

A Fabrizia, che mi ha sempre supportato durante questi 3 anni

Table of contents

List of figures v

1 Introduction 1

2 Security Threats in Wireless Ad-hoc Networks 3

2.1 Wireless Ad-hoc Networks . 3

2.1.1 Mobile Ad-hoc Networks . 4

2.1.2 Wireless Sensor Networks . 5

2.1.3 Vehicular Ad-hoc Networks . 5

2.1.4 Flying Ad-hoc Networks . 6

2.2 Transmission standards . 7

2.2.1 IEEE 802.11 standard . 7

2.2.2 Bluetooth . 8

2.2.3 ZigBee . 9

2.2.4 LTE and 5G . 9

2.3 Routing protocols . 10

2.3.1 Ad-hoc On-demand Distance Vector protocol 11

2.3.2 Optimized Link State Routing protocol 12

2.3.3 Destination-Sequenced Distance Vector protocol 12

2.3.4 Dynamic Source Routing protocol 13

2.4 Security attacks . 13

2.4.1 Security goals . 13

2.4.2 Internal attacks . 15

2.4.3 External attacks . 15

2.4.4 Attacks categorization . 15

Table of contents

3 Intrusion Detection Systems on Resource-Constrained Devices 19

3.1 IDS classification . 19

3.1.1 Anomaly detection systems . 20

3.1.2 Misuse detection systems . 20

3.1.3 Specification-based detection systems 21

3.1.4 Hybrid detection systems . 21

3.2 IDS architectures . 21

3.3 Detection approaches . 22

3.3.1 Trust-based detection . 23

3.3.2 Game theory-based detection . 29

3.3.3 Machine learning-based detection 30

3.3.4 Encryption-based prevention . 30

3.3.5 Other approaches . 33

4 Energy Consumption Analysis of a Trust Management Scheme in Mobile Ad-hoc

Networks 35

4.1 Trust model . 35

4.1.1 Direct trust . 37

4.1.2 Indirect trust . 38

4.2 Energy model . 40

4.3 Attacker model . 42

4.4 Proposal: Secure and Trusted AODV . 43

4.4.1 Trust Management Scheme . 43

4.5 STAODV performance evaluation . 45

4.5.1 Packet Delivery Ratio . 46

4.5.2 False recommendations detection 48

4.5.3 Erroneous detections . 50

4.5.4 Energy consumption analysis . 52

5 Distributed Intrusion Detection based on Trust Management, Time Division

Monitoring and Link Duration Estimation 57

5.1 Trust and link duration computation . 58

5.1.1 Link Stability Index computation 59

5.2 Distributed monitoring . 60

5.3 Performance evaluation . 62

iii

Table of contents

6 Trust Model Enhancement through Probabilistic Monitoring for Improving

Energy Consumption of Intrusion Detection System 67

6.1 Monitoring model . 68

6.1.1 Integration with trust model . 70

6.2 Analytical evaluation . 71

6.2.1 Time to detection . 73

6.2.2 Detection accuracy . 74

6.2.3 Energy consumption analysis . 76

6.3 STAMP implementation in NS-3 . 77

6.3.1 Trust Manager . 78

6.3.2 Trust Table . 78

6.3.3 Probabilistic Monitoring Function 79

6.3.4 Routing Protocol . 79

6.3.5 Cryptography . 80

6.4 Performance evaluation . 80

6.4.1 Traffic analysis . 82

6.4.2 Detection accuracy . 85

6.4.3 Energy consumption analysis . 87

7 Conclusions and Future Works 94

References 97

Appendix A NS-3 Code 105

A.1 Module tms . 105

A.2 Module aodv (diff) . 122

iv

List of figures

2.1 An example of Mobile Ad-hoc Network scenario 4

2.2 An example of Wireless Sensor Network scenario 6

2.3 A Vehicular Ad-hoc Network safety system 6

2.4 An example of Flying Ad-hoc Network scenario 7

2.5 5G standard logo . 10

2.6 RREQ propagation in AODV protocol . 11

2.7 Malicious node (in red) performing black hole attack 16

2.8 Wormhole attack . 17

3.1 Anomaly detection process flow . 20

3.2 Misuse detection process flow . 20

3.3 Example of distributed and cooperative IDS 22

3.4 CIDN framework . 24

3.5 Node SPN model . 26

3.6 CoCoWa architecture . 34

4.1 Routing without TMS and with TMS . 36

4.2 Values of ρt depending on t and ε . 38

4.3 Trust chain . 39

4.4 Recommendations management . 40

4.5 Attacker with random drop probability d 42

4.6 Simulator architecture . 45

4.7 PDR without malicious nodes . 47

4.8 PDR with malicious nodes (d = 75%) . 48

4.9 PDR with malicious nodes (d = 100%) 49

4.10 PDR against malicious nodes with different d values 49

4.11 Erroneous detections with respect to the maximum speed 51

v

List of figures

4.12 Erroneous detections with respect to the amount of source nodes 51

4.13 Erroneous detections with respect to the amount of malicious nodes 52

4.14 Energy consumption of the wireless transmission without malicious nodes in

the network . 53

4.15 Energy consumption of the wireless transmission with malicious nodes in

the network . 54

4.16 Energy consumption due to cryptographic operations without malicious

nodes in the network . 55

4.17 Energy consumption due to cryptographic operations with malicious nodes

in the network . 55

4.18 Comparison of energy consumption due to wireless transmission and cryptographic

operations . 56

5.1 Companions with high reciprocal trust value and similar mobility patterns . 58

5.2 Time division distributed monitoring . 60

5.3 Detection performances with 20% malicious nodes (d = 50%) 64

5.4 Detection performances with 20% malicious nodes (d = 100%) 64

5.5 Energy efficiency with 10% malicious nodes and d = 50% 65

5.6 PDR with 20% malicious nodes (d = 50%) 66

6.1 Shape of β -PMF for various p and q values 71

6.2 Network scenario for analytical evaluation 72

6.3 Time needed to detect malicious nodes with ρ60 = 0.9 73

6.4 Time needed to malicious node detection with ρ15 = 0.666 74

6.5 Malicious node detection with d = 25% 75

6.6 False positive detections . 76

6.7 Energy consumption of monitoring operations 77

6.8 TMS module in NS-3.26 . 78

6.9 Packet Delivery Ratio vs packet dropping probability 83

6.10 Average hop count vs amount of malicious nodes 83

6.11 Percentage of control packets when transmission rate increases 84

6.12 Percentage of control packets vs the amount of malicious nodes in the network 85

6.13 Positive detections for different values of q/p 86

6.14 Detections analysis with 5 source nodes and transmission rate of 1 packet

per second for different amount of malicious nodes 86

vi

List of figures

6.15 Detections analysis with 10 source nodes and transmission rate of 4 packets

per second for different amount of malicious nodes 87

6.16 Promiscuous energy consumption without malicious nodes vs q/p ratio . . 88

6.17 Promiscuous energy consumption with 10 malicious nodes (d=50%) vs q/p

ratio . 89

6.18 Cryptography cost without malicious nodes for increasing data rates 90

6.19 Cryptography energy consumption with 10 malicious nodes for increasing

data rates . 91

6.20 Cryptography energy consumption including variation in overhead cost

without malicious nodes for increasing data rates 92

6.21 Cryptography energy consumption including variation in overhead cost with

10 malicious nodes for increasing data rates 92

vii

Chapter 1

Introduction

The security and the energy consumption are key aspects of distributed wireless ad-hoc

networks. The major issues regarding security are due to the lack of an infrastructure

and the use of the wireless medium for transmission and reception of data, therefore the

communication could be easily disturbed or eavesdropped, or the nodes could be corrupted

by malicious agents. The limited power source available to the nodes puts a severe constraint

to the operations that a node can execute. This implies that any adopted measure to detect

malicious behaviors must take into account the required energy, reducing it to the minimum,

so the node lifetime will not be excessively affected.

In Chapter 2, an overview of various typologies of wireless ad-hoc network is given,

analyzing what they have in common, and what distinguish them. The transmission

technologies for wireless communication and their last enhancements are illustrated, analyzing

the energy consumption they imply and the supported transmission data rates. The most

known routing protocol for wireless ad-hoc networks published as RFC are described,

eventually defining and categorizing the many threats to which they are subjected.

As countermeasure to these threats, the state of the art concerning the Intrusion Detection

Systems on resource-constrained devices is depicted in Chapter 3. A common classification

based on the techniques used by IDS to analyze the traffic is introduced, defining advantages

and drawbacks of each technique. Main IDS architectures are hence described, defining

the scenarios in which they perform better. Afterwards, many proposals in literature are

illustrated, analyzing the most novel approaches for intrusion detection in wireless ad-hoc

networks. Proposal are classified by the approach they use to detect intruders, with a special

focus on trust-based detection, which will be exploited in the following of the thesis.

The analysis of energy consumption in MANETs using a TMS is shown in Chapter 4.

Initially the trust model, the energy model and the attacker model are defined. They are

1

exploited to introduce a trust management procedure in a protocol that provides already

encryption procedures, increasing the kind of attacks that the network can detect. Trust

Management Scheme (TMS) provides protection against malicious nodes that fairly participate

to the route establishment phase, dropping all or a part of the data packets received, in

addition to the attacks already protected by encryption. Finally the performance evaluation is

presented, by analyzing the results of the performed simulations, comparing the proposal

with an encryption-based protocol.

In Chapter 5 a distributed time division-based monitoring strategy is proposed, to achieve

the high security levels required while reducing the energy consumption. The proposal

involves the concepts of trust and link duration, allowing the division of the monitoring task

between trusted nodes, called companions. At the end, the analysis of simulation results is

shown, allowing the evaluation of the proposal performance.

The proposal and analysis of an approach able to reduce the energy consumed during

the monitoring operations is presented in Chapter 6. The main idea of the proposal concerns

the reduction of the promiscuous mode usage, which is used for monitoring. The decision

about performing monitoring activities is taken in a probabilistic way, depending on the

trustworthiness of the chosen intermediate node. The approach is implemented in NS-3

simulator, therefore enabling the comparison with other known protocols. The results

obtained through the simulations show an improvement in performance, especially in

networks composed of just fair nodes.

Finally, the conclusions about the proposals are illustrated in Chapter 7, analyzing the

obtained improvements and depicting the possible future works to further improve the

described approaches.

2

Chapter 2

Security Threats in Wireless Ad-hoc

Networks

Distributed wireless networks enable communication between hosts in various environments

through the wireless medium. The ease of forming a network of this kind is achieved by not

requiring an infrastructure, using multi-hop communication between nodes which are not in

their respective range of communication. Networks like Mobile Ad-hoc Networks (MANETs)

and Distributed Wireless Sensor Networks (WSNs) can be exploited when an infrastructure is

too expensive or too difficult to set up, as in hostile environments or vehicular scenario. Some

of the strong points of wireless ad-hoc networks are also their weaknesses. Some examples

of threats are the following: communication through the wireless medium allows anyone in

the range of communication to "overhear" exchanged messages between nodes; malicious

agents could fake their identity or spread false information in the network; messages directed

to a host could be misrouted or discarded. In this chapter an overview of main wireless

ad-hoc networks, most common threats to them and some protection measures against them

will be given.

2.1 Wireless Ad-hoc Networks

Wireless ad-hoc networks have many characteristics in common among them, but each type

has some peculiarity that distinguish it from the others.

3

2.1 Wireless Ad-hoc Networks

Fig. 2.1 An example of Mobile Ad-hoc Network scenario

2.1.1 Mobile Ad-hoc Networks

A MANET [1] is a network composed of nodes that can move freely in an area. These nodes

can be in airplanes, ships, trucks, cars, even people or small devices. The network can be

isolated or in communication with other networks through interfaces. Each node has one

or more wireless antennas for transmission and reception of data, with antennas that can be

directional or omnidirectional. Network topology changes over time, because it depends on

nodes position, transmission/reception power of antennas and channel interferences. The

main characteristics of MANETs are:

• dynamic network topology: nodes move arbitrarily, so network topology changes

randomly and quickly, with multi-hop routes that need to be recreated when links

between nodes break;

• reduced bit rate: mobile devices use low-consumption network interfaces because of

their limited power (see below). New wireless standards (e.g. 802.11ac) have higher

theoretical maximum, but wired connections achieve better results due to multiple

accesses, interferences and signal attenuation;

• limited power: nodes in ad-hoc networks have no connection to the power line, because

they are freely moving around an area. Therefore, any operation done by the node

must take into account this constraint;

• low security of transmission medium: the access to a wireless network without security

measures requires just to stay in transmission range of the communication, while wired

networks need a physical connection to transmission medium. A node equipped with a

wireless interface can eavesdrop exchanged data;

4

2.1 Wireless Ad-hoc Networks

• high fault-tolerance: the distributed nature of MANETs allow to find routes that avoid

faulty nodes without issues, because network protocols allow the dynamic discovery

of new paths;

• network scalability: differently from wired networks, the amount of nodes participating

in ad-hoc network can change often, so ad-hoc protocols quickly adapt when nodes

join or leave the network.

2.1.2 Wireless Sensor Networks

WSNs [2] are composed of a large collection of sensor nodes organized as cooperative

network. Each node is equipped with one or more sensors, memory storage, a battery and one

or more processing units. Sensors are used to detect phenomena such as ambient light, heat,

pressure, movement, noise. The absence of wires and infrastructures gives the opportunity of

developing these networks in a simple way. Some of the applications of WSN technology

concern smart grid, intelligent transportation systems and smart home. WSNs have many

characteristics in common with MANETs, but they differ for some aspects:

• the amount of nodes composing a WSN are more than nodes of MANETs by some

orders of magnitude;

• nodes density is higher;

• each node size is smaller, so nodes in WSNs have less energy, computational power

and memory with respect to their counterpart in MANETs;

• the main purpose of sensor nodes is about the monitoring operations they perform, so

a node and its sensor are strictly tied.

Data collected by sensor nodes is usually handled by each node taking part in multi-hop

route followed by data, reducing the amount of traffic transmitted.

2.1.3 Vehicular Ad-hoc Networks

Vehicular Ad-hoc Networks (VANETs) [3] are a type of ad-hoc network that raised the

interest of scientific community. The communication occurring between vehicles has some

unique characteristics, such as the speed of the nodes, which can exceed 100 Km/h, so

specific standard are needed to enable the communication in these networks. The most

important field of application of these networks concern the safety while driving [4, 5], as

5

2.1 Wireless Ad-hoc Networks

Fig. 2.2 An example of Wireless Sensor Network scenario

Control

Unit

UMTS/HSDPA UMTS/HSDPA

RSU
RSU

GNSS

V2V

V2I

Rescue

Time

Cellular

Communications

OBU

OBU

OBU

OBU

Emergency

ServicesDatabase

Database

Database

Fig. 2.3 A Vehicular Ad-hoc Network safety system

shown in Fig. 2.3. Their usefulness increases with the amount of vehicles provided with

communication devices named On-Board Units (OBUs), so a high penetration rate of this

technology is desirable to take advantage of their use. VANETs can be fully distributed, with

car-to-car communication using OBUs, or an infrastructure can be provided along the roads,

such as Road-Side Units (RSUs), which facilitate the communication among vehicles.

2.1.4 Flying Ad-hoc Networks

Concerning the Flying Ad-hoc Network (FANET) [6], it is a novel field that applies to

Unmanned Aerial Vehicle (UAV), such as drones. Main characteristics of this kind of

network are a higher mobility degree than nodes in MANET, because nodes fly in the sky.

Therefore, high mobility brings to more frequent topology changes. Moreover, mobility is not

influenced by the need of following roads. Distances between flying nodes are usually wider,

but there are less obstacles interfering the communication. The communication between

nodes in FANET is exploited also for coordination and collaboration between UAVs.

6

2.2 Transmission standards

Fig. 2.4 An example of Flying Ad-hoc Network scenario

2.2 Transmission standards

Various technologies and standards provide wireless communication for many purposes.

They differ for transmission range, energy consumption and maximum bit rate achievable,

so they are used in different scenarios. In this section an overview of various wireless

technologies is provided.

2.2.1 IEEE 802.11 standard

IEEE 802 is a family of standards for local and metropolitan networks. Protocols and services

defined in these standards are about the two lower levels of Open System Interconnection

(OSI) model: data link and physical layers. Data link layer is divided in two more sublayers,

which are Logical Link Control (LLC) and Media Access Control (MAC). The working

group 802.11 concerns Wireless LAN (WLAN) [7]. Various versions of 802.11 standard,

developed and released since 1997, are briefly described as follows:

• 802.11 legacy: first version of the standard, released in 1997. The supported transmission

bit rate is 1 or 2 Mbps, using 2.4 GHz band;

• 802.11a: released in 1999, this version uses 5 GHz band, allowing a maximum

theoretical bit rate of 54 Mbps. The higher band with respect to the previous version

makes the transmission more affected by obstacles;

• 802.11b: released in the same year of ’a’ version, the band used by ’b’ version of

802.11 is 2.4 GHz. It is compatible with first version of the standard with a higher bit

rate (11 Mbps);

• 802.11g: using the same band of ’b’ version and allowing a maximum bit rate of

54 Mbps, 802.11g was released in 2003. It can coexist with ’b’ standard, with the

7

2.2 Transmission standards

constraint that the maximum bit rate must be 11 Mbps is ’b’ devices are connected to

the network;

• 802.11n: become standard in 2009, it works using both 2.4 and 5 GHz bands.

Its bandwidth is twice the bandwidth of previous versions (40 MHz vs 20 MHz),

’n’ standard can reach a maximum bit rate of 600 Mbps exploiting Multiple-Input

Multiple-Output (MIMO) technology;

• 802.11ac [8]: it is an amendment of previous version, released in 2013 and supporting

wider channels (2 or 4 times wider than 40 Mbps) and Multi-user MIMO. It is the

most recent standard adopted by commercial solutions as routers and laptops;

• 802.11ad [9]: promoted by Wireless Gigabit Alliance (WiGig) until 2013, it operates

in the 2.4, 5 and 60 GHz bands, with maximum bit rate of 7 Gbps. At 60 GHz, signal

cannot penetrate walls, but the propagation can occur by reflection;

• 802.11af [10]: this standard operates in TV white space spectrum, in VHF and UHF

bands among 54 and 790 MHz. Using lower bands increases the possible range of

transmission, suffering lower attenuation by obstacles;

• 802.11ah [11]: it uses bands under 1 GHz and takes advantage of lower energy

consumption. Its field of application is the same of Bluetooth technology, providing

low power consumption and wider range of transmission.

2.2.2 Bluetooth

Bluetooth technology [12] is used by mobile devices for short-range communication. Its first

version was released by Ericsson in 1994, now its maintenance is managed by Bluetooth

Special Interest Group (SIG). This protocol was designed to enable communication without

using too much power. Based on transmission power, Bluetooth devices can be grouped in 4

classes, with higher number having less energy consumption:

• class 1, with maximum allowed power of 100 mW (20 dBm) and communication range

of 100 meters;

• class 2, with maximum allowed power of 2.5 mW (4 dBm) and communication range

of 10 meters;

• class 3, with maximum allowed power of 1 mW (0 dBm) and communication range of

1 meter;

8

2.2 Transmission standards

• class 4, with maximum allowed power of 0.5 mW (-3 dBm) and communication range

of 0.5 meters.

The frequencies in which Bluetooth operates are between 2400 and 2483.5 MHz, divided

in 79 channels. Each channel is 1 MHz wide, with guard bands of 2 MHz and 3.5 MHz

respectively at the bottom end and at the top. Network topology supported by Bluetooth is the

scatternet, which can be composed of 2 or more piconets. A piconet is formed of maximum

8 devices (1 master and 7 slaves), with each device having a 3 bits address. Slave nodes in a

scatternet participate to more piconets using time division multiplexing. The master node of

a piconet can be slave in another.

With 4.0 version of Bluetooth, a low-energy version of the protocol was merged into the

standard, with the name of Bluetooth Low Energy (BLE) [13]. Its improved consumption

is due to lower latency and minimum time needed to send data, with halved peak current

consumption (15 mA vs 30 mA) with respect to classic technology. Last released version of

the standard is 4.2, with version 5 already announced.

