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Introduction

The main research topic studied in this work is global optimization—a field
studying theory, methods, and implementation of models and strategies for
solving multiextremal optimization problems. The rapidly growing interest
to this area is explained by both the raising number of applied decision-
making problems, that are described by multiextremal objective functions,
and the significant recent development of advanced computer facilities.

Global optimization problems arise frequently in many real-life applicati-
ons [88, 152, 157, 192, 215, 229]: in engineering, statistics, decision making,
optimal control, machine learning, etc. A general global optimization pro-
blem requires to find a point x∗ and the corresponding value f(x∗) being the
global (i.e., the deepest) minimum of a function f(x) over an N−dimensional
domain D, where f(x) can be non-differentiable, multiextremal, hard to eva-
luate even in one point, and given as a “black box”. Therefore, traditional
local optimization methods [141, 145] cannot be used in this situation.

One of the important applied fields of efficient global optimization met-
hods is the investigation of control systems under uncertain values of their
parameters, in order to afford the desired safe functioning of a controlla-
ble object. For example, many important problems of robust control can
be reduced to the problem of establishing the positiveness of multiextremal
functions. This problem can be successfully solved with the availability of
global optimization methods: it is sufficient to establish that the global mi-
nimum of a function describing the system is positive.

It can be noted in this context that not only multidimensional global
optimization problems but also univariate problems of this kind arise fre-
quently in different real-life applications, for instance, in engineering (see,
e. g., [82, 93, 105, 113, 230]) and statistics (see, e. g., [26, 68, 72]). In par-
ticular, in structured low rank approximation (see, e. g., [74]), it can be
necessary to solve perturbed problems as well as the original ones. The Lip-
schitz constant for the objective function in that case can be very large and
the problem becomes very difficult to solve. Electrical engineering applica-
tions (see, e. g., [28, 38, 113, 190, 191, 183, 215]) can also require Lipschitz
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global optimization, for example, for solving the minimal root problem (see,
e. g., [114, 193, 189]). This kind of problems very often can be met in the
multidimensional case, as well (see, e. g., [13, 120, 149, 151, 207]).

In the global optimization literature, there exist several ways to consider
various global optimizations strategies (see, e. g., [144, 152, 154]). Such con-
siderations are usually either ‘problem-oriented’ or ‘methodology-oriented’.
The problem-oriented point of view takes into account the problem infor-
mation which can be used by a method during the search for the global
solution. For example, in continuous global optimization, derivative-free or
derivative-based methods can be considered depending on whether the ob-
jective function and constraints are differentiable and the derivatives can or
cannot be computed or estimated.

The methodology-oriented point of view is more suitable for black-box
problems and mainly based on the methodology applied for solving these
problems. For example, global optimization algorithms can be divided into
deterministic and stochastic. Assuming exact computations and arbitra-
rily long run time, deterministic methods ensure that after a finite time an
approximation of a global minimizer will be found (within prescribed tole-
rances). Stochastic methods only offer a probabilistic guarantee of locating
the global solution: their convergence theory usually states that the global
minimum will be identified in an infinite time with probability one.

Among the vast group of deterministic algorithms for solving black-box
global optimization problems the so-called direct (or derivative-free) search
methods should be mentioned (see, e.g., [30, 33, 122, 158]). They are fre-
quently used in engineering design (as, e.g., the DIRECT method, the re-
sponse surface, or surrogate model methods, pattern search methods, etc.;
see [54] for details). Black-box global optimization techniques based on an
adaptive sampling and partition of the domain D are also widely used in
practice (see, e.g., [89, 151, 152, 189, 216]).

Adaptive stochastic search strategies are mainly based on random sam-
pling in the feasible set. Such techniques as adaptive random search, simu-
lated annealing, evolution and genetic algorithms, tabu search, etc., can be
cited here (see [54, 134, 147, 157, 224] for details). Stochastic approaches
can often deal with the described black-box problems in a simpler manner
than the deterministic algorithms (being also suitable for the problems where
the evaluations of the functions are corrupted by noise). However, there can
be difficulties with some of these methods, as well (e.g., in studying con-
vergence properties of metaheuristics). Several restarts can also be involved,
requiring more expensive functions evaluations. Moreover, solutions found by
many stochastic algorithms (especially, by popular heuristic nature-inspired
methods like evolutionary algorithms, simulated annealing, etc.; see, e.g.,
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[97, 98, 147, 161, 224]) can be only local solutions to the problems, far from
the global ones. This can preclude such methods from their usage in practice,
when an accurate estimate of the global solution is required.

Obviously, the problem of a comparison of existing numerical algorithms
for solving global optimization problems arises. The traditional way to do
this is to use a collection of test functions and to show that on this collection
a new method is better in some sense than its competitors. Then, a trade-
off between the number of test functions, reliability of the comparison, and
visibility of results arises. Clearly, a small number of test functions does not
lead to a reliable comparison and a huge number of functions produces huge
tables with a lot of data that sometimes are difficult for a fast visualization
and an immediate comprehension.

Another difficulty in a convincing demonstration consists in the existence
of methods having a completely different structure. A typical example is
the principle trouble arising when one needs to test a deterministic method
A with a stochastic algorithm B. The method A applied to a certain set of
functions returns always the same results while the method B should be run
several times and the results of these runs are always different. Consequently
the method A is compared with some average characteristics of the method B.

In the literature, there exist some approaches for a graphical comparison
of methods, as for example, operational characteristics (proposed in 1978 in
[78], see also [214, 215]), subsequently generalized as performance profiles
(see, e. g., [46]) and re-considered later as data profiles (see, e. g., [141]). Alt-
hough they are very similar, performance profiles are mainly based on the
relative behavior of the considered solvers on a chosen test set, while opera-
tional characteristics (and data profiles, which are quite close to operational
characteristics) are more suitable for analyzing performance of a black-box
optimization solver (or solvers) with respect to expensive function evaluati-
ons budget, independently of the behavior of the other involved methods on
the same benchmark set.

All these techniques are, however, not always suitable for the comparison
of methods of a different nature (for example, metaheuristics having a sto-
chastic nature and deterministic Lipschitz methods), although an attempt of
the usage of operational characteristics to study the behavior of a method
with different parameters’ values has been made in [214].

Today, a rapidly growing interest to modern supercomputers leads to
the necessity of development of new algorithms and methods for working
with novel supercomputing technologies (e.g., [169] for Infinity Computing,
[19] for Quantum Computing, [2] for Biocomputing, etc.). In this work, the
Infinity Computing, a novel methodology allowing one to work numerically
with infinite and infinitesimal numbers, is studied.
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This numeral system proposed in [172, 176, 180] is based on an infinite
unit of measure expressed by the numeral ① called grossone and introduced
as the number of elements of the set N of natural numbers (a clear difference
with non-standard analysis can be seen immediately since non-standard in-
finite numbers are not connected to concrete infinite sets and have a purely
symbolic character). Other symbols dealing with infinities and infinitesimals
(∞, Cantor’s ω, ℵ0,ℵ1, ..., etc.) are not used together with ①. Similarly,
when the positional numeral system and the numeral 0 expressing zero had
been introduced, symbols V, X, and other symbols from the Roman numeral
system had not been involved.

In order to see the place of the new approach in the historical panorama
of ideas dealing with infinite and infinitesimal, see [100, 125, 126, 128, 138,
174, 175, 185]. In particular, connections of the new approach with bijections
are studied in [128] and metamathematical investigations on the theory and
its non-contradictory can be found in [126]. The new methodology has been
successfully used in several fields. We can mention numerical differentiation
and optimization (see [39, 177, 233]), models for percolation and biologi-
cal processes (see [91, 92, 179, 219]), hyperbolic geometry (see [129, 130]),
fractals (see [91, 92, 171, 173, 179]), infinite series (see [96, 174, 178, 228]),
lexicographic ordering, and Turing machines (see [175, 185, 186]), cellular
automata (see [34, 35, 36]), etc.

It is well-known that in ill-conditioned systems, numerical methods can
lead to incorrect results. However, it has been shown in [180], that in some
cases ill-conditioning can be avoided using ① and the well-known Gauss met-
hod can be used without pivoting to solve the systems of linear equations.
So, it can be very advantageous to use Infinity Computing to handle with
ill-conditioning in optimization, as well. In this work, the advantages of ap-
plying the Infinity Computing are studied with respect to the traditional
methodologies in order to handle with ill-conditioning occurred in optimiza-
tion.

It should be noticed that the advantages of the Infinity Computing are
not limited to working with ill-conditioning only. It has been shown in [181],
that the numerical derivatives of a black-box function y(x) can be calculated
exactly using ①. Moreover, it has been also shown that the derivatives can
be calculated exactly even if the function y(x) is not given explicitly, but
it is a solution to some ordinary differential equation. So, in this work, the
advantages of the Infinity Computing are studied in the field of ordinary
differential equations, as well.

The main aims of this research can be formulated as follows.

– Development of new powerful acceleration techniques in the framework of
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univariate Lipschitz global optimization and new algorithms based on
them.

– Theoretical and experimental study of the proposed algorithms.

– Development of new efficient methodologies allowing one to compare
graphically global optimization algorithms of a different nature.

– Massive experimental comparison of several widely-used nature-inspired
metaheuristic algorithms with several deterministic approaches using
the proposed comparison techniques.

– Development of a new generator of multidimensional test problems with
non-linear constraints, based on the GKLS generator of box-constraints
test problems, allowing one to test different constrained global optimi-
zation algorithms.

– Application of the Infinity Computing in order to handle with ill-conditi-
oning occurred in optimization. In particular, two different applications
are considered: univariate Lipschitz global optimization problems and
multidimensional convex non-smooth optimization problems.

– Development of new explicit and implicit methods for solving ordinary
differential equations on the Infinity Computer and a theoretical study
of their convergence properties.

Scientific novelty and practical importance of the present research consists
of the following:

– Several new ideas that can be used to speed up the search in the framework
of univariate Lipschitz global optimization algorithms are introduced.
Proposed local tuning and local improvement techniques can lead to
significant acceleration of the search and enjoy the following advanta-
ges:

– the accelerated global optimization methods automatically realize a
local behavior in the promising subregions without the necessity
to stop the global optimization procedure;

– all the evaluations of the objective function executed during the
local phases are used also in the course of the global ones.

It should be emphasized that proposed global optimization methods
have a similar structure and a smart mixture of new and traditio-
nal computational steps leads to 22 different global optimization al-
gorithms. All of them are studied and compared on several sets of
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tests. Performed numerical experiments confirm the advantages of the
proposed techniques.

– Two practical engineering problems are studied: finding the minimal root
of a non-linear equation problem from electrical engineering and a sum
of damped sinusoids from noisy data fitting. Numerical experiments on
the presented classes of engineering problems confirmed the advantages
of the proposed techniques, as well.

– Two efficient methodologies allowing one to compare global optimization
algorithms of different nature, called “Operational zones” and “Aggre-
gated operational zones”, are proposed in this work. A massive ex-
perimental study of several widely-used nature-inspired metaheuristic
and deterministic global optimization algorithms is performed on more
than 1000 test problems with more than 1 000 000 runs. It is shown
that this new graphical methodology for comparing global optimiza-
tion methods of a different nature is quite representative. Almost all
qualitative characteristics that can be studied from numerical tables
can be also observed from operational zones. Moreover, the best, the
worst, and average performances of stochastic methods can be easily
found, as well.

– Collections of test problems are used usually in the framework of continu-
ous constrained global optimization (see, e.g., [53]) due to absence of
test classes and generators for such a type of problems. This work in-
troduces a new generator of test problems with non-linear constraints,
known global minimizers, and parameterizable difficulty, where both
the objective function and constraints are continuously differentiable.

– Application of the Infinity Computing in order to handle of ill-conditioning
in optimization shows promising results. In particular, we show in this
work that several ill-conditioned problems in the traditional compu-
tational framework become well-conditioned if the Infinity Computing
is applied. Presented techniques can be used in different fields, where
ill-conditioning appears.

– Finally, several explicit numerical methods for solving ordinary differen-
tial equations are proposed. Theoretical convergence properties of the
proposed methods are studied. It is shown that the methods of hig-
her order can be used with the calculation of the derivatives exactly
using the Infinity Computer. Experimental results show the competi-
tive ability of the proposed methods with respect to the well-known
Runge-Kutta and Taylor methods.
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Obtained scientific results have been presented on 7 international confe-
rences. Moreover, 8 papers have been published in the international journals
and 1 paper has been submitted, 1 contribution to the book and 9 papers in
proceedings of the international conferences have been also published.

This work consists of the introduction, 4 chapters, conclusion, references
and 2 appendices.

The first Chapter is dedicated to univariate global optimization problems.
Geometric and information frameworks for constructing global optimization
algorithms are considered and several new ideas to speed up the search are
proposed. A general scheme of univariate Lipschitz global optimization met-
hods is presented. Convergence properties of the proposed algorithms are
studied. Numerical experiments over several sets of test problems from the
literature including two classes of practical engineering problems show the
advantages of the proposed techniques.

The second Chapter is dedicated to a numerical comparison of global
optimization algorithms of different nature. First, box-constraints problems
are considered. A traditional comparative analysis using test benchmarks
is studied and new methodologies for the comparison are proposed for two
classes of algorithms: deterministic and nature-inspired metaheuristic met-
hods. A new generator of test problems with non-linear constraints called
“Emmental-type GKLS-based generator of test problems” is proposed.

The third Chapter is related to handling with the ill-conditioning in op-
timization using numerical infinities and infinitesimals. First, the Infinity
Computing methodology is introduced very briefly. Then, univariate Lip-
schitz global optimization problems are considered in geometric and infor-
mation frameworks for constructing global optimization algorithms. Finally,
a multidimensional variable metric method is considered in the Infinity Com-
puting framework, as well. Experimental results on the software simulator
of the Infinity Computer confirm theoretical analysis.

The fourth Chapter is dedicated to numerical solution of ordinary diffe-
rential equations on the Infinity Computer. The Infinity Computer studied
in the third Chapter is applied to numerical methods for solving initial va-
lue problems. Several explicit methods are introduced. Properties of the
proposed methods are studied theoretically. Finally, it is shown that an
experimental study substantiates the obtained theoretical results.

Finally, some conclusion remarks are provided. Classes of test problems
used during the work are described in Appendix.





Chapter 1

Univariate Lipschitz Global
Optimization

In global optimization, it is necessary to find the global minimum f ∗ and the
respective minimizer x∗ of the objective function f(x) over a set D, i. e.,

f ∗ = f(x∗) = min f(x), x ∈ D ⊂ R
N , (1.1)

where D is a bounded set (often, an N -dimensional hyperinterval is consi-
dered). In this Chapter, black-box Lipschitz global optimization problems
are considered in their univariate statement, i.e., N = 1 in (1.1). Problems
of this kind attract a great attention of the global optimization community.
This happens because, first, there exists a huge number of real-life applica-
tions where it is necessary to solve univariate global optimization problems
(see, e. g., [25, 26, 28, 37, 68, 72, 74, 83, 109, 155, 170, 193, 203, 166, 187,
189, 230, 234]). This kind of problems is often encountered in scientific
and engineering applications (see, e. g., [82, 93, 105, 114, 113, 123, 152, 193,
166, 189, 214, 215]), and, in particular, in electrical engineering optimiza-
tion problems (see, e. g., [37, 38, 183, 189, 215]). On the other hand, it is
important to study one-dimensional methods because they can be success-
fully generalized in several ways. For instance, they can be extended to the
multi-dimensional case by numerous schemes (see, for example, one-point ba-
sed, diagonal, simplicial, space-filling curves, and other popular approaches in
[32, 54, 88, 120, 149, 150, 151, 152, 168, 189, 207, 213, 215]). Another possible
generalization consists of developing methods for solving problems where the
first derivative of the objective function satisfies also the Lipschitz condition
with an unknown constant (see, e. g., [69, 111, 119, 190, 191, 167, 189, 215]).

In the seventies of the XXth century two algorithms for solving the above
mentioned problems have been proposed in [155, 213]. The first method was
introduced by Piyavskij (see also [210]) by using geometric ideas (based on
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the Lipschitz condition) and an a priori given overestimate of the Lipschitz
constant for the objective function. The method [155] constructs a piecewise
linear auxiliary function, being a minorant for the objective function, that
is adaptively improved during the search. The latter algorithm [212, 213]
was introduced by Strongin who developed a statistical model that allowed
him to calculate probabilities of locating global minimizers within each of the
subintervals of the search interval taken into consideration. Moreover, this
model provided a dynamically computed estimate of the Lipschitz constant
during the process of optimization. Both the methods became sources of
multiple generalizations and improvements (see, e. g., [49, 149, 151, 152, 189,
207, 215, 232]) giving rise to classes of geometric and information global
optimization methods.

Very often in global optimization (see, e. g., [54, 88, 152, 189, 215, 229])
local techniques are used to accelerate the global search and frequently global
and local searches are realized by different methods having completely alien
structures. Such a combination introduces at least two inconveniences. First,
evaluations of the objective function (called hereinafter trials) executed by a
local search procedure are not used usually in the subsequent phases of the
global search or, at least, results of only some of these trials (for instance,
the current best found value) are used and the other ones are not taken into
consideration. Second, there arises the necessity to introduce both a rule
that stops the global phase and starts the local one and a rule that stops the
local phase and decides whether it is necessary to re-start the global search.
Clearly, a premature stop of a global phase of the search can lead to the loss
of the global solution while a late stop of the global phase can slow down the
search.

In this work, both frameworks, geometric and information, are taken into
consideration and a number of derivative-free techniques that were proposed
to accelerate the global search are studied and compared.

1.1 Acceleration techniques in Lipschitz

global optimization

Many of the algorithms of both deterministic and stochastic types have a si-
milar structure. Hence, a number of general frameworks for describing com-
putational schemes of global optimization methods and providing their con-
vergence conditions in a unified manner have been proposed. The “Divide-
the-Best” approach DBA (see [168, 189, 194, 202]), which generalizes both
the schemes of adaptive partition [152] and characteristic [80, 189, 215] algo-
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rithms, can be successfully used for describing and studying numerical global
optimization methods.

In the DBA scheme, given a set of the method parameters, an adaptive
partition of the admissible region D from (1.1) into subsets Dk

i is considered
at each iteration k. The ‘merit’ (called characteristic) Ri of each subset for
performing a subsequent, more detailed, investigation is estimated on the
basis of the obtained information about the objective function. The best
(in some predefined sense) characteristic obtained over some subregion Dk

t

corresponds to a higher possibility to find the global minimizer within Dk
t .

Subregion Dk
t is, therefore, subdivided at the next iteration of the algorithm,

thus, improving the current approximation of the solution to problem (1.1).
Efficient deterministic global optimization methods belonging to the DBA

scheme (as surveyed, e. g., in [112]) can be developed in the framework of
Lipschitz global optimization (LGO) working with the Lipschitz objective
functions f(x) in (1.1), i. e., with the functions f(x) satisfying the following
condition:

|f(x′)− f(x′′)| ≤ L‖x′ − x′′‖, x′, x′′ ∈ D, (1.2)

where 0 < L < ∞ is the Lipschitz constant (usually, unknown for black-box
functions).

Condition (1.2) is realistic for many practical black-box problems and
allows the solvers to obtain accurate global optimum estimates after perfor-
ming a limited number of trials.

1.1.1 Local Tuning and Local Improvement techniques

The considered univariate global optimization problem can be formulated as
follows:

f ∗ := f(x∗) = min f(x), x ∈ [a, b], (1.3)

where the function f(x) satisfies the Lipschitz condition (1.2) over the interval
[a, b] with the Lipschitz constant L, 0 < L < ∞. It is supposed that the
objective function f(x) can be multiextremal, non-differentiable; black-box;
with an unknown Lipschitz constant L; and evaluation of f(x) even at one
point is a time-consuming operation.

As mentioned above, the geometric and information frameworks are ta-
ken into consideration in this work. The original geometric and information
methods, apart the origins of their models, have the following important dif-
ference. Piyavskij’s method requires for its correct work an overestimate of
the value L that usually is hard to get in practice. In contrast, the informa-
tion method of Strongin adaptively estimates L during the search. As it was
shown in [165, 166] for both the methods, these two strategies for obtaining
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Figure 1.1: An auxiliary function (solid thin line) and a minorant function
(dashed line) for a Lipschitz function f(x) over [a, b], constructed by using
estimates of local Lipschitz constants and by using the global Lipschitz con-
stant, respectively (trial values are circled).

the Lipschitz information can be substituted by the so-called “local tuning
approach”. In fact, the original methods of Piyavskij and Strongin use esti-
mates of the global constant L during their work (the term “global” means
that the same estimate is used over the whole interval [a, b]). However, the
global estimate can provide a poor information about the behavior of the ob-
jective function f(x) over every small subinterval [xi−1, xi] ⊂ [a, b]. In fact,
when the local Lipschitz constant related to the interval [xi−1, xi] is signifi-
cantly smaller than the global constant L, then the methods using only this
global constant or its estimate can work slowly over such an interval (see,
e. g., [166, 189, 215]).

In Fig. 1.1, an example of the auxiliary function for a Lipschitz function
f(x) over [a, b] constructed by using estimations of local Lipschitz constants
over subintervals of [a, b] is shown by a solid thin line; a minorant function for
f(x) over [a, b] constructed by using an overestimate of the global Lipschitz
constant is represented by a dashed line. Note that the former piecewise
function estimates the behavior of f(x) over [a, b] more accurately than the
latter one, especially over subintervals where the corresponding local Lip-
schitz constants are smaller than the global one.

The local tuning technique proposed in [165, 166] adaptively estimates
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local Lipschitz constants at different subintervals of the search region du-
ring the course of the optimization process. Estimates li of local Lipschitz
constants Li are computed for each interval [xi−1, xi], i = 2, ..., k, as follows:

li = r ·max{λi, γi, ξ}, (1.4)

where

λi = max{Hi−1, Hi, Hi+1}, i = 2, ..., k, (1.5)

Hi =
|zi − zi−1|
xi − xi−1

, i = 2, ..., k, (1.6)

Hk = max{Hi : i = 2, ..., k}. (1.7)

Here, zi = f(xi), i = 1, ..., k, i. e., values of the objective function calculated
at the previous iterations at the trial points xi, i = 1, ..., k, (when i = 2 and
i = k only H2, H3, and Hk−1, Hk, should be considered, respectively). The
value γi is calculated as follows:

γi = Hk (xi − xi−1)

Xmax
, (1.8)

with Hk from (1.7) and

Xmax = max{xi − xi−1 : i = 2, ..., k}. (1.9)

Let us give an explanation of these formulae. The parameter ξ > 0 from
(1.4) is a small number that is required for a correct work of the local tuning
at initial steps of optimization, where it can happen that max{λi, γi} = 0;
r > 1 is the reliability parameter. The two components, λi and γi, are the
main players in (1.4). They take into account, respectively, the local and
the global information obtained during the previous iterations. When the
interval [xi−1, xi] is large, the local information represented by λi can be not
reliable and the global part γi has a decisive influence on li thanks to (1.4)
and (1.8). In this case γi → Hk, namely, it tends to the estimate of the
global Lipschitz constant L. In contrast, when [xi−1, xi] is small, then the
local information becomes relevant, the estimate γi is small for small intervals
(see (1.8)), and the local component λi assumes the key role. Thus, the local
tuning technique automatically balances the global and the local information
available at the current iteration. It has been proved for a number of global
optimization algorithms that the usage of the local tuning can accelerate the
search significantly (see [110, 170, 193, 203, 166, 167, 189, 215]). This local
tuning strategy will be called “Maximum” Local Tuning hereinafter.
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Recently, a new local tuning strategy called hereinafter “Additive” Local
Tuning has been proposed in [66, 67, 214] for certain information algorithms.
It proposes to use the following additive convolution instead of (1.4):

li = r ·max{1
2
(λi + γi), ξ}, (1.10)

where r, ξ, λi, and γi have the same meaning as in (1.4). The first numerical
examples executed in [66, 214] have shown a very promising performance of
the “Additive” Local Tuning. These results induced us to execute in the
present research a broad experimental testing and a theoretical analysis of
the “Additive” Local Tuning. In particular, geometric methods using this
technique are proposed here (remind that the authors of [66, 214] have intro-
duced it in the framework of information methods only). During our study
some features suggesting a careful usage of this technique have been discove-
red, especially, in cases where it is applied to geometric global optimization
methods.

In order to start our analysis of the “Additive” Local Tuning, let us
remind (see, e. g., [152, 155, 189, 207, 213, 215]) that in both the geometric
and the information univariate algorithms, an interval [xt−1, xt] is chosen in
a certain way at the (k + 1)-th iteration of the optimization process and a
new trial point xk+1, where the (k + 1)-th evaluation of f(x) is executed, is
computed as follows:

xk+1 =
xt + xt−1

2
− zt − zt−1

2lt
. (1.11)

For a correct work of this kind of algorithms it is necessary that xk+1 is such
that xk+1 ∈ (xt−1, xt). It is easy to see that the necessary condition for this
inclusion is lt > Ht, where Ht is calculated following (1.6). Notice that lt is
obtained by using (1.10), where the sum of two addends plays the leading
role. Since the estimate γi is calculated as shown in (1.8), it can be very small
for small intervals, creating so the possibility of occurrence of the situation
lt ≤ Ht and, consequently, x

k+1 /∈ (xt−1, xt). Obviously, by increasing the
value of the parameter r this situation can be easily avoided and the method
should be re-started. In fact, in information algorithms where r ≥ 2 is usually
used this risk is less pronounced while in geometric methods where r > 1 is
applied it becomes more probable. On the other hand, it is well known in
Lipschitz global optimization (see, e. g., [152, 189, 207, 215]) that increasing
the parameter r can slow down the search. In order to understand better
the functioning of the “Additive” Local Tuning, it is broadly tested together
with other competitors.
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The analysis provided above shows that the usage of the “Additive” Local
Tuning can become tricky in some cases. In order to avoid the necessity to
check the satisfaction of the condition xk+1 ∈ (xt−1, xt) at each iteration, we
propose a new strategy called the “Maximum-Additive” Local Tuning where,
on the one hand, this condition is satisfied automatically and, on the other
hand, advantages of both the local tuning techniques described above are
incorporated in the unique strategy. This local tuning strategy calculates
the estimate li of the local Lipschitz constants as follows:

li = r ·max{Hi,
1

2
(λi + γi), ξ}, (1.12)

where r, ξ, Hi, λi, and γi have the usual meaning. It can be seen from (1.12)
that this strategy both maintains the additive character of the convolution
and satisfies condition li > Hi. The latter condition provides that in case
the interval [xi−1, xi] is chosen for subdivision (i. e., t := i is assigned), the
new trial point xk+1 will belong to (xt−1, xt). Notice that in (1.12) the equal
usage of the local and global estimate is applied. Obviously, a more general
scheme similar to (1.10) and (1.12) can be used where 1

2
is substituted by

different weights for the estimates λi and γi, for example, as follows:

li = r ·max{Hi,
λi

r
+

r − 1

r
γi, ξ}

(r, Hi, λi, γi, and ξ are as in (1.12)).
Let us now present another acceleration idea. It consists of the following

observation related to global optimization problems with a fixed budget of
possible evaluations of the objective function f(x), i. e., when only, for in-
stance, 100 or 1 000 000 evaluations of f(x) are allowed. In these problems,
it is necessary to obtain the best possible value of f(x) as soon as possible.
Suppose that f ∗

k is the best value (the record value) obtained after k iterati-
ons. If a new value f(xk+1) < f ∗

k has been obtained, then it can make sense
to try to improve this value locally, instead of continuing the usual global
search phase. As was already mentioned, traditional methods stop the global
procedure and start a local descent: trials executed during this local phase
are not then used by the global search since the local method has usually a
completely different nature.

Here, we propose two local improvement techniques, the “optimistic” and
the “pessimistic” one, that perform the local improvement within the glo-
bal optimization scheme. The optimistic method alternates the local steps
with the global ones and, if during the local descent a new promising local
minimizer is not found, the global method stops when a local stopping rule
is satisfied. The pessimistic strategy does the same until the satisfaction of
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the required accuracy on the local phase and then switches to the global
phase where the trials performed during the local phase are also taken into
consideration.

All the methods described in this Chapter have a similar structure and
belong to the class of “Divide the Best” global optimization algorithms intro-
duced in [168] (see also [189]; for methods using the “Additive” Local Tuning
this holds if the parameter r is such that li(k) > rHi(k) for all i and k). The
algorithms differ in the following:

– methods are either geometric or information;

– methods differ in the way the Lipschitz information is used: an a priori
estimate, a global estimate, and a local tuning;

– in cases where a local tuning is applied methods use 3 different strategies:
Maximum, Additive, and Maximum-Additive;

– in cases where a local improvement is applied methods use either the
optimistic or the pessimistic strategy.

Let us describe the General Scheme (GS) of the methods used in this
work. A concrete algorithm will be obtained by specifying one of the possible
implementations of Steps 2–4 in this (GS).

Step 0. Initialization. Execute first two trials at the points a and b, i. e.,
x1 := a, z1 := f(a) and x2 := b, z2 := f(b). Set the iteration counter
k := 2.

Let flag be the local improvement switch to alternate global search
and local improvement procedures; set its initial value flag := 0. Let
imin be an index (being constantly updated during the search) of the
current record point, i. e., zimin

= f(ximin
) ≤ f(xi), i = 1, . . . , k (if

the current minimal value is attained at several trial points, then the
smallest index is accepted as imin).

Suppose that k ≥ 2 iterations of the algorithm have already been exe-
cuted. The iteration k + 1 consists of the following steps.

Step 1. Reordering. Reorder the points x1, . . . , xk (and the corresponding
function values z1, . . . , zk) of previous trials by subscripts so that

a = x1 < . . . < xk = b, zi = f(xi), i = 1, . . . , k.

Step 2. Estimates of the Lipschitz constant. Calculate the current esti-
mates li of the Lipschitz constant for each subinterval [xi−1, xi], i =
2, . . . , k, in one of the following ways.
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Step 2.1. A priori given estimate. Take an a priori given estimate
L̂ of the Lipschitz constant for the whole interval [a, b], i. e., set
li := L̂.

Step 2.2. Global estimate. Set li := r · max{Hk, ξ}, where r and
ξ are two parameters with r > 1 and ξ sufficiently small, Hk is
from (1.7).

Step 2.3. “Maximum” Local Tuning. Set li following (1.4).

Step 2.4. “Additive” Local Tuning. Set li following (1.10).

Step 2.5. “Maximum-Additive” Local Tuning. Set li following (1.12).

Step 3. Calculation of characteristics. Compute for each subinterval
[xi−1, xi], i = 2, . . . , k, its characteristic Ri by using one of the fol-
lowing rules.

Step 3.1. Geometric methods.

Ri =
zi + zi−1

2
− li

xi − xi−1

2
.

Step 3.2. Information methods.

Ri = 2(zi + zi−1)− li(xi − xi−1)−
(zi − zi−1)

2

li(xi − xi−1)
.

Step 4. Subinterval selection. Determine subinterval [xt−1, xt], t = t(k),
for performing the next trial by using one of the following rules.

Step 4.1. Global phase. Select the subinterval [xt−1, xt] corresponding
to the minimal characteristic, i. e., such that t = argmini=2,...,k Ri.

Steps 4.2–4.3. Local improvement.

if flag = 1 then (perform local improvement)

if zk = zimin
, then t = argmin{Ri : i ∈ {imin + 1, imin}};

else alternate the choice of subinterval between [ximin
, ximin+1]

and [ximin−1, ximin
] starting from the right subinterval

[ximin
, ximin+1].

end if

else t = argmini=2,...,k Ri (do not perform local improvement at
the current iteration).

end if
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The subsequent part of this Step differs for two local improvement
techniques.

Step 4.2. Pessimistic local improvement.

if flag = 1 and

xt − xt−1 ≤ δ, (1.13)

where δ > 0 is the local search accuracy,
then t = argmini=2,...,k Ri (local improvement is not per-
formed since the local search accuracy has been achieved).

end if

Set flag := NOT (flag) (switch the local/global flag).

Step 4.3. Optimistic local improvement.

Set flag := NOT (flag) (switch the local/global flag: the
accuracy of local search is not separately checked in this
strategy).

Step 5. Global stopping criterion. If

xt − xt−1 ≤ ε, (1.14)

where ε > 0 is a given accuracy of the global search, then Stop
and take as an estimate of the global minimum f ∗ the value f ∗

k =
mini=1,...,k{zi} obtained at a point x∗

k = argmini=1,...,k{zi}.
Otherwise, go to Step 6.

Step 6. New trial. Execute the next trial at the point xk+1 from (1.11):
zk+1 := f(xk+1). Increase the iteration counter k := k + 1, and go to
Step 1.

All the Lipschitz global optimization methods considered in the Chap-
ter are summarized in Table 1.1 from which concrete implementations of
Steps 2–4 in the GS can be individuated. As shown experimentally in Sub-
section 1.1.2, the methods using an a priori given estimate of the Lipschitz
constant or its global estimate lose, as a rule, in comparison with methods
using local tuning techniques, in terms of the trials performed to approximate
the global solutions to problems. Therefore, local improvement accelerations
(Steps 4.2–4.3 of the GS) were implemented for methods using local tuning
strategies only. In what follows, the methods from Table 1.1 are furthermore
specified (for the methods known in the literature the respective references
are provided).
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Method
Step2 Step3 Step4

2.1 2.2 2.3 2.4 2.5 3.1 3.2 4.1 4.2 4.3

Geom-AL + + +
Geom-GL + + +
Geom-LTM + + +
Geom-LTA + + +
Geom-LTMA + + +
Geom-LTIMP + + +
Geom-LTIAP + + +
Geom-LTIMAP + + +
Geom-LTIMO + + +
Geom-LTIAO + + +
Geom-LTIMAO + + +

Inf-AL + + +
Inf-GL + + +
Inf-LTM + + +
Inf-LTA + + +
Inf-LTMA + + +
Inf-LTIMP + + +
Inf-LTIAP + + +
Inf-LTIMAP + + +
Inf-LTIMO + + +
Inf-LTIAO + + +
Inf-LTIMAO + + +

Table 1.1: Description of the considered methods, the signs “+” show a
combination of implementations of Steps 2–4 in the GS for each method.
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1. Geom-AL: Piyavskij’s method with the a priori given Lipschitz con-
stant (see [155, 210] and [189] for generalizations and discussions): GS with
Step 2.1, Step 3.1 and Step 4.1.

2. Geom-GL: Geometric method with the global estimate of the Lip-
schitz constant (see [189]): GS with Step 2.2, Step 3.1 and Step 4.1.

3. Geom-LTM: Geometric method with the “Maximum” Local Tuning
(see [166, 189, 215]): GS with Step 2.3, Step 3.1 and Step 4.1.

4. Geom-LTA: Geometric method with the “Additive” Local Tuning:
GS with Step 2.4, Step 3.1 and Step 4.1.

5. Geom-LTMA: Geometric method with the “Maximum-Additive”
Local Tuning: GS with Step 2.5, Step 3.1 and Step 4.1.

6. Geom-LTIMP: Geometric method with the “Maximum” Local Tu-
ning and the pessimistic strategy of the local improvement (see [119, 189]):
GS with Step 2.3, Step 3.1 and Step 4.2.

7. Geom-LTIAP: Geometric method with the “Additive” Local Tuning
and the pessimistic strategy of the local improvement: GS with Step 2.4,
Step 3.1 and Step 4.2.

8. Geom-LTIMAP: Geometric method with the “Maximum-Additive”
Local Tuning and the pessimistic strategy of the local improvement: GS with
Step 2.5, Step 3.1 and Step 4.2.

9. Geom-LTIMO: Geometric method with the “Maximum” Local Tu-
ning and the optimistic strategy of the local improvement: GS with Step 2.3,
Step 3.1 and Step 4.3.

10. Geom-LTIAO: Geometric method with the “Additive” Local Tu-
ning and the optimistic strategy of the local improvement: GS with Step 2.4,
Step 3.1 and Step 4.3.

11. Geom-LTIMAO: Geometric method with the “Maximum-Additive”
Local Tuning and the optimistic strategy of the local improvement: GS with
Step 2.5, Step 3.1 and Step 4.3.

12. Inf-AL: Information method with the a priori given Lipschitz con-
stant (see [189]): GS with Step 2.1, Step 3.2 and Step 4.1.

13. Inf-GL: Strongin’s information-statistical method with the global
estimate of the Lipschitz constant (see [212, 213, 215]): GS with Step 2.2,
Step 3.2 and Step 4.1.

14. Inf-LTM: Information method with the “Maximum” Local Tuning
(see [165, 207, 215]): GS with Step 2.3, Step 3.2 and Step 4.1.

15. Inf-LTA: Information method with the “Additive” Local Tuning (see
[66, 214]): GS with Step 2.4, Step 3.2 and Step 4.1.

16. Inf-LTMA: Information method with the “Maximum-Additive” Lo-
cal Tuning: GS with Step 2.5, Step 3.2 and Step 4.1.
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17. Inf-LTIMP: Information method with the “Maximum” Local Tu-
ning and the pessimistic strategy of the local improvement [118, 207]: GS
with Step 2.3, Step 3.2 and Step 4.2.

18. Inf-LTIAP: Information method with the “Additive” Local Tuning
and the pessimistic strategy of the local improvement: GS with Step 2.4,
Step 3.2 and Step 4.2.

19. Inf-LTIMAP: Information method with the “Maximum-Additive”
Local Tuning and the pessimistic strategy of the local improvement: GS with
Step 2.5, Step 3.2 and Step 4.2.

20. Inf-LTIMO: Information method with the “Maximum” Local Tu-
ning and the optimistic strategy of the local improvement: GS with Step 2.3,
Step 3.2 and Step 4.3.

21. Inf-LTIAO: Information method with the “Additive” Local Tuning
and the optimistic strategy of the local improvement: GS with Step 2.4, Step
3.2 and Step 4.3.

22. Inf-LTIMAO: Information method with the “Maximum-Additive”
Local Tuning and the optimistic strategy of the local improvement: GS with
Step 2.5, Step 3.2 and Step 4.3.

1.1.2 Convergence study and experimental analysis

Let us spend a few words regarding convergence of the methods belonging to
the GS. To do this we study an infinite trial sequence {xk} generated by an
algorithm belonging to the general scheme GS for solving the problem (1.3),
(1.2) with δ = 0 from (1.13) and ε = 0 from (1.14).

Theorem 1.1. Assume that the objective function f(x) satisfies the Lipschitz
condition (1.2) with a finite constant L > 0, and let x′ be any limit point of
{xk} generated by an algorithm belonging to the GS that does not use the
“Additive” Local Tuning and works with one of the estimates (1.4), (1.7),
(1.12). Then the following assertions hold:

1. if x′ ∈ (a, b) then convergence to x′ is bilateral, i.e., there exist two
infinite subsequences of {xk} converging to x′ one from the left, the
other from the right;

2. f(xk) ≥ f(x′), for all trial points xk, k ≥ 1;

3. if there exists another limit point x′′ 6= x′, then f(x′′) = f(x′);

4. if the function f(x) has a finite number of local minima in [a, b], then
the point x′ is locally optimal;
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5. (Sufficient conditions for convergence to a global minimizer). Let x∗ be
a global minimizer of f(x). If there exists an iteration number k∗ such
that for all k > k∗ the inequality

lj(k) > Lj(k) (1.15)

holds, where Lj(k) is the Lipschitz constant for the interval [xj(k)−1, xj(k)]
containing x∗, and lj(k) is its estimate. Then the set of limit points of
the sequence {xk} coincides with the set of global minimizers of the
function f(x).

Proof. Since all the methods mentioned in the Theorem belong to the
“Divide the Best” class of global optimization algorithms introduced in [168],
the proofs of assertions 1–5 can be easily obtained as particular cases of the
respective proofs in [168, 189].

Corollary 1.1. Assertions 1–5 hold for methods belonging to the GS and
using the “Additive” Local Tuning if the condition li(k) > rHi(k) is fulfilled
for all i and k.

Proof. Fulfillment of the condition li(k) > rHi(k) ensures that: (i) each
new trial point xk+1 belongs to the interval (xt−1, xt) chosen for partitioning;
(ii) the distances xk+1 − xt−1 and xt − xk+1 are finite. The fulfillment of
these two conditions implies that the methods belong to the class of “Divide
the Best” global optimization algorithms and, therefore, proofs of assertions
1–5 can be easily obtained as particular cases of the respective proofs in
[168, 189].

Notice that in practice, since both ε and δ assume finite positive values,
methods using the optimistic local improvement can miss the global optimum
and stop in the δ-neighborhood of a local minimizer (see Step 4 of the GS).

The next Theorem ensures existence of the values of the reliability para-
meter r satisfying condition (1.15), providing so that all global minimizers
of f(x) will be determined by the proposed methods that do not use the a
priori known Lipschitz constant.

Theorem 1.2. For any function f(x) satisfying the Lipschitz condition (1.2)
with L < ∞ and for methods belonging to the GS and using one of the
estimates (1.4), (1.7), (1.10), (1.12) there exists a value r∗ such that for all
r > r∗ condition (1.15) holds.

Proof. It follows from, (1.4), (1.7), (1.10), (1.12), and the finiteness of ξ >
0 that approximations of the Lipschitz constant li in the methods belonging
to the GS are always positive. Since L in (1.2) is finite and any positive value
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of the parameter r can be chosen in (1.4), (1.7), (1.10), (1.12), it follows that
there exists an r∗ such that condition (1.15) will be satisfied for all global
minimizers for r > r∗.

