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Summary in Italian

Negli ultimi anni l’interesse verso le problematiche ambientali, quali,
ad esempio, la riduzione delle emissioni di diossido di carbonio,
dell’inquinamento acustico e del traffico urbano, è cresciuto notevol-
mente.

Di conseguenza, lo sviluppo di sistemi di trasporto e di distribuzione
efficienti, definiti in modo tale da assicurare il miglior trade-off tra la
minimizzazione dei costi e la riduzione delle esternalità negative, rap-
presenta una sfida importante per molti paesi.

In questo contesto, si sono sviluppati due nuovi filoni nell’ambito
della logistica distributiva, che cercano di rispondere in maniera appro-
priata alle esigenze sopra evidenziate, considerando le nuove prospet-
tive legate a tematiche ambientali, ovvero:

• Green logistics, il cui obiettivo è quello di introdurre esplicita-
mente problematiche ambientali nella logistica tradizionale.

• Crowd-shipping, che mira a sfruttare la capacità di carico non
utilizzata di veicoli privati, che generalmente transitano nella rete
stradale per rispondere ad esigenze personali.

In quest’ottica, l’obiettivo del presente lavoro di tesi è proprio
quello di definire, progettare e sviluppare tecniche quantitative inno-
vative ed efficienti per la gestione ottimale di sistemi di trasporto in
una ottica “green”.

In particolare, vengono affrontate diverse varianti del classico
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problema dell’instradamento dei veicoli (vehicle routing problem, VRP),
definite in modo tale da rispondere ad esigenze di tipo ambientale,
ovvero riduzione dei livelli di inquinamento e dei consumi energetici,
generale miglioramento del traffico e della circolazione stradale.

La prima parte della tesi è dedicata alla Green logistics. Al fine
di ridurre le esternalità negative, i modelli e le procedure adottate per
l’instradamento dei veicoli devono considerare fattori ecosostenibili e
offrire nuove strategie e soluzioni per il trasporto.

Un possibile approccio è quello di minimizzare le emissioni di
sostanze inquinanti, ad esempio quelle legate al diossido di carbonio,
considerando i relativi costi direttamente nella definizine della fun-
zione obiettivo. Un diverso approccio consiste nell’utilizzare veicoli
alimentati in modo alternativo, ad esempio veicoli elettrici (Electric
Vehicles, EVs), al posto dei veicoli tradizionali alimentati a diesel o
benzina.

Negli ultimi anni, molte aziende di trasporto hanno introdotto gli
EVs nelle loro flotte, soprattutto grazie ai numerosi incentivi statali.
È tuttavia opportuno evidenziare che, anche se gli EVs non emet-
tono inquinanti chimici e polveri sottili e sono molto più silenziosi
dei veicoli tradizionali, presentano alcuni limiti legati principalmente
all’autonomia della batteria, alla scarsa presenza di stazioni di ricarica
e ai lunghi tempi di ricarica richiesti.

Tuttavia, recentemente, si é registrato un incremento di investi-
menti (pubblici e privati) finalizzati alla realizzazione di infrastrut-
ture più adatte all’instradamento dei veicoli elettrici e allo sviluppo di
nuove tecnologie. I risultati raggiunti sono molto positivi e pertanto
é possibile affermare che gli EVs sono una valida alternativa ai poco
eco-friendly veicoli a carburante.

Il primo capitolo di questo elaborato è dedicato all’analisi dei
contributi più importanti e recenti pubblicati nell’ambito dei problemi
di instradamento dei veicoli di tipo “green” (green VRP, G-VRP).
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Nel secondo e nel terzo capitolo vengono descritti due modelli
matematici innovativi sviluppati per rappresentare due varianti del
G-VRP, definiti in modo tale da prendere in considerazione obiettivi
di sostenibilità ambientale.

Entrambi i modelli considerano l’impiego di una flotta mista di ve-
icoli, composta sia da veicoli tradizionali, alimentati a diesel, e sia EVs.
Vengono inoltre considerati alcuni vincoli relativi alla vita utile e alla
ricarica della batteria. Ricaricare completamente la batteria, infatti,
può comportare una degradazione più veloce della stessa, riducendone
notevolmente la vita utile; inoltre, ricaricare l’ultimo 10% di una bat-
teria richiede tempi relativamente molto lunghi, incompatibili con la
durata delle rotte e i turni di lavoro degli autisti.

I modelli matematici sviluppati tengono in considerazione questi
vincoli; in particolare, vengono introdotte delle limitazioni sul minimo
e sul massimo stato di carica della batteria, inoltre si assume che i ve-
icoli possano essere ricaricati, anche parzialmente, presso una qualsiasi
delle stazioni di ricarica disponibili.

In particolare, nel modello matematico presentato nel secondo
capitolo, viene considerato un limite sulle emissioni di agenti inquinanti
dei veicoli tradizionali. Si assume che le emissioni di CO2 siano legate
a due fattori: il tipo di veicolo e la quantità di carburante consumato.
Quest’ultimo dipende sia dalla distanza percorsa che dalla quantità di
merce trasportata. Inoltre si assume che il consumo di energia elettrica
sia proporzionale alla distanza percorsa.

Nelle realtà, tuttavia, quest’ultima assunzione non risulta essere
verificata. Infatti, il consumo di energia non è proporzionale alla dis-
tanza percorsa, ma dipende da altri fattori, quali la velocità, il carico
del veicolo e anche le caratteristiche fisiche della strada percorsa. Al
fine di tenere in dovuta considerazione tali aspetti, nel terzo capitolo
viene introdotta una nuova formulazione del G-VRP che si basa su
due modelli innovativi per la valutazione del consumo di energia, uno
sviluppato per i veicoli tradizionali e l’altro definito per i veicoli elet-
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trici.

La seconda parte del presente lavoro tesi è invece dedicata al
Crowd-shipping. Negli ultimi anni, la velocità nell’eseguire consegne
dell’ultimo miglio sta assumendo un’importanza sempre maggiore, so-
prattutto grazie all’aumento della popolarità degli acquisti on-line.

Ciò ha portato le aziende di distribuzione a ricercare soluzioni in-
novative per organizzare questa tipologia di consegne. In questo con-
testo, la “sharing economy” ha assunto un ruolo di crescente interesse.
Il Crowd-shipping è strettamente legato al concetto di “sharing econ-
omy”, l’idea fondamentale è, infatti, quella di realizzare in outsourcing
alcune attività che generalmente vengono effettuate dalle aziende.

L’utilizzo di veicoli privati, che giornalmente transitano nella rete
stradale, per effettuare consegne a domicilio, permette non solo di
sfruttare risorse sotto-utilizzate, ma ha anche un impatto positivo
sull’inquinamento e sul traffico urbano, grazie al non utilizzo di mezzi
pesanti, generalmente usati dalle aziende che effettuano il trasporto.

Sulla base delle considerazioni precedenti, nel quarto capitolo
viene analizzata una variante del VRP con finestre temporali, in cui si
valuta la possibilità di implementare una strategia di Crowd-shipping.

Si prende in considerazione lo specifico scenario in cui un’azienda
non ha a disposizione soltanto la propria flotta di veicoli, ma può fare
affidamento ad alcuni autisti occasionali, che decidono di mettere a
disposizione i propri mezzi per effettuare alcune consegne, in cambio
di un compenso.

In particolare, si propongono due varianti del problema. Nel
primo si assume che gli autisti occasionali possano effettuare più di
una consegna, nel secondo viene utilizzata la politica dello split and
delivery.

I due modelli sono validati su scenari realistici e viene effettuato
un confronto tra le strategie proposte e quelle presenti in letteratura.
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I risultati sperimentali dimostrano che il Crowd-shipping può es-
sere considerata una strategia di distribuzione molto conveniente, e
vantaggi maggiori, in termini di efficienza, si registrano con la politica
di split and delivery.

Nel quinto capitolo, infine, viene presentata un’euristica per la
risoluzione del problema di VRP con Crowd-shipping e consegne mul-
tiple.

Nel capitolo sei vengono riportate le conclusioni del presente la-
voro di tesi.
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Introduction

In recent years, we have witnessed a growing interest in environmental
problems related to polluting emissions, noise and congestion in the
transportation logistics. In this context, developing environmentally
friendly and efficient transport and distribution systems, defined in
such a way to ensure the best trade-off between cost minimization
and negative environmental externalities reduction, represents an im-
portant challenge for many countries. In this dissertation we focus on
two new branches of logistics:

• Green logistics, which aims to bring the environmental dimension
in traditional logistics.

• Crowd-shipping, which encourages ordinary people to use their
underexploited capacity on their cars, bikes, buses and planes to
carry parcels for other people on their route.

The main goal is to provide innovative quantitative techniques to effi-
ciently manage the “green” transportation systems, hence we propose
several variants of the Vehicle Routing Problem (VRP) by considering
new perspectives. The first part of this dissertation is devoted to the
Green logistics. In order to reduce the negative externalities, routing
models and procedures have to consider sustainable factors and of-
fer new transport strategies and solutions. One possible approach is
to minimize the polluting emissions by including the emission costs
in the objective function. A different approach is to use alternative
fuel vehicles (AFVs), in particular electric vehicles (EVs), instead of

2



3 Chapter 0

the conventional ones. In recent years several companies have started
using EVs as a result of governmental incentives. While EVs do not
produce CO2 emissions and are more silent than the conventional ve-
hicles, they are constrained by the low autonomy of their battery, the
limited number of public charging stations (CSs) and long charging
times. The fist chapter 1 is devoted to a brief overview on the main
contributions related to the green-vehicle routing problem (G-VRP).
In chapters 2 and 3 we modelled and then solved two green VRP
(G-VRP) variants by incorporating sustainability goals. We consider
a mixed fleet of vehicles, composed of capacitated EVs and conven-
tional diesel vehicles. We assume that partial battery recharges for
each electrical vehicle are allowed at any available recharging station.
We consider also some realistic issues related to the life span of the
battery. Indeed, full recharges can damage battery and the last 10%
of recharge requires considerable time. Thus, we also need to con-
strain the state of charge of the battery. Combining these elements
makes the problem different from the other contributions and inter-
esting from a point of view of the realistic applications. In particular
in chapter 2 we consider a limitation on polluting emissions for con-
ventional vehicles. We assume that the calculation of CO2 emissions
depends on two factors: the type of vehicle and the type and quantity
of fuel consumed. The EVs energy consumption is assumed to be pro-
portional to the traveled distance. Since real-life energy consumption
is not a linear function of traveled distance, in chapter 3 we use re-
alistic energy consumption model for ECVs and conventional vehicles
which takes into account vehicle speed, gradient and cargo load.

The second part of this dissertation is devoted to the Crowd-
shipping. In the last years the growing importance of shorter delivery
lead times has led the companies to create innovative solutions to orga-
nize the last-mile and same-day deliveries. In this context, the “shar-
ing economy” has attracted a great deal of interest. Crowd-sourcing
is strictly related with the concept of “sharing economy”, and allows
activities that usual are performed by a company to be outsourced to
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a large pool of individuals. In chapter 4 we study a variant of the
VRP with Time Windows in which the crowd-shipping is considered.
We suppose that the transportation company can make the deliveries
by using its own fleet composed of capacitated vehicles and also some
occasional drivers (ODs). We consider two different scenarios, in the
first one multiple deliveries are allowed for each occasional driver, in
the second one we introduce the split and delivery policy. We validate
the two mathematical models by considering several realistic scenarios.
The results show that the transportation company can achieve impor-
tant advantages by employing the occasional drivers, which become
more significant if the multiple delivery and the split delivery pol-
icy are both considered. In chapter 5 we propose a hight performing
heuristic for the VRP with ODs and multiple deliveries. Conclusions
follow in chapter 6.



Part I

The Green Vehicle Routing
Problem
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Chapter 1

The Green Vehicle Routing
Problem: A survey

This paper presents a survey of the main contributions related to the
green-vehicle routing problem (G-VRP). The G-VRP is a variant of

the well-known vehicle routing problem, which takes into account the
environmental sustainability in freight transportation. We provide a

classification of the G-VRP variants and discuss the proposed
solution approaches.

Keywords: green logistics; green-vehicle routing; survey.

1.1 Introduction

Green logistics aims to bring the environmental perspective in tradi-
tional logistics (see [45]). In recent years governments and business
organizations have triggered several green initiatives, as a result of
which interest in green logistics has increased as well as the society’s
environmental awareness. In this perspective, due to the major impact
that transportation logistics has on environment, reducing negative

6
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externalities in transportation logistics is a priority for many coun-
tries. The vehicle routing problem (VRP), introduced by Dantzig
and Ramser [12], aims to finding the optimal delivery or collection
routes for a fleet of vehicles from a depot to a set of customers. The
VRP often includes constraints such as capacity, route length, time
windows, precedence relations between customers, etc. (see Laporte
[34]). Since the VRP is a central problem in freight transportation, it
has been widely studied during the years (see Laporte [33], Laporte
[34] and Kumar and Paneerselvam [31]). Recently, several authors
have started to study the VRP under a green perspective, by consid-
ering environmental effects of routing strategies, use of alternative fuel
vehicles, energy minimization, etc. We call this VRP variant green-
vehicle routing problem (G-VRP). Lin et al.[38] proposed a survey
on G-VRP. They reviewed the main VRP variants, and then focused
on green logistics contributions during 2006-2012. They classified the
G-VRP in three main classes: green-VRP, pollution routing problem
and VRP in reverse logistics. The aim of our work is to survey and
classify the G-VRP variants introduced in the 2011-2018 periods and
describe the proposed solution approaches for these problems. The
remainder of this paper is organized as follows. Section 1.2 presents
the survey methodology. Section 1.3 gives an overview of the main
contributions to G-VRP with conventional vehicles. In Section 1.4 we
review the G-VRP with alternative fuel vehicles variants. Conclusions
follow in Section 1.5

1.2 Survey methodology

In order to review the literature on G-VRP we used several academic
databases, including Scopus, Google scholar, ScienceDirect etc., ac-
cessed from the university library by using keywords such as green
vehicle routing, green logistics, pollution routing problem, etc. We
searched papers in journals, books, technical reports and conference
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proceedings. We also used bibliographies of survey papers and papers
on G-VRP. We reviewed 31 papers on the G-VRP in the 2011-2018
period. Figure 1.1 shows the distribution of the surveyed works during
these years. A large part of the surveyed works are scientific articles,
published in operations research journal such as: European Journal of
Operational Research, Operations Research, Transportation Research
(parts B,C and E), Transportation Science; three are proceedings, only
one is a technical report and one is an unpublished article. We propose
a classification scheme based on the different variants of G-VRP pre-
sented in the scientific literature. In particular, we identified two main
classes: (1) the G-VRP with conventional vehicles and (2) the G-VRP
with alternative fuel vehicles. We also identified five sub-categories for
the G-VRP with alternative fuel vehicles. We describe the variants
and the proposed approaches for these problems. Since the VRP is
classified as an NP-hard problem, solving the G-VRP with exact op-
timization methods may be very difficult. Only four out of 31 works
proposed an exact algorithm for the proposed G-VRP variant. a large
proportion of the authors propose local search based metaheuristics for
their problems, such as adaptive large neighborhood search, variable
neighborhood search and tabu search, which lperforming very well on
this class of problems.

1.3 Literature review on the G-VRPs with con-

ventional vehicles

Externalities in freight transportation are various. The CO2 emissions
problem is one of the most known and significant, due to the negative
impact on the environment and human health. Several authors explic-
itly consider the CO2 emissions in their objective function and focus
on the minimization of routing cost and polluting emissions. Figliozzi
[19] introduced a time-dependent VRP with time windows. The au-
thor calculated the amount of fuel spent with the purpose of studing



9 Chapter 1

Figure 1.1: Number of contributes during the years
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the impacts of congestion, land use and travel speed on CO2 emis-
sions. Bektaş and Laporte [6] modeled for the first time the energy
consumption of conventional vehicles and explicitly considered the
polluting emissions impact. They called this problem the Pollution-
Routing Problem (PRP), and presented a non-linear mixed integer
mathematical problem for it. This paper lead to several modeling and
algorithmic extensions. Demir et al. [13] highlighted the difficulty of
solving medium-scale PRPs by using the model presented in Bektaş
and Laporte [6]. After introducing an extended PRP, they proposed
an effective adaptive large neighborhood search (ALNS) heuristic ca-
pable of solving instances with up to 200 nodes. Jabali et al. [24]
solved a T-DVRP by tabu search, considering the maximum achiev-
able vehicle speed as a part of the optimization. They considered a
two-stage planning horizon: free flow traffic and congestion. They
modeled and minimized the emissions per kilometer as a function of
speed, and showed that reducting emissions leads to reducing routing
costs. Since the minimization of fuel consumption and driving time



10 Chapter 1

are conflicting, Demir et al. [14] proposed and solved the bi-objective
PRP, in which they jointly minimized the two conflicting factors. The
problem was solved via a bi-objective ALNS algorithm embedding a
speed optimization procedure. The computational results showed one
does not need to increase driving time significantly in order to reduce
fuel consumption and CO2 emissions. Franceschetti et al. [20] con-
sidered the Time-Dependent PRP (TDPRP) with time windows, an
extension of the PRP which explicitly takes into account traffic conges-
tion. They proposed an integer linear programming formulation and
partitioned the planning horizon into two phases, as in Jabali et al.
[24]. Tajik et al. [53] introduced uncertain data in the TDPRP with
pickups and deliveries. They defined a mixed integer linear program
in which the main objective is to minimize the travel distance, the
number of vehicles and the polluting emissions. They then introduced
a robust counterpart, considering the vehicle speed as an uncertain
parameter. Koç et al. [27] introduced the fleet size and mix pollution-
routing problem, a PRP variant with a heterogeneous fleet. They
solve the problem by means of a hybrid evolutionary metaheuristic.
The authors showed the benefit of using a heterogeneous fleet over a
homogeneous one. Kramer et. al [30] developed a new hybrid iterated
local search (ILS) that integrates a set partitioning procedure and a
speed optimization algorithm for the PRP introduced in Bektaş and
Laporte [6]. The proposed algorithm highly outperforms the previous
available algorithms. Since there exists an optimal speed yielding a
minimum fuel consumption (see Demir et al. [13]), hence a minimiza-
tion of CO2 emissions, the main goal for the PRP is to optimize the
speed for each route. In Kramer et. al [30], the authors consider the
same speed on for each arc and assume that the departure time is
fixed. Kramer et. al [29] extended the previously work, by introduc-
ing variable departure times. Moreover, the speed and departure time
are both embedded in the optimization algorithm proposed in Kramer
et. al [30]. Table 2.1 summarizes the main papers on the PRP and its
variants.
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Table 1.1: Summary of the literature on the PRP and its variants

Reference Algorithm Math
model

Time
windows

Time dependency Pickup &
delivery

Uncertain
data

Heterogeneous
fleet

[6] • •
[19] Heuristic • • •
[13] Heuristic • •
[24] Heuristic •
[20] • •
[14] Heuristic • •
[53] • • • •
[27] Heuristic • • •
[30] Heuristic • •
[29] Heuristic

1.4 Literature review on the G-VRPs with alter-

native fuel vehicles

A different approach is to use alternative fuel vehicles (AFVs), espe-
cially electric vehicles (EVs), instead of the conventional ones. Gov-
ernments have started to provide incentives aimed at increasing the
commercial use of EVs, (see Pelletier et al. [44]). While EVs do not
produce CO2 emissions and are more silent than the conventional ve-
hicles, they are constrained by the low autonomy of their battery, the
limited number of public charging stations (CSs) and long charging
times. In the last years, the number of publications on this topic
considerably has increased with the interest for green transportation.
The authors started to study and propose several G-VRP variants, in
particular we have identified and classified five classes of G-VRP with
AFVs summarized in Table 1.4. Figure 1.2 shows the trend in pub-
lications on the G-VRP and its variants during the last eight years.
Looking at Figure 1.2, it is clear that a large number of contributes
was published during the years 2014 - 2017 with a growing trend.

Table 1.2: Recent studies of G-VRP during 20112018

G-VRP variants Papers Number
G-VRP with AFVs [11], [17], [41] 3
G-VRP with EVs [50], [18], [16], [8], [15], [39], [23], [26], [28], [35] 10
Mixed Fleet VRP [22], [46], [21] 3
G-VRP with EVs and location [55], [36], [49], [48], [43] 5
G-VRP with EVs and non-linear charging function [42] 1
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Figure 1.2: Number of contributes in green-vehicle routing problems published dur-
ing the last years

Table 2.2 summarizes the main papers addressing G-VRP and its
variants.

1.4.1 Green vehicle routing problem

Conrad and Figliozzi [11] presented the recharging VRP with time
windows, where the vehicles have to be charged at some customer
locations in order to continue their route. Energy consumption and
travelled distance are directly correlated. Recharging is allowed while
servicing customers. The authors solve the problem with an iterative
construction and improvement heuristic. Erdoğan and Miller-Hooks
[17] introduced the Green VRP (GVRP) in which the fleet is composed
of AFVs. Fuel consumption is proportioned to travelled distance, and
the vehicle fuel tank can be charged at alternative fuel charging sta-
tions. The authors developed two constructive heuristics for the prob-
lem, with the goal of minimizing the travelled distance. Montoya et
al. [41] proposed a multi-space sampling heuristic to solve the GVRP
proposed in Erdoğan and Miller-Hooks [17]. The procedure includes
three main components: three randomized traveling salesman problem
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heuristics, a tour partitioning procedure, and a set partitioning for-
mulation. They made several computational tests and compared their
approach with those of Erdoğan and Miller-Hooks [17] and of Schnei-
der et al. [50] and concluded that their heuristic is highly competitive,
and also the simplest for the GVRP.