2.2.3 ZigBee

A low-power protocol for communication is ZigBee [14], based on IEEE 802.15.4 specifications

for physical and MAC layers. It was mainly designed for sensors and control devices, which

require short-range low-rate wireless data transfer. It operates in Industrial, Scientific and

Medical (ISM) radio bands, supporting bit rates from 20 to 250 kbps. ZigBee provides

facilities for establishing secure communications through the use of symmetric 128-bit

cryptographic keys.

2.2.4 LTE and 5G

Also known as 4G, Long-Term Evolution (LTE) is a cellular network standard for high-speed

wireless communication [15]. It uses the bands of 800 MHz, 900 MHz, 1800 MHz and

2600 MHz in Europe, while in the United States the bands it uses are 700 MHz and 1700

MHz. The maximum theoretical transmission bit rates achievable by LTE is 326.4 Mbps in

download and 86.4 Mbps in upload, a high improvement with respect to the last version of

the previous technology HSPA (42 and 11 Mbps respectively). The width of the exploited

channel is variable (from 1.25 to 20 MHz), providing a better scalability than previous

generation standard.

The 5th generation mobile networks, known as 5G, are proposed as next telecommunications

standard [16]. For these networks, requirements to satisfy are defined, as data rates of 100

9

2.3 Routing protocols

Fig. 2.5 5G standard logo

Mbps in metropolitan areas, management of more than 100000 simultaneous connections

for massive WSNs, improved coverage, enhancement of signaling efficiency and more. The

expected roll out date of this new standard is the year 2020.

2.3 Routing protocols

Ad-hoc networks are characterized from high nodes mobility. A routing protocol has to keep

track of the topology changes. Nodes need to collaborate through exchanging information,

therefore a protocol supports all the operations needed to manage the data they send to

each other. During route discovery phase, this route should be computed avoiding loops.

Depending on the need of saving bandwidth and other network resources, or having always

fresh information about routes toward other nodes, a routing protocol can have a different

approach to spread information. A commonly used classification for ad-hoc routing protocols

[17] consists in 3 categories:

• proactive;

• on-demand (or reactive);

• hybrid (both proactive and on-demand operations).

Proactive protocols keep updated information for every route by exchanging data even when

the nodes do not need a path for a destination. Routing information is stored in tables by

each node, which reacts to topology changes by spreading the updates and refreshing the

information in the routing table. The disadvantage of this approach concerns the constant use

of part of the bandwidth to exchange overhead data.

A more dynamic approach is used in on-demand protocols. Nodes start a route discovery

process only when they need a path toward a destination. The discovery ends when

10

2.3 Routing protocols

Fig. 2.6 RREQ propagation in AODV protocol

the destination node (or a node that knows a route to reach it) reply to a request. This

approach allows the saving of bandwidth and energy, at the cost of higher delays for the first

transmission.

2.3.1 Ad-hoc On-demand Distance Vector protocol

Ad-hoc On-demand Distance Vector (AODV) protocol [18] belongs to reactive protocols,

allowing the nodes in the network to quickly establish the routes toward new destinations,

without maintaining unused paths. The main feature of this protocol is the sequence numbers.

Each node keeps a number that is used to know if a route is more recent than another, avoiding

the creation of loops while discovering a new route.

A node that wants to send data toward a new destination, for which it does not already

have a valid route, starts a new route discovery process. It starts by broadcasting a Route

Request (RREQ) packet, containing the information about the originator node (i.e. the node

which needs the route) and the destination node. This packet is retransmitted in broadcast by

the nodes which receive it until it reaches a node that knows a route to a destination, or the

destination itself. The retransmission of the same RREQ packet is avoided by including a

RREQ ID in it. The protocol exploits the expanding ring search for trying to avoid flooding

the whole network when the destination node is close to the originator node. The Time to

Live (TTL) starts from a low value, increasing each time there is no reply and the originator

node sends again the request.

When a node is the destination of a request, or it knows the route to the destination, it

generates and sends a Route Reply (RREP) packet. It is sent in unicast toward the originator,

following the reverse path created while broadcasting the request.

11

2.3 Routing protocols

When a link break occurs, the node using that link in a route transmits the information

about the link toward the interested nodes through the generation of a Route Error (RERR)

packet. It contains the unreachable destination, so the nodes receiving the packet can update

their routing table by marking the route as invalid, and starting a new route discovery process

if they still need to communicate with that destination.

Nodes can maintain the connection with their neighbors by optionally using Hello

messages. They consist in messages periodically broadcast with TTL equals to 1, so a node

can notice which nodes are still in its transmission range.

A new version of this protocol [19], previously known as Dynamic MANET On-demand

(DYMO) and now as AODVv2, was in draft version until the end of November 2016, without

becoming standard for Internet Engineering Task Force (IETF). With respect to AODV first

version, it does not provide support for Hello messages and local repair (a technique to locally

find an alternative to a route with a broken link). A new feature of the protocol concerns a

mechanism for using multiple metric types.

2.3.2 Optimized Link State Routing protocol

Optimized Link State Routing (OLSR) protocol [20] is a proactive protocol. It is an

adjustment of the link state algorithm for ad-hoc networks. The key concept of this protocol

is is the Multi Point Relay (MPR). They are nodes that are chosen to forward broadcast

messages during flooding process. This technique allows to reduce the overhead with respect

to the classic flooding mechanism, where each node forwards the first received copy of the

message. In OLSR protocol, information about links state are generated and transmitted just

by MPRs. Moreover, this protocol allows sharing partial information about links state.

An updated version of this protocol, OLSRv2 [21], was published as standard in 2014.

It keeps the same base mechanisms of the previous version. Main improvements concern

the link metric, with the support extended to other metrics than the hop count, and a more

flexible and efficient signaling framework. Moreover, protocol messages are simplified.

2.3.3 Destination-Sequenced Distance Vector protocol

Another proactive protocol is Destination-Sequenced Distance Vector (DSDV) [22]. It is

based on Bellman-Ford algorithm. Each node keeps a routing table where all destinations in

the network are registered. The amount of nodes needed to reach each destination is saved in

the table. Similarly to AODV protocol, the freshness of a route can be defined through the

sequence number of the destination, avoiding the creation of loops too. Updates of routing

12

2.4 Security attacks

table are transmitted at a fixed time interval, maintaining its consistency. Overhead can be

reduced transmitting just incremental information of the routing table when possible.

2.3.4 Dynamic Source Routing protocol

Dynamic Source Routing (DSR) [23] is a reactive protocol, based on source routing. The

route toward a destination is discovered by broadcasting a route request. Each node that

receives it for the first time checks if this route is in its route cache. If it does not contain the

requested route, the node will add its address in the route record of the packet and broadcasts

it again. The discovery ends when the request reaches the destination or a node with a valid

route to it. The reply message contains the route record of the corresponding request, with the

route cache concerning the destination in addition if the reply is generated by an intermediate

node. The reply follows the route record in reverse order.

Routes are maintained by using route error packets, generated when layer 2 detects a

transmission problem when communicating with a neighbor node. Route error packet triggers

the deletion of the unreachable node and all the routes containing it from the route cache of

the node that receives it.

2.4 Security attacks

Ad-hoc networks are subject to different kinds of threats, many more than their wired

counterpart. Mobility and lack of infrastructure raise many issues under the security

perspective.

2.4.1 Security goals

One of the approaches in securing ad-hoc networks [24] defines the attributes to satisfy to

address the network security:

• availability;

• confidentiality;

• integrity;

• authentication;

• non-repudiation.

13

2.4 Security attacks

Achieving these goals should lead to a secure network, strong against malicious behaviors.

Availability

The availability is intended as the opportunity of using a service offered by a node when

needed. In ad-hoc networks, a node could interact with another one exploiting allowed

operations but with malicious intents. Actions against the availability are known as Denial of

Service (DoS) attacks. In networks composed of nodes with limited power sources, the main

aim of a DoS attack could be the depletion of nodes energy, having worse consequences than

in other contexts.

Confidentiality

The impossibility of accessing to some information by unauthorized entities is known

as confidentiality. The principal method used to achieve this goal is the encryption of

confidential information. This property is fundamental in some scenarios to avoid the

eavesdropping of sensitive information. Prerequisite of this property is the authentication,

because securing information is useless if the identity of the sender or the receiver cannot be

ensured.

Integrity

Integrity as requisite consists in preventing or at least detecting the unauthorized modification

of a message. It could depend of the behavior of a malicious node, which wants to modify

the content of a message for its purposed, or to the interferences in the wireless medium.

Authentication

The authentication allows to acknowledge the identity of an agent. Without this property,

a node cannot be sure about the node with which it exchanges information, so a malicious

agent can access data intended for other nodes and interfere with operations on behalf of

another entity. Authentication could be managed in many ways, e.g. through key exchange

mechanisms or Public Key Infrastructures (PKIs).

Non-repudiation

Non-repudiation attribute states that a node cannot deny the authorship of a message. With

this property, the author of an erroneous message can be accused without doubts, and the

14

2.4 Security attacks

information can be spread to other nodes. A common method to achieve non-repudiation is

the mechanism of digital signatures.

2.4.2 Internal attacks

Nodes composing an ad-hoc network could be placed in a hostile environment, with

weak physical protections. These scenarios put nodes in danger, because they could be

compromised, consequently acting in malicious way. Requiring a centralized entity, as in

WSNs, is source of vulnerabilities, because compromising just this entity could lead to the

entire network disruption.

2.4.3 External attacks

Using wireless connection between nodes could expose the network to active and passive

attacks. Active attacks can be the modification or discarding of messages circulating in the

network, forging of fake messages, impersonation of another nodes with the purpose of

disrupting the connection between nodes. As passive attacks, the eavesdropping could allow

the access to reserved information by malicious agents.

2.4.4 Attacks categorization

In literature many ways to categorize attacks were proposed [25]. One possible categorization

divides the attacks in two typologies: route-disruption and resource-consumption. Attacks

attempting to manipulate route messages with the aim of disrupting routes between nodes

are part of the first typology, while resource-consumption attacks try to consume energy,

bandwidth or storage memory of the nodes in the network by transmitting fake or wrong

packets.

Another categorization divides attacks in three types: modification, impersonation and

fabrication. Modification consists in altering routing packets content, modifying information

contained in its fields. A node can impersonate one or many nodes, redirecting the traffic

directed to it or generating loops in routes. Fabrication attacks are made by generating fake

packets, containing wrong information to break links in the network, consuming the nodes

energy and the network bandwidth. Malicious nodes can also take advantage of trust-based

Intrusion Detection System (IDS), spreading false information about other nodes. They can

use high trust values to recommend other malicious nodes, or low trust values for nodes

behaving correctly.

15

2.4 Security attacks

Fig. 2.7 Malicious node (in red) performing black hole attack

A survey done on MANET intrusion detection and prevention approaches [26] categorizes

various attacks in two categories: active and passive attacks. The first category refers to

attacks actively performed by malicious agents, as sleep deprivation, black hole, sybil attack

and more. Passive attacks category includes eavesdropping, traffic analysis and location

disclosure, which are attacks that do not directly affect the functionalities of the network, but

they can be dangerous in some scenarios.

Sleep deprivation

The sleep deprivation attack can consist in sending route requests for a node unavailable

in the network or sending many requests without waiting any time between them. It is a

distributed DoS attack, where a node interacts with one or more nodes in a way that seems

legitimate, but with the aim of depleting the energy of the attack targets. As the energy is a

strict constraint in ad-hoc networks, this attack is very effective in this scenario.

Black hole attack

A malicious node performing a black hole attack [27, 28] tries to redirect the most of the

traffic in the network through itself, then it drops all the data packets that it receives, as shown

in Fig. 2.7. The attraction is performed by exploiting protocol packets and the information

about the metric. The malicious agent advertises the path with the least cost, so nodes will

choose the route including it. Higher is the amount of routes in which the malicious agent is

included, higher is the effect of the black hole attack against the network.

16

2.4 Security attacks

Fig. 2.8 Wormhole attack

Gray hole

The gray hole attack [28–30] is very similar to the black hole attack, but it does not drop

all the packets. Based on the data contained in the packet or in a probabilistic way, just a

part of the packets is forwarded. Usually this attack is harder to detect, because in some

circumstances fair nodes cannot forward packets (e.g. when a link breaks due to node

mobility), so nodes can imagine that this behavior is not malicious.

Packet dropping

A variation of black or gray hole attacks is the simple dropping of the packets. This threat is

performed without trying to attract the routes by malicious agent, but just dropping all or

a part of the packets to forward. This behavior can be also not driven by malicious intents,

because in ad-hoc networks there are situations that makes impossible forwarding a packet

(e.g. the unavailability of the next hop node because it moved from its previous position).

Wormhole

The wormhole attack [31] is an active attack, consisting in tunneling the packets received

from a point of the network to another. For tunneled distances longer than the wireless range,

the packet sent by the malicious node arrives before the packet that follows the multi-hop

route, so the malicious node gains a powerful position in the network. This attack can be

performed by using a wired connection or directive antennas. Malicious agent can forward

data intended for it, or all the packets eavesdropped in its transmission range. Data can be

tunneled bitwise, reducing even more the time needed for the transmission. In this way, a

malicious node can be part of many routes. The malicious behavior in this attack is intended

as the lack of retransmission of some packets after the malicious agent obtained a privileged

status in the network, being part of most of the routes.

17

2.4 Security attacks

Rushing attack

An effective active attack against reactive routing protocols for ad-hoc networks is the rushing

attack [32], which consists in spreading the route requests quickly or advising them as the

latest ones. Therefore, the malicious node takes part of the routes, because to control the

packet overhead, only the first request is taken into account by other nodes.

Sybil attack

The sybil attack [33] consists in exploiting the lack of central authorities for identity

verification, typical in ad-hoc network, to fake other identities and send control packets

on behalf of other unaware nodes. Therefore, all the packets directed to a node will be sent

to the malicious node.

Byzantine attack

The byzantine attack [34] requires the cooperation between malicious nodes. They can jointly

perform one of other described attacks, or they can create loops between them. Therefore,

they seem to have a fair behavior from other nodes perspective, and their detection is very

hard.

Eavesdropping

Using the wireless medium to communicate can be exploited by malicious agents to hear

data transmitted. A node undergoing this attack is not aware of what is occurring. In some

scenarios communication is private, so countermeasures as the encryption need to be adopted.

Traffic analysis and location disclosure

The analysis of the traffic exchanged by nodes in a wireless ad-hoc network can be exploited

to discover their location. This attack can also work without taking into account the content

of messages, but just analyzing the communication pattern, the amount of data transmitted

and the transmission characteristics.

18

Chapter 3

Intrusion Detection Systems on

Resource-Constrained Devices

Intrusion detection can be defined as the automatic detection and the subsequent alarm

generation of an intrusion that is being performed (or it was already made). An IDS is a

protection system capable to detect hostile and malicious activities that put the network in

danger. Intrusions are detected by monitoring the traffic on the network, looking for suspect

activities. After the detection, it should take the adequate countermeasure to protect the

network. The main purpose of an IDS is to offer a second line of protection, because it

intervenes when one or more agents are already compromised.

3.1 IDS classification

An IDS can work by analyzing sent and received traffic of the network interface or analyzing

log files stored on the device. The main techniques used by IDSs [35, 36] for detection can

be divided in three categories:

• anomaly detection systems;

• misuse detection systems;

• specification-based detection systems;

• hybrid detection systems;

19

3.1 IDS classification

Fig. 3.1 Anomaly detection process flow

Fig. 3.2 Misuse detection process flow

3.1.1 Anomaly detection systems

The anomaly detection is performed by comparing normal behaviors with collected data. The

activities are considered malicious if they deviates enough from the normality. Abnormal

traffic is different than normal traffic, moreover it is less common. With these premises, this

type of detection should be capable of identifying new attacks, because unknown attacks

deviate from normality too. Variables taken into account by the IDS are a finite number, so it

could lead to false positives , that is fair traffic detected as malicious, and false negatives,

meaning that malicious traffic is not detected.

3.1.2 Misuse detection systems

As misuse detection, the analysis of the patterns and signatures of known attacks is used for

comparison with collected data. If there is a match, it is treated as an intrusion. The main

difference with respect to the anomaly detection concerns the patterns used for detections,

because they are defined off-line by an expert. Based on this observation, the detection

following this concept works very well when the attack is already known. In opposition to

this, novel attacks cannot be detected at all. Another drawback of this approach is given by

the definition of the patterns from the historical data, therefore known attacks tend to be less

used and the rules become outdated.

20

3.2 IDS architectures

3.1.3 Specification-based detection systems

The detection based on specifications allows to detect as malicious a monitored behavior

that differs from a set of defined constraints. The main assumption concerns fair nodes,

which will behave within the defined bounds. Activities are not marked as common and

uncommon, rather they are identified as what a system may and may not do. As in misuse

detection systems, the correctness and completeness of the specifications depend on the

expert knowledge, mostly the second one, because generating all the specifications for the

amount of programs used today is a very hard task.

3.1.4 Hybrid detection systems

Combining previous described systems could improve the intrusion detection, using each

approach for its advantages. Obviously, the way in which two or more systems are joint

together will determine the performance of the IDS.

3.2 IDS architectures

The optimal architecture for an IDS applied to wireless ad-hoc networks depends on the

role of the nodes for routing reasons. If all the nodes have the same tasks, then they could

make the same operations for monitoring and detection of malicious agents. If the nodes

participating in the network are divided following some criteria (e.g. forming clusters), then

nodes with a broader view of the network should have a different role in intrusion detection.

The main architectures for intrusion detection [37] are:

• stand-alone IDS;

• distributed/cooperative IDS;

• hierarchical IDS.

Each architecture has its advantages and drawbacks. In stand-alone IDS, each node has the

task of monitoring and detecting threats for itself. All the information is collected locally, all

the decisions are taken by the node independently from the others. The node does not know

if other nodes have taken any decision about an agent, because the nodes do not exchange

alerts or recommendations. If all the nodes in the network are capable of running an IDS,

this architecture can be suitable for wireless ad-hoc networks.

21

3.3 Detection approaches

IDS

IDS

IDS

IDS

IDS

IDS

IDS
intrusion detection state,

intrusion response

Fig. 3.3 Example of distributed and cooperative IDS

As the nodes cooperate for achieving multi-hop transmission of data through the network,

they can also collaborate for intrusion detection. Every node participates in this system by

collecting data about possible intrusions and sharing it with the rest of the network, as shown

in Fig. 3.3. The decision about the maliciousness of a node is taken in a distributed way,

based on the information gathered by all nodes involved in this process.

For hierarchically organized networks, an IDS that takes into account this characteristic

is suitable. Nodes that perform more actions (e.g. cluster-heads) can act as control points.

Each node can take decisions locally, while nodes with more assigned tasks can start global

actions against an intruder when it is detected.

3.3 Detection approaches

The way in which the behavior of the nodes is evaluated characterizes IDSs. The analysis of

many recent works led to the following approaches:

• trust-based;

• game theory-based;

• machine learning-based.

Despite the encryption is not a proper method of intrusion detection, because it is more a

method to prevent the intrusions, a brief analysis of various encryption-based approaches is

also presented in this chapter.

22

3.3 Detection approaches

3.3.1 Trust-based detection

Many approaches in intrusion detections are trust-based [38, 39]. There are many ways to

assign a trust value to each node. Trust values can be exploited as metric, or just to exclude

malicious nodes from the routes. Nodes can evaluate the trust of an agent by the data gathered

during the interactions with it, in a direct way, or collaborating with other nodes by asking

and/or receiving information about an unknown agent.

The authors in [40] propose an approach to improve detection accuracy through Collaborative

Intrusion Detection Networks (CIDNs). They introduce the concept of intrusion sensitivity

to describe the accuracy of a certain IDS in detecting a specific type of attack. The key

components of the CIDN framework used are:

• IDS nodes;

• trust management component;

• query component;

• collaboration component;

• communication component.

Each node running the IDS is referred as IDS node. It can collaborate with others, keeping a

partner list that contains them. Joining the collaborative network requires getting a proof

of identify from a trusted Certification Authority (CA). The trustworthiness of the nodes

is evaluated through the trust management component. The authors take into account two

different types of trust:

• feedback-based trust (also known as indirect trust), which is established through the

collaboration with the partner nodes using the collaboration component;

• packet-based trust (or direct trust), computed by evaluating the validity of received

packets from the target node.

