight) sensitivity floor of the instrument. The
fitting models are plotted for comparison: the double power law (red), the exponen-
tial (cyan), the hybrid function (blue) and the asymptotic double power law (green).
The horizontal curver are the compensated spectra B2(f)/P (f) with P (f) the cor-
responding fitting function (image credit: Sahraoui et al. (2013)).
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In fact, they have found that among the total of 610 spectra, 461 (75%) show
the break at electron scales with the slopes (α) of the secondary power law,
above the elctron gyrofrequency, in the range between 3.5 and 5.5 with a peak
at about 4. The remaining 25% of the analyzed spectra do not exhibit clear
breaks, due to the fast solar wind where the breakpoints would be shifted to
frequencies greater than those taken into account (& 180 Hz) or that show
bumps at electron scales.

4.3 A Brownian-like approach

The understanding of the small-scale termination of the cascade of turbu-
lent energy in plasmas without collisions is today one of the unsolved problem
in space plasma physics. In absence of viscosity and resistivity, the dynam-
ics of small scales is of kinetic nature, and so it must be described by the
kinetic theory of plasma. Then, we focused the attention on the problem of
the origin of high frequency fluctuations in the interplanetary medium, by
studying whether the whole spectrum, for frequencies greater than the ion
frequency, can be predicted by a single model. In this way, we try to identify
the physical mechanism that establishes a link between the macroscopic and
the microscopic scales.

At small scales, of the order of the ion or electron gyro-radii or inertial
lengths, the dynamics of the plasma in the interplanetary space is very com-
plex. In fact, the linear mode waves become kinetic, exhibiting simultaneously
a dispersive and dissipative character due to the interactions between wave and
particles such as coherent scattering processes or incoherent processes.
The nonlinear energy cascade is definitely active at the largest scales and trans-
fers energy beyond the ion-cyclotron frequency, exciting electric fluctuations
while in the magnetic fluctuations the energy content is lower (Bale et al.,
2005). At the same time, the fluctuations provide a mechanism for heating in
the collisionless plasma, because they are damped by plasma kinetic effects.
The wave-particle mechanism involved in the dissipation acts as a feedback
for fluctuations, since it generates beams of particles which, in turn, are able
to excite further fluctuations.
The complex plasma dynamics at small scales, well documented in literature
but far from being explained within a unique framework, involves a medium
where random fluctuations and dissipation compete in generating magnetic
fluctuations. In a range of scales where collisionless dissipation and plasma
heating could take place and the presence of characteristic frequencies breaks
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the scale-free behavior, the role of dispersion and dissipation is still poorly un-
derstood, and the origin of fluctuations is far from being clearly established.
This framework is clearly far from the “classical” turbulent dynamics where the
nonlinear cascade operates within a scale-free range which is well separated
from the smallest scales where dissipation occurs.

4.3.1 Model

To provide a more suitable description of the high-frequency dynamics of
magnetic fluctuations, a novel scenario, based on a stochastic Brownian ap-
proach, is introduced. This approach allows an interpretation of the observed
high frequency magnetic spectra with no assumptions about dispersion rela-
tions from plasma turbulence theory. Based on the above considerations, we
consider a simple framework where magnetic fluctuations b(t) at small scales
can be roughly described by a Itô stochastic differential equation

db(t) = Γ[b(t), t] dt+ Ψ[b(t), t] dW (t) . (4.1)

The model can be generalized to three-dimensional fluctuations, even if in
this discussion we consider only the time evolution of a single component of
the fluctuations, without loss of generality. In the simplest case, we assume
that the dynamics of the fluctuations is described through the two terms on
the right hand side of equation (4.1) that represent two different contribu-
tions. The first term is due to the collisionless dissipative processes, which we
parametrize with a linear damping term Γ[b(t), t] ' −γb(t), where γ is the
constant damping rate. The second contribution, instead, simulates all the
complex wave dynamics, described by the Wiener process dW (t). Ψ[b(t), t]

is assumed to be equal to the root mean square (r.m.s.) of the fluctuations,
F0 = 〈b2〉1/2.
The random forcing is expressed as dW (t) = ξ(t)dt, in which we assume that
ξ(t) is a real noise, possibly different from a white noise, with finite correlation
times, and that ξ(t) is uncorrelated with the initial values of magnetic fluctu-
ations b(0), that is 〈ξ(t)b(0)〉 = 0. Then, with these hypotheses, the equation
(4.1) takes the form

db(t) = −γb(t)dt+ F0ξ(t)dt . (4.2)