Experimental study of the described methods is presented below. Six se-
ries of numerical experiments were executed on the following three sets of test
functions to compare 22 global optimization methods described previously:

1. the widely used set of 20 test functions from [83] reported in Appendix A;

2. 100 randomly generated Pintér’s functions from [153];

3. 100 Shekel type test functions from [215].

Geometric and information methods with and without the local impro-
vement techniques (optimistic and pessimistic) were tested in these expe-
rimental series. In the first two series of experiments, the accuracy of the
global search was chosen as ε = 10−5(b − a), where [a, b] is the search in-
terval. The accuracy of the local search was set as δ = ε in the algorithms
with the local improvement. Results of numerical experiments are reported
in Tables 1.2–1.15 where the number of function trials executed until the
satisfaction of the stopping rule is presented for each considered method (the
best results for the methods within the same class are shown in bold).

The first series of numerical experiments was carried out with geome-
tric and information algorithms without the local improvement on 20 test
functions given in Appendix A. Parameters of the geometric methods Geom-
AL, Geom-GL, Geom-LTM, Geom-LTA, and Geom-LTMA were chosen as
follows. For the method Geom-AL, the estimates of the Lipschitz constants
were computed as the maximum between the values calculated as relative dif-
ferences on 10−7-grid and the values given in [83]. For the methods Geom-GL,
Geom-LTM, and Geom-LTMA, the reliability parameter r = 1.1 was used
as recommended in [189]. The technical parameter ξ = 10−8 was used for
all the methods with the local tuning (Geom-LTM, Geom-LTA, and Geom-
LTMA). For the method Geom-LTA, the parameter r was increased with the
step equal to 0.1 starting from r = 1.1 until all 20 test problems were solved
(i. e., for all the problems the algorithm stopped in the ε-neighborhood of a
global minimizer: |xk − x∗| ≤ ε, where xk is the point generated at Step 6
of GS and x∗ is the global minimizer (known a priori for all test problems)).
This situation happened for r = 1.8: the corresponding results are shown in
the column Geom-LTA of Table 1.2.

As can be seen from Table 1.2, the performance of the method Geom-
LTMA was better with respect to the other geometric algorithms tested.
The experiments also showed that the additive convolution (Geom-LTA) did
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# Geom-AL Geom-GL Geom-LTM Geom-LTA Geom-LTMA

1 595 446 50 44 35

2 457 373 49 52 39

3 577 522 176 202 84

4 1177 1235 57 73 47

5 383 444 57 65 43

6 301 299 70 73 50

7 575 402 53 51 41

8 485 481 164 183 82

9 469 358 55 57 41

10 571 481 55 58 42

11 1099 1192 100 109 78

12 993 1029 93 96 68

13 2833 2174 93 88 68

14 379 303 56 60 39

15 2513 1651 89 118 72

16 2855 2442 102 120 83

17 2109 1437 125 171 122

18 849 749 55 58 41

19 499 377 49 47 39

20 1017 166 53 58 40

Avg 1036.80 828.05 80.05 89.15 57.70

Table 1.2: Number of trials performed by the considered geometric methods
without the local improvement on 20 tests from Appendix A.

not guarantee the proximity of the found solution to the global minimum
with the common value r = 1.1. With an increased value of the reliability
parameter r, the average number of trials performed by this method on 20
tests was also slightly worse than that of the method with the maximum
convolution (Geom-LTM) but better than the averages of the methods using
global estimates of the Lipschitz constants (Geom-AL and Geom-GL).

Results of numerical experiments with information methods without the
local improvement techniques (methods Inf-AL, Inf-GL, Inf-LTM, Inf-LTA,
and Inf-LTMA) on the same 20 tests from Appendix A are shown in Table 1.3.
Parameters of the information methods were chosen as follows. The estimates
of the Lipschitz constants for the method Inf-AL were the same as for the
method Geom-AL. The reliability parameter r = 2 was used in the methods
Inf-GL, Inf-LTM, and Inf-LTMA, as recommended in [189, 213, 215]. For
all the information methods with the local tuning techniques (Inf-LTM, Inf-
LTA, and Inf-LTMA), the value ξ = 10−8 was used. For the method Inf-LTA,
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# Inf-AL Inf-GL Inf-LTM Inf-LTA Inf-LTMA

1 422 501 46 35 32

2 323 373 47 38 36

3 390 504 173 72 56

4 833 1076 51 56 47

5 269 334 59 47 37

6 208 239 65 46 45

7 403 318 49 38 37

8 157 477 163 113 63

9 329 339 54 48 42

10 406 435 51 42 38

11 773 1153 95 78 75

12 706 918 88 71 64

13 2012 1351 54 54 51

14 264 349 55 44 38

15 1778 1893 81 82 71

16 2023 1592 71 67 64

17 1489 1484 128 121 105

18 601 684 52 43 43

19 352 336 44 34 33

20 681 171 55 39 39

Avg 720.95 726.35 74.05 58.40 50.80

Table 1.3: Number of trials performed by the considered information methods
without the local improvement on 20 tests from Appendix A.

the parameter r was increased (starting from r = 2) up to the value r = 2.3
when all 20 test problems were solved.

As can be seen from Table 1.3, the performance of the method Inf-LTMA
was better (as also verified for its geometric counterpart) with respect to the
other information algorithms tested. The experiments also showed that the
average number of trials performed by the Inf-LTA method with r = 2.3 on
20 tests was better than that of the method with the maximum convolution
(Inf-LTM).

The second series of experiments (see Table 1.4) was executed on the class
of 100 Pintér’s test functions from [153] with all geometric and information
algorithms without the local improvement (i. e., all the methods used in the
first series of experiments). Each Pintér’s test function is defined over the
interval [a, b] = [−5, 5] as follows:
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Method Average StDev Method Average StDev

Geom-AL 1080.24 91.17 Inf-AL 750.03 66.23

Geom-GL 502.17 148.25 Inf-GL 423.19 109.26

Geom-LTM 58.96 9.92 Inf-LTM 52.13 5.61

Geom-LTA 70.48 17.15 Inf-LTA 36.47 6.58

Geom-LTMA 42.34 6.63 Inf-LTMA 38.10 5.96

Table 1.4: Results of numerical experiments with the considered geometric
and information methods without the local improvement on 100 Pintér’s test
functions from [153].

fn(x) = 0.025(x− x∗

n)
2 + sin2[(x − x∗

n) + (x− x∗

n)
2] + sin2(x− x∗

n), 1 ≤ n ≤ 100,
(1.16)

where the global minimizer x∗
n, 1 ≤ n ≤ 100, is chosen randomly and diffe-

rently for all functions from the search interval by means of the random num-
ber generator used in the GKLS-generator of multidimensional test functi-
ons (see [65] for details). The GKLS-generator can be free-downloaded, so
the source code is available for repeating all the experiments with random
functions. Parameters of the methods Geom-AL, Geom-GL, Geom-LTM,
Geom-LTMA, and Inf-AL, Inf-GL, Inf-LTM and Inf-LTMA were the same
as in the first experimental series (r = 1.1 for all the geometric methods
and r = 2 for the information methods). The reliability parameter for the
method Geom-LTA was increased from r = 1.1 to r = 1.8 (when all 100
problems were solved). All the information methods were able to solve all
100 test problems with r = 2 (see Table 1.4). The average performance of
the Geom-LTMA and the Inf-LTA methods was the best among the other
considered geometric and information algorithms, respectively.

In the following several series of experiments, the local improvement
techniques were compared on the same sets of test functions. In the third
series (see Table 1.5), six methods (geometric and information) with the op-
timistic local improvement (methods Geom-LTIMO, Geom-LTIAO, Geom-
LTIMAO and Inf-LTIMO, Inf-LTIAO and Inf-LTIMAO) were compared on
the class of 20 test functions from [83] (see Appendix A). The reliability para-
meter r = 1.1 was used for the methods Geom-LTIMO and Geom-LTIMAO
and r = 2 was used for the method Inf-LTIMO. For the method Geom-LTIAO
r was increased to 1.6 and for the methods Inf-LTIMAO and Inf-LTIAO r
was increased to 2.3. As can be seen from Table 1.5, the best average result
among all the algorithms was shown by the method Geom-LTIMAO (while
the Inf-LTIMAO was the best in average among the considered information
methods).
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#
Geom
LTIMO

Geom
LTIAO

Geom
LTIMAO

Inf
LTIMO

Inf
LTIAO

Inf
LTIMAO

1 45 41 35 47 35 37

2 47 49 35 45 37 41

3 49 45 39 55 45 51

4 47 53 43 49 53 53

5 55 49 47 51 47 47

6 51 49 45 47 43 47

7 45 45 39 49 37 39

8 37 41 35 41 45 47

9 49 51 41 51 51 40

10 47 49 41 51 43 43

11 49 53 45 55 59 55

12 43 53 35 53 67 45

13 51 53 57 41 51 55

14 45 45 43 49 43 45

15 45 57 47 45 55 53

16 49 55 53 47 49 53

17 93 53 95 59 55 53

18 45 47 37 49 41 44

19 45 43 35 46 33 35

20 43 45 37 49 35 39

Avg 49.00 48.80 44.20 48.95 46.20 46.10

Table 1.5: Number of trials performed by the considered geometric and in-
formation methods with the optimistic local improvement on 20 tests from
Appendix A.
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#
Geom
LTIMP

Geom
LTIAP

Geom
LTIMAP

Inf
LTIMP

Inf
LTIAP

Inf
LTIMAP

1 49 46 36 47 38 35

2 49 50 38 47 37 35

3 165 212 111 177 56 57

4 56 73 47 51 56 46

5 63 66 48 57 47 38

6 70 71 51 64 46 45

7 54 53 41 51 39 38

8 157 182 81 163 116 99

9 53 57 43 52 52 43

10 56 59 42 52 43 39

11 100 114 77 95 78 72

12 93 97 69 87 73 64

13 97 86 68 55 52 50

14 58 197 43 60 46 42

15 79 120 76 79 82 70

16 97 115 81 71 66 60

17 140 189 139 127 129 100

18 55 60 42 51 42 42

19 52 50 36 46 33 32

20 54 56 40 51 37 40

Avg 79.85 97.65 60.45 74.15 58.40 52.35

Table 1.6: Number of trials performed by the considered geometric and in-
formation methods with the pessimistic local improvement on 20 tests from
Appendix A.
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Optimistic strategy Pessimistic strategy

Method r Average StDev Method r Average StDev

Geom-LTIMO 1.3 49.52 4.28 Geom-LTIMP 1.1 66.44 21.63

Geom-LTIAO 1.9 48.32 5.02 Geom-LTIAP 1.8 93.92 197.61

Geom-LTIMAO 1.4 45.76 5.83 Geom-LTIMAP 1.1 48.24 14.12

Inf-LTIMO 2.0 48.31 4.29 Inf-LTIMP 2.0 53.06 7.54

Inf-LTIAO 2.1 36.90 5.91 Inf-LTIAP 2.0 37.21 7.25

Inf-LTIMAO 2.0 38.24 6.36 Inf-LTIMAP 2.0 39.06 6.84

Table 1.7: Results of numerical experiments with the considered geome-
tric and information methods with the local improvement techniques on 100
Pintér’s test functions from [153].

In the fourth series of experiments, six methods (geometric and informa-
tion) using the pessimistic local improvement were compared on the same 20
test functions. The obtained results are presented in Table 1.6. The usual
values r = 1.1 and r = 2 were used for the geometric (Geom-LTIMP and
Geom-LTIMAP) and the information (Inf-LTIMP and Inf-LTIMAP) met-
hods, respectively. The values of the reliability parameter ensuring the so-
lution to all the test problems in the case of methods Geom-LTIAP and
Inf-LTIAP were set as r = 1.8 and r = 2.3, respectively. As can be seen
from Table 1.6, the “Maximum” and the “Maximum-Additive” local tuning
techniques were more stable and generally allowed us to find the global so-
lution for all test problems without increasing r. Moreover, the methods
Geom-LTIMAP and Inf-LTIMAP showed the best performance with respect
to the other techniques in the same geometric and information classes, re-
spectively.

In the fifth series of experiments, the local improvement techniques were
compared on the class of 100 Pintér’s functions. The obtained results are
presented in Table 1.7. The values of the reliability parameter r for all the
methods were increased, starting from r = 1.1 for the geometric methods and
r = 2 for the information methods, until all 100 problems from the class were
solved. It can be seen from Table 1.7, that the best average number of trials
for both the optimistic and pessimistic strategies was almost the same (36.90
and 37.21 in the case of information methods and 45.76 and 48.24 in the case
of geometric methods, for the optimistic and for the pessimistic strategies,
respectively). However, the pessimistic strategy seemed to be more stable
since its reliability parameter (needed to solve all the problems) generally
remained smaller than that of the optimistic strategy. In average, the Geom-
LTMA and the Inf-LTA methods was the best among the other considered
geometric and information algorithms, respectively.
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Figure 1.2: Operational characteristics for the geometric (a) and informa-
tion (b) Lipschitz global optimization algorithms over 100 Shekel-type test
functions

Finally, in the sixth series of experiments, the following 10 methods
have been compared on the class of 100 Shekel-type test functions: Geom-
GL, Geom-LTM, Geom-LTIMP, Geom-LTMA, Geom-LTIMAP, Inf-GL, Inf-
LTM, Inf-LTIMP, Inf-LTMA, Inf-LTIMAP. In this series of experiments, con-
trol parameters for each algorithm have been set as follows. First, for each
method the technical parameter ξ was set to 10−8. Second, for each method
the initial value r = 2 was used over all the classes of test functions and
it was increased until all test problems were solved. Each test problem was
considered to be solved if an algorithm has generated a point xk after k trials
such that:

|xk − x∗| ≤ ǫ, (1.17)

where x∗ is the global minimizer for the problem (1.3),(1.2), and ǫ is the
given accuracy (that was set 10−6 in our experiments). So, for the algorithms
Geom-GL, Geom-LTM, and Geom-LTIMP r was set to 2, for Geom-LTMA –
2.5, for Geom-LTIMAP – 2.3, for Inf-GL – 2.8, for Inf-LTM – 3, for Inf-LTIM
– 3.7, for Inf-LTMA – 4, and for Inf-LTIMAP – 4.2. However, it should be
noticed that many test problems of the class can be solved also with smaller
values of the parameter r for each algorithm. The use of a common value of
the parameters for the whole class of test functions can increase the number
of trials.

One of the most efficient methods for a numerical comparison on the
class of test problems in terms of costly function evaluations uses operational
characteristics proposed by Grishagin in [78]. The operational characteristic
of a method on a class of test problems is a non-decreasing function that
indicates the number of problems solved by this method after each trial (see
the next Section for details). It is convenient to represent the operational
characteristics of a method in a graph (see Fig. 1.2.a and Fig. 1.2.b). Among



Solving practical engineering problems 37

different methods the better method is that with the highest operational
characteristic.

As we can see from Fig. 1.2, all the methods can be divided into three
groups with respect to their performance: methods with the global estimate
of the Lipschitz constant (methods Geom-GL and Inf-GL) with the lower
operational characteristics, local tuning with local improvement (methods
Geom-LTMP, Geom-LTIMAP, Inf-LTMP, and Inf-LTIMAP) with the hig-
hest operational characteristics, and local tuning without local improvement
(methods Geom-LTM, Geom-LTMA, Inf-LTM, and Inf-LTMA), that have
the medium operational characteristics. Since the methods Geom-GL and
Inf-GL use the global Lipschitz constants, they need more trials to achieve
the desired accuracy as the Lipschitz constant can be large in few subintervals
and small in other ones. That is the advantage of the local tuning techni-
ques that use the local Lipschitz constants for each subinterval and avoid
this problem. We can see also that the use of local improvement techniques
improves the results also and a combination of the local tuning with the local
improvement techniques can accelerate the search significantly.

Figure 1.2 demonstrates also that the methods with the “maximum-
additive” local tuning show better performance with respect to the other
techniques: among all geometric (information) algorithms over the presented
class of test problems the best one was Geom-LTIMAP (Inf-LTIMAP) and
among all geometric (information) algorithms without local tuning the best
one was Geom-LTMA (Inf-LTMA).

1.2 Solving practical engineering problems

As mentioned above, univariate Lipschitz global optimization are very impor-
tant from a practical engineering point of view. In this work, two practical
engineering problems are considered. The first problem is the sinusoidal
parameter estimation problem that is considered to fit a sum of damped si-
nusoids to a series of noisy observations. It can be formulated as a nonlinear
least-squares global optimization problem (see, e.g., [72, 73, 195]). A one-
parametric case study is examined to determine an unknown frequency of
a signal. The second problem is finding the minimal root of the non-linear
equation. In this problem, a device whose behavior depends on some charac-
teristic function φ(x) is considered. The device works correctly only if the
value of f(x) is greater than zero. It is necessary to find the first point x
for which the value of φ(x) is equal to zero or to demonstrate that φ(x) is
positive over the whole search interval. Obviously, the value of φ(x) at the
initial point x0 = 0 should be positive. This problem was reformulated as
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the global optimization problem in [38, 188].

1.2.1 Applications in noisy data fitting and electrical

engineering

A general nonlinear regression model can be often considered in the form
of fitting a sum of damped sinusoids to a series of observations corrupted
by noise (see, e. g., [20, 27, 63, 73, 121]). The sinusoidal functions are fre-
quently used in many real-life applications such as signal processing (see,
e. g., [31, 48, 51, 71, 76, 131, 156]). Parameters x of these functions (consis-
ting of amplitudes, frequencies, and phases) can be estimated by solving the
following minimization problem:

f(x∗) = f ∗ = min
x∈D

f(x), f(x) =
T∑

i=1

(yti − φ(x, ti))
2, x ∈ D ⊂ R

n, (1.18)

where

φ(x, t) =

s∑

l=1

ale
dlt sin(2πω lt+ θl), t = t1, . . . , tT , (1.19)

and s ≥ 1 is a fixed integer, x = (a,d, ω, θ) with a = (a1, . . . , as),
d = (d1, . . . , ds), ω = (ω1, . . . , ωs), and θ = (θ1, . . . , θs).

It is supposed that real-valued observations yti are affected by noise:

yti = φ(x̄, ti) + ξ ti , i = 1, . . . , T, (1.20)

where x̄ is the true vector of parameters (it coincides with the estimator x∗

from (1.18) in the case of noise-free observations) and ξ ti , i = 1, . . . , T , are
independently and identically distributed random variables with zero mean
and a given variance σ2.

As a case study to illustrate the performance of various techniques for
solving the global optimization problem (1.18)–(1.20), let us consider the
sine function with unknown frequency only in (1.19) (i. e., s = 1 and a1 =
1, d1 = 0, θ1 = 0 in (1.19)) over uniformly sampled observations yi, i =
1, . . . , T in (1.20). In this case, the vector of parameters x consists of only one
component x := ω = ω1. In spite of its apparent simplicity, such a problem
is however representative from the practical point of view (see, e. g., [20, 63,
156]) and useful to obtain conclusions on the problem behavior that can be
then generalized to a general multiparametric model (1.18)–(1.20).
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Problem (1.18)–(1.20) is thus reduced to the following one-dimensional
global minimization problem:

f(x∗) = f ∗ = min
x∈[a,b]

f(x), f(x) =
T∑

i=1

(yi − sin(2πx i))2, x ∈ [a, b] ⊂ R,

(1.21)
where for any fixed number of observations T the function f(x) is Lipschitzian
with the Lipschitz constant L, 0 < L < ∞, and continuously differentiable
(see [72, 75]) with the Lipschitz constant K, 0 < K < ∞, for its Lipschitzian
first derivative f ′(x) over the search interval [a, b] (taken here as [0, 1] due to
the periodicity of the sine function in (1.21)).

By changing the number of observations T in (1.20), the objective functi-
ons (1.21) of different shapes can be obtained, with the number of local
minima and the average function value proportional to T . In our case study,
the values T = 10, 50, and 100 were considered. The noise-free observati-
ons yi, i = 1, . . . , T , were obtained numerically to keep the estimator x∗ in
(1.21) equal to the true parameter x̄ with f(x∗) = 0 (in our experiments,
two values of x̄ were used: x̄ = 0.4 and x̄ = 0.7). The noisy observations
were then produced by adding random variables ξi, i = 1, . . . , T , taken from
normal distribution (N(0, σ2)) with σ2 = 9 (see, e. g., [73, 74] for other noise
parameters), to the corresponding noise-free values. Consequently, the global
minimizer x∗ in (1.21) was shifted from the true parameter value x̄ (see the
second column in Table 1.2.1) and the (non-normalized) objective function
(1.21) became more erratic (with an unknown positive minimum value f ∗).
The search for the global minimizer x∗ from (1.21), rather than for the true
parameter value x̄, was performed in this case too, in order to estimate the
behavior of the numerical methods from the global optimization viewpoint.

Another important problem is finding the minimal root of the non-linear
equation. It is a common problem in electrical engineering and electronic
measurements. The behavior of a device depends on a characteristic f(x),
x ∈ [a, b], where the function f(x) can be, e. g, a multiextremal electrical
signal measured by a computer aided system (as a black box) over a time
interval [a, b] (see the function graph in in Fig. 1.3). The device work is
correct if f(x) > 0. It is required to examine the device performance over
the time interval [a, b] either by finding the point ζ such that

f(ζ) = 0, f(x) > 0, x ∈ [a, ζ), ζ ∈ (a, b],

or by demonstrating the positiveness of f(x) over the whole interval [a, b]
(in this case the device works correctly for the whole time period, but the
information about the (positive) global minimum of f(x) is useful to measure
the device reliability).
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Figure 1.3: The problem of finding the minimal root of equation f(x) = 0
with multiextremal left part arising in applied engineering problems

Function (T, σ2) x∗ Lipschitz constant L Lipschitz constant K
(10, 0) x̄ = 0.7 354.1 30 567.2
(50, 0) x̄ = 0.7 7 216.4 3 390 330.5
(100, 0) x̄ = 0.7 28 126.7 26 717 323.0
(10, 9) 0.6126936 978.2 47 952.8
(50, 9) 0.7650428 19 486.4 6 602 640.8
(100, 9) 0.3055982 56 272.4 26 724 566.7

Table 1.8: The Lipschitz constants L and K for the objective functions f(x)
from (1.21) and their derivatives f ′(x), respectively, considered in our case
study with different numbers of observations T , noise terms from normal
distribution N(0, σ2), and the true frequency value x̄ = 0.7.

This problem is equivalent to the problem of finding the minimal root
(the first root from the left) of the equation f(x) = 0, x ∈ [a, b], in the
presence of certain initial conditions. Since the function f(x) is multiextremal
(see Fig. 1.3) the problem is quite difficult because many roots can exist in
[a, b] and, therefore, classical root finding techniques (often using local search
ideas) can be inappropriate. The problem reformulation in terms of global
optimization (see, e. g., [38, 183, 215]) allows one to apply global optimization
techniques for finding its solution.

1.2.2 Experimental study

In the first series of the experiments, six particular functions (1.21) were
considered in this study: three of them were based on noise-free terms in
(1.20) and the other three—on the corresponding noisy observations. In what
follows, these functions are labelled as pairs (T, σ2), with T = 10, 50, and 100
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and σ2 = 9. The values (determined over 10−7 grid) of the Lipschitz constants
L and K for f(x) and f ′(x), respectively, are reported in Table 1.2.1. It can
be seen from this Table, how the complexity of the functions increases both
with the increasing of T and with adding the noise. Moreover, high values of
the Lipschitz constants (especially, for K) can be observed from Table 1.2.1:
they make the usage of Lipschitz global optimization methods challenging to
solve the stated problem either in its one-parametric variant (1.21) or in its
general form (1.18)–(1.20).

The complexity of the considered instances of problem (1.18)–(1.20) from
the global optimization point of view can be also seen from the graphs of
the objective functions f(x) from Table 1.2.1 and their first derivatives re-
ported in Figures 1.4 and 1.5 for the cases of noise-free (σ2 = 0) and noisy
(σ2 = 9) observations, respectively. As one can note, the objective functions
are highly multiextremal and irregular, with the global minimizers having
narrow attraction regions, although well separated with respect to the global
minimum values for higher numbers of observations T . Hence, already for
our case study which is a relatively simple case with respect to the general
problem (1.18)–(1.20), a particular attention should be paid to the choice of
numerical methods able to tackle efficiently the stated global optimization
problem.

The following Lipschitz global optimization methods belonging to the
general scheme described above are used in this part of the study: Geom-AL,
Geom-GL, Inf-GL and Geom-LTM. Moreover, the following two algorithms
with smooth auxiliary functions are also studied:

Smooth-AK: Geometric method constructing Smooth auxiliary functions
based on the usage of the first derivative information f ′(x) andA priori
estimate of the Lipschitz constant K for f ′(x) (see, e. g., [69, 167, 189,
215]);

Smooth-LTM: Geometric derivative-based method constructing Smooth
auxiliary functions and using the Local Tuning technique with the
Maximum convolution product of local and global estimates of the
Lipschitz constant for f ′(x) (see, e. g., [165, 166, 189, 207]);

These two methods use the smooth characteristics Ri from [189]. The
“Maximum” local tuning for the first derivative has been used as follows: set
the estimate Kj := r ·max{Λj,Γj, η} of the Lipschitz constant K for the first
derivative f ′(x), where

Λj = max{Gj̃ : 2 ≤ j̃ ≤ k, j − 1 ≤ j̃ ≤ j + 1},

Γj = max{Gj : j = 2, . . . , k} · (xj − xj−1)/X
max,
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Gj =
|2(zj−1 − zj) + (dzi + dzi−1)(xj − xj−1)|+ δj

(xj − xj−1)2
,

with

δj = {[2(zj−1 − zj) + (dzj + dzj−1)(xj − xj−1)]
2+

+ (dzj − dzj−1)
2(xj − xj−1)

2}1/2

and dzi = f ′(xi), X
max = max{xj − xj−1 : j = 2, . . . , k}, and r and η have

the same sense as in the general scheme presented above.
In order to estimate the behavior of the Lipschitz global optimization

methods, some widely used metaheuristic algorithms were taken for the com-
parison, namely: Differential Evolution (DE), Particle Swarm Optimization
(PSO), Artificial Bee Colony (ABC), and FireFly (FF) algorithms (see the
next Chapter for their detailed description).

Parameters of these methods were chosen as follows (see, e. g., [107, 106];
all the parameters were thoroughly studied to respect the multiextremal cha-
racter of the objective functions, as suggested in the literature). For the DE
algorithm, the differential weight F was set equal to 0.7; the crossover rate
CR was set equal to 0.5; and the mutation strategy DE/rand/1/exp was used
as one of the most powerful strategies. For the PSO algorithm, the static
inertia weight ω was set equal to 0.6; the cognitive φl and social φg parame-
ters were set both equal to 2.0; and the velocity vmax was set equal to 15%
of the search interval. For the ABC method, the number of the employed
bees was set equal to the number of the onlooker bees and was equal to half
population; the number of scout bees was set equal to 1; and the limit para-
meter was set equal to the number of food sources (candidate solutions) as
half population. Finally, for the FF algorithm, the randomization parameter
α was set equal to 0.005(b− a); the absorbtion coefficient γ was set equal to
0.01/

√
b− a; and the attractiveness parameter β0 was set equal to 1.
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Func
Geom- Geom- Inf- Geom- Smooth- Smooth-
AL GL GL LTM AK LTM

(10, 0) 109 83 72 45 26 21
(50, 0) 149 130 116 80 128 65
(100, 0) 273 173 185 150 250 128
(10, 9) 113 87 111 50 23 17
(50, 9) 199 191 188 145 116 84
(100, 9) 329 315 323 290 149 138
Avg 195.3 163.2 165.8 126.7 115.3 77.5

Table 1.9: Number of trials for the considered Lipschitz methods stopped by
their internal stopping criterion (1.14) with ε = 10−4

Func
Geom- Geom- Inf- Geom- Smooth- Smooth-
AL GL GL LTM AK LTM

(10, 0) 677 535 668 66 32 23
(50, 0) 433 395 353 101 135 67
(100, 0) 452 352 385 174 256 129
(10, 9) 845 763 730 73 28 21
(50, 9) 513 501 424 165 120 85
(100, 9) 545 511 516 314 153 141
Avg 577.5 509.5 512.7 148.8 120.7 77.7

Table 1.10: Number of trials for the considered Lipschitz methods stopped
by their internal stopping criterion (1.14) with ε = 10−6
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Figure 1.4: Graphs of the objective functions (left column) and their first
derivatives (right column) for the considered noise-free problems from Ta-
ble 1.2.1
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Figure 1.5: Graphs of the objective functions (left column) and their first
derivatives (right column) for the considered noisy problems from Table 1.2.1



Func
Geom- Geom- Inf- Geom- Smooth- Smooth- DE PSO ABC FF
AL GL GL LTM AK LTM Avg Fails Avg Fails Avg Fails Avg Fails

(10, 0) 55 27 35 34 22 16 254.1 0% 187.0 0% 548.3 0% 188.2 0%
(50, 0) 130 109 87 44 71 63 472.0 0% 433.4 0% 1493.2 0% 277.2 0%
(100, 0) 130 134 136 135 220 100 635.7 0% 669.6 7% 1456.4 1% 410.3 0%
(10, 9) 60 58 54 40 19 15 258.4 4% 232.1 0% 338.8 0% 183.0 7%
(50, 9) 153 156 159 129 112 73 658.0 20% 541.5 52% 2668.7 8% 853.7 0%
(100, 9) 251 240 195 262 146 130 769.2 16% 737.1 37% 2722.2 1% 1133.7 0%
Avg 129.8 120.7 111.0 107.3 98.3 66.2 507.9 6.7% 466.8 16.0% 1537.9 1.7% 507.7 1.2%

Table 1.11: Number of trials for the considered Lipschitz and metaheuristic methods stopped by the first-successful-
point stopping criteria with ε = 10−4

Func
Geom- Geom- Inf- Geom- Smooth- Smooth- DE PSO ABC FF
AL GL GL LTM AK LTM Avg Fails Avg Fails Avg Fails Avg Fails

(10, 0) 145 199 131 59 29 20 384.9 0% 479.9 0% 3620.6 20% 4088.6 23%
(50, 0) 277 228 151 97 132 65 615.7 0% 607.1 0% 5850.5 84% 4045.1 20%
(100, 0) 342 162 221 169 253 127 798.2 0% 717.3 8% 5035.1 90% 4239.3 25%
(10, 9) 386 281 85 60 25 19 399.4 4% 528.8 0% 1878.7 0% 3701.1 27%
(50, 9) 293 221 202 157 118 83 859.1 20% 860.6 52% 4330.7 97% 3866.7 63%
(100, 9) 386 298 406 309 150 138 1011.4 16% 1053.4 38% 4956.0 89% 5538.3 74%
Avg 304.8 231.5 199.3 141.8 117.8 75.3 678.1 6.7% 707.9 16.3% 4278.6 63.3% 4246.5 38.7%

Table 1.12: Number of trials for the considered Lipschitz and metaheuristic methods stopped by the first-successful-
point stopping criteria with ε = 10−6
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The reliability parameter r of the considered Lipschitz global optimization
methods (except the methods with a priori given Lipschitz constants) was
set close to 1 (namely, 1.1) for the geometric methods Geom-GL, Geom-
LTM, Smooth-AK, and Smooth-LTM, and to 2.0 for the Inf-GL method, as
recommended by the convergence study of these algorithms.

For all metaheuristic algorithms the population size was set equal to 10,
the number of runs was set equal to 100 (i. e., each metaheuristic algorithm
was launched 100 times for a given problem) and for all the methods the
maximal number of trials was set equal to 10 000. Since the metaheuristic
methods do not have any internal stopping criterion, each their run has been
arrested when a trial point in an ε-neighborhood of the global minimizer
x∗ (known for the considered benchmark instances) has been generated, i.e.,
when the algorithm has generated a point xk after k trials such that

|xk − x∗| ≤ ε.

In what follows, such a stopping criterion will be termed as the first-successful-
point stopping criterion.

The results of the experiments are presented in Tables 1.9–1.12. Parti-
cularly, the numbers of trials generated by the considered Lipschitz global
optimization methods when using their internal stopping criterion (aiming at
the global optimality certification) with different accuracy coefficients ε are
given in Tables 1.9–1.10. It can be seen from Tables 1.9–1.10 that the usage
of the local information (as in the methods Geom-LTM, Smooth-AK, and
Smooth-LTM) allowed us to solve the problems by executing less trials with
respect to the methods that used in their work only global information (as
the Geom-AL, Geom-GL, and Inf-GL methods). Moreover, the local tuning
methods were less sensitive (in terms of the performed trials) to increasing
the accuracy (compare Tables 1.9 and 1.10). In this context, it would be
interesting to notice that the functions based on T = 50 and T = 100 ob-
servations were solved (in the case of a higher precision ε = 10−6; see Table
1.10) faster by the three methods Geom-AL, Geom-GL, and Inf-GL than
the functions with the smaller observations number T = 10. This happened
because the functions (50, σ2) and (100, σ2) had the global minimum values
much smaller than the mean function values (proportional to T ) and, thus,
the functions (10, σ2) were more difficult for the methods using only global
information during the search. It should be also noted that due to extremely
high values of the Lipschitz constants K for f ′(x) in our case study (see Ta-
ble 1.2.1), the first derivative information gave less advantage with respect
to the situations when more regular objective functions are minimized.

Results of the numerical comparison of all the methods when using the
first-successful-point criterion with different accuracy coefficients ε are shown
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in Tables 1.11–1.12, where all the average values for the metaheuristic al-
gorithms were calculated without taking into consideration the failed runs.
Even in this condition advantageous for the metaheuristics, their performance
was worse than that of the Lipschitz-based methods in our case study.
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Figure 1.6: Distribution of trial points generated by the tested methods
when minimizing the function (50, 0) with the accuracy ε = 10−4 in the
first-successful-point stopping criterion

The distribution of trial points generated by all the methods when mi-
nimizing the functions (50, 0) (T = 50 noise-free observations) and (50, 9)
(T = 50 noisy observations) with the first-successful-point stopping criterion
and two different accuracy coefficients ε = 10−4 and ε = 10−6 is illustra-
ted in Figures 1.6–1.7 (for ε = 10−4) and Figures 1.8–1.9 (for ε = 10−6),
respectively.

The other series of the experiments is dedicated to both the sinusoidal
parameter estimation problem and finding the minimal root of the equation.
Four test problems are studied in this part (see Table 1.13): first two pro-
blems dedicated to finding the minimal root are from [189] and the other two
functions are from (1.21).

First, all the methods without the local improvement used in the previ-
ous subsection (Geom-AL, Geom-GL, Geom-LTM, Geom-LTA, Geom-LTMA
and Inf-AL, Inf-GL, Inf-LTM, Inf-LTA, Inf-LTMA) were tested and all the
parameters for these methods were the same as above, except the reliability
parameters of the methods Geom-LTA and Inf-LTA. Particularly, the app-
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Figure 1.7: Distribution of trial points generated by the tested methods
when minimizing the function (50, 9) with the accuracy ε = 10−4 in the
first-successful-point stopping criterion
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Figure 1.8: Distribution of trial points generated by the tested methods when
minimizing the function (T = 50, σ2 = 0) with the accuracy ε = 10−6

lied problem 4 was not solved by the Geom-LTA method with r = 1.1. With
the increased value r = 1.8, the obtained results (reported in Table 1.14)
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Figure 1.9: Distribution of trial points generated by the tested methods when
minimizing the function (T = 50, σ2 = 9) with the accuracy ε = 10−6

# Function f(x) [a, b] L Global Minimizers Ref.

1 | sin3(x) + cos3(x)|+ 0.1 [0, 2π] 2.2
x∗1 = 2.356,
x∗2 = 5.498

[189]

2 x| sin(x)|+ 6 [−10, 10] 9.7 x∗ = −7.979 [189]

3
∑10

i=1(y
(1)
i − sin(2πxi))2 [0, 1] 432.0 x∗ = 0.4 [74]

4
∑100

i=1(y
(2)
i − sin(2πxi))2 [0, 1] 28690.8 x∗ = 0.4 [74]

Table 1.13: Four one-dimensional test functions taken from practical appli-
cations.

of this geometric method were worse than the results of the other geometric
methods with the local tuning (Geom-LTM and Geom-LTMA). The method
Inf-LTA solved all the four applied problems also with a higher value r = 2.3
and was outrun by the Inf-LTMA method (the latter one produced the best
average result among all the competitors; see Table 1.14).

Second, the local improvement techniques presented above were compared
on these four applied test problems. The results are presented in Table 1.15,
where in the third column the values of the reliability parameter used to solve
all the problems are also indicated. As well as in the previous subsection, the
pessimistic local improvement strategy seemed to be more stable in the case
of this test set, since the optimistic strategy required a significant increase
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Method
Test problem

Average
1 2 3 4

Geom-AL 37 395 261 332 256.25

Geom-GL 39 388 216 307 237.50

Geom-LTM 37 54 59 232 95.50

Geom-LTA 74 58 68 204 101.00

Geom-LTMA 33 39 48 137 64.25

Inf-AL 12 278 180 187 164.25

Inf-GL 35 333 215 229 203.00

Inf-LTM 25 53 56 212 86.50

Inf-LTA 19 35 40 165 64.75

Inf-LTMA 24 35 40 122 55.25

Table 1.14: Number of trials performed by the considered geometric and
information methods without the local improvement on four test functions
from Table 1.13.

Method r
Test problem

Average
1 2 3 4

Optimistic LI

GeomLTIMO 6.5 59 55 63 79 64.00
Geom-LTIAO 1.8 55 49 49 41 48.50

GeomLTIMAO 6.9 63 59 71 75 67.00
Inf-LTIMO 6.5 49 55 67 77 62.00
Inf-LTIAO 9.4 47 55 71 71 61.00
Inf-LTIMAO 8.0 55 55 71 73 63.50

Pessimistic LI

Geom-LTIMP 1.1 39 64 71 228 100.50
Geom-LTIAP 1.8 243 102 63 1254 415.50
Geom-LTIMAP 1.1 31 46 51 106 58.50

Inf-LTIMP 2.0 25 52 58 185 80.00
Inf-LTIAP 2.3 18 36 49 174 69.25
Inf-LTIMAP 2.0 24 35 43 134 59.00

Table 1.15: Number of trials performed by the considered geometric and
information methods with the local improvement techniques on four test
functions from Table 1.13.

of the parameter r to determine global minimizers of these applied problems
(although the best average value obtained by the optimistic Geom-LTIAO
method was smaller that that of the best pessimistic Geom-LTIMAP method,
see the last column in Table 1.15).





Chapter 2

A Systematic Comparison of
Global Optimization
Algorithms of Different Nature

Among existing derivative-free global optimization methods two classes of al-
gorithms can be marked out: stochastic metaheuristic algorithms (see, e.g.,
[41, 62, 87, 97, 102, 157, 225, 222]) and deterministic mathematical program-
ming methods (see, e.g., [59, 87, 88, 94, 152, 188, 192, 215], etc.) The former,
due to their simplicity and attractive nature-inspired interpretations (genetic
algorithms [41, 87, 222], particle swarm optimization [62], firefly algorithms
[225, 222], etc.), are used by a broad community of engineers and practiti-
oners to solve real-life problems whereas the latter are actively studied in
academia due to their interesting theoretical properties including a guaran-
teed convergence. Historically, these two communities are almost completely
disjoint: they have different journals, different conferences, and different test
functions. Due to the hardness of global optimization problems and different
nature of methods from these two groups, the problem of their comparison is
very difficult and methods are collated on some dozens of test functions (see,
e.g., [45, 55, 62, 88, 94, 108, 152]) giving so a very poor information and non
reliable results. In order to bridge the gap between the two communities new
efficient visual techniques for a systematic comparison of global optimization
algorithms having different nature is proposed.

The first Section of this Chapter is dedicated to traditional ways of the
comparison: using a number of test functions and showing that a new method
is better in some sense than its competitors. In this methodology, a trade-off
between the number of test functions, reliability of the comparison, and visi-
bility of results is searched. The second Section of this Chapter is dedicated
to graphical methods of the comparison of algorithms. Instead of traditional
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comparisons executed just on several dozens of tests in this Section more
than 800 000 runs on 900 randomly generated test problems have been per-
formed for a systematic comparison of the methods. One known and two
novel methodologies for comparing global optimization algorithms are app-
lied here: Operational Characteristics from [78] for comparing deterministic
algorithms and new Operational Zones and Aggregated Operational Zones
generalizing ideas of operational characteristics to collate multidimensional
stochastic algorithms.

Finally, in the third Section of this Chapter, a new generator of multi-
dimensional test problems for methods solving constrained Lipschitz global
optimization problems is proposed. New classes of GKLS-based multidimen-
sional test problems with non-differentiable, continuously differentiable and
twice continuously differentiable multiextremal objective functions and non-
linear constraints are described. In these constrained problems, the global
minimizer does not coincide with the global minimizer of the respective un-
constrained test problem, and is always located on the boundaries of the
admissible region. Four types of constraints are introduced. The possibility
to choose the difficulty of the admissible region is also available.

2.1 Numerical Comparison of Nature-Inspired

Metaheuristics Using Benchmarks

The following univariate Lipschitz global optimization problem is considered
in this Section:

f ∗ := f(x∗) = min f(x), x ∈ [a, b] ⊂ R, (2.1)

where the function f(x) satisfies the Lipschitz condition (1.2) over the interval
[a, b] with the Lipschitz constant L, 0 < L < ∞. It is supposed that the
objective function f(x) can be multiextremal, non-differentiable; black-box;
with an unknown Lipschitz constant L; and evaluation of f(x) even at one
point is a time-consuming operation.

