
Logic Programming

in non-conventional environments

Stefano Germano

Nov 2014 – Oct 2017
Version: 2.0

Department of Mathematics and Computer Science

Doctoral Degree in Mathematics and Computer Science
XXX Cycle – S.S.D. INF/01

Doctoral Thesis

Logic Programming
in non-conventional environments

Stefano Germano

Coordinator Prof. Nicola Leone

Supervisor Prof. Giovambattista Ianni

Nov 2014 – Oct 2017

This work is licensed under a Creative Commons ‘Attribution
4.0 International’ licence.

Stefano Germano
Logic Programming in non-conventional environments
Doctoral Thesis, Nov 2014 – Oct 2017
Coordinator of the Doctoral Programme: Prof. Nicola Leone
Supervisor: Prof. Giovambattista Ianni

University of Calabria

Doctoral Degree in Mathematics and Computer Science

Department of Mathematics and Computer Science

Via Pietro Bucci – I-87036

Arcavacata di Rende, CS – Italy

https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

Abstract

Logic Programming became a very useful paradigm in many different areas and
thus several languages (and solvers) have been created to support various kinds of
reasoning tasks. However, in the last decades, thanks also to results in the Com-
putational Complexity area, the weaknesses and the limits of this formalism have
been revealed. Therefore, we decided to study solutions that would allow the use
of the Logic Programming paradigm in contexts, such as Stream Reasoning, Big Data
or Games’ AI, that have very specific constraints that make the practical use of logic-
based formalisms not so straightforward.

Logic Programming is best used for problems where a properly defined search space
can be identified and has to be explored in full. For this reason, almost all the
approaches that have been tried so far, have focused on problems where the amount
of input data is not huge and is stored in a few well-defined sources, which are often
completely available at the beginning of the computation.
Some interesting ideas and approaches in the mentioned fields have been already
introduced, however, they are in a preliminary stage and often are tailored to a
specific problem, and do not allow the users to perform “complex” reasoning on the
data. In order to make the utilisation of this paradigm computationally feasible and
reliable in contexts where the reasoning methods have to handle a huge amount of
data that “expires” soon, i.e., become soon useless, and quickly react to them, new
solutions have to be introduced.

In this Thesis, we illustrate how Logic Programming can play a role in such challen-
ging scenarios. We both describe the general approaches taken, and how these solu-
tions have been used in several application contexts, some of which were milestones
of large-scale international projects. We found that combining different reasoning
methods and technologies is one of the crucial methodologies to adopt in order to
effectively tackle and solve these challenges. Moreover, we identify the methodo-
logical gaps that are not yet closed, and prevent the large adoption of logic-based
programming techniques.

v

Sommario

La Programmazione Logica è diventata un paradigma molto utile in diverse aree e
sono perciò stati creati diversi linguaggi (e risolutori) per supportare vari tipi di
operazioni di ragionamento. Tuttavia negli ultimi decenni, grazie anche ai risultati
ottenuti nell’area della Complessità computazionale, si sono evidenziate le debolez-
ze e i limiti di questo formalismo. Abbiamo quindi deciso di studiare soluzioni che
permettessero l’uso del paradigma della Programmazione Logica in contesti come
Stream Reasoning, Big Data o Intelligenza Artificiale nei (Video-)Giochi; contesti che
hanno vincoli molto specifici che rendono l’uso pratico di formalismi basati sulla
logica non particolarmente semplice.

La Programmazione Logica è utilizzata soprattutto per i problemi in cui è possibile
identificare uno spazio di ricerca ben definito e che deve essere esplorato a fondo.
Per questo motivo, quasi tutti gli approcci finora sperimentati si sono concentrati
su problemi in cui la quantità di dati di input non è enorme e viene memorizzata
in poche fonti ben definite che sono spesso completamente disponibili all’inizio del
calcolo.
Sono già state introdotte alcune idee e approcci interessanti nei settori citati, ma
sono in fase preliminare e spesso sono su misura per un problema specifico, e non
consentono di svolgere ragionamenti “complessi” sui dati. Per rendere l’utilizzo di
questo paradigma computazionale praticabile e affidabile in contesti in cui i metodi
di ragionamento devono gestire un’enorme quantità di dati che “scadono” presto,
cioè diventano presto inutilizzabili, e reagiscono rapidamente ad essi, è necessario
introdurre nuove soluzioni.

In questa tesi illustriamo come la Programmazione Logica possa giocare un ruolo im-
portante in scenari così impegnativi. Descriviamo sia gli approcci generali adottati
sia il modo in cui queste soluzioni sono state utilizzate in diversi contesti applicativi,
alcuni dei quali sono stati fondamentali per grandi progetti internazionali. Abbia-
mo constatato che la combinazione di diversi metodi e tecnologie di ragionamento
è una delle metodologie cruciali da adottare per affrontare e risolvere efficacemente
queste sfide. Inoltre segnaliamo quali sono le carenze metodologiche attualmente
non colmate che impediscono l’adozione su vasta scala di tecniche di programma-
zione basate sulla logica.

vi

Dedicata alla mia famiglia

Meiner Familie gewidmet

Dedicada a mi familia

I gcomóradh mo mhuintir

Dédiée à ma famille

Dedicated to my family

“The world is full of obvious things which nobody by any chance ever observes.”

– Arthur Conan Doyle, The Hound of the Baskervilles

Acknowledgements

During the journey ended up in this Thesis I have actually met many people, in sev-
eral places, and I must admit that I learned something from each of them. Besides,
they were important for me not only from a professional point of view but also from
a personal one.

However, I realised they are too many to thank them one by one for what they have
done for me. Therefore, I would simply say thanks to all of you, you made this
journey very interesting and enjoyable.

Nonetheless, I would especially like to thank “my team” (as my mum usually calls
them) who have assisted, supported and endorsed me; without them none of what
I achieved in the last years would have been possible.

Furthermore, I thankfully acknowledge the collaboration with other students and
researchers in various universities, which motivated and allowed me to produce this
contribution, among which the Department of Mathematics and Computer Science
(DeMaCS)1 at the Università della Calabria (UNICAL)2, the Knowledge-Based Systems
Group (KBS)3 of the Faculty of Informatics4 at the Technische Universität Wien (TU
Wien)5, the Unit for Reasoning and Querying (URQ)6 of the INSIGHT Centre for Data
Analytics7 at the National University of Ireland (NUI) Galway8, the Database group9

of the Department of Computer Science10 at the University of Oxford11.

It is important to notice that part of the work described in this Thesis has already
been acknowledged by the scientific community in international Journals and Con-
ferences. In particular:

1https://www.mat.unical.it
2http://unical.it
3http://www.kr.tuwien.ac.at
4http://www.informatik.tuwien.ac.at
5https://www.tuwien.ac.at
6https://nuig.insight-centre.org/urq
7https://www.insight-centre.org
8http://www.nuigalway.ie
9http://www.cs.ox.ac.uk/isg/db

10http://www.cs.ox.ac.uk
11http://www.ox.ac.uk

xi

https://www.mat.unical.it
https://www.mat.unical.it
http://unical.it
http://www.kr.tuwien.ac.at
http://www.kr.tuwien.ac.at
http://www.informatik.tuwien.ac.at
https://www.tuwien.ac.at
https://www.tuwien.ac.at
https://nuig.insight-centre.org/urq
https://www.insight-centre.org
https://www.insight-centre.org
http://www.nuigalway.ie
http://www.cs.ox.ac.uk/isg/db
http://www.cs.ox.ac.uk
http://www.ox.ac.uk
https://www.mat.unical.it
http://unical.it
http://www.kr.tuwien.ac.at
http://www.informatik.tuwien.ac.at
https://www.tuwien.ac.at
https://nuig.insight-centre.org/urq
https://www.insight-centre.org
http://www.nuigalway.ie
http://www.cs.ox.ac.uk/isg/db
http://www.cs.ox.ac.uk
http://www.ox.ac.uk

⋇ D. Fuscà, S. Germano, J. Zangari, F. Calimeri and S. Perri. ‘Answer Set Programming
and Declarative Problem Solving in Game AIs’. In: [45]. 2013, pp. 81–88. URL: http:
//ceur-ws.org/Vol-1107/paper9.pdf.

⋇ F. Calimeri, M. Fink, S. Germano, G. Ianni, C. Redl and A. Wimmer. ‘AngryHEX: an
Artificial Player for Angry Birds Based on Declarative Knowledge Bases’. In: [45]. 2013,
pp. 29–35. URL: http://ceur-ws.org/Vol-1107/paper10.pdf.

⋇ S. Germano, T. Pham and A. Mileo. ‘Web Stream Reasoning in Practice: On the Expressiv-
ity vs. Scalability Tradeoff’. In: Proceedings of RR 2015, pp. 105–112. DOI: 10.1007/978-
3-319-22002-4_9.

⋇ A. Mileo, S. Germano, T.-L. Pham, D. Puiu, D. Kuemper and M. I. Ali. User-Centric
Decision Support in Dynamic Environments. CityPulse - Real-Time IoT Stream Pro-
cessing and Large-scale Data Analytics for Smart City Applications. Report - Project
Delivery. Version V1.0-Final. NUIG, SIE, UASO, 31st Aug. 2015. URL: http : / /
cordis . europa . eu / docs / projects / cnect / 5 / 609035 / 080 / deliverables / 001 -
609035CITYPULSED52renditionDownload.pdf (visited on 25th Sept. 2017).

⋇ F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘Embedding ASP in mobile
systems: discussion and preliminary implementations’. In: Proceedings of ASPOCP 2015,
workshop of ICLP.

⋇ F. Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni, C. Redl, D. Stepanova,
A. Tucci and A. Wimmer. ‘Angry-HEX: An Artificial Player for Angry Birds Based on
Declarative Knowledge Bases’. In: TCIAIG 8.2 (2016), pp. 128–139. DOI: 10.1109/
TCIAIG.2015.2509600.

⋇ F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘Boosting the Development of
ASP-Based Applications in Mobile and General Scenarios’. In: Proceedings of AI*IA 2016,
pp. 223–236. DOI: 10.1007/978-3-319-49130-1_17.

⋇ D. Fuscà, S. Germano, J. Zangari, M. Anastasio, F. Calimeri and S. Perri. ‘A framework
for easing the development of applications embedding answer set programming’. In:
Proceedings of PPDP 2016, pp. 38–49. DOI: 10.1145/2967973.2968594.

⋇ T. Pham, S. Germano, A. Mileo, D. Kümper and M. I. Ali. ‘Automatic configuration of
smart city applications for user-centric decision support’. In: Proceedings of ICIN 2017,
pp. 360–365. DOI: 10.1109/ICIN.2017.7899441.

⋇ S. Germano, F. Calimeri and E. Palermiti. ‘LoIDE: a web-based IDE for Logic Pro-
gramming - Preliminary Technical Report’. In: CoRR abs/1709.05341 (2017). arXiv:
1709.05341.

xii

http://ceur-ws.org/Vol-1107/paper9.pdf
http://ceur-ws.org/Vol-1107/paper9.pdf
http://ceur-ws.org/Vol-1107/paper10.pdf
https://doi.org/10.1007/978-3-319-22002-4_9
https://doi.org/10.1007/978-3-319-22002-4_9
http://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CITYPULSED52renditionDownload.pdf
http://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CITYPULSED52renditionDownload.pdf
http://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CITYPULSED52renditionDownload.pdf
https://doi.org/10.1109/TCIAIG.2015.2509600
https://doi.org/10.1109/TCIAIG.2015.2509600
https://doi.org/10.1007/978-3-319-49130-1_17
https://doi.org/10.1145/2967973.2968594
https://doi.org/10.1109/ICIN.2017.7899441
http://arxiv.org/abs/1709.05341

⋇ F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘A framework for easing
the development of applications embedding answer set programming’. In: J. Exp. Theor.
Artif. Intell. (2017). Submitted.

⋇ F. Calimeri, S. Germano, E. Palermiti, K. Reale and F. Ricca. ‘Environments for Develop-
ing ASP programs’. In: KI (2017). Submitted.

⋇ T. Eiter, S. Germano, G. Ianni, T. Kaminski, C. Redl, P. Schüller and A. Weinzierl. ‘The
DLVHEX System’. In: KI (2017). Submitted.

⋇ S. Germano, F. Calimeri and E. Palermiti. ‘LoIDE: A Web-Based IDE for Logic Program-
ming Preliminary Report’. In: Proceedings of PADL 2018, pp. 152–160. DOI: 10.1007/
978-3-319-73305-0_10.

Part of this work has been realized in the context of the projects:

• EU FP7 CityPulse Project, under grant No.60309512;

• EPSRC VADA Project, EP/M025268/113;

• Angry-HEX14, EMBASP15, and LoIDE16.

12http://www.ict-citypulse.eu
13http://vada.org.uk
14https://demacs-unical.github.io/Angry-HEX
15https://www.mat.unical.it/calimeri/projects/embasp
16https://www.mat.unical.it/calimeri/projects/loide

xiii

https://doi.org/10.1007/978-3-319-73305-0_10
https://doi.org/10.1007/978-3-319-73305-0_10
http://www.ict-citypulse.eu
http://vada.org.uk
https://demacs-unical.github.io/Angry-HEX
https://www.mat.unical.it/calimeri/projects/embasp
https://www.mat.unical.it/calimeri/projects/loide
http://www.ict-citypulse.eu
http://vada.org.uk
https://demacs-unical.github.io/Angry-HEX
https://www.mat.unical.it/calimeri/projects/embasp
https://www.mat.unical.it/calimeri/projects/loide

Contents

List of Figures xvii

List of Tables xix

List of Programs xxi

Acronyms xxiii

Introduction 1

1. Logic Programming 5
1.1. Definition and Motivation . 6
1.2. Datalog and Datalog± . 9
1.3. Answer Set Programming (ASP) . 21
1.4. Planning Domain Definition Language (PDDL) 40

2. Stream Reasoning 47
2.1. Definition, Motivation and Challenges 48
2.2. Data Stream Reasoning: research timeline 55
2.3. Stream Reasoning and Logic Programming 82
2.4. Stream Reasoning and Smart City Applications: a case study 97
2.5. Web Stream Reasoning in Practice: on the Expressivity vs. Scalability

tradeoff . 102
2.6. Automatic Configuration of Smart City Applications for User-Centric

Decision Support . 109

3. Big Data 123
3.1. Definition, Motivation and Challenges 124
3.2. Query Answering over Big Data: a case study 130
3.3. Feature-based Engine Selection for VADALOG program 134
3.4. Time/Size estimation of Logic Programs evaluation – a refined ap-

proach . 147

4. Logic and AI in Games 163
4.1. Definition, Motivation and Challenges 164

xv

4.2. Logic for games’ AI . 169
4.3. Angry Birds and the Angry Birds AI Competition 173
4.4. Angry-HEX: An Artificial Player for Angry Birds Based on Declarative

Knowledge Bases . 183
4.5. Other Game’s AIs experiments . 205

5. Streamlining the use of Logic Programming 213
5.1. Motivation and Challenges . 214
5.2. EMBASP: a general framework for embedding Logic Programming in

complex systems . 216
5.3. LoIDE: a web-based IDE for Logic Programming 241

Conclusions 253

A. Popular AI Competitions 257

B. Benchmark and Competition Results - AIBIRDS 261

Bibliography 265

Bibliography Abbreviations 301

xvi

List of Figures

1.1. Basic ASP Solving Iterative Workflow. 22
1.2. Initial and goal configurations for the blocks-world example. 45

2.1. A Research Agenda for Stream Reasoning. 53
2.2. Data types and operator classes in abstract semantics. 61
2.3. Basic architectures of a DBMS, a Rule Engine, and a SPE. 64
2.4. Conceptual System Architecture. 70
2.5. CQL extension for RDF data streams. 75
2.6. Integrated Approach of CityPulse. 97
2.7. CityPulse Partners. 98
2.8. Processing Steps during different Life-cycle stages. 99
2.9. CityPulse Framework Architecture Overview. 100
2.10.2-tier approach to Web Stream Reasoning. 104
2.11.Reasoning time. 107
2.12.Decision Support I/O. 111
2.13.Decision Support sequence diagram. 112
2.14.Representation of Reasoning Request. 114

3.1. Universities of the VADA consortium. 131
3.2. Project partners of the VADA consortium. 131
3.3. The VADA Architecture. 133
3.4. Sketch of the VADALOG Reasoner component. 144
3.5. Sequence Diagram of a Transducer execution. 145
3.6. ASP solving process schematization using the provided notation. . . . 157
3.7. Basic components of ASPtimator. 160

4.1. A screenshot of the Angry Birds game. 173
4.2. The AIBIRDS Framework Architecture. 186
4.3. An overview of the Angry-HEX Agent Architecture. 188
4.4. Level #4 reconstruction example. 192
4.5. An example of low and high trajectories. 193
4.6. An example of the output from the &next atom. 193
4.7. Angry-HEX Time Analisys. 201

xvii

4.8. Time spent by the Tactics layer w.r.t. the number of objects in the
scene. 202

4.9. Reasoning times for different Tactics Knowledge Bases. 202
4.10.Screenshots from the GuessAndCheckers app. 206
4.11.Schematic Architecture of the UniCraft bot. 210

5.1. A visual overview of EMBASP. 218
5.2. Simplified class diagram of the Java implementation of EMBASP. . . 220
5.3. Screenshots from the DLVfit app. 232
5.4. An instance of a problem and the corresponding output in LoIDE. . . 242
5.5. LoIDE screenshots. 244
5.6. Architecture of the LoIDE project. 246
5.7. The main components of the web-based GUI. 248

A.1. Generated levels in the Angry Birds Level Generation Competition. . . 258
A.2. Screenshots of the RoboCupSoccer Simulation League. 259

xviii

List of Tables

2.1. Analysis of Requirements for Application Scenarios. 52
2.2. Relation between Requirements and Research Agenda. 53
2.3. A review of the Stream Reasoning requirements w.r.t. the current

state of the art. 54
2.4. The capabilities of various systems software. 65
2.5. Classification of the RDF stream processors. 79
2.6. Reasoning in ground LARS. 95
2.7. Example of Functional Parameters for the Travel Planner scenario. . 117
2.8. Example of Functional Constraints for the Travel Planner scenario. . 118
2.9. Example of Functional Preferences for the Travel Planner scenario. . 118
2.10.Example of Functional Parameters for the Parking Planner scenario. 120
2.11.Example of Functional Constraints for the Parking Planner scenario. 120
2.12.Example of Functional Preferences for the Parking Planner scenario. 121

3.1. Histogram Taxonomy. 151
3.2. Construction cost for various histograms. 152
3.3. Errors due to histograms. 152
3.4. A Dependency Matrix. 154
3.5. Complexity of SDP Operations. 156

B.1. Benchmark Results 2013 - AIBIRDS. 261
B.2. Benchmark Results 2013–2014 overall - AIBIRDS. 261
B.3. Benchmark Results 2013–2014–2016 overall - AIBIRDS. 262
B.4. 2013 Competition Results - AIBIRDS. 262
B.5. 2014 Competition Results - AIBIRDS. 263
B.6. 2015 Competition Results - AIBIRDS. 263
B.7. 2016 Competition Results - AIBIRDS. 263
B.8. 2017 Competition Results - AIBIRDS. 264

xix

List of Programs

1.1. A representation of the blocks-world scenario in PDDL. 44
1.2. An example of a PDDL problem file for the blocks-world problem. . . 45

2.1. A snapshot of logic rules for Travel Planner scenario. 118
2.2. A snapshot of logic rules for Parking Planner scenario. 120

5.1. Definition of the annotated Cell class. 226
5.2. An example of an Android Activity for the Sudoku problem. 226
5.3. An example of how to implement the Callback interface. 228
5.4. Definition of the annotated PickUp class. 228
5.5. Definition of the annotated PutDown class. 228
5.6. Definition of the annotated Stack class. 229
5.7. Definition of the annotated Unstack class. 229
5.8. An example of a Java application for the Blocksworld problem. . . . 229
5.9. An example of input for the DLVfit logic code. 233
5.10.An example of custom optimization preferences for DLVfit. 234
5.11.A simplified version of the DLVfit logic program. 234

xxi

Acronyms

AIBIRDS Angry Birds AI Competition.

AI Artificial Intelligence.

API Application Programming Interface.

APK Android Package Kit.

ASP Answer Set Programming.

BCQ Boolean Conjunctive Query.

BSM Behavioural State Machines.

BT Behavior Tree.

BWAPI Brood War Application Programming Interface.

C-SPARQL Continuous SPARQL.

CCN Content-Centric Networking.

CDCL Conflict-Driven Clause Learning.

CEP Complex Event Processing.

CHR Constraint Handling Rules.

CI Computational Intelligence.

CQELS Continuous Query Evaluation over Linked Stream.

CQL Continuous Query Language.

CQ Conjunctive Query.

CSS Cascading Style Sheets.

CWA Closed World Assumption.

DBMS DataBase Management System.

DB DataBase.

DDL Data Definition Language.

DLP Disjunctive Logic Programming.

DLV DATALOG WITH DISJUNCTION.

DML Data Manipulation Language.

DPLL Davis-Putnam-Logemann-Loveland.

xxiii

DSMS Data Stream Management System.

DTM Datasphere Transducer Model.

EDB Extensional DataBase.

EGD Equality-Generating Dependency.

ELE ETALIS Language for Events.

EP-SPARQL Event Processing SPARQL.

FO First-Order.

FPS first-person shooter.

FSM finite-state machine.

GCO Guess/Check/Optimize.

GDI Geospatial Data Infrastructure.

GOAP Goal-Oriented Action Planning.

GPS Global Positioning System.

GUI Graphical User Interface.

HTML HyperText Markup Language.

HTTP Hypertext Transfer Protocol.

ICT Information and Communication Technology.

IDB Intensional DataBase.

IDC International Data Corporation.

IDE Integrated Development Environment.

INSTANS Incremental eNgine for STANding Sparql.

IQM interquartile mean.

IRI Internationalized Resource Identifier.

IoT Internet of Things.

JNI Java Native Interface.

JPA Java Persistence API.

JSON JavaScript Object Notation.

KB Knowledge Base.

KR&R Knowledge Representation and Reasoning.

KR Knowledge Representation.

LARS Logic-based framework for Analyzing Reasoning over Streams.

LSD Linked Stream Data.

LUBM Lehigh University Benchmark.

OBDA Ontology-Based Data Access.

xxiv

ODBC Open DataBase Connectivity.

ORM Object-Relational Mapping.

OSS open-source software.

OS Operating System.

OWA Open World Assumption.

OWL Web Ontology Language.

PBSG physics-based simulation game.

PCWA Progressive Closing World Assumption.

PDDL Planning Domain Definition Language.

PSA Perfect Synchronization Assumption.

Potassco Potsdam Answer Set Solving Collection.

QBF Quantified Boolean Formula.

RDBMS Relational DataBase Management System.

RDF Resource Description Framework.

RFID Radio Frequency IDentification.

RSP RDF Stream Processing.

RTS real-time strategy.

SCC Strongly Connected Component.

SDP statistics for derived predicates.

SMT Satisfiability Modulo Theories.

SPARQL SPARQL Protocol and RDF Query Language.

SPE Stream Processing Engine.

SQL Structured Query Language.

SSW Semantic Sensor Web.

STREAM STanford stREamdatA Manager.

strRS Streaming RDF/SPARQL.

TGD Tuple-Generating Dependency.

TMS Truth Maintenance Systems.

UCQ Union of Conjunctive Queries.

UML Unified Modelling Language.

URL Uniform Resource Locator.

VADA Value-Added DAta systems.

W3C World Wide Web Consortium.

xxv

Introduction

In the early ’70, there has been a big hype on Logic Programming and its capabilities
and potentialities seemed endless: time demonstrated however that this was not
entirely true. In this Thesis, we investigate different scenarios exhibiting contexts
where Logic Programming appears to be not suitable; we show how Logic Program-
ming, if properly tuned and combined with other techniques and formalisms, plays
a prominent role in them, and we identify which are the gaps still to be closed to
make Logic Programming a formalism up to its encouraging promises.

Among these challenging scenarios, we can include the so called “Web of data”.
The rise of the “Web of data”, whose ultimate goal is to develop systems that can
support trusted interactions over the network and, in particular, of the “Semantic
Web”, that refers to W3C’s vision of the Web of Linked Data, led to the need to
process huge amounts of heterogeneous data and the relationships between them.
This collection of interrelated datasets on the Web, often referred to as Linked Data,
are in a standard format and are reachable and manageable by Semantic Web tools.
Linked Data are empowered by technologies such as RDF, SPARQL, OWL and these
Semantic Web technologies enable people to create data stores on the Web, build
vocabularies, and write rules for handling data.

Nowadays many applications need to process dynamic (rapidly changing) data and
especially “data streams”, i.e., unbounded sequences of time-varying data elements,
and they need to be elaborated promptly; however, there are currently only a few
ways to perform complex reasoning tasks on them and only very recently a com-
pletely declarative way to perform this has been introduced.
The combination of reasoning techniques with data streams gives rise to Stream
Reasoning, an unexplored, yet high impact, research area (see Chapter 2).

A further promising application field requiring advanced and complex reasoning
capabilities is the so-called “Internet of Things (IoT)”, an area that is having a tre-
mendous growth and that is predicted to expand even more in the following years1.
The IoT represents an evolution in which objects are capable of interacting with

1Gartner. http://www.gartner.com/newsroom/id/3598917

1

http://www.gartner.com/newsroom/id/3598917

other objects; in other words, IoT concerns about providing knowledge and insights
regarding objects (i.e., things), the physical environment, the human and social
activities in these environments (as may be recorded by devices), and enabling sys-
tems to take actions based on the knowledge obtained. Clearly, most of the data
coming from these “objects” are in form of “flows”, and many advanced applica-
tions can benefit from the ability to process these data streams in real-time. In this
respect, Real-Time Smart City Applications are a notable and important example.

At the same time, the amount of data that we are collecting in the “Web of Data”
and from the IoT devices is enormous and, usually, the data are “complex” (con-
sisting of both structured and unstructured data) and they contain a multitude of
useful information that needs to be extracted and analysed. Commonly this massive
amount of data is referred as Big Data and is described by the so-called 4 V’s (see
Chapter 3).
But it is not the amount of data that is important, it is what the users do with the
data that matters and, for this reason, different kinds of analysis are needed. Indeed,
to extract insights from this “complex” data, specific technologies and algorithms are
needed: as a consequence, in the latest years, the number of logic-based approaches
for reasoning over Big Data is continuously growing.

Another very interesting field, where reasoning techniques that can quickly and ef-
fectively handle various kind of data are needed, is Artificial Intelligence applied to
Games. Video Games are becoming always more popular and widespread and have
evolved into a mass medium2.
AI is a central component of almost every video game and often it is implemen-
ted with ad hoc solutions for the specific game and hard-coded within the game.
However, games are also a very attractive and challenging platform that can be
used to test and improve Artificial Intelligence techniques. Historically, very basic
AI techniques have been used to design and implement games’ AIs but, lately, more
advanced approaches have been integrated (see Chapter 4).

The design and development of “Intelligent Agents” is now becoming a trend in the
IT industry3 and they are the base of many promising strategy technologies of the
future4. Intelligent agents are also the base of many AI Competitions, especially the
ones related to games, and they motivate researchers to invent novel and powerful
solutions. The techniques developed or improved by using games as test-bed sys-
tems are eventually applied in many other fields and have a profound impact on
the (real) lives of several peoples.

2Entertainment Software Association. http://www.theesa.com/about-esa/industry-facts
3Gartner. http://www.gartner.com/newsroom/id/3143521
4Gartner. http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-

trends-2017

2 Introduction

http://www.theesa.com/about-esa/industry-facts
http://www.gartner.com/newsroom/id/3143521
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017
http://www.gartner.com/smarterwithgartner/gartners-top-10-technology-trends-2017

Despite the suitability of Logic Programming in Problem Solving and Knowledge Rep-
resentation and Reasoning (which can be called the “canonical” setting), it is unclear
whether this paradigm can play a role in other “non-conventional” settings like the
above, in which a combination of the following might be noticed (i) there are par-
ticular time and size demands; (ii) input data is not entirely available but appears
in the form of streams; or, (iii) input data materializes while reasoning as a con-
sequence of previous actions, like in video-games.

Indeed, Logic Programming has been applied in many different areas, and it is best
used for problems where a properly defined search space can be identified and
has to be explored in full. For this reason, almost all the approaches tried so far
have focused on problems where the amount of data is not huge, the data are
all stored in few well-defined sources, and they are often completely available at
the beginning of the computation. Therefore, most of the methodologies and the
procedures designed and developed up to now focused on this kind of problems, for
instance taking ideas and optimizations from the DataBase (DB) world. However,
the scenarios described above cannot be easily addressed using these methods and
they need tailored ideas and solutions that make these activities computationally
feasible and reliable.

We thus decided to face the challenges of such non-conventional settings, by pro-
posing a number of specific methods, that show which and how Logic Programming
can play a role.

Among the conclusion drawn, we must note that current approaches are often spe-
cific for a fixed language or tool and do not take advantage of the opportunities
that may result from the mixing of diverse paradigms. We strongly believe that it is
important to combine different reasoning methods and technologies. Only a proper
combination of them can lead to a useful “intelligent system”.

Also, we observed that it turns out that Logic Programming is not suitable for every
reasoning/computational task, as it shows some gaps that are confirmed to be diffi-
cult to close.
Such gaps are not only performance-related but also linked to a general difficulty
in leveraging Logic Programming in real world application: lack of tools, integra-
tion with other paradigms, scarce familiarity in the conventional programmer com-
munity, etc.

Nonetheless, we believe that a declarative approach is necessary in a world where
also people that are non-professional programmers are looking for solutions to ef-
fectively automate decision-making and can be also quite useful for advanced pro-
grammers to be more productive.

3

This thesis is organized as follows.
In Chapter 1 we provide some preliminaries about Logic Programming and most of
the formalisms used later on. In Chapter 2 and in Chapter 3, after some prelimin-
aries to introduce the topics we discuss our achievements in the Stream Reasoning
and the Big Data fields, respectively. In Chapter 4 we introduce the vast world of
Artificial Intelligence in Games and we illustrate our contribution in this setting. In
Chapter 5 we describe some frameworks and tools we developed in order to facilit-
ate the adoption and the employment of Logic Programming and solve some classic
and popular obstacles of this paradigm. The work ends with conclusions and an
outlook on future work.

4 Introduction

1Logic Programming

“ ‘Contrariwise,’ continued Tweedledee, ‘if it was so,
it might be; and if it were so, it would be; but as it
isn’t, it ain’t. That’s logic.’

— Lewis Carroll (Charles Lutwidge Dodgson)
(Through the Looking-Glass)

Summary of Chapter 1

The idea of Logic Programming is to represent a given computational problem
by means of a logic program, whose intended models correspond to solutions;
hence, a solver can be used in order to actually find such solutions [206, 343,
373, 386]. The programmer, hence, can concentrate on what the problem is,
and get rid of the burden of defining how to solve it; in other words, Logic
Programming paves the way to purely declarative programming.

The scientific community started to work on Logic Programming in the 1970’s,
as a consequence of works in automatic theorem proving and Artificial Intel-
ligence, with the aim of obtaining automated deduction systems. Since then,
different improvements have been made and they have been applied to sev-
eral new applications scenarios.

In this chapter, we introduce the basic notions about Logic Programming
and some of the main formalisms and solvers that are used in the following
chapters.

Chapter Outline

1.1. Definition and Motivation . 6
1.2. Datalog and Datalog± . 9
1.3. Answer Set Programming (ASP) 21
1.4. Planning Domain Definition Language (PDDL) 40

5

1.1 Definition and Motivation1

1.1.1 What Logic Programming is

Logic Programming is a high level, “human-oriented” language for describing prob-
lems and problem-solving methods to computers.

It is a type of programming paradigm which is based on formal logic.
The main idea is that sentences in First-Order (predicate) logic can be usefully in-
terpreted as programs.

The interpretation of logic as a programming language is based upon the interpret-
ation of implications of the form:

H if B1 and . . . and Bn

H is called the head and B1 and . . . and Bn is called the body.

Usually, a program written in a Logic Programming language is a set of sentences,
called facts and rules. Rules are of the form of the implication mentioned above,
facts are rules that have no body.

Some of the most common Logic Programming languages are Prolog, Datalog and
Answer Set Programming (ASP). It is worth noticing that they are declarative lan-
guages, i.e. they describe relationships between variables (the logic of computation)
without describing an explicit sequence of step to follow or an explicit manipulation
of the computer’s internal state (the control flow).

Prolog2 It was Philippe Roussel chose the name as an abbreviation for ’PROgram-
mation en LOGique’ to refer to the software tool designed to implement a man-
machine communication system in natural language. It can be said that Prolog was
the offspring of a successful marriage between natural language processing and
automated theorem-proving. The idea of using a natural language like French to
reason and communicate directly with a computer seemed like a crazy idea, yet
this was the basis of the project set up by Alain Colmerauer in the summer of ’70.
The main idea was to have a tool for the syntactic and semantic analysis of natural
language, by considering First-Order logic not only as a programming language
but also as a knowledge representation language. In other words, the logical for-
mulation was to serve not only for the different modules of the natural language

1Preliminary definitions adapted from [206, 272, 340, 341, 386]
2Preliminary definitions adapted from [157]

6 Chapter 1 Logic Programming

dialogue system but also for the data exchanged between them, including the data
exchanged with the user. Prolog has then been applied in various problem-solving
areas and has become the most well-known and the most widely used Logic Pro-
gramming language. For more information about Prolog see also [99, 151, 156,
343, 451, 544].

One of the main ideas of Logic Programming, which is due to Kowalski, is that
an algorithm consists of two disjoint components, the Logic and the Control. The
Logic component which specifies what is to be done, i.e. is the statement of what
the problem is that has to be solved. The Control component which determines how
it is to be done, i.e. is the statement of how it is to be solved. Generally speaking, a
Logic Programming system should provide ways for the programmer to specify each
of these components. However, separating these two components brings a number
of benefits, not least of which is the possibility of the programmer only having to
specify the logic component of an algorithm and leaving the control to be exercised
solely by the Logic Programming system itself. In other words, an ideal of Logic
Programming is purely declarative programming.

1.1.2 Why Logic Programming is important

The purpose of programming languages is to enable the communication from man-
to-machine of problems and their general means of solutions.

The first programming languages were machine languages. To communicate, the
programmer had to learn the psychology of the machine and to express his prob-
lems in machine-oriented terms. Higher-level languages developed from machine
languages through the provision of facilities for the expression of problems in terms
closer to their original conceptualization.

Concerned with the other end of the man-to-machine communication problem, Lo-
gic Programming derives from efforts to formalize the properties of rational human
thought. For a long time, it was studied with little interest in its potential as a
language for man-machine communication. This potential has been realized by the
discoveries in Computational Logic of ’70 which have made possible the interpret-
ations of sentences in predicate logic as programs, of derivations of computations
and of proof procedures as feasible executors for logic programs.

As programming language, Logic is the language which is entirely user-oriented. It
differs from high-level languages in that it possesses no features which are mean-
ingful only in machine level terms. It differs from functional languages, based on

1.1 Definition and Motivation 7

λ−calculus, in that it derives from the normative study of human logic, rather than
from investigations into the mathematical logic of functions.

Moreover, it has been used for several ambitious programming tasks. For instance,
Computational Logic, as used in Artificial Intelligence, is the agent’s language of
thought3. Sentences expressed in this language represent the agent’s beliefs about
the world as it is and its goals for the way it would like it to be. The agent uses its
goals and beliefs to control its behaviour.

Furthermore, Logic Programming has been used successfully for Knowledge Repres-
entation and Reasoning (KR&R). If we want to design an entity (a machine or a
program) capable of behaving intelligently in some environment, then we need to
supply this entity with sufficient knowledge about this environment. To do that,
we need an unambiguous language capable of expressing this knowledge, together
with some precise and well-understood way of manipulating sets of sentences of the
language which will allow us to draw inferences, answer queries, and update both
the Knowledge Base and the desired program behaviour. A good knowledge rep-
resentation language should allow construction of elaboration tolerant knowledge
bases, i.e., bases in which small modifications of the informal body of knowledge
correspond to small modifications of the formal base representing this knowledge.
Around 1960, McCarthy [413, 414] proposed the use of logical formulas as a basis
for a knowledge representation language of this type. It was soon suggested, how-
ever, that this tool is not always adequate [427]. This may be especially true in
modelling common-sense behaviour of agents when additions to the agent’s knowl-
edge are frequent and inferences are often based on the absence of knowledge. It
seems that such reasoning can be better modelled by logical languages with non-
monotonic consequence relations which allow new knowledge to invalidate some
of the previous conclusions.

After years of research, the theoretical properties of several flavours of Logic Pro-
gramming are well understood, and solving technologies, as evidenced by the avail-
ability of a number of robust and efficient systems, are mature for practical ap-
plications and nowadays many different domains have increasingly employed logic
formalisms. In the following sections, more details about different Logic Program-
ming languages, some of which non-monotonic, are described in order to clearly
define their potentialities, their weaknesses and the main differences among them.
This should provide a good foundation to justify the choices made in the various
scenarios described in the next chapters.

For more information about Logic Programming see also [87, 342, 517].
3In Artificial Intelligence, an agent is an entity, embedded in a real or artificial world, that can observe

the changing world and perform actions on the world

8 Chapter 1 Logic Programming

1.2 Datalog and Datalog±4

Datalog [4] is a well-known DataBase query language based on the based on the
Logic Programming paradigm that uses disjunction-free logic programs, where no
functions are allowed [141, 567].

The Datalog language has been designed and intensively studied in the DataBase
community from the ’80. The focus has been mostly concentrated on well-formalized
issues, like the definition of the rule-based language and the definition of optimiz-
ation methods for various types of Datalog rules, together with the study of their
efficiency. In parallel, various experimental projects have shown the feasibility of
Datalog programming environments.

1.2.1 Language Definition5

Language Syntax

Datalog is in many respects a simplified version of general Logic Programming. A
logic program consists of a finite set of facts and rules. Facts are assertions about a
relevant piece of the world, rules are sentences which allow us to deduce facts from
other facts. Note that rules, in order to be general, usually contain variables. Both
facts and rules are particular forms of knowledge.

In the formalism of Datalog both facts and rules are represented as Horn clauses of
the general shape

L0 : − L1, . . . , Ln

where each Li, is a literal of the form pi(t1, . . . , tki
) such that pi is a predicate symbol

and the tj are terms. A term is either a constant or a variable. The left-hand side
(LHS) of a Datalog clause is called its head and the right-hand side (RHS) is called
its body. The body of a clause may be empty. Clauses with an empty body represent
facts; clauses with at least one literal in the body represent rules.

We will use the following notational convention: constants and predicate symbols
are strings beginning with a lower-case character; variables are strings beginning
with an upper-case character. Note that for a given Datalog program it is always
clear from the context whether a particular non-variable symbol is a constant or a
predicate symbol. We require that all literals with the same predicate symbol are of

4Preliminary definitions adapted from [140, 195, 196]
5Preliminary definitions adapted from [140]

1.2 Datalog and Datalog± 9

the same arity, i.e., that they have the same number of arguments. A literal, fact,
rule, or clause which does not contain any variables is called ground.

Any Datalog program P must satisfy the following safety conditions:

• Each fact of P is ground.

• Each variable which occurs in the head of a rule of P must also occur in the
body of the same rule.

These conditions guarantee that the set of all facts that can be derived from a Data-
log program is finite.

Datalog and Relational Databases

In the context of general Logic Programming it is usually assumed that all the knowl-
edge (facts and rules) relevant to a particular application is contained within a
single logic program P (or two of them, one for the “facts” and one for the “rules”,
that can be eventually combined in a single one). Datalog, on the other hand, has
been developed for applications which use a large number of facts stored in a re-
lational DataBase. Therefore, we will always consider two sets of clauses: a set
of ground facts, called the Extensional DataBase (EDB), physically stored in a rela-
tional DataBase, and a Datalog program P called the Intensional DataBase (IDB).
The predicates occurring in the EDB and in P are divided into two disjoint sets:
the EDB-predicates, which are all those occurring in the Extensional DataBase and
the IDB-predicates, which occur in P but not in the EDB. We require that the head
predicate of each clause in P be an IDB-predicate. EDB-predicates may occur in P ,
but only in clause bodies.

Ground facts are stored in a relational DataBase; we assume that each EDB-predicate
r corresponds to exactly one relation R of our DB such that each fact r(c1, . . . , cn)
of the EDB is stored as a tuple ⟨c1, . . . , cn⟩ of R.

Also, the IDB-predicates of P can be identified with relations, called IDB-relations,
or also derived relations, defined through the program P and the EDB. IDB relations
are not stored explicitly and correspond to relational views. The materialization of
these views, i.e., their effective (and efficient) computation, is the main task of a
Datalog compiler or interpreter.

Note that a Datalog program can be considered as a query against an Extensional
DataBase, producing as answer some relations. In this setting, the distinction
between the two sets of clauses makes yet more sense. Usually, a DataBase (in our
case the EDB) is considered as a time-varying collection of information. A query
(in our case, a program P), on the other hand, is a time-invariant mapping which

10 Chapter 1 Logic Programming

associates a result to each possible DataBase state. For this reason, we will formally
define the semantics of a Datalog program P as a mapping from DataBase states to
result states. The DataBase states are collections of EDB-facts and the result states
are IDB-facts.

Usually Datalog programs define large IDB-relations. It often happens that a user is
interested in a subset of these relations. To express such an additional constraint,
one can specify a goal to a Datalog program. A goal is a single literal preceded by
a question mark and a dash (?−). Goals usually serve to formulate ad-hoc queries
against a view defined by a Datalog program.

Language Semantics

Each Datalog fact F can be identified with an atomic formula F ∗ of First-Order
Logic. Each Datalog rule R of the form L0 : − L1, . . . , Ln represents a First-Order
formula R∗ of the form ∀X1, . . . , ∀Xm(L1 ∧ · · · ∧ Ln ⇒ L0), where X1, . . . , Xm

are all the variables occurring in R. A set S of Datalog clauses corresponds to the
conjunction S∗ of all formulas C∗ such that C ∈ S. The Herbrand Base HB is the
set of all facts that we can express in the language of Datalog, i.e., all literals of the
form p(c1, . . . , ck) such that all ci are constants. Furthermore, let EHB denote the
extensional part of the Herbrand Base, i.e., all literals of HB whose predicate is an
EDB-predicate and, accordingly, let IHB denote the set of all literals of HB whose
predicate is an IDB-predicate. If S is a finite set of Datalog clauses, we denote by
cons(S) the set of all facts that are logical consequences of S∗.

The semantics of a Datalog program P can now be described as a mapping MP from
EHB to IHB which to each possible Extensional DataBase E ∈ EHB associates
the set MP (E) of intensional “result facts” defined by MP (E) = cons(P ∪E)∩IHB.
Let K and L be two literals (not necessarily ground). We say that K subsumes L,
denoted by K ▷ L, if there exists a substitution Θ of variables such that KΘ = L,
i.e., if Θ applied to K yields L. If K ▷ L we also say that L is an instance of K.
When a goal “? − G” is given, then the semantics of the program P w.r.t. this goal
is a mapping MP,G, from EHB to IHB defined as follows

∀E ⊆ EHB MP,G(E) = {H|H ∈MP (E) ∧G > H}

An Interpretation (in the context of Datalog) consists of an assignment of a concrete
meaning to constant and predicate symbols. A Datalog clause can be interpreted
in several different ways. A clause may be true under a certain interpretation and
false under another one. If a clause C is true under a given interpretation, we say
that this interpretation satisfies C.

1.2 Datalog and Datalog± 11

The concept of logical consequence, in the context of Datalog, can be defined as
follows: a fact F follows logically from a set S of clauses, iff each interpretation
satisfying every clause of S also satisfies F . If F follows from S, we write S |= F .

Note that this definition captures quite well our intuitive understanding of logical
consequence. However, since general interpretations are quite unhandy objects, we
will limit ourselves to consider interpretations of a particular type, called Herbrand
Interpretations.

A Herbrand Interpretation assigns to each constant symbol “itself”, i.e., a lexico-
graphic entity. Predicate symbols are assigned predicates ranging over constant
symbols. Thus, two non-identical Herbrand Interpretations differ only in the re-
spective interpretations of the predicate symbols. For this reason, any Herbrand
Interpretation can be identified with a subset I of the Herbrand Base HB. This sub-
set contains all the ground facts which are true under the interpretation. Thus, a
ground fact p(c1, . . . , cn) is true under the interpretation I iff p(c1, . . . , cn) ∈ I. A
Datalog rule of the form L0 : − L1, . . . , Ln is true under I iff for each substitution
Θ which replaces variables by constants, whenever L1Θ ∈ I∧ · · · ∧LnΘ ∈ I then it
also holds that L0Θ ∈ I. A Herbrand Interpretation which satisfies a clause C or a
set of clauses S is called a Herbrand Model for C or, respectively, for S.

1.2.2 Language Extensions

The Datalog syntax considering in the previous section corresponds to a very re-
stricted subset of First-Order logic and is often referred to as pure Datalog. Several
extensions of pure Datalog have been proposed in the literature. Among them,
some of the most important are built-in predicates, negation, disjunction (in the
head) and “complex objects” (i.e. function symbols).

Built-in Predicates

Built-in predicates (or “built-ins”) are expressed by special predicate symbols such
as >, <, ≥, ≤ =, ̸= with a predefined meaning. These symbols can occur in the
right-hand side of a Datalog rule; they are usually written in infix notation.

From a formal point of view, built-ins can be considered as EDB-predicates with a
different physical realization than ordinary EDB-predicates: they are not explicitly
stored in the EDB but are implemented as procedures which are evaluated during
the execution of a Datalog program. However, built-ins correspond in most cases to
infinite relations, and this may endanger the safety of Datalog programs.

12 Chapter 1 Logic Programming

Safety, as mentioned before, means that a Datalog program should always have a
finite output, i.e., the intensional relations defined by a Datalog program must be
finite. It is easy to see that safety can be guaranteed by requiring that each variable
occurring as argument of a built-in predicate in a rule body must also occur in an
ordinary predicate of the same rule body, or must be bound by an equality (or a
sequence of equalities) to a variable of such an ordinary predicate or to a constant.
Here, by “ordinary predicate”, we mean a non-built-in predicate.

In a similar way, arithmetical built-in predicates can be used.

Negation

In pure Datalog, the negation sign “¬” is not allowed to appear. However, by ad-
opting the Closed World Assumption (CWA) [425, 491], we may infer negative facts
from a set of pure Datalog clauses.

In Classical Logic unstated information does not assume a truth value: that is, when
an assertion is not found as a known fact, nothing can be said about its truth value.
On the other hand, in the DataBase realm, the facts that have neither been asserted
nor inferred are considered as false. The first attitude is known as the Open World
Assumption (OWA), while the second is the Closed World Assumption (CWA), and
each of them is perfectly coherent with the framework in which it is assumed.

The “closed” view adopted in the DataBase world also has two more aspects, namely
the unique name assumption, which states that individuals with different names are
different, and the domain closure assumption, which comes in different flavours but
basically states that there are no other individuals than those in the DataBase.

Note that the CWA is not a universally valid logical rule, but just a principle that
one may or may not adopt, depending on the semantics given to a language.

In the context of Datalog, the CWA can be formulated as follows:

CWA If a fact does not logically follow from a set of Datalog clauses, then we
conclude that the negation of this fact is true.

Negative Datalog facts are positive ground literals preceded by the negation sign
(¬).

The CWA applied to pure Datalog allows us to deduce negative facts from a set S of
Datalog clauses. It does not, however, allow us to use these negative facts in order
to deduce some further facts.

1.2 Datalog and Datalog± 13

More formally, let us define Datalog¬ as the language whose syntax is that of Data-
log except that negated literals are allowed in rule bodies. Accordingly, a Datalog¬

clause is either a positive (ground) fact or a rule where negative literals are allowed
to appear in the body. For safety reasons we also require that each variable occur-
ring in a negative literal of a rule body also occurs in a positive literal of the same
rule body.

In order to define the semantics of Datalog¬ programs, we first generalize the notion
of the Herbrand Model to cover negation in rule bodies.
For more information about the semantics of Datalog¬ see also [3, 333, 510].

Moreover, a specific policy of choosing a particular Herbrand Model, and thus of
determining the semantics of a Datalog¬ program, referred to as Stratified Datalog¬

allows to have a natural and intuitive way define a semantics. However, it does
not apply to all Datalog¬ programs, but only to particular sub-class, the so-called
stratified programs.
For more information about stratified programs see also [28, 331, 332, 508].

Disjunction

A disjunctive logic program is a logic program where disjunction may occur in the
rule heads.

Many of the remarks made for Datalog¬ are valid also in this case.

The usefulness of disjunctive rules for Knowledge Representation, DataBase query-
ing, and for representing incomplete information, is generally acknowledged [54,
274].

Various semantics of DLPs have been proposed; most of them are extensions of the
well-known semantics of Logic Programming (with and without negation) and they
are commonly based on the paradigm of minimal models.
For more details see [194, 274, 387, 426, 478, 479, 590].

Complex Objects

The “objects” handled by pure Datalog programs correspond to the tuples of rela-
tions which in turn are made of attribute values. Each attribute value is atomic, i.e.,
not composed of sub-objects; thus the underlying data model consists of relations
in first normal form. This model has the advantage of being both mathematically
simple and easy to implement. On the other hand, several application areas re-
quire the storage and manipulation of (deeply nested) structured objects of high

14 Chapter 1 Logic Programming

complexity. Such complex objects cannot be represented as atomic entities in the
normalized relational model but are broken into several autonomous objects. This
implies a number of severe problems of conceptual and technical nature.

For this reason, the relational model has been extended in several ways to allow
the compact representation of complex objects. Datalog can be extended accord-
ingly. The main features that are added to Datalog in order to represent and ma-
nipulate complex objects are function symbols as a glue for composing objects from
sub-objects and set constructors for being able to build objects which are collec-
tions of other objects. Function symbols are “uninterpreted”, i.e., they do not have
any predefined meaning. Usually one also adds a number of predefined functions
for manipulating sets and elements of sets to the standard vocabulary of Datalog.
There exist several different approaches for incorporating the concept of a complex
structured object into the formalism of Datalog [318, 350, 564].

Using complex objects in Datalog is not as easy as it might appear. Several problems
have to be taken into consideration. First of all, the use of function symbols may
endanger the safety of programs. It is undecidable whether a Datalog program with
function symbols has a finite or an infinite result. The simplest solution is to leave
the responsibility to the programmer. A similar problem is the finiteness of sets.
Furthermore, not all Datalog programs with sets have a well-defined semantics. In
particular, one should avoid self-referential set definitions. Such definitions come
close to Russell’s paradox. A large class of programs free of self-reference, called ad-
missible programs, is defined in [85]. Note also that the test whether two terms (or
literals) involving sets match is a computationally hard problem. This is a particular
case of theory unification [545].

1.2.3 Datalog±6

A natural and very peculiar extension of Datalog programs are the so-called existen-
tial Datalog programs, or Datalog∃ programs for short, that extend the pure Datalog
allowing existentially quantified variables in rule heads. This language is highly
expressive and enables easy and powerful knowledge-modelling, but the presence
of existentially quantified variables makes reasoning over Datalog∃ undecidable, in
the general case.

Datalog∃ is the base of a recently introduced family of Datalog-based languages,
called Datalog±, which is a new framework for tractable ontology querying. Datalog
is extended by allowing existential quantifiers, the equality predicate, and the truth
constant false to appear in rule heads. At the same time, the resulting language

6Preliminary definitions adapted from [58, 118, 120, 286, 361, 459]

1.2 Datalog and Datalog± 15

is syntactically restricted, so as to achieve decidability, and in some relevant cases
even tractability.

In general, the Datalog± family intends to collect all expressive extensions of Data-
log which are based on Tuple-Generating Dependencies (TGDs) (which are Datalog∃

rules with possibly multiple atoms in rule heads), Equality-Generating Dependen-
cies (EGDs) and negative constraint. In particular, the “plus” symbol refers to any
possible combination of these extensions, while the “minus” one imposes at least
decidability, since, as mentioned before, Datalog∃ alone is already undecidable.

A Datalog∃ rule r is a finite expression of the form:

∀X∃Y atom[X′∪Y] ← conj[X]

where (i) X and Y are disjoint sets of variables (next called ∀-variables and ∃-
variables, respectively); (ii) X ′ ⊆ X; (iii) atom[X′∪Y] stands for an atom containing
only and all the variables inX ′∪Y ; (iv) conj[X] stands for a conjunct (a conjunction
of zero, one or more atoms) containing only and all the variables in X. Constants
are also allowed in r. In the following, head(r) denotes atom[X′∪Y], and body(r)
the set of atoms in conj[X]. Universal quantifiers are usually omitted to lighten the
syntax, while existential quantifiers are omitted only if Y is empty. In the second
case, r coincides with a standard Datalog rule. If body(r) = ∅, then r is usually
referred to as a fact. In particular, r is called existential or ground fact according to
whether r contains some ∃-variable or not, respectively. A Datalog∃ program P is
a finite set of Datalog∃ rules. We denote by preds(P) ⊆ Π the predicate symbols
occurring in P , by data(P) all the atoms constituting the ground facts of P , and by
rules(P) all the rules of P being not ground facts.

Given a Datalog∃ program P , a Conjunctive Query (CQ) Q over P is a First-Order
(FO) expression of the form:

∃Y conj[X∪Y]

where X are its free variables, and conj[X∪Y] is a conjunct containing only and all
the variables in X ∪ Y and possibly some constants. To highlight the free variables,
we write Q(X) instead of Q. Query Q is called Boolean Conjunctive Query (BCQ) if
X = ∅. Moreover, Q is called atomic if conj is an atom. Finally, atoms(Q) denotes
the set of atoms in conj.

The main reasoning task in Datalog± is Query Answering under the so-called certain-
answers semantics.

16 Chapter 1 Logic Programming

If Q(X) is a Conjunctive Query (CQ) or a Union of Conjunctive Queries (UCQ) with
free variables X, D a DataBase over a domain ∆ whose tuples are interpreted in
the usual way as ground facts, and P a Datalog± program, then the answer to Q
consists of all those tuples a of ∆-elements such that D ∪ P |= Q(a).

A number of QA-decidable (i.e. that guarantee the decidability of Query Answering)
Datalog± languages have been defined in the literature. They rely on four main
paradigms (classes):

Weakly-acyclic [179, 213, 293, 412] based on Weakly Acyclic TGDs introduced in
the context of data exchange, guarantees the existence of a finite universal
model, which in turn implies the decidability of Query Answering.

Guarded [42, 118, 119] ensures the existence of treelike universal models, which
in turn implies the decidability of query answering. A rule is Guarded if it
has an atom which contains all the body variables. An important subclass of
Guarded Datalog± is Linear Datalog±, where rules have only one body-atom.

Sticky [121, 122, 288] guarantees the termination of backward resolution, and
thus the decidability of query answering. The key idea underlying Sticky is
that the body-variables which are in a join always are propagated (or “stick”)
to the inferred atoms. The main goal of Stickiness was the definition of a
language that allows for joins in rule bodies, which are not always expressible
via Guarded rules.

Shy [18, 360, 361] an easily recognizable fragment of parsimonious programs, that
significantly extends both Datalog and Linear-Datalog∃, while preserving the
same (data and combined) complexity of query answering over Datalog, al-
though the addition of existential quantifiers.

It is worth noticing that there are also QA-decidable “abstract” classes of Datalog∃

programs, called Finite-Expansion-Sets, Finite-Treewidth-Sets, Finite-Unification-Sets
and Parsimonious-Sets, depending on semantic properties that capture the four men-
tioned paradigms, respectively [361, 434].

Many other paradigms have been proposed.
Notable examples are glut-guardedness [348] obtained by combining weak-acyclicity
and guardedness, weak-stickiness [123] obtained by joining weak-acyclicity and stick-
iness, and tameness [287] obtained by combining guardedness and stickiness.

In short, Datalog± is a rule-based formalism that combines the advantages of Logic
Programming in Datalog with features for expressing ontological knowledge and
advanced data modelling constraints. Datalog± provides a uniform framework for
query answering and reasoning with incomplete data.

1.2 Datalog and Datalog± 17

Note that the unique least Herbrand Model of a Datalog program and a DataBase is
always finite, and all values appearing in it are from the active domain of the given
EDB, i.e., all values that appear as arguments of EDB facts or that are explicitly
mentioned in the Datalog program. For ontology querying, however, it would be
desirable that a Datalog extension could be able to express the existence of certain
values that are not necessarily from the active domain of the EDB. This can be
achieved by allowing existentially quantified variables in rule heads [463].

The chase is a well-known procedure that allows of answering CQs. The chase was
introduced as a procedure for testing implication of dependencies [398], but later
also employed for checking query containment [314] and query answering on in-
complete data under relational dependencies [124]. Informally, the chase procedure
is a process of repairing a DataBase w.r.t. a set of dependencies, so that the result of
the chase satisfies the dependencies. The chase of a DataBase D in the presence of
a program P is the process of iterative enforcement of all dependencies in P , until
a fixpoint is reached. The result of such a process, which we also call chase, can
be infinite and, in this case, this procedure cannot be used without modifications
in decision algorithms. Nevertheless, the result of a chase serves as a fundamental
theoretical tool for answering queries in the presence of TGDs [124, 213] because
it is representative of all models of D ∪ P .

1.2.4 Datalog and Datalog± solvers

In the last 30 years many Datalog engines have been developed, using different
programming languages. Most of them are not only able to evaluate only pure
Datalog programs but they support different extensions of the language.

Among them:

Apache Jena7

A well-known free and open source Java framework for building Semantic
Web and Linked Data applications that includes Datalog engine.

bddbddb8 [579]
bddbddb (short for BDD-Based Deductive DataBase) is an implementation of
standard Datalog. It represents the relations using binary decision diagrams
(BDDs), a data structure that can efficiently represent large relations and
provide efficient set operations. This allows bddbddb to efficient represent
and operate on extremely large relations.

7From https://jena.apache.org
8From http://bddbddb.sourceforge.net
9From http://research.cs.wisc.edu/coral

18 Chapter 1 Logic Programming

https://jena.apache.org
http://bddbddb.sourceforge.net
https://jena.apache.org
http://bddbddb.sourceforge.net
http://research.cs.wisc.edu/coral

Coral9 [486]
A deductive system which supports a rich declarative language, and an inter-
face to C++ which allows for a combination of declarative and imperative
programming. The declarative query language supports general Horn clauses
augmented with complex terms, set-grouping, aggregation, negation, and re-
lations with tuples that contain (universally quantified) variables.

Inter4QL10 [535]
An open-source command-line interpreter of the 4QL language implemented
in C++. 4QL is a rule-based DataBase query language with negation allowed
in premises and conclusions of rules. 4QL is founded on a four-valued se-
mantics with truth values: true, false, inconsistent and unknown.

IRIS11 [90]
IRIS (short for Integrated Rule Inference System) is an extensible reasoning
engine for expressive rule-based languages and aims to be a framework con-
sisting of a collection of components which cover various aspects of reasoning
with formally represented knowledge.

pyDatalog12

Adds the Logic Programming paradigm to Python’s extensive toolbox, in a py-
thonic way. Logic programmers can use the extensive standard library of
Python, and Python programmers can express complex algorithms quickly.

LogicBlox13 [35]
A commercial product that aims to redesign the enterprise software stack cent-
ring it around a unified declarative programming model, based on an exten-
ded version of Datalog.

Soufflé14 [317]
A translator of declarative Datalog programs into the C++ language. It is used
as a domain-specific language for static program analysis, over large code
bases with millions of lines of code. It aims at producing high-performance
C++ code that can be compiled natively on the target machine.

XSB15 [511]
A in-memory Logic Programming and Deductive DataBase system for Unix and
Windows. The XSB system is an open-source multi-threaded Logic Program-
ming system that extends Prolog with new semantic and operational features,
mostly based on the use of Tabled Logic Programming or tabling.

dlv Extensively described in Section 1.3.5

10From http://4ql.org
11From https://github.com/NICTA/iris-reasoner
12From https://sites.google.com/site/pydatalog
13From http://www.logicblox.com
14From http://souffle-lang.org
15From http://xsb.sourceforge.net

1.2 Datalog and Datalog± 19

http://research.cs.wisc.edu/coral
http://4ql.org
https://github.com/NICTA/iris-reasoner
https://sites.google.com/site/pydatalog
http://www.logicblox.com
http://souffle-lang.org
http://xsb.sourceforge.net
http://4ql.org
https://github.com/NICTA/iris-reasoner
https://sites.google.com/site/pydatalog
http://www.logicblox.com
http://souffle-lang.org
http://xsb.sourceforge.net

I-dlv16 [133]
The new intelligent grounder of DLV (part of DLV2, described in Section 1.3.5).
It is an ASP instantiator that natively supports the ASP-Core-2 standard lan-
guage. Its core instantiation mechanism is based on semi-naive DataBase
techniques. I-DLV is also a full-fledged deductive DataBase system, supporting
query answering powered by the Magic Sets technique.

In the Datalog± framework various systems for different paradigms have been de-
veloped:

Nyaya [571]
A system able to treat the First-Order rewritable fragments of Datalog±, that
is, linear and sticky Datalog±. In fact, the given set of rules and query are
compiled into an SQL query, which is then evaluated over the Extensional
DataBase.

DLV∃17 [361]
A powerful system for answering conjunctive queries over shy Datalog± pro-
grams. It implements a bottom-up evaluation strategy inside the well-known
Answer Set Programming (ASP) system DLV.

Alaska [337]
Similarly to Nyaya, is able to treat the First-Order rewritable fragments of
Datalog±, and it is based on SQL-rewritings (backward chaining paradigm).

IRIS± [289]
An extension of the IRIS Datalog engine implementing the XRewrite algorithm
and its optimizations techniques. XRewrite is a query rewriting technique for
linear and sticky TGDs that is based on backward chaining resolution.

RDFox18 [440]
A highly scalable in-memory RDF triple store that supports shared memory
parallel Datalog reasoning. It uses novel and highly-efficient parallel reason-
ing algorithms (FBF) for the computation and incremental update of Datalog
materialisations.

Graal19 [41]
A Java toolkit dedicated to querying knowledge bases within the framework
of Datalog±. It takes as input a DLGP20 file and a query and answers the query
using various means (saturation, query rewriting).

16From https://github.com/DeMaCS-UNICAL/I-DLV/wiki
17From https://www.mat.unical.it/kr2012
18From https://www.cs.ox.ac.uk/isg/tools/RDFox
19From http://graphik-team.github.io/graal
20A textual format for Datalog+

20 Chapter 1 Logic Programming

https://github.com/DeMaCS-UNICAL/I-DLV/wiki
https://www.mat.unical.it/kr2012
https://www.cs.ox.ac.uk/isg/tools/RDFox
http://graphik-team.github.io/graal
https://github.com/DeMaCS-UNICAL/I-DLV/wiki
https://www.mat.unical.it/kr2012
https://www.cs.ox.ac.uk/isg/tools/RDFox
http://graphik-team.github.io/graal

1.3 Answer Set Programming (ASP)21

The need for representing and manipulating complex knowledge arising in Artificial
Intelligence and in other emerging areas, like Knowledge Management and Inform-
ation Integration, has renewed the interest in advanced logic-based formalisms for
Knowledge Representation and Reasoning (KR&R), which started in the early 1980s.
Among them, Disjunctive Logic Programming (DLP), which has first been considered
by Minker [425] in the deductive DataBase context, is one of the most expressive
KR&R formalisms.

Disjunctive logic programs are logic programs where disjunction is allowed in the
heads of the rules and negation may occur in the bodies of the rules. One of the
attractions of Disjunctive Logic Programming is its capability of allowing the natural
modelling of incomplete knowledge. DLP is an advanced formalism for Knowledge
Representation and Reasoning, which is very expressive in a precise mathematical
sense: it allows to express every property of finite structures that is decidable in
the complexity class ΣP

2 (NPNP). Thus, under widely believed assumptions, DLP is
strictly more expressive than normal (disjunction-free) Logic Programming, whose
expressiveness is limited to properties decidable in NP. Importantly, apart from en-
larging the class of applications which can be encoded in the language, disjunction
often allows for representing problems of lower complexity in a simpler and more
natural fashion.

The most widely accepted semantics is the Answer Sets semantics proposed by [274]
as an extension of the stable model semantics of normal logic programs [273]. Ac-
cording to this semantics, a disjunctive logic program may have several alternative
models (but possibly none), called Answer Sets, each corresponding to a possible
view of the world.

Answer Set Programming (ASP) [52] is a form of declarative programming oriented
towards difficult, primarily NP-hard, search problems. As an outgrowth of research
on the use of non-monotonic reasoning in KR, it is particularly useful in knowledge-
intensive applications. ASP is based on the stable model (Answer Set) semantics
of Logic Programming [273], which applies ideas of auto-epistemic logic [429] and
default logic [490] to the analysis of negation as failure.

ASP has a close relationship to other formalisms such as propositional satisfiab-
ility (SAT) [50], Satisfiability Modulo Theories [432, 444], Constraint Handling
Rules [226], Quantified Boolean Formula [512], Planning Domain Definition Lan-
guage [276, 415], and many others.

21Preliminary definitions adapted from [127, 132, 264, 363, 374, 375]

1.3 Answer Set Programming (ASP) 21

Answer Set Programming has become a popular approach to declarative problem-
solving in the field of Knowledge Representation and Reasoning (KR&R). This is
mainly due to its appealing combination of a rich yet simple modelling language
with high-performance solving capacities.

ASP has its roots in:

• Knowledge Representation and (Non-monotonic) Reasoning,

• Logic Programming (with negation),

• Databases, and

• Boolean Constraint Solving.

The fully declarative nature of ASP allows one to encode a large variety of problems
by means of simple and elegant logic programs.

The basic idea of ASP is to represent a given computational problem by a logic
program whose Answer Sets correspond to solutions, and then to use an ASP solver
for finding Answer Sets of the program. That is, to model a given problem domain
and contingent input data with a Knowledge Base (KB) composed of logic assertions,
such that the logic models (Answer Sets22) of KB correspond to solutions of an input
scenario (as shown in Section 1.3.4).

Program

Grounder

Solver

Output

Figure 1.1.: Basic ASP Solving Iterative Workflow.

ASP Solving As with traditional
computer programming, the ASP
solving process amounts to a closed
loop (shown in Figure 1.1).

Its steps can be roughly classified
into:

1. Modelling,

2. Grounding,

3. Solving,

4. Visualizing, and

5. Software Engineering.

See also [325].

22An ASP Knowledge Base might have none, one or many Answer Sets, depending on the problem and
the instance at hand

22 Chapter 1 Logic Programming

Many different extensions and variants are continuously introduced and formally
analysed, and connections with other formalisms are constantly studied (examples
are [69, 105, 106, 269, 299, 462, 563]), below we introduce some of them, which
are used in the following chapters.

1.3.1 Language Definition23

It is worth recalling that a significant amount of work has been carried out by
the scientific community for extending the basic language, in order to increase the
expressive power and improve usability of the formalism. This has led to a variety
of ASP “dialects”, supported by a corresponding variety of ASP systems, that only
share a portion of the basic language. Notably, the community recently agreed
on the definition of a standard input language for ASP systems, namely ASP-Core-
2 [126], which is also the official language of the ASP Competition series [268];
it features most of the advanced constructs and mechanisms with a well-defined
semantics that has been introduced and implemented in the latest years.

Language Syntax

The language described is disjunctive Datalog under the Answer Sets semantics [274]
(which involves two kinds of negation), extended with weak constraints as specified
by the ASP Standardization Working Group in the “ASP-Core-2 – Input Language
Format” document [126].

An ASP program is a set of rules and weak constraints, possibly accompanied by a
(single) query.24

A rule has form
h1 | . . . | hm ← b1, . . . , bn.

where h1, . . . , hm are classical atoms and b1, . . . , bn are literals for m,n ≥ 0.

A predicate atom has form p(t1, . . . , tn), where p is a predicate name, t1, . . . , tn are
terms and n ≥ 0 is the arity of the predicate atom; a predicate atom p() of arity
0 is likewise represented by its predicate name p without parentheses. Given a
predicate atom q, q and ¬q are classical atoms.

23Preliminary definitions adapted from [17, 126]
24Unions of conjunctive queries (and more) can be expressed by including appropriate rules in a

program.

1.3 Answer Set Programming (ASP) 23

A built-in atom has form t ≺ u for terms t and u with ≺ ∈ {“<”, “≤”, “=”, “̸=”,
“>”, “≥”}. Built-in atoms a as well as the expressions a and not a for a classical
atom a are naf-literals.

An aggregate element has form

t1, . . . , tm : l1, . . . , ln

where t1, . . . , tm are terms and l1, . . . , ln are naf-literals for m ≥ 0 and n ≥ 0.

An aggregate atom has form

#aggr{e1; . . . ; en} ≺ u

where e1, . . . , en are aggregate elements for n ≥ 0, #aggr ∈ {“#count”, “#sum”,
“#max”, “#min”} is an aggregate function name,≺ ∈ {“<”, “≤”, “=”, “̸=”, “>”, “≥”}
is an aggregate relation and u is a term. Given an aggregate atom a, the expressions
a and not a are aggregate literals.

Terms are either constants, variables, arithmetic terms or functional terms. Constants
can be either symbolic constants (strings starting with some lowercase letter), string
constants (quoted strings) or integers. Variables are denoted by strings starting with
some uppercase letter. An arithmetic term has form −(t) or (t ⋄ u) for terms t and u
with ⋄ ∈ {“+”, “−”, “∗”, “/”}; parentheses can optionally be omitted in which case
standard operator precedences apply. Given a functor f (the function name) and
terms t1, . . . , tn, the expression f(t1, . . . , tn) is a functional term if n > 0, whereas
f() is a synonym for the symbolic constant f .

A weak constraint has form

:∼ b1, . . . , bn. [w@l, t1, . . . , tm]

where t1, . . . , tm are terms and b1, . . . , bn are literals for m ≥ 0 and n ≥ 0; w and l
are terms standing for a weight and a level. Writing the part “@l” can optionally be
omitted if l = 0; that is, a weak constraint has level 0 unless specified otherwise.

A query Q has form a?, where a is a classical atom.

A program (rule, weak constraint, query, literal, aggregate element, etc.) is ground
if it contains no variables.

There are some syntactic shortcuts, like Anonymous Variables, Choice Rules and Ag-
gregate Relations, which make writing ASP programs easier.

24 Chapter 1 Logic Programming

Language Semantics

The semantics of a program extends the Answer Sets semantics of disjunctive Data-
log programs, originally defined in [274]. A program can be used to model a prob-
lem to be solved: the problem’s solutions correspond to the Answer Sets of the
program (which are computed by the ASP solver). Therefore, a program may have
no Answer Set (if the problem has no solution), one (if the problem has a unique
solution) or several (if the problem has more than one possible solutions).

Given a program P , the Herbrand Universe of P , denoted by UP , consists of all
integers and (ground) terms constructible from constants and functors appearing
in P . The Herbrand Base of P , denoted by BP , is the set of all (ground) classical
atoms that can be built by combining predicate names appearing in P with terms
from UP as arguments. A (Herbrand) interpretation I for P is a consistent subset of
BP ; that is, {q,¬q} ̸⊆ I must hold for each predicate atom q ∈ BP .

A substitution σ is a mapping from a set V of variables to the Herbrand Universe UP

of a given program P . For some object O (rule, weak constraint, query, literal,
aggregate element, etc.), denote by Oσ the object obtained by replacing each oc-
currence of a variable v ∈ V by σ(v) in O.

A variable is global in a rule, weak constraint or query r if it appears outside of ag-
gregate elements in r. A substitution from the set of global variables in r is a global
substitution for r; a substitution from the set of variables in an aggregate element e
is a (local) substitution for e. A global substitution σ for r (or substitution σ for e)
is well-formed if the arithmetic evaluation, performed in the standard way, of any
arithmetic sub-term (−(t) or (t⋄u) with ⋄ ∈ {“+”, “−”, “∗”, “/”}) appearing outside
of aggregate elements in rσ (or appearing in eσ) is well-defined.

Given a collection {e1; . . . ; en} of aggregate elements, the instantiation of {e1; . . . ; en}
is the following set of aggregate elements:

inst({e1; . . . ; en}) =
∪

1≤i≤n{ eiσ | σ is a well-formed substitution for ei }

A ground instance of a rule, weak constraint or query r is obtained in two steps: (1) a
well-formed global substitution σ for r is applied to r; (2) for every aggregate atom
#aggr{e1; . . . ; en} ≺ u appearing in rσ, {e1; . . . ; en} is replaced by inst({e1; . . . ; en})
(where aggregate elements are syntactically separated by “;”).

The arithmetic evaluation of a ground instance r of some rule, weak constraint or
query is obtained by replacing any maximal arithmetic sub-term appearing in r by
its integer value, which is calculated in the standard way.

1.3 Answer Set Programming (ASP) 25

The ground instantiation of a program P , denoted by grnd(P), is the set of arith-
metically evaluated ground instances of rules and weak constraints in P .

Given a program P and a (consistent) interpretation I ⊆ BP , a rule h1 | . . . | hm ←
b1, . . . , bn. in grnd(P) is satisfied w.r.t. I if some h ∈ {h1, . . . , hm} is true w.r.t. I
when b1, . . . , bn are true w.r.t. I; I is a model of P if every rule in grnd(P) is satisfied
w.r.t. I. The reduct of P w.r.t. I, denoted by P I , consists of the rules h1 | . . . | hm ←
b1, . . . , bn. in grnd(P) such that b1, . . . , bn are true w.r.t. I; I is an Answer Set of P if
I is a ⊆-minimal model of P I . In other words, an Answer Set I of P is a model of P
such that no proper subset of I is a model of P I .

The semantics of P is given by the collection of its Answer Sets, denoted by AS(P).

To select optimal members of AS(P), map an interpretation I for P to a set of
tuples as follows:

weak(P, I) = {(w@l, t1, . . . , tm) |

:∼ b1, . . . , bn. [w@l, t1, . . . , tm] occurs in grnd(P)

and b1, . . . , bn are true w.r.t. I }

For any integer l, let
P I

l =
∑

(w@l,t1,...,tm) ∈ weak(P,I),
w is an integer

w

denote the sum of integers w over tuples with w@l in weak(P, I). Then, an Answer
Set I ∈ AS(P) is dominated by I ′ ∈ AS(P) if there is some integer l such that
P I′

l < P I
l and P I′

l′ = P I
l′ for all integers l′ > l. An Answer Set I ∈ AS(P) is optimal if

there is no I ′ ∈ AS(P) such that I is dominated by I ′. Note that P has some (and
possibly more than one) optimal Answer Set if AS(P) ̸= ∅.

Given a program P along with a (single) query a?, let Ans(a, P) denote the set of
arithmetically evaluated ground instances a′ of a such that a′ ∈ I for all I ∈ AS(P).
The set Ans(a, P), which includes all arithmetically evaluated ground instances of a
if AS(P) = ∅, constitutes the answers to a?. That is, query answering corresponds
to cautious (or skeptical) reasoning as defined in [4].

Given a ground query Q = q? of a program P , Q is true if ∀I ∈ AS(P) q is true w.r.t.
I. Otherwise, Q is false. Note that, if AS(P) = ∅, all queries are true.

Given the non-ground queryQ = q(t1, . . . , tn)? of a program P , letAns(Q,P) be the
set of all substitutions σ for Q such that Qσ is true. The set Ans(Q,P) constitutes
the set of answers to Q.

26 Chapter 1 Logic Programming

1.3.2 Knowledge Representation

From the perspective of KR, a set of atoms can be thought of as a description of
a complete state of knowledge: the atoms that belong to the set are known to be
true, and the atoms that do not belong to the set are known to be false. A possibly
incomplete state of knowledge can be described using a consistent but possibly in-
complete set of literals; if an atom p does not belong to the set and its negation does
not belong to the set either then it is not known whether p is true. In the context of
Logic Programming, this idea leads to the need to distinguish between two kinds of
negation: negation as failure and strong (or “classical”) negation. Combining both
forms of negation in the same rule allows expressing the Closed World Assumption –
the assumption that a predicate does not hold whenever there is no evidence that
it does [491]. An ASP program with strong negation can include the Closed World
Assumption rules for some of its predicates and leave the other predicates in the
realm of the Open World Assumption.

Answer Set Programming has been applied to several areas of science and techno-
logy and it is nowadays employed in a variety of applications, ranging from classical
AI to real-world and industrial applications. In fact, main strength of Answer Set Pro-
gramming is its wide range of applicability as a tool for Knowledge Representation
and Reasoning. For instance, it can be used to encode in a highly declarative fashion
problems in the “Deductive Databases” field (like “Reachability” and “Same Gener-
ation”), “Search” problems (like “Seating” and “Ramsey Numbers”), “Optimization
Problems” (like “Maximal Cut” and “Exam Scheduling”) and many others (see [17,
47, 137, 207, 253, 363, 364, 422, 445, 561]).

1.3.3 Declarative Programming Methodology

From the perspective of Answer Set Programming, two kinds of rules play a special
role: those that generate multiple Answer Sets and those that can be used to elimin-
ate some of the Answer Sets of a program.
This observation leads to the development of the “Guess&Check” programming
methodology (that is closely related to the “Generate/Define/Test” methodology).
An extension and refinement of the “Guess&Check” methodology is the Guess/Check-
/Optimize (GCO) methodology, which can be described as follows.

Given a set FI of facts that specify an instance I of some problem P, a GCO program
P for P consists of the following three main parts:

Guessing Part The guessing part G ⊆ P of the program defines the search space,
such that Answer Sets of G ∪ FI represent “solution candidates” for I.

1.3 Answer Set Programming (ASP) 27

Checking Part The (optional) checking part C ⊆ P of the program filters the solu-
tion candidates in such a way that the Answer Sets of G ∪ C ∪FI represent the
admissible solutions for the problem instance I.

Optimization Part The (optional) optimization part O ⊆ P of the program al-
lows expressing a quantitative cost evaluation of solutions by using weak con-
straints. It implicitly defines an objective function f : AS(G ∪ C ∪ FI) → N
mapping the Answer Sets of G ∪ C ∪ FI to natural numbers. The semantics of
G ∪C ∪FI ∪O optimizes f by filtering those Answer Sets having the minimum
value; this way, the optimal (least cost) solutions are computed.

For more information about ASP modelling/methodologies see also [98, 257, 269].

1.3.4 KR&R with ASP: some examples25

In the following, we show how its fully declarative nature allows encoding a large
variety of problems via simple and elegant logic programs.

[3-COL] As a first example, let us consider the well-known 3-Colourability prob-
lem, which consists of the assignment of three colours to the nodes of a graph in
such a way that adjacent nodes always have different colours. This problem is
known to be NP-complete.

Suppose that the nodes and the arcs are represented by a set F of facts with predic-
ates node (unary) and arc (binary), respectively. Then, the following ASP program
allows us to determine the admissible ways of colouring the given graph.

r1 : color(X, r) | color(X, y) | color(X, g) :– node(X).
r2 : :– arc(X,Y), color(X,C), color(Y,C).

Rule r1 (Guess) above states that every node of the graph must be coloured as
red or yellow or green; rule r2 (Check) forbids the assignment of the same colour
to any couple of adjacent nodes. The minimality of Answer Sets guarantees that
every node is assigned only one colour. Thus, there is a one-to-one correspondence
between the solutions of the 3-colouring problem for the instance at hand and the
Answer Sets of F ∪ {r1, r2}: the graph represented by F is 3-colourable if and only
if F ∪ {r1, r2} has some Answer Set.

We have shown how it is possible to deal with a problem by means of an ASP
program such that the instance at hand has some solution if and only if the ASP
program as some Answer Set; in the following, we show an ASP program whose

25Preliminary definitions adapted from [132]

28 Chapter 1 Logic Programming

Answer Sets witness that a property does not hold, i.e., the property at hand holds
if and only if the program has no Answer Sets.

[RAMSEY] The Ramsey Number R(k,m) is the least integer n such that, no matter
how we colour the arcs of the complete graph (clique) with n nodes using two
colours, say red and blue, there is a red clique with k nodes (a red k-clique) or a
blue clique with m nodes (a blue m-clique). Ramsey numbers exist for all pairs of
positive integers k and m [485].

Similarly to what already described above, let F be the collection of facts for in-
put predicates node (unary) and edge (binary), encoding a complete graph with
n nodes; then, the following ASP program PR(3,4) allows to determine whether a
given integer n is the Ramsey Number R(3, 4), knowing that no integer smaller than
n is R(3, 4).

r1 : blue(X,Y) | red(X,Y) :– edge(X,Y).
r2 : :– red(X,Y), red(X,Z), red(Y, Z).
r3 : :– blue(X,Y), blue(X,Z), blue(Y, Z), blue(X,W), blue(Y,W), blue(Z,W).

Intuitively, the disjunctive rule r1 guesses a colour for each edge. The first con-
straint r2 eliminates the colourings containing a red complete graph (i.e., a clique)
on 3 nodes; the second constraint r3 eliminates the colourings containing a blue
clique on 4 nodes. The program PR(3,4) ∪F has an Answer Set if and only if there is
a colouring of the edges of the complete graph on n nodes containing no red clique
of size 3 and no blue clique of size 4. Thus, if there is an Answer Set for a particular
n, then n is not R(3, 4), that is, n < R(3, 4). The smallest n, such that no Answer
Set is found, is the Ramsey Number R(3, 4).

[SUDOKU] A classic Sudoku puzzle consists of a tableau featuring 81 cells, or po-
sitions, arranged in a 9 × 9 grid, which is divided into nine sub-tableaux (regions,
or blocks) containing nine positions each. Initially, a number of positions (between
17 and 35) are filled with a number picked up in the range 1 . . . 9. The aim of the
game is to check whether every empty position can be filled with a number between
1 and 9 in such a way that each row, column and block show all digits from 1 to 9
exactly once.

Let us suppose that a set of facts F is given, representing the schema to be com-
pleted; in particular, a binary predicate pos encodes possible position coordinates;
symbol is a unary predicate encoding possible symbols (numbers); facts of the form
sameblock(x1, y1, x2, y2) state that two positions (x1, y1) and (x2, y2) are within
the same block; facts of the form cell(x, y, n) represent that a position (x, y) is filled
with symbol n.

1.3 Answer Set Programming (ASP) 29

We show next an ASP program Psudoku such that the Answer Sets of Psudoku ∪ F
correspond to the solutions of the Sudoku schema at hand; note that, in general,
well-founded Sudoku instances have only one solution, and thus Psudoku ∪ F will
have a single Answer Set.

r1 : cell(X,Y,N) | nocell(X,Y,N) :– pos(X), pos(Y), symbol(N).

r2 : :– cell(X,Y,N), cell(X,Y,N1), N1 <> N.

r3 : assigned(X,Y) :– cell(X,Y,N).
r4 : :– pos(X), pos(Y),not assigned(X,Y).

r5 : :– cell(X,Y 1, Z), cell(X,Y 2, Z), Y 1 <> Y 2.
r6 : :– cell(X1, Y, Z), cell(X2, Y, Z), X1 <> X2.

r7 : :– cell(X1, Y 1, Z), cell(X2, Y 2, Z), Y 1 <> Y 2, sameblock(X1, Y 1, X2, Y 2).
r8 : :– cell(X1, Y 1, Z), cell(X2, Y 2, Z), X1 <> X2, sameblock(X1, Y 1, X2, Y 2).

Rules r1− r4 guess the number for each cell, ensuring that each cell is filled exactly
one number (symbol); note that the guessed values for the positions complete the
extension of the predicate cell for which some values have been already provided
in F . Rules r5 and r6 check that a number does not occur more than once in the
same row or column, respectively; rules r7 and r8, finally, ensure that two different
cells in the same block do not have the same number.

1.3.5 ASP solvers and Language Extensions

In Answer Set Programming, as mentioned before, search problems are reduced to
computing stable models, and Answer Set solvers – programs for generating stable
models – are used to perform search. The search algorithms used in the design of
many Answer Set solvers are enhancements of the Davis-Putnam-Logemann-Loveland
(DPLL) procedure, and they are somewhat similar to the algorithms used in efficient
SAT solvers.

The needs addressed a variety of applications fostered a thriving research within
the community, causing both the enrichment and standardization of the language
(as described above) and the development of other efficient solvers. Undoubtedly
the success story of ASP has its roots in the early availability of ASP solvers, begin-
ning with the smodels system [528], followed by DLV [363], SAT-based ASP solvers,
like assat [379] and cmodels [284], and the conflict-driven learning ASP solver
clasp [265]. Other information about ASP solver can be found in [13, 135, 266,
267, 311, 383, 411, 461].

30 Chapter 1 Logic Programming

In the following, we describe some of the most popular ASP solvers that we have
used in the works described in this Thesis.

DataLog with Disjunction (dlv)26

Nowadays many systems that can evaluate disjunctive logic programs exist. One
of the first was DLV a first solid, efficiency-geared implementation of a DLP system,
became available in 1997, after 15 years of theoretical research on DLP. DLV system
is one of the most successful and widely used DLP engines. After its first release,
the DLV system has been significantly improved over and over in the last years, and
its language has been enriched in several ways. Relevant optimization techniques
have been incorporated in all modules of the DLV engine, including DataBase tech-
niques for efficient instantiation and magic sets, novel techniques for answer-set
checking, heuristics, back-jumping and advanced pruning operators for model gen-
eration. The DLV project has been active for more than 17 years and has led to the
development and continuous enhancement of the DLV system. Recently were ad-
ded parallel evaluation and evaluation in mass memory that allows to It supports a
powerful language extending Disjunctive Datalog with many expressive constructs,
including aggregates, strong and weak constraints, functions, lists, and sets.

Input data can be supplied by regular files, and also by Oracle or Objectivity Data-
Base. The DLV kernel then produces Answer Sets one at a time, and each time an An-
swer Set is found, “Filtering” is invoked, which performs post-processing (dependent
on the active front-ends) and controls continuation or abortion of the computation.
The DLV kernel consists of three major components: The “Intelligent Grounding”,
“Model Generator”, and “Model Checker” modules share a principal data structure,
the “Ground Program”. It is created by the Intelligent Grounding [211] using dif-
ferential (and other advanced) DataBase techniques together with suitable data
structures and used by the Model Generator and the Model Checker. The Ground
Program is guaranteed to have exactly the same Answer Sets as the original program.
For some syntactically restricted classes of programs (e.g. stratified programs), the
Intelligent Grounding module already computes the corresponding Answer Sets. For
harder problems, most of the computation is performed by the Model Generator and
the Model Checker. Roughly, the former produces some “candidate” Answer Sets
(models), the stability and minimality of which are subsequently verified by the
latter. The Model Checker (MC) verifies whether the model at hand is an Answer
Set. This task is very hard in general because checking the stability of a model is
known to be co− NP-complete. However, MC exploits the fact that minimal model
checking the hardest part can be efficiently performed for the relevant class of
head-cycle-free (HCF) programs.

26Preliminary definitions adapted from [17, 362, 363]

1.3 Answer Set Programming (ASP) 31

A number of mechanisms have been implemented to allow DLV to interact with
external systems:

• Interoperability with relational DBMSs: ODBC interface and DLVDB [557]

• Interoperability with Semantic Web reasoners: dlvhex [199]

• Calling external (C++, Python) functions from DLV programs: dlvhex [199]

• Calling DLV from Java programs: JASP (formerly Java Wrapper) [214]

dlv227

DLV2 is a new ASP system that updates DLV with modern evaluation techniques and
development platforms. In particular, DLV2 combines I-DLV [133], a fully-compliant
ASP-Core-2 grounder, with the well-assessed solver WASP [14]. These core mod-
ules are extended by application-oriented features, among them constructs such as
annotations and directives that customize heuristics of the system and extend its
solving capabilities.

As mentioned before, the core modules of DLV2 are:

I-dlv the grounder wasp the solver

The grounder implements a bottom-up evaluation strategy based on the semi-naive
algorithm and features enhanced indexing and other new techniques for increasing
the system performance. Notably, the grounding module can be used as an effective
deductive-DataBase system, as it supports a number of ad-hoc strategies for query
answering.
The solver module implements a modern CDCL backtracking search algorithm, prop-
erly extended with custom propagation functions to handle the specific properties
of ASP programs.

DLV2 can import relations from a RDBMS by means of an #import_sql directive.
Similarly, #export_sql directives are used to populate specific tables with the ex-
tension of a predicate.

DLV2 supports cautious reasoning over (non)ground queries. The computation of
cautious consequences is done according to anytime algorithms [15], so that an-
swers are produced during the computation even in computationally complex prob-
lems. Thus, the computation can be stopped either when a sufficient number of
answers have been produced or when no new answer is produced after a specified
amount of time. The magic-sets technique [16] can be used to further optimize the
evaluation of queries.
27Preliminary definitions adapted from [11]

32 Chapter 1 Logic Programming

DLV2 can be extended by means of a Python interface.
On the grounding side, the input program can be enriched by external atoms [125]
of the form &p(i1, . . . , in; o1, . . . , om), where p is the name of a Python function,
i1, . . . , in and o1, . . . , om (n,m ≥ 0) are input and output terms, respectively. For
each instantiation i′1, . . . , i′n of the input terms, function p is called with arguments
i′1, . . . , i′n, and returns a set of instantiations for o1, . . . , om.
On the solving side, the input program can be enriched by external propagators.
Communication with the Python modules follows a synchronous message-passing
protocol implemented by means of method calls. Basically, an external module must
comply with a specific interface, whose methods are associated to events occurring
during the search for an Answer Set, e.g. a literal is inferred as true. Whenever a
specific point of the computation is reached, the corresponding event is triggered,
i.e. a method of the module is called. Some methods of the interface are allowed
to return values that are subsequently interpreted by the solver.
The Python interface also supports the definition of new heuristics [186], which are
linked to input programs via Java-like annotations.

Within DLV2, ASP programs can be enriched by global and local annotations, where
each local annotation only affects the immediate subsequent rule. The system takes
advantage of annotations to customize some of its heuristics. Customizations in-
clude body ordering and indexing, two of the crucial aspects of the grounding, and
solving heuristics to tightly link encodings with specific domain knowledge.
Concerning solving heuristics, specified via the Python interface, they act on a set
of literals of interests, where each literal is associated with a tuple of terms.
Note that annotations do not change the semantics of input programs. For this
reason, their notation starts with %, which is used for comments in ASP-Core-2, so
that other systems can simply ignore them.

The Potsdam Answer Set Solving Collection (Potassco)28

The open-source project Potassco, gathers a variety of tools for ASP.

Among them we can find:

gringo a grounder that combines and extends techniques from the two major
grounders namely lparse [556] and DLV’s grounding component. A salient
design principle of gringo is its extensibility that aims at facilitating the incor-
poration of additional language constructs. [270]

clasp an ASP solver that combines the high-level modelling capacities of ASP with
state-of-the-art techniques from the area of Boolean constraint solving. Unlike
existing ASP solvers, clasp is originally designed and optimized for conflict-

28Preliminary definitions adapted from [256, 260]

1.3 Answer Set Programming (ASP) 33

driven ASP solving. Rather than applying a SAT solver to a CNF conversion,
clasp directly incorporates suitable data structures, particularly fitting back-
jumping and learning. [265]

clingo a tool that combines gringo and clasp in a monolithic system. [264]

iclingo an incremental ASP system built upon the libraries of gringo and clasp.
Unlike the standard proceeding, iclingo has to operate in a “stateful way”; that
is, it has to maintain its previous (grounding and solving) state for processing
the current program slices. [255]

oclingo an extension of iclingo which adds online functionalities. [252]

There are many other tools that provide different functionalities, but they are not
needed for the purposes of this thesis so there is no need to describe them here.

Standard ASP follows a one-shot process in computing stable models of logic pro-
grams. This view is best reflected by the input/output behaviour of monolithic ASP
systems like DLV and clingo. Internally, however, both follow a fixed two-step pro-
cess. First, a grounder generates a (finite) propositional representation of the input
program. Then, a solver computes the stable models of the propositional program.
This rigid process stays unchanged when grounding and solving with separate sys-
tems. In fact, up to version 3, clingo provided a mere combination of the grounder
gringo and the solver clasp.

The new clingo 4 series offers novel high-level constructs for realizing such complex
reasoning processes. This is achieved within a single integrated ASP grounding
and solving process in order to avoid redundancies in relaunching grounder and
solver programs and to benefit from the learning capacities of modern ASP solvers.
To this end, clingo 4 complements ASP’s declarative input language by control ca-
pacities expressed via the embedded scripting languages Lua and Python. On the
declarative side, clingo 4 offers a new directive #program that allows for structuring
logic programs into named and parametrizable subprograms. The grounding and
integration of these subprograms into the solving process is completely modular and
fully controllable from the procedural side, viz. the scripting languages embedded
via the #script directive. For exercising control, the latter benefit from a dedic-
ated clingo library that does not only furnish grounding and solving instructions but
moreover allows for continuously assembling the solver’s program in combination
with the directive #external. clingo 4 abolishes the need for special-purpose sys-
tems for incremental and reactive reasoning, like iclingo and oclingo, respectively,
and its flexibility goes well beyond the advanced yet still rigid solving processes of
the latter.
Further details are provided in Section 2.3.1.

34 Chapter 1 Logic Programming

However, the clingo system, along with its grounding and solving components gringo
and clasp, is nowadays among the most widely used tools for Answer Set Program-
ming (ASP). As reported in [261], the new generations of the ASP system clingo
(clingo 4 and clingo 5) focus heavily on this novel high-level constructs for realizing
multi-shot ASP solving. Moreover, in clingo 5 they tried to integrate application- or
theory-specific reasoning into ASP systems, by equipping them with well-defined
generic interfaces facilitating the manifold integration efforts. On the grounder’s
side, they introduced a generic way of specifying language extensions, and they
proposed an intermediate format accommodating their ground representation. On
the solver’s side, they introduced high-level interfaces which facilitate the integra-
tion of theory propagators dealing with these language extensions.