Under the above assumptions, the Itô equation can be solved with the Fourier
transforms. This provides a relation between the correlations of the Fourier
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modes of the forcing ξω and the power spectrum of magnetic energy modes bω

〈bωb?ω〉 =
F 2

0 〈ξωξ?ω〉
(γ − iω)(γ + iω)

, (4.3)

where the angular brackets indicate time averaging and ? stands for the com-
plex conjugate. Using the property of homogeneity, we can write the spectral
correlations of the forcing term as

〈ξωξ?ω〉 = 2πG(ω)δ(ω + ω′) . (4.4)

Consequently, we can write again equation (4.3) in terms of the power spectra

E(ω) = F 2
0

[
G(ω)

ω2 + γ2

]
, (4.5)

which can be compared to observations in the solar wind plasmas. Therefore,
the spectral energy is related to the spectral shape G(ω) of the external forc-
ing.
In the simple case in which the magnetic fluctuations are generated by com-
pletely uncorrelated stochastic wave trains

〈ξωξω′〉 = 2πδ(ω + ω′) ,

the magnetic energy spectrum (4.5) becomes

E(ω) ' F 2
0

ω2 + γ2
.

This Lorentzian function, of course, does not describe the magnetic energy
density spectrum observed in the solar wind plasma at high frequencies.

At this point, we consider the case in which, close to the ion breakpoint,
a variety of waves takes part in the process through wave-wave couplings,
wave-particles interactions and dispersive effects. In this situation we can
expect that the two-point correlations of the stochastic forcing term decay
exponentially in time

〈ξ(t′)ξ(t)〉 ∼ exp[−λ0(t′ − t)] , (4.6)

where λ−1
0 is the correlation time. As a consequence, ξ(t) can be considered,

in a rough approximation, as a Brownian noise. From equation (4.6), using
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Figure 4.3: Magnetic power energy spectrum in function of ω/λ0 for γ/λ0 = 100
(red line). The blue dash-dotted line and the black dashed line indicate E(ω) ∼ ω−7/3

and E(ω) ∼ ω−4, respectively.

the inverse Fourier transform, we obtain

G(ω) ' λ0

ω2 + λ2
0

.

Substituting this functional shape in equation (4.5), through simple calcula-
tions, we have, for the magnetic energy power spectrum

E(ω) ' λ0F
2
0

(ω2 + λ2
0)(ω2 + γ2)

. (4.7)

The correlation time λ−1
0 and the dissipation rate γ correspond to the low-

frequency and high-frequency breakpoints, respectively, that is λ0 ≈ ωi and
γ ≈ ωe. Equation (4.7) nicely reproduces the spectral properties observed in
the interplanetary space at high frequencies (ω > ωi).

The power spectrum is shown in figure 4.3 as a function of ω/λ0. We chose
γ/λ0 = 100 as this represents a typical value of the ratio of the two frequencies
ωe/ωi found in observations (Sahraoui et al., 2009).
It is important to note that equation (4.7), although it is not just a combi-

nation of two power laws, gives rise to two power law ranges compatible with
those reported in observations by Sahraoui et al. (2009, 2013). The first one
is obtained for frequencies λ0 ≤ ω ≤ γ, with a spectral slope close to α ' 7/3,
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while the second power law, with a slope of α ' 4, for frequencies ω ≥ γ.
Furthermore, the separation between the two spectral breakpoints is fixed by
the ratio between the two frequencies but the slopes of the two power law
ranges are independent of the parameters of the model.