The query component enables a node to send a set of queries to a target node containing a set

of alarms, receiving answers that depend on the configuration and the settings of the target

node IDS. Computing feedback-based trust requires the use of the collaboration component

to exchange requests and challenges between nodes, in order to receive the corresponding

feedback. The requests enable the consultation of the alerts, challenges are used to evaluate

the trustworthiness of partner nodes. Replying to these operations requires the sending of a

23

3.3 Detection approaches

Fig. 3.4 CIDN framework

feedback. The connection between the various IDS equipped by nodes is maintained through

the communication component, which can also help a node in computing the packet-based

trust. Fig. 3.4 illustrates how CIDN works.

A trust-based mechanism to secure OLSR protocol is proposed in [41]. Nodes trustworthiness

is evaluated through a fuzzy Petri net. It is a combination of classical Petri net with fuzzy

logic. The trust evaluation is done by applying fuzzy rules, in the form of "IF x IS propertyx,

THEN y IS propertyy, which are two fuzzy propositions. Each proposition has a credibility

called truth degree. A Petri net is composed of transitions, places, tokens and arcs. Places

and transitions are connected by arcs, while tokens can be contained only in places. The

reasoning about trustworthiness is made by mapping entities of Petri net with fuzzy logic.

Places are propositions, transitions are mapped as casual relationships of propositions and

tokens represent the trust degree of a proposition. Tokens can take values in the continuous

interval from 0 to 1. The OLSR protocol is enhanced using a trust based routing algorithm that

selects the path with maximum trust value among all the possible paths. The trustworthiness

of a path is evaluated as the minimum trust value of the nodes included in it. This choice is

made possible by the type of protocol, OLSR, which is a proactive protocol, therefore nodes

have information about the whole network topology.

The work in [42] concerns the development and the analysis of a trust management

protocol for MANETs using hierarchical modeling techniques based on Stochastic Petri

Nets (SPNs). The concept of "web of trust" is used in order to extend the trust over the space

based on a weighted transitivity of trust. The obtained degree of trust is based on the length

of the trust chain. Longer trust chains mean a higher decay of the trust degree. A node can

recommend only agents with which it had previous interactions. The trust metric exploited

24

3.3 Detection approaches

by authors in this proposal takes into account quality of service and social trust aspects. The

nodes behavior is described by a hierarchical SPN model.

An overview of TMS applied to MANETs is offered in [43]. In this survey, authors

emphasize the important phases composing the trust management, such as trust establishment,

trust update and trust revocation, which can severely affect the network performance if they

are not harmonized in the specific routing protocols. On the basis of the routing scheme

applied, these TMSs need to be adapted to perform well without degrading the overall

network performance. Authors emphasize, as for future directions, TMS with IDS should

be able to trade-off among more metrics and resources such as time or energy, especially in

MANETs.

The authors in [44] addressed the performance issue of trust management in MANETs for

trust bias minimization and application performance maximization. The trust management

protocol developed by authors adopts a combined metric, which uses social and Quality

of Service (QoS) trust. Social trust is evaluated through social ties and honesty, measured

respectively by intimacy and healthiness. The evaluation of QoS trust is done taking into

account the capability of a node to complete a mission assigned. The chosen metrics are the

energy and the cooperativeness in protocol execution, which represent the competence and

the protocol compliance. The trust value of a node is represented by a real number between 0

and 1, with 0 meaning complete distrust, 1 for complete trust, and the 0.5 value representing

a state of ignorance. The chosen metrics are explained in the following:

• intimacy measures the interactions between nodes, concerning packet routing and

forwarding;

• healthiness represents the belief about the node fairness, therefore it is related to the

probability that a node is compromised;

• energy is referred to the residual energy of a node, because in MANETs the energy is

limited by the battery capacity, so the capability of completing a task depends on it;

• cooperativeness is intended as the participation of a node in routing operations, such

as routing and packet forwarding.

In addition to the healthiness, monitoring is exploited in order to evaluate the trustworthiness

of a node. The behavior of fair, malicious and selfish nodes is modeled using SPN techniques.

The adopted model is shown in Fig. 3.5 The work introduced the concept of objective trust

evaluation, using knowledge concerning the environment conditions.

25

3.3 Detection approaches

Energy

T_ENERGY

Member

T_JOIN T_LEAVE

CN

T_COMPRO

UNCOOP

Location

T_LOCATION

T_UNCOOP

Fig. 3.5 Node SPN model

A proposal of a probabilistic detection scheme for Delay Tolerant Networks (DTNs) is

presented in [45] with the name of iTrust. Some particular wireless ad-hoc networks are

included in this type of networks (e.g. WSNs with scheduled intermittent connectivity, sparse

MANETs). The iTrust scheme is inspired from the inspection game, a game theory model in

which the adherence to certain legal rules of an entity, called inspectee, is verified by another

entity, known as inspector. The scheme provides a Trust Authority (TA) that is periodically

available. Its behavior follows a probability, based on which it could launch the probabilistic

detection by collecting history evidence of a target node to use the information when it will

be judged. The reputation system introduced by the proposal provides lower probability of

controlling a node with a good reputation. The iTrust scheme analysis is done using the

game theory, in order to demonstrate that TA could provide security for DTN routing. The

proposal is evaluated against selfish and malicious nodes performing black hole and gray

hole attacks. Evidences evaluated for judgment are the following:

• delegation task evidence: used to record the number of tasks about routing assigned to

a certain target node;

• forwarding history evidence: it is verified with a signature provided by the intermediate

node to which the packet was forwarded. The target node submits its history to TA,

which evaluates it taking into account the tasks delegated;

• contact history evidence: each time two nodes have a contact, a new evidence is

generated and store in both nodes.

The probabilistic approach is introduced to reduce the cost of evidence evaluation in an

advanced version of iTrust. The Nash equilibrium of the inspection game is given by a mixed

strategy, with positive probabilities of inspection and non-compliance. The analysis of the

results of various experiment performed showed a reduction of the overhead generated by

the IDS.

26

3.3 Detection approaches

The work in [46] proposed a trust prediction model in which each node computes

historical trust of its neighbors using the packet correct forwarding ratio. The proposed

model classifies the trust in three different types:

• node historical trust;

• node current trust;

• route trust.

Node historical trust is computed using the information about the past direct interactions

with the node. It is composed of two factors: control packet forwarding ratio and data packet

forwarding ratio. Each one has a different weight to determine the overall historical trust. The

adopted mechanism to evaluate interactions is the monitoring of transmitted packets through

the promiscuous mode of the wireless interface. As node current trust, the application of the

fuzzy logic rules to the historical trust is intended. Current trust predicts the future behavior

of the subject node. The route trust is exploited for evaluating the quality of a chosen route.

The trust value of a route depends on the trust values of the intermediate nodes along it. The

proposed protocol, named Trust-based Source Routing (TSR), extends the source routing

mechanism with the trust model just described. The route is chosen taking into account the

minimum hop count among the routes that satisfy a defined trust requirement.

The authors in [47] proposed a trust model which evaluates neighbors direct trust using

these attributes: time of encounter, mobility and successful cooperation frequency. The

recommended trust value is determined using the revised D-S evidence theory. This theory is

based on the identification frame Ω set, containing basic propositions which are both exclusive

and exhaustive. Then Ω is defined as T,−T , with T and −T representing respectively the

credible and the incredible states. From the set 2Ω, which represents the set of all the possible

propositions based on Ω, two concepts are defined: belief and plausibility. The different

between belief and plausibility is defined as belief interval, which is the range of maximum

uncertainty. The trusted routing protocol TDS-AODV is based on the proposed novel trust

mechanism. It is an extension of the AODV protocol, with each node making a routing

decision according to the trust values of its neighbor nodes. The protocol provides the

possibility of building 2 different routes: the main route with highest trust value among all

the candidate routes, and a backup route.

A proposal of trust-based Secure AODV (SAODV) protocol with intrusion detection and

incentive cooperation was discussed and analyzed in [48–50]. In this work, the protocol

exploited an Intrusion Detection Mechanism (IDM) and a Trust-Based Mechanism (TBM)

27

3.3 Detection approaches

to promote collaboration among nodes, penalizing selfish and malicious nodes. TBM stores

useful information in a supplementary table, as follows:

• trust_id: the address of neighbor node;

• NRREQ: the number of RREQ correctly received;

• NRREP: the number of RREP correctly received;

• T : the trust level, with 1 as initial value;

• N f : the number of consecutive messages whose verification is failed. This value is

exploited to reduce the trust level of an agent;

• thN f
: maximum number of signature failures before putting the trust level to 0,

temporally excluding the node from the communication.

Selfish nodes are detected through TBM and a credit management to promote cooperation,

which takes into account the generation and the forwarding of control packets to increase

and decrease the amount of credits.

In the work presented in [51], the authors proposed a trust based protocol for energy-efficient

routing in MANETs. The main concept introduced by this proposal is the Energy-Factor (EF)

computed through an energy consumption model. It is the ratio of the residual energy

to the initial energy of a node, adopted by the proposed Protocol for Energy-Efficient

Routing (PEER) as routing metric. The trust evaluation process is performed in three phases,

picked from the five phases proposed in [52]:

• initial phase: the trust module initializes the EF of each new node joining the network;

• update phase: in this phase the trust values of the nodes that leave and re-enter in a

node transmission range are tracked;

• re-establish phase: the possibility of misbehaviors due to mobility and low energy

available are taken into account, providing a redemption mechanism that re-establish

the trust value of a selfish node in this phase.

The proposed protocol sets up the routes using the values provided by the trust module,

introducing some modifications in standard RREQ and RREP packets used by AODV

protocol.

28

3.3 Detection approaches

3.3.2 Game theory-based detection

Many proposals use game theory models to secure ad-hoc networks. A survey on latest

trend is presented in [53]. Approaches can be categorized in non-cooperative games and

cooperation enforcement games.

Non-cooperative games

Authors in [54] proposed a proactive defense scheme using an evolutionary game theory

model. Each node tries to find the best strategy to balance its own rewards in terms of

forwarding of data packets and energy consumption. The defense strategy of the nodes is

dynamically adapted to attackers strategies.

Another approach is defined through an energy aware Trust Derivation Dilemma Game

(TDDG) [55]. The work presented a risk strategy model to promote nodes cooperation, then

the TDDG is introduced. Authors discussed the optimal ratio between the gain in terms of

security, the cost in terms of energy consumption and the probability of the selected strategy.

Authors in [56] proposed an adaptive coordinator selection algorithm in order to secure

the network against attacks and reduce the transmission delay. The game model on which

the algorithm is based consists in a stochastic game for dynamic defense and an evolutionary

game for coordination selection. The maximum payoff for players is obtained combining the

Nash equilibrium strategies of both evolutionary and stochastic games.

A method to study an optimal monitor placement for IDS is given in [57]. The problem

is modeled as a two-player zero-sum finite stochastic game between the attacker and the

defender, which is the IDS. A target node can be in one of these two states: healthy or

compromised. A node in compromised state means that it is controlled by an attacked, then

it can inject malicious packets in the network with the main of attacking healthy nodes. The

equilibrium of the game is characterized by analyzing attacking and defending strategies.

The best results are obtained when both attacker and defender know the state of the network.

Cooperation enforcement games

An approach for a fair energy consumption distribution among nodes in a hierarchical-cluster

network is proposed through the Trustworthy Energy Efficient Routing (TEER) algorithm

[58]. The game theory is applied in cluster-head election. The cluster-head with higher

energy and trust level corresponds to the Nash equilibrium of the game.

The authors in [59] analyzed the impact of the game theory on many network attributes,

such as throughput, battery consumption and detection accuracy. Each node decides to

29

3.3 Detection approaches

forward packets by defining both a cost and a profit for routing and forwarding packets, and

keeping a history of interactions with non-cooperating nodes to exclude selfish node from

the network. The incentive for nodes is keeping a good reputation, so they need to find a

trade-off among maintaining their reputation and saving energy.

The application of game theory and fuzzy Q-learning to detect Distributed DoS (DDoS)

attacks in WSNs is proposed in [60]. The Game-Fuzzy Q-Learning (G-FQL) is defined as a

game with three players: a cluster-head, the sink and an attacker. The game is composed of

two phases: in the first phase, the fuzzy Q-learning algorithm is used to check if the attack

level of the presumed attacker is above a threshold. In this case, an alarm is transmitted to

the sink, which prepares a countermeasure strategy in the second phase.

3.3.3 Machine learning-based detection

Machine learning can be exploited to detect malicious behaviors, mainly through the

application of classification algorithms.

A proposal for intelligent intrusion detection in WSNs is given in [61]. The detection

of anomalies is done through an IDM based on Random Neural Networks (RNNs). The

solution was implemented on Arduino boards and compared with a encryption-based system,

against the attack of a malicious node that transmits invalid data to degrade performance of

the network. The evaluation of the proposal showed an energy saving of about 10% higher

with respect to the energy consumption of the encryption-based IDS.

The Hybrid IDS (HIDS) is proposed in [62]. It is an anomaly based detection system

based on Support Vector Machine (SVM) technique. It is a class of machine learning

algorithm used for the classification of small sample data. In the off-line training phase,

the system gathers and processes data from the physical, MAC and network layers. Then

a mapping procedure is performed, classifying the training data through a division of the

classification hyperplane by a linear classification plane. The discovery of malicious nodes

is done through a signature based model, using a set of rules to classify the behavior of an

agent.

3.3.4 Encryption-based prevention

The encryption-based approach is not a proper IDS, but it prevents the intrusions. Therefore,

proposals using this approach can be integrated with IDSs, offering a more robust security.

30

3.3 Detection approaches

SAODV [24, 63] is a routing protocol for MANETs based on AODV. Its principal task

is securing the route discovery process. The major vulnerabilities of AODV that SAODV

solves [64] are the following:

• impersonation made by a node that generates requests in name of another node;

• decreasing the hop count or increasing the sequence number of the destination by an

intermediate node, to be part of the path connecting two nodes. This could happen if

the node wants to analyze the packets exchanged by the nodes, or to break the link by

dropping packets;

• impersonation of a node, generating a RREP with its address as destination address;

• generation and transmission of a RERR packet, impersonating another node. Using a

high sequence number, next route discoveries regarding that node will fail;

• impersonation of a node generating and transmitting a RREP packet, declaring that the

node is the destination and it is the leader of a subnet. Doing so, the node could drop

all the packet of the subnet;

• sending of route request packet using the maximum sequence number possible for the

destination. When it happens, the sequence number will start again from zero, so it

invalidates all previous routes discovered.

The primary security requirement that SAODV satisfies is the import authorization, which is

the authorization to update routing information only when the information is received by the

destination itself. It needs other security services, such as integrity and source authentication.

Integrity ensures that the message information was not modified by intermediate nodes,

while source authentication is needed to verify that the node is who claims to be. These

properties combined define the data authentication. They are achieved with digital signatures

and message authentication techniques. The field integrity protection is obtained by using

digital signatures to secure the packet. In this way, the fields cannot be modified by any

node except the one that generates the packet. The only field not involved in this process

is the hop count field, because each node that forwards the packet needs to increase the

value contained in the field. The SAODV protocol provides two different signature schemes.

In the first, each intermediate node will not reply to the request also if it has a route to

destination. The second one allows the reply by other nodes, which need to include the

original signature of the destination (stored in a cache), signing the fields modified by them.

These two approaches are called respectively Single Signature Extension (SSE) and Double

31

3.3 Detection approaches

Signature Extension (DSE). Packets generated using these extensions allow each node to

verify the messages validity. If the verification fails, the node discards the packet. These

are extensions to control packets provided by AODV protocol, containing the information

needed to manage SAODV operations. Concerning the hop count field, it has to be modified

by each node that forwards the packet, so hash chains are used for this purpose.

A secure protocol based on DSDV, which is a proactive routing protocol, is proposed

in [65]. The Secure Efficient Ad-hoc Distance Vector (SEAD) protocol protects the routing

updates from malicious nodes by keeping a hash value for each entry in the routing table.

The authentication of a route update is achieved through using a hash value computed in

a way that does not allow to attackers to advertise a fresher route to a certain destination,

because the hash function is one-way.

Authors in [66] proposed an efficient on-demand secure routing protocol, named ARIADNE,

providing security against attacks using symmetric cryptography. The point-to-point authentication

of routing packets is achieved using a shared key and a message authentication code between

the nodes. The authentication of routing messages is guaranteed by the Timed Efficient

Stream Loss-tolerant Authentication (TESLA) [67] broadcast authentication protocol. ARIADNE

is based on DSR protocol.

A proposal of an on-demand protocol providing secure communications in open environment

is presented in [68]. In the Authenticated Routing for Ad-hoc Networks (ARAN) protocol

the nodes use session keys that can be exchanged or distributed by a CA. Each node has to

authenticate to a trusted certificate server in order to get a certificate. This certificate is used

for the authentication to other nodes while exchanging routing information. The existence of

a secure path is obtained through storing a route pair, composed of two nodes (previous node

and destination node), at each intermediate hop. These fields are concatenated and signed

with the source node private key. The route discovery is initialized by the source node, which

broadcasts a Route Discovery Packet (RDP). Each node receiving this packet for the first

time removes other signatures and signs the packet using its own key, broadcasting again the

packet, until the destination is reached. At destination, a reply is generated, signed and sent

toward the source.

Security Protocols for Sensor Networks (SPINS) [69] is a suite of two protocols optimized

for their use in wireless ad-hoc networks. A modified version of TESLA protocol [67]

is introduced for secure broadcast, which supports symmetric cryptographic techniques

for authentication, therefore it is more suitable for ad-hoc networks, because the cost

of generation and verification of symmetric keys is much less than for asymmetric keys.

Point-to-point communication is provided by Secure Network Encryption Protocol (SNEP),

32

3.3 Detection approaches

which relies on a counter, shared among the sender and the receiver, in order to ensure

security and protect the content of the message.

The Unobservable Secure On-Demand Routing (USOR) scheme is proposed in [70]. It

provides a combination of group signature and ID-based encryption for route discovery, in

order to protect the privacy of the nodes participating in the wireless ad-hoc network from

inside and outside attackers. The main characteristic of this proposal is the impossibility

of observing both control and data packets by an external agent. The requirements that the

proposal satisfy are:

• anonymity: all the nodes participating in the communication are not identifiable outside

the network;

• unlinkability: the knowledge about any relation between two distinct messages is

impossible;

• unobservability: any meaningful packet cannot be distinguished from other packets to

an outside malicious agent.

The group signature scheme consists in a key server that generates a group public key, known

to every node, and a private group signature key for each node in the network. This scheme

ensures that a signature does not reveal the identity of the signer. The ID-based encryption

scheme is based on elliptic curves. The key server chooses a master secret and generates the

ID-based private key for each node.

3.3.5 Other approaches

A novel approach for intrusion detection in pervasive environments is proposed by authors in

[71]. The detection of malicious nodes is done by comparing the behavior of the node with a

predefined normal profile. The proposed security scheme is divided in three different phases:

1. initialization phase;

2. detection phase;

3. isolation phase.

In the first phase the normal profile of users is defined. This profile includes information

such as address, use of CPU, memory occupation and others. The profile is represented by

a vector Vi, with Vi[k] representing the value of the attribute k for the user i. The value 0

33

3.3 Detection approaches

Fig. 3.6 CoCoWa architecture

represents a restriction, while other values represent a privilege. After the initialization, the

system switches in detection phase. Information about users behavior is collected, building

the current behavior to compare with the normal profile defined in the first phase. If as result

of this comparison, the system detects an anomaly, it triggers the isolation phase. The main

actions performed in this phase are the communication to other nodes about the intruder, the

termination of all connection with the malicious node to remove it from the network, and the

tracking of the intruder and the type of attack performed.

The authors in [72] propose a Collaborative Contract-based Watchdog (CoCoWa) to

detect selfish nodes in MANETs. Watchdogs are used for network monitoring, they consist

on overhearing the packets transmitted in order to detect selfish or malicious behaviors.

Each node runs a local watchdog to detect selfish nodes and new contacts. The acquired

information is transmitted by the diffusion module, which has also the task of receiving data

from other nodes. The system is event-driven, its architecture is shown in Fig. 3.6. The

generated events concern positive detections, negative detections and no detection when a

node does not have enough information about another node. A threshold is used to avoid the

fast spreading of wrong information.