1.4.2 Electric vehicle routing problem

Interest in EVs has increased in recent years, due to government in-
centives and technology progress. Using EVs in good distribution is
considered to be a serious alternative to the conventional vehicles,
hence several authors started to study the VRP with fleets composed
of EVs and its variants. Schneider et al. [50] extended the work of
Erdoğan and Miller-Hooks [17] by introducing the Electric-VRP (E-
VRP) with time windows and recharging stations (E-VRPTW). EVs
can be charged at any of the available CSs, and charging time is re-
lated to the state of charge of the battery when the vehicle arrives at
the CS. They proposed a hybrid metaheuristic that integrates variable
neighborhood search (VNS) with tabu search. Felipe et al. [18] ex-
tended the model presented in Erdoğan and Miller-Hooks [17]. They
allowed partial recharges and considered multiple charging technolo-
gies at CSs. The authors developed a nearest neighbour construction
heuristic, as well as a simulated annealing algorithm. Ding et al. [16]
extended the E-VRPTW model of Schneider et al. [50] by introducing
partial recharges and the pickup and delivery policy. This problem is
then solved with a hybrid heuristic which incorporates VNS with a
tabu search. Bruglieri et al. [8] studyed a variant of E-VRPTW in
which the battery charging level is a decision variable. They solved
the problem with a VNS branching. Desaulniers et al. [15] devel-
oped two branch-price-and-cut algorithms for the E-VRPTW and ex-
tended the problem by considering four charging strategies: a single
charge or multiple charges per route and fully recharge only, multi-
ple recharges per route and batteries are fully charged, at most one
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single recharge per route and partial recharges, and multiple partial
recharges. Lin et al. [39] extended the E-VRP by considering a het-
erogenoeus fleet of EVs and the vehicle load effect on battery con-
sumption as in Goeke and Schneider [21]. They solved the model
with CPLEX and compared alternative routing strategies using a case
study in Austin, Texas. Hiermann et al. [23] introduced the elec-
tric fleet size and mix vehicle routing problem with time windows and
recharging stations. They considered a heterogeneous fleet of EVs in
which each vehicle is characterised by its fixed cost, battery and load
capacity, energy consumption and charging rate. Each vehicle can
be fully charged at a CS. They proposed a hybrid metaheuristic that
combines ALNS to a cyclic neighborhood search and labeling proce-
dures. Keskin and Çatay [26]) formulated the E-VRPTW with partial
recharges and solved it by ALNS. Koç and Karaoglan [28] developed
a simulated annealing heuristic based on an exact solution approach
to solve the G-VRP introduced by Erdoğan and Miller-Hooks [17].
In their formulation, the authors introduced new decision variables
in order to allow multiple visits to the CSs without augmenting the
networks with dummy nodes. Based from this work, Leggieri and
Haouari [35], proposed a new formulation for the E-VRPTW. In or-
der to assess the effectiveness of their approach, the authors solve their
model by CPLEX and compared the results with those obtained by
the branch-and-cut algorithm of Koç and Karaoglan [28].

1.4.3 Mixed fleet green vehicle routing problem

Gonçalves et al. [22] studied a VRP variant with a mixed fleet com-
posed of EVs and conventional vehicles, as well as pickup and delivery.
EVs have a fixed autonomy and charging time, and can be charged
at any time during a route. They applied their model to a particu-
lar case of a Portuguese battery distributor and studied three different
scenarios: in the first one the fleet is composed only of company’s con-
ventional vehicles, in the second one they considered a fleet composed
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of conventional vehicles and uncapacitated EVs, while in the third one
they use only EVs. After solving the model with CPLEX and testing
the three scenarios, the authors concluded that the use of EVs leads
to a significant cost increase due to the initial investment. Sassi et
al. [46] formulated the heterogeneous electric vehicle routing problem
with time dependent charging costs and a mixed fleet composed by
conventional vehicles and EVs. The EVs have different battery ca-
pacities and operating costs. An EV can be charged at the available
CSs only if it is compatible with the available technologies. Partial
recharges and the recharges at the depot are allowed. Charging costs
vary according to station and the time of day. The authors solved
the problem with a construction heuristic, followed by an inject-eject
routine-based local search. A mixed fleet of conventional vehicles and
EVs is also considered in Goeke and Schneider [21]. The authors for-
mulated the E-VRP with time windows and mixed fleet, in which the
EVs can be charged at the available CSs. Charging times vary accord-
ing to the battery state of charge when the EV arrives at the CS and
charging is always done to maximum battery capacity. The authors
propose a realistic energy consumption model which considers speed,
vehicle mass and gradient. They model three different objective func-
tions: the first one minimizes the travelled distance, the second one
the energy and labor costs, and the third one also includes the cost
related to the battery replacement after the depreciation.

1.4.4 Electric vehicle location routing problem

The decisions about the location and technology of the CSs are di-
rectly related to the EV routing. The installation and operation costs
of the network highly impact on the companies decisions. Yang and
Sun [55] introduced the electric vehicles battery swap stations location
routing problem whose aim is to determine the locations of battery
swap stations (BSSs), as well as the routing plan of EVs. The authors
propose two heuristics for the problem: the first one, called SIGALNS,
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is a four-phase heuristic including a modified sweep heuristic, an iter-
ated greedy algorithm and ALNS; the second one, called TS-MCWS,
is a hybrid heuristic that combines tabu search and the Clarke-Wright
savings method. The CSs location and the type selection of charging
infrastructure are two critical factors for the E-VRPs. Their optimiza-
tion may have a major impact on logistics costs. Li-ying and Yuan-
bin [36] introduced the EV multiple charging station location-routing
problem with time windows whose aim is to optimize the EV rout-
ing plan and the CSs location strategy. In particular, they consider
also the possibility of choosing among the different types of charging
infrastructures. They propose a hybrid heuristic which incorporates
an adaptive variable neighborhood search (AVNS) with a tabu search
algorithm. Schiffer and Walther [49] introduced the electric location
routing problem with time windows and partial recharging in which
the the EVs can be charged at any node in the network with only one
type of technology. The authors modeled three objective functions:
the first one minimizes the total traveled distance, the second one
minimizes the number of used EVs, and the third one minimizes the
number of CSs. Schiffer and Walther [48] defined the location rout-
ing problem with intra-route facilities which focuses on determining
the location of facilities for intermediate stops. The facilities are not
depots and do not necessarily coincide with customers. Intra-route
facilities allow for intermediate stops on a route in order to keep the
vehicle operational. The authors proposed an ALNS heuristic includ-
ing dynamic programming. Paz et al. [43] proposed the multi-depot
electric vehicle location routing problem with time windows in which
a homogeneous fleet of EVs is considered. The goal is to determine
the number and location of CSs and depots, as well as the number
of EVs and their routes. The authors also considered the possibility
of charging the EV at the CSs or to swap the battery to the BSSs.
Since they considered different charging strategies, they proposed and
tested three models: in the first one the conventional partial or com-
plete charges can be done at the depots or at the customer locations, in
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the second one the batteries can be swapped only at the depots, while
in the third one if a charging vertex is activated, then it is a BSS and
a customer vertex is activated only for the conventional recharging.

1.4.5 Electric vehicle routing problem with non-linear charg-
ing function

All early E-VRP models assumed that the battery state of charge
is a linear function of charging time. Since in reality this function
is non-linear, Montoya et al. [42] extended the E-VRP by consider-
ing a non-linear charging function. They proposed an iterated local
search enhaced with a heuristic concentration for the problem. They
then conducted several computational experiments by comparing their
proposed non-linear charging function to those in the literature, and
concluded that a linear function charging may lead to infeasible or
expensive solutions.

1.5 Conclusions

In recent years the interest in green logistics increased, hence several
authors started to study the vehicle routing problem under a green
perspective. In this work we have provided an overview of the green
vehicle routing (G-VRP) variants introduced during 2011-2018. We
have studied and classified the G-VRP variants and the proposed so-
lution approaches. We have identified two main classes of that prob-
lem and we have described the variants and the proposed approaches.
From the literature, it is clear that very few papers are devoted to the
mixed-fleet G-VRP variant and only one contribution takes into ac-
count the non-linear charging function for the electric vehicles. Hence,
future research may focus on these two aspects.
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Table 1.3: Summary of the literature on the G-VRP variants

Variants Ref. Algorithm Time
windows

Fixed
charg-
ing

Partial
recharge

Location
of CSs

Multiple
tech-
nologies

Battery
swap

Linear
charging

Nonlinear
charging

Energy
consump-
tion linear
to distance

Energy
consump-
tion model

Pickup
& deliv-
ery

Multi-
depot

Mixed
fleet
(EVs
and
ICCVs)

AFVs [11] Heuristic • • •
VRP [17] Heuristic • •

[41] Heuristic • •
E-VRP [50] Heuristic • • •

[18] Heuristic • • • •
[16] Heuristic • • • • •
[8] Heuristic • • •
[15] Exact • • • •
[39] • • •
[23] Heuristic • •
[26] Heuristic • • •
[28] Exact • •
[35] Exact • •

Mixed [22] • • • •
fleet [46] Heuristic • • • • •
G-VRP [21] Heuristic • • • •
E-VRP [55] Heuristic • •
with [36] Heuristic • • • • •
location [49] Exact • • •

[48] Heurisic • • • • •
[43] • • • • • • •

E-VRP
with
non-
linear
charging
function

[42] Heuristic • • •
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An iterated local search procedure
for the green mixed fleet vehicle
routing problem with partial
battery recharging and time
windows

This work presents a new variant of the Green Vehicle Routing
Problem with time windows. We propose an iterative local search

heuristic to optimize the routing of a mixed vehicle fleet, composed
of electric and conventional (internal combustion engine) vehicles.

Since the electric vehicles have a limited autonomy of the battery, we
consider the possibility of recharging partially at any of the available
stations. In addition, we explicitly take into account a limitation on
the pollution emissions for the conventional vehicles. The behaviour
of the proposed approach is evaluated empirically on a large set of

test instances.

Keywords: green vehicle routing; mixed fleet; pollution routing;
iterated local search.
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2.1 Introduction

In recent years, we have witnessed a growing interest in environmen-
tal problems related to polluting emissions, noise and congestion in
the transport industry. In this context, developing environmentally
friendly and efficient transport and distribution systems represents
an important challenge. As a result, several researchers have begun
analysing and studying classical vehicle routing problems (VRPs) from
a green perspective, by incorporating sustainability goals with a pri-
mary focus on the reduction of environmental externalities. We refer
to these problems as Green-VRPs (G-VRPs). The aim of this paper
is to present a new G-VRP model in which a mixed fleet of electric
and conventional vehicles is considered and which explicitly takes into
account the polluting emissions, and we develop an efficient heuristic
for the proposed problem. In the following, we review the literature
related to the G-VRPs variants concerning sustainable transport is-
sues

2.1.1 Literature review on the G-VRPs with conventional
vehicles

In order to reduce the negative externalities, routing models and pro-
cedures have to consider sustainable factors and offer new transport
strategies and solutions. One possible approach is to minimize the
polluting emissions by including the emission costs into the objec-
tive function. Figliozzi [19] presented a time-dependent VRP with
time windows. The author calculated the amount of fuel spent with
the purpose of studing the impacts of congestion, land use and travel
speed on CO2 emissions. Bektaş and Laporte [6] modeled for the
first time the energy consumption of conventional vehicles and ex-
plicitly considered the polluting emissions impact. They called this
problem the Pollution-Routing Problem (PRP), and presented a non-
linear mixed integer mathematical problem for it. This paper lead to
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several modeling and algorithmic extensions. Thus Demir et al. [13]
highlighted the difficulty of solving medium-scale PRPs by using the
model presented in Bektaş and Laporte [6]. After introducing an ex-
tended PRP, they proposed an effective adaptive large neighborhood
search (ALNS) heuristic capable of solving instances with up to 200
nodes. Since CO2 emissions are directly related to vehicle speed, Ja-
bali et al. [24] solved a T-DVRP by tabu search, considering maximum
achievable vehicle speed as a part of the optimization. These authors
considered a two-stage planning horizon: free flow traffic and conges-
tion. They modeled and minimized the emissions per kilometer as a
function of speed, and highlighted the relationship between reducing
emissions and routing cost. Since the minimization of fuel consump-
tion and driving time are conflicting, Demir et al. [14] introduced
and solved the bi-objective PRP, in which they jointly minimized the
two conflicting factors. Franceschetti et al. [20] considered the Time-
Dependent PRP with time windows, an extension of the PRP that
explicitly takes into account traffic congestion. Tajik et al. [53] in-
troduced uncertain data in the Time-Dependent PRP with pickup
and delivery. They defined a mixed integer linear program in which
the main objective is to minimize the travel distance, the number of
vehicles and the polluting emissions. They then introduced a robust
counterpart, considering vehicle speed as an uncertain parameter. Koç
et al. [27] introduced a heterogeneous fleet in the PRP, called the fleet
size and mix pollution-routing problem and demonstrated the benefit
of using a heterogeneous fleet over a homogeneous one. Kramer et.
al [30] developed a new hybrid iterated local search for the PRP ad-
dressed in Bektaş and Laporte [6]. Since speed has a major impact
on CO2 emissions, the main objective in the PRP is to optimize vehi-
cle speed for each route. Kramer et. al [30] consider the same speed
on each arc and assume that the departure time is fixed. Kramer et.
al [29] extended the previous work by introducing variable departure
times. Moreover, speed and departure time are both embedded in
the optimization algorithm proposed in Kramer et. al [30]. Table 2.1
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summarizes the main papers on the PRP and its variants.

Table 2.1: Summary of the literature on the PRP and its variants

Reference Algorithm Mathematical
model

Time win-
dows

Time depen-
dency

Pickup & de-
livery

Heterogeneous
fleet

Uncertain
data

[6] • •
[19] Heuristic • • •
[13] Heuristic • •
[24] Heuristic •
[14] Heuristic • •
[20] • •
[53] • • • •
[27] Heuristic • • •
[30] Heuristic • •
[29] Heuristic

2.1.2 Literature review on the G-VRPs with alternative fuel
vehicles

Since the transport sector has a heavy environmental impact, and usu-
ally companies do not compensate for the emission costs, reducing the
CO2 emissions constitutes a challenge for governments. In recent years
several companies have started using alternative fuel vehicles (AFVs),
especially electric vehicles (EVs), instead of conventional ones, as a
result of governmental incentives (see Pelletier et al. [44]). While EVs
do not produce CO2 emissions and are more silent than conventional
vehicles, they are constrained by the low autonomy of their battery,
the limited number of public charging stations (CSs) and long charging
times.

Gonçalves et al. [22] studied a VRP variant with pickup and de-
livery, and a mixed fleet composed of EVs and conventional vehicles.
Charging can be done at any time during a route and each EV has
a fixed autonomy and charging time. They applied their model to a
particular case of a Portuguese battery distributor and studied three
different scenarios: in the first one they considered only the company’s
conventional fleet, in the second one the fleet is composed of conven-
tional vehicles and uncapacitated EVs, while in the third one they use
only EVs. Conrad and Figliozzi [11] introduced the recharging VRP
with time windows, where the vehicles have to be charged at some cus-
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tomer locations in order to continue their route. Energy consumption
and travelled distance are proportional. Recharging is allowed while
servicing customers.

Erdoğan and Miller-Hooks [17] defined the Green VRP (GVRP)
in which the fleet is composed of alternative fuel vehicles. The vehicle
fuel tank can be charged at alternative fuel charging stations, and fuel
consumption is proportional to travelled distance. Schneider et al. [50]
extended this work by introducing the Electric-VRP (E-VRP) with
time windows (E-VRPTW) and recharging stations, in which EVs can
be charged at any of the available CSs. Charging time is not fixed, but
is related to the battery state of charge when the vehicle arrives at the
CS. Felipe et al. [18], extended the model presented in Erdoğan and
Miller-Hooks [17] in a different way. They allowed partial recharges
at the stations and considered multiple charging technologies.

Sassi et al. [46] formulated the heterogeneous electric vehicle rout-
ing problem with time dependent charging costs and a mixed fleet, in
which a set of customers have to be served by a mixed fleet of vehicles
composed of conventional vehicles and EVs. The EVs have different
battery capacities and operating costs. An EV can be charged at the
available CSs only if it is compatible with the available technologies.
Partial recharges and recharges at the depot are allowed. Charging
costs vary according to station and time of day. A mixed fleet of con-
ventional vehicles and EVs are also considered in Goeke and Schneider
[21]. The authors formulate the E-VRP with time windows and mixed
fleet, in which the EVs can be charged at the available CSs. Charg-
ing times vary according to the battery level when the EV arrives at
the CS and charging is always done up to maximum battery capacity.
The authors propose a realistic energy consumption model which con-
siders speed, vehicle mass and gradient. They model three different
objective functions: the first one minimizes the travelled distance, the
second one the energy and labor costs, and the third one also includes
the cost related to the battery replacement after the depreciation.
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Li-ying and Yuan-bin [36] introduced the EV multiple charging
station location-routing problem with time windows whose aim is to
optimize the EV routing plan and the CSs location strategy. In partic-
ular, they also consider the possibility of choosing among the different
types of charging infrastructures. Ding et al. [16] extended the E-
VRPTW model of Schneider et al. [50] by introducing partial charg-
ing and a pickup and delivery policy. Bruglieri et al. [8] presented a
variant of E-VRPTW in which the battery charging level is a decision
variable. Desaulniers et al. [15] extended the E-VRPTW by consid-
ering four charging strategies: a single charge or multiple charges per
route and fully recharge only, multiple recharges per route and batter-
ies are fully charged, at most a single recharge per route and partial
recharges, and multiple partial recharges. Lin et al. [39] extended the
E-VRP by considering a heterogenoeus fleet of EVs and the vehicle
load effect on battery consumption as in Goeke and Schneider [21].

Hiermann et al. [23] introduced the electric fleet size and mix
vehicle routing problem with time windows and recharging stations.
They considered a heterogeneous fleet of EVs in which each vehicle
is characterised by its fixed cost, battery and load capacity, energy
consumption and charging rate. Each vehicle can be fully charged at
a CS. Keskin and Çatay [26] formulated the E-VRPTW with partial
recharges and solved it by means of an ALNS procedure. Koç and
Karaoglan [28] proposed a new formulation for the G-VRP introduced
by Erdoğan and Miller-Hooks [17], with new decision variables in order
to allow multiple visits to the CSs without augmenting the networks
with dummy nodes. Based on this work, Leggieri and Haouari [35],
proposed a new formulation for the E-VRPTW.

Montoya et al. [41] developed a multi-space sampling heuristic
for the G-VRP introduced by Erdoğan and Miller-Hooks [17]. They
performed several computational tests and compared their approach
with those proposed by Erdoğan and Miller-Hooks [17] and Schneider
et al. [50] and concluded that their heuristic is highly competitive, and
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also the simplest one for the G-VRP. All early E-VRP models assumed
that the battery charge level is a linear function of charging time, while
in reality it is non-linear. Montoya et al. [42] extended the classical
E-VRP by considering a non-linear charging function and proposed
an iterated local search enhaced with a heuristic concentration for
the problem. They conducted several computational experiments by
comparing their proposed non-linear charging function to those used
in previous models. They concluded that a linear charging function
may lead to infeasible or expensive solutions.

The decisions about the location and technology of the CSs are
directly related to EV routing. The installation and operation costs
of the network highly impact on the companies’ decisions. Yang and
Sun [55] introduced the electric vehicles battery swap stations location
routing problem whose aim is to determine the locations of battery
swap stations (BSSs), as well as the routing plan of EVs. The CS
locations and the selection of charging infrastructure types are two
critical factors in the E-VRP. Their joint optimization may have a
major impact on logistics costs. Paz et al. [43] proposed the multi-
depot electric vehicle location routing problem with time windows
in which a homogeneous fleet of EVs is considered. The goal is to
determine the number and location of CSs and depots, as well as the
number of EVs and their routes. The authors also considered the
possibility of charging the EV at a CS or to swap the battery at a
BSS. Hence they proposed and tested three models: in the first one
the conventional partial or complete charges can be done at the depots
or at the customer locations, in the second one the batteries can be
swapped only at the depots, while in the third one if a charging vertex
is activated, then it is a BSS and a customer vertex is activated only
for the conventional recharging.

Schiffer and Walther [49] introduced the electric location routing
problem with time windows and partial recharging in which the the
EVs can be charged at any node in the network with only one type of
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technology. The authors modeled three objective functions: the first
one minimizes the total traveled distance, the second one minimizes
the number of EVs, and the third one minimizes the number of CSs.
Schiffer and Walther [48] defined the location routing problem with
intra-route facilities which focuses on determining the location of fa-
cilities for intermediate stops. These facilities are not depots and do
not necessarily coincide with customers. Intra-route facilities allow for
intermediate stops on a route in order to keep the vehicle operational.
Table 2.2 summarizes the main papers on the G-VRP and its variants.
For a more complete survey, the reader is referred to Lin et al. [38].