In this Section, several widely-used nature-inspired metaheuristic algo-
rithms are presented and studied in their univariate implementations. More-
over, the first steps in systematic comparison of methods of different nature
are performed using traditional ways: using tables with different numeri-
cal characteristics (average, best and worst number of trials, percentage of
fails, standard deviations, etc.). Different constraint handling strategies to
launch nature-inspired algorithms are studied. Moreover, multiple runs with
different randomly chosen initial points are performed on each test problem.
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2.1.1 Description of algorithms

In this work, the widely used nature-inspired metaheuristic algorithms such
as Genetic algorithm (GA), Differential Evolution algorithm (DE), Particle
Swarm Optimization (PSO), Artificial Bee Colony algorithm (ABC), Firefly
algorithm (FA) and Simulated Annealing (SA) are considered and compared
with several deterministic Lipschitz global optimization algorithms.

Metaheuristic methods form an important part of the state-of-the-art
global optimization algorithms. These algorithms are often nature-inspired
with multiple interacting agents (see, e. g., [54, 224]). A significant sub-
set of metaheuristcs consists of the so-called swarm intelligence algorithms,
developed by mimicking the behavioral characteristics of biological agents
such as fish, birds, bees, and so on. For example, particle swarm optimi-
zation is based on the swarming intelligence of birds and fish (see, e. g.,
[102]), the firefly algorithm reflects the flashing pattern of tropical fireflies
(see, e. g., [223, 224]). A great number of metaheuristic algorithms such as
differential evolution, particle swarm optimization, artificial bee colony, and
firefly algorithms have appeared and shown their potential in solving impor-
tant engineering decision-making problems (see, e. g., the references given
in [54, 147, 224]). These methods are briefly described in this Section and
their parameters are specified as those often recommended in the literature
to solve black-box global optimization problems. Since these algorithms were
originally designed for the multidimensional case, they have been adopted to
the case of univariate problems, as explained below.

GA. Genetic algorithm proposed in [87]. It is one of the basic popula-
tion based evolutionary algorithms that simulates the evolution on a
genotype level. This method uses in its work three main operators:
crossover, mutation, and selection. We used the real-coded genetic al-
gorithm with the simulated binary crossover(see, e. g., [40, 41]). The
realization of the algorithm was taken from http://www.egr.msu.edu/

~kdeb/codes/rga/rga.tar.

DE. Differential Evolution algorithm in its standard form from [157] (as im-
plemented in http://www1.icsi.berkeley.edu/~storn/DenewC.zip).
As a population-based algorithm, it solves problem (2.1) by maintai-
ning a population of candidate solutions and creating new candidate
solutions by combining existing ones with the usage of the crossover,
mutation and selection operators, and then keeping the candidate so-
lution with the currently best score (or fitness).

PSO. Particle Swarm Optimization algorithm in its classical version, e. g.,
from [102]. It solves problem (2.1) starting from a population (swarm)
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of candidate solutions (particles) and moving these particles in the
search domain according to the particle’s position and velocity. At each
iteration, a particle of the swarm updates its position by following the
best local particle’s position and the best solution of the whole swarm,
thus guiding the swarm toward the best solutions. The algorithms has
been implemented in C++.

ABC. Artificial Bee Colony algorithm as described, e. g., in [97, 98], and
implemented in http://sci2s.ugr.es/eamhco/#Software. ABC si-
mulates the intelligent foraging behavior of a honey-bee swarm. It pro-
vides a population-based search procedure in which candidates (foods
positions) are modified by the artificial bees with time. The bee’s aim
is to discover the places of food sources with higher nectar amounts
(related to the objective function). In an ABC system, some of the
artificial bees (employed and onlooker bees) choose food sources depen-
ding on the experience of themselves and their nest mates and adjust
their positions. Other bees (scouts) fly and choose the food sources
randomly without using experience. Therefore, during the work, the
ABC system combines the local search (carried out by employed and
onlooker bees) with the global one (managed by onlookers and scouts),
thus attempting to balance exploration and exploitation processes.

FA. Firefly algorithm as described in [224, 225] (see also [52] for implemen-
tation http://github.com/firefly-cpp/Firefly-algorithm--FFA-).
FF belongs to the swarm intelligence algorithms and is inspired by the
flashing behavior of fireflies. Each firefly (candidate solution) flashes
its lights with some brightness (associated with the objective function).
This light attracts other fireflies within its neighborhood. This attracti-
veness depends on the (Euclidean) distance r between the two fireflies
and is determined by β(r) = β0e

−γr2, where β0 is the attractiveness
at r = 0. Hence, the search domain is explored by moving the firef-
lies towards more attractive neighbors (with some randomized moves
allowed), thus improving the current best solution to problem (2.1).

SA. Simulated Annealing algorithm as described, e.g., in [1, 124]. It is
a variance of widely used Monte-Carlo Methods. It is based on the
imitation of the physical process of the crystallization of substances.
Algorithm generates a sequence of points x0, x1, ..., xk starting from an
initial random point x0. To select the next trial point xk+1 it is neces-
sary to realize a uniform roulette and to make a choice depending the
result from this roulette, like standard Monte-Carlo methods. At each
iteration i the acceptance of a new point is a probabilistic procedure



Numerical Comparison of Metaheuristics Using Benchmarks 57

Accepted(x). It is based on Metropolis Monte Carlo method proposed
in [134] and was extended to continuous global optimization problems.
The algorithm has been implemented in C++.

2.1.2 Results of the comparison

In this subsection, traditional ways to compare the algorithms are presen-
ted. In the first series of experiments, 5 nature-inspired algorithms DE, PSO,
ABC, FA and SA are compared with 5 Lipschitz global optimization algo-
rithms Geom-AL, Geom-GL, Inf-GL, Geom-LTM and Geom-LTIMP, with
with the reliability parameter r = 2.0 for Inf-GL, r = 1.2 for Geom-GL, and
r = 1.1 with ξ = 10−6 for Geom-LTM and Geom-LTIMP, over the set of 24
test problems. The first 20 test problems are from Appendix A and the last
4 test problems are from the Table 1.13.

The population number in the considered one-dimensional case was set
equal to 10 for all the population-based methods (i. e., DE, PSO, ABC, and
FA algorithms), as recommended, e. g., in [157]. Since they require a random
initialization of the initial population, m = 100 different runs (with diffe-
rent randomly chosen initial populations) were executed by a method for
minimizing a particular test function.

A percentage of failed runs (indicating in some sense the method’s relia-
bility) was calculated for all the nature-inspired methods over m independent
minimizations of each test function. Thus, for each test problem, both the
average number Avg of the performed trials tj , 1 ≤ j ≤ ms, over ms success-
ful runs of a method (1 < ms ≤ m) and the standard deviation

StDev =

√√√√ 1

ms − 1

ms∑

j=1

(tj − Avg)2

were registered over the total 100 runs of the method, as often done for
metaheuristic algorithms. Obviously, by taking into consideration all m runs
(and not only successful ms ones), the average and standard deviation would
increase (sometimes, significantly) for a concrete test problem.

All the metaheuristic methods described above were analyzed and adap-
ted to the one-dimensional case as follows. First, it was observed that a stra-
tegy of bound handling is very important for the performance of methods.
Different strategies were analyzed and the one with the best performance was
chosen. So, for each metaheuristic algorithm, first two trials were executed
at the boundaries a and b from (2.1). Then, the bound handling strategy,
which is known as “Reflect-Z” (see, e. g., [84]), was used to keep trials within
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the boundaries. Then, in order to keep the random mutations for each solu-
tions, small perturbations (depending on the method) to each new solution
were produced. Other characteristics were taken as was recommended by the
authors of the methods.

In particular, the bound handling strategy “Reflect-Z” is determined as
follows. Let xk be the next trial point, generated by an algorithm. If xk is
out of the interval [a, b] from (2.1), then it is reflected from the respective
boundaries, till the point belongs to the search interval, i. e.,

while xk /∈ [a, b]

if xk < a then xk = 2 · a− xk,

else if xk > b then xk = 2 · b− xk.

end while

Parameters of the nature-inspired algorithms have been set as follows.
The values F = 0.7 and CR = 0.5 of the control parameters of DE have
been used in the experiments, as recommended, e. g., in [157]. Cognitive
ϕl and social ϕg parameters of PSO have been set to 2.0, while the inertia
weight ω and the maximal velocity vmax have been set to 0.6 and 15% of the
search space, respectively. The parameter limit of ABC have been set to 5
as in previous experiments. The parameters of FA have been set as follows:
attractiveness parameter β0 was set equal to 1.0, the absorbtion coefficient
γ was set equal to 0.01/

√
l, and the randomization parameter α was set

equal to 0.005l, as recommended, e. g., in [225], where l is the average scaling
factor of problem (2.1) (l =

∑N
i=1(bi − ai)/N for the hyperinterval D = [a, b]

in (2.1), with N = 1 in our case). Finally, the parameters of SA have been
set as follows. The decreasing static cooling schedule Tk, k ≥ 1, was realized
by following [1] as Tk := cTk−1, where c is the cooling factor (usually chosen
between 0.8 and 0.99). The initial temperature T0 was set equal to 10 and c
was set equal to 0.8 in order to obtain a faster cooling. The parameter σ, as
considered in [124], was set equal to 10% of the respective search interval for
each component (one in our case) of the candidate solution, in order to avoid
a chaotic behavior and to generate solutions more closely to the previous
one. Moreover, Tmin from the re-annealing procedure (see, e. g., [124]) was
set equal to 0.001 (to avoid too many re-annealing runs) and the number of
evaluations on each temperature Tk was set equal to 100.

For all the one-dimensional tests, a global minimizer x∗ ∈ D = [a, b] from
(2.1) was considered to be found (and, therefore, the problem (2.1) solved)
when the tested algorithm generated a trial point x′ in an ε-neighborhood of
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x∗, i. e.,

|x′ − x∗| ≤ ε(b− a). (2.2)

An algorithm stopped either when the maximal number of trials equal
to 10 000 was reached, or when condition (2.2) was satisfied. Such a type of
stopping criterion is acceptable only when the global minimizer x∗ is known,
i. e., for the case of test functions. When a real black-box objective function
is minimized and global minimization algorithms have an internal stopping
criterion (this is the case of the considered DBA-LGO methods and is not
the case of the aforementioned nature-inspired algorithms), they execute a
number of iterations after a ‘good’ estimate of f(x) has been obtained in
order to demonstrate a ‘goodness’ of the found solution (see, e. g., the related
discussion in [188]). The maximal number of trials was used in the averages
calculations when condition (2.2) was not satisfied for some tests in the case
of the nature-inspired methods.

In view of the high computational complexity of each trial of the objective
function in real-world black-box optimization problems, the methods were
compared in terms of the numbers of evaluations of f(x) required to solve
the test problems. The maximum number of trials was set equal to 10 000.
Two values ε = 10−4 and ε = 10−5 were used in (2.2).

In Tables 2.1 and 2.2, results of numerical experiments on the 24 test
functions for the metaheuristics with stopping criterion (2.2) are reported,
where the obtained numbers of trials are given for the accuracy ε equal to
10−4 and 10−5, respectively. To estimate these numbers, the following worst-
case results produced by a pure random search method on this test set can be
taken into consideration: Avg = 3051.5, StDev = 2434.5, the average number
of fails equal to 10.7% for ε = 10−4; and Avg = 6058.3, StDev = 2178.3, the
average number of fails equal to 76.1% for ε = 10−5.

It can be observed from Tables 2.1 and 2.2 that when the accuracy was
increased, the numbers of trials performed to stop the methods (together with
the averages and standard deviations), as well as the numbers of fails, were
also increased. The methods DE and PSO were less sensitive to the accuracy
increment with respect to the other metaheuristics. On a higher accuracy,
their performance (expressed by the numbers of trials and the numbers of
successful runs) on the considered tests was significantly better than that of
the ABC, FA, and SA methods. Moreover, while the ABC method’s behavior
was generally acceptable on the used test problems, a poor performance of the
FA and SA algorithms can be noticed from Tables 2.1 and 2.2, especially on a
higher accuracy (see Table 2.2). Particularly, the SA method (in its standard
sequential form as indicated in the previous subsection) performed too many
trials when solving all the tests for both the accuracies, with high values of the
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standard deviation and many unsuccessful runs, thus resulting not suitable
to tackle multiextremal one-dimensional functions. To better capture the
multimodality of the objective functions, the usage of some population-based
versions of the SA algorithm can be suggested.

Results of numerical experiments on the same 24 test functions for the
DBA-LGO methods with the heuristic stopping criterion (2.2) are repor-
ted in Table 2.3, where the trial numbers are given for both the accuracies
ε = 10−4 and ε = 10−5. As expected, the numbers of trials performed to
stop the methods were increased when the accuracy coefficients were redu-
ced. This increment, however, was less pronounced for the Geom-LTM and
Geom-LTIMP algorithms using the local tuning approach since they balance
the local and global information about f(x) in a smart way during their
work. These two algorithms were better, in average, among the considered
DBA-LGO methods on the given test set. Moreover, the DBA-LGO methods
behaved usually much better (except for some singular cases regarding the
methods Geom-AL and Geom-GL with global estimates of the Lipschitz con-
stants) than the considered nature-inspired algorithms not only when they
stopped due to criterion (2.2), as reported in Table 2.3 (that can be used only
for benchmark tests with known solutions), but when their internal stopping
criteria was satisfied too, i.e., when the length of the interval for the next
subdivision is smaller, than ǫ (see the first Chapter for details):

xt − xt−1 ≤ ǫ, (2.3)

where [xt, xt−1] is the interval for the next subdivision.
This fact is extremely important for solving practical black-box problems

when some guarantee of the solution is required. Therefore, the considered
DBA-LGOmethods can be suggested as good candidates for solving practical
multiextremal optimization problems.



# DE PSO ABC FA SA
Avg StDev Fails Avg StDev Fails Avg StDev Fails Avg StDev Fails Avg StDev Fails

1 145.5 42.8 0% 178.2 71.1 0% 201.1 118.4 0% 645.8 635.5 0% 1116.9 1214.0 0%
2 177.8 47.9 0% 200.5 65.4 0% 182.1 113.7 0% 412.6 318.2 0% 2105.1 1966.2 0%
3 362.3 151.0 0% 233.6 109.6 0% 663.4 691.5 0% 1650.8 1689.1 1% 1287.3 1258.0 0%
4 158.3 41.2 0% 194.4 70.3 0% 145.1 82.0 0% 237.8 161.3 0% 2395.7 1960.2 0%
5 216.7 54.4 2% 288.7 227.2 6% 452.0 370.5 0% 183.3 95.3 7% 2006.4 1181.5 1%
6 174.4 39.1 0% 202.5 70.3 0% 198.1 142.8 0% 1807.3 1572.0 7% 2089.0 1408.3 0%
7 183.8 52.8 0% 194.8 67.5 0% 228.1 146.2 0% 386.9 320.7 2% 1855.9 1395.8 0%
8 340.1 136.7 0% 229.1 71.5 0% 521.9 465.3 0% 1464.2 1310.3 1% 1303.1 1180.8 0%
9 182.3 39.5 0% 213.6 83.5 0% 474.7 336.7 0% 912.5 807.3 0% 2265.2 1862.5 2%
10 155.9 43.2 0% 187.4 68.4 0% 310.0 250.6 0% 649.9 601.2 0% 1405.4 1108.5 0%
11 256.7 91.8 0% 221.2 91.4 0% 196.1 143.8 0% 591.9 559.1 0% 1686.0 1353.2 0%
12 261.1 95.6 0% 195.1 72.0 0% 201.6 153.7 0% 488.5 439.6 0% 1587.9 1404.1 0%
13 163.8 36.8 0% 189.1 76.0 0% 162.9 95.1 0% 210.1 152.0 0% 2655.6 1764.9 3%
14 178.5 39.8 0% 154.9 62.0 4% 442.7 363.0 0% 318.5 215.2 0% 2524.8 1160.8 2%
15 160.7 41.3 0% 187.9 68.5 0% 172.2 112.6 0% 716.9 610.9 0% 1997.8 1566.4 1%
16 160.5 42.5 0% 188.6 65.3 0% 163.8 86.9 0% 502.0 422.3 0% 1619.1 1339.9 0%
17 253.3 93.4 0% 200.5 72.8 0% 328.2 268.4 0% 697.0 624.3 0% 1206.5 1261.7 0%
18 163.5 48.1 0% 197.7 70.2 0% 162.3 98.9 0% 457.8 400.3 0% 2023.5 1483.0 0%
19 145.7 46.3 0% 187.3 65.4 0% 173.8 120.2 0% 504.2 500.0 0% 1876.2 1402.7 2%
20 156.6 50.1 0% 192.2 67.6 0% 162.9 98.3 0% 1430.9 1339.6 1% 2731.0 2020.2 3%
21 255.1 79.9 0% 218.5 89.0 0% 237.8 181.4 0% 469.7 403.7 0% 1686.9 1515.7 0%
22 161.9 43.1 0% 187.4 68.9 0% 410.8 413.7 0% 939.5 947.1 0% 1487.4 1106.9 0%
23 244.5 73.2 0% 215.6 83.0 0% 379.7 306.5 0% 160.3 94.5 0% 1640.2 1327.4 0%
24 688.1 304.7 1% 404.4 647.5 0% 1456.6 1302.7 0% 457.2 266.5 0% 1400.7 1230.3 0%

Avg 222.8 72.3 0.1% 211.0 104.4 0.4% 334.5 269.3 0.0% 679.0 603.6 0.8% 1831.4 1436.4 0.6%

Table 2.1: Numbers of trials for metaheuristics on 24 univariate problems, accuracy ε = 10−4 in (2.2)



# DE PSO ABC FA SA
Avg StDev Fails Avg StDev Fails Avg StDev Fails Avg StDev Fails Avg StDev Fails

1 210.3 47.0 0% 323.8 91.3 0% 402.5 300.0 0% 3817.0 2903.0 13% 4390.5 2828.2 45%
2 242.9 48.7 0% 329.2 92.7 0% 382.7 279.7 0% 2891.8 2287.4 4% 4809.0 2739.1 51%
3 541.5 162.0 0% 374.6 126.8 0% 2566.1 2407.3 1% 4640.0 2817.9 51% 4090.5 2972.4 55%
4 223.4 44.7 0% 335.4 92.4 0% 288.0 210.5 0% 1245.5 1091.9 0% 4570.0 2553.4 59%
5 283.8 61.2 2% 424.9 235.4 6% 1197.1 981.9 0% 900.3 767.5 7% 4587.1 2337.1 61%
6 234.7 50.6 0% 333.8 96.0 0% 474.0 396.0 0% 4403.1 2658.5 58% 4266.3 2452.3 52%
7 253.5 51.3 0% 333.4 90.5 0% 540.9 488.4 0% 2985.0 2448.2 4% 4385.1 2384.1 55%
8 496.3 172.0 0% 372.4 121.1 0% 2098.4 1956.8 2% 4750.8 2958.4 52% 4029.5 3311.0 46%
9 245.6 40.3 0% 349.0 104.9 0% 1103.4 997.6 0% 4041.6 3009.4 35% 4559.2 2702.3 54%
10 225.6 46.5 0% 337.4 98.9 0% 706.8 611.2 0% 4229.1 3019.4 29% 4471.0 2680.6 44%
11 380.4 118.8 0% 357.6 100.3 0% 446.3 352.4 0% 3158.0 2183.2 15% 5485.0 2992.9 40%
12 395.2 120.2 0% 336.3 100.9 0% 527.7 471.0 0% 3735.5 2762.7 14% 3946.1 2806.3 48%
13 219.2 48.4 0% 333.5 108.7 0% 310.6 216.2 0% 692.6 463.7 0% 4275.1 2553.5 65%
14 240.2 46.3 0% 300.6 84.3 4% 1404.8 1425.7 0% 2283.9 1867.9 2% 4338.9 2071.3 66%
15 220.7 43.2 0% 327.2 104.1 0% 401.6 370.0 0% 3954.9 2619.6 19% 4645.4 2774.8 56%
16 229.6 46.6 0% 322.6 80.2 0% 334.2 220.4 0% 2602.1 2092.5 11% 4450.6 2764.8 48%
17 378.4 116.4 0% 327.6 97.5 0% 1024.1 935.3 0% 4258.6 2843.5 12% 3806.7 2822.2 36%
18 227.2 50.4 0% 326.4 86.1 0% 317.1 255.3 0% 3126.5 2410.2 6% 4482.6 2162.6 51%
19 218.4 42.6 0% 325.5 82.8 0% 413.8 362.6 0% 2937.7 2211.6 9% 4743.1 2920.3 45%
20 231.2 47.7 0% 322.7 89.3 0% 342.7 249.7 0% 4595.7 3057.0 55% 4556.1 1981.2 63%
21 393.5 129.4 0% 336.0 116.0 0% 664.8 576.4 0% 3651.8 2743.4 12% 4697.8 2857.7 46%
22 233.0 37.8 0% 314.4 82.4 0% 1160.5 1057.1 0% 4265.2 3073.2 39% 4081.5 2577.0 52%
23 310.9 72.5 0% 327.7 122.2 0% 991.8 857.4 0% 814.6 625.7 0% 4564.0 2977.8 50%
24 813.4 253.8 1% 476.0 690.3 0% 3881.1 2454.2 40% 1255.5 900.1 0% 5181.9 2812.7 39%

Avg 310.4 79.1 0.1% 343.7 129.0 0.4% 915.9 768.0 1.8% 3134.9 2242.3 18.6% 4475.5 2668.2 51.1%

Table 2.2: Numbers of trials for metaheuristics on 24 univariate problems, accuracy ε = 10−5 in (2.2)



#
accuracy ε = 10−4 in (2.2) accuracy ε = 10−5 in (2.2)

Geom-AL Geom-GL Inf-GL Geom-LTM Geom-LTIMP Geom-AL Geom-GL Inf-GL Geom-LTM Geom-LTIMP

1 26 38 41 30 28 151 201 175 40 40

2 65 40 38 32 26 230 134 93 46 38

3 88 132 121 123 32 97 246 178 130 44

4 208 58 133 26 22 414 334 266 47 42

5 51 32 35 43 36 51 140 129 51 48

6 66 67 20 25 36 130 102 101 56 44

7 13 75 33 31 24 155 75 163 44 24

8 99 109 89 98 20 99 138 89 112 32

9 50 51 49 29 30 169 188 90 48 44

10 40 70 59 36 26 40 264 110 52 38

11 130 63 79 62 24 388 253 205 68 44

12 131 85 96 45 26 507 96 96 75 38

13 230 172 78 55 28 994 731 669 70 46

14 65 57 46 33 28 109 77 100 41 36

15 143 356 55 36 32 143 356 952 63 42

16 167 278 193 68 32 706 278 193 88 44

17 200 117 35 77 76 390 581 35 109 84
18 38 36 121 27 28 304 151 121 27 36
19 48 51 31 21 24 48 205 117 37 38
20 317 36 43 38 12 424 77 70 45 36

21 26 30 26 22 18 29 35 29 31 21

22 83 50 52 36 30 83 117 52 43 42

23 45 51 40 30 32 106 83 85 50 44

24 132 166 167 131 64 132 166 182 131 64

Avg 102.5 92.5 70.0 48.1 30.6 245.8 209.5 179.2 62.7 42.0

Table 2.3: Numbers of trials for DBA-LGO methods on 24 univariate problems, accuracies ε = 10−4 and ε = 10−5

in (2.2)



#
accuracy ǫ = 10−4 in (2.3) accuracy ǫ = 10−5 in (2.3)

Geom-AL Geom-GL Inf-GL Geom-LTM Geom-LTIMP Geom-AL Geom-GL Inf-GL Geom-LTM Geom-LTIMP

1 149 138 127 37 37 595 468 501 50 49

2 155 134 135 36 38 457 513 373 49 49

3 196 228 224 145 132 577 562 504 176 165

4 413 334 379 45 43 1177 972 1076 57 56

5 151 140 126 46 53 383 360 334 57 63
6 129 102 101 58 59 301 324 239 70 70

7 153 138 115 41 40 575 412 318 53 54
8 187 196 188 126 126 485 510 477 164 157

9 119 132 125 44 45 469 368 339 55 53

10 203 194 157 43 45 571 522 435 55 58
11 367 364 405 74 77 1099 1156 1153 100 100

12 327 344 271 71 72 993 954 918 93 93

13 993 516 472 73 75 2833 1654 1351 93 97
14 145 136 108 43 47 379 358 349 56 58
15 629 714 471 62 65 2513 2010 1893 89 79

16 997 570 557 79 79 2855 2304 1592 102 97

17 549 506 470 100 115 2109 1630 1484 125 140
18 303 268 243 44 43 849 845 684 55 55

19 125 143 117 39 37 499 403 336 49 52
20 493 76 70 43 43 1017 200 171 53 54
21 34 38 31 33 35 37 44 35 37 39
22 151 116 124 42 51 395 322 333 54 64
23 105 82 64 49 57 261 202 215 59 71
24 271 271 182 219 215 332 313 229 232 228

Avg 306.0 245.0 219.3 66.3 67.9 906.7 725.3 639.1 82.6 83.4

Table 2.4: Numbers of trials on 24 problems from Appendix A for DBA-LGO methods stopped by their internal
criteria with the accuracy coefficients ǫ = 10−4 and ǫ = 10−5 in (2.3)
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In the second series of the experiments, the same methods with the same
parameters have been compared over the set of 100 randomly generated
Pintér test functions. Similar conclusions with regard to the tested methods
can be done also on this class of test problems. Results of numerical experi-
ments with all the methods on this multiextremal and noisy class are sum-
marized in Table 2.5 (all the numbers were averaged over 100 functions). As
estimates, the pure random search results can be considered: Avg = 3360.0,
StDev = 304.5, the average number of fails equal to 13.42% for ε = 10−4

in (2.2); and Avg = 6199.7, StDev = 2432.5, the average number of fails
equal to 80.37% for ε = 10−5 in (2.2). The neat advantage of the DBA-LGO
methods (except the rather theoretical Geom-AL algorithm) with respect to
the examined nature-inspired algorithms (among which the DE algorithm
was again the best one) can be observed from Table 2.5. The local tuning
methods Geom-LTM and Geom-LTIMP behaved particularly well on these
noisy-type functions, due to the methods computational schemes tuning on
the functions shape.

Algorithm ε = 10−4 in (2.2) ǫ = 10−4 in (2.3) ε = 10−5 in (2.2) ǫ = 10−5 in (2.3)
Avg StDev Avg StDev Avg StDev Avg StDev

Geom-AL 154.7 48.8 401.6 57.3 419.3 136.4 1080.2 91.2
Geom-GL 68.8 28.5 166.0 44.7 179.3 76.4 489.8 127.6
Inf-GL 54.0 26.8 144.7 39.1 149.0 66.4 423.2 109.3

Geom-LTM 37.7 11.2 47.6 9.8 48.3 11.0 59.0 9.9

Geom-LTIMP 29.6 6.8 54.5 19.2 39.9 6.7 66.5 21.7

DE
184.6

15.6 —
251.4

15.1 —
(99.99%) (99.99%)

PSO
190.8

26.7 —
318.4

35.6 —
(99.75%) (99.75%)

ABC
299.9

112.3 —
728.0

358.2 —
(100%) (99.96%)

FA
676.6

116.8 —
3732.4

435.7 —
(100%) (80.05%)

SA
2249.7

230.8 —
4787.6

354.2 —
(99.48%) (41.41%)

Table 2.5: Average numbers of trials and standard deviations over 100 functi-
ons (1.16) for the considered DBA-LGO and nature-inspired methods with
different stopping criteria (percentage of successful runs are indicated for
metaheuristics)

A distribution of trial points generated by all the methods when mini-
mizing function 63 from the class (1.16) with the accuracies ε = 10−4 and
ε = 10−5 in (2.2) is illustrated in Fig. 2.1 and Fig. 2.2, respectively (particular
runs of the methods DE, PSO, ABC, FA, and SA have been chosen to obtain
results close to the averages in Table 2.5). It can be seen from these Figures,
how the density of trial points was increased around the global minimizer x∗

and was higher for a higher precision (see Fig. 2.2). The methods ABC, FA,
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and SA performed many trials around local minimizers of f(x), thus manifes-
ting an excessive locally oriented behavior on such multiextremal functions.
Trial points generated by DE and PSO were distributed in a more smart
manner with respect to the other metaheuristics and even better than the
distribution obtained by the Geom-AL algorithm. It is also evident from
Figures 2.1–2.2 that once the tested methods determined a neighborhood of
the global minimizer, an additional number of trials (which was higher for a
higher accuracy as in Fig. 2.2) was still required to stop each method, as it
often happens in global optimization. This density, however, was not exces-
sive for the Geom-LT and Geom-LTI methods, on both the accuracies. In
fact, since these methods usually balance better the local and global infor-
mation during the search for the global minimizer x∗, they captured a close
neighborhood of x∗ much faster than the other considered methods.

In the third series of experiments, the same nature-inspired algorithms
have been compared on ten constrained non-differentiable functions from [50]
with the following methods:

Pen-AL. The Geom-AL method combined with the penalty approach used
to reduce the constrained problem to a box-constrained one (see [50,
193] for the choice of the penalty coefficients).

Index-AL. The index branch-and-bound algorithm from [184] using the in-
dex scheme (see, e. g., [193, 215]; in this scheme a constrained problem
is reduced to a discontinuous box-constrained one without introducing
additional parameters or variables) in combination with the branch-
and-bound approach and the known Lipschitz constants.

Index-LT. The geometric method from [193] based on the index approach
and using “Maximum” local tuning.

In this class of benchmarks, problems 1–3 have one constraint, problems
4–7 have two constraints, and problems 8–10 have three constraints (see
http:\\wwwinfo.dimes.unical.it\~yaro\constraints.html for a detailed
description of this constrained test set, where all the problems are illustrated
and their Lipschitz constants and global solutions are reported). In these ex-
periments, all nature-inspired algorithms were used in combination with the
penalty approach (the same penalty coefficients from [50] as for the Pen-AL
were taken to reduce the constrained problems to the box-constrained ones).

Results of numerical experiments with the considered methods on the
constrained problems are reported in Table 2.6. Here, Lipschitz methods were
stopped by their internal stopping criterion (2.3), while the metaheuristics
were stopped by condition (2.2). Criterion (2.3) is aimed at proving the
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Figure 2.1: Graph of the function number 63 from (1.16) and the trial points
(+) generated by the tested methods while minimizing this function with the
accuracy ε = 10−4 in (2.2)
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Figure 2.2: Graph of the function number 63 from (1.16) and the trial points
(+) generated by the tested methods while minimizing this function with the
accuracy ε = 10−5 in (2.2)
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global optimality of the found solution and, therefore, is computationally
more expensive than criterion (2.2). However, also when stopped by this more
challenging criterion, Lipschitz methods based on the index approach (Index-
AL and Index-LT) performed very well with respect to the metaheuristics also
on this constrained test set. Again, the DE algorithm manifested a better
performance over the tested metaheuristics.

In order to illustrate graphically the methods performance on the con-
strained test set, a distribution of trial points generated by all the methods
when minimizing function 9 from the constrained benchmark set [50] with the
accuracies 10−4 and 10−5 is illustrated in Fig. 2.3 and Fig. 2.4, respectively
(these accuracies are referred to condition (2.3) for the DBA-LGO methods
Pen-AL, Index-AL, and Index-LT and to condition (2.2) for the considered
metaheuristics, for which particular runs have been chosen to obtain results
close to the averages in Table 2.6). This test problem has three constraints
and is defined by the following formulae:

min
x∈[0,4]

f(x) = 3− 2 exp
(
−1

2

(
22
5
− x
)) ∣∣ sin

(
π
(
22
5
− x
))∣∣

subject to

g1(x) = 4
5
−
(∣∣ sin

(
24
5
− x
)∣∣+ 6

25
− x

20

)
≤ 0,

g2(x) =





6
(
x− 1

2

)2 − 1
2
, x ≤ 1

2

1
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(
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2

)
, x > 1

2

≤ 0,

(2.4)

g3(x) = 3
(
exp

(
−
∣∣ sin

(
5
2
sin
(
11
5
x
))∣∣)+ 1

100
x2 − 1

2

)
≤ 0,

leading to disjoint feasible region Ω = {x ∈ [0, 4] : gi(x) ≤ 0, i = 1, 2, 3}
shown by three continuous horizontal bold lines in Figures 2.3–2.4. The
global minimizer of the objective function f(x) is located at the point x∗ =
0.95024. The line of symbols ‘+’ drawn under the graphs of the function
f(x) (solid line) and the constraints gi(x), i = 1, 2, 3 (dashed lines) in these
Figures shows points at which trials have been executed by the corresponding
methods.
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Figure 2.3: Graphs of the objective function (solid line) and three constraints
(dashed lines) from (2.4) and the trial points (+) generated by the tested
methods with accuracy 10−4
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Figure 2.4: Graphs of the objective function (solid line) and three constraints
(dashed lines) from (2.4) and the trial points (+) generated by the tested
methods with accuracy 10−5



accuracy ε/ǫ = 10−4

# Pen-AL Index-AL Index-LT
DE PSO ABC FA SA

Avg Fails Avg Fails Avg Fails Avg Fails Avg Fails

1 247 51 44 206.7 0% 207.5 0% 440.3 0% 647.2 0% 2057.9 1%
2 241 34 34 246.2 7% 195.2 0% 1277.6 0% 1501.2 1% 3707.2 18%
3 917 190 21 279.2 3% 204.3 4% 2707.3 2% 1354.4 0% 2554.7 10%
4 273 235 93 216 0% 210.8 0% 982.4 0% 401.3 0% 2241.4 4%
5 671 283 132 339.7 41% 342.9 24% 1635.8 0% 2375.5 3% 2065.9 0%
6 909 629 74 231.4 6% 90.4 0% 709.7 0% 419.6 9% 3377.2 19%
7 199 120 100 354.1 31% 189.5 61% 2691.5 8% 2513.5 3% 2960.7 18%
8 365 64 59 408.6 16% 228.5 3% 2301.8 0% 2570.1 2% 2697.4 11%
9 1183 334 56 240.6 3% 370.9 1% 665.1 0% 414.2 0% 3068 5%
10 135 75 42 201.2 0% 192.7 0% 466.8 0% 481.9 0% 1863.1 0%

Avg 514 201.5 65.5 272.4 10.7% 223.3 9.3% 1387.8 1% 1267.9 1.8% 2659.3 8.6%

accuracy ε/ǫ = 10−5

1 419 57 46 270.5 0% 355.8 0% 982.1 0% 3495.2 20% 4656.5 49%
2 313 42 38 331.4 7% 376.8 0% 3508.1 17% 4235.9 46% 5106.2 75%
3 2127 196 24 350.9 3% 353.9 4% 5044.4 53% 4303.9 49% 5454.7 59%
4 861 411 104 279.2 0% 347.4 0% 3128.1 3% 2244 1% 4732.5 47%
5 1097 315 137 440.4 41% 499.3 24% 3453.8 27% 4963.4 65% 4586.7 63%
6 6367 2719 96 289.2 6% 146.5 0% 1802.7 0% 2883.3 13% 4588.7 74%
7 221 127 110 457.4 31% 296.2 61% 5057.9 61% 4403.8 37% 3650.7 75%
8 415 69 62 483.2 16% 378.8 3% 4238.1 29% 4264.7 60% 4465.1 72%
9 4549 1006 63 309.3 3% 531.2 1% 1881.6 1% 2594.4 2% 4579.1 64%
10 169 77 47 265.4 0% 326.5 0% 967 0% 2914.5 8% 4535 55%

Avg 1653.8 501.9 72.7 347.7 10.7% 361.2 9.3% 3006.4 19.1% 3630.3 30.1% 4635.5 63.3%

Table 2.6: Numbers of trials for 10 constrained problems from [50] with accuracy coefficients ε/ǫ = 10−4 and
10−5 in the internal stopping criterion (2.3) for the DBA-LGO methods and in the heuristic criterion (2.2) for the
metaheuristic algorithms
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The advantages of the LGO algorithms Index-AL and Index-LT con-
structed in the framework of the index scheme with respect to the penalty
method PEN-AL can be seen from these Figures (confirming the results from
Table 2.6). The local tuning method Index-LT demonstrated a significant
improvement (more pronounced when the search accuracy increases) in terms
of the executed trials with respect to the Index-AL algorithm with a priori
given Lipschitz constants. As observed, e. g., in [193], this improvement be-
comes higher when the difference between estimates of the local Lipschitz
constants (for the objective function or for the constraints) becomes greater.
This fact is particularly evident if the global minimizer is located inside a
feasible region with a small value of the local Lipschitz constant with respect
to the global one, as for the considered problem 9 (similar conclusions can
be done for problem 6, too; see Table 2.6).

2.2 A systematic comparison using classes of

randomly generated test problems

As it has been emphasized previously, the concept of operational characte-
ristics for comparing deterministic algorithms was proposed by Grishagin in
[78]. The operational characteristic of a method on a class of test problems
is a non-decreasing function that indicates the number of problems solved by
this method after each function evaluation within a prescribed trials budget.

It can be asserted that the operational characteristics approach is a very
representative technique for comparing deterministic algorithms. However,
it has not been used so far for a comparison of stochastic methods. In
this Section, it is shown how this approach can be adapted for the study of
stochastic methods. In particular, a new comparison methodology developed
in this work is applied to the metaheuristic algorithms that have multiple
launches with different randomly chosen initial populations (see [196] for
details).

2.2.1 Operational zones for comparing metaheuristic

and deterministic univariate algorithms

Operational characteristics approach can be illustrated very easily using a
graph. For example, the operational characteristics of the methods Geom-
AL and Geom-GL on the class of 100 Pintér’s test functions from [153] are
presented in Fig. 2.5.

It can be seen that after 100 trials the method Geom-AL has solved 17
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Figure 2.5: Operational characteristics for the methods Geom-AL and Geom-
GL

test problems and the method Geom-GL has solved 90 test problems. Then,
it can be also seen from Fig. 2.5 that the method Geom-AL has executed 150
trials to solve 39 test problems whereas the method Geom-GL has solved 39
test problems in about 50 trials. To solve all 100 test problems, the method
Geom-GL has executed only 150 trials whereas the method Geom-AL has
solved only 39 test problems after the computational budget of 150 trials.

This approach has been generalized for the stochastic metaheuristic al-
gorithms in [198] (see also [201] and [196]) as follows. Each stochastic algo-
rithm is launched several times. First, each launch (among the total number
of launches set equal to 100 in our experiments) of a metaheuristic method
is considered as a particular method. Then, for each of 100 launches of
the algorithm the respective 100 operational characteristics are constructed:
see Fig. 2.6.a where 100 operational characteristics for the method DE are
shown. Finally, the upper and lower bounds of all operational characteristics
are constructed as it is illustrated in Fig. 2.6.b.

It should be noticed that these two characteristics (upper and lower
bounds) are the best and the worst cases, respectively, for the tested method
and they usually are not realized in practice since in general case they can
consist of parts of several operational characteristics for all runs.

Theese bounds determine a zone where all constructed operational cha-
racteristics are presented and the average operational characteristic for all
runs (like in Figure 2.6.c) can be computed. Let us denominate this zone
the operational zone. It should be noticed that for all considered metaheu-
ristics the operational zones constructed by using 30 and 100 launches differ
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Figure 2.6: (a) 100 Operational characteristics for the DE method; (b) their
lower and upper bounds shown in bold; and (c) operational zone with the
average operational characteristic

insignificantly.

We can, thus, compare operational zones of stochastic algorithms with
operational characteristics of deterministic methods. In this Section, 5 me-
taheuristic algorithms described above (GA, DE, PSO, ABC and FA) are
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compared with several univariate and multidimensional Lipschitz global op-
timization algorithms on the randomly generated classes of test functions.

In the first series of experiments, numerical experiments on the class of 100
univariate randomized Pintér’s test functions (1.16) from [153] were carried
out. The nature-inspired algorithms have been adapted to the univariate
case as previously using the box-constraints handling strategy “Reflect-Z”.
In this part, the algorithms GA, DE, PSO, ABC and FA are compared with
three univariate Lipschitz global optimization methods described in the first
Section: Geom-AL, Geom-GL and Geom-LTIMAP.

For each test function the problem (2.1) was considered to be solved if
an algorithm generated a trial point xk in an ε-neighborhood of the global
minimizer x∗, i. e.,

|xk − x∗| ≤ ε(b− a). (2.5)

The values ε = 10−4 and ε = 10−6 were used in our experiments. The
operational characteristic of method m on the class of Pintér’s test problems
is defined as the function

φm(k) = φm(k − 1) + pkm, 1 ≤ k ≤ kmax, φm(0) = 0,

where pkm is the number of test problems solved by the method m at k-th
trial and kmax is the maximum number of trials (this computational budget
was set equal to 10 000 trials in our experiments).

For the tested geometric methods the following values of control para-
meters were used. For the method Geom-AL that uses an a priori given
Lipschitz constants the maximum absolute values of relative differences over
the 10−7-grid were taken to obtain an estimate of the Lipschitz constant.
The method Geom-GL uses in its work the reliability control parameter r
that was set equal to 1.1 in our experiments. The method Geom-LTIMAP
uses the reliability parameter r, the technical parameter ξ and the local im-
provement accuracy δ, that were set equal to 1.1, 10−8, and δ = ε(b − a),
respectively, where ε is from (2.5).