More details on these latest advancements are provided in [256, 259, 323, 378].

hex programs and dlvhex29

One can see that the main benefit of the introduction of a paradigm like ASP con-
sists in the possibility of describing problem domains at a high abstraction level,
rather than implementing specifically tailored algorithms. The ease of modelling
comes at the price of evaluation performance (nonetheless, efficient ASP solvers are
nowadays available, see [135]). Discrete logic-based modelling paradigms are how-
ever historically weak on a) modelling over continuous or nearly-continuous values,
and have a limited capability of b) dealing with probabilistic/fuzzy values.

Motivated as well by the fact that for important issues, such as meta-reasoning in
the context of the Semantic Web, no adequate support is available in ASP and the
observation that interoperability with other software is an important issue, some
years ago was proposed an extension of the answer-set semantics to HEX programs,
that are higher-order logic programs (which accommodate meta-reasoning through
higher-order atoms) with external atoms for software interoperability. In a nutshell,
HEX programs are an extension of ASP which allows the integration of external
information sources, and which are particularly well-suited when some knowledge
of the problem domain at hand is better modelled with means other than discrete
logic.

Intuitively, a higher-order atom allows to quantify values over predicate names and
to freely exchange predicate symbols with constant symbols, like in the rule

C(X) :− subClassOf(D,C), D(X).

29Preliminary definitions adapted from [191, 199–201]

1.3 Answer Set Programming (ASP) 35

An external atom facilitates to determine the truth value of an atom through an
external source of computation. For instance, the rule

reached(X) :− &reach[edge, a](X)

computes the predicate reached taking values from the predicate &reach, which
computes via &reach[edge, a] all the reachable nodes in the graph edge from node a,
delegating this task to an external computation source (e.g., an external deduction
system, an execution library, etc.).

Briefly, the Syntax of HEX programs can be explained specifying what are higher-
order atoms and external atoms.
Let C, X , and G be mutually disjoint sets whose elements are called constant names,
variable names, and external predicate names, respectively. Elements from C ∪ X
are called terms. A higher-order atom (or atom) is a tuple (Y0, Y1, . . . , Yn), where
Y0, Y1, . . . , Yn are terms.
An external atom is of the form

&g[Y1, . . . , Yn](X1, . . . , Xm)

where Y1, . . . , Yn and X1, . . . , Xm are two lists of terms (called input and output
lists, respectively), and &g ∈ G is an external predicate name. &g has fixed lengths
in(&g) = n and out(&g) = m for input and output lists, respectively.

The Semantic of HEX programs is a generalization of the answer-set semantics [274]
and uses the notion of a “reduct” as defined by [212].

By means of external atoms, different important extensions of ASP can be expressed
in terms of HEX programs:

• Programs with aggregates

• Description logic programs

• Programs with monotone cardinality atoms

• Agent programs

HEX programs for different purposes, in which the joint availability of higher-order
and external atoms is beneficial. In particular, it is well-suited as a convenient tool
for a variety of tasks related to ontology languages and for Semantic Web applica-
tions in general, since, in contrast to other approaches, they keep decidability but do
not lack the possibility of exploiting non-determinism, performing meta-reasoning,
or encoding aggregates and sophisticated constructs through external atoms.

dlvhex is the prototype application for computing the models of HEX programs.

36 Chapter 1 Logic Programming

The system is implemented in C++ and available as open-source software for all
major platforms (Linux, OS X, Windows). Pre-compiled binaries are also provided.
External sources are implemented using a plugin interface, which is currently avail-
able for C++ and Python.

At the beginning, the solvers evaluated HEX programs by a translation to ASP itself,
in which values of external atoms are guessed and verified after the ordinary Answer
Set computation. This elegant approach does not scale with the number of external
accesses in general, in particular in presence of non-determinism (which is instru-
mental for ASP).
After the developer presented a novel, native algorithm for evaluating HEX programs
which uses learning techniques. In particular, they extended conflict-driven ASP
solving techniques, which prevent the solver from running into the same conflict
again, from ordinary to HEX programs.

They showed how to gain additional knowledge from external source evaluations
and how to use it in a conflict-driven algorithm. Firstly targeting the uninformed
case, i.e., when there is no extra information on external sources, and then extend-
ing this approach to the case where additional meta-information is available.

dlvhex includes many plugins (collections of related external atoms) that allow per-
forming different tasks. Among these, there are the Description Logic plugin, the
dllite plugin the string plugin, the Constraint ASP plugin, the Action Plugin and many
others (see [583, 585]).

For more information about recent advances of dlvhex see also [202, 204, 489].

Acthex programs and Action Plugin30

In general, HEX programs do not contemplate the possibility of changing the state of
external sources. It turns out that some structural limitations of HEX programs pre-
vent addressing this issue in a satisfactory way: first, external functions associated
to external predicates are inherently stateless. Second, but more importantly, HEX

programs are fully declarative: this implies that when writing a HEX program, it is
not predictable whether and in which order an external function will be evaluated.
Therefore, there were developed ActHEX programs.

The ActHEX formalism [70] generalizes HEX programs [199] introducing dedicated
action atoms in rule heads. Action atoms can actually operate on and change the
state of an environment, which can be roughly seen as an abstraction of realms
outside the logic program at hand. The ActHEX framework allows to conveniently

30Preliminary definitions adapted from [70, 222]

1.3 Answer Set Programming (ASP) 37

design ASP-based applications by properly connecting logic-based decisions to ac-
tual effects thereof.

Intuitively, ActHEX programs extend HEX programs with Action Atoms (associated to
corresponding “executable” functions). An Action Atom is of the form

#g[Y1, . . . , Yn]{o, r}[w : l]

where #g is an action predicate name, Y1, . . . , Yn is a list of input terms (called
input list) of fixed length in(#g) = n. Moreover, attribute o ∈ {b, c, cp} is called
the action option that identifies an action as brave, cautious, or preferred cautious,
while optional integer attributes r, w, and l are called precedence, weight, and level
of #g, respectively. They are optional and range over variables and positive integers.
Action Atoms can appear only in the head of the rules.

An ActHEX program P is evaluated w.r.t. a fixed state (snapshot) of the external en-
vironment E using the following steps: (i) Answer Sets of P are determined w.r.t. E
and the set of best models is a subset of the Answer Sets determined by an objective
function; (ii) any (best) model originates a set of corresponding execution schedules
S, i.e., a sequence of actions to execute; (iii) executing the actions of (and sequen-
tially according to) a selected schedule S yields another (not necessarily different)
state E′ of the environment, called the observed execution outcome; finally (iv) the
process may be iterated starting at (i), by considering a snapshot E′′, which can be
different from E′ due to exogenous actions (in so-called dynamic environments).
Answer Sets are defined similarly to HEX programs [199], i.e., using Herbrand In-
terpretations, the grounding of P w.r.t. the Herbrand Universe, and the FLP reduct;
ground action atoms in rule heads are treated like ordinary atoms. We denote by
AS(P,E) the collection of all Answer Sets of P w.r.t. E. The set of best models of P ,
denoted BM(P,E), contains those Answer Sets I ∈ AS(P,E) that minimize an ob-
jective function over weights and levels of atoms in I (equivalent to the evaluation
of weak constraints in [111]). An action a = #g[y1, . . . , yn]{o, r}[w : l] with option
o and precedence r is executable in I w.r.t. P and E iff (i) a is brave and a ∈ I, or
(ii) a is cautious and a ∈ B for every B ∈ AS(P,E), or (iii) a is preferred cautious
and a ∈ B for every B ∈ BM(P,E). An execution schedule SI for a (best) model I
is a sequence of all actions executable in I, such that for all pairs of action atoms
a, b ∈ I, if ≺ (a) <≺ (b) then a must precede b in SI , for ≺ (c) the precedence of
an action atom c. Concerning the effects of actually executing actions, as well as
corresponding notions of execution outcomes.

The ActHEX framework allows a) to express and infer a predictable order of exe-
cution for action atoms, b) to express soft (and hard) preferences among a set of
possible action atoms, and c) to actually execute a set of action atoms according to a

38 Chapter 1 Logic Programming

predictable schedule. It is worth remarking that ActHEX programs do not represent
an action language in a strict sense.
The main goals of the language are 1) to provide a complementary extension to
Logic Programming over which existing action, planning and agent languages can
be grounded, and 2) to provide a tighter and semantically sound framework for
interfacing logic programs with applications of arbitrary nature.

The ActHEX framework is very versatile and can be fruitfully used in a variety of
contexts like “Action languages”, “Knowledge Base Updates”, “Translation of Agent
Programs”, “Web source Updates” (as shown in [70]); moreover it can also be used
for logic-based games, which are an ideal test-bed (as shown in [222]).

The Action Plugin is a dlvhex Plugin that provides an implementation of the ActHEX

language. An interface (ActionPluginInterface) make possible the creation of
Addons for Action Plugin.

The Action Plugin provides methods to:

• Define an External Atom;

• Registering the External Atoms;

• Define an Action Atom;

• Registering the Action Atoms;

• Define the Environment;

• Import the Action Addon;

• Define and use the Environment;

• Define and import a BestModel Selector;

• Define and import an Execution Schedule Builder;

• Control the Iteration behaviour.

For more information about ActHEX and the Action Plugin see also [584].

1.3.6 Further remarks

Several different approaches to improve evaluations of ASP solvers have been pro-
posed in the last years [203, 263, 430] and many various applications have been
proposed (see Section 1.3.2) showing a very active and productive research field.

For more information about Answer Set Programming (ASP) see also [12, 52, 53,
102, 103, 190, 196, 198, 258, 271, 273, 310, 373, 376, 377, 409, 443].

1.3 Answer Set Programming (ASP) 39

1.4 Planning Domain Definition Language
(PDDL)31

Planning Domain Definition Language (PDDL) [276, 415] is a logic formalism for
expressing planning tasks.
The language is inspired by the well-known STRIPS [221] formulations of planning
problems. Its core is a simple standardization of the syntax for expressing such
familiar semantics of actions, that uses pre- and post-conditions in order to describe
preconditions and effects.
However, the language has been largely extended over the years, as evidenced by
the planning competition series [189, 276, 388], that represented an important
steer for the research in the field: the expressive power has been gradually extended
to different purposes [224, 339, 593].

In this section, we briefly introduce the language.

1.4.1 Language Definition - Syntax and Semantics

Given a planning task to be performed in a particular scenario S, the main compon-
ents of a PDDL representation are:

objects concepts of interest in S;

predicates properties of objects of interest: they can be either true or false;

initial state that specifies the starting state of S;

goal specification that describes the targets of the planning task;

actions/operators whose effects change the state of S.

A PDDL planning task has to be specified by two separated files: a domain file for
predicates and actions, and a problem file for objects, initial state and goal specific-
ation.

A domain file must comply with the following syntax:

(define (domain <domain name>)
<PDDL code for predicates>
<PDDL code for first action>
[...]
<PDDL code for last action>)

where <domain name> is a string that identifies the planning domain.

31Preliminary definitions adapted from [132]

40 Chapter 1 Logic Programming

A problem file has the following form:

(define (problem <problem name>)
(:domain <domain name>)
<PDDL code for objects>
<PDDL code for initial state>
<PDDL code for goal specification>)

where <problem name> is a string that identifies the planning task, and the string
<domain name> must match the domain name in the corresponding domain file.

This separation is an early design decision: the intent was to separate the descrip-
tions of parametrized actions of the domain behaviours from the description of
specific objects, initial conditions and goals of a problem instance. Thus, a planning
problem is created by coupling a domain description with a problem description.
The same domain description can be paired with many different problem descrip-
tions, to yield different planning problems in the same domain.

An intuitive definition of each part composing a domain and a problem file is illus-
trated in the following, by means of some examples. For a thorough description of
PDDL, and an extended definition of its syntax, semantics and language extensions,
we refer the reader to the cited literature.

1.4.2 Planning Representation

[GRIPPER] As a first example, let us consider the following scenario, namely the
gripper planning task32: a robot can move between two rooms and pick up or drop
balls with either of his two arms, also called grippers. In particular, let us assume
that there are four balls, and, initially, the robot is in the first room together with
all balls. The goal is to place all the balls in the second room.

Intuitively, the scenario can be modelled as follows:

objects rooms, balls and robot arms;

predicates define objects properties, i.e., whether an object X is a room or a ball,
whether a ball B is inside a room A, and so on;

initial state i.e., all balls and the robot are in the first room, all robot arms are
empty, and so on;

goal specification all balls must be in the second room;

actions/operators the robot can move between rooms, pick up or drop a ball.

The objects of interest are:
32http://www.cs.toronto.edu/~sheila/2542/s14/A1/introtopddl2.pdf

1.4 Planning Domain Definition Language (PDDL) 41

http://www.cs.toronto.edu/~sheila/2542/s14/A1/introtopddl2.pdf

- Rooms: rooma, roomb

- Balls: ball1, ball2, ball3, ball4

- Robot arms: left, right

Their descriptions can be specified in the problem file by means of the following
statement:

(:objects rooma roomb ball1 ball2 ball3 ball4 left right)

As for predicates, we are interested in the following ones:

- room(x) – true iff x is a room

- ball(x) – true iff x is a ball

- gripper(x) – true iff x is a gripper

- at-robby(x) – true iff x is a room and the robot is in x

- at-ball(x, y) – true iff x is a ball, y is a room, and x is in y

- free(x) – true iff x is a gripper and x does not hold a ball

- carry(x, y) – true iff x is a gripper, y is a ball, and x holds y

At the beginning of the domain file, we can specify them as follows:

(:predicates (room ?x) (ball ?x) (gripper ?x)
(at-robby ?x) (at-ball ?x ?y) (free ?x) (carry ?x ?y))

The initial state defines the starting configuration:

- room(rooma) and room(roomb) are true.

- ball(ball1), ball(ball2), ball(ball3) and ball(ball4) are true.

- gripper(left), gripper(right), free(left) and free(right) are true.

- at-ball(ball1, rooma), at-ball(ball2, rooma), at-ball(ball3, rooma),
at-ball(ball4, rooma) and at-robby(rooma) are true.

- Everything else is false.

Hence, in the problem file we can add this PDDL representation:

(:init (room rooma) (room roomb) (at-robby rooma)
(ball ball1) (ball ball2) (ball ball3) (ball ball4)
(gripper left) (gripper right) (free left) (free right)
(at-ball ball1 rooma) (at-ball ball2 rooma)
(at-ball ball3 rooma) (at-ball ball4 rooma))

The goal specification is:

- at-ball(ball1, roomb), at-ball(ball2, roomb), at-ball(ball3, roomb),
at-ball(ball4, roomb) must be true.

- Everything else can be either true or false.

42 Chapter 1 Logic Programming

Thus, the following is added to the problem file:

(:goal (and (at-ball ball1 roomb) (at-ball ball2 roomb)
(at-ball ball3 roomb) (at-ball ball4 roomb)))

Finally, we need to define possible actions. For each action, we analyse its pre- and
post-conditions on the scenario:

Robot move action
Description The robot can move from a room x to a room y.

Precondition room(x), room(y) and at-robby(x) are true.

Effect at-robby(y) becomes true. at-robby(x) becomes false. Everything
else does not change.

Pick-up action
Description The robot can pick up x in y with z.

Precondition ball(x), room(y), gripper(z), at-ball(x, y), at-robby(y)
and free(z) are true.

Effect carry(z, x) becomes true. at-ball(x, y) and free(z) become
false. Everything else does not change.

Drop operator
Description The robot can drop x in y from z.

Precondition ball(x), room(y), gripper(z), at-ball(x, y), at-robby(y)
are true and free(z) is false.

Effect carry(z, x) and at-ball(x, y) become false. free(z) becomes
true. Everything else does not change.

So, we can complete the domain file with these definitions:

(:action move :parameters (?x ?y)
:precondition (and (room ?x) (room ?y) (at-robby ?x))
:effect (and (at-robby ?y) (not (at-robby ?x))))

(:action pick-up :parameters (?x ?y ?z)
:precondition (and (ball ?x) (room ?y) (gripper ?z)

(at-ball ?x ?y) (at-robby ?y) (free ?z))
:effect (and (carry ?z ?x) (not (at-ball ?x ?y)) (not (free ?z))))

(:action drop :parameters (?x ?y ?z)
:precondition (and (ball ?x) (room ?y) (gripper ?z)

(carry ?z ?x) (at-robby ?y))
:effect (and (at-ball ?x ?y) (free ?z) (not (carry ?z ?x))))

[BLOCKS-WORLD] As a further example, we will consider the blocks-world plan-
ning problem [295], in which a set of blocks featuring same size and shape lies on

1.4 Planning Domain Definition Language (PDDL) 43

a table in a initial configuration (possibly stacked); an agent is requested to move
the blocks with the aim of arranging into a final desired configuration.

The main constraint is that only one block at a time can be moved: it may be placed
either on the table or atop another block; clearly, blocks that are under another
block cannot be moved.

A possible PDDL representation of the blocks-world scenario is:

1 (define (domain BLOCKS)
2 (: requirements : strips : typing)
3 (: types block)
4 (: predicates (on ?x - block ?y - block) (on -table ?x -

block) (clear ?x - block) (hand -empty) (holding ?x -
block))

5
6 (: action pick -up : parameters (?x - block)
7 : precondition (and (clear ?x) (on -table ?x) (hand -empty))
8 : effect (and (not (on -table ?x)) (not (clear ?x)) (not (

hand -empty)) (holding ?x)))
9

10 (: action put -down : parameters (?x - block)
11 : precondition (holding ?x)
12 : effect (and (not (holding ?x)) (clear ?x) (hand -empty) (

on -table ?x)))
13
14 (: action stack : parameters (?x - block ?y - block)
15 : precondition (and (holding ?x) (clear ?y))
16 : effect (and (not (holding ?x)) (not (clear ?y)) (clear ?x

) (hand -empty) (on ?x ?y)))
17
18 (: action unstack : parameters (?x - block ?y - block)
19 : precondition (and (on ?x ?y) (clear ?x) (hand -empty))
20 : effect (and (holding ?x) (clear ?y) (not (clear ?x)) (not

(hand -empty)) (not (on ?x ?y)))))

Listing 1.1: A representation of the blocks-world scenario in PDDL.

Line 1 defines the domain name, and line 2 sets some requirements on the domain
definition: :strips specifies that the syntax used follows the most basic subset of
PDDL, consisting of STRIPS only, while :typing means that the domain definition
makes use of typed variables. This feature allows defining object and parameter
types. Notably, type definitions have to be inserted before they are used. In the
example the unique type used is defined at line 3, namely block. Once a type T is
declared, it can be used to specify the type of a variable, say X: ?X − T , as can be
observed in the remaining lines.

44 Chapter 1 Logic Programming

A B C D A

B

C

D

Figure 1.2.: Initial and goal configurations for the blocks-world example.

Furthermore, line 4 defines the predicates:

- on(x,y) where x,y are blocks – true iff x is on y;

- on-table(x) where x is a block – true iff x is on the table;

- clear(x) where x is a block – true iff x has not other block on it;

- hand-empty – true iff the agent hand is empty;

- holding(x) where x is a block – true iff the agent holds x.

Remaining lines define possible actions, that correspond to: pick-up a block, put-
down a block, put a block on top of another (stack action), or remove a block which
on top of another (unstack action).

Finally, a possible problem file, properly defining initial and goal situations and
objects of interest, can be the following:

1 (define (problem BLOCKS -4 -0)
2 (: domain BLOCKS)
3 (: objects D B A C - block)
4 (: init (hand -empty) (clear A) (clear B) (clear C) (clear D

) (on -table A) (on -table B) (on -table C) (on -table D))
5 (: goal (and (on D C) (on C B) (on B A))))

Listing 1.2: An example of a PDDL problem file for the blocks-world problem.

Line 3 specifies that we are considering four blocks (A,B,C,D). Figure 1.2 repres-
ents the initial state and the goal specification: line 4 states that initially the agent’s
hand is empty (i.e the agent is not holding any block), all blocks are on the table,
and no block has another one on top of it; the goal (line 5) is that all blocks are
stacked accordingly to the order: A,B,C,D.

1.4 Planning Domain Definition Language (PDDL) 45

Wrap-up

In this chapter, we briefly described the main concepts of Logic Programming and the
reasons that make this paradigm unique. Then we mentioned some of the most well-
known Logic Programming languages highlighting their specific characteristics.

In the next chapters we report some employments of these languages in different
areas, starting from the prominent Stream Reasoning, and the achievement we have
obtained in each of them.

46 Chapter 1 Logic Programming

2Stream Reasoning

“ Logic is the beginning, not the end, of Wisdom.

— Spock (Leonard Nimoy)
(Star Trek VI: The Undiscovered Country)

Summary of Chapter 2

The main idea behind Stream Reasoning is to be able to provide continuous
reasoning over “flows” of data (data streams).

Although this is a very recent and emerging research area, so far there is
no solution that allows “complex” decision-making on top of data flows. We
believe that Logic Programming, with its specific reasoning peculiarities, can
help not only in having a formal representation of basic concepts of this field
but also, combined with other techniques, can become a powerful reasoning
tool for the remarkable problems of this domain.

In this chapter we first give some preliminary definitions about Stream Reas-
oning and the most interesting aspects of the topic that have been recently
studied; then we present (in Sections 2.5 and 2.6) some research we conduc-
ted in this field where we integrated traditional Stream Reasoning techniques
with logic-based ones and we studied some automation means for the query
answering process. Also, we show how these ideas were used in a real pro-
ject.

Chapter Outline

2.1. Definition, Motivation and Challenges 48
2.2. Data Stream Reasoning: research timeline 55
2.3. Stream Reasoning and Logic Programming 82
2.4. Stream Reasoning and Smart City Applications: a case study . 97
2.5. Web Stream Reasoning in Practice: on the Expressivity vs.

Scalability tradeoff . 102
2.6. Automatic Configuration of Smart City Applications for User-

Centric Decision Support . 109

47

2.1 Definition, Motivation and Challenges

2.1.1 What Stream Reasoning is1

A common definition of Stream Reasoning is:

logical reasoning in real time on gigantic and inevitably noisy data
streams, in order to support the decision process of extremely large num-
bers of concurrent users. [551]

And the data streams mentioned in this definition are:

unbounded sequences of time-varying data elements, they occur in a
variety of modern applications. [569]

A more detailed definition, from the Encyclopedia of Database Systems, is:

Stream Reasoning refers to inference approaches and deduction mech-
anisms which are concerned with providing continuous inference cap-
abilities over dynamic data. The paradigm shift from current batch-like
approaches toward timely and scalable Stream Reasoning leverages the
natural temporal order in data streams and applies windows-based pro-
cessing to complex deduction tasks that go beyond continuous query
processing such as those involving preferential reasoning, constraint op-
timization, planning, uncertainty, non-monotonicity, non-determinism,
and solution enumeration. [420]

The term Stream Reasoning was initially proposed in [569]. In this paper, it is
described as “an unexplored, yet high impact, research area” that should consist
in a new multi-disciplinary approach which will provide the abstractions, founda-
tions, methods, and tools required to integrate data streams and reasoning systems,
thus giving an answer to many questions [178]. The idea is simple, yet pervas-
ive. Starting from the lesson learned in the DataBase community (e.g., the ability
to efficiently abstract and aggregate information out of multiple, high-throughput
streams) a new foundational theory of Stream Reasoning was developed, capable
to associate reasoning tasks to time windows describing data validity and to there-
fore to produce time-varying inferences. From these foundations, new paradigms
for Knowledge Representation and query languages design have been derived, and

1Preliminary definitions adapted from [65, 177, 178, 420]

48 Chapter 2 Stream Reasoning

the consequent computational frameworks for Stream Reasoning oriented software
architectures and their instrumentation have been deployed.

As mentioned before, data streams are unbounded sequences of time-varying data
elements, that means an (almost) “continuous” flow of information. The assump-
tion is that recent information is more relevant as they describe the current state of
a dynamic system.

Streaming data is an important class of information sources. Examples of data
streams are Web logs, feeds, click streams, sensor data, stock quotations, locations
of mobile users, and so on. Streaming data is received continuously and in real-time,
either implicitly ordered by arrival time, or explicitly associated with timestamps.

From these examples, it can be observed that data streams occur in a variety of
modern applications, such as network monitoring, traffic engineering, sensor net-
works, RFID tags applications, telecom call records, financial applications, Web logs,
click-streams. Specialized Stream Database Management Systems exist. While such
systems proved to be an optimal solution for on the fly analysis of data streams,
they cannot perform complex reasoning tasks. At the same time, while reasoners
are year after year scaling up in the classical, time-invariant domain of ontological
knowledge, reasoning upon rapidly changing information has been neglected or for-
gotten. Reasoning systems assume static knowledge and do not manage “changing
worlds” – at most, one can update the ontological knowledge and then repeat the
reasoning tasks.

It is worth noticing that the concept of Stream Reasoning is an evolution of the
concept of (Real-Time) Stream Processing. Stream Processing is a term that is used
widely in the literature to describe a variety of systems, from Data Stream Manage-
ment Systems (DSMSs) to Rule engines to Stream Processing Engines (SPEs). Stream
Reasoning emerged in the last few years as a new research area that aims at bridging
the gap between Reasoning and Stream Processing. Different communities have fo-
cused on complementary aspects of processing dynamic information, referred to as
Stream Processing when closer to the data and as Reasoning when closer to knowl-
edge and event management.

Stream Processing systems mainly adopt operational and monotonic semantics at the
logical core. The latter is less suited to produce results when data is missing and
in particular not geared to deal with incorrect conclusions that must be retracted
when more data is available. Such non-monotonic behaviour is a key aspect in
expressivity that is needed for Stream Reasoning.

2.1 Definition, Motivation and Challenges 49

Peculiar to Stream Processing, and thus also to Stream Reasoning, are the notions of
Window [30] and Continuous Processing [40]:

Window Traditional reasoning problems are based on the idea that all the inform-
ation available should be taken in to account when solving the problem.
In Stream Reasoning, we eliminate this principle and restrict reasoning to a
certain window of concern which consists of a subset of statements recently
observed in the stream while previous information is ignored. This is neces-
sary for different reasons. First of all, ignoring older statements allows us to
save computing resources in terms of memory and processing time to react to
important events in real time. Further, in many real-time applications, there is
a silent assumption that older information becomes irrelevant at some point.

Continuous Processing Traditional reasoning approaches are based on the idea
that the reasoning process has a well-defined beginning (when a request is
posed to the reasoner) and end (when the result is delivered by the system).
In Stream Reasoning, we move from this traditional model to a continuous
processing model, where requests in terms of reasoning goals are registered
at the reasoner and are continuously evaluated against a Knowledge Base that
is constantly changing.

In the latest years, due to the increasing volume of data streams and the crucial
time requirements of many applications, different real-time approaches have been
studied and specific guidelines to evaluate Stream Processing solutions have been
developed [548], as explained in Section 2.2.1.

2.1.2 Why Stream Reasoning is important2

Will there be a traffic jam on this highway? Can we reroute travellers on the basis
of the forecast? By examining the click stream from a given IP, can we discover
shifts in interests of the person behind the computer? Which content on the news
Web portal is attracting the most attention? Which navigation pattern would lead
readers to other news related to that content? Do trends in medical records indicate
any new disease spreading in a given part of the world? Where are all my friends
meeting? Can we detect any intra-day correlation clusters among stock exchanges?
What are the top 10 emerging topics under discussion in the blogosphere, and who
is driving the discussions?

Although the information required to answer these questions is becoming increas-
ingly available on the (Semantic) Web, there is currently no software system cap-
able of computing the answers — indeed, no system even lets users issue such

2Preliminary definitions adapted from [569, 570]

50 Chapter 2 Stream Reasoning

queries. The reason is straightforward: answering such queries requires systems
that can manage rapidly changing worlds at the semantic level.

Therefore, the study of this field is really important and very promising.

In [410] many different application scenarios are analysed, such as (a) Semantic
Sensor Web (SSW) (b) Smart Cities, (c) Smart Grids, (d) Remote Health Monitor-
ing, (e) Nanopublications, (f) Drug Discovery, (g) Abstracting and Reasoning over
Ship Trajectories, (h) Analysis of Social Media and Mobile Applications, showing
that there are really many interesting scenarios where Stream Reasoning can be
applied.

An emblematic case is the Urban Computing [38, 72, 328, 488] (i.e., the applic-
ation of pervasive computing to urban environments). The very nature of Urban
Computing can be explained by means of data streams, representing real objects
that are monitored at given locations, but reasoning about such streams can be
very cost effective and problems dramatically increase when big events, involving
lots of people, take place. Some years ago, due to the lack of data, solving Urban
Computing problems looked like a Sci-Fi idea. Nowadays, a large amount of the
required information can be made available on the Internet at almost no cost. How-
ever, current technologies are not up to the challenge of solving Urban Computing
problems: this requires combining a huge amount of static knowledge about the
city (i.e., urban, social and cultural knowledge) with an even larger set of data
streams (originating in real time from heterogeneous and noisy data sources) and
reasoning above the resulting time-varying knowledge. A new generation reasoner
is clearly needed!

It is also worth noticing that many research groups are working on this topic and
there are many research projects on this topic3.

2.1.3 Challenges in Stream Reasoning4

The Stream Reasoning area is very interesting because it quite young and unex-
plored, and therefore many different issues still need to be solved.

The lack of a unified formal foundation for advanced reasoning with streaming data
hinders the potential for expressive formalisms to be used in concrete frameworks,

3For instance the Distributed Heterogeneous Stream Reasoning Project of the KBS Group at the TU
Wien

4Preliminary definitions adapted from [175, 410, 420]

2.1 Definition, Motivation and Challenges 51

http://www.kr.tuwien.ac.at/research/projects/dhsr
http://www.kr.tuwien.ac.at
https://www.tuwien.ac.at
https://www.tuwien.ac.at

Table 2.1.: Analysis of Requirements for Application Scenarios. From [410].

and investigation on multiprocessing models to coordinate various reasoning posers
in an advanced framework needs to be further investigated.

In terms of benchmarking, a direct cross comparison is only possible for few en-
gines.

Efficient approaches to Stream Reasoning should also explore the interplay between
statistical analysis and knowledge-driven inference methods to have both a quantit-
ative perspective on streaming data patterns and a qualitative perspective on com-
plex structural properties of events, context of validity, and logical correlations in
decision processes.

Moreover, as shown in Table 2.1, there are various requirements for the different
application scenarios presented before and most of them are not fulfilled by the
available solutions at the moment. For instance, all the application fields demand
some form of reasoning. However, the complexity of the reasoning task may vary
significantly from application to application. It remains an open question to identify
the reasoning capabilities and expressiveness required in each scenario. Similar
arguments hold for data management: different applications deal with different
volumes and different update rates and Stream Reasoning technologies are called to
be applied in this large space of problems and scenarios. Because of the trade-offs
discussed above, it is unknown whether it is possible (or beneficial) to develop a
single solution to satisfy all of them, or if different design models, algorithms, and
implementations are needed to target specific parts of this space.

Moreover, the authors of [410] presented a research agenda with a concrete de-
scription of some steps required to drive the design and implementation of future
stream reasoning systems. In their analysis are present many interesting challenges
from system models for representing data and operations on data, to aspects related
to the system implementation, to problems that derive from the application and
evaluation of the solutions and systems in the area of Stream Reasoning. Figure 2.1

52 Chapter 2 Stream Reasoning

Stream Reas-
oning Systems

System Models

Modeling Data

Time Model

Historical
Data Model

Uncertainty Model

Modeling
Operations

A Model for Query-
ing and Reasoning

Uncertainty
Propagation Model

System Im-
plementation

Big Data

Information
Management

Reasoning on
Big Data

Dynamic Data

Incremental
Reasoning

Approximate
Reasoning

Efficient Query
Evaluation

Management
of Bursts

Distributed Data

Operator
Placement

Figure 2.1.: A Research Agenda for Stream Reasoning. From [410].

Table 2.2.: Relation between Requirements and Research Agenda. From [410].

summarizes the research agenda, while Table 2.2 shows how the topics covered by
the research agenda map to the requirements described above.

However, Stream Reasoning research progressed and expanded its initial community
to a growing number of practitioners. Very recently, authors in [175] analysed the
requirements of Stream Reasoning w.r.t. the solutions that are currently available;
their results are shown in Table 2.3. This table summarizes the current state and
serves as an indication towards possible directions for future Stream Reasoning re-
search.

Stream Reasoners should offer richer query languages, which include a wider set of
operators to encode user needs, and the engine to evaluate them. Reasoning took
a more generic connotation, and now it includes inductive reasoning techniques in
addition to deductive ones. This trend will grow, combining different techniques
to overcome their respective limits. Solutions need to be engineered in scalable
frameworks, i.e., they must be able to integrate and reason over huge amounts of
heterogeneous data while guaranteeing time requirements. And it will be import-

2.1 Definition, Motivation and Challenges 53

Requirement Current Stream Reasoning
R1: Volume ⋆
R2: Velocity ⋆⋆⋆
R3: Variety ⋆⋆
R4: Incompleteness ⋆
R5: Noise ⋆
R6: Timely fashion ⋆⋆
R7: Fine-grained access ⋆⋆⋆
R8: Complex domains ⋆⋆
R9: What users need ⋆⋆

Table 2.3.: A review of the Stream Reasoning requirements w.r.t. the current state of the
art (⋆ = not specifically treated so far, ⋆⋆ = treated but not resolved, ⋆⋆⋆
= universally addressed by all studies). From [175].

ant to fill the gaps between theoretical models and reality, making Stream Reasoning
solutions robust and able to cope with issues such as noise and heterogeneity. In
parallel, it will be important to identify real problems and scenarios where Stream
Reasoning may be a solution. Internet of Things and Industry 4.0 are examples of
areas where to apply Stream Reasoning results. Moreover, it is necessary to develop
benchmarking and evaluation activities, to compare and contrast the current solu-
tions.

54 Chapter 2 Stream Reasoning

2.2 Data Stream Reasoning: research timeline

In this section we introduce some preliminary notions and we highlight the most
prominent steps that led to the growth of this field.

2.2.1 Data Stream Management Systems (DSMSs)5

Data Stream Management Systems (DSMSs) are the first approach in Computer Sci-
ence to the task of processing huge amount of real-time data of comes from the
DataBase world. Data Stream Management Systems represent a vibrant area of new
technology for which researchers have extended DataBase query languages to sup-
port continuous queries on data streams.

Traditional DataBase Management Systems are best equipped to run one-time queries
over finite stored data sets. However, many modern applications such as network
monitoring, financial analysis, manufacturing, and sensor networks require long-
running, or continuous, queries over continuous unbounded streams of data.

Processing of data streams has been largely investigated in the last decades [244]
and a new specialized class of DB systems called Data Stream Management Systems
(DSMSs) have been developed. A Data Stream Management System is similar to a
DataBase Management System (DBMS) but it is able to manage “continuous” data
streams while the DBMS is, usually, able to manage only “static” data streams. A
DSMS can execute continuous queries over data that are updated continuously, using
query languages like SQL in DBMS. A DSMS can perform only simple reasoning tasks
due to the inherent limitations of its language; one of the reasons is that researchers
have extended DataBase query languages to support continuous queries on data
streams but they have made little use of logic-based concepts (different from the
use made in relational DataBases). Moreover, in this context, not only events with
a simple nature have been studied but also “complex” ones, i.e. events that rely on
simpler ones and that are usually specified with the help of operators of an event
algebra [601].

Data Stream Management Systems (DSMSs) represent a paradigm change in the
DataBase world because they move from persistent relations to transient streams,
with the innovative assumption that streams can be “consumed” on the fly (rather
than stored forever) and from user-invoked queries to continuous queries, i.e., quer-
ies which are persistently monitoring streams and are able to produce their answers
even in the absence of invocation. DSMSs can support parallel query answering

5Preliminary definitions adapted from [29, 569, 595]

2.2 Data Stream Reasoning: research timeline 55

over data originating in real time and can cope with burst of data by adapting their
behaviour and gracefully degrading answer accuracy by introducing higher approx-
imations.

Until now, DSMS researchers have made little use of logic-based concepts, although
these provide a natural formalism and simple solutions for many of the difficult
problems besetting this area. The DataBase query language was extended to support
continuous query on data streams but does not have solid theoretical foundations.

In particular, in the paper [595], the author shows that Reiter’s Closed World Assump-
tion [491] provides a natural basis on which to study and formalize the blocking
behaviour of continuous query operators, whereby concepts such as local stratifica-
tion can be used to achieve a natural and efficient expression of recursive rules with
non-monotonic constructs.

Data Streams can be modelled as append-only relations on which the DSMS is asked
to support standing queries (i.e., continuous queries). As soon as tuples arrive in
the input stream, the DSMS is expected to decide, in real time or quasi-real-time,
which additional results belong to the query answer and promptly append them to
the output stream. This is an incremental computation model, where no output
can be taken back; therefore, the DSMS might have to delay returning an output
tuple until it is sure that the tuple belongs to the final output — a certainty that for
many queries is only reached after the DSMS has seen the whole input. The queries
showing this behaviour, and operators causing it, are called blocking, and have been
characterized in [39] as follows: A blocking query operator is one that is unable to
produce the first tuple of the output until it has seen the entire input.

Clearly, blocking query operators are incompatible with the computation model of
DSMS and should be disallowed, whereas all non-blocking queries should instead
be allowed. However, many queries and operators, including essential ones such
as union, fall in-between and are only partially blocking; currently, we lack simple
rules to decide when, and to which extent, partially blocking operators should be
allowed and how they should be treated.

The main previous results on blocking queries proved that non-monotonic query
operators are blocking, whereas monotonic operators are non-blocking [296, 356].
Given that negation and traditional aggregates are non-monotonic, most current
DSMS simply disallow them in queries, although this exclusion causes major losses
in expressive power [356].

A key assumption is that operators are order-preserving. Thus, each operator takes
tuples from the front of its input queue and add the tuple(s) it produces, if any, to

56 Chapter 2 Stream Reasoning

the tail of its output buffer. Thus, buffers might delay but not alter the functions
computed by simply feeding the output of one operator directly into the input of
the next.

The semantics of query Q on a stream is defined by the cumulative answer that Q
has returned until time τ .

For example, last occurrence of code red: ?last(T, red).

last(T,Z)← msg(T,Z),¬next(T,Z).

next(T,Z)← msg(T1, Z), T1 > T.

This is obviously a blocking query, inasmuch as we do not have the information
needed to decide whether the current red-alert message is actually the final one,
while messages are still arriving. Only when the data stream ends, we can make
such an inference: to answer this query correctly, we will have to wait till the input
stream has completed its arrival, and then we can use the standard CWA to entail
the negation that allows us to answer our query. But the standard CWA assumption
will not help us to conclude that our query is non-blocking. In [595] the author
exploits the timestamp ordering of the data streams to define a Progressive Closing
World Assumption (PCWA) that can be used in the task. In this definition are also
included traditional DataBase facts and rules, since these might also be used in con-
tinuous queries.

Definition (Progressive Closing World Assumption (PCWA)).
Consider a world consisting of one timestamped-ordered stream and DataBase facts.
Once a fact stream(T, ...) is observed in the input stream, the PCWA allows us to as-
sume ¬stream(T1, ...), provided that T1 < T , and stream(T1, ...) is not entailed by
our fact base augmented with the stream facts having timestamp ≤ T .
Therefore, PCWA for a single data stream revises the standard CWA of deductive
DataBases with the provision that the world is, in fact, expanding according to its
timestamps.

In the same paper, the author proposes also a new language, logic-based that allows
reasoning on data streams called Streamlog.

Streamlog6

Streamlog ([595]) is basically Datalog with modified well-formedness rules for neg-
ation to guarantee simple declarative semantics and efficient execution.

6Preliminary definitions adapted from [595]

2.2 Data Stream Reasoning: research timeline 57

In Streamlog, base predicates, derived predicates, and the query goal are all time-
stamped in their first arguments. These will be called temporal, to distinguish them
from non-timestamped DataBase facts and predicates that might also be used in the
programs.
The same safety criteria used in Datalog can be used in Streamlog. Furthermore, in
Streamlog the time-stamp variables are made safe by equality chains equating their
values to the timestamps in the base stream predicates. Therefore, even if T1 is
safe, expressions such as T2 = f(T1) or T2 = T1 + 1 cannot be used to deduce the
safety of T2. Only equality can be used for time-stamp arguments.
These are obvious syntactic rules that will avoid blocking behaviour in the temporal
rules of safe Streamlog programs.

Strictly Sequential
A rule is said to be Strictly sequential when the time-stamp of its head is >
than every time-stamp in the body of the rule. A predicate is strictly sequential
when all the rules defining it are strictly sequential.

Sequential
A rule is said to be sequential when it satisfies the following three conditions:

1. the timestamp of its head is equal to the timestamp of some positive goal,

2. the timestamp of its head is > or≥ than the timestamps of the remaining
goals,

3. its negated goals are strictly sequential or have a time-stamp that is <
than the timestamp of the head.

A program is said to be sequential when all its rules are sequential or strictly sequen-
tial.

Stratified Datalog programs have a syntactic structure that is easy for a compiler
to recognize and turn into an efficient implementation [596]. In fact, the unique
stable model of these programs, called the perfect model, can be computed effi-
ciently using a stratified iterated fixpoint [596]. Unfortunately, stratified programs
do not allow negation or aggregates in recursive rules, and therefore, are not con-
ducive to efficient expression of algorithms such as shortest path. A lot of previous
research was devoted to overcoming this limitation. In particular, there is a class of
programs called locally stratified programs that have a unique stable model, called
perfect model. Unfortunately, the stratification for a locally stratified program can
only be verified against its instantiated version. But the simple notion of sequential
programs for Streamlog avoids the non-monotonicity problems that have hamstrung
Datalog and frustrated generations of researchers.

Sequential programs are locally stratified by their time-stamp values. To prove this
the author constructs the bistate equivalent of the program.

58 Chapter 2 Stream Reasoning

A much-studied DSMS problem is how to best ensure that binary query operat-
ors, such as unions or joins, generate outputs sorted by increasing time-stamp val-
ues [43, 44, 316]. This problem has been extensively studied, but only at the
implementation level [43, 44, 316]. At the logical level, the problem can be solved
but users want to write the simple rules and let the system take care of time-skews.
Therefore, in Streamlog, the users are allowed to work under the Perfect Synchron-
ization Assumption (PSA), whereby the data streams of interest are perfectly syn-
chronized.

Construct the bistate equivalent of the rules and obtain a stratified program, whereby
the original program is locally stratified and the efficient execution techniques pre-
viously discussed remain valid. Therefore, we can relax the definition of Strictly
Sequential rules as follows:

Strictly Sequential
A rule is said to be Strictly sequential when the time-stamp of the head of the
rule is > than the time-stamp of each recursive goal and ≤ the timestamps of
the non-recursive goals.

In the same work, the author shows that following properties hold:
If P is a Sequential Program then: (i) P is locally stratified, and (ii) the unique stable
model of P can be computed by repeating the iterated fixpoint of its bistate version for
each time-stamp value.

The results presented in the work [595] are still preliminary, however, they show
that logic can bring sound theoretical foundations and superior expressive power
to DSMS languages which, currently, are dreadfully lacking in both. Moreover, it
is clear that Streamlog obtains the greater level of expressive power that negation
(and aggregates) in recursive rules entail by guaranteeing that simple sequentiality
conditions hold between the timestamped predicates in the rules.

Continuous Query Languages (CQLs)7

Some years before the work [595], researchers at Stanford worked on the develop-
ment of a general-purpose Data Stream Management System (DSMS) for processing
continuous queries over multiple continuous data streams and stored relations. The
project, called STanford stREamdatA Manager (STREAM), was designed to invest-
igate data management and query processing and to build a general-purpose pro-
totype able handle high-volume and bursty data streams with large numbers of
complex continuous queries.

7Preliminary definitions adapted from [29–32]

2.2 Data Stream Reasoning: research timeline 59

Moreover, they introduced the Continuous Query Language (CQL), an expressive
SQL-based declarative language for registering continuous queries against streams
and stored relations. This was the language supported by the STREAM prototype.

For simple continuous queries over streams, it can be sufficient to use a relational
query language such as SQL, replacing references to relations with references to
streams, and streaming new tuples in the result. However, as continuous queries
grow more complex, e.g., with the addition of aggregation, subqueries, windowing
constructs, and joins of streams and relations, the semantics of a conventional rela-
tional language applied to these queries quickly becomes unclear. To address this
problem, the authors have defined a formal abstract semantics for continuous quer-
ies, and they have designed the concrete declarative query language Continuous
Query Language (CQL) that implements the abstract semantics.

Abstract Semantics The abstract semantics is based on two data types, streams
and relations, which are defined using a discrete, ordered time domain T .

A stream S is a (possibly infinite) bag (multi-set) of elements ⟨s, τ⟩, where s is a
tuple belonging to the schema of S and τ ∈ T is the timestamp of the element (the
logical arrival time of tuple s on stream S). There are two classes of streams: base
streams, which are the source data streams that arrive at the DSMS, and derived
streams, which are intermediate streams produced by operators in a query.

A relation R is a mapping from each time instant in T to a finite but unbounded
bag of tuples belonging to the schema of R. A relation R defines an unordered of
tuples at any time instant τ ∈ T , denoted R(τ). Note that in the standard relational
model a relation is simply a set (or bag) of tuples, with no notion of time as far
as the semantics of relational query languages are concerned. The bag of tuples in
a relation at a given point in time R(τ) denotes an instantaneous relation. As for
the streams, there are two classes of relations: base relation for input relations and
derived relation for relations produced by query operators.

The abstract semantics, as shown in Figure 2.2, uses three classes of operators over
streams and relations:

• A stream-to-relation operator takes a stream S as input and produces a relation
R as output with the same schema as S.

• A relation-to-relation operator takes one or more relations R1, . . . , Rn as input
and produces a relation R as output.

• A relation-to-stream operator takes a relationR as input and produces a stream
S as output with the same schema as R

60 Chapter 2 Stream Reasoning

Stream Relation

stream-to-relation

relation-to-stream

relation-to-relation

Figure 2.2.: Data types and operator classes in abstract semantics.

Stream-to-stream operators are absent, they are composed of operators of the above
three classes. These three classes are “black box” components of the abstract se-
mantics: the semantics does not depend on the exact operators in these classes, but
only on generic properties of each class.

A continuous query Q is a tree of operators belonging to the above classes. The
inputs of Q are the streams and relations that are input to the leaf operators, and
the output of Q is the output of the root operator. The output is either a stream or
a relation, depending on the class of the root operator.

At time τ , any operator of Q logically depends on its inputs up to τ . The behaviour
of query Q is derived from the behaviour of its operators in the usual inductive
fashion.

Concrete Language Syntactically, CQL is a relatively minor extension to SQL.

Stream-to-Relation Operators in CQL The stream-to-relation operators in CQL
are based on the concept of a sliding window [39] over a stream, and are expressed
using a window specification language derived from SQL-99:

• A time-based sliding window on a stream S takes a time interval ω as a para-
meter and produces a relation R. At time τ , R(τ) contains all tuples of S
with timestamps between τ − ω and τ . It is specified by following S with
“[Range ω]”. As a special case, “[Now]” denotes the window with ω = 0.

• A tuple-based sliding window on a stream S takes an integer N > 0 as a
parameter and produces a relation R. At time τ , R(τ) contains the N tuples
of S with the largest timestamps ≤ τ . It is specified by following S with
“[Rows N]”. As a special case, “[Rows Unbounded]” denotes the append-only
window “[Rows∞]”.

• A partitioned sliding window on a stream S takes an integer N and a set of at-
tributes {A1, . . . , Ak} of S as parameters, and is specified by following S with
“[Partition By A1, . . . , Ak Rows N]”. It logically partitions S into different sub-
streams based on equality of attributes A1, . . . , Ak, computes a tuple-based

2.2 Data Stream Reasoning: research timeline 61

sliding window of size N independently on each sub-stream, then takes the
union of these windows to produce the output relation.

Relation-to-Relation Operators in CQL CQL uses SQL constructs to express its
relation-to-relation operators, and much of the data manipulation in a typical CQL
query is performed using these constructs, exploiting the rich expressive power of
SQL.

Relation-to-Stream Operators in CQL CQL has three relation-to-stream operat-
ors: Istream, Dstream, and Rstream.

Istream (for “insert stream”) applied to a relation R contains ⟨s, τ⟩ whenever tuple
s is in R(τ)−R(τ − 1), i.e., whenever s is inserted into R at time τ .

Dstream (for “delete stream”) applied to a relation R contains ⟨s, τ⟩ whenever tuple
s is in R(τ − 1)−R(τ), i.e., whenever s is deleted from R at time τ .

Rstream (for “relation stream”) applied to a relation R contains the ⟨s, τ⟩ whenever
tuple s is in R(τ), i.e., every current tuple in R is streamed at every time instant.

When a continuous query specified in CQL is registered with the STREAM system,
a query plan is compiled from it. Query plans are composed of operators, which
perform the actual processing, queues, which buffer tuples (or references to tuples)
as they move between operators, and synopses, which store operator state.

The authors identified many useful concrete operators, defined strategies to gener-
ate, optimize and execute a query plan, and determined approaches to optimize the
management of the synopses.

Many other research groups worked on Data Stream Management System since the
beginning of this century. Other most notably are the academic prototypes are Tele-
graphCQ [144, 145, 347], Aurora/Borealis [1, 2, 142] and PIPES [346]. Moreover,
some commercial systems have been proposed like StreamBase [549], Truviso [225]
and extensions of almost all commercial DBMS (MySQL, PostgreSQL, DB2, etc.).

They have many similarities but there is no streaming SQL standard. Even if in the
following we will see that the CQL approach has been adopted by most of the RDF
and the logic-based systems.

62 Chapter 2 Stream Reasoning

Requirements of Real-Time Stream Processing8

From the previous sections, it is evident that applications that require real-time
processing of high-volume data streams are pushing the limits of traditional data
processing infrastructures.
Furthermore, several technologies have emerged-including off-the-shelf Stream Pro-
cessing engines-specifically to address the challenges of processing high-volume,
real-time data without requiring the use of custom code. At the same time, some
existing software technologies, such as main memory DSMSs and Rule Engines, are
also being “repurposed” by marketing departments to address these applications.

For this reason, some researchers ([548]) in the same years tried to identify some
requirements that a system software should meet to excel in a variety of real-time
Stream Processing applications. Their goal was to provide high-level guidance to
information technologists so that they will know what to look for when evaluation
alternative Stream Processing solutions.
They identified 8 rules:

Rule 1: Keep the Data Moving
The first requirement for a real-time Stream Processing system is to process mes-
sages “in-stream”, without any requirement to store them to perform any opera-
tion or sequence of operations. Ideally, the system should also use an active (i.e.,
non-polling) processing model.

Rule 2: Query using SQL on Streams (StreamSQL)
The second requirement is to support a high-level “StreamSQL” language with
built-in extensible stream-oriented primitives and operators.

Rule 3: Handle Stream Imperfections (Delayed, Missing, Out-of-Order Data)
The third requirement is to have built-in mechanisms to provide resiliency against
stream “imperfections”, including missing and out-of-order data, which are com-
monly present in real-world data streams.

Rule 4: Generate Predictable Outcomes
The fourth requirement is that a Stream Processing engine must guarantee pre-
dictable and repeatable outcomes.

Rule 5: Integrate Stored and Streaming Data
The fifth requirement is that a Stream Processing system should have the capabil-
ity to efficiently store, access, and modify state information, and combine it with
live streaming data. For seamless integration, the system should use a uniform
language when dealing with either type of data.

8Preliminary definitions adapted from [548]

2.2 Data Stream Reasoning: research timeline 63

SQL
DBMS

App 1 App 2 App n...

(a) .

Rule
Base

Rule
Enginestreaming

data
output
alerts

(b) .

Embedded
SQL DBMS

SPE
streaming

data
output
alerts

(c) .

Figure 2.3.: Basic architectures of (a) a DBMS, (b) a Rule Engine, and (c) a Stream Pro-
cessing Engine. Adapted from [548].

Rule 6: Guarantee Data Safety and Availability
The sixth requirement is to ensure that the applications are up and available,
and the integrity of the data maintained at all times, despite failures.

Rule 7: Partition and Scale Applications Automatically
The seventh requirement is that a Stream Processing system must be able to dis-
tribute its processing across multiple processors and machines to achieve incre-
mental scalability. Ideally, the distribution should be automatic and transparent.

Rule 8: Process and Respond Instantaneously
The eighth requirement is that a Stream Processing system must have a highly-
optimized, minimal-overhead execution engine to deliver real-time response for
high-volume applications.

In the same work, the authors identified also three different software system tech-
nologies that, at that time (2005) could potentially be applied to solve high-volume
low-latency streaming problems: DBMSs, Rule Engines, and Stream Processing En-
gines. Their basic architectures are shown in Figure 2.3.

Moreover, they evaluated these systems on the basis of the requirements presented
earlier, and they summarized the results of their evaluation in a table (reported in
Table 2.4). Each entry in the table contains one of four values:

Yes The architecture naturally supports the feature.

No The architecture does not support the feature.

Possible The architecture can support the feature. One should check with a vendor
for compliance.

Difficult The architecture can support the feature, but it is difficult due to the non-
trivial modifications needed. One should check with the vendor for compli-
ance.

64 Chapter 2 Stream Reasoning

DBMS Rule Engine SPE
Keep the data moving No Yes Yes
SQL on streams No No Yes
Handle stream imperfections Difficult Possible Possible
Predictable outcome Difficult Possible Possible
High availability Possible Possible Possible
Stored and streamed data No No Yes
Distribution and scalability Possible Possible Possible
Instantaneous response Possible Possible Possible

Table 2.4.: The capabilities of various systems software.

2.2.2 Complex Event Processing (CEP)9

An increasing number of distributed applications requires processing continuously
flowing data from geographically distributed sources at unpredictable rates to ob-
tain timely responses to complex queries. The concepts of timeliness and flow pro-
cessing are crucial for justifying the need for a new class of systems.

These requirements have led to the development of a number of systems specifically
designed to process information as a flow (or a set of flows) according to a set of
pre-deployed processing rules. Despite having a common goal, these systems differ
in a wide range of aspects, including architecture, data models, rule languages, and
processing mechanisms. In part, this is due to the fact that they were the result
of the research efforts of different communities, each one bringing its own view
of the problem and its background to the definition of a solution, not to mention
its own vocabulary [71]. After several years of research and development, we can
say that two models emerged and are competing today: the data stream processing
model [39] and the complex event processing model [393].

Conversely, to DSMSs, the Complex Event Processing model views flowing informa-
tion items as notifications of events happening in the external world, which have to
be filtered and combined to understand what is happening in terms of higher-level
events. Accordingly, the focus of this model is on detecting occurrences of particular
patterns of (low-level) events that represent the higher-level events whose occur-
rence has to be notified to the interested parties. The contributions to this model
come from different communities, including distributed information systems, busi-
ness process automation, control systems, network monitoring, sensor networks,
and middleware, in general. The origins of this approach may be traced back to the
publish-subscribe domain [210]. Indeed, while traditional publish-subscribe sys-
tems consider each event separately from the others and filter them (based on their

9Preliminary definitions adapted from [160]

2.2 Data Stream Reasoning: research timeline 65

topic or content) to decide if they are relevant for subscribers, Complex Event Pro-
cessing (CEP) systems extend this functionality by increasing the expressive power
of the subscription language to consider complex event patterns that involve the
occurrence of multiple, related events.

For more information about Complex Event Processing see also [160, 209, 392].

2.2.3 Research in the Semantic Web community10

The use of the Internet as a major source of information has created new challenges
for computer science and has led to significant innovation in areas such as Data-
Bases, information retrieval and semantic technologies. Currently, we are facing
another major change in the way information is provided. Traditionally informa-
tion used to be mostly static with changes being the exception rather than the rule.
Nowadays, more and more dynamic information, which used to be hidden inside
dedicated systems, is getting available to decision makers.

The Web is highly dynamic: new information is constantly added, and existing in-
formation is continuously changed or removed. Large volumes of data are produced
and made available on the Web by online newspapers, blogs, social networks, etc.,
not to mention data coming from sensors for environmental monitoring, weather
forecast, traffic management, and domain-specific information, like stock prices. In
these scenarios, information changes at a very high rate, so that we can identify a
stream of data on which we are called to operate with high efficiency.

As mentioned before, this leads to the development of DSMSs and CEP that effect-
ively deal with the transient nature of data streams, providing low delay processing
even in the presence of large volumes of input data generated at a high rate. All
these systems are based on data models, like for example the well-known relational
model, which allow only a predefined set of operations on streams with a fixed
structure. This allows the implementation of ad-hoc optimizations to improve the
processing. However, the Web provides streams of data that are extremely hetero-
geneous, both at a structural and at a semantical level. For example, a Twitter
stream is radically different from a stream delivered from a news channel, not only
because they are stored using different formats, but also because they contain differ-
ent types of information. Furthermore, the ability of operating on-the-fly on several
of these streams simultaneously would allow the implementation of real-time ser-
vices that can select, integrate, aggregate, and process data as it becomes available,
for example, to provide updated answers to complex queries or to detect situations

10Preliminary definitions adapted from [60, 61, 174, 177, 410, 551, 569, 570]

66 Chapter 2 Stream Reasoning

of interests, to automatically update the information provided by a website or ap-
plication.

Moreover, processing of data streams has been largely investigated and rapidly chan-
ging data can be analysed on the fly by specialized Data Stream Management Sys-
tems. Reasoners are year after year scaling up in the classical, time-invariant do-
main of ontological knowledge and reasoning upon rapidly changing information
has been neglected or forgotten. However, Data Stream Management Systems can-
not perform complex reasoning tasks, and they lack a protocol to publish widely and
to provide access to the rapidly changing data. Reasoners, on the other hand, can
perform such complex reasoning tasks, and the Semantic Web is providing the tools
and methods to publish data widely on the Web. These technologies, however, do
not really manage changing worlds: accessing and reasoning with rapidly changing
information have been neglected or forgotten by their development communities.

The state of the art in reasoning over changing worlds is based on temporal logic
and belief revision; these are heavyweight tools, suitable for data that changes in
low volumes at low frequency. The challenge is to make the transition from hand-
crafted systems to automatic reasoning over data streams of similar magnitudes.

The combination of reasoning techniques with data streams gives rise to Stream
Reasoning [570], which is a new multi-disciplinary approach that can provide the
abstractions, foundations, methods, and tools required to integrate data streams,
the Semantic Web, and reasoning systems.
Central to the notion of Stream Reasoning is a paradigmatic change from persistent
Knowledge Bases and user-invoked reasoning tasks to transient streams and continu-
ous reasoning tasks.

Obviously Stream Reasoning making sense only if it is in real time, of multiple,
heterogeneous, gigantic and inevitably noisy data streams, in order to support the
decision process of extremely large numbers of concurrent user.

A first step toward Stream Reasoning has been to combine the power of existing
Data Stream Management Systems and the Semantic Web [569].
However, different models, languages, and systems have been proposed in the last
years to handle streams on the Web, combining Semantic Web technologies with
Complex Event Processing (CEP) and Data Stream Management System (DSMS) fea-
tures. These languages and systems, commonly labelled under the RDF Stream
Processing (RSP) name, are solutions that extend SPARQL with Stream Processing
features, based on either the CEP or DSMS paradigm.

2.2 Data Stream Reasoning: research timeline 67

Combining CEP and DSMS features in a unique model is a step towards filling the
gap between RDF Stream Processing (RSP) and Stream Processing engines available
on the non-semantically-aware systems on the market (e.g., Oracle Event Processor,
ESPER, IBM InfoSphere Streams) [160]. There are indeed several motivations be-
hind combining DSMS and CEP. It is clearly possible to mix different DSMS and CEP
languages to achieve the desired tasks, but there are drawbacks, e.g., the need to
learn multiple languages, the limited possibility for query optimizations, the poten-
tial higher amount of resources.

Actually, as mentioned in [177], the nature of streams requires a paradigmatic
change (first arose in DB community):

from persistent data
to be stored and queried on demand (a.k.a. one time semantics)

to transient data
to be consumed on the fly by continuous queries (a.k.a. continuous semantics)

In [570] the authors systematically analysed the problems and have divided Stream
Reasoning research into five areas:

• Theory for Stream Reasoning

• Logic Language for Stream Reasoning

• Stream Data Management for the Semantic Web

• Stream Reasoning for the Semantic Web

• Engineering and Implementations

On a general level, currently there are solutions for reasoning about static knowl-
edge and solutions for handling streaming data. Therefore, a basic requirement for
a stream-reasoning system is to integrate these two aspects in a common approach
that can perform reasoning on semantic streams. Stream Reasoner takes several
streams of rapidly changing information and several static sources of background
knowledge as input.

We have a lot of data of many different types, but in order to have efficient Stream
Reasoners, some issues need to be solved.
These are the issues identified in [570]:

• Lack of Theory for Stream Reasoning

• Heterogeneous Formats and Access Protocols

• Semantic Modelling
Semantic Modelling of data streams involves several difficulties:

– Window dependencies

68 Chapter 2 Stream Reasoning

– Time dependencies

– Relationships between summarization and inference

– Merging with static information sources

– Learning from stream

• Scale

• Continuous Processing

• Real-Time Constraints

• Parallelization and Distribution

The same authors suggested also the following quality criteria that can be used to
test Stream Reasoners:

• number of data streams handled simultaneously;

• update speed of the data streams (for example, in assertions per second);

• number of subscribed queries handled in parallel;

• number of query subscribers that must be notified;

• time between event occurrence and notification of all subscribers.

Another important aspect is that knowledge and data can change over time.
In [569] the authors consider knowledge as invariable during the observation period,
only data can change, and they classify the data according to the frequency they are
expected to change, in these categories:

1. Invariable data that do not change in the observation period, e.g. the names
and lengths of the roads.

2. Periodically changing data, for which a temporal law describing their evolu-
tion is present in the Invariable knowledge; they are further classified as:

a) Probabilistic data, e.g. the fact that a traffic jam is present in the west
side of Milan due to bad weather or due to a soccer match is taking place
in San Siro stadium;

b) Pure periodic data, e.g.the fact that every night at 10 PM Milan west-side
overpass road closes.

3. Event-driven changing data that got updated as a consequence of some ex-
ternal event not described in the knowledge, which are further characterized
by the mean time between changes:

a) Fast, as an example consider the intensity of traffic (as monitored by
sensors) for each street in a city;

b) Medium, as an example consider roads closed for accidents or congestion
due to traffic;

2.2 Data Stream Reasoning: research timeline 69

c) Slow, as an example consider roads closed for scheduled works.

As reported also in [569], the authors developed a pluggable algorithm, in the
context of the LarKC European Research Project11 [216], which ideally includes five
steps (shown in Figure 2.4) to be iterated until a good enough answer is found:

1. retrieve relevant resource/content/context,

2. select relevant problems/methods/data,

3. abstract by extracting information, calculating statistics and transforming to
logic,

4. reason upon the aggregated knowledge,

5. decide if a new iteration is needed.

Figure 2.4.: Conceptual System Architecture. From [569].

This is a very interesting approach and this architecture should be used by every
Stream Reasoner.

Furthermore, in the Semantic Web world, were also developed new notions to rep-
resent streams (RDF streams) and process them (solvers like C-SPARQL, CQELS, etc.)
to support the pragmatic change from persistent data to transient data [60, 61].

In [60] is introduced the notion of RDF streams as the natural extension of the RDF
data model and then the SPARQL language is to query RDF streams.

RDF streams are new data formats set at the confluence of conventional data streams
and of conventional atoms usually injected into reasoners. An RDF stream, similar
to RDF graphs, is identified by using an IRI (a locator of the actual streaming data
source), but instead of being a static collection of triples a stream is a sequence
of RDF triples that are continuously produced and annotated with a time-stamp.

11http://www.larkc.org

70 Chapter 2 Stream Reasoning

http://www.larkc.org
http://www.larkc.org

Timestamps can be considered as annotations of RDF triples, and are monotonically
non-decreasing.

Moreover, in [569], the authors presented two alternative formats for RDF streams:

• A RDF molecules stream is an unbounded bag of pairs ⟨ρ, τ⟩, where ρ is a RDF
molecule [182] and τ is the timestamp that denotes the logical arrival time of
RDF molecule ρ on the stream;

• A RDF statements stream is a special case of RDF molecules stream in which ρ
is an RDF statement instead of a RDF molecule.

These researchers presented, in addition, two frameworks related to them:

• the RDF Molecules Stream Reasoning Framework

• the RDF Statements Stream Reasoning Framework

We refer the reader to their articles for more information.

In [61] is presented a technique for Stream Reasoning that incrementally maintains
a materialization of ontological entailments in the presence of streaming inform-
ation (that is an extension of the algorithm developed in [573]). Maintenance
of a materialization when facts change, i.e., facts are added or removed from the
Knowledge Base, is a well-studied problem but the approach of these researchers
is innovative because adding expiration time information to each RDF statement,
they shown that it is possible to compute a new complete and correct materializa-
tion by (a) dropping explicit statements and entailments that are no longer valid,
and (b) evaluating a maintenance program that propagates insertions of explicit
RDF statements as changes to the stored implicit entailments.

In the context of processing RDF streams, many different engines have been de-
veloped. These RSP engines can be broadly divided into two groups. Approaches
inspired by DSMS exploit sliding window mechanisms to capture a recent and fi-
nite portion of the input data, enabling their processing through SPARQL operat-
ors [297] in an atemporal fashion. And RSPs influenced by CEP reactively process
the input streams to identify relevant events and sequences of them. We call the
former semantic stream processing systems, i.e. systems that inherit the processing
model of DSMSs, but consider semantically annotated input, namely RDF triples,
and define continuous queries by extending SPARQL. We call the latter semantic
event processing systems, i.e. systems that pose their roots in a processing paradigm
that is more similar to that of CEP systems, and offer operators for (temporal) pat-
tern detection as the main building blocks for computation.

2.2 Data Stream Reasoning: research timeline 71

In the following we briefly describe are some of the most popular semantic stream
processing systems:

Streaming-SPARQL [92]
Streaming-SPARQL is an extension of SPARQL designed for processing streams
of RDF data. However, the main contributions of this work are theoretical.
In particular, the authors mainly focus on the specification of its semantics
using temporal relational algebra and provide an algorithm to automatically
transform SPARQL queries into this newly extended algebra.

C-SPARQL [59, 60, 62, 63]
Continuous SPARQL (C-SPARQL) is among the first contributions in the area
of Stream Reasoning and is often cited as a reference in the field. It is a new
language for continuous queries over streams of RDF data with the declared
goal of bridging the gap between the world of Stream Processing systems, and
in particular DSMSs, and SPARQL. C-SPARQL is an extension of SPARQL to sup-
port continuous queries, registered and continuously executed over RDF data
streams, considering windows of such streams. Supporting streams in RDF
format guarantees interoperability and opens up important applications, in
which reasoners can deal with knowledge that evolves over time. The distin-
guishing features of C-SPARQL are (i) the support for timestamped RDF triples,
(ii) the support for continuous queries over streams, and (iii) the definition of
ad-hoc, explicit operators for performing data aggregation, which is seen as
a feature of primary importance for streaming applications (abandoned after
the introduction of SPARQL 1.1 aggregates). The results of C-SPARQL queries
are continuously updated as new (streaming) data enters the system.

SPARQLstream [116, 117]
SPARQLstream is another syntactic extension of SPARQL to enable queries over
RDF streams and introduces S2O, an extension to R2O [67] for expressing
mappings from streaming sources to an ontology. As C-SPARQL, is based on
the idea of using RDF streams, i.e., RDF triples annotated with timestamps.
In SPARQLstream these streams are virtual, relying on the original data streams
for generating the query results, while C-SPARQL natively manages the RDF
stream triples in its data model. Both include time windows for transforming
infinite streams of data into bounded sequences to which other standard oper-
ators can be applied. Moreover, SPARQLstream considers time windows in the
past (upper bound different to the current time) and adheres to the SPARQL
1.1 definition for aggregates.

CQELS [468]
CQELS is a native and adaptive query processor for unified query processing
over Linked Stream Data and Linked Data [91, 522]. Similar to C-SPARQL,
CQELS adopts the processing model of DSMSs, providing windowing and re-

72 Chapter 2 Stream Reasoning

lational operators together with ad-hoc operators for generating new streams
from the computed results. Differently from C-SPARQL, CQELS offers a pro-
cessing model in which query evaluation is not periodic, but triggered by
the arrival of new triples. The distinctive difference of this solution w.r.t. C-
SPARQL is in the processing engine, which strictly integrates the evaluation
of background and streaming data, without delegating them to external com-
ponents. This makes possible to apply query rewriting techniques and op-
timizations well studied in the field of relational DataBases. In contrast to
the existing systems, CQELS uses a “white box” approach and implements the
required query operators natively to avoid the overhead and limitations of
closed system regimes. It provides a flexible query execution framework with
the query processor dynamically adapting to the changes in the input data.
During query execution, it continuously reorders operators according to some
heuristics to achieve improved query execution in terms of delay and complex-
ity. Moreover, external disk access on large Linked Data collections is reduced
with the use of data encoding and caching of intermediate query results.

It is worth noticing that there are many more semantic stream processing systems,
such as [49, 61, 493, 574].

In the following, we briefly describe some of the most popular semantic event pro-
cessing systems:

EP-SPARQL (ETALIS) [20–22, 25]
EP-SPARQL is a unified language for event processing and reasoning. Sim-
ilarly to C-SPARQL, EP-SPARQL provides windowing operators (both count
and time-based) for isolating portions of the input streams which will be pro-
cessed by the system. However, differently from C-SPARQL, the main building
blocks of the EP-SPARQL language are represented by a set of logical and
temporal (sequence) operators that can be combined to express complex pat-
terns of information items. Another notable difference is in the data model
and consists in the way time is associated to RDF triples; while C-SPARQL
associates one timestamp to each triple, representing a single point in time
(point semantics), EP-SPARQL adopts two timestamps, which represent the
lower and upper bound of the occurring interval (interval semantics). This
reflects on output triples, whose occurrence intervals are computed from the
input elements that contributed to their generation. The idea is promising and
makes easy to write complex patterns involving content and time constraints
on the input RDF triples. However, the approach used for writing patterns
has some limitations: for example, when a pattern is satisfied by different
sets of elements in the input stream, users do not have any operator for decid-
ing which ones to select. As far as implementation is concerned, EP-SPARQL
queries are translated in logic expressions in the ETALIS Language for Events

2.2 Data Stream Reasoning: research timeline 73

(ELE) [24] and computed at run-time using the event-based backward chain-
ing algorithm of the ETALIS [23] engine, which converts queries to Prolog
rules and evaluates them.

Sparkwave [336]
Sparkwave is a system designed for high performance on-the-fly reasoning
over RDF data streams. It trades complexity for performance: in particular,
Sparkwave poses severe limitations to the size of the background knowledge,
which must fit into the main memory of a single machine; moreover, it oper-
ates over a pre-loaded RDF schema and provides limited reasoning functional-
ities. Sparkwave implements a variant of the RETE algorithm [223], in which
a pre-processing phase is used to materialize derived information before per-
forming pattern matching.

Instans [504–506]
INSTANS is an incremental engine for near-real-time processing of complex,
layered, heterogeneous events. Based on the RETE algorithm [223], INSTANS

performs continuous evaluation of incoming RDF data against multiple SPARQL
queries. Intermediate results are stored into a β-node network. When all the
conditions of a query are matched, the result is instantly available.

These and other systems have been deeply analysed in [410] and classified accord-
ing to the application requirements described at the beginning of this chapter. More
information about RDF Stream Processors implementations can be found in the
W3C RSP Community Group wiki webpage about RDF Stream Processors Implement-
ation12.

Moreover, in the latest years, there have been other proposals based on different
approaches, like [368, 492, 529] or the ones described in the next section. Non-
etheless, these systems also lack complex reasoning capabilities, and the theory
behind them is often not well-defined.

Regarding the query model of RSP languages, it is similar to the one of CQL shown
in Figure 2.2. As shown in Figure 2.5, there are three classes of operators over RDF
streams and RDF graphs:

S2R Stream to bounded RDF, which inherits the idea of stream-to-relation operat-
ors in CQL which produce a relation from a stream

R2R Bounded RDF to RDF, which inherits the idea of relation-to-relation operators
in CQL which produce a relation from one or more other relations

R2S Bounded RDF to Stream, which inherits the idea of relation-to-stream operat-
ors in CQL which produce a stream from a relation

12https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation

74 Chapter 2 Stream Reasoning

https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation
https://www.w3.org/community/rsp/wiki/RDF_Stream_Processors_Implementation

RDF Stream RDF Mappings

S2R operators

R2S operators

SPARQL operators

Figure 2.5.: CQL extension for RDF data streams.

In these RSP operators the R denotes finite RDF graphs or mappings, as opposed
to unbounded sequences of RDF graphs, i.e. streams. In addition to those oper-
ators (which can be thought as part of a RSP Data Manipulation Language (DML)
in SQL terms), there is also the need for a Data Definition Language (DDL) to re-
gister a stream, register continuous queries, etc. Of all known RSP languages, only
C-SPARQL has DDL primitives, but they are limited to query registration.13

There is so far no RSP language that can combine both paradigms (the one derived
from DSMS and the one derived from CEP) under a clearly defined semantics, leav-
ing a gap for those use cases that require this query expressivity. However, some
initial attempts exist. In C-SPARQL, one can access the timestamp of a statement
and specify limited forms of temporal conditions. CQELS recently proposed to in-
tegrate sequencing and path navigation [163], although it does not include typical
selection mechanisms of CEP [160].

More information about RSP Query Features and Semantics can be found in the
W3C RSP Community Group wiki web-pages about RSP Query Features14, RSP Query
Semantics15 and Example of RSP-QL query16.

Other details about querying data streams will be provided in the next section.

In the following we discuss some approaches proposed to evaluate and compare
RSP systems.

Benchmarking Stream Reasoning Systems17

As mentioned before, one of the open challenges is benchmarking the existing RSP
engines. The variety of implementations that have been proposed so far, result
crucial differences in operational semantics. Even though all of these approaches try
to solve similar challenges, they differ in various important aspects; among others,

13From https://www.w3.org/community/rsp/wiki/RSP_Query_Features
14https://www.w3.org/community/rsp/wiki/RSP_Query_Features
15https://www.w3.org/community/rsp/wiki/RSP_Query_Semantics
16https://www.w3.org/community/rsp/wiki/Example_of_RSP-QL_query
17Preliminary definitions adapted from [9, 173, 334, 335, 441, 469, 599]

2.2 Data Stream Reasoning: research timeline 75

https://www.w3.org/community/rsp/wiki/RSP_Query_Features
https://www.w3.org/community/rsp/wiki/RSP_Query_Semantics
https://www.w3.org/community/rsp/wiki/RSP_Query_Semantics
https://www.w3.org/community/rsp/wiki/Example_of_RSP-QL_query
https://www.w3.org/community/rsp/wiki/RSP_Query_Features
https://www.w3.org/community/rsp/wiki/RSP_Query_Features
https://www.w3.org/community/rsp/wiki/RSP_Query_Semantics
https://www.w3.org/community/rsp/wiki/Example_of_RSP-QL_query

they employ different underlying systems, query rewriting mechanisms, execution
strategies and query semantics. A common benchmarking framework would help
to assess differences and limitations of these existing implementations, but also
provide a basis for steering future research directions and standardization efforts.

The W3C RSP Community Group18 proposed two kinds of tests:

Soak testing addresses the system performance under the expected production
load over a continuous period of time

Stress testing checks the response of the system under heavy loads

Moreover, they proposed also some metrics in order to evaluate those engines:

• Memory consumption

• Query execution time

• Query/Data throughput

• CPU usage

• Correctness of results

• Size of Knowledge Base

• Reasoning

• Caching

In addition, they have specified which (input) parameters should be used for Query
and Data:

Query
• Number of joins
• Type of join
• Implies reasoning
• Number of streams
• Aggregation functions
• Selectivity
• Window size/slide

Data
• Variety of data (structure, values)

Stream
– Number of triples / graph
– Input rate
Background data
– Location (local vs remote)
– Size of the data:

* storable in primary memory

* storable in secondary memory

These features form the foundation for the creation of effective benchmarks.19

Several benchmarking systems that focus on different features of the RSP systems
have been proposed so far.

First of all, it is worth mentioning the Linear Road Benchmark [33], which how-
ever, is designed for relational (traditional) Stream Processing systems and thus not
suitable to evaluate graph-based queries on LSD processing engines. As originally
designed to evaluate traditional DSMSs, the benchmark is based on the relational

18http://www.w3.org/community/rsp
19From https://www.w3.org/community/rsp/wiki/RSP_Benchmarking

76 Chapter 2 Stream Reasoning

http://www.w3.org/community/rsp
http://www.w3.org/community/rsp
https://www.w3.org/community/rsp/wiki/RSP_Benchmarking

data model, so it does not capture the properties of RDF graph data. Moreover, Lin-
ear Road does not consider interlinking the benchmark data set with other data sets;
neither does it address reasoning. The benchmark simulates a traffic management
scenario where multiple cars are moving on multiple lanes and on multiple differ-
ent roads. The system to be tested is responsible to monitor the position of each
car, and continuously calculates and reports to each car the tolls it needs to pay and
whether there is an accident that might affect it. In addition, the system needs to
continuously maintain historical data, as it is accumulated, and report to each car
the account balance and the daily expenditure. Linear Road is a highly challenging
and complicated benchmark due to the complexity of the many requirements. It
stresses the system and tests various aspects of its functionality, e.g., window-based
queries, aggregations, various kinds of complex join queries; theta joins, self-joins,
etc. It also requires the ability to evaluate not only continuous queries on the stream
data, but also historical queries on past data. The system should be able to store
and later query intermediate results.

Then two complementary benchmarks have been proposed for the evaluation and
continuous improvement of RSP engines: LSBench [469] and SRBench [599].
LSBench is mainly focused on understanding the throughput of existing RDF Stream
processors and checking correctness by comparing the results of different processors
and quantifying the mismatch among them.
SRBench is mainly focused on understanding coverage for SPARQL constructs.

The authors of LSBench observed that the following evaluation-related characterist-
ics of these engines are critically important:

• The difference in semantics has to be respected, as the engines introduce their
own languages based on SPARQL and similar features from CQL;

• The execution mechanisms are also different. C-SPARQL uses periodical ex-
ecution, i.e., the system is scheduled to execute periodically (time-driven)
independent of the arrival of data and its incoming rate. On the other hand,
CQELS and ETALIS follow the eager execution strategy, i.e., the execution is
triggered as soon as data is fed to the system (data-driven). Based on oppos-
ite philosophies, the two strategies have a large impact on the difference of
output results.

• For a single engine, any change in the running environment and experiment
parameters can lead to different outputs for a single test.

All these characteristics make a meaningful comparison of stream engines a non-
trivial task. To address this problem, they proposed methods and a framework to
facilitate such meaningful comparisons of LSD processing engines w.r.t. various

2.2 Data Stream Reasoning: research timeline 77

aspects. Their major contribution is a framework coming with several customizable
tools for simulating realistic data, running engines, and analysing the output.

Using a social network scenario, the benchmark uncovered conceptual and tech-
nical differences between CQELS, C-SPARQL, and ETALIS. Furthermore, it high-
lighted performance differences between these engines and included limited func-
tionality and correctness tests. Because LSBench does not include means to determ-
ine the correct output, however, it does not provide absolute correctness figures
to RSP engine developers. The benchmark is also not customizable for engines’
varying execution strategies.

SRBench (Streaming RDF/SPARQL (strRS) Benchmark) aims at assessing the abilities
of strRS engines in dealing with important features from both DSMSs and Semantic
Web research areas combined in one real-world application scenario. That is, how
well can a system cope with a broad range of different query types in which Se-
mantic Web technologies, including querying, interlinking, sharing and reasoning,
are applied on highly dynamic streaming RDF data. The benchmark can help both
researchers and users to compare strRS engines in a pervasive application scenario
in our daily life.

SRBench defines a set of queries that cover RSP-specific aspects, such as ontology-
based reasoning or the application of static background knowledge to streaming
data. The authors conduct a functional evaluation of the RSP engines C-SPARQL,
CQELS, and SPARQLstream and conclude that the capabilities of these engines are still
fairly limited. Due to the focus on functional aspects, SRBench does not recognize
differences in the operational semantics of the benchmarked systems. To validate
the query results, they propose correctness metrics such as precision and recall.

However, LSBench and SRBench do not consider the different operational semantics
of the benchmarked systems in order to assess the correctness of query evaluation
results. Therefore later CSRBench [173], an extension of SRBench to address cor-
rectness verification, has been proposed. The main motivations of the authors were
that while these two evaluation efforts provide relevant contributions to the state
of the art, one common limitation is that they do not consider checking the output
produced by RDF stream processors. SRBench defines only functional tests in order
to verify the query language features supported by the engines, while LSBench does
not verify the correctness of the answers, but limits the analysis of correctness to
the number of outputs. In sum, both benchmarks make two assumptions: 1) the
tested systems work correctly, and 2) the tested systems have the same operational
semantics. However, these assumptions do not always hold for all RSP engines,
and hence these benchmarks may supply misleading information about them. In
fact, RDF stream processors do not always adhere to their operational semantics, as

78 Chapter 2 Stream Reasoning

Feature Operator C-SPARQL CQELS SPARQLstream

Report strategy S2R
Window close and
Non-empty content Content-change

Window close and
Non-empty content

Tick S2R Tuple-driven Tuple-driven Tuple-driven

Output operator R2S Rstream Istream
Rstream, Istream

and Dstream
Empty relation notification R2S Yes No No
Time unit seconds hundreds milliseconds hundreds milliseconds

Table 2.5.: Classification of the RDF stream processors.

shown in [172]. Furthermore, even when RDF stream engines comply with their
own semantics, these may differ from each other and therefore produce different
but correct results. This means that it is considerably more difficult to compare
these engines than those that process static SPARQL queries. Not only are correct
answers determined by the input stream and the query, applying a given SPARQL
extended algebra, but also by the operational semantics of each system.

Therefore, CSRBench (Correctness checking Benchmark for Streaming RDF/SPARQL)
focuses on the correctness of stream query results. CSRBench evaluates RSP engines’
compliance to their respective operational semantics using an oracle that determ-
ines the validity (i.e., correct or incorrect) of the query results. It thereby comple-
ments functional (SRBench) and performance (LSBench) evaluations so it takes first
steps towards validating RSP engines but lacks comprehensive correctness evalu-
ations over time. The authors find that none of the tested engines passes all tests
and provide a detailed report on why certain engines fail at specific queries.

In the same paper, the authors proposed a characterization of the operational se-
mantics of RDF stream processors. They defined a common model to capture the
different behaviours of the systems taking into account two existing and well-known
work of the data streaming world: CQL [32] and SECRET [96, 181], a framework to
characterise and analyse the operational semantics of the window operators. They
adapted these two models to be applied to RDF stream engines, defining a model
that can be used to assess the correctness of the systems. The systems are imple-
mented in different ways, but their operational semantics can be explained by the
model they defined. These descriptions are important not only to foresee how the
systems have to work (and consequently to compute the expected correct results)
but also to highlight the differences between them. In Table 2.5 is reported the
summary of their classification of RDF stream processors.

In the same years, also the well-known benchmark for reasoning over static data-
sets Lehigh University Benchmark (LUBM) have been extended to make it work for
stream-based experiments. This new benchmarking system, called “SLUBM” [441],
was conceived in order to preserve the semantics of the LUBM ontology while

2.2 Data Stream Reasoning: research timeline 79

adding a time dimension (of semester unit) to the KB; this allows retaining most of
the LUBM’s old standards.

Another interesting benchmark, related to the CityPulse Project described in Sec-
tion 2.4.1, is the CityBench Benchmarking Suite [9]. The main motivation of this
work was that available benchmarks for the evaluation of RDF Stream Processing
(RSP) solutions are either synthetic or mostly based on static data dumps of con-
siderable size that cannot be characterised and broken down, and so the need to
benchmark RSP systems moving away from pre-configured static test-bed towards
a dynamic and configurable infrastructure. Few of the existing RSP engines have
been evaluated using offline benchmarks, but none of them has been tested based
on features that are significant in real-time scenarios. There is a need for a system-
atic evaluation in a dynamic setting, where the environment in which data is being
produced and the requirements of applications using it are dynamically changing,
thus affecting key evaluation metrics.

Therefore, the author first identified a set of dynamic requirements of smart applic-
ations which must be met by RSP engines and then designed benchmarks based on
such requirements, using real-time datasets gathered from sensors deployed within
a real City, providing a testing environment together with a set of queries classified
into different categories for evaluation of selected application scenarios. The Chal-
lenges of Smart City Applications, which can be useful to evaluate RSP systems, that
they identified are:

• Data Distribution

• Unpredictable Data Arrival Rate

• Number of Concurrent Queries

• Integration with Background Data

• Handling Quasi-static Background Data

• On-demand Discovery of data streams

• Adaptation in Stream Processing

For more details about these Challenges and the respective Requirements for RSP
system, see [9].

Recently a new benchmark framework for RSP engines, called YABench (Yet Another
RDF Stream Processing Benchmark) [335], has been proposed in order to assess both
correctness and performance of RSP engines. The main motivation of the authors
was that existing benchmarks tackle particular aspects such as functional coverage,
result correctness, or performance but none of them assesses RSP engine behaviour
comprehensively w.r.t. all these dimensions.

80 Chapter 2 Stream Reasoning

YABench extends the concept of correctness checking and provides a flexible and
comprehensive tool-set to analyse and evaluate RSP engine behaviour. It is highly
configurable and provides quantifiable and reproducible results on correctness and
performance characteristics. YABench provides means for the definition of test
scenarios, generates reproducible test data streams, performs evaluation runs, and
provides analyses of the results. It provides full reproducibility and emphasizes
visual presentation of results to foster an understanding of engines’ individual char-
acteristics, including correctness under varying input loads, window sizes, and win-
dow frequencies.

YABench overcomes the limitations of LSBench by introducing a configurable oracle
that allows emulating the behaviour of different engines. This is an essential re-
quirement due to the fact that currently available engines do not agree on common
operational semantics. Hence, the oracle represents a means to create reproducible
results based on configurable operational semantics allowing comparing results
from different engines along different dimensions such as performance and correct-
ness. YABench extends the validation of SRBench implementing its same metrics but
on a per-window basis and thereby makes it possible to quantify engines’ retrieval
performance on the most granular level. YABench extends the idea of oracle-based
validation of CSRBench using more comprehensive correctness metrics (i.e., preci-
sion and recall) for each window. Moreover, they relate these correctnesses metrics
directly to performance metrics such as delay in query result delivery or memory
consumption and CPU utilization. Thereby, YABench provides insights into through-
put and scalability and provides a comprehensive tool-set to investigate RSP engine
characteristics, including both performance and correctness. In addition, their mod-
ular architecture also allows researchers to easily exchange the RSP engines, stream
generators and continuous queries used in the benchmark.

In the latest years, another interesting framework on this topic has been introduced.
It is called LARS and it is detailed described in depth in Section 2.3.2.

More information about benchmarks of RSP systems can be found on the W3C RSP
Community Group wiki webpage about RSP Benchmarking20.

2.2.4 Further remarks

For more information about Data Stream Reasoning see also [36, 64, 175, 420,
547].

20https://www.w3.org/community/rsp/wiki/RSP_Benchmarking

2.2 Data Stream Reasoning: research timeline 81

https://www.w3.org/community/rsp/wiki/RSP_Benchmarking
https://www.w3.org/community/rsp/wiki/RSP_Benchmarking

2.3 Stream Reasoning and Logic Programming

As mentioned before, the advancements in Internet and Sensor technology has cre-
ated new challenges triggered also by the emergence of continuous data streams,
like web-logs, mobile locations, or traffic data.
While existing Data Stream Management Systems allow for high-throughput Stream
Processing, they lack complex reasoning capacities [570].

Many solutions have been developed also in the Logic Programming community. In
the following, we focus mostly on ASP because it is the formalism we have used in
our research works in this area.

2.3.1 In the Answer Set Programming community21

Answer Set Programming faces a growing range of increasingly complex applica-
tions. Many real-world applications, like planning or model checking, comprise
parameters reflecting solution sizes. However, in the propositional setting of ASP,
such problems can only be dealt with in a bounded way by considering, in turn,
one problem instance after another, gradually increasing the bound on the solution
size.

In the latest years, also the ASP community has been concerned with the prob-
lems related to the Stream Reasoning and researchers tried to find an approach to
knowledge-intense Stream Reasoning, based on Answer Set Programming as a prime
tool for Knowledge Representation and Reasoning. It is a big innovation for the ASP
world because before ASP is usually used to solve “offline” problems (which means
that entire problem is known a priori and can be solved without additional inform-
ation).

However, the sheer amount and continuous flow of information produced by data
streams precludes the direct application of ASP, simply because it is designed for
singular reasoning from all available information. Unlike this, Stream Reasoning,
instead, “restricts processing to a certain window of concern, focusing on a subset
of recent statements in the stream, while ignoring previous statements” [64].

Solving such a problem with traditional ASP systems, like DLV or clingo, requires
relaunching the system upon the arrival of each character. Although each time only
the last two readings need to be taken into account, neither of the following ways
to utilize standard ASP systems is satisfactory from a KR&R viewpoint: (a) one may

21Preliminary definitions adapted from [184, 249–252, 255, 259, 294]

82 Chapter 2 Stream Reasoning

add further rules to explicitly identify outdated readings (in order not to reason
about them) among the whole data; (b) an external component may filter readings
and pass only the most recent ones on to the ASP system.

To accommodate this in ASP, some years ago researchers at the University of Pots-
dam developed new techniques that allow us to formulate problem encodings deal-
ing with emerging as well as expiring data in a seamless way. These researchers
proposed first an incremental approach to both grounding and solving in ASP, with
the goal of avoiding redundancy by gradually processing the extensions to a prob-
lem rather than repeatedly re-processing the entire extended problem. Then they
proposed a reactive approach to ASP that allows us to implement real-time dynamic
systems running online in changing environments and incorporating online data
streams. We present their approach in the next paragraphs.

Background

To explain their approach we have first to introduce some background notions.

We define a (parametrized) domain description as a triple (B, P , Q) of logic pro-
grams, among which P and Q contain a (single) parameter k ranging over the
natural numbers. In view of this, we sometimes denote P and Q by P [k] and Q[k].
The base program B is meant to describe static knowledge, independent of para-
meter k. The role of P is to capture knowledge accumulating with increasing k,
whereas Q is specific for each value of k. The goal is then to decide whether the
program

R[k/i] = B ∪
∪

1≤j≤i

P [k/j] ∪Q[k/i]

has an Answer Set for some (minimum) integer i ≥ 1.

In order to provide a clear interface between program slices and to guarantee
their compositionality, the researchers build upon the concept of module developed
in [453].

Definition (Modular Logic Programs (definition from [453])).
We define a logic program module similarly to Gaifman and Shapiro [235], but
consider the case of normal logic programs instead of positive (disjunctive) logic
programs.
A triple P = (P, I,O) is a (propositional logic program) module, if

1. P is a finite set of rules of the form h← B+,∼ B−;

2. I and O are sets of propositional atoms such that I ∩O = ∅;

3. Head(P) ∩ I = ∅.

2.3 Stream Reasoning and Logic Programming 83

The Herbrand Base of module P, Hb(P), is the set of atoms appearing in P combined
with I ∪ O. Intuitively the set I defines the input of a module and the set O is
the output. The input and output atoms are considered visible, i.e. the visible
Herbrand Base of module P is Hbv(P) = I ∪O. Notice that I and O can also contain
atoms not appearing in P , similarly to the possibility of having additional atoms
in the Herbrand Bases of normal logic programs. All other atoms are hidden, i.e.
Hbh(P) = Hb(P) \Hbv(P).

A domain description (B, P [k], Q[k]) is modular, if the modules

Pi = Pi−1 ⊔ P[i](O(Pi−1)) and Qi = Pi ⊔Q[i](O(Pi))

are defined for i ≥ 1, where P0 = B(∅).

A domain description (B, P [k], Q[k]) is bound, if, for all i ≥ 1

atom(grd(B)) ⊆ head(grd(B)) and atom(grd(P [i])) ⊆ head(grd(B
∪

1≤j≤i

P [j]))

Incremental ASP

The researchers at the University of Potsdam propose to compute Answer Sets in
an incremental fashion, starting from R[1] but then gradually dealing with the pro-
gram slices P [i] and Q[i] rather than the entire program R[i]. However, B and the
previously processed slices P [j] and Q[j], 1 ≤ j < i, must be taken into account
when dealing with P [i] and Q[i]: while the rules in P [j] are accumulated, the ones
in Q[j] must be discarded. For accomplishing this, an ASP system has to operate
in a “stateful way”. That is, it has to maintain its previous state for processing the
current program slices. In this way, all components, B, P [j] and Q[i] are dealt with
only once and duplicated work is avoided when increasing i.

Given that an ASP system is composed of a grounder and a solver, this incremental
approach has the following specific advantages over the standard approach. As
regards grounding, it reduces efforts by avoiding reproducing previous ground rules.
Regarding solving, it reduces redundancy, in particular, if a learning ASP solver is
used, given that previously gathered information on heuristics, conflicts, or loops,
respectively, remains available and can thus be continuously exploited.
The researchers provide some empirical evidence using the incremental ASP system
iclingo.

As mentioned above, the computation of Answer Sets consists of two phases: a
grounding phase aiming at a compact ground instantiation of the original program
and a solving phase computing the Answer Sets of the obtained ground program.