2.1.3 Scientific contribution and organization of this paper

In this paper, we investigate a GVRP variant in which we consider a
mixed vehicle fleet composed of ECVs and conventional internal com-
bustion commercial vehicles (ICCVs). The literature on the VRP with
a fleet composed of both ECVs and ICCVs is very limited (see Table
2.1.3 for a summary). In the majority of the aforementioned works,
the authors suppose that the EVCs battery must be fully recharged.
Moreover, while Goeke and Schneider [21] modelled a realistic energy
consumption for both the EVs and ICCVs, the other works do not
consider the impact of ICCVs polluting emissions. Since the ECVs
have a limited autonomy, and a full battery recharge requires a long
time, as in Montoya et al. [42] we assume that the ECVs can be
partially recharged at any of the available stations. Referring to the
ICCVs, we model the pollution emission with a function of both trav-
elled distance and vehicle load. Furthermore, we consider customer
time windows and limited vehicle freight capacities. The objective
of the model is the minimization of an objective function that takes
into account recharging, routing, and activation of ECVs costs. In ad-
dition, the overall pollution emissions are maintained within a given
limit. In order to solve the problem under investigation, we propose
an iterative local search procedure.
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The remainder of this paper is organized as follows. Section 3.2
is devoted to the description of a mathematical model for the green
mixed fleet vehicle routing problem with partial battery recharging
and time windows. Section 2.3 provides a general description of the it-
erated local search procedure, whereas the computational experiments
are reported in Section 2.4. Conclusions follow in Section 2.5.
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Table 2.2: Summary of the literature on the G-VRP variants

Ref. Algorithm Math
model

Time
winows

Fixed
charging

Partial
recharge

Location
of CSs

Multiple
tech-
nologies

Battery
swap

Linear
charging

Non-
linear
charging

Energy
consump-
tion linear
to distance

Energy
consump-
tion model

Pickup
& deliv-
ery

Multi-
depot

Mixed
fleet
(EVs
and
ICCVs)

[22] • • • • •
[11] Heuristic • • • •
[17] Heuristic • • •
[50] Heuristic • • • •
[18] Heuristic • • • • •
[46] Heuristic • • • • • •
[21] Heuristic • • • • •
[55] Heuristic • • •
[36] Heuristic • • • • • •
[16] Heuristic • • • • • •
[8] Heuristic • • • •
[15] Exact • • • • •
[39] • • • •
[23] Heuristic • • •
[26] Heuristic • • • •
[28] Exact • •
[41] Heuristic • •
[42] Heuristic • • • •
[49] Exact • • • •
[48] Heurisic • • • • • •
[35] Exact • • •
[43] • • • • • • • •

Table 2.3: Summary of the literature on the Mixed Fleet G-VRP and its variants

Math Time Fixed Partial Multiple Linear Energy consumption Energy Pickup & Polluting
Ref. Algorithm model windows charging recharge technologies charging proportioned to distance consumption model delivery emissions

[22] • • • •
[46] Heuristic • • • • •
[21] Heuristic • • • •
In this
paper

Heuristic • • • • • • •
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2.2 The green mixed fleet vehicle routing prob-

lem with partial battery recharging and time

windows

We formulate our problem as follows. Let N be the set of customers,
and R the set of recharging stations. We will also need σ copies of
recharging stations to account for multiple visits at the same station,
where σ is an input parameter. Thus, let R′ be the set of all stations
and their copies, i.e. |R′| = |R| (1 + σ). The value 1 + σ corresponds
to the number of times each station can be visited. Let V = R ∪ N
and V ′ = N ∪ R′. The problem is defined on the graph G(V ′,A),
where A = {(i, j) : i, j ∈ V ′, i 6= j} is the set of arcs. The depot is
a particular element belonging to the set R′, that is the recharging
station where vehicle routes start and end. Every customer i ∈ N has
a demand qi [kg] and a service time si [hours]. All customers must
be visited by a single vehicle. Each node i ∈ V ′ has a time window
[ei, li]. For each (i, j) ∈ A, dij denotes the distance from i to j [km],
while tij is the travel time from i to j [hours], and cij denotes the cost
[e/km] which depends on the distance traveled. We impose a limit T
on the duration of a route [hours], that is, the end of the time window
associated with the depot node is set equal to T .

A heterogeneous fleet of vehicles, composed of nE ECVs and nC

ICCVs, is available. The two types of vehicles (electrical and conven-
tional) are characterized by different loading capacities, denoted as
QE and QC [kg] for the ECVs and ICCVs, respectively. Furthermore,
for each ECV let BE denote the maximum battery capacity [kWh].
The recharging cost wr is assumed to be constant and the same for
all stations. All recharging stations i ∈ R′ are characterized by a
recharging speed ρi [kWh per hour]. We denote by π the coefficient of
energy consumption, assumed to be proportional to the distance trav-
eled [e/km]. Partial battery recharging is allowed at any recharging
station. Referring to the ICCV, we consider a limit on the overall CO2
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emissions [kg].

2.2.1 The emission factor for the conventional vehicles

In order to define a fuel consumption model for the ICCVs, we have to
introduce the emission factor. As in Ubeda et al. [54], we assume that
the calculation of CO2 emissions depends on two factors: the type of
vehicle and the type and quantity of fuel consumed. In fact, the CO2

emissions vary according to the type of transport, in particular the
mass of the vehicle, the distance traveled and the load carried.

In order to estimate the emission factor, it is important to calcu-
late the fuel conversion factor. For this purpose we use the chemical
reaction proposed by Lichty [37]. Once we have calculate the fuel
conversion factor, that is 2.61 CO2/ litre of diesel, it is possible to
estimate the emission factor ε. Thus we let define a function, tak-
ing into account data related to the average fuel consumption, which
depends on the load. The emission factor ε is equal to the emission
factor multiplied by the consumption of diesel fuel. Table 2.4 shows
the estimation of emission factors for several capacity scenarios for a
10 tonne capacity truck, see Ubeda et al. [54].

Load of Weight laden Consumption Emission factor
the vehicle (%) (litre/100km) (kg CO2/km)

Empty 0 29.6 0.77
Low loaded 25 34.0 0.83
Half loaded 50 34.4 0.90
High loaded 75 36.7 0.95

Full load 100 39.0 1.01

Table 2.4: Estimation of emission factors for a truck with 10-tonne capacity

2.2.2 The mathematical model

In order to model our problem we define the decision variables as fol-
lows:
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xEij =

{
1, the ECV travels from i to j

0, otherwise
(i, j) ∈ A

xCij =

{
1, the ICCV travels from i to j

0, otherwise
(i, j) ∈ A

zij amount of energy available when arriving at node j from the node
i [kWh], (i, j) ∈ A
gij amount of energy recharged by the ECV at the node i for travelling
to j [kWh], i ∈ R, j ∈ V ′
τj arrival time of the vehicle to the node j [h], j ∈ V ′
uCi amount of load left in the vehicle after visiting node i [kg], i ∈ V ′
uEi amount of load left in the vehicle after visiting node i [kg], i ∈ V ′.

Starting from the consideration introduced in Section 2.2.1, we
define the emissions function ε(uCi ) that depends on the load on the
vehicle at node i. For instance, if variable uCi assumes a value in
the range [0, 0.25QC ], then ε(uCi ) = 0.77 (see Table 2.4). The value∑

(i,j)∈A ε(u
C
i )dijx

C
ij represents the total pollution emissions.

The mixed integer program that models our problem is as follows.

Minimize wr
∑
i∈R′

∑
j∈V′

gij + wa
∑
j∈V′

xEsj +
∑

(i,j)∈A
cijdijx

E
ij +

∑
(i,j)∈A

cijdijx
C
ij (2.1)

subject to
∑
j∈V′

(xEij + xCij) = 1 i ∈ N (2.2)

∑
j∈V′

xEij ≤ 1 i ∈ R′ (2.3)

∑
j∈V′\{s}

xEij −
∑

j∈V′\{t}
xEji = 0 i ∈ V ′ (2.4)

∑
j∈V\{s}

xCij −
∑

j∈V\{t}
xCji = 0 i ∈ V (2.5)

∑
j∈V′

xEsj ≤ nE (2.6)

∑
j∈V

xCsj ≤ nC (2.7)

∑
j∈V′,i 6=t

xEit +
∑

j∈V′,i 6=t
xCit ≥ 1 (2.8)
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∑
i∈V′i6=s

xEsi −
∑

j∈V′j 6=t
xEjt = 0 (2.9)

∑
i∈Vi 6=s

xCsi −
∑

j∈Vj 6=t
xCjt = 0 (2.10)

uEj ≥ uEi + qjx
E
ij −QE(1− xEij) i ∈ V ′\ {s, t} , j ∈ V ′\ {s} (2.11)

uCj ≥ uCi + qjx
C
ij −QC(1− xCij) i ∈ V\ {s, t} , j ∈ V\ {s} (2.12)

uEs = 0 (2.13)

uCs = 0 (2.14)

τj ≥ τi + (tij + si)x
E
ij −M(1− xEij) i ∈ N , j ∈ V ′ (2.15)

τj ≥ τi + (tij + si)x
C
ij −M(1− xCij) i ∈ V, j ∈ V (2.16)

τj ≥ τi + tijx
E
ij +

1

ρi
gij −M(1− xEij) i ∈ R′, j ∈ V ′ (2.17)

ej ≤ τj ≤ lj j ∈ V ′ (2.18)

zij ≤ (zhi + gij)− πdijxEij +M(1− xEij) +M(1− xEhi) h ∈ V ′

i ∈ V ′\ {s}
j ∈ V ′, i 6= j, i 6= h, j 6= h (2.19)

zsj ≤ BE − πdsjxEsj +M(1− xEsj) j ∈ V ′ (2.20)

gij ≤ BE − zhi +M(1− xEij) +M(1− xEhi) i ∈ R′\ {s} , h ∈ V ′, j ∈ V ′ (2.21)

zij ≥ 0.1BE i ∈ R′, j ∈ V ′ (2.22)

gij ≤ 0.9BE i ∈ R′, j ∈ V ′ (2.23)∑
(i,j)∈A

ε(uCi )dijx
C
ij ≤ UB (2.24)

xEij , x
C
ij ∈ {0, 1}, i ∈ V ′, j ∈ V ′;uEi , uCi , τi ≥ 0, i ∈ V ′ (2.25)

gij ≥ 0, i ∈ R′, j ∈ V ′.

The objective function is the sum of four terms. The first one is
the cost [e] of energy recharged at all the recharging stations. The
second term takes into account the activation of ECVs. The cost wa is
the vehicle activation cost, which depends on the battery capacity of
the vehicle. In particular we assume that wa = BEwr, that is the cost
of one complete recharge of the vehicle. The third and fourth terms
represent the cost of the routes traveled by the ECVs and the ICCVs,
respectively.

Constraints (3.10) ensure that each customer is visited exactly
once, whereas conditions (3.11) mean that each recharging station can
be visited at most once. Constraints (3.12) and (3.13) are the flow con-
servations constraints, whereas (3.14) and (3.15) ensure that the total
number of vehicles used in the solution (electrical and conventional,
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respectively) does not exceed the fleet size. Constraints (3.17)-(3.18)
ensure that the route of each vehicle starts and ends at the depot. Con-
ditions (3.19)-(3.22) represent the capacity constraints, for the ECVs
and ICCVs, respectively. Constraints (3.23)-(3.25) define the vari-
ables τ , whereas the time windows constraints are specified by (3.26).
Constraints (3.27) and (3.28) define the variables z ensuring that the
capacity of the battery is not exceeded, and conditions (3.29) are used
to represent the partial battery recharging. Constraints (2.22) and
(2.23) define the state of charge of the battery. Finally, constraints
(3.30) impose a limit on the pollution emissions. In particular,ε(uCi ) is
the emission function previously introduced. Constraints (3.31) define
the domains of variables.
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2.3 The Iterated Local Search Heuristic

The proposed heuristic is based on iterated local search (ILS). The
general structure of the ILS is detailed in Algorithm 1. We are given a
set N of customers to be served. These are partitioned into two clus-
ters, one served by the ICCVs (C

′
), the other by the ECVs (E

′
). The

ILS generates an initial solution η0, as a set of routes, and while the
stopping criterion is not satisfied, a perturbation and the local search
procedures are applied. Finally, the best solution η∗ is returned, that
is, a set of routes with the best total cost.

Algorithm 1 . Iterated local search (ILS)

Generate the initial solution η0
Apply the local search procedure
while Stop criterion is not verified do

Perturbation
Local search

end while
return best solution η∗

Initialization Phase In order to generate an initial solution, we pro-
pose a constructive heuristic based on Solomon’s sequential insertion
heuristic SIH [52]. Algorithm 2 presents the general structure of the
SIH. This heuristic identifies both the node u∗ to be added to the
initialized route and the position of the insertion. In order to choose
u∗, SIH considers the insertion position for all the unrouted nodes N−
by evaluating both the insertion cost and the associated time delay to
serve the subsequent customers.

Given the use of a heterogeneous fleet in our problem, after the
definition of two clusters of customers which will be served by the
electric vehicles and conventional vehicles respectively, the construc-
tive heuristic is divided into two different phases. The former is aimed
at defining the routes used to serve the customers with the ICCVs
(i.e., conventional routes ηc) while in the latter, the routes for the cus-
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tomers served by the ECVs (i.e. electrical routes ηe) are built. Finally,
the solution η

′
= ηc ∪ ηe is returned.

Algorithm 2 . Sequential insertion heuristic (SIH)

1. Clustering (N ) → C
′
, E

′

2. Insertion heuristic (C
′
) → ηc

if some customers are not served then
update E

′
: E

′ ∪ {N−}
end if
3. Insertion heuristic (E

′
) → ηe

return solution η
′
= ηc ∪ ηe

Clustering Algorithm The main aim of this algorithm is to build
two clusters of customers C

′
and E

′
, which will be served by the

electrical and conventional vehicles, respectively. Given the set of
customers N to be served, the procedure determines two subsets E

′ ⊆
N and C

′ ⊆ N , such that E
′ ∩ C ′ = ∅ and E

′ ∪ C ′ = N . In order to
define E

′
and C

′
, let we use of two sets E and C, defined by the start

node s. Two scores, called pEi (1 ≤ pEi ≤ 10) and pCi (1 ≤ pCi ≤ 10),
are used in the clustering algorithm. The first score is calculated as

pEi = 11−
(

1 +
dEi − dEmin

dEmax − dEmin

× 9

)
, (2.26)

where dEi is the distance between the customer i and the barycentre be
of the set E, dEmin is the distance between be and the nearest customer,
while dEmax is the distance between be and the farthest customer. The
second score is calculated as

pCi = λ(pDistCi ) + (1− λ)(pQi), (2.27)

where 0 ≤ λ ≤ 1, pDistCi = 11 −
(

1 + dCi −dCmin

dCmax−dCmin
× 9

)
, pQi = 11 −(

1 + qi−qmin

qmax−qmin
× 9

)
, dCi is the distance between the customer i and

the barycentre bc of the set C, dCmin is the distance between bc and
the nearest customer, dCmax is the distance between bc and the farther
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customer, qi is the demand of customer i, qmin is the smallest customer
demand, and qmax is the largest customer demand.

After the evaluation of the score of each customer, it is possible
to define the two clusters. For each cluster, select at each iteration
the customers with the maximum score: i∗E = argmaxi∈N{pEi }, then
i∗C = argmaxi∈N{pCi }. If i∗E 6= i∗C , i∗E is assigned to E, while i∗C to C.
Otherwise, if pEi∗E > pCi∗C i∗ is assigned to E, else if pEi∗E ≤ pCi∗C i∗, the
node is assigned to C. At the end of each iteration, the barycentre for
each cluster is recalculated and the scores for the unassigned nodes
are recomputed. The two final clusters E

′
and C

′
are obtained by

removing customer s from cluster E and C, respectively.

Insertion strategy for conventional routes This heuristic chooses
the best customer u∗ to be added into the route, by taking into account
the increase in the traveled distance and traveled time. The heuristic
initializes the route as follows: Zk = {s, i′, t}, where i

′ ∈ C
′

is the
unserved node with the smallest li′ . Let Zk = {s, i1, i2, . . . , im} be the
current route. For each unserved customer u ∈ C ′, calculate the best
position inside the current route Zk as

f1(i(u), u, j(u)) = minp=1,...,m{f1(ip−1, u, ip)}, (2.28)

where i(u) and j(u) are two adjacent customers into the current route.
The customer u∗ that will be inserted into the route is the one with
the best score:

f2(i(u
∗), u∗, j(u∗)) = maxu{f2(i(u), u, j(u))}, (2.29)

where
f2(i(u), u, j(u)) = cs,u − f1(i(u), u, j(u)). (2.30)

Before inserting u∗ in the route, it is necessary to verify the feasibil-
ity of the new solution. If the insertion is infeasible, the algorithm
evaluates the possibility of initializing a new route. Otherwise, the
customer will be served by the ECVs.
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Insertion strategy for electrical routes If some customers be-
longing to cluster C

′
are not served by conventional vehicles, they are

inserted in cluster E
′
. For each unserved customer u ∈ C ′, the best

position in the current route is calculated.

The heuristic initializes the route as follow: ZE
w = {s, i′, t}, where

i
′ ∈ E

′
is the unserved customers with the smallest li′ . Let ZE

w =
(s, i1, i2, . . . , im) be the current route. For each unserved customer
u ∈ C ′ we calculate the best position inside the current route Zk by
using [2.29] and the best node u∗ by using [2.30]. If the insertion of u∗

satisfies the capacity and time windows constraints, it can be added
to the route.

After this step, it is necessary to check the satisfaction of the
energy capacity constraints. If necessary, recharge stations may be
added to the route. In particular, if it is not possible to reach the next
node, because of the low battery charge, the nearest recharge station
is added to the route and the vehicle is recharged as much as necessary
to reach the next node.

After the insertion of the recharge stations, it is necessary to ver-
ify the time windows constraints. If the constraints are respected but
some customers are unserved, a new route is initialized. Otherwise,
if some constraints are violated, the solution is repaired by remov-
ing customers and recharge stations until it becomes feasible. If the
heuristic is unable to find a feasible solution, the unserved customers
are added to the conventional routes by violating the emission con-
straints.

Local Search and Perturbation In order to explore the neighbor-
hood, we introduce an improvement heuristic based on local search
procedures. The steps are detailed in Algorithm 3. We start from the
solution η

′
created by SIH. If η

′
is feasible, we apply the improvement

heuristic and we return it as the best final solution η∗. Otherwise, we
apply the improvement heuristic with penalty function and we return
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the best generated feasible solution η∗.

Algorithm 3 . Local search (LS)

η
′

initial solution generated by SIH
if (η

′
) feasible then

Improvement heuristic (η
′
) → η∗

else
Improvement heuristic with penalty function (η

′
) → η∗

end if
return best solution η∗

Improvement Heuristic A local search method is applied to the
initial solution, built by using the constructive heuristic, described in
the previous section. It uses the following different strategies:

1. Change of nodes belonging to the conventional routes:
iteratively, for each conventional route, evaluate the best possible
insertion of one of its nodes into the other conventional routes.

2. Change of nodes belonging to the electrical routes: it-
eratively, for each electrical route, evaluate the best possible in-
sertion of its node into the other electrical routes. It is worth
observing that the insertion/removal of a node into/from an elec-
trical route can imply also the insertion/removal of new recharge
stations into/from the solution.

3. Change of nodes belonging to the conventional and elec-
trical routes: for each route, iteratively evaluate the best pos-
sible insertion of one of its nodes into the other conventional or
electrical routes.

The perturbation is performed by using the same strategies imple-
mented for the local search phase. However, during the perturbation,
worsenings of the solutions are accepted in order to better explore the
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neighborhood. The stopping criterion is satisfied when a fixed maxi-
mum number of iterations has been reached.

Improvement heuristic with penalty function This alternative
approach allows the generation of infeasible solutions in the initial-
ization phase. In particular, the pollution emission constraints are
relaxed and the objective function is modified in order to take the
penalty cost into account as

z
′
(η) = z(η) + θe(η), (2.31)

where z(η) is the cost function, θ is the penalty factor, and e(η) is the
violation of emissions, calculated as

e(η) = max{0,
∑

(i,j)∈A

ε(uci)dijx
c
ij − UB}. (2.32)

The penalty factor is set equal to 1 and is adjusted at each iteration of
the local search as follows: if after one iteration a constraint violation
is still verified, the factor is increased by 10%.

Starting from an infeasible solution generated by the construc-
tive heuristic, the ILS efficiently explores the solutions space until a
good quality feasible solution has been identified. For both the local
search procedure and the perturbation, the improvement strategies
previously described is used. At each iteration, the strategy to be
applied is randomly chosen. The algorithm terminates after a fixed
number of iterations. Among all feasible solutions, the best one η∗ is
that with the minimum cost.

2.4 Computational study

We now analyse the behaviour of the proposed heuristic. We tested
our algorithm on instances inspired from the scientific literature. In
Section 2.4.1 we provide a detailed description of these instances. We
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solved the model with CPLEX 12.5, and implemented the algorithm in
Java. We carried out our tests on a PC Intel CoreTM I7-4710 CPU at
2.5 GHz having 16 GB of RAM under Windows 8.1 operating system.

2.4.1 Test instances

The instances used in the computational experiments are the E-VRPTW
benchmark instances introduced in [50], based on the well-known VRPTW
instances of Solomon [52]. These instances are divided into three
classes C, R and RC which differ from one another according to the
geographical distribution of the customer locations: a clustered dis-
tribution (C), random distribution (R) and a mix of random and
clustered structures (RC). Moreover, C1, R1 and RC1 have a short
scheduling horizon, while C2, R2 and RC2 have a long scheduling
horizon. Schneider et al. [50] applied some modifications to these
instance sets in order to yield the E-VRPTW instances: they first de-
termined in a random manner 21 recharging stations and added them
to the test instances, second the battery capacity is suitably set, and
third the time windows of some customers are recalculated to ensure
feasibility. We carried out our tests by considering two sets of in-
stances. The first one contains the small-size instances considered in
[50], with five, 10 and 15 customers. The second set is composed of
medium-size instances that have been built starting from five of the
100-customer E-VRPTW instances presented in [50], belonging to the
classes C1, R1, RC1. In particular, we kept the 21 recharging stations
unchanged and we extracted the first 25 and 30 customers, respec-
tively. For each test instance, we generated three different instances
by varying the value of the upper bound on the pollution emissions.
In particular, we first calculated an estimate UBmax of the emissions
in the worst case; the parameter UB was then set equal to α·UBmax,
where α = 0.75, 0.50, 0.25. Thus, we generated three scenarios: hard,
medium and soft constrained, based on the allowed emissions.

In what follows, we refer to test“C”nn α to indicate the network
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test (original name) for which nn customers have been considered
and an upper bound on the pollution emissions equal to α·UBmax

was imposed. Thus, test instance C101C25 75 is the network C101
for which the first 25 customers were chosen and the limit on the
pollution emission is set equal to 0.75·UBmax.

We fixed the battery capacity equal to 10 KWh for small-size in-
stances and to 20 KWh for medium- and large-size instances, while the
vehicle capacity was fixed at 500 Kg. Whereas a battery recharging
operation can be achieved in several ways, with different technologies
that imply different times and costs, for our computational tests we
assumed that all charging stations have the same characteristics and
only one technology is available. This means that the vehicles can
be charged in any recharging station by spending the same time, at
the same cost. In particular, following Felipe et al. [18] in which dif-
ferent technologies are introduced (slow, medium and fast), we chose
the medium technology, hence the recharging speed is fixed at 20,000
KWh/h and the cost is unitary. We also defined a number of σ copies
of CSs to allow multiple visits to the same CS. In particular, we itera-
tively solved our model with CPLEX with increasing values of σ. The
procedure stops when no improvement on the solution cost is found.

2.4.2 Numerical results

The computational study is divided into two phases: since CPLEX
was able to solve only the small-size instances, in the first phase we
compare the results obtained by using the proposed ILS with the op-
timal solution costs obtained with CPLEX, while in the second phase
we study the solutions obtained on instances with more than 25 cus-
tomers and solved by ILS. In Section 2.4.2, we focus on the results
obtained on the first set of test instances i.e., the small-size ones. In
Section 2.4.2, we test the heuristic on the medium- and large-size in-
stances.
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Numerical Results on the small size test instances

To assess the performance of the ILS, we carried out a first phase of
the computational testing with the aim of comparing the quality of
the solutions yielded by the proposed heuristic with those obtained
by solving the model. We imposed a time limit of four hours on
the execution time of the solver. We evaluated the performance of
the proposed heuristic along two dimensions: solution quality and
computational effort.