Parameters of the metaheuristic algorithms were set as follows. Follo-
wing recommendations from [41] the crossover and mutation probabilities in
GA were set equal to 0.95 and 0.25, respectively, in our experiments. The
parameter η of “Simulated Binary Crossover” (SBX) was set equal to 4 by
following recommendations from [40]. In DE, the exponential crossover as
one with a better performance and the mutation strategy “DE/rand/2” from
[157] were used. The control parameters of DE were set as follows: the diffe-
rential weight F from the mutation unit was set equal to 0.7 and the crossover
rate (CR) was set equal to 0.5 by following the recommendations from [157].
The cognitive φl and social φg parameters of PSO were set equal to 2.0, while
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the inertia weight and maximum velocity value were set to 0.6 and 15% of
the search domain, respectively. The parameter limit of ABC was set to 5
as previously. The attractiveness parameter β0, the absorbtion coefficient γ
and the randomization parameter α of FA were set equal to 1.0, 0.01/

√
l and

0.005l, respectively, where l is the average scaling factor of the problem (i.e.,
l = b− a in our one-dimensional case).

First, the operational characteristics of deterministic methods (Geom-AL,
Geom-GL and Geom-LTIMAP) were compared with the average operational
characteristics of metaheuristic methods. The results are presented in Fig. 2.7
with the accuracies ε = 10−4 and ε = 10−6 from (2.5).

It can be seen from Figures 2.7.a and 2.7.b that the method with local
tuning and local improvement (Geom-LTIMAP) demonstrates a better per-
formance with respect to the methods with global estimates of the Lipschitz
constant (Geom-AL and Geom-GL). Moreover, the global estimate of the
Lipschitz constant (Geom-GL) gives better results with respect to the usage
of an a priori given Lipschitz constant (Geom-AL). It can be also seen from
Fig. 2.7 that the advantage of the method Geom-LTIMAP becomes more
pronounced when the search accuracy increases.

It can be also seen from Fig. 2.7 that, with respect to metaheuristics,
the best average performance on the class of Pintér’s test functions has been
shown by the DE method: it has solved all 100 problems faster in average
than the other tested metaheuristic methods. The worst performance on this
test class was shown by the FA method that has executed a huge number of
trials to solve all test problems.

Then, the operational characteristics of deterministic methods were com-
pared with the operational zones of metaheuristic methods. It can be seen
from Figures 2.8, 2.9, and 2.10 that with the accuracy (ε = 10−4) all Lip-
schitz methods have solved all 100 problems faster than metaheuristic met-
hods even with respect to the upper bound of the metaheuristics operational
zones, i. e., with respect to the best unrealizable case. By increasing the
accuracy the situation was changed. Using a higher accuracy (ε = 10−6),
the best three metaheuristic algorithms (GA, DE and PSO) have solved all
test problems much faster in average than the geometric methods with global
estimates of the Lipschitz constant (Geom-AL and Geom-GL), being howe-
ver inferior with respect to the local tuning method Geom-LTIMAP. This
happens due to the fact that the Lipschitz constant of the objective function
in a small neighborhood of the global minimizer is very small since Pintér’s
functions are differentiable. So, the methods with global estimates of the
Lipschitz constants (Geom-AL and Geom-GL) use too overestimated values
of the Lipschitz constant at their final phase, thus slowing down the search.
In contrast, the algorithm Geom-LTIMAP has mechanisms of an adaptation
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Figure 2.7: Average operational characteristics for metaheuristic methods
and operational characteristics for Lipschitz methods with ε = 10−4 (a) and
ε = 10−6 (b) from (2.5)

to a local information received during the search and, as a result, it has the
possibility to accelerate the final searching phase. Here, one of the advanta-
ges of the local tuning techniques can be seen: the method Geom-LTIMAP
uses local estimates of the local Lipschitz constants avoiding so a significant
increase of the number of trials inherent in the Geom-AL and Geom-GL al-
gorithms at their final search stage. Mechanisms of a local adaptation in the
metaheuristic methods also allow them to improve the performance without
a significant increase of the costly trials. However, it should be noticed that
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Figure 2.8: Operational zones for the GA method and operational characte-
ristics for the geometric methods with ε = 10−4 (a) and ε = 10−6 (b) from
(2.5)

in some runs the metaheuristic methods did not find the global solutions
getting stuck in the local solutions. Although the number of trials performed
by some metaheuristic algorithms can be small in average (as it happens, for
example, for the DE method), the number of failed runs puts obstacles in a
“good” behavior of the operational zones for such methods.
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Figure 2.9: Operational zones for the DE and PSO methods and operational characteristics for the geometric methods
with ε = 10−4 ((a) for DE and (c) for PSO) and ε = 10−6 ((b) for DE and (d) for PSO) from (2.5)
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Figure 2.10: Operational zones for the ABC and FA methods and operational characteristics for the geometric
methods with ε = 10−4 ((a) for ABC and (c) for FA) and ε = 10−6 ((b) for ABC and (d) for FA) from (2.5)
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2.2.2 Techniques for comparing multidimensional

stochastic and deterministic methods

In another series of experiments, multidimensional randomly generated test
problems are used for a systematic comparison of the methods. In order to
make this comparison more reliable, parameters of all tested algorithms were
fixed following recommendations of their authors and then were used in all
the experiments as follows.

The parameters of GA have been set as follows: the crossover probability
was set to 0.95, mutation probabilities for binary and real coded variables
were set to 0.2 and 0.25, respectively, in our experiments. ⌈D/2⌉ binary-
coded variables and ⌊D/2⌋ real-coded variables were used. The chromosome
length for binary-coded variables was set to 16. Finally, the parameter η of
Simulated Binary Crossover (SBX) was set to 4.

The first control parameter F of DE was set to 0.7, while the second one
CR was set to 0.5 in the experiments. The strategy “DE/Rand/2/exp” was
used as one of the most powerful mutation strategies.

Cognitive φl and social φg parameters of PSO were set to their default
value 2.0, while the inertia weight was set to 0.6 as for difficult and multi-
modal functions. The maximal velocity value was set equal to 15% of the
longest side of the search domain.

The parameter limit of ABC was set to FoodNumber · N , where the
FoodNumber is the number of food sources, i.e., the number of employed
bees and N is the dimension of the problem.

Finally, the attractiveness parameter β0, the absorbtion coefficient γ and
the randomization parameter α of FA were set to 1, 1/

√
l and 0.2, re-

spectively, where l is the average scaling factor of the problem (i.e., l =∑N
i=1(bi − ai)/N for the search hyperinterval {x = (x1, ..., xN)|xi ∈ [ai, bi]}.
In the traditional local optimization (see, e.g., [145]), where strong as-

sumptions on the structure of the objective function (such as convexity, con-
tinuity, differentiability, etc.) are made, the dimensionality of the solved
problem is often a measure of the goodness of optimization algorithms. In
contrast, as was proved in [211], if the only information about the objective
function f(x) from the global optimization problem (2.1), (1.2) is that it
belongs to the class of Lipschitz functions and the Lipschitz constant L is
unknown, there does not exist any deterministic or stochastic algorithm that,
after a finite number of function evaluations, is able to provide an accurate
ε-estimate of the global minimum f ∗. That is why in this case instead of the
theoretical statement (P1) Construct an algorithm able to stop in a given
time and to provide an ε-approximation of the global minimum f ∗ the more
practical statement (P2) Construct an algorithm able to stop after a fixed
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number M of evaluations of f(x) and to return the lowest found value of
f(x) is used. Under the latter statement, not the dimension of the problem
(that is important in local optimization) but the number of allowed function
evaluations (often called budget) becomes critical. In other words, when one
has the possibility to evaluate f(x) M times in the global optimization pro-
blem of the dimension 5, 10 or 100, then the quality of the found solution
after M evaluations is crucial and not the dimensionality of f(x). This hap-
pens because it is not possible to adequately explore the multi-dimensional
search region D at this limited budget of expensive evaluations of f(x). For
instance, if D ⊂ R

20 is a hypercube, then it has 220 vertices. This means
that one million of trials is not sufficient not only to explore well the whole
region D but even to evaluate f(x) at all vertices of D. Thus, the statement
(P2) makes sense both because in practice the budget is always limited and
because the problem under consideration is NP-hard.

As a result, the goal of global optimization methods is often to obtain a
better estimate of f ∗ and x∗ given a fixed limited budget of evaluations of
f(x). In fact, in global optimization the words “A method has solved a global
optimization problem” very often do not mean that the global solution f ∗ has
been found. They mean just that the found solution was better than solutions
found by other competitors (this is especially true for highly dimensional
global optimization problems where the global solutions are unknown). That
is why the possibility to compare the found solutions with the known global
optimum offered by the generator of classes of test functions (see, e.g., [65]
for details) is very precious. It allows us not only to see that a solution A
found by one method is better than a solution B found by another method,
but to check whether these solutions are in a prefixed ε-neighborhood of the
global optimum, i.e., to consider (P1) instead of (P2).

Two methodologies for comparing global optimization algorithms are app-
lied here: Operational Characteristics for comparing deterministic algorithms
and Operational Zones described above. Another methodology called “Ag-
gregated Operational Zones” generalizing ideas of operational characteristics
and operational zones to collate multidimensional stochastic algorithms (see
[201] for details) is also studied in the next subsection.

First of all, to construct classes of test functions, the popular GKLS ge-
nerator (see [65]) of multidimensional, multiextremal test functions was used
(see also Section 2.3 for details). This generator allows one to generate rand-
omly classes of 100 test problems each having the same dimension, number of
local minima, and difficulty. The property making this generator especially
attractive consists of the fact that for each function a complete information
of coordinates and values of all local minima (including the global one) is
provided. Here, 8 different classes from [188] were used. For each dimen-
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sion N from N = 2 to N = 5 two classes (a simple and a hard one) have
been generated.

In these experiments, the nature-inspired algorithms given above are com-
pared with three multidimensional Lipschitz global optimization methods:
DIRECT method from [94], its locally-biased version DIRECT-L from [59],
and the algorithm from [188] based on adaptive diagonal curves (called ADC
hereinafter). The results of these three methods have been taken from [189].

Fig. 2.11.a shows operational characteristics for methods DIRECT,
DIRECT-L, and ADC. Higher is a characteristic of a method with respect
to characteristics of its competitors better is the behavior of this method.
Operational characteristics allow us also to see the best performers in depen-
dence on the available budget of evaluations of f(x). For instance, it can be
seen from Fig. 2.11.a that if the search budget is less than 14 000 possible tri-
als than DIRECT method shows the best performance whereas for a budget
superior to 14 000 the best method is ADC.

As it has been mentioned previously, to build a zone, a tested stochastic
method should be launched K times (in our experiments each metaheuristic
was launched K = 100 times for each of 100 test problems from each of 8
classes) with different randomly chosen populations and a maximum number
of trials Nmax (in our experiments, Nmax = 106). Then, each run of a tes-
ted metaheuristic was considered as a particular method and its operational
characteristic was constructed. The totality of all 100 operational characte-
ristics form the respective operational zone (see Fig. 2.11.b for an operational
zone obtained by FA). Then, the upper and the lower boundaries of the zone
(shown in Fig. 2.11.b as dark blue curves) can be outlined (notice that they
can contain parts of several characteristics) representing the best and the
worst performances of the tested method, respectively. The graph for the
average performance within the zone can be also depicted (see Fig. 2.12.b
where the average performance of FA is shown as a continuous black line
inside the yellow operational zone).

Fig. 2.12 shows results on the 5-dimensional simple and hard classes for
metaheuristics FA, GA, and ABC. Figs. 2.12.a and b compare, respectively,
performance of the three deterministic methods and FA on the simple (with
Nmax = 2 · 104) and the hard (with Nmax = 105) classes. The joint represen-
tation of operational zones together with characteristics offers a lot of visual
information. It can be seen, for example, in Fig. 2.12.a that operational cha-
racteristics of DIRECT and ADC are higher than the upper boundary of the
zone of FA and, therefore, on this class deterministic methods have a better
performance. Fig. 2.12.b shows that the lower boundary of the FA zone is
higher than characteristics of DIRECT and DIRECT-L and, therefore, FA
outperforms these competitors. If the budget is less than 30 000 trials (see
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Figure 2.11: Construction of operational characteristics for deterministic
methods and of the operational zone for metaheuristic Firefly Algorithm
(FA) built on the hard 5-dimensional class of 100 GKLS test functions. (a)
Operational characteristics for methods DIRECT, DIRECT-L, and ADC.
After executing 34,000 trials DIRECT-L has solved 31 problem, DIRECT 42
problems, and ADC 65 problems; after performing 94,000 trials DIRECT-L
has solved 46 problems, DIRECT 58 problems, and ADC all 100 problems.
(b) The operational zone built using 10,000 runs performed by FA (100 runs
for each of the 100 problems). The upper and the lower boundaries of the
zone are shown as dark blue curves.

Fig. 2.12.b) than in average FA is better than ADC, as well. If the budget is
higher than 40 000 trials than ADC behaves better since its characteristic is
higher than the upper boundary of this FA zone. Notice also that Fig. 2.12.b
shows that after 105 trials only the method ADC was able to solve all 100 test
problems of the class. For the same two test classes, Fig. 2.12 presents opera-
tional zones for metaheuristics GA and ABC and for the three deterministic
methods.

In order to see the advantages of the proposed methodologies for compa-
ring methods, Table 2.7 constructed in a traditional way is shown. Due to
the huge amount of data, only average results can be considered and inclu-
ded in Table 2.7. Notice that for deterministic methods and metaheuristics,
due to the stochastic nature of the latter ones, different averages should be
used: for metaheuristics the results on 10 000 runs for each class are used,
whereas for the deterministic algorithms results on 100 runs (one run for
each of 100 functions). This creates difficulties in comparing (see, e.g., [18]).
For instance, which method is better on the 5-dimensional simple class: DI-
RECT or FA? On the one hand, DIRECT did not solve only one problem in
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100 runs, demonstrating so success rate of 99%, whereas FA did not solve 16
problems in 10 000 runs, demonstrating, i.e., 99.84% of success. On the ot-
her hand, the average number of trials for DIRECT was only 16 057.5, while
for FA 47 203.1 trials required in average. Moreover, Table 2.7 cannot give
results for 50% or 75% of solved test problems, that can be also important.
To see the detailed results, larger tables with hundreds of rows and columns
should be used, complicating so the visual analysis of the results.

In contrast, operational zones very well present visually performance of
tested methods giving the entire panorama of their behavior for different
budgets. For instance, it can be seen from Fig. 2.12 that metaheuristics
perform very well on small budgets showing better results w.r.t. deterministic
algorithms whereas the best algorithm for the higher budget on the used test
classes is the algorithm ADC since it was able to solve all 100 test problems
faster than other methods on both the classes. Even though this result can
be also obtained from Table 2.7, the operational zones allow us to observe
the performance of methods at all the stages of the search for each class. The
average, the best, and the worst cases for each metaheuristic can be easily
obtained from the graphs for any chosen number of trials. Moreover, the
number of trials required to solve 50% (or 75%, 90%, etc.) of problems can
be easily obtained and performance of methods is visualized clearly.

Let us see now another way for a statistical comparison of the two groups
of algorithms using the same data. Let XC

A be a random variable describing
the consumed percentage of the computational budget Nmax performed by an
algorithm A for solving a problem from the test class C. Let us consider the
sample xC

A of 100 realizations of XC
A for A ∈ {ADC, DIRECT, DIRECT-L}

and 100×100 = 10000 realizations ofXC
A forA ∈ {FA, GA, ABC, PSO, DE},

i.e., if, for instance, the algorithm ADC solved the 2-dimensional hard test
problem number 5 after 574 trials, then x2−hard

ADC = 574
106

× 100% = 0.0574%.
Then, after the construction of the cumulative distribution functions FXC

A
(x),

one can obtain the sampled distribution quantiles of XC
A . For instance, in

Tables 2.8–2.9, the sampled 25%, 50%, 75%, and 90% quantiles are presen-
ted for simple and hard classes, respectively. These results can be interpreted
as follows. The 90%-quantile for the FA on the 5-dimensional simple class
is 14.11%, whereas the same quantile for the ADC is 1.02%. This means
that with the probability 90% FA will consume no more than 14.11% of the
computational budget (i.e., no more than 141 100 trials), while ADC will
consume no more than 1.02% of the computational budget (i.e., no more
than 10 200 trials) to solve successfully the test problem. As it can be seen
from Table 2.8, GA for the same test class and the same confidence level
will consume 100% of the computational budget. This means that it cannot
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be claimed with the probability 90% that GA will solve the problem in the
selected computational budget. However, it should be noted that with the
probability 75% GA will resolve the test problem of the same class with no
more than 9.24% of the computational budget (i.e., with no more than 92 400
trials).

On can see that the presented quantiles correspond to the results presen-
ted in Figures 2.11–2.19. In particular, the results presented in Tables 2.8–2.9
correspond to the average operational zones for each metaheuristic algorithm
presented in Figures 2.12–2.19.

2.2.3 Aggregated operational zones and restarts of

metaheuristics

One can see also that in many runs metaheuristics got trapped into local
minima and were not able to exit from their attraction regions producing
so operational zones with long horizontal parts (see, e.g., Fig. 2.12.d where
metaheuristic GA works significantly better than DIRECT and DIRECT-L
if the budget is less than 40 000 trials and then almost does not improve the
number of solved problems remaining, however, always better than the two
deterministic methods). This means that increasing the number of trials does
not improve results in this case and it is necessary to restart metaheuristics.
Aggregated operational zones proposed here show what happens in this case.
They are constructed as follows.

First, an algorithm is launched K times (K = 100 was used again here
in order to have the same computational resources available for constructing
operational zones) with an allowed number of trials nmax < Nmax (in our
experiments nmax = 50000, Nmax = 106 for each metaheuristic). Then, for
non-solved problems the algorithm is launched again with the same number
nmax of allowed trials. Thus, if the algorithm did not solve a problem p in the
first n, 1 ≤ n < T, T = ⌊Nmax/nmax⌋, runs but has solved it in the (n+1)-th
run in t, 1 ≤ t ≤ nmax, trials then the number of trials to solve the problem p
is equal to n∗nmax+ t. Otherwise, if the algorithm did not solve the problem
p in T runs, then the number of executed trials for the problem p is set equal
to the maximal allowed number Nmax (in order to remind that more than
Nmax trials are required to solve this problem the mark “> 106” is used in
Table 2.7). In this way, T runs are executed to complete the aggregated
characteristic. Finally, k = K/T aggregated operational characteristics are
used to build the aggregated operational zone in the same way as operational
characteristics are used to construct an operational zone. The lower and
upper boundaries are defined analogously.
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Figure 2.12: Operational characteristics built on two 5-dimensional classes
of 100 GKLS test functions for deterministic methods DIRECT, DIRECT-L,
and ADC and operational zones for stochastic metaheuristics Firefly Algo-
rithm (FA), Genetic Algorithm (GA) and Artificial Bee Colony (ABC). (a)
Operational characteristics for deterministic methods and the operational
zone for FA for the simple 5-dimensional class. (b) The same as (a) for the
hard class. (c) Operational characteristics for deterministic methods and the
operational zone for GA for the simple 5-dimensional class. (d) The same as
(c) for the hard class. (e) Operational characteristics for deterministic met-
hods and the operational zone for ABC for the simple 5-dimensional class.
(f) The same as (e) for the hard class.
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Figure 2.13: Operational characteristics and operational zones for the 2-
dimensional GKLS classes for metaheuristics FA, GA, and ABC. (a) Opera-
tional characteristics for deterministic methods and operational zones for FA
are presented for the simple class. (b) The same as (a) for the hard class. (c)
Operational characteristics for deterministic methods and operational zones
for GA are presented for the simple class. (d) The same as (c) for the hard
class. (e) Operational characteristics for deterministic methods and operati-
onal zones for ABC are presented for the simple class. (f) The same as (e)
for the hard class.
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Figure 2.14: Operational characteristics and operational zones for the 3-
dimensional GKLS classes for metaheuristics FA, GA, and ABC. (a) Opera-
tional characteristics for deterministic methods and operational zones for FA
are presented for the simple class. (b) The same as (a) for the hard class. (c)
Operational characteristics for deterministic methods and operational zones
for GA are presented for the simple class. (d) The same as (c) for the hard
class. (e) Operational characteristics for deterministic methods and operati-
onal zones for ABC are presented for the simple class. (f) The same as (e)
for the hard class.
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Figure 2.15: Operational characteristics and operational zones for the 4-
dimensional GKLS classes for metaheuristics FA, GA, and ABC. (a) Opera-
tional characteristics for deterministic methods and operational zones for FA
are presented for the simple class. (b) The same as (a) for the hard class. (c)
Operational characteristics for deterministic methods and operational zones
for GA are presented for the simple class. (d) The same as (c) for the hard
class. (e) Operational characteristics for deterministic methods and operati-
onal zones for ABC are presented for the simple class. (f) The same as (e)
for the hard class.
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Figure 2.16: Operational characteristics and operational zones for the 2-
dimensional GKLS classes for metaheuristics PSO and DE. (a) Operational
characteristics for deterministic methods and operational zones for PSO are
presented for the simple class. (b) The same as (a) for the hard class. (c)
Operational characteristics for deterministic methods and operational zones
for DE are presented for the simple class. (d) The same as (c) for the hard
class.
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Figure 2.17: Operational characteristics and operational zones for the 3-
dimensional GKLS classes for metaheuristics PSO and DE. (a) Operational
characteristics for deterministic methods and operational zones for PSO are
presented for the simple class. (b) The same as (a) for the hard class. (c)
Operational characteristics for deterministic methods and operational zones
for DE are presented for the simple class. (d) The same as (c) for the hard
class.
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Figure 2.18: Operational characteristics and operational zones for the 4-
dimensional GKLS classes for metaheuristics PSO and DE. (a) Operational
characteristics for deterministic methods and operational zones for PSO are
presented for the simple class. (b) The same as (a) for the hard class. (c)
Operational characteristics for deterministic methods and operational zones
for DE are presented for the simple class. (d) The same as (c) for the hard
class.
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Figure 2.19: Operational characteristics and operational zones for the 5-
dimensional GKLS classes for metaheuristics PSO and DE. (a) Operational
characteristics for deterministic methods and operational zones for PSO are
presented for the simple class. (b) The same as (a) for the hard class. (c)
Operational characteristics for deterministic methods and operational zones
for DE are presented for the simple class. (d) The same as (c) for the hard
class.



N Class

Metaheuristic algorithms Deterministic algorithms

(10000 runs for each algorithm and class) (100 runs for each algorithm and class)
Differential Particle Swarm Genetic Artificial Firefly

DIRECT DIRECT-L
Diagonal

Evolution Optimization Algorithm Bee Colony Algorithm Algorithm
2 simple >52910.38(511) >110102.74(1046) >327452.5(2735) 2120.8 1190.3 198.9 292.8 176.3
2 hard >357467.49(3556) >247232.35(2282) >370907.3(3149) 10366.2 >4299.6(3) 1063.8 1267.1 675.7
3 simple >165125.02(1515) >170320.10(1489) >242231.7(1599) 10245.0 15269.2 1117.7 1785.7 735.8
3 hard >476251.20(4603) >285499.04(2501) >412037.8(2874) 26254.2 >21986.3(1) >42322.7(4) 4858.9 2006.8
4 simple >462401.52(4546) >303436.36(2785) >150597.5(1290) >57669.5(19) 23166.7 >47282.9(4) 18983.6 5014.1
4 hard >773481.03(7676) >456996.08(4157) >247860.8(1900) >150706.5(255) 40380.7 >95708.3(7) 68754.0 16473.0
5 simple >294839.01(2815) >181805.17(1561) >237392.9(2208) >38068.0(14) >47203.1(16) >16057.5(1) 16758.4 5129.9
5 hard >751930.00(7473) >250462.63(2109) >249965.6(2311) >230192.9(879) >79555.2(38) >217215.6(16) >269064.4(4) 30471.8
†The record “>m(i)” means that the algorithm did not solve a global optimization problem i times in 100 runs×100 problems (i.e., in 10000 runs for metaheuristics
and in 100 runs for deterministic algorithms). In this case, the maximal number of trials set to 106 was used to calculate the average number of trials m.

Table 2.7: Results of the experiments. For each test class the average number of trials required to solve all 100
problems is presented for each deterministic algorithm. For each metaheuristic method, the average number of trials
required to solve each problem on 100 runs has been calculated, and the average of these 100 values is presented.†



N Q

Metaheuristic algorithms Deterministic algorithms

(10,000 runs for each algorithm and class) (100 runs for each algorithm and class)
Differential Particle Swarm Genetic Artificial Firefly

DIRECT DIRECT-L ADC
Evolution Optimization Algorithm Bee Colony Algorithm

2

25 0.07% 0.04% 0.13% 0.03% 0.05% 0.01% 0.01% 0.01%
50 0.14% 0.08% 3.28% 0.05% 0.08% 0.01% 0.02% 0.02%
75 0.26% 0.21% 99.53% 0.12% 0.14% 0.02% 0.04% 0.02%
90 0.60% 95.74% 100.00% 0.69% 0.22% 0.04% 0.07% 0.02%

3

25 0.22% 0.29% 1.35% 0.09% 0.43% 0.02% 0.03% 0.05%
50 0.44% 0.92% 4.83% 0.16% 0.84% 0.04% 0.06% 0.06%
75 1.99% 3.60% 26.64% 1.06% 1.66% 0.15% 0.19% 0.10%
90 35.70% 97.61% 99.83% 2.94% 2.91% 0.30% 0.57% 0.12%

4

25 0.17% 0.25% 0.24% 0.12% 0.32% 0.13% 0.23% 0.28%
50 2.49% 1.04% 0.83% 1.34% 0.83% 0.50% 0.73% 0.41%
75 89.48% 97.25% 3.78% 6.03% 2.69% 1.12% 3.07% 0.73%
90 100.00% 100.00% 96.73% 15.89% 6.18% 2.21% 5.57% 0.89%

5

25 0.17% 0.27% 0.46% 0.12% 0.33% 0.06% 0.32% 0.21%
50 0.29% 0.87% 1.56% 0.34% 0.62% 0.16% 0.93% 0.39%
75 97.05% 4.04% 9.24% 3.73% 2.86% 0.64% 1.90% 0.64%
90 100.00% 99.78% 100.00% 10.89% 14.11% 1.54% 3.54% 1.02%

Table 2.8: Results of the experiments. For each algorithm, quantiles Q25, Q50, Q75, and Q90 for the number of trials
for simple test classes are presented.



N Q

Metaheuristic algorithms Deterministic algorithms

(10,000 runs for each algorithm and class) (100 runs for each algorithm and class)
Differential Particle Swarm Genetic Artificial Firefly

DIRECT DIRECT-L ADC
Evolution Optimization Algorithm Bee Colony Algorithm

2

25 0.09% 0.08% 0.43% 0.05% 0.07% 0.03% 0.06% 0.04%
50 0.40% 0.26% 6.12% 0.23% 0.12% 0.11% 0.13% 0.06%
75 2.96% 25.03% 99.05% 1.32% 0.22% 0.14% 0.18% 0.09%
90 100.00% 100.00% 100.00% 2.87% 0.47% 0.22% 0.22% 0.12%

3

25 0.54% 0.61% 2.80% 0.13% 0.54% 0.04% 0.08% 0.12%
50 14.88% 2.28% 18.64% 0.95% 1.11% 0.17% 0.20% 0.17%
75 32.84% 99.91% 99.63% 3.20% 2.14% 0.37% 0.62% 0.27%
90 100.00% 100.00% 100.00% 7.20% 4.02% 0.64% 1.25% 0.35%

4

25 93.83% 1.18% 0.48% 1.23% 0.63% 0.69% 0.67% 1.04%
50 93.83% 12.42% 2.66% 6.16% 1.85% 1.61% 3.32% 1.51%
75 100.00% 99.10% 26.78% 18.51% 4.93% 4.31% 11.31% 2.16%
90 100.00% 100.00% 99.57% 41.96% 10.52% 13.40% 18.89% 2.90%

5

25 45.86% 0.59% 0.55% 1.27% 0.82% 0.89% 1.90% 1.31%
50 95.77% 2.28% 1.82% 7.51% 2.46% 5.51% 18.29% 2.46%
75 100.00% 21.34% 13.81% 30.74% 8.97% 15.09% 47.71% 4.44%
90 100.00% 100.00% 100.00% 88.36% 21.57% 19.01% 69.96% 6.43%

Table 2.9: Results of the experiments. For each algorithm, quantiles Q25, Q50, Q75, and Q90 for the number of trials
for hard test classes are presented.
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Figure 2.20: Aggregated operational zones for stochastic metaheuristics Fi-
refly Algorithm (FA), Genetic Algorithm (GA), and Artificial Bee Colony
(ABC) and operational characteristics for deterministic methods DIRECT,
DIRECT-L, and ADC built on two 5-dimensional classes of 100 GKLS test
functions. (a) Operational characteristics for deterministic methods and the
aggregated operational zone for FA for the simple 5-dimensional class. (b)
The same as (a) for the hard class. (c) Operational characteristics for deter-
ministic methods and the aggregated operational zone for GA for the simple
5-dimensional class. (d) The same as (c) for the hard class. (e) Operatio-
nal characteristics for deterministic methods and the aggregated operational
zone for ABC for the simple 5-dimensional class. (f) The same as (e) for the
hard class.
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Fig. 2.20 shows results of experiments for the three deterministic met-
hods and metaheuristics FA, GA, and ABC. It should be stressed that the
aggregated operational zones allow one to emphasize better the potential
of nature-inspired metaheuristics. In fact, the advantage of the aggregated
zones with respect to the operational zones can be illustrated, for exam-
ple, by situations shown in Fig. 2.12.f and Fig. 2.20.f. It can be seen from
Fig. 2.12.f that operational characteristics of deterministic methods DIRECT
and DIRECT-L are located inside the zone of the metaheuristic ABC and,
therefore, it is not possible to determine which of the three methods behaves
better. In contrast, the aggregated zone of ABC is higher than the charac-
teristics of both deterministic methods, i.e., it can be concluded that ABC
outperforms them.

In conclusion, the proposed operational zones and aggregated operatio-
nal zones allow one to compare effectively deterministic and stochastic glo-
bal optimization algorithms having different nature and give a handy vi-
sual representation of this comparison for different computational budgets.
Nature-inspired metaheuristics and deterministic Lipschitz algorithms have
been compared on 800 of tests giving so a new understanding for both classes
of methods and opening a dialog between the two communities. It can be
seen that both classes of algorithms are competitive and surpass one another
in dependence on the available budget of function evaluations.

2.3 Emmental-type GKLS-based generator of

test classes for global optimization with

nonlinear constraints

Continuous constrained global optimization problems are considered here. A
problem of this kind can be formally stated as follows (see, e. g., references
in [54, 192, 207, 215]):

f ∗ = f(x∗) = min
x∈D

f(x), D ⊂ R
N , (2.6)

where D is a bounded N -dimensional region defined as

D = {x ∈ Ω : gj(x) ≤ 0, 1 ≤ j ≤ p}, (2.7)

Ω = [a, b] = {x ∈ R
N : ai ≤ xi ≤ bi, 1 ≤ i ≤ N}, a, b ∈ R

N . (2.8)

The objective function f(x) from (2.6) and constraints gj(x), 1 ≤ j ≤ p,
from (2.7) are continuous, nonlinear, and can be multiextremal.
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A new generator of classes of multidimensional test problems for bench-
marking continuous constrained global optimization methods is described in
this Section. It is based on the GKLS-generator as given in Algorithm 829
[65] and extends the previous generation procedure from the box-constrained
case to the case of nonlinear constraints (see [197] and [199] for details). The
user has the possibility to fix the difficulty of tests in an intuitive way by
choosing several types of constraints. A detailed information (including the
global solution) for each of 100 generated problems in each class is provided
to the user.

2.3.1 Box-constrained GKLS generator of test problems

There exists a huge number of methods for solving problem (2.6)–(2.8) (see,
e. g., references in [54, 207, 215]). As a consequence, the necessity of their
fair numerical comparison on a well-structured benchmarking set arises, es-
pecially when methods having a completely different nature are to be com-
pared (see, e. g., [107] for the related discussion on a numerical compa-
rison of metaheuristic and deterministic global optimization algorithms).
In global optimization tests taken from real-life applications, the lack of
such information as the number of local minimizers, their locations and
attraction regions, and local and global minimum values creates additio-
nal difficulties in verifying validity of the algorithms (see benchmark clas-
ses and related discussions on testing global optimization algorithms, e. g.,
in [18, 55, 140, 158, 160, 162, 188, 215, 229]).

One of the important aspects to be considered in this context is an in-
tuitive visualization of numerical results. For example, in [198] (see also
Section 2.2), new tools called operational zones and aggregated operational zo-
nes for comparing global optimization algorithms of a different nature (e. g.,
stochastic and deterministic methods) by means of a particular graphical re-
presentation of the obtained numerical results have been proposed. To use
this tool, classes of test problems are required. On the one hand, there exist
many generators of test problems for continuous box-constrained local and
global optimization (see, e. g., [60] for the landscape generators; [146] for the
large-scale nonconvex quadratic problems generator; [17], [21], and [55] for
some interesting test classes; and [4], [78], [153], and [162] for other generators
of global optimization test problems). On the other hand, in the framework
of a general continuous constrained global optimization only collections of
benchmark test problems are usually used (see, e. g., [53, 148, 193]) due to
the absence of test classes and generators for this type of problems.

The research meets this lack and introduces a new generator of classes of
100 random global optimization test problems with similar characteristics,
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nonlinear constraints, known minimizers, and a parameterizable difficulty.
In order to obtain a powerful instrument for testing constrained global opti-
mization methods, the following requirements have been particularly taken
into consideration:

1. The global solution of the constrained and box-constrained problems
should be known but differ from each other.

2. The global solution of the constrained problem should be placed on the
boundary of the feasible region, since in practice this is a frequently
encountered situation.

3. The difficulty of the admissible region should be controllable in several
ways.

4. The gradient value of the objective function at the global minimizer of
the constrained problem should be different from zero1.

5. The number of active constraints at the global solution to the constrai-
ned problem should be controllable2.

In order to guarantee the properties given above, the Emmental-type
generator of classes of constrained test problems is built by extending the
GKLS-generator (see [65]) of classes of test problems with non-differentiable,
differentiable, and twice continuously differentiable objective functions for
box-constrained global optimization. Since 2003, when the GKLS-generator
has been proposed, it has gain a high popularity within the global optimiza-
tion community for testing numerical methods (in fact, it is now used in more
than 40 countries of the world) due to its simplicity and flexibility. Therefore,
its extension to the case of constrained global optimization problems seems
to be an opportune and useful contribution in such an important research
area as benchmarking numerical global optimization software.

Constrained Emmental-type tests are built using one of the following
three classes produced by the GKLS-generator [65]: non-differentiable (ND-
type), differentiable (D-type), and twice continuously differentiable (D2-
type). We recall that box-constrained test problems in the GKLS classes
are generated by defining a convex quadratic function distorted by polyno-
mials of orders 2, 3, or 5 for ND, D, or D2 classes, respectively, in order to

1Suggested by Julius Žilinskas.
2Suggested by Renato De Leone.
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Figure 2.21: Examples of a box-constrained D-type GKLS test problem (a)
and the corresponding box-constrained Emmental-type test problem (b) over
Ω = [−1, 1]2: the functions do not coincide even in the absence of nonlinear
constraints.

introduce local minima. In particular, the objective function of a GKLS class
is constructed by modifying a paraboloid Z

Z : z(x) = ||x− T ||2 + t, x ∈ Ω, (2.9)

with the minimum t at a point T ∈ int(Ω), where int(Ω) denotes the interior
of Ω from (2.8) and || · || denotes the Euclidean norm, in such a way that
the resulting box-constrained problem has m, m ≥ 2, local minimizers: the
point T from (2.9) and points Mi ∈ int(Ω), Mi 6= T , Mi 6= Mj , 2 ≤ i, j ≤ m,
i 6= j. The paraboloid Z from (2.9) is modified by the polynomials within
balls Si ⊂ Ω (not necessarily entirely contained in Ω) around each point Mi,
2 ≤ i ≤ m (with M1 := T being the vertex of the paraboloid and M2 being
the global minimizer of the box-constrained test problem), where

Si = {x ∈ R
N : ||x−Mi|| ≤ ρi, ρi > 0}. (2.10)

Each GKLS test class includes 100 functions and is defined by five parameters
to be chosen by the user (see [65] for details):

(1) the problem dimension N ≥ 2;
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(2) the number of local minimizers m ≥ 2 (including the paraboloid vertex
M1 = T from (2.9));

(3) the global minimum value f ∗ < t (t = 0 by default in (2.9));

(4) the radius ρ∗ of the attraction region of the global minimizer M2;

(5) the distance r∗ from the global minimizer M2 to the paraboloid vertex
M1.

Many other necessary parameters are set randomly by the GKLS-generator
for each test function of the selected class. It is important to notice that the
generator produces the same test classes for a fixed set of the user-defined
parameters thus allowing the repeatability of numerical experiments.

As an illustration, Fig. 2.21.a shows an example of a GKLS test function
defined over the box Ω = [−1, 1]2. This function has number 3 in the D-
type test class with the following parameters: (1) N = 2; (2) m = 30; (3)
f ∗ = −1; (4) ρ∗ = 2

5
; and (5) r∗ = 4

5
. The randomly generated global

minimizer of this function is M2 ≃ (−0.086, 0.478) and the paraboloid vertex
is M1 ≃ (−0.842, 0.216).

Let us show now, how the global minimum points and values of the box-
constrained GKLS problems are modified in order to take into account the
first of the requirements for constrained tests mentioned previously. By doing
this, the box-constrained Emmental-type test problem corresponding to a
box-constrained GKLS test problem but different from the latter one will
be obtained. Then, nonlinear constraints will be introduced in the resulting
box-constrained Emmental-type test problems to construct the desired con-
strained Emmental-type tests. The global minimum value of the constrained
Emmental-type test problem remains equal to that of the corresponding box-
constrained GKLS problem (as one of the user-defined parameters) but its
location is different and is shifted to the boundary of the admissible region
D from (2.7) defined by a set of active nonlinear constraints.

2.3.2 Generator with parameterizable difficulty and
known global solution

In order to ensure that the global solution to the newly constructed box-
constrained and constrained Emmental-type problems and the original box-
constrained GKLS problems differ from each other, the following modification
to the GKLS tests is performed (see [199] for details). For a particular
box-constrained GKLS test problem with m ≥ 3 (cf. [65] where m ≥ 2 is
allowed) local minimizers, the local (not global M2) minimizer Mimin

having
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the attraction region closest to the paraboloid vertex M1 = T from (2.9) is
determined by index imin as follows

imin = arg min
3≤i≤m

{||Mi −M1|| − ρi}, (2.11)

where ρi is the radius of the ball Si from (2.10) (index i starts from 3 in (2.11),
since i = 1 and i = 2 are reserved for the paraboloid vertex and the global
minimizer, respectively). Polynomial Pimin

for the ND-type GKLS function
(polynomials Cimin

or Qimin
for D-type or D2-type GKLS functions, respecti-

vely), defined in [65] by formula (15) (formulae (8) or (13)) is then modified
as follows. Its smallest value over Simin

is set equal to −3 · |f ∗|, where f ∗

is the user-defined global minimum value of the considered box-constrained
GKLS problem (recall that f ∗ should be smaller than the function value t
at the paraboloid vertex from (2.9); t is set equal to 0 by default in the
GKLS-generator). After this modification, the global solution to the box-
constrained problem moves to the point Mimin

(with imin from (2.11)) with
a new global minimum value equal to −3 · |f ∗|. In this way, the global mi-
nimum point and value of the box-constrained GKLS and Emmental-type
problems are different (see Fig. 2.21.a and Fig. 2.21.b). The updated in-
formation about the global solution of the box-constrained Emmental-type
problem under consideration is provided to the user.

In order to have a global minimizer x∗ of the constrained Emmental-
type problem different from the corresponding box-constrained GKLS and
Emmental-type problems and with a non-zero gradient value (the fourth
requirement), x∗ is placed between the pointsM1 (the paraboloid vertex form
(2.9)) and M2 (the global minimizer of the box-constrained GKLS problem)
with an unknown distance d∗ from the point M2, d

∗ = ||x∗ −M2||,

x∗ =
d∗

||M1 −M2||
M1 + (1− d∗

||M1 −M2||
)M2. (2.12)

To ensure that the global minimum value of the constrained Emmental-type
problem (2.6) at the point x∗ is equal to f ∗ (i. e., equal to the user-defined
global minimum value of the box-constrained GKLS test problem), the dis-
torting polynomial P2(x), C2(x), or Q2(x) of order 2, 3, or 5 in the box-
constrained Emmental-type problem of ND, D, or D2 types, respectively
(see formulae (15), (8), or (13) in [65]), is redefined over the attraction re-
gion S2 of the point M2 by setting its smallest value in S2 equal to −2 · |f ∗|.
Taking into consideration that the points M1, x

∗, and M2 are aligned along
the ray from M1 and denoting d = ||x−M2|| (where d expresses the distance
from M2 to a point x ∈ S2 at the one-dimensional segment [M1,M2]), this
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polynomial can be written along the one-dimensional segment [M1,M2] ⊂ S2

in terms of the argument d as

P (d) =





P2(d), for ND-type classes,

C2(d), for D-type classes,

Q2(d), for D2-type classes,

(2.13)

where the polynomials P2(d), C2(d), and Q2(d) are defined as follows

P2(d) = (1− 2||M1−M2||
ρ∗

+ 1
ρ∗2

A2)d
2 − 2 · |f ∗|,

C2(d) = (2||M1−M2||
ρ∗2

− 2
ρ∗3

A2)d
3 + (1− 4||M1−M2||

ρ∗
+ 3

ρ∗2
A2)d

2 − 2 · |f ∗|,
Q2(d) = [−6||M1−M2||

ρ∗4
+ 6

ρ∗5
A2 +

1
ρ∗3

(1− δ
2
)]d5+

+[16||M1−M2||
ρ∗3

− 15
ρ∗4

A2 − 3
ρ∗2

(1− δ
2
)]d4+

+[−12||M1−M2||
ρ∗2

+ 10
ρ∗3

A2 +
3
ρ∗
(1− δ

2
)]d3 + 1

2
δd2 − 2 · |f ∗|,

(2.14)
with ρ∗ being the radius of the attraction region S2 ofM2 (one of the five user-
defined parameters in the GKLS-generator), A2 = ||M1 −M2||2 + t+ 2 · |f ∗|
(t is from (2.14)) and δ being a properly chosen random number (see [65] for
details).