34

Chapter 4

Energy Consumption Analysis of a Trust

Management Scheme in Mobile Ad-hoc

Networks

Two of the major issues of MANETs concern the security of exchanged data and the energy

consumption. These two properties are in contrast because achieving a better security requires

more operations and data exchanges. Introducing a TMS in wireless ad-hoc networks

leads to an increase in the energy consumption mainly for the operations involving the

wireless interface of the nodes. In the following, the trust model is integrated with a secure

encryption-based protocol as additional measure of security against internal attacks. The

direct trust evaluation is computed through the analysis of the data gathered by monitoring

the transmissions exploiting the promiscuous mode of the wireless interface. Eventually

a detailed analysis of the energy consumption in a MANET environment is presented and

compared with the results obtained when the TMS is exploited for detecting intruders. As

it can be easily foreseen, the main difference in terms of energy consumption is due to the

monitoring, which requires additional energy to be executed.

4.1 Trust model

In MANETs, the concept of trust can be defined as the certainty whereby an agent will

perform such an action from the subject point of view. The subject is the node requesting the

execution of the action (e.g. packet forwarding). The trust value of the agent is computed

by controlling its behavior during the time, the observations done through monitoring are

35

4.1 Trust model

Fig. 4.1 Routing without TMS and with TMS

evaluated to establish if the agent is trustworthy or not. The trust value of an agent is usually

included in the ranges [0, +1] or [-1, +1]. Under the subject point of view, the agents with

high trust values have an higher probability to perform the action. Usually the mean value

of the range in which the trust value is included indicates an uncertainty condition, so the

subject has no belief about the agent behavior. A comparison of the expected behavior with

and without TMS is shown in the example in Fig. 4.1. Trust value T is reported on each edge

composing the chosen route. No TMS scenario allows the inclusion of the malicious node M

in the route between the source S and the destination D, because malicious agents cannot

be avoided when nodes cannot rely on TMS. The expected behavior of the protocol when a

TMS is exploited is shown in the TMS scenario. In this case, malicious agent M is detected

and excluded from the route because its trust value TM dropped below a threshold Tth = 0. A

trust relationship could be defined as follows:

{sub ject : agent,action} (4.1)

36

4.1 Trust model

The trust value T and the probability that the agent will perform the action P are tied to the

relationship in Eq. (4.1). The framework of trust modeling proposed in [73] defines a trust

value based on the entropy. It allows using interactions and recommendations to compute

direct and indirect trust value for the nodes.

4.1.1 Direct trust

The agents behavior could change dynamically, so the trust value T has to also depend on the

time. With this aim, a remembering factor ρ is introduced in the formula used for probability

computation. ρ value is included in the range [0, 1], the weight of older action observations

is higher when its value is near to 1, decreasing the ρ value, the weight decreases too. The

remembering factor value has to be chosen depending on the characteristics of the network.

The direct trust value of an agent is computed by the subject through direct interactions.

The probability P is computed taking into account the observations done as in the following

equation:

P{sub ject : agent,action}=
1+∑

I
i=1 ρ tc−tiki

2+∑
I
i=1 ρ tc−tini

(4.2)

The parameters in Eq. (4.2) are defined as follows:

• I: amount of actions observed;

• ρ: remembering factor;

• tc: current time;

• ti: time of the observation;

• ni: observation, with value of 1 for each action observed;

• ki: successful observation, with value of 1 if the action observed was executed, 0

otherwise;

• P: probability, with value 0.5 when no interactions were observed.

A relationship between ρ and the time t after which an observation ni has a weight less than

ε → 0 can be defined as follows:

ρt = ε1/t (4.3)

37

4.1 Trust model

15 30 45 60

0.5

0.6

0.7

0.8

0.9

1

Remembering factor

0.0001

0.001

0.01

0.1

t [s]

Fig. 4.2 Values of ρt depending on t and ε

The trend of remembering factor ρt depending on ε value is shown in Fig. 4.2. Having

already assigned a value to ρt , the time t can be computed as follows:

t =
logε

logρt
(4.4)

The trust value computation is based on the following entropy function:

H (P) =−P log2 (P)− (1−P) log2 (1−P) (4.5)

The entropy is referred to the uncertainty in the information theory. Equation (4.5) is exploited

to compute the trust value of an agent. It can assume values among −1 and +1, for p = 0.5

it has the value of 0 (highest uncertainty about the action execution).

T =







1−H (P) , for 0.5 ≤ P ≤ 1

H (P)−1, for 0 ≤ P < 0.5
(4.6)

4.1.2 Indirect trust

A recommendation system can be used to evaluate the trustworthiness of an agent before

requesting an action if its current trust value can not be computed through direct interactions

(i.e. no recent interactions between the subject and the agent). The recommendation action

needs an evaluation in terms of trust value too. The evaluation of the trust of an agent through

recommendations has to satisfy three properties:

38

4.1 Trust model

Fig. 4.3 Trust chain

1. concatenation propagation of trust does not increase trust (i.e. the trust value of a node

should not be higher than the trust of "recommendation" action of the recommender

agent). An graphical representation of this property is shown in Fig. 4.3);

|TAC| ≤ min(|RAB|, |TBC|) (4.7)

2. multipath propagation of trust does not reduce trust (i.e. when receiving more than

one recommendation, the trust value of an agent should not be lower than the value

obtained upon the reception of only one of the recommendations). This property is

illustrated in Fig. 4.4a);

TA2C2
≥ TA1C1

≥ 0, for R1 > 0, T2 ≥ 0 (4.8)

TA2C2
≤ TA1C1

≤ 0, for R1 > 0, T2 < 0 (4.9)

3. multiple recommendations from a single source (represented in Fig. 4.4b) should not

be higher than recommendations obtained from independent sources.

TA2C2
≥ TA1C1

≥ 0, if TA1C1
≥ 0 (4.10)

TA2C2
≤ TA1C1

≤ 0, if TA1C1
< 0 (4.11)

The adopted entropy-based model respects the property defined by Eq. (4.7) regarding

trust chains. The computation of the trust value for an agent C for a subject A through a

recommendation received from a node B is the following:

TAC = RABTBC (4.12)

The term RAB represents the trust value for the recommendation action of the agent B for the

subject A. If the subject A receives more than one recommendation (e.g. from B and D), the

39

4.2 Energy model

(a) Multipath propagation of trust (b) Multiple recommendations from the same source

Fig. 4.4 Recommendations management

following formula is used:

TAC = ω1(RABTBC)+ω2(RADTDC) (4.13)

The coefficients of Eq. (4.13) are calculated as follows:

ω1 =
RAB

(RAB +RAD)
(4.14)

ω2 =
RAD

(RAB +RAD)
(4.15)

Equation (4.13) satisfies the properties 2 and 3 defined for trust propagation.

4.2 Energy model

The most power consuming operation performed by a node in wireless ad-hoc networks is

the wireless transmission. The used energy model is linear, the fixed cost b represents the

cost for accessing the channel, and the incremental cost m depends on the packet size [74].

The values of these parameters were empirically obtained. The reasons behind the choice

of this model against more recent ones (e.g. a model based only on radio state as in [75])

concern the costs about the packets reception in promiscuous mode, which are explicitly

40

4.2 Energy model

defined in the chosen model.

Cost = m× size+b (4.16)

The total cost of a packet in the network is the sum of the transmission cost by the sender

and all the costs of the potential receivers, which include nodes in transmission range of

the sender and the destination. The wireless interface has four different states: receiving,

transmission, idle and sleep. The last one is not used in the ad-hoc networks because it does

not allow receiving or transmitting data. Therefore, the nodes not involved in transferring

data stay in the idle state. For a broadcast transmission, the cost includes listening to the

channel by the sender as fixed cost, while transmitting the packet and receiving it for all the

nodes in the sender wireless range is a variable cost, as shown in the following equation:

CostBC = mTx × size+bTx + ∑
n∈S

(mRx × size+bRx) (4.17)

Set S refers to all the nodes included in the transmission range of the sender node. Point-to-point

transmission has a cost that includes Request to Send (RTS), Clear to Send (CTS) and

Acknowledgment (ACK) messages used in the 802.11 MAC protocol. The cost to transmit

or receive one of them indifferently is represented by bTxctl
and bRxctl

. The cost for the

destination is similar, with the transmission and the reception phases inverted respect to the

sender. These costs are respectively shown in Eq. (4.18) and Eq. (4.19).

Costsrc = bTxctl
+bRxctl

+mTx × size+bTx +bRxctl
(4.18)

Costdst = bRxctl
+bTxctl

+mRx × size+bRx +bTxctl
(4.19)

The nodes in the range of the source or the destination discard the packet if the transmission

is point-to-point and they are not in promiscuous mode. Some MAC implementations allow

entering in an energy-saving mode state when a transmission directed to another node is

detected. The cost at non-destination nodes is the following:

Costno_dst = (4.20)

∑
n∈S

bdiscardctl
+ ∑

n∈D

bdiscardctl
+ ∑

n∈S

(mdiscard × size+bdiscard)+ ∑
n∈D

bdiscardctl

All the nodes in the destination range are in the D set. The cost for discarding control packets

is represented by bdiscardctl
. If a node works in promiscuous mode (e.g. when it needs to sense

if a node forwards a packet for computation of the trust value), the cost calculation is the same

as in Eq. (4.20), except for mdiscard and bdiscard, which are changed respectively with mRxprom

41

4.3 Attacker model

Fig. 4.5 Attacker with random drop probability d

and bRxprom
. Cryptographic algorithms involve energy consumption due to the computational

time they need to compute hash digests and to generate and verify signatures. The adopted

energy model for these operations has a fixed cost for each signature or verification, while

the cost of applying the hash function is incremental. These costs depend on the algorithms

used [76].

Costsign|verify = bsign|verify (4.21)

Costhash = mhash × size (4.22)

4.3 Attacker model

The attacker model is important to analyze the response of an IDS against a specific attack.

A malicious node performing a black hole attack tries to redirect most of the traffic in the

network through it, then dropping all the data packets that it receives [27]. The gray hole

attack is very similar to the previous one. It does not drop all packets, but just a part of

them, based on the data contained in the packet or randomly with a certain probability [30].

Malicious nodes in the network are based on this type of attack, dropping some of the data

packets received using a certain logic (e.g. random, based on the packet originator, as a

function of the residual energy), but fairly participating to route discovery and maintenance

operations. They change their behavior depending on various parameters, therefore the

detection of this attack is difficult. The model of a malicious node that drops a percentage

of packets defined as d is shown in Fig. 4.5. Each time it receives a packet, the choice

of dropping or forwarding the data packet is taken by generating a random number. The

detection of malicious nodes with a low d value is harder. Algorithm 1 represents the way in

42

4.4 Proposal: Secure and Trusted AODV

which a malicious node chooses to forward a packet or not. Only data packets are managed

by the algorithm, because a malicious agent can be a threat to the network only if packets go

through it, and using a secure protocol prevents modification, impersonation and fabrication

attacks [64], which can be used by an agent to be part of more routes. Concerning only data

packets, the choice of d defines which type of attack is performed. The lowest value of d can

be 0, meaning that the node is fair and no packets are dropped; when d is set at its highest

possible value (d = 1), all data packet are dropped by malicious agent. For all the values of d

included between 0 and 1, a percentage of data packets is randomly dropped with probability

d.

Algorithm 1 Malicious node algorithm

for packet = new data packet received do

rnd = random generated number

if rnd ≤ d then

DROP packet

else

FORWARD packet

end if

end for

4.4 Proposal: Secure and Trusted AODV

Introducing a trust management procedure in a protocol that provides already encryption

procedures to authenticate messages and hash functions to protect mutable fields could

increase the kind of attacks that the network can detect. The proposed Secure and Trusted

AODV (STAODV) protocol [28] concerns an extension of SAODV protocol, exploiting a

TMS to protect the network against malicious nodes that participate correctly to the route

establishment phase, but then they behave maliciously by executing a packet dropping attack,

extending the protection to the attacks made ineffective by digital signatures and hash chains

in SAODV.

4.4.1 Trust Management Scheme

To improve the security of the network against malicious and selfish nodes, the TMS defined

in Section 4.1 is introduced, so the packets will follow routes composed by trusted nodes,

avoiding the malicious ones. The protocol manages the RREQ packets as SAODV protocol

43

4.4 Proposal: Secure and Trusted AODV

already do, broadcasting only the first one and discarding others with the same sequence

number, but updating routing table adding the new next hop to the originator. When a node

with a valid route to the destination is discovered, or the packet reaches the destination, a

RREP packet will be sent to the node that forwarded the request. The requests with the

same sequence number are managed by generating a fixed maximum number of replies at

the destination. The RREP packets follow the path to the originator, they are forwarded in

unicast.

Recommendation packets

In the proposal, two new packet typologies are introduced to manage indirect trust, allowing

the nodes to send and receive recommendations:

• Trust Recommendation Request (TRREQ);

• Trust Recommendation Reply (TRREP).

TRREQ packet contains the request originator and a list of the requests about the agents of

which the originator needs to know if they are reliable or not. TRREP packet contains the

request originator, the recommender, who generates the reply, and a list of pairs containing

the agent and its trust value T . The signature extension exploited by SAODV protocol to

secure control packets is added in a similar way to recommendation packets too.

Trust table

The nodes need to store the trust values about the agents. Concurrently with the routing table,

a trust table is introduced. Each entry of the table contains the agent and the parameters

that allow computing the trust value and updating it when needed. The table is updated

periodically, so the recommendations and the direct observations are stored in buffers until

the update. If a node has a trust value about forwarding packet less than 0, it is included in a

blacklist, and it is removed from all the routes stored. If a route has only the blacklisted node

as next hop, the route is invalidated, and a new route discovery process is launched when

the node needs to reach that destination. For ρ < 1, the trust becomes 0 when enough time

elapses, and the blacklisted node is removed from the blacklist.

44

4.5 STAODV performance evaluation

Fig. 4.6 Simulator architecture

Table 4.1 Simulation Parameters

Parameter Value

Area 1000×1000 m2

Duration 10 minutes

Transitory time 1 minute

Nodes 50

Transmission range 250 m

Transmission rate 4 packets/s

Data packet size 128 bytes

4.5 STAODV performance evaluation

STAODV protocol is compared with the SAODV protocol under the performance and the

energy consumption point of view. The simulator was developed following the architecture

shown in Fig. 4.6. The parameters used to run simulation campaigns are shown in Table 4.1.

The remembering factor in Eq. (4.2) is set as ρ = 0.9 for the action transmission, using

the second as time unit in the equation, so the trust value resets to 0 after 60 seconds,

"rehabilitating" a node in the blacklist. The action recommendation has ρ = 1, meaning that

the recommendation trust value does not expire.

The movement model adopted by the nodes in the simulation is the Random Way-Point

(RWP) model [77]. Each node goes from a random point in the space to another following a

45

4.5 STAODV performance evaluation

Table 4.2 Energy Model Parameters

Parameter Value

mTx 1.89 mJ/byte

bTx 246 mJ

mRx 0.494 mJ/byte

bRx 56.1 mJ

mdiscard −0.49 mJ/byte

Parameter Value

bdiscard 97.2 mJ

mRxprom
0.388 mJ/byte

bRxprom
136 mJ

bTxctl
120 mJ

mRxctl
−0.49 mJ

Parameter Value

bsign 546.5 mJ

bverify 15.97 mJ

mhash 0.76 µJ/byte

linear path, with a speed calculated randomly between 0 and the maximum allowed speed.

When the destination is reached, a new random destination is randomly chosen. There is no

pause time between the reaching of the destination and the starting to the new one. For each

combination of parameters, we have run 3 simulations, using the resulting average values to

plot the graphs. Regarding the consumption analysis, the values used for the energy model

are shown in Table 4.2, as obtained empirically in [74, 76]. Malicious nodes in the network

perform a packet dropping attack with different dropping probabilities, because the SAODV

protocol is already resistant to black hole and gray hole attacks.

To evaluate the reliability of the recommendation system, nodes disseminating false

recommendations were included in the network. Performing this kind of attack has two main

purposes: distrust a fair node, or trust a malicious node. The protocol has to detect the nodes

running that kind of attack, so their recommendations can be excluded from the indirect trust

computation process.

The simulations were run to compare the performance of the two protocols with and

without malicious nodes in the network. The following graphs will show the improvement

that could be achieved using a trust management scheme in the mobile ad-hoc networks

under different points of view.

4.5.1 Packet Delivery Ratio

The evaluation of the Packet Delivery Ratio (PDR) is one of the most important characteristic

of a protocol. By analyzing it, we can understand if a protocol is susceptible to a threat or

46

4.5 STAODV performance evaluation

98,0%

98,5%

99,0%

99,5%

100,0%

5 10 15 20

P
a
ck

e
t

D
e
liv

e
ry

 R
a
ti
o

Max speed [m/s]

STAODV SAODV
25 source nodes

No malicious nodes

Fig. 4.7 PDR without malicious nodes

not. To compute this ratio for the entire network, the following equation was used:

PDR =
#packets_received

#packets_sent
(4.23)

In MANETs, the PDR decreases when the nodes speed increases, even if no malicious nodes

are in the network. The cause is the breakage of links that incurs frequently when the nodes

move faster. The performance of the two protocols in a network without malicious nodes

are very similar, as shown in Fig. 4.7. PDR is always above 98% until a maximum speed of

20 m/s. There is a small decrement in both protocols when the speed increases, due to the

reasons explained before.

The performance in terms of PDR when the network is threatened by malicious nodes

that drop the 75% of received data packets is shown in Fig. 4.8. The ratio decreases in both

protocols when the number of malicious nodes increases. Comparing the two protocols,

STAODV maintains a ratio of almost 90% even when the 30% of the nodes in the network

execute this attack, while the SAODV achieves a PDR lower than the 75%. When 5 nodes

are malicious, the PDR of SAODV protocol is near the 90%, but it is less than the result

obtained with the trust management scheme. With almost 1/3 of the nodes misbehaving, the

protocol can deliver less than 3 packets each 4 packets sent, which is an awful result.

The performance of the protocols when malicious nodes of the network drop the 100% of

data packets is shown in Fig. 4.9. The difference between the two protocols is higher respect

to the previous attack. The STAODV protocol continues to keep a PDR higher than the 90%,

while the PDR of the SAODV protocol decreases under the 65% when malicious nodes are

47

4.5 STAODV performance evaluation

70%

75%

80%

85%

90%

95%

100%

0 5 15

P
a
ck

e
t

D
e
liv

e
ry

 R
a
ti
o

Malicious nodes (d=75%)

STAODV SAODV
25 source nodes

Max speed 20 m/s

Fig. 4.8 PDR with malicious nodes (d = 75%)

the 30% of the entire network. Therefore, SAODV is able to deliver only the packets that

follow paths composed of few nodes, which have a minor probability to include a malicious

node.

The comparison of the effects that the dropping percentage applied by malicious nodes

have on the PDR for the STAODV protocol is shown in Fig. 4.10. The protocol reacts

well against both the threats, reaching a better result in detecting and avoiding malicious

nodes dropping all the data packets when they are the 10% of the total amount of nodes

that compose the network. When the number of malicious nodes increases, the STAODV

achieves almost the same PDR for both the attacks.

4.5.2 False recommendations detection

To evaluate the reliability of the recommendation system, nodes disseminating false recommendations

were included in the network. Performing this kind of attack has two main purposes: distrust

a fair node, or trust a malicious node. The protocol has to detect the nodes running that kind

of attack, so their recommendations can be excluded from the indirect trust computation

process. A TMS should be able to distinguish the fair recommendations from the false ones.