Table 2.5: Results for the instances with five customers
(a) Results for instances
with α = 0.25

Test
ILS

gc Speedup
C101C5 0.25 0.04% 1.81
C103C5 0.25 0.00% 2.37
C206C5 0.25 0.00% 3.03
C208C5 0.25 11.63% 2.60
R104C5 0.25 0.00% 1.77
R105C5 0.25 0.25% 1.37
R202C5 0.25 6.51% 1.76
R203C5 0.25 1.97% 3.04
RC105C5 0.25 0.04% 3.71
RC108C5 0.25 4.01% 2.36
RC204C5 0.25 1.26% 4.56
RC208C5 0.25 3.85% 2.57
Average 2.46% 2.58

(b) Results for instances
with α = 0.50

Test
ILS

gc Speedup
C101C5 0.50 2.29% 1.25
C103C5 0.50 0.00% 2.58
C206C5 0.50 0.00% 3.51
C208C5 0.50 0.00% 1.97
R104C5 0.50 0.00% 1.44
R105C5 0.50 0.00% 1.45
R202C5 0.50 0.00% 1.29
R203C5 0.50 0.00% 3.23
RC105C5 0.50 0.00% 5.35
RC108C5 0.50 1.96% 3.07
RC204C5 0.50 0.00% 3.30
RC208C5 0.50 0.06% 3.45

Aerage 0.36% 2.66

(c) Results for instances
with α = 0.75

Test
ILS

gc Speedup
C101C5 0.75 0.00% 1.95
C103C5 0.75 0.21% 2.50
C206C5 0.75 0.00% 2.49
C208C5 0.75 0.00% 1.70
R104C5 0.75 0.00% 1.42
R105C5 0.75 0.00% 1.19
R202C5 0.75 0.00% 1.23
R203C5 0.75 0.00% 3.31
RC105C5 0.75 0.00% 4.52
RC108C5 0.75 0.00% 3.21
RC204C5 0.75 0.00% 2.80
RC208C5 0.75 0.00% 2.70
Average 0.02% 2.42

Tables 2.5 to 2.7 present the related computational results. For
each test instance, we report in the second column the percentage gap
in cost gc, defined as gc = (cH−cM)/cM , where cH is the cost provided
by the heuristic and cM is the cost obtained solving the model. In
the third column we report the speedup value i.e. the ratio between
the computational time required by CPLEX and the computational
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Table 2.6: Results for the instances with 10 customers
(a) Results for instances with α = 0.25

Test
ILS

gc Speedup
C101C10 0.25 2.14% 4.28
C104C10 0.25 13.93% 3.82
C202C10 0.25 13.11% 3.69
C205C10 0.25 14.84% 1.00
R102C10 0.25 0.83% 6.30
R103C10 0.25 0.00% 63.74
R201C10 0.25 7.87% 2.73
R203C10 0.25 1.19% 66.69
RC102C10 0.25 0.60% 14.50
RC108C10 0.25 0.00% 37.13
RC201C10 0.25 0.89% 2.40
RC205C10 0.25 0.00% 3.59
Average 4.62% 17.49

(b) Results for instances with α = 0.50

Test
ILS

gc Speedup
C101C10 0.50 0.03% 15.81
C104C10 0.50 0.00% 5.33
C202C10 0.50 4.34% 2.70
C205C10 0.50 0.00% 2.48
R102C10 0.50 0.00% 1.56
R103C10 0.50 0.00% 6.05
R201C10 0.50 0.06% 58.19
R203C10 0.50 0.00% 2.65
RC102C10 0.50 0.00% 14.18
RC108C10 0.50 0.00% 3.66
RC201C10 0.50 0.00% 11.85
RC205C10 0.50 0.00% 1.55

Average 0.37% 10.50

(c) Results for instances with α = 0.75

Test
ILS

gc Speedup
C101C10 0.75 0.00% 3.25
C104C10 0.75 0.00% 7.99
C202C10 0.25 0.00% 2.95
C205C10 0.75 0.00% 1.70
R102C10 0.75 0.00% 2.18
R103C10 0.75 0.00% 1.57
R201C10 0.75 0.00% 5.74
R203C10 0.75 0.00% 55.01
RC102C10 0.75 0.00% 2.81
RC108C10 0.75 0.00% 22.74
RC201C10 0.75 0.00% 3.58
RC205C10 0.75 0.00% 14.55
Average 0.00% 10.34

Table 2.7: Results for the instances with 15 customers
(a) Results for instances with α = 0.25

Test
ILS

gc Speedup
C103C15 0.25 2.13% 297.74
C106C15 0.25 0.00% 0.93
C202C15 0.25 1.42% 92.64
C208C15 0.25 0.00% 7.70
R202C15 0.25 0.27% 264.20
R209C15 0.25 0.00% 2.92
R102C15 0.25 2.15% 931.21
R105C15 0.25 2.27% 37.29
RC103C15 0.25 0.53% 1607.65
RC108C15 0.25 2.26% 17099.64
RC202C15 0.25 0.00% 24.68
RC204C15 0.25 0.00% 2381.20
Average 0.92% 1895.65

(b) Results for instances with α = 0.50

Test
ILS

gc Speedup
C103C15 0.50 0.48% 678.04
C106C15 0.50 2.30% 3.01
C202C15 0.50 1.21% 152.90
C208C15 0.50 0.00% 11.51
R202C15 0.50 0.27% 211.77
R209C15 0.50 0.77% 3.01
R102C15 0.50 2.54% 530.30
R105C15 0.50 9.54% 66.75
RC103C15 0.50 0.53% 760.08
RC108C15 0.50 1.28% 17697.47
RC202C15 0.50 2.58% 40.75
RC204C15 0.50 1.83% 3056.36

Average 1.94% 1934.33

(c) Results for instances with α = 0.75

Test
ILS

gc Speedup
C103C15 0.75 2.13% 297.74
C106C15 0.75 0.00% 0.93
C202C15 0.75 1.42% 92.64
C208C15 0.75 0.00% 7.70
R102C15 0.75 0.27% 264.20
R105C15 0.75 0.00% 2.92
R202C15 0.75 2.15% 931.21
R209C15 0.75 2.27% 37.29
RC103C15 0.75 0.53% 1607.65
RC108C15 0.75 2.26% 17099.64
RC202C15 0.75 0.00% 24.68
RC204C15 0.75 0.00% 2381.20
Average 0.92% 1895.65
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overhead of the heuristic.

The computational results clearly demonstrate the advantage of
the proposed heuristic in terms of efficiency. This advantage becomes
more evident on large instances. Indeed, the larger the number of
the customers, the higher the speedup value achieved. In particular,
the ILS is on average 2.55 times faster on the set with five customers,
and up to 1908.54 time faster on the set with 15 customers. The ILS
overall outperforms in terms of efficiency CPLEX.

It is worth observing that the heuristic is also effective. Looking
at Tables 2.5(a) to 2.5(c), it is clear that the ILS is more effective
when α is equal to 0.50 and 0.75. Indeed, it finds an optimal solution
for the majority of the instances. However, the average on the cost
gap is less than 1% for both the sets, while it increases to 2.46% for
α = 0.25%.

The results in Tables 2.6(a) to 2.6(c) and 2.7(a) to 2.7(c) exhibit
the same trend. Indeed, when α = 0.75, the ILS finds optimal solu-
tions for all the instances with 10 customers (see Table 2.6(c)), and the
average on the cost gap is less than 1% for the instances with 15 cus-
tomers (see Table 2.7(c)). When α = 0.50, the average on gap is 0.37%
and 1.94% for the instances with 10 and 15 customers, respectively.

Table 2.8 summarizes the percentage deviations of the solution
costs found by the ILS from the optimal solution values and the values
of speedup values with varying values of α. The table clearly shows
the efficiency of the proposed algorithm for all sets of instances. The
parameter α has a significant impact on the quality of the solution
found by the ILS. The best setting is obtained with α = 0.75, however
the average on percentage gap is less than 2%.

Numerical Results on the medium-size and large-size test instances

In this section we present a description of the results obtained for the
instances with more than 25 customers, for detailed results the reader
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Table 2.8: Average Speedup and percentage deviations of the solution costs found
by the ILS from the optimal solution values with varying α

Test
ILS

gc Speedup

5 customers

α = 0.25 2.46% 2.58
α = 0.50 0.36% 2.66
α = 0.75 0.02% 2.42

Average 0.95% 2.55

10 customers

α = 0.25 4.62% 17.49
α = 0.50 0.37% 10.50
α = 0.75 0.00% 10.34

Average 1.66% 12.78

15 customers
α = 0.25 0.92% 1895.65
α = 0.50 1.94% 1934.33
α = 0.75 0.92% 1895.65

Average 1.26% 1908.54

is referred to Appendix 2.6. Tables 2.11 to 2.14 show the results ob-
tained for the medium- and large-size instances. In particular, for
each table, the first column displays the name of the instance, while
the others give the time in seconds and the cost obtained by the ILS.
Table 2.9 summarizes the average time required by the ILS to solve
the instances. Overall, the ILS finds the solutions within short com-
putation times. Indeed, the ILS solves all instances with 25 and 30
customers within less than 20 seconds, while the instances with 50
customers are solved within less than two minutes, and the large-size
instances within about 11 minutes. Looking at the results, it is pos-
sible to conclude that the ILS is less time consuming when α is set
equal to 0.50 and 0.75. From Tables 2.11 to 2.14 it is evident that the
lower the value of α, the higher the average solution cost. This spe-
cific behaviour can be explained by observing that when the emissions
constraints are tighter, more EVs are used since only a limited num-
ber of ICCVs can be considered. Table 2.10 shows the percentage of
impact of the EVs use on the total costs. When α = 0.25, the number
of routed EVs increases and the cost associated with these vehicles is
higher than the cost of the conventional ones, in particular, it is more
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than 90% for all the classes.

Table 2.9: Summary of ILS averages time execution [seconds] for the medium- and
large-size instances

Test Time Test Time

25 customers

α = 0.25 22.89

50 customers

α = 0.25 135.29
α = 0.50 11.45 α = 0.50 126.04
α = 0.75 14.06 α = 0.75 117.09

Average 16.13 Average 126.14

30 customers

α = 0.25 22.52

100 customers

α = 0.25 679.97
α = 0.50 20.03 α = 0.50 669.98
α = 0.75 18.37 α = 0.75 647.97

Average 20.31 Average 665.97

Table 2.10: Electric Vehicle impact cost
Customers α = 0.25 α = 0.50 α = 0.75

25 93% 69% 27%
30 92% 70% 34%
50 94% 87% 82%

100 96% 91% 87%
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2.5 Conclusions

We have introduced, modelled and solved the green mixed fleet vehi-
cle routing problem with partial battery recharging and time windows.
We proposed a mathematical model and an iterated local search pro-
cedure to solve it. We conducted several computational experiments
on modified benchmark instances in order to evaluate the behaviour
of the proposed heuristic. Our test results have shown that the de-
veloped method can find good quality solutions within a reasonable
amount of time.
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2.6 Appendix

Table 2.11: Results for the instances with 25 customers

Instance
ILS

Instance
ILS

Instance
ILS

Time [s] Cost Time [s] Cost Time [s] Cost
C101C25 0.25 23.18 276.00 C101C25 0.50 11.42 256.00 C101C25 0.75 13.94 245.00
C102C25 0.25 22.54 233.00 C102C25 0.50 11.98 244.00 C102C25 0.75 15.38 227.00
C103C25 0.25 20.76 233.00 C103C25 0.50 12.80 225.00 C103C25 0.75 16.30 210.00
C104C25 0.25 22.07 225.00 C104C25 0.50 14.23 219.00 C104C25 0.75 16.56 208.00
C105C25 0.25 19.48 262.00 C105C25 0.50 12.19 259.00 C105C25 0.75 14.72 250.00
R101C25 0.25 19.84 575.00 R101C25 0.50 10.41 571.00 R101C25 0.75 13.30 570.00
R102C25 0.25 20.33 502.00 R102C25 0.50 10.97 501.00 R102C25 0.75 13.83 500.00
R103C25 0.25 21.43 431.00 R103C25 0.50 11.36 431.00 R103C25 0.75 14.50 426.00
R104C25 0.25 22.95 407.00 R104C25 0.50 12.53 410.00 R104C25 0.75 14.70 401.00
R105C25 0.25 20.83 494.00 R105C25 0.50 11.34 493.00 R105C25 0.75 13.41 494.00
RC101C25 0.25 24.07 472.00 RC101C25 0.50 9.84 473.00 RC101C25 0.75 12.27 470.00
RC102C25 0.25 26.27 392.00 RC102C25 0.50 10.95 382.00 RC102C25 0.75 13.03 380.00
RC103C25 0.25 27.25 310.00 RC103C25 0.50 10.25 311.00 RC103C25 0.75 13.27 309.00
RC104C25 0.25 27.38 371.00 RC104C25 0.50 11.28 306.00 RC104C25 0.75 14.20 309.00
RC105C25 0.25 24.93 453.00 RC105C25 0.50 10.25 450.00 RC105C25 0.75 12.19 453.00
Average 22.89 379.92 Average 11.45 372.23 Average 14.06 367.23

Table 2.12: Results for the instances with 30 nodes

Instance
ILS

Instance
ILS

Instance
ILS

Time [s] Cost Time [s] Cost Time [s] Cost
C101C30 0.25 23.53 280.00 C101C30 0.50 14.48 281.00 C101C30 0.75 13.39 266.00
C102C30 0.25 17.45 259.00 C102C30 0.50 15.36 267.00 C102C30 0.75 13.94 277.00
C103C30 0.25 18.42 274.00 C103C30 0.50 16.13 269.00 C103C30 0.75 14.88 253.00
C104C30 0.25 22.05 238.00 C104C30 0.50 18.09 241.00 C104C30 0.75 16.36 217.00
C105C30 0.25 15.66 278.00 C105C30 0.50 14.86 283.00 C105C30 0.75 13.61 271.00
R101C30 0.25 16.63 660.00 R101C30 0.50 15.19 655.00 R101C30 0.75 13.73 648.00
R102C30 0.25 18.11 576.00 R102C30 0.50 16.59 569.00 R102C30 0.75 15.44 567.00
R103C30 0.25 19.97 464.00 R103C30 0.50 17.75 456.00 R103C30 0.75 16.03 457.00
R104C30 0.25 21.75 434.00 R104C30 0.50 19.52 412.00 R104C30 0.75 17.69 415.00
R105C30 0.25 19.05 532.00 R105C30 0.50 17.67 533.00 R105C30 0.75 15.80 530.00
RC101C30 0.25 26.50 673.00 RC101C30 0.50 24.97 616.00 RC101C30 0.75 22.88 659.00
RC102C30 0.25 28.86 554.00 RC102C30 0.50 26.67 570.00 RC102C30 0.75 24.73 520.00
RC103C30 0.25 30.45 556.00 RC103C30 0.50 27.78 519.00 RC103C30 0.75 25.78 515.00
RC104C30 0.25 31.44 434.00 RC104C30 0.50 29.58 441.00 RC104C30 0.75 27.44 437.00
RC105C30 0.25 27.95 587.00 RC105C30 0.50 25.86 580.00 RC105C30 0.75 23.91 562.00
Average 22.52 453.27 Average 20.03 446.13 Average 18.37 439.60

Table 2.13: Results for the instances with 50 nodes

Instance
ILS

Instance
ILS

Instance
ILS

Time [s] Cost Time [s] Cost Time [s] Cost
C101C50 0.25 106.36 280.00 C101C50 0.50 99.40 281.00 C101C50 0.75 91.68 266.00
C102C50 0.25 124.21 259.00 C102C50 0.50 118.78 267.00 C102C50 0.75 110.03 277.00
C103C50 0.25 141.17 274.00 C103C50 0.50 135.24 269.00 C103C50 0.75 121.43 253.00
C104C50 0.25 154.66 238.00 C104C50 0.50 148.11 241.00 C104C50 0.75 136.05 217.00
C105C50 0.25 112.60 278.00 C105C50 0.50 105.58 283.00 C105C50 0.75 101.45 271.00
R101C50 0.25 91.70 660.00 R101C50 0.50 85.50 655.00 R101C50 0.75 79.67 648.00
R102C50 0.25 100.03 576.00 R102C50 0.50 93.57 569.00 R102C50 0.75 87.50 567.00
R103C50 0.25 118.16 464.00 R103C50 0.50 111.92 456.00 R103C50 0.75 102.21 457.00
R104C50 0.25 125.72 434.00 R104C50 0.50 116.50 412.00 R104C50 0.75 111.31 415.00
R105C50 0.25 107.05 532.00 R105C50 0.50 100.92 533.00 R105C50 0.75 94.86 530.00
RC101C50 0.25 150.71 673.00 RC101C50 0.50 137.31 616.00 RC101C50 0.75 130.42 659.00
RC102C50 0.25 164.07 554.00 RC102C50 0.50 152.90 570.00 RC102C50 0.75 140.48 520.00
RC103C50 0.25 180.62 556.00 RC103C50 0.50 163.60 519.00 RC103C50 0.75 153.66 515.00
RC104C50 0.25 189.57 434.00 RC104C50 0.50 173.25 441.00 RC104C50 0.75 159.48 437.00
RC105C50 0.25 162.69 587.00 RC105C50 0.50 147.95 580.00 RC105C50 0.75 136.14 562.00
Average 135.29 453.27 Average 126.04 446.13 Average 117.09 439.60



49 Chapter 2

Table 2.14: Results for the instances with 100 nodes

Instance
ILS

Instance
ILS

Instance
ILS

Time [s] Cost Time [s] Cost Time [s] Cost
C101 0.25 814.25 280.00 C101 0.50 770.15 281.00 C101 0.75 768.76 266.00
C102 0.25 852.94 259.00 C102 0.50 841.27 267.00 C102 0.75 826.15 277.00
C103 0.25 994.01 274.00 C103 0.50 922.22 269.00 C103 0.75 918.57 253.00
C104 0.25 1033.26 238.00 C104 0.50 1004.99 241.00 C104 0.75 963.90 217.00
C105 0.25 862.44 278.00 C105 0.50 841.44 283.00 C105 0.75 799.58 271.00
R101 0.25 392.67 660.00 R101 0.50 363.78 655.00 R101 0.75 357.99 648.00
R102 0.25 392.98 576.00 R102 0.50 397.04 569.00 R102 0.75 388.05 567.00
R103 0.25 532.67 464.00 R103 0.50 507.95 456.00 R103 0.75 477.32 457.00
R104 0.25 589.78 434.00 R104 0.50 543.32 412.00 R104 0.75 515.88 415.00
R105 0.25 521.50 532.00 R105 0.50 414.59 533.00 R105 0.75 456.61 530.00
RC101 0.25 527.03 673.00 RC101 0.50 506.63 616.00 RC101 0.75 508.92 659.00
RC102 0.25 546.05 554.00 RC102 0.50 699.91 570.00 RC102 0.75 655.11 520.00
RC103 0.25 781.71 556.00 RC103 0.50 753.17 519.00 RC103 0.75 691.04 515.00
RC104 0.25 840.80 434.00 RC104 0.50 786.31 441.00 RC104 0.75 735.89 437.00
RC105 0.25 517.44 587.00 RC105 0.50 697.01 580.00 RC105 0.75 655.84 562.00
Average 679.97 453.27 Average 669.98 446.13 Average 647.97 439.60
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The energy-efficient green mixed
fleet vehicle routing problem with
partial battery recharging and
time windows

We investigate a specific version of the Green Vehicle Routing
Problem, in which we assume the availability of a mixed vehicle fleet
composed of electrical and conventional (internal combustion engine)
vehicles. We allow partial battery recharging at any of the available
stations. In addition, we use a realistic energy consumption model

which takes into account speed, load cargo and gradients. We
propose a matheuristic embedded within the large neighborhood

search scheme. In a numerical study we evaluate the behaviour of
the proposed approach.

Keywords: Green vehicle routing; pollution-routing; integer linear
mathematical model; matheuristic.
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3.1 Introduction

The planning and management of freight logistics systems have tra-
ditionally aimed at improving the transportation efficiency in terms
of cost, time and profit. More recently, we have witnessed a growing
interest in the environmental aspects of transportation, such as pollu-
tion, noise and congestion. In this context, developing environmentally-
friendly and efficient transport and distribution systems, defined in
such a way to ensure the best trade-off between cost minimization
and negative environmental externalities reduction, represents an im-
portant challenge.

We consider the problem of managing electrical and conventional
vehicles with the aim of reducing the costs derived from the routing
and the recharging operations.

In particular, we investigate a vehicle routing problem with a
mixed fleet, composed by electrical and conventional diesel vehicles
that have different capacities. We propose a realistic energy con-
sumption model and we assume that partial battery recharges for
each electrical vehicle are allowed at any available recharging station.
Combining these elements makes the problem different from the other
contributions and interesting from a point of view of the realistic ap-
plications.

We propose a mathematical formulation and we design and im-
plement a matheuristic, which combines the resolution of the proposed
model and a restrict subproblem, embedded in the large neighborhood
search scheme.

3.1.1 State of the art

Here, we briefly review the most interesting scientific contributions
in green logistics (for a complete survey the reader is referred to Lin
et al. [38]). We can distinguish between two important categories
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of problems: Pollution Routing Problems (PRPs) and Green Vehicle
Routing Problems (GVRPs). The former aim at minimizing pollution,
in particular carbon emissions. The latter make use of alternative fuel
vehicles (AFVs) and alternative fuel stations (AFSs). In both cases the
main objective is to minimize energy consumption in transportation.