The distance d∗ in (2.12) can be, therefore, found as the solution to the
nonlinear equation

Ed(d) := P (d)− f ∗ = 0, (2.15)

where P (d) is from (2.13)–(2.14). It can be seen from (2.15) that Ed(0) =
−2 · |f ∗| − f ∗ < 0. On the other hand, Ed(ρ

∗) = P (ρ∗)− f ∗ > 0 due to the
fact that P (ρ∗) is the polynomial (2.13) value at the border of S2 (and so
it is equal to a value of the paraboloid Z from (2.9)) and, by the generator
settings, f ∗ < t = min

x∈Ω
z(x), where z(x) is from (2.9). All the values P (d)

with d ∈ [0, ρ∗] correspond to the functions P2(d), C2(d), or Q2(d) from (2.14)
and, as a consequence, to the polynomials P2(x), C2(x), orQ2(x) with x ∈ S2.
Since the point M2 is the unique local minimizer of these polynomials over
the ball S2, they are monotonous in the direction (M1 −M2). Thus, P (d) is
also monotonous along the one-dimensional segment [0, ρ∗], with its values
of opposite signs on the endpoints 0 and ρ∗. It follows that the solution to
(2.15) exists, is unique and the location of the global minimizer x∗ is uniquely
defined in (2.12). This location can be determined either analytically for the
functions of ND-type, or numerically for the functions of D- or D2-type by
using some simple numerical methods (e. g., bisection method) for finding
solution to (2.15) over a one-dimensional segment. Once defined, the global
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minimizer x∗ of the constrained Emmental-type test problem is provided to
the user.

Four types of constraints are proposed for the Emmental-type constrained
test problems. Satisfaction of each constraint gj(x), 1 ≤ j ≤ p, from (2.7)
gives the exterior of a ball with a center Gj and a radius rj , i. e.,

gj(x) = rj − ||x−Gj|| ≤ 0, 1 ≤ j ≤ p. (2.16)

Constraints of the first type are related to the local minimizers of the
corresponding box-constrained Emmental-type test problem; the number p1
of these constraints is such that 3 ≤ p1 ≤ m. Constraints of the second
type are connected with the vertices of Ω from (2.8); the number p2 of these
constraints is such that 0 ≤ p2 ≤ 2N , where N is the problem dimension
from (2.8). Constraints of the third type are constructed by definition (with
some safeguards) of a number of random balls in Ω and their number p3 ≥ 0.
Finally, p4 constraints (p4 ≥ 0) of the fourth type ensure the required number
Nactive ≥ 1 of active constraints, p4 = Nactive − 1. They are generated by
defining several random balls of the same radius in such a way that they
cross at the global minimizer x∗ from (2.12). The total number of nonlinear
constraints is equal to p = p1 + p2 + p3 + p4, p ≥ 3. Fig. 2.22 illustrates
constraints of different types for the differentiable objective function from
Fig. 2.21.b.

Let us describe more in detail how nonlinear constraints are generated in a
constrained Emmental-type test problem, starting from p1 constraints of the
first type. A ball with its center at the point G1 = M1 being the paraboloid
vertex from (2.9) is considered as constraint g1(x) in (2.16). Radius r1 of this
ball (see Fig. 2.22.a) is taken as the distance between M1 and the attraction
region of the global minimizer Mimin

(imin is from (2.11)) of the corresponding
box-constrained Emmental-type test problem, ensuring meanwhile that the
balls S1 and S2 do not overlap, i. e.,

r1 = min{||M1 −Mimin
|| − ρimin

, ||M2 −M1|| − ρ2}. (2.17)

In order to satisfy the first requirement for constrained tests described
previously, the ball Simin

(imin is from (2.11)) is taken as the following con-
straint of the first type (see Fig. 2.22.a),

g2(x) = ρimin
− ||x−Mimin

||.
To place the global minimizer of the constrained test problem on the

boundary of the feasible region D from (2.7), the following constraint g3(x)
in (2.16) is built by using a ball with its center at the point

G3 = − ρ2 − d∗

||M1 −M2||
M1 + (1 +

ρ2 − d∗

||M1 −M2||
)M2, (2.18)
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Figure 2.22: The feasible regions and the level curves of the constrained
Emmental-type problem from Fig. 2.21.b with the following numbers of con-
straints (a) p1 = 3, p2 = 2, p3 = 0, Nactive = 1; (b) p1 = 20, p2 = 2,
p3 = 0, Nactive = 1; (c) p1 = 20, p2 = 2, p3 = 10, Nactive = 1; (d) p1 = 20,
p2 = 2, p3 = 10, Nactive = 5. The admissible region in (d) contains 3 disjoint
subregions. p1 constraints of the first type are in light grey; p2 constraints
of the second type are in light green; p3 constraints of the third type are in
dark green; and p4 = Nactive − 1 constraints of the fourth type are in green.
The vertex of the paraboloid is indicated by ×, the global minimizer of the
constrained problem is indicated by red bold +, and the global minimizer
of the corresponding box-constrained D-type GKLS problem is indicated by
blue thin +.

where d∗ is from (2.12) (as found by (2.15)), and radius r3 = ρ2 (see the
constraint g3(x) in Fig. 2.22.a). This choice of the radius value r3 ensures
that the ball (G3, r3) contains in its interior all possible points x such that
f(x) = f ∗ and that only the global minimizer x∗ is placed on its border.
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Moreover, as it follows from subsection 2.2, the function gradient value at
x∗ from (2.12) is different from zero (in Fig. 2.21.b, the gradient ∇f(x∗) ≃
(−7.843,−2.716)).

Finally, the other possible constraints gj(x), 4 ≤ j ≤ p1, of the first
type are constructed by eliminating from Ω in (2.8) some balls Sk(j), 3 ≤
k(j) ≤ m, k(j) 6= imin (imin is from (2.11)) being the attraction regions of
the corresponding local minimizers in Ω (i. e., rj = ρk(j) and Gj = Mk(j),
4 ≤ j ≤ p1, in (2.16)), see light grey balls in Fig. 2.22.b–d.

It should be noticed that, by construction of the GKLS tests (see [65]),
the balls corresponding to the constraints of the first type do not overlap.

In order to make the admissible region more challenging, p2 6= 0 con-
straints of the second and p3 6= 0 constraints of the third types can be
constructed as follows. For generating constraints of the second type some
vertices

cq = (cq1, . . . , c
q
N), cqi ∈ {ai, bi}, 1 ≤ q ≤ p2,

of the search hyperinterval Ω from (2.8) are randomly taken. For each se-
lected vertex cq, the nearest local or global minimizer Mj(q) is found even if
the ball Sj(q) has been already used for constructing a constraint of the first
type. So, the (p1 + q)-th constraint in (2.16) is built as a ball with center
Gp1+q = cq and radius

rp1+q = ||cq −Mj(q)||, 1 ≤ q ≤ p2,

if the global minimizer x∗ from (2.12) does not belong to this ball, or with
radius

rp1+q =
1

2
||cq − x∗||, 1 ≤ q ≤ p2, (2.19)

otherwise. Constraints of the second type are shown by light green in
Fig. 2.22.b–d.

It should be noticed that constraints of the second type can intersect
constraints of the first type (including the constraint g3(x) related to the
global solution of the constrained test problem), but (due to the choice of
the radii rp1+q by (2.19)) they do not cover the neighborhood of the global
minimizer x∗ of the constrained Emmental-type test problem.

Randomly generated p3 constraints of the third type are built in such a
way that they do not intersect the attraction region of the global solution M2

to the original box-constrained GKLS problem. Consequently, they do not
cover the global minimizer x∗ of the corresponding constrained Emmental-
type problem and x∗ is also not isolated due to this fact. In particular,
random points Gp1+p2+j , 1 ≤ j ≤ p3, are taken as centers of the balls (2.12)
in Ω from (2.8). Radii rp1+p2+j are also chosen randomly within interval
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[ρavg, 2ρavg] (where ρavg is the average between ρi, 1 ≤ i ≤ m, from (2.10)),
ensuring that if a ball with a center in Gp1+p2+j and a radius rp1+p2+j in-
tersects with the ball S2, it is replaced by other random ball to avoid this
intersection.

Let us finally consider the last, fourth, type of constraints. Up to now,
only constraint g3(x) is active at the global solution x∗ from (2.12). In order
to allow the user to choose the number Nactive ≥ 1 of active constraints at the
global minimizer x∗, p4 = Nactive − 1 different random points Gp1+p2+p3+j,
1 ≤ j ≤ p4, are taken on the sphere with the center x∗ and the radius
d∗ from (2.12) (determined by (2.15)), such that the angle αj between the
vectors Gp1+p2+p3+j − x∗ and M2 − x∗ is strictly smaller than π

2
. The balls

with these centers Gp1+p2+p3+j , 1 ≤ j ≤ p4, and the radius d∗ from (2.12)
are taken, thereby, as p4 constraints of the fourth type in (2.16) and, as a
consequence, the number Nactive of active constraints at x

∗ is controllable by
the user.

Let us now demonstrate a theoretical result, important from the view-
point of practical applicability of the constrained Emmental-type problems in
benchmarking global optimization software. We need the following definition
first:

Definition 2.1. A global minimizer x∗ of a constrained test problem is cal-
led accessible if it is not isolated and its neighborhood has always a positive
volume.

Theorem 2.1. The global minimizer x∗ of a constrained Emmental-type test
problem is known and always accessible.

Proof. By construction, the global minimizer x∗ of the constrained pro-
blem is known, see (2.12)–(2.15). Moreover, due to the same (2.12)–(2.15),
it is an interior point of the attraction region S2 of the point M2 (Fig. 2.22.a
illustrates this fact). It remains to prove now that x∗ from (2.12) is not
isolated and its neighborhood has a positive volume.

Let us study the constraints of the constrained Emmental-type test pro-
blems. Constraint g1(x) of the first type can touch (for some random com-
binations in (2.17)) the ball S2 only at one point at the boundary of S2 but,
due to (2.12)–(2.15), g1(x) does not intercept the neighborhood of the point
x∗ inside of S2. Constraint g2(x) of the same first type does not intersect
the ball S2, by construction of the GKLS tests (see [65]). Constraint g3(x)
of the first type touches the point x∗, but there is always some subregion of
S2 which is not covered by g3(x): this subregion is placed on the opposite
side with respect to the point G3 from (2.18) and, as a consequence, to the
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point M2. Finally, the other constraints of the first type do not intersect S2,
by construction of the GKLS tests.

Constraints of the second type leave always some subregion of a positive
volume around x∗ even if they intersect S2 (see (2.19)). Constraints of the
third type do not intersect the ball S2, by their construction (as described
just before this Theorem). All p4 constraints of the fourth type cross at the
point x∗. Therefore, let us study this type of constraints better.

Recall that, by construction, points Gp1+p2+p3+j, 1 ≤ j ≤ p4 = Nactive−1,
are placed in such a way that the angle αj between the vectors Gp1+p2+p3+j−
x∗ and M2 − x∗ is strictly smaller than π

2
. This means that even if there

would be two symmetric constraints gj1 and gj2, 1 ≤ j1, j2 ≤ p4, j1 6= j2,
with respect to the point x∗, i. e., two constraints with the corresponding
angles αj1 = −αj2 =

π
2
, the balls in (2.16) with centers Gj1, Gj2 and radii rj1,

rj2 would be tangential balls with respect to each other. Thus, even in this
(worst) case there would be always a subregion of S2 with a positive volume
in the direction from M2 to the paraboloid vertex M1. Hence, although
only one constraint of the first type g3(x) and the constraints of the fourth
type cross at the point x∗, they, however, leave a subregion of S2 with a
positive volume that is not covered by them in the direction from M2 to
M1. So, the global solution x∗ is always accessible from this subregion,
that is, x∗ is not isolated and belongs to a subregion of a positive volume.

✷

Since in practice the objective function can be undefined in the unfeasible
regions, the control parameter defined out can be used in order to keep track
of this fact. If defined out = 1 then the objective function f(x) can be
calculated at each point x belonging to Ω from (2.8). Otherwise, f(x) can
be calculated only in the feasible points from (2.7). In this case, the value
of the function f(x) in the unfeasible points can be set, e. g., equal to ǫ−1,
where ǫ is the machine precision.

The proposed Emmental-type GKLS-based generator of constrained test
problems generate ND, D, and D2 classes of 100 test functions each. The
global minimizer Mimin

(imin is from (2.11)) of a box-constrained Emmental-
type test problem of the class is placed in a random point with a random
radius of its attraction region. The global solution x∗ from (2.12) to the
respective constrained Emmental-type test problem is built in such a way
that it is unique and located in the neighborhood of the global minimizer
M2 of the original box-constrained GKLS test problem. Due to this fact, the
control parameters of the original GKLS-generator of test problems can be
used in order to simplify or to complicate the test functions: the problem
dimension; the number of local minima (i. e., the upper bound for the num-
ber p1 of constraints of the first type); the value f ∗ of the global minimum
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(as a consequence, the value of the global minimum of the box-constrained
Emmental-type test problems fixed to −3·|f ∗| in order to be smaller than the
global minimum value of the original box-constrained GKLS test problem);
the radius of the attraction region of the nearest local minimizer to the solu-
tion of the constrained Emmental-type test problem (and, as a consequence,
the radius of constraint g3(x) of the first type); and the distance between the
nearest from the paraboloid vertex local minimizer and the solution to the
constrained test problem. The other necessary parameters regarding each
objective function f(x) from a particular test class are chosen randomly and
checked automatically as in the GKLS-generator from [65].

In addition to the five parameters of the GKLS-generator of test pro-
blems, the Emmental-type GKLS-based generator has the following control
parameters to be fixed by the user:

(1) the number of constraints of the first type, p1, 3 ≤ p1 ≤ m, where m ≥ 3
is the number of local minima (default value is p1 = 3);

(2) the number of constraints of the second type, p2, 0 ≤ p2 ≤ 2N , where
N is the problem dimension from (2.8) (default value is p2 = 0);

(3) the number of constraints of the third type, p3, 0 ≤ p3 (default value is
p3 = 0);

(4) the numberNactive of active constraints at the global solution x∗, Nactive ≥
1 and Nactive = p4+1, where p4 ≥ 0 is the number of constraints of the
fourth type (default value is Nactive = 1, i. e., p4 = 0);

(5) the parameter defined out, defined out ∈ {0, 1} (default value is 1).

Once all the user-defined parameters are defined, the generator produces
a class of 100 constrained test problems (of ND-, D-, or D2-type) and pro-
vides the user with a comprehensive information about each test function,
including the location of all minimizers of the box-constrained problem, their
attraction regions and function values, as well as the global minimizer and
the global minimum value of the constrained and box-constrained Emmental-
type problem.

To conclude, the presented here Emmental-type GKLS-based generator of
non-differentiable, differentiable, and twice continuously differentiable clas-
ses, each containing 100 random constrained test problems with similar cha-
racteristics, has the following properties:

• For each particular user-defined Emmental-type test class, the global
minimizers of both a box-constrained and the corresponding nonline-
arly constrained Emmental-type problem f(x) are known and they do



Emmental-type GKLS-based generator 111

not coincide. In particular, the unique global minimizer x∗ of the con-
strained Emmental-type problem is placed on the boundary of the ad-
missible region and is always accessible.

• The difficulty of the constrained problem can be changed in several
ways. First, the control parameters of the original box-constrained
GKLS-generator can be used in order to simplify or to complicate the
objective function f(x) (see, e. g., [188]). Then, different numbers of
constraints of the first, second, and third type can also be used in or-
der to simplify or to complicate the admissible region. In particular,
the simplest admissible region has p1 = 3, p2 = 0, and p3 = 0 con-
straints (see light grey balls in Fig. 2.22.a and the corresponding ob-
jective function surface in Fig. 2.21.b) and the hardest one has p1 = m,
p2 = 2N and p3 >> 0 constraints. Moreover, the admissible region can
be simply connected, biconnected or multiconnected.

• The gradient ∇f(x∗) of the function f(x) at the global minimizer x∗ is
not zero.

• The number of active constraints at the global solution x∗ can be chan-
ged by the user.

• Finally, the simplicity of the proposed generator allows the user to
introduce his/her own constraints of a different type.





Chapter 3

Handling of Ill-Conditioning in
Optimization via Infinity
Computing

It is well-known that in ill-conditioned systems, numerical methods can lead
to incorrect results. Moreover, in practice it is not always possible to work
simultaneously with large and small numbers due to overflows and underflows
present if traditional computers and numeral systems are used. However,
this is not the case when the Infinity Computing framework is applied. In
this Chapter, the Infinity Computing is used in order to handle of several
instances of ill-conditioning in optimization.

This Chapter is organized as follows. In the first Section, the Infi-
nity Computing paradigm is described briefly. It is shown that working
with infinite and infinitesimal numbers simultaneously does not lead to ill-
conditioning if the Infinity Computing is applied.

The second Section is dedicated to handling of ill-conditioning in uni-
variate Lipschitz global optimization. It is shown that in cases, when it is
required to solve the scaled problem with small or large scaling constants, ill-
conditioning can be provoked by scaling. It is shown also that this situation
can be avoided using numerical infinities and infinitesimals.

Finally, the third Section is dedicated to handling of ill-conditioning in
multidimensional optimization. The variable-metric Diagonal Bundle met-
hod with limited memory (D-Bundle method) is studied. It is shown that
the matrix defining the metric can be ill-conditioned due to discontinuities
in the derivatives. A new approach to approximate this matrix using the In-
finity Computing is proposed. It is shown that the obtained matrix is always
well-conditioned.
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3.1 Infinity Computing methodology

In our everyday activities with finite numbers the same finite numerals1 are
used for different purposes (e.g., the same numeral 9 can be used to express
the number of elements of a set, to indicate the position of an element in a
sequence, and to execute practical computations). In contrast, when we face
the necessity to work with infinities or infinitesimals, the situation changes
drastically. In fact, in this case different numerals are used to work with
infinities and infinitesimals in different situations. To illustrate this fact it is
sufficient to mention that we use the symbol ∞ in standard analysis, ω for
working with ordinals, ℵ0,ℵ1, ... for dealing with cardinal numbers..

Many theories dealing with infinite and infinitesimal quantities have a
symbolic (not numerical) character. For instance, many implementations of
non-standard analysis (see [159]) are symbolic, since they have no numeral
systems to express their numbers by a finite number of symbols (the finiteness
of the number of symbols is necessary for organizing numerical computati-
ons). Namely, if we consider a finite n, then it can be taken n = 72, or n = 30
or any other numeral used to express finite quantities and consisting of a fi-
nite number of symbols. In contrast, if we consider a non-standard infinite
m then it is not clear which numerals can be used to assign a concrete value
to m. Analogously, in non-standard analysis, if we consider an infinitesimal
h then it is not clear which numerals consisting of a finite number of symbols
can be used to assign a concrete value to h and to write h = ... In fact, very
often in non-standard analysis texts, a generic infinitesimal h is used and
it is considered as a symbol, i.e., only symbolic computations can be done
with it. Approaches of this kind leave unclear such issues, e.g., whether the
infinite 1/h is integer or not or whether 1/h is the number of elements of an
infinite set.

In order to allow one to execute numerical computations with different
infinities and infinitesimals and to use the same numerals in all the situations
(as it happens with numerals expressing finite quantities), a new computa-
tional methodology and the respective numeral system have been developed
in [169, 172, 176]. This numeral system avoids indeterminate forms and si-
tuations similar to ∞ + 1 = ∞ and ∞− 1 = ∞ providing results ensuring
that if a is a numeral written in this numeral system then for any a (i.e., a
can be finite, infinite, or infinitesimal) it follows a+ 1 > a and a− 1 < a.

1There exists an important distinction between numbers and numerals. A numeral is
a symbol (or a group of symbols) that represents a number. A number is a concept that
a numeral expresses. The same number can be represented by different numerals. For
example, the symbols ‘9’, ‘nine’, ‘IIIIIIIII’, and‘IX’, are different numerals, but they all
represent the same number
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The numeral system is based on a new infinite unit of measure expressed
by the numeral ① called grossone that is introduced as the number of ele-
ments of the set of natural numbers. At the same time, with the introduction
of ① in the mathematical language all other symbols (like ∞, Cantor’s ω,
ℵ0,ℵ1, ..., etc.) traditionally used to deal with infinities and infinitesimals are
excluded from the language because ① and other numbers constructed with
its help not only can be used instead of all of them but can be used with a
higher accuracy. Analogously, when zero and the positional numeral system
had been introduced in Europe, Roman numerals I, V, X, etc. had not been
involved and new symbols 0, 1, 2, etc. have been used to express numbers.
The new element – zero expressed by the numeral 0 – had been introduced by
describing its properties in the form of axioms. Analogously, ① is introduced
by describing its properties postulated by the Infinite Unit Axiom added to
axioms for real numbers (see [172, 176] for a detailed discussion).

Let us see now how one can write down different numerals expressing
different infinities and infinitesimals and to execute computations with all of
them. Instead of the usual symbol ∞ different infinite and/or infinitesimal
numerals can be used thanks to ①. Indeterminate forms are not present
and, for example, the following relations hold for infinite numbers ①, ①2.7

and ①−1, ①−2.7 (that are infinitesimals), as for any other (finite, infinite, or
infinitesimal) number expressible in the new numeral system

0 · ① = ① · 0 = 0, ① − ① = 0,
①

①
= 1, ①0 = 1, 1① = 1, 0① = 0, (3.1)

0 · ①−1 = ①−1 · 0 = 0, ①−1 > 0, ①−2.7 > 0, ①−1 − ①−1 = 0,

①−1

①−1 = 1, (①−1)0 = 1, ① · ①−1 = 1, ① · ①−2 = ①−1,

①−2.7

①−2.7 = 1,
①2.7

①
= ①1.7,

①−1

①−2 = ①, ①2.7 · ①−2.7 = 1.

The introduction of the numeral ① allows us to represent infinite and
infinitesimal numbers in a unique framework and to work with all of them
numerically on the Infinity Computer (see the patent [164]). For this pur-
pose a numeral system similar to traditional positional numeral systems was
introduced in [169, 172]. To construct a number C in the numeral positional
system with base ①, we subdivide C into groups corresponding to powers of
①:

C = cpm①pm + . . .+ cp1①
p1 + cp0①

p0 + cp−1①
p−1 + . . .+ cp−k

①p−k . (3.2)

Then, the record

C = cpm①pm . . . cp1①
p1cp0①

p0cp−1①
p−1 . . . cp−k

①p−k (3.3)
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represents the number C, where all numerals ci 6= 0, they belong to a tradi-
tional numeral system and are called grossdigits. They express finite positive
or negative numbers and show how many corresponding units ①pi should be
added or subtracted in order to form the number C. Note that in order to
have a possibility to store C in the computer memory, values k and m should
be finite.

Numbers pi in (3.3) are sorted in the decreasing order with p0 = 0

pm > pm−1 > . . . > p1 > p0 > p−1 > . . . p−(k−1) > p−k.

They are called grosspowers and they themselves can be written in the form
(3.3). In the record (3.3), we write ①pi explicitly because in the new numeral
positional system the number i in general is not equal to the grosspower
pi. This gives the possibility to write down numerals without indicating
grossdigits equal to zero.

The term having p0 = 0 represents the finite part of C since c0①
0 =

c0. Terms having finite positive grosspowers represent the simplest infinite
parts of C. Analogously, terms having negative finite grosspowers represent
the simplest infinitesimal parts of C. For instance, the number ①−1 = 1

①
mentioned above is infinitesimal. Note that all infinitesimals are not equal
to zero. In particular, 1

①
> 0 since it is a result of division of two positive

numbers.
A number represented by a numeral in the form (3.3) is called purely

finite if it has neither infinite nor infinitesimal parts. For instance, 14 is
purely finite and 14 + 5.3①−1.5 is not. All grossdigits ci are supposed to
be purely finite. Purely finite numbers are used on traditional computers
and for obvious reasons have a special importance for applications. All of
the numbers introduced above can be grosspowers, as well, giving thus a
possibility to have various combinations of quantities and to construct terms
having a more complex structure. In this research, hereinafter all purely finite
numbers will be called as finite just for simplicity.

It should be stressed that the Infinity Computing approach allows us a
full numerical treatment of both infinite and infinitesimal numbers whereas
the non-standard analysis (see [159]) has a symbolic character and, therefore,
allows symbolic computations only (see a detailed discussion on this topic in
[182]).

It can be seen from (3.1) that the infinities and infinitesimals of different
order can be used simultaneously in this computational system without un-
determined forms such as ∞ − ∞ or ∞

∞
: ① − ① = 0, ① − ①2 = −1①21①,

①
①

−1 = ①2, etc. Moreover, it can be easily seen that the ill-conditioned

operations in traditional framework can be well-conditioned in the Infinity
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Computing framework. For instance, the results of the following operations
can be representable in the Infinity Computer: ①−1+①+①2 = 1①21①11①−1,
2①2 − 1.5①−3 + 6①5 = 6①52①2 − 1.5①−3. It should be noted that the same
operations with very small and large numbers are ill-conditioned in the tra-
ditional floating-point arithmetic: for instance, on the traditional computers,
the result of 1020 + 1050 will be 1050 with the error 1020. In this Chapter,
several instances of ill-conditioning in optimization are studied in the frame-
work of the Infinity Computing.

It should be noted also that handling of ill-conditioning is not the unique
advantage of the Infinity Computing framework. It is only a particular pro-
perty that can be successfully used. Another useful property is the possibility
to calculate exact derivatives of functions even if they are given as a black
box. It can be very useful for the numerical methods, where the derivatives
are required. For instance, many numerical methods for solving ordinary dif-
ferential equations require the computation of the derivative of the unknown
function y(t) at some specific points. In particular, this is the case with met-
hods based on Taylor expansion. The following theorem from [177] shows an
important result allowing one to compute the derivatives exactly.

Theorem 3.1. Suppose that: (i) for a function f(x) calculated by a proce-
dure implemented at the Infinity Computer there exists an unknown Taylor
expansion in a finite neighborhood δ(y) of a finite point y; (ii) f(x), f ′(x),
f ′′(x), ..., f (k)(x) assume finite values or are equal to zero for x ∈ δ(y); (iii)
f(x) has been evaluated at a point y + ①−1 ∈ δ(y). Then the Infinity Com-
puter returns the results of this evaluation in the positional numeral system
with the infinite radix ① in the following form

f(y + ①−1) = c0①
0c−1①

−1c−2①
−2...c−(k−1)①

−(k−1)c−k①
−k, (3.4)

where

f(y) = c0, f ′(y) = c−1, f ′′(y) = 2! · c−2, ..., f
(k)(y) = k! · c−k. (3.5)

Proof. The proof can be found in [177].
Let us show how the usage of infinitesimals on the Infinity Computer

allows one to calculate exact derivatives of y(t) numerically according to the
theorem given above. First, suppose that y(t) is given as a “black box” but
it can be evaluated at any point t. Traditionally, in order to approximate
the first derivative of y at some point x, the finite integration step h and
the finite differences of different order can be used: for instance, the forward
differences of the first order:

y′(x) ≈ y(x+ h)− y(x)

h
, (3.6)
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the backward differences of the first order:

y′(x) ≈ y(x)− y(x− h)

h
, (3.7)

or the central differences of the second order:

y′(x) ≈ y(x+ h)− y(x− h)

2h
. (3.8)

It is well-known that the above mentioned finite differences have the diffe-
rentiation error of order O(h) (forward and backward differences) and O(h2)
(central differences), respectively. However, due to the numerical cancelation
errors in the floating-point arithmetic, it is not always possible to obtain
smaller errors using smaller values of h.

Example 3.1. Let us consider the procedure realizing the following function:
y(t) = t+1

t−1
. Suppose that we want to compute the first derivative of the

function y(t) at the point x = 3. In Fig. 3.1 the relative errors |y′(x)−Fh(x)|
1+|y′(x)|

in the logarithmic form are presented for different values of h for three above
mentioned formulae, where Fh(x) is the approximation of the first derivative
y′(x) using (3.6), (3.7) or (3.8), respectively. It can be seen from Fig.3.1,
that there is no such the value h with which the error will be smaller than
10−12, for the second-order difference, and 10−9 for the first-order differences.
Moreover, it can be also seen that starting from the value h ≈ 8 · 10−6, h ≈
3 · 10−8 and h ≈ 1.5 · 10−8 for the central, forward and backward differences,
respectively, the error significantly increases.

At the same time, the Infinity Computer performs the following operations
evaluating the function y(t) at the point x+ ①−1 using infinitesimal stepsize
h:

y(3+①−1) =
3①0 + ①−1 + 1①0

3①0 + ①−1 − 1①0 = 2①0− 0.5①−1+0.25①−2− 0.125①−3+ ...,

(3.9)
from where, it can be easily obtained that y(3) = 2, y′(3) = −0.5 · 1! =
−0.5, y′′(3) = 0.25 · 2! = 0.5, y′′′(3) = −0.125 · 3! = −0.75, being the exact
values of y(3), y′(3), y′′(3), and y′′′(3).

Let us consider now the case, when the function y(t) is not given explicitly.
Suppose that we have the following ordinary differential equation:

{
y′ = f(t, y(t)), t ∈ [t0, T ],
y(t0) = y0,

(3.10)

where f : [t0, T ]× Rn → Rn is assumed sufficiently differentiable.
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Figure 3.1: Relative errors vs. stepsize for (a) the forward and backward
differences; (b) the central difference

Let us denote by y
(j)
i an estimate of the j-th derivative of the solution

y(x) at the point xi and suppose that f(x, y) assumes purely finite values at
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purely finite x and y. It has been shown in [181] that in order to calculate
the j-th derivative at the point xi j infinitesimals steps from the point xi

using the Euler formula with h = ①−1 should be executed as follows

yi1 = yi + ①−1f(xi, yi), yi2 = yi1 + ①−1f(xi + ①−1, yi1), . . .

yik = yik−1 + ①−1f(xi + (k − 1)①−1, yik−1).

Then, since approximations of the derivatives can be obtained by the forward
differences ∆j

h, 1 ≤ j ≤ k, with h = ①−1 as follows

∆k
①−1 =

k∑

j=0

(−1)jCk
j yxi+(k−j)①−1 , (3.11)

we obtain

y(k)(xi) =
∆k

①−1

①−k
+O(①−1). (3.12)

Since the error of the approximation is O(①−1), the finite part of the value
∆k

①−1

①
−k gives us the exact2 derivative y(k)(xi).

On the other hand, finite differences may be employed directly on the
value of f as follows:

y(k)(ti) = f (k−1)(yi) =
∆k−1

①−1

①−k−1
+O(①−1) (3.13)

where now we could use forward differences:

∆k
①−1 =

k−1∑

j=0

(−1)j
(
k − 1

j

)
f(yi,k−j−1) and f(yi,0) = f(yi). (3.14)

or in a similar way, we could use central differences. However, since the diffe-
rentiation error is already infinitesimal using the simplest forward differences
of the first order, there is no necessity to use the formulae of the higher order,
e.g., central differences.

Example 3.2. In order to see an example of calculating the derivatives using
the presented techniques, let us find y′′(0) for the problem

y′(t) =
y − 2ty2

1 + t
, y(0) = y0 = 0.4. (3.15)

2the word “exact” means that calculations are performed with the machine precision.
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One can find that the exact y′′(0) = −0.32 since the exact solution of (3.15)
is y(x) = 1+x

2.5+x2 . In order to find y′′(0) we start by calculating y1, y2 and
△2

①−1

①
−2 :

y1 = 0.4 + ①−1f(0, 0.4) = 0.4 + 0.4①−1,

y2 = y1 + ①−1f(①−1, y1) = 0.4 + 0.8①−1 − 0.32①−2 − 0.32①−3.

△2
①−1

①−2 =
y0 − 2y1 + y2

①−2 =
−0.32①−2 − 0.32①−3

①−2 = −0.32−0.32①−1 = y′′(0)+O(①−1),

and we have y′′(0) = −0.32.
At the same time, using the second approach, we can obtain:

y1 = 0.4 + ①−1f(0, 0.4) = 0.4 + 0.4①−1,

△1
①−1

①−1 =
f(t1, y1)− f(t0, y0)

①−1 =

=
f(0.4 + 0.4①−1)− 0.4

①−1 =
0.4− 0.32①−1 +O(①−2)− 0.4

①−1 =

=
−0.32①−1 +O(①−2)

①−1 = −0.32 +O(①−1) = y′′(0) +O(①−1),

and we have y′′(0) = −0.32, as well. It should be noted, that the second
approach requires less computations than the first one, giving the same result.

3.2 Strong homogeneity of a class of global

optimization algorithms working with in-

finite and infinitesimal scales

As it has been mentioned in the first Chapter, in many applied problems it
is required to find the global minimum of multiextremal non-differentiable
functions. Due to the presence of multiple local minima and non-differentiabi-
lity of the objective function, classical local optimization techniques cannot
be used for solving these problems and global optimization methods should
be developed (see, e.g., [54, 94, 151, 153, 192, 213, 215, 229, 233, 235]). One of
the desirable properties of global optimization methods (see [47, 213, 233]) is
their strong homogeneity meaning that a method produces the same sequen-
ces of trial points (i.e., points where the objective function f(x) is evaluated)
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independently of both shifting f(x) vertically and its multiplication by a sca-
ling constant. In other words, it can be useful to optimize a scaled function

g(x) = g(x;α, β) = αf(x) + β, α > 0, (3.16)

instead of the original objective function f(x). The concept of strong homo-
geneity has been introduced in [233] where it has been shown that both the
P-algorithm (see [231]) and the one-step Bayesian algorithm (see [137]) are
strongly homogeneous. The case α = 1, β 6= 0 was considered in [47, 213]
where a number of methods enjoying this property and called homogeneous
were studied. It should be mentioned that there exist global optimization
methods that are homogeneous or strongly homogeneous and algorithms (see,
for instance, the DIRECT algorithm from [94] and a huge number of its mo-
difications) that do not possess this property. These methods belong to the
class of “Divide-the-best” algorithms introduced in [168]. Two kinds of algo-
rithms are taken into consideration in this work: geometric and information
ones (see [192, 207, 213, 215]).

In this research, it will be shown that several fast univariate methods
using local tuning techniques to accelerate the search through a smart ba-
lancing of the global and local information collected during the search (see
recent surveys in [192, 205]) enjoy the property of the strong homogeneity
(see [200] for details). In particular, it will be proved that this property is
valid for the considered methods not only for finite values of the constants α
and β but for infinite and infinitesimal ones, as well. To prove this result, a
new class of global optimization problems with the objective function having
infinite or infinitesimal Lipschitz constants is introduced. Numerical com-
putations with functions that can assume infinite and infinitesimal values
are executed using the Infinity Computing paradigm allowing one to work
numerically with a variety of infinities and infinitesimals on a patented in
Europe and USA new supercomputer called the Infinity Computer (see, e.g.,
surveys [172, 182]).

3.2.1 A class of global optimization problems with in-
finite and infinitesimal Lipschitz constants

The importance to have the possibility to work with infinite and infinitesi-
mal scaling/shifting constants α and β has an additional value due to the
following fact. It can happen that even if a method possesses the strong
homogeneity property theoretically and the original objective function f(x)
is well-conditioned, numerically very small and/or large finite constants α
and β can lead to the ill-conditioning of the global optimization problem
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involving g(x) due to overflow and underflow taking place when g(x) is con-
structed from f(x). Thus, global minimizers can change their locations and
the values of global minima can change, as well. As a result, applying met-
hods possessing the strong homogeneity property to solve these problems
will lead to finding the changed values of minima related to g(x) and not
the desired global solution of the original function f(x) we are interested in.
In this work, it is shown that numerical infinities and infinitesimals and the
Infinity Computing framework can help in this situation.

Let us consider the following univariate global optimization problem where
it is required to find the global minimum f ∗ and global minimizers x∗ such
that

f ∗ = f(x∗) = min f(x), x ∈ D = [a, b] ⊂ R. (3.17)

It is supposed that the objective function f(x) can be multiextremal and
non-differentiable. Moreover, the objective function f(x) is supposed to be
Lipschitz continuous over the interval D, i.e., f(x) satisfies the following
condition

|f(x1)− f(x2)| ≤ L|x1 − x2|, x1, x2 ∈ D, (3.18)

where L is the Lipschitz constant, 0 < L < ∞.
A vast literature is dedicated to the problem (3.17), (3.18) and algorithms

for its solving (see, e.g., [54, 67, 79, 107, 151, 192, 198, 207, 215, 229]). In
particular, in practice it can be useful to optimize a scaled function g(x) from
(3.16) instead of the original objective function f(x) (see, e.g., [47, 213, 233]).
For this kind of problems, the concept of strong homogeneity for global op-
timization algorithms has been introduced in [233]: An algorithm is called
strongly homogeneous if it generates the same sequences of trials (evalu-
ations of the objective function) during optimizing the original objective
function f(x) and the scaled function g(x) from (3.16), where α > 0 and β
are constants (notice that homogeneous methods corresponding to the case
α = 1, β 6= 0 have been considered originally in [47, 213]). Unfortunately,
in practice it is not always possible to obtain correct values of g(x) for huge
and small values of α > 0 and β due to overflows and underflows present if
traditional computers and numeral systems are used for evaluation of g(x)
even if the original function f(x) is well-conditioned.

As an illustration, let us consider the following test problem from [83]
shown in Fig. 3.2.a:

f3(x) =
5∑

k=1

−k · sin[(k + 1)x+ k], x ∈ D = [−10, 10]. (3.19)

The function f3(x) has been chosen from the set of 20 test functions descri-
bed in [83] because it has the highest number of local minima among these
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functions and the following three global minimizers

x∗
1 = −0.491, x∗

2 = −6.775, x∗
3 = 5.792 (3.20)

corresponding to the global minimum

f ∗ = f(x∗
1) = f(x∗

2) = f(x∗
3) = −12.0312. (3.21)

Let us take α = 10−17 and β = 1 obtaining so the following function

g3(x) = 10−17f3(x) + 1. (3.22)

It can be seen from Fig. 3.2.a and Fig. 3.2.b that f3(x) and g3(x) are comple-
tely different. If we wish to reestablish f3(x) from g3(x), i.e., to compute the

inverted scaled function f̂3(x) = 1017(g3(x)−1), then it will not coincide with

f3(x). Fig. 3.2.c shows f̂3(x) constructed from g3(x) using MATLABR© and
the piece-wise linear approximations with the integration step h = 0.0001.

Thus, this scaling leads to an ill-conditioning. Due to underflows taking
place in commonly used numeral systems (in this case, the type double in
MATLABR©), the function g3(x) degenerates over many intervals in constant
functions and many local minimizers disappear (see Fig. 3.2.b). In the same
time, due to overflows, several local minimizers become global minimizers of
the scaled function g3(x). In particular, using the following two commands
in MATLABR©

[gmin, imin] = min(y), xmin = x(imin)

we can calculate an approximation of the global minimum for g3(x). Using
the array y containing the values of g3(x) calculated with the stepsize h =
0.0001, i.e.,

yi = 10−17f3(xi) + 1, xi = −10 + h · (i− 1), i ≥ 1,

we get (xmin, gmin) = (−8.194, 1.0) being an approximation of the global
minimum (x∗, g3(x

∗)) of g3(x) that does not coincide with the global minima
(3.20), (3.21) of the original function f3(x). Thus, due to underflows and
overflows, the “wrong” global minimum of the scaled function g3(x) has been

found. Analogously, due to the same reasons, the inverted function f̂3(x) =
1017(g3(x)− 1) has also different global minima with respect to the original
function f3(x) (see Fig. 3.2.c). Clearly, a similar situation can be observed if
larger values of α and β are used (for instance, α = 1017 and β = 1035).

This example shows that in case of very huge or very small finite values
of constants α and β, even if it has been proved theoretically that a method
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(b) Graph of the function g3(x) = 10−17 f(x) + 1 in logarithmic form
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(c) Graph of the inverted function f̂3(x) = 1017(g3(x)− 1)

Figure 3.2: Graphs of (a) the test function (3.19), (b) the scaled function
g3(x) from (3.22) in the logarithmic form, (c) the inverted scaled function

f̂3(x) = 1017(g3(x) − 1). It can be seen that the form of the functions g3(x)

and f̂3(x) are qualitatively different with respect to the original function
f3(x) due to overflows and underflows.

is strongly homogeneous, it does not make sense to talk about this property
since it is not possible to construct correctly the corresponding scaled functi-
ons on the traditional computers.