84 Chapter 2 Stream Reasoning

The incremental approach is based on the idea that the grounder, as well as the
solver, are implemented in a stateful way.
As regards grounding, at each step i, the goal is to produce only ground rules stem-
ming from program slices P [i] andQ[i], without re-producing previous ground rules.
The ground program slices are then gradually passed to the solver that accumulates
all ground rules from P [j], for 1 ≤ j ≤ i, while discarding the rules from Q[j], if
j < i.
Given a program P over A and I ⊆ grd(A), we define an (incremental) grounder as
a partial function ground: (P, I) 7→ (P ′, O), where P ′ is a program over grd(A)
and O ⊆ grd(A). Thereby, P ′ stands for the ground program obtained from
P , where the input atoms I provide domain information used to instantiate non-
ground atoms in the rules of P . The output atoms in O essentially correspond to
head(P ′). Their main use is to carry state information, as O can serve as input to
subsequent grounding steps.
A grounder ground is adequate, if for every program P over A and I ⊆ A such that
is defined ground(P, I) = (P ′, O), the following holds:

1. (P ∪ {{a} ←| a ∈ I}) ≡ (P ′ ∪ {{a} ←| a ∈ I}),

2.
∪

X∈AS(P∪{{a}←|a∈I})(X\I) ⊆ O ⊆ head(grd(P)|Y) where Y = I∪head(grd(P)),

3. for every r′ ⊆ P ′, there is some r ∈ grd(P) such that head(r) = head(r′) and
body(r)+ \ (I ∪O) ⊆ body(r′)+.

The first condition expresses that P and P ′, each augmented with any combination
of input atoms in I, must be equivalent. The second condition stipulates that all non-
input atoms belonging to some Answer Set X of (P ∪{{a} ←| a ∈ I}) are contained
in O. In addition, O must not exceed the head atoms of grd(P)|I∪head(grd(P)) in
order to suitably restrict subsequently produced ground rules, using O as an input.
Finally, the third condition forbids the introduction of rules that cannot be obtained
from grd(P) via permissible simplifications. Clearly, an adequate grounder may
apply Answer Set preserving simplifications to compact its output.

We assume that atoms not occurring as the head of any rule are eliminated; even
if such an atom becomes derivable later on when another program is added, it can
thus not interact with the rules already present.
The reason for this design decision is that, although operating in an open environ-
ment, the possible addition of information or program slices, respectively, should
not force the solver to continuously rebuild its existent data structures.

This approach, comprising incremental grounding and solving, matches exactly the
semantics of (programs induced by) separated modular domain descriptions.

2.3 Stream Reasoning and Logic Programming 85

Reactive ASP

In order to capture dynamic systems, the researchers at the University of Potsdam
take advantage of incremental logic programs [255], described before.

In this approach, reasoning is driven by successively arriving events. No matter
when a request arrives, its logical time step is aligned with the ones used in the
incremental program.

Grounding and solving in view of possible yet unknown future events constitutes
a major technical challenge. For guaranteeing redundancy-freeness, the continu-
ous integration of new program parts has to be accomplished without reprocessing
previously treated programs. Also, simplifications related to events must be suspen-
ded until they become decided. Once this is settled, the approach leaves room for
various application scenarios.

An online progression represents a stream of events and inquiries. While entire event
streams are made available for reasoning, inquiries act as punctual queries.
We define an online progression (Ei[ei], Fi[fi])i≥1 as a sequence of pairs of logic
programs Ei, Fi with associated positive integers ei, fi.
An online progression is asynchronous in distinguishing stream positions like i from
(logical) timestamps. Hence, each event Ei and inquiry Fi includes a particular time
stamp ei or fi, respectively, indicated by writing Ei[ei] and Fi[fi]. Such timestamps
are essential for synchronization with parameters in the underlying (incremental)
logic programs. Note that different events and/or inquiries may refer to the same
time stamp.

Let (Ei[ei], Fi[fi])1≤i≤j be a finite online progression and (B, P [t], Q[t]) be an incre-
mental logic program. We define:

1. the k-expanded logic program of (Ei[ei], Fi[fi])1≤i≤j w.r.t. (B, P [t], Q[t]) as

Rj,k = B ∪
∪

1≤i≤k

P [t/i] ∪Q[t/k] ∪
∪

1≤i≤j

Ei[ei] ∪ Fj [fj]

for each k such that 1 ≤ e1, . . . , ej , fj ≤ k, and

2. a reactive Answer Set of (Ei[ei], Fi[fi])1≤i≤j w.r.t. (B, P [t], Q[t]) as an Answer
Set of a k-expanded logic program Rj,k of (Ei[ei], Fi[fi])1≤i≤j for a (minimum)
k ≥ 1.

The incremental program constitutes the offline counterpart of an online progres-
sion; it is meant to provide a general (schematic) description of an underlying
dynamic system. The parameter k represents a valid horizon accommodating all
occurring events and inquiries. Thus, it is bound from below by the timestamps oc-

86 Chapter 2 Stream Reasoning

curring in the online progression. The goal is then to find a (minimum) horizon k
such that Rj,k has an Answer Set, often in view of satisfying the global query Q[t/k].
In addition, inquiries, specific to each j, can be used for guiding Answer Set search.
Unlike this, the whole stream (Ei[ei])1≤i≤j of events is taken into account. Observe
that the number j of events is independent of the horizon k. Finally, it is import-
ant to note that the above definition of an expanded program is static because its
parameters are fixed.

Unlike offline incremental ASP [255], its online counterpart deals with external
knowledge acquired asynchronously. When constructing a ground module, one can
thus no longer expect all of its atoms to be defined by the (ground) rules inspected
so far. Rather, atoms may be defined by an online progression later on.To accom-
modate this, potential additions need to be reflected and exempted from program
simplifications, as usually applied w.r.t. (yet) undefined atoms. To this end, we
assume in the following each (non-ground) program P to come along with some set
of explicit ground input atoms referred to by IP . Such atoms provide “hooks” for
online progressions to later incorporate new knowledge into an existing program
part.

Note that there are other concepts (like Modular Online Progression, Composition-
ality, Mutually Revisability, Instantiation) related to online progression but they are
not needed for the purposes of this work, therefore, they will not be described.
For more information see [252].

They implemented a prototypical reactive ASP solver called oclingo which extends
iclingo with online functionalities.
To this end, oclingo acts as a server listening on a port, configurable via its – port
option upon start-up.
Unlike iclingo, which terminates after computing an Answer Set of the incremental
logic program it is run on, oclingo waits for client requests.
To issue such requests, the researchers implemented a separate controller program
that sends online progressions to oclingo and displays Answer Sets received in re-
turn.

Three parts are distinguished via the declarations ‘#base.’, ‘#cumulative t.’ and
‘#volatile t.’ where t serves as the parameter. Of particular interest is the de-
claration preceded by ‘#external’, delineating the input to the cumulative part
provided by future online progressions.

The application-oriented features of oclingo also include declarations ‘#forget t.’
in external knowledge to signal that yet undefined input atoms, declared at a step
smaller or equal to t are no longer exempted from simplifications, so that they can

2.3 Stream Reasoning and Logic Programming 87

be falsified irretrievably by the solver in order to compact its internal representation
of accumulated incremental program slices.

Furthermore, oclingo supports an asynchronous reception of input. If new input
arrives before solving is finished, the running solving process is aborted, and the
solver is relaunched w.r.t. the new external knowledge.

Stream Reasoning with ASP

Later the researchers at the University of Potsdam proposed an ASP-based approach
to Stream Reasoning based on the sliding window model. The idea is (i) to read an
“offline” encoding just once and (ii) to keep only the n last entries of an “online”
data stream.

They accomplish this by extending the previous approach to reactive ASP [252]
by means for dealing with time-decaying program parts. While standard ASP solv-
ing deals with one problem instance at a time, they face continuously changing
instances. They address this by proposing novel language constructs that allow
for specifying and reasoning with time-decaying logic programs in an effective way.
Moreover, they develop modelling techniques that are robust enough to handle
changing data without continuous reprocessing or increasing memory demands.

Stream data often stays in a sliding window for several steps before it can (and
should) be discarded so that it fits neither into the cumulative part P nor the query
Q in a natural way. In order to address this shortcoming, they introduced the
concept of time-decaying logic programs.

To provide a formal account of time-decaying logic programs, subject to emerging
and expiring constituents, the researchers rely on module theory [453] for capturing
the continuous composition and decomposition of program parts. To this end, they
further extend the incremental and reactive module theory developed in [252, 255].
They also introduced directives for specifying the respective modules, leading to an
extension of the pre-existing language of oclingo.

A time-decaying logic program Ql is a logic program Q annotated with a life span
l ∈ N ∪ {∞}; when l =∞, we often write just Q. The life span allows for steering
the expiration of non-persistent program parts, also called transients. To support
this flexibility in practice, the oclingo language was augmented with new directives
of the form:

#volatile t [: l].

88 Chapter 2 Stream Reasoning

While t indicates the name written for the incremental parameter t in a (schematic)
program Q[t], the additional integer l gives the life span l of Ql[t]. If l is omitted,
as in the prior oclingo language, it is taken as 1, thus leading to Q1[t].

A time-decaying incremental logic program is a triple of the form

(B,P [t], {Ql1
1 [t], . . . , Qlm

m [t]})

in which B,P [t], Ql1
1 [t], . . . , Qlm

m [t] are time-decaying logic programs. Such an in-
cremental program serves as “offline” encoding of an underlying dynamic system.
While ordinary incremental logic programs (B,P [t], Q[t]) specialize the decaying
case to (B,P [t], {Q1[t]}), the life spans l1, . . . , lm can diverge from 1 and one an-
other.

A time-decaying online progression, representing a stream of lasting and transient
program parts, is a sequence

(Ei[ei], {F
l1i
1i
, . . . , F

lmi
mi }[fi])i≥1

of pairs in which Ei, F
l1i
1i
, . . . , F

lmi
mi are time-decaying logic programs and ei, fi are

positive integers. The latter represent minimum values assumed for the incremental
parameter t in an associated “offline” (incremental) logic program.

In order to generalize the previous setting, beyond ‘#volatile’ directives, they ex-
tended oclingo’s (external) controller component to additionally support the follow-
ing:

#volatile : l.

As with (transient) incremental logic program parts, l gives the life span l of a
transient F l.

The value of fi (and ei) is given in a ‘#step i.’ directive, expressing that an under-
lying incremental program must have progressed to the position i of a reading in
the stream.

The possibility of associating stream data with a life span (not fixed to 1) is essential
to provide “automatic” reasoning support for sliding windows. If this possibility
were unavailable, either the whole window contents would need to be provided as
transient online input at each step, thus “replaying” part of the data when windows
overlap, or rules referring to persistently added data would have to be deactivated
once the data “expires”.

2.3 Stream Reasoning and Logic Programming 89

The possibility of integrating recent additions without exhaustively reprocessing the
entire collection of (non-expired) data and rules requires incrementally gathered
program parts to be “compositional”. This condition can be expressed in terms of
modules [453].

A set A of atoms is an Answer Set of a module P if A is a (standard) Answer Set of
P (P) ∪ {{a} ←| a ∈ I(P) ∩A}; denote the set of all Answer Sets of P by AS(P). For
two modules P and Q, the composition of their Answer Sets is AS(P) ⋊⋉ AS(Q) =
{AP ∪ AQ | AP ∈ AS(P), AQ ∈ AS(Q), AP ∩ (I(Q) ∪ O(Q)) = AQ ∩ (I(P) ∪ O(P))}.
The module theorem in [453] shows that the semantics of P and Q is compositional
if their join is defined, i.e. if P⊔Q is well-defined, then AS(P⊔Q) = AS(P) ⋊⋉ AS(Q).
In ASP solving, compositionality eases adding new rules to a program, as it boils
down to combining (without revising) the constraints characterizing Answer Sets.

The solving component of oclingo exploits this to successively integrate rules without
large overhead; in particular, strongly connected components are only calculated
locally once a new program part is added. As a consequence, the compliance of
models computed by oclingo with Answer Sets of P (P)∪P (Q) relies on P (P)⊔P (Q)
to be well-defined. Otherwise, oclingo’s lightweight incremental processing can-
not guarantee meaningful outcomes, and relaunching an ASP system from scratch
would be required instead.

For turning programs into modules, we associate a (non-ground) program and a set
of (ground) input atoms with a module imposing certain restrictions on the induced
ground program.
To this end, for a ground program P and a set X of ground atoms, we define P |X as
{ h← a1, . . . , am, not a

′
m+1, . . . , not a

′
n′ | h← a1, . . . , am, not am+1, . . . , not an ∈

P, a1, . . . , am ⊆ X, a′m+1, . . . , a
′
n′ = am+1, . . . , an ∩X }.

In this work, the authors identified also a way to associate (non-ground) programs
with (ground) modules and they formalized the definition of modular time-decaying
online progression. For more information about this see [249, 250].

Novelties in clingo 4

As mentioned in Section 1.3.5, clingo 4 fully supersedes its special-purpose prede-
cessors iclingo and oclingo. Briefly, in iclingo a program is partitioned into a base
part, describing static knowledge independent of the step parameter t, a cumulat-
ive part, capturing knowledge accumulating with increasing t, and a volatile part
specific for each value of t. These parts were delineated in iclingo by the direct-
ives #base, #cumulative t, and #volatile t. In clingo 4, all three directives are
captured by #program declarations along with #external for volatile rules. Similar

90 Chapter 2 Stream Reasoning

considerations can also be made for oclingo. Note that the #external directive here
is a generalization of the one mentioned before.

Another innovative feature of clingo 4 is its incremental optimization. This allows
for adapting objective functions along the evolution of a program at hand and can
be really useful in the Stream Reasoning context.

Answer Set Programming for Stream Reasoning

In the same year the researchers at the University of Potsdam proposed their “Re-
active ASP Solver”, other researchers published a paper with three aims: i) to in-
troduce a prototype of dlvhex Stream Reasoning, ii) to formalize ASP for building
Stream Reasoning systems, and iii) to further apply Semantic Web techniques (OWL)
for sensor-based applications.

This work is mainly interesting because the researchers at the La Trobe University
defined a conceptual model that formalizes ASP-based Stream Reasoning.

According to them, a Stream Reasoning system has three main components, which
are a) a sensor system, b) a Data Stream Management System (DSMS), and c) a
Stream Reasoner.

Here we briefly introduce the notation used in the following paragraphs:

• dr: is the time period between the starting time and the finishing time of a
reasoning process which always terminates.

• ds: is the time period between the starting time and the finishing time of a
sensor taking a data sample (usually very small).

• ∆s: is the time period between the two start times of taking two consecutive
data samples of a sensor. The sample rate fs is: fs = 1/∆s.

• ∆r: is the time period between the two start times of two consecutive reason-
ing processes of the reasoner. The reasoning rate fr is: fr = 1/∆r.

There are two communication strategies between the DSMS and the Stream Reasoner:
push and pull. In the pull method, when the reasoner needs sensor data sample(s),
it sends a query to the DSMS which will perform the query and return the data
sample(s) to the reasoner. In the push method, the reasoner registers with the
DSMS the sensor name from which it wants to have the data sample. The DSMS
returns to the reasoner the data sample whenever it is available. They use the pull
method in their prototype to discover the maximum reasoning speed of the reasoner
when continuously running as fast as possible.

2.3 Stream Reasoning and Logic Programming 91

In the following, we introduce the formalization of the data streams provided to the
Stream Reasoner. The time when a sample is taken is assumed to be very close to
the time when that sample is available for reasoning, otherwise, the reasoner will
give its result with a consistent delay.

Data Stream Data stream DS is a sequence of sensor data samples di ordered by
timestamps. DS = {(t1, dt1), (t2, dt2), . . . , (ti, dti), . . . } where dti is the sensor
data sample taken at time ti, and t1 < t2 < . . . < ti <

Data Window A data window available at time t, Wt, is a finite subsequence of a
data stream DS and has the latest data sample taken at time t. The number
of data samples, |Wt|, of this subset is the size of the window.
For Wt ⊆ DS, and ts = t : Wt = {(t1, dt1), (t2, dt2), . . . , (ts, dts)} where Wt is
data window at time t, s = |Wt| is the size of the window, t1 < t2 < · · · < ts,
ts is the time when the latest sample of the data window is taken and dti(1 ≤
i ≤ s) is the sensor data sample taken at time ti.
The data window can also be defined by a time period, for example, a data
window that includes all data samples taken in the last 10 seconds.

Window Slide Samples Window slide samples l is the number of samples counted
from the latest sample (inclusive) of one data window to the latest sample
(exclusive) of the next data window.

Window Slide Time Given two continuous data windows Wt1 at time t1 and Wt2

at time t2 (t2 ≥ t1), the time period between t1 and t2 is called window slide
time ∆w, therefore ∆w = t2 − t1.
The window slide time can be calculated with the formula: ∆w = l ∗ ∆s.
When we use the term “window slide”, it means window slide samples or
window slide time depending on context.

Data Window Stream Given a data stream DS, a data window stream WS is a se-
quence of data windows W in time order. WS = {(t1,Wt1), . . . , (ti,Wti), . . . }
where Wti is a data window at time ti, t1 < t2 < . . . < ti < . . ., and Wti ⊆ DS.

Here we introduce a formalization of the Stream Reasoner of a system model that
has one data stream and one reasoner. This is easily extensible to models that
have: one data stream providing data for multiple reasoners, one reasoner using
data from multiple data streams, and many reasoners using data from multiple data
streams.

Data Window Reasoner An ASP-based data window reasoner AWR is a function
that maps every data window W ⊆ DS to a set SA of Answer Sets. AWR :
WS → 2Σ where AWR denotes an ASP-based data window reasoner, WS is
the set of all data windows from data stream DS, Σ denotes the set of all
possible Answer Sets S for any input, and 2Σ is the power set of Σ.

92 Chapter 2 Stream Reasoning

The reasoner AWR has input data window W and gives a set SA of Answer Sets:
AWR(W) = SA, where SA = S1, S2, . . . , Sn, and Si ∈ Σ, (1 ≤ i ≤ n).

For the implementation of their system, the researchers used a UNIX shell script to
trigger the reasoner continuously, therefore the Operating System has to repeatedly
load dlvhex, run it, and then unload it. This is resource consuming and can reduce
reasoning speed.
However, since the new version of the Action Plugin allows to iterate the process of
evaluation/execution of Action Atoms [222], this system could be improved using
this new feature and the “Environment” that allows storing information from one
iteration to another.

2.3.2 The LARS framework22

In the latest years researchers of the Vienna University of Technology started to
observe that the recent rise of smart applications has drawn interest to logical reas-
oning over data streams and different query languages and Stream Processing/Reas-
oning engines were proposed; however, due to a lack of theoretical foundations,
the expressivity and semantics of these diverse approaches were only informally
discussed.

The emergence of sensors, networks, and mobile devices has generated a trend to-
wards pushing rather than pulling of data in information processing. As mentioned
above, in Stream Processing, studied by the DataBase community, input tuples dy-
namically arrive at systems in form of possibly infinite streams. To deal with un-
boundedness of data, the systems typically apply window operators to obtain snap-
shots of recent data. The user runs continuous queries on the latter that are triggered
either periodically or by events, e.g., by the arrival of new input. And the Continu-
ous Query Language (CQL) for Stream Processing has a clear operational semantics.
However, in the Stream Reasoning area, different research communities have con-
tributed to various aspects of this topic, leaving several challenges to overcome.
First, these predominantly practical approaches often define semantics only inform-
ally, which makes them hard to predict and hard to compare. Second, advanced
reasoning features are missing, e.g., non-monotonicity, non-determinism or model
generation. According techniques have been studied almost exclusively on static
data.

Therefore, they introduced the Logic-based framework for Analyzing Reasoning over
Streams (LARS), which provides a rule-based formalism with different means to
refer to or abstract from time, including a novel window operator, i.e., a flex-

22Preliminary definitions adapted from [81–83]

2.3 Stream Reasoning and Logic Programming 93

ible mechanism to change the view on streaming data. Moreover, LARS features
a model-based semantics, and it offers besides monotonic also non-monotonic se-
mantics that can be seen as an extension of Answer Set Programming (ASP) for
Stream Reasoning. Hence, introducing a common ground to express various se-
mantic concepts of different Stream Processing/Reasoning formalisms and engines,
which can now be formally characterized in a common language, and thus be com-
pared analytically.

These researchers formally defined the concept of Stream and the concept of Win-
dows function, with the most common types of windows (Time-based, Tuple-based
and Partition-based).

Moreover, as mentioned before, they defined the LARS Logical Framework, present-
ing a logic with different means for time reference and time abstraction and, on top
of it, introducing a rule language with a model-based, non-monotonic semantics. In
order to do this, they introduced the Windows operator and defined the syntax and
the semantics for Formulas, specifying a Structure and defining the Entailment re-
lation for them. Furthermore, they defined a rule language, with semantics similar
to Answer Set Programming, for Stream Reasoning, formalizing the concepts of Rule,
Program and Answer Stream.

For more information about the formal definitions and the semantics of these con-
cepts, we refer the reader to [81–83].

In the same papers, they studied the complexity of some reasoning tasks in LARS.
Let α be a formula, P a program, W a set of window functions evaluable in polyno-
mial time, and let B ⊆ A be a set of atoms. We say that a stream S = (T, υ) is over
A′ ⊆ A, if υ(t) \ A′ = ∅ for all t ∈ T .
The reasoning tasks considered are:

Model checking (MC)
Given M = ⟨T, υ,W,B⟩ and a time point t, check whether

• for a stream S ⊆ (T, υ) and formula α it holds that M,S, t ⊩ α; resp.

• I = (T, υ) is an answer stream of a program P for D ⊆ I at t.

Satisfiability (SAT)
For decidability, we assume that relevant atoms are confined to (polynomial)
A′ ⊆ A. The reasoning tasks are:

• Given W , B, a timeline T and a time point t, is there an evaluation func-
tion υ on T such thatM,S, t ⊩ α, whereM = ⟨T, υ,W,B⟩ and S = (T, υ)
is over A′?

94 Chapter 2 Stream Reasoning

α/α− P/P−

MC PSPACE/P PSPACE/co− NP
SAT PSPACE/NP PSPACE/ΣP

2

Table 2.6.: Reasoning in ground LARS (completeness results). From [82].

• Given W , B and a data stream D, does there exist an answer stream of
P for D over A′ (relative to W and B) at t?

In Table 2.6 is shown a summary of the complexity of reasoning in ground LARS,
where α−, P− are formulas, respectively programs, with nesting of window operat-
ors bounded by a constant. Note that the problems refer to the more general notion
of entailment but (hardness) results carry over to satisfaction.
More detailed complexity analysis are provided in following works (such as the
ones mentioned below).

In addition, they demonstrated how the semantics of CQL can be expressed in LARS,
and they studied the relation of LARS and ETALIS.

LARS is a starting point for intriguing research issues. Informally or operationally
specified semantics of various state-of-the-art Stream Processing/Reasoning engines
such as CQELS, C-SPARQL, and SPARQLstream may now be formalized, studied and
compared rigorously in a common language. For practical concerns, tractable and
efficient fragments of LARS are of interest; related to this are operational character-
izations of its semantics.

In the following years, the same researchers extended and applied the work on
the Logic-based framework for Analyzing Reasoning over Streams (LARS) in many
different ways, briefly summarized in the list below:

• Presenting a generic algorithm for incremental Answer update of logic pro-
grams for Stream Reasoning with ASP-like semantics (LARS programs), based
on stream stratification and an extension of Truth Maintenance Systems [503]
techniques by temporal data management. [79]

• Establishing important steps towards formally comparing two RSP semantics
implemented in two well-known engines, namely C-SPARQL and CQELS, by
proposing translations to capture the languages and execution modes of the
engines, and discussing how to formalize a notion of agreement between the
two semantics as well as a condition for it to hold. [161, 162]

• Defining different notions of equivalence between LARS programs and giv-
ing semantic characterizations in terms of models, and then characterizing

2.3 Stream Reasoning and Logic Programming 95

the computational complexity of deciding the considered equivalence rela-
tions. [80]

• Proposing a generic architecture for generating/gathering streaming data, for
evaluating different Stream Processors/Reasoners and for running those eval-
uations. [431]

• Using LARS to design novel techniques towards intelligent administration of
Content-Centric Networking (CCN) [308] routers, developing an approach that
allows for autonomous switching between existing strategies in response to
changing content request patterns and obtaining flexible router configuration
at runtime which allows for faster experimentation and may thus help to ad-
vance the further development of CCN. [77, 78]

• Developing a new Stream Reasoner, called Laser, that supports a pragmatic,
non-trivial fragment of the logic LARS, that implements a novel evaluation
procedure which annotates formulae to avoid the re-computation of duplic-
ates at multiple time points. This procedure, combined with a judicious im-
plementation of the LARS operators, is responsible for significantly better run
times than the ones of other state-of-the-art systems. [76]

• Introducing the notion of Tick Streams to formally represent the sequential
steps of a fully incremental Stream Reasoning system and developing a proto-
typical engine for well-defined logical reasoning over streaming data, called
Ticker, based on a practical fragment of LARS. Ticker has two reasoning strate-
gies: one utilizes clingo with a static ASP encoding, the other uses Truth Main-
tenance techniques [187] to adjust models based on the incremental encod-
ing. [84]

2.3.3 Further remarks

It is worth noticing that a prominent exploration of the applicability of ASP for the
Semantic Web is StreamRule [419], that is described in more details in Section 2.5.

Similar investigations have also been carried out in other logic-based formalisms,
we do not describe them here and we refer the reader to the literature on the
topic.

For more information about incremental update of logic programs, reactive reason-
ing, applications of Logic Programming in online/dynamic environments and, more
broadly, Logic Programming and Stream Reasoning see also [26, 100, 104, 174, 176,
192, 254, 261, 423].

96 Chapter 2 Stream Reasoning

2.4 Stream Reasoning and Smart City
Applications: a case study - The CityPulse project

In this section and in the following ones we first introduced some interesting case
studies and then we report about some results obtained using Stream Reasoning
techniques in the context of Smart City Applications.
The investigations reported in the following sections have been conducted during
the visit in the Reasoning and Querying Unit (lead by Dr. Alessandra Mileo) of the
INSIGHT Centre for Data Analytics23 (formerly DERI) at the National University of
Ireland (NUI) Galway24.

2.4.1 Real-Time IoT Stream Processing and
Large-scale Data Analytics for Smart City Applications25

Figure 2.6.: Integrated Approach of CityPulse. From [158].

An increasing number of cities have started to introduce new Information and Com-
munication Technology (ICT) enabled services with the objective of addressing sus-
tainability as well as improving the operational efficiency of services and infrastruc-
ture. In addition, there is an increasing interest in providing novel or enhanced
service offerings and improved experiences for citizens and businesses.
The “Smart Cities” are evolving into a larger ecosystem or ecosystems that were pre-
viously disconnected. More and more applications and services in these ecosystems
are going online. The city council is the pivotal facilitator in making this online
ecosystem of ecosystems become a reality.

23https://www.insight-centre.org
24http://www.nuigalway.ie
25Preliminary definitions adapted from [480], and CityPulse website and documentation

2.4 Stream Reasoning and Smart City Applications: a case study 97

https://www.insight-centre.org
http://www.nuigalway.ie
http://www.nuigalway.ie
https://www.insight-centre.org
http://www.nuigalway.ie

Figure 2.7.: CityPulse Partners. From [158].

The CityPulse26 project aims to develop innovative Smart City Applications by using
an integrated approach to the Internet of Things and the Internet of People. It should
facilitate the creation and provision of reliable real-time Smart City Applications by
bringing together the two disciplines of knowledge-based computing and reliability
testing (Figure 2.6).

The CityPulse framework supports Smart City service creation by means of a distrib-
uted system for semantic discovery, data analytics, and interpretation of large-scale
(near-)real-time Internet of Things data and social media data streams. To goal
is to break away from silo applications and enable cross-domain data integration.
The CityPulse framework integrates multimodal, mixed quality, uncertain and in-
complete data to create reliable, dependable information and continuously adapts
data processing techniques to meet the quality of information requirements from
end users. Different from existing solutions that mainly offer unified views of the
data, the CityPulse framework is also equipped with powerful data analytics mod-
ules that perform intelligent data aggregation, event detection, quality assessment,
contextual filtering, and Decision Support.

CityPulse is an international project, made by a consortium composed of 10 institu-
tions from 8 different countries and 2 different continents, as shown in Figure 2.7.

26EU FP7 CityPulse Project under grant No.603095. http://www.ict-citypulse.eu

98 Chapter 2 Stream Reasoning

http://www.ict-citypulse.eu

Figure 2.8.: Processing Steps during different Life-cycle stages. From [158].

The project is partially funded by the European Commission’s 7th Framework
Programme (FP7) under the contract number: 609035.

Framework description

Smart City data is Big Data. It is multi-modal and varies in quality and format and
representation form. The data needs to be processed, aggregated and higher-level
abstractions need to be created from the data to make it suitable for the event
processing, knowledge extractions and event processing applications that enable
intelligent applications and services for Smart City platforms. Data needs to be
integrated from various domains and the resulting knowledge exposed to various
domains in a federated fashion.

CityPulse provides large-scale Stream Processing solutions to interlink data from In-
ternet of Things and relevant Social Networks and to extract real-time information
for the sustainable and Smart City Applications. The main objective of the project is
to develop, build and test a distributed framework for the semantic discovery and
processing of large-scale real-time IoT and relevant social data streams for knowl-
edge extraction in a city environment.

2.4 Stream Reasoning and Smart City Applications: a case study 99

The CityPulse framework is organized in three consecutive iteratively applied pro-
cessing layers, covering federation of heterogeneous data streams, large-scale IoT
Stream Processing, and real-time information processing and knowledge extraction.
To achieve reliability, CityPulse integrates knowledge-based methods with reliabil-
ity monitoring and testing at all stages of the data Stream Processing and interpret-
ation. CityPulse provides solutions for the different life-cycle stages of data pro-
cessing and utilization, supporting application development, i.e. design-time, ap-
plication provision, i.e. run-time and obviously also the testing (see Figure 2.8).

Architecture of the CityPulse Framework

CityPulse provides novel approaches to support the seamless integration of dy-
namic IoT-enabled data streams, Internet of People data (i.e. relevant social media
streams), and introduces knowledge-enabled intelligent methods for big IoT data
analytics and Smart City services and processes.

An architectural overview of the approach which addresses the project’s key issues
and outlines the work packages is shown in Figure 2.9.

Figure 2.9.: CityPulse Framework Architecture Overview. From [158].

100 Chapter 2 Stream Reasoning

Briefly, the key issues addressed in CityPulse are:
Visualization Semantic annotation of heterogeneous data for automated discovery

and knowledge-based processing
• Heterogeneous data sources
• Overcome silo architectures and provide common abstract interface
• Assigning semantic annotations to data streams

Federation On demand integration of heterogeneous Cyber-Physical-Social sources
• Sensor-fusion
• Combines heterogeneous data streams to one unified view

Aggregation Large-scale data analytics
• Data-fusion
• Reduce amount of data

– Clustering
– Summarization
– Filtering
– Pattern recognition

Smart Adaptation Real-Time interpretation and data analytics control
• Higher level information processing

– Interpretation of semantic data
– Transforming lower level dynamic information to higher level ab-

stractions
• Enables adaptation of the data processing pipeline

User-centric Decision Support Context-aware customized IoT information ex-
traction

• Goal: provide optimal configuration of Smart City Applications
• Social and context analysis

– Matchmaking and discovery mechanisms
– Match data according to users preferences and context

Reliable Information Processing Testing and monitoring accuracy and trust
• Challenge: Dynamic environments, changes and prone to errors
• Reliable data processing requires accuracy and trust
• Cope with malfunctions, disappearing sensors, conflicting data, ...

– monitoring of streams (runtime)
– testing of applications (design-time)

Smart City Applications API for rapid prototyping
• Cities challenge:

– Rapidly growing digital economy requires new applications and in-
formation systems

• Provide an API for faster prototyping and access to CityPulse framework
and information

For more information about CityPulse see also [480].

2.4 Stream Reasoning and Smart City Applications: a case study 101

2.5 Web Stream Reasoning in Practice: on the
Expressivity vs. Scalability tradeoff27

Web Stream Reasoning has emerged as a research field that explores advances in Se-
mantic Web technologies for representing and processing data streams on one hand,
and emerging approaches to perform complex rule-based inference over dynamic
and changing environments on the other hand. Advances in the Internet and Sensor
technologies converging to the Internet of Things (IoT) have also contributed to the
creation of a plethora of new applications that require processing and make sense
of web data streams in a scalable way.

As mentioned before, in the Semantic Web and Linked Data realm, technologies
such as RDF, OWL, SPARQL have been recently extended to provide mechanisms
for processing semantic data streams [63, 116, 468]. However, a variety of real-
world applications in the IoT space require reasoning capabilities that can handle
incomplete, diverse and unreliable input and extract actionable knowledge from it.
Non-monotonic Stream Reasoning techniques for the (Semantic) Web have potential
impact on tackling them.

Semantic technologies for handling data streams can not exhibit complex reason-
ing capabilities such as the ability to manage defaults, common-sense, preferences,
recursion, and non-determinism. Conversely, logic-based non-monotonic reasoners
can perform such tasks but are suitable for data that changes in low volumes at low
frequency.

To reach the goal of combining the advantages of these two approaches in the
last years a few works have been proposed; some tried to develop extensions of
ASP [52] in order to deal with dynamic data [82, 250, 251], others tried to combine
semantic stream query processing and non-monotonic reasoning [184, 419]. The
StreamRule framework [419] is an example which provides a baseline for exploring
the applicability of complex reasoning on Semantic Web Streams.

The conceptual idea behind StreamRule is to process data streams at different levels
of abstraction and granularity, in such a way to guarantee that the amount of rel-
evant data is filtered (and therefore reduced in size) as the complexity of the reas-
oning increases.28 This has in principle a high potential in making complex reas-

27From S. Germano, T. Pham and A. Mileo. ‘Web Stream Reasoning in Practice: On the
Expressivity vs. Scalability Tradeoff’. In: Proceedings of RR 2015, pp. 105–112. DOI: 10.1007/978-
3-319-22002-4_9.

28Note that in ASP, the expressivity of the language is strictly related to the computational complexity,
therefore we refer to expressivity and (computational) complexity interchangeably.

102 Chapter 2 Stream Reasoning

https://doi.org/10.1007/978-3-319-22002-4_9
https://doi.org/10.1007/978-3-319-22002-4_9

oning on semantic streams feasible and scalable. However, the one-directional pro-
cessing pipeline in StreamRule from query evaluation to non-monotonic reasoning is
a strong limitation in exploring the expressivity versus scalability trade-off: the dy-
namic nature of web streams and their changing rate, quality and relevance makes
it impossible to specify at design time what is the correct throughput and reasoning
complexity the system can support and what window size and time-decay model is
most suitable.

The main goal of this work is to provide a preliminary analysis on how we can
improve the scalability of expressive Stream Reasoning for the Semantic Web com-
bining continuous query processing and Answer Set Programming (ASP). We rely on
the StreamRule [419] system as an instance of such an approach for implementation
and testing, and we aim at providing general insights that hold for any ASP-based
Stream Reasoning system.

The main idea we present in this work relies on concepts that can help make the
StreamRule processing pipeline bi-directional or adaptive so that the expressivity
versus scalability trade-off can be optimized in changing environments.

We start our investigation by identifying which the key features can potentially af-
fect the expressivity versus scalability trade-off in a 2-tier Web Stream Reasoning
system like StreamRule. The correlation between such features and their impact
on scalability are then empirically evaluated by our practical analysis of perform-
ance and correlation between streaming rate, window size, properties of the input
streams and complexity of the reasoning. Finally, some hints for discussion are
presented based on our empirical results.

2.5.1 Core concepts for analysis

The key contribution of this work is to report on initial investigation on how to per-
form complex reasoning on web data streams maintaining scalability. We refer to
scalability as to the ability to provide answers in an acceptable time with increasing
input size and when the reasoning gets computationally intensive. We will intro-
duce some key concepts that can later guide the design of heuristics for systems
like StreamRule (which we will consider as a reference model in the remainder
of this chapter), where query processing and non-monotonic reasoning features
are adapted to continuously improve the expressivity versus scalability trade-off in
changing environments. The conceptual architecture of StreamRule is based on a
2-tier approach to Web Stream Reasoning, shown in Figure 2.10 where query pro-
cessing (first tier) is used to filter semantic data elements, while non-monotonic
reasoning (second tier) is used for computationally intensive tasks.

2.5 Web Stream Reasoning in Practice: on the Expressivity vs. Scalability tradeoff 103

Answers

Filtered Stream

Adaptation

Rule-based
Non-monotonic

Reasoning

Logic Program

RDF Stream
Processing

Query

St
re

am
s

Figure 2.10.: 2-tier approach to Web Stream Reasoning.

We define the following concepts and notation:

Unit of Time (U) The unit of time is the time interval to which collected inputs are
sent to the system (we will assume this as fixed in our analysis).

Reasoning complexity (C) We refer to the reasoning complexity as the computa-
tional complexity required to perform a given reasoning task involving a set
of ASP rules. As mentioned earlier in this work, the computational complexity
is strictly related to the language expressivity in ASP; in fact, more expressive
language constructs in ASP correspond to higher computational complexity.
The type of rules used within the ASP program affects grounding (which also
affects memory consumption) and solving (which is related to computational
complexity), and therefore has an impact on scalability. For simplicity, we as-
sume in our analysis that the reasoning complexity is fixed (based on the rules
in the program). However, this aspect deserves a more formal characteriza-
tion to be able to use the reasoning complexity as a feature to design adaptive
heuristics for optimization; we plan to investigate this in future work.

Streaming size (S) The streaming size is the number of input elements sent to the
reasoning component every Unit of Time.

Window size (W) The (tuple based) window size29 is the size of the input the
reasoning component processes per computation.

Reasoning time (Rt) The reasoning time is considered as the time needed by the
non-monotonic reasoner (second tier only) to compute a solution.30

T (N) is the time needed by the reasoner to process N input elements.

Tω(S, W) is the time needed by the reasoner to process a streaming size S dividing
(and processing) it into windows of size W . The number of windows (and
therefore the number of computations needed) is ⌈ S

W ⌉. Formally Tω(S,W) =
⌈ S

W ⌉ × T (W).

29In this work we only consider non-overlapping windows. For overlapping windows, the formula
Tω(S, W) should hold also when duplicating events in overlapping parts.

30Note that this is different from the total processing time, which includes the time required for query
processing (first tier). In this work, we mainly focus on the reasoning time only, relying on the
extensive evaluation of query processing engines for the query processing time, as in [468].

104 Chapter 2 Stream Reasoning

Su is the number of elements that can be processed by the reasoner in one unit of
time.31 Formally Su = N s.t. T (N) = 1.

Sl is the maximum number of elements that can be processed within one unit of
time using a proper windows size W .

The question summarizing our problem is as follows: Given a fixed streaming size S
with fixed complexity C and unit of time U , find a window size W such that

Tω(S,W) ≤ U (Q1)

Finding this window size and being able to adapt it to changing streaming rates
would reduce the bottleneck between the two tiers since it will ensure that the
non-monotonic reasoner can keep up with the results produced by the query pro-
cessing engine without the cumulative delay experienced in StreamRule. Previous
experiments in [419] showed that the current implementation of StreamRule with
CQELS as query processor and clingo as ASP reasoner encounters a bottleneck when
the non-monotonic reasoner returns results after the next input arrives from the
stream query processing component, thus cumulating a delay that makes the sys-
tem not scalable. Making the process bi-directional requires to dynamically provide
answers to Q1.

We can observe that if T (N) is monotonically increasing, we have that

∀S′ where Su ≤ S′ ≤ Sl, ∃W ′ s.t. Tω(S′,W ′) ≤ U

This is our case, as illustrated in our empirical evaluation.

2.5.2 Experiments

In this section, we present the scenario, dataset, rule-set, and platform we used for
the empirical evaluation of our trade-off analysis and discuss our findings.

Scenario

Consider a user moving on a path. She wants to know real-time events that affect
her travel plan to react accordingly. The Stream Reasoning system receives events
as Linked Stream Data that indicate changes in the real world (such as accidents,
road traffic, flooding, road diversions and so on) and updates on the user’s current
status (such as user’s location and activity).

31Note that this is different from the streaming size.

2.5 Web Stream Reasoning in Practice: on the Expressivity vs. Scalability tradeoff 105

With this information as input stream, the Web Stream Reasoning system is in charge
of i) selecting among the list of events, which are the ones that are really relevant
according to the user’s context, and ii) continuously ranking their level of criticality
w.r.t. the user task and context32, in order to decide whether a new path needs to
be computed.

The query processing component filters out events which are unrelated to the user,
e.g. events are not on the user’s path, thus limiting the input size for the non-
monotonic reasoner. The reasoner receives as input filtered events and an instance
of the context ontology related to the activities and status of the user, provides
ranked critical events as output. The event includes 4 attributes: type, value, time,
and location. For example:

event(weather, strong-wind, 2014-11-26T13:00:00, 38011736-121867224)

describes the condition of weather being strong wind at a certain time and a given
location.

Dataset

For our experiment, we generate traffic events based on 10 types of events such
as roadwork, obstructions, incident, sporting events, disasters, weather, traffic con-
ditions, device status, visibility air quality, incident response status. Each type of
events has more than 2 values, e.g. traffic condition has values: good, slow, conges-
ted. In addition to that, we create a small instance of the context ontology which
describes the effect of events on certain activities.

Rule-set

The ASP rule set we used for this experiment includes 10 rules which have 2 negated
atoms (using negation-as-failure). Since the complexity of the reasoning is fixed
and related to a specific program in our setup, we do not quantify the complexity
in this initial investigation.

Platform

We used the state-of-the-art ASP reasoner clingo 4.3.0 and Java 1.7. The experi-
ments were conducted over a machine running Debian GNU/Linux 6.0.10, contain-
ing 8-cores of 2.13 GHz processor and 64 GB RAM.

32In the current implementation we evaluate criticality mainly based on how close an event is to the
user location, and how fast is the user moving. In future work we plan to extend this contextual
characterization to consider not only location but also other features such as the user transporta-
tion type, user’s health condition etc.

106 Chapter 2 Stream Reasoning

 0

 500

 1000

 1500

 2000

 2500

 0 10000 20000 30000Su Sl

Ti
m

e
(m

ill
is

ec
on

ds
)

Streaming Size (number of events)

Figure 2.11.: Reasoning time.

Empirical Results

We evaluated the same ASP program with varying input size S (from 100 to 30000
events) and measured the reasoning time of the system (T (S)). We trigger the
reasoner 20 times for each S and then we computed the interquartile mean (IQM)
to smooth results. These values are plotted in Figure 2.11.

Given U = 1 s, the graph shows Su = 17520 events. In other words, for this
particular case (and fixed Rule-set and Platform), the Stream Reasoning system will
be “stable” if the streaming size of the ASP reasoner is smaller than 17520 events.
For streaming size bigger than 17520 events, the system will cumulate a delay that
will cause a bottleneck. Giving our function is monotonically increasing, there are
some streaming sizes bigger than Su that can be processed in less than 1 U . We
then investigated the idea of dividing events in windows, assuming we can find a
split such that the correctness of the result will not be affected33.

The easiest way to perform this split is to consider several windows of the same
size. For example, consider S = 20000 events, it will take 1232 ms for the reasoner
process all 20000 events in one computation (T (20000) = 1232 ms). The whole
system will combine a delay in each computation and therefore will crash at some
point. However, if we use the window size W = 5000 events (T (5000) = 216 ms),
the reasoner will take Tω(20000, 5000) = ⌈20000

5000 ⌉ × T (5000) = 4× 216 ms = 864 ms
for processing S, using 4 computations. So we have found a proper window size
(W) such that Tω(S,W) ≤ U ; in other words we have found a split for which the
system remains stable.

33Algorithms to perform such splits are under investigation and will be the subject of future work.

2.5 Web Stream Reasoning in Practice: on the Expressivity vs. Scalability tradeoff 107

Moreover, if we divide S into windows of size W = 2000 events, the reasoning time
for S will be Tω(20000, 2000) = 720 ms, so, also in this case, Tω is less than or equal
to 1 U . Therefore, in general, there may be more than one way to split the events.

For any given S, a proper value34 for W such that Tω(S,W) ≤ U can be found in a
trivial way just checking for each streaming size (S′) less than Su the time required
(T (S′)) and verifying that Tω(S, S′) = ⌈ S

S′ ⌉ × T (S′) ≤ U ; when we find such S′, we
can put W = S′.

Running this algorithm increasing S up to the point where we cannot find any
streaming size S′ less than Su such that Tω(S, S′) ≤ U , we can compute the value of
Sl. Based on this we found that for this experiment the value of Sl is 23350 events.
It means that the system can scale if the streaming size is less than or equal to
23350 events.

We can also apply these algorithms to the trend line function that fit the data in
order to have a more precise result. In our experiment we found an Order 2 poly-
nomial trend line which fit very well our data with an R-squared value of 0.99979
and we have used this to find the values of Su and Sl.

2.5.3 Discussion.

Based on our experiments, we observe that:

• Given a unit of time and a particular ASP program, we can find an optimal
window size for a given streaming size for reducing the processing time of the
system.

• This conclusion holds if there is no dependency between input events for the
reasoning component35.

We are currently investigating how to generalize our empirical results to set the
basis for designing adaptive heuristics for Web Stream Reasoning. An improve-
ment to this approach, for some scenarios, is to find the value of W that minimize
Tω(S,W). A key aspect we are also considering is to provide a formal characteriz-
ation that helps to relax the assumption of independence between input events, in
order to determine how to find an optimal number of window for a given stream-
ing rate and a given ASP program. Since we started our empirical evaluation based
on a given ASP program, another interesting direction will be to investigate more
in-depth how the complexity of the reasoning affects our analysis.

34Note that our goal is not to find the minimum, we just want to find one split.
35Note that this assumption needs to be formally characterized and more investigation is ongoing in

this direction.

108 Chapter 2 Stream Reasoning

2.6 Automatic Configuration of Smart City
Applications for User-Centric Decision Support36

Smart City Applications require Internet of Things (IoT) discovery and matchmaking
techniques dedicated to dynamicity handling. Information taken into account dur-
ing the matchmaking process originates from diverse data sources including data
streams, city services, the user’s social context, situational awareness (e.g., user loc-
ation), preferences and application configurations. The exponential growth in the
availability of information from numerous data sources raises several difficulties in
implementing, sustaining, and optimizing operations and interactions among dif-
ferent city departments and services [437]. There is a strong need for Smart City
Application tools which support easy development of “smart applications”.

The state-of-the-art for Smart City Frameworks has major focus on existing Smart
City platforms and the existing works are mainly in four key areas: (i) data ac-
quisition (ii) semantic interoperability, (iii) real-time data analysis and event de-
tection, and (iv) Smart City Application development support. Among the existing
frameworks such as PLAY [552], iCore [281], and STAR-CITY [357], CityPulse
[480] is the only framework supporting all four previously mentioned features. As
mentioned before, in addition to data acquisition and semantic interoperability, the
CityPulse framework provides a complete set of domain-independent real-time data
analytics tools such as data federation, data aggregation, event detection, quality
analysis and Decision Support. The application development is supported by a set of
APIs provided by CityPulse. In this work, we focus on the decision-making process,
which is designed and implemented within CityPulse framework.

The Decision Support component in CityPulse supports the complex reasoning cap-
abilities that are required in various Smart City Applications such as non-monotonic,
non-deterministic, and recursive reasoning. This component represents higher-level
intelligence, strongly connects to user application layer, and acts as a flexible inter-
play between user-centric factors and dynamic aspects of the changing environment
within the city. Factors such as user interests and reputation requirements are also
considered in the Decision Support process. The exploitation of such factors along
with richer user profiles has a great potential for providing more personalised De-

36From A. Mileo, S. Germano, T.-L. Pham, D. Puiu, D. Kuemper and M. I. Ali. User-
Centric Decision Support in Dynamic Environments. CityPulse - Real-Time IoT Stream Processing and
Large-scale Data Analytics for Smart City Applications. Report - Project Delivery. Version V1.0-Final.
NUIG, SIE, UASO, 31st Aug. 2015. URL: http://cordis.europa.eu/docs/projects/cnect/
5/609035/080/deliverables/001- 609035CITYPULSED52renditionDownload.pdf (visited on
25th Sept. 2017).

And T. Pham, S. Germano, A. Mileo, D. Kümper and M. I. Ali. ‘Automatic configuration
of smart city applications for user-centric decision support’. In: Proceedings of ICIN 2017, pp. 360–
365. DOI: 10.1109/ICIN.2017.7899441.

2.6 Automatic Configuration of Smart City Applications for User-Centric Decision Support 109

http://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CITYPULSED52renditionDownload.pdf
http://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CITYPULSED52renditionDownload.pdf
https://doi.org/10.1109/ICIN.2017.7899441

cision Support, and greatly improve user experience when interacting with Smart
City Applications. Although elicitation and usage of user profiles are optional, mo-
tivated by their potential we included explicit aspects of user profiles in the Decision
Support process which are automatically encoded and used to configure the way the
Decision Support process works. These aspects include not only user location but
also user preferences and constraints on the solutions provided, as well as dynamic
correlations between contextual activities and their dependencies with city events
for a particular user in specific application scenarios.

The ability to continuously characterize the correlation between city events and user
activities is used to dynamically filter events that are relevant for a particular user
at a specific time so that Decision Support can be instructed to find new solutions
whenever needed. This functionality has been specified and implemented in a com-
ponent called Contextual Filtering [480]. In the proposed characterisation, events,
user activities and their dependencies are modelled using Linked Data and open
vocabularies in order to provide a lightweight, interoperable and well-established
foundation for Decision Support.

In the following we focus on user-centricity and describe how user requirements in
terms of preferences and constraints can be explicitly specified and mapped into a
representation that is independent of the specific application.

2.6.1 User-Centric Decision Support

The Decision Support component is responsible for higher-level intelligence, which
can utilize user contextual information, background knowledge, and real-time events
to deduce intelligent conclusion in real-time. This component is also capable of
acquiring the analysing additional information sources related to user contextual
patterns, users’ application usage behaviour, and self-defined preferences (while
using a Smart City Application) to provide optimal configuration for Smart City Ap-
plications and enable these applications to generate reactive application logic within
deployed Smart City Applications. Figure 2.12 represents a general information flow
and interactions of Decision Support with other external components.

As an initial step to start the information processing, Decision Support receives fol-
lowing input: (i) a reasoning request from the application interface which includes
user related Functional Parameters and Non-Functional Parameters, Functional
Constraints, and Functional Preferences, (ii) background knowledge, which is do-
main dependent information available for reasoning and application logic strictly
tied to the given scenario, and (iii) external information sources, which is any rel-
evant information collected through external components required for that specific

110 Chapter 2 Stream Reasoning

Figure 2.12.: Decision Support I/O.

scenario. After processing all related input information as mentioned above, De-
cision Support generates a set of scenario-driven solutions, which are guaranteed
to be optimal and satisfying all requirement and preferences specified by the indi-
vidual user.

In real-world scenarios, the reasoning module has to deal with issues related to
incomplete and contradictory information, diverse and unreliable input data, and
most importantly user defined constrained and preferences that are not explicitly
input by the end user. In order to better support the provision of optimal decisions,
the reasoning module must have the ability to expressively deduce information from
the information collected through internal and external modules additional to the
user-defined input. We achieved this expressivity within Decision Support by opt-
ing to use a declarative non-monotonic logic reasoning approach based on Answer
Set Programming (ASP). All input information of Decision Support is mapped into
ASP-format rules. Decision Support combines mapped rules with already existent
domain-dependent rules, to design an application logic for the provision of optimal
solutions to the users. Figure 2.13 depicts a system sequence diagram of Decision
Support to showcase all interactions and processing steps involved in this compon-
ent. In what follows, we briefly elaborate each and every information processing
step of the Decision Support component.

• Request Handler receives a ReasoningRequest as an input from the application
containing user preferences and requirements. Whenever a new reasoning
request arrives, a new instance of Decision Support is initiated. This Reason-
ingRequest is interpreted as the InterpretedRequest and used to initiate the DS
Manager.

• Request Re-writer automatically generates the logic rules required for the spe-
cific reasoning request that is received from DS Manager, the detailed process
of automated mapping and rules generated is presented in Section 2.6.2. After
receiving the rules from Request Rewriter, the DS Manager asks CoreEngine to
perform the reasoning by sending InterpretedRequest and Rules as paramet-
ers.

2.6 Automatic Configuration of Smart City Applications for User-Centric Decision Support 111

Request
Handler

Reasoning Request

Request
RewriterDS Manager Knowledge

Base

getBackgroundKnowledge(SPARQLquery)

BackgroundKnowledge

Rules

Core Engine

performReasoning(InterpretedRequest, Rules)

External
Modules

getExternalInformation
(Some Data)

ExternalInformation

Answers

getRules(InterpretedRequest)

startDSS(InterpretedRequest)

The order of invocation of other modules is unknown and depends on the logic
rules.

Answers

Answers

reason(LogicRules)

AnswerSets

ASP solver

Figure 2.13.: Decision Support sequence diagram.

• CoreEngine is a component that executes the ASP solver (in our current im-
plementation, we use Clingo4 [260] as the ASP solver) using the EMBASP
framework37 which is able to invoke the ASP solver and to collect Answer Sets
as plain Java objects (explained in details in Section 5.2). The ASP solver
starts by collecting:

– ExternalInformation refers to additional information collected through
external modules, which can vary depending on the scenario. For ex-
ample, in the Travel Planner scenario (see Section 2.6.3), the possible
routes from starting point to ending point or the latest city events can
be considered as ExternalInformation. Decision Support directly interacts
with external modules within the ASP program, using “external atoms”.
As mentioned in Section 1.3.5, by using them, the ASP reasoner is able
to invoke the external modules interactively, only on need basis and can
also re-use derived answers for other reasoning tasks. This feature of-
fers a very powerful ability on-demand composition of reasoning tasks
to provide solutions.

– BackgroundKnowledge is static information containing important facts
and rules related to a particular domain and stored internally for reason-
ing tasks. For example, in the Parking Space scenario (see Section 2.6.3),
the locations of the parking spaces are part of background knowledge.

37https://www.mat.unical.it/calimeri/projects/embasp

112 Chapter 2 Stream Reasoning

https://www.mat.unical.it/calimeri/projects/embasp

• The ASP Solver combines ExternalInformation, BackgroundKnowedgle, and Rules
to compute the optimal answers (in the form of Answer Sets) satisfying users’
defined constraints and preferences.

• EMBASP Framework processes Answer Sets and the optimal selected Answers
(as objects) are sent to the CoreEngine and then back to the user application
for visualization.

The actual deduction process for generating solutions to the Decision Support task
required by the application is performed by combining background knowledge, ex-
ternal information, user preferences & constraints and scenario-dependent rules.
The fully declarative nature of the ASP framework used in the implementation of
the Decision Support component capabilities makes it possible to combine these
rules and knowledge facts in a straightforward way, and enables full exploitation of
the expressive power of ASP inference for constraint checking and preference-based
deduction. This very same declarative feature is likely to simplify the extension of
Decision Support provided within the CityPulse framework and to reuse for other
Decision Support tasks.

2.6.2 User-Centric Decision Support Request: Specification
and Mapping

Preference-driven and constraint-based reasoning provide a powerful mechanism
where user-centricity is a key feature and enables to find an optimal match between
the needs, preferences of citizens, available data streams and city services. This
section describes the specification of a reasoning request. We focus on user Pref-
erences and Constraints and their automatic mapping into declarative deduction
rules. These rules are then used in the Decision Support process for solution optim-
ization.

In what follows we will detail each element of the Reasoning Request and define the
automatic mapping or translation into deduction rules used by the Decision Support
component. Such translation is defined in a general way so that independently of
the Functional Details defined as strings and values, an automatic declarative rule-
based specification can be obtained, which is seamlessly combined with the rules in
the Decision Support module used by a specific application.

As illustrated in Figure 2.14, the Reasoning Request consists of:

• Type (T) determines the reasoning task required by the application. This is
used directly by Decision Support to perform the correct task using the reas-
oning engine and needs to be identified among a set of available options at

2.6 Automatic Configuration of Smart City Applications for User-Centric Decision Support 113

Reasoning
Request

User ID Type

Functional
Parameters

Functional
Constraints

Functional
Preferences

Functional
Parameter

F Parameter
Value

F Parameter
Name

Functional
Constraint

F Constraint
Operator

F Constraint
Name

F Constraint
Value

Functional
Preference

F Constraint
Name

F Preference
Order

Functional
Details

F Preference
Operation

Figure 2.14.: Representation of Reasoning Request.

design time by the application developer. Such options have been defined for
the implemented scenarios. Customization and extension of available types
will be possible via APIs.

• User Reference is an identifier of the user that made the request. Such ref-
erence is meant to be a unique identifier related to user credentials that will
be used in the final integration activities in order to manage user logins and
instances of the CityPulse framework in different cities.

• Functional Details represent the actual criteria for the reasoning task re-
quired by the user (i.e. constraints and preferences for solution optimization).
Functional Details include Functional Parameters, Functional Constraints,
and Functional Preferences.

We shall focus now on the specification of each of the aspects included in Func-
tional Details, and illustrate how they are automatically mapped and translated
into logical deduction rules.

Functional Parameters

A Functional Parameter defines a mandatory information for the Reasoning Re-
quest (for instance the “ending point” in a Travel Planner scenario). A set of Func-
tional Parameters (Π) is composed by a finite set (of cardinality nΠ) of individual
Functional Parameter (πi;πi ∈ Π ∀i ∈ [1;nΠ]). Each Functional Parameter (πi)
is composed of:

• Functional Parameter Name (Nπi)

• Functional Parameter Value (Vπi)

i.e. πi = ⟨Nπi , Vπi⟩.

The Functional Parameter Name (Nπi) is a string taken from a fixed set of strings
(ΘT,Nπi) and the Functional Parameter Value (Vπi) is specific for each scenario.

114 Chapter 2 Stream Reasoning

The set of Functional Parameters (Π) is translated as the concatenation of the
translations of each Functional Parameter (πi) that composes it. Each Functional
Parameter (πi = ⟨Nπi , Vπi⟩) is translated as:

parameter(Nπi , Vπi).

The Functional Parameter Value can be a single value or a set of possible values.
When the Functional Parameter Value is a set (e.g. expressed as enumeration of
possible values), it is translated into several of the above facts, one for each item in
the set.

Functional Constraints

A Functional Constraint defines a numerical restriction about a specific aspect
of the Reasoning Request. This restriction is “strict” and needs to be fulfilled by
each of the answers (otherwise referred to as solutions) offered to the user. A set
of Functional Constraints (Γ) is composed by a finite set (of cardinality nΓ) of
individual Functional Constraint (γi; γi ∈ Γ ∀i ∈ [1;nΓ]).

Each Functional Constraint (γi) is composed of:

• Functional Constraint Name (Nγi)

• Functional Constraint Operator (Oγi)

• Functional Constraint Value (Vγ)

i.e. γi = ⟨Nγi , Oγi , Vγ⟩.

The Functional Constraint Name is a string taken from a fixed set of strings
(ΘT,Nγi) and the Functional Constraint Operator is an arithmetic operator taken
from a fixed set (ΘOγi = {=, ̸=, >,<,≥,≤}). For each Functional Constraint Op-
erator (Oγi) we denote with Oγi its complementary operator. The Functional Con-
straint Value Vγ is an integer number.

The Functional Constraints (Γ) is translated as the concatenation of the transla-
tions of each Functional Constraint (γi) that composes it. Each Functional Con-
straint is translated as:

• The “real” constraint:
← violatedC(Nγi).

• A rule to derive if it is violated:

violatedC(Nγi)← valueOf(Nγi , AV), AV OγiVγi .

2.6 Automatic Configuration of Smart City Applications for User-Centric Decision Support 115

where AV is an ASP variable.

Functional Preferences

A Functional Preference defines a “soft” constraint or priority among the verific-
ation of specific aspect of the Reasoning Request. This restriction is “weak” and
should be optimized by the Decision Support component in order to provide the
optimal or most preferred answers to the user.

A set of Functional Preferences (Ω) is composed by a finite set (of cardinality nΩ)
of individual Functional Preference (ωi;ωi ∈ Ω ∀i ∈ [1;nΩ]). Each Functional
Preference (ωi) is composed of:

• Functional Preference Order (Oωi).

• Functional Preference Operation (Optωi)

• Functional Constraint Name (Nγi), as defined before.

i.e. ωi = ⟨Oωi , Optωi , Nγi⟩.

The Functional Preference Order (Oωi) is an integer ∈ [1;nΩ] and the Functional
Preference Operation (Optωi) is an optimization operator taken from a fixed set
(ΘOptωi = {minimize,maximize}).

The Functional Preferences (Ω) is translated as the concatenation of the transla-
tions of each Functional Preference (ωi) that composes it. Each Functional Pref-
erence is translated as:

#Optωi{AV@Oωi : valueOf(Nγi , AV)}.

To allow more flexibility in the logic program each Functional Preference (ωi)
could be also translated as (in addition to the previous translation):

preference(Oωi , Optωi , Nγi).

2.6.3 Use-case Scenarios

In order to demonstrate how Decision Support can be used to develop applications
for Smart Cities and citizens, we have implemented two context-aware use-cases us-
ing the live data from the city of Aarhus, Denmark: a Travel Planner app and a Park-
ing Planner app. In this section, we present the Reasoning Request, logic rules auto-
matically generated from the Reasoning Request, scenario-dependent rules, and

116 Chapter 2 Stream Reasoning

External Modules used in the Decision Support process. The implementation of the
Decision Support for these two scenarios is available at

https://github.com/CityPulse/Decision-Support-and-Contextual-
Filtering

Travel Planner Scenario

Tony needs to travel from home to work. Different means of transportation are
generally available to him and include walking, biking, car, and public transport.
Transportation can be optimized to Tony’s preferred travel time, convenience, total
cost, environmental impacts, and personal health. Factors that impact this optim-
ization include the conditions of the different transportation modes, including but
not limited to road, weather, maintenance works, traffic intensity, people density,
pollution, air quality, irregularities in traffic schedules, road tolls, seating availabil-
ity, accidents, availability of city bikes. Tony will be presented with his ideal route
and will be able to select each leg of the journey based on concurrent and projected
aggregated conditions. Recalculation of his chosen route(s) can happen if condi-
tions or preferences change, and the provided solution will adapt to any detour of
own choice.

In order to provide optimal travel-planning solutions to Tony, Decision Support al-
lows him to provide his multi-dimensional requirements and preferences such as
air quality, traffic conditions, etc. The Reasoning Request for this scenario has the
following main fields:

Type indicating what Decision Support module of the Smart City Framework is to
be used for this application (“TRAVEL-PLANNER” in this case).

User Reference indicating the unique “User ID”.

Functional Details specifying possible values of user’s requirements and prefer-
ences. Tables 2.7, 2.8, and 2.9 show concrete possible values of Functional
Parameters, Functional Constraints, and Functional Preferences respect-
ively.

Table 2.7.: Example of Functional Parameters for the Travel Planner scenario.
Functional Parameters Name Value Type Value
Starting Point STARTING_POINT Coordinate 56.17888121 10.15399361
Ending Point ENDING_POINT Coordinate 56.15183187 10.15450859
Starting Time/Date STARTING_DATETIME Date 2017-01-10T18:25:43.511Z
Transportation Type TRANSPORTATION_TYPE Enum {CAR, WALK, BICYCLE}

The concrete reasoning request is automatically mapped into ASP rules (see ex-
ample rules 1-8 in Listing 2.1) in which: Functional Parameters are translated as
simple logic facts (rules 1-2); Functional Constraints (rules 3-4) are translated as
strong constraints, which reduce the solution space by eliminating answers that are

2.6 Automatic Configuration of Smart City Applications for User-Centric Decision Support 117

https://github.com/CityPulse/Decision-Support-and-Contextual-Filtering
https://github.com/CityPulse/Decision-Support-and-Contextual-Filtering

Table 2.8.: Example of Functional Constraints for the Travel Planner scenario.
Functional Constraints Name Operator Value Type Value
Travel time less than X TRAVEL_TIME ⩽ Duration 15
Distance less than X DISTANCE ⩽ Number 1000
Pollution amount less than X POLLUTION ⩽ Number 13,5

Table 2.9.: Example of Functional Preferences for the Travel Planner scenario.
Functional Preferences Order Operation Name
Travel time 1 MINIMIZE TRAVEL_TIME
Distance 2 MINIMIZE DISTANCE
Pollution 3 MINIMIZE POLLUTION

violating any of those constraints. Functional Preferences are translated as optim-
ize statements (rules 5-8), which rank the solutions to provide only those that are
qualitatively better w.r.t. the optimization statements used. Those rules are com-
bined with the specific scenario-driven rules for the Travel Planner Decision Support
module (rules 9-13) for reasoning.38 The Decision Support component collects all
possible routes from the Geospatial Data Infrastructure (GDI) component [480] as
well as the last snapshot of values of relevant functional properties for those routes
which can be produced dynamically by the Data Federation component [241, 242,
480] or retrieved from the Knowledge Base (rules 10-12).

1 parameter (‘‘ ENDING_POINT ’’ , ‘ ‘10.1591864 56.1481156 ’’).
2 parameter (‘‘ STARTING_POINT ’’ , ‘ ‘10.116919 56.226144 ’’).
3 :- violatedConstraint (‘‘ POLLUTION ’’).
4 violatedConstraint (‘‘ POLLUTION ’’) :- valueOf (‘‘ POLLUTION ’’,

AV), 135 < AV.
5 # minimize {AV@1 : valueOf (‘‘TIME ’’, AV)}.
6 preference (1,‘‘ MINIMIZE ’’,‘‘TIME ’’).
7 # minimize {AV@2 : valueOf (‘‘ DISTANCE ’’, AV)}
8 preference (2,‘‘ MINIMIZE ’’,‘‘DISTANCE ’’).
9 inputGetRoutes (SP , EP , V, 5) :- parameter (‘‘ STARTING_POINT ’

’, SP), parameter (‘‘ ENDING_POINT ’’, EP), routeCostMode (V
).

10 route(@getRoutes (SP , EP , V, N)) :- inputGetRoutes (SP , EP , V
, N).

11 routeData (@getRoutesData (SP , EP , V, N)) :- inputGetRoutes (
SP , EP , V, N).

12 maxPollution (@getMaxPollution (RouteID)) :- selected (RouteID
).

13 1 <= { selected (RouteID) : route ((RouteID , _, _))} <= 1.

Listing 2.1: A snapshot of logic rules for Travel Planner scenario.

The External Modules used for this scenario are:

38A full set of rules is available at https://github.com/CityPulse/Decision-Support-and-
Contextual-Filtering/tree/master/res/dss

118 Chapter 2 Stream Reasoning

https://github.com/CityPulse/Decision-Support-and-Contextual-Filtering/tree/master/res/dss
https://github.com/CityPulse/Decision-Support-and-Contextual-Filtering/tree/master/res/dss

GDI which enables calculation of different distance measures and allows enhanced
information interpolation to increase reliability. Furthermore, an enhanced
routing system enables multidimensional weighting on path, e.g., depending
on distance, duration, pollution, events or combined metrics. Thereby, it is
possible to avoid certain areas or block partial routes for specific applications.

Data Federation which is responsible for processing the application request for
IoT streams and automatically discover the most relevant data streams after
catering for individual requirements and preferences for a particular user re-
quest. It is also responsible for automatically integrating heterogeneous data
streams and perform Complex Event Processing over the integrated stream.

Both the GDI and the Data Federation components are part of the CityPulse frame-
work. Their implementation are available at

https://github.com/CityPulse

Parking Planner Scenario

Frank is having a hard time finding a public parking space. The city is increasingly
reducing the number of parking spaces per unit (e.g. apartments), and the difficulty
of finding a parking space means Frank has to drive around for a long time looking
for parking spots. This is very time-consuming for him and results in negative envir-
onmental impact (pollution, noise). By using multiple input sources of information
the application can provide Frank with a certain degree of probability of finding a
parking spot in different locations, thus reducing the driving time (and related CO2
emissions). By knowing the number of cars on the road at any time, the application
can help Frank avoiding congested hot spots by being rerouted towards different
paths to even out the distribution.

Decision Support aims to provide optimal available parking slots nearby Frank’s
point of interest while taking into account his constraints and preferences. The
Reasoning Request for this scenario has the following main fields:

Type indicating what Decision Support module is to be used for this application
(“PARKING-SPACE” in this case).

User Reference indicating the unique “User ID”.

Functional Details specifying possible values of user’s requirements and prefer-
ences. Tables 2.10, 2.11, and 2.12 show concrete possible values of Func-
tional Parameters, Functional Constraints, and Functional Preferences re-
spectively.

Similar to the Travel Planner scenario, the concrete reasoning request is automat-
ically mapped into ASP rules (see example rules 1-8 in Listing 2.2), and combined

2.6 Automatic Configuration of Smart City Applications for User-Centric Decision Support 119

https://github.com/CityPulse

Table 2.10.: Example of Functional Parameters for the Parking Planner scenario.
Functional Parameters Name Value Type Value
Starting Point STARTING_POINT Coordinate 56.17888121 10.15399361
Point Of Interest POINT_OF_INTEREST Coordinate 56.15183187 10.15450859
Starting Time/Date STARTING_DATETIME Date 2017-01-10T18:25:43.511Z
Distance Range DISTANCE_RANGE Number 1000
Time Of Stay TIME_OF_STAY Duration 100

Table 2.11.: Example of Functional Constraints for the Parking Planner scenario.
Functional Constraints Name Operator Value Type Value
Walking distance less than X DISTANCE ⩽ Number 1000
Cost less than X COST ⩽ Number 50

with the specific scenario-driven rules for the Parking Decision Support module
(rules 9-13). The Decision Support component collects all possible parking slots
with their cost from the Knowledge Base (these parking slots are in ‘DISTANCE_-
RANGE’ which is checked by resorting to the GDI component) as well as the last
snapshot of availability of parking slots which can be produced dynamically by the
Data Federation component (rules 9-11). Similarly to the Travel Planner scenario,
the External Modules used for this scenario are GDI and Data Federation.

1 parameter (‘‘ DISTANCE_RANGE ’’ ,1000).
2 parameter (‘‘ POINT_OF_INTEREST ’’ , ‘ ‘10.116919 56.226144 ’’).
3 :- violatedConstraint (‘‘COST ’’).
4 violatedConstraint (‘‘COST ’’) :- valueOf (‘‘COST ’’, AV), 100

< AV.
5 preference (1,‘‘ MINIMIZE ’’,‘‘DISTANCE ’’).
6 # minimize {AV@1 : valueOf (‘‘ DISTANCE ’’, AV)}.
7 preference (2,‘‘ MINIMIZE ’’,‘‘COST ’’).
8 # minimize {AV@2 : valueOf (‘‘COST ’’, AV)}.
9 parkingSpace (@getParkingSpaces (POI , DR)) :- parameter (‘‘

POINT_OF_INTEREST ’’, POI), parameter (‘‘ DISTANCE_RANGE ’’,
DR).

10 availability (@getAvailability (ParkingID)) :- selected (
ParkingID).

11 totalCost (@getTotalCost (ParkingID , ToS)) :- selected (
ParkingID), parameter (‘‘ TIME_OF_STAY ’’, ToS).

12 1 <= { selected (ParkingID) : parkingSpace ((ParkingID ,
Position , Distance))} <= 1.

13 distance (Distance) :- selected (ParkingID), parkingSpace ((
ParkingID ,Pos , Distance)).

Listing 2.2: A snapshot of logic rules for Parking Planner scenario.

120 Chapter 2 Stream Reasoning

Table 2.12.: Example of Functional Preferences for the Parking Planner scenario.
Functional Preferences Order Operation Name
Walking Distance 1 MINIMIZE DISTANCE
Cost 2 MINIMIZE COST

2.6.4 Discussion

In this work, we described how we designed and implemented a user-centric declar-
ative Decision Support component by leveraging the expressivity and fully declarat-
ive nature of ASP. To achieve this, we define a representation method that allows a
user to specify constraints and preferences, and we propose an automatic mapping
to convert user requests into logical rules. In order to demonstrate the efficiency in
term of re-usability and declarativity of this approach, we showcase the implement-
ation of the Decision Support component for two Smart City Applications: the Travel
Planner and the Parking Planner applications. Our rule-based Decision Support com-
ponent can be used in various application scenarios by: (i) identifying values of the
parameters to be constrained or optimized in the Reasoning Request, (ii) describing
the domain-specific rules for the decision task (or using existing reasoning modules
available in the CityPulse Framework), (iii) plugging in the proper External Mod-
ules to compute subtasks when needed for scalability. As a result of our proposal,
we can achieve user-centricity in the Decision Support process in order to provide
optimal solutions that better target user needs.

2.6 Automatic Configuration of Smart City Applications for User-Centric Decision Support 121

Wrap-up

In this chapter we reported about an approach to perform complex reasoning on
web data streams maintaining scalability and we defined some key concepts that
allow computing the processing time of RSP systems. In addition, we formalized
the specification of User-Centric Decision Support requests and we described how to
map them to Logic Programming.
The results of these investigations have been applied to the CityPulse Project.
It is worth noticing that some of the investigations reported in this chapter have
been conducted during the visit in the Reasoning and Querying Unit (lead by Dr.
Alessandra Mileo) of the INSIGHT Centre for Data Analytics39 (formerly DERI40) at
the National University of Ireland (NUI) Galway41.

As noted in this chapter the amount of data along with the speed of the data are im-
portant factors. They are central aspects in the Big Data field, in the next chapter we
report about this related area, highlighting some analysis we performed on specific
topics, such as Data Wrangling.

39https://www.insight-centre.org
40http://www.deri.ie
41http://www.nuigalway.ie

122 Chapter 2 Stream Reasoning

https://www.insight-centre.org
http://www.deri.ie
http://www.nuigalway.ie
https://www.insight-centre.org
http://www.deri.ie
http://www.nuigalway.ie

3Big Data

“ To clarify, add detail.

— Edward R. Tufte
(Envisioning Information)

Summary of Chapter 3

Answering “complex” queries over large amount of data requires a perfect
balance between expressivity and efficiency. However, the commonly used
solutions are very fast and scalable but, as such, they cannot handle advanced
reasoning tasks.

Logic Programming can help, thanks to the wide variety of languages that
are available, although not all of them are good for all reasoning tasks or
for the same category of programs. Therefore, reliable techniques should be
developed, in order to estimate how difficult an activity is and which is the
most appropriate formalism and/or evaluation engine to tackle it.

In this chapter, after a brief introduction on the well-known topic of Big Data,
we focus (in Sections 3.3 and 3.4) on specific problems we worked on, con-
cerning the use of logic-based techniques when a huge quantity of data is
involved, and we discuss the optimizations that can be implemented to allow
a more efficient management of resources.

Chapter Outline

3.1. Definition, Motivation and Challenges 124
3.2. Query Answering over Big Data: a case study 130
3.3. Feature-based Engine Selection for VADALOG program 134
3.4. Time/Size estimation of Logic Programs evaluation – a refined

approach . 147

123

3.1 Definition, Motivation and Challenges

3.1.1 What Big Data is and why it is important1

Over the past 20 years, data has increased on a large scale in various fields. Ac-
cording to a report from International Data Corporation (IDC), in 2011, the overall
created and copied data volume in the world was 1.8ZB (≈ 1021 B), which increased
by nearly nine times within five years [240]. This figure will double at least every
other two years in the near future.

Under the explosive increase of global data, the term of Big Data is mainly used to
describe enormous datasets. Compared with traditional datasets, Big Data typically
includes masses of unstructured data that need more real-time analysis. In addition,
Big Data also brings about new opportunities for discovering new values, helps
us to gain an in-depth understanding of the hidden values, and also incurs new
challenges, e.g., how to effectively organize and manage such datasets.

Recently, industries become interested in the high potential of Big Data, and many
government agencies announced major plans to accelerate Big Data research and
applications. In addition, issues on Big Data are often covered in public media and
two premier scientific journals, Nature and Science, also opened special columns to
discuss the challenges and impacts of Big Data2.

Big Data is an abstract concept. Apart from masses of data, it also has some other
features, which determine the difference between itself and “massive data” or “very
big data”.

At present, although the importance of Big Data has been generally recognized,
people still have different opinions on its definition. In general, Big Data shall
mean the datasets that could not be perceived, acquired, managed, and processed
by traditional IT and software/hardware tools within a tolerable time. Because of
different concerns, scientific and technological enterprises, research scholars, data
analysts, and technical practitioners have different definitions of Big Data.

In 2011, an IDC report defined Big Data technologies as

A new generation of technologies and architectures, designed to economically
extract value from very large volumes of a wide variety of data, by en-
abling high-velocity capture, discovery, and/or analysis. [240]

1Preliminary definitions adapted from [147, 351]
2Nature Special Big Data and Science Special Online Collection: Dealing with Data

124 Chapter 3 Big Data

http://www.nature.com/news/specials/bigdata
http://www.sciencemag.org/site/special/data

With this definition, characteristics of Big Data may be summarized as four Vs, i.e.,
Volume (great volume, i.e., the amount, size, and scale of the data), Variety (various
modalities, i.e., the structural variation of a dataset and of the data types that it
contains as well as the variety in what it represents, its semantic interpretation and
its sources), Velocity (rapid generation and analysis, i.e., the speed at which data
are generated as well as the rate at which they must be analysed), and Value (huge
value but very low density). Commonly Value is defined as the desired outcome
of Big Data processing [327] and not as defining characteristics of Big Data itself
and it is substituted by Veracity, which refers not only to the reliability of the data
forming a dataset, but also, as IBM has described, to the inherent unreliability of
data sources [238]. Such 4’Vs definition was widely recognized since it highlights
the meaning and necessity of Big Data, i.e., exploring the huge hidden values. This
definition indicates the most critical problem in Big Data, which is how to discover
values from datasets with an enormous scale, various types, and rapid generation.

O’Reilly experts identified in [397] the following reasons why Big Data matters:

• The world is increasingly awash in sensors that create more data – both expli-
cit sensors like point-of-sales scanners and RFID tags, and implicit sensors like
cell phones with GPS and search activity.

• Harnessing both explicit and implicit human contribution leads to far more
profound and powerful insights than traditional data analysis alone.

• Competitive advantage comes from capturing data more quickly, and building
systems to respond automatically to that data.

• The practice of sensing, processing, and responding is arguably the hallmark
of living things. We are now starting to build computers that work the same
way.

• As our aggregate behaviour is measured and monitored, it becomes feedback
that improves the overall intelligence of the system.

• With more data becoming publicly available, from the Web, from public data
sharing sites, from increasingly transparent government sources, from science
organizations, from data analysis contests, and so on, there are more oppor-
tunities for mashing data together and open sourcing analysis. Bringing dis-
parate data sources together can provide context and deeper insights than
what is available from the data in any one organization.

These issues pose many important scientific questions on which a high number of
researchers is currently working on.

Due to the popularity of the topic, we do not describe the details here.
However, it is worth noticing that also the Logic Programming community worked

3.1 Definition, Motivation and Challenges 125

on Big Data analysis and management, even if they often referred under different
names, for instance [94].
It is also important to highlight that the Big Data topic is strictly connected with
Stream Reasoning and Internet of Things (IoT).

3.1.2 Challenges in Big Data3

The sharply increasing data deluge in the Big Data era brings huge challenges on
data acquisition, storage, management and analysis. At each step, there is work to
be done and there are challenges with Big Data.

The first step is data acquisition. Some data sources, such as sensor networks, can
produce staggering amounts of raw data. Much of this data is of no interest, and it
can be filtered and compressed by orders of magnitude. One challenge is to define
these filters in such a way that they do not discard useful information. The second
big challenge is to automatically generate the right metadata to describe what data
is recorded and how it is recorded and measured. This metadata is likely to be
crucial to downstream analysis.

Frequently, the information collected will not be in a format ready for analysis. The
second step is an information extraction process that pulls out the required inform-
ation from the underlying sources and expresses it in a structured form suitable for
analysis. A news report will get reduced to a concrete structure, such as a set of
tuples, or even a single class label, to facilitate analysis. Furthermore, we are used
to thinking of Big Data as always telling us the truth, but this is actually far from
reality. We have to deal with erroneous data: some news reports are inaccurate.

Data analysis is considerably more challenging than simply locating, identifying,
understanding, and citing data. For effective large-scale analysis, all of this has
to happen in a completely automated manner. This requires differences in data
structure and semantics to be expressed in forms that are computer understandable,
and then robotically resolvable. Even for simpler analyses that depend on only
one data set, there remains an important question of suitable data storage design.
Usually, there will be many alternative ways in which to store the same information.
Certain designs will have advantages over others for certain purposes, and, possibly,
drawbacks for other purposes.

Mining requires integrated, cleaned, trustworthy, and efficiently accessible data,
declarative query and mining interfaces, scalable mining algorithms, and Big Data
computing environments. A problem with current Big Data analysis is the lack of co-

3Preliminary definitions adapted from [94, 147, 351, 352]

126 Chapter 3 Big Data

ordination between DataBase systems, which host the data and provide SQL query-
ing, with analytics packages that perform various forms of non-SQL processing, such
as data mining and statistical analyses. Today’s analysts are impeded by a tedious
process of exporting data from the DataBase, performing a non-SQL process and
bringing the data back.

Having the ability to analyse Big Data is of limited value if users cannot understand
the analysis. Ultimately, a decision-maker, provided with the result of the analysis,
has to interpret these results. Usually, this involves examining all the assumptions
made and retracing the analysis. Furthermore, as described above, there are many
possible sources of error: computer systems can have bugs, models almost always
have assumptions, and results can be based on erroneous data. For all of these reas-
ons, users will try to understand, and verify, the results produced by the computer.
The computer system must make it easy for her to do so by providing supplement-
ary information that explains how each result was derived, and based on precisely
what inputs.

In short, there is a multi-step pipeline required to extract value from data. Het-
erogeneity, incompleteness, scale, timeliness, privacy and process complexity give
rise to challenges at all phases of the pipeline. Furthermore, this pipeline is not
a simple linear flow – rather there are frequent loops back as downstream steps
suggest changes to upstream steps.

However, the challenges do not come only from this pipeline of steps but also from
real-world constraints and requirements; in [147] are listed the following obstacles
in the development of Big Data applications (taken from [6, 146, 352]):

Data representation
Many datasets have certain levels of heterogeneity in type, structure, semantics,
organization, granularity, and accessibility. Data representation aims to make
data more meaningful for computer analysis and user interpretation. Never-
theless, an improper data representation will reduce the value of the original
data and may even obstruct effective data analysis. Efficient data representa-
tion shall reflect data structure, class, and type, as well as integrated techno-
logies, so as to enable efficient operations on different datasets.

Redundancy reduction and data compression
Generally, there is a high level of redundancy in datasets. Redundancy re-
duction and data compression are effective to reduce the indirect cost of the
entire system on the premise that the potential values of the data are not
affected.

Data life-cycle management
Compared with the relatively slow advances of storage systems, pervasive

3.1 Definition, Motivation and Challenges 127

sensing and computing are generating data at unprecedented rates and scales.
We are confronted with a lot of pressing challenges, one of which is that
the current storage system could not support such massive data. Generally
speaking, values hidden in Big Data depend on data freshness. Therefore, a
data importance principle related to the analytical value should be developed
to decide which data shall be stored and which data shall be discarded.

Analytical mechanism
The analytical system of Big Data shall process masses of heterogeneous data
within a limited time. However, traditional RDBMSs are strictly designed with
a lack of scalability and expandability, which could not meet the performance
requirements. Non-relational DataBases have shown their unique advantages
in the processing of unstructured data and started to become mainstream in
Big Data analysis. Even so, there are still some problems of non-relational
DataBases in their performance and particular applications. More research is
needed on the in-memory DataBase and sample data based on approximate
analysis.

Data confidentiality
Most Big Data service providers or owners at present could not effectively
maintain and analyse such huge datasets because of their limited capacity.
They must rely on professionals or tools to analyse such data, which increase
the potential safety risks. Therefore, analysis of Big Data may be delivered to
a third party for processing only when proper preventive measures are taken
to protect such sensitive data, to ensure its safety.

Energy management
The energy consumption of mainframe computing systems has drawn much
attention from both economy and environment perspectives. With the in-
crease of data volume and analytical demands, the processing, storage, and
transmission of Big Data will inevitably consume more and more electric en-
ergy. Therefore, system-level power consumption control and management
mechanism shall be established for Big Data while the expandability and ac-
cessibility are ensured.

Expendability and scalability
The analytical system of Big Data must support present and future datasets.
The analytical algorithm must be able to process increasingly expanding and
more complex datasets.

Cooperation
Analysis of Big Data is an interdisciplinary research, which requires experts in
different fields cooperate to harvest the potential of Big Data. A comprehens-
ive Big Data network architecture must be established to help scientists and

128 Chapter 3 Big Data

engineers in various fields access different kinds of data and fully utilize their
expertise, so as to cooperate to complete the analytical objectives.

Furthermore, each of the Big Data dimensions (the Vs) has specific challenges that
should be addressed:

Volume Velocity

• Processing Performance
• Curse of Modularity
• Class Imbalance
• Curse of Dimensionality
• Feature Engineering
• Non-Linearity
• Bonferonni’s Principle
• Variance and Bias

• Data Availability
• Real-Time Processing/Streaming
• Concept Drift
• Independent and Identically Dis-

tributed Random Variables

Variety Veracity

• Data Locality
• Data Heterogeneity
• Dirty and Noisy Data

• Data Provenance
• Data Uncertainty
• Dirty and Noisy Data

Besides, most the approaches that are currently available, such as the basic MapRe-
duce platforms, lacks essential features like iteration (or equivalently, recursion)
and, more importantly, “complex” query answering. In this context, Logic Program-
ming and its KR&R capabilities can be exploited in order to extend and improve the
methodologies and the frameworks on the market.

3.1.3 Further remarks

For more information about Big Data see also [365].

3.1 Definition, Motivation and Challenges 129

3.2 Query Answering over Big Data: a case study -
the vada project

In this and in the next section we first introduce some interesting case studies, and
then we report about some results obtained using logic-based techniques for Big
Data in the context of Data Wrangling.
The investigations reported in the following section have been conducted during the
visit at the Department of Computer Science (lead by Professor Georg Gottlob F.R.S.)
at the University of Oxford4.

3.2.1 vada: value-added data systems5

VADA brings together three UK research groups with proven international leadership
in DataBases and information systems, yet with complementary areas of specialism,
to develop principles, techniques and architectures for adding value to data. The
applicants have outstanding track records against many criteria and include 2 Fel-
lows of the Royal Society (FRS), 4 Fellows of the ACM (FACM), 2 recipients of
Royal Society Wolfson Research Merit Awards, 3 Fellows of the Royal Society of
Edinburgh (FRSE) and a winner of the BCS Roger Needham Award; their current
grant portfolio exceeds £9 million (£3.2M at Edinburgh, £3.9M at Oxford, £2.4M
at Manchester) from national funding bodies, EU and industry; and they have 130
papers with over 100 citations. The principal investigator is Prof. Georg Gottlob
from Oxford, and the lead CIs at Edinburgh and Manchester are Prof. Leonid Libkin
and Prof. Norman Paton, respectively.

The VADA consortium consists of the three leading DataBase research groups in the
UK and 11 non-academic partners from 4 different countries (shown, respectively,
in Figure 3.1 and in Figure 3.2). All teams contribute an outstanding and unique
mix of complementary expertise and skills, from foundations to applications, that
is well suited for this programme.

Research Programme description

Data is everywhere, generated by increasing numbers of applications, devices and
users, with few or no guarantees on the format, semantics, and quality. The eco-
nomic potential of data-driven innovation is enormous, estimated to reach as much
as £40B in 2017, by the Centre for Economics and Business Research. To realise this
potential, and to provide meaningful data analyses, data scientists must first spend

4http://www.ox.ac.uk
5Preliminary definitions adapted from [338], and VADA website and documentation

130 Chapter 3 Big Data

http://www.ox.ac.uk
http://www.ox.ac.uk

Figure 3.1.: Universities of the VADA consortium.

Figure 3.2.: Project partners of the VADA consortium.

a significant portion of their time (estimated as 50% to 80%) on “Data Wrangling”
– the process of collection, reorganising, and cleaning data.

This heavy toll is due to what is referred as the four V’s of Big Data: Volume – the
scale of the data, Velocity – speed of change, Variety – different forms of data, and
Veracity – uncertainty of data. There is an urgent need to provide data scientists
with a new generation of tools that will unlock the potential of data assets and
significantly reduce the Data Wrangling component. As many traditional tools are
no longer applicable in the 4 V’s environment, a radical paradigm shift is required.
The proposal aims at achieving this paradigm shift by adding value to data, by
handling data management tasks in an environment that is fully aware of data and
user contexts, and by closely integrating key data management tasks in a way not
yet attempted, but desperately needed by many innovative companies in today’s
data-driven economy.

The VADA6 research programme will define principles and solutions for Value-Added
DAta systems, which support users in discovering, extracting, integrating, accessing
and interpreting the data of relevance to their questions. In so doing, it uses the con-
text of the user, e.g., requirements in terms of the trade-off between completeness
and correctness, and the data context, e.g., its availability, cost, provenance and
quality. The user context characterises not only what data is relevant, but also the
properties it must exhibit to be fit for purpose. Adding value to data then involves
the best effort provision of data to users, along with comprehensive information
on the quality and origin of the data provided. Users can provide feedback on

6EPSRC Project EP/M025268/1. http://vada.org.uk

3.2 Query Answering over Big Data: a case study 131

http://vada.org.uk

the results obtained, enabling changes to all data management tasks, and thus a
continuous improvement in the user experience.

Establishing the principles behind Value-Added DAta systems requires a revolutionary
approach to data management, informed by interlinked research in data extraction,
data integration, data quality, provenance, query answering, and reasoning. This
will enable each of these areas to benefit from synergies with the others. Research
has developed focused results within such sub-disciplines; VADA develops these spe-
cialisms in ways that both transform the techniques within the sub-disciplines and
enable the development of architectures that bring them together to add value to
data.

The commercial importance of the research area has been widely recognised. The
VADA programme brings together university researchers with commercial partners
who are in desperate need of a new generation of data management tools. They will
be contributing to the programme by funding research staff and students, providing
substantial amounts of staff time for research collaborations, supporting internships,
hosting visitors, contributing challenging real-life case studies, sharing experiences,
and participating in technical meetings. These partners are both developers of data
management technologies (LogicBlox, Microsoft, Neo) and data user organisations
in healthcare (The Christie), e-commerce (LambdaTek, PricePanda), finance (Alli-
anceBernstein), social networks (Facebook), security (Horus), smart cities (Futur-
eEverything), and telecommunications (Huawei).

The vada Architecture

The Value-Added DAta systems (VADA) architecture is illustrated in Figure 3.3. Briefly,
the key components of the VADA project are:

Transducers
The Transducers are a collection of components that represent the functionalit-
ies within the wrangling process; a transducer 7 is a software component with
input and output dependencies defined as Datalog queries over the Knowledge
Base and/or the state of the transducer. The input dependencies, for example,
may initiate the evaluation of a transducer when information becomes avail-
able on which it can act. For example, a mapping generation transducer may
start to evaluate when matches have been created between source and target
schemas, or a data fusion transducer may start to evaluate when duplicates
have been detected. The architecture is not tied to a specific or fixed set of
transducers.

7The notion of transducer is inspired by earlier work on relational transducers [5], although the
languages used are not formally equivalent.

132 Chapter 3 Big Data

Figure 3.3.: The VADA Architecture. From “Data Integration: a system-based view – Dr.
Alvaro A. A. Fernandes”.

Knowledge Base
The Knowledge Base is a repository for representing the data of relevance to
the Data Wrangling process; this includes information about the requirements
of the user (user context), the application domain (data context), and both
data and metadata created and used by the transducers that participate in the
wrangling process.

vadalog Reasoner
The VADALOG Reasoner supports reasoning over the Knowledge Base using
VADALOG [231], a new member of the Datalog± family of languages [119];
VADALOG plays several roles in the architecture, including specifying trans-
ducer dependencies, coordinating the orchestration of the transducers, and
representing schema mappings.

3.2 Query Answering over Big Data: a case study 133

3.3 Feature-based Engine Selection for vadalog
program

In the context of Data Wrangling, and specifically for VADALOG programs, we invest-
igated about the introduction of a multi-engine approach that we present next.

Data Wrangling has been recognised as a recurring feature of Big Data life cycles.8

It has been defined as:

a process of iterative data exploration and transformation that enables
analysis. [324]

Data Wrangling is a complex task that requires powerful approaches in order to be
tackled effectively. As highlighted by several earlier works [75, 227–229] various
forms of reasoning are required in order to fulfil all the requirements of the different
Data Wrangling tasks and ontological reasoning is a key aspect in this context.

In [230] the authors analysed some problems and opportunities in the Big Data
context for the Data Wrangling process. Among them, they highlight the need of
the support for Knowledge Representation and Reasoning solutions able to deal with
the diverse and uncertain working data that is of relevance to the Data Wrangling
process and some fundamental problems related with data querying, such as in-
tractability, scalability indexing, approximations, etc.

As mentioned before, to add value to data in ways that accommodate diverse user
and data contexts, the VADA project must support iterative improvement within
each component on the basis of insights from users, external sources and other
components. In order achieve this goal a common logical framework, known as
VADALOG, for uniformly expressing most rules and reasoning mechanisms used by
the different components have been developed. The main component responsible
for this is the VADALOG Reasoner where the reasoning over the Knowledge Base is
provided using the VADALOG language.9

8From [230]
9From the VADA proposal

134 Chapter 3 Big Data

3.3.1 Preliminaries

The vadalog language10

The need to share data and knowledge between components of a Data Wrangling
system makes it clear that a common language is needed to express such knowledge,
and enable reasoning over it. The authors in [231] expressed their vision of a
lingua franca for Data Wrangling. Such a language should provide a uniform way
to address the different needs in the Data Wrangling process:

• expressing knowledge in a shared knowledge-base

• reasoning about data and transformation of data within the components

• specifying the workflow between the components

A key challenge to such a language is large volume of data on the one hand, and
requirements for highly expressive reasoning on the other hand. Clearly, meeting
both requirements at the same time is hard. Yet there is a full spectrum of possibil-
ities in between:

• small volume of data: complex reasoning

• large volume of data: simple processing

• very large volume of data: parallel processing

The challenge of offering both expressiveness and scalability in a single system
poses particular design challenges to a language for Data Wrangling. A single
monolithic – highly expressive – language is not enough to meet the requirement
of scalability in the presence of Big Data.