We now consider the existence of a continuos distribution of relaxation
rates λ, described by a probability of occurrence dP (λ) ∼ λ−µdλ. In this
case, more realistic than the previous one, the power spectrum of the external
forcing is calculated from the superposition of all the rates λ, leading to

G(ω) =

∫ γ

λ0

λ−µdλ

ω2 + λ2
' 1

ω(1+µ)

∫ ∞
0

x−µdx

1 + x2
' Aω−(1+µ) (4.8)

for γ � ω � λ0. The magnetic energy spectrum becomes

E(ω) ∼ AF 2
0

[
ω−(1+µ)

ω2 + γ2

]
. (4.9)

The same functional form was used by Sahraoui et al. (2013) to fit the magnetic
energy spectra in the solar wind measured by Cluster, well reproducing the
overall shape of the spectrum. Our model provides a physical interpretation
of equation (4.9) as the result of a whole class of flicker noises ξ(t), compatible
with the excitation of sporadic wave trains.

When comparing the power spectra obtained from solar wind observations
to those given by theoretical models, it is necessary, in general, to take into
account that measurements are obtained in the spacecraft reference frame,
which is in relative motion with respect to the plasma frame of the solar wind.
According to the Doppler shift formula, the measured frequency in the space-
craft frame ωsc, of a Fourier mode of wavevector k and frequency ω, is given by
ωsc = ω+k ·vSW, where vSW is the solar wind velocity. In the high frequency
range two relevant situations can occur, depending on the ratio between the
two terms at the right hand side. When the solar wind speed is slow enough,
|ω| & |k ·vSW| and this leads to a constant shift of the frequency spectrum to
higher frequency, in the spacecraft frame, without changes in the scaling of the
spectrum (Klein et al., 2014). Therefore, the scaling predictions of our model
are still valid in this situation and the only change would be a shift of both low
and high frequency breakpoints by a constant value Ω0, namely ωi ≈ λ0 + Ω0

and ωe ≈ γ + Ω0. The other significant case is the dispersive regime, when
the plasma-frame frequency increases more rapidly than linearly and ωsc is
eventually dominated by the plasma-frequency term (ωsc ≈ ω). Also in this
case, since ωsc ≈ ω, the spectra of our model can be directly compared to
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those measured by spacecraft.
Problems would arise only if we wanted to map frequency spectra to wavenum-
ber spectra, but this is not a aim of our work, as the nature of the model
proposed here is such that high frequency magnetic fluctuations are described
in the time/frequency domains and the spectra given by the model are fre-
quency spectra. In other words, in our Brownian framework observations are
not interpreted in terms of turbulence and no assumptions about dispersion
relations, from plasma turbulence theory, are needed.

4.3.2 Fluctuation-Dissipation Theorem

The statistical properties of the fluctuations can be connected to the global
properties of dissipation. In fact, from the Itô equation (4.1) we can derive a
relation for the average energy of magnetic fluctuations, ε(t) = 〈b2〉,

1

2

dε

dt
+ γε = F0〈b(t)ξ(t)〉 . (4.10)

The relation, that connects the magnetic fluctuations with the random forcing
term, can be obtained from equation (4.1) in the following way

b(t) = F0

∫ t

0
dt′ξ(t′) exp[γ(t′ − t)] , (4.11)

where we set b(0) = 0 for simplicity. Using relation (4.11) in equation (4.10),
we obtain

dε

dt
= −2γε+ 2F 2

0G(t) , (4.12)

where

G(t) =

∫ t

0
〈ξ(s)ξ(t)〉eγ(s−t)ds . (4.13)

If G(t → ∞) → G0 constant, there is a quasi-stationary solution εstat for the
magnetic energy and it is finite. In this case we have εstat ' F 2

0 g(γ, λ), where
the unknown function involves the dissipation rate and the correlation rates
of the external forcing term.
We suppose that the stochastic medium is in a statistically stationary situation
and consider a kind of statistical equilibrium at a temperature T correspond-
ing to the second moment of the velocity distribution function measured by
spacecraft. Then, we obtain

2F 2
0 g(γ, λ) ' 1

2

∫ ∞
−∞

v2f(v)dv . (4.14)
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From the definition of the magnetic energy power spectrum, using equation
(4.5), we have

〈bωb?ω〉 =
F 2

0G(ω)

ω2 + γ2
=

∫ ∞
0

dt〈b(t)b(0)〉 cosωt . (4.15)