The introduction of the Infinity Computer paradigm allows us to consi-
der univariate global optimization problems with the objective function g(x)
from (3.16) that can assume not only finite values, but also infinite and in-
finitesimal ones. It is supposed that the original function f(x) can assume
finite values only and it satisfies condition (3.18) with a finite constant L.
However, since in (3.16) the scaling/shifting parameters α and β can be not
only finite, but also infinite and infinitesimal and, therefore, to work with
g(x), the Infinity Computing framework is required. Thus, the following
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optimization problem is introduced

min g(x) = min (αf(x) + β), x ∈ D = [a, b] ⊂ R, α > 0, (3.23)

where the function f(x) can be multiextremal, non-differentiable, and Lip-
schitz continuous with a finite value of the Lipschitz constant L from (3.18).
In their turn, the values α and β can be finite, infinite, and infinitesimal
numbers representable in the numeral system (3.3).

The finiteness of the original Lipschitz constant L from (3.18) is the es-
sence of the Lipschitz condition allowing people to construct optimization
methods for traditional computers. The scaled objective function g(x) can
assume not only finite, but also infinite and infinitesimal values and, there-
fore, in these cases it is not Lipschitzian in the traditional sense. However, the
Infinity Computer paradigm extends the space of functions that can be trea-
ted theoretically and numerically to functions assuming infinite and infinite-
simal values. This fact allows us to extend the concept of Lipschitz functions
to the cases where the Lipschitz constant can assume infinite/infinitesimal
values.

Let us indicate hereinafter by “̂” all the values related to the function
g(x) from (3.23) and without “̂” the values related to the function f(x).
The following lemma shows a simple but important property of the Lipschitz
constant for the objective function g(x).

Lemma 3.1. The Lipschitz constant L̂ of the function g(x) = αf(x) + β,
where f(x) assumes only finite values and has the finite Lipschitz constant
L over the interval [a, b] and α, α > 0, and β can be finite, infinite, and
infinitesimal, is equal to αL.

Proof. The following relation can be obtained from the definition of g(x)
and the fact that α > 0

|g(x1)− g(x2)| = α|f(x1)− f(x2)|, x1, x2 ∈ [a, b].

Since L is the Lipschitz constant for f(x), then

α|f(x1)− f(x2)| ≤ αL|x1 − x2| = L̂|x1 − x2|, x1, x2 ∈ [a, b],

and this inequality proves the lemma.
Thus, the new Lipschitz condition for the function g(x) from (3.16) can

be written as

|g(x1)− g(x2)| ≤ αL|x1 − x2| = L̂|x1 − x2|, x1, x2 ∈ D, (3.24)
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where the constant L from (3.18) is finite and the quantities α and L̂ can
assume infinite and infinitesimal values.

Notice that in the introduced class of functions infinities and infinitesimals
are expressed in numerals (3.3), and Lemma 1 describes the first property of
this class. Notice also that symbol ∞ representing a generic infinity cannot
be used together with numerals (3.3) allowing us to distinguish a variety of
infinite (and infinitesimal) numbers. Analogously, Roman numerals (I, II,
III, V, X, etc.) that do not allow to express zero and negative numbers are
not used in the positional numeral systems where new symbols (0, 1, 2, 3, 5,
etc.) are used to express numbers.

Some geometric and information global optimization methods (see [153,
155, 192, 205, 207, 213, 215]) used for solving the traditional Lipschitz global
optimization problem (3.17) are adopted hereinafter for solving the problem
(3.23). A general scheme describing these methods is presented in the next
subsection.

3.2.2 Univariate Lipschitz global optimization algorithms
and strong homogeneity

Methods studied in this research have a similar structure and belong to the
class of “Divide-the-best” global optimization algorithms introduced in [168].
They can have the following differences in their computational schemes dis-
tinguishing one algorithm from another:

(i) Methods are either Geometric or Information (see [192, 213, 215] for
detailed descriptions of these classes of methods);

(ii) Methods can use different approaches for estimating the Lipschitz con-
stant: an a priori estimate, a global adaptive estimate, and two lo-
cal tuning techniques: Maximum Local Tuning (MLT) and Maximum-
Additive Local Tuning (MALT) (see [192, 205, 215] for detailed des-
criptions of these approaches).

The first difference, (i), consists of the choice of characteristics Ri for
the subintervals [xi−1, xi], 2 ≤ i ≤ k, where the points xi, 1 ≤ i ≤ k, are
called trial points and are points where the objective function g(x) has been
evaluated during previous iterations:

Ri =

{
zi+zi−1

2
− li

xi−xi−1

2
, for geometric methods,

2(zi + zi−1)− li(xi − xi−1)− (zi−zi−1)2

li(xi−xi−1)
, for information methods,

(3.25)
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where zi = g(xi) and li is an estimate of the Lipschitz constant for the
subinterval [xi−1, xi], 2 ≤ i ≤ k.

The second distinction, (ii), is related to four different strategies used to
estimate the Lipschitz constant L. The first one consists of applying an a
priori given estimate L > L. The second way is to use an adaptive global
estimate of the Lipschitz constant L during the search (the word global means
that the same estimate is used for the whole region D). The global adaptive
estimate Lk can be calculated as follows

Lk =

{
r ·Hk, if Hk > 0,
1, otherwise,

(3.26)

where r > 0 is a reliability parameter and

Hk = max{Hi : 2 ≤ i ≤ k}, (3.27)

Hi =
|zi − zi−1|
xi − xi−1

, 2 ≤ i ≤ k. (3.28)

Finally, the Maximum (MLT) and Maximum-Additive (MALT) local tu-
ning techniques consist of estimating local Lipschitz constants li for each
subinterval [xi−1, xi], 2 ≤ i ≤ k, as follows

lMLT
i =

{
r ·max{λi, γi}, if Hk > 0,
1, otherwise,

(3.29)

lMALT
i =

{
r ·max{Hi,

λi+γi
2

}, if Hk > 0,
1, otherwise,

(3.30)

where Hi is from (3.28), and λi and γi are calculated as follows

λi = max{Hi−1, Hi, Hi+1}, 2 ≤ i ≤ k, (3.31)

γi = Hk (xi − xi−1)

Xmax
, (3.32)

with Hk from (3.27) and

Xmax = max{xi − xi−1 : 2 ≤ i ≤ k}. (3.33)

When i = 2 and i = k only H2, H3, and Hk−1, Hk, should be considered,
respectively, in (3.31).

After these preliminary descriptions we are ready to describe the General
Scheme 2 (GS-2) of algorithms studied in this section.



Strong homogeneity of global optimization algorithms 129

Step 0. Initialization. Execute first two trials at the points a and b, i. e.,
x1 := a, z1 := g(a) and x2 := b, z2 := g(b). Set the iteration counter
k := 2. Suppose that k ≥ 2 iterations of the algorithm have already
been executed. The iteration k + 1 consists of the following steps.

Step 1. Reordering. Reorder the points x1, . . . , xk (and the corresponding
function values z1, . . . , zk) of previous trials by subscripts so that

a = x1 < . . . < xk = b, zi = g(xi), 1 ≤ i ≤ k.

Step 2. Estimates of the Lipschitz constant. Calculate the current estima-
tes li of the Lipschitz constant for each subinterval [xi−1, xi], 2 ≤ i ≤ k,
in one of the following ways.

Step 2.1. A priori given estimate. Take an a priori given estimate
L of the Lipschitz constant for the whole interval [a, b], i. e., set
li := L.

Step 2.2. Global estimate. Set li := Lk, where Lk is from (3.26).

Step 2.3. “Maximum” local tuning. Set li := lMLT
i , where lMLT

i is
from (3.29).

Step 2.4. “Maximum-Additive” local tuning. Set li := lMALT
i , where

lMALT
i is from (3.30).

Step 3. Calculation of characteristics. Compute for each subinterval
[xi−1, xi], 2 ≤ i ≤ k, its characteristic Ri by using one of the follo-
wing rules.

Step 3.1. Geometric methods.

Ri =
zi + zi−1

2
− li

xi − xi−1

2
. (3.34)

Step 3.2. Information methods.

Ri = 2(zi + zi−1)− li(xi − xi−1)−
(zi − zi−1)

2

li(xi − xi−1)
. (3.35)

Step 4. Interval selection. Determine an interval [xt−1, xt], t = t(k), for
performing the next trial as follows

t = min arg min
2≤i≤k

Ri. (3.36)
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Step 5. Stopping rule. If
xt − xt−1 ≤ ε, (3.37)

where ε > 0 is a given accuracy of the global search, then Stop
and take as an estimate of the global minimum g∗ the value g∗k =
min1≤i≤k{zi} obtained at a point x∗

k = argmin1≤i≤k{zi}.
Otherwise, go to Step 6.

Step 6. New trial. Execute the next trial zk+1 := g(xk+1) at the point

xk+1 =
xt + xt−1

2
− zt − zt−1

2lt
. (3.38)

Increase the iteration counter k := k + 1, and go to Step 1.

Let us study now the strong homogeneity of algorithms described above.
This study is executed simultaneously in the traditional and in the Infinity
Computing frameworks. In fact, so far, whether these methods were strongly
homogeneous or not was an open problem even for finite constants α and β.
Here, it is shown that methods belonging to GS enjoy the strong homogeneity
property for finite, infinite, and infinitesimal scaling and shifting constants.
Recall that all the values related to the function g(x) are indicated by “̂”
and the values related to the function f(x) are written without “̂”.

The following lemma shows how the adaptive estimates of the Lipschitz

constant L̂k, l̂
MLT
i , and l̂MALT

i that can assume finite, infinite, and infinite-
simal values are related to the respective original estimates Lk, l

MLT
i , and

lMALT
i that can be finite only.

Lemma 3.2. Let us consider the function g(x) = αf(x) + β, where f(x)
assumes only finite values and has a finite Lipschitz constant L over the
interval [a, b] and α, α > 0, and β can be finite, infinite and infinitesimal

numbers. Then, the adaptive estimates L̂k, l̂MLT
i and l̂MALT

i from (3.26),
(3.29) and (3.30) are equal to αLk, αl

MLT
i and αlMALT

i , respectively, if Hk >
0, and to 1, otherwise.

Proof. It follows from (3.28) that

Ĥi =
|ẑi − ẑi−1|
xi − xi−1

=
α|zi − zi−1|
xi − xi−1

= αHi. (3.39)

If Hk 6= 0, then Hk = max
2≤i≤k

|zi−zi−1|
xi−xi−1

and Hk ≥ Hi, 2 ≤ i ≤ k. Thus,

using (3.39) we obtain αHk ≥ αHi = Ĥi, and, therefore, Ĥ
k = αHk and
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from (3.26) it follows L̂k = αLk. On the other hand, if Hk = 0, then both
estimates for the functions g(x) and f(x) are equal to 1 (see (3.26)).

The same reasoning can be used to show the respective results for the
local tuning techniques MLT and MALT (see (3.29) and (3.30))

λ̂i = max{Ĥi−1, Ĥi, Ĥi+1} = αmax{Hi−1, Hi, Hi+1},

γ̂i = Ĥkxi − xi−1

Xmax
= αHkxi − xi−1

Xmax
= αγi,

l̂MLT
i =

{
r ·max{λ̂i, γ̂i}, if Ĥk > 0,
1, otherwise.

l̂MALT
i =

{
r ·max{Ĥi,

λ̂i+γ̂i
2

}, if Ĥk > 0,
1, otherwise.

Therefore, we can conclude that

l̂
{MLT,MALT}
i =

{
αl

{MLT,MALT}
i , if Hk > 0,

1, otherwise.

Lemma 3.3. Suppose that characteristics R̂i, 2 ≤ i ≤ k, for the scaled
objective function g(x) are equal to an affine transformation of the characte-
ristics Ri calculated for the original objective function f(x)

R̂i = α̂kRi + β̂k, 2 ≤ i ≤ k, (3.40)

where scales α̂k, α̂k > 0, and β̂k can be finite, infinite, or infinitesimal and
possibly different for different iterations k. Then, the same interval [xt−1, xt],
t = t(k), from (3.36) is selected at each iteration for the next subdivision

during optimizing f(x) and g(x), i.e., it follows t̂(k) = t(k).

Proof. Since due to (3.36) t = argmin2≤i≤k Ri, then Rt ≤ Ri and

α̂kRt + β̂k ≤ α̂kRi + β̂k, 2 ≤ i ≤ k.

That, due to (3.40), can be re-written as

R̂t = min
2≤i≤k

R̂i = α̂kRt + β̂k.

Notice that if there are several values j such that Rj = Rt, then (see (3.36))

we have t < j, j 6= t, i.e., even in this situation it follows t̂(k) = t(k). This
observation concludes the proof.

The following Theorem shows that methods belonging to the GS-2 enjoy
the strong homogeneity property.
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Theorem 3.2. Algorithms belonging to the GS-2 and applied for solving the
problem (3.23) are strongly homogeneous for finite, infinite, and infinitesimal
scales α > 0 and β.

Proof. An algorithm will generate the same sequences of trials optimizing
two functions f(x) and g(x) if the following conditions hold:

(i) The same interval [xt−1, xt], t = t(k), from (3.36) is selected at each
iteration for the next subdivision during optimizing functions f(x) and

g(x), i.e., it follows t̂(k) = t(k).

(ii) The next trial at the selected interval [xt−1, xt] is performed at the same
point during optimizing functions f(x) and g(x), i.e., in (3.38) it follows
x̂k+1 = xk+1.

In order to prove assertions (i) and (ii), let us consider computational
steps of the GS-2. For both functions, f(x) and g(x), Steps 0 and 1 of
the GS-2 work with the same interval [a, b], do not depend on the objective
function, and, as a result, do not influence (i) and (ii). Step 2 is a prepara-
tive one, it is responsible for estimating the Lipschitz constants for all the
intervals [xi−1, xi], 2 ≤ i ≤ k and was studied in Lemmas 1–2 above. Step 3
calculates characteristics of the intervals and, therefore, is directly related
to the assertion (i). In order to prove it, we consider computations of cha-

racteristics R̂i for all possible cases of calculating estimates li during Step 2
and show that there always possible to indicate constants α̂k and β̂k from
Lemma 3.

Lemmas 1 and 2 show that for the a priori given finite Lipschitz constant
L for the function f(x) (see Step 2.1) it follows L̂ = αL. For the adaptive
estimates of the Lipschitz constants for intervals [xi−1, xi], 2 ≤ i ≤ k, (see

(3.26), (3.29), (3.30) and Steps 2.2 – 2.4 of the GS-2) we have l̂i = αli, if

Hk > 0, and l̂i = li = 1, otherwise (remind that the latter corresponds to
the situation zi = z1, 1 ≤ i ≤ k). Since Step 3 includes substeps defining
information and geometric methods, then the following four combinations of
methods with Lipschitz constant estimates computed at one of the substeps
of Step 2 can take place:

(a) The value l̂i = αli and the geometric method is used. From (3.34) we
obtain

R̂i =
ẑi−1 + ẑi

2
− l̂i

xi − xi−1

2
= α(

zi−1 + zi
2

−li
xi − xi−1

2
)+β = αRi+β.

Thus, in this case we have α̂k = α and β̂k = β.
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(b) The value l̂i = αli and the information method is used. From (3.35) we
get

R̂i = 2(ẑi + ẑi−1)− l̂i(xi − xi−1)−
(ẑi − ẑi−1)

2

l̂i(xi − xi−1)
=

2α(zi + zi−1) + 4β − αli(xi − xi−1)−
α2(zi − zi−1)

2

αli(xi − xi−1)
= αRi + 4β.

Therefore, in this case it follows α̂k = α and β̂k = 4β.

(c) The value l̂i = li = 1 and the geometric method is considered. Since in
this case zi = z1, 1 ≤ i ≤ k, then for the geometric method (see (3.34))
we have

R̂i =
ẑi−1 + ẑi

2
− l̂i

xi − xi−1

2
= ẑ1 −

xi − xi−1

2
=

αz1 + β − xi − xi−1

2
= Ri + αz1 − z1 + β.

Thus, in this case we have α̂k = 1 and β̂k = z1(α− 1) + β.

(d) The value l̂i = li = 1 and the information method is used. Then, the
characteristics (see (3.35)) are calculated as follows

R̂i = 2(ẑi + ẑi−1)− l̂i(xi − xi−1)−
(ẑi − ẑi−1)

2

l̂i(xi − xi−1)
=

4ẑ1 − (xi − xi−1) = 4αz1 + 4β − (xi − xi−1) = Ri + 4αz1 − 4z1 + 4β.

Therefore, in this case it follows α̂k = 1 and β̂k = 4(z1(α− 1) + β).

Let us show now that assertion (ii) also holds. Since for both the geome-
tric and the information approaches the the same formula (3.38) for compu-
ting xk+1 is used, we should consider only two cases related to the estimates
of the Lipschitz constant:

(a) If l̂t = αlt, then it follows

x̂k+1 =
xt + xt−1

2
− ẑt − ẑt−1

2l̂t
=

xt + xt−1

2
− α(zt − zt−1)

2αlt
= xk+1.

(b) If l̂t = lt = 1, then zi = z1, 1 ≤ i ≤ k, and we have

x̂k+1 =
xt + xt−1

2
− ẑt − ẑt−1

2l̂t
=

xt + xt−1

2
= xk+1.
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This result concludes the proof.
In order to illustrate the behavior of methods belonging to the GS-2 in the

Infinity Computer framework, the following three algorithms being examples
of concrete implementations of the GS-2 have been tested:

• Geom-AL: Geometric method with an a priori given overestimate of
the Lipschitz constant. It is constructed by using Steps 2.1 and 3.1 in
the GS-2.

• Inf-GL: Information method with the global estimate of the Lipschitz
constant. It is formed by using Steps 2.2 and 3.2 in the GS-2.

• Geom-LTM: Geometric method with the “Maximum” local tuning.
It is built by applying Steps 2.3 and 3.1 in the GS-2.

The algorithm Geom-AL has one parameter – an a priori given overesti-
mate of the Lipschitz constant. In algorithms Geom-LTM and Inf-GL, the
Lipschitz constant is estimated during the search and the reliability para-
meter r is used. In this work, the values of the Lipschitz constant of the
functions f(x) for the algorithm Geom-AL have been taken from [107] (and
multiplied by α for the function g(x)). The values of the parameter r for the
algorithms Geom-LTM and Inf-GL have been set to 1.1 and 1.5, respectively.
The value ε = 10−4(b− a) has been used in the stopping criterion (3.37).

Recall that huge or very small scaling/shifting constants can provoke the
ill-conditioning of the scaled function g(x) in the traditional computational
framework. In the Infinity Computing framework, the positional numeral
system (3.3) allows us to avoid ill-conditioning and to work safely with infinite
and infinitesimal scaling/shifting constants if the respective grossdigits and
grosspowers are not too large or too small. In order to illustrate this fact the
following two pairs of the values α and β have been used in our experiments:
(α1, β1) = (①−1,①) and (α2, β2) = (①,①2). The corresponding grossdigits
and grosspowers involved in their representation are, respectively: 1 and −1
for α1; 1 and 1 for β1; 1 and 1 for α2; and 1 and 2 for β2. It can be seen that all
of these constants are numbers that do not provoke instability in numerical
operations. Hereinafter scaled functions constructed using constants (α1, β1)
are indicated as g(x) and functions using (α2, β2) are designated as h(x).

The algorithms Geom-AL, Inf-GL, and Geom-LTM have been tested on
20 global optimization problems from [83, 107] (see Appendix A) and on the
respective scaled functions g(x) and h(x) constructed from them. It has been
obtained that on all 20 test problems with infinite and infinitesimal constants
(α1, β1) and (α2, β2) the results on the original functions f(x) from [83, 107]
and on scaled functions g(x) and h(x) coincide. To illustrate this fact, let
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Figure 3.3: Results for (a) the original test function f1(x) from [83, 107], (b)
the scaled test function g1(x) = ①−1f1(x) + ①, (c) the scaled test function
h1(x) = ①f1(x)+①2. Trials are indicated by the signs “+” under the graphs
of the functions and the number of trials for each method is indicated on the
right. The results coincide for each method on all three test functions.

us consider the first three problems from the set of 20 tests (see Fig. 3.3.a,
Fig. 3.4.a, and Fig. 3.5.a). They are defined as follows

f1(x) =
1

6
x6 − 52

25
x5 +

39

80
x4 +

71

10
x3 − 79

20
x2 − x+

1

10
,

f2(x) = sin(x) + sin
10x

3
,

f3(x) =

5∑

k=1

−k · sin[(k + 1)x+ k].

In Fig. 3.3.b, Fig. 3.4.b, and Fig. 3.5.b, the results for the scaled functions

gi(x) = ①−1fi(x) + ①, i = 1, 2, 3,

are presented and in Fig. 3.3.c, Fig. 3.4.c, and Fig. 3.5.c, the results for the
scaled functions

hi(x) = ①fi(x) + ①2, i = 1, 2, 3,
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①
① ①

① ①
①

Figure 3.4: Results for (a) the original test function f2(x) from [83, 107], (b)
the scaled test function g2(x) = ①−1f2(x) + ①, (c) the scaled test function
h2(x) = ①f2(x)+①2. Trials are indicated by the signs “+” under the graphs
of the functions and the number of trials for each method is indicated on the
right. The results coincide for each method on all three test functions.

are shown. It can be seen that the results coincide for all three methods on
all three test functions fi(x), gi(x), and hi(x), i = 1, 2, 3. Analogous results
hold for the remaining test problems from [83, 107].

In particular, it can be seen from these experiments that even if the scaling
constants α and β have a different order (e.g., when α is infinitesimal and β is
infinite) the scaled problems continue to be well-conditioned (cf. discussion
on ill-conditioning in the traditional framework with finite scaling/shifting
constants, see Fig. 3.2). This fact suggests that even if finite constants of
significantly different orders are required, ① can also be used to avoid the
ill-conditioning by substituting very small constants by ①−1 and very huge
constants by ①. In this case, if, for instance, α is too small (as, e.g., in (3.22),
α = 10−17) and β is too large (as, e.g., in (3.22), β = 1 ≫ 10−17), the values
α1 = ①−1 and β1 = ① can be used in computations instead of α = 10−17

and β = 1 avoiding so underflows and overflows. After the conclusion of the
optimization process, the global minimum of the original function f ∗ can be
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Figure 3.5: Results for (a) the original test function f3(x) from [83, 107], (b)
the scaled test function g3(x) = ①−1f3(x) + ①, (c) the scaled test function
h3(x) = ①f3(x) + ①2. The results coincide for each method on all three test
functions. The number of trials for each method is indicated on the right.

easily extracted from the solution g∗ = α1f
∗ + β1 = ①−1f ∗ +① of the scaled

problem using ①−1 and ① and the original finite constants α and β can be
used to get the required value g∗ = αf ∗+ β (in our case, g∗ = 10−17f ∗+1).

3.3 Numerical infinitesimals in convex non-

smooth optimization

The objective of this Section is to evaluate the impact of the infinity com-
puting paradigm on practical solution of multidimensional optimization pro-
blems. In particular, nonsmooth unconstrained optimization problems, where
the objective function is assumed to be convex and not necessarily differenti-
able, are considered. For such family of problems, the occurrence of discon-
tinuities in the derivatives may result in failures of the algorithms suited for
smooth problems (see [64] for details).

A family of nonsmooth optimization methods based on a variable metric
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approach are considered, and the infinity computing techniques are used for
numerically dealing with some quantities which can assume values arbitrarily
small or large, as a consequence of nonsmoothness. In particular, the case,
treated in the literature, where the metric is defined via a diagonal matrix
with positive entries, is considered.

The computational results of the implementation on a set of benchmark
test-problems from scientific literature is provided. Obtained results show
that the infinity computing can be successfully used in order to handle with
ill-conditioning in this case, as well.

3.3.1 Variable metric method based on the limited-

memory bundle approach

Nonsmooth (or nondifferentiable) optimization is about finding a local mini-
mum of a real-valued function of several variables, that is solving the following
unconstrained optimization problem

min
x∈Rn

f(x), (3.41)

where f : Rn 7→ R is a function not necessarily differentiable.

Although nonsmoothness generally occurs at a zero-measure set of the
function domain, convergence to a minimum is not ensured in case an algo-
rithm designed for treating smooth problems is applied to nonsmooth ones.

For the above reasons, intensive research activities have been developed in
last decades, and several proposals for dealing with nonsmoothness are offered
in the literature. As for historical contributions, the books [43, 103, 209] and
the seminal papers [29, 101] are mentioned here.

In this work, the unconstrained minimization of a convex function under
no differentiability hypothesis is focused. In this area two research mainstre-
ams are active: subgradient type methods (see the classic version in [209]
and, among the others, the more recent variants in [11, 56, 142]) and bundle
type methods. The latter stems from the seminal paper [116], and benefits
from both the cutting plane model [29, 101] and the conjugate subgradient
approach [221]. The term bundle is referred to a certain amount of informa-
tion (values and subgradients of the objective functions at a set of points in
its domain) which is accumulated and possibly updated as the algorithm pro-
ceeds. Bundle methods [86] require, at each iteration, the solution of a linear
(or, more often, quadratic) program aimed at finding a tentative displacement
from the current approximation of the minimizer. Due to nonsmoothness,
even in case a line search is adopted, a sufficient decrease in the objective
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function is not guaranteed and, consequently, this family of methods accom-
modates for the so called null step, a situation where no progress toward the
minimum is achieved and, instead, some additional information about the
local behavior of the objective function is accumulated into the bundle.

Literature on bundle methods is very rich (see, e.g., the contributions
given in [42, 57, 58, 104, 127]). Some authors have designed methods that
retain many features of the classic bundle approach, while trying to simplify
the displacement finding phase, thus avoiding solution of a too burdensome
subproblem at each iteration, see [81, 99]. In addition, such methods utilize
some ideas coming from the vast literature of the variable metric approach
to smooth optimization, as they embed variants of standard Quasi–Newton
updating formulae for approximating the Hessian matrix ( see [44] for a classic
survey on Quasi–Newton methods and [12], with the references therein, for
the applications of the variable metric approach to nonsmooth optimization).

A Quasi–Newton method for minimizing a differentiable function f :
R

n 7→ R is an iterative method where, at any point xk ∈ R
n, a matrix Bk

is generated as an approximation of the Hessian matrix such that it satisfies
the equation

Bksk = uk, (3.42)

where

sk , xk − xk−1 (3.43)

and

uk , ∇f(xk)−∇f(xk−1). (3.44)

Sometimes equation (3.42) is replaced by

Hkuk = sk, (3.45)

where Hk is the inverse of Bk.
Methods extending the Quasi–Newton idea to the convex nondifferentia-

ble case still require at each iteration satisfaction of equation (3.42), the only
difference being in the definition of vector uk. In fact, denoting by ∂f(x) the
subdifferential and by g ∈ ∂f(x) any subgradient of f at x, see [86], uk can
be restated as

uk , gk − gk−1, (3.46)

with gk and gk−1 being subgradients of f at the points xk and xk−1, respecti-
vely.

However, in the case of nondifferentiable functions, the search for a matrix
Bk satisfying (3.42) is a problem inherently ill-conditioned, due to possible
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discontinuities in the first order derivatives, which in turn may result in
“large” uk corresponding to “small” sk.

This observation is the main motivation of this research, as we propose
to tackle equation (3.42) by applying the Infinity Computing approach to
handle infinite and infinitesimal numbers, and based on the grossone concept,
a numeral resuming the properties of the entire set of natural number.

Let us remark that the objective of the research in this Section is not to
introduce yet another method for solving convex nondifferentiable minimiza-
tion problems, but to experiment how ideas coming from the grossone-based
arithmetic can be cast into a traditional numerical optimization framework.

In order to evaluate the role and the impact of the infinity computing
paradigm on the effectiveness of variable-metric methods applied to the
nonsmooth problem (3.41), the Diagonal Bundle method (D-Bundle) intro-
duced in [99] is studied. D-Bundle is based on the limited-memory bundle
approach [81], where ideas coming from the variable-metric bundle approach
[117, 127] are combined with the extension to nonsmooth problems of the
limited-memory approach introduced in [24]. The main feature of the met-
hod is the use of the diagonal update formula of the variable-metric matrix
introduced in [85]. Let us remark that D-Bundle is suited for dealing with
nonconvexity as well as with nonsmoothness. A thorough description of the
method can be found in [99] along with its convergence properties and several
numerical results. Let us restrict our attention to the convex nonsmooth case,
where most of the literature on nonsmooth optimization has concentrated in
last decades. This allows us to adopt a simplified structure of D-Bundle,
thus highlighting the specific impact of the infinity computing paradigm.
The relevant details of our Grossone-D-Bundle algorithm are presented in
the following.

Assume that at each point x ∈ Rn it is possible to calculate f(x) and
a subgradient g ∈ ∂f(x). Letting xk be the estimate of the minimum at
iteration k, the search direction dk adopted to locate the next iterate is
defined as

dk = −Hkξk
a , (3.47)

where ξk
a is the current aggregate subgradient (see the details below), and

Hk is the inverse of Bk, the positive definite variable-metric n × n matrix,
resembling the classic approximation of the Hessian matrix adopted in quasi-
Newton methods for smooth optimization. Let us remark that in calculating
dk, unlike standard bundle methods, no solution of any optimization subpro-
blem is required.

Once the search direction dk is available, a line search along dk is per-
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formed, which can return two possible outcomes: serious step, whenever
a sufficient decrease with respect to the desirable one is achieved, and null
step otherwise. In the former case, a new approximation xk+1 of a minimizer
is obtained, while in the latter an auxiliary point yk+1 is gathered with an
associate subgradient, to enrich the information about the local behavior of
the function. In fact, the definition of the aggregate subgradient in formula
(3.47) is different in the two cases. If a serious step has been performed (i.e.,
the new iterate xk+1 has been located) the aggregate subgradient ξk+1

a is any
subgradient of f at xk+1. On the other hand, in the null-step case, no move
from the current estimate of the minimizer is made (that is xk+1 = xk), hence
the aggregate subgradient ξk+1

a is obtained as a convex combination of the
three vectors gk ∈ ∂f(xk), gk+1 ∈ ∂f(yk+1), and ξk

a, with multipliers λ∗
1, λ

∗
2,

and λ∗
3, respectively, which minimize the following function

φ(λ1, λ2, λ3) ,
1

2

(
λ1g

k + λ2g
k+1 + λ3ξ

k
a

)⊤
Hk
(
λ1g

k + λ2g
k+1 + λ3ξ

k
a

)
+

+λ2α
k+1 + λ3α

k
a, (3.48)

where αk+1 is the standard (nonnegative) linearization error

αk+1 , f(xk)− f(yk+1)− (gk+1)⊤(xk − yk+1),

and αk
a is the aggregated linearization error. The aggregated linearization

error is updated by the following recursive equality

αk+1
a = λ∗

2α
k+1 + λ∗

3α
k
a,

and it is initialized to zero every time a serious step takes place. We remark
that minimization of function (3.48) can be easily obtained, see [127, Section
4].

3.3.2 Handling of ill-conditioning using infinitesimal
thresholds and Grossone-D-Bundle method

Let us focus now on the updating technique of matrix Bk. As in [99] matrix
Bk must be kept diagonal and positive definite. Let us first introduce a
simplified version of the procedure indicated in [99]. In particular, at iteration
k one can only store the information about the previous iterate, and calculate
two correction vectors sk and uk, according to the definitions (3.43) and
(3.46), respectively. Hence, following [99], matrix Bk is obtained by solving
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the following optimization problem

min ‖Bsk − uk‖ (3.49)

s.t. Bii ≥ ǫ, ∀i ∈ {1, . . . , n}, (3.50)

Bij = 0, ∀i 6= j ∈ {1, . . . , n}, (3.51)

for some ǫ > 0, whose optimal solution can be expressed as

Bk
ii = max

(
ǫ,
uk
i

ski

)
, i = 1, . . . , n. (3.52)

It should be noted that the nonsmoothness of f is likely to cause ill-
conditioning of problem (3.49)-(3.51), as the elements of matrix Bk may
result arbitrarily large and, consequently, those of Hk arbitrarily small, since

Hk
ii = (Bk

ii)
−1, i = 1, . . . , n. (3.53)

This is where the infinity computing paradigm comes into play. In order
to control ill-conditioning we replace first the correction vectors sk and uk

with vectors δk and γk, respectively, whose components are defined as follows

δk
i =

{
ski , if |ski | > ǫ,

①−1, otherwise,
(3.54)

and

γk
i =

{
uk
i , if |uk

i | > ǫ,

①−1, otherwise.
(3.55)

Then, the ratio
γk
i

δk
i

can be corrected by introducing the following

bk
i =





①−1, if 0 <
γk
i

δk
i

≤ ǫ

γk
i

δk
i

, otherwise.

(3.56)

Finally, by analogy with the solution of problem (3.49)-(3.51), the elements
of the diagonal matrix Bk can be set according to the rule

Bk
ii = max

(
①−1,bk

i

)
, i = 1, . . . , n. (3.57)

Note that matrix Bk may contain infinite and infinitesimal numbers. Howe-
ver, since calculation of dk according to formula (3.47) has to take place in
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Bǫ =




1.0× 10−3 0 0
0 2.0× 107 0
0 0 1.0× 10−1


 B① =




1.0 0 0
0 2.0× 101① 0
0 0 1.0




Hǫ =




1.0× 103 0 0
0 5.0× 10−8 0
0 0 1.0× 101


 H① =




1.0 0 0
0 5.0× 10−2 0
0 0 1.0




Figure 3.6: Variable-metric matrices with ǫ = 10−3

a classical arithmetic framework, we need to get rid of the dependence on
① and ①−1 in the definition of matrix Hk. Therefore the following scheme
is chosen which, as far as finite numbers are involved, reflects the standard
inverse calculation scheme:

Hk
ii =





(Bk
ii)

−1 if Bk
ii neither depends on ① nor on ①−1,

(Bk
ii)

−1 · ① if Bk
ii is of the type α①, α ∈ R

(Bk
ii)

−1 · ①−1 if Bk
ii is of the type α①−1, α ∈ R

(3.58)

A better understanding of the consequences of (3.58) can be gained by exa-
mining the following example.

Example 3.3. Let the vectors

s⊤ =
(
1.0× 10−4 1.0× 10−6 1.0× 10−4

)

and
u⊤ =

(
−1.0 × 10−4 2.0× 101 1.0× 10−5

)

be given, where we have dropped the superscript k for notational simplicity.
For each value of ǫ ∈ {10−3, 10−5, 10−8}, the matrices Bǫ and Hǫ can be
calculated according to (3.52) and (3.53), and the matrices B① and H① –
according to (3.57) and (3.58), and the results are reported in Figures 3.6,
3.7, and 3.8, respectively. The effect of adopting the rules (3.54)–(3.58)
can be seen by comparing H① against Hǫ, since H① “stabilizes” as we take
smaller and smaller values of ǫ. In fact, one can easily observe that taking
smaller values than 10−8 for ǫ, then the ill-conditioning of Bǫ gets worse and
worse, while H① remains unchanged, see Figure 3.8.

Let us introduce now the formal statement of the Grossone-D-Bundle

method, reported in Algorithm 1. The following parameters need to be set:
the sufficient decrease parameter m ∈ (0, 1), the matrix updating threshold
ǫ > 0, the stepsize reduction parameter σ ∈ (0, 1), the stopping parameter
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Bǫ =




1.0× 10−5 0 0
0 2.0× 107 0
0 0 1.0× 10−1


 B① =




①−1 0 0
0 2.0× 101① 0

0 0 ①−1




Hǫ =




1.0× 105 0 0
0 5.0× 10−8 0
0 0 1.0× 101


 H① =




1.0 0 0
0 5.0× 10−2 0
0 0 1.0




Figure 3.7: Variable-metric matrices with ǫ = 10−5

Bǫ =




1.0× 10−8 0 0
0 2.0× 107 0
0 0 1.0× 10−1


 B① =




①−1 0 0
0 2.0× 107 0
0 0 1.0× 10−1




Hǫ =




1.0× 108 0 0
0 5.0× 10−8 0
0 0 1.0× 101


 H① =




1.0 0 0
0 5.0× 10−8 0
0 0 1.0× 101




Figure 3.8: Variable-metric matrices with ǫ = 10−8

η > 0, and the null step parameter θ > 0. Few comments on the algorithm
mechanism are in order. At Step 4, a search direction dk at the current point
xk is selected according to (3.47). Next, at Step 5, the desirable reduction wk

of the objective function is calculated, and the algorithm stops at Step 6 if wk

is very close to zero. Otherwise, a line-search procedure along dk is started
at Step 9, whose termination depends on fulfillment of the sufficient decrease
condition at Step 10. In such a case, a serious step takes place along with
the grossone-based update of matrix Hk. If no sufficient decrease is attained
at Step 10, then the line-search is iterated at Step 21, unless the step size
has become very small, in that case a null step occurs, which amounts to
updating the aggregate gradient ξk

a and the linearization error αk
a, but not

the matrix Hk. For further details, especially regarding the definition of the
desirable descent wk, and the calculation of ξk

a and αk
a in the null-step case,

we refer the reader to [99].

Convergence properties of the proposed algorithm are consequence of
those described in [99], where it is required that no update of matrix Hk

takes place in case of null step (this is what actually occurs in our implemen-
tation too), and that matrix Hk stays bounded. In our case, boundedness
can be easily checked by enumerating all possible cases in the construction
of matrix Hk, taking into account, in particular, the definition (3.56).

Numerical experiments have been executed on three different classes of
large-scale test problems taken from [12] and reported in Table 3.1.
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Algorithm 1 Grossone-D-Bundle

Input: a starting point x0 ∈ R
n, parameters θ > 0, η > 0, ǫ > 0, m ∈ (0, 1),

σ ∈ (0, 1)
Output: an approximate local minimizer x∗ ∈ Rn

1: Calculate g0 ∈ ∂f(x0), and set ξ0
a = g0 ⊲ Initialization

2: Set H0 = I (i.e., the n× n identity matrix) ⊲
3: Set α0 = α0

a = 0, and k = 0 ⊲
4: Set dk = −Hkξk

a ⊲ Find a search direction at xk

5: Set wk = (ξk
a)

⊤dk − 2αk
a ⊲ Set the desirable reduction

6: if wk ≥ −η then ⊲ Stopping test
7: set x∗ = xk and exit ⊲ Return x∗ as an approximate minimizer
8: end if
9: Set t1 = 1 and s = 1 ⊲ Start the line-search

10: if f(xk + tsd
k) ≤ f(xk) +mtsw

k then ⊲ Descent test
11: Set xk+1 = xk + tsd

k ⊲ Make a serious step
12: Calculate gk+1 ∈ ∂f(xk+1) ⊲
13: Set ξk+1

a = gk+1 ⊲
14: Calculate Hk+1 according to (3.58) ⊲ Grossone matrix update
15: Set k = k + 1 and go to 4
16: end if
17: if ts ≤ θ then ⊲ Closeness test
18: Calculate g+ ∈ ∂f(xk + tsd

k) and ξa ∈ conv{gk, ξk
a, g+} ⊲ Make a

null step
19: Set α+ = f(xk)− f(xk + tsd

k) + tsg
⊤
+d

k ⊲
20: Calculate αa ∈ conv{0, αk

a, α+} ⊲
21: Update ξk

a = ξa, α
k
a = αa, and go to 4 ⊲

22: else
23: Set ts+1 = σts, s = s+ 1 and go to 10 ⊲ Iterate the line-search
24: end if
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We have adopted different values of the space dimension n, running our
experiments for n = 50, 100, 200. The algorithm has been coded in C++,
compiled with Microsoft Visual Studio 2010 Professional on a HP-15-ba090ur
machine, under the MS Windows 10 operating system. We report the results
obtained by stopping the algorithm after a given number Nf of function
evaluations, where Nf ∈ {50, 100, 200, 300, 400, 500}. In particular, the ob-

jective function value f ∗, the relative error er = |f∗−f(x∗)|
1+|f(x∗)|

, the number of

serious steps NS, and the number of Hk updates that involved the use of
grossone N① are reported. The algorithm for several values of ǫ is tested
and, for simplicity of presentation, the results obtained adopting the two ex-
treme values ǫ = 10−2, see Tables 3.2 to 3.4, and ǫ = 10−10, see Tables 3.5
to 3.7, are only reported. The remaining parameters of the algorithms have
been set as follows: σ = 0.7, m = 0.1, η = 10−10 and θ = 10−4.

The results demonstrate, as could be expected that large values of ǫ, the
threshold for switching to the use of grossone, imply an increased number
of grossone-based steps, with corresponding lack of accuracy. In fact, it
can be seen that the ratio of grossone-based steps over the total number of
serious steps is smaller as ǫ decreases. Summing up, the use of grossone may
allow reasonable treatment of ill-conditioning provided that the threshold ǫ
is sufficiently small.

The proposed Grossone-D-Bundle approach has been also numerically
compared against its standard counterpart, namely, Algorithm 1 where at
Step 14 formula (3.53) for calculating Hk replaces formula (3.58).

The comparison is made for different values of ǫ in (3.52) and by stopping
the algorithm after a given number Nf of function evaluations.

In Table 3.8, the results obtained by focusing on problems with size n =
100, and setting ǫ ∈ {10−2, 10−5, 10−10} andNf ∈ {50, 100, 200} are reported.
In particular, the relative errors ealgr = |f∗−f(x∗)|

1+|f(x∗)|
, where alg = D and alg = G

refer, respectively, to Bk = B① and Bk = Bǫ, are presented. It is worth
noting that the results provided by the Grossone-D-Bundle approach are
most of the times better than the standard approach, this outcome being
more evident for smaller values of ǫ.