The language should address these features by providing a uniform view of data
(independent of its source) while supporting the components by being suited to
data extraction, integration and exchange. At the same time, it must allow for
efficient processing and scalability when confronted with Big Data. One of the best-
established languages in the data management community for knowledge-based
reasoning is Datalog. Over the years, it has been studied in great detail and exten-
ded in various ways [66], see Section 1.2 for more details. The authors of [231]
recognized also that the family of languages often called Datalog± seeks to add
to Datalog’s expressive power, yet not by sacrificing efficiency and scalability and
therefore they decided to use it as base for the VADALOG language. They have not
provided a specific syntax or semantics of the VADALOG language but they relied on
the one of Datalog±.

10Preliminary definitions adapted from [231]

3.3 Feature-based Engine Selection for vadalog program 135

vadalog Design Principles In the same paper, the authors identified the following
design principles for their proposed language:

Solid Foundation: Datalog
The language is based on Datalog, extended by features that are well-known
in the data management community: in particular existential quantification
(as in TGDs, existential rules or Datalog±) as well as numerous other features
motivated by the theoretical and practical needs of Data Wrangling. Having
Datalog at its foundation gives VADALOG a well-understood core that has been
the topic of research for many years now.

Family of Languages
One single, all-encompassing language cannot meet at the same time the goal
of being highly expressive as well as having low computational complexity.
VADALOG, therefore, consists of profiles of the language (in the same meaning
as the profiles of languages such as OWL), each providing a specific subset
suited to a particular purpose. This allows simple computations to be effi-
ciently and scalably executed over Big Data, while at the same time allowing
complex reasoning over a smaller Knowledge Base.

Combining Strengths
There exist a number of powerful knowledge-based systems, DataBase sys-
tems, and systems that are able to deal with Big Data that often combine the
expertise of large groups of researchers and engineers. The language is thus
designed with the intent of making use of systems specifically suited for par-
ticular tasks. For example, if a VADALOG programme is formulated in a profile
of the language that is particularly suited to an existing knowledge-based sys-
tem, then this system is used as a backend-engine. This design choice does
not come for free – many interesting research challenges have to be addressed
to deal with multiple engines working in a unified system.

Handling Volume
Volume may be coped with by using an engine that is suited for handling
huge amounts of data. Yet this is not always the most efficient approach.
The language contains as “first-class citizens” the support for partitioning the
data into dataspheres which may be parametrized using domain-dependent
or data-dependent parameters. This language-design principle of being able
to handle volume by allowing clever partitioning of the data, combined with
using engines that can handle big amounts of data when necessary, allows
VADALOG to efficiently deal with huge amounts of data.

Modularity
Reasoning and transformation tasks are organized into self-contained mod-
ules – based on the concept of a data transducer, which receives data from
different dataspheres and produces data in different dataspheres. Such trans-

136 Chapter 3 Big Data

ducers modularly encapsulate their dependencies (which dataspheres they
require to be present) and their guards (what conditions must be met to be
executed). Defining all of these parts of the transducer is done using VADALOG

in a single, maintainable module for each such transducer.

Dynamic Orchestration
Defining single modules – transducers – is only one part of a Data Wrangling
system. A key part of such a system is that all its components are able to share
data and knowledge between them and, importantly, react to such knowledge
by dynamically selecting which next steps to take. For example, as a result of
quality analysis, the system may choose to redo data extraction with different
background knowledge, or adding a data source. A key part of VADALOG is
thus a profile for specifying such transducer networks that dynamically orches-
trate components of the Data Wrangling system.

Extensibility
A rule-based language based on Datalog is clearly suited for knowledge-based
reasoning tasks. Yet, while a Data Wrangling system has reasoning-intensive
tasks, it also has tasks which are better suited to be implemented in other
languages. To harness components implemented in other languages, VADALOG

allows extensibility at a number of levels: at the transducer level, which gives
the components wide-ranging freedom in how to approach its task (such as
an existing component analysing data quality); at the level of actions, which
are middle-scale tasks (such as navigating web pages), and at the level of
external functions, which can add small-scale functionality not supported in
the language (such as non-supported string or number functions).

The vadalog Reasoner component11

VADALOG and its reasoning facilities must address a wide range of desiderata, in-
cluding the ability to represent and reason about data extractions, data integration
views, and data exchange between components, while accommodating uncertain
knowledge and user preferences. As mentioned before, VADALOG will have un-
precedented functionality, specifically addressing the Knowledge Representation and
Reasoning requirements of data-intensive applications.

Knowledge-based reasoning is the common foundation for the VADA system – a com-
ponent that manages data and context information, about data or user, and reasons
over these to derive new insights. The main idea is to create a uniform framework
for data and rule-based Knowledge Representation in VADA, used for information ex-
change between its components, as well as for intelligent decision-making, e.g., to
select relevant sources based on user and data context and on knowledge about the

11Preliminary definitions adapted from the VADA proposal

3.3 Feature-based Engine Selection for vadalog program 137

sources and the type of data. Conclusions drawn via automated reasoning will then
cause the framework to appropriate, modify data and update the Knowledge Base.
This framework will be designed around the VADALOG reasoning language.

Necessity of a uniform formalism for data representation and reasoning. Knowledge-
based reasoning provides a strong foundation for managing diverse types of data,
including data and user contexts. It also serves as a common base for deriving ad-
ditional information from existing data via rules. This facility is available to VADA’s
user, as well as to other VADA components, that will all make extensive use of this
facility. Many parts of the joint data and Knowledge Base, e.g., the data dictionary,
will be shared among several components. Given that many components produce or
manage data and use knowledge for reasoning, VADA requires a uniform formalism
for data and Knowledge Representation, complemented by an appropriate reason-
ing mechanism. Different applications may require different storage models. In
particular, data and rules may be divided over main memory, standard relational
DataBases, Data Warehouses, Cloud Storage, and so on. The uniform formalism
for data and Knowledge Representation we strive for in this work package shall be
independent of the storage model. However, the concrete reasoning mechanisms
and query-answering algorithms that are based on this formalism will have to take
different possible forms of storage into account.

Desiderata. The following are the main desiderata for the data representation and
reasoning component in VADA:

(D1) It should provide a single, uniform view of factual data, rule-based knowledge,
data, and user context, whether stored in an internal data or Knowledge Base,
or in an existing external DataBase or data-warehouse, or extracted from the
Web or other sources, or added via reasoning.

(D2) It should be suited for data integration (including view management and
querying [359, 395], as well as discovery of schema mappings [291]) and
data exchange between components.

(D3) It should be suited for rules used to reason about websites and the data ap-
pearing on them, as needed for data extraction, including provenance and
confidence of the data to be extracted.

(D4) It should provide means for updating data and, where necessary, rules.

(D5) It should be suited for advanced logical reasoning tasks, such as closed-world
reasoning (e.g., if it is not known that a data item is corrupted, assume it is cor-

138 Chapter 3 Big Data

rect), and transitive closure (e.g., recover the origin of a data item by follow-
ing a chain of local provenance pairs backward), as well as ontological reason-
ing and Ontology-Based Data Access (OBDA), that enriches a DataBase by an
ontology, thus providing a high-level conceptual context for the data [138].
All of these are essential to effectively derive conclusions from existing data.

(D6) It should be suited for uncertain knowledge, as well as inconsistencies that
naturally result when data is extracted and integrated from many sources,
including web-sources, and provide approximate and probabilistic reasoning
to handle such data.

(D7) It should be suited for user preferences and other user contexts, which will
allow for personalized query answering, where answers are tailored to the
needs of specific users.

(D8) It should lend itself to an efficient and scalable inference mechanism for ex-
ecuting the rules and reasoning on top of data and knowledge.

Query Answering. An important part of the Reasoning component is Query An-
swering. QA under ontologies is becoming increasingly important, and thus our
techniques will be tightly integrated with VADALOG-expressible ontologies in order
to reason about the quality of approximate and imprecise answers to queries.

The very notion of query answering is undergoing a fundamental transformation.
We are used to having a fixed data set, and a standard data management tool with
a clear and well-defined semantics of query answers. This vision is no longer true
though for two reasons. One is the sheer amount of data. It is simply impossible
to get precise answers to queries – in many cases, we cannot even feasibly scan the
data. The other is imprecision and the proliferation of imperfect information, due to
both extracting from multiple sources (often not controlled by us) and integrating;
despite our best efforts to clean the data, those factors will still remain. We thus
need to deliver a new way of providing query answers that takes into account both
the data context (amount of data, imperfection) and the user context (the notion
of acceptable query answers) and delivers fast algorithms for providing meaningful
and helpful answers to users’ queries.

In providing query answering facilities for VADA, there are two distinct challenges,
corresponding to two of the V’s – Volume and Veracity. These depend on where the
need for querying occurs in relation to other tasks.

3.3 Feature-based Engine Selection for vadalog program 139

– To extract or integrate data, we have to deal with massive data sets, often not
under our control. The key issues there are handling the scale of data and the
ability to produce useful approximate answers.

– To query data that has already been extracted from different sources, the main
challenge is handling uncertainty and imprecision. Despite our best efforts to
clean it and resolve inconsistencies in the integration process, uncertainties
are bound to persist given the heterogeneous nature of the data we start with.

We describe next the approach we are designing and developing.

3.3.2 A multi-engine approach

As explained in Section 1.2.3 the Datalog± family contains several classes of QA-
decidable languages, each of them with its own strengths and weaknesses. Moreover,
in Section 1.2.4, we described various Datalog± solvers and we highlighted that
each of them is able to treat a specific fragment of Datalog± and it is optimized
for it. Furthermore, as described in the previous section, the VADALOG language
was conceived in order to not be restricted to a specific class of Datalog± languages
and actually can use different fragments and have several profiles depending on the
data and the user contexts.12

Given all these considerations, and in accordance with the idea established in the
VADA Project proposal of “selecting the most suitable pool of execution back-ends to be
used to answer VADALOG queries and translating them into the suitable concrete query
languages depending on the back-end”, we decided to design a multi-engine approach
that could satisfy all the requirement of the VADALOG Reasoner mentioned above.

The main idea is to identify, collect and integrate into a modular and scalable frame-
work various systems that can solve all sorts of VADALOG programs. Since programs
in the VADALOG language can include a wide variety of operators and therefore their
complexity can differ greatly, the range of solvers we can use to perform Query An-
swering over them is really broad, from those specifically tailored to perform the
chase on TGDs and/or EGDs to those that can be adapted with specific techniques
(such as Skolemization) to support Datalog± programs or part of them.

In addition, we want to develop an AI-based strategy to select the best solver to
choose among the available ones based on the properties and the features of the
Data (Dataspheres) and of the Program (Transducer), and on the characteristics of
the available engines.

12It is worth mentioning that at the moment of writing the VADA research group is also focusing on a
specific fragment as logical core of the VADALOG language. [86]

140 Chapter 3 Big Data

Programs and Data Features

Many different studies have been carried out, in the Logic Programming community,
in order to identify “features” of logic programs and often these are used to build
multi-engine approaches. In [257, 262, 303, 400–406, 449], we identified the
following features that could be useful in a multi-engine approach: (here divided in
some groups adapted from [449])

Problem size features 13

• Number of Rules r
• Number of Atoms a
• Ratios r/a, (r/a)2, (r/a)3

• Ratios reciprocal a/r, (a/r)2,
(a/r)3

• Number of Functions f
• Number of Variables v
• Number of Constraints c
• c / v
• Number of Equivalences

Balance features 14

• Ratio of positive and negative
atoms in each body

• Ratio of positive and negative
occurrences of each variable

• Fraction of normal rules
• Fraction of constraints
• Fraction of unary, binary and

ternary rules

“Proximity to horn” features 15

• Fraction of horn rules
• Number of occurrences in a Horn

clause for each variable

Peculiar features
• Head sizes
• Strongly Connected Components

(SCC)
• Head-Cycle Free [88]

components
• Presence of queries
• Stratification properties

Graph Features
• Variable nodes degree statistics

(mean, variation coefficient, min,
max, entropy)

• Rule nodes degree statistics
(mean, variation coefficient, min,
max, entropy)

Moreover, different operations could be “encoded” in the rules of the Program,
such as (a) Selection, (b) Union, (c) Intersection, (d) Projection, (e) Join, (f) Cross
Product, and (g) Negation.

And from the (labelled) dependency graph of the Program, other peculiar properties
can be analysed, for instance (a) stratification (acyclic graph, recursion), (b) vertex
data (adjacent vertices, isolated vertices, etc.), (c) structure of the graph (is a tree?,
is linear?, etc.), and (d) strongly connected components.

13This type of features can be considered to give an idea of what is the size of the ground program.
14This type of features can help to understand what is the “structure” of the analysed program.
15These features can give an indication on “how much” a program is close to be horn: this can be

helpful, since some solvers may take advantage from this setting (e.g., minimum or no impact of
completion [149] when applied).

3.3 Feature-based Engine Selection for vadalog program 141

Furthermore, there are different ways on how the Data could be structured. Some
examples are a tree structure, a list (a degenerate tree) structure or a graph struc-
ture; for each of them, many properties might be useful, such as Connectivity, Com-
ponents, Rank, Treewidth [290], etc. Although, the identification of these “struc-
tures” is often very expensive from a computational point of view.

We are now analysing all these features in order to identify which of them may be
useful for our multi-engine approach. Moreover, we are investigating which ones
we can estimate and how we can do it; because they should be cheap to compute,
in order to be useful, but at the same time powerful enough to give insights on the
choice of the engine.

Methodology

In addition to the features described above, and guided by the analysis of real lo-
gic programs developed in the earlier works mentioned before, we identified four
methods that can be used to guide the solver selection.

These methods take as input i) the Data (actually, since the amount of data is usually
huge, in the execution phase they take as input some “properties” or “statistical
information” of the data), ii) the Program, iii) the Engines (their characteristics).
The output of each of them should be the “best” engine to run. The “best engine
is defined by two properties i) being able to execute the logic program encoded
in the Transducer (remember that not all engines have the same expressivity) and
ii) being able to do so in the least possible amount of time (given a fixed memory
bound) w.r.t. the other engines.

In the following, we describe the methods that we identified.

Order based
Find a (partial) order among the engines based on some “high-level features” of
the input Data and Program.

Example. Given a “size” feature on the Data and a “complexity” on the Pro-
gram, we could have, for instance, the following cases:

• “Large” Data and “Simple” Program
• “Small” Data and “Complex” Program

If we consider two engines, a SQL-based one and an ASP-based one, we could
have the following order:

• in case 3.3.2, ESQL ⋖ EASP

• in case 3.3.2, EASP ⋖ ESQL

where EA ⋖ EB if EA is “better” than EB.

142 Chapter 3 Big Data

In this example we assume that the best engine is expressive enough to sup-
port the given Program, otherwise, the method should rank it in a lower posi-
tion or exclude it from the ordered list of engines.

Score based
Choose the engine based on the values of the score given by its characteristics.

In order to do this we have to map each characteristic (Ci) to the engines
(E) that possess it, defining a score for each of them, and then we associate,
through a weight, each rule R of the Program to the C of the E it is good for.

Example. In the following, a schematic version of this method.

E1 C1

w1
R1 : ...

... C2

w2
R2 : ...

En ... Rn : ...

...

... Cm

wn
...

Label based
Identify labels that are “meaningful” for the different types of rules. Then assign
one (or more) label(s) to each rule of the Program and use these labels to decide
the engine to run.

Example. Given, for instance, the following labels for specific types of rules:

TYPE LABEL

A(X,Y)− > C(X) – (projection) SIMPLE

A(X,Y)− > B(X,Y) – (renaming) SIMPLE

A(X,Y), B(Y, Z)− > B(X,Z) – (join) COMPLEX

We can use them to classify the rules of the Program in order to identify which
engine is the most appropriate one for the input at hand.

Moreover, if we have information about the sizes of the predicates in the body
we can try to predict the size of the predicate in the head and this can give
helpful information for the selection of the engine. This topic is extensively
analysed in Section 3.4.

Induction based
Collect and create examples of Data and Programs, and use Machine Learning
techniques to analyse them, according to the “features” mentioned above.

Furthermore, we can try to identify the minimum set of features needed to be
able to select the best engine.

3.3 Feature-based Engine Selection for vadalog program 143

This method is similar to the approach of most of the multi-engine systems
developed in the Logic Programming field.

We are evaluating all these methods in order to identify the most appropriate ones
for our needs.

3.3.3 Component Description

The VADALOG Reasoner component, as shown in Figure 3.3, it is the core of the
VADA framework and should be integrated with all the other components (i.e., with
the Transducers and the Knowledge Base). Therefore, its design and development
were guided by modularity and scalability concepts as well as by clean and precise
interfaces that can be easily accessed by other components.

DTM Engine

Read and Write
Transducers and

Dataspheres

Transducer Executor

Execute Transducers

Engine Executor

Configure, run and
collect output of a

specific engine

Controller

Transducer Address
&

Engine Executor

Transducer Address
Stream of DTM Objects

Stream of Engine Objects

Executor
from File

Executor
from DB

Executor
from HDFS

Datalog
Engine

ASP
Engine

Datalog±
Engine

IDLV DLV IRIS±dlvhex
RDFox

DLV

Figure 3.4.: Sketch of the VADALOG Reasoner component.

The central idea of our architecture, as shown in Figure 3.4 is quite simple. There is
a Controller that specifies which Transducer have to be executed and which Engine
will be responsible to do it. Then the Transducer Executor collects all the information
needed using the DTM Engine; it is worth noticing that this component does not
need to retrieve all the data, it may provide a handler, a stream or it might simply
provide metadata (like location and credential to access the data) if the selected

144 Chapter 3 Big Data

Engine is able to directly access them16. And finally the Transducer Executor run
the specified Engine through the Engine Executor, it retrieves the results from it and
store them using the DTM Engine.
In Figure 3.5 is shown a specific execution of this flow where both the Transducer
and the Datasphere are retrieved.

run(Stream<EngineObject>)

Controller
Transducer

Executor
DTM

Engine

Engine
Executor

executeTransducer
(Address, EngineExecutor)

readTransducerAndDatasphere
(Address)

Stream<DTMObject>

init()

Stream<EngineObject>

tidyUp()

writeTransducerOutput
(Address, Stream<DTMObject>)

Figure 3.5.: Sequence Diagram of a Transducer execution.

In order to be more general and fully compatible with other components, we de-
cided that all the messages and all the API of this component have to use only flow
of logic programs (mentioned in Figure 3.4 as DTM and Engine Objects) and/or
addresses of Transducers.

In addition, it is worth noticing that Transducer Executor and Engine Executor are
just interfaces and can be easily extended in order to introduce new functionalities
and new engines. For instance, different Transducer Executors able to handle various
kind of storages may be introduced and tested to identify the most appropriate
ones.

However, the possibility to easily integrate new engines is a key feature in order to
develop a scalable and adaptable multi-engine system. Using a double hierarchy,
16For instance, some solvers are able to directly access data stored into a DataBase, therefore if part

of the data is stored into a DB, the Transducer Executor might simply provide the information
needed to retrieve them.

3.3 Feature-based Engine Selection for vadalog program 145

we introduced different types of engines and several engines for each type. In Fig-
ure 3.4 are mentioned some categories and engines that we are integrating. We
decided to integrate Datalog engines, such as I-DLV, ASP engines, such as DLV and
dlvhex, Datalog± engines, such as IRIS±, RDFox and DLV∃. Moreover, we also integ-
rated some preliminary engines that were developed at the beginning of the VADA

project (a Prolog-based engine and a SQL-based one). As shown in [89], many sys-
tems can execute TGDs and/or EGDs, therefore we are planning to add even more
systems with different characteristics to extend the range of choices for our engine
selection.

Thanks to this modular architecture, we can easily test the solvers and the methods
described in previous sections in order to identify how the Controller should behave
to be successful.

3.3.4 Related Work and Discussion

Algorithm selection is a very old problem in computer science [502]. In the last
years, multi-engine approaches became quite popular also in the Logic Programming
community [152, 262, 300, 303, 320, 321, 380, 399, 400, 404, 406, 407, 452, 481,
520, 527, 587–589, 600] thanks to the availability of several solvers for each lan-
guage that often use very different techniques to compute the models of a program.
These approaches are often based on the identification of peculiar features of the lo-
gic program, the collections of some solvers for the specific language and on the use
of Machine Learning techniques in order to select among the available solvers the
“most promising” one, i.e., the one that should perform better than others, usually
w.r.t. time and memory consumption, on the input program. The main reasons to
use this approach are that very often the time and the memory required in order to
solve a specific logic program strictly depend on the algorithm (and the heuristics)
used by the solver and, in many cases, on a specific input program distinct engines
have performances that are order of magnitude different.

As described in Section 3.3.2 we are analysing different methods and instead of
limiting the multi-engine approach to Machine Learning algorithm on top of easy-
to-compute features, we are trying to identify if also other kinds of methods, per-
haps more “declarative”, can be applied to the selection of the engine. In this
context many different techniques can be useful, for instance the Rete Match Al-
gorithm [223] can be used to find all the matches of the features of the Program to
the available engines.

These methods will be evaluated in the context of VADALOG programs and applied
to Data Wrangling problems such the ones of the VADA project.

146 Chapter 3 Big Data

3.4 Time/Size estimation of Logic Programs
evaluation – a refined approach

In this section we report our preliminary ideas and results on a size/time estimation
of logic programs and its application in the context of multi-engine approaches.

Almost always the results of a reasoning process are needed as soon as possible and
this is one of the motivations behind the huge amount of research made in the last
decades in the area of Artificial Intelligence related to problem-solving. However, in
many cases, the results of a reasoning task are useful only for a limited period of
time, after which they became useless. This is certainly true in the Stream Reasoning
context and definitely also in the context of (video-)games or, in general, “intelli-
gent agents”. Nevertheless, when dealing with huge amount of data, this problem
becomes more important, since the time needed to produce meaningful and helpful
results could be enormous.

Given these premises the question

“How much time will need my reasoning task in order to be completed?”

arises spontaneously.

We started to study this problem in the context of Logic Programming, specifically,
we started to investigate the time required for a Logic Program to be evaluated.
This problem is quite interesting and has been studied from various perspectives in
different contexts (see Section 3.4.1), but estimating directly the time is quite hard
mainly because the execution time is often strictly related to the specific optimiza-
tions and heuristic of the solver at hand.

One might think of determining the complexity class of the specific instance and,
from it, try to derivate an estimate of the time, but this might not be very reliable
because problems in the same complexity class can have really different execution
time.

However, several investigations in the context of multi-engine systems pursue, in a
direct or in an implicit way, exactly this goal. The main idea in multi-engine systems
is to find, among the available ones, a proper (combination of) engine(s) able to
perform better than any other. These systems usually use inductive approaches and
are often very effective if the number of solvers is not large. Anyway, as explained in
the next sections, they are mostly used on ground programs where a lot of inform-
ation about the program are already available and, more important in this context,

3.4 Time/Size estimation of Logic Programs evaluation – a refined approach 147

they do not have a precise idea of the time needed by the selected solver neither of
how much the execution time of a program is different from another one.

Instead of estimating directly the time, another idea might be to estimate the size
of each IDB predicate given the body literals of the rules in which it appears, i.e.,
roughly the number of rules that should be instantiated by as grounder, and this
should approximately give the number of “operations” of the engine and therefore
an appraisement of the time needed to evaluate the program. Also this problem
has been largely investigated in the Logic Programming community because it is
useful in many contexts, for instance to parallelize the execution of a solver [466],
and, before, it was deeply studied also in the DataBase community [567] in order
to identify the so-called “query size” that it is extremely useful in query optimiza-
tion and, more in general, in query answering. More details on these studies are
provided in Section 3.4.1.

In addition to estimating the time needed, it might be useful to identify the “time
relation” among two programs, i.e., if one program can be evaluated quicker than
another one and, if possible, also (the order of magnitude of) their gap. This is
helpful in many different situations, for instance, if, as mentioned at the beginning,
the results of the reasoning task are useless after a specified period of time and
we have two different programs (P1 and P2) that can be executed. Assume that
P1 provides the exact result to the problem at hand and P2, instead, provides an
acceptable estimate. If we know (or we can estimate) that the execution time of
P1 is too big (it is orders of magnitude out of the time-limit we have) and we can
estimate that the P2 should take less time (perhaps orders of magnitude less than
P1) and thus it could probably be completed before the time-limit; we can decide
(even in an automatic way) to use directly P2 without wasting time and resources
with P1.

In the next section, we describe some basic notions and specific previous work in
this context.

3.4.1 Preliminaries and Related Work17

This topic has been extensively studied and there are many works in the literature
about it, especially about the estimation of the size. In the following we focus
mainly on this problem.

17Preliminary definitions adapted from [305, 370, 371, 474]

148 Chapter 3 Big Data

Starting from the ’80s in the DataBase community, several researchers tried to estim-
ate the size of queries. Such estimating algorithms are essential to optimize queries
(to select query execution plans) and avoid infeasible computations.

Lots of methods have been proposed in the literature, which differ in their complex-
ity, cost, and accuracy (as usual, accuracy comes at the expenses of time and space
requirements); these are just few examples [110, 546, 554]. Some of the firsts al-
gorithms, which have also dealt with recursive queries were based on sampling [239,
381, 382]. These methods work in the DataBase context but do not work in the Lo-
gic Programming one because the “extension” of all the predicates are not available,
to have then we should perform the “instantiation”.

In the same context were proposed other approaches based on “histograms”, and
they became quickly very popular and influenced many consequential works [109,
110, 180, 305–307, 382, 473, 474, 536]. In the following we provide some details
about them.

Consider a relation R with n numeric attributes Xi (i = 1 . . . n).
The domain Di of attribute Xi is the set of all possible values of Xi and the (finite)
value set Vi ⊆ D of attribute Xi is the set of values of Xi that are actually present in
R. Let Vi = {vi(k) : 1 ≤ k ≤ Di}, where vi(k) < vi(j) when k < j.
The spread si(k) of vi(k) is defined as si(k) = vi(k + 1)− vi(k), for 1 ≤ k < Di.18

The frequency fi(k) of vi(k) is the number of tuples in R with Xi = vi(k).
The area ai(k) of vi(k) is defined as ai(k) = fi(k)× si(k).

The data distribution ofXi is the set of pairs Ti = {(vi(1), fi(1)), . . . , (vi(Di), fi(Di))}.

The joint frequency f(k1, . . . , kn) of the value combination ⟨v1(k1), . . . , vn(kn)⟩ is the
number of tuples in R that contain vi(ki) in attribute Xi, for all i.
The joint data distribution T 1, . . . , n of X1, . . . , Xn is the entire set of (value com-
bination, joint frequency) pairs.

In the sequel, for 1-dimensional cases, we use the above symbols without the sub-
script i.

Data distributions are very useful in DataBase systems but are usually too large to be
stored accurately, so histograms come into play as an approximation mechanism.

A histogram on an attribute X is constructed by partitioning the data distribution
of X into β (≥ 1) mutually disjoint subsets called buckets and approximating the

18We take si(Di) = 1.

3.4 Time/Size estimation of Logic Programs evaluation – a refined approach 149

frequencies and values in each bucket in some common fashion. This definition
leaves several degrees of freedom in designing specific histogram classes as there
are several possible choices for each of the following (mostly orthogonal) aspects
of histograms:

Partition Rule:
This is further analysed into the following characteristics:
Partition Class

This indicates if there are any restrictions on the buckets. Of great import-
ance is the serial class, which requires that buckets are non-overlapping
w.r.t. some parameter (the next characteristic), and its subclass end-
biased, which requires at most one non-singleton bucket.

Sort Parameter
This is a parameter whose value for each element in the data distribution
is derived from the corresponding attribute value and frequencies. All
serial histograms require that the sort parameter values in each bucket
form a contiguous range. Attributes value (V), frequency (F), and area
(A) are examples of sort parameters that have been discussed in the lit-
erature.

Source Parameter
This captures the property of the data distribution that is the most crit-
ical in an estimation problem and is used in conjunction with the next
characteristic in identifying a unique partitioning. Spread (S), frequency
(F), and area (A) are the most commonly used source parameters.

Partition Constraint
This is a mathematical constraint on the source parameter that uniquely
identifies a single histogram within its partition class. Several partition
constraints have been proposed so far, e.g., equi-sum, v-optimal, maxdiff,
and compressed. Many of the more successful ones try to avoid grouping
vastly different source parameter values into a bucket.

We use p(s, u) to denote a serial histogram class with partition constraint p,
sort parameter s, and source parameter u.

Construction Algorithm:
Given a particular partition rule, this is the algorithm that constructs histo-
grams that satisfy the rule. It is often the case that, for the same histogram
class, there are several construction algorithms with different efficiency.

Value Approximation:
This captures how attribute values are approximated within a bucket, which is
independent of the partition rule of a histogram. The most common alternat-
ives are the continuous value assumption and the uniform spread assumption;
both assume values uniformly placed in the range covered by the bucket, with

150 Chapter 3 Big Data

SORT PARAMETER
SOURCE PARAMETER

SPREAD (S) FREQUENCY (F) AREA (A) CUM. FREQ (C)

VALUE (V) EQUI-SUM

EQUI-SUM
V-OPTIMAL
MAX-DIFF

COMPRESSED

V-OPTIMAL
MAX-DIFF

COMPRESSED

SPLINE-BASED
V-OPTIMAL

FREQUENCY (F)
V-OPTIMAL
MAX-DIFF

AREA (A)
V-OPTIMAL
MAX-DIFF

Table 3.1.: Histogram Taxonomy. From [474].

the former ignoring the number of these values and the later recording that
number inside the bucket.

Frequency Approximation:
This captures how frequencies are approximated within a bucket. The dom-
inant approach is making the uniform distribution assumption, where the fre-
quencies of all elements in the bucket are assumed to be the same and equal
to the average of the actual frequencies.

Error Guarantees:
These are upper bounds on the errors of the estimates a histogram generates,
which are provided based on information that the histogram maintains.

A multi-dimensional histogram on a set of attributes is constructed by partitioning
the joint data distribution of the attributes. They have the exact same character-
istics as 1-dimensional histograms, except that the partition rule needs to be more
intricate and cannot always be clearly analysed into the four other characteristics as
before, e.g., there is no real sort parameter in this case, as there can be no ordering
in multiple dimensions [473].

Several types of histograms have been obtained by specifying new choices for his-
togram “aspects” described above. Table 3.1 provides an overview of them. Note
that all locations in the table correspond to valid histograms. All histograms make
the uniform spread and the uniform frequency assumptions when approximating the
data distribution within a bucket.

We discuss next the maxdiff type, which places bucket boundaries between adja-
cent source-parameter values (in sort-parameter order) whose difference is among
the largest. As mentioned before, the goal of all the most successful partition con-
straints is to avoid grouping attribute values with vastly different source parameter
values into a bucket. The maxdiff histograms try to achieve this goal by inserting
bucket boundaries between adjacent source values (in sort parameter order) that
differ by large amounts. These histograms can be efficiently constructed by first

3.4 Time/Size estimation of Logic Programs evaluation – a refined approach 151

Histogram
Time Taken (msec)

Space = 160b Space = 400b
Compressed 5.9 9.3
Equi-sum 6.2 10.9
MaxDiff 7.0 12.8
V-optimal-end-biased 7.2 10.9
Spline Based 20.3 41.7
V-optimal 42.9 67.0
Equi-Depth: by P 2 4992 10524

Table 3.2.: Construction cost for various histo-
grams. From [474].

Histogram Error (%)
Trivial 60.84
Equi-depth: P 2 17.87
V-optimal (A,A) 15.28
V-optimal (V,C) 14.62
Equi-width 14.01
V-optimal (F,F) 13.40
V-optimal-end-biased (A,A) 12.84
V-optimal-end-biased (F,F) 11.67
Equi-depth: Precise 10.92
Spline-based (V,C) 10.55
Compressed (V,A) 3.76
Compressed (V,F) 3.45
Maxdiff (V,F) 3.26
V-Optimal (V,F) 3.26
Maxdiff (V,A) 0.77
V-Optimal (V,A) 0.77

Table 3.3.: Errors due to histo-
grams. From [474].

computing the differences between adjacent source parameters, and then placing
the bucket boundaries where the β − 1 highest differences occur.

Table 3.2 illustrates the difference in the construction costs of various histograms.
It contains actual timings collected from running the corresponding algorithms on
a SUN-SPARC, for varying amounts of space allocated to the histograms.19 The
specific timings are for histograms with V and A as the sort and source parameters,
respectively, but all other combinations of sort and source parameters produce quite
similar results. Table 3.3, instead, shows (in decreasing order) the errors generated
by the entire set of histograms on some experimental results proposed in [474].

As can be seen from Table 3.2, the construction cost is negligible for most of the
histograms when sampling techniques are used. As indicated in Table 3.3, a clear
separation was observed throughout the experiments between a set of effective
histograms and a set of poor histograms. Although the relative performance of
histograms in the lower set varies between experiments, and on some occasions
histograms from the upper set were competitive, the results in Table 3.3 are quite
characteristic overall.

Approaches based on histograms could be used in the context of Logic Programming,
although they are less effective since the extension of a predicate does not only
depend on EDB but can also depend on IDB and this increases the error of the
estimate.

In the last years, Logic Programming community started to gain interest in this topic.
Researchers at the Stony Brook University developed an algorithm, called SDP, for

19These timings do not include the time taken to scan the relation and compute the sample.

152 Chapter 3 Big Data

estimating Datalog query sizes efficiently by calculating statistical dependency for
both base and derived predicates [370]. Then they extended it to general rules
and n-ary predicates and they made it also able to handle negation and mutual
recursions as well as other operations [371].

Starting from the work on histograms, they first defined the notions described above
using a logic-based nomenclature and then proposed a new concept, called “De-
pendency Matrix”, which extend the notion of a histogram and can be viewed as
two-dimensional histograms. We describe in the following these concepts for n-ary
predicates.

Consider a n-ary predicate p(x1, . . . , xn).
If p is a base predicate, then its associated set of facts will be denoted by factset(p).
The value sequence, v̄d (1 ≤ d ≤ n), is the sorted sequence of xd-values that are
present in factset(p), and v̄i

d is the i-th value of v̄d.
The frequency, f̄ i

d, of v̄i
d is the number of facts in factset(p) with xd = v̄i

d.
We use v̄i to denote the i-th element of a sequence v̄, “•” to denote sequence con-
catenation, and ∥ · · · ∥ to denote the length of a sequence or the cardinality of a set.
Since we are dealing with discrete values in finite relations, all argument values can
be assumed to be integers. Without loss of generality, we adopt this assumption in
the sequel, for simplicity.

Given a fact-set for an n-ary predicate p(x1, . . . , xn), the data distribution, Td, for xd

is the sequence of value-frequency pairs [(v̄1
d, f̄

1
d), . . . , (v̄m

d , f̄
m
d)] where m =∥ v̄d ∥.

As mentioned before, data distribution is the basis for size estimation in all cost-
based query optimizers, but this information is normally too large to store and use
efficiently. One key step of all size estimation algorithms is to partition data distribu-
tions into distribution segments and summarize these segments in such a way that
they can be approximated efficiently both in time and space. Therefore, Dependency
Matrices were proposed in [370, 371] as one such summarization technique which
keeps argument dependency information. There, data distributions are partitioned
using the popular maxdiff rule. However, their size estimation algorithms do not
depend on the choice of any particular partition rule and we can simply assume
that distributions are partitioned according to “some” partition rule.

Consider a distribution T and its partition segments T 1, . . . , T n, each T i has three
parameters: floor, ceiling, size which are the minimal argument value, the maximal
argument value, and the number of argument values contained in T i.
The set of values that are contained in T i is approximated as vals(T i) = {v ∈
integers | T i.f loor ≤ v ≤ T i.ceiling}. These three parameters constitute the sum-
mary of a partition segment and they are stored by dependency matrices.

3.4 Time/Size estimation of Logic Programs evaluation – a refined approach 153

F 1 2 3 4 5 6 7 8
2 1
3 1 1
4 1
5 1 1 1
6 1
7 1 1
8 1 1

The fact-matrix F

F 1 2 3 4 5 6 7 8
2 1
3 1 1
4 1
5 1 1 1
6 1
7 1 1
8 1 1

The segmented F

(1,1,1) (2,4,3) (5,8,4)
1 2 3

(2,4,3) 1 2 2

(5,5,1) 2 3

(6,8,3) 3 1 1 3

The dependency matrix

Table 3.4.: A Dependency Matrix. From [371].

More formally, let p(x1, . . . , xn) be an n-ary predicate and let Ti (1 ≤ i ≤ n) be the
distribution for xi. Suppose each Ti is partitioned into βi segments T ji

i , with 1 ≤
ji ≤ i. The dependency matrix for p, denoted M⟨p⟩, is a matrix whose (j1, . . . , jn)-th
element, M⟨p⟩(j1, . . . , jn), is

∥ {p(x1, . . . , xn) ∈ factset(p) | ∧1≤i≤n xi ∈ vals(T ji
i)} ∥

In addition, the ji-th coordinate on its i-th axis, denoted M⟨p⟩ji
i , is associated with

three parameters: floor, ceiling, and size whose values are the same as the corres-
ponding values associated with the distribution segment T ji

i .

We often use M⟨p⟩i to denote the i-th axis of a matrix M⟨p⟩ and M⟨p⟩ji
i to denote

the ji-th coordinate on M⟨p⟩i.
From previous definition, we know that the matrix element M⟨p⟩(j1, . . . , jn) sum-
marizes vals(T j1

1) × · · · × vals(T jn
n), and stores the number of (x1, . . . , xn)-values

that are in the fact-set and summarized by this matrix element.
Given a β1 × · · · × βn dependency matrix M⟨p⟩, the size estimate of p, size(p) or
size(M⟨p⟩), can be computed as the sum of all dependency matrix elements, i.e.,
size(p) =

∑
i1,...,in

M⟨p⟩(i1, . . . , in). Note that if p is a base predicate then size(p) is
its actual size. Therefore, one could estimate the size of a predicate by computing
its dependency matrix.

In Table 3.4 is shown an example of Dependency Matrix for a predicate p(x1, x2)
with the following fact-set factset(p):

p(2, 2). p(3, 7). p(3, 8). p(4, 4). p(5, 5). p(5, 7).

p(5, 8). p(6, 6). p(7, 5). p(7, 6). p(8, 1). p(8, 3).

The dependency matrices for the base predicates can be computed according to some
partition rule, such as the maxdiff rule and definitions provided above. In order to
compute dependency matrices for derived predicates, they defined a size estimation
algorithm, called statistics for derived predicates (SDP). SDP computes dependency

154 Chapter 3 Big Data

matrices of derived predicates by an abstract evaluation of their defining rules where
rule bodies are replaced with algebraic expressions over the dependency matrices
that correspond to the body predicates. Recursive rules are evaluated iteratively
until approximate fixed points are reached.

Consider a βp
1 × · · · × βp

m dependency matrix M⟨p⟩, a βq
1 × · · · × βq

m dependency
matrix M⟨q⟩, and two integers 1 ≤ dp ≤ m and 1 ≤ dq ≤ n. We say that the
dp-th axis of M⟨p⟩, M⟨p⟩dp

, and the dq-th axis of M⟨q⟩, M⟨q⟩dq
, are aligned if

βdp = βdq , M⟨p⟩idp
.f loor = M⟨q⟩idq

.f loor, and M⟨p⟩idp
.ceiling = M⟨q⟩idq

.ceiling for
all 1 ≤ i ≤ βdp . That is, M⟨p⟩dp

and M⟨q⟩dq
are aligned if all their coordinates have

the same floor and ceiling parameters. For any pair of dependency matrices M⟨p⟩
and M⟨q⟩, and a pair of axis indexes dp and dq , we can always make M⟨p⟩dp

and
M⟨q⟩dq

aligned by refining the associated partition segments.

Let M⟨p⟩ and M⟨q⟩ both be β1 × · · · × βn matrices. It follows directly from the
definitions that M⟨p⟩(j1, . . . , jn) and M⟨q⟩(j1, . . . , jn) summarize the same values
for all j1, . . . , jn if and only if M⟨p⟩d and M⟨q⟩d are aligned for all d = 1, . . . , n.
Since, as noted above, matrices can always be aligned, it follows that any pair of
matrices can be refined so that they summarize exactly the same values.

The researchers at the Stony Brook University described also the algorithms for
computing the Dependency Matrices for the following operations:

• Selection

• Union

• Intersection

• Projection

• Join

• Cross Product

• Negation

And, as mentioned before, also for recursive predicates.

They also presented an algorithm for computing size estimates for all predicates in
a bottom-up fashion using the algebra over matrices defined earlier. This algorithm
is based on the visit of all the trees in the predicate dependency graph’s condensation
of a Knowledge Base. The algorithm resembles the usual naive bottom-up procedure
for evaluating Horn rules except that here there is an abstract computation over the
size estimation algebra.

For more details about the details of these algorithms, we refer the reader to the
papers of the author of the SDP algorithm [369–371].

3.4 Time/Size estimation of Logic Programs evaluation – a refined approach 155

Operation Complexity
construct M⟨p⟩ O(n× (ds× lg(ds) + fs))
project(M⟨r⟩, in_args, out_args) O(βn)
union(M⟨r⟩,M⟨s⟩) O(n× βn)
intersect(M⟨r⟩,M⟨s⟩) O(n× βn)
minus(M⟨r⟩,M⟨s⟩) O(n× βn)
join(M⟨r⟩,M⟨s⟩) O(βm+n−k)
product(M⟨r⟩,M⟨s⟩) O(βm+n)

Table 3.5.: Complexity of SDP Operations. From [371].

In the same papers, they also presented an analysis of the complexity of these al-
gorithms. They are summarized in Table 3.5. These results assume that all predic-
ates are n-ary, fact-set sizes of base predicates are bounded by fs, domains of the
arguments sizes are bounded by ds, and dependency matrices are all n-dimensional
sparse matrices of sizes β × · · · × β .

Furthermore, several multi-engine approaches, which deal with such estimations,
have been proposed in the Logic Programming community. They are described in
Section 3.3 therefore we do not describe them here. We just mention that the
following we use the ME-ASP solver.

Lastly, it is worth noticing that several other approaches, based on different tech-
niques, have been proposed to analyse and derive statistics (such as the time re-
quired) of logic programs [168–170, 416–418, 472], as future work we intend to
provide a detailed comparison with them.

3.4.2 The idea

In order to dig into the problem and starting to analyse it, we have chosen a spe-
cific formalism, namely Answer Set Programming (ASP), and a precise application
scenario, the discovery of the best engine in a multi-engine approach starting from
the original program.

Therefore, in the following we mainly refer to ASP programs, but these concepts
can be extended to other Logic Programming languages.

In order to define the general idea behind this work, we provide some useful nota-
tion: (derived from the definitions in [211])

P is a finite set of safe rules

F (P) is the set of all facts in P

R is the set P \ F (P) (the rules that are not facts)

156 Chapter 3 Big Data

Ground(P) is the set of all Ground Instances of its rules over UP (the Herbrand
Universe of P)

AS(P) is the set of all Answer Sets for P

Grounder

Solver

P

Ground(P)

AS(P)

Figure 3.6.: ASP solving process
schematization using
the provided notation.

In Figure 3.6 is reported a schematic visualiza-
tion of the solving process of an ASP engine with
the notation provided above in order to clarify
it.

Moreover, we provide the following notation for
the features:

FP is the set of features of P

FF (P) is the set of features of F (P)

FR is the set of features of R

FGround(P) is the set of features of Ground(P)

The main idea is to design and develop algorithms (and then a system) that given a
logic program P , extracts some features from F (P) and from R, called respectively
FF (P) and FR in order to be able to estimate (with a certain degree of precision
δ) the time required by the ASP solver to evaluate the program (i.e., to find the
AS(P)).

As described at the beginning, this idea could be exploited in different ways and for
several purposes.

In this work, instead of considering the “explicit program and data features” as
described in Section 3.3.2 and as in the different works about multi-engine ap-
proaches mentioned in Section 3.4.1, we consider the “features” as the estimate
of Ground(P), i.e., the size of the all the predicates in the program and the rules
produced by the grounder.

Therefore, instead of deriving directly the time, we target the size. This approach
is more powerful because, although for an initial investigation we focus on multi-
engine systems, these derived data can then be used for different purposes (a) to
predict the time needed by a solver, (b) to order different programs based on their
expected size, (c) to suggest how some rules of a program can be modified in order
to improve solving performances without modifying the meaning of the program,
and many more.

In order to achieve this goal, i.e. to estimate Ground(P), we started from the
idea of the researchers at the Stony Brook University described in Section 3.4.1

3.4 Time/Size estimation of Logic Programs evaluation – a refined approach 157

and properly expanded it in order to improve the performance and allow their
technique to deal with non-monotonicity, i.e., disjunction (in the head) or non-
stratified negation (or their propagation).

Actually, we are not interested in all the details of Ground(P), but only on how
many rules of each type we have in Ground(P). As “type”, for this preliminary
stage, we consider the number of atoms in the body and in the head (that roughly
represents the number of operations that have to be performed) because it has been
identified as one of the most important features in the multi-engine approaches de-
scribed before. Therefore, the FP are composed of the number of rules for each
size (eventually with the Dependency Matrices of each predicate, that could be con-
sidered as “raw data”).

In the ASP context, as well as in other logic-based languages, some operations are
provided during the grounding phase (i.e. the instantiation) while other during the
solving phase (i.e. the model generation and the model checking). The Grounder,
given the rule (r1)

r1 : a(X) :– b(X), c(X).

is able to derive all the ground values of a in the Answer Sets of the program, if the
values of b and c are defined. Therefore, in this case, this rule is not evaluated in
the solving phase, because it is discarded by the Grounder.

However, in rules disjunction (in the head) or non-stratified negation, like

r2 : d(X) | e(X) :– b(X), c(X).

the Grounder is not able to define the values of d or e (therefore they are called
“undefined”) and thus the Grounder produces the ground version of the whole rule
r2. Moreover, all the rules that have undefined atoms in the body (like d and e),
cannot be simplified by the Grounder and increase the number of rules that the
solver should deal with.

The Grounder also provides further simplifications, for instance, given a rule like

r3 : f :– b,not g.

it perform these kinds of simplifications:

• remove b if it is known to be true and

• remove the entire rule if g is known to be true

158 Chapter 3 Big Data

Because we want to evaluate the number of rules of each type produced by the
grounder and the number of atoms they contain, we should be able to estimate
these simplifications.

In order to do this we keep 2 Dependency Matrices for each predicate:

• The S (Simplified, i.e., True) Dependency Matrix

• The U (Undefined, i.e., Potentially True) Dependency Matrix

And we compute the size of a predicate as the sum of all dependency matrix ele-
ments and the size of a rule, using the following method.
Given the rule :

r4 : a(X) :– b(X), c(X).

Let MS⟨ψ⟩ and MU ⟨ψ⟩ be, respectively, the “simplified” and the “undefined” de-
pendencies matrices for the predicate ψ, we compute the size of the rule r4 and the
predicate a in the following way:

• Performing the join between MS⟨b⟩ and MS⟨c⟩
We obtain the rules of size 0 (the facts) and we update MS⟨a⟩

• Performing the join between MS⟨b⟩ and MU ⟨c⟩ and the join between MU ⟨b⟩
and MS⟨c⟩
We obtain the rules of size 1 (with either b or c in the body) and we update
MU ⟨a⟩

• Performing the join between MU ⟨b⟩ and MU ⟨c⟩
We obtain the rules of size 2 (with both b and c in the body) and we update
MU ⟨a⟩

Clearly the “undefined” dependencies matrices (MU ⟨ψ⟩) could be empty if b and c are
derived from monotonic rules.

This technique can easily be extended to other operations and also to rules with
more atoms in the body.

Next we describe our first prototypical system implementing this approach.

3.4.3 System Description

In order to compute the dependency matrices described in the previous sections and
to estimate the number of rules of Ground(P), we built a system, called ASPtimator,
based on 3 modules. The basic components of ASPtimator, as shown in Figure 3.7,
are:

3.4 Time/Size estimation of Logic Programs evaluation – a refined approach 159

Translator Featurizer Estimator

Figure 3.7.: Basic components of ASPtimator.

the Translator
It parses the logic program, finds the Strongly Connected Components, the
condensation of the dependency graph and the SDP operations that need to be
performed and converts them to a Middle File Format

the Featurizer
It computes the Dependency Matrices for EDB and IDB and identify the number
of rules of each type

the Estimator
It uses the data of the Featurizer to perform the predictions (time, solver, order,
etc.)

We do not describe all the technical details here because they are not of interest in
this context. However, it is worth noticing that (a) the Translator module has been
implemented in Java using the DLV Wrapper and it writes its output as a JSON file;
(b) the Featurizer module has been implemented in Python and it is able to read
the Middle File Format, to the Dependency Matrices for the EDB, to execute the SDP
operations in order to derive the Dependency Matrices for the IDB predicates and to
compute the number of rules for each type (i.e. the pair of number atoms in the
head, number of atoms in the body);20 and (c) the Estimator module is conceived to
be generic enough to be able to perform different “predictions” but it has not been
implemented yet, for first tests we are planning to use the one of ME-ASP.

The Middle File Format contains the SCCs of the program with all the SDP operations
that need to be performed and has the following structure:

• A list of SCC, each of which contains a subprogram with a list of rules
Each rule contains a type and
if the rule is a fact it contains also:

– the predicate name
– predicate arity
– terms values

otherwise it contains also:

– predicates in the head
– predicates in the body

20It performs also some basic statistics about the elapsed time for each operation and the accuracy of
the estimation produced (if a ground-truth is provided)

160 Chapter 3 Big Data

– operations
Each operation contains a list of SDP operations with the following data:

* the SDP operation name

* the arguments of this SDP operation

* a new name for the resulting predicate of this operation (if not given,
all the predicate names of the rule are considered)

This format allows to define all the information needed to the Featurizer in order
to perform the SDP algorithm described before. Having the Translator module and
the Featurizer as two separate and independent components allows to easily adapt
this approach to other logic-based formalisms.

3.4.4 Discussion

We started our preliminary tests using the native approach of the researchers at
the Stony Brook University but, in our case, the sizes predicted are often very far
from the real ones. In detail, the results of Selection, Union and Cross Product are
quite good (as also reported in their paper) and for some examples of Projection
and Join the errors decrease quite sharply, although they remain significantly high;
however, in other cases, the predicted values are orders of magnitude far from the
real ones.

We noticed that a great source of error is the first part of the algorithm where
the parameters (floor, ceiling and size) of the two Dependency Matrices have to be
“aligned”. Therefore, we are investigating more on the alignment and refinement
algorithms mentioned in their works and explained in the Ph.D. Dissertation of one
of the authors.

Moreover, we discovered that the Containment Assumption 21 can play a crucial
role in the estimation of the predicate size, as reported also in the literature [148,
521, 554]. Also the concept of “Modularity” of logic programs [197, 453] can be
useful in this context.

At the moment we are continuing these investigations, and we are working on the
development and the testing of the ASPtimator system. We are planning to validate
our approach and then extend it to more features and other types of rules, as well
as other logic-based formalism.

21When joining two tables, the set of values in the join column with the smaller column cardinality is a
subset of the set of values in the join column with the larger column cardinality. From [554]

3.4 Time/Size estimation of Logic Programs evaluation – a refined approach 161

Wrap-up

In this chapter we reported about some investigations on the application of multi-
engine approaches in the context of ontological reasoning applied to Data Wrangling
scenarios. In addition, we introduced preliminary ideas on the characterization of
logic programs and their usage in multi-engine approaches.
It is worth noticing that some of the investigations reported in this chapter have
been conducted during the visit at the Department of Computer Science (lead by
Professor Georg Gottlob F.R.S.) at the University of Oxford22, working on the VADA

Project.

Nonetheless, similar questions might also arise in contexts that at first glance may
appear quite far and different, such as video games. In the next chapter, we re-
port about some experiment performed, using Logic Programming, in the context of
Artificial Intelligence applied to Games and “Intelligent Agents”.

22http://www.ox.ac.uk

162 Chapter 3 Big Data

http://www.ox.ac.uk
http://www.ox.ac.uk

4Logic and AI in Games

“ Thus we have on stage two men, each of whom
knows nothing of what he believes the other
knows, and to deceive each other reciprocally both
speak in allusions, each of the two hoping (in
vain) that the other holds the key to his puzzle.

— Umberto Eco
(The Island of the Day Before)

Summary of Chapter 4

AI is a very popular topic nowadays and has been applied to a large number
of different fields, and new areas of application are continuously identified.

One of the fields that has given (and has taken) more to AI and where it
is currently applied the most is Games. In this field, many new techniques
are constantly proposed: among these, also different logic-based methods
have been specially developed and optimized for games. We think that Logic
Programming, combined with other AI formalisms and approaches, is an ex-
cellent paradigm to be used in the creation of intelligent agents, as shown in
this chapter, and it is likely to become a prominent approach in the future.

In this chapter we first give some preliminary information about (video)
games, Artificial Intelligence (AI) and the different use of AI techniques in
games; then we present (in Sections 4.4 and 4.5) some projects and experi-
ments we were involved in, where we applied logic-based and Artificial Intel-
ligence techniques in the field, and we describe how this synergy has proved
to be successful.

Chapter Outline

4.1. Definition, Motivation and Challenges 164
4.2. Logic for games’ AI . 169
4.3. Angry Birds and the Angry Birds AI Competition 173
4.4. Angry-HEX: An Artificial Player for Angry Birds Based on De-

clarative Knowledge Bases . 183
4.5. Other Game’s AIs experiments 205

163

4.1 Definition, Motivation and Challenges

4.1.1 AI in Games: an outline1

Artificial Intelligence (AI) has seen immense progress in recent years. It is both a
thriving research field featuring an increasing number of important research areas
and a core technology for an increasing number of application areas. In addition
to algorithmic innovations, the rapid progress in AI is often attributed to increasing
computational power due to hardware advancements. AI advances have enabled
a better understanding of images and speech, emotion detection, self-driving cars,
web searching, AI-assisted creative design, and game-playing, among many other
tasks; for some of them, machines have reached human-level status or beyond.

The relationship between Artificial Intelligence (AI) and games is well-established
since long time and games have been helping AI research progress because games
pose interesting and complex problems for AI. But it is not only AI that is advanced
through games; games have also advanced through AI research because, in the
broadest sense, most games incorporate some form of Artificial Intelligence. This re-
lationship has been quite fruitful as witnessed by the enormous number of scientific
publications and books produced about this topic [10, 97, 112, 143, 154, 155, 353,
424, 439, 482–484, 499, 519, 562, 591, 592] and all the companies and research
groups that work in this area. Apart from industrial and academics research groups
that have and are working on project related to this topic, it is worth mentioning
that all the major IT company have nowadays research divisions, like IBM Research,
Microsoft Research, Google DeepMind and Facebook AI Research, that are actively
working in project related with AI and games.

Moreover, many research organizations and communities have created Conferences
about AI and Games, like the IEEE Conference on Computational Intelligence and
Games (CIG)2, the AAAI Conference Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE)3, the International Conference on Computer Games: AI, Animation,
Mobile, Interactive Multimedia, Educational and Serious Games (CGAMES)4, and re-
cently [326, 391] also some important Journals have been introduced, such as the
IEEE Transactions on Computational Intelligence and AI in Games (TCIAIG)5.

1Preliminary definitions adapted from [586, 592]
2http://www.ieee-cig.org
3http://www.aaai.org/Library/AIIDE
4http://www.cgames.org
5http://cis.ieee.org/ieee-transactions-on-computational-intelligence-and-ai-in-

games.html

164 Chapter 4 Logic and AI in Games

http://www.ieee-cig.org
http://www.ieee-cig.org
http://www.aaai.org/Library/AIIDE
http://www.aaai.org/Library/AIIDE
http://www.cgames.org
http://www.cgames.org
http://cis.ieee.org/ieee-transactions-on-computational-intelligence-and-ai-in-games.html
http://www.ieee-cig.org
http://www.aaai.org/Library/AIIDE
http://www.cgames.org
http://cis.ieee.org/ieee-transactions-on-computational-intelligence-and-ai-in-games.html
http://cis.ieee.org/ieee-transactions-on-computational-intelligence-and-ai-in-games.html

Furthermore, many competitions involving AI in games have been proposed by
private or companies but also by research groups.
In Appendix A are described some of the most popular ones.

Furthermore, various challenges between Intelligent Agents (bots) created by popu-
lar company and the best professional players of specific games have had a great
journalistic success and those bots had great achievements. Some examples:

• IBM Watson in the Jeopardy!® game6

• Google DeepMind AlphaGo in the Go game7

• Alibaba in the StarCraft® game8

• OpenAI in the Dota 2™ game9

Clearly Intelligent Agents are a central topic in the context of Artificial Intelligence
and Games. Find a definition for “agent” is not easy, authors in [586] distinguished
two general usages of the term:

A Weak Notion of Agency
Perhaps the most general way in which the term agent is used is to denote a
hardware or (more usually) software-based computer system that enjoys the
following properties:
autonomy agents operate without the direct intervention of humans or oth-

ers, and they have some kind of control over their actions and their in-
ternal state [139];

social ability agents interact with other agents (and possibly humans) via
some kind of agent-communication language [275];

reactivity agents perceive their environment (which may be the physical
world, a user via a graphical user interface, a collection of other agents,
the Internet, or perhaps all of these combined), and respond in a timely
fashion to changes that occur in it;

pro-activeness agents do not simply act in response to their environment,
they are able to exhibit goal-directed behaviour by taking the initiative.

A Stronger Notion of Agency
Some researchers – particularly those working in AI – generally mean an
“agent” to be a computer system that, in addition to having the properties
identified above, is either conceptualised or implemented using concepts that

6[107, 108, 218–220, 366, 558] and http://researcher.watson.ibm.com/researcher/view_
group_pubs.php?grp=2099

7[525, 526] and https://research.googleblog.com/2016/01/alphago-mastering-ancient-
game-of-go.html

8[465] and https://github.com/alibaba/gym-starcraft
9https://blog.openai.com/dota-2

4.1 Definition, Motivation and Challenges 165

http://researcher.watson.ibm.com/researcher/view_group_pubs.php?grp=2099
http://researcher.watson.ibm.com/researcher/view_group_pubs.php?grp=2099
https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html
https://research.googleblog.com/2016/01/alphago-mastering-ancient-game-of-go.html
https://github.com/alibaba/gym-starcraft
https://blog.openai.com/dota-2

are more usually applied to humans. For example, it is quite common in AI
to characterise an agent using mentalistic notions, such as knowledge, belief,
intention, and obligation [523]. Some AI researchers have gone further and
considered emotional agents [73, 74]. Another way of giving agents human-
like attributes is to represent them visually, perhaps by using a cartoon-like
graphical icon or an animated face [396, p. 36].

Various other attributes are sometimes discussed in the context of agency, like:

mobility is the ability of an agent to move around an electronic network [580];

veracity is the assumption that an agent will not knowingly communicate false
information [236, pp. 159-164];

benevolence is the assumption that agents do not have conflicting goals, and that
every agent will therefore always try to do what is asked of it [507, p. 91];

rationality is (crudely) the assumption that an agent will act in order to achieve its
goals, and will not act in such a way as to prevent its goals being achievedat
least insofar as its beliefs permit [236, pp. 49-54].

Other attributes of agency are formally defined in [285].

As noted in [586], Intelligent Agents (and their issues) can be analysed from differ-
ent perspectives:

Agent theory is concerned with the question of what an agent is, and the use of
mathematical formalisms for representing and reasoning about the properties
of agents.

Agent architectures can be thought of as software engineering models of agents;
researchers in this area are primarily concerned with the problem of design-
ing software or hardware systems that will satisfy the properties specified by
agent theorists.

Agent languages are software systems for programming and experimenting with
agents; these languages may embody principles proposed by theorists.

In the following, we will refer mainly to logic-based Intelligent Agents, based on the
“stronger” notion presented above, and we will describe them from all the different
areas mentioned before.

Logic-based formalisms have been exploited in this context, especially in the last
decade, in order to improve the existing approaches and to demonstrate the power-
ful capabilities of KR&R of this paradigm. This topic will be discussed in details in
Section 4.2.

166 Chapter 4 Logic and AI in Games

4.1.2 AI in Games: why it is important

In which area of human life is Artificial Intelligence (AI) currently applied
the most?
The answer, by a large margin, is Computer Games.
This is essentially the only big area in which people deal with behaviour
generated by AI on a regular basis.10

Clearly, AI research and video games are a mutually beneficial combination. On
the one hand, AI technology can provide solutions to an increasing demand to add
realistic, intelligent behaviour to the virtual creatures that populate a game world.
On the other hand, as game environments become more complex and realistic, they
offer a range of excellent test-beds for fundamental AI research.

There are a number of reasons why games offer the ideal domain for the study of
Artificial Intelligence. In [592] the authors identified the following:

• Games are Hard and Interesting Problems

• Games have a Rich Human Computer Interaction

• Games are Popular

• There Are Challenges for All AI Areas

• Games Best Realize Long-Term Goals of AI

Moreover, logic-based approaches, can gain several valuable and useful suggestion
when applied to such a broad and varied domain, for instance on how to improve
the languages and the techniques in order to make them more affordable for people
without a deeper knowledge of logic or more “productive”, i.e. to develop specific
extensions that make easier and faster some reasoning tasks.

4.1.3 AI in Games: challenges11

The Video Game industry is continuously growing and it has taken the lead in en-
tertainment industry. This industry is increasingly adopting the techniques and
recommendations academia offers, especially in the AI area. Moreover, it is success-
fully using many of the advances obtained by academia, although there are many
non-tackled challenges in this sense.

10From https://www.microsoft.com/en-us/research/project/video-games-and-artificial-
intelligence/

11Preliminary definitions adapted from [355, 390]

4.1 Definition, Motivation and Challenges 167

https://www.microsoft.com/en-us/research/project/video-games-and-artificial-intelligence/
https://www.microsoft.com/en-us/research/project/video-games-and-artificial-intelligence/

Research in Artificial Intelligence may take advantage of the wide variety of problems
that video-games offer, such as adversarial planning, real-time reactive behaviours
and planning, and decision-making under uncertainty.

Playing games with AI is still a very open field. For many different games, we just
have simple heuristics and we do not know which techniques, or combination of
techniques, are more appropriate to solve them. The improvements in this field, as
pointed out at the beginning of this chapter, are continuous and very important in
many different areas (Computer Vision, reasoning techniques, content generation,
Learning, agents intelligent behaviours, etc.) but they are not fully solved yet.

The use of Logic Programming adds more challenges to the field due to its inherent
proprieties. For instance, speed and memory consumptions are often an issue in
games and these are also weak points of logic-based approaches; the use of incre-
mental and reactive techniques could be useful in this case but they are still in a
very early stage of development.

168 Chapter 4 Logic and AI in Games

4.2 Logic for games’ AI12

Historically Artificial Intelligence (AI) has been associated with logic-based or sym-
bolic methods such as Reasoning, Knowledge Representation and Planning13.

Many different logic-based approaches and techniques have been applied to games
and used to develop their AIs.

A well-known example of a branch of AI that has been extensively used to real-
ize games’ AIs is Automated Planning [280]. The field of automated planning has
studied planning on the level of symbolic representations for decades. Typically, a
language based on first-order logic is used to represent events, states and actions,
and tree search methods are applied to find paths from the current state to an end
state. In this area a lot of different techniques have been invented, one of the
most popular (used in many famous video games) is Goal-Oriented Action Planning
(GOAP)14, which refers to a simplified STRIPS-like planning architecture specific-
ally designed for real-time control of autonomous character behaviour in games.
Many different papers have been published on the topic, for more information see
also [68, 455–458, 578].

Planning, as well as other AI techniques, has also been used for automatic content
generation, such as level contents or solutions, for more information also [301,
433, 531, 532, 534, 562]. Authors of [533] were even able to build a Logical
Game Engine, called LUDOCORE, that is able to provide a higher-level language
to describe games and centralized solutions to tedious or error-prone programming
tasks, achieving not only a concise representation of a game’s mechanics but also the
ability to automatically generate interesting gameplay traces that meet meaningful
constraints.

It is worth noting that many other logic formalisms can explicitly represent an
agent’s knowledge; one of the most widely known is Prolog, that has been widely
employed in games AIs [312, 329, 555, 572].

12Preliminary definitions adapted from [533, 592]
13While Computational Intelligence (CI) has been associated with biologically-inspired or statistical

methods such as neural networks (including what is now known as deep learning) and evolution-
ary computation.

14http://alumni.media.mit.edu/~jorkin/goap.html

4.2 Logic for games’ AI 169

http://alumni.media.mit.edu/~jorkin/goap.html
http://alumni.media.mit.edu/~jorkin/goap.html
http://alumni.media.mit.edu/~jorkin/goap.html

4.2.1 In the Answer Set Programming community15

As mentioned in the previous chapters, Answer Set Programming became widely
used in AI and is recognized as a powerful tool for Knowledge Representation and
Reasoning, especially for its high expressiveness and the ability to deal also with
incomplete knowledge. The fully declarative nature of ASP allows one to encode
a large variety of problems by means of simple and elegant logic programs. The
semantics of ASP associates a program with none, one, or many Answer Sets, each
one corresponding one-to-one to the solutions of the problem at hand. For these
reasons many researchers, in the latest years, applied ASP in the games domain.

One of the first application was in the context of interactive gaming environment.
The Qsmodels project [460] aimed to demonstrate the viability of using ASP in the
environment of the Quake 3 Arena (Q3A) adopting the high-level agent architecture
described in [55] that consists in the loop: “Observe - Select Goal - Plan - Execute”.
Q3A is a first-person shooter: the player’s goal is to kill enemies using weapons
and upgrades found inside the game field (normally a labyrinth). The human-like
enemies found within Q3A are called BOTs. Like in the most computer games, Q3A
bots behave according to the rules of a finite-state machine (FSM) defined by expert
game programmers.

The Qsmodels architecture consists of two layers executed concurrently: a high
level, responsible for mid-term and long-term planning, and a (low level) in charge
of plan execution and emergency state reactions.
The authors highlighted that their architecture has several advantages over the tra-
ditional schema for the AI part of games. It is easier to develop and keeps the AI at
higher level of abstraction. The easiness in development is reached by keeping the
planning rules separated from the world model description rules so that they can be
written even by AI beginners.

Another early application was in the domain of cognitive agents, i.e. such with
explicit representation of their mental attitudes such as beliefs, goals, obligations
and alike. In [447] the author focus on implementation of agent’s belief base as an
ASP Knowledge Base (KB).

An agent using an ASP module in its belief base and at the same time embodied
in an environment requires a programming framework which (i) allows an easy
integration of heterogeneous Knowledge Bases treated on a par, and (ii) provides a
flexible programming language for encoding of agents behaviours. No single Knowl-

15Preliminary definitions adapted from [234, 447, 448, 460, 530]

170 Chapter 4 Logic and AI in Games

edge Representation technology offers a range of capabilities and features required
for different application domains and environments agents operate in.

Therefore, the authors developed a modular agent programming language, called
Jazzyk [448], based on the programming framework of Behavioural State Machines
(BSM) [446]. BSM framework, and thus also Jazzyk, draws a strict distinction
between the knowledge representational layer and a behavioural layer of an agent
program. To exploit strengths of various KR technologies, the knowledge represent-
ational layer is kept abstract and open, so that it is possible to plug-in different
heterogeneous KR modules as agent’s Knowledge Base. The main focus of BSM com-
putational model is the highest level of control of an agent: its behaviours. Hence,
it supports a high degree of modularity w.r.t. employed KR technologies, and at the
same time provides a clear and concise semantics.

The Jazzyk modular agent programming language was then used to implement
Jazzbot, a virtual agent embodied in a simulated 3D environment of a first-person
shooter computer game Nexuiz. Jazzbot provides a test-bed for investigation of ap-
plications of non-monotonic reasoning techniques, ASP in particular, on a realistic,
yet affordable agent system. Jazzbot is a goal-driven agent. It features four KR
modules representing belief base, goal base, and an interface to its virtual body in a
Nexuiz environment respectively. While the goal base consists of a single KB real-
ized as an ASP logic program, the belief base is composed of two modules: an ASP
Logic Programming one and a Ruby module.
The use of logic-based techniques is clearly beneficial for agent development, even
if in this work the authors believe that they are better suited for modelling static
aspects of the environment rather than for agents’ behaviours.

Recently, in [530] was proposed an extension to the traditional Japanese logic
puzzle Sudoku, named Proofdoku, developed within the practice of AI-based game
design [205]. The Proofdoku project aims to uncover new player experiences un-
reachable without the affordance of Artificial Intelligence (AI) systems as well as
to understand how the context of a deployed game pushes back on those systems.
In Proofdoku, the player works under the traditional rules of Sudoku with one key
twist: they must explain their reasoning (and it must be valid). A small AI system,
built using the technology of Answer Set Programming (ASP) and co-developed with
the design of the game, plays several roles during gameplay including checking the
validity of player arguments and computing hints for the various phases of play.
Through interaction with Proofdoku, players can learn and generalize new deduct-
ive inference patterns for Sudoku (including those unknown to the designers).

The author specified that the Proofdoku project was initiated to answer specific
questions about applying ASP:

4.2 Logic for games’ AI 171

• What practical engineering concerns arise when deploying an ASP-backed
gameplay experience?

• Which aspects of live play might be enabled or enhanced using ASP?

These questions are answered in the paper in necessarily game-specific ways. How-
ever, the concerns that arose in design, development, and deployment touch on
much broader issues: maintaining responsiveness of the AI system for players; the
level of project-specific engineering; software licensing; and monetary costs associ-
ated with centralization.

Some years ago we also used the famous Guess/Check/Optimize (GCO) methodology
to design and implement the AIs of some popular games (Connect Four and Reversi)
in order to show some advantages of declarative programming frameworks (in par-
ticular Answer Set Programming) against imperative (algorithmic) approaches while
dealing with KR&R: solid theoretical bases, no need for algorithm design or coding,
explicit (and thus easily modifiable/upgradeable) knowledge representation, de-
clarative specifications which are already executable, very fast prototyping, quick
error detection, modularity. We implemented “classic” strategies, typically difficult
to implement when dealing with the imperative programming, in a rather simple
and intuitive way. Moreover, we had the chance to test the AI without the need for
rebuilding the application each time we made an update, thus observing “on the fly”
the impact of changes: this constitutes one of the most interesting features granted
by the explicit Knowledge Representation. In addition, we developed different ver-
sions of the AIs, in order to show how easy is to refine the quality or to generate
different strategies or “styles”; and these include also non-winning human-like be-
haviours.

172 Chapter 4 Logic and AI in Games

4.3 Angry Birds and the Angry Birds AI
Competition16

Figure 4.1.: A screenshot of the Angry Birds ™ game. Courtesy of Rovio Entertainment
Corporation.®.

4.3.1 Angry Birds

Angry Birds is one of the most popular games of all times. It has a simple gameplay
and one simple task: destroy all pigs of a given level by throwing different “angry”
birds at them using a slingshot (see Figure 4.1). The pigs are protected by a struc-
ture composed of blocks of different materials with different physical properties
such as mass, friction, or density. The actions a player can perform are specified
by (1) the release coordinate ⟨x, y⟩ and (2) the tap time ⟨t⟩ after release when the
bird’s optional special power is activated. A game level is solved if executing a se-
lected sequence of actions ⟨x, y, t⟩ leads to a game state that satisfies certain victory
conditions.

In Angry Birds, all green pigs need to be destroyed in order to solve a given game
level. The score is given to the player according to the number of destroyed pigs
and objects plus a bonus for each spared bird. The pigs are sheltered by complex
structures made of objects of different materials (wood, ice, stone, etc.) and shapes,
mostly but not exclusively rectangular. After a player’s shot, the scenario evolves
complying with laws of physics, with the crash of object structures and a generally
complex interaction of subsequent falls.

16Preliminary definitions adapted from [494–498, 568]

4.3 Angry Birds and the Angry Birds AI Competition 173

Different birds have different behaviours and special powers, and while the player
knows the order in which birds will appear on the slingshot, the player cannot
manipulate this order.

Interestingly, in this game, one can find many of the challenges that physics-based
games present to the AI community. These are mostly related to the need of dealing
with uncertainty in several respects, such as predicting the unknown consequences
of a possible move/shot, or estimating the advantages of a choice w.r.t. possible
alternative moves, or planning over multiple moves where any intermediate move
is subject to failure or unexpected outcome. In turn, the above technical challenges
require the effective resolution of other important issues, like the identification of
objects via artificial vision, the combination of simulation and decision-making, the
modelling of game knowledge, and the correct execution of planned moves.

Actually, Angry Birds is an example of the physics-based simulation game (PBSG)
category, i.e. a video game where the game world simulates real-world physics
(Newtonian physics).

The game world in these games is typically completely parametrized, i.e., all physics
parameters such as mass, friction, density of objects, gravity, as well as all object
types and their properties and location are known internally.

Physics-based simulation games have been around since the beginning of video games.
Even some of the very first games on commercial game consoles fall under this cat-
egory. Such games consist of objects, liquids, or other entities that behave according
to the laws of physics and they often use an underlying physics simulator that com-
putes the correct physical behaviour. These games look and feel very realistic as
all actions a player performs have outcomes that are more or less consistent with
what one would expect to happen in the real world. What this requires is that all
physical properties of all game entities and the game world, such as mass, density,
friction, gravity, metric, angles, or locations, are exactly known to the game. Then
each action and each movement can be exactly and deterministically computed by
the physics simulator.

Implementing the physics of these games is quite a standard task, and the biggest
advance over the years has been the more and more realistic and sophisticated
graphics. Physics-based simulation games (PBSGs), such as Angry Birds, Cut the Rope,
Gears, or Feed Me Oil, form a very popular game category, particularly through the
rise of touchscreen devices that allow easy manipulation of the game world and
easy execution of actions by the players. Interaction with the game via touching is
particularly suitable for physics games as it feels like interacting with real objects.
These games are easy to play as the possible moves are simple.

174 Chapter 4 Logic and AI in Games

The game world in these games simulates Newtonian physics using a game internal
physics engine such as Box2D17 (used by Angry Birds) that knows all physics para-
meters and spatial configurations at all times, which makes the physics of the game-
play look very realistic.

Physics-based simulation games and Artificial Intelligence have always had a close
and fruitful relationship. This is particularly useful for physics simulation games
since other entities in the game world should behave intelligently; they should be-
have like they are controlled by other human players. What makes these games
particularly hard and challenging for AI is that the number of possible moves can
be very large and effectively infinite, and that the consequences of moves are un-
known in advance. The large number of moves is due to the effect of the exact
location and/or timing of moves, where small changes may result in differences in
the outcome of the physics simulation. Often, noise is added to the simulator to
make these games more challenging. Without actually simulating a move, its out-
come is very hard to predict. It becomes even harder if the exact physical properties
of the objects or the behaviour of the simulator are unknown for the AI beforehand
and have to be learned through observation. The task of an AI agent is not only to
predict the outcome of an individual move but to identify a move that achieves the
desired outcome.

A recent research trend in Artificial Intelligence is to build systems or agents that can
play physics-based simulation games as good as or better than human players.
This is a very different problem from traditional Game AI and most probably a
much harder one. The main difference is that for Game AI, all physical parameters
and the complete information of the game world are known to the AI. What is
unknown is the behaviour of the human player who could be an opponent or a
partner, or who could be ignored, depending on the game. In this case, the AI
knows only as much about the game worlds as it can see. Therefore, computer
vision should be employed to detect objects and tell the AI where they are and what
they are. While this gives us uncertainty about what and where the objects are,
another major problem is that the outcome of actions is unknown. Simulating the
effects of an action is easy when all physical parameters are known, but if they are
not exactly known then a simulation does not produce accurate results and one has
to find other ways of predicting the outcome of actions. Humans are very good at
predicting physics thanks to a lot of practice and experience in interacting with the
real world. For AI, this is still a very difficult problem that needs to be solved in
order to build AI that can successfully interact with the real world.

17http://box2d.org

4.3 Angry Birds and the Angry Birds AI Competition 175

http://box2d.org
http://box2d.org

This “human way” of playing makes it very hard for computers to play well, par-
ticularly compared to games like chess that are difficult for humans, but easy for
computers to play. The main difficulty, as mentioned above, of PBSGs like Angry
Birds is related to the problem that the consequences of physical actions are not
known in advance without simulating or executing them. This is partly due to the
fact that the exact physics parameters are not available, which makes exact calcula-
tions impossible. But even if they were available, it would be necessary to simulate
a potentially infinite number of possible actions, as every tiny change in release
coordinate or tap time can have a different outcome. Knowing the outcome of an
action is important for selecting a good action, and particularly for selecting a good
sequence of actions.

This way of solving problems is very similar to what humans have to do every day
when interacting with the physical world and what humans are very good at; that is,
physical properties of entities are unknown, most information is obtained visually,
the action space is continuous, and the exact outcome of actions is not known in
advance.

The capabilities required for accurately estimating consequences of physical actions
using only visual input or other forms of perception are essential for the future of
AI. Any major AI system that will be deployed in the real world and that physically
interacts with the world must be aware of the consequences of its physical actions
and must select its actions based on potential consequences. This is necessary for
guaranteeing that there will not be any unintended consequences of its actions, that
nothing will get damaged and no one will get hurt. If this cannot be guaranteed, it
is unlikely society will accept having these AI systems living among them, as they
will be perceived as potentially dangerous and threatening. Angry Birds and other
PBSGs provide a simplified and controlled environment for developing and testing
these capabilities. It allows AI researchers to integrate methods from different fields
of AI, such as Computer Vision, Machine Learning, Knowledge Representation and
Reasoning, Heuristic Search, Reasoning under Uncertainty, and AI Planning that are
required to achieve this.

4.3.2 The Angry Birds AI Competition (AIBIRDS)

The Angry Birds AI Competition (AIBIRDS) was initiated in 2012 by some researchers
of the Australian National University and is held in collocation with some of the
major AI conferences, such as the European Conference on Artificial Intelligence in
2014 and the International Joint Conference on Artificial Intelligence in 2013, 2015,
2016 and 2017.

176 Chapter 4 Logic and AI in Games

The task at the Competition is to play a set of Angry Birds levels within a given
time limit, typically about 3 minutes per level on average. Levels can be played and
replayed in any order. However, the levels are new and have not been seen by the
participants during the development and training of the agents.

In the AIBIRDS Competition, we play Angry Birds using the web version, publicly
available at [389]. The Competition server interfaces with the website using a
Chrome™ browser extension which allows us to take screenshots of the live game
and to execute different actions using simulated mouse operations. Participating
agents run on a client computer and can only interact with the server via a fixed
communication protocol. This allows agents to request screenshots and to submit
actions and other commands which the server then executes on the live game, such
as obtaining the current reference scores for each level. Therefore, the only inform-
ation participants obtain are sequences of screenshots of the live game. Hence, AI
agents have exactly the same information available as human players. In particular,
they do not know the exact location and other parameters of objects or the game
world.

In order to make it easier for participants to build their own agents, the organ-
izers provide basic game-playing software and also encourage all participants to
open-source their agents. The framework provided by organizers only requires a
Chrome™ browser and a Java ™ environment and can be installed on most popular
operating systems. What is provided to participants is a computer Vision Module
that detects known (=hard-coded) objects and gives an approximation of the ob-
jects boundary, their location and type. In addition, a trajectory planning module
is provided which allows agents to specify which point they want to hit with a bird
and if they want to shoot with a high or a low trajectory. This module then returns
the approximate release point that hits the given target point. Since this depends
on the scale of the game world, which can be different for every level, the traject-
ory planning module automatically adjusts trajectories in subsequent shots. The
framework also includes an interface to the official Angry Birds game that can take
screenshots and execute mouse actions. In order to demonstrate the use of these
modules, a sample agent called the Naïve Agent is provided, which selects a random
pig as the next target, and selects a random trajectory and tap point depending
on the bird type. Having a bit of randomness seems beneficial as it avoids being
trapped in unsuccessful strategies. It can also help to make a lucky shot. Interest-
ingly, the Naïve Agent was the winner in 2012 and still outperforms about one-third
of the agents in the current benchmark.

The agents are ranked according to their combined high scores over all solved levels
and after several rounds of elimination a winner is determined. There is a qualific-
ation round where we select the best agents for the final rounds, followed by group

4.3 Angry Birds and the Angry Birds AI Competition 177

stages of four agents where the two best agents of each group progress to the next
round until only two agents are left. They then compete in a grand finale to determ-
ine the champion. At the end of every Competition, there is the Human vs Machine
Challenge where is tested whether the best AI agents are already better than humans
(=typically conference participants). The performance of agents is clearly improv-
ing every year. In 2013, agents were clearly better than beginners, while in 2014
the best agent was already better than two-thirds of the human players.

In order to achieve the goal of the Competition, i.e., to foster the development
an AI agent that can play any previously unseen level as good as or better than
the best human players, we need to efficiently solve a number of problems in an
environment that behaves according to the laws of physics:

• detect and classify known and unknown objects

• learn properties of (unknown) objects and the game world

• predict the outcome of actions

• select good actions in a given situation

• plan a successful action sequence

• plan the order in which game levels are played

As mentioned before, these problems can be covered by different areas of AI such as
Computer Vision, Machine Learning, Knowledge Representation and Reasoning, Plan-
ning, Heuristic Search, and Reasoning under Uncertainty, but due to the physical
nature of the game world and the unknown outcome of actions, these are largely
open problems. Progress and contributions in each of these areas will improve the
performance of an agent, but in order to reach the goal, we need to jointly develop
solutions to these problems across different AI areas. What makes research on PBSG
such as Angry Birds so important, is that the same problems need to be solved by AI
systems that can successfully interact with the physical world. Humans have these
capabilities and are using them constantly, AI is a long way away in this respect.
The Angry Birds AI Competition and other PBSGs offer a platform to develop these
capabilities in a simplified and controlled environment. They allow AI research-
ers to focus on the core problems without distractions that are present in the real
world. Approaches that work in these domains would constitute an important step-
ping stone for developing intelligent agents that perform well in other real-world
tasks. Successfully integrating methods from these areas is indeed one of the great
challenges of AI.

178 Chapter 4 Logic and AI in Games

Competition Setting

Game Environment For each agent participating in the Competition, a unique cor-
responding Angry Birds game instance runs on a game server, while the agent itself
is executed on a client computer. The Competition machinery supports Java, C/C++
and Python agents, and can run the artificial players under either Windows or Linux.
Each agent is allowed a total of 100MB of local disk space on the client computer,
for its convenience, including the space required for the agent code. Client com-
puters have no access to the internet, and can only communicate with the game
server by means of a specific communication API. No communication with other
agents is possible, and each agent can only access files in its own directory.

The communication with the game server allows each agent to obtain screenshots
of the current game state to submit actions and other commands. The actual game
is played over the Google Chrome (browser) version of Angry Birds, in SD (low-
resolution) mode, and all screenshots have a resolution of 840× 480 pixels.

Game Objects The objects an agent might have to deal with correspond to all
block and bird types, background, terrain, etc. occurring in the first 21 levels of
the “Poached Eggs” level set available at chrome.angrybirds.com. In addition,
the Competition levels may include white birds, black birds, so-called TNT boxes,
triangular blocks and hollow blocks (triangle and squares).

Intuitively, a proper knowledge about each game component is crucial, in order to
develop a decently performing agent. In particular, the special features of each bird
type are an essential aspect of the game: one might say that the whole reasoning
process depends on this.

Once a bird is shot, the player can perform an additional “tap” anytime afterwards,
provided that it is performed before the bird touches any other object. This action
causes different events according to each bird type: blue birds generate multiple
little blue birds; yellow birds accelerate and become very good at breaking wood;
white birds drop an explosive egg while accelerating towards the sky; black birds
explode making great damage, and so on. “Tapping” at the appropriate moment in
time can make shot outcomes vary greatly.

Game Levels and Competition Setting The levels used in the Competition are not
known in advance to the participants and are not present in the original version of
the game; throughout the Competition, each game level can be accessed, played
and re-played in arbitrary order by the agent. Participants have a total time budget
to solve the Competition levels corresponding to a few minutes per game level, on

4.3 Angry Birds and the Angry Birds AI Competition 179

chrome.angrybirds.com

average. As an example, as reported by the official Competition rules, for 10 levels
there is a maximum allowed time of 30 minutes. Once the overall time limit is
reached, the connection of agents with the game server is terminated, then the
agents have up to two minutes to store any needed information and then stop
running.

The Naïve Agent is launched on all qualification game levels in advance; it does
not participate in the Competition, but its high scores are recorded and intended to
provide participants with a reference baseline.

Some strategy is needed when the agent takes part in multiple rounds. In particular,
each participating agent must be able to distinguish between qualification round 1,
qualification round 2, and the Finals.
Qualifications are run in two rounds, both on the same level set. During the first
qualification round, agents can obtain, besides their own scores, the per level high
score obtained by the Naïve Agent; during the second qualification round, agents
can obtain the overall per level high score obtained in the first round (among all par-
ticipants). Agents can, for example, program the strategy by determining the game
levels where they can obtain the highest improvements between the two rounds.
Agents cannot be modified between round 1 and round 2.
The highest scoring agents after qualification round 2 participate in the finals,
where they are divided into groups. During finals, any agent can query the cur-
rent group high score for each game level (but not the high scores of other groups).
Grand finals are played on groups of two agents only.

It is clear that time plays a fundamental role in the agent performance and that
being just able at shooting birds is definitely not enough to be successful in such
a Competition. Many choices must be taken at the strategic level, i.e. taking into
account both game rules and Competition settings, altogether with the time limits,
the scores from the sample agent and the competitors, and the specific capabilities
of the agent itself.

It is also worth noting that, since the agent is supposed to play each level more
than once with the aim of improving the previous scores, some kind of learning
mechanisms, and especially memory capabilities, are welcome.

Participants18

The Angry Birds AI Competition attracted interest from participants all over the
world. Most are academic participants and students, some from research institutes
and even AI amateurs. Over 40 teams from 17 countries have participated so far

18Preliminary definitions adapted from [95, 319, 358, 471, 575]

180 Chapter 4 Logic and AI in Games

and a multitude of AI approaches have been tried.
In the following we briefly describe, in alphabetical order, some of the more inter-
esting teams.

The Beau-Rivage team [319] (Champion of 2013), from Switzerland, used Machine-
Learning techniques, referring to the Multi-Armed Bandit (MAB) problem. They
observed that the game can be interpreted as search tree with a very shallow depth
d, but a large branching factor. More importantly, without the actual physics en-
gine, it is difficult to estimate the consequence of the actions. Therefore, it is more
reasonable to model the outcome (score) of a given strategy-level pair as a distri-
bution. Playing a level with a certain static strategy would then be analogous to
sampling from the corresponding distribution. The problem of optimizing sampling
from different distributions is known as the MAB problem.

The DataLab Birds team [95] (Champion of 2014 and 2015), from the Czech Re-
public, used Qualitative Structural Analysis, using a simple planning agent that
decides which strategy to play for the current move considering the environment
blocks configuration, reachable targets, possible trajectories, the bird currently on
the sling and the birds available on the stage. They developed 4 different Strategies:
the Dynamite strategy, the Building strategy, the Destroy as many pigs as possible
strategy and the Round blocks strategy. In the Building strategy, to destroy the
physical structure formed by connected blocks, the agent identifies and targets the
structure’s weak part, which is determined by spatial relations between the build-
ing blocks. Moreover, they added specific logic for tapping time, white bird and
trajectories estimation.

The IHSEV team [470, 471], from France, used Advanced Simulation, proposing a
generic framework based on theory of mind, which allows an agent to reason and
perform actions using multiple simulations of automatically created or externally
added models of the perceived environment.

The Impact Vactor team [575], from Poland, used Qualitative Reasoning, assigning
each object which is reachable by a shot a numerical value expressing the scale of
damage it does once hit. The playing program is then supposed to shoot at the
object with the highest value. Interestingly they defined formally the Quantitative
and the Qualitative representations of the gameplay scene, providing formal defini-
tions of influence (which they further divided into two categories – horizontal impact
and vertical impact), stability and connection points. Whereas the latter two can be
evaluated regardless of the “type” of shot (i.e. if the trajectory is high or low), the
former requires an assumption about the shot and it is counted by means of iter-
ative analysis involving two central concepts: propagation of force (in the case of
horizontal impact) and centre of rotation (in the case of vertical impact). Moreover,

4.3 Angry Birds and the Angry Birds AI Competition 181

in the value estimation, they considered the type of the bird that will be launched,
the type of the shooting trajectory (high or low parabola) and a block which is a
direct target of the shot.

The Plan A+ team [358], from South Korea, used Heuristics, proposing multiple
strategies with different strategic approaches. The agent selects some targets and
for each time to shoot, it generates multiple trajectories (maximum two for each
target) and counts the number of objects (stone, wood, and ice) to be broken by
the bird on the sling. Then it uses different scoring method to select the best tra-
jectory.

Also, other researchers in [464, 575, 597, 598] used spatial reasoning or qualitative
physics to estimate the outcome of a shot. As they say, observed one approach
to solve the game is by analysing the structure and identifying its strength and
weaknesses. This can then be used to decide where to hit the structure with the
birds. On balance, this technique seems quite effective and promising.

Many more approaches have been proposed and many more AI techniques have
been tested; the AKBABA team [515, 516], from Germany, used search and simu-
lation to find appropriate parameters for launching birds, the AngyBER team [565,
566], from Greece, improved it proposing a Bayesian ensemble regression frame-
work, the AngryBNU team [594], from China, used deep reinforcement learning,
the s-birds (Avengers/Returns) team [164–166], from India, used a hybrid approach
based on rote learning, the SEABirds team [450], from Germany, used an Analytic
Hierarchy Process (AHP) with background knowledge and heuristics, the TeamWisc
team [438], from the USA, used the Weighted Majority Algorithm (WMA) and
Naïve Bayesian Networks to learn how to judge possible shots, the UFAngryBirdsC
team [34], from Brazil, used a training/execution mode based on the ExpectMin-
iMax algorithm, authors in [188] integrated deliberately planning and acting with
refinement methods. Unfortunately, we cannot analyse all of them in detail here.

A lot of research has been carried out in the latest year around the Angry Birds topic,
about Level Generation [217, 313, 540, 541], Representation and Reasoning [245–
248] and even Computational Complexity [543]. This demonstrates how much
the field is active, how researchers are interested in the topic and how it could be
useful and productive to work in this area thanks to the different contributions and
influences that can be obtained.

182 Chapter 4 Logic and AI in Games

4.4 Angry-HEX: An Artificial Player for Angry Birds
Based on Declarative Knowledge Bases19

In this section, we present Angry-HEX, an artificial player for Angry Birds, based
on Declarative Knowledge Bases, that participated in many editions (from 2013 to
2017) of the Angry Birds AI Competition, which recently inspired a number of re-
search contributions [128, 438, 566, 598]. The agent features a combination of
traditional imperative programming and declarative programming that allows us
to achieve high flexibility in strategy design and knowledge modelling. In particu-
lar, we make use of Artificial Intelligence (AI) and HEX programs [199], which, as
mentioned in Section 1.3.5, are a proper extension of ASP programs towards integ-
ration of external computation and knowledge sources; Knowledge Bases, written
in ASP, drive both decisions about which target to hit for each shot (tactic game-
play), and which level should be played and how (strategic gameplay). The usage
of Answer Set Programming has several benefits. First of all, ASP Knowledge Bases
(KBs) are much more flexible and easier to change than a procedural algorithm.
In particular, thanks to the availability of constructs such as aggregate atoms and
weak constraints, reasoning strategies can be easily encoded as a set of few rules,
while the development of dedicated algorithms is time-consuming and error-prone.
Therefore, conducting experiments with different strategies in order to optimize our
agent is much easier. Furthermore, as mentioned in Section 1.3, ASP is a general
purpose declarative language in which temporal and spatial reasoning can be em-
bedded as shown for instance in [283, 367]; also, ASP can be used in the planning
domain, for modelling action languages (see e.g. the seminal work [375]), and
probabilistic reasoning [56].

The advantages above come however at the price of a lower scalability when large
input datasets have to be dealt with. In the context of the Angry Birds game, it is also
necessary to deal with data coming from (approximately) continuous domains: In-
deed, physics simulation libraries, using floating-point operations, are needed; such
data cannot be efficiently dealt with in a natively discrete, logic-based framework
such as ASP. In this respect, HEX programs, an extension of ASP, are well-suited as
they allow for encapsulating external sources of information: on the one hand, nu-
meric computations and part of the spatial processing tasks are computed on what
can be called “the physics side” and can be embedded as external sources; on the
other hand, actual reasoning strategies can be specified declaratively on a declarat-

19From F. Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni, C. Redl, D. Stepanova,
A. Tucci and A. Wimmer. ‘Angry-HEX: An Artificial Player for Angry Birds Based on Declarative
Knowledge Bases’. In: TCIAIG 8.2 (2016), pp. 128–139. DOI: 10.1109/TCIAIG.2015.2509600.

And F. Calimeri, M. Fink, S. Germano, G. Ianni, C. Redl and A. Wimmer. ‘AngryHEX: an
Artificial Player for Angry Birds Based on Declarative Knowledge Bases’. In: [45]. 2013, pp. 29–
35. URL: http://ceur-ws.org/Vol-1107/paper10.pdf.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 183

https://doi.org/10.1109/TCIAIG.2015.2509600
http://ceur-ws.org/Vol-1107/paper10.pdf

ive “reasoning side”. This way, numeric processing is hidden in the external sources,
since returned elaborated results are limited to those aspects which are relevant for
the declarative part; this can be encoded by a fairly limited set of discrete logic
assertions.

The main contributions of this work can be summarized as follows. Towards model-
ling dynamic (situation-dependent) and static knowledge in a physics-based simula-
tion game, we propose a hybrid model in which logic-based, declarative knowledge
modelling is combined with traditional programming modules whose purpose is
acting on the game and extracting discrete knowledge from the game itself. In our
architecture, the decision support side is implemented in an extension of Answer
Set Programming (ASP) integrated with external sources of computation modelled
by means of traditional imperative programming. We contextualized this approach
to the Angry Birds Game, and propose an agent which participated in the Angry
Birds AI Competition (AIBIRDS) Series. Also, we analysed the performance of the
proposed agent in several respects.