For this reason, the nodes maintain a trust value about recommendations for each node. In

Table 4.3 the average trust values of the nodes in the network is shown. The cells highlighted

in red correspond to the values concerning the malicious nodes. The analysis of these values

shows that the protocol detects misbehaving nodes by spreading false information, because

their average trust value on recommendations in the network is notably under zero. There are

48

4.5 STAODV performance evaluation

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5 15

P
a
ck

e
t

D
e
liv

e
ry

 R
a
ti
o

Malicious nodes (d=100%)

STAODV SAODV
25 source nodes

Max speed 20 m/s

Fig. 4.9 PDR with malicious nodes (d = 100%)

90%

92%

94%

96%

98%

100%

0 5 15

P
a
ck

e
t

D
e
liv

e
ry

 R
a
ti
o

Malicious nodes

STAODV d=100% STAODV d=75%
25 source nodes

Max speed 20 m/s

Fig. 4.10 PDR against malicious nodes with different d values

Table 4.3 Average Trust Values

5 false recommenders

0.056 0.066 0.07 0.03 -0.018

0.086 0.059 0.012 0.064 0.019

0.08 -0.036 0.142 -0.01 0.083

0.062 -0.027 0.043 0.025 0.012

0.023 -0.014 0.025 0.033 0.008

0.009 0.006 0.068 0.016 -0.32

0.065 0.034 0.045 0.037 -0.325

0.1 -0.018 0.083 0.088 -0.303

0.08 0.084 0.075 0.05 -0.297

0.103 0 0.042 0.045 -0.314

10 false recommenders

0.047 0.046 0.044 -0.004 -0.308

0.004 0.11 0.053 0.02 -0.276

0.054 0.009 0.037 0.073 -0.305

0.096 -0.014 0.07 0.027 -0.34

0.078 0.08 0.095 0.087 -0.397

0.08 0.037 0.054 0.036 -0.323

0.063 0.05 0.027 0.057 -0.35

0.066 0.054 0.015 0.052 -0.35

0.032 0.094 -0.001 0.016 -0.33

0.036 0.106 0.055 0.034 -0.273

49

4.5 STAODV performance evaluation

also other negative values, but near to zero, for some fair nodes. The reason can be found

in the link breakages that sometimes occur in a wireless ad-hoc network, so a node cannot

forward a packet to its path and a fair recommendation could be evaluated as malicious. This

situation occurs rarely with respect to the malicious recommendations, so the values are not

so distant from zero, and a node can raise its trust value over the zero if its opinion is needed

to other indirect trust evaluations. To avoid the distrust of a fair node, the protocol provides a

threshold before considering a node as malicious. A recommendation is evaluated exact if

the difference between it and the computed direct trust value is in a range of ±0.25.

4.5.3 Erroneous detections

When a TMS is used, the detections have to be correct, because distrusting a fair node

increases unnecessarily the length of the paths, increasing the End to End (E2E) delay too.

However the links between the nodes in a acMANET often break, therefore completely

avoiding erroneous detections is impossible. After enough time elapses, STAODV protocol

allows the participation in the network to any node also if it was previously detected as

malicious.

The percentage of the erroneous detections increases with the maximum moving speed

of the nodes, as shown in Fig. 4.11. When the nodes move faster, the amount of broken

connections among the nodes increases, so a node could evaluate the behavior of the agent as

malicious. However, the percentage of fair detections remains higher than 95% also when

the maximum speed is 20 m/s, which means that there is an erroneous detection less than

every 20 detections. For lower speeds, the percentage of fair detections is higher, because the

links between the nodes are more stable.

Fig. 4.12 shows the detections related to the amount of the source nodes in the network.

The erroneous detections percentage increases proportionally, because there are more packets

in the network. Therefore, if a node cannot forward a packet before the detection time of the

sender node expires, it will be judged as malicious even if it will forward the packet in a later

time, because the node will not monitor the agent anymore. The erroneous detections are

independent from the amount of the malicious nodes inside the network, as we can see in

Fig. 4.13, so the percentage of fair detection increases with the amount of malicious nodes

because more malicious behaviors are detected.

50

4.5 STAODV performance evaluation

5 10 15 20

False 2 3 12 17

True 169 390 398 483

85,0%

87,5%

90,0%

92,5%

95,0%

97,5%

100,0%

Max speed [m/s]

Detections
25 source nodes

15 malicious nodes

Fig. 4.11 Erroneous detections with respect to the maximum speed

5 10 25

False 1 4 17

True 120 323 483

85,0%

87,5%

90,0%

92,5%

95,0%

97,5%

100,0%

Source nodes

Detections
15 malicious nodes

Max speed 20 m/s

Fig. 4.12 Erroneous detections with respect to the amount of source nodes

51

4.5 STAODV performance evaluation

0 5 15

False 10 18 17

True 0 160 483

85,0%

87,5%

90,0%

92,5%

95,0%

97,5%

100,0%

Malicious nodes

Detections
25 source nodes

Max speed 20 m/s

Fig. 4.13 Erroneous detections with respect to the amount of malicious nodes

4.5.4 Energy consumption analysis

The nodes in MANETs are powered by batteries, so their energy availability is limited. A

protocol for wireless ad-hoc networks needs to take in account this limitation, providing

a way to route data without exceeding in energy needed to run the protocol. The most

energy consuming operations required by a MANET routing protocol are the wireless

communication and the cryptographic operations (e.g. signatures and verifications). With

this analysis we study the consumption of SAODV and STAODV protocols, trying to analyze

the impact of the introduction of the TMS in an ad-hoc routing protocol.

The energy consumption of the wireless transmission when only fair nodes are in the

network is shown in Fig. 4.14. STAODV protocol requires more energy than the SAODV.

When the maximum speed increases, the consumption increases in both protocols too. The

main difference in terms of power consumption is introduced by the promiscuous mode used

in STAODV to let the nodes sensing when their neighbors forward a packet correctly.

Fig. 4.15 shows that the difference between the two protocols is higher when the network

is under attack. SAODV protocol energy consumption seems to not increment when the

maximum speed increases, because just the packets that follow a short path can reach their

destinations, otherwise the probability that a malicious node is included in the path is higher,

and the packet will be dropped. This occurrence leads to an energy saving due to the nodes

that do not receive and forward the packet. The energy consumption of the STAODV protocol

52

4.5 STAODV performance evaluation

0

200

400

600

800

SAODV STAODV SAODV STAODV SAODV STAODV

0 10 20

E
n
e
rg

y
 [

k
J]

Max speed [m/s]

Discard Recv (Prom) Recv Send

Fig. 4.14 Energy consumption of the wireless transmission without malicious nodes in the

network

increases at higher speeds, because with more link breakages and more distrusted nodes, the

nodes have to start more route discovery processes, with routes composed of more nodes.

The cryptographic operations consume energy because computing a digital signature,

verifying it and applying a hash function are expensive operations in terms of CPU usage.

The STAODV protocol requires the application of a signature on more packets than SAODV

because it introduces two new control packets to manage recommendations. The energy

consumption in the network with only fair nodes is shown in Fig. 4.16. The consumption

of the STAODV protocol is higher when nodes are moving, whilst it is almost the same

of the SAODV when the nodes are stationary. Moreover, there is an increment in energy

consumption in both protocols when the nodes move faster, but it is higher when TMS is

used. In the SAODV protocol, the consumption increases due to the route discovery phases,

which are triggered more often. It occurs in STAODV protocol too, but it also requires that

the nodes ask for recommendations if they have to send a packet to a new neighbor, and it

usually occurs when a new route is discovered.

Fig. 4.17 shows that the presence of malicious nodes in the network involves a higher

energy consumption for STAODV. Using the TMS, the routes are invalidated when a

malicious node is part of them, so the STAODV launches more route discovery processes,

increasing the amount of signatures, verifications and hashes needed. Despite a packet is

signed only when generated and verified each time a node receives it, the consumption due to

53

4.5 STAODV performance evaluation

0

200

400

600

800

1000

SAODV STAODV SAODV STAODV SAODV STAODV

0 10 20

E
n
e
rg

y
 [

k
J]

Max speed [m/s]

Discard Recv (Prom) Recv Send

Fig. 4.15 Energy consumption of the wireless transmission with malicious nodes in the

network

signing operations is higher, because the generation of a signature using the RSA algorithm

requires more than 30 times the energy needed to verify it [76]. All the previously analyzed

graphs do not show the energy consumption due to the execution of the hash function,

because it is much lower than other cryptographic operations.

The percentage of consumption due to wireless transmission and cryptography respect

to total energy consumption seems not to depend on the existence of malicious nodes in

the network, as can be seen in Fig. 4.18. When nodes are static, cryptography consumption

is almost the 20% of the overall consumption in nearly all the scenarios. The wireless

transmission has a higher impact on the overall energy consumption when the nodes in the

network move, reaching almost the 90%.

54

4.5 STAODV performance evaluation

0

5

10

15

20

25

30

35

40

SAODV STAODV SAODV STAODV SAODV STAODV

0 10 20

E
n
e
rg

y
 [

k
J]

Max speed [m/s]

Signatures Verifications Hash

Fig. 4.16 Energy consumption due to cryptographic operations without malicious nodes in

the network

0

10

20

30

40

50

60

SAODV STAODV SAODV STAODV SAODV STAODV

0 10 20

E
n
e
rg

y
 [

k
J]

Max speed [m/s]

Signatures Verifications Hash

Fig. 4.17 Energy consumption due to cryptographic operations with malicious nodes in the

network

55

4.5 STAODV performance evaluation

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 10 20 0 10 20 0 10 20 0 10 20

SAODV STAODV SAODV STAODV

with Malicious Nodes

E
n
e
rg

y

Max speed [m/s]

Cryptography Transmission

Fig. 4.18 Comparison of energy consumption due to wireless transmission and cryptographic

operations

56

Chapter 5

Distributed Intrusion Detection based on

Trust Management, Time Division

Monitoring and Link Duration

Estimation

In wireless ad-hoc networks, IDSs detect malicious and selfish nodes usually exploiting

the promiscuous mode of the wireless interface to overhear the traffic, therefore detecting

misbehaviors. This operation leads to an increase in energy consumption, which is a severe

issue in networks composed of resource-constrained nodes. Distributing the monitoring

through many trusted nodes could help in saving energy while maintaining the system

protected against threats. In the following, a distributed trust-based monitoring solution able

to face both malicious and selfish nodes is illustrated [78]. It combines trust evaluation and

link duration in order that a node can select the most trusted and stable nodes among ts

neighbors. Afterwards, nodes will mutually synchronize in a distributed way, dividing the

time in which they perform monitoring operations between all them. Achieving this goal is

made possible through some additional fields added to messages used by protocols to keep

alive the connection between neighbor nodes. With this technique the energy consumption is

significantly reduced, depending on the amount of trusted neighbors of each node, because

reducing the time dedicated to monitoring will help in extending nodes lifetime.

57

5.1 Trust and link duration computation

t0
t1

CS(A,B) CSth

CS(B,A)<CSth

CS(A,B)<CSth

CS(B,A) CSth

A

A

B

B

A and B are
companions

Fig. 5.1 Companions with high reciprocal trust value and similar mobility patterns

5.1 Trust and link duration computation

A node A is a Companion Node (CN) of B if the node B has a high trust value from the node

A perspective, and the communication medium is mostly stable between them. The concept

of Companion Score (CS) is introduced, representing a score dependent on the trust value

and the link stability of a node B from the node A point of view. It is computed through the

following equation:

CS(A,B) = (α ·TAB)+ [(1−α) ·LSI(A,B)] (5.1)

Where 0.5 < α < 1 in order to give more importance to the nodes trustworthiness. The trust

value TAB is computed through direct interactions, as shown in Section 4.1.1. Link Stability

Index (LSI) represents an estimation of the stability of a link, which computation is described

in the following of this Chapter.

A Companion Table (CT) is exploited to store a reference of CNs. Therefore, node B is

included in the CT only if its CS is higher than a predefined threshold CSth, as illustrated in

Fig. 5.1. When CS(A,B) value goes below the same threshold, the node is removed from CT.

58

5.1 Trust and link duration computation

5.1.1 Link Stability Index computation

The LSI is derived from the work in [79], where the authors proposed a link stability-aware

metric to conform to the scalability properties required by wireless ad-hoc networks. They

defined the link stability as follows:

1. a link between two nodes A and B with transmission range r is established at time

instant tb when the distance between both nodes, defined as d(A,B), is such that

d(A,B)< r;

2. a link between two nodes A and B with transmission range r is broken at instant time

te when the distance between both nodes is d(A,B)> r;

3. the link age a between two nodes A and B is the duration defined as a(A,B) = t f − tb.

The link stability is computed using a statistical-based approach, in order to discriminate

among many links which are more stable through the estimation of the residual lifetime of

each link. The expected residual lifetime RA,B(aA,B) of a link (A,B) is defined and computed

from gathered statistical data as follows:

RA,B(aA,B) =
∑

amax
a=aA,B

a ·d[a]

∑
amax
a=aA,B

d[a]
−aA,B (5.2)

The value amax is the maximum age reached by a link from the subject node point of view.

Vector d[] stores the observed links age, and element d[a] represents the number of links

with age equal to a.

Based on the expected residual lifetime R, a stability coefficient sA,B was defined to be

exploited in the metric computation. It is defined as follows:

sA,B =
d

avg
A,B

RA,B(aA,B) · k
∀(A,B) ∈ E (5.3)

The set E includes all the links between nodes in the network, d
avg
A,B is the average distance

between nodes A and B computed over the time they remain within transmission range. The

scaling factor k is defined to make coefficient s comparable with other metrics.

A modification was needed to "tailor" the stability coefficient to this proposal. In the

original work, it was used as a metric, so its value can be any positive real number, with

lower values stating better link stability. To compare the link stability to the trust value, as

we did in Eq. (5.1), we defined LSI in Eq. (5.4), in order to have values between 0 and 1,

59

5.2 Distributed monitoring

Time

Time

Time

A
B
C

A
B
C

A
B
C

Step 0

Step i > 0

Step j > i

Monitor ing duration of A

Monitor ing duration of B

Monitor ing duration of C

Fig. 5.2 Time division distributed monitoring

which represent the worst and best values, respectively.

LSI(A,B) =
r−d

avg
A,B

r
·

2 ·RA,B(aA,B)

amax +1
∀(A,B) ∈ E (5.4)

The maximum value of d
avg
A,B is r, so the first part of LSI formula has the value of 0 when

d
avg
A,B is equals to r, meaning that the nodes are far away, while the value tends to 1 when the

nodes are close. The second part of LSI formula concerns the link duration. Having longer

expected residual lifetime means more reliable links between nodes, so it has values near 1

when RA,B(aA,B) has higher values, otherwise its value is near 0.

5.2 Distributed monitoring

In this proposal, network participants start by jointly monitoring the network from the

beginning. Afterward, the network monitoring task will be distributed among peers trusting

each other, with the main purpose of saving energy when CNs perform monitoring, as shown

in Fig. 5.2.

In order to make the monitoring process fully distributed among honest peers, some

information needs to be exchanged among them. The computation of monitoring period is

based on two values:

60

5.2 Distributed monitoring

• Monitoring Duration (MD);

• Monitoring Starting Time (MST).

After a certain period (certain number of interactions) the trust table of every node will

be updated. Thus, every node will start trusting a certain number of neighbors, which could

be CNs. At this stage the nodes can start distributing the monitoring process among them

by sharing their MDs along with the MST by sending these values periodically, through a

new type of packet or attaching them to a packet already provided by the exploited routing

protocol (e.g. Hello messages of AODV). Every node computes its MD using the amount of

CNs and the duration of the links between them, by lowering the MD time when the node

has more CNs. Equation (5.5) illustrates MD computation details.

MD(A) =







0, if #C = 0

∑n∈N RA,n(aA,n)·#N·(#C+1)
(#C)2 , otherwise

(5.5)

The coefficients of MD formula are explained in the following:

• N is the set of all the neighbors of node A;

• #N is the cardinality of set N;

• #C is the cardinality of CT;

The value of MD coefficient is determined by the Companion to Neighbor Ratio (CNR):

CNR =
#C

#N
(5.6)

The higher is the value of CNR, the lower is the monitoring duration. If a node has not any

CN, two scenarios can be distinguished:

• the node is isolated, so it could avoid to keep the wireless interface in promiscuous

mode, hence saving energy;

• nodes in the neighborhood are not trusted or still not evaluated, so the node should

keep monitoring until the next MST computation.

61

5.3 Performance evaluation

Table 5.1 Simulation Parameters

Parameter Value

Area 1000×1000 m2

Duration 10 minutes

Source nodes 5

Transmission rate 4 packets/s

Data packet size 256 bytes

Transmission range 200 m

CSth 0.3

α 0.6

When a node receives different MDs and MST values from its neighbors, it computes its

next MST in the way described by the following equation:

MST(A) = max
n∈N

[MST(n)+MD(n)] (5.7)

Once a node detects a malicious agent, which means that the agent trust value goes below

a detection threshold Tth, it broadcasts a one-hop negative recommendation that includes the

detected node identity. The node A that receives this recommendation will autonomously put

the malicious agent in blacklist for a period tblacklist computed as follows:

tblacklist =
logε

logρ
·CS(A,B) (5.8)

Equation (5.8) is inspired to Eq. (4.4). The blacklist period is longer for higher values of CS,

which means that the node A trusts the recommendation of node B depending on its trust

value T and its link stability defined by LSI.

5.3 Performance evaluation

To evaluate the performances of this approach concerning distributed monitoring, it is

implemented on AODV routing protocol. Many simulations were run using the Network

Simulator 3 (NS-3) simulator. The parameters which are common to all simulations are

illustrated in Table 5.1. The total number of nodes varies from 50 to 300, with pedestrian

speeds from 0 to 3 m/s. The α value is taken from [80]. The amount of malicious nodes

varies from 10% to 20% of the nodes. The exploited attacker model is described in Section

4.3, with dropping probability d of 50% or 100%, defined for each graph.

62

5.3 Performance evaluation

Table 5.2 Energy Model Parameters

Parameter Value

mRxprom
0.388 mJ/byte

bRxprom
136 mJ

bdiscardctl
0 mJ

The main focus of this proposal is the reduction of the energy consumption by distributing

monitoring operations, which use the promiscuous mode of the wireless interface, among

trusted neighbors. Therefore, we exploited the linear energy model illustrated in Section 4.2.

Specifying the model to promiscuous mode cost, the following equation, based on Eq. (4.20),

represents the cost of each packet for nodes which are monitoring the transmission:

Costno_dst = (5.9)

∑
n∈S

bdiscardctl
+ ∑

n∈D

bdiscardctl
+ ∑

n∈S

(mRxprom
× size+bRxprom

)+ ∑
n∈D

bdiscardctl

Since the analysis only takes into account the energy consumption due to monitoring

activities, the parameter values in Eq. (5.9) are defined in Table 5.2 as incremental differences

with respect to the idle mode energy consumption of the wireless interface.

The accuracy of the IDS is represented by the detection ratio, defined as follows:

Detection ratio =
#true_positives

#detections
(5.10)

Fig. 5.3 shows the detection performances of the proposal in different scenarios, allowing

to analyze the ratio of true positives with respect to the total amount of detections over

time. After about 300 seconds, the true positives percentage seems to be stable, with a better

accuracy in networks with less nodes. In the best scenario, with 50 nodes, 10 malicious

nodes and d = 50%, the accuracy grows above 80%, while for higher drop probabilities (see

Fig. 5.4), performance deteriorates a little. For each scenario, the true positives percentage

varies between 0% and 10% less than the results with d = 50%.

The energy consumption of the proposal is analyzed in Fig. 5.5. The analysis concerns the

scenario with 10% of malicious nodes and d = 50%, because other parameter combinations

provide nearly the same results when fixing the amount of nodes. The trend of each curve is

almost linear over time. The lowest energy consumption is obtained with 50 nodes, reaching

an promiscuous mode energy consumption of about 1200 J. When increasing the amount

of nodes, thereby having more source nodes and more packets in the network, the energy

63

5.3 Performance evaluation

Fig. 5.3 Detection performances with 20% malicious nodes (d = 50%)

Fig. 5.4 Detection performances with 20% malicious nodes (d = 100%)

64

5.3 Performance evaluation

E
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n
 [

J]

Fig. 5.5 Energy efficiency with 10% malicious nodes and d = 50%

consumption increases as well. Having more nodes in a scenario with the same size causes

that more packets are sensed through the promiscuous mode of the wireless interfaces of

the nodes. However, thanks to the distributed monitoring strategy exploited, the consumed

energy remains nearly the same for high node densities, thus showing a huge optimization

compared to the normal scenario where a higher number of nodes leads to an increase in the

energy consumption

The PDR, computed as in Eq. (4.23), shows the capability of the protocol to deliver

packets in the presence of malicious nodes. The results under this perspective are shown in

Fig. 4.7. PDR improves when the network has a higher number of nodes. For most scenarios

studied, the PDR is stable after 300 seconds, while for 50 and 100 nodes (where PDR has the

lowest values) we find a slightly increasing trend after 300 seconds as well. With more than

100 nodes, the PDR is about the 90%, which is a good result considering that 20% of the

nodes drop half of the packets received. This means that most attacks are detected, and so

misbehaving nodes are excluded from the valid routes connecting the nodes in the network.