PRP. Bektas and Laporte [6] introduced and modeled the PRP. They
explicitly considered the effect of CO2 emissions, showed the difficulty
of solving the PRP to optimality, and mentioned the possibility of sev-
eral extensions. They proposed a non-linear mixed integer program-
ming formulation to mathematically represent the problem, whose ob-
jective is to minimize the cost of greenhouse gas (GHG) emissions, the
operational costs of drivers and fuel consumption. This work was ex-
tended by Demir et al. [13] who considered several vehicle speeds
and proposed and tested an Adaptive Large Neighbourhood Search
(ALNS) algorithm. Jabali et al. [24] focused on the Time-Dependent
VRP. They presented a model that considers travel time, fuel and CO2

emissions costs, and proposed a tabu search procedure to solve the
problem. Franceschetti et al. [20] studied the Time-Dependent PRP, a
PRP extension that takes traffic congestion into account. The authors
proposed an integer linear programming formulation and considered
a special case called the departure time and speed optimization prob-
lem. Tajik et al. [53] investigated the time window pickup-delivery
PRP. In this PRP variant, pickup and delivery operations are consid-
ered and the vehicle speed is stochastic. The authors solved a mixed
integer linear programming model (MILP) and introduced a robust
variant. Koç et al. [27] studied a PRP extension that considers a het-
erogeneous vehicle fleet. They developed and tested a metaheuristic
called HEA++.

G-VRP. One of the first articles on the G-VRP is that of Kara et al.
[25]. In this work the authors consider a capacitated VRP and propose
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a linear integer formulation in order to reduce energy consumption.

Gonçalves et al. [22] investigated the VRP with pickups and de-
liveries. They analysed three different scenarios. The first one is an
application of the VRP with pickups and deliveries with a conventional
fleet; in the second one the fleet is composed by conventional vehicles
and electrical uncapacitated vehicles; in the last one they considered
only capacitated electrical vehicles. The authors proposed a MILP
model and applied a p-median algorithm in order to decompose the
original set of customers. The problem was then solved on each cluster.
Erdoğan and Miller-Hooks [17] presented a MILP formulation for the
G-VRP. Moreover, they proposed several techniques in order to find
a solution that minimizes the total distance traveled, while incorpo-
rating stops for the refuelling of AFVs at AFSs. Vehicles are assumed
to be uncapacitated and the time window constraints are not taken
into account. Customer time windows, demands and capacity con-
straints were considered by Schneider et al. [50]. The authors focused
on the Electrical VRP with time windows (VRPTW) with Recharg-
ing Stations (E-VRPTW). Recharging vehicles at any of the available
stations is allowed, but the batteries must be fully charged. The au-
thors presented a MIP formulation and proposed a hierarchical objec-
tive function of E-VRPTW. The first objective is the minimization
of the number of vehicles; the second one is the minimization of the
total traveled distance. Their approach is a metaheuristic that com-
bines variable neighbourhood search (VNS) and tabu search. Felipe
et al. [18] described the G-VRP with Multiple Technologies and Par-
tial Recharge. Partial battery recharges and overnight depot charging
are allowed. The recharging operations can be performed with differ-
ent technologies, each of them having a different recharging time and
cost. They proposed a constructive algorithm based on a greedy gener-
ation method, a deterministic local search and a simulated annealing.
Ćirović et al. [10] investigated the G-VRP with a heterogeneous fleet
composed by environmental friendly and unfriendly vehicles. However,
when defining a route, friendly and unfriendly vehicles are considered
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separately. They use a neuro-fuzzy model to formulate the problem
under study. Goeke and Schneider [21] considered a mixed fleet of
conventional vehicles and EVs. The authors formulate the E-VRP
with time windows and mixed fleet, in which the EVs can be charged
at the available CSs. Charging times vary according to the battery
level when the EV arrives at the CS and charging is always done up
to maximum battery capacity. The authors propose a realistic energy
consumption model which considers speed, vehicle mass and gradient.
Desaulniers et al. [15] presented four variants of the E-VRPTW. In the
first one, batteries must be fully charged and at most one recharge per
route is allowed; in the second one multiple recharges are allowed, in
the third one only one partial battery recharging per route is allowed,
in the last one multiple and partial battery recharges are allowed. The
authors developed two branch-and-price-and-cut algorithms in order
to solve the problems. Hiermann et al. [23] introduced the electric
fleet size and mix vehicle routing problem with time windows and
recharging stations. They considered a heterogeneous fleet of EVs in
which each vehicle is characterised by its fixed cost, battery and load
capacity, energy consumption and charging rate. Each vehicle can
be fully charged at a CS. Koç and Karaoglan [28] developed a simu-
lated annealing heuristic based on an exact solution approach to solve
the G-VRP introduced by Erdoğan and Miller-Hooks [17]. In their
formulation, the authors introduce new decision variables in order to
allow multiple visits to the CSs without augmenting the networks with
dummy nodes. Based on this work, Leggieri and Haouari [35], pro-
posed a new formulation for the E-VRPTW. In order to assess the
effectiveness of their approach, the authors solve the proposed model
by using CPLEX and compare the results with those obtained by the
branch-and-cut algorithm proposed in Koç and Karaoglan [28].

Since the installation and operation costs of the network highly
impact on company’s strategies, several authors introduced decisions
about location and technology of CSs in the E-VRPs. Yang and Sun
[55] introduced the electric vehicles battery swap stations location



55 Chapter 3

routing problem whose aim is to determine the locations of battery
swap stations, as well as the routing plan of EVs. Li-ying and Yuan-
bin [36] focused on the EV multiple charging station location-routing
problem with time windows. Schiffer and Walther [49] introduced
the electric location routing problem with time windows and partial
recharging in which the the EVs can be charged at any node in the net-
work. Schiffer and Walther [48] proposed the location-routing problem
with intra-route facilities which focuses on determining the location
of facilities for intermediate stops. The facilities are not depots and
do not necessarily coincide with customers. Intra-route facilities allow
for intermediate stops on a route in order to keep the vehicle opera-
tional. Paz et al. [43] defined the multi-depot electric vehicle location
routing problem with time windows and a homogeneous fleet of EVs.
The authors considered the possibility to charge the EV to the CSs
or to swap the battery to the battery swap stations. The goal is to
determine the number and location of CSs and depots, as well as the
number of EVs and their routes.

The mathematical formulation proposed in our paper can be
viewed as an extension of the model presented by Erdoğan and Miller-
Hooks [17], which is the first routing model that considers recharging
stations. However significant modifications have been introduced in
order to represent the specific characteristics of the problem under
study. Schneider et al. [50] and Felipe et al. [18] have already ex-
tended the model presented in [17]. In the first contribution only
complete recharges are allowed, while in the second one the batteries
can be partially recharged with different technologies. However, in
both papers, it is assumed that the fleet is exclusively composed of
electrical vehicles. Here we extend the model in such a way to also
handle conventional vehicles. Gonçalves et al. [22] and Goeke and
Schneider [21] considered a mixed fleet. However, in both contribu-
tions, the batteries must be fully recharged. In addition, in the first
of these papers, it is assumed that the electrical vehicles are unca-
pacitated. Ćirović et al. [10] considered conventional and electrical
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vehicles which composed the fleet separately. In the problem consid-
ered in our paper, we take these two possibilities into account.

3.1.2 Aim and organization of this paper

From this literature review, it is clear that scarce attention has been
devoted to the use of a mixed vehicle fleet. The possibility of partial
battery recharging is considered if a fleet is composed of only AFVs
and the energy consumption is supposed to be proportional to traveled
distance. Nobody has combined the four features considered in our
paper, namely mixed fleet, partial battery recharging, time windows
and realistic energy consumption model. In particular, we modeled a
realistic energy consumption function which takes into account speed,
load cargo and gradients. We consider also some realistic issues related
to the life span of the battery. Indeed, full recharges can damage the
battery and the last 10% of recharge requires considerable time. Thus,
we also need to constrain the state of charge of the battery.

The remainder of this paper is structured as follows. In Section
3.2, we highlight the main characteristics of the problem under study
and describe the mathematical model developed for its representa-
tion. In particular we use two energy consumption models for the
conventional and electric vehicles described in Sections 3.2.1 and 3.2.2
respectively. Section 3.3 describes the algorithm proposed to solve the
problem. In Section 3.4 we describe the computational experiments
and we present the results. Section 3.5 summarizes the conclusions.
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3.2 The energy-efficient green mixed fleet vehicle

routing problem with partial battery recharg-

ing and time windows

We formulate our problem as follows. Let N be the set of customers,
and let R be the set of recharging stations. We will also need copies of
recharging stations to account for multiple visits at the same stations.
Thus, let R′ be the set of all stations and their copies, i.e. R ⊂ R′.
Let V = R∪N and V ′ = R′ ∪N . The problem will be defined on the
graph G(V ′, A), where A is the set of arcs.

The depot 0 is a particular element belonging to the set R′, that
is the recharging station where vehicle routes start and its dummy
copy 0′ is the node where the routes end. Each customer i ∈ N has a
demand qi (in kg) and a service time si (in hours). All customers must
be visited by a single vehicle. Each node i ∈ V ′ has a time window
[ei, li].

For each (i, j) ∈ A, dij denotes the distance from i to j [km],
while tij the travel time from i to j [hours].We impose a limit T on
the duration of a route [hours], that is, the end of the time window
associated with the depot node is set equal to T .

A heterogeneous fleet of vehicles, composed of nE electrical vehi-
cles and nC conventional vehicles, is available. The two types of vehi-
cles (electrical and conventional) are characterized by different capaci-
ties, denoted as QE

max and QC
max [kg] for the electrical and conventional

vehicles, respectively, and different curb weight denoted by wE and wC

respectively. Furthermore, for each electrical vehicle let B denote the
maximum battery capacity [kWh], while for each conventional vehi-
cle BC is the fuel tank maximum capacity [L]. The recharging cost
[e/kWh] is equal to ω.

Each recharging station i ∈ R′ has a charging mode (i.e., slow,
moderate, fast), thus it is characterized by a recharging speed ρi [kWh
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per hour]. Partial battery recharging is allowed at any recharging
station.

3.2.1 The fuel consumption for the conventional vehicles

We define an energy consumption model by following the ideas pre-
sented in [6]. To this end, we first calculate two constant α and β as
follows:

α = a+ gsinθ + gCrcosθ, (3.1)

with a denoting the acceleration [m/s2], assumed to be zero, while g
denotes the gravitational constant (9.81 m/s2), the angle of the road
is θ, assumed to be zero, and Cr is the coefficient of rolling resistance:

β = 0.5CdAρ, (3.2)

where Cd is the drag coefficient, A is the frontal surface Area [m2],
and ρ is the air density [kg/m3)]. Let uj be the amount of cargo (in
kg) when arriving at node j, the mechanical power is calculated as
follows:

pMij (uj) = [α(uj + w) + βv2
ij]vij, (3.3)

where w denotes the curb weight of the vehicle (in kg) and vij is the
speed [m/s], assumed to be constant. We use the emission model of
Barth et al. [5] and Barth and Boriboonsomsin [4], applied to the
PRP by Bektas and Laporte [6], Demir et. al [13], Koç et. al [27] to
estimate fuel consumption, thus we convert the mechanical power into
fuel consumption. The fuel consumption rate FRij(uj) [L/s] is given
by

FRij(uj) = ξ(kNeDe + pMij (uj)/ηeηdt)/κΨ, (3.4)

where ξ is the fuel-to-air mass ratio, k is the engine friction factor
[kJ/rev/L], Ne is the engine speed [rev/s], De is the engine displace-
ment [L], pMij (uj) is the mechanical power [kW], ηe and ηdt are the
efficiency parameter for diesel engines and the drive train efficiency
respectively, while κ is the heating value of a typical diesel fuel [kJ/g]
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and Ψ is a conversion factor from [g/s] to [L/s]. Therefore, the fuel
consumption for traversing an arc (i, j) with the cargo uj can be writ-
ten as

fij(uj) = tijFRij(uj). (3.5)

3.2.2 The energy consumption for the electric vehicles

We calculate the energy consumption pEij(uj) [KW] from a node i to
a node j, starting from the mechanical power pMij (uj) described in
equation (3.3):

pEij(uj) = (pMij (uj)/η)tij, (3.6)

where η is the energy efficiency from battery-to-wheels and it is given
by η+ in motor mode (i.e. pEij(uj) is positive and it represents the
discharged electric energy) and η− in recuperating mode (i.e. pEij(uj)
is negative and it represents the recuperated electric energy). In par-
ticular

η =

{
η+ ≤ 1, if pEij(uj) is positive, and 0 ≤ pMij (uj) ≤ 100 KW

η− ≥ 1, if pEij(uj) is negative, and −100 ≤ pMij (uj) ≤ 0 KW
.

(3.7)

3.2.3 The mathematical model

In order to model the problem we define the decision variables as fol-
lows:

xEij =

{
1, the electrical vehicle travels from i to j

0, otherwise
(i, j) ∈ A

xCij =

{
1, the conventional vehicle travels from i to j

0, otherwise
(i, j) ∈ A

zEj amount of energy available when arriving at node j [kWh], j ∈ V ′
zCj amount of fuel available when arriving at node j [L], j ∈ V ′
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zdepotEi0′ amount of energy available when arriving at depot 0′ from node
i [kWh], i ∈ V ′
zdepotCi0′ amount of fuel available when arriving at depot 0′ from node i
[L], i ∈ V ′
gij amount of energy recharged by the electrical vehicle at the node i
for travelling to j [kWh], i ∈ R, j ∈ V ′
pEij amount of energy necessary to travels from i to j; i, j ∈ V ′
τj arrival time of the vehicle to the node j [h], j ∈ V ′
uCi amount of load left in the conventional vehicle after visiting node
i [kg], i ∈ V ′
uEi amount of load left in the electric vehicle after visiting node i [kg],
i ∈ V ′
The Mixed Integer Program that models our problem is reported in
what follows.

Minimize
∑
i∈R′

∑
j∈V ′

ωgi gij + ωe
∑

i∈V ′\{0′}
(BE − zdepotE

i0′ ) + ωf
∑

(i,j)∈A
fij(u

C
i ) +

∑
(i,j)∈A

cdij(x
E
ij + xCij) (3.8)

subject to
∑
j∈V′

(xEij + xCij) = 1, i ∈ N (3.9)

∑
j∈V′

xEij ≤ 1, i ∈ R′ (3.10)

∑
j∈V′\{0}

xEij −
∑

j∈V′\{0′}
xEji = 0, i ∈ V ′ (3.11)

∑
j∈V\{0}

xCij −
∑

j∈V\{0′}
xCji = 0, i ∈ V (3.12)

∑
j∈V′

xE0j ≤ nE (3.13)

∑
j∈V

xC0j ≤ nC (3.14)

τj ≥ τi + (tij + si)x
E
ij −M(1− xEij), i ∈ N , j ∈ V ′ (3.15)

τj ≥ τi + (tij + si)x
C
ij −M(1− xCij), i ∈ V, j ∈ V (3.16)

τj ≥ τi + tijx
E
ij +

1

ρi
gij −M(1− xEij), i ∈ R′, j ∈ V ′ (3.17)

ej ≤ τj ≤ lj , j ∈ V ′ (3.18)

uEj ≥ uEi + qjx
E
ij −QEmax(1− xEij), i ∈ V ′\

{
0, 0′

}
, j ∈ V ′\ {0} (3.19)

uCj ≥ uCi + qjx
C
ij −QCmax(1− xCij), i ∈ V\

{
0, 0′

}
, j ∈ V\ {0} (3.20)

uC0 = 0 (3.21)

uE0 = 0 (3.22)

zEj ≤ zEi − pij(uEi ) +B(1− xEij), i, j ∈ V ′\
{
0, 0′

}
(3.23)

zEj ≤ zEi + gij − pij(uEi ) +B(1− xEij), i ∈ R′, j ∈ V ′\
{
0, 0′

}
(3.24)

zE0 = 0.9B (3.25)

zdepotE
i0′ ≤ zEi − pi0′ (uEi ) +B(1− xEi0′ ), i ∈ V ′\

{
0, 0′

}
(3.26)

zdepotE
i0′ ≤ zEi + gi0′ − pi0′ (uEi ) +B(1− xEi0′ ), i ∈ R′ (3.27)
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0 ≤ zdepotE
i0′ ≤ 0.9BExEi0′ , i ∈ V ′\{0′} (3.28)

0.1B ≤ zEj ≤ 0.9B, j ∈ V ′\{0} (3.29)

gij ≤ 0.9B − zEi +B(1− xEij), i ∈ R′, j ∈ V ′ (3.30)

pEij ≥ ([α(uEi + wE) + βv2
ij ]vij)tij/η

+, i, j ∈ V ′ (3.31)

pEij ≥ ([α(uEi + wE) + βv2
ij ]vij)tij/η

−, i, j ∈ V ′ (3.32)

zCj ≤ zCi − fij(uCi ) +BC(1− xCij), i, j ∈ V \
{
0′
}

(3.33)

0 ≤ zCj ≤ BC , j ∈ V \{0} (3.34)

zC0 = BC (3.35)

zdepotC
i0′ ≤ zCi − fi0′ (uCi ) +BC(1− xCi0′ ), i ∈ V \

{
0′
}

(3.36)

0 ≤ zdepotC
i0′ ≤ 0.9BCxCi0′ , i ∈ V \

{
0′
}

(3.37)

xEij , x
C
ij ∈ {0, 1}, i ∈ V ′, j ∈ V ′;uEi , uCi , τi ≥ 0, i ∈ V ′,

gij ≥ 0, i ∈ R′, j ∈ V ′. (3.38)

The objective function is the sum of three terms. The first one,
that is

∑
i∈R′

∑
j∈V ′ ω

g
i gij, is the cost of the energy recharged during the

route. In particular ωgi is the unit cost of recharge [e/kW] at station
i and it depends of the available technology at station i. The second
one (ωe

∑
i∈V ′\{0′}(B

E− zdepotEi0′ )) is the cost of the energy recharged to
the depot, the unit cost of energy is ωe [e/km]. The third one, that is
ωf
∑

(i,j)∈A fij(u
C
i ) is the fuel cost, with ωf the unit cost of fuel [e/L].

The last one,
∑

(i,j)∈A cdij(x
E
ij +xCij) is the travel cost. The constraints

(3.9) ensure that each customer is visited exactly once, whereas con-
ditions (3.10) impose that each recharging station can be visited at
most once. Constraints (3.11) and (3.12) are the flow conservations
constraints, whereas conditions (3.13) and (3.14) ensures that the to-
tal number of used vehicles (electrical and conventional, respectively)
is less than the available ones. Constraints (3.15)–(3.17) define the
variables τ , whereas the time windows constraints are represented by
conditions (3.18). Conditions (3.19)–(3.22) represent the capacity con-
straints, for the electrical and the conventional vehicles. Constraints
(3.23) and (3.24) define the variables zE ensuring that the capacity
of the electric vehicles battery is not exceeded and conditions, in par-
ticular after visiting a customer and a recharge stations respectively.
Constraint (3.25) ensures that the vehicle is full charged at starting
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node, while constraints (3.26) and (3.27) define the amount of energy
available when the vehicles arrive at ending node. Constraints (3.30)
are used to represent the partial battery recharging. Constraints (3.32-
3.33) linearise the energy consumption as described in Section 3.2.2.
Constraints (3.33) set the fuel level equal to the maximum fuel tank
capacity reduced by the fuel necessary to traverse the arc, constraints
(3.34) and (3.35) restrict the fuel level, while constraints (3.36) and
(3.37) define the available amount of fuel and restrict the fuel level
for the ending node respectively. Finally, conditions (3.38) define the
domains of variables.

3.3 A matheuristic algorithm

We have developed a matheuristic to solve our problem. In particular,
we propose a hybrid version of large neighborhood search (HLNS) algo-
rithm introduced by Shaw [51], which iteratively removes and inserts
customers from the routes in the solution. We generated an initial
feasible solution Γcurrent by solving the proposed model with CPLEX.
We fixed a limit t̄ on the execution time. We random applied removal
and insertion operators obtaining the solutions Γremove and Γinsert re-
spectively. Contrary to the majority of contributions on LNS, which
work only with feasible solutions, we relaxed the battery capacity con-
straints for the EVs and we allowed infeasible insertion in the route.
Since the electric routes could be infeasible, we applied a repair phase.
In order to repair the solution by inserting CSs in the infeasible routes,
we solved the E-VRP counterpart of the model presented in Section
3.2.3. The E-VRP takes into account the constraints 3.9–3.11, 3.13,
3.15, 3.17–3.19, 3.22–3.32 , 3.36, and the variables related to the EVs,
thus we obtain Γtemporary. The procedure was repeated with the best
solution found Γbest or an accepted current solution whose cost is mi-
nor than cost (Γbest) υ where υ is a tolerance input parameter, until
the stopping criteria (i.e. a maximum number of iterations kmax) was
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met.

Algorithm 4 . Hybrid large neighborhood search (HLNS)

Generate the initial solution Γcurrent

Γcurrent → Γbest

while k < kmax do
Apply a removal operator to Γcurrent and obtain Γremove

Apply a insertion operator to Γremove and obtain Γinsert

Apply a repair using CPLEX to solve the E-VRP counterpart and obtain
Γtemporary

if cost(Γtemporary) < cost(Γbest) then
Γtemporary → Γbest

Γtemporary → Γcurrent

k = 0
else if cost(Γtemporary) < cost(Γbest) υ) then

Γtemporary → Γcurrent

k ← k + 1
else
k ← k + 1

end if
end while
return best solution Γcurrent

3.3.1 Removal and Insertion operators

We now describe our removal and insertion operators. Removal op-
erators remove ζ customers and then place them in a removal list.
The value of ζ is selected from an interval [ζ−, ζ+], where ζ− and ζ+

are input parameters. Insertion operators insert ζ customers in the
destroyed solution by following several rules. We introduce a tempo-
rary tabu status which forbids the insertion (removal) of customers in
(from) routes which have been recently removed (inserted) from (in)
routes. We introduce a temporary tabu status which forbids the in-
sertion of customers in routes which have been recently removed from
routes, as well as the removal of customers which have been recently
inserted in routes.



64 Chapter 3

Removal operators

Our ALNS uses the following four destroy operators:

1. Random removal: iteratively removes ζ customers from a so-
lution.

2. Worst distance removal: iteratively removes the unfavorable
customers. The operator sorts all the customers in descending or-
der of cost, where the cost is the sum of distances of the customer
from the preceding and succeeding nodes in the route.

3. Worst time removal: similar to the worst distance removal,
the operator sorts all the customers in descending order of cost,
where cost for a node i is calculated as |τi − ei|.