We point out next the advantages of the herein proposed approach.

• It is possible to deal with the respective limitations of both declarative model-
ling and traditional programming and gain instead from respective benefits;
indeed, on the one hand, Logic Programming is extremely handy and perform-
ance efficient when dealing with discrete domains, but it has limited ability
to cope with nearly-continuous domains, and at the price of unacceptable per-
formance. On the other hand, ad-hoc programmed modules lack flexibility
but allow efficient processing of nearly-continuous knowledge (ballistic and
geometric formulas, artificial vision, etc.).

• The introduction of declarative logic-based knowledge bases allows combin-
ing statements concerning common-sense knowledge of the game (e.g., in
the context of Angry Birds, “Blue birds are good on ice blocks”) with object-
ive knowledge (e.g. “an ice block w pixels wide is currently at coordinates
(x, y)”) when performing decision-making; it permits also to focus attention
on declarative descriptions of the game knowledge and of the goals to be
achieved, rather than on how to implement underlying evaluation algorithms.
This allows fast prototyping, and consequently much greater efficiency in the
usage of developer time. For instance, both Strategy and Tactics behaviours
can be easily refined and/or redefined by quickly changing logic assertions.

• Benchmarks show that logic-based approaches, and particularly, ASP-based
approaches, if properly combined with procedural facilities, can be employed
in applications having requirements near to real-time, making the gap between
the performance of current logic-based solutions and requirements of pure
real-time applications much narrower.

184 Chapter 4 Logic and AI in Games

• The approach generalizes to a wide range of applications which share a num-
ber of aspects with the Angry Birds setting, such as automated room cleaning,
semi-interactive turn-based games, planning in slowly evolving environments,
such as robot and space probes etc. One can adapt our approach to such
or similar scenarios, by adding a process step to the traditional observe-think-
act cycle [344], thus obtaining a sort of observe-process-think-act cycle, and
properly implementing the four stages. More in detail, the observation and
process phases can be implemented by hard-wiring sensors and processing
their inputs in a procedural environment, providing a focused set of external
sources of knowledge to the think phase; the process phase plays the role of
discretizing and reducing information, so that the think phase, carried out by
a logic-based system, is efficiently performed, still keeping the benefits of de-
clarative knowledge modelling; the act phase is straightforward and re-wires
decisions to actual actions. A deployment of an approach similar to present
work can be found in [222].

In the following, we overview the agent architecture and outline specific design
choices introduced for dealing with physics and uncertainty; then, we comment
experimental results in terms of time and score performance. Finally, we draw
conclusions and discuss open issues and future development.

4.4.1 The Angry-HEX Agent

Since logic-based reasoning is not specifically tailored to reasoning with non-discrete
domains, it is particularly challenging to deal with physics-based simulations. This
technical challenge can be coped with a hybrid system. Hence, we propose a double-
sided architecture, in which a “decision-making” side and a “simulation side” can
be identified. The decision support side is realized using a logic-based Knowledge
Base, while the simulation side is out-sourced to specialized library code.

In particular, in the Angry-HEX agent the decision-making process is carried out by
computing the Answer Sets of a number of HEX programs. Namely, the program
PTact models the knowledge of the game within a single level, i.e. tactical aspects;
and PStrat models the strategical knowledge required when deciding which level is
convenient to be played. When decisions have to be made, both PTact and PStrat

are coupled with respective sets of logical assertions ATact and AStrat, where ATact

describes the situation in the currently played level, and AStrat describes the overall
game status (scores, etc.). Respectively, each Answer Set of PTact ∪ATact describes a
possible target object to be hit with a bird, while the Answer Sets of PStrat ∪ AStrat

describe which is the next level to be played.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 185

Chrome Browser

Game ClientGame Server

Game Application
(chrome.angrybirds.com)

Angry Bird

Chrome Extension

Proxy

Agent Manager
Server

Comms

Game Manager

Client

Comms

AI Agent Trajectory

Utils

Vision

DLVHEX

Figure 4.2.: The Framework Architecture. Slanted lines rectangles represent parts of the
framework modified by our team, while grey ones represent the modules en-
tirely developed by our team. Remaining modules were provided by the Com-
petition organizers.

It is worth mentioning that we did not make use of Machine Learning techniques
or other means for automatically obtaining knowledge of the game. Tactics and
Strategy have been modelled based on our own experience and experiments with
the game. Our contribution is indeed focused on the ease of knowledge modelling
rather than automated learning, which can be subject of future research.

We describe next the main components of the Angry-HEX agent.

Framework Architecture

The Framework architecture consists of several components as shown in Fig. 4.2.
The Angry Birds Extension works on top of the Google Chrome™ browser, and allows
interacting with the game by offering a number of functionalities, such as captur-
ing the game window and executing actions (e.g., clicking, zooming). The Vision
Module segments images and recognizes the minimum bounding rectangles of es-
sential objects, their orientation, shape and type. Objects include birds of various
colours (Red, Blue, Yellow, Black and White), pigs of different sizes, the Slingshot,
and bricks made of several materials (Wood, Ice and Stone) and shapes.

The Trajectory Module estimates the parabolic trajectory that a bird would follow,
given a particular release point of the slingshot. The AI Agent stub is supposed to

186 Chapter 4 Logic and AI in Games

include the Artificial Intelligence programmed by participants of the Competition,
therefore it is the core module implementing the decision-making process. The
Game Server interacts with the Angry Birds Extension via the Proxy module, which
can handle commands like CLICK (left click of the mouse), DRAG (drag the cursor
from one place to another), MOUSEWHEEL (scroll the mouse wheel), and SCREENSHOT
(capture the current game window). There are many categories of messages (Con-
figuration messages, Query messages, In-Game action messages and Level selection
messages); the Server/Client Communication Port receives messages from agents
and sends back feedback after the server executed the actions asked by them.

Our agent uses all these framework utilities in order to obtain information and, in
general, to play the game levels.

Other Improvements to the Framework Architecture

The framework utilities allow an agent to gather the information needed to play the
game levels; hence, we enhanced some modules of the base architecture in order
to fit our needs. These parts are reported in Figure 4.2 as boxes filled with slanted
lines; in the following, we discuss such improvements.

• Concerning the Vision Module, we added the possibility of recognizing the
orientation of blocks and the level terrain; even though these features were
later implemented in the Framework Architecture by the Competition organ-
izers, until very recently, we preferred to stick to our version, for what some
particular vision tasks are concerned.

• In the Trajectory Module, we added thickness to trajectories. A parabola is
attributed a thickness value proportional to the size of a bird: this feature is
helpful in order to exclude actually unreachable targets from the set of pos-
sible hits, because of narrow passages and sharp edges in objects’ structures.
Also, while the original Trajectory Module is capable of aiming at objects’
centroids only, we can aim at several points taken on the left and on the top
face of objects (recall that birds are always shot from the left-hand side of
the screen). This has a two-fold benefit: first, objects that have their centroid
hidden by other objects are not necessarily out of a possible hit, for instance,
an object can have its top face clearly reachable while its centroid point is
not; second, we can better choose the most convenient among a set of hitting
points. For instance, higher points on the left face of an object are preferable
because of an expectedly greater domino effect.

• Waiting for the outcome of a shot can be a time-consuming task: we added
a quick-shot modality in which the next shot is performed after a fixed time,
although there might still be slightly moving objects.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 187

HexAgent Memory

Strategy

Reasoner

Reasoner

Tactic

Reasoner

Figure 4.3.: An overview of the Angry-HEX Agent Architecture.

Our Agent

As already said, the core component of the framework Game Client is the AI agent.
Figure 4.3 shows an overview of the Angry-HEX agent: the bot is composed of two
main modules, the Reasoner and the Memory.

The Memory module provides the agent with some learning mechanisms; in its cur-
rent version, its first goal is to avoid that Angry-HEX replays the same level in the
same way twice (for instance, by selecting a different initial target at the begin-
ning of a level). Such an approach results to be quite effective, since changing the
order of objects to be shot (even just the first one) results in completely different
outcomes in terms of level evolution, and hence in future targeting choices and pos-
sibly improved scores for the same level.
The Reasoner module is in charge of deciding which action to perform. This mod-
ule features two different intelligence layers: the Tactics layer, which plans shots
and steers all decisions about “how” to play a level, and the Strategy layer, which
establishes in what order the levels have to be faced; this layer decides also whether
it is worth replaying, not necessarily in a consecutive attempt, the same level more
than once.

Tactics layer. The Tactics layer is declaratively implemented using the dlvhex solver,
which computes optimal shots on the basis of the information about the current
scene and the knowledge modelled within the HEX program PTact.

In particular, the Tactics layer accesses and produces the following information.

• Input data: scene information encoded as a set of logic assertions ATact (posi-
tion, size and orientation of pigs, ice, wood and stone blocks, slingshot, etc. as

188 Chapter 4 Logic and AI in Games

obtained by the Vision Module); a Knowledge Base PTact encoding knowledge
about the gameplay. It is worth noting that physics simulation results and
several other pieces of information are accessed within PTact via the so-called
external atom construct.

• Output data: Answer Sets of PTact ∪ ATact which contain a dedicated predic-
ate target describing the object which has been chosen as a target and some
information about the required shot, like the type of trajectory (high or low)
and the hitting point (several points on the left and top face of the target can
be aimed at).

We describe next the knowledge modelled by PTact.

A shootable target T is defined as an object for which it exists a direct and unob-
structed trajectory from the slingshot to T .
For each shootable target T , we define a measure of the estimated damage that can
occur on all other objects if T is hit. The specific behaviour of each bird type is
taken into account (e.g. yellow birds are very effective on wood, etc.). Also, the
estimated damage takes into account the probability of specific events. The higher
the estimated damage function value, the better the target.

Targets are ranked by taking first those which maximize the estimated damage to
pigs; estimated damage to other objects is taken into account, on a lower priority
basis, only for targets which tie in the estimated damage for pigs.

The optimal Answer Set, containing, among its logical consequences the optimal
target Topt, is the Answer Set maximizing the damage function (see Section 4.4.2).
Topt is then passed to the Trajectory Module. This latter module computes the actual
ballistic data needed in order to hit Topt (see Section 4.4.1 for more details).

Next, we show some typical assertions used in Angry-HEX; for the sake of simplicity,
we report a properly simplified version of the rules, even though the general idea
is respected. In the following, with variable names of type T [i] and O[i] we refer to
trajectory types and objects, respectively.

target(O, T) | nontgt(O, T)← shootable(O, T).
}

Guess

← target(O1, _), target(O2, _), O1 ̸= O2.

← target(_, T1), target(_, T2), T1 ̸= T2.

target_exists ← target(_, _).
← not target_exists.

Check

Intuitively, the first rule expresses that each shootable object can be possibly aimed,
while the constraints (the “check” part) ensure that exactly one target is chosen.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 189

Strategy layer. Upon completion of a level, the Strategy layer decides which level
should be played next. Like for the Tactics layer we pursued a declarative ASP ap-
proach for the implementation of the Strategy layer. This module is modelled by
means of an ASP program, and the next level to be played is conveniently extracted
from its logical consequences. This approach significantly improves the manage-
ment of this layer w.r.t. the previous version of the Angry-HEX agent, where the
Strategy was hard-wired in Java. The ASP program PStrat contains appropriate
modelling of the following guidelines on the choice of the next level (here order
reflects priority).

1. Play each level once.

2. Play levels for which the gap between our agent’s score and the current best
score is maximal (up to a limited number of attempts k).

3. Play levels where Angry-HEX outperforms all other agents, but its score min-
imally differs from the second best result (up to a number of attempts k′).

4. If none of the above rules is applicable, play a random level.

The program PStrat has several pieces of input data available, reflecting the his-
tory of the game w.r.t. the played levels and scores achieved. Moreover, for each
level, the Strategy layer keeps track of previously selected target objects and, as
mentioned, ensures the avoidance of repetition of the same opening shot on a par-
ticular level, thus allowing multiple approaches at solving the same level.

For example, the encoding of the first guideline in the ASP environment is:

r1 : chooselevel(1)← timeslevelplayed(1, 0),myscore(1, 0).

r2 : chooselevel(X)← timeslevelplayed(X, 0),myscore(X, 0),

timeslevelplayed(Y, Z),#succ(Y,X), Z ≥ 1.

Rule r1 schedules Level 1 at the beginning of the game. The rule r2 states that if a
Level X has not been yet played (represented by predicates timeslevelplayed(X , 0)
and myscore(X , 0)), X comes next after Y (predicate #succ(Y,X)), and Y has
been played more than once (timeslevelplayed(Y ,Z), Z ≥ 1), then we choose the
level X as the next one to be scheduled (chooselevel(X)). For instance, if the facts
timeslevelplayed(4 , 0), myscore(4 , 0), timeslevelplayed(3 , 1), are available due to
the rules described above, the fact chooselevel(4) will be deducted, and then Level
4 will be scheduled.

190 Chapter 4 Logic and AI in Games

4.4.2 Reasoning with Physics-Based Simulation

The “simulation side” allows accessing and manipulating information typically not
tailored to being dealt with a logic-based decision support system; in particular,
we employ external atoms constructs to perform physics simulations and spatial
preprocessing that help us to decide where to shoot. This way, the actual physics
simulation and the numeric computations are hidden in the external atoms. The
external atoms summarize the results in a discrete form.

Given a current level state, external processing is used for several tasks such as:
(i) determine if an object is stable (i.e., prone to an easy fall); (ii) determine whether
an object B will fall when object A falls due to a structural collapse, or if it can be
pushed (i.e., A can make B fall by domino effect); (iii) determine which objects
intersect with a given trajectory of a bird, and in which sequence; (iv) determine if
an object O is shootable (i.e., there exist a trajectory with O as the first intersecting
object); (v) find the best trajectory for a White Bird (white birds have a peculiar
behaviour and require a special treatment).

In the following, we present a more detailed description of the simulation inform-
ation we used. The data coming from the simulation side is fed into the decision-
making side as input assertions and by means of external atoms. Input assertions ap-
proximately encode statical information which is available a priori, like the current
position of objects. External atoms elaborate and produce information triggered
by the decision-making side, like running a physics simulation and providing its
outcome in terms of the number of falling objects, etc.

Input assertions. The input assertions, in the form of logical facts, encode inform-
ation about the position of objects in a scene and data needed for trajectory predic-
tion, such as:

birdType(BT). The type of bird that is currently on the slingshot.

slingshot(X,Y,W,H). The size and position of the slingshot, used for trajectory
prediction.

velocity(X). The current velocity scale. This is a value used internally by the tra-
jectory prediction module.

object(O,M,X, Y,W,H,A). There is one assertion of this kind for each object in the
scene. Objects are enumerated for unique identification with ID O. Material
M can be any of ice,wood, stone, pig, ground. Location of centroid (X,Y) of
the rotated rectangle denotes the position of the object, width W and height
H denote its size, and angle A denotes the rotation of the object at hand.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 191

Figure 4.4.: An example of a level (#4 from the Theme One of the “Poached Eggs” set) and
the corresponding reconstruction made by our external atoms using Box2D.

External Atoms. The following information sources available to the HEX program
are implemented as external atoms.

All external atoms are implemented using the physics software Box2D, which has
been chosen for being a well documented, supported and regularly updated 2D
physics engine. Box2D is widely used for game development and indeed the same
Angry Birds game uses the library.

All objects (objs) are added to a 2D World that we will call W . A simulation is then
started on W , and the world is allowed to settle (as shown in Fig. 4.4). Usually,
there are small gaps between the objects, because of vision inaccuracies. Gaps need
to be explicitly dealt with, since it is desirable that an object should still be detected
as resting on the other object even if there is a one-pixel gap: we, therefore, let
the physics software proceed up to equilibrium (i.e. until all the objects are at
rest). After every time step of the simulation we set all directional and angular
velocities to zero, to avoid objects gaining speed and crashing buildings, and in
order to keep the settled world as close to the original as possible. Let W ∗ be
the 2D scene computed from W as above. In the following, we assume that the
mentioned external atoms implicitly operate on W ∗.

&on_top_all[objs](Ou, Ol)
Allows to browse the set of couples of objects Ou, Ol for which Ou lies on top
of object Ol. This information is used assuming that if Ol does not exist, Ou

would likely fall. This is determined by checking whether object Ou exerts a
force on Ol , that is oriented downwards. If so, we assume that Ou rests on Ol.
In order to improve performance, a graph of object dependencies is calculated
on the first call to this atom and, subsequently, cached answers are served.

&next[D,TO, Tj , V, Sx, Sy, Sw, Sh, objs](I,O)
For a bird trajectory aimed at object D, of type Tj , &next allows inspecting
which objects are intersected by such a trajectory. Tj can either be high or low
(see Figure 4.5). V, Sx, Sy, Sw, Sh are helper variables required by the traject-

192 Chapter 4 Logic and AI in Games

Figure 4.5.: An example of low and high trajectories (solid and dashed line respectively).

Figure 4.6.: An example of the output from the &next atom.

ory prediction module. V is the velocity scale, available from the velocity(. . .)
atom and Sx, Sy, Sw, Sh are the slingshot position and dimension values, avail-
able from the atom slingshot(. . .). I is the position of the object O in the
sequence of objects that would be hit in the trajectory Tj (e.g. in Figure 4.6
the object #2 has position 1 and so on). The offset TO allows choosing from
a set possible hitting points on the exposed faces of O.

&shootable[O, Tj , V, Sx, Sy, Sw, Sh, B, objs](O,S, U)
This statement is true if object O is shootable with trajectory type Tj , i.e. if
there exists a parabola whose O is the first intersected object from left to
right. Most of the terms have the same meaning of ones in the next atom. B
identifies the bird type, which could be one of red, yellow, blue, black, white,
for the thickness of a bird is used when determining shootability. S and U are
the best offsets positions over O faces for the given trajectory and the given
bird type.

&firstbelow[P, objs](O)
Denotes that the object with ID O is directly below the object P , with no items
in between. We calculate this similarly to the &next atom, but instead of a
trajectory, we use a straight upward ray from O to P . The statement holds
only if P is the first intersected object by such a ray.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 193

&stability[W,H](S)
Denotes the stability S of an object given its parameters W,H (width and
height respectively). S is the ratio (width/height)× 50 rounded to the nearest
integer or 100 if it is greater than 100.

&canpush[objs](OA, OB)
For each object OA, selects all the objects OB that can be pushed by OA by a
left-to-right domino fall. The canpush relation between an object OA an OB

is computed by geometrically checking whether OA, if rotated of 90 degrees
rightwards, would overlap the OB extension.

&clearsky[O, objs]
This atom is specific for white birds and identifies whether the object O can be
hit by the egg of a white bird. That is, whether there is enough space above
O to let a White Bird to vertically release its egg on the object.

&bestwhite[O, Tj , V, Sx, Sy, Sw, Sh, objs](Y)
Again, with specific focus on White Birds behaviour, this atom returns the
best height Y above the object O where to shoot, with trajectory type Tj ,
in order to achieve a good shot. A shoot with a White Bird on object O is
considered optimal if it actually hits O and maximizes the damage effects of
the “departure at 45 degrees” of the white bird in order to hit other objects.
The other terms have the same meaning as in the &next atom.

The following are some examples of logic rules featuring external atoms; pushDam-
age intuitively describes the likelihood of damage when an object ObjB is “pushed”
by an adjacent object ObjA:

pushDamage(ObjB, PA, PB)← pushDamage(ObjA, , PA), PA > 0, (4.1)

&canpush[ngobject](ObjA,ObjB),

pushability(ObjB, PuB), P = PA ∗ PuB/100.

&canpush works as described above, and allows determining whether ObjA can
make ObjB fall by means of a domino effect. It is worth noticing that &canpush, as
well as other atoms, uses geometric computations in a continuous space, however,
the values returned are discrete, in this particular case the result of the atom evalu-
ation corresponds to the truth of a set of propositional atoms. PB is a damage value
estimate expressed as an integer value ranging from 0 to 100, and obtained as the
product between the push damage PA of ObjA and the pushability PuB of ObjB,
normalized in the integer range 0, . . . , 100. The pushability value for an object is
defined relying on empirical knowledge of the game, and defines how much an ob-
ject can be pushed in terms of its shape, stability and material (e.g. long rods are
easily pushable, etc.).

194 Chapter 4 Logic and AI in Games

Another example follows.

eggShootable(Obj,X)← &clearsky[Obj, objects](), (4.2)

ngobject(Obj, _, X, _, _, _, _).

The above rule checks if an object that is not the scene ground surface (ngobject) can
be hit by the egg released by a White Bird. Again, like in rule 4.1, the computation
in the continuous space is entirely performed by the external atom.

The estimated damage function

The aim of the reasoning engine is to find the “best” object to shot, the most ap-
propriate tap time and “how” the object should be hit (i.e., where to aim – to the
centre of the object, to a long or a short side, etc.). In order to identify the best
target object, we attribute to each possible target a score Sc1 based on the sum of
damage likelihood for each pig and TNT box in the scene, and a score Sc2 based on
the sum of damages of other objects. We select the target that maximizes Sc1, or, in
case of a tie, we maximize Sc2.

In turn, per each object, we attribute several damage type quotas. In general, all
the damage types are computed in terms of causal event chains, in which damage is
linearly weighted by the likelihood of the event causing the damage. The likelihood
of an event is in turn obtained by the product of fixed empirical values combined
with the likelihood of previous events in the causality chain. Damage types are
described next.

direct damage: the damage an object takes when hit by a bird. Direct damage is cal-
culated by examining the sequence of objects that intersect the assumed trajectory
using the &next atom. This type of damage depends on the intrinsic damage prob-
ability P of each object and on the energy loss E of the bird (the farther an object is
in the intersected object list the lesser its direct damage value). The following is an
example of a rule to compute the direct damage:

directDamage(Obj, P,E)← target(Inner, Tr),next(Obj, 0, Outer, T, _), (4.3)

objectType(Obj, T), birdType(Bird),

damageProbability(Bird, T, P), energyLoss(Bird, T,E).

The next atom summarizes the external &next by means of rules like the follow-
ing:

next(X,Y, Z, T, C)← shootable(X,T,C, _), slingshot(Sx, Sy, Sw, Sh), (4.4)

&next[X,C, T, V, Sx, Sy, Sw, Sh, objects](Y, Z), velocity(V), T ̸= egg.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 195

In the above, the truth of an assertion next(X,Y, Z, T, C) can be read as “X is the
Y -th object in the trajectory T aiming at object Z, with horizontal shift C from the
object’s centroid”.

push damage: the damage an object undergoes when pushed by another object. It
is calculated by building the already mentioned chain of “pushes” and depends on
the intrinsic pushability of an object and on the values coming from the external
atom &canpush. An example illustrating the role of &canpush is provided in rule
(4.1) above.

fall damage/fall desirability: the damage an object undergoes when another object
is destroyed below it. It is calculated according to the values of the &on_top_all
external atom, and it depends on the intrinsic material fall importance PN of the
object and on all other kinds of damages (i.e. a fall damage chain can be started by
a direct or push damage chain). For instance, in order to compute the damage of a
“falling” object Obj one can specify the following rule:

fallDamage(Obj,P)← pushDamage(RemovedObj, _,PR),PR ≥ 50 , (4.5)

&on_top_all[objects](Obj,RemovedObj), objectType(Obj,T),

materialFallImportance(T ,PN),P = PR ∗ PN/100 .

Modelling empirical knowledge

A good portion of empirical knowledge of the gameplay is encoded in terms of
logical assertions. As opposed to hard-wiring this information into traditional code,
this allows better flexibility and easier fine-tuning and troubleshooting.

One type of such empirical knowledge comes into play when static object damage
values are combined in order to form causal chains. Causal chains terminate us-
ing an energy loss estimate; energy losses take into account the residual energy
available when the effects of a shot propagate from an object to another. Also, we
model the attitude of a particular bird type towards destroying different material
types. For instance, the following assertions encode the damage probability of an
object depending on the object material and on the type of bird hitting the object
at hand. They correspond to intuitive statements like “Blue birds are very good on
ice blocks”:

damageProbability(blue,wood, 10).
damageProbability(yellow,wood, 100).
damageProbability(blue, ice, 100).
damageProbability(yellow, ice, 10).

196 Chapter 4 Logic and AI in Games

Other empirical knowledge includes the following:

damage probability for each couple (Bird_Type, Material) we encode the damage
an object made of Material receives when hit by Bird_Type.

energy loss for each couple (Bird_Type, Material), we encode the reduction of
energy a bird of Bird_Type experiences when it destroys an object made of
Material.

pushability it denotes how “easy” is an object made of a given material to be
pushed, when other conditions and features (i.e., shape) are fixed. For in-
stance, stones react less to pushes than wood.

material fall importance the damage an object made of a given material can cause
when it falls, under other conditions equal, like size. For instance, stones are
assumed to have greater density.

A second group of empirical gameplay information comes into play when dealing
with trajectory prediction. The Trajectory prediction module, given in input some
target coordinates, considers several “high” (aiming at a vertical fall to an object)
and several “low” trajectories (aiming at a horizontal hit on the left-hand face of
an object) but returns only two of both categories. Many candidate trajectories
are discarded because of obstructions before the target point. This discretization is
done in order to reduce the space of possibilities which the reasoning module has to
take decisions on. This approximation can be considered acceptable, and we indeed
did not experiment appreciable differences in the effects of two different parabolas
of the same category.

Trajectory prediction is treated differently depending on the type of bird that is
on the slingshot at reasoning time. For what red, yellow, blue and black birds
are concerned, we use a normal “parabolic” trajectory. This trajectory aims at the
objects’ left face if a low trajectory is selected while the top face is aimed at if a high
trajectory is chosen. Three hitting points are possible for each face, for a total of 12
possible trajectories per object.

As for tapping time, we tap yellow birds relatively close to the target object, so to
maximize their acceleration effect without compromising the parabolic trajectory;
blue birds are tapped a bit earlier in order to maximize their “spread” effect, while
black birds are tapped right on target so to maximize their explosion effect.

The white bird receives special treatment: we first try to identify which objects can
be hit by the vertical fall of the egg that a white bird can release with a tap. We
then choose the best point where the bird should release the egg itself, in terms of
side effects, since the white bird continues its trajectory after laying its egg, thus
creating more damage chains.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 197

4.4.3 Results/Benchmarks

In this section we discuss experiments and performance.

Competition outcomes and Third party benchmarks20

Angry-HEX performed quite well in all the editions of the Angry Birds AI Competition,
from 2013 to 2017, even if we never ranked first. Our team participated also in
201221, but with two preliminary agents, that were also largely different from the
herein presented Angry-HEX agent. Our agent reached the Semi Final in 201322

(being the best one during all previous rounds), the Quarter Finals in 201423, the
Grand Final in 201524 (achieving the second place25), the Quarter Finals in 201626

(due to a bug caused our agent to kept solving the same levels it had already solved
rather than trying to solve levels it had not solved yet), the Semi Final in 201727

(achieving the third place).

The Organizing Committee performed also some benchmarks over the participating
agents in the same settings of the Competition, in order to allow participants to
easily compare the performance of their agents with others. The benchmarks were
run on the first 21 levels of the freely available Poached Eggs levels, and each agent
had a time budget of 63 minutes, corresponding to an average of 3 minutes per
level. They stored them in some tables, where bold numbers represent high-scores
of each level among all participants.

In the after-show Benchmarks of 201328, Angry-HEX performed better than all other
participants. Our score was very good in many levels (reaching the 3 stars score),
even if only at one level we had the best score among all the participants. It is
worth noticing that the winning team of 2013 (Beau Rivage) arrived only forth in
these Benchmarks and that the four best team of the Competition are in the first
four positions of the Benchmarks ranking (even if in a completely inverted order).

20The Competition Results as well as the Benchmark Results are fully reported in Appendix B
21http://ai2012.web.cse.unsw.edu.au/abc.html
22http://aibirds.org/past-competitions/2013-competition/results.html
23http://aibirds.org/past-competitions/2014-competition/results.html
24http://aibirds.org/past-competitions/2015-competition/results.html
25Interestingly, our agent of 2015 was the same as the one of 2014 but, as the organizers wrote:

“The Grand Final between DataLab Birds and the runner up AngryHex from Italy and Austria
was actually the most exciting AIBIRDS match ever. The leaderboard changed almost every minute,
sometimes every few seconds. Even though the levels were very difficult, both AI agents did a great job
in solving them, some with incredible shots. Datalab Birds solved all 8 levels, while AngryHex solved
only 7 out of 8 levels, but with higher scores. Both agents were solving levels again and again in order
to improve their overall score. Fortunately, both teams were not attending personally, otherwise, there
would have surely been one or two heart attacks among the team members.”

26http://aibirds.org/past-competitions/2016-competition/competition-results.html
27http://aibirds.org/angry-birds-ai-competition/competition-results.html
28http://aibirds.org/past-competitions/2013-competition/benchmarks.html

198 Chapter 4 Logic and AI in Games

http://ai2012.web.cse.unsw.edu.au/abc.html
http://aibirds.org/past-competitions/2013-competition/results.html
http://aibirds.org/past-competitions/2014-competition/results.html
http://aibirds.org/past-competitions/2015-competition/results.html
http://aibirds.org/past-competitions/2016-competition/competition-results.html
http://aibirds.org/angry-birds-ai-competition/competition-results.html
http://aibirds.org/past-competitions/2013-competition/benchmarks.html
http://ai2012.web.cse.unsw.edu.au/abc.html
http://aibirds.org/past-competitions/2013-competition/results.html
http://aibirds.org/past-competitions/2014-competition/results.html
http://aibirds.org/past-competitions/2015-competition/results.html
http://aibirds.org/past-competitions/2016-competition/competition-results.html
http://aibirds.org/angry-birds-ai-competition/competition-results.html
http://aibirds.org/past-competitions/2013-competition/benchmarks.html

It is also important to notice that no agent was able to perform better than others in
all the levels, and also that best scores of each level was done mostly by the agents
in the centre/bottom part of the ranking.

In the after-show Benchmarks of 201429, Angry-HEX performed better than most
of the other participants that had outperformed it in the Quarter Finals30. In some
levels we performed similarly to 2013 (usually with a slightly lower score); how-
ever, in some other, we performed much better. Similarly to what happened in the
previous edition, in 2014 no agent was able to perform better than others in all the
levels, and also this year the best scores of each level was done mostly by the agents
in the centre/bottom part of the classification. The fact that the scores in each level
are typically distributed over many participants that are listed below Angry-HEX in
rankings might hint that the strategies implemented in other agents are tailored to
specific types of levels, but generalize less, or worse, than the one of Angry-HEX.

Moreover, in 2014 the organizers tested also the agents (of 2014) on the second
Theme of Poached Eggs (the following 21 levels). This benchmark is quite interest-
ing because these levels are more difficult than the previous ones and they contain
also some objects that are not allowed in the Competition and therefore the Vision
Module is not able to recognize. Angry-HEX lost a position w.r.t. the results in the
first 21 levels but it was still better than other agents that had outperformed it in
the Competition (for instance of the IHSEV agent that ranked fourth in the Competi-
tion). It is also quite surprising how well the Naïve Agent performed on these levels,
it ranked right after Angry-HEX, with a Total Score almost three times as high as
the last classified agent.

In the after-show Benchmarks of 201631 that contained also the agents of the 2015
Competition (as well as all the previous ones), we got curious results. The Angry-
HEX version of 2015 (that was exactly the same of 2014), had exactly the same
score in some levels but in a couple of them got a much lower score w.r.t the previ-
ous version and we ranked much lower. The Angry-HEX version of 2016, however,
performed quite better than the previous years in some levels and slightly worse
in others but it was not able to solve two levels and for this reason, its rank was
worse32. It is worth noticing that the winner of 2016 (BamBirds, the AIBIRDS Cham-
pion at the time) only ranked #13, but did solve all 21 levels (as all the version of
Angry-HEX did apart from the one of 2016 that missed a couple of them). As also
the organizers observed, it is clear that solving more levels is better than having

29http://aibirds.org/past-competitions/2014-competition/benchmarks.html
30Teams with names in bold participated in the 2014 Competition, the others in the 2013 Competition
31http://aibirds.org/benchmarks.html (this URL will probably change in the next years, follow-

ing a similar structure to the other links to Benchmark Results)
32It is worth noticing that if we had solved them, even with the lowest score we had among all the

years, we would have exceeded the score of 2013

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 199

http://aibirds.org/past-competitions/2014-competition/benchmarks.html
http://aibirds.org/benchmarks.html
http://aibirds.org/past-competitions/2014-competition/benchmarks.html
http://aibirds.org/benchmarks.html

high scores and that doing well in the Benchmarks does not necessarily translate to
success in the Competition, where all levels are unknown.

A proper deeper analysis of the levels where Angry-HEX was not the best in these
years could be a fruitful approach for defining special cases in its Tactics. It is
worth to notice that in the latest Benchmark, in all the first 21 levels of Poached
Eggs, at least one agent reached a 3-star score, that represent a very good score to
achieve for a human player. However, to date, the “Man vs Machine Challenge”,
in which each year human players compete with the winners of the Angry Birds AI
Competitions, was always won by human players.

Eventually, it is important to notice that the differences between our results in these
years are very little, and are mostly due to a large restructuring of the agent code,
which has been performed in 2014 and in 2016 in order to make it more extensible,
flexible and easy to install. Therefore, we expect to take advantage of this work in
the forthcoming Competition editions.

Tests on time performance

The Tactics layer is repeatedly prompted for deciding the chosen target on the cur-
rent scene: reducing reasoning times is crucial in order to better exploit the allowed
time and improving scores. We recall that the core of the Tactics layer is an evalu-
ation machinery carried over the logical Knowledge Base PTact, coupled with a set of
assertions ATact that describe the current scene; hence, both the size of ATact and
PTact affects its performance. Another important performance factor is the number
and duration of calls to external libraries.

The size of ATact is directly proportional to the number of objects in the current
scene: there is one logical statement for each object in the scene, plus a constant
number of facts encoding the slingshot position, the current bird type, and the
scale factor of the scene. PTact, instead, is a fixed Knowledge Base featuring about
three hundred statements, made both of rules and facts that encode the domain
knowledge. For what calls to external libraries are concerned, these were optimized
with the aim of reducing the number of possibly redundant computations.33

Due to the unavailability to the public of the levels used in the official Angry Birds
AI Competition, our comparative studies of actual performance are limited to the
publicly known first 21 levels of the “Poached Eggs” level set,34 though they do not
explicitly stress reasoning capabilities of artificial agents. The experiments were
33Furthermore, the burden of repeated identical calls to external sources was mitigated by caching.
34“Poached Eggs” is the first level set available in the publicly downloadable version of the game,

which reflects the Competition setting in qualitative terms (type of materials, shape of objects and
type of birds available), and are customarily used by the organizers in the after-show benchmarks

200 Chapter 4 Logic and AI in Games

30.46%

17.27%

39.08%

13.19%

0% 5% 10% 15% 20% 25% 30% 35% 40%

Vision Recognition

Tactic (dlvhex)

Shoot

Strategy (dlvhex)

Figure 4.7.: The average percentage of time spent in each “main task” by our agent. Solid
bars account for tasks common to all the agents (i.e. tasks performed by using
functionalities provided by the organizer’s framework); slanted lines bars ac-
count for specific tasks of our agent, performed using our reasoning modules.

conducted on a Virtual Machine running Ubuntu 14.04.2 LTS, containing 2-cores
of a 2.29 GHz Quad-core Processor and 3 GB of RAM, running standalone in its
hypervisor. First, we noted that the reasoning time was a small fraction of the
overall time spent for each shot; indeed, most of the time is spent by animations
and the simulation of the shot itself, as shown in Figure 4.7.

Figure 4.8, instead, depicts the number of objects in the scene of a level against the
time spent by the reasoning tasks within the Tactics layer, on that level. It is worth
noting that the number of objects in a level is not a direct measure of “how hard”
is a level from a player perspective: this depends on the materials, the shapes, the
(relative) positions, the way pigs are sheltered, and so on. The number of objects in
a scene is however proportional to the size of data given in input to the Tactics layer.
We found some direct proportionality between time and the number of objects in a
scene, but, interestingly, the system seems to scale fairly well w.r.t. the latter. The
fraction of reasoning time dedicated to external atom calls did not show a clear
trend: it averaged around 61% of the total reasoning time, with low and high peaks
of 30% and 90% respectively.

We also focused in measuring the performance of the Tactics layer when changing
Tactics Knowledge Bases. In order to compare the impact on time performance,
when changing Tactics, we measured the reasoning time of three, incrementally
better in terms of gameplay, different reasoning Knowledge Bases. The cactus plot
in Figure 4.9 shows the performance of the Tactics layer (i.e. the time taken to take
a decision given an input scene already processed by the Vision Module), for all the
runs needed for completing the Poached Eggs levels (54 shots in total); in order to

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 201

0

2

4

6

8

10

12

14

16

0 5 10 15 20 25 30 35 40 45 50

R
e

as
o

n
in

g
Ti

m
e

 (
se

co
n

d
s)

Number of objects in the Scene

Figure 4.8.: The time spent by the Tactics layer w.r.t. the number of objects in the scene.

0.50

1.50

2.50

3.50

4.50

5.50

6.50

7.50

Ti
m
e

Runs

directDamage pushDamage fallDamage

Figure 4.9.: Reasoning times for different tactics Knowledge Bases, measured on the first 21
levels of “Poached Eggs”.

give a clearer glimpse at the resulting trends the data series were sorted by execu-
tion time. We experimented with three different tactics: directDamage (a Knowledge
Base of 133 logic assertions), in which only estimated damage by direct hits is max-
imized; pushDamage (143 assertions), in which we add the potential damage of
domino effect, and fallDamage (155 assertions), which corresponds to the Tactics
participating to the Competition, in which we add also damage due by the vertical
fall of objects. It is easy to see that the time differences are not substantial, es-
pecially if compared to the time cost of other evaluation quotas (vision, gameplay,
etc.) with fallDamage clearly asking for a somewhat larger price in terms of time
consumption. We can conclude that, when designing Knowledge Bases, a fairly large
degree of freedom in designing sophisticated tactics can be enjoyed without being
worried by a loss in time performance.

202 Chapter 4 Logic and AI in Games

External calls were a key-point for efficiency: the strategy of outsourcing several
tasks outside the decision-making core proved to be useful. As a matter of fact, the
performance of one earlier attempt of implementing an ASP-only agent capable of
playing a real-time game was far from satisfactory [460], given the fairly limited
efficiency of ASP solvers; we believe that implementing this AI player using ASP
(with no external calls and/or a “process” stage), if feasible at all, would not have
fit with the real-time requirements of the game.

4.4.4 Discussion

The Angry Birds game, and hence the study, design and implementation of this
work, led to face several challenges for Knowledge Representation and Reasoning,
and Artificial Intelligence in general; eventually, we can make some considerations.
First of all, it looks clear that, in order to accomplish complex jobs/tasks, a mono-
lithic approach should be discarded in favour of more diversified ones, consisting of
convenient integrations of various, if not many, methods and technologies. In this
respect, any bundle of KR&R formalism/system of use, besides expressive power,
suitable syntax/semantics and good efficiency/performance, must feature proper
means for easing such integration at all levels, from within the language to the
actual implementation.

The setting of the Angry Birds game has two particular aspects: first, Angry Birds can
be seen as a game which lies somehow between a real-time game and a turn-based
one, allowing a fairly large time window for deciding the next shot; second, at each
step, the Tactics layer must explore a search tree whose size is reasonably small and
polynomially proportional to the number of objects in the current scene.

The above setting can be lifted to a variety of other contexts in which (a) there is an
acceptable time window available for reasoning, and (b) the set of actions that can
be taken by the agent at hand is fairly small, do not underly an exponentially larger
search space, and no look-ahead of arbitrary depth on future scenarios is required
(or convenient) to be performed. This generalized context covers e.g. planning
in slowly evolving environments (e.g. robot and space probes), automated room
cleaning, semi-interactive turn-based games, etc.

In this respect, the Angry-HEX agent constitutes a good proof-of-concept showing
how ASP, if properly deployed in a hybrid architecture and extended with proced-
ural aids, not only qualifies as an effective tool for implementing near real-time
solutions while enjoying the advantages of declarative approaches but witnesses
that the realizability of real-time applications is much closer.

4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases 203

The work carried out by the scientific community in the latest years and the effective
use of ASP in real-world and industry-level applications [364], suggest Answer Set
Programming as a powerful tool in such scenarios; and the present work confirms
this idea. Moreover, performances do not constitute a big issue, as discussed in
Section 4.4.3.

The Angry-HEX agent has been released as open-source software (OSS), under the
GNU Affero General Public License35, and it is publicly available at

https://github.com/DeMaCS-UNICAL/Angry-HEX

Moreover we provided a webpage36, with useful information about our agent.

It is worth noticing that other people have already taken advantage of the possibility
of freely study, use, distribute and even improve the Angry-HEX project.
In this respect, recently, the authors of [159] proposed an agent, called DualHEX,
which is based on the Angry-HEX agent and extends it considering not only the
current bird while selecting a target but also the next one. To do this it compares
the damage probability of an object for the current bird and the next one, if the
next bird can cause more damage on the target than the current one, the target
is discarded. The authors believe that this small improvement will minimize the
Answer Sets such that it gets closer to people choices and, thus, allow the agent to
achieve good scores.37

As for the original goal of Angry-HEX, even though from the benchmarks and the res-
ults of the competitions our approach seems quite effective and general, we further
identified several aspects in which Angry-HEX can be improved. Most importantly,
we aim at introducing the planning of multiple shots based on the order of birds
that must be shot (it is worth remembering that the type and number of birds, as
well as the order the player have to shoot them, is given at the beginning of each
level); we think that this might prove to be useful especially when dealing with
complex levels. A more accurate study of the interaction between objects, and a
more detailed implementation of the different shapes of the objects are also under
consideration. Clearly, we aim to not affect much reasoning time when introducing
these improvements.

35https://github.com/DeMaCS-UNICAL/Angry-HEX/blob/master/LICENSE
36https://demacs-unical.github.io/Angry-HEX
37From [159]

204 Chapter 4 Logic and AI in Games

https://github.com/DeMaCS-UNICAL/Angry-HEX/blob/master/LICENSE
https://github.com/DeMaCS-UNICAL/Angry-HEX
https://demacs-unical.github.io/Angry-HEX
https://github.com/DeMaCS-UNICAL/Angry-HEX/blob/master/LICENSE
https://demacs-unical.github.io/Angry-HEX

4.5 Other Game’s AIs experiments

In this section, we present some experiments related to Games and Artificial Intel-
ligence conducted in order to investigate further ideas and strategies in alternative
environments.

4.5.1 A full native ASP-based Android App:
GuessAndCheckers38

GuessAndCheckers is a native mobile application that works as a helper for players
of a “live” game of the Italian checkers (i.e., with a physical board and pieces).
By means of the device camera, a picture of the board is taken, and the informa-
tion about the current status of the game is translated into facts that, thanks to an
ASP-based Artificial Intelligence module, make the app suggest a move. The app
is well-suited to assess applicability of ASP in the mobile context; indeed, while
integrating well-established Android™ technologies39, thanks to ASP, it features a
fully-declarative approach that eases the development, the improvement of differ-
ent strategies and also experimenting with combinations thereof.

GuessAndCheckers is a native mobile application which has been designed and imple-
mented by means of the specialization of EMBASP for DLV on Android discussed in
Section 5.2. It works as a helper for users that play “live” games of the Italian check-
ers (i.e., by means of physical board and pieces); it has been initially developed for
educational purposes. The app, that runs on Android, can help a player at any time;
by means of the device camera a picture of the physical board is taken: the inform-
ation about the current status of the game is properly inferred from the picture
by means of a Vision Module which relies on OpenCV40, an open source computer
vision and machine learning software.

A proper ASP representation of the state of the board is created, and eventually, an
ASP-based reasoning module suggests the move. It is worth to remember that the
declarative approach to KR&R supported by ASP it is significantly different from a
“classic” algorithmic approach. Basically, besides solid theoretical bases that lead
to declarative specifications which are already executable, there is no need for al-
gorithm design or coding, and easy means for explicitly encoding the knowledge of
an expert of the domain. We refer the reader to the material available online [131],

38From F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘Boosting the Develop-
ment of ASP-Based Applications in Mobile and General Scenarios’. In: Proceedings of AI*IA 2016,
pp. 223–236. DOI: 10.1007/978-3-319-49130-1_17.

39https://developer.android.com
40http://opencv.org

4.5 Other Game’s AIs experiments 205

https://developer.android.com
http://opencv.org
https://doi.org/10.1007/978-3-319-49130-1_17
https://developer.android.com
http://opencv.org

Figure 4.10.: Screenshots from the GuessAndCheckers app: recognized board and sugges-
ted move for the black.

including full encodings, for more information; in the following, we will illustrate
how we mixed them in order to obtain the artificial prompter. The goal was to
avoid ad-hoc behaviours for each situation and develop a strategy which turns to
be “good” in general. The strategy has been tuned via careful studies and a sig-
nificant amount of experimental activities. It consists of several rules that can be
defined as well-known by a human expert of the domain; they have been evaluated
and then filtered out from a large set of hints, thus constituting a real Knowledge
Base of good practices for real checkers players.

The fully-declarative approach of ASP made easy to define and implement such
Knowledge Base; furthermore, it was possible to develop and improve several differ-
ent strategies, also experimenting with many combinations thereof.

The reasoning module consists of a Manager, developed in Java, that does not have
decision-making powers; instead, it is in charge of setting up different ASP logic
programs (i.e. builds and selects the ASP program to be executed at a given time)
and makes use of EMBASP to communicate with DLV. At first, an ASP program
(the Capturing Program) is invoked to check if captures are possible; if a possible
capturing move is found, the Capturing Program provides the cells of the “jump(s)”,
the kind of captured pieces and the order of the capture; another logic program
is then invoked to select the best move (note that each piece can capture many
opponent pieces in one step). A graph-based representation of the board is used,
along with a set of rules of the Italian checkers:

a) capture the maximum number of pieces
(observing the rule “If a player is faced with the prospect of choosing which
captures to make, the first and foremost rule to obey is to capture the greatest
number of pieces”);

b) capture with a king
(observing the rule “If a player may capture an equal number of pieces with
either a man or king, he must do so with the king”);

206 Chapter 4 Logic and AI in Games

c) if more than one capture are still available, choose the one having the lowest
quantity of men pieces
(observing the rule “If a player may capture an equal number of pieces with a
king, in which one or more options contain a number of kings, he must capture
the greatest number of kings possible”)

d) finally, if the previous constraints have not succeeded in filtering out only one
capturing, select those captures where a king occurs first
(observing the rule “If a player may capture an equal number of pieces (each
series containing a king) with a king, he must capture wherever the king occurs
first”)

On the other hand, if no captures are possible, a different logic program (the All
Moves Program) is invoked to find all the legal moves for a player (each Answer Set,
here, represents a legal move). When more than one move can be performed (i.e.,
there are no mandatory moves), another logic program (Best Game Configuration
Program) is invoked. Unlike the other programs, that only implement mandatory
actions, the Best Game Configuration Program implements the actual strategy of our
checkers prompter. The logic rules perform a reasoning task over the chequerboard
configurations, and the best one is chosen by means of weak constraints.

The strategy of the Best Game Configuration Program is mainly based on the well-
known strategic rule: “pieces must move in a compact formation, strongly connected
to its own king-row with well-guarded higher pawns”. More in detail, our reasoner
guarantees that the user can move its pawns without overbalancing its formation.
Pawns attack moderately, trying to remain as compact as possible, preserving at
the same time a good defence of its own king row: technically, a fully guarded
back rank (roughly speaking, prevent the opponent from getting kings unless she
sacrifices some pieces).

The availability of DLV brought to Android via EMBASP allowed us to take great
advantage from the declarative KR&R capabilities of ASP; indeed, as already men-
tioned, we experimented with different logic programs, in order to find a version
which plays “smartly”, yet spending an acceptable (from the point of view of a typ-
ical human player) time while reasoning. We think of the design of the AI as the
most interesting part of the app; we have been able to “implement” some classic
strategies, a task that is typically not straightforward when dealing with the imper-
ative programming, in a rather simple and intuitive way. Moreover, we had the
chance to test the AI without the need for rebuilding the application each time we
made an update, thus observing “on the fly” the impact of changes: this constitutes
one of the most interesting features granted by the explicit Knowledge Representa-
tion.

4.5 Other Game’s AIs experiments 207

Even if we know that the English draughts (Checkers) game was (weakly) solved
a few years ago [513], i.e. from the standard starting position, perfect play by
both sides leads to a draw. But this game has roughly 500 billion billion possible
positions (5 × 1020). The task of solving the game, determining the final result in
a game with no mistakes made by either player, is daunting. Since 1989, almost
continuously, dozens of computers have been working on solving checkers, applying
state-of-the-art Artificial Intelligence techniques to the proving process. This is the
most challenging popular game to be solved to date, roughly one million times as
complex as Connect Four.41

Therefore, we were not interested in solving exactly the game or in building a
prompter able to suggest the perfect move to the user but in demonstrating how
Logic Programming can be effectively used to define some well-known AI strategies
and how easily they can be implemented, extended and tested using the EMBASP
framework. For this reason, we first implemented a basic strategy based on the
Italian Checkers Federations good practices, and then we improved it, adding look-
ahead and finding the best combinations of empirical rules that can lead to “good
suggestions”. Thanks to the declarative nature of our approach, the modifications
of our strategy and the integration of different ideas was straightforward.

We performed an extensive set of tests in order to find the right balance between
the “quality” of the suggestions and the time required to compute them, being able
to reach a good compromise.

GuessAndCheckers was part of a bachelor thesis work and its source code, along with
the APK and the benchmark results, are available online at

https://www.mat.unical.it/calimeri/projects/embasp/#Applications

4.5.2 UniCraft: a modular StarCraft agent42

UniCraft is an artificial agent (a bot) that is able to play the popular real-time
strategy (RTS) game StarCraft: Brood War43. The aim of the project was to explore
different AI techniques in the context of RTS games.

Real-time strategy (RTS) games represent a genre of video games in which play-
ers must manage economic tasks like gathering resources or building new bases,
increase their military power by researching new technologies and training units,
and lead them into battle against their opponent(s). RTS games serve as an in-

41From [513]
42Preliminary definitions adapted from [539]
43http://eu.blizzard.com/en-gb/games/sc

208 Chapter 4 Logic and AI in Games

https://www.mat.unical.it/calimeri/projects/embasp/#Applications
http://eu.blizzard.com/en-gb/games/sc
http://eu.blizzard.com/en-gb/games/sc

teresting domain for Artificial Intelligence (AI) research, since they represent well-
defined complex adversarial systems [113] which pose a number of interesting AI
challenges in the areas of planning, learning, spatial/temporal reasoning, domain
knowledge exploitation, task decomposition and dealing with uncertainty [454].
One of the main sources of uncertainty in RTS games is their adversarial nature.
Since players do not possess an exact knowledge about the actions that their op-
ponent will execute, they need to build a reasonable representation of possible
alternatives and their likelihood. Various problems related to uncertainty and op-
ponent behaviour prediction in RTS games have already been addressed in recent
years [454].

StarCraft is a real-time strategy video game developed by Blizzard Entertainment in
1998 that still has great global following. StarCraft: Brood War is an expansion set
for StarCraft released in the same year (from this moment, every time StarCraft will
be mentioned, we will refer to such expansion). In StarCraft, there are three play-
able races: Terran, Zerg and Protoss. Each race has unique properties and abilities.
There are different game modes. We mainly considered the 1vs1 mode in which a
player (human or bot) fights against another player (human or bot). The aim of
the game is the expansion of the own colony and the destruction of the opponent
one.

As mentioned above, there are many competitions related to the StarCraft game
and a huge quantity of research papers have been written out about this game44.
Moreover, a free and open source framework, the Brood War Application Program-
ming Interface (BWAPI)45, to interact with the game has been developed during the
years by many people, and also some universities were involved in it46. BWAPI is
used in many different competitions47 and allows users to create AI agents that play
the game. BWAPI only reveals the visible parts of the game state to AI modules by
default. Information on units that have gone back into the fog of war is denied to
the AI. This enables programmers to write competitive non-cheating AIs that must
plan and operate under partial information conditions. BWAPI also denies user in-
put by default, ensuring the user cannot take control of game units while the AI is
playing.48

During the UniCraft project we explored some popular AI techniques and performed
many experiments in order to understand well how they can interact and we envis-
aged the idea of combining Logic Programming with these techniques. In order to
be able to plug and combine different techniques we first developed a general Uni-

44https://github.com/bwapi/bwapi/wiki/Academics#papersdissertationsreportsprojectsetc
45http://bwapi.github.io
46https://github.com/bwapi/bwapi/wiki/Academics#universities-involved-with-bwapi
47http://bwapi.github.io/#competition
48From http://bwapi.github.io

4.5 Other Game’s AIs experiments 209

http://bwapi.github.io
http://bwapi.github.io
https://github.com/bwapi/bwapi/wiki/Academics#papersdissertationsreportsprojectsetc
http://bwapi.github.io
https://github.com/bwapi/bwapi/wiki/Academics#universities-involved-with-bwapi
http://bwapi.github.io/#competition
http://bwapi.github.io

Strategy

Tactic

KnowledgeBase

S_1 S_N...

T_1 T_N...

Tactic
Collect-Resources

Tactic
Attack-Enemy

...

Figure 4.11.: Schematic Architecture of the UniCraft bot.

Craft bot, structuring it in a modular way using an architecture based on a similar
idea to the one of Angry-HEX.

We divided the agent into a Tactical part and a Strategic part and both of them
have access to a Knowledge Base. The Strategic part is the brain of UniCraft. It
decides what to do in every game frame. The Tactical part decides how to perform a
specific task (like collecting resources, constructing buildings, creating or updating
units, etc.). The Knowledge Base stores some game information that BWAPI does
not provide (like the exact number of a specific kind of unit, etc.).

They are built in such a way they are independently and they can be easily exten-
ded, so it is very straightforward to add new behaviours, as can be grasped by the
Architecture of the UniCraft bot, shown in schematic form in Figure 4.11.

We examined some AI techniques that are popular and successful in the video
games’ context, like Behavior Tree (BT) and Goal-Oriented Action Planning (GOAP).

As mentioned in [153], a Behavior Tree (BT) is a way to structure the switching
between different tasks49 in an autonomous agent, such as a robot or a virtual entity
in a computer game. BTs are a very efficient way of creating complex systems that
are both modular and reactive. These properties are crucial in many applications,
which has led to the spread of BT from computer game programming to many
branches of AI and Robotics. They have been extensively used in high-profile video
games such as Halo, Bioshock and Spore.

49assuming that an activity can somehow be broken down into reusable sub-activities called tasks
sometimes also denoted actions or control modes

210 Chapter 4 Logic and AI in Games

As mentioned in [458], Goal-Oriented Action Planning (GOAP) is a decision-making
architecture that takes the next step and allows characters to decide not only what
to do, but how to do it. A character that formulates his own plan to satisfy his goals
exhibits less repetitive, predictable behaviour, and can adapt his actions to custom
fit his current situation. In addition, the structured nature of a GOAP architecture
facilitates authoring, maintaining, and re-using behaviours. Many popular games
architectures are based on GOAP, such as F.E.A.R., Fallout 3 and Deus Ex: Human
Revolution.

We compared and implemented these techniques and we performed some tests in
order to evaluate our bot.

UniCraft was part of a bachelor thesis work and its source code, along with the
implementations of some techniques used and some examples of the AI modules
developed, are available online at

https://github.com/ayfrank/UniCraft

4.5.3 Discussion

These experiments gave us many insights on the relation between AI and games
and allowed us to learn that often the combination of different techniques can lead
to very interesting achievements.

We saw how a fully-declarative approach can be useful to define different strategies
and easily utilize them, and how a well-defined structure can help to test multiple
techniques in a straightforward way. This allows to have prototypes quickly but also
to try various ideas and to compare and combine them effortlessly.

Moreover, they show that frameworks are often useful in order to simplify the de-
velopment of AI-based solutions. The development of such a base working platform
for intelligent agents is one of the goals of the Angry-HEX project, in particular the
creation of a modular architecture, based on the popular Tactics/Strategy division
of responsibilities, which should allow anyone who would like to try to develop (or
improve) an agent to do it by simply integrating their own component.
Further information on the development of specific solutions in order to facilitate
the adoption and the usage of Logic Programming are provided in Chapter 5.

4.5 Other Game’s AIs experiments 211

https://github.com/ayfrank/UniCraft

Wrap-up

In this chapter we illustrated how Logic Programming combined with other AI tech-
niques can be very effective in the Intelligent Agents and Games field. In order to
prove this, we illustrated some experiences in this field along with their results that
confirm how the Knowledge Representation and Reasoning capabilities of logic-based
formalism can be exploited in this context.
It is worth noticing that some of the investigations reported in this chapter have
been conducted inside the international joint project Angry-HEX with researchers
from Università della Calabria (UNICAL50), Technische Universität Wien (TUWIEN51),
Marmara University (MARMARA52), and Max Planck Institut für Informatik (MPI53).

On the basis of the information provided in this and in the previous chapters, it
is evident that proper tools solutions to support the development of logic-based
products are needed. In the next chapter we report some proposals we made in
order to help this.

50http://www.mat.unical.it
51http://www.kr.tuwien.ac.at
52http://www.knowlp.com
53http://www.mpi-inf.mpg.de/departments/databases-and-information-systems

212 Chapter 4 Logic and AI in Games

http://www.mat.unical.it
http://www.kr.tuwien.ac.at
http://www.knowlp.com
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems
http://www.mat.unical.it
http://www.kr.tuwien.ac.at
http://www.knowlp.com
http://www.mpi-inf.mpg.de/departments/databases-and-information-systems

5Streamlining the use of Logic
Programming

“ It’s the stuff you leave out that matters. So
constantly look for things to remove, simplify, and
streamline. Be a curator. Stick to what’s truly
essential. Pare things down until you’re left with
only the most important stuff.

— Jason Fried
(ReWork)

Summary of Chapter 5

There are many reasons why, for some tasks and applications, Logic Program-
ming should be preferred over other paradigms [54, 343, 385, 386, 413],
however often is quite difficult to integrate it into a project (that usually uses
also other formalisms) or to set-up everything needed in order to effectively
run logic solvers, especially in emerging platforms, such as smartphones.

We are convinced that only if proper (i.e. reliable and easy-to-use) frame-
works and tools are available, a formalism will be successful and employed
by the users. Therefore, we decided to investigate new approaches that could
make easier and more productive the use of the Logic Programming paradigm.

In this chapter, after a very brief introduction on the traditional problem of
use and diffusion of Logic Programming, we present (in Sections 5.2 and 5.3)
two projects we worked on, namely EMBASP and LoIDE, which have as their
purpose, among others, the simplification and the spreading of logic-based
formalisms.

Chapter Outline

5.1. Motivation and Challenges . 214
5.2. EMBASP: a general framework for embedding Logic Program-

ming in complex systems . 216
5.3. LoIDE: a web-based IDE for Logic Programming 241

213

5.1 Motivation and Challenges

5.1.1 Streamlining the use of Logic Programming: why it is
important1

A programming paradigm, in order to be successful, has to be complemented by ap-
propriate “solutions and tools” that ensure interoperability, facilitate development
and allow for low prototyping and production time. Those functionalities could
seem to play only an ancillary role, but, in practice, they are useful in order to
productively use a specific paradigm. Moreover, the distinctive characteristics and
requirements of each programming paradigm, most of the times, do not allow the
use of the tools and solutions from other paradigms because often they have com-
pletely different approaches and they need tailored solutions; for this reason, their
design and development are not straightforward.

The availability of efficient solvers makes Logic Programming a valuable tool for
many computationally intensive real-world applications. Effective large-scale soft-
ware engineering requires infrastructure that includes advanced editors, debuggers,
etc. These tools are usually collected in Integrated Development Environments (IDEs)
that ease the accomplishment of various programming tasks by both novice and
skilled software developers.

Logic Programming languages are not full general-purpose languages; thus, logic
programs are eventually embedded in software components developed in different
imperative/object-oriented programming languages. Current IDEs for Logic Pro-
gramming provide clear advantages for developers but are not enough to enable
assisted development of full-fledged industry-level applications (as examples [292,
501]).

Moreover, the development of Application Programming Interfaces (APIs), which of-
fer methods for interacting with a Logic Programming system from an embedding
program, is a necessary step in accommodating the use of logic-based solutions
within large software frameworks common in the modern, highly technological
world.

1Preliminary definitions adapted from [372]

214 Chapter 5 Streamlining the use of Logic Programming

5.1.2 Challenges in streamlining the use of Logic
Programming

The number of specific “solutions and tools” developed for the Logic Programming
paradigm is not very large, therefore many different design and engineering issues
still need to be faced.

For instance, some Logic Programming languages do not have a standard output
format and most of the logic solvers have different interfaces (there are no standard
API like the ODBC standard of DataBase Management Systems), therefore it is not
easy to work with different systems or to build applications that can work with
different engines and easily switch from one to the other.

Moreover, unlike other paradigms, is not even clear what features development
tool for Logic Programming should have, especially in the case of cloud solutions.
The choice of the data-interchange language or the communication protocol is not
obvious; for instance, it should be considered that often the amount of time required
by the solver is much higher than the communication time but sometimes we want
to process huge amount of data and therefore more efficient and scalable solutions
are needed.

Furthermore, the unique features of this paradigm, such as declarativity, do not al-
low to easily adapt existing approaches developed for other programming paradigms.

5.1 Motivation and Challenges 215

5.2 a general framework for embedding
Logic Programming in complex systems2

EMBASP is a framework for the integration of logic formalisms in external systems
for generic applications; it consists of a general and abstract architecture, imple-
mentable in a programming language of choice, that easily allows for proper spe-
cializations to different platforms and solvers.

Available solvers for Logic Programming feature different usability, ranging from
a complete “black-box” approach to more “white-box” oriented proposals, and as
long as the number of applications grows, the need for proper tools and interoper-
ability mechanisms arises, for easing the development of logic-based applications in
real-world contexts. Indeed, instead of from-scratch implementations of the sophist-
icated solving techniques featured by such solvers, or ex-novo suitable mechanisms
for enabling their external executions, proper ready-to-use and reliable tools for
embedding those efficient systems would greatly ease the development of general
applications relying on Logic Programming for reasoning tasks.

In its earlier versions [130, 233], EMBASP was mainly tailored on ASP; hereafter,
we show how the framework has been generalized for enabling the embedding of
further logic formalisms, far beyond those similar to ASP, such as Datalog. Indeed,
thanks to the general and abstract principles that guided the design of EMBASP, we
also easily extended it supporting the PDDL planning language.

Furthermore, we developed an actual Java implementation that has been special-
ized in order to permit the embedding of ASP and PDDL logic modules into Desktop
and mobile applications, making use of a wide range of solvers.
In particular, we produced six specialized libraries allowing the embedding of the
ASP solvers DLV, clingo and DLV2 and the PDDL Solver.Planning.Domains [436] solver
on Desktop platform. Moreover, DLV and Solver.Planning.Domains are also available
on Android.

2From F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘Boosting the Develop-
ment of ASP-Based Applications in Mobile and General Scenarios’. In: Proceedings of AI*IA 2016,
pp. 223–236. DOI: 10.1007/978-3-319-49130-1_17.

And F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘Embedding ASP in
mobile systems: discussion and preliminary implementations’. In: Proceedings of ASPOCP 2015,
workshop of ICLP.

And F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘A framework for easing
the development of applications embedding answer set programming’. In: J. Exp. Theor. Artif.
Intell. (2017). Submitted.

And D. Fuscà, S. Germano, J. Zangari, M. Anastasio, F. Calimeri and S. Perri. ‘A
framework for easing the development of applications embedding answer set programming’. In:
Proceedings of PPDP 2016, pp. 38–49. DOI: 10.1145/2967973.2968594.

216 Chapter 5 Streamlining the use of Logic Programming

https://doi.org/10.1007/978-3-319-49130-1_17
https://doi.org/10.1145/2967973.2968594

Recently we provided also a Python implementation of the EMBASP framework that
contains exactly the same functionalities of the Java one, apart from the specializa-
tions for Android due to restriction of the platform3. This clearly shows the extens-
ibility of our approach, further discussions on this can be found in Section 5.2.5. In
the following, we will discuss mainly the Java implementation, since both imple-
mentations contain the same functionalities and they are organized with the same
structure.

The framework features explicit mechanisms for translations between strings and
objects in the programming language at hand, directly employable within applica-
tions. This gives developers the possibility to work separately on logic-based mod-
ules and on applications that make use of them and keeps things simple when
developing complex applications. Let us think, for instance, of a scenario in which
different stakeholders are involved, such as Android/Java developers and KR&R ex-
perts. Both figures can take advantage of the fact that the Knowledge Base and the
reasoning modules can be designed and developed independently from the rest of
the Java-based application.

The EMBASP project and its history are extensively described in [232]. Here we
mostly focus on new extensions and new implementations of the Framework.

5.2.1 The Framework

In this section we present the EMBASP framework, focusing on the support for
two logic formalisms, namely ASP and PDDL. We start by describing the abstract
architecture, then we provide details about the aforementioned specializations, and
propose an actual Java implementation.

The general architecture of EMBASP is depicted in Figure 5.1: it is intended as an
abstract framework to be implemented in some object-oriented programming lan-
guage. In addition, this architecture can be specialized for different platforms, logic
languages and solvers. In the figure, white blocks depict the abstract components,
while dark-grey ones represent the modules more closely related to the proposed
specializations. According to its abstract nature, Figure 5.1 reports general depend-
encies among the main modules. Notably, each concrete implementation might
require specific dependencies among the inner components of each module, as can
be observed in Figure 5.2, which is related to a concrete Java implementation and
will be discussed hereafter.

3Android applications can be written only in Java (with some parts in C/C++), and since a couple
of months also in Kotlin

5.2 embASP: a general framework for embedding Logic Programming in complex systems 217

SPECIALIZED LIBRARIES

PLATFORMS

Android
Handler

Android
Service

Desktop
Handler

Desktop
Service

SYSTEMS

CORE

Handler Service Input Program
Option

Descriptor
CallbackOutput

Mapper

ASP
InputProgram

AnswerSet

AnswerSets

ASP Mapper

PDDL
InputProgram

Action

Plan

PDDL
Mapper

DLV
AnswerSets

DLVFilter

Clingo
AnswerSets

DLV Android
Service

Clingo Desktop
Service

DLV2 Desktop
Service

DLV Desktop
Service

SPD Desktop
Service

SPD Android
Service

DLV2
AnswerSets

SPD Plan

Figure 5.1.: A visual overview of EMBASP: the abstract Framework, and the proposed Spe-
cialized Libraries.. Darker blocks are related to the proposed specializations.

It is worth noting that the framework design is intended to ease and guide the
generation of suitable libraries for the use of specific logic-based systems on partic-
ular platforms; resulting applications manage such systems as “black boxes”. Even
though issues might arise from users demanding for a more interactive white-box
usage, this allows keeping a clean design that grants an intuitive usage and an archi-
tecture which is general and easily adaptable to different platforms, reasoners and
languages. The resulting libraries can hence be used in order to effectively embed
logic reasoning modules, handled by the logic system(s) at hand, within any kind of
application developed for the targeted platforms. In addition, as already discussed
above, the framework is meant to give developers the possibility to work separ-
ately on logic-based modules and on the applications that make use of them, thus
keeping things simple when developing complex applications. Additional specific
advantages/disadvantages might arise depending on the programming language
chosen for deploying libraries and on the target platform; special features, indeed,
can make implementation, and in turn extensions and usage, easier or more diffi-
cult, to different extents.

218 Chapter 5 Streamlining the use of Logic Programming

Abstract Architecture

The framework architecture has been designed by means of four modules: Core,
Platforms, Languages, and Systems, whose indented behaviour is described next. In
the following, we denote with “solver” a logic-based system that is meant to be used
by external application with the help of EMBASP.

Core Module The Core module defines the basic components of the Framework.
The Handler component mediates the communication between the Framework and
the user who can provide it with the input program(s) via the component Input Pro-
gram, along with any desired solver’s option(s) via the component Option Descriptor.
A Service component is meant for managing the chosen solver executions.
Two different execution modes can be made available: synchronous or asynchro-
nous. While in the synchronous mode any call to the execution of the solver is
blocking (i.e., the caller waits until the reasoning task is completed), in asynchro-
nous mode the call is non-blocking: a Callback component notifies the caller once
the reasoning task is completed. The result of the execution (i.e., the output of the
logic system) is handled by the Output component, in both modes.

Platforms Module The Platforms module is meant for containing what is platform-
dependent; in particular, the Handler and Service components from the Core module
that should be adapted according to the platform at hand, since they take care of
practically launching solvers.

Languages Module The Languages module defines specific facilities for each sup-
ported logic language.
The generic Mapper component is conceived as a utility for managing input and
output via objects, if the programming language at hand permits it.
The sub-module ASP comprises components such as ASPInputProgram that adapts
Input Program to the ASP case, while AnswerSet and AnswerSets represent the Out-
put for ASP. Moreover, the ASPMapper allows the management of ASP input facts
and Answer Sets via objects.
Similarly, the sub-module PDDL includes PDDLInputProgram, Action, Plan and PDDL-
Mapper.

Systems Module The Systems module defines what is system-dependent; in par-
ticular, the Input Program, Output and Option Descriptor components from the Core
module should be adapted in order to effectively interact with the solver at hand.

5.2 embASP: a general framework for embedding Logic Programming in complex systems 219

Output

AnswerSetsAnswerSet

ClingoAnswerSets

DLVAnswerSets

<<Interface>>

Callback

<<Interface>>

Service

AndroidServiceDesktopService

DLVAndroidServiceDLVDesktopServiceClingoDesktopService

InputProgram

ASPMapper

ASPInputProgram

Handler

DesktopHandler AndroidHandler

OptionDescriptor

DlvFilterOption

Mapper

Plan Action

PDDLMapper

PDDLInputProgram

DLV2AnswerSets

SPDPlan

DLV2DesktopService SPDAndroidServiceSPDDesktopService

Figure 5.2.: Simplified class diagram of the provided Java implementation of EMBASP.

Implementing embASP

In the following, we propose a Java4 implementation of the architecture described
above. Besides the implementation of the framework itself, proper specialized lib-
raries have been implemented.

In particular, for ASP, we implemented the main modules by means of classes or
interfaces, and four specialized libraries that permit the use of DLV (ver. 12-17-
2012) on Android5 and the use of clingo on Desktop: different versions of clingo
for several desktop OS’s are already available online [264, 476]. In addition, it has
been embedded the recently released DLV2, a completely renewed version of DLV,
that combines the ASP grounder I-DLV and the WASP solver; at the time of writing,
DLV2 binaries are available for the Linux OS.

As for PDDL, we implemented a specialized library allowing the usage of the light-
weight cloud PDDL solver, Solver.Planning.Domains, for any desktop platform and
for the Android mobile one.

Figure 5.2 provides some details about classes and interfaces of the implementation.
For the sake of presentation, we do not report the complete UML [577] class dia-

4https://www.oracle.com/java
5http://developer.android.com

220 Chapter 5 Streamlining the use of Logic Programming

https://www.oracle.com/java
http://developer.android.com
https://www.oracle.com/java
http://developer.android.com

gram, which is quite involved; rather, we illustrate a simplified version. Although
methods inside classes have been omitted to further improve readability, adopted
connectors follow UML syntax. In order to better outline correspondences with
the abstract architecture of Figure 5.1, classes belonging to a module have been
grouped together.

Core module implementation
Each component in the Core module has been implemented by means of a hom-
onymous class or interface. In particular, the Handler class collects InputProgram
and OptionDescriptor objects communicated by the user.

For what the asynchronous mode is concerned, the class Service depends on the
interface Callback, since once the reasoning service has terminated, the result of
the computation is returned via a class Callback.

Platforms module implementation
In order to support a new platform, the Handler and Service components must be
adapted.

As for the Android platform, we developed an AndroidHandler that handles the
execution of an AndroidService, which provides facilities to manage the execution
of an ASP reasoner on the Android platform.

Similarly, for the desktop platform we developed a DesktopHandler that handles
the execution of a DesktopService, which generalizes the usage of an ASP reasoner
on the desktop platform, allowing both synchronous and asynchronous execution
modes.

While both synchronous and asynchronous modes are provided in the desktop set-
ting, we stick to the asynchronous one on Android: indeed, mobile users are familiar
with apps featuring constantly reactive graphic interfaces, and according to this nat-
ive asynchronous execution policy, we want to discourage a blocking execution.

Languages module implementation
This module includes specific classes for the management of input and output to
ASP and PDDL solvers.

The Mapper component of the Languages module is implemented via a Mapper class,
that allows translating input and output into Java objects. Such translations are
guided by Java Annotations6, a form of metadata that marks Java code and provide

6https://docs.oracle.com/javase/tutorial/java/annotations

5.2 embASP: a general framework for embedding Logic Programming in complex systems 221

https://docs.oracle.com/javase/tutorial/java/annotations
https://docs.oracle.com/javase/tutorial/java/annotations

information that is not part of the program itself: they have no direct effect on
the operation of the code they annotate. They have a number of uses, such as dir-
ections to the compiler, compile-time and deployment-time processing, or runtime
processing. For more details, we refer the reader to the Java documentation.

In our setting, we make use of such feature so that it is possible to translate input
and output into strings and vice-versa via two custom annotations, defined accord-
ing to the following syntax:

@Id(string_name) the target must be a class;

@Param(integer_position) the target must be a field of a class annotated via @Id.

In particular, for ASP @Id represents the predicate name of a ground atom that
can appear as input (fact) or output (within the returned Answer Set (s)), while
fields annotated with @Param define the terms and their positions in such atom. For
PDDL, @Id identifies the name of an action appearing in the output plan, and fields
annotated with @Param represent the action parameters and their positions. The
mapping support is fully enabled over input and output for ASP, while input it is
not fully supported yet for PDDL, and will be completed with next releases.

By means of the Java Reflection mechanisms, annotations are examined at runtime,
and taken into account to properly define the translation.

The user has to register all its annotated classes to the Mapper, although classes
involved in input translation are automatically detected. If the classes intended to
translate are not annotated or not correctly annotated, an exception is raised. Other
problems might occur if once that the solver output is returned, the user asks for
a translation into objects of not annotated classes: in this case, a warning is raised
and the request is ignored.

The Mapper in Python. The only notable difference between the Java and the
Python implementations is in the Mapper component due to the absence in Python
of a mechanism similar to the Java Annotations. For this reason, using a mechanism
similar to the one described in Section 5.2.5, we implemented a Predicate abstract
class to help the mapping of the objects.7

To make possible the translation of facts into strings and vice-versa, the abstract
class Predicate have to be extended including the following information:

predicateName="string_name" a class field that contains the predicate name (in
the ASP case) or the action name (in the PDDL case) to map;

7It is worth noticing that it is not something “extra” of the Python version, also in the Java version
we have to declare and implement the two Annotations.

222 Chapter 5 Streamlining the use of Logic Programming

[("class_field_name_1", int), ("class_field_name_2"), ...] a list for the
constructor that must contain, for each class field, one tuple with the field
name, sorted by the position of the terms they represent, and optionally the
keyword int if the field represents an integer number.

Thanks to the structure of the Predicate class, this information is passed to the
Mapper class, to correctly perform the translation mechanism. If the classes inten-
ded to translate do not contain the required information, an exception is raised.

Notably, such feature is meant to give developers the possibility to work separ-
ately on the logic-based modules and on the Java/Python side. The mapper acts
like a middleware that enables the communication among the modules and eases
the burden of developers by means of an explicit, ready-made mapping between
Java/Python objects and the logic modules.

Further insights about this feature are illustrated in the next section by means of
some EMBASP use cases.

In addition to the Mapper, the Languages module features two sub-modules which
are more strictly related to ASP and PDDL, respectively.

ASPInputProgram extends InputProgram to the ASP case. In addition, since the
“result” of an ASP solver execution consists of Answer Sets, the Output class has
been extended by the AnswerSets class that is composed by a set of AnswerSet
objects. Moreover, the ASP sub-module features an ASPMapper class, that acts like a
translator, providing proper means for a two-way translation between strings recog-
nizable by the ASP solver at hand and Java objects directly employable within the
application. The ASPMapper is intended for translating ASP input and output from
and to objects: thus has a dependency from ASPInputProgram and AnswerSets
classes.

In the PDDL sub-module, PDDLInputProgram extends InputProgram to the PDDL
case. It is worth to notice that PDDL solvers typically require a clear distinction
between the domain and the problem definitions. Hence, when specifying a new
PDDLInputProgram the user has to clarify whether it is intended to be the do-
main or the problem part: it is not allowed to provide both parts in the same
PDDLInputProgram. Moreover, Action and Plan represent the output of a PDDL
solver: in particular, a Plan corresponds to a list of Action objects. The PDDLMapper
implements the Mapper facilities, and depends on Plan, as it allows translating
PDDL outputs in Java objects.

5.2 embASP: a general framework for embedding Logic Programming in complex systems 223

Systems Module Implementation
The classes DLVAnswerSets, ClingoAnswerSets, DLV2AnswerSets and SPDPlan im-
plement specific extensions of the AnswerSets or Plan classes, in charge of manip-
ulating the output of the respective solvers.

Moreover, this module can contain classes extending OptionDescriptor to imple-
ment specific options of the solver at hand. For instance, the class DLVFilter is a
utility class representing the filter option of DLV.

Specializing the Framework

We implemented six libraries derived from EMBASP, allowing the embedding of ASP
and PDDL reasoning modules. In the ASP case, these computations are handled
by DLV (ver. 12-17-2012) from within Android and Desktop apps, and by DLV2

and clingo inside standalone Desktop applications; in the PDDL case, the reason-
ing can be performed both on Android and Desktop platforms by means of the
Solver.Planning.Domains solver.

The class DLVAndroidService is in charge of offering ASP reasoning on Android,
while the DLVDesktopService, ClingoDesktopService and DLV2DesktopService
classes offer the same support on the Desktop platform.

DLVAndroidService is a specific version of AndroidService for the execution of
DLV on Android. It is worth noting that DLV was not available for Android; further-
more, it is natively implemented in C++, while the standard development process
on Android is based on Java. To this end, DLV has been on purpose rebuilt using the
NDK (Native Development Kit)8, and has been linked to the Java code using the
JNI9. This grants the access to the APIs provided by the Android NDK and in turn
accedes to the DLV exposed functionalities directly from the Java code of an Android
application.

DLVDesktopService, ClingoDesktopService and DLV2DesktopService are spe-
cific versions tailored for the DLV, clingo and DLV2 reasoners, respectively, on the
desktop platform; they extend the DesktopService with proper functions needed
to invoke the embedded solver(s).

SPDDesktopService and SPDAndroidService are in charge of executing the solver
called Solver.Planning.Domains. In particular, the SPDDesktopService class per-
mits synchronous and asynchronous executions on every Desktop OS; while the
respective SPDAndroidService class allows just asynchronous executions on the

8https://developer.android.com/tools/sdk/ndk
9http://docs.oracle.com/javase/8/docs/technotes/guides/jni

224 Chapter 5 Streamlining the use of Logic Programming

https://developer.android.com/tools/sdk/ndk
http://docs.oracle.com/javase/8/docs/technotes/guides/jni
https://developer.android.com/tools/sdk/ndk
http://docs.oracle.com/javase/8/docs/technotes/guides/jni

Android platform. Notably, differently from embedded solvers (i.e DLV), due to the
fact that the solver is invoked in a cloud-based mode via HTTP requests, in both
classes it is employed without any platform-specific adaptation. Besides the fact
that on Android is only implemented the asynchronous mode, the main difference
between the two classes relies on the way input files are managed. In particular,
SPDAndroidService requires that all files are in the Android Resources folder, that
within Android applications, represent the standard way to store images, sounds,
files and resources in general10.

5.2.2 Using embASP for Embedding Logic Formalisms

In the following we show how to employ the aforementioned specialized Java lib-
raries generated via EMBASP for making use of ASP and PDDL from within actual
Java applications.

We first describe the development of an Android application based on ASP, for solv-
ing Sudoku puzzles; then, we present a Desktop application relying on PDDL for solv-
ing the blocks-world planning problem. For the sake of simplicity, both examples
will focus on the code related to the EMBASP usage; nonetheless, the complete code
is available online at

https://www.mat.unical.it/calimeri/projects/embasp

It is worth noting that, although the following example applications make use of one
formalism via one solver, EMBASP allows also to deploy applications that rely on
multiple logic formalisms and multiple solvers at once. One can think, for instance,
of a scenario where an application may choose to use a PDDL planning module
for some tasks, and an ASP reasoning module for others: these tasks might be
executed independently, or they might be interleaved or interact in different ways,
i.e, the output of a task could become the input of another one. Notably, thanks to
the annotation-guided mapping, the logic-based aspects can be separated from the
Java coding: the programmer does not even necessarily need to be aware of the
logic formalisms employed.

Eventually, we report some considerations about EMBASP implementation in differ-
ent programming languages alternative to Java.

Embedding ASP

Imagine that a user-designed (or has been given) a proper logic program P to solve
a Sudoku puzzle, and also that she has been provided with an initial schema which

10http://developer.android.com/guide/topics/resources

5.2 embASP: a general framework for embedding Logic Programming in complex systems 225

https://www.mat.unical.it/calimeri/projects/embasp
http://developer.android.com/guide/topics/resources

is meant to be solved. We assume that the initial schema is well-formed, i.e., the
complete schema solution exists and is unique. For instance, P can correspond to
the logic program presented in Section 1.3.4, so that, coupled with a set of facts F
representing the given initial schema, allows to obtain the only admissible solution
(i.e., a single Answer Set). It is worth remembering that, in case of less usual Sudoku
schemata featuring multiple solutions, the ASP program features multiple Answer
Sets, one-to-one corresponding to such solutions.

By means of the annotation-guided mapping, the initial schema can be expressed in
forms of Java objects. To this extent, we define the class Cell, aimed at representing
a single cell of the Sudoku schema, as follows:

1 @Id("cell")
2 public class Cell {
3
4 @Param (0)
5 private int row;
6
7 @Param (1)
8 private int column ;
9

10 @Param (2)
11 private int value ;
12
13 [...]
14
15 }

Listing 5.1: Definition of the annotated Cell class.

It is worth noticing how the class has been annotated by two custom annotations,
as introduced above. Thanks to these annotations the ASPMapper will be able to
map Cell objects into strings properly recognizable from the ASP solver as logic
facts of the form cell(Row,Column, V alue).

At this point, we can create an Android Activity Component11, and start deploy-
ing our Sudoku application:

1 public class MainActivity extends AppCompatActivity {
2
3 [...]
4 private Handler handler ;
5
6 @Override
7 protected void onCreate (Bundle bundle) {
8 handler = new AndroidHandler (getApplicationContext () ,
9 DLVAndroidService . class);

10 [...]
11 }
12
13 public void onClick (final View view){

11https://developer.android.com/reference/android/app/Activity.html

226 Chapter 5 Streamlining the use of Logic Programming

https://developer.android.com/reference/android/app/Activity.html
https://developer.android.com/reference/android/app/Activity.html

14 [...]
15 startReasoning ();
16 }
17
18 public void startReasoning () {
19 InputProgram inputProgram = new ASPInputProgram ();
20
21 for (int i = 0; i < 9; i++)
22 for (int j = 0; j < 9; j++)
23 try {
24 if(sudokuMatrix [i][j]!=0) {
25 inputProgram . addObjectInput (new Cell(i, j, sudokuMatrix [i][j

]));
26 }
27 } catch (Exception e) {
28 // Handle Exception
29 }
30
31 handler . addProgram (inputProgram);
32
33 String sudokuEncoding = getEncodingFromResources ();
34 handler . addProgram (new ASPInputProgram (sudokuEncoding));
35
36 Callback callback = new MyCallback ();
37 handler . startAsync (callback);
38 }
39 }

Listing 5.2: An example of an Android Activity for the Sudoku problem.

The class contains a Handler instance as field, that is initialized when the Activity
is created as an AndroidHandler. Required parameters include the Android Context
(an Android utility, needed to start an Android Service Component) and the type of
AndroidService to use – in our case, a DLVAndroidService. In addition, in order
to represent an initial Sudoku schema, the class features a matrix of integers as an-
other field where position (i, j) contains the value of cell (i, j) in the initial schema;
cells initially empty are represented by positions containing zero.

The method startReasoning is in charge of actually managing the reasoning: in
our case, it is invoked in response to a “click” event that is generated when the user
asks for the solution. Lines 19–31 create an InputProgram object that is filled with
Cell objects representing the initial schema, which is then served to the handler;
lines 33–34 provide it with the Sudoku encoding. It could be loaded, as it is common
on Android apps, by means of a utility function that retrieves it from the Android
Resources folder.

At this point, the reasoning process can start; since for Android we provide only the
asynchronous execution mode, a callback object is in charge of fetching the output
when the ASP system has done (lines 36–37).

5.2 embASP: a general framework for embedding Logic Programming in complex systems 227

Eventually, once the computation is over, from within the callback function the
output can be retrieved directly in form of Java objects. For instance, in our case an
inner class MyCallback implements the interface Callback:

1 private class MyCallback implements Callback {
2
3 @Override
4 public void callback (Output o) {
5 if (!(o instanceof AnswerSets))
6 return ;
7 AnswerSets answerSets = (AnswerSets)o;
8 if(answerSets . getAnswersets (). isEmpty ())
9 return ;

10 AnswerSet as = answerSets . getAnswersets ().get (0);
11 try {
12 for(Object obj:as. getAtoms ()) {
13 Cell cell = (Cell) obj;
14 sudokuMatrix [cell. getRow ()][cell. getColumn ()] = cell. getValue ();
15 }
16 } catch (Exception e) {
17 // Handle Exception
18 }
19 displaySolution ();
20 }
21
22 }

Listing 5.3: An example of how to implement the Callback interface.

Embedding PDDL

Let us consider the blocks-world problem definition, as reported in Section 1.4.2,
and suppose that we want to deploy a Desktop blocks-world application.

We will make use of the annotation-guided mapping, in order to retrieve the actions
constituting a PDDL plan via Java objects. To this purpose, the following classes
are intended to represent possible actions that a blocks-world solution plan can
feature:

1 @Id("pick -up")
2 public class PickUp {
3
4 @Param (0)
5 private String block ;
6
7 [...]
8
9 }

Listing 5.4: Definition of the annotated
PickUp class.

1 @Id("put -down")
2 public class PutDown {
3
4 @Param (0)
5 private String block ;
6
7 [...]
8
9 }

Listing 5.5: Definition of the annotated
PutDown class.

228 Chapter 5 Streamlining the use of Logic Programming

1 @Id(" stack ")
2 public class Stack {
3
4 @Param (0)
5 private String block1 ;
6
7 @Param (1)
8 private String block2 ;
9

10 [...]
11
12 }

Listing 5.6: Definition of the annotated
Stack class.

1 @Id(" unstack ")
2 public class Unstack {
3
4 @Param (0)
5 private String block1 ;
6
7 @Param (1)
8 private String block2 ;
9

10 [...]
11
12 }

Listing 5.7: Definition of the annotated
Unstack class.

At this point, supposing that we are given two files defining the blocks-world do-
main and a problem instance, we can start deploying our application:

1 public class Blocksworld {
2
3 private static String domainFileName = " domain .pddl";
4 private static String problemFileName = "p01.pddl";
5
6 public static void main(String [] args) {
7 Handler handler = new DesktopHandler (new SPDDesktopService ());
8
9 final InputProgram inputProgramDomain = new PDDLInputProgram (

PDDLProgramType . DOMAIN);
10 inputProgramDomain . addFilesPath (domainFileName);
11
12 final InputProgram inputProgramProblem = new PDDLInputProgram (

PDDLProgramType . PROBLEM);
13 inputProgramProblem . addFilesPath (problemFileName);
14
15 handler . addProgram (inputProgramDomain);
16 handler . addProgram (inputProgramProblem);
17
18 try {
19 PDDLMapper . getInstance (). registerClass (PickUp . class);
20 PDDLMapper . getInstance (). registerClass (PutDown . class);
21 PDDLMapper . getInstance (). registerClass (Stack . class);
22 PDDLMapper . getInstance (). registerClass (Unstack . class);
23
24 Plan plan = (Plan)(handler . startSync ());
25
26 for (final Object obj : plan. getActionsObjects ())
27 // Manage objects as needed
28
29 } catch (Exception e) {
30 // Handle Exception
31 }
32 }
33 }

Listing 5.8: An example of a Java application for the Blocksworld problem.

5.2 embASP: a general framework for embedding Logic Programming in complex systems 229

Line 7 creates a DesktopHandler object, to which a SPDDesktopService object is
given; indeed, we are deploying a Desktop application making use of the PDDL
solver Solver.Planning.Domains. Lines 9–16 set-up the input to the solver; since
PDDL requires separate definitions for domain and problem, two PDDLInputProgram
are created and then given to the handler. Lines 19–22 inform the PDDLMapper about
what classes are intended to map the output actions. Eventually, line 24 synchron-
ously invokes the solver, and then retrieves the output; at lines 26–27 the output
actions can be managed accordingly to the user’s desiderata.

5.2.3 ASP-based Applications: some Examples in the
Educational Setting

In this section we describe some ASP-based applications developed by means of
EMBASP for educational purposes, and, in particular, in the context of a university
course that covers ASP topics; it is worth noting that such applications have been
developed by some of the course attendants, i.e., undergraduate students. The
educational aspect here is two-folded. The most relevant is the engagement of
university (under)graduate students in ASP capabilities, in order to make them
able to take advantage from it when solving problem and designing solutions, in the
broadest sense. Furthermore, ASP looks well-fitted for the use in the development of
educational/training software, as, for instance, the DLVEdu app introduced below;
a deeper study of such aspects, however, is out of the scope of the present work.

In the following, we first briefly introduce three applications; then, in order to
further clarify the EMBASP use, especially in the mobile setting, we describe the
DLVfit Android App more in detail.

GuessAndCheckers

GuessAndCheckers is a native mobile application that works as a helper for users
that play “live” games of the (Italian) checkers (i.e., by means of physical board
and pieces).
It is extensively described in Section 4.5.1.

DLVEdu

DLVEdu is an educational Android App for children, that integrates well-established
mobile technologies, such as voice or drawn text recognition, with the modelling
capabilities of ASP. In particular, it is able to guide the child throughout the learning
tasks, by proposing a series of educational games, and developing a personalized
educational path. The games are divided into four macro-areas: Logic, Numeric-

230 Chapter 5 Streamlining the use of Logic Programming

Mathematical, Memory, and Verbal Language. The usage of ASP allows the applica-
tion to adapt to the game experiences fulfilled by the user, her formative gap, and
the obtained improvements.

The application continuously profiles the user by recording mistakes and successes,
and dynamically builds and updates a customized educational path through the
different games.

The application features a “Parent Area”, that allows parents to monitor child’s
achievements and to express some preferences, such as desired express directions
in order to grant/forbid access to some games or educational areas.

Connect4

The popular turn-based Connect Four game is played on a vertical 7*6 rectangular
board, where two opponents drop their disks with the aim of creating a line of four,
either horizontally, vertically, or diagonally.

The Connect4 application allows a user to play the game (also known as Four-in-
a-Row) against an ASP-based artificial player. Notably, the declarative nature of
ASP, its expressive power, and the possibility to compose programs by selecting
proper rules, allowed designing and implementing different AIs, ranging from the
most powerful one, that implements advanced techniques for the perfect play, to
the simplest one, that relies on some classical heuristic strategies. Furthermore, by
using EMBASP, two different versions of the same app have been built: one for
Android, making use of DLV, and one for Java-enabled desktop platforms, making
use of clingo.

DLVfit

The DLVfit Android App was the first application making use of the framework; it
was conceived as a proof of concept, in order to show the framework features and
capabilities. To our knowledge, it is also the first mobile app natively running an
ASP solver.

DLVfit is a health app that aims at suggesting the owner of a mobile device the “best”
way to achieve some fitness goals. The app lets the user express her own goals
and preferences in a very customizable way along many combinable dimensions:
calories to burn, time to spend, differentiation over several physical activities, time
constraints, etc. Then, it monitors her actual activity throughout the day and, upon
request, it computes one or more plans meant, if accomplished, to make her meet
the aforementioned goals the way she would have preferred.

5.2 embASP: a general framework for embedding Logic Programming in complex systems 231

(a) (b)

Figure 5.3.: Screenshots from the DLVfit app: main menu (a) and list of optimizations (b).

More in detail, the app constantly detects the current user activity (running, walk-
ing, cycling, etc.) and (at a customizable frequency) stores some information (activ-
ity type, timestamps, calories burned up to the present time, etc.). Activity detection
is performed by means of the Google Activity Recognition APIs12, a de-facto standard
on Android, thus relying on these for the accuracy of detection. As already men-
tioned, the user might ask, at any time, for a suggestion about a plan for the rest
of the day; the reasoning module hence prepares a (set of) proper workout plans
complying with the very personal goals and preferences previously expressed.

The user interacts with the app via a standard graphical interface; the reasoning
module is actually in charge of building a proper ASP program, which is in turn fed
to DLV via EMBASP. Such program matches the classical “Guess/Check/Optimize”
paradigm introduced in Section 1.3.3, thus resulting easy to understand, enrich
and customize:

• the “guess” part chooses how much time to spend on each exercise;

• the “check” part forces the resulting plan to be admissible: burning the re-
maining amount of desired calories, do not exceed the time constraints, etc.;

12https://developer.android.com/reference/com/google/android/gms/location/
ActivityRecognition.html

232 Chapter 5 Streamlining the use of Logic Programming

https://developer.android.com/reference/com/google/android/gms/location/ActivityRecognition.html
https://developer.android.com/reference/com/google/android/gms/location/ActivityRecognition.html
https://developer.android.com/reference/com/google/android/gms/location/ActivityRecognition.html

• the “optimize” part, eventually, expresses preferences: minimize total time
spent exercising, number of activities to perform, maximize the number of
different activity types, avoid activities around a given time of the day, etc.