At equilibrium ω ' 0 and G(ω) ' 1, so that using relation (4.14) for F 2
0 in

equation (4.15), we can write

2g(γ, λ)γ2

∫ ∞
0

dt〈b(t)b(0)〉 ' 1

2

∫ ∞
−∞

v2f(v)dv , (4.16)

which represents a kind of Fluctuation-Dissipation Theorem (FDT) (Gardiner,
1997). According to this theorem, a spontaneous variation or fluctuation of a
thermodynamic system is dissipated when the system returns to equilibrium,
that is the response to small perturbations is linear. This relation is based on
the hypothesis that the response of a system in thermodynamic equilibrium to
a small applied force is the same as its response to a spontaneous fluctuation.
Often the linear response takes the form of one or more exponential decays.
The implications of the FDT become more evident by remembering the defi-
nition of the β plasma parameter as the ratio between kinetic and magnetic
pressure, so that

g(γ, λ)γ2 ' F (β) (4.17)

where F (β) is an increasing function of β. In this study we consider a
statistical equilibrium situation just to underline some consequences of the
Fluctuation-Dissipation Theorem. A statistical equilibrium involving a maxi-
mal entropy is not strictly required from a mathematical point of view, because
a kind of FDT, based on the response theory (Ruelle, 1998), can be found also
in a stationary chaotic system with a given statistical distribution of orbits
in the phase space, thus obtaining information on the fine structure of the
attractor in the finite phase space (Lucarini, 2012).
The FDT relates the magnetic fluctuations, globally described here by the
function F (β), to the dissipative properties of the interplanetary medium at
small scales, related to the function g(γ, λ). The role of β in establishing the
properties of the region of high-frequency region of fluctuations has been un-
derlined in previous works (Leamon et al., 1999), and a relationship between
the plasma β and dissipative properties is certainly plausible, as for example
for Landau damping. In fact, the plasma β is proportional to the square of
the thermal velocity and the maximum damping happens for particles which
travel at the phase speed. As a consequence, the particles’ bulk is more in-
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volved in the wave-particle interactions the closer the phase speed is to the
thermal speed.

In the case of correlated fluctuations, the Fluctuation-Dissipation Theorem
relation can be expressed as

γ2

∫ γ

λ0

g(γ, λ)λ−µdλ ' F (β) . (4.18)

When we consider a single correlation rate λ = λ0, the relation (4.18) becomes

γ

(γ − λ0)
' F (β) , (4.19)

where, keeping γ fixed, since F (β) increases with β, the difference between γ
and λ0 decreases as β increases. Sahraoui et al. (2013) found a double power
law for low values of β plasmas. In our model this occurs when F (β) is small
and, therefore, the difference between the two breakpoints is large, giving rise
to a clear double power law behavior.

Equation (4.19) indicates that for low-β plasmas the λ0 break shifts to-
wards lower frequencies, while the case of high values of the β parameter
corresponds to a shift towards higher frequencies. This behavior has been
observed in solar wind (Chen et al., 2014).
On the other side, the position of the high-frequency spectral breakpoint shifts
towards higher frequencies, for high values of γ. This is counter-intuitive with
respect to the interpretation of the steepening of the spectrum as due to a dis-
sipative region in which small-scale fluctuations are generated through some
turbulent cascade. In a turbulent environment, described by fluid equations,
the fluctuations are produced by the cascade process and the inertial range
breakpoint is defined by the dissipative cutoff, fixed by the local Reynolds
number. In fact, the smaller the dissipative term in the Navier-Stokes or
MHD equations, the higher the frequency of the cutoff. In this case we have
an reversed situation, since the spectral properties of high-frequency fluctu-
ations can be considered as a consequence of the FDT, which governes both
fluctuations and dissipation, that are two ingredients of the same physical
process.