4. Route removal: this operator randomly selects a route and
remove it from the solution.

Insertion operators

We use three insertion operators. During the insertion of customers
in routes, we relax the battery capacity constraints, hence we allow
infeasible solutions for EV-routes.

• Greedy insertion: iteratively determines the best insertion po-
sition for a customer by calculating the insertion cost between
two nodes in the route.

• Greedy new route insertion: this operator initializes a new
route, electric or conventional by evaluating the insertion cost of
a customer between the starting and ending nodes.

• GRASP insertion: this operator sorts customers in a list of
size L in ascending order of insertion cost. Then it selects the
next customer to be inserted among the best rGRASP insertions,
where rGRASP is a random number in [0, rGRASPL/2].
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3.4 Computational study

This section presents the results of our preliminary computational ex-
periments. We tested the implemented algorithm on instances inspired
from the scientific literature (see [52] and [50]). We solved the model
with CPLEX 12.5, by imposing a time limit of three hours. The HLNS
was implemented in Java. All computations were performed on an In-
tel 2.60 GHz processor and 16 GB of RAM. Tables 3.1 summarizes
the parameter setting used for our computational results.

Table 3.1: Setting of conventional and electrical vehicles parameters
Notation Description Value
g Gravitational constant [m/s2] 9.81
θ Road angle 0
Cr Coefficient of rolling resistance 0.01
Cd Drag coefficient 0.7
A Frontal surface Area [m2] 3.912
ρ Air density [kg/m3] 1.225
w Curb weight (kg/m3] 6350
v Speed [m/s] 13.88
ξ Fuel-to-air mass ratio 1
k Engine friction factor [kJ/rev/L] 0.2
Ne Engine speed [rev/s] 33
De Engine displacement [L] 5
ηe Efficiency parameter for diesel engines 0.9
ηdt Drive train efficiency 0.4
κ Heating value of a typical diesel fuel [kJ/g] 44
Ψ Conversion factor [g/L] 737
BC Fuel tank maximum capacity [kg]) 3650
B Maximum battery capacity [kWh] 80
ρ Recharging speed [W/min] 0.0083
ωgi Unit cost of recharge at station i [e/kW] 0.4
ωe Unit cost of energy [e/kW] 0.17
ωf Unit cost of fuel (e/L) 1.3
c Driver wage [e/km] 0.195

The remainder of this section is organized as follows. In Section
3.4.1 we describe the generation of instances, in Section 3.4.2 we com-
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pare our electrical energy consumption model to the classical one in
which energy consumption is proportional to the travelled distance.
In Section 3.4.3 we present the results of our matheuristic on small-
size instances with ten and 15 customers. In Section 3.4.4 we test our
HLNS on the medium-size instances

3.4.1 Generations of instances and experimental setting

For each E-VRPTW instance, with customer locations (ai,bi), we gen-
erate the charging station in the square (miniai, minibi) and upper
right hand corner (maxiai, maxibi) by solving a location problem. Let
N be the set of customers defined in Section 3.2 and Y be the set of
candidate charging stations. We define the decision variables as fol-

lows: yj =

{
1, charging station j is activated

0, otherwise
j ∈ Y

xij =

{
1, customer i is served by j

0, otherwise
i ∈ N , j ∈ Y

Thus we formulate and solve the following problem:

Minimize
∑
i∈R

∑
j∈Y

pijxij + cf
∑
j∈Y

yj (3.39)

subject to pijxij ≤ BEyj, i ∈ N , j ∈ Y (3.40)

pijxij ≥ 1, i ∈ N (3.41)∑
j∈Yyj

≥ H (3.42)

xij ∈ {0, 1} i ∈ N , j ∈ Y (3.43)

yj ∈ {0, 1} j ∈ Y, (3.44)

where H is a minimum number of charging stations that we want
to activate. We calculate pij as described in Section 3.2.2. We fix a
configuration by considering a partially laden vehicle in recuperating
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mode. With this configuration, we ensure that each customer may be
reached by using at least one charging station.

3.4.2 Proportional consumption model vs Energy consump-
tion model

To assess the importance of the proposed energy consumption model,
we have conducted several computational experiments. We have com-
pared solutions obtained by using the proposed electrical energy func-
tion, which depends on several realistic factors, with those obtained
assuming that electrical energy consumption is proportional to the
travelled distance, as commonly used in the literature. The exper-
iments consist of solving to optimality a set of small-size instances
with five customers, and comparing solutions in terms of cost and
feasibility (i.e. since the proportional model may underestimate the
energy consumption, some configurations generated using this model
may be infeasible when our realistic energy consumption model is con-
sidered. More specifically, constraints (3.23)–(3.24) and (3.26)–(3.30)
of the MIP model presented in Section 3.2.3 are not satisfied). We
have considered optimal solutions delivered by the MILP proposed in
Section 3.2.3. Table 3.2 presents the results. For each instance we re-
port its name, the percentage error in cost (pe) calculated as (Objnew−
Objprop)/Objnew, where Objprop is the objective function obtained by
using the proportional consumption model and Objnew is the objec-
tive function obtained by using our consumption model, the difference
in consumption energy (de), calculated as the difference between the
energy spent calculated with our consumption model and the energy
spent calculated with the proportional model. In the last column,
we report the infeasible solutions obtained by using the proportional
model (no feasible solution NFS).

Table 3.2 clearly shows that all the values of energy consump-
tion calculated by the proportional consumption model are under-
estimated. Objnofunction is always lower than Objfunction, due to the
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Table 3.2: Comparison of our proposed energy consumption model and proportional
energy consumption model

Test pe de NFS
MF C101 5 9% - NFS
MF C103 5 9% 35021.41
MF C206 5 9% - NFS
MF C208 5 9% 36364.84
MF R104 5 5% 18993.37
MF R105 5 6% 24255.30
MF R202 5 9% 30196.18
MF R203 5 9% - NFS

MF RC105 5 4% 26238.40
MF RC108 5 3% 26140.77
MF RC204 5 9% - NFS
MF RC208 5 9% 38839.69

inaccurate calculation of electrical energy consumption. On average,
the percentage error in cost is about 7%, and four solutions out of 12
are infeasible. Table 3.3 reports an example of the solution obtained
for MF C101 5 by using the two different models. To obtain a feasi-
ble solution, we have relaxed the battery constraints in the proposed
MILP and we have calculated the energy consumption on each arc,
as showed in Figure 3.1. In particular, on each arc, we report the
distance [km] and on each node i the collected cargo ui [kg]. We also
report the energy spent on each arc [kWh], calculated by the pro-
portional consumption model and by our proposed one. The results
clearly demonstrate that the proportional consumption model under-
estimates the values of energy spent. On average, on each arc the real
energy spent is 66% more than the energy calculated with the propor-
tional model. In conclusion, using a proportional consumption model
simplifies the problem but can lead to solutions that are infeasible or
have objective functions that are, on average, about 7% cheaper than
the realistic ones.
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Table 3.3: Solution obtained for MF C101 5

Test Energy Consumption model Total Cost Energy spent #electrical
MF C101 5 Proportional 70.27 20832,03 1

Energy function 85.66 60740.73 1

Figure 3.1: Rapresentation of solution obtained for MF C101 5

0 5 6 7 8 9 10

u0=0 u5=10 u6=30 u7=50 u8=80 u9=90

20.61 30.41 30.00 28.17 36.05 21.54

Proportional model p05=2576.94 p56=3801.73 p67=3749.99 p78=3522.30 p89=4506.88 p910=2644.17

Energy function p05=7476.37 p56=11040.69 p67=10911.98 p78=10296.47 p89=13179.22 p910=7881.39

3.4.3 Evaluation of the HLNS performance

In order to assess the performance of our proposed LNS, we first solved
the problem using CPLEX, and we then compared the results with
those obtained with the HLNS. We evaluate the performance of the
proposed heuristic along two dimensions: solution quality and com-
putational effort. We used the parameter setting presented in Table
3.4.

Table 3.4: Parameters setting for instances with ten and 15 customers
10 customers 15 customers

kmax 5 10
t̄ [seconds] [10–20] [10–50]
nC 1 1
nE 1 1

Tables 3.5 and 3.6 summarize the results obtained for instances
with ten and 15 customers respectively. The first column shows the
name of instances, in the second one gcost represents the percentage gap
in cost defined as gcost = (cH − cM)/cM , where cH is the cost provided
by the heuristic and cM is the cost obtained solving the model. In the
third column we report the speedup value i.e. the ratio between the
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computational overhead of the heuristic and the computational time
required by CPLEX. The entries in bold are those for which CPLEX
finds an optimal solution.

The results presented in Tables 3.5 and 3.6 clearly demonstrate
the advantage, in terms of efficiency, of the proposed matheuristic.
Overall, the algorithm is less time consuming than CPLEX. The LSN
is on average about 905 and 80 times faster than CPLEX for instances
with ten and 15 customers respectively. It is worth observing that our
matheuristic is also effective, the gap on cost for this class of instances
is on average less than 1%. In particular, for those instances with
ten customers, the HLNS finds the same solution as CPLEX for five
instances and outperforms CPLEX for one instance. The average on
the cost gap is 0.9%. For instances with 15 customers our matheuris-
tic outperforms CPLEX finding the best solution for two instances:
“MF R10215” and “MF R20215”, and the average on the cost gap is
0.7%.

Table 3.5: Computational results for instances with ten customers
Test g cost Speedup
MF C101 10 0.0% 1018.75
MF C104 10 0.0% 1136.48
MF C202 10 0.0% 5259.74
MF C205 10 1.1% 226.99
MF R102 10 0.4% 96.34
MF R103 10 0.9% 696.86
MF R201 10 5.5% 637.35
MF R203 10 2.6% 93.14
MF RC102 10 -3.1% 115.80
MF RC108 10 0.0% 31.55
MF RC201 10 0.0% 1262.14
MF RC205 10 3.8% 284.28
Average 0.9% 904.95
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Table 3.6: Computational results for instances with 15 customers
Test g cost Speedup
MF C103 15 5.2% 138.55
MF C202 15 4.6% 29.49
MF C208 15 2.5% 88.58
MF R102 15 -7.2% 4.19
MF R105 15 0.1% 76.05
MF R202 15 -4.4% 177.89
MF RC103 15 2.0% 76.58
MF RC202 15 2.0% 64.64
MF RC204 15 1.7% 62.92
Average 0.7% 79.88

3.4.4 Numerical results on the medium-size instances

Now we present the computational results on instances with 20, 25, 30
and 35 customers. We used the parameter setting presented in Table
3.7.

Table 3.7: Parameters setting for medium-size instances
20 25 30 35

kmax 10 10 10 10
t̄ [seconds] [10–50] [20–50] [20–100] [20–100]
nC 1 1 2 2
nE 1 1 2 2

Table 3.8 summarize the results obtained for medium-size in-
stances. The first column displays the name of the instance, the sec-
ond one the computational time [ms], the third one the total cost,
the fourth and fifth columns show the number of conventional and
electrical vehicles respectively. We also report, in the last line of each
class of instances, the average for all the statistics. Overall, the HLNS
finds solutions within a reasonable amount of time. Indeed, it solves
instances with 20, 25 and 35 customers in about two minutes, and
with 30 in about seven minutes. On average, our matheuristic solve
the medium-size instances in about four minutes.
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Table 3.8: Computational results for medium-size instances
Test Time Objective #conventional #electrical
MF C101 20 250929 64.40 0 1
MF C102 20 110550 86.04 1 1
MF C103 20 150830 65.12 0 1
MF C104 20 10147 65.33 1 0
MF C105 20 130547 74.50 1 1
Average 130600.6 71.07 0.6 0.8
MF C101 25 50207 89.81 1 0
MF C102 25 250539 89.17 1 1
MF C103 25 250665 85.08 1 1
MF C104 25 50179 76.33 1 0
MF C105 25 250777 91.76 1 1
Average 170473.4 86.43 1 0.6
MF C101 30 491303 127.62 1 1
MF C102 30 371751 99.63 1 1
MF C103 30 611694 120.50 1 1
MF C104 30 250645 111.25 1 1
MF C105 30 451099 95.68 1 1
Average 435298.4 110.93 1 1
MF C101 35 271169 193.67 2 1
MF C102 35 161392 141.85 1 1
MF C103 35 130821 149.66 1 1
MF C104 35 271653 161.35 1 1
MF C105 35 20337 143.13 2 0
Average 171074.40 157.92 1.4 0.80

3.5 Conclusions

In this work we have investigated a new and realistic green vehicle
routing problem variant. In particular, we have considered a mixed
fleet composed of electrical and conventional vehicles, with time win-
dows associated with each customer and partial battery recharging.
We have modeled a realistic energy consumption, which takes into
account several real-life parameters. We have defined a mixed inte-
ger program whose aim is to route the fleet of vehicles in order to
serve all the customers satisfying the time window constraints, min-
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imizing the transportation and the recharging costs. To highlight
the importance of the proposed energy consumption model, we have
shown that models which considers energy consumption proportional
to travelled distance may lead to infeasible solutions. We have then
proposed a matheuristic based on large neighborhood search for the
problem. In order to validate the model and to assess the performance
of our proposed heuristic, we have solved the model with CPLEX for
small instances. Overall, the matheuristic is less time consuming than
CPLEX. We have also shown that our HLNS can solve medium-size
instances within a reasonable amount of time.
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Chapter 4

The Vehicle Routing Problem
with Occasional Drivers and
TimeWindows

Abstract

In this paper, we study a variant of the Vehicle Routing Problem with
Time Windows in which the crowd-shipping is considered. We suppose
that the transportation company can make the deliveries by using its
own fleet composed of capacitated vehicles and also some occasional
drivers. The latter can use their own vehicle to make either a single
delivery or multiple deliveries, for a small compensation. We introduce
two innovative and realistic aspects: the first one is that we consider
the time windows for both the customers and the occasional drivers;
the second one is the possibility for the occasional driver to make mul-
tiple deliveries. We consider two different scenarios, in particular, in
the first one multiple deliveries are allowed for each occasional driver,
in the second one the split delivery policy is introduced. We propose
and validate two different mathematical models to describe this in-
teresting new setting, by considering several realistic scenarios. The
results show that the transportation company can achieve important
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advantages by employing the occasional drivers, which become more
significant if the multiple delivery and the split delivery policy are
both considered

Keywords: Vehicle Routing Problem; Crowd-shipping; Occasional
Drivers.

4.1 Introduction

In the last years the growing importance of shorter delivery lead times
has led the companies to create innovative solutions to organize the
last-mile and same-day delivery. In this context, the “sharing econ-
omy” has attracted a great deal of interest. Sharing assets and capac-
ities can enhance the use of resource and become a new opportunity
to pursue the efficiency in transportation issue. One of the innova-
tive solution is the crowd-shipping, i.e. ordinary people bring items
for other people en-route to their destination. The rapid growth in
on-line retailing has encouraged the retailers to develop innovative so-
lutions of last-mile delivery. Walmart, DHL and Amazon are among
those big retailers who started to use the crowd-shipping and its po-
tential. Walmart, in 2013, announced it was working on a plan to
outsource some of its deliveries to its on-line customers.

“MayWays” is the pilot last-mile crowd-shipping service of DHL
in Stockholm. Thus, people in Stockholm, mostly students, can use a
smartphone app in order to see the uploaded requests. Whereupon,
they can decide if they want to pick up the package at a DHL facility
and deliver it to the final destination. In 2015, Amazon launched its
new service of crowd-shipping, called Amazon Flex, and nowadays it
is already used in more than 30 cities in the world. People use the
Amazon Flex app to become a delivery partner and set their own
schedule.

In this context, crowd-shipping seems to be a new transport solu-
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tion that offers several potential benefits. The crowd-shipping strategy
exploits the personal vehicles capacity that usually travel on roads.
This can be useful to reduce the need for separate freight deliveries
and it allows to exploit the whole capacity of a vehicle, that is not fully
used. There is also a “green” aspect that can be taken into account, in
particular, the sharing of the vehicles can lead to the reduction of the
pollutant emissions, the energy consumption, the noise and the traf-
fic. In Arslan et al. [2], the authors analyze the potential benefits of
crowd-sourced delivery. They present a complete literature review of
the recent contributions dealing with crowd-sourcing. They consider a
peer-to-peer platform, taking into account the possibility to use both
traditional vehicles and ad-hoc vehicles. They also present a rolling
horizon framework and an exact solution approach to solve the routing
planning problem. In this work, we propose a variant of the Vehicle
Routing Problem with Time Windows (VRPTW), starting from the
work presented in Archetti et. al [1], in which the crowd-shipping is
considered. In Archetti et. al [1], the authors propose a new problem
called VRPOD (Vehicle Routing Problem with Occasional Drivers).
In the VRPOD, the transportation company can make the deliveries
not only by using its own fleet composed by capacitated vehicles, but
also by making use of the services of some occasional drivers (ODs).
The latter can use their own vehicle to make a single delivery, for a
small compensation calculated by evaluating the deviation from their
predefined route. They propose an integer programming formulation
for the VRPOD and develop a multi-start heuristic, which combines
variable neighbourhood search and tabu search. We introduce two
innovative aspects to the problem proposed in Archetti et. al [1]. The
first one is that we consider time windows constraints for both the cus-
tomers and the occasional drivers (VRPODTW); indeed, it is merely
improbable that an occasional driver is all the time available to make
the delivery to the customers. The second one is the possibility for the
ODs to make not only a single delivery. As a matter of fact, if on the
occasional driver’s way there is more than one customer to be served,
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and the constraints related to time and load are satisfied, the multiple
delivery is allowed. The proposed mathematical models are described
in Section 4.2. The computational experiments are presented in Sec-
tion 4.3. Finally, section 4.3.3 summarizes the conclusions.

4.2 The Vehicle Routing Problem with Occasional

Drivers

We model the problem on a complete directed graph G = (N,A), with
node set N = C∪{s, t}∪V , where C is the set of customers while s is
the origin node and t is destination node for the classic vehicles. Let A
be the set of arcs. K is the set of available ODs while V is the set of vk
destinations associated with the ODs. Each arc (i, j) ∈ A has a cost cij
and a time ti,j associated with it. Note that both cij and tij satisfy the
triangle inequality. Each node i ∈ C ∪ V has a time windows defined
as [ei, li]. Each customer i ∈ C has a demand di. Q is the capacity of
the classic vehicles, P is the number of available classic vehicles, while
Qk is the capacity of OD k ∈ K. Let xij be a binary variable that is
equal to 1 if a classical vehicle traverses the arc (i, j), and 0 otherwise.
For each node i ∈ N let yi be the available capacity of the vehicle after
visiting customer i, while si is the arrival time of the vehicle to the
customer i. Moreover rkij is a binary variable that is equal to 1 if the
OD k traverses the arc (i, j), 0 otherwise. Let fki indicate the arrival
time of OD k to the customer i and let wk

i be the available capacity
of OD k after visiting customer i. At first we consider the scenario
in which multiple deliveries for the OD are allowed and we called this
version: VRPODTWmd. The VRPODTWmd can be formulated as
follows:
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Minimize
∑

i∈C∪{s}

∑
j∈C∪{t}

cijxij +
∑
k∈K

∑
i∈C∪{s}

∑
j∈C

ρcijr
k
ij −

∑
k∈K

∑
j∈C

csvkr
k
sj (4.1)

subject to
∑

j∈C∪{t}

xij −
∑

j∈C∪{s}

xji = 0, ∀i ∈ C (4.2)

∑
j∈C

xsj −
∑
j∈C

xjt = 0 (4.3)

yj ≥ yi + djxij −Q(1− xij), ∀j ∈ C ∪ {t}, i ∈ C ∪ {s} (4.4)

ys ≤ Q (4.5)

sj ≥ si + tijxij − α(1− xij), ∀i ∈ C, j ∈ C (4.6)

ei ≤ si ≤ li, ∀i ∈ C (4.7)∑
j∈C

xsj ≤ P (4.8)

∑
j∈C∪{vk}

rkij −
∑

h∈C∪{s}

rkhi = 0, ∀i ∈ C, k ∈ K (4.9)

∑
j∈C∪{vk}

rksj −
∑

j∈C∪{s}

rkjvk = 0, ∀k ∈ K (4.10)

∑
k∈K

∑
j∈C∪{vk}

rksj ≤ |K| (4.11)

∑
j∈C

rksj ≤ 1, ∀k ∈ K (4.12)

wkj ≥ wki + dir
k
ij −Qk(1− rkij), ∀j ∈ C ∪ {vk}, i ∈ C ∪ {s}, k ∈ K(4.13)

wks ≤ Qk, ∀k ∈ K (4.14)

fki + tijr
k
ij − α(1− rkij) ≤ fkj , ∀i ∈ C, j ∈ C, k ∈ K (4.15)

fki ≥ evk + tsi, ∀i ∈ C, k ∈ K (4.16)

fkvk ≤ lvk , ∀k ∈ K (4.17)

fki + tivkr
k
ivk
− α(1− rkivk) ≤ fkvk , ∀i ∈ C, k ∈ K (4.18)

ei ≤ fki ≤ li, ∀i ∈ C (4.19)∑
j∈C∪{t}

xij +
∑

h∈C∪{vk}

∑
k∈K

rkih = 1, ∀i ∈ C (4.20)

xij ∈ {0, 1} , ∀(i, j) ∈ A (4.21)

rkij ∈ {0, 1} , ∀(i, j) ∈ A, k ∈ K (4.22)

0 ≤ yi ≤ Q, ∀i ∈ C ∪ {s, t} (4.23)