The logic program used takes as “input” (i.e., a set of facts as instances of proper
predicates):

calories_burnt_per_activity(A,C)
the calories burnt (C), in each unit of time, per each Activity (A);

remaining_calories_to_burn(R)
the remaining calories to burn in the rest of the current day;

how_long(A,D)
the amount of time that can be spent for each activity A (in order to reach the
goal of burn all the remaining calories);

max_time(T)
the duration of the workout (max: the remaining time to the end of day);

surplus(C)
the maximum surplus of calories to burn with the suggested workouts;

optimize(O,W,P)
the specific optimization operation(s) that the user wants to perform; each
direction is assigned a weight (W) and a preference order (P).

An example of the basic input concepts described above is the following:

1 calories_burnt_per_activity (" ON_BICYCLE ", 5).
2 calories_burnt_per_activity (" WALKING ", 2).
3 calories_burnt_per_activity (" RUNNING ", 11).
4
5 remaining_calories_to_burn (200).
6
7 how_long (" ON_BICYCLE ", 10).
8 how_long (" ON_BICYCLE ", 20).
9 how_long (" WALKING ", 10).

10 how_long (" WALKING ", 20).
11 how_long (" RUNNING ", 10).
12 how_long (" RUNNING ", 20).
13
14 max_time (20).
15
16 surplus (100).

Listing 5.9: An example of input for the DLVfit logic code.

In this example the activities that can be performed ("ON_BICYCLE", "WALKING" and
"RUNNING") are specified along with the calories they allow to burn per unit of time;
then, the amount of time spent for each activity is reported. Moreover, there are

5.2 embASP: a general framework for embedding Logic Programming in complex systems 233

pieces of information about the calories that remain to burn in the current day (at
least 200, and up to 300 due to the surplus) and the maximum time that the user
wants to spend on the workouts (20).

Custom optimization preferences are typically represented as follows:

1 optimize (" RUNNING ", 1, 3).
2 optimize (" ON_BICYCLE ", 3, 3).
3 optimize (" WALKING ", 2, 3).
4
5 optimize (time ,0 ,2).
6
7 optimize (activities , 0, 1).

Listing 5.10: An example of custom optimization preferences for DLVfit.

Solutions, in this context, are actually workouts suggestions to the user.
The optimize predicate is of arity 3, and the third argument is supposed to express
the “importance” of the statement (the higher the number, the more the import-
ance).
In this example, the ASP code models that: (i) the user wants (preference level: 3)
to maximize the number of favourite activities to perform, and provides an order (
"RUNNING" first, then "WALKING" and finally "ON_BICYCLE"); (ii) if more than one
admissible workout is found featuring the same favourite activities, she wants to
minimize the total time spent exercising (preference level: 2); also, (iii) if there are
workouts that have the same favourite activities and the same time, she wants to
minimize the total number of activities (preference level: 1).

The logic program is able to find the combinations of activities that should be per-
formed in order to burn the remaining calories. Obviously, this goal can be achieved,
in general, in many different ways, each of them modelled by a different Answer Set.
Part of the rules of the program that we used are reported hereafter; full program
is available online.

1 %%%%%% Guess Part %%%%%%
2 activity_to_do (A, HL) | not_activity_to_do (A, HL) :-

how_long (A, HL).
3
4 %%%%%% Check Part %%%%%%
5 :- activity_to_do (A, HL1), activity_to_do (A, HL2), HL1 !=

HL2.
6
7 :- remaining_calories_to_burn (RC),
8 total_calories_activity_to_do (CB), RC > CB.
9

10 :- remaining_calories_to_burn (RC),
total_calories_activity_to_do (CB), CB > RCsurplus ,
RCsurplus = RC + surplus .

234 Chapter 5 Streamlining the use of Logic Programming

11
12 :- max_time (MTS), MTS < TS , total_time_activity_to_do (TS).
13
14 %%%%%% Optimize Part %%%%%%
15 :∼ optimize (A, W, P), activity_to_do (A, _). [W:P]
16
17 :∼ optimize (time , _, P), activity_to_do (_, HL). [HL:P]
18
19 :∼ optimize (activities , _, P), #int(HM), #count{A, HL :

activity_to_do (A, HL)} = HM. [HM:P]

Listing 5.11: A simplified version of the DLVfit logic program.

The Guess Part chooses how much time to spend on each exercise. The Check
Part checks that each activity selected has one specific amount of time, it ensures
that all the remaining calories are burnt and that not more calories than the remain-
ing (with the surplus) are burnt and it ensures to not exceed the maximum time that
the user wants to spend on the workouts. The Optimize Part makes use of weak
constraints[111, 126]: in case the user specified preferences about activities, tries
to select the favourite ones; in case she specified preferences about the time spent
exercising, tries to minimize it; if she specified preferences about the number of
different activities, tries to minimize it.

There is a wide range of customization possibilities in this setting: thanks to the
modelling capabilities and the declarative nature of ASP, adding new features to
DLVfit, such as new exercises or new kind of preferences, is straightforward and
sums up to adding a few lines to the logic program. It is also worth noting that
the ASP program is dynamically built, thus providing the developer (and, in turn,
the final user) with great customization and flexibility capabilities. Indeed, we
plan to actually take advantage from this in the future versions of the prototype,
contemplating a higher number of rules and sub-programs to be dynamically fed to
DLV.

5.2.4 Related Works

The problem of embedding ASP reasoning modules into external systems and/or
externally controlling an ASP system has been already investigated in the literature;
to our knowledge, the more widespread solutions are the DLV Java Wrapper [500],
JDLV [214], and the scripting facilities featured by clingo 4 [260], which allow,
to different extents, the interaction and the control of ASP solvers from external
applications.

In clingo 4, the scripting languages Lua and Python enable a form of control over
the computational tasks of the embedded solver clingo, with the main purpose of

5.2 embASP: a general framework for embedding Logic Programming in complex systems 235

supporting also dynamic and incremental reasoning; on the other hand, EMBASP,
similarly to the Java Wrapper and JDLV, acts like a versatile “wrapper” wherewith
the developers can interact with the solver. However, differently from the Java
Wrapper, EMBASP features a Mapper that, in the Java implementation, makes use of
annotations, a form of metadata that can be examined at runtime, thus allowing an
easy mapping of input/output to Java Objects; and differently from JDLV, that uses
JPA annotations for defining how Java classes map to relations similarly to ORM
frameworks, EMBASP straightforwardly uses custom annotations, almost effortless
to define, to deal with the mapping.

In addition, it allows building applications that can run different solvers, and dif-
ferent instances, at the same time; none of the mentioned systems exposes this
feature.

A new work [487], more recent w.r.t. the earlier versions of EMBASP, introduces
a formal language for defining mappings of input/output of an ASP program in
form of objects intended to be handled by some programming language. These
statements are embedded directly within the ASP code, and dedicated libraries are
in charge of interfacing the ASP program with the selected object-oriented language.
The proposed approach is independent of the concrete object-oriented language
adopted, and a Python library, namely PY-ASPIO, has been provided as a reference
implementation. Similarly to EMBASP, mapping focuses on input/output of the ASP
programs, and is independent of the programming language adopted. However,
differently from EMBASP, where the mapping is guided by custom annotations on
the programming language code, in this approach the mapping annotations are
part of the ASP code; this implies a more tight connection between the logic-based
aspects and the object-oriented ones. Moreover, while this work focuses on ASP,
EMBASP is not limited to a specific logic formalisms.

Several ways of taking advantage of ASP capabilities have been explored, and, in-
terestingly, not all of them require to natively port an ASP system on the device of
use. In particular, it is possible to let the reasoning tasks take place somewhere
else, and use internet connections in order to communicate between the “reasoning
service” and the actual application, according to a cloud computing paradigm, to
some extent. Thanks to such mechanisms, mobile apps relying on ASP reasoning
have already been introduced: in [185] a prototype system is presented, called
HealthyLife, which makes use of ASP-based Stream Reasoning (ASR) in a mobile
health app that has some point of contacts with DLVfit. The focus of HealthyLife
is primarily to detect users daily activities and try to deal with ambiguities when
recognizing situations, while DLVfit delegates this task to Android Recognition API:
its primary goal is to experiment with the usage of ASP on mobile devices. In this

236 Chapter 5 Streamlining the use of Logic Programming

respect, although the computational power of a dedicated server is not comparable
to the one of a mobile device, it would be interesting to see whether HealthyLife
could benefit from the embedding of DLV and EMBASP within it.

Both the approaches are interesting, and each of them has pro and cons depending
on the scenario it is facing. The cloud-based approach grants great computational
power to low-end devices, without the need for actually porting a system to the final
user’s device, and completely preventing any performance issue. However, in order
this to take place, there is first the need for a proper application hosting, which re-
quires non-negligible efforts both from the design and the economic points of view;
furthermore, a steady internet connection might be a strong constraint, especially
when the communication between the end user’s device and the cloud infrastruc-
ture requires a large bandwidth. On the other hand, a native-based approach might
involve significant efforts for the actual porting of pieces of software on the target
device, which, in turn, might lead to performance or power consumption issues;
and even if performance issues might not appear as always crucial, given the com-
putational power which is available even on mobile devices, power consumption is
sometimes decisive. Notably, the main idea behind this work is to embed an ASP
solver directly in a mobile context, however, this possibility is not hindered by the
framework. In fact, due to the structure of the middleware layer (SOLVER HAND-
LER), it is possible to hide the details of the solver invocation, so that it can also be
carried out using a cloud/server solution.

Nevertheless, in our showcase scenario, DLVfit shows that the development of ap-
plications that natively runs ASP-based reasoning tasks on mobile devices does not
necessarily suffer from the discussed drawbacks. Indeed, DLV is invoked only on
demand, i.e., whenever the user wants to check possible alternatives about how to
spend the rest of her day; for the whole rest of the time, no solver is running or
waiting, thus preventing both performance and battery drain.

On the PDDL side, to our knowledge, there still is a lack of interoperability tools.
A contribution in this direction is ABLE [537], an agent building toolkit providing
a domain-independent planning and execution environment. The approach is very
different from EMBASP, since it is focused on PDDL and offers advanced functional-
ities specific for agents performing planning tasks.

Concerning generic logic-embedding tools, some connections can be found with
Tweety [559, 560], an open source framework for experimenting with logical as-
pects of artificial intelligence; it consists of a set of Java libraries that allow making
use of several Knowledge Representation systems supporting different logic form-
alisms, ranging from classical logics, over logic programming and computational

5.2 embASP: a general framework for embedding Logic Programming in complex systems 237

models for argumentation, to probabilistic modelling approaches, including ASP.
Tweety and EMBASP cover a wide range of applications, and the use is very similar:
at the bottom line, both provide libraries to incorporate proper calls to external
declarative systems from within “traditional” applications. Currently, Tweety imple-
mentation is already very rich, covering a wide range of KR formalisms, yet looking
less general, as the more abstract level is conceived as a coherent structure of Java
libraries; also, it currently misses the mobile focus. EMBASP originally was mainly
focused on fostering the use of ASP in the widest range of contexts, as evidenced by
the specialization for the mobile setting; nevertheless, the framework core is very
abstract, and has been conceived in order to create libraries for different program-
ming languages, platforms and formalisms.

5.2.5 Design, Implementation and Usability

In the latest years the worldwide commercial, consumer and industrial scenario
significantly changed; the growing popularity of “smart”/wearable devices and the
Internet of Things (IoT) forced the whole ICT industry to radically evolve. Nev-
ertheless, there is still a lack of tools for taking advantage of the knowledge rep-
resentation capabilities of logic formalisms in this context. The specialization of
EMBASP for DLV on Android has been an attempt to ease the development of mobile
applications natively using logic-based reasoners; to our knowledge, it represented
actually the first attempt reported in literature for ASP. As already mentioned, in-
deed, the preliminary version of EMBASP was originally explicitly tailored to the
mobile scenario [130, 131].

Afterwards, however, the framework has been extended [233] for fostering the
usage of ASP within real-world and industrial contexts, where it gained popularity;
the framework has been made more abstract, and independent from the running
platform.

The current version of EMBASP, herein presented, further enhances its abstract
nature and generalizes it by opening also the logic language side, thus potentially
supporting any kind of formalism; contextually, the generalized framework has
been used in order to enrich the actual implementation with the support to PDDL. It
is worth noting that PDDL and ASP are intrinsically very different, from the syntax,
semantics, and knowledge representation sides; this makes the flexibility of EMB-
ASP evident. Furthermore, new actual libraries were generated: comprehensively,
the EMBASP implementations currently features the embedding of the ASP solv-
ers DLV, clingo and DLV2, and the PDDL cloud solver Solver.Planning.Domains into
Desktop applications, and the embedding of DLV and Solver.Planning.Domains into
Android apps; and solvers are invoked in different modes: Solver.Planning.Domains

238 Chapter 5 Streamlining the use of Logic Programming

is invoked via remote connections, while the others are effectively embedded, and
binaries are natively executed at will by the resulting applications.

The gradual evolution and extension of EMBASP has been marked by a series of
applications making use of it, developed in the context of university courses that
cover ASP topics; authors were some of the course attendants (i.e., undergraduate
students). This helped at collecting feedbacks and improving framework usability,
and also proved how gradually usage became more general and easier. A showcase
of the most interesting apps developed is reported in previous works [131, 233];
most of them consist of Android applications taking advantage from the explicit and
declarative KR&R capabilities of ASP: students experimented with different logic
tasks, having the chance to test the AIs without the need for rebuilding the applica-
tion each time an update was made, thus observing the impact of changes “on the
fly”.

Further considerations deserve to be made about different implementation approach-
es, such as the choice of the programming language. Indeed, since its first prelim-
inary implementation the programming language of choice was Java. Besides the
fact that it represents a very popular, solid and reliable programming language, the
choice was also motivated by the intention to foster the use of logic formalisms in
new scenarios; in particular in the mobile one, where Android is by far the most
widespread mobile platform, and its development and deployment models heavily
rely on Java. However, the abstract architecture of EMBASP can be made concrete
by means of other object-oriented programming languages.

Most of the components in the proposed Java implementation have been accom-
plished thanks to features that are typical of any object-oriented language, such as
inheritance and polymorphism. The unique exception is represented by the Mapper
components, implemented by means of Java peculiar features, such as annotations
and reflection. In case of other languages that feature similar constructs, such as
C#13, the approach can resemble the herein presented Java implementation.

With different languages that lack such features, the mapping mechanism can still
be implemented with a simulation via inheritance and polymorphism and applying
typical Software Engineering patterns [237]. As a matter of example, one pos-
sible implementation can be accomplished using the Prototype design pattern, that
results well-suited to our purposes, as it allows to “specify the kinds of objects to
create using a prototypical instance, and create new objects by copying this pro-
totype” [237]. Such pattern can be the key to simulate the dynamical loading of

13Microsoft Developer Network, MSDN: C# Attributes (https://msdn.microsoft.com/en-us/
library/mt653979), C# Reflection (https://msdn.microsoft.com/en-us/library/mt656691)

5.2 embASP: a general framework for embedding Logic Programming in complex systems 239

https://msdn.microsoft.com/en-us/library/mt653979
https://msdn.microsoft.com/en-us/library/mt653979
https://msdn.microsoft.com/en-us/library/mt656691

classes in languages that do not support it natively, as it happens with C++. In-
deed, the run-time environment can make use of it in order to automatically create
an instance of each class when it is loaded, and then register the instance with
a prototype manager – in our case, represented by the Mapper components. All
classes that in Java (or similar languages) would make use of reflection and annota-
tions, can be defined by extending a properly defined Prototype class and then
specify how to map input and output objects. Moreover, a Mapper class would still
be needed, with a behaviour quite similar to the Java case.

The Python implementation of EMBASP is indeed the proof that it is possible to im-
plement our Abstract Framework even in languages that do not support constructs
similar to the Java Annotations.

5.2.6 Discussion

EMBASP is a framework for embedding logic-based reasoners into external systems.
The fully abstract architecture makes the framework general enough to be adapted
to a wide range of scenarios; indeed, it can support different logic-based formal-
isms, can be implemented in any programming language, grounded to different
platforms, and can make use of different solvers.

We presented an actual Java implementation of the framework supporting the two
declarative formalisms ASP and PDDL; this allowed deploying six specialized librar-
ies for embedding different ASP/PDDL systems into both Java-based Desktop and
native Android applications. We also briefly discussed the Python implementation
of the framework and the main difference w.r.t the Java one.

The framework has been tested within some university courses featuring ASP topics,
for implementing a set of applications, ranging from AI-based games to educative
apps; it proved to be an effective set of tools and interoperability mechanisms able
to ease the development of ASP-based applications, in both educational and real-
world contexts. Eventually, we illustrated the use of the libraries by means of some
running examples, and described the design and implementation of the framework
and its improved usability as witnessed by complete applications developed in aca-
demic contexts.

Framework, documentation, applications and further details are freely available
online at

https://www.mat.unical.it/calimeri/projects/embasp

240 Chapter 5 Streamlining the use of Logic Programming

https://www.mat.unical.it/calimeri/projects/embasp

5.3 a web-based IDE for Logic
Programming14

In the latest years, declarative paradigms and approaches to solving problems in-
creasingly crossed the border of academia and have been going beyond theoretical
studies in order to get into the real world. This is especially the case for logic-based
formalisms; indeed, after years of theoretical results, the availability of solid and
reliable systems made viable the implementation of effective logic-based solutions,
even in the industrial context.

Along with such improvements in solver technology, the lack of suitable engineer-
ing tools for developing programs started to be properly addressed; for instance,
one might think of the work carried out by the Answer Set Programming (ASP) com-
munity, that explicitly addressed issues like writing, debugging and testing Answer
Set programs as well as embedding them into external, traditionally-developed sys-
tems. See Section 1.3.2 for more information.

At the same time, scenarios of computing significantly changed as well, now heav-
ily relying on network connections and tools; in this context, the web-application
paradigm, granting accessibility independently from the device in use, even from
mobile, become very popular. Many existing desktop applications have been “por-
ted” to the web, and many new have been created specifically according to this
paradigm. Moreover, the JavaScript language became a real cross-platform lan-
guage, due to availability on all types of devices, ranging from servers to Internet
of Things (IoT); it has been improved with many interesting features that made
it an ideal language for developing not only small scripts but also fully-fledged
applications; and, fortunately, cloud-computing technologies significantly eased de-
velopment, deploying and use of such applications.

In this scenario, many tools for software development have been released as web-
applications, from simple text editors to Integrated Development Environments (IDEs).
As a result, code editors for many different programming languages are available to
be used via a web browser, like Codeanywhere, JSFiddle, Cloud9, codepad, JS Bin,
CSSDesk, CodePen, repl.it, CodeBunk, Codenvy, and more.
Even developers of classic and famous development environments, like the Eclipse
Foundation and Microsoft, have released cloud-based environments, respectively

14From S. Germano, F. Calimeri and E. Palermiti. ‘LoIDE: A Web-Based IDE for Logic Program-
ming Preliminary Report’. In: Proceedings of PADL 2018, pp. 152–160. DOI: 10.1007/978-3-319-
73305-0_10.

And S. Germano, F. Calimeri and E. Palermiti. ‘LoIDE: a web-based IDE for Logic
Programming - Preliminary Technical Report’. In: CoRR abs/1709.05341 (2017). arXiv: 1709.
05341.

5.3 LoIDE: a web-based IDE for Logic Programming 241

https://codeanywhere.com
https://jsfiddle.net
https://c9.io
http://codepad.org
https://jsbin.com
http://www.cssdesk.com
https://codepen.io
https://repl.it
https://codebunk.com
https://codenvy.com
https://doi.org/10.1007/978-3-319-73305-0_10
https://doi.org/10.1007/978-3-319-73305-0_10
http://arxiv.org/abs/1709.05341
http://arxiv.org/abs/1709.05341

Figure 5.4.: An ASP program addressing a toy instance of the 3-colorability problem and
the corresponding run performed by the DLV system via LoIDE.

Eclipse Che (joint with Orion and Eclipse Dirigible) and Visual Studio Team Ser-
vices (formerly Visual Studio Online), that include also powerful IDEs.

Editors for Logic Programming are no exception: several have been built, from very
simple playgrounds like the LogiQL REQPL to more complex and complete editors
like the IDP Web-IDE [167], SWISH [581] and the PDDL Editor [435].

In addition, specific editors for ASP programs like Clingo in the Browser, dlvhex
Online Demo and Answer Set Programming for the Semantic Web - Tutorial have
been proposed; however, these are quite “simplistic”, and at an early stage of de-
velopment and, furthermore, it is worth noticing that each web-editor for Logic
Programming that has been introduced to date is intended for a specific language,
or even for a specific solver. This raises some issues about interoperability and limits
the usage of these tools.

LoIDE is a web-based IDE for Logic Programming that explicitly addresses interoper-
ability and flexibility, supporting multiple formalisms and solvers.

5.3.1 The LoIDE project

The main goal of the LoIDE project is the release of a modular and extensible web-
IDE for Logic Programming using modern technologies and languages.

The LoIDE IDE will provide advanced features specifically tailored for Logic Pro-
gramming; it has been conceived in order to be extended over time and will include
as many logic-based languages and solvers as possible.

242 Chapter 5 Streamlining the use of Logic Programming

https://eclipse.org/che
https://azure.microsoft.com/services/visual-studio-team-services
https://azure.microsoft.com/services/visual-studio-team-services
https://repl.logicblox.com
http://adams.cs.kuleuven.be/idp
http://swish.swi-prolog.org
http://editor.planning.domains
http://potassco.sourceforge.net/clingo.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://www.kr.tuwien.ac.at/research/systems/dlvhex/demo.php
http://asptut.gibbi.com

A further goal of the project is to provide a web-service with a common set of APIs
for different logic-based languages; at the time of writing, this is still at an early
stage of development.

LoIDE is provided as open-source software (OSS) and it is publicly available at
https://github.com/DeMaCS-UNICAL/LoIDE

Moreover, we released it as Free Software under the MIT License15, with the explicit
aim of helping the community of researchers and developers, that are free to study,
use, distribute and even improve the project.
A prototypical running demo is available at

https://www.mat.unical.it/calimeri/projects/loide

Features of the IDE

The LoIDE IDE provides all the basic features of text and code editing that can be of
use for Logic Programming.

We started from basic features available in Ace16, a JavaScript embeddable code
editor that constituted the base for LoIDE (see Section 5.3.2). Among them the
most relevant, we mention here:

indentation: automatically indent and outdent the code;

document size: handles huge documents;

key bindings: fully customizable key bindings (including vim and Emacs modes);

search and replace: search and replace text via regular expressions;

brace matching: highlight matching parentheses;

mouse gestures: drag and drop text using the mouse;

advanced cursors management: multiple cursors and selections;

clipboard management: cut, copy, and paste functionality;

themes: over 20 themes available (standard .tmtheme files can be imported).

We extended such basic functionalities in order to properly meet the specific require-
ments of Logic Programs development.

Syntax highlighting. Ace supports syntax highlighting, already covering 110 lan-
guages; unfortunately, the logic-based languages we were interested in are not
included. Relying on the specifications for cross-browser syntax highlighting, we

15https://github.com/DeMaCS-UNICAL/LoIDE/blob/master/LICENSE
16https://ace.c9.io

5.3 LoIDE: a web-based IDE for Logic Programming 243

https://github.com/DeMaCS-UNICAL/LoIDE
https://github.com/DeMaCS-UNICAL/LoIDE/blob/master/LICENSE
https://www.mat.unical.it/calimeri/projects/loide
https://ace.c9.io
https://github.com/DeMaCS-UNICAL/LoIDE/blob/master/LICENSE
https://ace.c9.io

(a) The editor appearance options. (b) The File Import functionality.

Figure 5.5.: LoIDE screenshots.

introduced a basic support for ASP programs, and plan to include other languages
as soon as the support for their specific solvers will be added to LoIDE.

Editor layout and appearance. The user can customize layout and appearance of
the “Input” and the “Output” fields of the IDE. The user can change theme and fonts
of each part of the interface, independently (as shown in Figure 5.5a). Moreover,
size and position of the two fields are customizable as well. It is worth noticing that
the all the options are automatically saved in the Web Storage17, in order to make
the persistent also across different the current browser user sessions.

Output highlighting. One of the most annoying aspects of developing and testing
logic programs in practice is the need for checking output in test cases: since output
is often constituted of a (possibly long) list of instances of many predicates, it can
be quite tricky. Most ASP solvers allow filtering predicates, but this does not solve
the problem and it is not a very flexible solution. LoIDE features an ad-hoc output
highlighting: when the user selects an element of the output (for instance, a predic-
ate name), all the elements with the same “name” will be automatically highlighted.
The user can dynamically play with such highlighting and, as a consequence, the
analysis of the results might be dramatically simplified.18

Keyboard shortcuts. LoIDE supports several many keyboard shortcuts. We prop-
erly extended the typical code-editors shortcuts provided by Ace19 for a) Line op-
erations, b) Selection, c) Multi-cursors, d) Go-to, e) Find/Replace, f) Undo/Redo,
g) Indentation, h) Comments and i) Word/Character variations; adding specific
shortcuts to Save and Load files and to Run the logic program.

Furthermore, we implemented other custom features around the Ace-based stem.

17http://www.w3.org/TR/webstorage
18More features for improving comprehension of the results will be added, such as different forms of

visualization
19https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts

244 Chapter 5 Streamlining the use of Logic Programming

http://www.w3.org/TR/webstorage
http://www.w3.org/TR/webstorage
https://github.com/ajaxorg/ace/wiki/Default-Keyboard-Shortcuts

Multiple file support. When dealing with real-world problems in practice, logic
programs often results to be split in more than one file (think, for instance, of the
obvious separation between problem specification and problem instances). LoIDE
explicitly supports multiple files management: the user can create and manage
many different tabs, and also selectively decide which one has to be composed into
the actual program to run.

Options. Settings of LoIDE can be customized, along with the behaviour of the un-
derlying systems of use. The user can select the logic language of choice; for each
language, the solver to be used to run the program can be set as well. Moreover,
specific options can be selected for each solver, with predefined typical settings
available for the most common. There are also more general options; for instance,
the user can ask to automatically run the program at the end of each statement,
so that the output dynamically changes as the user is crafting the program; this in-
creases the interaction with the system. Furthermore, it might significantly ease the
development of non-trivial programs, and be of great help in educational settings
(think about a Logic Programming class, for instance).

Import and Export files. The content of the editor, all options and outputs can be
downloaded locally to the device of use as JSON files, and later restored, possibly
over a different device (also by means of Drag-and-Drop, if the device supports it, as
shown in Figure 5.5b). Such feature is crucial for practically provide the user with
a working environment which is virtually immaterial and free from specific physical
workstations. Of course, also the logic program being edited can be saved.

5.3.2 Implementation

We provide next some insights on the design and implementation of LoIDE.

General Architecture

The system architecture, relying on a typical client-server framework, is draft in
Figure 5.6.

The back-end (or server-side component) consists of the main LoIDE Web-Server,
developed using the JavaScript runtime environment Node.js®20, which exposes
API that can be employed by a client.

20https://nodejs.org

5.3 LoIDE: a web-based IDE for Logic Programming 245

https://nodejs.org
https://nodejs.org

Smartphone
App

LoIDE Web-Server EMBASP Server ExecutorLoIDE GUI

WebSocket
JSON

WebSocket
JSON

WebSocket
JSON

Logic Solver Executor

WebSocket
JSON

DLV

clingo

Figure 5.6.: Architecture of the LoIDE project.

The front-end (or client-side component) consists of the Graphical User Interface
(GUI) of the IDE, developed using modern web technologies such as HTML5, CSS3
and the JavaScript programming language.

The execution of the logic solvers is not performed directly from within the main
LoIDE web-server; a dedicated component, the EMBASP Server Executor, is in
charge of this, instead. This choice is due to the aim of keeping the system modular
and extensible; indeed, such modularity allows to easily support different “execut-
ors” and ease the management of additions, upgrades, and security issues.

All the components communicate using the WebSocket21 communication protocol
and the JSON22 data-interchange format.

Thanks to the architecture of the project and the use of standard and common
technologies between all the components, modules can be added or modified in a
straightforward way while maintaining the scalability of the whole architecture as
can be seen in the lower part of Figure 5.6.

Back-end – The LoIDE Web-Server

The LoIDE Web-Server has been developed using Node.js.

21https://tools.ietf.org/html/rfc6455
22http://www.json.org

246 Chapter 5 Streamlining the use of Logic Programming

https://tools.ietf.org/html/rfc6455
http://www.json.org
https://tools.ietf.org/html/rfc6455
http://www.json.org

In order to effectively use WebSockets, we relied on the socket.io23 package to
enables real-time bidirectional event-based communication between the client and
the server; the package provided us with means for enabling several useful features,
such as Reliability, Auto-reconnection support and Disconnection detection.

LoIDE APIs. As mentioned before, one of the aims of the LoIDE project is to
develop a set of (Web) APIs for easily and efficiently controlling different solvers
over different Logic Programming languages, using the WebSocket protocol and the
JSON format. Specifications and implementation are at the first stage; currently,
a call type is available, that given the description of the language, the solver,
the list of options and the program, executes the solver over the program and
returns either the output of the solver or any error messages. See LoIDE API
documentation24 for further details.

Front-end – The LoIDE GUI

The front-end uses modern standard web technologies (HTML5, CSS3, JavaScript);
hence, LoIDE is compatible with virtually any device currently available. We used
some popular frameworks and libraries with the aim of improving user experience
and making the IDE robust and powerful.

Ace25

Ace is a JavaScript embeddable code editor. It matches the features and per-
formance of native editors such as Sublime, Vim and TextMate and it can
be easily embedded in any web page and JavaScript application. Ace is main-
tained as the primary editor for Cloud9 IDE and is the successor of the Mozilla
Skywriter (Bespin) project. Ace is a community project and its source code is
hosted on GitHub and released under the BSD license.

Bootstrap26

Bootstrap is the most popular front-end component library framework for de-
veloping responsive, mobile-first projects on the web. Bootstrap is an open
source toolkit for developing with HTML, CSS, and JavaScript and its source
code is hosted on GitHub and released under the MIT license.

jQuery and its UI Layout plugin27

jQuery is a fast, small, and feature-rich JavaScript library. It makes things
like HTML document traversal and manipulation, event handling, animation,
and Ajax much simpler with an easy-to-use API that works across a multitude
of browsers. With a combination of versatility and extensibility, jQuery has

23https://socket.io
24https://github.com/DeMaCS-UNICAL/LoIDE/wiki/APIs
25From https://ace.c9.io
26From https://getbootstrap.com
27From https://jquery.com

5.3 LoIDE: a web-based IDE for Logic Programming 247

https://socket.io
https://github.com/DeMaCS-UNICAL/LoIDE/wiki/APIs
https://github.com/DeMaCS-UNICAL/LoIDE/wiki/APIs
https://ace.c9.io
https://c9.io
https://getbootstrap.com
https://jquery.com
https://socket.io
https://github.com/DeMaCS-UNICAL/LoIDE/wiki/APIs
https://ace.c9.io
https://getbootstrap.com
https://jquery.com

Figure 5.7.: The main components of the web-based GUI.

changed the way that millions of people write JavaScript.
The jQuery UI Layout plugin28 allows creating advanced UI layouts with size-
able, collapsible, nested panels and tons of options. It integrates with and
enhances other UI widgets, like tabs, accordions and dialogs, to create rich
interfaces.

bimap29

BiMap is a powerful, flexible and efficient JavaScript bidirectional map im-
plementation. Enables fast insertion, search and retrieval of various kinds of
data. A BiMap is like a two-sided JavaScript object with equally immediate
access to both the keys and the values.

keymaster.js30

Keymaster is a simple micro-library for defining and dispatching keyboard
shortcuts in web applications.

The web-based GUI is divided into 4 different parts (highlighted in Figure 5.7).

At the top the navigation bar is shown, highlighted in red in Figure 5.7, it contains
proper Run, Upload and Download buttons.

In the middle of the interface, highlighted in orange in Figure 5.7, the code editor
contains the editing tabs holding the program(s) to execute.

At the right side, highlighted in blue in Figure 5.7, the output panel dynamically
shows the output of the computations and the link to the editor’s layout options.

28http://plugins.jquery.com/layout
29From https://github.com/alethes/bimap
30From https://github.com/madrobby/keymaster

248 Chapter 5 Streamlining the use of Logic Programming

http://plugins.jquery.com/layout
https://github.com/alethes/bimap
https://github.com/madrobby/keymaster
http://plugins.jquery.com/layout
https://github.com/alethes/bimap
https://github.com/madrobby/keymaster

At the left side, highlighted in green in Figure 5.7, the IDE options panel contains
all the options described in Section 5.3.1. This panel can be automatically toggled
in order to save space for the main editor.

The layout is built using the Responsive Web Design (RWD) approach, i.e., it auto-
matically adapts to the viewing environment and offers the possibility to be viewed
on different devices with almost the same User Experience.

5.3.3 The embASP Server Executor

In order to decouple the web-requests management from logic-programming solv-
ers execution, we developed EMBASP Server Executor as a completely different
component; it is even implemented in a different programming language.

EMBASP Server Executor is a Java server application that is able to execute ASP
programs with different solvers. It has the usual structure of a Java web-app with
the following modules: (i) Control, (ii) Model, (iii) Service, and (iv) Resources. We
do not discuss them in details, as the names are self-explanatory.

EMBASP Server Executor runs on top of Apache Tomcat®31 and it exposes a set of
APIs that can be used to invoke the solvers.

In order to execute the desired solver, it makes use of EMBASP32 [233]. EMBASP
is a framework for the integration (embedding) of Logic Programming in external
systems for generic applications; it helps developers in designing and implementing
complex reasoning tasks by means of solvers on different platforms.

Similarly to LoIDE, EMBASP Server Executor is provided as open-source software
(OSS) and it is publicly available at

https://github.com/DeMaCS-UNICAL/EmbASPServerExecutor

Moreover, it is likewise released as Free Software under the MIT License33.

5.3.4 Related Works

The work herein presented is naturally comparable to other Logic Programming IDEs
and other web-based editors.

31http://tomcat.apache.org
32https://www.mat.unical.it/calimeri/projects/embasp
33https://github.com/DeMaCS-UNICAL/EmbASPServerExecutor/blob/master/LICENSE

5.3 LoIDE: a web-based IDE for Logic Programming 249

http://tomcat.apache.org
https://www.mat.unical.it/calimeri/projects/embasp
https://github.com/DeMaCS-UNICAL/EmbASPServerExecutor
https://github.com/DeMaCS-UNICAL/EmbASPServerExecutor/blob/master/LICENSE
http://tomcat.apache.org
https://www.mat.unical.it/calimeri/projects/embasp
https://github.com/DeMaCS-UNICAL/EmbASPServerExecutor/blob/master/LICENSE

Several stand-alone, “native” editors and IDEs have been proposed for Logic Pro-
gramming over different platforms; we refer the reader to the ample literature on
the topic [114, 215, 345, 550, 553, 582]; moreover, many web-based editors have
been recently introduced [167, 408, 435, 581].

All tools and environments share the same core of basic features, many of them
are quite stable, some are already well-known. LoIDE, similarly to most web-based
editors, has currently fewer features w.r.t. the “native” ones; however, even if quite
young, it is stable effectively gives access to Logic Programming without the need
for installing or downloading anything, from almost any platform connected to the
Internet; furthermore, it could even run locally on any device featuring the Node.js
runtime, with a few additional configuration steps.

Some tools (like SWISH, for instance) rely on platforms that provide functionalities
via specific APIs over HTTP; it is worth noting that this is not the case of LoIDE.
Indeed, it started from Answer Set Programming, for which no such platforms were
available, and makes use of the EMBASP Server Executor, implemented on purpose,
that makes the project also more general and extensible.

All mentioned editors have peculiar, sometimes very interesting features; however,
each one is tailored to a specific language and tightly coupled with some specific
solver(s) in the back-end. On the other hand, the aim of LoIDE is to have a robust
platform that seamlessly integrates different languages and different solvers. We
do believe that this approach is more general, and could foster the use of Logic
Programming in many contexts, especially in practical context and in education,
also fruitfully promoting exchanges among the various communities in the Logic
Programming area.

5.3.5 Future work

Even if already equipped with relevant features that make it effectively usable in
practice, the project is still at an early stage of development; hence, we have already
identified many future works and improvements.

We planned to extend the editing capabilities by a) language-based syntax check-
ing, b) snippets and linting support, c) auto-complete/intellisense, d) plugins/ex-
tensions support, e) sharing of the programs in the cloud (for instance supporting
Dropbox34 and Gist35 APIs).

34https://www.dropbox.com
35https://gist.github.com

250 Chapter 5 Streamlining the use of Logic Programming

https://www.dropbox.com
https://gist.github.com
https://www.dropbox.com
https://gist.github.com

We are also planning to explicitly support the check for the “type” of file for each tab;
indeed, it is a common practice in some logic languages to have different definitions
in different files (think about the “domain text” and the “problem text” of PDDL).

Currently, LoIDE sends the results back to the client when the solver finishes the
job, given that the framework used by the EMBASP Server Executor (Section 5.3.3)
does not handle “output streams”; however, the LoIDE Web-Server easily allows
serving back the results as soon as they are produced by the solver. An important
improvement will allow such mechanism in order to save bandwidth and speed up
the reception of the results from the solvers.

We plan to improve the deployment using container technologies (for instance
Docker) and cloud-computing services (like Amazon Web Services, Microsoft Azure
or Google Cloud Platform) in order to make it easier and more robust.

Advanced features like visualization techniques, such as [19, 150, 330, 354], will
also further simplify output comprehension, and the possibility to save files in the
user account or over cloud services will allow also pave the way to teamwork and
collaborative editing.

We are working to support more executors (web-services), logic-based languages
and solvers (engines), in order to increase the audience of the project; the addition
of an interactive tutorial could also allow the users to become more familiar LoIDE
and with declarative programming.

5.3 LoIDE: a web-based IDE for Logic Programming 251

Wrap-up

In this chapter we presented a comprehensive framework for the integration of
logic-based formalisms in external systems for generic applications and a web-based
IDE for Logic Programming meant to modular and flexible in order to support vari-
ous languages and solvers.
It is worth noticing that some of the investigations reported in this chapter have
been conducted inside the joint projects EMBASP and LoIDE with other research-
ers of the Department of Computer Science (DeMaCS36) at the “Università della
Calabria”.

In the next chapter we conclude with some considerations and overall insights.

36http://www.mat.unical.it

252 Chapter 5 Streamlining the use of Logic Programming

http://www.mat.unical.it
http://www.mat.unical.it

Conclusions

Throughout all the chapters of this Thesis, we have shown how Logic Programming
can be effectively and successfully used in several different fields by developing
custom solutions for the specific requirements of each of them.

We illustrated how the Stream Reasoning challenges of efficiently handling real-time
data streams can be addressed using an adequate combination of logic-based reas-
oning technique and how this approach has been successfully applied to a large
Project that involved IoT and Smart City Applications, taking into account the de-
sideratum of the users and enabling an automatic configuration of these Decision
Support tasks.

Then we described how some techniques, such as the “multi-engine” approach, can
be useful to manage and reason on top of big amount of data and how Logic Pro-
gramming can help to simplify and generalise these operations.

Also, we demonstrated how logic-based approaches are powerful enough to be used
in many AI applications, such as video games, that require high-level and complex
reasoning, and we proved their flexibility in a variety of problems.

Additionally, in order to productively use Logic Programming in as many scenarios as
possible, we pointed out how the use of logic-based languages can be made easier
and more intuitive, also for non-experts, and that could make these formalisms
more accessible, thus fostering large spread.

There are though some gaps that are not closed yet, as specifically discussed in
respective chapters. Nonetheless, this does not prevent the proposed solutions from
being extended to other contexts and combined to make them more effective. As
an example, the addition of a process step to the traditional observe-think-act cycle,
shown in a previous chapter, can be adapted to other applications scenarios in the
context of intelligent agents.

253

However, combining and adapting Logic Programming languages, engines/solvers,
tools and techniques is often an extremely challenging task for several reasons.

First of all, the beauty of the declarativity and the logical foundations of these lan-
guages are paid in terms of efficiency. Even if nowadays many powerful solvers
exist, they have to solve “complex” (from a Computational Complexity point of
view) problems and often require huge amounts of computational resources. These
“problems” make them much less efficient than tailored approaches and, often, un-
feasible for real-world problems.

Furthermore, languages often have completely different approaches and, within the
same language, solvers have very disparate interfaces and linguistic specificities that
make hard to execute the same logic program with various engines. Moreover, they
sometimes need programs to be written in a specific way in order to be executed
efficiently. Even if some standardization efforts have been carried out, especially
for certain formalisms, there are still many discrepancies.

In addition, the communication among distinct logic-based languages is not straight-
forward, and it is much harder, almost impossible, if we consider other program-
ming paradigms. Furthermore, the lack of development and debugging tools make
extremely troublesome the production and the testing of solution based on Logic
Programming. Also, the execution of a specific logic-based solver might be problem-
atic due to the considerable difficulties in installing and configuring (some of) them
and the peculiarities of the solvers’ languages.

Besides, characteristic requirements of modern AI applications, such as parallel or
distributed computation, are almost never available in logic-based solutions and
this makes difficult the development of such applications, or the inclusion in frame-
works that are inherently designed for parallel execution. Additionally, most of the
logic-based formalisms do not support specific types of values, such as floating-point
numbers typical of graphic and simulation applications, or specific “data structures”
that are commonly found in real-world data, such as sensors frequently used in IoT
application.

It is worth noting that, as mentioned before, the aim of our work it is not to en-
courage the use Logic Programming everywhere, and we do not believe that Logic
Programming is suitable for every reasoning/computational task. For this reason,
we focused on the areas mentioned above; because we believe they contain some
specific tasks that can be fruitfully tackled using Logic Programming. We strongly
believe that is important to properly combine various reasoning methods and tech-
nologies. To illustrate this, we described some preliminary approaches that we have
envisioned, designed and developed.

254 Conclusions

These results could (and should) be further improved by new investigations on
well-defined problems in the areas mentioned in this Thesis, where logic-based ap-
proaches have been marginally considered. For instance, (i) in the Stream Reasoning
area, as shown also in the preliminaries of the dedicated chapter, a lot of research
has been carried out in order to have more efficient and scalable ways of processing
data streams and in order to have a common and formal foundation in order to
better define the reasoning tasks, and we believe that, as shown by the recent ad-
vancements in the area, logic can play a crucial role in this context; (ii) in the AI and
games area, which is continuously growing and that is demanding always new the-
oretical and practical solutions, Logic Programming can be used for many different
tasks and its well-known KR&R capabilities can be exploited in order to successfully
develop Intelligent Agents.
Moreover, we strongly believe that making more “popular” and accessible the Logic
Programming paradigm, as well as other declarative languages, can allow a wider
discussion on the possibilities and the limits of this paradigm, and this will result in
the development of more innovative and complete solutions that will significantly
increase the number of users. This should trigger a virtuous cycle of innovation that
will help the entire community to grow and improve.

255

APopular Artificial Intelligence (AI)
Competitions

Some of the most popular AI Competitions are:1

Angry Birds AI Competition2

The task of the Angry Birds AI Competition is to develop an intelligent Angry
Birds playing agent that is able to successfully play the game autonomously
and without human intervention. The long-term goal is to build AI agents
that can play new levels better than the best human players. This may require
analysing the structure of the objects and to infer how to shoot the birds in
order to destroy the pigs and to score most points.

Angry Birds Level Generation Competition3

The goal of the Angry Birds Level Generation Competition is to build computer
programs that can automatically create fun and challenging game levels (as
shown in Figure A.1). The difficulty of this competition compared to similar
competitions is that the generated levels must be stable under gravity, robust
in the sense that a single action should not destroy large parts of the gen-
erated structure, and most importantly, the levels should be fun to play and
challenging, that is, difficult but solvable.

This Competition evaluates each level generator based on the overall fun or
enjoyment factor of the levels it creates. Aside from the main prize for “most
enjoyable levels”, two additional prizes for “most creative levels” and “most
challenging levels” are also awarded.

Dota2 Bot Competition4

The Dota2 Bot Competition is about writing controllers (bots) for the popular
team-based MOBA Dota2. The focus is particularly the collaboration between
agents. The competition uses the original game with a custom-made mod,
that allows external processes to control the player’s hero. Each bot controls
one hero and has to coordinate with its teammates – without any backchan-
nel communication. No other communication besides the chat wheel or map
pings is permitted.

1From http://www.cig2017.com/competitions-cig-2017
2From https://aibirds.org/angry-birds-ai-competition.html
3From https://aibirds.org/other-events/level-generation-competition.html
4From https://github.com/lightbringer/dota2ai
5From http://www.gvgai.net

257

https://aibirds.org/angry-birds-ai-competition.html
https://aibirds.org/other-events/level-generation-competition.html
https://github.com/lightbringer/dota2ai
http://www.cig2017.com/competitions-cig-2017
https://aibirds.org/angry-birds-ai-competition.html
https://aibirds.org/other-events/level-generation-competition.html
https://github.com/lightbringer/dota2ai
http://www.gvgai.net

Figure A.1.: Generated levels in the Angry Birds Level Generation Competition. From [542].

General Video Game AI Competition5

The GVG-AI Competition explores the problem of creating controllers for gen-
eral video game playing. The key questions in this Competition are:
How would you create a single agent that is able to play any game it is given?
Could you program an agent that is able to play a wide variety of games,
without knowing which games are to be played?
Can you create an automatic level generation that designs levels for any game
is given?

Malmo Collaborative AI Challenge6

The Malmo Collaborative AI Challenge is designed to encourage research relat-
ing to various problems in Collaborative AI. The Challenge takes the form of
a collaborative mini-game in which players need to work together to achieve
a common goal. Challenge participants are invited to develop and train col-
laborative AI solutions that learn to achieve high scores across a range of
partners. This Challenge uses Project Malmo7 [315], an AI experimentation
and research platform that is built on top of the popular Minecraft™game.

RoboCupSoccer – Simulation League8

The RoboCupSoccer – Simulation League focus on AI and team strategy.
Two teams of eleven autonomous and independently moving software play-
ers (called agents) play soccer in a virtual soccer stadium represented by a
central server. This server knows everything about the game, i.e. the current
position of all players and the ball, the physics and so on. The game fur-
ther relies on the communication between the server and each agent. On the
one hand, each player receives relative and noisy input of his virtual sensors
(visual, acoustic and physical) and may, on the other hand, perform some
basic commands (like dashing, turning or kicking) in order to influence its
environment.
There are 2 sub-leagues: 2D and 3D (as shown in Figure A.2).

6From https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-
challenge

7https://www.microsoft.com/en-us/research/project/project-malmo
8From http://www.robocup.org/leagues/23
9From http://game.engineering.nyu.edu/showdown-ai-competition

258 Appendix A Popular AI Competitions

http://www.gvgai.net
https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-challenge
https://www.microsoft.com/en-us/research/project/project-malmo
http://www.robocup.org/leagues/23
https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-challenge
https://www.microsoft.com/en-us/research/academic-program/collaborative-ai-challenge
https://www.microsoft.com/en-us/research/project/project-malmo
http://www.robocup.org/leagues/23
http://game.engineering.nyu.edu/showdown-ai-competition

(a) The 2D sub-league. (b) The 3D sub-league.

Figure A.2.: Screenshots of the RoboCupSoccer Simulation League. From http://www.
robocup.org.

Showdown AI Competition9

The Showdown AI Competition is a game-based AI competition built around a
clone of the popular game Pokémon™. This game is a turn-based team battle,
where the objective is to defeat an opponent team using clever combinations
of creatures and their abilities. The gameplay is reminiscent of computer role-
playing game battles and collectable card games. Characteristics, such as the
combination of turn-based gameplay and partial observability, are unusual in
current game-based AI competitions and therefore offers a fresh challenge.

StarCraft AI Competition10

IEEE CIG StarCraft Competitions have seen quite some progress in the devel-
opment and evolution of new StarCraft® bots. For the evolution of the bots,
participants used various approaches for making AI bots and it has fertilized
game AI and methods such as HMM, Bayesian model, CBR, Potential fields,
and reinforcement learning. However, it is still quite challenging to develop
AI for the game because it should handle a number of units and buildings
while considering resource management and high-level tactics. The purpose
of this competition is developing RTSs game AI and solving challenging issues
on RTSs game AI such as uncertainty, real-time process, managing units.

Note that StarCraft® is a very popular Game for AI Competition, therefore
many of them are organized by universities worldwide (for instance the AIIDE
Starcraft AI Competition or the Student StarCraft AI Tournament & Ladder).

Visual Doom AI Competition11

The Visual Doom AI Competition is about writing a controller (bot) that plays
Doom from pixels. The screen buffer accessed in real-time is the only inform-
ation the agent can base its decision on. The winner of the Competition is
determined by a multiplayer death-match tournament. Although the parti-
cipants are allowed to use any technique to develop a controller, the design
and efficiency of the framework allow and encourage the use machine learn-
ing methods such as reinforcement deep learning.

10From http://cilab.sejong.ac.kr/sc_competition
11From http://vizdoom.cs.put.edu.pl

259

http://www.robocup.org
http://www.robocup.org
http://game.engineering.nyu.edu/showdown-ai-competition
http://cilab.sejong.ac.kr/sc_competition
http://www.cs.mun.ca/~dchurchill/starcraftaicomp
http://www.cs.mun.ca/~dchurchill/starcraftaicomp
https://sscaitournament.com
http://vizdoom.cs.put.edu.pl
http://cilab.sejong.ac.kr/sc_competition
http://vizdoom.cs.put.edu.pl

BBenchmark and Competition
Results - Angry Birds AI
Competition (AIBIRDS)

Benchmark Results

20131

Rank Team Total score Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 Level 11 Level 12 Level 13 Level 14 Level 15 Level 16 Level 17 Level 18 Level 19 Level 20 Level 21

1 AngryHex 974670 30390 54160 41890 28000 64440 24990 36900 24860 49570 50570 53510 57750 42010 58190 46550 63430 46820 50020 38460 46970 65190
2 WISC 963160 29030 52180 41950 27850 65810 24640 25520 55810 33680 39170 50000 54980 32450 65060 49200 63430 54750 44740 37370 47980 67560
3 Angry Concepts 954030 29410 52250 41320 28160 64160 15660 24630 47170 48670 48290 56130 58600 50360 58050 43340 55000 45990 44030 37880 43730 61200
4 Beau Rivage 952390 29760 43160 40500 28680 61000 33540 45780 49150 33110 42200 57420 55600 35190 62770 47270 55890 49880 38820 29780 37020 75870
5 HungryBirds 951440 31210 53860 42040 20980 65700 28430 40580 27020 50710 53070 56260 55410 30130 59780 41040 55310 43530 46770 32690 56050 60870
6 Luabab 894840 29600 52180 40760 28030 66100 16860 32180 48330 41840 54110 45580 53040 41110 65640 28910 65670 39550 37680 16820 36970 53880
7 Dan 893370 29210 42760 41610 27990 63840 25700 45990 23390 45930 49570 38570 54990 32270 57550 47280 63000 42770 48290 22040 36910 53710
8 Black Forest Cuckoos 874650 29880 52390 41600 28980 65380 0 32380 56310 23050 52360 54360 57750 29770 57560 55300 59940 52920 41410 36940 46370 0
9 IHSEV 861830 29360 52780 41240 36810 51860 33790 30130 57570 24310 29860 59070 40960 42840 65640 30700 51730 47940 47320 30940 0 56980
10 Naïve Agent 858730 29510 52230 40620 20680 55160 16070 21590 25730 35490 32600 46760 54070 49470 50590 46430 55210 48140 49430 37920 36790 54240
11 Sniper 785520 29760 42720 40500 18620 65850 35490 28780 48170 26960 35540 51150 49190 26180 65640 0 56530 37980 40460 30390 55610 0
12 Wanderer 774190 30840 60400 41900 36770 63550 26910 22070 57780 51480 68740 30620 42320 20050 58200 25520 38960 37560 35220 25300 0 0
13 s-birds 754190 30080 26240 42240 19050 38160 36180 49120 38340 41670 54940 57950 47460 22550 63560 42990 65750 38790 39120 0 0 0
14 Lambdaers 705010 30970 52390 42070 19580 63750 26400 45880 57600 49370 61820 44120 38390 29350 54340 44040 0 44940 0 0 0 0
15 A.Wang 680640 22400 43320 31910 28080 48440 24770 23960 27580 42590 57610 47410 46980 27490 65640 36160 66550 39750 0 0 0 0
16 Akbaba 641080 28640 35540 41910 19120 47470 0 23880 45380 36960 56000 48460 52310 0 59420 0 47230 44260 54500 0 0 0
17 ObjectS 569000 29670 43200 40620 11720 65850 15570 21310 37170 22610 51250 57930 45200 26570 65640 34690 0 0 0 0 0 0
18 AngryPKU 476100 18420 33280 24070 10120 35650 26450 0 27840 24660 30160 31740 45870 0 45640 32790 55890 0 0 33520 0 0
19 JulyPlayer 352340 29360 52520 35360 20690 46300 17400 21810 45370 48670 34860 0 0 0 0 0 0 0 0 0 0 0
20 FEI2 211870 28360 34160 30470 27650 64710 26520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

High scores 1134920 31210 60400 42240 36770 65850 36180 49120 57780 51480 68740 59070 58600 50360 65640 55300 66550 54750 54500 38460 56050 75870
2012 High scores 1080390 33340 60880 42880 38160 67630 32550 31240 48270 51570 58530 60420 63440 36940 65790 48200 66180 55150 57320 38720 51440 71740
3 stars score 1042000 32000 60000 41000 28000 64000 35000 45000 50000 50000 55000 54000 45000 47000 70000 41000 64000 53000 48000 35000 50000 75000

Table B.1.: Benchmark Results 2013 - AIBIRDS.

2013–20142

Rank Team Total Score Level 1-1 Level 1-2 Level 1-3 Level 1-4 Level 1-5 Level 1-6 Level 1-7 Level 1-8 Level 1-9 Level 1-10 Level 1-11 Level 1-12 Level 1-13 Level 1-14 Level 1-15 Level 1-16 Level 1-17 Level 1-18 Level 1-19 Level 1-20 Level 1-21

1 PlanA+ 1002380 30480 62370 40620 29000 69440 36970 32020 47320 26440 56830 47240 58210 34010 65640 54910 57530 51190 52120 39440 45980 64620
2 DataLab Birds 981120 31620 52000 41890 19790 70320 15700 45720 43190 50420 56790 50650 53420 32010 55640 46450 57380 48570 45730 35470 54680 73680
3 AngryHex (2013) 974670 30390 54160 41890 28000 64440 24990 36900 24860 49570 50570 53510 57750 42010 58190 46550 63430 46820 50020 38460 46970 65190
4 WISC 963160 29030 52180 41950 27850 65810 24640 25520 55810 33680 39170 50000 54980 32450 65060 49200 63430 54750 44740 37370 47980 67560
5 AngryHex (2014) 960320 32660 52580 41910 19690 68090 25180 24680 43330 42740 54890 53570 54860 41200 57150 41100 61470 50260 48050 36780 39010 71120
6 Angry Concepts 954030 29410 52250 41320 28160 64160 15660 24630 47170 48670 48290 56130 58600 50360 58050 43340 55000 45990 44030 37880 43730 61200
7 Beau Rivage 952390 29760 43160 40500 28680 61000 33540 45780 49150 33110 42200 57420 55600 35190 62770 47270 55890 49880 38820 29780 37020 75870
8 HungryBirds 951440 31210 53860 42040 20980 65700 28430 40580 27020 50710 53070 56260 55410 30130 59780 41040 55310 43530 46770 32690 56050 60870
9 AngryBER 935330 28510 43420 41910 19390 62880 35610 31980 45050 48670 51980 51550 54720 42510 45640 47090 50000 47740 44110 36450 35990 70130
10 RMIT RedBacks 933120 32220 53860 30480 19380 70350 33470 45740 29180 33320 59190 45250 56910 42300 45640 41540 66570 39370 48530 30460 40760 68600
11 Luabab 894840 29600 52180 40760 28030 66100 16860 32180 48330 41840 54110 45580 53040 41110 65640 28910 65670 39550 37680 16820 36970 53880
12 Dan 893370 29210 42760 41610 27990 63840 25700 45990 23390 45930 49570 38570 54990 32270 57550 47280 63000 42770 48290 22040 36910 53710
13 IHSEV (2014) 891590 29520 53070 41440 21860 56470 33470 29920 36630 40620 32300 31570 61070 41330 59250 34830 54160 47830 42840 40100 40470 62840
14 Impact Vactor 886990 29710 60480 42040 19700 65440 33870 36880 25720 34770 46870 57490 55230 49620 0 45860 58870 47070 48210 25040 37650 66470
15 Black Forest Cuckoos 874650 29880 52390 41600 28980 65380 0 32380 56310 23050 52360 54360 57750 29770 57560 55300 59940 52920 41410 36940 46370 0
16 IHSEV (2013) 861830 29360 52780 41240 36810 51860 33790 30130 57570 24310 29860 59070 40960 42840 65640 30700 51730 47940 47320 30940 0 56980
17 Naïve Agent (2013) 858730 29510 52230 40620 20680 55160 16070 21590 25730 35490 32600 46760 54070 49470 50590 46430 55210 48140 49430 37920 36790 54240
18 Sniper 785520 29760 42720 40500 18620 65850 35490 28780 48170 26960 35540 51150 49190 26180 65640 0 56530 37980 40460 30390 55610 0
19 Wanderer 774190 30840 60400 41900 36770 63550 26910 22070 57780 51480 68740 30620 42320 20050 58200 25520 38960 37560 35220 25300 0 0
20 Naïve Agent (2014) 756680 29760 43250 40180 10590 62490 14980 22150 35840 36050 52570 39310 48660 30000 45640 44190 52300 39530 39590 29460 40140 0
21 s-birds 754190 30080 26240 42240 19050 38160 36180 49120 38340 41670 54940 57950 47460 22550 63560 42990 65750 38790 39120 0 0 0
22 S-birds Avengers 706110 28520 51770 35380 27950 60920 26000 0 48010 49050 0 48320 45150 22130 53760 41240 0 45000 45750 38200 38960 0
23 Lambdaers 705010 30970 52390 42070 19580 63750 26400 45880 57600 49370 61820 44120 38390 29350 54340 44040 0 44940 0 0 0 0
24 A.Wang 680640 22400 43320 31910 28080 48440 24770 23960 27580 42590 57610 47410 46980 27490 65640 36160 66550 39750 0 0 0 0
25 Akbaba 641080 28640 35540 41910 19120 47470 0 23880 45380 36960 56000 48460 52310 0 59420 0 47230 44260 54500 0 0 0
26 AngryDragons 620390 28120 33440 30430 28820 65650 0 0 29340 25590 0 39580 51340 30840 55640 33920 53800 45660 38390 29830 0 0
27 ObjectS 569000 29670 43200 40620 11720 65850 15570 21310 37170 22610 51250 57930 45200 26570 65640 34690 0 0 0 0 0 0
28 AngryPKU 476100 18420 33280 24070 10120 35650 26450 0 27840 24660 30160 31740 45870 0 45640 32790 55890 0 0 33520 0 0
29 JulyPlayer 352340 29360 52520 35360 20690 46300 17400 21810 45370 48670 34860 0 0 0 0 0 0 0 0 0 0 0
30 FEI2 211870 28360 34160 30470 27650 64710 26520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

High Scores 1146160 32660 62370 42240 36810 70350 36970 49120 57780 51480 68740 59070 61070 50360 65640 55300 66570 54750 54500 38460 56050 75870
2013 Highscores 1134920 31210 60400 42240 36810 65850 36180 49120 57780 51480 68740 59070 58600 50360 65640 55300 66550 54750 54500 38460 56050 75870
3 stars 1042000 32000 60000 41000 28000 64000 35000 45000 50000 50000 55000 54000 45000 47000 70000 41000 64000 53000 48000 35000 50000 75000

Table B.2.: Benchmark Results 2013–2014 overall - AIBIRDS.

1http://aibirds.org/past-competitions/2013-competition/benchmarks.html
2https://aibirds.org/past-competitions/2014-competition/benchmarks.html

261

http://aibirds.org/past-competitions/2013-competition/benchmarks.html
https://aibirds.org/past-competitions/2014-competition/benchmarks.html
http://aibirds.org/past-competitions/2013-competition/benchmarks.html
https://aibirds.org/past-competitions/2014-competition/benchmarks.html

2013–2014–20163

Rank Team Total Score Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8 Level 9 Level 10 Level 11 Level 12 Level 13 Level 14 Level 15 Level 16 Level 17 Level 18 Level 19 Level 20 Level 21

1 DataLab (2016) 1018230 29890 52180 41910 27960 58210 25120 45820 44830 51080 52570 56420 54750 41510 64940 38740 63840 50620 46610 38300 53170 79760
2 PlanA+ (2014) 1002380 30480 62370 40620 29000 69440 36970 32020 47320 26440 56830 47240 58210 34010 65640 54910 57530 51190 52120 39440 45980 64620
3 DataLab (2014) 981120 31620 52000 41890 19790 70320 15700 45720 43190 50420 56790 50650 53420 32010 55640 46450 57380 48570 45730 35470 54680 73680
4 HeartyTian 979050 28590 52120 41910 20630 67110 16960 45820 37810 49320 52660 56420 53220 49180 58200 31470 61450 51010 44990 37550 53360 69270
5 AngryHex (2013) 974670 30390 54160 41890 28000 64440 24990 36900 24860 49570 50570 53510 57750 42010 58190 46550 63430 46820 50020 38460 46970 65190
6 Datalab (2015) 973300 31430 52120 41910 27970 63660 34480 46290 54830 41490 49690 35080 51150 48130 58200 46530 58930 44870 44520 37380 42640 62000
7 WISC 963160 29030 52180 41950 27850 65810 24640 25520 55810 33680 39170 50000 54980 32450 65060 49200 63430 54750 44740 37370 47980 67560
8 AngryHex (2014) 960320 32660 52580 41910 19690 68090 25180 24680 43330 42740 54890 53570 54860 41200 57150 41100 61470 50260 48050 36780 39010 71120
9 Angry Concepts 954030 29410 52250 41320 28160 64160 15660 24630 47170 48670 48290 56130 58600 50360 58050 43340 55000 45990 44030 37880 43730 61200

10 Beau Rivage 952390 29760 43160 40500 28680 61000 33540 45780 49150 33110 42200 57420 55600 35190 62770 47270 55890 49880 38820 29780 37020 75870
11 HungryBirds 951440 31210 53860 42040 20980 65700 28430 40580 27020 50710 53070 56260 55410 30130 59780 41040 55310 43530 46770 32690 56050 60870
12 UFC 947680 31940 61680 43480 36810 66880 36080 45880 59120 49790 42630 59280 58190 48090 65640 47090 62230 45410 56860 30600 0 0
13 BamBirds 942790 30680 51420 42530 28600 65630 25260 23560 33220 50310 40570 45210 55940 36860 57740 50740 56420 49940 49740 32890 48250 67280
14 SeaBirds 942726 29540 53840 33490 29160 65620 17660 30590 58170 34970 56390 58250 53500 49050 55640 40606 61880 42290 40530 23110 39210 69230
15 AngryHex (2015) 940630 32660 52580 41910 21590 62940 33900 30110 46030 22960 63860 53570 54860 32220 53520 47120 55710 50260 42070 37040 44730 60990
16 AngryBER 935330 28510 43420 41910 19390 62880 35610 31980 45050 48670 51980 51550 54720 42510 45640 47090 50000 47740 44110 36450 35990 70130
17 RedBacks 933120 32220 53860 30480 19380 70350 33470 45740 29180 33320 59190 45250 56910 42300 45640 41540 66570 39370 48530 30460 40760 68600
18 PlanA+ (2015) 929060 30940 51450 40620 28100 48740 36690 22680 0 40970 62060 56610 57850 21260 65640 54910 56440 47540 52520 37550 35090 81400
19 AngryHex (2016) 906160 31520 52320 41870 29080 68410 35360 0 47860 46850 62670 44080 56280 49820 73960 46760 55640 51250 40840 28480 43110 0
20 Luabab 894840 29600 52180 40760 28030 66100 16860 32180 48330 41840 54110 45580 53040 41110 65640 28910 65670 39550 37680 16820 36970 53880
21 Dan 893370 29210 42760 41610 27990 63840 25700 45990 23390 45930 49570 38570 54990 32270 57550 47280 63000 42770 48290 22040 36910 53710
22 IHSEV (2014) 891590 29520 53070 41440 21860 56470 33470 29920 36630 40620 32300 31570 61070 41330 59250 34830 54160 47830 42840 40100 40470 62840
23 IHSEV (2015) 889090 28810 61390 41820 28160 63880 33820 45740 25770 33230 64270 55220 46830 48050 60100 42320 63760 46870 43380 20730 34940 0
24 Impact Vactor 886990 29710 60480 42040 19700 65440 33870 36880 25720 34770 46870 57490 55230 49620 0 45860 58870 47070 48210 25040 37650 66470
25 Tori 885450 32130 52700 41870 19410 66910 15780 21800 47820 33870 32880 40750 62290 33560 69970 45410 65760 48830 39360 0 46670 67680
26 Black Forest Cuckoos 874650 29880 52390 41600 28980 65380 0 32380 56310 23050 52360 54360 57750 29770 57560 55300 59940 52920 41410 36940 46370 0
27 IHSEV (2013) 861830 29360 52780 41240 36810 51860 33790 30130 57570 24310 29860 59070 40960 42840 65640 30700 51730 47940 47320 30940 0 56980
28 Naïve Agent (2013) 858730 29510 52230 40620 20680 55160 16070 21590 25730 35490 32600 46760 54070 49470 50590 46430 55210 48140 49430 37920 36790 54240
29 Naïve Agent (2016) 855370 29800 52610 40260 19000 54660 33830 23440 57840 25900 40750 57220 57240 29740 58340 49050 60050 47970 41590 38760 37320 0
30 Naïve Agent (2015) 838590 29760 34230 40850 13440 57640 24590 24590 43360 50710 59970 52950 55720 23070 57940 48710 63780 39280 46370 35850 35780 0
31 IHSEV (2016) 812060 28830 61390 42210 11290 67510 33820 20640 34300 40850 49980 39690 59360 34870 57860 51400 62980 41350 39240 34490 0 0
32 Sniper 785520 29760 42720 40500 18620 65850 35490 28780 48170 26960 35540 51150 49190 26180 65640 0 56530 37980 40460 30390 55610 0
33 Wanderer 774190 30840 60400 41900 36770 63550 26910 22070 57780 51480 68740 30620 42320 20050 58200 25520 38960 37560 35220 25300 0 0
34 Naïve Agent (2014) 756680 29760 43250 40180 10590 62490 14980 22150 35840 36050 52570 39310 48660 30000 45640 44190 52300 39530 39590 29460 40140 0
35 s-birds 754190 30080 26240 42240 19050 38160 36180 49120 38340 41670 54940 57950 47460 22550 63560 42990 65750 38790 39120 0 0 0
36 S-birds Avengers 706110 28520 51770 35380 27950 60920 26000 0 48010 49050 0 48320 45150 22130 53760 41240 0 45000 45750 38200 38960 0
37 Lambdaers 705010 30970 52390 42070 19580 63750 26400 45880 57600 49370 61820 44120 38390 29350 54340 44040 0 44940 0 0 0 0
38 Adil 683380 29950 51960 42820 0 69790 36150 31340 54890 48970 0 0 60670 0 71430 32910 61770 51480 0 39250 0 0
39 A.Wang 680640 22400 43320 31910 28080 48440 24770 23960 27580 42590 57610 47410 46980 27490 65640 36160 66550 39750 0 0 0 0
40 Akbaba 641080 28640 35540 41910 19120 47470 0 23880 45380 36960 56000 48460 52310 0 59420 0 47230 44260 54500 0 0 0
41 AngryDragons 620390 28120 33440 30430 28820 65650 0 0 29340 25590 0 39580 51340 30840 55640 33920 53800 45660 38390 29830 0 0
42 sBirds-returns 595530 28290 33890 41910 10230 56220 17860 22420 47820 51390 0 30560 56790 28830 0 0 46260 46910 0 31280 44870 0
43 ObjectS 569000 29670 43200 40620 11720 65850 15570 21310 37170 22610 51250 57930 45200 26570 65640 34690 0 0 0 0 0 0
44 AngryPKU 476100 18420 33280 24070 10120 35650 26450 0 27840 24660 30160 31740 45870 0 45640 32790 55890 0 0 33520 0 0
45 sBirds (2016) 461450 29760 43330 40850 19540 55070 15980 0 0 41180 47610 52040 47690 29950 0 38450 0 0 0 0 0 0
46 JulyPlayer 352340 29360 52520 35360 20690 46300 17400 21810 45370 48670 34860 0 0 0 0 0 0 0 0 0 0 0
47 FEI2 211870 28360 34160 30470 27650 64710 26520 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

3 stars 1042000 32000 60000 41000 28000 64000 35000 45000 50000 50000 55000 54000 45000 47000 70000 41000 64000 53000 48000 35000 50000 75000
High Scores 1168020 32660 62370 43480 36810 70350 36970 49120 59120 51480 68740 59280 62290 50360 73960 55300 66570 54750 56860 40100 56050 81400

Table B.3.: Benchmark Results 2013–2014–2016 overall - AIBIRDS.

Competition Results

20134

Qualification Rounds

1 Angry-HEX 584600

2 Luabab 570530

3 Beau-Rivage 537380

4 Angry Concepts 532310

5 Naive Agent 506070

6 Hungry Birds 474810

7 Team Wisc 452110

8 IHSEV 435950

9 A. Wang 416530

10 Dan 396400

11 s-birds 375480

12 LAMBDAers 318320

13 Akbaba 294460

14 OBJECT-S 292770

15 Black Forest Cuckoos 286800

16 The Snipers 278420

17 AngryPKUers 278230

18 JulyPlayer 257060

19 Wanderer 216630

20 FEI2 140660

Quarter Final 1

1 Angry-HEX 283970

2 Beau Rivage 179730

3 Naive 93090

4 IHSEV 85560

Quarter Final 2

1 Team Wisc 209170

2 Angry Concepts 207300

3 NLuabab 190310

4 Hungry Birds 151480

Semi Final

1 Angry Concepts 510740

2 Beau Rivage 331490

3 Team Wisc 286080

4 Angry-HEX 200830

Grand Final

1 Beau Rivage 91140

2 Angry Concepts 0

Third Place Final

1 Team Wisc 228560

2 Angry-HEX 75790

Table B.4.: 2013 Competition Results - AIBIRDS.

3http://aibirds.org/benchmarks.html (this URL will probably change in the next years, follow-
ing a similar structure to the other links to Benchmark Results)

4https://aibirds.org/past-competitions/2013-competition/results.html

262 Appendix B Benchmark and Competition Results - AIBIRDS

http://aibirds.org/benchmarks.html
https://aibirds.org/past-competitions/2013-competition/results.html
http://aibirds.org/benchmarks.html
https://aibirds.org/past-competitions/2013-competition/results.html

20145

Qualification Rounds

1 DataLab Birds 423280

2 PlanA+ 372810

3 s-Birds Avengers 361770

4 Angry Dragons 317300

5 Naïve 302710

6 Impact Vactor 298390

7 Angry-HEX 294170

8 IHSEV 292380

9 Angry BER 253820

10 BeauRivage 238080

11 RMIT Redbacks 188890

12 Auto Lilienthal 0

Quarter Final 1

1 DataLab Birds 346260

2 Angry BER 224860

3 Impact Vactor 173710

4 s-birds Avengers 167860

Quarter Final 2

1 PlanA+ 360920

2 IHSEV 277530

3 Angry-HEX 129610

4 Angry Dragons 78970

Semi Final

1 DataLab Birds 232790

2 Angry BER 206680

3 PlanA+ 206620

4 IHSEV 93100

Grand Final

1 DataLab Birds 406340

2 Angry BER 243880

Table B.5.: 2014 Competition Results - AIBIRDS.

20156

Qualification Rounds

1 IHSEV 405230

2 Angry-HEX 341800

3 Datalab Birds 335320

4 PlanA+ 308130

5 S-Birds Returns 212120

6 UFAngryBirdsC 195040

7 Adil 41360

8 Tori 129480

Quarter Final 1

1 IHSEV 278820

2 Tori 250750

3 PlanA+ 147130

4 s-birds Returns 104140

Quarter Final 2

1 DataLab Birds 543590

2 Angry-HEX 352800

3 UFAngryBirdsC 101240

4 Angry Adil 0

Semi Final

1 DataLab Birds 256080

2 Angry-HEX 247010

3 Tori 227700

4 IHSEV 199970

Grand Final

1 DataLab Birds 529610

2 Angry-HEX 512220

Table B.6.: 2015 Competition Results - AIBIRDS.

20167

Results after Qualification

1 HeartyTian 576650

2 Angry-HEX 553720

3 Datalab Birds 550810

4 SEABirds 403190

5 S-Birds 372890

6 Naive Agent 293020

7 IHSEV 290770

8 BamBirds 60000

Quarter Final 1

1 SEABirds 328570

2 BamBirds 280390

3 HeartyTian 252100

4 s-Birds 182970

Quarter Final 2

1 IHSEV 470940

2 DataLab Birds 327490

3 Naive Agent 232880

4 Angry-HEX 231300

Semi Final

1 IHSEV 562820

2 BamBirds 406200

3 DataLab Birds 371100

4 SEABirds 293410

Grand Final

1 BamBirds 451250

2 IHSEV 288720

Table B.7.: 2016 Competition Results - AIBIRDS.

5https://aibirds.org/past-competitions/2014-competition/results.html
6https://aibirds.org/past-competitions/2015-competition/results.html
7http://aibirds.org/past-competitions/2016-competition/competition-results.html

263

https://aibirds.org/past-competitions/2014-competition/results.html
https://aibirds.org/past-competitions/2015-competition/results.html
http://aibirds.org/past-competitions/2016-competition/competition-results.html
https://aibirds.org/past-competitions/2014-competition/results.html
https://aibirds.org/past-competitions/2015-competition/results.html
http://aibirds.org/past-competitions/2016-competition/competition-results.html

20178

Quarter Final 1

1 IHSEV 261,600

2 S-Birds 147,120

3 Condor 94,600

Quarter Final 2

1 Angry-HEX 242,980

2 Eagle’s Wing 175,510

3 Vale Fina 007 106,930

Quarter Final 3

1 PlanA+ 172,410

2 DataLab Birds 97,100

3 BamBirds 89,830

4 AngryBNU 0

Quarter Final Ranking

1 IHSEV 261,600

2 Angry-HEX 242,980

3 Eagle’s Wing 175,510

4 PlanA+ 172,410

5 S-Birds 147,120

6 Vale Fina 007 106,930

7 DataLab Birds 97,100

8 Condor 94,600

9 BamBirds 89,830

10 AngryBNU 0

Semi Final

1 IHSEV 415,890

2 Eagle’s Wing 350,900

3 Angry-HEX 238,040

4 PlanA+ 225,780

Grand Final

1 Eagle’s Wing 355,700

2 IHSEV 275,110

Table B.8.: 2017 Competition Results - AIBIRDS.

8http://aibirds.org/angry-birds-ai-competition/competition-results.html (this URL
will probably change in the next years, following a similar structure to the other links to
Competition Results)

264 Appendix B Benchmark and Competition Results - AIBIRDS

http://aibirds.org/angry-birds-ai-competition/competition-results.html
http://aibirds.org/angry-birds-ai-competition/competition-results.html

Bibliography

[1] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, C. Erwin, E. F.
Galvez, M. Hatoun, A. Maskey, A. Rasin, A. Singer, M. Stonebraker, N. Tatbul, Y.
Xing, R. Yan and S. B. Zdonik. ‘Aurora: A Data Stream Management System’. In:
[298]. 2003, p. 666. DOI: 10.1145/872757.872855 (cit. on p. 62).

[2] D. J. Abadi, D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee, M. Stone-
braker, N. Tatbul and S. B. Zdonik. ‘Aurora: a new model and architecture for
data stream management’. In: VLDB J. 12.2 (2003), pp. 120–139. DOI: 10.1007/
s00778-003-0095-z (cit. on p. 62).

[3] S. Abiteboul and R. Hull. ‘Data Functions, Datalog and Negation (Extended Ab-
stract)’. In: Proceedings of ACM SIGMOD 1988, pp. 143–153. DOI: 10.1145/50202.
50218 (cit. on p. 14).

[4] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1995
(cit. on pp. 9, 26).

[5] S. Abiteboul, V. Vianu, B. S. Fordham and Y. Yesha. ‘Relational Transducers for
Electronic Commerce’. In: JCSS 61.2 (2000), pp. 236–269. DOI: 10.1006/jcss.
2000.1708 (cit. on p. 132).

[6] D. Agrawal, P. Bernstein, E. Bertino, S. Davidson, U. Dayal, M. Franklin, J. Gehrke,
L. Haas, A. Halevy, J. Han, H. V. Jagadish, A. Labrinidis, S. Madden, Y. Papakon-
stantinou, J. M. Patel, R. Ramakrishnan, C. Ross Kenneth and Shahabi, D. Suciu, S.
Vaithyanathan and J. Widom. Challenges and Opportunities with Big Data: A white
paper prepared for the Computing Community Consortium committee of the Com-
puting Research Association, 2011. URL: http://cra.org/ccc/resources/ccc-
led-whitepapers/ (cit. on p. 127).

[7] H. Alani, L. Kagal, A. Fokoue, P. T. Groth, C. Biemann, J. X. Parreira, L. Aroyo, N. F.
Noy, C. Welty and K. Janowicz, eds. Proceedings of ISWC 2013. Vol. 8219. LNCS.
Springer, 21st–25th Oct. 2013. ISBN: 978-3-642-41337-7. DOI: 10.1007/978-3-
642-41338-4 (cit. on pp. 268, 275).

[8] J. J. Alferes and J. A. Leite, eds. Proceedings of JELIA 2004. (Lisbon, Portugal).
Vol. 3229. LNCS. Springer, 27th–30th Sept. 2004. ISBN: 3-540-23242-7 (cit. on
pp. 277, 292).

[9] M. I. Ali, F. Gao and A. Mileo. ‘CityBench: A Configurable Benchmark to Evaluate
RSP Engines Using Smart City Datasets’. In: [37]. 2015, pp. 374–389. DOI: 10.
1007/978-3-319-25010-6_25 (cit. on pp. 75, 80).

[10] L. V. Allis. Searching for solutions in games and artificial intelligence. Ponsen & Loo-
ijen, 1994 (cit. on p. 164).

[11] M. Alviano, F. Calimeri, C. Dodaro, D. Fuscà, N. Leone, S. Perri, F. Ricca, P. Veltri
and J. Zangari. ‘The ASP System DLV2’. In: [46]. 2017, pp. 215–221. DOI: 10.1007/
978-3-319-61660-5_19 (cit. on p. 32).

265

https://doi.org/10.1145/872757.872855
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1007/s00778-003-0095-z
https://doi.org/10.1145/50202.50218
https://doi.org/10.1145/50202.50218
https://doi.org/10.1006/jcss.2000.1708
https://doi.org/10.1006/jcss.2000.1708
http://cra.org/ccc/resources/ccc-led-whitepapers/
http://cra.org/ccc/resources/ccc-led-whitepapers/
https://doi.org/10.1007/978-3-642-41338-4
https://doi.org/10.1007/978-3-642-41338-4
https://doi.org/10.1007/978-3-319-25010-6_25
https://doi.org/10.1007/978-3-319-25010-6_25
https://doi.org/10.1007/978-3-319-61660-5_19
https://doi.org/10.1007/978-3-319-61660-5_19

[12] M. Alviano, F. Calimeri, W. Faber, N. Leone and S. Perri. ‘Unfounded Sets and Well-
Founded Semantics of Answer Set Programs with Aggregates’. In: JAIR 42 (2011),
pp. 487–527. DOI: 10.1613/jair.3432 (cit. on p. 39).

[13] M. Alviano, C. Dodaro, W. Faber, N. Leone and F. Ricca. ‘WASP: A Native ASP
Solver Based on Constraint Learning’. In: [115]. 2013, pp. 54–66. DOI: 10.1007/
978-3-642-40564-8_6 (cit. on p. 30).

[14] M. Alviano, C. Dodaro, N. Leone and F. Ricca. ‘Advances in WASP’. In: [136]. 2015,
pp. 40–54. DOI: 10.1007/978-3-319-23264-5_5 (cit. on p. 32).

[15] M. Alviano, C. Dodaro and F. Ricca. ‘Anytime Computation of Cautious Con-
sequences in Answer Set Programming’. In: TPLP 14.4-5 (2014), pp. 755–770. DOI:
10.1017/S1471068414000325 (cit. on p. 32).

[16] M. Alviano, W. Faber, G. Greco and N. Leone. ‘Magic Sets for disjunctive Datalog
programs’. In: Artif. Intell. 187 (2012), pp. 156–192. DOI: 10.1016/j.artint.
2012.04.008 (cit. on p. 32).

[17] M. Alviano, W. Faber, N. Leone, S. Perri, G. Pfeifer and G. Terracina. ‘The Disjunct-
ive Datalog System DLV’. In: [428]. 2010, pp. 282–301. DOI: 10.1007/978-3-642-
24206-9_17 (cit. on pp. 23, 27, 31).

[18] M. Alviano, N. Leone, M. Manna, G. Terracina and P. Veltri. ‘Magic-Sets for Datalog
with Existential Quantifiers’. In: [66]. 2012, pp. 31–43. DOI: 10.1007/978-3-642-
32925-8_5 (cit. on p. 17).

[19] T. Ambroz, G. Charwat, A. Jusits, J. P. Wallner and S. Woltran. ‘ARVis: Visualizing
Relations between Answer Sets’. In: [115]. 2013, pp. 73–78. DOI: 10.1007/978-3-
642-40564-8_8 (cit. on p. 251).

[20] D. Anicic. ‘Event Processing and Stream Reasoning with ETALIS’. PhD thesis. Karls-
ruhe Institute of Technology, 2012. URL: http://digbib.ubka.uni-karlsruhe.
de/volltexte/1000025973 (cit. on p. 73).

[21] D. Anicic, P. Fodor, S. Rudolph and N. Stojanovic. ‘EP-SPARQL: a unified language
for event processing and stream reasoning’. In: Proceedings of WWW 2011, pp. 635–
644. DOI: 10.1145/1963405.1963495 (cit. on p. 73).

[22] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic and R. Studer. ‘A Rule-
Based Language for Complex Event Processing and Reasoning’. In: [302]. 2010,
pp. 42–57. DOI: 10.1007/978-3-642-15918-3_5 (cit. on p. 73).

[23] D. Anicic, P. Fodor, S. Rudolph, R. Stühmer, N. Stojanovic and R. Studer. ‘Etalis:
Rule-based reasoning in event processing’. In: Reasoning in event-based distributed
systems 347 (2011), pp. 99–124 (cit. on p. 74).

[24] D. Anicic, S. Rudolph, P. Fodor and N. Stojanovic. ‘Real-Time Complex Event Re-
cognition and Reasoning-a Logic Programming Approach’. In: Applied Artificial In-
telligence 26.1-2 (2012), pp. 6–57. DOI: 10.1080/08839514.2012.636616 (cit. on
p. 74).

[25] D. Anicic, S. Rudolph, P. Fodor and N. Stojanovic. ‘Stream reasoning and complex
event processing in ETALIS’. In: SWJ 3.4 (2012), pp. 397–407. DOI: 10.3233/SW-
2011-0053 (cit. on p. 73).

[26] G. Antoniou, S. Batsakis and I. Tachmazidis. ‘Large-Scale Reasoning with (Se-
mantic) Data’. In: Proceedings of WIMS 2014, 1:1–1:3. DOI: 10.1145/2611040.
2611041 (cit. on p. 96).

[27] P. M. G. Apers, P. Atzeni, S. Ceri, S. Paraboschi, K. Ramamohanarao and R. T.
Snodgrass, eds. Proceedings of VLDB 2001. (Roma, Italy). Morgan Kaufmann, 11th–
14th Sept. 2001. ISBN: 1-55860-804-4 (cit. on pp. 269, 297).

[28] K. R. Apt, H. A. Blair and A. Walker. ‘Towards a Theory of Declarative Knowledge’.
In: Foundations of Deductive Databases and Logic Programming, pp. 89–148 (cit. on
p. 14).

266 Bibliography

https://doi.org/10.1613/jair.3432
https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1007/978-3-642-40564-8_6
https://doi.org/10.1007/978-3-319-23264-5_5
https://doi.org/10.1017/S1471068414000325
https://doi.org/10.1016/j.artint.2012.04.008
https://doi.org/10.1016/j.artint.2012.04.008
https://doi.org/10.1007/978-3-642-24206-9_17
https://doi.org/10.1007/978-3-642-24206-9_17
https://doi.org/10.1007/978-3-642-32925-8_5
https://doi.org/10.1007/978-3-642-32925-8_5
https://doi.org/10.1007/978-3-642-40564-8_8
https://doi.org/10.1007/978-3-642-40564-8_8
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025973
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000025973
https://doi.org/10.1145/1963405.1963495
https://doi.org/10.1007/978-3-642-15918-3_5
https://doi.org/10.1080/08839514.2012.636616
https://doi.org/10.3233/SW-2011-0053
https://doi.org/10.3233/SW-2011-0053
https://doi.org/10.1145/2611040.2611041
https://doi.org/10.1145/2611040.2611041

[29] A. Arasu, B. Babcock, S. Babu, J. Cieslewicz, M. Datar, K. Ito, R. Motwani, U.
Srivastava and J. Widom. ‘STREAM: The Stanford Data Stream Management Sys-
tem’. In: [243]. 2016, pp. 317–336. DOI: 10.1007/978-3-540-28608-0_16 (cit.
on pp. 55, 59).

[30] A. Arasu, B. Babcock, S. Babu, M. Datar, K. Ito, R. Motwani, I. Nishizawa, U. Srivast-
ava, D. Thomas, R. Varma and J. Widom. ‘STREAM: The Stanford Stream Data
Manager’. In: IEEE Data Eng. Bull. 26.1 (2003), pp. 19–26. URL: http://sites.
computer.org/debull/A03mar/paper.ps (cit. on pp. 50, 59).

[31] A. Arasu, S. Babu and J. Widom. ‘CQL: A Language for Continuous Queries over
Streams and Relations’. In: Proceedings of DBPL 2003, pp. 1–19. DOI: 10.1007/978-
3-540-24607-7_1 (cit. on p. 59).

[32] A. Arasu, S. Babu and J. Widom. ‘The CQL continuous query language: semantic
foundations and query execution’. In: VLDB J. 15.2 (2006), pp. 121–142. DOI:
10.1007/s00778-004-0147-z (cit. on pp. 59, 79).

[33] A. Arasu, M. Cherniack, E. F. Galvez, D. Maier, A. Maskey, E. Ryvkina, M. Stoneb-
raker and R. Tibbetts. ‘Linear Road: A Stream Data Management Benchmark’. In:
Proceedings of VLDB 2004, pp. 480–491. URL: http://www.vldb.org/conf/2004/
RS12P1.PDF (cit. on p. 76).

[34] J. O. de Araujo and F. O. de França. ‘UFAngryBirdsC Agent’. 2015. URL: https:
//aibirds.org/2015-teams/UFAngryBirdsC.pdf (cit. on p. 182).

[35] M. Aref, B. ten Cate, T. J. Green, B. Kimelfeld, D. Olteanu, E. Pasalic, T. L.
Veldhuizen and G. Washburn. ‘Design and Implementation of the LogicBlox Sys-
tem’. In: Proceedings of ACM SIGMOD 2015, pp. 1371–1382. DOI: 10 . 1145 /
2723372.2742796 (cit. on p. 19).

[36] W. G. Aref. ‘Window-based Query Processing’. In: [384]. 2009, pp. 3533–3538.
DOI: 10.1007/978-0-387-39940-9_468 (cit. on p. 81).

[37] M. Arenas, Ó. Corcho, E. Simperl, M. Strohmaier, M. d’Aquin, K. Srinivas, P. T.
Groth, M. Dumontier, J. Heflin, K. Thirunarayan and S. Staab, eds. Proceedings
of ISWC 2015, Part II. (Bethlehem, PA, USA). Vol. 9367. LNCS. Springer, 11th–
15th Oct. 2015. ISBN: 978-3-319-25009-0. DOI: 10.1007/978-3-319-25010-6
(cit. on pp. 265, 291).

[38] M. Arikawa, S. Konomi and K. Ohnishi. ‘Navitime: Supporting Pedestrian Navig-
ation in the Real World’. In: IEEE Pervasive Comput. 6.3 (2007), pp. 21–29. DOI:
10.1109/MPRV.2007.61 (cit. on p. 51).

[39] B. Babcock, S. Babu, M. Datar, R. Motwani and J. Widom. ‘Models and Issues in
Data Stream Systems’. In: [475]. 2002, pp. 1–16. DOI: 10.1145/543613.543615
(cit. on pp. 56, 61, 65).

[40] S. Babu and J. Widom. ‘Continuous Queries over Data Streams’. In: SIGMOD Record
30.3 (2001), pp. 109–120. DOI: 10.1145/603867.603884 (cit. on p. 50).

[41] J. Baget, M. Leclère, M. Mugnier, S. Rocher and C. Sipieter. ‘Graal: A Toolkit for
Query Answering with Existential Rules’. In: Proceedings of RuleML 2015, pp. 328–
344. DOI: 10.1007/978-3-319-21542-6_21 (cit. on p. 20).

[42] J. Baget, M. Mugnier, S. Rudolph and M. Thomazo. ‘Walking the Complexity Lines
for Generalized Guarded Existential Rules’. In: [576]. 2011, pp. 712–717. DOI:
10.5591/978-1-57735-516-8/IJCAI11-126 (cit. on p. 17).

[43] Y. Bai, H. Thakkar, H. Wang and C. Zaniolo. ‘Optimizing Timestamp Management
in Data Stream Management Systems’. In: Proceedings of ICDE 2007, pp. 1334–
1338. DOI: 10.1109/ICDE.2007.369005 (cit. on p. 59).

[44] Y. Bai, H. Thakkar, H. Wang and C. Zaniolo. ‘Time-Stamp Management and Query
Execution in Data Stream Management Systems’. In: IEEE Internet Comput. 12.6
(2008), pp. 13–21. DOI: 10.1109/MIC.2008.133 (cit. on p. 59).

267

https://doi.org/10.1007/978-3-540-28608-0_16
http://sites.computer.org/debull/A03mar/paper.ps
http://sites.computer.org/debull/A03mar/paper.ps
https://doi.org/10.1007/978-3-540-24607-7_1
https://doi.org/10.1007/978-3-540-24607-7_1
https://doi.org/10.1007/s00778-004-0147-z
http://www.vldb.org/conf/2004/RS12P1.PDF
http://www.vldb.org/conf/2004/RS12P1.PDF
https://aibirds.org/2015-teams/UFAngryBirdsC.pdf
https://aibirds.org/2015-teams/UFAngryBirdsC.pdf
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1007/978-0-387-39940-9_468
https://doi.org/10.1007/978-3-319-25010-6
https://doi.org/10.1109/MPRV.2007.61
https://doi.org/10.1145/543613.543615
https://doi.org/10.1145/603867.603884
https://doi.org/10.1007/978-3-319-21542-6_21
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-126
https://doi.org/10.1109/ICDE.2007.369005
https://doi.org/10.1109/MIC.2008.133

[45] M. Baldoni, F. Chesani, P. Mello and M. Montali, eds. Proceedings of PAI co-located
with AI*IA 2013. (Turin, Italy). Vol. 1107. CEUR-WS. CEUR-WS.org, 5th Dec. 2013.
URL: http://ceur-ws.org/Vol-1107 (cit. on pp. xii, 183, 273, 279).

[46] M. Balduccini and T. Janhunen, eds. Proceedings of LPNMR 2017. (Espoo, Finland).
Vol. 10377. LNCS. Springer, 3rd–6th July 2017. ISBN: 978-3-319-61659-9. DOI:
10.1007/978-3-319-61660-5 (cit. on pp. 265, 271).

[47] M. Balduccini, D. Magazzeni and M. Maratea. ‘PDDL+ Planning via Constraint
Answer Set Programming’. In: CoRR abs/1609.00030 (2016). URL: http://arxiv.
org/abs/1609.00030 (cit. on p. 27).

[48] M. Balduccini and T. C. Son, eds. Logic Programming, Knowledge Representation,
and Nonmonotonic Reasoning - Essays Dedicated to Michael Gelfond on the Occasion
of His 65th Birthday. Vol. 6565. LNCS. Springer, 2011. ISBN: 978-3-642-20831-7.
DOI: 10.1007/978-3-642-20832-4 (cit. on pp. 280, 282).

[49] M. Balduini, E. D. Valle, D. Dell’Aglio, M. Tsytsarau, T. Palpanas and C. Confa-
lonieri. ‘Social Listening of City Scale Events Using the Streaming Linked Data
Framework’. In: [7]. 2013, pp. 1–16. DOI: 10.1007/978-3-642-41338-4_1 (cit.
on p. 73).

[50] T. Balyo, M. J. H. Heule and M. Järvisalo. ‘SAT Competition 2016: Recent Devel-
opments’. In: Proceedings of AAAI 2017, pp. 5061–5063. URL: http://aaai.org/
ocs/index.php/AAAI/AAAI17/paper/view/14977 (cit. on p. 21).

[51] M. G. de la Banda and E. Pontelli, eds. Proceedings of ICLP 2008. (Udine, Italy).
Vol. 5366. LNCS. Springer, 9th–13th Dec. 2008. ISBN: 978-3-540-89981-5. DOI:
10.1007/978-3-540-89982-2 (cit. on pp. 274, 280).