Numerical infinitesimals in convex non-smooth optimization 147

Chained LQ

f(x) =
n−1∑

i=1

max
{
−xi − xi+1,−xi − xi+1 + (x2

i + x2
i+1 − 1)

}

x0
i = −0.5, for all i = 1, . . . , n

x∗
i = 1/

√
2, for all i = 1, . . . , n

f(x∗) = −(n− 1)
√
2

Chained CB3 I

f(x) =
n−1∑

i=1

max
{
x4
i + x2

i+1, (2− xi)
2 + (2− xi+1)

2, 2e−xi+xi+1
}

x0
i = 2, for all i = 1, . . . , n

x∗
i = 1, for all i = 1, . . . , n

f(x∗) = 2(n− 1)

Chained CB3 II

f(x) = max

{
n−1∑

i=1

(x4
i + x2

i+1),
n−1∑

i=1

(
(2− xi)

2 + (2− xi+1)
2
)
,
n−1∑

i=1

(2e−xi+xi+1)

}

x0
i = 2, for all i = 1, . . . , n

x∗
i = 1, for all i = 1, . . . , n

f(x∗) = 2(n− 1)

Table 3.1: Test problems (x0 is the starting point, x∗ is the minimizer)



n = 50 n = 100 n = 200

Nf f ∗ er NS N① f ∗ er NS N① f ∗ er NS N①
50 -66.7329331 3.65E-02 8 5 -135.7207701 3.04E-02 8 6 -276.9103190 1.60E-02 8 6

100 -67.1750430 3.02E-02 11 8 -135.9990819 2.84E-02 10 8 -277.4285342 1.42E-02 10 8

200 -68.1049532 1.69E-02 16 13 -136.1352791 2.75E-02 12 10 -277.4421523 1.41E-02 12 10

300 -68.4659193 1.18E-02 21 18 -136.8200990 2.26E-02 15 13 -277.5469159 1.37E-02 14 12

400 -68.4721827 1.17E-02 22 19 -138.7923614 8.62E-03 20 18 -277.5469159 1.37E-02 14 12

500 -68.4809312 1.16E-02 24 21 -139.3581970 4.60E-03 24 22 -277.5469159 1.37E-02 14 12

Table 3.2: Results on the Chained LQ test problem with dimensions n = 50, 100, 200 and ǫ = 10−2.

n = 50 n = 100 n = 200

Nf f ∗ er NS N① f ∗ er NS N① f ∗ er NS N①
50 142.0278332 4.45E-01 7 5 276.0654964 3.92E-01 8 5 513.8191333 2.90E-01 7 5

100 118.9363346 2.11E-01 10 8 223.3313657 1.27E-01 11 8 411.7056803 3.44E-02 11 9

200 113.6568233 1.58E-01 16 14 218.4138518 1.03E-01 16 13 403.6445105 1.41E-02 16 14

300 104.2485194 6.31E-02 20 18 218.0286772 1.01E-01 20 17 400.5369972 6.36E-03 20 18

400 102.7413588 4.79E-02 25 23 200.6511044 1.33E-02 27 24 398.4287379 1.07E-03 24 22

500 99.2882901 1.30E-02 30 28 199.0866922 5.46E-03 31 28 398.1830522 4.59E-04 27 25

Table 3.3: Results on the Chained CB3 I test problem with dimensions n = 50, 100, 200 and ǫ = 10−2.



n = 50 n = 100 n = 200

Nf f ∗ er NS N① f ∗ er NS N① f ∗ er NS N①
50 125.5297664 2.78E-01 7 4 227.4325378 1.48E-01 7 4 458.0950749 1.51E-01 8 5

100 109.5757036 1.17E-01 10 7 203.0976658 2.56E-02 11 8 428.6046364 7.67E-02 10 7

200 105.7547185 7.83E-02 13 10 202.4957777 2.26E-02 12 9 424.6396931 6.68E-02 12 9

300 101.5635593 3.60E-02 17 14 202.4957777 2.26E-02 12 9 424.6396931 6.68E-02 12 9

400 100.9229376 2.95E-02 22 19 202.4957777 2.26E-02 12 9 423.8254683 6.47E-02 14 11

500 100.6930428 2.72E-02 24 21 202.4957777 2.26E-02 12 9 409.6297910 2.91E-02 19 16

Table 3.4: Results on the Chained CB3 II test problem with dimensions n = 50, 100, 200 and ǫ = 10−2.



n = 50 n = 100 n = 200

Nf f ∗ er NS N① f ∗ er NS N① f ∗ er NS N①
50 -69.0981172 2.82E-03 10 4 -139.4816288 3.73E-03 9 4 -280.4361446 3.51E-03 9 4

100 -69.1800716 1.66E-03 13 7 -139.7674121 1.70E-03 12 6 -280.8968967 1.88E-03 11 5

200 -69.1801058 1.66E-03 14 8 -139.7711371 1.67E-03 13 7 -280.8968967 1.88E-03 11 5

300 -69.1801058 1.66E-03 14 8 -139.7711371 1.67E-03 13 7 -280.8968967 1.88E-03 11 5

400 -69.1801058 1.66E-03 14 8 -139.7711371 1.67E-03 13 7 -280.8968967 1.88E-03 11 5

500 -69.1801058 1.66E-03 14 8 -139.7711371 1.67E-03 13 7 -280.8968967 1.88E-03 11 5

Table 3.5: Results on the Chained LQ test problem with dimensions n = 50, 100, 200 and ǫ = 10−10.

n = 50 n = 100 n = 200

Nf f ∗ er NS N① f ∗ er NS N① f ∗ er NS N①
50 100.6694475 2.70E-02 8 1 199.9535378 9.82E-03 9 3 400.6092141 6.54E-03 8 1

100 98.2901649 2.93E-03 13 3 199.9446641 9.77E-03 9 3 398.8440820 2.12E-03 10 3

200 98.2261786 2.28E-03 17 4 199.2083426 6.07E-03 14 8 398.4688649 1.18E-03 13 5

300 98.2022949 2.04E-03 18 5 198.5907641 2.97E-03 19 11 398.4288154 1.07E-03 17 8

400 98.2022949 2.04E-03 18 5 198.5907641 2.97E-03 19 11 398.2626085 6.58E-04 20 11

500 98.2022949 2.04E-03 18 5 198.5907641 2.97E-03 19 11 398.2282233 5.72E-04 23 14

Table 3.6: Results on the Chained CB3 I test problem with dimensions n = 50, 100, 200 and ǫ = 10−10.



n = 50 n = 100 n = 200

Nf f ∗ er NS N① f ∗ er NS N① f ∗ er NS N①
50 111.4655678 1.36E-01 9 5 210.9095945 6.49E-02 9 5 440.0572743 1.05E-01 9 5

100 106.0858985 8.17E-02 11 7 201.9139633 1.97E-02 14 10 404.7495782 1.69E-02 12 8

200 106.0858985 8.17E-02 11 7 201.3641400 1.69E-02 18 14 404.7495782 1.69E-02 12 8

300 106.0858985 8.17E-02 11 7 201.3641400 1.69E-02 18 14 404.7495782 1.69E-02 12 8

400 106.0858985 8.17E-02 11 7 201.3641400 1.69E-02 18 14 404.7495782 1.69E-02 12 8

500 106.0858985 8.17E-02 11 7 201.3641400 1.69E-02 18 14 404.7495782 1.69E-02 12 8

Table 3.7: Results on the Chained CB3 II test problem with dimensions n = 50, 100, 200 and ǫ = 10−10.
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Nf

ǫ = 10−2 ǫ = 10−5 ǫ = 10−10

eGr eDr eGr eDr eGr eDr

Chained LQ

50 3.04E-02 4.75E-01 7.64E-03 7.54E-01 3.73E-03 7.54E-01

100 2.84E-02 2.13E-01 7.64E-03 7.49E-01 1.70E-03 7.54E-01

200 2.75E-02 5.73E-02 7.64E-03 6.88E-01 1.67E-03 7.54E-01

Chained CB3-I

50 3.92E-01 7.43E-02 7.86E-03 1.05E-02 9.82E-03 1.05E-02

100 1.27E-01 7.43E-02 5.76E-03 1.05E-02 9.77E-03 1.05E-02

200 1.03E-01 1.36E-02 5.51E-04 1.05E-02 6.07E-03 1.05E-02

Chained CB3-II

50 1.48E-01 1.16E+00 6.47E-02 3.31E+00 6.49E-02 3.31E+00

100 2.56E-02 5.47E-01 5.97E-02 1.42E+00 1.97E-02 2.98E+00

200 2.26E-02 3.49E-01 5.97E-02 2.30E-01 1.69E-02 2.98E+00

Table 3.8: Comparisons on Chained LQ, Chained CB3 I, and Chained CB3
II, with size n = 100.



Chapter 4

Infinity Computing and
Ordinary Differential Equations

New algorithms for the numerical solution to Ordinary Differential Equations
(ODEs) with initial conditions are proposed in this Chapter. The algorithms
are designed for work on the Infinity Computer. Due to this fact, the Infinity
Computer allows one to calculate the exact derivatives of functions using
infinitesimal values of the stepsize. As a consequence, the new methods
described here are able to work with the exact values of the derivatives,
instead of their approximations.

First, a well-known drawback of algorithms based on Taylor series formu-
lae is considered. Several variants of a one-step multi-point explicit method
closely related to the classical Taylor formula are considered. Theoretical
convergence properties of the proposed methods are studied. Experimental
comparison on a set of benchmark test problems from a literature with the
well-known Runge-Kutta and Taylor methods is provided.

Then, implicit Obrechkoff methods (see for example [217, 218] and the
references therein) are studied, as well. New Taylor-Obrechkoff methods are
proposed. To get numerical evidence of the proposed algorithms, a few test
problems are solved by means of the new methods and the obtained results
are presented.
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4.1 Generalized Taylor-based methods in stan-

dard and infinity floating-point arithme-

tic

The Taylor series method is one of the earliest algorithms to approximate
the solution of initial value problems

{
y′ = f(t, y), t ∈ [t0, T ],
y(t0) = y0,

(4.1)

where f : [t0, T ]× Rn → Rn is assumed sufficiently differentiable.
Newton and Euler describe this approach in their seminal works of the

18th century. Since then, many authors mention Taylor series methods and
some codes have been developed for both ODEs and Differential Algebraic
Equations (DAEs): within the recent literature, we mention [14, 15, 16, 95,
220, 226].

A well-known drawback of the algorithms based on Taylor series formulae
is that the explicit calculation of higher order derivatives formally is an over-
elaborate task, especially when the dimension n of the system is not small. To
avoid the analytical computation of the successive partial derivatives involved
in the truncated Taylor expansion of f , a numerical differentiation approach
has been often considered (see, for example, [135, 136]). A further interest
in Taylor series methods stemmed from considering automatic rather than
numerical differentiation, which makes use of specific tools based on the
involved elementary functions (see [163]) and allows for a speed up of the
overall computation.

Two instances for which the use of Taylor series methods has proved to
be a powerful tool are reported:

• The analysis of the stability properties of equilibria and periodic or-
bits of dynamical systems often requires an accurate integration of the
variational equations. Within this context, high-order Taylor series
methods have been successfully exploited to correctly reproduce the
highly oscillatory behavior of their solutions, avoiding extremely small
stepsizes during the integration procedure. In most cases the variatio-
nal equations are slight modifications of the original ones, so that it is
possible to formulate the integration algorithm for both systems with
little added effort.

• In some physical problems [5, 6] it is important to approximate the
solution with a very high precision, as in the determination of normal
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forms of differential systems, initial conditions for periodic problems,
numerical detection of periodic orbits, computation of physical con-
stants, etc. The Taylor method, just by increasing the degree of the
formulae, permits high-precision integration, provided a multi-precision
library is also used.

A recent alternative to numeric and automatic differentiation is based
on the calculation of higher derivatives by using the Infinity Computer for
performing numerical computations with infinite and infinitesimal quanti-
ties. The possibility to work with numerical infinitesimals allows one both to
calculate the exact values of the derivatives numerically without finding the
respective derivatives analytically and to work with infinitesimal stepsizes
(see Section 3.1 for details). The first attempts to use the Infinity Computer
in this direction have been done in [177, 204, 181].

The main idea of the usage of numerical infinitesimals and a core method
for solving the IVP (4.1) on the Infinity Computer has been proposed in
[181].

Since we are able to compute values of k derivatives of the function y(x) at
a generic point x0 (see Section 3.1), we can estimate y(x) in a neighborhood
of the point x0 by its Taylor expansion

y(x) ≈ ŷ(x) = y0 +

k∑

i=1

y(i)(x0)

i!
(x− x0)

i. (4.2)

In cases where the radius of convergence of the Taylor expansion ŷ(x)
from (4.2) covers the whole interval [a, b] of our interest, then there is no
necessity to execute several steps with a finite value of h. In fact, thanks to
the exact derivatives calculated numerically on the Infinity Computer (see
Section 3.1) the function y(x) can be approximated in the neighborhood of
the initial point x0 by its Taylor expansion ŷ(x) with an order k depending on
the desired accuracy and then ŷ(x) can be evaluated at any point x ∈ [a, b].
This method is called Taylor for the Infinity Computer (TIC) hereinafter.
This method does not assume the execution of several iterations with the
step h.

Table 4.1 presents results of numerical experiments executed on a class of
12 test functions taken from the literature and described in the Appendix B.
The method TIC is compared over the interval [0, 0.2] with the Runge-Kutta
method of the fourth order (RK4) with the integration step h = 0.04, i.e., to
obtain an approximation at the point x = 0.2 the method RK4 executes 5
steps and 20 evaluations of the function f(x, y) from (4.1). After the results
for RK4 had been obtained, the TIC method was applied to each of 12
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y RK4 ε RK4 y TIC ε TIC N TIC
1 0.837462 -8.62538e-009 0.837462 -5.91687e-009 6
2 1.242806 8.11157e-009 1.242806 4.19151e-009 6
3 1.221403 4.12685e-009 1.221403 2.13248e-009 6
4 1.221403 3.89834e-008 1.221403 2.13248e-009 6
5 1.491817 1.27726e-007 1.491817 1.13693e-008 7
6 0.135416 -5.96529e-004 0.135379 -3.24420e-004 10
7 36.154673 -8.16405e-005 36.149608 5.84540e-005 9
8 35.968459 -8.18293e-005 35.963409 5.85817e-005 9
9 1.239230 -5.78803e-009 1.239230 -4.08211e-009 10
10 0.781397 -1.76949e-009 0.781397 7.94128e-011 7
11 1.153846 8.98577e-009 1.153846 4.09600e-009 11
12 0.472441 2.95775e-010 0.472441 -1.60782e-010 10

Table 4.1: Results of a comparison of the Taylor for the Infinity Computer
method with the Runge-Kutta method of the fourth order that executes 20
evaluations of f(x, y) to reach the accuracy ε RK4

problems. The method TIC stopped when the accuracy ε TIC at the point
x = 0.2 was better than the accuracy ε RK4 of the method RK4. The last
column, N TIC, in Table 4.1 presents the number of evaluations of f(x, y)
executed by the TIC to reach the accuracy ε TIC. In other words, it shows the
number of infinitesimal steps executed by the TIC that is equal to the number
of exact derivatives calculated by this method. The respective solutions
y RK4 and y TIC are also shown in the table. For the considered problem
the TIC method executes fewer evaluations of f(x, y), in comparison with the
Runge-Kutta method. The Taylor method with automatic differentiation,
provides, if applicable, the same solution given by TIC, we observe, however
that, if the evaluation of f(x, y) involves k elementary functions (*; =; ln;
exp; sin; cos; . . .) then the computational complexity of the evaluation of the
first n − 1 derivatives is kn2 + O(n). For the TIC the computational cost
is exactly n, considering that the arithmetic operation are executed on the
Infinity Computer Arithmetic.

Suppose now that the interval [a, b] of our interest is wider than the radius
of convergence of the Taylor expansion, or that the rate of convergence is so
slow as to make the method unsuitable for the problem at hand. Then finite
values of the integration step h should be used together with infinitesimal
ones. So, we consider a mesh of n + 1 points xi where

x0 = a, xi+1 = xi + h, 0 ≤ i ≤ n− 1, xn = b,

where h is a finite integration step.
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y RK4 ε RK4 y 1.0 ε 1.0 N 1.0
1 0.735759 -2.20568e-008 0.735759 -1.51306e-008 30
2 3.436564 3.26429e-008 3.436564 1.68677e-008 30
3 2.718282 2.06343e-008 2.718282 1.06624e-008 30
4 2.718281 3.02546e-007 2.718282 1.65499e-008 30
5 7.388579 6.38533e-007 7.388584 5.66017e-008 35
6 0.000046 -2.98620e-003 0.000045 -1.62315e-003 50
7 20.026862 -1.22480e-006 20.026819 8.76400e-007 45
8 18.474354 -1.34674e-006 18.474311 9.47222e-007 45
9 2.732051 -7.46806e-009 2.732051 -8.00658e-010 50
10 -0.301169 6.85909e-008 -0.301169 -3.02846e-010 35
11 1.000000 3.82195e-008 1.000000 1.37934e-009 55
12 0.571429 7.69103e-009 0.571429 -2.01651e-011 50

Table 4.2: Results of a comparison of the Method 1.0 with the Runge-Kutta
method of the fourth order that executes 100 evaluations of f(x, y) to reach
the accuracy ε RK4

for i = 0; i < n; i = i+ 1

y(x, xi) = yi +
∑k

j=1
y
(j)
i

j!
(x− xi)

j,

yi+1 = y(xi+1, xi)
endfor

Figure 4.1: Method 1.0 from [181]

Let us consider the Method 1.0 from [181] being our core algorithm that
is used hereinafter for further developments. At each iteration it calculates
k derivatives (in [181] the particular case k = 2 has been considered) at a
point xi using infinitesimal steps and then executes a finite step of the length
h = (b − a)/n to the point xi+1. So, at each iteration it applies the TIC
method. The Method 1.0 uses the initial values x0 = a, y0 = y(x0), from
(4.1) and its detailed description is presented in Figure 4.1.

Table 4.2 presents results for the Method 1.0 extending numerical expe-
riments described in Table 4.1 from the interval [0, 0.2] to the interval [0, 1].
Thus, the Method 1.0 executed five finite steps during which the method
TIC was applied five times at the points xi = a + ih, where a = 0, h = 0.2.
The Method 1.0 is compared with the method RK4 with the same integra-
tion step as before (h = 0.04). At each interval [xi, xi+1] the method TIC
executed N TIC evaluations of the function f(x, y), where N TIC was taken
from sixth column of the Table 4.1 for each test function. It can be seen from
Table 4.2 that the accuracy of the Method 1.0 is better than the accuracy of
the Runge-Kutta method of the fourth order and the Method 1.0 executes
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Method 1.0 Method RK2 Method 1.2
# yn εn yn εn yn εn
1 0.74148 -7.77538e-003 0.74148 -7.77538e-003 0.73262 4.26152e-003
2 3.40542 9.06351e-003 3.40542 9.06351e-003 3.42709 2.75755e-003
3 2.70271 5.72923e-003 2.70271 5.72923e-003 2.71354 1.74310e-003
4 2.69451 8.74561e-003 2.65824 2.20893e-002 2.70459 5.03795e-003
5 7.10043 3.89998e-002 7.10041 3.90024e-002 7.24952 1.88217e-002
6 1.00000 -2.20255e+004 1.00000 -2.20255e+004 -2.33333 5.13961e+004
7 31.63147 -5.79454e-001 31.63147 -5.79454e-001 -55.88025 3.79027e+000
8 30.04452 -6.26285e-001 30.05380 -6.26787e-001 -57.20706 4.09657e+000
9 2.74018 -2.97481e-003 2.73309 -3.80229e-004 2.72931 1.00341e-003
10 -0.30737 -2.05896e-002 -0.29889 7.56958e-003 -0.29849 8.89270e-003
11 0.99078 9.21515e-003 0.99824 1.76122e-003 1.00396 -3.96140e-003
12 0.57150 -1.33171e-004 0.57099 7.59569e-004 0.57166 -4.02684e-004

Table 4.3: For all the methods taken into consideration resulting values yn
at the point x = 1 and the respective relative error εn = y(1)−yn

y(1)
are reported,

where y(1) is the exact solution

fewer evaluations of f(x, y) in comparison with the RK4 method.
Let us describe now a new algorithm called Method 1.2 hereinafter. It

is a generalization of the Method 1.1 from [181]. The main idea is to use
derivatives calculated at the point xi+1 in order to return to the point xi and
to construct at this point a correction leading to a new approximation yci+1

that is better than the original value yi+1 provided by the Method 1.0.
The Method 1.2 works as follows. First, initial values are chosen in the

same way as in the Method 1.0 and values yi, i = 1, ..., n, and functions
y(x, xi) are calculated as in the Method 1.0. Then for each i = 1, ..., n−1, the
backward functions yi(x) using forward differences from (3.12) are computed
as follows

yi(x) = y(xi, xi−1) +
k∑

j=1

y(j)(xi, xi)

j!
(x− xi)

j . (4.3)

Note that for i = n the backward differences and the points xn − ①−1, xn −
2①−1, ..., xn−k①−1 should be used (see Corollary 1 in [181]) to calculate the
derivatives y(j)(xn, xn). After that, the function ri(x) is defined as follows:

ri(x) = yi−1 + [p0yi−1 − (1− p0)yi(xi−1)]+

+
∑k

j=1
1
j!
[pjy

(j)(xi−1, xi−1) + (1− pj)y
(j)
i (xi−1)](x− xi−1)

j ,
(4.4)

where the weights pj ∈ [0, 1], j = 0, ..., k, are parameters of the Method 1.2.
So, the global correction ci can be obtained following the rule

ci = c(xi) = c(xi−1) + ri(xi)− y(xi, xi−1), i = 1, ..., n, (4.5)
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with c0 = 0. As a result, the desired corrected value yci can be computed

ycn = y(xn, xn−1) + c(xn). (4.6)

The choice of the parameters of the Method 1.2 can be done using different
criteria. For instance, the simplest choice for k = 2, p0 = p1 = p2 = 0.5 gives
us the Method 1.1 from [181]. If we apply the method to the standard
test equation y′ = λy we could choose the parameters by imposing that the
method should become equivalent to the Taylor series method of the highest
possible order. For example, for k = 2, it is shown in the next Section
that the choice of parameters p0 = 0, p1 = 5/6, p2 = 0.5 makes the method
equivalent to the Taylor series method with k = 4. This means that for the
test equations the order increases from two to four. Results of numerical
experiments executed with this choice of the parameters, compared with the
method 1.0 used with k = 2 and with the Runge-Kutta method of second
order on the same class of test functions from the Appendix B are shown in
Table 4.3.

As can be seen from Table 4.3, the introduced correction has allowed us
to improve the results on some problems with respect to the Method 1.0.
Again, as it was with the Method 1.0, among the Runge-Kutta methods
a natural competitor for the Method 1.2 with k = 2 is the Runge-Kutta
method of the second order since both methods execute f(x, y) two times
at each iteration. Then, the behavior of the Method 1.2 is comparable with
that of the Runge-Kutta method of the second order on the considered test
problems.

Another possible way to approximate the solution to the problem (4.1)
is introduced in the Method 1.3 described below. The main two differences
between the Method 1.2 and the Method 1.3 are the following:

i.) The Method 1.2 executes n iterations of the Method 1.0 to calculate
the approximated values of yi, i = 1, ..., n, and then these values are corrected
by the backward function yi(x) from (4.3) and the mixed function ri(x) from
(4.4). The Method 1.3 at each subinterval [xi−1, xi] executes the evaluation
of the approximated value yi and then immediately evaluates the backward
function ỹi(x) and the mixed function r̃i(x) before moving to the next interval
[xi, xi+1].

ii.) The Method 1.2 in the formula (4.3) of yi(x) uses for the forward
function y(x, xi) at each point (xi, y(xi, xi−1)) old values of derivatives cal-
culated at points (xi, yi) before the correction. However, the values yi and
y(xi, xi−1) can be different and, as a consequence, the respective derivatives
can be also different. Thus, the Method 1.3 after the correction and before
moving to the next interval [xi, xi+1] calculates the exact derivatives at each
point (xi, y(xi, xi−1)).
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for i = 1; i ≤ n; i = i+ 1

y(x, xi−1) = yi−1 +
∑k

j=1

y
(j)
i−1

j!
(x− xi−1)

j,

ỹi(x) = y(xi, xi−1) +
∑k

j=1
ỹ
(j)
i

j!
(x− xi)

j ,

r̃i(x) = yi−1 + [p0yi−1 − (1− p0)ỹi(xi−1)]+

+
∑k

j=1
1
j!
[pjy

(j)(xi−1, xi−1) + (1− pj)ỹ
(j)
i (xi−1)](x− xi−1)

j ,

yi = r̃i(xi)
endfor

Figure 4.2: Method 1.3

Method 1.3 Method RK2 Method RK3 Method RK4
# yn εn yn εn yn εn yn εn
1 0.73577 -1.57578e-005 0.74148 -7.77538e-003 0.73547 3.91315e-004 0.73577 -1.57578e-005
2 3.43650 1.78619e-005 3.40542 9.06351e-003 3.43502 4.49549e-004 3.43650 1.78619e-005
3 2.71825 1.12909e-005 2.70271 5.72923e-003 2.71751 2.84169e-004 2.71825 1.12909e-005
4 2.71718 4.03706e-004 2.65824 2.20893e-002 2.71351 1.75595e-003 2.71787 1.52387e-004
5 7.38632 3.06560e-004 7.10041 3.90024e-002 7.35996 3.87457e-003 7.38632 3.06113e-004
6 0.00412 -8.96439e+001 1.00000 -2.20255e+004 -0.00412 9.16439e+001 0.00412 -8.96439e+001
7 20.11564 -4.43440e-003 31.63147 -5.79454e-001 20.00000 1.34005e-003 20.11564 -4.43440e-003
8 18.56287 -4.79261e-003 30.05380 -6.26787e-001 18.44666 1.49775e-003 18.56337 -4.81998e-003
9 2.73185 7.36503e-005 2.73309 -3.80229e-004 2.73178 9.74546e-005 2.73207 -5.35061e-006
10 -0.30091 8.73137e-004 -0.29889 7.56958e-003 -0.30105 3.94699e-004 -0.30116 4.13631e-005
11 1.00100 -1.00013e-003 0.99824 1.76122e-003 1.00093 -9.33299e-004 0.99997 3.18508e-005
12 0.57176 -5.73749e-004 0.57099 7.59569e-004 0.57164 -3.64397e-004 0.57143 5.73049e-006

Table 4.4: For all the methods taken into consideration resulting values yn
at the point x = 1 and the respective relative error εn = y(1)−yn

y(1)
are repor-

ted, where y(1) is the exact solution. The Method 1.3 uses the following
parameters: p0 = 0, p1 = 5/6, p2 = 0.5

Let us denote now as y
(j)
i−1 the approximation of the j-th derivative using

the rule (3.12) calculated at the point (xi−1, yi−1) and as ỹ
(j)
i the approxi-

mation of the j-th derivative again using the rule (3.12) but at the point
(xi, y(xi, xi−1)). Notice that for i = 1, ..., n − 1, the forward differences are
used and the backward ones (see Corollary 1 from [181]) are applied for i = n.
Taking into consideration that the initial values are the same as in the pre-
vious cases and the values pj, j = 0, ..., k, are parameters of the Method 1.3
having the same meaning as in the Method 1.2, the Method 1.3 is described
in Figure 4.2.

Results of numerical experiments for the Method 1.3 with the value k = 2
and the same parameters used in the Method 1.2 are given in Table 4.4 for the
same test problems. As can be seen from this table, the attained accuracy of
the Method 1.3 is better with respect to the Runge-Kutta method of second
order for all test problems. This is due to the choice of the parameters, that
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Method 1.4 Method RK2 Method RK3 Method RK4
# yn εn yn εn yn εn yn εn
1 0.73495 1.09797e-003 0.74148 -7.77538e-003 0.73547 3.91315e-004 0.73577 -1.57578e-005
2 3.43265 1.13895e-003 3.40542 9.06351e-003 3.43502 4.49549e-004 3.43650 1.78619e-005
3 2.71632 7.19955e-004 2.70271 5.72923e-003 2.71751 2.84169e-004 2.71825 1.12909e-005
4 2.71142 2.52314e-003 2.65824 2.20893e-002 2.71351 1.75595e-003 2.71787 1.52387e-004
5 7.32003 9.27820e-003 7.10041 3.90024e-002 7.35996 3.87457e-003 7.38632 3.06113e-004
6 0.03704 -8.14795e+002 1.00000 -2.20255e+004 -0.00412 9.16439e+001 0.00412 -8.96439e+001
7 23.46140 -1.71498e-001 31.63147 -5.79454e-001 20.00000 1.34005e-003 20.11564 -4.43440e-003
8 21.89863 -1.85355e-001 30.05380 -6.26787e-001 18.44666 1.49775e-003 18.56337 -4.81998e-003
9 2.73104 3.68986e-004 2.73309 -3.80229e-004 2.73178 9.74546e-005 2.73207 -5.35061e-006
10 -0.30030 2.87314e-003 -0.29889 7.56958e-003 -0.30105 3.94699e-004 -0.30116 4.13631e-005
11 1.00311 -3.10616e-003 0.99824 1.76122e-003 1.00093 -9.33299e-004 0.99997 3.18508e-005
12 0.57188 -7.83660e-004 0.57099 7.59569e-004 0.57164 -3.64397e-004 0.57143 5.73049e-006

Table 4.5: For all the methods taken into consideration resulting values yn
at the point x = 1 and the respective relative error εn = y(1)−yn

y(1)
are repor-

ted, where y(1) is the exact solution. The Method 1.4 uses the following
parameters: p0 = 0, p1 = 5/6, p2 = 0.5

Method 1.0 Method 1.2 Method 1.3 Method 1.4
# yn εn yn εn yn εn yn εn
1 0.74148 -7.77538e-003 0.73262 4.26152e-003 0.73577 -1.57578e-005 0.73495 1.09797e-003
2 3.40542 9.06351e-003 3.42709 2.75755e-003 3.43650 1.78619e-005 3.43265 1.13895e-003
3 2.70271 5.72923e-003 2.71354 1.74310e-003 2.71825 1.12909e-005 2.71632 7.19955e-004
4 2.69451 8.74561e-003 2.70459 5.03795e-003 2.71718 4.03706e-004 2.71142 2.52314e-003
5 7.10043 3.89998e-002 7.24952 1.88217e-002 7.38632 3.06560e-004 7.32003 9.27820e-003
6 1.00000 -2.20255e+004 -2.33333 5.13961e+004 0.00412 -8.96439e+001 0.03704 -8.14795e+002
7 31.63147 -5.79454e-001 -55.88025 3.79027e+000 20.11564 -4.43440e-003 23.46140 -1.71498e-001
8 30.04452 -6.26285e-001 -57.20706 4.09657e+000 18.56287 -4.79261e-003 21.89863 -1.85355e-001
9 2.74018 -2.97481e-003 2.72931 1.00341e-003 2.73185 7.36503e-005 2.73104 3.68986e-004
10 -0.30737 -2.05896e-002 -0.29849 8.89270e-003 -0.30091 8.73137e-004 -0.30030 2.87314e-003
11 0.99078 9.21515e-003 1.00396 -3.96140e-003 1.00100 -1.00013e-003 1.00311 -3.10616e-003
12 0.57150 -1.33171e-004 0.57166 -4.02684e-004 0.57176 -5.73749e-004 0.57188 -7.83660e-004

Table 4.6: Comparison of the Methods 1.0–1.4

make the methods of order at least three. A formal discussion related to the
convergence properties of this method is presented in [206], where it has been
proved that the order of convergence of this method is 3. The behavior of
the Method 1.3 is comparable with respect to the Runge-Kutta method of
third order on all the test problems. Finally, we observe that similar results
are obtained with respect to the Runge-Kutta method of fourth order for
linear problems. It should be mentioned that the obtained improvement has
its price. In fact, the Method 1.3 executes 2kn evaluations of the function
f(x, y) from (4.1) whereas the Method 1.2 performs just kn + k evaluations
of f(x, y).

The main idea of this method is to avoid calculation of the derivatives at
the close points (xi, yi) and (xi, y(xi, xi−1)). Since these points are close, the
difference between yi and y(xi, xi−1) can be relatively small. Thus, instead of
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for i = 1; i ≤ n; i = i+ 1

ŷi(x) = y(xi, xi−1) +
∑k

j=1
ŷ
(j)
i

j!
(x− xi)

j ,

ri(x) = yi−1 + [p0yi−1 − (1− p0)ŷi(xi−1)]+

+
∑k

j=1
1
j!
[pjy

(j)(xi−1, xi−1) + (1− pj)ŷ
(j)
i (xi−1)](x− xi−1)

j ,

yi = ri(xi)

y(x, xi) = yi +
∑k

j=1
ŷ
(j)
i

j!
xj ,

endfor

Figure 4.3: Method 1.4

recalculating derivatives at the points (xi, yi) as it is done in the Method 1.3,
the values of the derivatives calculated at the points (xi, y(xi, xi−1)) can be
used also at the points (xi, yi). This is the main difference between the
Methods 1.3 and 1.4.

Let us again denote the approximation of the j-th derivative using infini-
tesimals starting from the point (xi, yi) as y

(j)
i and the approximation of the

j-th derivative using infinitesimals but starting from the point (xi, y(xi, xi−1))

as ŷ
(j)
i for i = 1, ..., n− 1, (for i = n the backward approximation, see Corol-

lary 1 from [181], is used). The initial values are the same as above and
pj, j = 0, ..., k are parameters of the method. Then the Method 1.4 is descri-
bed in Figure 4.3.

The results of the experiments on the same class of test functions are
given in Table 4.5. For the Method 1.4 the value k = 2 and the same optimal
parameters used for the Method 1.3.

As can be seen from Table 4.5, the attained accuracy of the Method 1.4 is
better than the accuracy of the Runge-Kutta method of the second order for
many test problems. The Method 1.4 executes less evaluations of the function
f(x, y) than the Method 1.3. Namely, it works doing the same number of
evaluations of f(x, y) as the Method 1.2, i.e., kn + k. The accuracy of the
Method 1.4 is worse with respect to the Runge-Kutta methods of higher
orders in all test problems. The reason is that the Method 1.4 does not
use the exact derivatives at points (xi, yi) as the Method 1.3 does and the
difference between the derivatives at the points (xi, yi) and (xi, y(xi, xi−1))
causes errors. However, we can observe that the Method 1.4 executes the
number of evaluations of the function f(x, y) that is similar to the Runge-
Kutta method of the second order and at the same time the accuracy of the
Method 1.4 is better with respect to RK2.

Previously, we have already seen the nice performance of the Method
1.0 with large values of k. Let us now analyze this method with k up to
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Figure 4.4: Relative error versus stepsize and function evaluation versus
relative error for problems 1,2 and 3.

three in order to compare its behavior with the Methods 1.3 and 1.4 and the
Runge-Kutta Methods of order 2 and 3.

Figures 4.4–4.7 show the behavior of the error for all the twelve considered
test problems, changing the stepsize and the computational cost using the
number of function evaluations (observe that the latter are performed in
the Infinity Computer Arithmetic). From the pictures it could be seen that
the behavior of the Method 1.3 is similar to the RK4 for linear problems,
while for nonlinear ones, the order 3 of the method is experienced and the
behavior is very close to the one of the Method 1.4 and of the Method 1.0
with k = 3. The Method 1.4 has order 3 for all the test problems and
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Figure 4.5: Relative error versus stepsize and function evaluation versus
relative error for problems 4,5 and 6.

for the nonlinear tests requires a smaller computational effort to reach the
same precision of the Method 1.3. The main potentiality of the numerical
schemes using derivatives is that the use of the Infinity Computer allows
one to compute the derivatives without error by a linear combinations of
the computed infinitesimal values. This means that computing the exact
derivatives does not give any computational problem to the method. We are
aware that the Infinity Computer Arithmetic requires a computational effort
that is higher than the one required by standard one, but for a computer
based on this arithmetic all the complexity effort is hidden to the user, who
needs only to use, in the arithmetic operations, the new numeral ①.
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Figure 4.6: Relative error versus stepsize and function evaluation versus
relative error for problems 7,8 and 9.

4.2 Convergence and stability analysis of the

proposed one-step multi-point methods

In this subsection, theoretical convergence properties of two algorithms consi-
dered above are studied. The first method is the Method 1.4 being a one-step
multi-point method of the form (w1, y1) = Φh(w0, y0) closely related to the
classical Taylor formula of order three. Here h stands for the integration
stepsize and w1 and y1 are approximations to y(t1), with t1 = t0 + h. More
specifically, the extra-point w1 is to be meant as a preliminary low order
approximation to y(t1) which is then exploited to derive the more accurate
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Figure 4.7: Relative error versus stepsize and function evaluation versus
relative error for problems 10,11,12.

approximation y1.

First, let us re-define the algorithms starting from the Method 1.3, which
is an auxiliary method, denoted by ŷ1 = Φ̂h(y0), which will prove very helpful
to properly define method Φh as well as to study its convergence and stability
properties. For sake of simplicity, but without loss of generality, in the sequel
we assume that problem (4.1) is scalar and autonomous. However, results
pertaining to the non-autonomous and vector cases are provided, as well.
Notice that we avoid the computation of high-order mixed derivatives on the
Infinity Computer, which will be the object of a future research. For later
use, we list the shape of the first four derivatives of the solution y(t) of (4.1)
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evaluated at t0, in terms of the function f and its derivatives:

y′(t0) = f(y0),

y′′(t0) = f ′(y0)f(y0),

y′′′(t0) = f ′′(y0)(f(y0))
2 + (f ′(y0))

2f(y0),

y(iv)(t0) = f ′′′(y0)(f(y0))
3 + 4f ′′(y0)f

′(y0)(f(y0))
2 + (f ′(y0))

3f(y0).
(4.7)

On the Infinity Computer, the derivatives appearing in (4.7) are evaluated
with the aid of formulae (3.11)-(3.12). In standard arithmetic they are provi-
ded analytically, even though we also illustrate the effects of approximating
them by suitable divided differences.

The following result regards the computational cost to compute the Taylor
coefficients.

Theorem 4.1 ([14, 139]). If the evaluation of f(y) involves r elementary
functions, the computational complexity of the evaluation of f(y), f ′(y),
. . . f (s−1)(y) is

C = rs2 +O(s). (4.8)

The efficiency of Taylor methods as compared with classical Runge–Kutta
methods has been discussed in [14]. For a numerical approach to the com-
putation of the coefficients in Taylor expansions see [136].

Let us consider first the standard Taylor formula of order two to obtain
an initial guess, say v1, of y(t1) (see (4.7)):

v1 = y0 + hy′(t0) +
h2

2
y′′(t0) ≡ y0 + hf(y0) +

h2

2
f ′(y0)f(y0). (4.9)

Let us use again the same formula to obtain an approximation to the solution
of (4.1), denoted by p2(t), in a neighborhood of t1:

p2(t) = v1 + f(v1)(t− t1) +
1

2
f ′(v1)f(v1)(t− t1)

2. (4.10)

Rather than advancing the solution in time, we exploit the information
brought by p2(t) to improve the accuracy of the numerical solution at time
t1. To this end, we first recast p2(t) as a polynomial expanded around t0

p2(t) = v1 + f(v1)(t− t0 + t0 − t1) +
1

2
f ′(v1)f(v1)(t− t0 + t0 − t1)

2

= v1 − hf(v1) +
h2

2
f ′(v1)f(v1) + (1− hf ′(v1)) f(v1)(t− t0)

+
1

2
f ′(v1)f(v1)(t− t0)

2,

(4.11)
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and then we blend the coefficients of the polynomial p2(t) with the corre-
sponding ones in the classical Taylor formula to form a new second degree
polynomial q2(t), namely

q2(t) = α0y0 + (1− α0)
(
v1 − hf(v1) +

h2

2
f ′(v1)f(v1)

)

+
(
α1f(y0) + (1− α1) (1− hf ′(v1)) f(v1)

)
(t− t0)

+
1

2

(
α2f

′(y0)f(y0) + (1− α2)f
′(v1)f(v1)

)
(t− t0)

2,

(4.12)

which will be used to advance the solution, by setting ŷ1 = Φ̂h(y0) = q2(t1).
The parameters αi, i = 0, 1, 2, will be selected in order to improve the conver-
gence and stability properties of the standard second order Taylor formula.
The use of convex combinations in (4.12) comes from imposing the consis-
tency conditions up to order two. In other words, order two is achieved
independently of the choice of the parameters αi. Furthermore, without loss
of generality, we assume α0 = 1 since it can be shown that the value of
α0 does not alter the shape of the resulting method. The following scheme
then summarizes the implementation details of the method to construct the
numerical approximation ŷk ≃ y(tk), with tk = t0 + kh.

ŷ0 = y0
h = (T − t0)/n
for k = 1, . . . , n

vk = ŷk−1 + hf(ŷk−1) +
h2

2
f ′(ŷk−1)f(ŷk−1)

ŷk = ŷk−1 + h
(
α1f(ŷk−1) + (1− α1) (1− hf ′(vk)) f(vk)

)

+
h2

2

(
α2f

′(ŷk−1)f(ŷk−1) + (1− α2)f
′(vk)f(vk)

)

end

(4.13)

To reduce the computational effort per step associated with the imple-
mentation of the method defined by Φ̂h, we consider a variant consisting
in approximating the values of f(ŷk−1) and f ′(ŷk−1) appearing in algorithm
(4.13) by means of suitable known quantities available for free. More preci-

sely, we assume that the very first step is performed by method Φ̂h, and we
set w1 = v1 and y1 = ŷ1 = Φ̂h(y0).