0 ≤ wki ≤ Qk, ∀i ∈ C ∪ {s, vk}, k ∈ K (4.24)

fki ≥ 0, ∀i ∈ C ∪ {s, vk}, k ∈ K (4.25)
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The objective function 5.1 aims to minimize the total costs. The
first term is the transportation cost associated with the vehicles. The
second term is the cost of compensation of the OD k for the delivery
service with ρ ≥ 0, the third one is the cost of the OD k when it
does not perform the delivery service. Constraints 5.2-5.8 are linked
to the classical vehicles. Constraint 5.2-5.3 are the flow constraints.
Constraints 5.4 guarantee the fulfilment of demand at customer ver-
tices. Constraints 5.5 restrict the initial cargo load level to the max-
imum capacity of a vehicle. Constraints 5.6 allow to determine the
arrival time at node j, while constraints 5.7 guarantee arrival within
the time window at each node. Constraint 5.8 imposes a maximum
number of available vehicles. Constraints 5.9-5.19 are linked to the
ODs. Constraints 5.9-5.10 are the flow constraints. Constraints 5.11-
5.12 guarantee a limit on the number of available ODs and the number
of departs from the depot. Constraints 5.13-5.14 are the capacity con-
straints. Constraints 5.15 allow to determine the arrival time at node
j. Constraints 5.16-5.17 are the time windows constraints and they
also define the time in which the ODs are available to make the de-
liveries, while constraints 5.18 allow to determine the arrival time at
the destination node vk. Constraints 5.19 assure that each customer is
served within its time windows. Constraint 5.20 guarantees that each
customer is visited at most once, by either a classic vehicle or an OD.
We also formulate a second VRPOD variant, called VRPODTWsd
in which we consider a split delivery policy for the ODs. Thus, the
assumption that each customer is visited only once by the ODs is
relaxed (constraint 5.20). We introduce a new variable oki that indi-
cates the quantity of demand di delivered by the OD k ∈ K to the
customer i ∈ C. In order to define the VRPODTWsd, starting from
VRPODTWmd, constraints 5.13 and 5.20 are modified as follows:

wkj ≥ wki + oki −Qk(1− rkij), ∀j ∈ C ∪ {vk}, i ∈ C ∪ {s}, k ∈ K (4.26)∑
j∈C∪{t}

xij +
∑

h∈C∈{vk}

∑
k∈K

rkih ≥ 1, ∀i ∈ C (4.27)
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It is also necessary to introduce new constraints for modelling the
split delivery policy for the ODs:∑

k∈K
oki + di

∑
j∈C∪{s}

xji = di, ∀i ∈ C (4.28)

∑
i∈C

oki ≤ Qk, ∀k ∈ K (4.29)

oki ≥ 0, ∀i ∈ C, k ∈ K (4.30)

4.3 Computational experiments

This section presents the results of computational experiments per-
formed in order to validate the proposed models. The main goal is to
demonstrate the potential benefits that can be obtained by using the
crowd-shipping in a realistic scenario. With this purpose we take into
account the state-of-art mathematical model proposed in Archetti et.
al [1], we add to this problem the time windows (VRPODTW) and
we find the optimal solution by solving it with a commercial solver.
Whereupon, we solve our proposed models and compare the obtained
results. We divided the comparative analysis into two phases, in the
first one the results obtained solving the VRPODTW is compared to
those obtained by solving the VRPODTWmd. In the second phase, we
present a comparative analysis of the results obtained by solving the
VRPODTWmd and those obtained with the split delivery policy, the
VRPODTWsd. The models were implemented and solved with the
commercial solver CPLEX 12.5 and run on a computer with an Intel
Core i5 processor at 2.70 GHz and 4GB of RAM. We first describe the
generated instances and after the results.
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4.3.1 Generation of VRPOD instances

The instances, used to assess the behaviour of proposed models in
terms of solutions quality, are based on the classical Solomon VRPTW
instances (see Solomon [52]). As well known, these instances are di-
vided into 3 classes C, R and RC that differ for the geographical distri-
bution of the customer locations: a clustered distribution (C), random
distribution (R) and a mix of both (RC). Each class is divided into
two subclasses, the first one (C1, R1, RC1) has a short scheduling
horizon, while the second one (C2, R2, RC2) has a long scheduling
horizon. We create a set of 36 small instances randomly choosing 5,
10 and 15 customers and 3 OD destinations. To obtain the problem
tests for the VRPOD, given a VRPTW instance with the customers
locations identified by the coordinates (xi,yi), we randomly generate
3 destinations for the ODs, in the square with lower left hand corner
(mini xi, mini yi) and upper right hand corner (maxi xi, maxi yi), (see
Archetti et. al [1]). After we randomly generate a reasonably time
window.

4.3.2 Comparative analysis

We now present a comparative analysis of the results, divided into two
phases. At first we take into account the results of the VRPODTW
and those obtained by solving the VRPODTWmd, whereupon, we in-
troduce the results obtained solving the VRPODTWsd. We use the
settings reported in the tables 4.1 and 4.3 for the first part of ex-
periments and for the second one, respectively. Table 4.2 presents
the comparison results for each VRPODTW instance against VR-
PODTWmd. Each table has 4 columns, for each version of the model.
The first one shows the name of the instance, the second one the cost
of the solution, in the third one #CD is the number of the classical
drivers, while #OD, in the fourth one, the number of the ODs. In the
last column the “GAP” on the cost is calculated as follows: GAP=
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Obj VRPOD - Obj VRPODTWmd
Obj VRPOD .

Table 4.1: Parameters setting

parameters
# customers |C| P Q |K| Q1 Q2 Q3 ρ

5 5 1 100.0 3 30.0 30.0 40.0 1.1
10 10 2 100.0 3 30.0 30.0 40.0 1.1
15 15 3 100.0 3 40.0 40.0 60.0 1.1

Table 4.2: Results for the VRPODTW and VRPODTWmd

(a) Results for instances with 5 customers
VRPODTW VRPODTWmd

Test Cost # CD # OD Cost # CD # OD GAP
C101C5 139.7 1 2 124.9 1 2 11%
C103C5 110.3 1 3 106.6 1 2 3%
C206C5 159.6 1 1 138.4 1 2 13%
C208C5 113.3 1 2 91.1 0 3 20%
R104C5 83 1 2 83 1 2 0%
R105C5 91.5 1 3 77.5 1 3 15%
R202C5 125.8 1 2 125.8 1 2 0%
R203C5 125.3 1 3 93.4 1 3 25%

RC105C5 134 1 2 126.6 1 2 6%
RC108C5 210.5 1 2 164 1 2 22%
RC204C5 107 1 2 107 1 2 0%
RC208C5 122.6 1 3 76 1 3 38%

AVG 126.8833 109.525 13%

(b) Results for instances with 10 customers
VRPODTW VRPODTWmd

Test Cost # CD # OD Cost # CD # OD GAP
C101C10 261.7 2 3 250.6 2 3 4%
C104C10 223.7 2 3 196.9 1 3 12%
C202C10 181.4 2 3 172.3 1 3 5%
C205C10 184.7 2 2 172.9 1 3 6%
R102C10 169.7 2 3 134.0 1 3 21%
R103C10 150.0 2 0 122.7 1 2 18%
R201C10 154.6 2 3 146.3 2 3 5%
R203C10 149.7 1 3 132.9 1 3 11%

RC102C10 294.2 2 3 276.0 1 3 6%
RC108C10 276.2 2 3 235.2 2 2 15%
RC201C10 242.8 2 2 226.3 1 2 7%
RC205C10 270.1 2 2 260.3 2 2 4%

AVG 213.2333 193.8667 10%

(c) Results for instances with 15 customers
VRPODTW VRPODTWmd

Test Cost # CD # OD Cost # CD # OD GAP
C103C15 296.6 2 2 264.8 2 1 11%
C106C15 222.4 2 2 173.8 1 3 22%
C202C15 322.0 3 2 285.2 2 2 11%
C208C15 270.9 3 1 255.9 2 2 6%
R102C15 305.4 3 2 279.9 2 2 8%
R105C15 279.6 3 2 244.0 2 2 13%
R202C15 345.4 3 1 320.9 2 2 7%
R209C15 276.4 3 1 240.1 2 2 13%

RC103C15 336.3 3 2 248.4 2 2 26%
RC108C15 377.0 3 1 334.8 2 2 11%
RC202C15 362.5 3 1 281.5 2 2 22%
RC204C15 357.4 3 2 326.6 2 2 9%

AVG 312.7 271.3 13%

The computational results show the VRPODTWmd model out-
performs VRPODTW in terms of solution quality. The “Gap” is equal
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to 13% for the instances with 5 and 15 node and 10% for the instances
with 10 customers. The reduction of the cost is due to the use of the
ODs, that allowed to make multiple deliveries. The solutions of the
VRPODTW model use a number of classical drivers greater than the
one used in the VRPODTWmd’s solutions (35% more) and the cost of
the solution is higher. While, solving VRPODTWmd allows to involve
the 9.52 % of ODs more than VRPODTW. However, it is possible to
highlight that, even if the same configuration of vehicles is obtained,
the solutions obtained with VRPODTWms are more competitive than
those obtained with VRPODTW. E.g. in the solutions of the instance
“RC208C5” both the models consider one classical driver and two
occasional drivers, however, the cost for the VRPODTW solution is
about the 60% higher. Overall, the use of ODs allowed to make multi-
ple deliveries optimizes the total costs and reduces the use of classical
vehicles.

Table 4.3: parameters setting
parameters

# customers |C| P Q |K| Q1 Q2 Q3 ρ
5 5 2 60.0 3 5.0 10.0 15.0 1.1
10 10 2 75.0 3 10.0 10.0 15.0 1.1
15 15 3 75.0 3 10.0 15.0 15.0 1.1

The tables 4.4 present the comparison results for each VRPODTWmd
instance against VRPODTWsd. The results of tables 4.4 clearly un-
derline that the use of the split delivery strategy results competitive
in terms of effectiveness. On average, a cost reduction of about 10% is
observed. The possibility to split the deliveries increases the number
of ODs used by the VRPODTWsd, with a consequent cost saving, i.e.
the 62.50% more than those used by the VRPODTWmd. Also for
these experiments, when the same configuration of vehicles is used in
the solutions, often VRPODTWsd outperforms VRPODTWmd. E.g.
for the instances “C208C5”, “C101C10” and “C208C15” in which the
same number of classical and occasional drivers are used in the solu-
tions, the “GAP” is equal to 8%. In summary, the presented models
outperform the literature model in terms of effectiveness. The com-
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Table 4.4: Results for the VRPODTWmd and VRPODTWsd

(a) Results for instances with 5 customers
VRPODTWmd VRPODTWsd

Test Cost # CD # OD Cost # CD # OD GAP
C101C5 213.1 2 1 195.3 2 2 8%
C103C5 159.0 2 0 153 2 2 4%
C206C5 202.3 1 1 175.4 1 2 13%
C208C5 154.2 1 2 141.4 1 2 8%
R104C5 166.0 2 0 162.3 2 2 2%
R105C5 155.1 2 1 149.3 2 3 4%
R202C5 170.0 2 0 156.8 2 2 8%
R203C5 179.0 2 1 174.2 1 3 3%

RC105C5 228.0 2 0 177.1 2 2 22%
RC108C5 203.5 1 1 202.5 1 2 0%
RC204C5 173 2 1 118.3 1 3 32%
RC208C5 189.8 2 1 174.2 2 3 8%

AVG 182.8 164.9 9%

(b) Results for instances with 10 customers
VRPODTWmd VRPODTWsd

Test Cost # CD # OD Cost # CD # OD GAP
C101C10 353.3 2 3 324.7 2 3 8%
C104C10 315.8 2 3 276 2 3 13%
C202C10 295.9 2 3 227.8 2 3 23%
C205C10 206.2 2 1 188 2 2 9%
R102C10 208.9 2 1 198.6 2 3 5%
R103C10 185.7 2 2 167 2 3 10%
R201C10 263.8 2 2 209.6 2 3 21%
R203C10 204.7 2 1 172.3 2 3 16%

RC108C10 434.6 2 3 393.9 2 3 9%
RC102C10 396.6 2 2 391 2 3 1%
RC201C10 333.4 2 2 327.2 2 3 2%
RC205C10 340.8 2 2 340.8 2 2 0%

AVG 294.9 268.1 10%

(c) Results for instances with 15 customers
VRPODTWmd VRPODTWsd

Test Cost # CD # OD Cost # CD # OD GAP
C103C15 318.4 3 1 318.4 3 1 0%
C106C15 253.3 3 2 247.8 3 2 2%
C202C15 413.6 3 3 404.8 3 2 2%
C208C15 154.2 1 2 141.4 1 2 8%
R102C15 360.8 3 2 315.6 3 3 13%
R105C15 309.6 3 2 299.6 3 3 3%
R202C15 392.4 3 2 379.2 3 2 3%
R209C15 345.5 3 2 328.6 3 2 5%

RC103C15 360.9 3 2 356.9 3 2 1%
RC108C15 488.2 3 3 465.5 3 3 5%
RC202C15 479.9 3 3 444.5 3 3 7%
RC204C15 346.0 3 0 345.7 3 2 0%

AVG 351.9 337.3 4%

putational experiments highlight the benefits reached when the ODs
are used to make deliveries, which become more interesting when the
split delivery policy is considered.

4.3.3 Conclusions

We have proposed two innovative variants for the VRP. We take into
account the possibility that a company may use the service provided by
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some ODs. The ODs are available to make some deliveries for a small
compensation. The main goal has been to investigate the achievable
potential benefits by introducing the crowd-sourcing in the VRP. The
results of our computational experiments are very encouraging. We
demonstrated that the use of the ODs may improve the routing plan,
generating an interesting cost saving. The possibility to make multiple
deliveries and the split delivery policy allows to exploit the whole
capacity of the ODs. This work can be viewed as a base for several
future works. There are more aspects that can be taken into account.
For example the “green” aspect of this strategy. In fact, the use of the
ODs reduces the pollutant emissions and the traffic congestion. The
ODs perform travels that ordinarily already take place, thus, there is
a reduction of routed vehicles and distance travelled. There is also
the possibility to deliver the goods by bicycles or public transport. In
conclusion, crowd-shipping allows the company to outsource the “last
mile” deliveries to ordinary citizens and this may be an opportunity
but also a risk. The company may provide a convenient and efficient
delivery service. However, misuse the crowd-shipping implies giving
more responsibility to the ODs, and it is intrinsically a risk.
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A variable neighborhood search
for the vehicle routing problem
with occasional drivers and time
windows

Abstract

This paper presents a Variable Neighborhood Search (VNS) algorithm
for a vehicle routing problem (VRP) variant with a crowd-sourced de-
livery policy. We consider a heterogeneous fleet composed of conven-
tional capacitated vehicles and occasional drivers, i.e. ordinary people
who accept to deviate from their route to deliver items to other peo-
ple, for a small compensation. The objective is to minimize total
costs, that is conventional vehicles costs plus occasional drivers com-
pensation. To assess the performance of our heuristic, we compare the
results obtained by using the proposed procedure with the optimal so-
lution costs obtained by solving the model with CPLEX. The VNS is
highly effective and is able to solve large-size instances within short
computational times.

Keywords: Vehicle Routing, Crowd-shipping, Variable Neighbor-
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hood Search

5.1 Introduction

The rapid and substantial growth of the on-line retailers and the con-
tinuous search for new ways of speeding up deliveries and of overcom-
ing the traditional problems of last-mile and same-day deliveries have
generated some interest in crowd-shipping. While crowd-sourcing is
strictly related with the concept of “sharing economy”, and allows ac-
tivities that usually are performed by a company to be outsourced to a
large pool of individuals, crowd-shipping, i.e. crowd-sourcing delivery,
is a new opportunity to pursue transportation efficiency by exploit-
ing underused assets. The reader is referred to [9] for a review on
crowd-logistic, and to [47] for a complete survey on global trends in
transportation and city logistics. The idea of crowd-shipping is as fol-
lows: an individual (whom we call occasional driver) who is travelling
on its route, accepts to deviate from it to deliver items to other indi-
viduals, for a small compensation. Thus, in this context the exploited
resources are commonly cars which are often underused assets. The
advantages of crowd-shipping are numerous and are not only related
to economic issues:

• Costs saving: generally the compensation for the occasional drivers
is less than the standard drivers’ salary.

• No infrastructures: crowd-shipping does not require any special
infrastructure.

• Flexibility: while the traditional deliveries are fixed and planned
in advance, for crowd-shipping fast delivery is the key factor.

• Less environmental impacts: sharing vehicles can lead to a reduc-
tion in polluting emissions, energy consumption, noise and traffic
congestion.
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The crowd-source of delivery requires the use of a crowd-shipping plat-
form which connects occasional drivers with customers. In particular,
when a customer buys some goods and requires a fast service delivery,
she has to submit the on-line service request via a phone/computer
application. If a customer applies and accepts crowd-shipping deliv-
ery, the platform then sends the required information needed to make
the delivery. Once the delivery is done, the occasional driver receives
the compensation (Figure 5.1 resumes the crowd-shipping process).

Figure 5.1: Crowd-shipping process

Several large on-line retailers have started to implement and use
platforms for the crowd-shipping such as Walmart, DHL and Ama-
zon. In 2013, Walmart announced its plan to outsource some of its
deliveries by asking its in-store customers to deliver one or more or-
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ders placed by on-line customers, for a small compensation (see Barr
& Wohl [3]). In other words, if a customer is in a Walmart store
for her shopping and she has some free time, she may decide to de-
liver orders for other shoppers on her way home or to her destination.
DHL experimented with crowd-shipping in Stockholm during Septem-
ber to December 2013 with a pilot last-mile service named MyWays
(see Landa [32]). Using a specific smartphone app, the service con-
nected individuals, mostly students, who asked for flexible deliveries
with those offering to transport packages along their normal routes.
The experiment was positive and many customers receiver or delivered
packages by using MyWays. In June 2015, Amazon launched Amazon
Flex (see Besinger [7]), its new crowd-shipping service that is still used
in more than 30 cities in the world. To become an occasional driver for
Amazon it is necessary to have an Amazon account, some prerequi-
sites, and to install the application. In particular, Amazon Flex offers
several delivery opportunities based on the time within which a pack-
age has to be delivered: three or more hours, one or two hours, less
than one hour. An occasional driver may also choose among two ways
to pick up delivery blocks: by choosing dates on a calendar, in which
case the platform sends delivery offers for that dates, or by checking
for available blocks on Amazon Flex home screen.

Crowd-shipping is a quite recent topic, and the relevant litera-
ture is limited. Arslan et al. [2] analyzed the potential benefits of
crowd-shipping. They presented a literature review of the recent con-
tributions dealing with crowd-sourcing. They considered a peer-to-
peer platform, taking into account the possibility of using traditional
vehicles and ad hoc vehicles. They presented a rolling horizon frame-
work and an exact algorithm to solve the route planning problem.
Archetti et al. [1] introduced the vehicle routing problem with occa-
sional drivers (VRPOD). In this work, the authors suppose that the
company can make deliveries not only by using its own fleet of ca-
pacitated vehicles, but also by resorting to occasional drivers (ODs).
These authors proposed an integer programming formulation for the
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VRPOD, and then developed a multi-start heuristic, which combines
tabu search and variable neighborhood search (VNS). Starting from
the VRPOD model of Archetti et al. [1], Macrina et al. [40] intro-
duced three innovative aspects to the problem. These authors first
considered time windows constraints for customers and ODs. Second,
they allowed multiple deliveries for ODs. Third, they modelled the
split & delivery policy for ODs. They tested and compared the pro-
posed models with that of Archetti et al. [1]. Their computational
results showed the benefits of allowing multiple deliveries and of using
the split & delivery policy.

Based on this work, here we implement a VNS heuristic for the
VRPOD with time windows and multiple deliveries. We carry out
several computational tests on different size networks and we assess
the effectiveness of the proposed algorithm. The remainder of the
paper is organized as follows. In Section 5.2 we model the VRPOD
with time windows and multiple deliveries (VRPODTWmd) proposed
in Macrina et al. [40]. In Section 5.3 we describe our VNS heuristic
for the VRPODTWmd. In Section 5.4 we describe the computational
experiments and we present the results. Section 5.5 summarizes the
conclusions.