[52] C. Baral. Knowledge Representation, Reasoning, and Declarative Problem Solving.
New York, NY, USA: Cambridge University Press, 2003. ISBN: 0521818028 (cit.
on pp. 21, 39, 102).

[53] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solv-
ing. Cambridge University Press, 2010. ISBN: 978-0-521-14775-0. URL: http :
/ / www . cambridge . org / de / academic / subjects / computer - science /
artificial-intelligence-and-natural-language-processing/knowledge-
representation - reasoning - and - declarative - problem - solving (cit. on
p. 39).

[54] C. Baral and M. Gelfond. ‘Logic Programming and Knowledge Representation’. In:
J. Log. Program. 19/20 (1994), pp. 73–148. DOI: 10.1016/0743-1066(94)90025-
6 (cit. on pp. 14, 213).

[55] C. Baral, M. Gelfond and A. Provetti. ‘Representing Actions: Laws, Observations
and Hypotheses’. In: J. Log. Program. 31.1-3 (1997), pp. 201–243. DOI: 10.1016/
S0743-1066(96)00141-0 (cit. on p. 170).

[56] C. Baral, M. Gelfond and J. N. Rushton. ‘Probabilistic reasoning with answer sets’.
In: TPLP 9.1 (2009), pp. 57–144. DOI: 10 . 1017 / S1471068408003645 (cit. on
p. 183).

[57] C. Baral, G. D. Giacomo and T. Eiter, eds. Principles of Knowledge Representation
and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014, Vi-
enna, Austria, July 20-24, 2014. AAAI Press. ISBN: 978-1-57735-657-8. URL: http:
//www.aaai.org/Library/KR/kr14contents.php (cit. on pp. 282, 298, 300).

[58] V. Bárány, B. ten Cate, B. Kimelfeld, D. Olteanu and Z. Vagena. ‘Declarative Statist-
ical Modeling with Datalog’. In: CoRR abs/1412.2221 (2014). URL: http://arxiv.
org/abs/1412.2221 (cit. on p. 15).

[59] D. F. Barbieri, D. Braga, S. Ceri and M. Grossniklaus. ‘An execution environment
for C-SPARQL queries’. In: Proceedings of EDBT 2010. ACM, pp. 441–452. DOI:
10.1145/1739041.1739095 (cit. on p. 72).

268 Bibliography

http://ceur-ws.org/Vol-1107
https://doi.org/10.1007/978-3-319-61660-5
http://arxiv.org/abs/1609.00030
http://arxiv.org/abs/1609.00030
https://doi.org/10.1007/978-3-642-20832-4
https://doi.org/10.1007/978-3-642-41338-4_1
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14977
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14977
https://doi.org/10.1007/978-3-540-89982-2
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/knowledge-representation-reasoning-and-declarative-problem-solving
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/knowledge-representation-reasoning-and-declarative-problem-solving
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/knowledge-representation-reasoning-and-declarative-problem-solving
http://www.cambridge.org/de/academic/subjects/computer-science/artificial-intelligence-and-natural-language-processing/knowledge-representation-reasoning-and-declarative-problem-solving
https://doi.org/10.1016/0743-1066(94)90025-6
https://doi.org/10.1016/0743-1066(94)90025-6
https://doi.org/10.1016/S0743-1066(96)00141-0
https://doi.org/10.1016/S0743-1066(96)00141-0
https://doi.org/10.1017/S1471068408003645
http://www.aaai.org/Library/KR/kr14contents.php
http://www.aaai.org/Library/KR/kr14contents.php
http://arxiv.org/abs/1412.2221
http://arxiv.org/abs/1412.2221
https://doi.org/10.1145/1739041.1739095

[60] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle and M. Grossniklaus. ‘C-SPARQL:
SPARQL for continuous querying’. In: Proceedings of WWW 2009, pp. 1061–1062.
DOI: 10.1145/1526709.1526856 (cit. on pp. 66, 70, 72).

[61] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle and M. Grossniklaus. ‘Incremental
Reasoning on Streams and Rich Background Knowledge’. In: Proceedings of ESWC
2010, Part I, pp. 1–15. DOI: 10.1007/978-3-642-13486-9_1 (cit. on pp. 66, 70,
71, 73).

[62] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle and M. Grossniklaus. ‘C-SPARQL: a
Continuous Query Language for RDF Data Streams’. In: Int. J. Semantic Computing
4.1 (2010), pp. 3–25. DOI: 10.1142/S1793351X10000936 (cit. on p. 72).

[63] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle and M. Grossniklaus. ‘Querying RDF
streams with C-SPARQL’. In: SIGMOD Record 39.1 (2010), pp. 20–26. DOI: 10 .
1145/1860702.1860705 (cit. on pp. 72, 102).

[64] D. F. Barbieri, D. Braga, S. Ceri, E. D. Valle, Y. Huang, V. Tresp, A. Rettinger and H.
Wermser. ‘Deductive and Inductive Stream Reasoning for Semantic Social Media
Analytics’. In: IEEE Intell. Syst. 25.6 (2010), pp. 32–41. ISSN: 1541-1672. DOI: 10.
1109/MIS.2010.142 (cit. on pp. 81, 82).

[65] D. Barbieri, D. Braga, S. Ceri, E. Della Valle and M. Grossniklaus. ‘Stream reasoning:
Where we got so far’. In: Proceedings of NeFoRS 2010 (cit. on p. 48).

[66] P. Barceló and R. Pichler, eds. Proceedings of International Workshop, Datalog 2.0.
(Vienna, Austria). Vol. 7494. LNCS. Springer, 11th–13th Sept. 2012. ISBN: 978-3-
642-32924-1. DOI: 10.1007/978-3-642-32925-8 (cit. on pp. 135, 266, 300).

[67] J. Barrasa Rodrguez, Ó. Corcho and A. Gómez-Pérez. ‘R2O, an Extensible and
Semantically based Database-to-Ontology Mapping Language’. In: Proceedings of
SWDB 2004, pp. 1069–1070 (cit. on p. 72).

[68] O. Bartheye and E. Jacopin. ‘Connecting pddl-based off the shelf planners to an
arcade game’. In: Proceedings of AIG at ECAI 2008. Vol. 8 (cit. on p. 169).

[69] S. Baselice, P. A. Bonatti and M. Gelfond. ‘Towards an Integration of Answer Set
and Constraint Solving’. In: Proceedings of ICLP 2005, pp. 52–66. DOI: 10.1007/
11562931_7 (cit. on p. 23).

[70] S. Basol, O. Erdem, M. Fink and G. Ianni. ‘HEX Programs with Action Atoms’. In:
Proceedings of ICLP 2010, pp. 24–33. DOI: 10.4230/LIPIcs.ICLP.2010.24 (cit. on
pp. 37, 39).

[71] T. Bass. ‘Mythbusters: event stream processing versus complex event processing’.
In: Proceedings of DEBS 2007, p. 1. DOI: 10.1145/1266894.1266896 (cit. on p. 65).

[72] A. Bassoli, J. Brewer, K. Martin, P. Dourish and S. D. Mainwaring. ‘Underground
Aesthetics: Rethinking Urban Computing’. In: IEEE Pervasive Comput. 6.3 (2007),
pp. 39–45. DOI: 10.1109/MPRV.2007.68 (cit. on p. 51).

[73] J. Bates. ‘The Role of Emotion in Believable Agents’. In: Commun. ACM 37.7 (1994),
pp. 122–125. DOI: 10.1145/176789.176803 (cit. on p. 166).

[74] J. Bates, A. B. Loyall and W. S. Reilly. ‘An Architecture for Action, Emotion, and
Social Behavior’. In: Proceedings of MAAMAW 1992, pp. 55–68. DOI: 10.1007/3-
540-58266-5_4 (cit. on p. 166).

[75] R. Baumgartner, S. Flesca and G. Gottlob. ‘Visual Web Information Extraction with
Lixto’. In: [27]. 2001, pp. 119–128. URL: http://www.vldb.org/conf/2001/
P119.pdf (cit. on p. 134).

[76] H. R. Bazoobandi, H. Beck and J. Urbani. ‘Expressive Stream Reasoning with Laser’.
In: Proceedings of ISWC 2017, Part I, pp. 87–103. DOI: 10.1007/978-3-319-68288-
4_6 (cit. on p. 96).

269

https://doi.org/10.1145/1526709.1526856
https://doi.org/10.1007/978-3-642-13486-9_1
https://doi.org/10.1142/S1793351X10000936
https://doi.org/10.1145/1860702.1860705
https://doi.org/10.1145/1860702.1860705
https://doi.org/10.1109/MIS.2010.142
https://doi.org/10.1109/MIS.2010.142
https://doi.org/10.1007/978-3-642-32925-8
https://doi.org/10.1007/11562931_7
https://doi.org/10.1007/11562931_7
https://doi.org/10.4230/LIPIcs.ICLP.2010.24
https://doi.org/10.1145/1266894.1266896
https://doi.org/10.1109/MPRV.2007.68
https://doi.org/10.1145/176789.176803
https://doi.org/10.1007/3-540-58266-5_4
https://doi.org/10.1007/3-540-58266-5_4
http://www.vldb.org/conf/2001/P119.pdf
http://www.vldb.org/conf/2001/P119.pdf
https://doi.org/10.1007/978-3-319-68288-4_6
https://doi.org/10.1007/978-3-319-68288-4_6

[77] H. Beck, B. Bierbaumer, M. Dao-Tran, T. Eiter, H. Hellwagner and K. Schekotihin.
‘Rule-based Stream Reasoning for Intelligent Administration of Content-Centric
Networks’. In: Proceedings of JELIA 2016, pp. 522–528. DOI: 10.1007/978- 3-
319-48758-8_34 (cit. on p. 96).

[78] H. Beck, B. Bierbaumer, M. Dao-Tran, T. Eiter, H. Hellwagner and K. Schekotihin.
‘Stream reasoning-based control of caching strategies in CCN routers’. In: Proceed-
ings of ICC 2017, pp. 1–6. DOI: 10.1109/ICC.2017.7996762 (cit. on p. 96).

[79] H. Beck, M. Dao-Tran and T. Eiter. ‘Answer Update for Rule-Based Stream Reas-
oning’. In: Proceedings of IJCAI 2015, pp. 2741–2747. URL: http://ijcai.org/
Abstract/15/388 (cit. on p. 95).

[80] H. Beck, M. Dao-Tran and T. Eiter. ‘Equivalent Stream Reasoning Programs’. In:
[322]. 2016, pp. 929–935. URL: http://www.ijcai.org/Abstract/16/136 (cit.
on p. 96).

[81] H. Beck, M. Dao-Tran, T. Eiter and M. Fink. ‘Towards a Logic-Based Framework
for Analyzing Stream Reasoning’. In: Proceedings of OrdRing 2014, pp. 11–22. URL:
http://ceur-ws.org/Vol-1303/paper_3.pdf (cit. on pp. 93, 94).

[82] H. Beck, M. Dao-Tran, T. Eiter and M. Fink. ‘LARS: A Logic-Based Framework for
Analyzing Reasoning over Streams’. In: [93]. 2015, pp. 1431–1438. URL: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9657 (cit. on
pp. 93–95, 102).

[83] H. Beck, M. Dao-Tran, T. Eiter and M. Fink. ‘Towards Ideal Semantics for Analyzing
Stream Reasoning’. In: CoRR abs/1505.05365 (2015). URL: http://arxiv.org/
abs/1505.05365 (cit. on pp. 93, 94).

[84] H. Beck, T. Eiter and C. F. Beckmann. ‘Ticker: A system for incremental ASP-
based stream reasoning’. In: TPLP 17.5-6 (2017), pp. 744–763. DOI: 10.1017/
S1471068417000370 (cit. on p. 96).

[85] C. Beeri and R. Ramakrishnan. ‘On the Power of Magic’. In: J. Log. Program. 10.3&4
(1991), pp. 255–299. DOI: 10.1016/0743-1066(91)90038-Q (cit. on p. 15).

[86] L. Bellomarini, G. Gottlob, A. Pieris and E. Sallinger. ‘Swift Logic for Big Data and
Knowledge Graphs’. In: [524]. 2017, pp. 2–10. DOI: 10.24963/ijcai.2017/1
(cit. on p. 140).

[87] M. Ben-Ari. Mathematical Logic for Computer Science. Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1993. ISBN: 0-13-564139-X (cit. on p. 8).

[88] R. Ben-Eliyahu and R. Dechter. ‘Propositional Semantics for Disjunctive Logic Pro-
grams’. In: AMAI 12.1-2 (1994), pp. 53–87. DOI: 10.1007/BF01530761 (cit. on
p. 141).

[89] M. Benedikt, G. Konstantinidis, G. Mecca, B. Motik, P. Papotti, D. Santoro and E.
Tsamoura. ‘Benchmarking the Chase’. In: Proceedings of PODS 2017, pp. 37–52.
DOI: 10.1145/3034786.3034796 (cit. on p. 146).

[90] B. Bishop and F. Fischer. ‘IRIS - Integrated Rule Inference System’. In: Proceedings
of ARea 2008 (cit. on p. 19).

[91] C. Bizer, T. Heath and T. Berners-Lee. ‘Linked Data - The Story So Far’. In: IJSWIS
5.3 (2009), pp. 1–22. DOI: 10.4018/jswis.2009081901 (cit. on p. 72).

[92] A. Bolles, M. Grawunder and J. Jacobi. ‘Streaming SPARQL - Extending SPARQL to
Process Data Streams’. In: Proceedings of ESWC 2008, pp. 448–462. DOI: 10.1007/
978-3-540-68234-9_34 (cit. on p. 72).

[93] B. Bonet and S. Koenig, eds. Proceedings of AAAI 2015. (Austin, Texas, USA). AAAI
Press, 25th–30th Jan. 2015. ISBN: 978-1-57735-698-1. URL: http://www.aaai.
org/Library/AAAI/aaai15contents.php (cit. on pp. 270, 294).

270 Bibliography

https://doi.org/10.1007/978-3-319-48758-8_34
https://doi.org/10.1007/978-3-319-48758-8_34
https://doi.org/10.1109/ICC.2017.7996762
http://ijcai.org/Abstract/15/388
http://ijcai.org/Abstract/15/388
http://www.ijcai.org/Abstract/16/136
http://ceur-ws.org/Vol-1303/paper_3.pdf
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9657
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9657
http://arxiv.org/abs/1505.05365
http://arxiv.org/abs/1505.05365
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.1017/S1471068417000370
https://doi.org/10.1016/0743-1066(91)90038-Q
https://doi.org/10.24963/ijcai.2017/1
https://doi.org/10.1007/BF01530761
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.4018/jswis.2009081901
https://doi.org/10.1007/978-3-540-68234-9_34
https://doi.org/10.1007/978-3-540-68234-9_34
http://www.aaai.org/Library/AAAI/aaai15contents.php
http://www.aaai.org/Library/AAAI/aaai15contents.php

[94] V. R. Borkar, Y. Bu, M. J. Carey, J. Rosen, N. Polyzotis, T. Condie, M. Weimer
and R. Ramakrishnan. ‘Declarative Systems for Large-Scale Machine Learning’. In:
IEEE Data Eng. Bull. 35.2 (2012), pp. 24–32. URL: http://sites.computer.org/
debull/A12june/declare.pdf (cit. on p. 126).

[95] T. Borovika, R. petlík and K. Ryme. ‘DataLab Birds Angry Birds AI’. 2014. URL:
https://aibirds.org/2014-papers/datalab-birds.pdf (cit. on pp. 180, 181).

[96] I. Botan, R. Derakhshan, N. Dindar, L. M. Haas, R. J. Miller and N. Tatbul. ‘SECRET:
A Model for Analysis of the Execution Semantics of Stream Processing Systems’. In:
PVLDB 3.1 (2010), pp. 232–243. URL: http://www.comp.nus.edu.sg/~vldb2010/
proceedings/files/papers/R20.pdf (cit. on p. 79).

[97] D. M. Bourg and G. Seemann. AI for Game Developers. O’Reilly Media, Inc., 2004.
ISBN: 0596005555 (cit. on p. 164).

[98] M. Brain, O. Cliffe and M. De Vos. ‘A pragmatic programmer’s guide to answer set
programming’. In: Proceedings of SEA 2009, pp. 49–63 (cit. on p. 28).

[99] I. Bratko. Prolog Programming for Artificial Intelligence, 4th Edition. Addison-
Wesley, 2012. ISBN: 978-0-3214-1746-6 (cit. on p. 7).

[100] G. Brewka. ‘Towards Reactive Multi-Context Systems’. In: [115]. 2013, pp. 1–10.
DOI: 10.1007/978-3-642-40564-8_1 (cit. on p. 96).

[101] G. Brewka, T. Eiter and S. A. McIlraith, eds. Principles of Knowledge Represent-
ation and Reasoning: Proceedings of the Thirteenth International Conference, KR
2012, Rome, Italy, June 10-14, 2012. AAAI Press. ISBN: 978-1-57735-560-1 (cit.
on pp. 278, 280, 286, 287).

[102] G. Brewka, T. Eiter and M. Truszczynski. ‘Answer set programming at a glance’.
In: Commun. ACM 54.12 (2011), pp. 92–103. DOI: 10.1145/2043174.2043195
(cit. on p. 39).

[103] G. Brewka, T. Eiter and M. Truszczynski. ‘Answer Set Programming: An Introduc-
tion to the Special Issue’. In: AI Magazine 37.3 (2016), pp. 5–6. URL: http://www.
aaai.org/ojs/index.php/aimagazine/article/view/2669 (cit. on p. 39).

[104] G. Brewka, S. Ellmauthaler and J. Pührer. ‘Multi-Context Systems for Reactive Reas-
oning in Dynamic Environments’. In: [514]. 2014, pp. 159–164. DOI: 10.3233/
978-1-61499-419-0-159 (cit. on p. 96).

[105] A. Brik. ‘Extensions of Answer Set Programming’. PhD thesis. University of Cali-
fornia, San Diego, USA, 2012. URL: http://www.escholarship.org/uc/item/
9v1981f6 (cit. on p. 23).

[106] A. Brik and J. B. Remmel. ‘Action Language Hybrid AL’. In: [46]. 2017, pp. 322–
335. DOI: 10.1007/978-3-319-61660-5_29 (cit. on p. 23).

[107] E. Brown. ‘Watson: The Jeopardy! Challenge and beyond’. In: Proceedings of
ICCI*CC 2013, p. 2. DOI: 10.1109/ICCI-CC.2013.6622216 (cit. on p. 165).

[108] E. W. Brown. ‘Watson: the Jeopardy! challenge and beyond’. In: Proceedings of
SIGIR 2012, p. 1020. DOI: 10.1145/2348283.2348446 (cit. on p. 165).

[109] N. Bruno and S. Chaudhuri. ‘Exploiting statistics on query expressions for optimiz-
ation’. In: Proceedings of ACM SIGMOD 2002, pp. 263–274. DOI: 10.1145/564691.
564722 (cit. on p. 149).

[110] F. Buccafurri, F. Furfaro and D. Saccà. ‘Estimating Range Queries Using Aggregate
Data with Integrity Constraints: A Probabilistic Approach’. In: Proceedings of ICDT
2001, pp. 390–404. DOI: 10.1007/3-540-44503-X_25 (cit. on p. 149).

[111] F. Buccafurri, N. Leone and P. Rullo. ‘Strong and Weak Constraints in Disjunctive
Datalog’. In: [183]. 1997, pp. 2–17. DOI: 10.1007/3- 540- 63255- 7_2 (cit. on
pp. 38, 235).

271

http://sites.computer.org/debull/A12june/declare.pdf
http://sites.computer.org/debull/A12june/declare.pdf
https://aibirds.org/2014-papers/datalab-birds.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R20.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R20.pdf
https://doi.org/10.1007/978-3-642-40564-8_1
https://doi.org/10.1145/2043174.2043195
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2669
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2669
https://doi.org/10.3233/978-1-61499-419-0-159
https://doi.org/10.3233/978-1-61499-419-0-159
http://www.escholarship.org/uc/item/9v1981f6
http://www.escholarship.org/uc/item/9v1981f6
https://doi.org/10.1007/978-3-319-61660-5_29
https://doi.org/10.1109/ICCI-CC.2013.6622216
https://doi.org/10.1145/2348283.2348446
https://doi.org/10.1145/564691.564722
https://doi.org/10.1145/564691.564722
https://doi.org/10.1007/3-540-44503-X_25
https://doi.org/10.1007/3-540-63255-7_2

[112] M. Buckland and M. Collins. AI Techniques for Game Programming. Premier Press,
2002. ISBN: 9781931841085 (cit. on p. 164).

[113] M. Buro. ‘Call for AI research in RTS games’. In: Proceedings of CGAI 2004, pp. 139–
142 (cit. on p. 209).

[114] P. Busoniu, J. Oetsch, J. Pührer, P. Skocovsky and H. Tompits. ‘SeaLion: An eclipse-
based IDE for answer-set programming with advanced debugging support’. In:
TPLP 13.4-5 (2013), pp. 657–673 (cit. on p. 250).

[115] P. Cabalar and T. C. Son, eds. Proceedings of LPNMR 2013. (Corunna, Spain).
Vol. 8148. LNCS. Springer, 15th–19th Sept. 2013. ISBN: 978-3-642-40563-1. DOI:
10.1007/978-3-642-40564-8 (cit. on pp. 266, 271, 278).

[116] J. Calbimonte, Ó. Corcho and A. J. G. Gray. ‘Enabling Ontology-Based Access to
Streaming Data Sources’. In: Proceedings of ISWC 2010, pp. 96–111. DOI: 10.1007/
978-3-642-17746-0_7 (cit. on pp. 72, 102).

[117] J. Calbimonte, H. Jeung, Ó. Corcho and K. Aberer. ‘Enabling Query Technologies
for the Semantic Sensor Web’. In: IJSWIS 8.1 (2012), pp. 43–63. DOI: 10.4018/
jswis.2012010103 (cit. on p. 72).

[118] A. Calì, G. Gottlob and M. Kifer. ‘Taming the Infinite Chase: Query Answering
under Expressive Relational Constraints’. In: JAIR 48 (2013), pp. 115–174. DOI:
10.1613/jair.3873 (cit. on pp. 15, 17).

[119] A. Calì, G. Gottlob and T. Lukasiewicz. ‘A general Datalog-based framework for
tractable query answering over ontologies’. In: J. Web Sem. 14 (2012), pp. 57–83.
DOI: 10.1016/j.websem.2012.03.001 (cit. on pp. 17, 133).

[120] A. Calì, G. Gottlob, T. Lukasiewicz, B. Marnette and A. Pieris. ‘Datalog+/-: A Family
of Logical Knowledge Representation and Query Languages for New Applications’.
In: Proceedings of LICS 2010, pp. 228–242. DOI: 10.1109/LICS.2010.27 (cit. on
p. 15).

[121] A. Calì, G. Gottlob and A. Pieris. ‘Advanced Processing for Ontological Queries’. In:
PVLDB 3.1 (2010), pp. 554–565. URL: http://www.comp.nus.edu.sg/~vldb2010/
proceedings/files/papers/R49.pdf (cit. on p. 17).

[122] A. Calì, G. Gottlob and A. Pieris. ‘Query Answering under Non-guarded Rules in
Datalog+/-’. In: [302]. 2010, pp. 1–17. DOI: 10.1007/978-3-642-15918-3_1
(cit. on p. 17).

[123] A. Calì, G. Gottlob and A. Pieris. ‘Towards more expressive ontology languages:
The query answering problem’. In: Artif. Intell. 193 (2012), pp. 87–128. DOI: 10.
1016/j.artint.2012.08.002 (cit. on p. 17).

[124] A. Calì, D. Lembo and R. Rosati. ‘On the decidability and complexity of query
answering over inconsistent and incomplete databases’. In: Proceedings of PODS
2003, pp. 260–271. DOI: 10.1145/773153.773179 (cit. on p. 18).

[125] F. Calimeri, S. Cozza and G. Ianni. ‘External sources of knowledge and value inven-
tion in logic programming’. In: AMAI 50.3-4 (2007), pp. 333–361. DOI: 10.1007/
s10472-007-9076-z (cit. on p. 33).

[126] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
F. Ricca and T. Schaub. ASP-Core-2: Input language format. Technical Report. ASP
Standardization Working Group, 2013. URL: https : / / www . mat . unical . it /
aspcomp2013/files/ASP-CORE-2.03c.pdf (cit. on pp. 23, 235).

[127] F. Calimeri, M. Fink, S. Germano, A. Humenberger, G. Ianni, C. Redl, D. Stepanova,
A. Tucci and A. Wimmer. ‘Angry-HEX: An Artificial Player for Angry Birds Based on
Declarative Knowledge Bases’. In: TCIAIG 8.2 (2016), pp. 128–139. DOI: 10.1109/
TCIAIG.2015.2509600 (cit. on pp. xii, 21, 183).

272 Bibliography

https://doi.org/10.1007/978-3-642-40564-8
https://doi.org/10.1007/978-3-642-17746-0_7
https://doi.org/10.1007/978-3-642-17746-0_7
https://doi.org/10.4018/jswis.2012010103
https://doi.org/10.4018/jswis.2012010103
https://doi.org/10.1613/jair.3873
https://doi.org/10.1016/j.websem.2012.03.001
https://doi.org/10.1109/LICS.2010.27
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R49.pdf
http://www.comp.nus.edu.sg/~vldb2010/proceedings/files/papers/R49.pdf
https://doi.org/10.1007/978-3-642-15918-3_1
https://doi.org/10.1016/j.artint.2012.08.002
https://doi.org/10.1016/j.artint.2012.08.002
https://doi.org/10.1145/773153.773179
https://doi.org/10.1007/s10472-007-9076-z
https://doi.org/10.1007/s10472-007-9076-z
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
https://doi.org/10.1109/TCIAIG.2015.2509600
https://doi.org/10.1109/TCIAIG.2015.2509600

[128] F. Calimeri, M. Fink, S. Germano, G. Ianni, C. Redl and A. Wimmer. ‘AngryHEX: an
Artificial Player for Angry Birds Based on Declarative Knowledge Bases’. In: [45].
2013, pp. 29–35. URL: http://ceur-ws.org/Vol-1107/paper10.pdf (cit. on
pp. xii, 183).

[129] F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘Boosting the Develop-
ment of ASP-Based Applications in Mobile and General Scenarios’. In: Proceedings
of AI*IA 2016, pp. 223–236. DOI: 10.1007/978-3-319-49130-1_17 (cit. on pp. xii,
205, 216).

[130] F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘Embedding ASP in
mobile systems: discussion and preliminary implementations’. In: Proceedings of
ASPOCP 2015, workshop of ICLP (cit. on pp. xii, 216, 238).

[131] F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. EMBASP. 2015–2017.
URL: https://www.mat.unical.it/calimeri/projects/embasp (visited on
25th Sept. 2017) (cit. on pp. 205, 238, 239).

[132] F. Calimeri, D. Fuscà, S. Germano, S. Perri and J. Zangari. ‘A framework for easing
the development of applications embedding answer set programming’. In: J. Exp.
Theor. Artif. Intell. (2017). Submitted (cit. on pp. xiii, 21, 28, 40, 216).

[133] F. Calimeri, D. Fuscà, S. Perri and J. Zangari. ‘I-DLV: The new intelligent grounder
of DLV’. In: Intelligenza Artificiale 11.1 (2017), pp. 5–20. DOI: 10.3233/IA-170104
(cit. on pp. 20, 32).

[134] F. Calimeri, S. Germano, E. Palermiti, K. Reale and F. Ricca. ‘Environments for
Developing ASP programs’. In: KI (2017). Submitted (cit. on p. xiii).

[135] F. Calimeri, G. Ianni and F. Ricca. ‘The third open answer set programming com-
petition’. In: TPLP 14.1 (2014), pp. 117–135. DOI: 10.1017/S1471068412000105
(cit. on pp. 30, 35).

[136] F. Calimeri, G. Ianni and M. Truszczynski, eds. Proceedings of LPNMR 2015. (Lex-
ington, KY, USA). Vol. 9345. LNCS. Springer, 27th–30th Sept. 2015. ISBN: 978-3-
319-23263-8. DOI: 10.1007/978-3-319-23264-5 (cit. on pp. 266, 280, 289).

[137] F. Calimeri and F. Ricca. On the Application of the Answer Set Programming System
DLV in Industry: a Report from the Field. ALP Newsletter. Mar. 2012 (cit. on p. 27).

[138] D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodriguez-
Muro, R. Rosati, M. Ruzzi and D. F. Savo. ‘The MASTRO system for ontology-based
data access’. In: SWJ 2.1 (2011), pp. 43–53. DOI: 10.3233/SW-2011-0029 (cit. on
p. 139).

[139] C. Castelfranchi. ‘Guarantees for Autonomy in Cognitive Agent Architecture’. In:
Proceedings of ATAL 1994, pp. 56–70. DOI: 10.1007/3-540-58855-8_3 (cit. on
p. 165).

[140] S. Ceri, G. Gottlob and L. Tanca. ‘What you Always Wanted to Know About Datalog
(And Never Dared to Ask)’. In: TKDE 1.1 (1989), pp. 146–166. DOI: 10.1109/69.
43410 (cit. on p. 9).

[141] S. Ceri, G. Gottlob and L. Tanca. Logic Programming and Databases. Surveys in com-
puter science. Springer, 1990. ISBN: 3-540-51728-6. URL: http://www.worldcat.
org/oclc/20595273 (cit. on p. 9).

[142] U. Çetintemel, D. J. Abadi, Y. Ahmad, H. Balakrishnan, M. Balazinska, M. Cher-
niack, J. Hwang, S. Madden, A. Maskey, A. Rasin, E. Ryvkina, M. Stonebraker, N.
Tatbul, Y. Xing and S. Zdonik. ‘The Aurora and Borealis Stream Processing En-
gines’. In: [243]. 2016, pp. 337–359. DOI: 10.1007/978- 3- 540- 28608- 0_17
(cit. on p. 62).

[143] A. J. Champandard. AI Game Development. New Riders Games, 2003. ISBN:
1592730043 (cit. on p. 164).

273

http://ceur-ws.org/Vol-1107/paper10.pdf
https://doi.org/10.1007/978-3-319-49130-1_17
https://www.mat.unical.it/calimeri/projects/embasp
https://doi.org/10.3233/IA-170104
https://doi.org/10.1017/S1471068412000105
https://doi.org/10.1007/978-3-319-23264-5
https://doi.org/10.3233/SW-2011-0029
https://doi.org/10.1007/3-540-58855-8_3
https://doi.org/10.1109/69.43410
https://doi.org/10.1109/69.43410
http://www.worldcat.org/oclc/20595273
http://www.worldcat.org/oclc/20595273
https://doi.org/10.1007/978-3-540-28608-0_17

[144] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, V. Raman, F. Reiss and M. A. Shah. ‘Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain World’. In: Proceedings
of CIDR 2003. URL: http://www-db.cs.wisc.edu/cidr/cidr2003/program/p24.
pdf (cit. on p. 62).

[145] S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin, J. M. Hellerstein,
W. Hong, S. Krishnamurthy, S. Madden, F. Reiss and M. A. Shah. ‘TelegraphCQ:
Continuous Dataflow Processing’. In: [298]. 2003, p. 668. DOI: 10.1145/872757.
872857 (cit. on p. 62).

[146] S. Chaudhuri, U. Dayal and V. R. Narasayya. ‘An overview of business intelligence
technology’. In: Commun. ACM 54.8 (2011), pp. 88–98. DOI: 10.1145/1978542.
1978562 (cit. on p. 127).

[147] M. Chen, S. Mao and Y. Liu. ‘Big Data: A Survey’. In: MONET 19.2 (2014), pp. 171–
209. DOI: 10.1007/s11036-013-0489-0 (cit. on pp. 124, 126, 127).

[148] S. Christodoulakis. ‘Implications of Certain Assumptions in Database Performance
Evaluation’. In: TODS 9.2 (1984), pp. 163–186. DOI: 10.1145/329.318578 (cit. on
p. 161).

[149] K. L. Clark. ‘Negation as Failure’. In: Proceedings of Symposium on Logic and Data
Bases 1977, pp. 293–322 (cit. on p. 141).

[150] O. Cliffe, M. D. Vos, M. Brain and J. A. Padget. ‘ASPVIZ: Declarative Visualisation
and Animation Using Answer Set Programming’. In: [51]. 2008, pp. 724–728. DOI:
10.1007/978-3-540-89982-2_65 (cit. on p. 251).

[151] W. F. Clocksin and C. S. Mellish. Programming in Prolog (4. ed.) Springer, 1994.
ISBN: 978-3-540-58350-9 (cit. on p. 7).

[152] M. Collautti, Y. Malitsky, D. Mehta and B. O’Sullivan. ‘SNNAP: Solver-Based Nearest
Neighbor for Algorithm Portfolios’. In: Proceedings of ECML PKDD 2013, Part III,
pp. 435–450. DOI: 10.1007/978-3-642-40994-3_28 (cit. on p. 146).

[153] M. Colledanchise and P. Ögren. ‘Behavior Trees in Robotics and AI: An Introduc-
tion’. In: CoRR abs/1709.00084 (2017). arXiv: 1709.00084 (cit. on p. 210).

[154] M. Collins. Advance AI Techniques for Game Programming (Game Programming).
Pearson Professional Education, 2001. ISBN: 0761536248 (cit. on p. 164).

[155] M. Collins. Advanced Ai Game Development (Wordware Game Developer’s Library).
Plano, TX, USA: Wordware Publishing Inc., 2003. ISBN: 1556229623 (cit. on
p. 164).

[156] A. Colmerauer. ‘An Introduction to Prolog III’. In: Commun. ACM 33.7 (1990),
pp. 69–90. DOI: 10.1145/79204.79210 (cit. on p. 7).

[157] A. Colmerauer and P. Roussel. ‘The Birth of Prolog’. In: Proceedings of HOPL-II
1993, pp. 37–52. DOI: 10.1145/154766.155362 (cit. on p. 6).

[158] C. Consortium. Final Report. CityPulse - Real-Time IoT Stream Processing and Large-
scale Data Analytics for Smart City Applications. Report - Project Delivery. Ver-
sion V1.0-Final. AA, AI, ERIC, NUIG, SAGO, SIE, UASO, WSU, UniS, Nov. 2016.
URL: https : / / cordis . europa . eu / docs / projects / cnect / 5 / 609035 / 080 /
deliverables / 001 - 609035CityPulseD14FinalReportAres20172763775 . pdf
(visited on 25th Sept. 2017) (cit. on pp. 97–100).

[159] A. O. da Costa, I. L. Rocha and S. Elena. ‘DualHEX: an extension of the AngryHEX
Artificial Player for AngryBirds’. 2016 (cit. on p. 204).

[160] G. Cugola and A. Margara. ‘Processing flows of information: From data stream
to complex event processing’. In: CSUR 44.3 (2012), 15:1–15:62. DOI: 10.1145/
2187671.2187677 (cit. on pp. 65, 66, 68, 75).

274 Bibliography

http://www-db.cs.wisc.edu/cidr/cidr2003/program/p24.pdf
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p24.pdf
https://doi.org/10.1145/872757.872857
https://doi.org/10.1145/872757.872857
https://doi.org/10.1145/1978542.1978562
https://doi.org/10.1145/1978542.1978562
https://doi.org/10.1007/s11036-013-0489-0
https://doi.org/10.1145/329.318578
https://doi.org/10.1007/978-3-540-89982-2_65
https://doi.org/10.1007/978-3-642-40994-3_28
http://arxiv.org/abs/1709.00084
https://doi.org/10.1145/79204.79210
https://doi.org/10.1145/154766.155362
https://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CityPulseD14FinalReportAres20172763775.pdf
https://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CityPulseD14FinalReportAres20172763775.pdf
https://doi.org/10.1145/2187671.2187677
https://doi.org/10.1145/2187671.2187677

[161] M. Dao-Tran, H. Beck and T. Eiter. ‘Contrasting RDF Stream Processing Semantics’.
In: Proceedings of JIST 2015, pp. 289–298. DOI: 10.1007/978-3-319-31676-5_21
(cit. on p. 95).

[162] M. Dao-Tran, H. Beck and T. Eiter. ‘Towards Comparing RDF Stream Processing
Semantics’. In: [442]. 2015, pp. 15–27. URL: http://ceur-ws.org/Vol-1447/
paper2.pdf (cit. on p. 95).

[163] M. Dao-Tran and D. L. Phuoc. ‘Towards Enriching CQELS with Complex Event
Processing and Path Navigation’. In: [442]. 2015, pp. 2–14. URL: http://ceur-
ws.org/Vol-1447/paper1.pdf (cit. on p. 75).

[164] S. Dasgupta, S. Kothari, S. Talluri and S. Motiani. ‘s-birds: A Heuristic Engine based
Learner Bot for the Angry Bird Problem’. 2013. URL: http://aibirds.org/2013-
Papers/Team-Descriptions/sbirds.pdf (cit. on p. 182).

[165] S. Dasgupta, V. Modi, S. Vaghela, H. Kanakia and D. Shah. ‘s-birds Avengers: A Dy-
namic Heuristic Engine based Bot for the Angry Bird Problem’. 2014. URL: https:
//aibirds.org/2014-papers/s-birds-avengers.pdf (cit. on p. 182).

[166] S. Dasgupta, S. Vaghela, V. Modi and H. Kanakia. ‘s-Birds Avengers: A Dynamic
Heuristic Engine-Based Agent for the Angry Birds Problem’. In: TCIAIG 8.2 (2016),
pp. 140–151. DOI: 10.1109/TCIAIG.2016.2553244 (cit. on p. 182).

[167] I. Dasseville and G. Janssens. ‘A web-based IDE for IDP’. In: CoRR abs/1511.00920
(2015) (cit. on pp. 242, 250).

[168] S. K. Debray and N. Lin. ‘Cost Analysis of Logic Programs’. In: TOPLAS 15.5 (1993),
pp. 826–875. DOI: 10.1145/161468.161472 (cit. on p. 156).

[169] S. K. Debray, N. Lin and M. V. Hermenegildo. ‘Task Granularity Analysis in Logic
Programs’. In: Proceedings of PLDI 1990, pp. 174–188. DOI: 10.1145/93542.93564
(cit. on p. 156).

[170] S. K. Debray, P. López-Garca, M. V. Hermenegildo and N. Lin. ‘Lower Bound Cost
Estimation for Logic Programs’. In: Proceedings of 1997 International Symposium
on Logic Programming, pp. 291–305 (cit. on p. 156).

[171] J. P. Delgrande and W. Faber, eds. Proceedings of LPNMR 2011. (Vancouver,
Canada). Vol. 6645. LNCS. Springer, 16th–19th May 2011. ISBN: 978-3-642-20894-
2 (cit. on pp. 278, 280, 281).

[172] D. Dell’Aglio, M. Balduini and E. Della Valle. ‘On the need to include functional
testing in rdf stream engine benchmarks’. In: BeRSys (2013) (cit. on p. 79).

[173] D. Dell’Aglio, J. Calbimonte, M. Balduini, Ó. Corcho and E. D. Valle. ‘On Correct-
ness in RDF Stream Processor Benchmarking’. In: [7]. 2013, pp. 326–342. DOI:
10.1007/978-3-642-41338-4_21 (cit. on pp. 75, 78).

[174] D. Dell’Aglio, M. Dao-Tran, J. Calbimonte, D. L. Phuoc and E. D. Valle. ‘A Query
Model to Capture Event Pattern Matching in RDF Stream Processing Query Lan-
guages’. In: Proceedings of EKAW 2016, pp. 145–162. DOI: 10.1007/978-3-319-
49004-5_10 (cit. on pp. 66, 96).

[175] D. Dell’Aglio, E. Della Valle, F. van Harmelen and A. Bernstein. ‘Stream reasoning:
A survey and outlook’. In: Data Sci. Preprint (2017), pp. 1–24 (cit. on pp. 51, 53,
54, 81).

[176] D. Dell’Aglio, E. D. Valle, J. Calbimonte and Ó. Corcho. ‘RSP-QL Semantics: A Uni-
fying Query Model to Explain Heterogeneity of RDF Stream Processing Systems’.
In: IJSWIS 10.4 (2014), pp. 17–44. DOI: 10.4018/ijswis.2014100102 (cit. on
p. 96).

[177] E. Della Valle. ‘Tutorial on Stream Reasoning for Linked Data at ISWC 2013’.
Sydney, Australia, 21st Oct. 2013. URL: http : / / streamreasoning . org /
sr4ld2013 (cit. on pp. 48, 66, 68).

275

https://doi.org/10.1007/978-3-319-31676-5_21
http://ceur-ws.org/Vol-1447/paper2.pdf
http://ceur-ws.org/Vol-1447/paper2.pdf
http://ceur-ws.org/Vol-1447/paper1.pdf
http://ceur-ws.org/Vol-1447/paper1.pdf
http://aibirds.org/2013-Papers/Team-Descriptions/sbirds.pdf
http://aibirds.org/2013-Papers/Team-Descriptions/sbirds.pdf
https://aibirds.org/2014-papers/s-birds-avengers.pdf
https://aibirds.org/2014-papers/s-birds-avengers.pdf
https://doi.org/10.1109/TCIAIG.2016.2553244
https://doi.org/10.1145/161468.161472
https://doi.org/10.1145/93542.93564
https://doi.org/10.1007/978-3-642-41338-4_21
https://doi.org/10.1007/978-3-319-49004-5_10
https://doi.org/10.1007/978-3-319-49004-5_10
https://doi.org/10.4018/ijswis.2014100102
http://streamreasoning.org/sr4ld2013
http://streamreasoning.org/sr4ld2013

[178] E. Della Valle, S. Ceri, D. Braga, I. Celino, D. Fensel, F. van Harmelen and G. Unel.
‘Research Chapters in the area of Stream Reasoning’. In: Proceedings of SR 2009.
(Heraklion, Crete, Greece), pp. 1–9 (cit. on p. 48).

[179] A. Deutsch, A. Nash and J. B. Remmel. ‘The chase revisited’. In: Proceedings of
PODS 2008, pp. 149–158. DOI: 10.1145/1376916.1376938 (cit. on p. 17).

[180] Z. Dhouioui, W. Labbadi and J. Akaichi. ‘A New Algorithm for Accurate Histogram
Construction’. In: Proceedings of IMMM 2012 (cit. on p. 149).

[181] N. Dindar, N. Tatbul, R. J. Miller, L. M. Haas and I. Botan. ‘Modeling the execution
semantics of stream processing engines with SECRET’. In: VLDB J. 22.4 (2013),
pp. 421–446. DOI: 10.1007/s00778-012-0297-3 (cit. on p. 79).

[182] L. Ding, T. Finin, Y. Peng, P. P. Da Silva and D. L. McGuinness. ‘Tracking rdf graph
provenance using rdf molecules’. In: Proceedings of the ISWC 2005 (Poster), p. 42
(cit. on p. 71).

[183] J. Dix, U. Furbach and A. Nerode, eds. Proceedings of LPNMR 1997. (Dagstuhl
Castle, Germany). Vol. 1265. LNCS. Springer, 28th–31st July 1997. ISBN: 3-540-
63255-7. DOI: 10.1007/3-540-63255-7 (cit. on pp. 271, 277).

[184] T. M. Do, S. W. Loke and F. Liu. ‘Answer Set Programming for Stream Reasoning’.
In: Proceedings of Canadian AI 2011, pp. 104–109. DOI: 10.1007/978- 3- 642-
21043-3_13 (cit. on pp. 82, 102).

[185] T. M. Do, S. W. Loke and F. Liu. ‘HealthyLife: An Activity Recognition System with
Smartphone Using Logic-Based Stream Reasoning’. In: Proceedings of MobiQuitous
2012, pp. 188–199. DOI: 10.1007/978-3-642-40238-8_16 (cit. on p. 236).

[186] C. Dodaro, P. Gasteiger, N. Leone, B. Musitsch, F. Ricca and K. Schekotihin. ‘Com-
bining Answer Set Programming and domain heuristics for solving hard indus-
trial problems (Application Paper)’. In: TPLP 16.5-6 (2016), pp. 653–669. DOI:
10.1017/S1471068416000284 (cit. on p. 33).

[187] J. Doyle. ‘A Truth Maintenance System’. In: Artif. Intell. 12.3 (1979), pp. 231–272.
DOI: 10.1016/0004-3702(79)90008-0 (cit. on p. 96).

[188] R. Du, Z. Gao and Z. Xu. Deliberately Planning and Acting for Angry Birds with
Refinement Methods. 2015. URL: http://duruofei.com/Research/angrybird
(visited on 25th Sept. 2017) (cit. on p. 182).

[189] S. Edelkamp and J. Hoffmann. PDDL2. 2: The language for the classical part of the
4th international planning competition. Tech. rep. Technical Report 195, University
of Freiburg, 2004 (cit. on p. 40).

[190] T. Eiter, W. Faber, N. Leone and G. Pfeifer. ‘Declarative problem-solving using the
DLV system’. In: Logic-based artificial intelligence 597 (2000), pp. 79–103 (cit. on
p. 39).

[191] T. Eiter, M. Fink, T. Krennwallner and C. Redl. ‘Conflict-driven ASP solving
with external sources’. In: TPLP 12.4-5 (2012), pp. 659–679. DOI: 10 . 1017 /
S1471068412000233 (cit. on p. 35).

[192] T. Eiter, M. Fink, G. Sabbatini and H. Tompits. ‘A Framework for Declarative Up-
date Specifications in Logic Programs’. In: Proceedings of IJCAI 2001, pp. 649–654
(cit. on p. 96).

[193] T. Eiter, S. Germano, G. Ianni, T. Kaminski, C. Redl, P. Schüller and A. Weinzierl.
‘The DLVHEX System’. In: KI (2017). Submitted (cit. on p. xiii).

[194] T. Eiter and G. Gottlob. ‘Complexity Aspects of Various Semantics for Disjunctive
Databases’. In: Proceedings of PODS 1993, pp. 158–167. DOI: 10.1145/153850.
153864 (cit. on p. 14).

[195] T. Eiter, G. Gottlob and H. Mannila. ‘Adding Disjunction to Datalog’. In: Proceedings
of PODS 1994, pp. 267–278. DOI: 10.1145/182591.182639 (cit. on p. 9).

276 Bibliography

https://doi.org/10.1145/1376916.1376938
https://doi.org/10.1007/s00778-012-0297-3
https://doi.org/10.1007/3-540-63255-7
https://doi.org/10.1007/978-3-642-21043-3_13
https://doi.org/10.1007/978-3-642-21043-3_13
https://doi.org/10.1007/978-3-642-40238-8_16
https://doi.org/10.1017/S1471068416000284
https://doi.org/10.1016/0004-3702(79)90008-0
http://duruofei.com/Research/angrybird
https://doi.org/10.1017/S1471068412000233
https://doi.org/10.1017/S1471068412000233
https://doi.org/10.1145/153850.153864
https://doi.org/10.1145/153850.153864
https://doi.org/10.1145/182591.182639

[196] T. Eiter, G. Gottlob and H. Mannila. ‘Disjunctive Datalog’. In: TODS 22.3 (1997),
pp. 364–418. ISSN: 0362-5915. DOI: 10.1145/261124.261126 (cit. on pp. 9, 39).

[197] T. Eiter, G. Gottlob and H. Veith. ‘Modular Logic Programming and Generalized
Quantifiers’. In: [183]. 1997, pp. 290–309. DOI: 10.1007/3- 540- 63255- 7_22
(cit. on p. 161).

[198] T. Eiter, G. Ianni and T. Krennwallner. ‘Answer Set Programming: A Primer’. In:
Tutorial Lectures of RW 2009, pp. 40–110. DOI: 10.1007/978-3-642-03754-2_2
(cit. on p. 39).

[199] T. Eiter, G. Ianni, R. Schindlauer and H. Tompits. ‘A Uniform Integration of Higher-
Order Reasoning and External Evaluations in Answer-Set Programming’. In: Pro-
ceedings of IJCAI 2005, pp. 90–96. URL: http://ijcai.org/Proceedings/05/
Papers/1353.pdf (cit. on pp. 32, 35, 37, 38, 183).

[200] T. Eiter, G. Ianni, R. Schindlauer and H. Tompits. ‘dlvhex: A Prover for Semantic-
Web Reasoning under the Answer-Set Semantics’. In: Proceedings of WI 2006,
pp. 1073–1074. DOI: 10.1109/WI.2006.64 (cit. on p. 35).

[201] T. Eiter, G. Ianni, R. Schindlauer and H. Tompits. ‘Towards Efficient Evaluation of
HEX Programs’. In: Proceedings of the Workshop on Nonmonotonic Reasoning. 2006,
pp. 40–46 (cit. on p. 35).

[202] T. Eiter, T. Kaminski, C. Redl, P. Schüller and A. Weinzierl. ‘Answer Set Program-
ming with External Source Access’. In: [304]. 2017, pp. 204–275. DOI: 10.1007/
978-3-319-61033-7_7 (cit. on p. 37).

[203] T. Eiter, T. Kaminski and A. Weinzierl. ‘Lazy-Grounding for Answer Set Programs
with External Source Access’. In: [524]. 2017, pp. 1015–1022. DOI: 10.24963/
ijcai.2017/141 (cit. on p. 39).

[204] T. Eiter, C. Redl and P. Schüller. ‘Problem Solving Using the HEX Family’. In: Pro-
ceedings of Computational Models of Rationality. Essays dedicated to Gabriele Kern-
Isberner on the occasion of her 60th birthday, pp. 150–174 (cit. on p. 37).

[205] M. P. Eladhari, A. Sullivan, G. Smith and J. McCoy. AI-Based game design: Enabling
new playable experiences. Tech. rep. Technical Report, UCSC-SOE-11, 2011 (cit. on
p. 171).

[206] M. H. van Emden and R. A. Kowalski. ‘The Semantics of Predicate Logic as a Pro-
gramming Language’. In: J. ACM 23.4 (1976), pp. 733–742. DOI: 10.1145/321978.
321991 (cit. on pp. 5, 6).

[207] E. Erdem, M. Gelfond and N. Leone. ‘Applications of Answer Set Programming’. In:
AI Magazine 37.3 (2016), pp. 53–68. URL: http://www.aaai.org/ojs/index.
php/aimagazine/article/view/2678 (cit. on p. 27).

[208] E. Erdem, J. Lee, Y. Lierler and D. Pearce, eds. Correct Reasoning - Essays on Logic-
Based AI in Honour of Vladimir Lifschitz. Vol. 7265. LNCS. Springer, 2012. ISBN:
978-3-642-30742-3. DOI: 10.1007/978-3-642-30743-0 (cit. on pp. 277, 298).

[209] O. Etzion and P. Niblett. Event Processing in Action. Manning Publications Company,
2010. ISBN: 978-1-935182-21-4. URL: http://www.manning.com/etzion/ (cit. on
p. 66).

[210] P. T. Eugster, P. Felber, R. Guerraoui and A. Kermarrec. ‘The many faces of pub-
lish/subscribe’. In: ACM Comput. Surv. 35.2 (2003), pp. 114–131. DOI: 10.1145/
857076.857078 (cit. on p. 65).

[211] W. Faber, N. Leone and S. Perri. ‘The Intelligent Grounder of DLV’. In: [208]. 2012,
pp. 247–264. DOI: 10.1007/978-3-642-30743-0_17 (cit. on pp. 31, 156).

[212] W. Faber, N. Leone and G. Pfeifer. ‘Recursive Aggregates in Disjunctive Logic Pro-
grams: Semantics and Complexity’. In: [8]. 2004, pp. 200–212. DOI: 10.1007/978-
3-540-30227-8_19 (cit. on p. 36).

277

https://doi.org/10.1145/261124.261126
https://doi.org/10.1007/3-540-63255-7_22
https://doi.org/10.1007/978-3-642-03754-2_2
http://ijcai.org/Proceedings/05/Papers/1353.pdf
http://ijcai.org/Proceedings/05/Papers/1353.pdf
https://doi.org/10.1109/WI.2006.64
https://doi.org/10.1007/978-3-319-61033-7_7
https://doi.org/10.1007/978-3-319-61033-7_7
https://doi.org/10.24963/ijcai.2017/141
https://doi.org/10.24963/ijcai.2017/141
https://doi.org/10.1145/321978.321991
https://doi.org/10.1145/321978.321991
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2678
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2678
https://doi.org/10.1007/978-3-642-30743-0
http://www.manning.com/etzion/
https://doi.org/10.1145/857076.857078
https://doi.org/10.1145/857076.857078
https://doi.org/10.1007/978-3-642-30743-0_17
https://doi.org/10.1007/978-3-540-30227-8_19
https://doi.org/10.1007/978-3-540-30227-8_19

[213] R. Fagin, P. G. Kolaitis, R. J. Miller and L. Popa. ‘Data exchange: semantics and
query answering’. In: Theor. Comput. Sci. 336.1 (2005), pp. 89–124. DOI: 10.1016/
j.tcs.2004.10.033 (cit. on pp. 17, 18).

[214] O. Febbraro, N. Leone, G. Grasso and F. Ricca. ‘JASP: A Framework for Integrating
Answer Set Programming with Java’. In: [101]. 2012. URL: http://www.aaai.
org/ocs/index.php/KR/KR12/paper/view/4520 (cit. on pp. 32, 235).

[215] O. Febbraro, K. Reale and F. Ricca. ‘ASPIDE: Integrated Development Environment
for Answer Set Programming’. In: [171]. 2011, pp. 317–330 (cit. on p. 250).

[216] D. Fensel, F. van Harmelen, B. Andersson, P. Brennan, H. Cunningham, E. D. Valle,
F. Fischer, Z. Huang, A. Kiryakov, T. K. Lee, L. Schooler, V. Tresp, S. Wesner, M. J.
Witbrock and N. Zhong. ‘Towards LarKC: A Platform for Web-Scale Reasoning’. In:
Proceedings of ICSC 2008, pp. 524–529. DOI: 10.1109/ICSC.2008.41 (cit. on
p. 70).

[217] L. Ferreira and C. F. M. Toledo. ‘A search-based approach for generating Angry
Birds levels’. In: [538]. 2014, pp. 1–8. DOI: 10.1109/CIG.2014.6932912 (cit. on
p. 182).

[218] D. A. Ferrucci. ‘Build Watson: an overview of DeepQA for the Jeopardy! challenge’.
In: Proceedings of PACT 2010, pp. 1–2. DOI: 10.1145/1854273.1854275 (cit. on
p. 165).

[219] D. A. Ferrucci. ‘Introduction to "This is Watson"’. In: IBM Journal of Research and
Development 56.3 (2012), p. 1. DOI: 10.1147/JRD.2012.2184356 (cit. on p. 165).

[220] D. A. Ferrucci, E. W. Brown, J. Chu-Carroll, J. Fan, D. Gondek, A. Kalyanpur, A.
Lally, J. W. Murdock, E. Nyberg, J. M. Prager, N. Schlaefer and C. A. Welty. ‘Build-
ing Watson: An Overview of the DeepQA Project’. In: AI Magazine 31.3 (2010),
pp. 59–79. URL: http://www.aaai.org/ojs/index.php/aimagazine/article/
view/2303 (cit. on p. 165).

[221] R. Fikes and N. J. Nilsson. ‘STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving’. In: Artif. Intell. 2.3/4 (1971), pp. 189–208. DOI: 10.
1016/0004-3702(71)90010-5 (cit. on p. 40).

[222] M. Fink, S. Germano, G. Ianni, C. Redl and P. Schüller. ‘ActHEX: Implementing HEX
Programs with Action Atoms’. In: [115]. 2013, pp. 317–322. DOI: 10.1007/978-3-
642-40564-8_31 (cit. on pp. 37, 39, 93, 185).

[223] C. Forgy. ‘Rete: A Fast Algorithm for the Many Patterns/Many Objects Match Prob-
lem’. In: Artif. Intell. 19.1 (1982), pp. 17–37. DOI: 10.1016/0004-3702(82)90020-
0 (cit. on pp. 74, 146).

[224] M. Fox and D. Long. ‘PDDL2.1: An Extension to PDDL for Expressing Temporal
Planning Domains’. In: JAIR 20 (2003), pp. 61–124. DOI: 10.1613/jair.1129
(cit. on p. 40).

[225] M. J. Franklin, S. Krishnamurthy, N. Conway, A. Li, A. Russakovsky and N.
Thombre. ‘Continuous Analytics: Rethinking Query Processing in a Network-Effect
World’. In: Proceedings of CIDR 2009. URL: http://www-db.cs.wisc.edu/cidr/
cidr2009/Paper_122.pdf (cit. on p. 62).

[226] T. W. Frühwirth. Constraint Handling Rules. 1st. New York, NY, USA: Cambridge
University Press, 2009. ISBN: 9780521877763 (cit. on p. 21).

[227] T. Furche, G. Gottlob, G. Grasso, O. Gunes, X. Guo, A. Kravchenko, G. Orsi, C.
Schallhart, A. J. Sellers and C. Wang. ‘DIADEM: domain-centric, intelligent, auto-
mated data extraction methodology’. In: Proceedings of WWW 2012, pp. 267–270.
DOI: 10.1145/2187980.2188025 (cit. on p. 134).

[228] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi and C. Schallhart. ‘The ontological
key: automatically understanding and integrating forms to access the deep Web’.
In: VLDB J. 22.5 (2013), pp. 615–640. DOI: 10.1007/s00778-013-0323-0 (cit. on
p. 134).

278 Bibliography

https://doi.org/10.1016/j.tcs.2004.10.033
https://doi.org/10.1016/j.tcs.2004.10.033
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4520
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4520
https://doi.org/10.1109/ICSC.2008.41
https://doi.org/10.1109/CIG.2014.6932912
https://doi.org/10.1145/1854273.1854275
https://doi.org/10.1147/JRD.2012.2184356
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2303
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1016/0004-3702(71)90010-5
https://doi.org/10.1007/978-3-642-40564-8_31
https://doi.org/10.1007/978-3-642-40564-8_31
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1016/0004-3702(82)90020-0
https://doi.org/10.1613/jair.1129
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_122.pdf
http://www-db.cs.wisc.edu/cidr/cidr2009/Paper_122.pdf
https://doi.org/10.1145/2187980.2188025
https://doi.org/10.1007/s00778-013-0323-0

[229] T. Furche, G. Gottlob, G. Grasso, X. Guo, G. Orsi, C. Schallhart and C. Wang.
‘DIADEM: Thousands of Websites to a Single Database’. In: PVLDB 7.14 (2014),
pp. 1845–1856. URL: http://www.vldb.org/pvldb/vol7/p1845-furche.pdf
(cit. on p. 134).

[230] T. Furche, G. Gottlob, L. Libkin, G. Orsi and N. W. Paton. ‘Data Wrangling for Big
Data: Challenges and Opportunities’. In: Proceedings of EDBT 2016, pp. 473–478.
DOI: 10.5441/002/edbt.2016.44 (cit. on p. 134).

[231] T. Furche, G. Gottlob, B. Neumayr and E. Sallinger. ‘Data Wrangling for Big Data:
Towards a Lingua Franca for Data Wrangling’. In: Proceedings of AMW 2016. URL:
http://ceur-ws.org/Vol-1644/paper20.pdf (cit. on pp. 133, 135).

[232] D. Fuscà. ‘Tools and Techniques for Easing the Application of Answer Set Program-
ming’. PhD thesis. Dipartimento di Matematica e Informatica - Università della
Calabria, 2017 (cit. on p. 217).

[233] D. Fuscà, S. Germano, J. Zangari, M. Anastasio, F. Calimeri and S. Perri. ‘A frame-
work for easing the development of applications embedding answer set program-
ming’. In: Proceedings of PPDP 2016, pp. 38–49. DOI: 10.1145/2967973.2968594
(cit. on pp. xii, 216, 238, 239, 249).

[234] D. Fuscà, S. Germano, J. Zangari, F. Calimeri and S. Perri. ‘Answer Set Program-
ming and Declarative Problem Solving in Game AIs’. In: [45]. 2013, pp. 81–88.
URL: http://ceur-ws.org/Vol-1107/paper9.pdf (cit. on pp. xii, 170).

[235] H. Gaifman and E. Y. Shapiro. ‘Fully Abstract Compositional Semantics for Logic
Programs’. In: Proceedings of POPL 1989, pp. 134–142. DOI: 10.1145/75277.75289
(cit. on p. 83).

[236] J. R. Galliers. ‘A theoretical framework for computer models of cooperative dia-
logue, acknowledging multi-agent conflict’. PhD thesis. Open University, 1988 (cit.
on p. 166).

[237] E. Gamma, R. Helm, R. Johnson and J. Vlissides. Design Patterns: Elements of Re-
usable Object-oriented Software. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 1995. ISBN: 0-201-63361-2 (cit. on p. 239).

[238] A. Gandomi and M. Haider. ‘Beyond the hype: Big data concepts, methods, and
analytics’. In: Int J. Information Management 35.2 (2015), pp. 137–144. DOI: 10.
1016/j.ijinfomgt.2014.10.007 (cit. on p. 125).

[239] S. Ganguly, P. B. Gibbons, Y. Matias and A. Silberschatz. ‘Bifocal Sampling for
Skew-Resistant Join Size Estimation’. In: [309]. 1996, pp. 271–281. DOI: 10.1145/
233269.233340 (cit. on p. 149).

[240] J. Gantz and D. Reinsel. ‘Extracting value from chaos’. In: IDC iView 1142.2011
(2011), pp. 1–12 (cit. on p. 124).

[241] F. Gao, M. I. Ali, E. Curry and A. Mileo. ‘QoS-aware adaptation for complex event
service’. In: Proceedings of SAC 2016. ACM, pp. 1597–1604. DOI: 10.1145/2851613.
2851806 (cit. on p. 118).

[242] F. Gao, E. Curry, M. I. Ali, S. Bhiri and A. Mileo. ‘QoS-Aware Complex Event Service
Composition and Optimization Using Genetic Algorithms’. In: Proceedings of ICSOC
2014. Springer, pp. 386–393. DOI: 10.1007/978- 3- 662- 45391- 9_28 (cit. on
p. 118).

[243] M. N. Garofalakis, J. Gehrke and R. Rastogi, eds. Data Stream Management - Pro-
cessing High-Speed Data Streams. DCSA. Springer, 2016. ISBN: 978-3-540-28607-3.
DOI: 10.1007/978-3-540-28608-0 (cit. on pp. 267, 273).

[244] M. Garofalakis, J. Gehrke and R. Rastogi. Data Stream Management: Processing
High-Speed Data Streams (Data-Centric Systems and Applications). Secaucus, NJ,
USA: Springer-Verlag New York, Inc., 2007. ISBN: 3540286071 (cit. on p. 55).

279

http://www.vldb.org/pvldb/vol7/p1845-furche.pdf
https://doi.org/10.5441/002/edbt.2016.44
http://ceur-ws.org/Vol-1644/paper20.pdf
https://doi.org/10.1145/2967973.2968594
http://ceur-ws.org/Vol-1107/paper9.pdf
https://doi.org/10.1145/75277.75289
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1016/j.ijinfomgt.2014.10.007
https://doi.org/10.1145/233269.233340
https://doi.org/10.1145/233269.233340
https://doi.org/10.1145/2851613.2851806
https://doi.org/10.1145/2851613.2851806
https://doi.org/10.1007/978-3-662-45391-9_28
https://doi.org/10.1007/978-3-540-28608-0

[245] X. Ge, J. H. Lee, J. Renz and P. Zhang. ‘Hole in One: Using Qualitative Reasoning
for Solving Hard Physical Puzzle Problems’. In: Proceedings of ECAI 2016 and PAIS
2016, pp. 1762–1763. DOI: 10.3233/978-1-61499-672-9-1762 (cit. on p. 182).

[246] X. Ge and J. Renz. ‘Tracking Perceptually Indistinguishable Objects Using Spatial
Reasoning’. In: Proceedings of PRICAI 2014, pp. 600–613. DOI: 10.1007/978-3-
319-13560-1_48 (cit. on p. 182).

[247] X. Ge and J. Renz. ‘Representation and Reasoning about General Solid Rectangles’.
In: [509]. 2013, pp. 905–911. URL: http://www.aaai.org/ocs/index.php/
IJCAI/IJCAI13/paper/view/6880 (cit. on p. 182).

[248] X. Ge, J. Renz and P. Zhang. ‘Visual Detection of Unknown Objects in Video Games
Using Qualitative Stability Analysis’. In: TCIAIG 8.2 (2016), pp. 166–177. DOI: 10.
1109/TCIAIG.2015.2506741 (cit. on p. 182).

[249] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu and T. Schaub. ‘Stream
reasoning with answer set programming: Extended version’. Available at oclingo
website. 2012 (cit. on pp. 82, 90).

[250] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu and T. Schaub. ‘Stream
Reasoning with Answer Set Programming: Preliminary Report’. In: [101]. 2012.
URL: http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4504 (cit. on
pp. 82, 90, 102).

[251] M. Gebser, T. Grote, R. Kaminski, P. Obermeier, O. Sabuncu and T. Schaub. ‘Answer
Set Programming for Stream Reasoning’. In: CoRR abs/1301.1392 (2013). URL:
http://arxiv.org/abs/1301.1392 (cit. on pp. 82, 102).

[252] M. Gebser, T. Grote, R. Kaminski and T. Schaub. ‘Reactive Answer Set Program-
ming’. In: [171]. 2011, pp. 54–66. DOI: 10.1007/978-3-642-20895-9_7 (cit. on
pp. 34, 82, 87, 88).

[253] M. Gebser, T. Guyet, R. Quiniou, J. Romero and T. Schaub. ‘Knowledge-Based
Sequence Mining with ASP’. In: [322]. 2016, pp. 1497–1504. URL: http://www.
ijcai.org/Abstract/16/215 (cit. on p. 27).

[254] M. Gebser, T. Janhunen, H. Jost, R. Kaminski and T. Schaub. ‘ASP Solving for
Expanding Universes’. In: [136]. 2015, pp. 354–367. DOI: 10.1007/978-3-319-
23264-5_30 (cit. on p. 96).

[255] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub and S. Thiele.
‘Engineering an Incremental ASP Solver’. In: [51]. 2008, pp. 190–205. DOI: 10.
1007/978-3-540-89982-2_23 (cit. on pp. 34, 82, 86–88).

[256] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub and P. Wanko.
‘Theory Solving Made Easy with Clingo 5’. In: Proceedings of ICLP 2016, 2:1–2:15.
DOI: 10.4230/OASIcs.ICLP.2016.2 (cit. on pp. 33, 35).

[257] M. Gebser, R. Kaminski, B. Kaufmann and T. Schaub. ‘Challenges in Answer Set
Solving’. In: [48]. 2011, pp. 74–90. DOI: 10.1007/978-3-642-20832-4_6 (cit. on
pp. 28, 141).

[258] M. Gebser, R. Kaminski, B. Kaufmann and T. Schaub. Answer Set Solving in Prac-
tice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan &
Claypool Publishers, 2012. DOI: 10.2200/S00457ED1V01Y201211AIM019 (cit. on
p. 39).

[259] M. Gebser, R. Kaminski, B. Kaufmann and T. Schaub. Clingo = ASP + Control:
Extended Report. 2014 (cit. on pp. 35, 82).

[260] M. Gebser, R. Kaminski, B. Kaufmann and T. Schaub. ‘Clingo = ASP + Control:
Preliminary Report’. In: CoRR abs/1405.3694 (2014). URL: http://arxiv.org/
abs/1405.3694 (cit. on pp. 33, 112, 235).

[261] M. Gebser, R. Kaminski, B. Kaufmann and T. Schaub. ‘Multi-shot ASP solving with
clingo’. In: CoRR abs/1705.09811 (2017). URL: http://arxiv.org/abs/1705.
09811 (cit. on pp. 35, 96).

280 Bibliography

https://doi.org/10.3233/978-1-61499-672-9-1762
https://doi.org/10.1007/978-3-319-13560-1_48
https://doi.org/10.1007/978-3-319-13560-1_48
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6880
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6880
https://doi.org/10.1109/TCIAIG.2015.2506741
https://doi.org/10.1109/TCIAIG.2015.2506741
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4504
http://arxiv.org/abs/1301.1392
https://doi.org/10.1007/978-3-642-20895-9_7
http://www.ijcai.org/Abstract/16/215
http://www.ijcai.org/Abstract/16/215
https://doi.org/10.1007/978-3-319-23264-5_30
https://doi.org/10.1007/978-3-319-23264-5_30
https://doi.org/10.1007/978-3-540-89982-2_23
https://doi.org/10.1007/978-3-540-89982-2_23
https://doi.org/10.4230/OASIcs.ICLP.2016.2
https://doi.org/10.1007/978-3-642-20832-4_6
https://doi.org/10.2200/S00457ED1V01Y201211AIM019
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1405.3694
http://arxiv.org/abs/1705.09811
http://arxiv.org/abs/1705.09811

[262] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, M. T. Schneider and S. Ziller. ‘A
Portfolio Solver for Answer Set Programming: Preliminary Report’. In: [171]. 2011,
pp. 352–357. DOI: 10.1007/978-3-642-20895-9_40 (cit. on pp. 141, 146).

[263] M. Gebser, R. Kaminski and T. Schaub. ‘Complex optimization in answer
set programming’. In: TPLP 11.4-5 (2011), pp. 821–839. DOI: 10 . 1017 /
S1471068411000329 (cit. on p. 39).

[264] M. Gebser, B. Kaufmann, R. Kaminski, M. Ostrowski, T. Schaub and M. T.
Schneider. ‘Potassco: The Potsdam Answer Set Solving Collection’. In: AI Commun.
24.2 (2011), pp. 107–124. DOI: 10.3233/AIC-2011-0491 (cit. on pp. 21, 34, 220).

[265] M. Gebser, B. Kaufmann, A. Neumann and T. Schaub. ‘Conflict-Driven Answer
Set Solving’. In: Proceedings of IJCAI 2007, p. 386. URL: http : / / ijcai . org /
Proceedings/07/Papers/060.pdf (cit. on pp. 30, 34).

[266] M. Gebser, B. Kaufmann and T. Schaub. ‘Conflict-driven answer set solving: From
theory to practice’. In: Artif. Intell. 187 (2012), pp. 52–89. DOI: 10.1016/j.artint.
2012.04.001 (cit. on p. 30).

[267] M. Gebser, B. Kaufmann and T. Schaub. ‘Advanced Conflict-Driven Disjunctive An-
swer Set Solving’. In: [509]. 2013, pp. 912–918. URL: http://www.aaai.org/
ocs/index.php/IJCAI/IJCAI13/paper/view/6835 (cit. on p. 30).

[268] M. Gebser, M. Maratea and F. Ricca. ‘The Sixth Answer Set Programming Compet-
ition’. In: JAIR 60 (2017), pp. 41–95. DOI: 10.1613/jair.5373 (cit. on p. 23).

[269] M. Gebser and T. Schaub. ‘Modeling and Language Extensions’. In: AI Magazine
37.3 (2016), pp. 33–44. URL: http : / / www . aaai . org / ojs / index . php /
aimagazine/article/view/2673 (cit. on pp. 23, 28).

[270] M. Gebser, T. Schaub and S. Thiele. ‘GrinGo : A New Grounder for Answer Set
Programming’. In: Proceedings of LPNMR 2007, pp. 266–271. DOI: 10.1007/978-
3-540-72200-7_24 (cit. on p. 33).

[271] M. Gelfond. ‘Answer Sets’. In: Handbook of Knowledge Representation. 2008,
pp. 285–316. DOI: 10.1016/S1574-6526(07)03007-6 (cit. on p. 39).

[272] M. Gelfond and N. Leone. ‘Logic programming and knowledge representation - The
A-Prolog perspective’. In: Artif. Intell. 138.1-2 (2002), pp. 3–38. DOI: 10.1016/
S0004-3702(02)00207-2 (cit. on p. 6).

[273] M. Gelfond and V. Lifschitz. ‘The Stable Model Semantics for Logic Programming’.
In: Proceedings of ICLP 1988, pp. 1070–1080 (cit. on pp. 21, 39).

[274] M. Gelfond and V. Lifschitz. ‘Classical Negation in Logic Programs and Disjunctive
Databases’. English. In: New Generation Comput. 9.3/4 (1991), pp. 365–386. ISSN:
0288-3635. DOI: 10.1007/BF03037169 (cit. on pp. 14, 21, 23, 25, 36).

[275] M. R. Genesereth and S. P. Ketchpel. ‘Software Agents’. In: Commun. ACM 37.7
(1994), pp. 48–53. DOI: 10.1145/176789.176794 (cit. on p. 165).

[276] A. Gerevini, P. Haslum, D. Long, A. Saetti and Y. Dimopoulos. ‘Deterministic plan-
ning in the fifth international planning competition: PDDL3 and experimental
evaluation of the planners’. In: Artif. Intell. 173.5-6 (2009), pp. 619–668. DOI:
10.1016/j.artint.2008.10.012 (cit. on pp. 21, 40).

[277] S. Germano, F. Calimeri and E. Palermiti. ‘LoIDE: A Web-Based IDE for Logic Pro-
gramming Preliminary Report’. In: Proceedings of PADL 2018, pp. 152–160. DOI:
10.1007/978-3-319-73305-0_10 (cit. on pp. xiii, 241).

[278] S. Germano, F. Calimeri and E. Palermiti. ‘LoIDE: a web-based IDE for Logic
Programming - Preliminary Technical Report’. In: CoRR abs/1709.05341 (2017).
arXiv: 1709.05341 (cit. on pp. xii, 241).

[279] S. Germano, T. Pham and A. Mileo. ‘Web Stream Reasoning in Practice: On the
Expressivity vs. Scalability Tradeoff’. In: Proceedings of RR 2015, pp. 105–112. DOI:
10.1007/978-3-319-22002-4_9 (cit. on pp. xii, 102).

281

https://doi.org/10.1007/978-3-642-20895-9_40
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.1017/S1471068411000329
https://doi.org/10.3233/AIC-2011-0491
http://ijcai.org/Proceedings/07/Papers/060.pdf
http://ijcai.org/Proceedings/07/Papers/060.pdf
https://doi.org/10.1016/j.artint.2012.04.001
https://doi.org/10.1016/j.artint.2012.04.001
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6835
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6835
https://doi.org/10.1613/jair.5373
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2673
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2673
https://doi.org/10.1007/978-3-540-72200-7_24
https://doi.org/10.1007/978-3-540-72200-7_24
https://doi.org/10.1016/S1574-6526(07)03007-6
https://doi.org/10.1016/S0004-3702(02)00207-2
https://doi.org/10.1016/S0004-3702(02)00207-2
https://doi.org/10.1007/BF03037169
https://doi.org/10.1145/176789.176794
https://doi.org/10.1016/j.artint.2008.10.012
https://doi.org/10.1007/978-3-319-73305-0_10
http://arxiv.org/abs/1709.05341
https://doi.org/10.1007/978-3-319-22002-4_9

[280] M. Ghallab, D. S. Nau and P. Traverso. Automated planning - theory and practice.
Elsevier, 2004. ISBN: 978-1-55860-856-6 (cit. on p. 169).

[281] R. Giaffreda. ‘iCore: A Cognitive Management Framework for the Internet of
Things’. In: Proceedings of FIA 2013. Springer, pp. 350–352. DOI: 10.1007/978-3-
642-38082-2_31 (cit. on p. 109).

[282] M. L. Ginsberg, ed. Readings in Nonmonotonic Reasoning. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1987. ISBN: 0-934613-45-1 (cit. on p. 294).

[283] L. Giordano, A. Martelli and D. T. Dupré. ‘Reasoning about actions with Tem-
poral Answer Sets’. In: TPLP 13.2 (2013), pp. 201–225. DOI: 10 . 1017 /
S1471068411000639 (cit. on p. 183).

[284] E. Giunchiglia, Y. Lierler and M. Maratea. ‘Answer Set Programming Based on Pro-
positional Satisfiability’. In: J. Autom. Reasoning 36.4 (2006), pp. 345–377. ISSN:
0168-7433. DOI: 10.1007/s10817-006-9033-2 (cit. on p. 30).

[285] R. Goodwin. ‘Formalizing Properties of Agents’. In: J. Log. Comput. 5.6 (1995),
pp. 763–781. DOI: 10.1093/logcom/5.6.763 (cit. on p. 166).

[286] G. Gottlob, T. Lukasiewicz and A. Pieris. ‘Datalog+/-: Questions and Answers’. In:
[57]. 2014. URL: http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/
7965 (cit. on p. 15).

[287] G. Gottlob, M. Manna and A. Pieris. ‘Combining decidability paradigms for
existential rules’. In: TPLP 13.4-5 (2013), pp. 877–892. DOI: 10 . 1017 /
S1471068413000550 (cit. on p. 17).

[288] G. Gottlob, G. Orsi and A. Pieris. ‘Ontological queries: Rewriting and optimization’.
In: Proceedings of ICDE 2011, pp. 2–13. DOI: 10.1109/ICDE.2011.5767965 (cit. on
p. 17).

[289] G. Gottlob, G. Orsi and A. Pieris. ‘Query Rewriting and Optimization for Ontolo-
gical Databases’. In: TODS 39.3 (2014), 25:1–25:46. DOI: 10.1145/2638546 (cit.
on p. 20).

[290] G. Gottlob, R. Pichler and F. Wei. ‘Bounded treewidth as a key to tractability of
knowledge representation and reasoning’. In: Artif. Intell. 174.1 (2010), pp. 105–
132. DOI: 10.1016/j.artint.2009.10.003 (cit. on p. 142).

[291] G. Gottlob and P. Senellart. ‘Schema mapping discovery from data instances’. In: J.
ACM 57.2 (2010), 6:1–6:37. DOI: 10.1145/1667053.1667055 (cit. on p. 138).

[292] G. Grasso, N. Leone, M. Manna and F. Ricca. ‘ASP at Work: Spin-off and Applica-
tions of the DLV System’. In: [48]. 2011, pp. 432–451. DOI: 10.1007/978-3-642-
20832-4_27 (cit. on p. 214).

[293] B. C. Grau, I. Horrocks, M. Krötzsch, C. Kupke, D. Magka, B. Motik and Z. Wang.
‘Acyclicity Notions for Existential Rules and Their Application to Query Answering
in Ontologies’. In: JAIR 47 (2013), pp. 741–808. DOI: 10.1613/jair.3949 (cit. on
p. 17).

[294] T. Grote. ‘A reactive System for Declarative Programming of Dynamic Applica-
tions’. Diploma Thesis. Knowledge Processing and Information Systems, Institute
for Computer Science, University of Potsdam, 8th Sept. 2010 (cit. on p. 82).

[295] N. Gupta and D. S. Nau. ‘On the Complexity of Blocks-World Planning’. In: Artif.
Intell. 56.2-3 (1992), pp. 223–254. DOI: 10.1016/0004-3702(92)90028-V (cit. on
p. 43).

[296] Y. Gurevich, D. Leinders and J. V. den Bussche. ‘A Theory of Stream Queries’. In:
Proceedings of DBPL 2007, pp. 153–168. DOI: 10.1007/978-3-540-75987-4_11
(cit. on p. 56).

[297] C. Gutierrez, C. A. Hurtado and A. A. Vaisman. ‘Introducing Time into RDF’. In:
TKDE 19.2 (2007), pp. 207–218. DOI: 10.1109/TKDE.2007.34 (cit. on p. 71).

282 Bibliography

https://doi.org/10.1007/978-3-642-38082-2_31
https://doi.org/10.1007/978-3-642-38082-2_31
https://doi.org/10.1017/S1471068411000639
https://doi.org/10.1017/S1471068411000639
https://doi.org/10.1007/s10817-006-9033-2
https://doi.org/10.1093/logcom/5.6.763
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7965
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7965
https://doi.org/10.1017/S1471068413000550
https://doi.org/10.1017/S1471068413000550
https://doi.org/10.1109/ICDE.2011.5767965
https://doi.org/10.1145/2638546
https://doi.org/10.1016/j.artint.2009.10.003
https://doi.org/10.1145/1667053.1667055
https://doi.org/10.1007/978-3-642-20832-4_27
https://doi.org/10.1007/978-3-642-20832-4_27
https://doi.org/10.1613/jair.3949
https://doi.org/10.1016/0004-3702(92)90028-V
https://doi.org/10.1007/978-3-540-75987-4_11
https://doi.org/10.1109/TKDE.2007.34

[298] A. Y. Halevy, Z. G. Ives and A. Doan, eds. Proceedings of ACM SIGMOD 2003. (San
Diego, California, USA). ACM, 9th–12th June 2003. ISBN: 1-58113-634-X (cit. on
pp. 265, 274).

[299] A. Harrison. ‘Formal Methods for Answer Set Programming’. In: Proceedings of ICLP
2015. URL: http://ceur-ws.org/Vol-1433/dc_2.pdf (cit. on p. 23).

[300] M. Helmert, G. Röger and E. Karpas. ‘Fast downward stone soup: A baseline for
building planner portfolios’. In: Workshop on Planning and Learning at ICAPS 2011,
pp. 28–35 (cit. on p. 146).

[301] M. Hendrikx, S. Meijer, J. V. D. Velden and A. Iosup. ‘Procedural content generation
for games: A survey’. In: TOMCCAP 9.1 (2013), 1:1–1:22. DOI: 10.1145/2422956.
2422957 (cit. on p. 169).

[302] P. Hitzler and T. Lukasiewicz, eds. Proceedings of RR 2010. (Bressanone/Brixen,
Italy). Vol. 6333. LNCS. Springer, 22nd–24th Sept. 2010. ISBN: 978-3-642-15917-
6. DOI: 10.1007/978-3-642-15918-3 (cit. on pp. 266, 272).

[303] H. Hoos, M. T. Lindauer and T. Schaub. ‘claspfolio 2: Advances in Algorithm Se-
lection for Answer Set Programming’. In: TPLP 14.4-5 (2014), pp. 569–585. DOI:
10.1017/S1471068414000210 (cit. on pp. 141, 146).

[304] G. Ianni, D. Lembo, L. E. Bertossi, W. Faber, B. Glimm, G. Gottlob and S. Staab,
eds. Tutorial Lectures of RW 2017. (London, UK). Vol. 10370. LNCS. Springer, 7th–
11th July 2017. ISBN: 978-3-319-61032-0. DOI: 10.1007/978-3-319-61033-7
(cit. on pp. 277, 284).

[305] Y. E. Ioannidis. ‘The History of Histograms (abridged)’. In: Proceedings of VLDB
2003, pp. 19–30. URL: http://www.vldb.org/conf/2003/papers/S02P01.pdf
(cit. on pp. 148, 149).

[306] Y. E. Ioannidis and V. Poosala. ‘Balancing Histogram Optimality and Practicality for
Query Result Size Estimation’. In: Proceedings of ACM SIGMOD 1995, pp. 233–244.
DOI: 10.1145/223784.223841 (cit. on p. 149).

[307] Y. E. Ioannidis and V. Poosala. ‘Histogram-Based Approximation of Set-Valued
Query-Answers’. In: Proceedings of VLDB 1999, pp. 174–185. URL: http://www.
vldb.org/conf/1999/P15.pdf (cit. on p. 149).

[308] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs and R.
Braynard. ‘Networking named content’. In: Proceedings of CoNEXT 2009, pp. 1–
12. DOI: 10.1145/1658939.1658941 (cit. on p. 96).

[309] H. V. Jagadish and I. S. Mumick, eds. Proceedings of ACM SIGMOD 1996. (Montreal,
Quebec, Canada). ACM Press, 4th–6th June 1996 (cit. on pp. 279, 293).

[310] T. Janhunen and I. Niemelä. ‘The Answer Set Programming Paradigm’. In: AI
Magazine 37.3 (2016), pp. 13–24. URL: http : / / www . aaai . org / ojs / index .
php/aimagazine/article/view/2671 (cit. on p. 39).

[311] T. Janhunen, I. Niemelä, D. Seipel, P. Simons and J. You. ‘Unfolding partiality
and disjunctions in stable model semantics’. In: TOCL 7.1 (2006), pp. 1–37. DOI:
10.1145/1119439.1119440 (cit. on p. 30).

[312] G. Jaskiewicz. ‘Prolog-Scripted Tactics Negotiation and Coordinated Team Actions
for Counter-Strike Game Bots’. In: TCIAIG 8.1 (2016), pp. 82–88. DOI: 10.1109/
TCIAIG.2014.2331972 (cit. on p. 169).

[313] Y. Jiang, T. Harada and R. Thawonmas. ‘Procedural generation of angry birds fun
levels using pattern-struct and preset-model’. In: [477]. 2017, pp. 154–161. DOI:
10.1109/CIG.2017.8080429 (cit. on p. 182).

[314] D. S. Johnson and A. C. Klug. ‘Testing Containment of Conjunctive Queries under
Functional and Inclusion Dependencies’. In: JCSS 28.1 (1984), pp. 167–189. DOI:
10.1016/0022-0000(84)90081-3 (cit. on p. 18).

283

http://ceur-ws.org/Vol-1433/dc_2.pdf
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1007/978-3-642-15918-3
https://doi.org/10.1017/S1471068414000210
https://doi.org/10.1007/978-3-319-61033-7
http://www.vldb.org/conf/2003/papers/S02P01.pdf
https://doi.org/10.1145/223784.223841
http://www.vldb.org/conf/1999/P15.pdf
http://www.vldb.org/conf/1999/P15.pdf
https://doi.org/10.1145/1658939.1658941
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2671
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2671
https://doi.org/10.1145/1119439.1119440
https://doi.org/10.1109/TCIAIG.2014.2331972
https://doi.org/10.1109/TCIAIG.2014.2331972
https://doi.org/10.1109/CIG.2017.8080429
https://doi.org/10.1016/0022-0000(84)90081-3

[315] M. Johnson, K. Hofmann, T. Hutton and D. Bignell. ‘The Malmo Platform for Ar-
tificial Intelligence Experimentation’. In: [322]. 2016, pp. 4246–4247. URL: http:
//www.ijcai.org/Abstract/16/643 (cit. on p. 258).

[316] T. Johnson, S. Muthukrishnan, V. Shkapenyuk and O. Spatscheck. ‘A Heartbeat
Mechanism and Its Application in Gigascope’. In: Proceedings of VLDB 2005,
pp. 1079–1088. URL: http://www.vldb.org/archives/website/2005/program/
paper/tue/p1079-johnson.pdf (cit. on p. 59).

[317] H. Jordan, B. Scholz and P. Subotic. ‘Soufflé: On Synthesis of Program Analyzers’.
In: Proceedings of CAV 2016, Part II, pp. 422–430. DOI: 10.1007/978- 3- 319-
41540-6_23 (cit. on p. 19).

[318] H. S. W. Jr. ‘A Modification of Warshall’s Algorithm for the Transitive Closure of
Binary Relations’. In: Commun. ACM 18.4 (1975), pp. 218–220. DOI: 10.1145/
360715.360746 (cit. on p. 15).

[319] A. Jutzeler, M. Katanic and J. J. Li. ‘Managing Luck: A Multi-Armed Bandits Meta-
Agent for the Angry Birds Competition’. 2013. URL: http://aibirds.org/2013-
Papers/Team-Descriptions/beaurivage.pdf (cit. on pp. 180, 181).

[320] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz and M. Sellmann. ‘Algorithm
Selection and Scheduling’. In: Proceedings of CP 2011, pp. 454–469. DOI: 10.1007/
978-3-642-23786-7_35 (cit. on p. 146).

[321] S. Kadioglu, Y. Malitsky, M. Sellmann and K. Tierney. ‘ISAC - Instance-Specific Al-
gorithm Configuration’. In: Proceedings of ECAI 2010, pp. 751–756. DOI: 10.3233/
978-1-60750-606-5-751 (cit. on p. 146).

[322] S. Kambhampati, ed. Proceedings of IJCAI 2016. (New York, NY, USA). IJCAI/AAAI
Press, 9th–15th July 2016. ISBN: 978-1-57735-770-4. URL: http://www.ijcai.
org/Proceedings/2016 (cit. on pp. 270, 280, 284).

[323] R. Kaminski, T. Schaub and P. Wanko. ‘A Tutorial on Hybrid Answer Set Solving
with clingo’. In: [304]. 2017, pp. 167–203. DOI: 10.1007/978-3-319-61033-7_6
(cit. on p. 35).

[324] S. Kandel, J. Heer, C. Plaisant, J. Kennedy, F. van Ham, N. H. Riche, C. Weaver,
B. Lee, D. Brodbeck and P. Buono. ‘Research directions in data wrangling: Visualiz-
ations and transformations for usable and credible data’. In: Information Visualiza-
tion 10.4 (2011), pp. 271–288. DOI: 10.1177/1473871611415994 (cit. on p. 134).

[325] B. Kaufmann, N. Leone, S. Perri and T. Schaub. ‘Grounding and Solving in Answer
Set Programming’. In: AI Magazine 37.3 (2016), pp. 25–32. URL: http://www.
aaai.org/ojs/index.php/aimagazine/article/view/2672 (cit. on p. 22).

[326] G. Kendall. ‘Editorial: IEEE Transactions on Computational Intelligence and AI in
Games’. In: TCIAIG 7.1 (2015), pp. 1–2. DOI: 10.1109/TCIAIG.2015.2409514
(cit. on p. 164).

[327] M. A. u. d. Khan, M. F. Uddin and N. Gupta. ‘Seven V’s of Big Data understanding
Big Data to extract value’. In: Proceedings of the 2014 ASEE Zone 1 Conference. IEEE,
pp. 1–5. DOI: 10.1109/ASEEZone1.2014.6820689 (cit. on p. 125).

[328] T. Kindberg, M. Chalmers and E. Paulos. ‘Guest Editors’ Introduction: Urban Com-
puting’. In: IEEE Pervasive Comput. 6.3 (2007), pp. 18–20. DOI: 10.1109/MPRV.
2007.57 (cit. on p. 51).

[329] P. Kissmann and S. Edelkamp. ‘Instantiating General Games Using Prolog or De-
pendency Graphs’. In: Proceedings of KI 2010, pp. 255–262. DOI: 10.1007/978-3-
642-16111-7_29 (cit. on p. 169).

[330] C. Kloimüllner, J. Oetsch, J. Pührer and H. Tompits. ‘Kara: A System for Visualising
and Visual Editing of Interpretations for Answer-Set Programs’. In: Proceedings of
INAP and WLP 2011, pp. 325–344. DOI: 10.1007/978-3-642-41524-1_20 (cit. on
p. 251).

284 Bibliography

http://www.ijcai.org/Abstract/16/643
http://www.ijcai.org/Abstract/16/643
http://www.vldb.org/archives/website/2005/program/paper/tue/p1079-johnson.pdf
http://www.vldb.org/archives/website/2005/program/paper/tue/p1079-johnson.pdf
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1007/978-3-319-41540-6_23
https://doi.org/10.1145/360715.360746
https://doi.org/10.1145/360715.360746
http://aibirds.org/2013-Papers/Team-Descriptions/beaurivage.pdf
http://aibirds.org/2013-Papers/Team-Descriptions/beaurivage.pdf
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.1007/978-3-642-23786-7_35
https://doi.org/10.3233/978-1-60750-606-5-751
https://doi.org/10.3233/978-1-60750-606-5-751
http://www.ijcai.org/Proceedings/2016
http://www.ijcai.org/Proceedings/2016
https://doi.org/10.1007/978-3-319-61033-7_6
https://doi.org/10.1177/1473871611415994
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2672
https://doi.org/10.1109/TCIAIG.2015.2409514
https://doi.org/10.1109/ASEEZone1.2014.6820689
https://doi.org/10.1109/MPRV.2007.57
https://doi.org/10.1109/MPRV.2007.57
https://doi.org/10.1007/978-3-642-16111-7_29
https://doi.org/10.1007/978-3-642-16111-7_29
https://doi.org/10.1007/978-3-642-41524-1_20

[331] P. G. Kolaitis. On the expressive power of stratified datalog programs. Preprint. 1987
(cit. on p. 14).

[332] P. G. Kolaitis. ‘The Expressive Power of Stratified Programs’. In: Inf. Comput. 90.1
(1991), pp. 50–66. DOI: 10.1016/0890-5401(91)90059-B (cit. on p. 14).

[333] P. G. Kolaitis and C. H. Papadimitriou. ‘Why not Negation by Fixpoint?’ In: JCSS
43.1 (1991), pp. 125–144. DOI: 10.1016/0022-0000(91)90033-2 (cit. on p. 14).

[334] M. Kolchin and P. Wetz. Demo: YABench - Yet Another RDF Stream Processing Bench-
mark. 2015 (cit. on p. 75).

[335] M. Kolchin, P. Wetz, E. Kiesling and A. M. Tjoa. ‘YABench: A Comprehensive Frame-
work for RDF Stream Processor Correctness and Performance Assessment’. In: Pro-
ceedings of ICWE 2016, pp. 280–298. DOI: 10.1007/978- 3- 319- 38791- 8_16
(cit. on pp. 75, 80).

[336] S. Komazec, D. Cerri and D. Fensel. ‘Sparkwave: continuous schema-enhanced pat-
tern matching over RDF data streams’. In: Proceedings of DEBS 2012, pp. 58–68.
DOI: 10.1145/2335484.2335491 (cit. on p. 74).

[337] M. König, M. Leclère, M. Mugnier and M. Thomazo. ‘A Sound and Complete Back-
ward Chaining Algorithm for Existential Rules’. In: [349]. 2012, pp. 122–138. DOI:
10.1007/978-3-642-33203-6_10 (cit. on p. 20).

[338] N. Konstantinou, M. Koehler, E. Abel, C. Civili, B. Neumayr, E. Sallinger, A. A. A.
Fernandes, G. Gottlob, J. A. Keane, L. Libkin and N. W. Paton. ‘The VADA Archi-
tecture for Cost-Effective Data Wrangling’. In: Proceedings of ACM SIGMOD 2017,
pp. 1599–1602. DOI: 10.1145/3035918.3058730 (cit. on p. 130).

[339] D. L. Kovacs. ‘BNF definition of PDDL 3.1’. From the IPC-2011 website. 2011 (cit.
on p. 40).

[340] R. A. Kowalski. ‘Predicate Logic as Programming Language’. In: IFIP Congress. 1974,
pp. 569–574 (cit. on p. 6).