At the second step, we avoid the evaluations of f(y1) and f ′(y1), as requi-
red by (4.9), and instead approximate them by f(w1) and f ′(w1) respecti-
vely, which we inherit from the previous step. More in general, to compute
the subsequent approximations yk = Φh(yk−1), k = 2, 3, . . . , we replace the
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quantities f(yk−1) and f ′(yk−1), required by algorithm (4.13), by f(wk−1) and
f ′(wk−1) respectively. The implementation details of the method defined by
Φh are summarized below.

h = (T − t0)/n

w1 = y0 + hf(y0) +
h2

2
f ′(y0)f(y0)

y1 = y0 + h
(
α1f(y0) + (1− α1) (1− hf ′(w1)) f(w1)

)

+
h2

2

(
α2f

′(y0)f(y0) + (1− α2)f
′(w1)f(w1)

)

for k = 2, . . . , n

wk = yk−1 + hf(wk−1) +
h2

2
f ′(wk−1)f(wk−1)

yk = yk−1 + h
(
α1f(wk−1) + (1− α1) (1− hf ′(wk)) f(wk)

)

+
h2

2

(
α2f

′(wk−1)f(wk−1) + (1− α2)f
′(wk)f(wk)

)

end

(4.14)

Remark 4.1. The shape of Algorithms (4.13) and (4.14) does not change for
vector-valued functions. In such a case, f ′(y) denotes the Jacobian matrix of
f(y). We also recall that a non-autonomous system y′ = f(t, y), with y ∈ Rn,
may be always recast as an autonomous system of the form z′ = F (z), with
z ∈ Rn+1, by setting:

z =

(
y
t

)
and F (z) =

(
f(y)
1

)
.

Modulo this transformation, the two algorithms above may also handle the
non-autonomous case.

The analysis of the integrator described in algorithm (4.14) will be carried

out by interpreting Φh as a perturbation of Φ̂h. For this reason, we begin
with stating some preliminary results pertaining to this latter formula.

Theorem 4.2. If the coefficients α1 and α2 satisfy

α1 − α2 =
1

3
(4.15)

the method Φ̂h has order p = 3. In addition, if the coefficients α1 and α2 are
selected as

α1 =
5

6
, α2 =

1

2
, (4.16)
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(thus also satisfying (4.15)), Φ̂h becomes the standard fourth-order Taylor
formula when applied to the linear problem y′ = λy, λ ∈ C, where C denotes
the set of complex numbers.

Proof. The local truncation error associated with the method Φ̂h at the first
step is

τ(h) = y(t0 + h)− Φ̂h(y0) =
∑

k≥0

y(k)(t0)

k!
hk − Φ̂h(y0), (4.17)

assuming f analytical. Thus, to estimate τ(h) we need to expand Φ̂h(y0) in
powers of h. With reference to (4.13) with k = 1, we consider the expansions

f(v1) = f
(
y0 + hf(y0) +

h2

2
f ′(y0)f(y0)

)

= f(y0) + f ′(y0)
(
hf(y0) +

h2

2
f ′(y0)f(y0)

)

+ f ′′(y0)
2

(
hf(y0) +

h2

2
f ′(y0)f(y0)

)2
+O(h3)

= f(y0) + hf(y0)f
′(y0)

+h2

2

[
f(y0)(f

′(y0))
2 + (f(y0))

2f ′′(y0)
]
+O(h3),

f ′(v1) = f ′
(
y0 + hf(y0) +

h2

2
f ′(y0)f(y0)

)

= f ′(y0) + hf(y0)f
′′(y0)

+h2

2

[
f(y0)f

′(y0)f
′′(y0) + (f(y0))

2f ′′′(y0)
]
+O(h3).

Plugging them into the equation in (4.13) defining ŷ1 yields

Φ̂h(y0) = ŷ1 = y0 + f(y0)h+
1

2
f(y0)f

′(y0)h
2

+
α1 − α2

2
f(y0)

(
(f ′(y0))

2 + f(y0)f
′′(y0)

)
h3 +O(h4).

(4.18)

Inserting (4.18) into (4.17) and taking into account relations (4.7) we deduce

that the method defined by Φ̂h has order three if condition (4.15) is fulfilled.1

In the specific case where the problem is linear, namely f(y) = λy and
hence f (k)(y) = λky, a direct computation based upon the previous argument
shows that

τ(h) =
( 1
3!

− α1

2
+

α2

2

)
(hλ)3y0+

( 1
4!

+
1

4
− α1

2
+

α2

4

)
(hλ)4y0+

∑

k≥5

y(k)(t0)

k!
hk,

1One may check that it is not possible to achieve order four under the assumption that
the coefficients αi are independent of the problem at hand.
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and order four is achieved by imposing




α1

2
− α2

2
=

1

3!
,

α1

2
− α2

4
=

1

4!
+

1

4
,

which has solution (4.16).

More in general, method Φ̂h has order four when applied to autonomous
linear problems y′ = Ay + b. Consequently, an increase of order is also
experienced numerically for nonlinear problems when the dynamics takes
place in a neighborhood of an equilibrium point where the Lyapunov first
approximation theorem holds true.

The linear stability analysis amounts to study the (global) asymptotic

behavior of the sequence ŷn = Φ̂h(ŷn−1) when the method is applied to the
well-known linear test equation y′ = λy, with λ ∈ C. In such an event, as
has been shown in Theorem 4.2, the method Φ̂h is equivalent to the fourth
order Taylor formula and, as a direct consequence, we can state the following
result.

Corollary 4.1. Method Φ̂h shares the same linear stability properties of the
fourth-order Taylor method.

More specifically, setting q = hλ, we have ŷn = R̂(q)ny0, where

R̂(q) =

4∑

k=0

qk

k!

is the stability function. We recall that the region of absolute stability of
a generic method providing a sequence yn when applied to the linear test
equation, is defined as

D = {q ∈ C : yn → 0, as n → ∞}

In our case, we see that q ∈ D ⇔ |R̂(q)| < 1.
Let us move now to the study of the method corresponding to the map

Φh. In particular, let us take advantage of the results previously obtained
for the method defined by Φ̂h, by regarding Φh as a perturbation of Φ̂h.

Lemma 4.1. Under the assumption (4.15), the sequences (vk, ŷk) and (wk, yk)
defined in algoritms (4.13) and (4.14) respectively, are related as

wk = vk +O(h4), yk = ŷk +O(h4), with k = 0, 1, . . . , N, (4.19)

where N is a positive constant integer, independent of h.
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Proof. Let us use an induction argument on the index k. For k = 1, (4.19)
is obviously true since, by definition, (4.13) and (4.14) provide the same
approximations (w1 = v1 and y1 = ŷ1). Assume that property (4.19) holds
true for k − 1. From the proof of Theorem 4.2 we deduce that

ŷk = ŷk−1 + hf(ŷk−1) +
h2

2
f(ŷk−1)f

′(ŷk−1)

+
h3

3!

(
f(ŷk−1)(f

′(ŷk−1))
2 + (f(ŷk−1))

2f ′′(ŷk−1)
)
+O(h4),

thus, comparing with the definition of vk in (4.13), we conclude that

ŷk − vk = O(h3), for any k = 0, 1, . . . . (4.20)

Exploiting the induction hypothesis and (4.20), we finally get

wk = yk−1 + f(wk−1)h + f(wk−1)f
′(wk−1)

h2

2
= ŷk−1 +O(h4) + f(vk−1 +O(h4))h

+f(vk−1 +O(h4))f ′(vk−1 +O(h4))
h2

2

= ŷk−1 + f(vk−1)h+ f(vk−1)f
′(vk−1)

h2

2
+O(h4)

= vk +O(h4),

and analogously

yk = yk−1 +
(
α1f(wk−1) + (1− α1) (1− hf ′(wk)) f(wk))

)
h

+
(
α2f

′(wk−1)f(wk−1) + (1− α2)f
′(wk)f(wk)

)h2

2
= ŷk−1 +O(h4) +

[
α1f(vk−1 +O(h4))
+ (1− α1) (1− hf ′(vk + O(h4))) f(vk +O(h4)))

]
h

+
[
α2f

′(vk−1 +O(h4))f(vk−1 +O(h4))

+ (1− α2)f
′(vk +O(h4))f(vk +O(h4))

]h2

2
= ŷk−1 +

(
α1f(vk−1) + (1− α1) (1− hf ′(vk)) f(vk))

)
h

+
(
α2f

′(vk−1)f(vk−1) + (1− α2)f
′(vk)f(vk)

)h2

2
+O(h4)

= ŷk−1 +
(
α1f(ŷk−1 +O(h3)) + (1− α1) (1− hf ′(vk)) f(vk))

)
h

+
[
α2f

′(ŷk−1 +O(h3))f(ŷk−1 +O(h3))

+ (1− α2)f
′(vk)f(vk)

]h2

2
+O(h4)

= ŷk−1 +
(
α1f(ŷk−1) + (1− α1) (1− hf ′(vk)) f(vk))

)
h

+
(
α2f

′(ŷk−1)f(ŷk−1) + (1− α2)f
′(vk)f(vk)

)h2

2
+O(h4)

= ŷk +O(h4).
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This completes the proof.

The following result then comes from standard computation, by letting
now the integer N in (4.19) to increase as h decreases, under the constraint
that t = t0 +Nh is a fixed time in the integration interval [t0, tf ].

Theorem 4.3. The method defined by the map Φh and described in algorithm
(4.14) has order of convergence p = 3, that is

|yN − y(t)| = O(h3), with h =
t− t0
N

. (4.21)

Let us observe that a result analogous to (4.21) applies to the error |yN −
ŷN | and consequently, unlike Φ̂h, the method Φh does not increase its order
when applied to linear problems.

Concerning the linear stability analysis, the application of the method
defined by Φh to the test equation y′ = λy yields

wk = yk−1 + qwk−1 +
1

2
q2wk−1

yk = yk−1 + α1qwk−1 + (1− α1)q(1− q)wk +
1

2
α2q

2wk−1 +
1

2
(1− α2)q

2wk,

or, in matrix form,
(

1 0

(1− α1)q(1 − q)− 1
2 (1− α2)q

2 1

)(
wk

yk

)
=

(
q + 1

2q
2 1

α1q +
1
2α2q

2 1

)(
wk−1

yk−1

)
.

Inverting the matrix at the left-hand side, we arrive at

zk = R(q)zk−1,

with zk = (wk, yk)
⊤, and the real matrix R(q) =

(
rij(q)

)
defined as

r11(q) =
q2

2
+ q,

r12(q) = 1,

r21(q) = (
α1

2
+

α2

4
− 3

4
)q4 + (

α1

2
+

α2

2
− 1)q3 + (

α2

2
− α1 + 1)q2 + α1q,

r22(q) = (α1 +
α2

2
− 3

2
)q2 + (1− α1)q + 1.

(4.22)
Denoting by λ1(q) and λ2(q) the two eigenvalues of R(q), it turns out that
the absolute stability region of the method Φh is given by

D =

{
q ∈ C : max

i=1,2
|λi(q)| < 1

}
.
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Figure 4.8: Absolute stability region of method Φh compared with those
corresponding to the Taylor methods of order 2, 3, and 4.

Figure 4.8 displays the absolute stability regions related to methods Φ̂h (i.e.,
for linear problems, the fourth order Taylor method), and Φh for the choice
of parameters as in (4.16). The Taylor formula of order two has also been
considered for comparison purposes.

To get numerical evidence of the theoretical results presented above, we
solve a few test problems by means of the methods defined at (4.13) and
(4.14) and compare their performance with Taylor methods of order up to
four. Such comparisons are carried out by evaluating the error in the nu-
merical approximations at the end of the time integration interval tf . As a
reference solution against which to measure the obtained accuracy, we use
the theoretical solution of the problem when available, or a very accurate
numerical solution obtained in MATLABR© with the aid of a solver in the
ODE suite. For a m-dimensional problem, we use the following mixed-type
error

E = max
1≤i≤m

|y(i)(tf)− y
(i)
N |

1 + |y(i)(tf )|
, (4.23)

where y(i)(tf ) denotes the ith component of the reference solution evaluated

at time tf and y
(i)
N is the corresponding numerical approximation (tf = t0 +

Nh).

Both the Infinity Computer and analytic differentiation lead to an accu-
rate approximation of the derivatives, thus yielding equivalent results. Con-
sequently, we do not provide comparisons between these two different imple-
mentation procedures.
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Figure 4.9: Problem 1. Errors versus stepsize.

Problem 1. Consider the scalar (non-autonomous) initial value problem





y′ =
cos(πt)

1 + y
, t ∈ [0, π],

y(0) = 0,
(4.24)

admitting solution

y(t) =

√
2

π
sin(πt) + 1− 1.

Let us solve problem (4.24) for decreasing values of the stepsize h

hn =
h0

2n
, with h0 =

π

20
, and n = 0, 1, 2, . . . , 9,

and compare the numerical approximations at the end of the time interval
with the exact one, according to formula (4.23). Figure 4.9 summarizes the
obtained results. As is expected, the errors produced by the new methods Φh

and Φ̂h decay with order three with respect to the stepsize. Though avoiding
the computation of y′′(t), the performance of both methods is analogous to
the third-order Taylor formula. It is worth noting that the implementation
of method Φh requires precisely the same computational cost as the second-
order Taylor formula, but achieving much better results (see Figure 4.9).

As was emphasized previously, if the two methods are implemented on
the Infinity Computer, the user may avoid to provide the analytic expression
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Figure 4.10: Problem 1. Errors generated by method Φh for different choices
of the parameter δ to approximate the required derivatives of f , according
to formula (4.25).

of the derivative f ′(y), which is instead obtained with the aid of the first
order difference formula

f ′(y) ≈ f(y + δ)− f(y)

δ
, (4.25)

by setting δ = ①−1. Of course, in case of vector or non-autonomous systems,
a formula equivalent to (4.25) is used to evaluate the first partial derivatives
of the Jacobian matrix (see Remark 4.1). Let us recall that this choice yields
the exact value of f ′(y) up to machine precision. Therefore, as a further
experiment, it makes sense to see how a numerical approximation of the de-
rivatives corresponding to decreasing values of the parameter δ, now taken
as a positive real number in the standard arithmetic, may affect the overall
behavior of the integrator, as compared to the choice δ = ①−1, also consi-
dering that for all these choices, including the latter one, the computational
effort remains unchanged.

In Figure 4.10, the performance of method Φh, for δ = 10−5, 10−7, 10−9,
10−11, 10−13, and δ = ①−1, is compared. Inside the range of the prescribed
stepsizes, one can see that choosing a value of δ not sufficiently small results
in an eventual loss of convergence rate. As an example, for δ = 10−5 this
happens when h becomes as small as 10−3 (solid line with asterisks in the
picture). This simply means that, for h < 10−3, the derivatives are not
accurately computed and a smaller value of δ is then required to recover the
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order three convergence rate. Improvements are in fact obtained by reducing
the value of δ to 10−7 and 10−9.

Contrary to what is expected, a further reduction of the discretization
step δ in (4.25) results in a loss of efficiency: for δ = 10−13 the performance
of the method is poorer than for the largest value considered. The reason
is that approximating the derivative by means of formulae such as (4.25)
may lead to an ill-conditioned problem for small values of the parameter
δ due to cancelation issues related to the difference at numerator. Table
4.7 reports the errors in the approximation of y′′ = f ′(y)f(y) in the last
computed point, obtained by replacing f ′(wn) with the corresponding first
order difference formula (see (4.7) and (4.14)). A loss of significant digits is
experienced starting from δ = 10−9, independently of the stepsize h used.
This unpleasant outcome is an effect of the use of finite arithmetic, and is
responsible for the eventual order reduction phenomenon inferred from Figure
4.10 and discussed above.

This is not the case when the same computation is carried out on the
Infinity Computer. In fact, while the computer representation of x± δ, with
x a floating point number and δ ∈ R, produces an error, the quantities x±①

are precisely represented and thus do not give rise to any digit cancelation
phenomenon. For completeness, we also report, in Figure 4.11, the result
obtained by approximating the first derivative by means of the second order
difference formula

f ′(y) ≈ f(y + δ)− f(y − δ)

2δ
, (4.26)

which is more frequently used by codes when a numerical evaluation of the
Jacobian matrix f ′(y) is required.2 We can see that an analogous reduction
of order takes place in this case, as well. This means that the loss of accuracy
cannot be prevented by improving the accuracy of the discretization formula,
but is an unavoidable outcome of the standard floating-point arithmetic.

Problem 2. In Theorem 4.2, the special feature of method Φ̂h to become
a fourth order formula, actually the fourth order Taylor formula, when app-
lied to a linear problem, is shown. One may argue that the performance of
the method may benefit from this property even when applied to nonlinear
systems whose dynamics takes place in a neighborhood of an equilibrium
point. To illustrate this aspect, we consider the dynamics of a pendulum
under influence of gravity. Using Lagrangian mechanics, its motion can be

2For δ = ①−1 we continue to use formula (4.25), which is the one implemented on the
Infinity Computer.
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δ
h

10−5 10−7 10−9 10−11 10−13

π/24 2.36e-05 2.37e-07 2.61e-08 1.00e-05 1.56e-03
π/25 3.86e-05 3.87e-07 1.92e-08 2.57e-06 1.57e-03
π/26 5.39e-05 5.35e-07 1.19e-07 3.87e-05 2.33e-03
π/27 6.77e-05 6.80e-07 3.68e-07 3.64e-05 1.80e-03
π/28 5.99e-05 6.01e-07 4.17e-07 1.86e-05 2.96e-03
π/29 5.65e-05 5.58e-07 3.35e-07 4.28e-05 7.18e-03
π/210 5.49e-05 5.43e-07 4.55e-07 4.44e-05 5.76e-03
π/211 5.41e-05 5.35e-07 2.93e-07 3.59e-05 1.66e-04
π/212 5.37e-05 5.38e-07 4.63e-07 2.05e-05 4.60e-04
π/213 5.35e-05 5.37e-07 5.23e-07 3.45e-05 2.46e-03
π/214 5.35e-05 5.28e-07 2.14e-07 4.62e-05 6.34e-03
π/215 5.34e-05 5.30e-07 1.50e-07 5.17e-05 7.17e-03
π/216 5.34e-05 5.28e-07 3.69e-07 5.51e-05 5.84e-03
π/217 5.34e-05 5.27e-07 3.22e-07 3.87e-05 2.70e-03

Table 4.7: Errors in the approximation of y′′ in the last computed point,
generated by replacing f ′ with the corresponding first order difference formula
(4.25).

described by the dimensionless nonlinear equation
{

y′1 = y2,
y′2 = − sin y1,

(4.27)

where y1 is the angle that the pendulum forms with its stable rest position,
and y2 is the angular velocity. In case of small amplitude oscillations around
the equilibrium point (y1, y2) = (0, 0), the problem may be well described by
its linearized version, namely the so called harmonic oscillator y′′1 + y1 = 0,
obtained through the approximation sin y1 ≈ y1. We compare the behavior of
methods Φ̂h and Φh with Taylor methods of order 2, 3 and 4 for the following
decreasing values of stepsize:

hn =
h0

2n
, with h0 =

π

5
, and n = 0, 1, 2, . . . , 7,

We use [t0, tf ] = [0, 2π] as integration interval and the two initial conditions
y0 = (0.5, 0)⊤ and y0 = (1, 0)⊤ to simulate the system under the circumstance
that the nonlinear part of (4.27) may be neglected or not.

Figure 4.12 summarizes the results. The picture at the top shows the error
(4.23) versus the stepsize, when the pendulum undertakes mild oscillations so
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Figure 4.11: Problem 1. Errors generated by method Φh for different choices
of the parameter δ to approximate the required derivatives of f , according
to formula (4.26).

that its dynamic is essentially equivalent to that of a harmonic oscillator. We
see that, in accord with Theorem 4.2, the behavior of method Φ̂h is precisely
the same as that of the fourth-order Taylor method, while Φh displays order
three and yields errors similar to the corresponding Taylor formula. In the
bottom picture in Figure 4.12 we show the results obtained after doubling
the amplitude of oscillations of the pendulum. We see that, in this case,
the nonlinear part of the vector field is no longer negligible even though
the benefits of the order four do not completely evaporate. In fact, for
large stepsizes, the behavior of method Φ̂h and the Taylor method of order
four is again quite similar and both methods produce comparable errors.
As the stepsize decreases, the accuracy curve associated with method Φh

departs from the order four slope and eventually reveals an error reduction
rate typical of a third-order method.

4.3 Taylor-Obrechkoff method of order 4

using exact derivatives

The Obrechkoff methods for the solution of (4.1) are linear multistep methods

of the following form (y
(i)
n+j denotes the approximation to the i-th derivative
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Figure 4.12: Problem 2. Errors versus stepsize.



Taylor-Obrechkoff method using exact derivatives 181

of the solution at tn+j):

k∑

j=0

αjyn+j =
l∑

i=1

hi
k∑

j=0

βijy
(i)
n+j.

In literature these methods and some variants are mainly used for the nume-
rical solution of second order problems (see for example [132, 217, 218] and
the references therein).

One issue with these implicit methods is that high order derivatives are
usually approximated by finite differences that involve terms in y and y′. The
behavior of the methods strongly depends on these approximations [227].
This drawback is overcome on the Infinity Computer since, in order to calcu-
late the k-th derivative at the point ti, k infinitesimals steps from the point
ti using the Euler formula with h = ①−1 could be executed as follows (see
Section 3.1 for details)

yi,1 = yi + ①−1f(yi), yi,2 = yi,1 + ①−1f(yi,1), . . .

yi,k = yi,k−1 + ①−1f(yi,k−1).

Then, approximations of the derivatives can be obtained by the forward dif-
ferences ∆k

h, with h = ①−1 as follows

y(k)(ti) =
∆k

①−1

①−k
+O(①−1) where ∆k

①−1 =
k∑

j=0

(−1)j
(
k

j

)
yi,k−j and yi,0 = yi.

Since the error of the approximation is O(①−1), the finite part of the value
∆k

①−1/①−k gives the exact derivative y(k)(ti).
Obrechkoff methods of high order have stability problems when applied

to the numerical solution of first order ordinary differential equations. These
problems have been overcame in literature in many way. The use of these
methods as boundary value methods [70], or the introduction of some va-
riants considering future steps points [208] are mentioned here. It is also
interesting to see the connection of these methods with the so called supe-
rimplicit schemes [143], that can be considered as a class of boundary value
methods (BVMs) as defined in their original formulation [8, 9, 22, 90, 133].
Here, the following Obrechkoff method of order 4 is studied:

yk = yk−1+
h

2

(
f(yk−1)+f(yk)

)
− h2

12

(
f ′(yk)f(yk)−f ′(yk−1)f(yk−1)

)
. (4.28)

This is an implicit A-stable order 4 method [115]. Simple generalizations of
this method, in a predictor corrector form, called Taylor-Obrechkoff methods
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hereinafter, are presented. The resulting schemes are similar to the one
presented in [7, 206]. Numerical tests show the effectiveness of these variants.

The new method, following the results presented in [7, 206], uses the
Taylor method of order 2 as predictor to obtain, using formula (4.28) as a
corrector, a second derivative explicit method. The formula is used in a PEC
(one prediction step, one evaluation and one corrector step) way which means
that the last evaluation is avoided. The resulting scheme is the following:

wk = yk−1 + hf(wk−1) +
h2

2
f ′(wk−1)f(wk−1)

yk = yk−1 +
h

2

(
f(wk−1) + f(wk)

)
− h2

12

(
f ′(wk)f(wk)− f ′(wk−1)f(wk−1)

)

(4.29)
Let us call this method TEO. Since the Taylor scheme is only order two,

the use of only one corrector step, reduces the order of the resulting scheme
[115]. To obtain an order 4 method, more corrector steps are required, and
we use them in the form PE2(E1C)3, where now E2 means evaluation of
the second derivative and E1 evaluation of the first derivative. We call this
method TE2(E1O)3:

wk = yk−1 + hf(v′k−1) +
h2

2
f ′(wk−1)f(wk−1)

vk = yk−1 +
h

2

(
f(v′k−1) + f(wk)

)
− h2

12

(
f ′(wk)f(wk)− f ′(wk−1)f(wk−1)

)

v′k = yk−1 +
h

2

(
f(v′k−1) + f(vk)

)
− h2

12

(
f ′(wk)f(wk)− f ′(wk−1)f(wk−1)

)

yk = yk−1 +
h

2

(
f(v′k−1) + f(v′k)

)
− h2

12

(
f ′(wk)f(wk)− f ′(wk−1)f(wk−1)

)

(4.30)
It can be proved that this scheme is now of order 4. Both the methods

have a finite region of absolute stability that is plotted in figure 4.13 and
compared with the method called Φh in [7].

In order to study the proposed methods experimentally, we consider two
numerical tests substantiating the convergence rates of the proposed algo-
rithms. The first one, taken from [23] is

y′ =
y − 2ty2

1 + t
, 0 ≤ t ≤ tf = 1, y(0) = 1, y(t) =

1 + t

1 + t2
. (4.31)

The second test is the pendulum problem as solved in [7]
{

y′1 = y2,
y′2 = − sin y1, 0 ≤ t ≤ tf = 2π y(0) = (0.5, 1)T .

(4.32)
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Figure 4.13: Absolute stability region of methods TEO and TE2(E1O)3 com-
pared with those corresponding to the Taylor methods of order 2, 3 and
method Φh defined in [7].
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For both the problems the behavior of the proposed Taylor-Obrechkoff
methods is compared with the methods Φ̂h and Φh from the previous sections
and with Taylor methods of order 2, 3 and classical explicit Runge-Kutta
methods of order 3 and 4 for the following decreasing values of stepsize: hn =
h0/2

n, with h0 = (tf − t0)/5, and n = 0, 1, 2, . . . , 9. As is expected, the
errors produced by the new methods TEO and TE2(E1O)3 decay with order
three and four with respect to the stepsize. It is worth noting that the
implementation of method TEO requires precisely the same computational
cost as the second-order Taylor formula, the methods TE2(E1O)3, requires
more evaluations only of the first derivative, with respect to the second order
formula, but both achieve much better results (see Figure 4.14).
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errors versus stepsize.





Conclusion

The main obtained results of this thesis consist of the following:

– New acceleration techniques to speed up the global search have been in-
troduced in univariate derivative-free global optimization. They can
be used in geometric and information frameworks for construction uni-
variate Lipschitz global optimization algorithms. All of the considered
methods automatically switch from the global search to the local one
and back avoiding so the necessity to stop the global phase manually.
An original mixture of new and traditional computational steps has al-
lowed to construct 22 different global optimization algorithms having,
however, a similar structure. In particular, 9 instances of this mixture
can lead to known global optimization methods and the remaining 13
methods described in this work are new. All of them have been studied
theoretically and numerically compared on more than 100 theoretical
and applied benchmark tests. It has been shown that the introduced
acceleration techniques allow the global optimization methods to sig-
nificantly speed up the search with respect to some known algorithms.

– Two practical engineering problems have been studied: finding the mini-
mal root of a non-linear equation problem from electrical engineering
and a sum of damped sinusoids from statistics. Numerical experiments
on the presented classes of engineering problems confirmed the advan-
tages of the proposed techniques, as well.

– Two new graphical techniques (called “operational zones” and “aggrega-
ted operational zones”) for a systematic comparison of deterministic
and stochastic global optimization algorithms have been introduced
and analyzed in this work. It has been shown that these new graphical
methodologies for comparing global optimization methods of a different
nature are quite representative. Almost all qualitative characteristics
that can be represented by numerical tables can be also observed from
these graphs. Moreover, the best, the worst, and average performan-
ces of stochastic methods can be easily found, as well. A number of
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popular metaheuristics having a stochastic nature have been compared
in this research with deterministic Lipschitz methods by using propo-
sed methodologies. Massive experimental study of global optimization
algorithms of different nature have been performed in more than 1000
test problems with more than 1 000 000 runs.

– A new generator of test problems with non-linear constraints based on
the GKLS-generator for testing algorithms of constrained global opti-
mization has been introduced. It can generate classes of test problems
with non-linear constraints, known global minimizers, and parameteri-
zable difficulty, where the objective function can be non-differentiable,
continuously differentiable and twice continuously differentiable, while
the constraints are continuously differentiable.

– The Infinity Computing framework has been applied to handling of ill-
conditioning in univariate and multidimensional optimization. It has
been shown that several ill-conditioned problems in the traditional com-
putational framework become well-conditioned if the Infinity Compu-
ting is applied. Presented techniques can be used in different fields,
where ill-conditioning appears.

– A new class of problems with the objective function having infinite or infi-
nitesimal Lipschitz constants has been introduced. The strong homoge-
neity of several univariate algorithms for Lipschitz global optimization
problems has been studied in the framework of the Infinity Computing
paradigm. Finally, it has been shown that in certain cases the usage of
numerical infinities and infinitesimals can avoid ill-conditioning produ-
ced by scaling.

– The impact of the Infinity Computing paradigm on practical solution of
nonsmooth unconstrained optimization problems, where the objective
function is assumed to be convex and not necessarily differentiable,
has been studied. The main attention has been focused on a family of
nonsmooth optimization methods based on a variable metric approach,
and the infinity computing techniques have been used for numerically
dealing with some quantities which can assume values arbitrarily small
or large, as a consequence of nonsmoothness.

– Finally, several explicit numerical methods for solving ordinary differen-
tial equations have been proposed. Theoretical convergence properties
of the proposed methods have been studied. It has been shown that
the methods of higher order can be used with the calculation of the
derivatives exactly using the Infinity Computer.
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Based on the obtained results, 8 papers have been published in the inter-
national journals and 1 paper has been submitted, 1 contribution to the book
and 9 proceedings of the international conferences have been also published:

1. Ya.D. Sergeyev, M.S. Mukhametzhanov, D.E. Kvasov and D. Lera,
“Derivative-free local tuning and local improvement techniques em-
bedded in the univariate global optimization”, Journal of Optimization
Theory and Applications 171 (1), pp. 186 - 208, 2016.

2. Ya.D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, “Operational
zones for comparing metaheuristic and deterministic one-dimensional
global optimization algorithms”, Mathematics and Computers in Si-
mulation 141, pp. 96 – 109, 2017.

3. Ya.D. Sergeyev, M.S. Mukhametzhanov, F. Mazzia, F. Iavernaro and
P. Amodio, “Numerical Methods for Solving Initial Value Problems
on the Infinity Computer”, International Journal of Unconventional
Computing 12 (1), pp. 3-23, 2016.

4. P. Amodio, F. Iavernaro, F. Mazzia, M.S. Mukhametzhanov, Ya.D.
Sergeyev, “A generalized Taylor method of order three for the solu-
tion of initial value problems in standard and infinity floating-point
arithmetic”, Mathematics and Computers in Simulation 141, pp. 24 –
39, 2017.

5. M. Gaudioso, G. Giallombardo, M.S. Mukhametzhanov, “Numerical
infinitesimals in a variable metric method for convex nonsmooth op-
timization”, Applied Mathematics and Computation, 318, pp.312–320,
2018.

6. D.E. Kvasov, M.S. Mukhametzhanov, “Metaheuristic vs. Deterministic
global optimization algorithms: The univariate case”, Applied Mathe-
matics and Computation, 318, pp. 245–259, 2018.

7. Ya. D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, “On strong
homogeneity of a class of global optimization algorithms working with
infinite and infinitesimal scales”, Communications in Nonlinear Science
and Numerical Simulation, 59, pp. 319–330, 2018.

8. Ya. D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, “On the effi-
ciency of nature-inspired metaheuristics in expensive global optimiza-
tion with limited budget”, Scientific Reports, 8, n. 453, 2018,
doi: 10.1038/s41598-017-18940-4.
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9. Ya. D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, “Remark on
Algorithm 829: Classes of multiextremal test problems with nonlinear
constraints and known global solutions”, 2018, submitted.

10. Ya.D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov. “On the least-
squares fitting of data by sinusoids”. In: “Advances in Stochastic and
Deterministic Global Optimization” (ed. by P.M. Pardalos, A. Zhigl-
javsky, and J. Zilinskas), series “Springer Optimization and Its Appli-
cations”, vol. 107, chapter 11. Springer, Switzerland, 2016.

11. Ya.D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, “Emmental-
type GKLS-based multiextremal smooth test problems with non-linear
constraints”, in: Learning and Intelligent Optimization Conference
(LION 2017), Lecture Notes in Computer Science, vol. 10556, Springer
(2017), pp. 383–388.

12. Ya.D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, A. De Franco,
“Acceleration Techniques in the Univariate Lipschitz Global Optimiza-
tion”, in Numerical Computations: Theory and Algorithms: NUMTA
2016: the 2nd international conference and summer school, edited by
Ya.D. Sergeyev, D.E. Kvasov, F. Dell’Accio and M.S. Mukhametzhanov
(AIP Conference Proceedings, 2016) vol. 1776, 090051.

13. F. Mazzia, Ya.D. Sergeyev, F. Iavernaro, P. Amodio, M.S. Mukhamet-
zhanov, “Numerical Methods for solving ODEs on the Infinity Compu-
ter”, in Numerical Computations: Theory and Algorithms: NUMTA
2016: the 2nd international conference and summer school, edited by
Ya.D. Sergeyev, D.E. Kvasov, F. Dell’Accio and M.S. Mukhametzhanov
(AIP Conference Proceedings, 2016) vol. 1776, 090033.

14. Ya.D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, “Operational
Zones for Global Optimization Algorithms”, in Proceedings of the XIII
Global Optimization Workshop GOW’16, 4-8 September 2016, Univer-
sity of Minho, Braga, Portugal, pp. 85-88, ISBN 978-989-20-6764-3

15. Ya.D. Sergeyev, D.E. Kvasov, M.S. Mukhametzhanov, “Comments upon
the usage of derivatives in Lipschitz global optimization”, in ICNAAM
2015: 13th International Conference of Numerical Analysis and Ap-
plied Mathematics, vol. 1738, edited by T. Simos (AIP Conference
Proceedings, 2016), pp. 400004-1 – 4.

16. D.E. Kvasov, M.S. Mukhametzhanov, “One-dimensional global search:
Nature-inspired vs. Lipschitz methods”, in ICNAAM 2015: 13th Inter-
national Conference of Numerical Analysis and Applied Mathematics,
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vol. 1738, edited by T. Simos (AIP Conference Proceedings, 2016), pp.
400012-1 – 4.

17. D.E. Kvasov, M.S. Mukhametzhanov, Ya.D. Sergeyev, “A Numerical
Comparison of Some Deterministic and Nature-Inspired Algorithms for
Black-Box Global Optimization”, in B.H.V. Topping, P. Ivanyi (Edi-
tors), “Proceedings of the Twelfth International Conference on Compu-
tational Structures Technology”, Civil-Comp Press, Stirlingshire, UK,
Paper 169, 2014. Doi:10.4203/ccp.106.169

18. Ya.D. Sergeyev, M.S. Mukhametzhanov, D.E. Kvasov, “Examples of
solving ODEs given as a Black-Box on the Infinity Computer”, in Pro-
ceedings of the International Conference “New Trends in Numerical
Analysis 2015 (NETNA 2015)”, Falerna (CZ), Italy, 18-21 June 2015,
pp.90-91.

19. D.E. Kvasov, M.S. Mukhametzhanov, Ya.D. Sergeyev, “Numerical met-
hods for solving black-box global optimization problems”, in Procee-
dings of the International Conference “New Trends in Numerical Analy-
sis 2015 (NETNA 2015)”, Falerna (CZ), Italy, 18-21 June 2015, pp.73-
74.

The Emmental-type generator of test problems from Section 2.3 has been
implemented in C. All the algorithms proposed in this work have been
implemented in C + +. In particular, univariate geometric and information
algorithms have been implemented in a unique framework according to the
General Scheme (see Section 1.1). Finally, all graphical visualizations have
been realized using MATLABR©.
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Nonsmooth Optimization: Theory, Practice and Software. Springer,
2014.

[13] K. Barkalov, V. Gergel, and I. Lebedev. Solving global optimization
problems on GPU cluster. In T. E. Simos, editor, AIP Conference
Proceedings, volume 1738 (400006), 2016.

[14] R. Barrio. Performance of the Taylor series method for ODEs/DAEs.
Applied Mathematics and Computation, 163(2):525–545, 2005.

[15] R. Barrio, F. Blesa, and M. Lara. VSVO formulation of the Taylor
method for the numerical solution of ODEs. Computers & Mathematics
with Applications, 50:93–111, 2005.
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[44] J. E. Dennis and J. J. Moré. Quasi-newton methods, motivation and
theory. SIAM Review, 19:46 – 89, 1977.

[45] J. G. Digalakis and K. G. Margaritis. On benchmarking functions for
genetic algorithms. International Journal of Computer Mathematics,
77(4):481–506, 2001.



199
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[117] C. Lemaréchal and C. Sagastizabal. Variable metric bundle methods:
From conceptual to implementable forms. Mathematical Programming,
76:393–410, 1997.

[118] D. Lera and Ya. D. Sergeyev. An information global minimization
algorithm using the local improvement technique. Journal of Global
Optimization, 48(1):99–112, 2010.

[119] D. Lera and Ya. D. Sergeyev. Acceleration of univariate global optimi-
zation algorithms working with Lipschitz functions and Lipschitz first
derivatives. SIAM Journal on Optimization, 23(1):508–529, 2013.

[120] D. Lera and Ya. D. Sergeyev. Deterministic global optimization using
space-filling curves and multiple estimates of Lipschitz and Hölder con-
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Globally-biased DISIMPL algorithm for expensive global optimization.
Journal of Global Optimization, 59(2-3):545–567, 2014.
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Appendix

Appendix A: 20 univariate Lipschitz global optimization test problems used
in numerical experiments.

# Function f(x) [a, b] L Global Minimizers

1 1
6x

6 − 52
25x

5 + 39
80x

4 + 71
10x

3 − 79
20x

2 − x+ 1
10 [−1.5, 11] 13870 x∗ = 10

2 sinx+ sin 10x
3 [2.7, 7.5] 4.3 x∗ = 5.146

3 −∑5
k=1 k sin[(k + 1)x+ k] [−10, 10] 68.5

x∗

1 = −0.491,
x∗

2 = −6.775,
x∗

3 = 5.792

4 −(16x2 − 24x+ 5) e−x [1.9, 3.9] 3.0 x∗ = 2.868

5 (3x− 1.4) sin 18x [0, 1.2] 36.0 x∗ = 0.966

6 −(x+ sinx) e−x2

[−10, 10] 2.5 x∗ = 0.680

7 sinx+ sin 10x
3 + lnx− 0.84x+ 3 [2.7, 7.5] 6.0 x∗ = 5.200

8 −∑5
k=1 k cos[(k + 1)x+ k] [−10, 10] 69.5

x∗

1 = −0.800,
x∗

2 = −7.084,
x∗

3 = 5.483

9 sinx+ sin 2x
3 [3.1, 20.4] 1.7 x∗ = 17.040

10 −x sinx [0, 10] 11.0 x∗ = 7.979

11 2 cosx+ cos 2x [−1.57, 6.28] 3.6
x∗

1 = 4.189,
x∗

2 = 2.094

12 sin3 x+ cos3 x [0, 6.28] 2.2
x∗

1 = 4.712,
x∗

2 = 3.142

13 −x2/3 + (x2 − 1)1/3 [0.001, 0.99] 8.5 x∗ = 0.707

14 −e−x sin 2πx [0, 4] 6.5 x∗ = 0.225

15 x2
−5x+6
x2+1 [−5, 5] 6.5 x∗ = 2.414

16 2(x− 3)2 + e0.5x
2

[−3, 3] 294.1 x∗ = 1.591

17 x6 − 15x4 + 27x2 + 250 [−4, 4] 2520.0
x∗

1 = −3,
x∗

2 = 3

18

{
(x− 2)2, x ≤ 3
2 ln(x − 2) + 1, x > 3

[0, 6] 4.0 x∗ = 2

19 −x+ sin 3x− 1 [0, 6.5] 4.1 x∗ = 5.873

20 (sinx− x) e−x2

[−10, 10] 1.3 x∗ = 1.195
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Appendix B: 12 initial value test problems used in numerical experiments.

# ODE y0 yn solution source

1 y′ = x− y 1 0.735759 y(x) = x− 1 + 2e−x [3]

2 y′ = x+ y 1 3.436564 y(x) = 2ex − x− 1 [3]

3 y′ = y 1 2.718282 y(x) = ex [23]

4 y′ = 2y − ex 1 2.718282 y(x) = ex [23]

5 y′ = 2y(1− 0.00001y) 1 7.388584 y(x) = 105e2x/(105 + e2x − 1) [10]

6 y′ = −10y 1 0.000045 y(x) = e−10x [61]

7 y′ = −8(y − 20) 100 20.026837 y(x) = 80e−8x + 20 [77]

8 y′ = −8(y − 15e−x/8 − 5) 100 18.474329 y(x) = 1675
21 e−8x + 320

21 e−x/8 + 5 [77]

9 y′ = y+x
y−x 1 2.732051 y(x) = x+

√
1 + 2x2 [23]

10 y′ = −y · tan(x)− 1
cos(x) 1 -0.301169 y(x) = cos(x)− sin(x) [23]

11 y′ = y−2xy2

1+x 1 1 y(x) = 1+x
1+x2 [23]

12 y′ = y−2xy2

1+x 0.4 0.571429 y(x) = 1+x
2.5+x2 [23]