5.2 The vehicle routing problem with occasional

drivers and time windows

Let C be the set of customers, let s be the origin node and t the
destination node for the classical vehicles, i.e. those belonging to
the company. Let K be the set of available ODs and V the set of
vk destinations associated with the ODs. We define the node set as
N = C ∪ {s, t} ∪ V . We model the problem on a complete directed
graph G = (N,A), where A is the set of arcs. Each arc (i, j) ∈ A
has a cost cij and a travel time tij associated with it. Note that both
cij and tij satisfy the triangle inequality. Each node i ∈ C ∪ V has
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a time window [ei, li], and each customer i ∈ C has a demand di. Q
is the capacity of the classical vehicles, P is the number of available
classical vehicles and Qk is the capacity of OD k ∈ K. Let xij be a
binary variable equal to 1 if and only if a classical vehicle traverses
arc (i, j). For each node i ∈ N let yi be the available capacity of a
classical vehicle after visiting customer i, and let si be the arrival of a
classical vehicle at customer i. Moreover rkij is a binary variable equal
to 1 if and only if OD k traverses arc (i, j). Let fki indicate the arrival
time of OD k at the customer i, and let wk

i be the available capacity
of the vehicle associated with OD k after visiting customer i. Table
5.1 summarizes the notation. We formulate the VRPODTWmd as
follows:

Minimize
∑

i∈C∪{s}

∑
j∈C∪{t}

cijxij +
∑
k∈K

∑
i∈C∪{s}

∑
j∈C

ρcijr
k
ij −

∑
k∈K

∑
j∈C

csvkr
k
sj (5.1)

subject to
∑

j∈C∪{t}

xij −
∑

j∈C∪{s}

xji = 0 i ∈ C (5.2)

∑
j∈C

xsj −
∑
j∈C

xjt = 0 (5.3)

yj ≥ yi + djxij −Q(1− xij) j ∈ C ∪ {t}, i ∈ C ∪ {s} (5.4)

ys ≤ Q (5.5)

sj ≥ si + tijxij − α(1− xij) i ∈ C, j ∈ C (5.6)

ei ≤ si ≤ li i ∈ C (5.7)∑
j∈C

xsj ≤ P (5.8)

∑
j∈C∪{vk}

rkij −
∑

h∈C∪{s}

rkhi = 0 i ∈ C, k ∈ K (5.9)

∑
j∈C∪{vk}

rksj −
∑

j∈C∪{s}

rkjvk = 0 k ∈ K (5.10)

∑
k∈K

∑
j∈C∪{vk}

rksj ≤ |K| (5.11)

∑
j∈C

rksj ≤ 1 k ∈ K (5.12)

wkj ≥ wki + dir
k
ij −Qk(1− rkij) j ∈ C ∪ {vk}, i ∈ C ∪ {s}, k ∈ K(5.13)

wks ≤ Qk k ∈ K (5.14)
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fki + tijr
k
ij − α(1− rkij) ≤ fkj i ∈ C, j ∈ C, k ∈ K (5.15)

fki ≥ evk + tsi i ∈ C, k ∈ K (5.16)

fkvk ≤ lvk k ∈ K (5.17)

fki + tivkr
k
ivk
− α(1− rkivk) ≤ fkvk i ∈ C, k ∈ K (5.18)

ei ≤ fki ≤ li i ∈ C (5.19)∑
j∈C∪{t}

xij +
∑

h∈C∪{vk}

∑
k∈K

rkih = 1 i ∈ C (5.20)

xij ∈ {0, 1} (i, j) ∈ A (5.21)

rkij ∈ {0, 1} (i, j) ∈ A, k ∈ K (5.22)

0 ≤ yi ≤ Q i ∈ C ∪ {s, t} (5.23)

0 ≤ wki ≤ Qk i ∈ C ∪ {s, vk}, k ∈ K (5.24)

fki ≥ 0 i ∈ C ∪ {s, vk}, k ∈ K (5.25)

Table 5.1: Parameters and decision variables of the VRPODmd model

s origin node
t destination node for classical vehicles
C set of customers
K set of available occasional drivers
V set of vk destinations for the occasional drivers
A set of arcs
cij travel cost from node i to node j
tij travel time from node i to node j
[ei, li] time windows of node i
di demand of customer i
Q capacity of classical vehicles
P number of classical vehicles
Qk capacity of occasional driver k
xij binary decision variable indicating if arc (i, j) ∈ A is traversed by a classical vehicle
yi decision variable specifying the available capacity of the classical vehicle after visiting customer i
si decision variable specifying the arrival time of the classical vehicle to customer i
rkij binary decision variable indicating if arc (i, j) ∈ A is traversed by the occasional driver k

fki decision variable specifying the arrival time of the occasional driver k at customer i
wki decision variable specifying the available capacity of the occasional driver k after visiting customer i

The objective function (5.1) minimizes the total costs. The first
term is the transportation cost associated with classical vehicles. The
second term is the compensation cost of OD k for the delivery service,
with ρ ≥ 0, the third one is the cost of OD k when it does not
perform the delivery service. Constraints (5.2) to (5.8) are linked
to the classical vehicles. In particular, constraints (5.2) to (5.3) are
the flow conservation constraints. Constraints (5.4) guarantee the
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fulfilment of demand at customer vertices. Constraints (5.5) restrict
the initial cargo load level to the maximum capacity of a vehicle.
Constraints (5.6) allow the determination of the arrival time at node j,
while constraints (5.7) guarantee an arrival within the time window at
each node. Constraint (5.8) imposes a maximum number of available
vehicles. Constraints (5.9) to (5.19) are linked to the ODs. Constraints
(5.9) to (5.10) are the flow conservation constraints. Constraints (5.11)
to (5.12) impose a limit on the number of available ODs and on the
number of departures from the depot. Constraints (5.13) to (5.14)
are the capacity constraints. Constraints (5.15) compute the arrival
time at node j. Constraints (5.16) to (5.17) are the time windows
constraints and also define the time at which the ODs are available to
make deliveries, while constraints (5.18) compute the arrival time at
the destination node vk. Constraints (5.19) mean that each customer
is served within its time window. Constraints (5.20) guarantee that
each customer is visited at most once, either by a classical vehicle or
by an OD.

5.3 Variable Neighborhood Search for the VR-

PODTWmd

This section details our variable neighborhood search (VNS) for the
VRPODTWmd. Algorithm 5 presents the VNS scheme. First, we
generate an initial solution δ, then we apply a Shaking phase to per-
turb δ order to explore the neighborhoods and improve the solution.

Initial solution The initialization procedure is an insertion heuristic.
The starting tour is composed of the origin and destination nodes. The
heuristic inserts a new node in the tour in the best feasible position,
i.e. where it causes the least increase in the tour cost. We adapt the
insertion heuristic to the VRPODTWmd by taking into account the
heterogeneity of the fleet. Thus, at first we try to serve the farthest
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Algorithm 5 Variable neighborhood search

Input set of neighbourhood Nh, for h = 0, ..., hmax
Initialization Initial solution δ
while h ≤ hmax and k ≤ kmax do
δ′ ← Shaking(δ)
δ′′ ← VND (δ′)
if f(δ′′) < f(δ) then
δ ← δ′′;
h← 0

else
h← h+ 1

end if
k ← k + 1

end while
return δ

customers with ODs and then the unserved customers with traditional
drivers. Since the initial solution may be infeasible, we apply a repair
phase in which the local search moves defined for the VND are applied
until a feasible solution is generated.

Local search operators In order to generate the neighborhoods we use
seven different Local Search (LS) moves:

1. 2-Opt: This operator removes two arcs (i, j) and (u, v) in the
same route r (classical or OD) or in two distinct routes r and r′

(classical or OD), and reconnects the path(s) created using arcs
(i, u) and (j, v).

2. Move Node: This operator removes one node i from a route r
and inserts it in another r′ in the best feasible position. We
implemented four variants: classical to classical, classical to OD,
OD to OD, OD to classical.

3. Swap Inter-Route: This operator removes one node i from a route
r and one node j from another route r′, r 6= r′, and inserts i into
r′ and j into r in the best feasible positions. We implemented
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four variants: classical to classical, classical to OD, OD to OD,
OD to classical.

4. Swap Intra-Route: Given a route r changes the position of two
nodes i and j with the respect to the constraints. We imple-
mented two variants: classical and OD.

5. New Route: This operator initializes a new route r′. It removes
one node i from a route r and inserts i in r′. We implemented
two variants: classical and OD.

6. Remove and Insert: This is a particular neighbourhood, which
applies all the four variants of “Move Node” moves.

Shaking The main goal of the shaking phase is to perturb the cur-
rent solution. Thus, we randomly select and apply two different LS
operators and we allow the current solution to worsen. To improve
the shaking phase, we introduce a semi-random choice. In particular,
after the first iteration, we assign a score to each LS move. At the end
of each VNS iteration, if there is an improvement on solution cost, we
increment the scores of the shaking moves, otherwise the scores are
reduced. The LS operators are randomly chosen among those with
the best scores.

Variable neighborhood descent Generally, in the VNS scheme the shak-
ing process is followed by an LS phase, in which the hmax different LS
operators are applied with the purpose of improving the current solu-
tion. We propose a VND described in Algorithm 6.

5.4 Computational study

This section presents the results of our computational experiments.
All computations were performed on an Intel 2.60 GHz processor and
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Algorithm 6 Variable neighborhood descent

Input the set of neighborhood Nh, for h = 0, ..., hmax
Initialization initial solution δ
improved← 0, k ← 0
while improved = false and k ≤ kmax do
h← 0
while h ≤ hmax do
δ′ ← Nh(δ)
if f(δ′) < f(δ) then
δ ← δ′

improved← 1
else
h← h+ 1

end if
end while
k ← k + 1

end while
return δ

16 GB of RAM. The VNS was implemented in Java. The rest of this
section is organized as follows. We first describe the strategy used to
generate the VRPODTWmd instances (Section 5.4.1), we then present
the numerical experiments. We divided the computational study into
two parts. The first part aims to assess the performance of the VNS
heuristic (Section 5.4.2). With this purpose, we attempt to solve the
problem with CPLEX. Since CPLEX is unable to solve instances with
more than 15 customers and 10 ODs, we conduct a second part of
tests, in which medium and large size instances are solved by VNS
(Section 5.4.3).

5.4.1 Generation of Instances

We conducted several numerical experiments on different size instances.
At first we generated the VRPODTWmd instances based on the clas-
sical Solomon VRPTW instances [52]. We created a set of 36 small in-
stances randomly choosing five, 10 and 15 customers and three and five
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OD destinations. We also created 30 medium instances with 25 and
50 customers, and 15 large instances with 100 customers. To obtain
the test instances for the VRPODTWmd, given a VRPTW instance
with the customers locations identified by the coordinates (xi, yi), we
randomly generated the destinations for the ODs, in the square with
lower left hand corner (mini{xi},mini{yi}) and upper righthand cor-
ner (maxi{xi},maxi{yi}), (see Archetti et. al [1]). We then randomly
generated a reasonably time window. Figure 5.2 provides an example
of an instance generation.

Figure 5.2: Generation of instance C103C15

5.4.2 Evaluation of the VNS perfomance

In order to assess the performance of our VNS, we first solved the
problem to optimality using CPLEX and we then compare the results
with those obtained by VNS. We used the parameters setting reported
in Table 5.2 and we set kmax = 50 and improve = 15.

Table 5.2: Parameters setting for small instances

#customers |C| P |K| Q Qk

5 5 3 3 80 [10;25]
10 10 3 3 80 [10;30]
15 15 3 5 80 [15;35]
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Tables 5.3 to 5.5 compare the solutions obtained for small size
instances. For each table and each algorithm (VNS and resolution
with CPLEX), the first column displays the number of available ODs
and the number of customers, the second one the name of the in-
stance, the third one is the total cost, the fourth and the fifth columns
show the number of classical and OD vehicles used respectively. The
sixth one displays the optimality gap on cost, calculated as gcost=
(ObjectiveVNS − ObjectiveCPLEX)/ObjectiveCPLEX. The VNS looks
very effective, indeed, it finds an optimal solution for the majority
of instances and the optimality gap is on average less than 1.5%. In
particular, Table 5.3 highlights the efficiency of the VNS for instances
with five customers. The proposed algorithm finds the optimal solu-
tions for all instances. As shown in Table 5.4, for instances with 10
customers, the average on gap is equal to 1.1 %, the VNS finds op-
timal solutions for about the 50% of the instances and, for the other
instances, it produces solutions with small optimality gaps. Table 5.5
exhibits the same trend for instances with 15 customers. Indeed, on
average, the optimality gap is equal to 2.1%. It is worth observing that
our approach is also more efficient than CPLEX. As shown in Table
5.6, which reports the time [ms] spent by the VNS and CPLEX to
solve instances with five, 10 and 15 customers, the VNS is able to find
efficient solutions within short times. The VNS clearly outperforms
CPLEX.

5.4.3 Numerical results on the medium-size and large-size
instances

We now present the computational results on instances with 25, 50 and
100 customers. We used the parameters setting presented in Table 5.7
and we set kmax = 200 and improve = 150.

Tables 5.8 to 5.10 summarise the results obtained for this set of
instances. For each table, the first column displays the number of
available ODs and the number of customers, the second one the name
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Table 5.3: Results for five customers and three occasional drivers instances

VNS OPT
Name Total cost #classical #occasional Total cost #classical #occasional gcost

|K| = 3 C101C5 145.4 1 2 145.4 1 2 0.000%
|C| = 5 C103C5 111.6 1 2 111.6 1 2 0.000%

C206C5 159.6 1 1 159.6 1 1 0.000%
C208C5 131.9 1 1 131.9 1 1 0.000%
R104C5 107.2 1 2 107.2 1 2 0.000%
R105C5 143.1 2 1 143.1 2 1 0.000%
R202C5 129.5 2 1 129.5 2 1 0.000%
R203C5 170.1 1 1 170.1 1 1 0.000%
RC105C5 143.1 1 2 143.1 1 2 0.000%
RC108C5 164.0 1 2 164.0 1 2 0.000%
RC204C5 107.0 1 2 107.0 1 2 0.000%
RC208C5 124.9 1 2 124.9 1 2 0.000%
Average 136.45 1.16 1.58 136.45 1.167 1.58 0.00%

Table 5.4: Results for 10 customers and three occasional drivers instances

VNS OPT
Name Total cost #classical #occasional Total cost #classical #occasional gcost

|K| = 3 C101C10 288.0 2 2 283.2 3 2 0.017%
|C| = 10 C104C10 249.3 2 2 242.4 2 3 0.028%

C202C10 176.4 2 3 175.4 2 3 0.006%
C205C10 184.7 2 2 184.7 1 2 0.000%
R102C10 176.4 2 3 166.4 1 2 0.060%
R103C10 154.0 2 1 154.0 2 1 0.000%
R201C10 185.2 2 2 185.2 3 2 0.000%
R203C10 132.9 1 3 132.9 1 3 0.000%
RC102C10 337.8 3 2 331.8 2 2 0.018%
RC108C10 330.1 2 2 330.1 2 2 0.000%
RC201C10 231.1 2 2 231.1 2 2 0.000%
RC205C10 260.3 2 2 260.3 2 2 0.000%
Average 225.51 2.00 2.17 223.12 1.91 2.16 0.01%

Table 5.5: Results for 15 customers and five occasional drivers instances

VNS OPT
Name Total cost #classical #occcasional Total cost #classical #occasional gcost

|K| = 5 C103C15 207.4 1 5 206.5 1 5 0.004%
|C| = 15 C106C15 173.9 2 5 169.4 2 5 0.027%

C208C15 304.7 3 3 304.7 3 3 0.000%
C202C15 338.3 2 4 332.9 2 5 0.016%
R102C15 300.0 3 4 297.8 3 3 0.007%
R105C15 223.2 2 5 215.8 1 5 0.034%
R202C15 339.7 3 2 324.4 3 4 0.047%
R209C15 249.0 2 5 239.4 3 3 0.040%
RC103C15 343.7 3 4 341.6 3 3 0.006%
RC108C15 252.6 2 5 248.6 2 5 0.016%
RC202C15 357.6 3 4 356.3 3 5 0.004%
RC204C15 356.5 2 3 341.1 2 3 0.045%
Average 287.22 2.333 4.09 281.54 2.33 4.08 0.02%
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Table 5.6: Computational times required to solve instances with five, 10 and 15
customers

name VNS CPLEX VNS CPLEX VNS CPLEX
C101C5 60.00 55.00 C101C10 104.00 81.00 C103C15 209.00 3831.00
C103C5 25.00 21.00 C104C10 76.00 279.00 C106C15 128.00 502.00
C206C5 17.00 18.00 C202C10 29.00 47.00 C208C15 44.00 2851.00
C208C5 21.00 24.00 C205C10 3.00 69.00 C202C15 53.00 385.00
R104C5 53.00 21.00 R102C10 14.00 85.00 R102C15 8.00 193.00
R105C5 3.00 14.00 R103C10 4.00 285.00 R105C15 9.00 169.00
R202C5 29.00 44.00 R201C10 41.00 53.00 R202C15 9.00 5776.00
R203C5 25.00 27.00 R203C10 4.00 83.00 R209C15 113.00 3788.00
RC105C5 19.00 13.00 RC102C10 48.00 94.00 RC103C15 8.00 2450.00
RC108C5 10.00 17.00 RC108C10 41.00 195.00 RC108C15 33.00 13925.00
RC204C5 7.00 38.00 RC201C10 27.00 32.00 RC202C15 8.00 458.00
RC208C5 16.00 20.00 RC205C10 9.00 32.00 RC204C15 7.00 871428.00
Average 23.75 26.00 Average 33.33 111.25 Average 52.42 75479.67
Speed-up 1.09 Speed-up 3.34 Speed-up 1439.99

Table 5.7: parameters setting for medium- and large-size instances

#customers |C| P |K| Q Qk

25 25 5 10 100 [20;40]
50 50 8 15 200 [20;40]

100 100 10 30 400 [20;40]

of the instance, the third one the computational time [ms], the fourth
one the total cost, the fifth and sixth columns show the number of
classical and OD routed vehicles respectively. We also report, in the
last line, the average for all the statistics. Overall, the VNS finds
solutions within short computational times. Indeed, the VNS solve
instances with 25 nodes in about one second, with 50 nodes in about
nine seconds, and with 100 nodes in about 25 seconds (about three
time less than the time spent by CPLEX to solve instances with 15
customers). Table 5.8 shows that the solutions generated use, on av-
erage, about six ODs out of 10 available and about three classical
vehicles out of five. Table 5.9 exhibits the same trend. Indeed, the
solutions use on average eight out of 15 ODs. The use of ODs becomes
more interesting on instances with 100 nodes. Looking at Table 5.10,
it is clear that the majority of the generated solutions use almost all
the available ODs.
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Table 5.8: Results for instances with 25 customers

Name Time Total cost #classical #occasional
|K| = 10 C101C25 2495 344.9 4 4
|C| = 25 C102C25 1855 372 5 2

C103C25 467.0 365.4 3 8
C104C25 1109.0 463.2 2 9
C105C25 2506.0 417.4 3 7
R101C25 725.0 327.4 3 7
R102C25 658.0 309.5 1 10
R103C25 220.0 337.5 2 8
R104C25 1102.0 321.8 2 8
R105C25 78.0 315.2 2 9
RC101C25 2345.0 594 5 3
RC102C25 504.0 570.3 5 2
RC103C25 419.0 478.4 4 7
RC104C25 1040.0 486.8 4 6
RC105C25 2309.0 565.7 5 3
Average 1188.8 417.9 3.3 6.2

Table 5.9: Results for instances with 50 customers

Name Time Total cost #classical #occasional
|K| = 15 C102C50 681.0 527.6 3 13
|C| = 50 C103C50 1042.0 480.1 3 9

C104C50 13757.0 468.4 4 5
C105C50 2497.0 501.4 3 10
R101C50 3018.0 780.6 5 14
R102C50 7552.0 783.1 5 8
R103C50 2874.0 608.8 4 6
R104C50 69357.0 555.9 3 8
R105C50 3219.0 761.8 5 6
RC101C50 827.0 529 3 13
RC102C50 1940.0 714 4 7
RC103C50 3354.0 677.3 5 3
RC104C50 3769.0 693.3 4 7
RC105C50 11830.0 824.3 6 3
Average 8979.8 636.1 4.1 8.0

5.5 Conclusions

We have proposed a variable neighborhood search heuristic for the
vehicle routing problem with occasional drivers and time windows. In
order to assess the performance of our proposed heuristic, we have
solved the model with CPLEX for small instances. We have then
conducted a comparative analysis. The results have shown that our
heuristic is highly performing in terms of effectiveness and efficiency.
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Table 5.10: Results for instances with 100 customers

Name Time Total cost #classical #occasional
|K| = 30 C101 753.0 1369.6 6 28
|C| = 50 C102 5899.0 1472.3 6 26

C103 1054.0 1245.8 6 26
C104 1752.0 1250.8 7 25
C105 1438.0 1468.4 7 27
R101 3.0 1408.4 10 27
R102 61755.0 1346.7 8 8
R103 84458.0 1150.6 7 7
R104 206499.0 1002.4 5 7
R105 4269 1396.3 7 29
RC101 9004.0 1457.1 7 25
RC102 14717.0 1584.9 8 16
RC103 25933.0 1214.4 7 7
RC104 7553.0 1212.8 6 22
RC105 247.0 1283.1 9 30
Average 28355.6 1324.2 7.1 20.7

Overall, the heuristic is less time consuming than CPLEX. We have
also shown that it can solve large-size instances within short compu-
tational times.
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Conclusions and future works

In this dissertation we have studied two innovative logistics area:
Green logistics and Crowd-shipping. The first part of the work has
been devoted to the green vehicle routing problem (G-VRP), a new
vehicle routing problem VRP variant which takes into account sus-
tainability goals. In Chapter 1 we have provided an overview of the
main contributions in G-VRPs in the 2011-2018 period. Then, we
have studied some innovative G-VRP variants. In particular, we have
assumed the availability of a mixed vehicle fleet, composed of electric
and conventional (internal combustion engine) vehicles and we have
introduced and solved two variants:

The green mixed fleet vehicle routing problem with partial battery
recharging and time windows (Chapter 2). We have introduced a
mixed fleet G-VRP variant in which we explicitly have taken into
account a limitation on the polluting emissions for the conven-
tional vehicles. The energy consumption for the electric vehicles
has been supposed to be proportional to the traveled distance,
and partial recharges have been allowed. We have proposed an
iterative local search heuristic to optimize the routing of the vehi-
cles. We have evaluated the behaviour of the proposed algorithm
on a large set of instances.

The energy-efficient green vehicle routing problem with mixed fleet,
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partial battery recharging and time windows (Chapter 3). We
have modified the model presented in Chapter 2 by considering
some realistic issues. In particular we have modeled a realistic
energy function to evaluate the energy consumption, in which we
have taken into account vehicle speed, gradient and cargo load.
We have proposed a matheuristic to solve the problem. We have
carried out a preliminary computational study.

The second part of the dissertation has been devoted to the VRP
with occasional drivers (ODs) in which the crowd-shipping has been
considered. We have supposed that a transportation company can
make deliveries by using its own fleet composed of capacitated vehicles
and also some ODs (i.e. ordinary people decide to make either a single
delivery or multiple deliveries, by making a deviation on their ordinary
route, for a small compensation). In Chapter 4 we have modeled two
variants of the problem: in the first one we consider the possibility
for the ODs to make multiple deliveries, in the second one we intro-
duced the split and delivery policy. We have tested the models and
we have compared the proposed configurations with the literature one.
The results have shown that the transportation company can achieve
important advantages by employing the occasional drivers, which be-
come more significant when multiple delivery and split and delivery
policies have been jointly considered. In Chapter 5 we have proposed
a variable neighborhood search for the vehicle routing problem with
occasional drivers, time windows and multiple deliveries for the ODs.
We have solved instances with up to 100 customers and 15 ODs in a
short computation time.

6.1 Direction for future works

While the use of electric vehicles leads to the decrease of polluting
emissions and noise, several realistic issues related to energy consump-
tion model, battery, charging and infrastructures have to be consid-
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ered. Several works are based on unrealistic assumptions. Contrary
to the majority of contributions in electric-VRP, which assume energy
consumption proportional to the traveled distance, actually it depends
on several factors such as speed and load cargo. In addition, CSs charg-
ing functions are not linear, as supposed in several works. We have
proposed a G-VRP variant in Chapter 3 which incorporates a realistic
energy consumption model. Future research should be conducted to
extend the results presented in Chapter 3, by consider considering the
non-linearity of charging function.

In the last years the growing importance of shorter delivery lead
times has led the companies to create innovative solutions to orga-
nize the last-mile and same-day delivery. In this context, the crowd-
shipping is an innovative strategy to pursue the efficiency, and a new
way to take into account the transportation planning sustainability.
As we have shown, the use of ODs can lead to interesting advantages.
However, more aspects have to be taken into account. We have pre-
sented a static model, in reality the ODs availability can vary over the
time as well as customers orders. Thus, a possible direction for the
future work on VRP with crowd-shipping is to consider the dynamic
nature of the problem.
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