[341] R. A. Kowalski. ‘Algorithm = Logic + Control’. In: Commun. ACM 22.7 (1979),
pp. 424–436. DOI: 10.1145/359131.359136 (cit. on p. 6).

[342] R. A. Kowalski. Logic for problem solving. Vol. 7. The computer science library :
Artificial intelligence series. North-Holland, 1979. ISBN: 0444003681. URL: http:
//www.worldcat.org/oclc/05564433 (cit. on p. 8).

[343] R. A. Kowalski. ‘The Early Years of Logic Programming’. In: Commun. ACM 31.1
(1988), pp. 38–43. DOI: 10.1145/35043.35046 (cit. on pp. 5, 7, 213).

[344] R. A. Kowalski and F. Sadri. ‘From Logic Programming Towards Multi-Agent Sys-
tems’. In: AMAI 25.3-4 (1999), pp. 391–419. DOI: 10.1023/A:1018934223383
(cit. on p. 185).

[345] M. Koziarkiewicz. iGROM - an Integrated Development Environment for Answer
Set Programs. 2007–2010. URL: http : / / igrom . sourceforge . net (visited on
25th Sept. 2017) (cit. on p. 250).

[346] J. Krämer and B. Seeger. ‘PIPES - A Public Infrastructure for Processing and Explor-
ing Streams’. In: Proceedings of ACM SIGMOD 2004, pp. 925–926. DOI: 10.1145/
1007568.1007699 (cit. on p. 62).

[347] S. Krishnamurthy, S. Chandrasekaran, O. Cooper, A. Deshpande, M. J. Franklin,
J. M. Hellerstein, W. Hong, S. Madden, F. Reiss and M. A. Shah. ‘TelegraphCQ: An
Architectural Status Report’. In: IEEE Data Eng. Bull. 26.1 (2003), pp. 11–18. URL:
http://sites.computer.org/debull/A03mar/tcqde.ps (cit. on p. 62).

[348] M. Krötzsch and S. Rudolph. ‘Extending Decidable Existential Rules by Joining
Acyclicity and Guardedness’. In: [576]. 2011, pp. 963–968. DOI: 10.5591/978-1-
57735-516-8/IJCAI11-166 (cit. on p. 17).

285

https://doi.org/10.1016/0890-5401(91)90059-B
https://doi.org/10.1016/0022-0000(91)90033-2
https://doi.org/10.1007/978-3-319-38791-8_16
https://doi.org/10.1145/2335484.2335491
https://doi.org/10.1007/978-3-642-33203-6_10
https://doi.org/10.1145/3035918.3058730
https://doi.org/10.1145/359131.359136
http://www.worldcat.org/oclc/05564433
http://www.worldcat.org/oclc/05564433
https://doi.org/10.1145/35043.35046
https://doi.org/10.1023/A:1018934223383
http://igrom.sourceforge.net
https://doi.org/10.1145/1007568.1007699
https://doi.org/10.1145/1007568.1007699
http://sites.computer.org/debull/A03mar/tcqde.ps
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-166
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-166

[349] M. Krötzsch and U. Straccia, eds. RR 2012. Vol. 7497: Proceedings of RR 2012.
(Vienna, Austria). LNCS. Springer, 10th–12th Sept. 2012. ISBN: 978-3-642-33202-
9. DOI: 10.1007/978-3-642-33203-6 (cit. on pp. 285, 287).

[350] G. M. Kuper. ‘Logic Programming With Sets’. In: Proceedings of PODS 1987, pp. 11–
20. DOI: 10.1145/28659.28661 (cit. on p. 15).

[351] A. L’Heureux, K. Grolinger, H. F. ElYamany and M. A. M. Capretz. ‘Machine Learn-
ing With Big Data: Challenges and Approaches’. In: IEEE Access 5 (2017), pp. 7776–
7797. DOI: 10.1109/ACCESS.2017.2696365 (cit. on pp. 124, 126).

[352] A. Labrinidis and H. V. Jagadish. ‘Challenges and Opportunities with Big Data’. In:
PVLDB 5.12 (2012), pp. 2032–2033. URL: http://vldb.org/pvldb/vol5/p2032_
alexandroslabrinidis_vldb2012.pdf (cit. on pp. 126, 127).

[353] J. E. Laird. ‘Using a Computer Game to Develop Advanced AI’. In: IEEE Computer
34.7 (2001), pp. 70–75. DOI: 10.1109/2.933506 (cit. on p. 164).

[354] R. Lapauw, I. Dasseville and M. Denecker. ‘Visualising interactive inferences with
IDPD3’. In: CoRR abs/1511.00928 (2015) (cit. on p. 251).

[355] R. Lara-Cabrera, M. N. Collazo, C. Cotta and A. J. F. Leiva. ‘Game Artificial Intelli-
gence: Challenges for the Scientific Community’. In: Proceedings of CoSECivi 2015,
pp. 1–12. URL: http://ceur-ws.org/Vol-1394/paper_1.pdf (cit. on p. 167).

[356] Y. Law, H. Wang and C. Zaniolo. ‘Relational languages and data models for con-
tinuous queries on sequences and data streams’. In: TODS 36.2 (2011), 8:1–8:32.
DOI: 10.1145/1966385.1966386 (cit. on p. 56).

[357] F. Lécué, S. Tallevi-Diotallevi, J. Hayes, R. Tucker, V. Bicer, M. L. Sbodio and P.
Tommasi. ‘Smart traffic analytics in the semantic web with STAR-CITY: Scenarios,
system and lessons learned in Dublin City’. In: J. Web Sem. 27 (2014), pp. 26–33.
DOI: 10.1016/j.websem.2014.07.002 (cit. on p. 109).

[358] J.-S. Lee, H.-S. Seon, J.-H. Kim, S.-Y. Joo and K.-J. Kim. ‘Angry Plan A+ Team Team
Description Paper’. 2014. URL: https://aibirds.org/2014-papers/PlanA+.pdf
(cit. on pp. 180, 182).

[359] M. Lenzerini. ‘Data Integration: A Theoretical Perspective’. In: [475]. 2002,
pp. 233–246. DOI: 10.1145/543613.543644 (cit. on p. 138).

[360] N. Leone, M. Manna, G. Terracina and P. Veltri. ‘Efficient Query Answering over
Datalog with Existential Quantifiers’. In: Proceedings of SEBD 2012, pp. 155–162.
URL: http://sebd2012.dei.unipd.it/documents/188475/cce9a9ef- dac8-
4d0b-b05c-a15806050538 (cit. on p. 17).

[361] N. Leone, M. Manna, G. Terracina and P. Veltri. ‘Efficiently Computable Datalog∃
Programs’. In: [101]. 2012. URL: http://www.aaai.org/ocs/index.php/KR/
KR12/paper/view/4521 (cit. on pp. 15, 17, 20).

[362] N. Leone, G. Pfeifer, W. Faber, F. Calimeri, T. Dell’Armi, T. Eiter, G. Gottlob, G.
Ianni, G. Ielpa, C. Koch, S. Perri and A. Polleres. ‘The DLV System’. In: Proceedings
of JELIA 2002, pp. 537–540. DOI: 10.1007/3-540-45757-7_50 (cit. on p. 31).

[363] N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri and F. Scarcello. ‘The
DLV system for knowledge representation and reasoning’. In: TOCL 7.3 (2006),
pp. 499–562. DOI: 10.1145/1149114.1149117 (cit. on pp. 21, 27, 30, 31).

[364] N. Leone and F. Ricca. ‘Answer Set Programming: A Tour from the Basics to Ad-
vanced Development Tools and Industrial Applications’. In: Tutorial Lectures of RW
2015, pp. 308–326. DOI: 10.1007/978-3-319-21768-0_10 (cit. on pp. 27, 204).

[365] J. Leskovec, A. Rajaraman and J. D. Ullman. Mining of Massive Datasets, 2nd Ed.
Cambridge University Press, 2014. ISBN: 978-1107077232 (cit. on p. 129).

[366] B. L. Lewis. ‘In the game: The interface between Watson and Jeopardy!’ In: IBM
Journal of Research and Development 56.3 (2012), p. 17. DOI: 10.1147/JRD.2012.
2188932 (cit. on p. 165).

286 Bibliography

https://doi.org/10.1007/978-3-642-33203-6
https://doi.org/10.1145/28659.28661
https://doi.org/10.1109/ACCESS.2017.2696365
http://vldb.org/pvldb/vol5/p2032_alexandroslabrinidis_vldb2012.pdf
http://vldb.org/pvldb/vol5/p2032_alexandroslabrinidis_vldb2012.pdf
https://doi.org/10.1109/2.933506
http://ceur-ws.org/Vol-1394/paper_1.pdf
https://doi.org/10.1145/1966385.1966386
https://doi.org/10.1016/j.websem.2014.07.002
https://aibirds.org/2014-papers/PlanA+.pdf
https://doi.org/10.1145/543613.543644
http://sebd2012.dei.unipd.it/documents/188475/cce9a9ef-dac8-4d0b-b05c-a15806050538
http://sebd2012.dei.unipd.it/documents/188475/cce9a9ef-dac8-4d0b-b05c-a15806050538
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4521
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4521
https://doi.org/10.1007/3-540-45757-7_50
https://doi.org/10.1145/1149114.1149117
https://doi.org/10.1007/978-3-319-21768-0_10
https://doi.org/10.1147/JRD.2012.2188932
https://doi.org/10.1147/JRD.2012.2188932

[367] J. J. Li. ‘Qualitative Spatial and Temporal Reasoning with Answer Set Program-
ming’. In: Proceedings of ICTAI 2012, pp. 603–609. DOI: 10.1109/ICTAI.2012.87
(cit. on p. 183).

[368] Q. Li, X. Zhang and Z. Feng. ‘PRSP: A Plugin-based Framework for RDF Stream
Processing’. In: Proceedings of WWW 2017, pp. 815–816. DOI: 10.1145/3041021.
3054243 (cit. on p. 74).

[369] S. Liang. ‘Non-termination Analysis and Cost-Based Query Optimization of Logic
Programs’. In: [349]. 2012, pp. 284–290. DOI: 10.1007/978-3-642-33203-6_33
(cit. on p. 155).

[370] S. Liang and M. Kifer. ‘Deriving predicate statistics in datalog’. In: Proceedings of
PPDP 2010, pp. 45–56. DOI: 10.1145/1836089.1836095 (cit. on pp. 148, 153,
155).

[371] S. Liang and M. Kifer. ‘Deriving Predicate Statistics for Logic Rules’. In: [349].
2012, pp. 139–155. DOI: 10.1007/978- 3- 642- 33203- 6_11 (cit. on pp. 148,
153–156).

[372] Y. Lierler, M. Maratea and F. Ricca. ‘Systems, Engineering Environments, and Com-
petitions’. In: AI Magazine 37.3 (2016), pp. 45–52. URL: http://www.aaai.org/
ojs/index.php/aimagazine/article/view/2675 (cit. on p. 214).

[373] V. Lifschitz. ‘Answer Set Planning’. In: Proceedings of ICLP 1999, pp. 23–37 (cit. on
pp. 5, 39).

[374] V. Lifschitz. ‘What Is Answer Set Programming?’ In: Proceedings of AAAI 2008,
pp. 1594–1597. URL: http : / / www . aaai . org / Library / AAAI / 2008 / aaai08 -
270.php (cit. on p. 21).

[375] V. Lifschitz. ‘Answer set programming and plan generation’. In: Artif. Intell. 138.1-2
(2002), pp. 39–54. DOI: 10.1016/S0004-3702(02)00186-8 (cit. on pp. 21, 183).

[376] V. Lifschitz. ‘Datalog Programs and Their Stable Models’. In: [428]. 2010, pp. 78–
87. DOI: 10.1007/978-3-642-24206-9_5 (cit. on p. 39).

[377] V. Lifschitz. ‘Answer Sets and the Language of Answer Set Programming’. In: AI
Magazine 37.3 (2016), pp. 7–12. URL: http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2670 (cit. on p. 39).

[378] V. Lifschitz. ‘Achievements in answer set programming’. In: TPLP 17.5-6 (2017),
pp. 961–973. DOI: 10.1017/S1471068417000345 (cit. on p. 35).

[379] F. Lin and Y. Zhao. ‘ASSAT: computing answer sets of a logic program by SAT
solvers’. In: Artif. Intell. 157.1-2 (2004), pp. 115–137. DOI: 10.1016/j.artint.
2004.04.004 (cit. on p. 30).

[380] M. Lindauer, H. H. Hoos, F. Hutter and T. Schaub. ‘AutoFolio: Algorithm Con-
figuration for Algorithm Selection’. In: Proceedings of AlgoConf 2015. URL: http:
//aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10106 (cit. on p. 146).

[381] R. J. Lipton and J. F. Naughton. ‘Estimating the Size of Generalized Transitive
Closures’. In: Proceedings of VLDB 1989, pp. 165–171. URL: http://www.vldb.
org/conf/1989/P165.PDF (cit. on p. 149).

[382] R. J. Lipton and J. F. Naughton. ‘Query Size Estimation by Adaptive Sampling’. In:
JCSS 51.1 (1995), pp. 18–25. DOI: 10.1006/jcss.1995.1050 (cit. on p. 149).

[383] G. Liu, T. Janhunen and I. Niemelä. ‘Answer Set Programming via Mixed Integer
Programming’. In: [101]. 2012. URL: http://www.aaai.org/ocs/index.php/KR/
KR12/paper/view/4516 (cit. on p. 30).

[384] L. LIU and M. T. ÖZSU, eds. Encyclopedia of Database Systems. Boston, MA:
Springer US, 2009. ISBN: 978-0-387-39940-9 (cit. on pp. 267, 297).

[385] J. W. Lloyd. ‘Practical Advtanages of Declarative Programming’. In: Proceedings of
GULP-PRODE 1994, pp. 18–30 (cit. on p. 213).

287

https://doi.org/10.1109/ICTAI.2012.87
https://doi.org/10.1145/3041021.3054243
https://doi.org/10.1145/3041021.3054243
https://doi.org/10.1007/978-3-642-33203-6_33
https://doi.org/10.1145/1836089.1836095
https://doi.org/10.1007/978-3-642-33203-6_11
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2675
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2675
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
http://www.aaai.org/Library/AAAI/2008/aaai08-270.php
https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/10.1007/978-3-642-24206-9_5
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2670
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2670
https://doi.org/10.1017/S1471068417000345
https://doi.org/10.1016/j.artint.2004.04.004
https://doi.org/10.1016/j.artint.2004.04.004
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10106
http://aaai.org/ocs/index.php/WS/AAAIW15/paper/view/10106
http://www.vldb.org/conf/1989/P165.PDF
http://www.vldb.org/conf/1989/P165.PDF
https://doi.org/10.1006/jcss.1995.1050
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4516
http://www.aaai.org/ocs/index.php/KR/KR12/paper/view/4516

[386] J. W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987. ISBN:
3-540-18199-7 (cit. on pp. 5, 6, 213).

[387] J. Lobo, J. Minker and A. Rajasekar. Foundations of disjunctive logic programming.
Logic Programming. MIT Press, 1992. ISBN: 978-0-262-12165-1 (cit. on p. 14).

[388] D. Long and M. Fox. ‘The 3rd International Planning Competition: Results and
Analysis’. In: JAIR 20 (2003), pp. 1–59. DOI: 10.1613/jair.1240 (cit. on p. 40).

[389] R. E. Ltd. Angry Birds Chrome. Discontinued. 2011–2015. URL: http://chrome.
angrybirds.com (cit. on p. 177).

[390] S. M. Lucas. ‘Computational intelligence and games: Challenges and opportunities’.
In: IJAC 5.1 (1st Jan. 2008), pp. 45–57. ISSN: 1751-8520. DOI: 10.1007/s11633-
008-0045-8 (cit. on p. 167).

[391] S. M. Lucas. ‘Computational Intelligence and AI in Games: A New IEEE Transac-
tions’. In: TCIAIG 1.1 (2009), pp. 1–3. DOI: 10.1109/TCIAIG.2009.2021433 (cit.
on p. 164).

[392] D. Luckham. ‘The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems’. In: Proceedings of RuleML 2008, p. 3. DOI: 10.
1007/978-3-540-88808-6_2 (cit. on p. 66).

[393] D. C. Luckham. The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Boston, MA, USA: Addison-Wesley Longman Pub-
lishing Co., Inc., 2001. ISBN: 0201727897 (cit. on p. 65).

[394] C. Macdonald, I. Ounis and I. Ruthven, eds. Proceedings of the 20th ACM Conference
on Information and Knowledge Management, CIKM 2011, Glasgow, United Kingdom,
October 24-28, 2011. ACM. ISBN: 978-1-4503-0717-8 (cit. on p. 294).

[395] J. Madhavan, S. Cohen, X. L. Dong, A. Y. Halevy, S. R. Jeffery, D. Ko and C. Yu. ‘Web-
Scale Data Integration: You can afford to Pay as You Go’. In: Proceedings of CIDR
2007, pp. 342–350. URL: http://cidrdb.org/cidr2007/papers/cidr07p40.pdf
(cit. on p. 138).

[396] P. Maes. ‘Agents that Reduce Work and Information Overload’. In: Commun. ACM
37.7 (1994), pp. 30–40. DOI: 10.1145/176789.176792 (cit. on p. 166).

[397] R. Magoulas and B. Lorica. ‘Big data: Technologies and techniques for large scale
data’. In: Jimmy Guterman, Release 2 (2009) (cit. on p. 125).

[398] D. Maier, A. O. Mendelzon and Y. Sagiv. ‘Testing Implications of Data Dependen-
cies’. In: TODS 4.4 (1979), pp. 455–469. DOI: 10.1145/320107.320115 (cit. on
p. 18).

[399] Y. Malitsky, A. Sabharwal, H. Samulowitz and M. Sellmann. ‘Boosting Sequential
Solver Portfolios: Knowledge Sharing and Accuracy Prediction’. In: Proceedings of
LION 2013, pp. 153–167. DOI: 10.1007/978-3-642-44973-4_17 (cit. on p. 146).

[400] M. Maratea, L. Pulina and F. Ricca. ‘Automated Selection of Grounding Algorithm
in Answer Set Programming’. In: Proceedings of AI*IA 2013, pp. 73–84. DOI: 10.
1007/978-3-319-03524-6_7 (cit. on pp. 141, 146).

[401] M. Maratea, L. Pulina and F. Ricca. ‘On the Automated Selection of ASP Instantiat-
ors’. In: Proceedings of GTTV 2013, p. 39 (cit. on p. 141).

[402] M. Maratea, L. Pulina and F. Ricca. ‘The Multi-Engine ASP Solver me-asp’. In: Pro-
ceedings of JELIA 2012, pp. 484–487. DOI: 10.1007/978- 3- 642- 33353- 8_39
(cit. on p. 141).

[403] M. Maratea, L. Pulina and F. Ricca. ME-ASP: A Multi-Engine Solver for Answer Set
Programming. 2012 (cit. on p. 141).

[404] M. Maratea, L. Pulina and F. Ricca. ‘A multi-engine approach to answer-
set programming’. In: TPLP 14.6 (2014), pp. 841–868. DOI: 10 . 1017 /
S1471068413000094 (cit. on pp. 141, 146).

288 Bibliography

https://doi.org/10.1613/jair.1240
http://chrome.angrybirds.com
http://chrome.angrybirds.com
https://doi.org/10.1007/s11633-008-0045-8
https://doi.org/10.1007/s11633-008-0045-8
https://doi.org/10.1109/TCIAIG.2009.2021433
https://doi.org/10.1007/978-3-540-88808-6_2
https://doi.org/10.1007/978-3-540-88808-6_2
http://cidrdb.org/cidr2007/papers/cidr07p40.pdf
https://doi.org/10.1145/176789.176792
https://doi.org/10.1145/320107.320115
https://doi.org/10.1007/978-3-642-44973-4_17
https://doi.org/10.1007/978-3-319-03524-6_7
https://doi.org/10.1007/978-3-319-03524-6_7
https://doi.org/10.1007/978-3-642-33353-8_39
https://doi.org/10.1017/S1471068413000094
https://doi.org/10.1017/S1471068413000094

[405] M. Maratea, L. Pulina and F. Ricca. ‘The Multi-engine ASP Solver ME-ASP: Progress
Report’. In: CoRR abs/1405.0876 (2014). arXiv: 1405.0876 (cit. on p. 141).

[406] M. Maratea, L. Pulina and F. Ricca. ‘Multi-engine ASP solving with policy adapt-
ation’. In: J. Log. Comput. 25.6 (2015), pp. 1285–1306. DOI: 10.1093/logcom/
ext068 (cit. on pp. 141, 146).

[407] M. Maratea, L. Pulina and F. Ricca. ‘Multi-level Algorithm Selection for ASP’. In:
[136]. 2015, pp. 439–445. DOI: 10.1007/978-3-319-23264-5_36 (cit. on p. 146).

[408] E. Marcopoulos, C. Reotutar and Y. Zhang. ‘An Online Development Environment
for Answer Set Programming’. In: CoRR abs/1707.01865 (2017) (cit. on p. 250).

[409] V. W. Marek and M. Truszczyski. ‘Stable Models and an Alternative Logic Pro-
gramming Paradigm’. In: The Logic Programming Paradigm: A 25-Year Perspective,
pp. 375–398. DOI: 10.1007/978-3-642-60085-2_17 (cit. on p. 39).

[410] A. Margara, J. Urbani, F. van Harmelen and H. E. Bal. ‘Streaming the Web: Reas-
oning over dynamic data’. In: J. Web Sem. 25 (2014), pp. 24–44. DOI: 10.1016/j.
websem.2014.02.001 (cit. on pp. 51–53, 66, 74).

[411] M. Mariën, J. Wittocx, M. Denecker and M. Bruynooghe. ‘SAT(ID): Satisfiability
of Propositional Logic Extended with Inductive Definitions’. In: Proceedings of SAT
2008, pp. 211–224. DOI: 10.1007/978-3-540-79719-7_20 (cit. on p. 30).

[412] B. Marnette. ‘Generalized schema-mappings: from termination to tractability’. In:
Proceedings of PODS 2009, pp. 13–22. DOI: 10.1145/1559795.1559799 (cit. on
p. 17).

[413] J. McCarthy. Programs with common sense. RLE and MIT Computation Center, 1960
(cit. on pp. 8, 213).

[414] J. McCarthy and P. J. Hayes. ‘Some philosophical problems from the standpoint
of artificial intelligence’. In: Readings in artificial intelligence (1969), pp. 431–450
(cit. on p. 8).

[415] D. McDermott, M. Ghallab, A. Howe, C. Knoblock, A. Ram, M. Veloso, D. Weld and
D. Wilkins. PDDL-the planning domain definition language. 1998 (cit. on pp. 21,
40).

[416] E. Mera, P. López-Garca, G. Puebla, M. Carro and M. V. Hermenegildo. ‘Combining
Static Analysis and Profiling for Estimating Execution Times’. In: Proceedings of
PADL 2007, pp. 140–154. DOI: 10.1007/978-3-540-69611-7_9 (cit. on p. 156).

[417] E. Mera, P. López-Garca, G. Puebla, M. Carro and M. V. Hermenegildo. ‘Using Com-
bined Static Analysis and Profiling for Logic Program Execution Time Estimation’.
In: Proceedings of ICLP 2006, pp. 431–432. DOI: 10.1007/11799573_36 (cit. on
p. 156).

[418] E. Mera, P. López-Garca, G. Puebla, M. Carro and M. V. Hermenegildo. ‘Towards
Execution Time Estimation for Logic Programs via Static Analysis and Profiling’. In:
CoRR abs/cs/0701108 (2007). arXiv: cs/0701108 (cit. on p. 156).

[419] A. Mileo, A. Abdelrahman, S. Policarpio and M. Hauswirth. ‘StreamRule: A Non-
monotonic Stream Reasoning System for the Semantic Web’. In: Proceedings of RR
2013, pp. 247–252. DOI: 10.1007/978-3-642-39666-3_23 (cit. on pp. 96, 102,
103, 105).

[420] A. Mileo, M. Dao-Tran, T. Eiter and M. Fink. ‘Stream Reasoning’. In: Encyclopedia
of Database Systems. From http://doras.dcu.ie/21771. 2017 (cit. on pp. 48, 51,
81).

289

http://arxiv.org/abs/1405.0876
https://doi.org/10.1093/logcom/ext068
https://doi.org/10.1093/logcom/ext068
https://doi.org/10.1007/978-3-319-23264-5_36
https://doi.org/10.1007/978-3-642-60085-2_17
https://doi.org/10.1016/j.websem.2014.02.001
https://doi.org/10.1016/j.websem.2014.02.001
https://doi.org/10.1007/978-3-540-79719-7_20
https://doi.org/10.1145/1559795.1559799
https://doi.org/10.1007/978-3-540-69611-7_9
https://doi.org/10.1007/11799573_36
http://arxiv.org/abs/cs/0701108
https://doi.org/10.1007/978-3-642-39666-3_23
http://doras.dcu.ie/21771

[421] A. Mileo, S. Germano, T.-L. Pham, D. Puiu, D. Kuemper and M. I. Ali. User-Centric
Decision Support in Dynamic Environments. CityPulse - Real-Time IoT Stream Pro-
cessing and Large-scale Data Analytics for Smart City Applications. Report - Project
Delivery. Version V1.0-Final. NUIG, SIE, UASO, 31st Aug. 2015. URL: http : / /
cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-
609035CITYPULSED52renditionDownload.pdf (visited on 25th Sept. 2017) (cit.
on pp. xii, 109).

[422] A. Mileo, D. Merico, S. Pinardi and R. Bisiani. ‘A Logical Approach to Home
Healthcare with Intelligent Sensor-Network Support’. In: Comput. J. 53.8 (2010),
pp. 1257–1276. DOI: 10.1093/comjnl/bxn074 (cit. on p. 27).

[423] A. Mileo, T. Schaub, D. Merico and R. Bisiani. ‘Knowledge-based multi-criteria
optimization to support indoor positioning’. In: AMAI 62.3-4 (2011), pp. 345–370.
DOI: 10.1007/s10472-011-9241-2 (cit. on p. 96).

[424] I. Millington and J. Funge. Artificial Intelligence for Games, Second Edition. Morgan
Kaufmann, 2009. ISBN: 978-0-12-374731-0 (cit. on p. 164).

[425] J. Minker. ‘On Indefinite Databases and the Closed World Assumption’. In: Pro-
ceedings of CADE 1982, pp. 292–308. DOI: 10.1007/BFb0000066 (cit. on pp. 13,
21).

[426] J. Minker. ‘Overview of Disjunctive Logic Programming’. In: AMAI 12.1-2 (1994),
pp. 1–24. DOI: 10.1007/BF01530759 (cit. on p. 14).

[427] M. Minsky. A Framework for Representing Knowledge. Tech. rep. Cambridge, MA,
USA, 1974 (cit. on p. 8).

[428] O. de Moor, G. Gottlob, T. Furche and A. J. Sellers, eds. Proceedings of Datalog
Reloaded 2010. (Oxford, UK). Vol. 6702. LNCS. Springer, 16th–19th Mar. 2010.
ISBN: 978-3-642-24205-2. DOI: 10.1007/978-3-642-24206-9 (cit. on pp. 266,
287).

[429] R. C. Moore. ‘Semantical Considerations on Nonmonotonic Logic’. In: Proceed-
ings of IJCAI 1983, pp. 272–279. URL: http://ijcai.org/Proceedings/83-
1/Papers/063.pdf (cit. on p. 21).

[430] M. Morak, R. Pichler, S. Rümmele and S. Woltran. ‘A Dynamic-Programming Based
ASP-Solver’. In: Proceedings of JELIA 2010, pp. 369–372. DOI: 10.1007/978-3-642-
15675-5_34 (cit. on p. 39).

[431] A. MoSSburger, H. Beck, M. Dao-Tran and T. Eiter. ‘A Benchmarking Framework
for Stream Processors’. In: Proceedings of EKAW 2016 Satellite Events, EKM and
Drift-an-LOD, pp. 153–157. DOI: 10.1007/978-3-319-58694-6_21 (cit. on p. 96).

[432] L. M. de Moura and N. Bjørner. ‘Satisfiability modulo theories: introduction and
applications’. In: Commun. ACM 54.9 (2011), pp. 69–77. DOI: 10.1145/1995376.
1995394 (cit. on p. 21).

[433] F. Mourato, M. P. dos Santos and F. P. Birra. ‘Automatic level generation for plat-
form videogames using genetic algorithms’. In: Proceedings of ACE 2011, p. 8. DOI:
10.1145/2071423.2071433 (cit. on p. 169).

[434] M. Mugnier. ‘Ontological Query Answering with Existential Rules’. In: Proceedings
of RR 2011, pp. 2–23. DOI: 10.1007/978-3-642-23580-1_2 (cit. on p. 17).

[435] C. Muise. ‘Planning.Domains’. In: ICAPS system demonstration (2016) (cit. on
pp. 242, 250).

[436] C. Muise, S. Vernhes and F. Pommerening. Solver.Planning.Domains. 2015–2017.
URL: http://solver.planning.domains (visited on 25th Sept. 2017) (cit. on
p. 216).

[437] M. R. Naphade, G. Banavar, C. Harrison, J. Paraszczak and R. Morris. ‘Smarter
Cities and Their Innovation Challenges’. In: IEEE Computer 44.6 (2011), pp. 32–
39. DOI: 10.1109/MC.2011.187 (cit. on p. 109).

290 Bibliography

http://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CITYPULSED52renditionDownload.pdf
http://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CITYPULSED52renditionDownload.pdf
http://cordis.europa.eu/docs/projects/cnect/5/609035/080/deliverables/001-609035CITYPULSED52renditionDownload.pdf
https://doi.org/10.1093/comjnl/bxn074
https://doi.org/10.1007/s10472-011-9241-2
https://doi.org/10.1007/BFb0000066
https://doi.org/10.1007/BF01530759
https://doi.org/10.1007/978-3-642-24206-9
http://ijcai.org/Proceedings/83-1/Papers/063.pdf
http://ijcai.org/Proceedings/83-1/Papers/063.pdf
https://doi.org/10.1007/978-3-642-15675-5_34
https://doi.org/10.1007/978-3-642-15675-5_34
https://doi.org/10.1007/978-3-319-58694-6_21
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1145/2071423.2071433
https://doi.org/10.1007/978-3-642-23580-1_2
http://solver.planning.domains
https://doi.org/10.1109/MC.2011.187

[438] A. Narayan-Chen, L. Xu and J. Shavlik. ‘An Empirical Evaluation of Machine Learn-
ing Approaches for Angry Birds’. In: IJCAI 2013 Symposium on AI in Angry Birds.
URL: http://aibirds.org/2013- Papers/Symposium/teamwisc.pdf (cit. on
pp. 182, 183).

[439] A. Nareyek. ‘AI in Computer Games’. In: ACM Queue 1.10 (2004), pp. 58–65. DOI:
10.1145/971564.971593 (cit. on p. 164).

[440] Y. Nenov, R. Piro, B. Motik, I. Horrocks, Z. Wu and J. Banerjee. ‘RDFox: A Highly-
Scalable RDF Store’. In: [37]. 2015, pp. 3–20. DOI: 10.1007/978-3-319-25010-
6_1 (cit. on p. 20).

[441] T. N. Nguyen and W. Siberski. ‘SLUBM: An Extended LUBM Benchmark for Stream
Reasoning’. In: Proceedings of OrdRing 2013, pp. 43–54. URL: http://ceur-ws.
org/Vol-1059/ordring2013-paper6.pdf (cit. on pp. 75, 79).

[442] D. Nicklas and Ö. L. Özçep, eds. Proceedings of Workshop on High-Level Declarative
Stream Processing co-located with KI 2015. (Dresden, Germany). Vol. 1447. CEUR-
WS. CEUR-WS.org, 22nd Sept. 2015. URL: http://ceur-ws.org/Vol-1447 (cit.
on p. 275).

[443] I. Niemelä. ‘Logic Programs with Stable Model Semantics as a Constraint Pro-
gramming Paradigm’. In: AMAI 25.3-4 (1999), pp. 241–273. DOI: 10 . 1023 / A :
1018930122475 (cit. on p. 39).

[444] R. Nieuwenhuis, A. Oliveras and C. Tinelli. ‘Solving SAT and SAT Modulo Theories:
From an abstract Davis–Putnam–Logemann–Loveland procedure to DPLL(T)’. In:
J. ACM 53.6 (2006), pp. 937–977. DOI: 10.1145/1217856.1217859 (cit. on p. 21).

[445] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson and M. Barry. ‘An A Prolog
decision support system for the Space Shuttle’. In: Proceedings of 2001 AAAI Spring
Symposium on ASP. URL: http://www.cs.nmsu.edu/~tson/ASP2001/10.ps
(cit. on p. 27).

[446] P. Novák. ‘Behavioural State Machines: Programming Modular Agents’. In: Proceed-
ings of AITA 2008, pp. 49–54. URL: http://www.aaai.org/Library/Symposia/
Spring/2008/ss08-02-009.php (cit. on p. 171).

[447] P. Novák. ‘Cognitive agents with non-monotonic reasoning’. In: Proceedings of AA-
MAS 2008, Doctoral Mentoring Program, pp. 1746–1747. DOI: 10.1145/1402782.
1402794 (cit. on p. 170).

[448] P. Novák. ‘Jazzyk: A Programming Language for Hybrid Agents with Heterogen-
eous Knowledge Representations’. In: Proceedings of ProMAS 2008, pp. 72–87. DOI:
10.1007/978-3-642-03278-3_5 (cit. on pp. 170, 171).

[449] E. Nudelman, K. Leyton-Brown, H. H. Hoos, A. Devkar and Y. Shoham. ‘Under-
standing Random SAT: Beyond the Clauses-to-Variables Ratio’. In: Proceedings of
CP 2004, pp. 438–452. DOI: 10.1007/978-3-540-30201-8_33 (cit. on p. 141).

[450] A. Nuradiansyah, E. Ziberi, S. Tirtarasa and L. Schweizer. ‘SEABirds: An AHP Ap-
proach to Solve the Angry Birds AI Challenge’. 2016. URL: https://aibirds.org/
2016-papers/SEABirdsReport.pdf (cit. on p. 182).

[451] R. A. O’Keefe. The Craft of Prolog. Cambridge, MA, USA: MIT Press, 1990. ISBN:
0-262-15039-5 (cit. on p. 7).

[452] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent and B. O’Sullivan. ‘Using case-
based reasoning in an algorithm portfolio for constraint solving’. In: Proceedings of
AICS 2008. Ed. by D. Bridge, K. Brown, B. O’Sullivan and H. Sorensen, pp. 210–
216 (cit. on p. 146).

[453] E. Oikarinen and T. Janhunen. ‘Modular Equivalence for Normal Logic Programs’.
In: Proceedings of ECAI 2006 and PAIS 2006, pp. 412–416 (cit. on pp. 83, 88, 90,
161).

291

http://aibirds.org/2013-Papers/Symposium/teamwisc.pdf
https://doi.org/10.1145/971564.971593
https://doi.org/10.1007/978-3-319-25010-6_1
https://doi.org/10.1007/978-3-319-25010-6_1
http://ceur-ws.org/Vol-1059/ordring2013-paper6.pdf
http://ceur-ws.org/Vol-1059/ordring2013-paper6.pdf
http://ceur-ws.org/Vol-1447
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1023/A:1018930122475
https://doi.org/10.1145/1217856.1217859
http://www.cs.nmsu.edu/~tson/ASP2001/10.ps
http://www.aaai.org/Library/Symposia/Spring/2008/ss08-02-009.php
http://www.aaai.org/Library/Symposia/Spring/2008/ss08-02-009.php
https://doi.org/10.1145/1402782.1402794
https://doi.org/10.1145/1402782.1402794
https://doi.org/10.1007/978-3-642-03278-3_5
https://doi.org/10.1007/978-3-540-30201-8_33
https://aibirds.org/2016-papers/SEABirdsReport.pdf
https://aibirds.org/2016-papers/SEABirdsReport.pdf

[454] S. Ontañón, G. Synnaeve, A. Uriarte, F. Richoux, D. Churchill and M. Preuss. ‘A
Survey of Real-Time Strategy Game AI Research and Competition in StarCraft’. In:
TCIAIG 5.4 (2013), pp. 293–311. DOI: 10.1109/TCIAIG.2013.2286295 (cit. on
p. 209).

[455] J. Orkin. ‘Agent Architecture Considerations for Real-Time Planning in Games’. In:
Proceedings of AIIDE 2005, pp. 105–110 (cit. on p. 169).

[456] J. Orkin. ‘Symbolic representation of game world state: Toward real-time planning
in games’. In: Proceedings of CGAI 2004. Vol. 5, pp. 26–30 (cit. on p. 169).

[457] J. Orkin. ‘Three states and a plan: the AI of FEAR’. In: Proceedings of GDC 2006.
Vol. 2006, p. 4 (cit. on p. 169).

[458] J. Orkin. ‘Applying goal-oriented action planning to games’. In: AI Game Program-
ming Wisdom 2 (2003), pp. 217–228 (cit. on pp. 169, 211).

[459] G. Orsi and L. Tanca. ‘Introduction to the TPLP special issue, logic programming
in databases: From Datalog to semantic-web rules’. In: TPLP 10.3 (2010), pp. 243–
250. DOI: 10.1017/S1471068410000086 (cit. on p. 15).

[460] L. Padovani and A. Provetti. ‘Qsmodels: ASP Planning in Interactive Gaming En-
vironment’. In: [8]. 2004, pp. 689–692. DOI: 10.1007/978-3-540-30227-8_58
(cit. on pp. 170, 203).

[461] A. D. Palù, A. Dovier, E. Pontelli and G. Rossi. ‘GASP: Answer Set Programming
with Lazy Grounding’. In: Fundam. Inform. 96.3 (2009), pp. 297–322. DOI: 10.
3233/FI-2009-180 (cit. on p. 30).

[462] S. Paramonov, C. Bessiere, A. Dries and L. D. Raedt. ‘Sketched Answer Set Pro-
gramming’. In: CoRR abs/1705.07429 (2017). URL: http : / / arxiv . org / abs /
1705.07429 (cit. on p. 23).

[463] P. F. Patel-Schneider and I. Horrocks. ‘A comparison of two modelling paradigms
in the Semantic Web’. In: J. Web Sem. 5.4 (2007), pp. 240–250. DOI: 10.1016/j.
websem.2007.09.004 (cit. on p. 18).

[464] C. Pavanelli, M. Maresch, T. Calcagniti, F. Martino, D. Meneghetti, L. Ferreira and
P. Santos. ‘A new combination of Qualitative Spatial Representation and Utility
Function for the FEI2 agent in the Angry Birds Domain’. 2013. URL: http : / /
aibirds.org/2013-Papers/Team-Descriptions/fei2.pdf (cit. on p. 182).

[465] P. Peng, Q. Yuan, Y. Wen, Y. Yang, Z. Tang, H. Long and J. Wang. ‘Multiagent
Bidirectionally-Coordinated Nets for Learning to Play StarCraft Combat Games’.
In: CoRR abs/1703.10069 (2017). URL: http://arxiv.org/abs/1703.10069
(cit. on p. 165).

[466] S. Perri, F. Ricca and M. Sirianni. ‘Parallel instantiation of ASP programs: tech-
niques and experiments’. In: TPLP 13.2 (2013), pp. 253–278. DOI: 10 . 1017 /
S1471068411000652 (cit. on p. 148).

[467] T. Pham, S. Germano, A. Mileo, D. Kümper and M. I. Ali. ‘Automatic configuration
of smart city applications for user-centric decision support’. In: Proceedings of ICIN
2017, pp. 360–365. DOI: 10.1109/ICIN.2017.7899441 (cit. on pp. xii, 109).

[468] D. L. Phuoc, M. Dao-Tran, J. X. Parreira and M. Hauswirth. ‘A Native and Adaptive
Approach for Unified Processing of Linked Streams and Linked Data’. In: Proceed-
ings of ISWC 2011, pp. 370–388. DOI: 10.1007/978-3-642-25073-6_24 (cit. on
pp. 72, 102, 104).

[469] D. L. Phuoc, M. Dao-Tran, M. Pham, P. A. Boncz, T. Eiter and M. Fink. ‘Linked
Stream Data Processing Engines: Facts and Figures’. In: Proceedings of ISWC 2012,
Part II, pp. 300–312. DOI: 10.1007/978-3-642-35173-0_20 (cit. on pp. 75, 77).

292 Bibliography

https://doi.org/10.1109/TCIAIG.2013.2286295
https://doi.org/10.1017/S1471068410000086
https://doi.org/10.1007/978-3-540-30227-8_58
https://doi.org/10.3233/FI-2009-180
https://doi.org/10.3233/FI-2009-180
http://arxiv.org/abs/1705.07429
http://arxiv.org/abs/1705.07429
https://doi.org/10.1016/j.websem.2007.09.004
https://doi.org/10.1016/j.websem.2007.09.004
http://aibirds.org/2013-Papers/Team-Descriptions/fei2.pdf
http://aibirds.org/2013-Papers/Team-Descriptions/fei2.pdf
http://arxiv.org/abs/1703.10069
https://doi.org/10.1017/S1471068411000652
https://doi.org/10.1017/S1471068411000652
https://doi.org/10.1109/ICIN.2017.7899441
https://doi.org/10.1007/978-3-642-25073-6_24
https://doi.org/10.1007/978-3-642-35173-0_20

[470] M. Polceanu. ‘ORPHEUS: Reasoning and Prediction with Heterogeneous rEpres-
entations Using Simulation. (ORPHEUS: raisonnement et prédiction avec des re-
présentations hétérogènes en utilisant la simulation)’. PhD thesis. University of
Western Brittany, Brest, France, 2015. URL: https://tel.archives-ouvertes.
fr/tel-01203388 (cit. on p. 181).

[471] M. Polceanu and C. Buche. ‘Towards A Theory-Of-Mind-Inspired Generic Decision-
Making Framework’. In: CoRR abs/1405.5048 (2014). URL: http://arxiv.org/
abs/1405.5048 (cit. on pp. 180, 181).

[472] H. J. S. Pollman. ‘Probabilistic cost analysis of logic programs’. In: INGENIARE 17.2
(2009) (cit. on p. 156).

[473] V. Poosala and Y. E. Ioannidis. ‘Selectivity Estimation Without the Attribute Value
Independence Assumption’. In: Proceedings of VLDB 1997, pp. 486–495. URL: http:
//www.vldb.org/conf/1997/P486.PDF (cit. on pp. 149, 151).

[474] V. Poosala, Y. E. Ioannidis, P. J. Haas and E. J. Shekita. ‘Improved Histograms for
Selectivity Estimation of Range Predicates’. In: [309]. 1996, pp. 294–305. DOI:
10.1145/233269.233342 (cit. on pp. 148, 149, 151, 152).

[475] L. Popa, S. Abiteboul and P. G. Kolaitis, eds. Proceedings of PODS 2002. (Madison,
Wisconsin, USA). ACM, 3rd–5th June 2002. ISBN: 1-58113-507-6. URL: http://
dl.acm.org/citation.cfm?id=543613 (cit. on pp. 267, 286).

[476] U. of Potsdam. Potassco, the Potsdam Answer Set Solving Collection. 2017. URL:
https://potassco.org (visited on 25th Sept. 2017) (cit. on p. 220).

[477] Proceedings of CIG 2017. (New York, NY, USA). IEEE, 22nd–25th Aug. 2017. ISBN:
978-1-5386-3233-8. URL: http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=8067294 (cit. on pp. 283, 297).

[478] T. C. Przymusinski. ‘On the Declarative and Procedural Semantics of Logic Pro-
grams’. In: J. Autom. Reasoning 5.2 (1989), pp. 167–205. DOI: 10 . 1007 /
BF00243002 (cit. on p. 14).

[479] T. C. Przymusinski. ‘Stable Semantics for Disjunctive Programs’. In: New Generation
Comput. 9.3/4 (1991), pp. 401–424. DOI: 10.1007/BF03037171 (cit. on p. 14).

[480] D. Puiu, P. M. Barnaghi, R. Toenjes, D. Kuemper, M. I. Ali, A. Mileo, J. X. Parreira,
M. Fischer, S. Kolozali, N. FarajiDavar, F. Gao, T. Iggena, T. Pham, C. Nechifor, D.
Puschmann and J. Fernandes. ‘CityPulse: Large Scale Data Analytics Framework
for Smart Cities’. In: IEEE Access 4 (2016), pp. 1086–1108. DOI: 10.1109/ACCESS.
2016.2541999 (cit. on pp. 97, 101, 109, 110, 118).

[481] L. Pulina and A. Tacchella. ‘A Multi-engine Solver for Quantified Boolean Formulas’.
In: Proceedings of CP 2007, pp. 574–589. DOI: 10.1007/978-3-540-74970-7_41
(cit. on p. 146).

[482] S. Rabin. AI Game Programming Wisdom. Rockland, MA, USA: Charles River Media,
Inc., 2002. ISBN: 1584500778 (cit. on p. 164).

[483] S. Rabin, ed. AI Game Programming Wisdom, Vol. 2. Rockland, MA, USA: Charles
River Media, Inc., 2003. ISBN: 1584502894 (cit. on p. 164).

[484] S. Rabin. AI Game Programming Wisdom 3 (Game Development Series). Rockland,
MA, USA: Charles River Media, Inc., 2006. ISBN: 1584504579 (cit. on p. 164).

[485] S. P. Radziszowski. ‘Small ramsey numbers’. In: Electron. J. Combin, Dynamic Sur-
veys (1994) (cit. on p. 29).

[486] R. Ramakrishnan, W. G. Roth, P. Seshadri, D. Srivastava and S. Sudarshan.
‘The CORAL Deductive Database System’. In: Proceedings of ACM SIGMOD 1993,
pp. 544–545. DOI: 10.1145/170035.171550 (cit. on p. 19).

[487] J. Rath and C. Redl. ‘Integrating Answer Set Programming with Object-Oriented
Languages’. In: Proceedings of PADL 2017, pp. 50–67. DOI: 10.1007/978-3-319-
51676-9_4 (cit. on p. 236).

293

https://tel.archives-ouvertes.fr/tel-01203388
https://tel.archives-ouvertes.fr/tel-01203388
http://arxiv.org/abs/1405.5048
http://arxiv.org/abs/1405.5048
http://www.vldb.org/conf/1997/P486.PDF
http://www.vldb.org/conf/1997/P486.PDF
https://doi.org/10.1145/233269.233342
http://dl.acm.org/citation.cfm?id=543613
http://dl.acm.org/citation.cfm?id=543613
https://potassco.org
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8067294
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8067294
https://doi.org/10.1007/BF00243002
https://doi.org/10.1007/BF00243002
https://doi.org/10.1007/BF03037171
https://doi.org/10.1109/ACCESS.2016.2541999
https://doi.org/10.1109/ACCESS.2016.2541999
https://doi.org/10.1007/978-3-540-74970-7_41
https://doi.org/10.1145/170035.171550
https://doi.org/10.1007/978-3-319-51676-9_4
https://doi.org/10.1007/978-3-319-51676-9_4

[488] J. Reades, F. Calabrese, A. Sevtsuk and C. Ratti. ‘Cellular Census: Explorations in
Urban Data Collection’. In: IEEE Pervasive Comput. 6.3 (2007), pp. 30–38. DOI:
10.1109/MPRV.2007.53 (cit. on p. 51).

[489] C. Redl. ‘The dlvhex system for knowledge representation: recent advances
(system description)’. In: TPLP 16.5-6 (2016), pp. 866–883. DOI: 10 . 1017 /
S1471068416000211 (cit. on p. 37).

[490] R. Reiter. ‘A Logic for Default Reasoning’. In: [282]. 1987, pp. 68–93. URL: http:
//dl.acm.org/citation.cfm?id=42641.42646 (cit. on p. 21).

[491] R. Reiter. ‘On Closed World Data Bases’. In: [282]. 1987, pp. 300–310. URL: http:
//dl.acm.org/citation.cfm?id=42641.42663 (cit. on pp. 13, 27, 56).

[492] X. Ren, O. Curé, L. Ke, J. Lhez, B. Belabbess, T. Randriamalala, Y. Zheng and G.
Képéklian. ‘Strider: An Adaptive, Inference-enabled Distributed RDF Stream Pro-
cessing Engine’. In: PVLDB 10.12 (2017), pp. 1905–1908. URL: http://www.vldb.
org/pvldb/vol10/p1905-ren.pdf (cit. on p. 74).

[493] Y. Ren and J. Z. Pan. ‘Optimising ontology stream reasoning with truth mainten-
ance system’. In: [394]. 2011, pp. 831–836. DOI: 10.1145/2063576.2063696 (cit.
on p. 73).

[494] J. Renz. ‘AIBIRDS: The Angry Birds Artificial Intelligence Competition’. In: [93].
2015, pp. 4326–4327. URL: http : / / www . aaai . org / ocs / index . php / AAAI /
AAAI15/paper/view/10050 (cit. on p. 173).

[495] J. Renz and X. Ge. ‘Physics Simulation Games’. In: Handbook of Digital Games and
Entertainment Technologies, pp. 1–19. DOI: 10.1007/978-981-4560-52-8_29-1
(cit. on p. 173).

[496] J. Renz, X. Ge, S. Gould and P. Zhang. ‘The Angry Birds AI Competition’. In: AI
Magazine 36.2 (2015), pp. 85–87. URL: http://www.aaai.org/ojs/index.php/
aimagazine/article/view/2588 (cit. on p. 173).

[497] J. Renz, X. Ge, R. Verma and P. Zhang. ‘Angry Birds as a Challenge for Artificial
Intelligence’. In: [518]. 2016, pp. 4338–4339. URL: http://www.aaai.org/ocs/
index.php/AAAI/AAAI16/paper/view/12527 (cit. on p. 173).

[498] J. Renz, R. Miikkulainen, N. R. Sturtevant and M. H. M. Winands. ‘Guest Editorial:
Physics-Based Simulation Games’. In: TCIAIG 8.2 (2016), pp. 101–103. DOI: 10.
1109/TCIAIG.2016.2571560 (cit. on p. 173).

[499] A. E. Rhalibi, K. W. Wong and M. Price. ‘Artificial Intelligence for Computer Games’.
In: Int. J. Computer Games Technology 2009 (2009), 251652:1–251652:3. DOI: 10.
1155/2009/251652 (cit. on p. 164).

[500] F. Ricca. ‘The DLV Java Wrapper’. In: Proceedings of AGP 2003, pp. 263–274 (cit. on
p. 235).

[501] F. Ricca, G. Grasso, M. Alviano, M. Manna, V. Lio, S. Iiritano and N. Leone. ‘Team-
building with answer set programming in the Gioia-Tauro seaport’. In: TPLP 12.3
(2012), pp. 361–381. DOI: 10.1017/S147106841100007X (cit. on p. 214).

[502] J. R. Rice. ‘The Algorithm Selection Problem’. In: Advances in Computers 15 (1976),
pp. 65–118. DOI: 10.1016/S0065-2458(08)60520-3 (cit. on p. 146).

[503] E. Rich and K. Knight. Artificial intelligence (2. ed.) McGraw-Hill, 1991. ISBN: 978-
0-07-052263-3 (cit. on p. 95).

[504] M. Rinne, H. Abdullah, S. Törmä and E. Nuutila. ‘Processing Heterogeneous RDF
Events with Standing SPARQL Update Rules’. In: Proceedings of OTM 2012 Work-
shops, pp. 797–806. DOI: 10.1007/978-3-642-33615-7_24 (cit. on p. 74).

[505] M. Rinne, E. Nuutila and S. Törmä. ‘INSTANS: High-Performance Event Processing
with Standard RDF and SPARQL’. In: Proceedings of ISWC 2012 Posters & Demon-
strations Track. URL: http://ceur- ws.org/Vol- 914/paper_22.pdf (cit. on
p. 74).

294 Bibliography

https://doi.org/10.1109/MPRV.2007.53
https://doi.org/10.1017/S1471068416000211
https://doi.org/10.1017/S1471068416000211
http://dl.acm.org/citation.cfm?id=42641.42646
http://dl.acm.org/citation.cfm?id=42641.42646
http://dl.acm.org/citation.cfm?id=42641.42663
http://dl.acm.org/citation.cfm?id=42641.42663
http://www.vldb.org/pvldb/vol10/p1905-ren.pdf
http://www.vldb.org/pvldb/vol10/p1905-ren.pdf
https://doi.org/10.1145/2063576.2063696
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10050
http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/10050
https://doi.org/10.1007/978-981-4560-52-8_29-1
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2588
http://www.aaai.org/ojs/index.php/aimagazine/article/view/2588
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12527
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12527
https://doi.org/10.1109/TCIAIG.2016.2571560
https://doi.org/10.1109/TCIAIG.2016.2571560
https://doi.org/10.1155/2009/251652
https://doi.org/10.1155/2009/251652
https://doi.org/10.1017/S147106841100007X
https://doi.org/10.1016/S0065-2458(08)60520-3
https://doi.org/10.1007/978-3-642-33615-7_24
http://ceur-ws.org/Vol-914/paper_22.pdf

[506] M. Rinne, S. Törmä and E. Nuutila. ‘SPARQL-Based Applications for RDF-Encoded
Sensor Data’. In: Proceedings of SSN 2012, pp. 81–96. URL: http://ceur-ws.org/
Vol-904/paper15.pdf (cit. on p. 74).

[507] J. S. Rosenschein and M. R. Genesereth. ‘Deals Among Rational Agents’. In: Pro-
ceedings of IJCAI 1985, pp. 91–99. URL: http://ijcai.org/Proceedings/85-
1/Papers/017.pdf (cit. on p. 166).

[508] K. A. Ross. ‘Modular Stratification and Magic Sets for Datalog Programs with Neg-
ation’. In: J. ACM 41.6 (1994), pp. 1216–1266. DOI: 10.1145/195613.195646
(cit. on p. 14).

[509] F. Rossi, ed. Proceedings of IJCAI 2013. (Beijing, China). IJCAI/AAAI, 3rd–9th Aug.
2013. ISBN: 978-1-57735-633-2. URL: http://ijcai.org/proceedings/2013 (cit.
on pp. 280, 281).

[510] D. Saccà and C. Zaniolo. ‘Stable Models and Non-Determinism in Logic Programs
with Negation’. In: Proceedings of PODS 1990, pp. 205–217. DOI: 10.1145/298514.
298572 (cit. on p. 14).

[511] K. Sagonas, T. Swift and D. S. Warren. ‘XSB as an Efficient Deductive Database
Engine’. In: Proceedings of ACM SIGMOD 1994, pp. 442–453. DOI: 10.1145/191839.
191927 (cit. on p. 19).

[512] H. Samulowitz and R. Memisevic. ‘Learning to Solve QBF’. In: Proceedings of AAAI
2007, pp. 255–260. URL: http://www.aaai.org/Library/AAAI/2007/aaai07-
039.php (cit. on p. 21).

[513] J. Schaeffer, N. Burch, Y. Björnsson, A. Kishimoto, M. Müller, R. Lake, P. Lu and
S. Sutphen. ‘Checkers Is Solved’. In: Science 317.5844 (2007), pp. 1518–1522.
ISSN: 0036-8075. DOI: 10 . 1126 / science . 1144079. eprint: http : / / science .
sciencemag.org/content/317/5844/1518.full.pdf (cit. on p. 208).

[514] T. Schaub, G. Friedrich and B. O’Sullivan, eds. Proceedings of ECAI 2014 and PAIS
2014. (Prague, Czech Republic). Vol. 263. FAIA. IOS Press, 18th–22nd Aug. 2014.
ISBN: 978-1-61499-418-3 (cit. on pp. 271, 298).

[515] S. Schiffer, M. Jourenko and G. Lakemeyer. ‘AKBABA: The KBSG 2013 Team for
the Angry Birds AI Competition’. 2013. URL: http://aibirds.org/2013-Papers/
Team-Descriptions/Akbaba.pdf (cit. on p. 182).

[516] S. Schiffer, M. Jourenko and G. Lakemeyer. ‘Akbaba - An Agent for the Angry Birds
AI Challenge Based on Search and Simulation’. In: TCIAIG 8.2 (2016), pp. 116–
127. DOI: 10.1109/TCIAIG.2015.2478703 (cit. on p. 182).

[517] U. Schoning. Logic for Computer Scientists. Ed. by R. Constable, J. C. Cherniavsky, R.
Platek, J. Gallier and R. Statman. 1st. Birkhauser Boston, 1989. ISBN: 0817634533
(cit. on p. 8).

[518] D. Schuurmans and M. P. Wellman, eds. Proceedings of AAAI 2016. (Phoenix, Ari-
zona, USA). AAAI Press, 12th–17th Feb. 2016. ISBN: 978-1-57735-760-5. URL:
http://www.aaai.org/Library/AAAI/aaai16contents.php (cit. on p. 294).

[519] B. Schwab. Ai Game Engine Programming (Game Development Series). Rockland,
MA, USA: Charles River Media, Inc., 2004. ISBN: 1584503440 (cit. on p. 164).

[520] J. Seipp, M. Braun, J. Garimort and M. Helmert. ‘Learning Portfolios of Automatic-
ally Tuned Planners’. In: Proceedings of ICAPS 2012. URL: http://www.aaai.org/
ocs/index.php/ICAPS/ICAPS12/paper/view/4729 (cit. on p. 146).

[521] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie and T. G. Price. ‘Access
Path Selection in a Relational Database Management System’. In: Proceedings of
ACM SIGMOD 1979, pp. 23–34. DOI: 10.1145/582095.582099 (cit. on p. 161).

[522] J. F. Sequeda and Ó. Corcho. ‘Linked Stream Data: A Position Paper’. In: Proceedings
of ISWC 2010, pp. 148–157. URL: http://ceur-ws.org/Vol-522/p13.pdf (cit.
on p. 72).

295

http://ceur-ws.org/Vol-904/paper15.pdf
http://ceur-ws.org/Vol-904/paper15.pdf
http://ijcai.org/Proceedings/85-1/Papers/017.pdf
http://ijcai.org/Proceedings/85-1/Papers/017.pdf
https://doi.org/10.1145/195613.195646
http://ijcai.org/proceedings/2013
https://doi.org/10.1145/298514.298572
https://doi.org/10.1145/298514.298572
https://doi.org/10.1145/191839.191927
https://doi.org/10.1145/191839.191927
http://www.aaai.org/Library/AAAI/2007/aaai07-039.php
http://www.aaai.org/Library/AAAI/2007/aaai07-039.php
https://doi.org/10.1126/science.1144079
http://science.sciencemag.org/content/317/5844/1518.full.pdf
http://science.sciencemag.org/content/317/5844/1518.full.pdf
http://aibirds.org/2013-Papers/Team-Descriptions/Akbaba.pdf
http://aibirds.org/2013-Papers/Team-Descriptions/Akbaba.pdf
https://doi.org/10.1109/TCIAIG.2015.2478703
http://www.aaai.org/Library/AAAI/aaai16contents.php
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4729
http://www.aaai.org/ocs/index.php/ICAPS/ICAPS12/paper/view/4729
https://doi.org/10.1145/582095.582099
http://ceur-ws.org/Vol-522/p13.pdf

[523] Y. Shoham. ‘Agent-Oriented Programming’. In: Artif. Intell. 60.1 (1993), pp. 51–92.
DOI: 10.1016/0004-3702(93)90034-9 (cit. on p. 166).

[524] C. Sierra, ed. Proceedings of IJCAI 2017. (Melbourne, Australia). ijcai.org, 19th–
25th Aug. 2017. ISBN: 978-0-9992411-0-3. URL: http : / / www . ijcai . org /
Proceedings/2017/ (cit. on pp. 270, 277).

[525] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Sch-
rittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe,
J. Nham, N. Kalchbrenner, I. Sutskever, T. P. Lillicrap, M. Leach, K. Kavukcuoglu,
T. Graepel and D. Hassabis. ‘Mastering the game of Go with deep neural net-
works and tree search’. In: Nature 529.7587 (2016), pp. 484–489. DOI: 10.1038/
nature16961 (cit. on p. 165).

[526] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T.
Hubert, L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den
Driessche, T. Graepel and D. Hassabis. ‘Mastering the game of Go without human
knowledge’. In: Nature 550.7676 (19th Oct. 2017), pp. 354–359. ISSN: 0028-0836.
URL: http://dx.doi.org/10.1038/nature24270 (cit. on p. 165).

[527] B. Silverthorn, Y. Lierler and M. Schneider. ‘Surviving Solver Sensitivity: An ASP
Practitioner’s Guide’. In: Proceedings of ICLP 2012, pp. 164–175. DOI: 10.4230/
LIPIcs.ICLP.2012.164 (cit. on p. 146).

[528] P. Simons, I. Niemelä and T. Soininen. ‘Extending and implementing the stable
model semantics’. In: Artif. Intell. 138.1-2 (2002), pp. 181–234. DOI: 10.1016/
S0004-3702(02)00187-X (cit. on p. 30).

[529] E. Siow, T. Tiropanis and W. Hall. ‘Ewya: An Interoperable Fog Computing Infra-
structure with RDF Stream Processing’. In: Proceedings of INSCI 2017, pp. 245–265.
DOI: 10.1007/978-3-319-70284-1_20 (cit. on p. 74).

[530] A. M. Smith. Answer Set Programming in Proofdoku. 2017 (cit. on pp. 170, 171).

[531] A. M. Smith, E. Butler and Z. Popovic. ‘Quantifying over play: Constraining un-
desirable solutions in puzzle design’. In: Proceedings of FDG 2013, pp. 221–228.
URL: http://www.fdg2013.org/program/papers/paper29_smith_etal.pdf
(cit. on p. 169).

[532] A. M. Smith and M. Mateas. ‘Answer Set Programming for Procedural Content
Generation: A Design Space Approach’. In: TCIAIG 3.3 (2011), pp. 187–200. DOI:
10.1109/TCIAIG.2011.2158545 (cit. on p. 169).

[533] A. M. Smith, M. J. Nelson and M. Mateas. ‘LUDOCORE: A logical game engine for
modeling videogames’. In: Proceedings of CIG 2010, pp. 91–98. DOI: 10.1109/ITW.
2010.5593368 (cit. on p. 169).

[534] G. Smith, J. Whitehead and M. Mateas. ‘Tanagra: Reactive Planning and Constraint
Solving for Mixed-Initiative Level Design’. In: TCIAIG 3.3 (2011), pp. 201–215. DOI:
10.1109/TCIAIG.2011.2159716 (cit. on p. 169).

[535] P. Spanily. The Inter4QL Interpreter. 2012 (cit. on p. 19).

[536] J. Spiegel and N. Polyzotis. ‘Graph-based synopses for relational selectivity estima-
tion’. In: Proceedings of ACM SIGMOD 2006, pp. 205–216. DOI: 10.1145/1142473.
1142497 (cit. on p. 149).

[537] B. Srivastava, J. P. Bigus and D. A. Schlosnagle. ‘Bringing Planning to Autonomic
Applications with ABLE’. In: Proceedings of ICAC 2004, pp. 154–161. DOI: 10.1109/
ICAC.2004.23 (cit. on p. 237).

[538] I. Staff, ed. Proceedings of CIG 2014. (Dortmund, Germany). IEEE, 26th–29th Aug.
2014. ISBN: 978-1-4799-3546-8. URL: http : / / ieeexplore . ieee . org / xpl /
mostRecentIssue.jsp?punumber=6919811 (cit. on pp. 278, 297).

[539] M. Stanescu and M. Certický. ‘Predicting Opponent’s Production in Real-Time
Strategy Games With Answer Set Programming’. In: TCIAIG 8.1 (2016), pp. 89–
94. DOI: 10.1109/TCIAIG.2014.2365414 (cit. on p. 208).

296 Bibliography

https://doi.org/10.1016/0004-3702(93)90034-9
http://www.ijcai.org/Proceedings/2017/
http://www.ijcai.org/Proceedings/2017/
https://doi.org/10.1038/nature16961
https://doi.org/10.1038/nature16961
http://dx.doi.org/10.1038/nature24270
https://doi.org/10.4230/LIPIcs.ICLP.2012.164
https://doi.org/10.4230/LIPIcs.ICLP.2012.164
https://doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1016/S0004-3702(02)00187-X
https://doi.org/10.1007/978-3-319-70284-1_20
http://www.fdg2013.org/program/papers/paper29_smith_etal.pdf
https://doi.org/10.1109/TCIAIG.2011.2158545
https://doi.org/10.1109/ITW.2010.5593368
https://doi.org/10.1109/ITW.2010.5593368
https://doi.org/10.1109/TCIAIG.2011.2159716
https://doi.org/10.1145/1142473.1142497
https://doi.org/10.1145/1142473.1142497
https://doi.org/10.1109/ICAC.2004.23
https://doi.org/10.1109/ICAC.2004.23
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6919811
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6919811
https://doi.org/10.1109/TCIAIG.2014.2365414

[540] M. Stephenson and J. Renz. ‘Procedural generation of complex stable structures
for angry birds levels’. In: Proceedings of CIG 2016, pp. 1–8. DOI: 10.1109/CIG.
2016.7860410 (cit. on p. 182).

[541] M. Stephenson and J. Renz. ‘Procedural Generation of Levels for Angry Birds Style
Physics Games’. In: Proceedings of AIIDE 2016, pp. 225–231. URL: http://aaai.
org/ocs/index.php/AIIDE/AIIDE16/paper/view/13983 (cit. on p. 182).

[542] M. Stephenson and J. Renz. ‘Generating varied, stable and solvable levels for angry
birds style physics games’. In: [477]. 2017, pp. 288–295. DOI: 10.1109/CIG.2017.
8080448 (cit. on p. 258).

[543] M. Stephenson, J. Renz and X. Ge. ‘The Computational Complexity of Angry Birds
and Similar Physics-Simulation Games’. In: Proceedings of AIIDE 2017, pp. 241–247.
URL: https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15829
(cit. on p. 182).

[544] L. Sterling and E. Y. Shapiro. The Art of Prolog - Advanced Programming Techniques,
2nd Ed. MIT Press, 1994 (cit. on p. 7).

[545] M. E. Stickel. ‘A Unification Algorithm for Associative-Commutative Functions’. In:
J. ACM 28.3 (1981), pp. 423–434. DOI: 10.1145/322261.322262 (cit. on p. 15).

[546] M. Stillger, G. M. Lohman, V. Markl and M. Kandil. ‘LEO - DB2’s LEarning Optim-
izer’. In: [27]. 2001, pp. 19–28. URL: http://www.vldb.org/conf/2001/P019.
pdf (cit. on p. 149).

[547] M. Stonebraker. ‘Stream Processing’. In: [384]. 2009, pp. 2837–2838. DOI: 10 .
1007/978-0-387-39940-9_371 (cit. on p. 81).

[548] M. Stonebraker, U. Çetintemel and S. B. Zdonik. ‘The 8 requirements of real-time
stream processing’. In: SIGMOD Record 34.4 (2005), pp. 42–47. DOI: 10.1145/
1107499.1107504 (cit. on pp. 50, 63, 64).

[549] I. StreamBase. Streambase: Real-time, low latency data processing with a stream
processing engine. 2006 (cit. on p. 62).

[550] V. Strobel and A. Kirsch. ‘Planning in the Wild: Modeling Tools for PDDL’. In: Pro-
ceedings of KI 2014, pp. 273–284 (cit. on p. 250).

[551] H. Stuckenschmidt, S. Ceri, E. D. Valle and F. van Harmelen. ‘Towards Express-
ive Stream Reasoning’. In: Semantic Challenges in Sensor Networks. URL: http :
//drops.dagstuhl.de/opus/volltexte/2010/2555/ (cit. on pp. 48, 66).

[552] R. Stühmer, Y. Verginadis, I. Alshabani, T. Morsellino and A. Aversa. ‘PLAY:
Semantics-Based Event Marketplace’. In: Proceedings of IFIP WG 5.5, PRO-VE 2013.
Springer, pp. 699–707. DOI: 10.1007/978-3-642-40543-3_73 (cit. on p. 109).

[553] A. Sureshkumar, M. D. Vos, M. Brain and J. Fitch. ‘Ape: An ansprolog* environ-
ment’. In: Proceedings of SEA 2007, pp. 101–115 (cit. on p. 250).

[554] A. N. Swami and K. B. Schiefer. ‘On the Estimation of Join Result Sizes’. In: Pro-
ceedings of EDBT 1994, pp. 287–300. DOI: 10.1007/3-540-57818-8_58 (cit. on
pp. 149, 161).

[555] M. Swiechowski and J. Mandziuk. ‘Prolog versus specialized logic inference engine
in General Game Playing’. In: [538]. 2014, pp. 1–8. DOI: 10.1109/CIG.2014.
6932864 (cit. on p. 169).

[556] T. Syrjänen. Lparse. 1999–2017. URL: http : / / www . tcs . hut . fi / Software /
smodels (visited on 25th Sept. 2017) (cit. on p. 33).

[557] G. Terracina, N. Leone, V. Lio and C. Panetta. ‘Experimenting with recursive queries
in database and logic programming systems’. In: TPLP 8.2 (2008), pp. 129–165.
DOI: 10.1017/S1471068407003158 (cit. on p. 32).

[558] G. Tesauro, D. Gondek, J. Lenchner, J. Fan and J. M. Prager. ‘Analysis of Watson’s
Strategies for Playing Jeopardy!’ In: JAIR 47 (2013), pp. 205–251. DOI: 10.1613/
jair.3834 (cit. on p. 165).

297

https://doi.org/10.1109/CIG.2016.7860410
https://doi.org/10.1109/CIG.2016.7860410
http://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13983
http://aaai.org/ocs/index.php/AIIDE/AIIDE16/paper/view/13983
https://doi.org/10.1109/CIG.2017.8080448
https://doi.org/10.1109/CIG.2017.8080448
https://aaai.org/ocs/index.php/AIIDE/AIIDE17/paper/view/15829
https://doi.org/10.1145/322261.322262
http://www.vldb.org/conf/2001/P019.pdf
http://www.vldb.org/conf/2001/P019.pdf
https://doi.org/10.1007/978-0-387-39940-9_371
https://doi.org/10.1007/978-0-387-39940-9_371
https://doi.org/10.1145/1107499.1107504
https://doi.org/10.1145/1107499.1107504
http://drops.dagstuhl.de/opus/volltexte/2010/2555/
http://drops.dagstuhl.de/opus/volltexte/2010/2555/
https://doi.org/10.1007/978-3-642-40543-3_73
https://doi.org/10.1007/3-540-57818-8_58
https://doi.org/10.1109/CIG.2014.6932864
https://doi.org/10.1109/CIG.2014.6932864
http://www.tcs.hut.fi/Software/smodels
http://www.tcs.hut.fi/Software/smodels
https://doi.org/10.1017/S1471068407003158
https://doi.org/10.1613/jair.3834
https://doi.org/10.1613/jair.3834

[559] M. Thimm. ‘Tweety: A Comprehensive Collection of Java Libraries for Logical As-
pects of Artificial Intelligence and Knowledge Representation’. In: [57]. 2014. URL:
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7811 (cit. on
p. 237).

[560] M. Thimm. ‘The Tweety Library Collection for Logical Aspects of Artificial Intel-
ligence and Knowledge Representation’. In: KI 31.1 (2017), pp. 93–97. DOI: 10.
1007/s13218-016-0458-4 (cit. on p. 237).

[561] J. Tiihonen, T. Soininen, I. Niemelä and R. Sulonen. ‘A Practical Tool For Mass-
Customising Configurable Products’. In: Proceedings of ICED 2003. Stockholm,
pp. 1290–1299 (cit. on p. 27).

[562] J. Togelius, G. N. Yannakakis, K. O. Stanley and C. Browne. ‘Search-Based Proced-
ural Content Generation: A Taxonomy and Survey’. In: TCIAIG 3.3 (2011), pp. 172–
186. DOI: 10.1109/TCIAIG.2011.2148116 (cit. on pp. 164, 169).

[563] M. Truszczynski. ‘Connecting First-Order ASP and the Logic FO(ID) through Re-
ducts’. In: [208]. 2012, pp. 543–559. DOI: 10.1007/978- 3- 642- 30743- 0_37
(cit. on p. 23).

[564] S. Tsur and C. Zaniolo. ‘LDL: A Logic-Based Data Language’. In: Proceedings of
VLDB 1986, pp. 33–41. URL: http://www.vldb.org/conf/1986/P033.PDF (cit.
on p. 15).

[565] N. Tziortziotis, G. Papagiannis and K. Blekas. ‘A Bayesian Ensemble Regression
Framework on the Angry Birds Game’. 2014. URL: https://aibirds.org/2014-
papers/AngryBER-2014.pdf (cit. on p. 182).

[566] N. Tziortziotis, G. Papagiannis and K. Blekas. ‘A Bayesian Ensemble Regression
Framework on the Angry Birds Game’. In: TCIAIG 8.2 (2016), pp. 104–115. DOI:
10.1109/TCIAIG.2015.2494679 (cit. on pp. 182, 183).

[567] J. D. Ullman. Principles of Database and Knowledge-Base Systems. Computer Science
Press, 1989. ISBN: 0-7167-8162-X (cit. on pp. 9, 148).

[568] A. N. University. Angry Birds AI Competition. 2012–2017. URL: http://aibirds.
org (visited on 25th Sept. 2017) (cit. on p. 173).

[569] E. D. Valle, S. Ceri, D. F. Barbieri, D. Braga and A. Campi. ‘A First Step Towards
Stream Reasoning’. In: Proceedings of FIS 2008, pp. 72–81. DOI: 10.1007/978-3-
642-00985-3_6 (cit. on pp. 48, 50, 55, 66, 67, 69–71).

[570] E. D. Valle, S. Ceri, F. van Harmelen and D. Fensel. ‘It’s a Streaming World! Reason-
ing upon Rapidly Changing Information’. In: IEEE Intell. Syst. 24.6 (2009), pp. 83–
89. DOI: 10.1109/MIS.2009.125 (cit. on pp. 50, 66–68, 82).

[571] R. D. Virgilio, G. Orsi, L. Tanca and R. Torlone. ‘NYAYA: A System Supporting the
Uniform Management of Large Sets of Semantic Data’. In: Proceedings of ICDE
2012, pp. 1309–1312. DOI: 10.1109/ICDE.2012.133 (cit. on p. 20).

[572] J. Vittaut and J. Méhat. ‘Fast Instantiation of GGP Game Descriptions Using Prolog
with Tabling’. In: [514]. 2014, pp. 1121–1122. DOI: 10.3233/978-1-61499-419-
0-1121 (cit. on p. 169).

[573] R. Volz, S. Staab and B. Motik. ‘Incrementally Maintaining Materializations of Onto-
logies Stored in Logic Databases’. In: JoDS 2 (2005), pp. 1–34. DOI: 10.1007/978-
3-540-30567-5_1 (cit. on p. 71).

[574] O. Walavalkar, A. Joshi, T. Finin and Y. Yesha. ‘Streaming knowledge bases’. In:
Proceedings of SSWS 2008 (cit. on p. 73).

[575] P. A. Walega, M. Zawidzki and T. Lechowski. ‘Qualitative Physics in Angry Birds’.
In: TCIAIG 8.2 (2016), pp. 152–165. DOI: 10.1109/TCIAIG.2016.2561080 (cit. on
pp. 180–182).

298 Bibliography

http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/7811
https://doi.org/10.1007/s13218-016-0458-4
https://doi.org/10.1007/s13218-016-0458-4
https://doi.org/10.1109/TCIAIG.2011.2148116
https://doi.org/10.1007/978-3-642-30743-0_37
http://www.vldb.org/conf/1986/P033.PDF
https://aibirds.org/2014-papers/AngryBER-2014.pdf
https://aibirds.org/2014-papers/AngryBER-2014.pdf
https://doi.org/10.1109/TCIAIG.2015.2494679
http://aibirds.org
http://aibirds.org
https://doi.org/10.1007/978-3-642-00985-3_6
https://doi.org/10.1007/978-3-642-00985-3_6
https://doi.org/10.1109/MIS.2009.125
https://doi.org/10.1109/ICDE.2012.133
https://doi.org/10.3233/978-1-61499-419-0-1121
https://doi.org/10.3233/978-1-61499-419-0-1121
https://doi.org/10.1007/978-3-540-30567-5_1
https://doi.org/10.1007/978-3-540-30567-5_1
https://doi.org/10.1109/TCIAIG.2016.2561080

[576] T. Walsh, ed. Proceedings of IJCAI 2011. (Barcelona, Catalonia, Spain). IJCAI/AAAI,
16th–22nd July 2011. ISBN: 978-1-57735-516-8. URL: http : / / ijcai . org /
proceedings/2011 (cit. on pp. 267, 285).

[577] J. Warmer and A. Kleppe. The Object Constraint Language: Precise Modeling with
UML. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1999. ISBN:
0-201-37940-6 (cit. on p. 220).

[578] B. G. Weber, M. Mateas and A. Jhala. ‘Applying Goal-Driven Autonomy to Star-
Craft’. In: Proceedings of AIIDE 2010. URL: http://aaai.org/ocs/index.php/
AIIDE/AIIDE10/paper/view/2142 (cit. on p. 169).

[579] J. Whaley, D. Avots, M. Carbin and M. S. Lam. ‘Using Datalog with Binary Decision
Diagrams for Program Analysis’. In: Proceedings of APLAS 2005, pp. 97–118. DOI:
10.1007/11575467_8 (cit. on p. 18).

[580] J. E. White. Telescript technology: The foundation for the electronic marketplace. Gen-
eral Magic Inc., 1994 (cit. on p. 166).

[581] J. Wielemaker, T. Lager and F. Riguzzi. ‘SWISH: SWI-Prolog for Sharing’. In: CoRR
abs/1511.00915 (2015) (cit. on pp. 242, 250).

[582] J. Wielemaker, T. Schrijvers, M. Triska and T. Lager. ‘SWI-Prolog’. In: TPLP 12.1-2
(2012), pp. 67–96. DOI: 10.1017/S1471068411000494 (cit. on p. 250).

[583] K.-B. S. G. .-.-. T. Wien. dlvhex. 2010–2017. URL: http://www.kr.tuwien.ac.at/
research/systems/dlvhex (visited on 25th Sept. 2017) (cit. on p. 37).

[584] K.-B. S. G. .-.-. T. Wien. The Action Plugin and Action Addon Framework. 2010–2017.
URL: http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.
html (visited on 25th Sept. 2017) (cit. on p. 39).

[585] K.-B. S. G. .-.-. T. Wien. dlvhex - Software for HEX-Programs on GitHub. 2012–2017.
URL: https://github.com/hexhex (visited on 25th Sept. 2017) (cit. on p. 37).

[586] M. Wooldridge and N. R. Jennings. ‘Intelligent agents: theory and practice’. In: KER
10.2 (1995), pp. 115–152. DOI: 10.1017/S0269888900008122 (cit. on pp. 164–
166).

[587] L. Xu, H. Hoos and K. Leyton-Brown. ‘Hydra: Automatically Configuring Al-
gorithms for Portfolio-Based Selection’. In: Proceedings of AAAI 2010. URL: http:
//www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929 (cit. on
p. 146).

[588] L. Xu, F. Hutter, H. H. Hoos and K. Leyton-Brown. ‘SATzilla: Portfolio-based Al-
gorithm Selection for SAT’. In: JAIR 32 (2008), pp. 565–606. DOI: 10.1613/jair.
2490 (cit. on p. 146).

[589] L. Xu, F. Hutter, H. Hoos and K. Leyton-Brown. ‘Evaluating Component Solver
Contributions to Portfolio-Based Algorithm Selectors’. In: Proceedings of SAT 2012,
pp. 228–241. DOI: 10.1007/978-3-642-31612-8_18 (cit. on p. 146).

[590] A. H. Yahya and L. J. Henschen. ‘Deduction in Non-Horn Databases’. In: J. Autom.
Reasoning 1.2 (1985), pp. 141–160. DOI: 10.1007/BF00244994 (cit. on p. 14).

[591] G. N. Yannakakis and J. Togelius. ‘A Panorama of Artificial and Computational
Intelligence in Games’. In: TCIAIG 7.4 (2015), pp. 317–335. DOI: 10.1109/TCIAIG.
2014.2339221 (cit. on p. 164).

[592] G. N. Yannakakis and J. Togelius. Artificial Intelligence and Games. http : / /
gameaibook.org. Springer, 2017 (cit. on pp. 164, 167, 169).

[593] H. L. Younes and M. L. Littman. PPDDL 1.0: An extension to PDDL for expressing
planning domains with probabilistic effects. Techn. Rep. CMU-CS-04-162, 2004 (cit.
on p. 40).

[594] Y. Yuan, Z. Chen, P. Wu and L. Chang. ‘Enhancing Deep Reinforcement Learning
Agent for Angry Birds’. 2017. URL: https://aibirds.org/2017/aibirds_BNU.
pdf (cit. on p. 182).

299

http://ijcai.org/proceedings/2011
http://ijcai.org/proceedings/2011
http://aaai.org/ocs/index.php/AIIDE/AIIDE10/paper/view/2142
http://aaai.org/ocs/index.php/AIIDE/AIIDE10/paper/view/2142
https://doi.org/10.1007/11575467_8
https://doi.org/10.1017/S1471068411000494
http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex
http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html
http://www.kr.tuwien.ac.at/research/systems/dlvhex/actionplugin.html
https://github.com/hexhex
https://doi.org/10.1017/S0269888900008122
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929
http://www.aaai.org/ocs/index.php/AAAI/AAAI10/paper/view/1929
https://doi.org/10.1613/jair.2490
https://doi.org/10.1613/jair.2490
https://doi.org/10.1007/978-3-642-31612-8_18
https://doi.org/10.1007/BF00244994
https://doi.org/10.1109/TCIAIG.2014.2339221
https://doi.org/10.1109/TCIAIG.2014.2339221
http://gameaibook.org
http://gameaibook.org
https://aibirds.org/2017/aibirds_BNU.pdf
https://aibirds.org/2017/aibirds_BNU.pdf

[595] C. Zaniolo. ‘Logical Foundations of Continuous Query Languages for Data Streams’.
In: [66]. 2012, pp. 177–189. DOI: 10.1007/978- 3- 642- 32925- 8_18 (cit. on
pp. 55–57, 59).

[596] C. Zaniolo, S. Ceri, C. Faloutsos, R. T. Snodgrass, V. S. Subrahmanian and R. Zicari.
Advanced Database Systems. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997. ISBN: 1-55860-443-X (cit. on p. 58).

[597] P. Zhang and J. Renz. ‘Qualitative spatial representation and reasoning in Angry
Birds: First results’. In: Proceedings of QR 2013, p. 123 (cit. on p. 182).

[598] P. Zhang and J. Renz. ‘Qualitative Spatial Representation and Reasoning in Angry
Birds: The Extended Rectangle Algebra’. In: [57]. 2014. URL: http://www.aaai.
org/ocs/index.php/KR/KR14/paper/view/8021 (cit. on pp. 182, 183).

[599] Y. Zhang, M. Pham, Ó. Corcho and J. Calbimonte. ‘SRBench: A Streaming RD-
F/SPARQL Benchmark’. In: Proceedings of ISWC 2012, Part I, pp. 641–657. DOI:
10.1007/978-3-642-35176-1_40 (cit. on pp. 75, 77).

[600] S. Ziller, M. Gebser, B. Kaufmann and T. Schaub. An Introduction to claspfolio.
Institute of Computer Science, University of Potsdam, Germany, 2010. URL: http:
//www.cs.uni-potsdam.de/claspfolio/manual.pdf (cit. on p. 146).

[601] D. Zimmer and R. Unland. ‘On the Semantics of Complex Events in Active Database
Management Systems’. In: Proceedings of ICDE 1999, pp. 392–399. DOI: 10.1109/
ICDE.1999.754955 (cit. on p. 55).

300 Bibliography

https://doi.org/10.1007/978-3-642-32925-8_18
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8021
http://www.aaai.org/ocs/index.php/KR/KR14/paper/view/8021
https://doi.org/10.1007/978-3-642-35176-1_40
http://www.cs.uni-potsdam.de/claspfolio/manual.pdf
http://www.cs.uni-potsdam.de/claspfolio/manual.pdf
https://doi.org/10.1109/ICDE.1999.754955
https://doi.org/10.1109/ICDE.1999.754955

Bibliography Abbreviations

AAAI AAAI Conference on Artificial Intelligence.

AAMAS International Joint Conference on Autonomous Agents and Multiagent Systems.

ACE International Conference on Advances in Computer Entertainment Technology.

ACM Comput. Surv. ACM Computing Surveys.

ACM SIGMOD International Conference on Management of Data.

ACM-ICPS ACM International Conference Proceeding Series.

AGP Joint Conference on Declarative Programming.

AI Commun. AI Communications.

AI*IA International Conference of the Italian Association for Artificial Intelligence.

AICS Irish Conference on Artificial Intelligence and Cognitive Science.

AIG Workshop on AI in Games.

AIIDE AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment.

AITA AAAI Spring Symposium on Architectures for Intelligent Theory-Based Agents.

ALP Association of Logic Programming.

AMAI Annals of Mathematics and Artificial Intelligence.

AMW Alberto Mendelzon International Workshop on Foundations of Data Management.

APLAS Asian Symposium on Programming Languages and Systems.

ARea International Workshop on Advancing Reasoning on the Web.

ASEE American Society for Engineering Education.

ASPOCP Workshop on Answer Set Programming and Other Computing Paradigms.

ATAL Workshop on Agent Theories, Architectures, and Languages.

AlgoConf AAAI Workshop on Algorithm Configuration.

Artif. Intell. Artificial Intelligence.

BeRSys International Workshop On Benchmarking RDF Systems.

CADE Conference on Automated Deduction.

CAV International Conference on Computer Aided Verification.

CEUR-WS CEUR Workshop Proceedings.

CGAI AAAI Workshop on Challenges in Game Artificial Intelligence.

CIDR Conference on Innovative Data Systems Research.

CIG IEEE Conference on Computational Intelligence and Games.

CP International Conference on Principles and Practice of Constraint Programming.

CSUR ACM Computing Surveys.

CoNEXT ACM Conference on emerging Networking EXperiments and Technologies.

301

CoRR Computing Research Repository.

CoSECivi Congreso de la Sociedad Española para las Ciencias del Videojuego.

Commun. ACM Communications of the ACM.

DBPL International Workshop on Database Programming Languages.

DCSA Data-Centric Systems and Applications.

DEBS ACM International Conference on Distributed Event-Based Systems.

DSP Dagstuhl Seminar Proceedings.

Data Sci. Data Science.

ECAI European Conference on Artificial Intelligence.

ECML PKDD European Conference on Machine Learning and Principles and Practice of Knowl-
edge Discovery in Databases.

EDBT International Conference on Extending Database Technology.

EKAW International Conference on Knowledge Engineering and Knowledge Management.

ESWC European Semantic Web Conference.

FAIA Frontiers in Artificial Intelligence and Applications.

FDG International Conference on the Foundations of Digital Games.

FIA Future Internet Assembly.

FIS Future Internet Symposium.

GDC Game Developers Conference.

GTTV Workshop on Grounding and Transformations for Theories With Variables.

GULP-PRODE Joint Conference on Declarative Programming.

HOPL History of Programming Languages Conference.

ICAC International Conference on Autonomic Computing.

ICAPS International Conference on Automated Planning and Scheduling.

ICC IEEE International Conference on Communications.

ICCI*CC IEEE International Conference on Cognitive Informatics and Cognitive Computing.

ICDE IEEE International Conference on Data Engineering.

ICDT International Conference on Database Theory.

ICED International Conference on Engineering Design.

ICIN Conference on Innovations in Clouds, Internet and Networks.

ICLP International Conference on Logic Programming.

ICSC IEEE International Conference on Semantic Computing.

ICSOC International Conference on Service-Oriented Computing.

ICTAI IEEE International Conference on Tools with Artificial Intelligence.

ICWE International Conference on Web Engineering.

IEEE Intell. Syst. IEEE Intelligent Systems.

IEEE Internet Comput. IEEE Internet Computing.

IEEE Pervasive Comput. IEEE Pervasive Computing.

IFIP International Federation for Information Processing.

IFIP AICT IFIP Advances in Information and Communication Technology.

IJAC International Journal of Automation and Computing.

IJCAI International Joint Conference on Artificial Intelligence.

IJSWIS International Journal on Semantic Web and Information Systems.

302 Bibliography Abbreviations

IMMM International Conference on Advances in Information Mining and Management.

INAP International Conference on Applications of Declarative Programming and Knowledge
Management.

INGENIARE Revista Chilena de Ingeniería.

INSCI International Conference on Internet Science.

ISWC International Semantic Web Conference.

Inf. Comput. Information and Computation.

J. ACM Journal of the ACM.

J. Log. Comput. Journal of Logic and Computation.

J. Log. Program. Journal of Logic Programming.

J. Web Sem. Journal of Web Semantics.

JAIR Journal of Artificial Intelligence Research.

JCSS Journal of Computer and System Sciences.

JELIA European Conference on Logics in Artificial Intelligence.

JIST Joint International Semantic Technology Conference.

JoDS Journal on Data Semantics.

KER Knowledge Engineering Review.

KI German Conference on AI.

KI Künstliche Intelligenz.

LICS IEEE Symposium on Logic in Computer Science.

LION Learning and Intelligent OptimizatioN Conference.

LNCS Lecture Notes in Computer Science.

LPNMR Logic Programming and Nonmonotonic Reasoning.

MAAMAW European Workshop on Modelling Autonomous Agents in a Multi-Agent World.

MobiQuitous International Conference on Mobile and Ubiquitous Systems: Computing, Net-
working and Services.

Nature Nature.

NeFoRS International Workshop on New Forms of Reasoning for the Semantic Web.

New Generation Comput. New Generation Computing.

OTM On the Move to Meaningful Internet Systems.

OrdRing International Workshop on Ordering and Reasoning.

PACT International Conference on Parallel Architecture and Compilation Techniques.

PADL International Symposium on Practical Aspects of Declarative Languages.

PAI Workshop Popularize Artificial Intelligence.

PAIS Prestigious Applications of Intelligent Systems.

PLDI ACM SIGPLAN Conference on Programming Language Design and Implementation.

PODS ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems.

POPL ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

PPDP International ACM SIGPLAN Conference on Principles and Practice of Declarative Pro-
gramming.

PRICAI Pacific Rim International Conference on Artificial Intelligence.

PVLDB Proceedings of the VLDB Endowment.

ProMAS International Workshop on PROgramming Multi-Agent Systems.

303

Procedia Comput. Sci. Procedia Computer Science.

QR International Workshop on Qualitative Reasoning.

RCRA Workshop on Experimental Evaluation of Algorithms for Solving Problems with Com-
binatorial Explosion.

RR International Conference on Web Reasoning and Rule Systems.

RW Reasoning on the Semantic Web. International Summer School.

RuleML International Web Rule Symposium.

SAC ACM Symposium on Applied Computing.

SAT International Conference on Theory and Applications of Satisfiability Testing.

SEA Software Engineering for Answer Set Programming.

SEBD Italian Symposium on Advanced Database Systems.

SIGIR Special Interest Group on Information Retrieval.

SIGIR International ACM SIGIR Conference on Research and Development in Information Re-
trieval.

SIGMOD Record Special Interest Group on Management of Data Record.

SR International Workshop on Stream Reasoning.

SSN International Workshop on Semantic Sensor Networks.

SSWS International Workshop on Scalable Semantic Web Knowledge Base Systems.

SWDB Workshop on Semantic Web and Databases.

SWJ Semantic Web.

TCIAIG IEEE Transactions on Computational Intelligence and AI in Games.

TKDE IEEE Transactions on Knowledge and Data Engineering.

TOCL ACM Transactions on Computational Logic.

TODS ACM Transactions on Database Systems.

TOPLAS ACM Transactions on Programming Languages and Systems.

TPLP Theory and Practice of Logic Programming.

Theor. Comput. Sci. Theoretical Computer Science.

VLDB International Conference on Very Large Data Bases.

VLDB J. International Journal on Very Large Data Bases.

WI IEEE / WIC / ACM International Conference on Web Intelligence.

WIMS International Conference on Web Intelligence, Mining and Semantics.

WLP Workshop on Logic Programming.

WWW International Conference on World Wide Web.

304 Bibliography Abbreviations

“It is the time you have wasted for your rose that makes your rose so important.”
– Antoine de Saint-Exupéry, The Little Prince

	Cover
	Titlepage
	Abstract
	Dedication
	Epigraph
	Acknowledgements
	List of Figures
	List of Tables
	List of Programs
	Acronyms
	Introduction
	1 Logic Programming
	1.1 Definition and Motivation
	1.2 Datalog and Datalog+/-
	1.3 Answer Set Programming (ASP)
	1.4 Planning Domain Definition Language (PDDL)

	2 Stream Reasoning
	2.1 Definition, Motivation and Challenges
	2.2 Data Stream Reasoning: research timeline
	2.3 Stream Reasoning and Logic Programming
	2.4 Stream Reasoning and Smart City Applications: a case study
	2.5 Web Stream Reasoning in Practice: on the Expressivity vs. Scalability tradeoff
	2.6 Automatic Configuration of Smart City Applications for User-Centric Decision Support

	3 Big Data
	3.1 Definition, Motivation and Challenges
	3.2 Query Answering over Big Data: a case study
	3.3 Feature-based Engine Selection for vadalog program
	3.4 Time/Size estimation of Logic Programs evaluation – a refined approach

	4 Logic and AI in Games
	4.1 Definition, Motivation and Challenges
	4.2 Logic for games' AI
	4.3 Angry Birds and the Angry Birds AI Competition
	4.4 Angry-HEX: An Artificial Player for Angry Birds Based on Declarative Knowledge Bases
	4.5 Other Game's AIs experiments

	5 Streamlining the use of Logic Programming
	5.1 Motivation and Challenges
	5.2 embASP: a general framework for embedding Logic Programming in complex systems
	5.3 LoIDE: a web-based IDE for Logic Programming

	Conclusions
	A Popular AI Competitions
	B Benchmark and Competition Results - AIBIRDS
	Bibliography
	Bibliography Abbreviations
	Colophon