65

5.3 Performance evaluation

P
D

R
 [

%
]

Fig. 5.6 PDR with 20% malicious nodes (d = 50%)

66

Chapter 6

Trust Model Enhancement through

Probabilistic Monitoring for Improving

Energy Consumption of Intrusion

Detection System

In trust-based approaches for intrusion detection, the trustworthiness of a node can be

evaluated by monitoring its actions during the communication. A node can evaluate which

agents are more trustworthy, therefore they can be chosen to be part of the route toward

the destination. Reducing the amount of monitoring operations leads to an improvement

in terms of energy saving for the nodes composing the network. Monitoring cannot be

avoided, because the behavior of nodes could change over time due to malicious agents

that could compromise fair nodes and selfish behaviors due to energy saving reasons. A

probabilistic approach to reduce monitoring operations is proposed, showing that linking

the trust value of an agent to the probability to monitor the interaction with it can lower the

energy consumption of the IDS in wireless ad-hoc networks.

Many models were defined and used for this proposal. Trust model shows the way in

which the trust value of agents is computed. The exploited trust model for this proposal is

described in Section 4.1. The energy model gives an idea about the consumption due to

transmission, monitoring and cryptography operations. In resource constrained environments

such as MANETs, energy is one of the main issues to be faced. Each operation has an

associated cost, depending on the size of the packet and on the nodes involved. For the

purposes of this proposal, the energy model adopted is illustrated in Section 4.2. The attacker

model, described in Section 4.3, is defined to introduce a threat in the network, discarding

67

6.1 Monitoring model

Table 6.1 Models Symbols

Symbol Meaning

T Trust value

ρ Remembering factor

t Time

ε Lowest weight for an observation to be accounted

R Transmission rate

PMF(T) Probabilistic Monitoring Function for T value

Tmin, Tmax Minimum and maximum values of trust

Tth Threshold trust value

Beta(x; p,q,a,b) Beta distribution for x value

a, b Beta distribution lower and upper bounds

p, q Beta distribution shape parameters

B(p,q) Beta function with parameters p and q

β -PMF(T) PMF based on Beta distribution

d Packet drop probability

maction Incremental cost of action in energy model

baction Fixed cost of action in energy model

a part of received packets following a probability. The nodes executing an attack should

be detected by the fair nodes using the trust and monitoring models. Monitoring model,

which is the core of this proposal, defines how monitoring operations will be reduced using

a Probabilistic Monitoring Function (PMF) [81, 82], so a fair node is supposed to be less

monitored than a malicious one, with a consequent energy saving.

6.1 Monitoring model

The meaning of monitoring is to observe and check the progress or quality of some network

parameters over a period of time. In ad-hoc networks, the monitoring aim is securing

the routing operations, so nodes behaving maliciously or selfishly will not disrupt the

paths between the nodes. Using the promiscuous mode to monitor packets that need to

be forwarded is an expensive operation, so an energy-efficient approach has to reduce the

monitoring activity when it is not needed [28], namely when the interactions occur among

fair nodes. A simple idea to address this issue is the linkage of the monitoring probability

to the trustworthiness of the agent. The network status and the transmission characteristics

must be taken into account too. In Table 6.1 a summary of the symbols used in the proposed

model and in the following of this Chapter is given.

68

6.1 Monitoring model

PMF is defined to link the trust value to the probability of monitoring the action requested.

This function has to respect the following properties:

0 ≤ PMF(T)≤ 1, for Tmin ≤ T ≤ Tmax (6.1)

PMF(T) = 1, for T ≤ Tth (6.2)

PMF(T1)≥ PMF(T2), for T1 < T2 (6.3)

The term Tth is the trust value that an agent has to pass to be trusted, T and Ti are

trust values included between Tmin and Tmax, which are are respectively the minimum and

maximum trust value allowed.

PMF properties can be described as follows:

1. it represents a probability, so its value must be included between 0 and 1 for each

allowed trust value, as defined in Eq. (6.1);

2. when the agent is unknown or distrusted, the monitoring probability must be 1,

represented by Eq. (6.2);

3. the function must be monotonically decreasing, as in Eq. (6.3).

The PMF shape needs to be changed dynamically according to the status of the network

and the characteristics of the transmission, so it should be parametric. A function that could

fulfill the properties needed for the PMF with just some adjustments is the well-known Beta

distribution [83].

Beta(x; p,q,a,b) =
(x−a)p−1(b− x)q−1

B(p,q)(b−a)p+q−1
, for a ≤ x ≤ b; p,q > 0 (6.4)

This distribution is defined in the range of values [0, 1], having four parameters, which

are:

• p and q determining the shape;

• a and b respectively as lower and upper bounds.

B(p,q) is the Beta function, defined as follows:

B(p,q) =
∫ 1

0
t p−1(1− t)q−1dt (6.5)

69

6.1 Monitoring model

Distribution functions are monotonically increasing. Exploiting this property, the β -PMF

can be defined as follows:

β -PMF(T) =







1, for T < Tth

1−Beta(T ; p,q,Tth,Tmax), for T ≥ Tth

(6.6)

Equation (6.6) fulfills all the properties defined for the PMF. The monitoring probability

depends on the trust value of the agent, through the p and q parameters the shape of

the function can be dynamically changed. Beta distribution was chosen as basis for a

concrete implementation of the PMF because its properties were deeply analyzed in literature.

Furthermore, the availability of four parameters defining its shape could be exploited adapting

the function to changing security requirements in a very dynamic environment as in MANETs.

Algorithm 2 Probabilistic monitoring algorithm

for packet = packet sent to neighbor n do

m = PMF (Tn)

rnd = random generated number

if x ≤ m then

MONITOR packet

else

IGNORE packet

end if

end for

6.1.1 Integration with trust model

The trust modeling framework defines which are the values of Tth, Tmin and Tmax. For the

adopted model, shown in Section 4.1.1, the values of Tmin and Tmax are respectively −1 and

1. The threshold represents the highest uncertainty value about the action execution, namely

Tth = 0. The parameters p and q depend on the status of the network and the characteristics of

the transmission (e.g. transmission rate, bit error rate). Evaluating the Fig. 6.1, the constraint

p ≥ q is defined to avoid a sudden decrease of the monitoring probability for trust values

near Tth.

70

6.2 Analytical evaluation

0%

50%

100%

Probabilistic monitoring function

p=2 q=2 p=2 q=16 p=8 q=8

p=8 q=16 p=16 q=2 p=16 q=8

Trust value

M
o

n
it
o

ri
n

g
 p

ro
b

a
b

ili
ty

T
th

T
max

Fig. 6.1 Shape of β -PMF for various p and q values

6.2 Analytical evaluation

As first step to evaluate the proposed monitoring model, a network composed of a source

node, a destination node and n intermediate nodes having a path toward the destination is

introduced. A graphical representation of this network topology is shown in Fig. 6.2. The

source sends the data packets to a neighbor at a given rate until its trust value is above Tth. If

the chosen node becomes distrusted, the source chooses another neighbor as intermediate

node. In Table 6.2 the various used parameters are shown. The values m and b are

applied to the linear energy model presented in Section 4.2. Many runs using the same

Table 6.2 Parameters

Parameter Value

Packets transmitted 1200 packets

Packet size 512 bytes

R {0.5, 1, 2, 4} packets/s

d {0%, 25%, 50%, 75%, 100%}

p 16

q {2, 4, 8, 16}

ρ {0.666, 0.8, 0.9}

mRxprom
0.388 mJ/byte

bRxprom
136 mJ

Runs 100

71

6.2 Analytical evaluation

Fig. 6.2 Network scenario for analytical evaluation

parameters were executed to compute the 95% confidence interval on the figures where they

are shown. The channel error model follows a standard uniform distribution, the probability

with which the packet transmitted to the intermediate node is lost/corrupted is of 2%. Let

ε be the threshold value below which the observation does not contribute to the trust value

computation, as defined in Eq. (4.3). The values of ρt were chosen in order to have the weight

less than ε ≤ 0.1% for times further than t with t ≈ {15, 30, 60}s, resulting respectively

in ρ = {0.666, 0.8, 0.9}. The parameter d represents the probability that a malicious node

will drop the received packet, as defined in Section 6.1. The evaluated results concern the

accuracy of the intrusion detection and the energy saved by the probabilistic monitoring.

The detection accuracy is evaluated through the time needed to detect a malicious or selfish

agent, the amount of false positives detected in the system and the detection effectiveness.

Probabilistic monitoring allows reducing the costs concerning the energy consumption due

to the promiscuous mode used to monitor the correct forwarding of the packets toward the

destination, so these costs are taken into account. Analyzing the results data, a similarity can

be noted when the ratio between p and q has the same value, so p value was fixed to 16 in

order to have many different integer values of q that fulfill the constraint p ≥ q defined in

the model. In the following figures, standard monitoring means the application of the TMS

without PMF, while β data series indicate the results obtained using the proposed monitoring

function.

72

6.2 Analytical evaluation

16842

0

5

10

15

20

25

30

Time to detection

=0.9; p=16

Standard d=100%

 d=100%

Standard d=75%

 d=75%

Standard d=50%

 d=50%

q

S
e

c
o

n
d

s

Fig. 6.3 Time needed to detect malicious nodes with ρ60 = 0.9

6.2.1 Time to detection

The main aim of an IDS is the protection of the network against malicious behaviors by

detecting the threats in a timely manner. The evaluation of the time needed for detection

with respect to the standard monitoring is done using different values for ρ and q, examining

the variations they introduce. The transmission rate R was fixed to 4 packets per second,

the malicious nodes behavior was changed varying d value from 100% to 50%. When the

drop percentage is the 25%, the monitoring works only under some conditions, therefore the

analysis of this scenario is done separately. The malicious node behavior model is developed

to keep a fair behavior without dropping packets for the first 60 seconds of simulation,

beginning to drop packets since this time. Fig. 6.3 shows the time needed to detect a node

that begins to drop packets. With the value of ρ60 = 0.9, the trust value computation takes

into account the last 60 seconds of interactions between the subject and the agent. The

standard curve keeps a constant value because it is independent of the β -PMF parameters.

For higher values of q, probabilistic monitoring achieves better results than the standard

monitoring. It could look like a contradiction, but the reason can be simply explained. The

trust value is time-dependent, so reducing the monitoring activity after a certain threshold

value defined by the parameters of the PMF keeps the trust values generally lower than the

standard scenario. Starting from a lower value allows the IDS to react promptly to the threat,

detecting it faster. When q = 16, so p = q, PMF achieves a time saving between the 40% and

the 48% of the time needed with respect to the standard monitoring. For lower values of q

the time of detection increases. The same trend can be observed with lower drop percentages,

73

6.2 Analytical evaluation

16842

0

1

2

3

4

5

6

Time to detection

=0.666, p=16

Standard d=100%

 d=100%

Standard d=75%

 d=75%

Standard d=50%

 d=50%

q

S
e

c
o

n
d

s

Fig. 6.4 Time needed to malicious node detection with ρ15 = 0.666

because a node that drops less packets is harder to detect. Probabilistic monitoring achieves a

better result than the standard monitoring in all cases except with d = 50% and q = 2, where

the standard monitoring detects the threat with about 5% less time. Using this combination of

parameters leads to generally higher trust values, similar to the standard monitoring, but the

percentage of unmonitored packets nullifies the responsiveness of the PMF achieved in other

studied cases. When only 15 seconds are taken into account in the trust value computation

(using ρ15 = 0.666), the reaction to the threats is faster, and the time needed to detection is

lower than the previous case. The results with this configuration are shown in Fig. 6.4.

The saving in terms of time is limited, between the 17% and the 25% with respect to the

standard monitoring. The trend is similar to the previous graph, the motivations are almost

the same as before. In the terms of time needed to detection, the energy-efficient monitoring

obtains worse results than the standard monitoring only when the drop percentage is 50%

and q ≤ 4, while with lower drop percentages, the curves reach at most the value obtained

with the standard monitoring when q has the lowest value.

6.2.2 Detection accuracy

Standard and probabilistic monitoring are both able to detect the malicious behavior of a node

that drops the 50% or more of the total number of received packets. For lower percentages,

the detection is harder, therefore PMF parameters need to be tuned consequently. The results

of the various simulations performed to understand the effect of the parameters values on the

detection are shown in Fig. 6.5.

74

6.2 Analytical evaluation

10.50.250.125Standard

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Detections

d=25%

=0.9 R=1

=0.8 R=1

=0.9 R=2

=0.8 R=2

=0.666 R=2

=0.9 R=4

=0.8 R=4

=0.666 R=4

Q2PR

D
e

te
c
ti
o

n
s

2 4 8 16

q

Fig. 6.5 Malicious node detection with d = 25%

The transmission rate is represented by R, in packets per second. The results show that

the parameters p and q have a small effect on the accuracy, but for higher values of q it seems

to improve a little. With the q highest value, the accuracy of the energy-efficient monitoring

is always better than the accuracy of the standard monitoring. The characteristics that have

a huge effect on the detection accuracy are the remembering factor and the transmission

rate. Lower values of ρt and R allow the detection of small drop percentages. The relation

between the rate R and the time t, which depends on ρt as in Eq. (4.4), can be defined as

follows:

R · t ≤ 60 (6.7)

The above equation should be respected to have a high accuracy in positive detections

(with a percentage ≥ 90%) when the packet drop rate of the misbehaving nodes is the 25%.

Combinations of ρt and R that satisfy Eq. (6.7) are capable to detect this kind of malicious

behavior.

The detection accuracy depends also on the ability to detect only misbehaving nodes,

excluding the nodes that do not execute the required action due to nodes mobility and the

use of a wireless transmission channel, which could lead to errors in packet transmission.

Fig. 6.6 shows that the erroneous detections concerning fair nodes detected as malicious do

not depend on the probabilistic monitoring, keeping almost the same trend for the standard

monitoring and the various values of q when using PMF. The analysis of the false positives

allows to define another relationship between the rate R and the time t that needs to be

75

6.2 Analytical evaluation

10.50.250.125Standard

0

4

8

12

16

20

24

28

Erroneous detections

t=15 R=2

t=30 R=1

t=60 R=0.5

t=15 R=1

t=30 R=0.5

t=15 R=0.5

Q2PR

E
rr

o
n

e
o

u
s
 d

e
te

c
ti
o
n

s

2 4 8 16

q

Fig. 6.6 False positive detections

satisfied in order to avoid most of the erroneous detections, which is the expected behavior.

R · t ≥ 30 (6.8)

6.2.3 Energy consumption analysis

In Section 4.5.4, the outcome of the energy consumption analysis shows that it is included

between the 28% and the 41% of the overall energy consumption in various network

conditions, while these percentages are respectively the 34% and the 39% when all the nodes

in the network behave fairly. The aim of the probabilistic monitoring is the improvement

of the effectiveness of the system and the life of the nodes participating in the network by

reducing the monitoring activity.

The energy consumption reduced by using the probabilistic monitoring, as shown in

Fig. 6.7. The saved energy is the direct consequence of the reduced number of monitored

packets. Increasing the ρt value reduces the consumption, because the average value of trust

for fair nodes is higher when more observations contributes to trust computation, allowing

less monitoring operations. The consumption is higher for lower q values, because more

packets are monitored for lower trust values. In the best case (with q = 16 and ρt = 0.9)

the saved energy is the 70% of the monitoring energy consumed while using the standard

monitoring. The consumption reaches almost the same energy consumed by the standard

monitoring when q = 2, because PMF values are near the 100% of the monitored packets for

trust values lower than 0.7.

76

6.3 STAMP implementation in NS-3

10.50.250.125

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

400,000

450,000

Monitoring energy consumption

t=60

t=30

t=15

Standard

Q2PR

E
n

e
rg

y
 [
m

J
]

2 4 8 16

q

Fig. 6.7 Energy consumption of monitoring operations

6.3 STAMP implementation in NS-3

In order to better evaluate the proposed approach, it was implemented in NS-3.26 [84] by

developing a module that allows its use in many routing protocols for wireless ad-hoc

networks with just few modifications. This choice was made to analyze the proposal

performance by executing it in a realistic and well-known simulation environment. The

module design and its interactions with NS-3 modules are illustrated in Fig. 6.8. The main

components of the TMS module are:

• Trust Manager (TM), which is responsible of managing all the events needed to

compute trust values;

• Trust Table (TT), composed of a collection of Trust Table Entries (TTEs) to store the

results of the interactions with other nodes. TT notifies the node if an agent becomes

distrusted, and it is asked by the node if it needs to know if a node is trustworthy;

• PMF, an implementation of the β -PMF illustrated in Section 6.1.

All the transmission and reception events are notified to the TM, exploiting the callback

API for the promiscuous reception and the tracing system for transmission events. The way

in which the routing protocol is aware of the trust values of its neighbors depends on the

specific protocol used. It is obtained through calling directly the TT when the protocol needs

to verify if a neighbor node is trustworthy, while a callback is used when a node becomes

untrustworthy. Testing the proposal required the implementation over an existing routing

77

6.3 STAMP implementation in NS-3

Fig. 6.8 TMS module in NS-3.26

protocol in NS-3, therefore the TMS module was integrated with SAODV protocol, in its

turn developed from AODV protocol available in the simulation framework. The integration

of TMS with SAODV protocol takes the name of Secure and Trusted AODV Monitored

Probabilistically (STAMP). TMS module implementation is protocol-independent, so it can

be integrated with any of the available protocols in NS-3 with a little effort. The code of the

module is available in Appendix A of this thesis.

6.3.1 Trust Manager

TM is the core of the module. It initializes TT and PMF, calling the first class when a new

observation is done, and both of them when it takes the decision of monitoring a packet or

not. TM registers as trace sink for sent packets and manages all promiscuous receptions, so

it checks if neighbor node forwards a packet correctly by monitoring the transmission. Sent

packets are kept into a buffer until forwarding is detected or a timeout expires. These two

events result in a new observation (positive or negative) that is registered in TT.

6.3.2 Trust Table

The purpose of the TT is keeping track of all the observations done by a node, so it can be

enquired when the protocol needs to know if an agent is trustworthy or not. When a node

becomes distrusted, a callback is triggered to notify the node about the event, so the protocol

78

6.3 STAMP implementation in NS-3

can take the appropriate measures against the agent. TT acts as trace source for distrusted

and trust change events, so an external module can connect to these traces. Each agent is

registered in a TTE the first time an interaction occurs. Each TTE is identified by the agent

and the action. It contains the values needed for computation of P as defined in (4.2), which

are numerator and denominator values, the time in which last interaction with the agent

occurred and its actual trust value.

6.3.3 Probabilistic Monitoring Function

PMF is used each time a transmission is made and TM needs to decide if it will be monitored

or not. It needs the two parameters p and q to define the Beta distribution to use in its

computation. It requires the trust value in input, hence it returns the value of the monitoring

probability for that trust value, using Eq. (6.6). The function is called each time a packet

is sent, its result is compared with a random generated number computed between 0 and

1, deciding if the packet will be monitored or not, as described in Algorithm 2. PMF

implementation exploits the Beta distribution by using Boost libraries [85].

6.3.4 Routing Protocol

TMS and attacker model implementations require some modifications to original AODV

module provided by NS-3. Concerning the TMS, modifications were made on initialization

of the protocol and management of route requests. During its initialization, the protocol

registers the method defined to manage links break with the neighbors as HandleDistrust

callback for TMS, as shown in Fig. 6.8. Therefore, the distrust event of a neighbor is managed

as a common link break between two nodes, setting invalid the routes with the distrusted

agent as next hop and sending a route error message to all precursor nodes in those routes.

The only change done to the route request reception management concerns checking if the

request is received from a trustworthy node. If the sender is evaluated as malicious, the route

request message is ignored. Malicious behavior is implemented in RouteInput method of the

exploited protocol. In this method, all non-protocol packets are managed. Each malicious

node computes a random number between 0 and 1, comparing it with its d value and choosing

to forward the packet or not based on this test.