4.3.3 Discussion

In this study we introduced a new framework to describe the dynamics
at high frequency of magnetic fluctuations in the interplanetary space. Our
model is rather different from the nonlinear energy cascade approach, used to
describe the fluctuations at low frequency. The same type of phenomenology
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was used by Kraichnan (1959) to explain the susceptivity of the fluctuations
under the action of random forcing, within the Direct Interaction Approxima-
tion of the complex nonlinear mode couplings generated by the fluid turbulent
cascade.
Our approach does not exclude all the complex dynamics deriving from plasma
physics. In fact, kinetic plasma physics describes all the microscopic character-
istics involved in the dynamics of fluctuations, that are the birth of the many
modes involved, their nonlinear coupling, their dispersive properties, and the
collisionless dissipative processes which lead to anomalous plasma-heating.
Consequently, the absence of a universal structure makes the description of
the fluctuations at small scale dependent on the specific microscopic case,
often with contrasting consequences in discriminating or excluding different
interpretations of the same observation.

In this work the high-frequency fluctuations occurring in the interplane-
tary space are described through a Brownian-like approach, thus providing a
unifying framework which, independently of the specific microscopic plasma
dynamics, can account for the gross features of the up-to-date observations of
spectral properties of high-frequency fluctuations in the interplanetary space.
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Conclusions

The main topic of this thesis is the study of energetic protons at inter-
planetary shocks. We investigated the possible connection between energetic
particle fluxes and magnetic turbulence around the shocks, and analyzed the
particle energy spectra to the aim of establishing which are the most proba-
ble acceleration mechanisms at work for different shock configurations. This
study was carried on by using Stereo A data over the period 2009− 2016.
We selected only shocks at which an effective enhancement in proton flux is
observed at energies 4 − 6 MeV and divided them into two lists according to
whether the peak is near (List 1) or distant from the shock (List 2).
From the correlation analysis (parametric and nonparametric) between the
particle flux enhancements and the magnetic field turbulence in the upstream
and downstream regions of interplanetary shocks, it is evident that the in-
creases are more pronounced for the events of the List 1 (near the shock
region).
In particular, when a SEP is in progress at the shock arrival, we obtain high
correlation for R and T components (those in the equatorial plane of the Sun)
and for magnitude of the magnetic field in the downstream region; whereas, in
the cases of NO SEP events, we get a significant anticorrelation downstream
of the shock.

The study of energy spectra indicates that different mechanisms could ac-
count for the acceleration of the particles in the energy range from few tens
of keV up to hundreds of MeV.
In the case of spectra relating to the ESP events in which the solar energetic
particles are not present at the shock passage (NO SEP), we obtain a power
law, typical of the classical diffusive shock acceleration.
Instead, when we consider ESPs associated with SEP events, the shape of the
spectra is different depending on the shock angle. In fact, for the two parallel
shocks in our dataset, the best fit is a double power law, which indicates that
the DSA is at work, but potentially modified by SA (stochastic acceleration)
at higher energies. For quasi-perpendicular shocks the results show that the
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particle spectra associated with shock acceleration are well reproduced by the
Weibull functional form, at least in the high energy range. The particle spec-
tra obtained from the fit procedure are Weibull distributions with γ values
that are in agreement with those expected (γ = 1/2).
SSA (shock surfing acceleration) seem to be a viable mechanism to explain the
high energy tail of the particle spectra at interplanetary quasi-perpendicular
shocks. Moreover, we found a good correlation in the intermediate energy
range 4−6 MeV between the proton flux enhancements and the magnetosonic
Mach number (Mms) and the shock angle (θBn), that are two critical param-
eters in the SSA mechanism.
Nevertheless, a possible role of the stochastic acceleration at shock waves in
case of momentum anomalous diffusion cannot be excluded.
Further efforts are needed to better understand the details of the microphysics
and turbulence around the shock front and how it can affect the trapping and
acceleration of energetic particles.

Finally, concerning the dynamics at high frequency of magnetic fluctu-
ations in the interplanetary space we introduced a Brownian-like approach,
that is different from the nonlinear energy cascade approach, used to describe
the fluctuations at low frequency. Our model provides a unifying framework
which, independently of the specific microscopic plasma dynamics, can account
for the gross features of the up-to-date observations of spectral properties of
high-frequency fluctuations in the interplanetary space. In fact, it does not
exclude all the complex dynamics deriving from plasma physics, that is the
origin of the many modes involved, their nonlinear coupling, their dispersive
properties, and the collisionless dissipative processes which lead to anomalous
plasma-heating.
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