79

6.4 Performance evaluation

Table 6.3 Trust and Monitoring Model Parameters

Parameter Value

p {8, 16}

q {2, 4, 8, 16}

t {15, 30, 60} s

ε 10−3

6.3.5 Cryptography

The implementation on SAODV protocol required the use of cryptography on AODV

protocol, because NS-3 simulator does not provide it. The routing table was enhanced

to store the fields needed by DSE. SAODV computes and adds the signature extension to

all protocol packets: RREQs and RREPs allow both SSE and DSE, RERRs requires only

the SSE. When a protocol packet is received, the signature is verified. If the signature is

missing or invalid, the packet is discarded. For each type of packet, the required signature

extensions were implemented. More details about SAODV are available in Section 3.3.4. All

cryptographic operations were implemented exploiting Crypto++ library [86].

6.4 Performance evaluation

The implementation of TMS in NS-3 enabled the evaluation of the proposal exploiting the

already available protocols and modules. Nodes move in an area without obstacles following

RWP mobility model [77]. At the beginning, each node is placed randomly in the area.

Each source node sends packets to a destination node at a certain rate, starting after 60

seconds of simulation. Malicious nodes follow the attacker model illustrated in Section 4.3.

The comparison of STAMP is done against AODV and SAODV protocols. Concerning the

monitoring model, in many figures the ratio between q and p is taken into account, because

their ratio influences the performance more than their absolute values. The cryptographic

algorithms used in SAODV and STAMP are RSA and SHA1 respectively for signatures

and hashes. Trust and monitoring model parameters are shown in Table 6.3, values used

in attacker and mobility models are illustrated in Table 6.4, while all the values assigned

to other parameters used in the simulation campaigns are shown in Table 6.5. The values

assigned to the energy model parameters, shown in Table 6.6, represent the variation among

the action executed by the wireless interface and its idle state, so the incremental cost of

discarding a packet is negative because there is an energy saving with respect to the idle state.

80

6.4 Performance evaluation

Table 6.4 Attacker and Mobility Models Parameters

Parameter Value

Malicious nodes {0, 5, 10, 15}

d {0%, 25%, 50%, 75%, 100%}

Max speed 5 m/s

Pause time 0 s

Table 6.5 Simulation Parameters

Parameter Value

Time 600 s

Area 1000 m × 1000 m

Nodes 50

Source nodes {5, 10}

Rate {1, 2, 4, 8} packets/s

Packet size 256 bytes

Runs 30

Table 6.6 Energy Model Parameters

Parameter Value

mTx 1.89 mJ/byte

bTx 246 mJ

mRx 0.494 mJ/byte

bRx 56.1 mJ

mdiscard -0.49 mJ/byte

bdiscard 97.2 mJ

Parameter Value

mRxprom
0.388 mJ/byte

bRxprom
136 mJ

bTxctl
120 mJ

bRxctl
29 mJ

bsign 546.5 mJ

bverify 15.97 mJ

mhash 0.75 µJ/byte

81

6.4 Performance evaluation

Performance evaluation is done over many different perspectives:

• PDR: it is analyzed to evaluate the capability of delivering packets when the network

is under attack;

• average hop count: it should give details on the changes that occur in the routes

between nodes when the TMS is used;

• control packets analysis: it provides an overview of the effect of the protocol on the

total amount of packets circulating in the network;

• detection accuracy: it is evaluated through true positives and false positives, comparing

different configurations of STAMP with and without PMF;

• energy consumption: it is evaluated to understand the effect of PMF on monitoring

operations and how this effect leads to advantages in energy saving.

In the following figures, STAMP protocol is intended when only the parameters t, p or q

are specified. When only t is defined, the protocol is working with a constant monitoring

probability of 100%. The confidence intervals of 95% are computed where shown.

6.4.1 Traffic analysis

The analysis of the traffic is done through the study of the percentage of delivered packets

over all the sent packets, investigating how the routes change when TMS is working, with and

without PMF. The expected behavior is a higher PDR, at the cost of longer routes between

source and sink nodes.

In Fig. 6.9 the PDR of the compared protocols is shown. In every condition STAMP

outclasses AODV and SAODV protocols, even when the network is free of malicious nodes,

with a marked advantage when the drop percentage increases. While PDR decreases without

TMS, STAMP can deliver almost the same percentage of packets for values of d between

the 25% and the 75%, after a little decrease in performance when malicious nodes join the

network. STAMP can deliver more than the 10% more packets than other compared protocols

when d ≥ 50%, 15% more when malicious nodes drop all received packets. Probabilistic

monitoring achieves almost the same results of constant monitoring, so it does not introduce

a loss in performance. The small difference between STAMP with different parameters is

due to t value, better performance is achieved with smaller values.

Average hop count is shown in Fig. 6.10. When the network is under attack, route length

is higher for STAMP. It increases when more nodes have a malicious behavior, because it

82

6.4 Performance evaluation

0% 25% 50% 75% 100%

60%

65%

70%

75%

80%

85%

90%

95%

100%

Packet Delivery Ratio

=10 Malicious=10 Rate=2

AODV SAODV STAMP t=15

STAMP t=60 STAMP t=15 p=q=16 STAMP t=60 p=q=16

d

P
D

R

Sources

Fig. 6.9 Packet Delivery Ratio vs packet dropping probability

0 5 10 15

3

3.1

3.2

3.3

3.4

3.5

3.6

Average hop count

=10 Rate=2 d=100%

AODV SAODV STAMP t=15

STAMP t=30 STAMP t=15 p=q=16 STAMP t=30 p=q=16

Malicious nodes

A
v
e

ra
g

e
 h

o
p

 c
o

u
n

t

Sources

Fig. 6.10 Average hop count vs amount of malicious nodes

83

6.4 Performance evaluation

1 2 4 8

5%

10%

15%

20%

25%

30%

35%

40%

45%

Overhead packets

Sinks=10 Malicious=0

AODV

SAODV

STAMP t=30

STAMP t=30 p=q=8

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=8

STAMP t=60 p=q=16

Rate [packets/s]

O
H

C
o

n
tr

o
l
p

a
c
k
e

ts

Sources

Fig. 6.11 Percentage of control packets when transmission rate increases

excludes detected nodes from the routes, so fair nodes can communicate avoiding them. In

the defined scenario, with 50 nodes and an area of 1 Km2, the increase in route length is

low, because it is always included between 3 and 4 hops. For AODV and SAODV, average

hop count is included between 3.2 and 3.3 hops for each number of malicious nodes in the

network, because they cannot be detected so the routes are not affected by their presence.

STAMP protocol excludes detected nodes from the routes by issuing RERRs packets,

so source node will search for another route. It occurs each time a new detection is done,

because the protocol on which STAMP is based is reactive, without backup routes. The

process could be done by the intermediate node that detects the threat, but the local repair

mechanism is not mandatory and not widely supported. The analysis of overhead in the

network is done due to these reasons.

The weight of control packets on the total amount of packets transmitted in the network is

shown in Fig. 6.11. When no malicious nodes are in the network, the performance are similar

between the protocols with and without TMS. Transmitting at higher rates allows to reduce

the effect of the overhead, because for each established route, a higher amount of packets is

transmitted. The percentage of control packets decreases of more than the 30% when the rate

increases from 1 to 8 packets per second. The small differences between STAMP and other

protocols are due to the false positives that the TMS could detect, which lead to a new route

discovery process.

The effect of malicious nodes on the amount of control packets circulating in the network

is shown in Fig. 6.12. Curves can be divided in two groups, depending on the drop percentage

84

6.4 Performance evaluation

0 5 10 15

18%

23%

28%

33%

38%

43%

Overhead packets

Sinks=10 Rate=4

STAMP t=30 d=50%

STAMP t=30 p=q=16 d=50%

STAMP t=60 d=50%

STAMP t=60 p=q=16 d=50%

STAMP t=30 d=100%

STAMP t=30 p=q=16 d=100%

STAMP t=60 d=100%

STAMP t=60 p=q=16 d=100%

Malicious nodes

O
H

C
o

n
tr

o
l
p

a
c
k
e

ts

Sources

Fig. 6.12 Percentage of control packets vs the amount of malicious nodes in the network

of malicious nodes. There are two main reasons of increasing in overhead: the amount of

malicious nodes and the percentage of packets they drop. The increase of misbehaving

nodes leads to an increment of control packets, because a new route discovery process

begins each time one of them is detected. Lower values of d make the detection harder,

with malicious nodes having trust values closer to Tth, so they are rehabilitated, included in

routes and detected again sooner (because their behavior does not change), so the amount of

control packets increases. When the 30% of the nodes are malicious with d=50%, there is a

small difference in curves in advantage of STAMP protocol with t=60, which has a smaller

percentage of overhead with respect to the total amount of transmitted packets.

6.4.2 Detection accuracy

The analysis of the detection accuracy is done to understand if and in which way it is affected

by the probabilistic monitoring. Our proposal is compared with the constant monitoring

using various combinations of t, p and q parameters, so their effect on the performance can

be evaluated.

Fig. 6.13 shows the percentage of true positives (detections made about malicious nodes).

They seem to be weakly affected only by the t parameter, showing a similar trend for different

values of q/p ratio in most cases. There is a difference of about 3% between the best and the

worst case, therefore our proposal seems to not have any negative influence on the accuracy.

85

6.4 Performance evaluation

0.25 0.5 1

70.0%

72.5%

75.0%

77.5%

80.0%

82.5%

85.0%

True positives

Sinks=10 Malicious=10 d=50% Rate=2

t=15

t=30

t=60

t=15 p=16

t=30 p=16

t=60 p=16

t=15 p=8

t=30 p=8

t=60 p=8

q/p

T
o
ta

l
d
e
te

c
ti
o
n
s

T
ru

e
 p

o
s
it
iv

e
 d

e
te

c
ti
o

n
s

Sources

Fig. 6.13 Positive detections for different values of q/p

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
t=30 t=30 p=q=8 t=30 p=q=16 t=60 t=60 p=q=8 t=60 p=q=16

0

10

20

30

40

50

60

70

80

90

100

Detections

Sinks=5 Rate=1 d=50%

False positives True positives

Malicious nodes

D
e
te

c
ti
o
n
s

Sources

Fig. 6.14 Detections analysis with 5 source nodes and transmission rate of 1 packet per

second for different amount of malicious nodes

86

6.4 Performance evaluation

0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10 0 5 10
t=15 t=15 p=q=8 t=15 p=q=16 t=30 t=30 p=q=8 t=30 p=q=16 t=60 t=60 p=q=8 t=60 p=q=16

0

30

60

90

120

150

180

210

240

270

300

Detections

Sinks=10 Rate=4 d=50%

False positives True positives

Malicious nodes

D
e
te

c
ti
o
n
s

Sources

Fig. 6.15 Detections analysis with 10 source nodes and transmission rate of 4 packets per

second for different amount of malicious nodes

The number of right and erroneous detections when 5 nodes receive packets from the

same amount of source nodes and each of them sends one packet per second is shown in

Fig. 6.14. The same results with a rate of four packets per second are shown in Fig. 6.15.

The total amount of detections increases when more malicious nodes are in the network.

False positive detections slightly increase proportionally with the amount of malicious nodes.

They are generally higher with more source nodes and higher rates. Their absolute values

are almost the same regardless of the number of attacker nodes, while true detections have a

steep increase when the network is under the attack of more nodes. False positive detections

are due to collisions and loss of links between moving nodes, so they cannot be avoided in

MANET scenario. Using our proposal seems neither to improve or worsen the accuracy, the

only difference brought by the parameters is on the total detections, which increase between

the 7% and the 27% for smaller values of t.

6.4.3 Energy consumption analysis

The main aim of probabilistic monitoring is the reduction of the energy needed to realize

a secure and trustworthy communication among nodes. The energy consumed to receive

packets in promiscuous mode is analyzed, which is the way in which the direct trust of a

node is computed. Furthermore, the analysis of the energy consumption due to cryptography

with respect to the overall consumption was done.

87

6.4 Performance evaluation

0.25 0.5 1

1800

2200

2600

3000

3400

3800

4200

Promiscuous energy consumption

Rate=2 Sinks=10 Malicious=0

t=15

t=15 p=16

t=30

t=30 p=16

t=60

t=60 p=16

q/p

E
n
e
rg

y
 [
J
]

Sources=10 Rate=2

Fig. 6.16 Promiscuous energy consumption without malicious nodes vs q/p ratio

Promiscuous mode

The way in which the monitoring of transmitted packets is done requires the activation of

the promiscuous mode of the wireless interface. Therefore, a node will overhear the data

transmitted by its neighbor nodes to other nodes, which is the method used to observe the

behavior of the neighbors. This operation requires more energy because the amount of

received packet increases. Evaluating the energy consumption due to the reception of packets

in promiscuous mode can give an idea of the consumption needed by the TMS.

In Fig. 6.16 the analysis of the energy consumption due to the promiscuous mode is

shown. The results concern a network composed of fair nodes only. For constant monitoring,

the cost is very similar, with a slight decrease when t value is higher. When probabilistic

monitoring is used, better results are obtained when q/p ratio is higher. The best combination

of parameters in terms of energy consumption is t=60 and p=q=16. Having higher t values

increases the amount of observations taken into account by Eq. (4.2), so a fair node will

keep higher trust values for a longer time. PMF shape is defined by p and q parameters, as

shown in Fig. 6.1; having the q/p ratio equal to 1 allows to make less monitoring operations

at lower trust values, while when q/p < 1 the trust value needed to reduce the PMF value is

higher. The combination of these two effects allows to save more energy. For lower values

of t, the amount of observations taken into account is lower, so the trust value tends to have

values near Tth, obtaining a very small effect on the energy consumption, which is almost the

same of the constant monitoring.

88

6.4 Performance evaluation

0.25 0.5 1

1600

2000

2400

2800

3200

3600

4000

Promiscuous energy consumption

Rate=2 Sinks=10 Malicious=10 d=50%

t=15

t=15 p=16

t=30

t=30 p=16

t=60

t=60 p=16

q/p

E
n
e
rg

y
 [
J
]

Sources=10 Rate=2

Fig. 6.17 Promiscuous energy consumption with 10 malicious nodes (d=50%) vs q/p ratio

The analysis of the promiscuous mode energy consumption in presence of malicious

nodes is shown in Fig. 6.17. The trend is the same of the network without malicious nodes,

the only difference is due to the slightly lower energy consumed. This little improvement is

due to the lower amount of packets received in this mode, because malicious nodes do not

forward a percentage of packets they receive. For higher d values, the trend is the same with

a little more energy saved.

Cryptography

SAODV uses a mechanism of signatures and hash chains to ensure protocol packets against

attacks. The attacker model defined in Section 4.3 is effective against SAODV, so the purpose

of STAMP is protecting the network against this type of attack without consuming too much

energy. The proposal is based on SAODV to have a protection against barely detectable

attacks with the adopted TMS. We analyzed the cryptography energy consumption in two

different methods:

1. only the costs to sign and verify a packet, and to apply the hash function to variable

fields in protocol packets are taken into account;

2. the energy consumption due to the increased size of control packets including the

extension fields introduced by cryptography is included in cryptography cost.

The second method is computed by analyzing the average cost respect to idle mode for

each transmitted and received overhead packet for protocols with and without cryptography,

89

6.4 Performance evaluation

Table 6.7 Average Cost of Each Control Packet

Protocol Tx Cost Rx Cost

AODV 864.6 mJ 217.1 mJ

SAODV 1404 mJ 359.2 mJ

STAMP 1403.6 mJ 358.8 mJ

1 2 4 8

1%

2%

3%

4%

5%

6%

Cryptography energy consumption

Malicious=0

Sources=5

SAODV

STAMP t=30

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=16

Sources=10

SAODV

STAMP t=30

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=16

Rate [packets/s]

P
e
rc

e
n
ta

g
e
 o

n
 t
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Fig. 6.18 Cryptography cost without malicious nodes for increasing data rates

so the difference for each packet can be included in cryptography cost instead of wireless

transmission cost. The average cost for each transmitted and received control packet for

different protocols is shown in Table 6.7.

The cryptography energy consumption without malicious nodes in the network is shown

in Fig. 6.18. Two groups of curves can be noted. The percentage of consumption is almost

the same with the same number of source nodes. There is a difference of about 0.5% between

the groups, which decreases for higher transmission rates. The consumption has a smaller

effect on the total energy consumption. The amount of sent data packets increases with more

source nodes and at higher transmission rate. The higher percentage of cryptography cost

respect to the total consumption is reached for the smallest simulated values of sink nodes

and transmission rate.

The analysis of the cryptography cost in presence of malicious nodes is shown in Fig. 6.19.

Using STAMP, we can note again two groups of curves, depending on the number of source

nodes. Energy consumption is higher on average with respect to the network with fair nodes

only. The behavior of SAODV protocol is slightly different. Its consumption is higher than

STAMP when the transmission rate is one packet per second, while the consumption is

90

6.4 Performance evaluation

1 2 4 8

1%

2%

3%

4%

5%

6%

7%

Cryptography energy consumption

Malicious=10 d=50%

Sources=5

SAODV

STAMP t=30

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=16

Sources=10

SAODV

STAMP t=30

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=16

Rate [packets/s]

P
e
rc

e
n
ta

g
e
 o

n
 t
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Fig. 6.19 Cryptography energy consumption with 10 malicious nodes for increasing data

rates

the lowest for a rate of 8 packets per second. This difference could depend on the packets

dropped by malicious nodes, against which SAODV has no protection.

When we include in the cryptography energy consumption the cost due to the increased

control packets size, results highly change, as shown in the following. In Fig. 6.20 we show

the energy consumption with a network composed of fair nodes only. The most important

difference with respect to the results shown before is the percentage of consumption respect

to the overall. When taking into account only the cryptographic operations, the percentage

was always under the 7% of the total consumption. Now the percentage is almost the 30%

in the worst case. It means that the most of the cryptography cost in routing protocols

for wireless ad-hoc networks is due to the increased size of the overhead. All the curves

follow the same trend, just SAODV seems to have a less percentage of cryptography cost for

higher transmission rates. Transmitting data packets at higher rates leads to a decrease of

the percentage of energy consumption due to cryptography. In Fig. 6.21 the cryptography

consumption including the variation in overhead cost is shown. The difference between

STAMP and SAODV is now wider. The maximum percentage reached, with a rate of one

packet per second, is higher because the amount of control packets for STAMP increases due

to the need of excluding malicious nodes from the routes. While for SAODV, the difference

is due to the lower amount of data packets circulating in the network, because malicious

nodes drop a percentage of received packets. Increasing the transmission rate of the data

packets leads to a decrease in the percentage of cryptography cost. All the combinations of

91

6.4 Performance evaluation

1 2 4 8

9%

12%

15%

18%

21%

24%

27%

30%

Cryptography energy consumption (variation in overhead cost included)

Malicious=0

Sources=5

SAODV

STAMP t=30

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=16

Sources=10

SAODV

STAMP t=30

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=16

Rate [packets/s]

P
e
rc

e
n
ta

g
e
 o

n
 t
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Fig. 6.20 Cryptography energy consumption including variation in overhead cost without

malicious nodes for increasing data rates

1 2 4 8

10%

15%

20%

25%

30%

35%

Cryptography energy consumption (variation in overhead cost included)

Malicious=10 d=50%

Sources=5

SAODV

STAMP t=30

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=16

Sources=10

SAODV

STAMP t=30

STAMP t=30 p=q=16

STAMP t=60

STAMP t=60 p=q=16

Rate [packets/s]

P
e
rc

e
n
ta

g
e
 o

n
 t
o
ta

l
e
n
e
rg

y
 c

o
n
s
u
m

p
ti
o
n

Fig. 6.21 Cryptography energy consumption including variation in overhead cost with 10

malicious nodes for increasing data rates

92

6.4 Performance evaluation

parameters for STAMP protocol lead to almost the same result, so probabilistic monitoring

seems to have no effect on these results.

93

Chapter 7

Conclusions and Future Works

In this work, the effects of trust-based IDS in wireless ad-hoc networks were analyzed under

the energy consumption perspective. The introduction of a TMS over SAODV protocol

allowed increasing the network security, as seen in Chapter 4. The communication between

the nodes is not disrupted if some nodes in the network drop maliciously packets that have to

be forwarded, because the transmission will reach its destination by excluding the nodes that

not behave correctly from the routes. The main difference of introducing a trust-based IDS

in terms of consumption is due to the use of promiscuous mode exploited to detect nodes

behaving maliciously, because a node receives all the data transmitted in its wireless range,

and consequently it consumes more energy to receive and analyze them. In wireless ad-hoc

networks composed of resource-constrained nodes, with the network prone to attacks, there

is the need of finding a right trade-off between these two contrasting requirements.

Securing routing protocols in wireless ad-hoc networks is an expensive operation in terms

of energy consumption. Both cryptography and trust management require large amount of

energy, but they are unavoidable in these networks due to their characteristics. In order to

efficiently apply an IDS on these networks, two different approaches were proposed. The

distributed IDS presented in Chapter 5 allows enhancing security in mobile and collaborative

networks. The way in which the monitoring is distributed among trusted neighbors enables

the reduction of energy-consumption by reducing monitoring activities. CNs are chosen by

taking into account their trustworthiness and the stability of the links connecting to them,

computed over a statistical basis. The proposal effectiveness is validated through combining

it with AODV routing protocol. Simulation results obtained using NS-3 show its effectiveness

at both keeping low the amount of consumed energy and maintaining a high level of accuracy

in detection. The proposal could be improved by extending this detection scheme to other

94

type of malicious behaviors. Moreover, the comparison with other similar proposal could

help in understanding better the performance of this distributed IDS.

Concerning the probabilistic monitoring, it enables the use of an IDS in environments

characterized by limited amount of available energy. The proposed approach could also

improve the performance of the IDS, with less time needed to detect misbehaviors, although

the main aim of PMF concerns the energy saving. The detection accuracy is affected by the

probabilistic monitoring in a positive manner, achieving a little improvement against the

constant monitoring. The defined constraints allow maintaining an accurate detection also

when the nodes misbehavior is hardly noticeable. Under the energy consumption point of

view, the results show a reduction of the consumption of 70% in the best case.

The analysis in a more complex network was possible by implementing the probabilistic

monitoring and the TMS over NS-3, a well-known simulator commonly used by scientific

community. Using the proposed TMS improves performance when a part of nodes participating

in the network does not behave fairly. The increase of energy consumption is the price of

securing the network. Results show few differences between constant and probabilistic

monitoring under each analyzed point of view except the energy consumption, where the

STAMP protocol achieves better performances. Reducing the energy consumption enables

the usage of the proposed scheme to environments characterized by battery-constrained

devices, as wireless ad-hoc networks. Analyzing cryptographic costs, their effect on the

energy consumption is mainly due to the change in overhead packets. Transmitting and

receiving control packets is more expensive because digital signatures and hash chains

increase their size, so the energy consumed by the wireless interface increases.

Future developments on this proposal could be addressed in improving TMS performance

by using a routing protocol that exploits backup routes or allows the reparation of a broken

route by an intermediate node. The proposed approach marks a route as broken each time a

malicious node is detected on that route, therefore implementing the TMS in a protocol that

provides one of these enhancements will improve the energy saving. Local reparation of links

and backup routes will decrease the overhead generated by reducing the amount of triggered

route discovery processes. The proposed IDS could be further improved by designing,

including and analyzing a protection mechanism against other threats, as DoS, DDoS and

other distributed attacks. Another enhancement should concern the dynamic adaptation

of TMS and PMF parameters to the network status. If no malicious agents are detected

for enough time, ρt , p and q parameters could be changed according to it, diminishing the

control over the transmission. When nodes detect a deterioration of the networks due to

95

misbehaving nodes, parameters value should be changed again to reinforce the monitoring

and thus detecting and isolating malicious agents.

96

References

[1] M. Conti and S. Giordano, “Mobile ad hoc networking: milestones, challenges, and
new research directions,” IEEE Communications Magazine, vol. 52, no. 1, pp. 85–96,
January 2014.

[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks:
a survey,” Computer Networks, vol. 38, no. 4, pp. 393 – 422, 2002. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1389128601003024

[3] Y. Wang and F. Li, Vehicular Ad Hoc Networks. London: Springer London, 2009, pp.
503–525. [Online]. Available: http://dx.doi.org/10.1007/978-1-84800-328-6_20

[4] P. Fazio, F. De Rango, and A. Lupia, “Vehicular networks and road safety: An
application for emergency/danger situations management using the WAVE/802.11p
standard,” Advances in Electrical and Electronic Engineering, vol. 11, no. 5, p. 357,
2013.

[5] M. Fogué, P. Garrido, F. J. Martinez, J. C. Cano, C. T. Calafate, and P. Manzoni,
“Automatic accident detection: Assistance through communication technologies and
vehicles,” IEEE Vehicular Technology Magazine, vol. 7, no. 3, pp. 90–100, Sept 2012.

[6] İlker Bekmezci, O. K. Sahingoz, and Şamil Temel, “Flying ad-hoc networks (FANETs):
A survey,” Ad Hoc Networks, vol. 11, no. 3, pp. 1254 – 1270, 2013. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1570870512002193

[7] “IEEE standard for information technology–telecommunications and information
exchange between systems local and metropolitan area networks–specific requirements
part 11: Wireless LAN medium access control (MAC) and physical layer (PHY)
specifications,” IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), pp. 1–2793,
March 2012.

[8] “IEEE standard for information technology– telecommunications and information
exchange between systemslocal and metropolitan area networks– specific
requirements–part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications–amendment 4: Enhancements for very high throughput for
operation in bands below 6 GHz.” IEEE Std 802.11ac-2013 (Amendment to IEEE Std
802.11-2012, as amended by IEEE Std 802.11ae-2012, IEEE Std 802.11aa-2012, and
IEEE Std 802.11ad-2012), pp. 1–425, Dec 2013.

[9] “IEEE standard for information technology–telecommunications and information
exchange between systems–local and metropolitan area networks–specific

97

References

requirements-part 11: Wireless LAN medium access control (MAC) and physical layer
(PHY) specifications amendment 3: Enhancements for very high throughput in the
60 GHz band,” IEEE Std 802.11ad-2012 (Amendment to IEEE Std 802.11-2012, as
amended by IEEE Std 802.11ae-2012 and IEEE Std 802.11aa-2012), pp. 1–628, Dec
2012.

[10] “IEEE standard for information technology - telecommunications and information
exchange between systems - local and metropolitan area networks - specific
requirements - part 11: Wireless LAN medium access control (MAC) and physical
layer (PHY) specifications amendment 5: Television white spaces (TVWS) operation,”
IEEE Std 802.11af-2013 (Amendment to IEEE Std 802.11-2012, as amended by IEEE
Std 802.11ae-2012, IEEE Std 802.11aa-2012, IEEE Std 802.11ad-2012, and IEEE Std
802.11ac-2013), pp. 1–198, Feb 2014.

[11] E. Khorov, A. Lyakhov, A. Krotov, and A. Guschin, “A survey on IEEE 802.11ah:
An enabling networking technology for smart cities,” Computer Communications,
vol. 58, pp. 53 – 69, 2015, special Issue on Networking and Communications for
Smart Cities. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0140366414002989

[12] M. Dideles, “Bluetooth: A technical overview,” Crossroads, vol. 9, no. 4, pp. 11–18,
Jun. 2003. [Online]. Available: http://doi.acm.org/10.1145/904080.904083

[13] K. Townsend, C. Cufí, Akiba, and R. Davidson, Getting Started with Bluetooth Low
Energy: Tools and Techniques for Low-Power Networking. O’Reilly Media, 2014.

[14] S. Farahani, ZigBee Wireless Networks and Transceivers. Newnes, 2011.

[15] S. Sesia, I. Toufik, and M. Baker, LTE - The UMTS Long Term Evolution: From Theory
to Practice. Wiley, 2011.

[16] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. T.
Sukhavasi, C. Patel, and S. Geirhofer, “Network densification: the dominant theme for
wireless evolution into 5g,” IEEE Communications Magazine, vol. 52, no. 2, pp. 82–89,
February 2014.

[17] E. M. Royer and C.-K. Toh, “A review of current routing protocols for ad hoc mobile
wireless networks,” IEEE Personal Communications, vol. 6, no. 2, pp. 46–55, Apr
1999.

[18] C. Perkins, E. Belding-Royer, and S. Das, “Ad hoc on-demand distance vector (AODV)
routing,” Internet Requests for Comments, RFC Editor, RFC 3561, July 2003. [Online].
Available: http://www.rfc-editor.org/rfc/rfc3561.txt

[19] C. Perkins, S. Ratliff, J. Dowdell, L. Steenbrink, and V. Mercieca, “Ad hoc
on-demand distance vector version 2 (AODVv2) routing,” Working Draft, IETF
Secretariat, Internet-Draft draft-ietf-manet-aodvv2-16, May 2016. [Online]. Available:
http://www.ietf.org/internet-drafts/draft-ietf-manet-aodvv2-16.txt

[20] T. Clausen and P. Jacquet, “Optimized link state routing protocol (OLSR),” Internet
Requests for Comments, RFC Editor, RFC 3626, October 2003. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc3626.txt

98

References

[21] T. Clausen, C. Dearlove, P. Jacquet, and U. Herberg, “The optimized link state routing
protocol version 2,” Internet Requests for Comments, RFC Editor, RFC 7181, April
2014. [Online]. Available: http://www.rfc-editor.org/rfc/rfc7181.txt

[22] C. E. Perkins and P. Bhagwat, “Highly dynamic destination-sequenced distance-vector
routing (DSDV) for mobile computers,” in Proceedings of the Conference
on Communications Architectures, Protocols and Applications, ser. SIGCOMM
’94. New York, NY, USA: ACM, 1994, pp. 234–244. [Online]. Available:
http://doi.acm.org/10.1145/190314.190336

[23] D. Johnson, Y. Hu, and D. Maltz, “The dynamic source routing protocol (DSR) for
mobile ad hoc networks for IPv4,” Internet Requests for Comments, RFC Editor, RFC
4728, February 2007. [Online]. Available: http://www.rfc-editor.org/rfc/rfc4728.txt

[24] M. G. Zapata and N. Asokan, “Securing ad hoc routing protocols,” in Proceedings of
the 1st ACM Workshop on Wireless Security, ser. WiSE ’02. New York, NY, USA:
ACM, 2002, pp. 1–10. [Online]. Available: http://doi.acm.org/10.1145/570681.570682

[25] B. Wu, J. Chen, J. Wu, and M. Cardei, A Survey of Attacks and Countermeasures in
Mobile Ad Hoc Networks. Boston, MA: Springer US, 2007, pp. 103–135. [Online].
Available: http://dx.doi.org/10.1007/978-0-387-33112-6_5

[26] A. Nadeem and M. P. Howarth, “A survey of MANET intrusion detection and prevention
approaches for network layer attacks,” IEEE Communications Surveys Tutorials, vol. 15,
no. 4, pp. 2027–2045, Fourth 2013.

[27] F.-H. Tseng, L.-D. Chou, and H.-C. Chao, “A survey of black hole attacks in wireless
mobile ad hoc networks,” Human-centric Computing and Information Sciences, vol. 1,
no. 1, p. 4, 2011. [Online]. Available: http://dx.doi.org/10.1186/2192-1962-1-4

[28] A. Lupia and F. De Rango, “Evaluation of the energy consumption introduced by a
trust management scheme on mobile ad-hoc networks,” Journal of Networks, vol. 10,
no. 4, 2015.

[29] J. Sen, M. G. Chandra, S. G. Harihara, H. Reddy, and P. Balamuralidhar, “A mechanism
for detection of gray hole attack in mobile ad hoc networks,” in 2007 6th International
Conference on Information, Communications Signal Processing, Dec 2007, pp. 1–5.

[30] G. Usha and S. Bose, “Impact of gray hole attack on adhoc networks,” in Information
Communication and Embedded Systems (ICICES), 2013 International Conference on,
Feb 2013, pp. 404–409.

[31] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Wormhole attacks in wireless networks,” IEEE
Journal on Selected Areas in Communications, vol. 24, no. 2, pp. 370–380, Feb 2006.

[32] ——, “Rushing attacks and defense in wireless ad hoc network routing protocols,”
in Proceedings of the 2Nd ACM Workshop on Wireless Security, ser. WiSe
’03. New York, NY, USA: ACM, 2003, pp. 30–40. [Online]. Available:
http://doi.acm.org/10.1145/941311.941317

99

References

[33] J. Newsome, E. Shi, D. Song, and A. Perrig, “The sybil attack in sensor networks:
Analysis & defenses,” in Proceedings of the 3rd International Symposium on
Information Processing in Sensor Networks, ser. IPSN ’04. New York, NY, USA: ACM,
2004, pp. 259–268. [Online]. Available: http://doi.acm.org/10.1145/984622.984660

[34] B. Awerbuch, D. Holmer, C. Nita-Rotaru, and H. Rubens, “An on-demand secure
routing protocol resilient to byzantine failures,” in Proceedings of the 1st ACM
Workshop on Wireless Security, ser. WiSE ’02. New York, NY, USA: ACM, 2002, pp.
21–30. [Online]. Available: http://doi.acm.org/10.1145/570681.570684

[35] J. Milliken, Introduction to Wireless Intrusion Detection Systems. Auerbach
Publications, Dec 2013, pp. 335–360, 0. [Online]. Available: http://dx.doi.org/10.1201/
b16390-19

[36] I. Butun, S. D. Morgera, and R. Sankar, “A survey of intrusion detection systems in
wireless sensor networks,” IEEE Communications Surveys Tutorials, vol. 16, no. 1, pp.
266–282, First 2014.

[37] T. Anantvalee and J. Wu, A Survey on Intrusion Detection in Mobile Ad Hoc
Networks. Boston, MA: Springer US, 2007, pp. 159–180. [Online]. Available:
http://dx.doi.org/10.1007/978-0-387-33112-6_7

[38] K. Govindan and P. Mohapatra, “Trust computations and trust dynamics in mobile
adhoc networks: A survey,” Communications Surveys Tutorials, IEEE, vol. 14, no. 2,
pp. 279–298, Second 2012.

[39] T. Zahariadis, H. C. Leligou, P. Trakadas, and S. Voliotis, “Trust management in
wireless sensor networks,” European Transactions on Telecommunications, vol. 21,
no. 4, pp. 386–395, 2010. [Online]. Available: http://dx.doi.org/10.1002/ett.1413

[40] W. Li, W. Meng, L.-F. Kwok, and H. H. IP, “Enhancing collaborative
intrusion detection networks against insider attacks using supervised intrusion
sensitivity-based trust management model,” Journal of Network and Computer
Applications, vol. 77, pp. 135 – 145, 2017. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1084804516302211

[41] S. Tan, X. Li, and Q. Dong, “Trust based routing mechanism for securing OSLR-based
MANET,” Ad Hoc Networks, vol. 30, pp. 84–98, 2015.

[42] J.-H. Cho, A. Swami, and I.-R. Chen, “Modeling and analysis of trust management with
trust chain optimization in mobile ad hoc networks,” Journal of Network and Computer
Applications, vol. 35, no. 3, pp. 1001–1012, 2012, special Issue on Trusted Computing
and Communications.

[43] ——, “A survey on trust management for mobile ad hoc networks,” Communications
Surveys Tutorials, IEEE, vol. 13, no. 4, pp. 562–583, Fourth 2011.

[44] I.-R. Chen, J. Guo, F. Bao, and J.-H. Cho, “Trust management in mobile ad
hoc networks for bias minimization and application performance maximization,”
Ad Hoc Networks, vol. 19, pp. 59 – 74, 2014. [Online]. Available: http:
//www.sciencedirect.com/science/article/pii/S1570870514000419

100

References

[45] H. Zhu, S. Du, Z. Gao, M. Dong, and Z. Cao, “A probabilistic misbehavior
detection scheme toward efficient trust establishment in delay-tolerant networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 25, no. 1, pp. 22–32, Jan 2014.

[46] H. Xia, Z. Jia, X. Li, L. Ju, and E. H.-M. Sha, “Trust prediction and trust-based
source routing in mobile ad hoc networks,” Ad Hoc Networks, vol. 11, no. 7, pp.
2096 – 2114, 2013, theory, Algorithms and Applications of Wireless Networked
RoboticsRecent Advances in Vehicular Communications and Networking. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1570870512000261

[47] R. Feng, S. Che, X. Wang, and N. Yu, “A credible routing based on
a novel trust mechanism in ad hoc networks,” International Journal of
Distributed Sensor Networks, vol. 9, no. 4, p. 652051, 2013. [Online]. Available:
http://dx.doi.org/10.1155/2013/652051

[48] F. De Rango, “Trust-based SAODV protocol with intrusion detection, trust management
and incentive cooperation in MANETs,” International Journal of Interdisciplinary
Telecommunications and Networking (IJITN), vol. 1, no. 4, pp. 54–70, 2009.
[Online]. Available: http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.
4018/jitn.2009092804

[49] F. De Rango and S. Marano, “Trust-based saodv protocol with intrusion detection and
incentive cooperation in manet,” in Proceedings of the 2009 International Conference
on Wireless Communications and Mobile Computing: Connecting the World Wirelessly,
ser. IWCMC ’09. New York, NY, USA: ACM, 2009, pp. 1443–1448. [Online].
Available: http://doi.acm.org/10.1145/1582379.1582695

[50] F. De Rango, “Improving SAODV protocol with trust levels management, idm and
incentive cooperation in MANET,” in 2009 Wireless Telecommunications Symposium,
April 2009, pp. 1–8.

[51] S. Sarkar and R. Datta, “A trust based protocol for energy-efficient routing in
self-organized manets,” in 2012 Annual IEEE India Conference (INDICON), Dec
2012, pp. 1084–1089.

[52] M. Virendra, M. Jadliwala, M. Chandrasekaran, and S. Upadhyaya, “Quantifying trust
in mobile ad-hoc networks,” in International Conference on Integration of Knowledge
Intensive Multi-Agent Systems, 2005., April 2005, pp. 65–70.

[53] T. AlSkaif, M. G. Zapata, and B. Bellalta, “Game theory for energy
efficiency in wireless sensor networks: Latest trends,” Journal of Network
and Computer Applications, vol. 54, pp. 33 – 61, 2015. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1084804515000806

[54] Z. Chen, C. Qiao, Y. Qiu, L. Xu, and W. Wu, “Dynamics stability in
wireless sensor networks active defense model,” Journal of Computer and System
Sciences, vol. 80, no. 8, pp. 1534 – 1548, 2014, special Issue on Theory and
Applications in Parallel and Distributed Computing Systems. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0022000014000646

101

References

[55] J. Duan, D. Gao, D. Yang, C. H. Foh, and H. H. Chen, “An energy-aware trust derivation
scheme with game theoretic approach in wireless sensor networks for iot applications,”
IEEE Internet of Things Journal, vol. 1, no. 1, pp. 58–69, Feb 2014.

[56] J. Liu, G. Yue, S. Shen, H. Shang, and H. Li, “A game-theoretic response strategy for
coordinator attack in wireless sensor networks,” The Scientific World Journal, 2014.
[Online]. Available: http://dx.doi.org/10.1155/2014/950618

[57] K. Khalil, Z. Qian, P. Yu, S. Krishnamurthy, and A. Swami, “Optimal monitor placement
for detection of persistent threats,” in 2016 IEEE Global Communications Conference
(GLOBECOM), Dec 2016, pp. 1–6.

[58] J. t. Wang, Z. g. Chen, and X. h. Deng, “A trustworthy energy-efficient routing algorithm
based on game-theory for wsn,” in IET International Communication Conference on
Wireless Mobile and Computing (CCWMC 2009), Dec 2009, pp. 192–196.

[59] M. Asadi, C. Zimmerman, and A. Agah, “A game-theoretic approach to security and
power conservation in wireless sensor networks,” International Journal of Network
Security, vol. 15, no. 1, pp. 50–58, Jan 2013.

[60] S. Shamshirband, A. Patel, N. B. Anuar, M. L. M. Kiah, and A. Abraham,
“Cooperative game theoretic approach using fuzzy q-learning for detecting and
preventing intrusions in wireless sensor networks,” Engineering Applications
of Artificial Intelligence, vol. 32, pp. 228 – 241, 2014. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0952197614000311

[61] A. Saeed, A. Ahmadinia, A. Javed, and H. Larijani, “Random neural network based
intelligent intrusion detection for wireless sensor networks,” Procedia Computer
Science, vol. 80, pp. 2372 – 2376, 2016, international Conference on Computational
Science 2016, {ICCS} 2016, 6-8 June 2016, San Diego, California, {USA}. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1877050916309371

[62] Y. Maleh, A. Ezzati, Y. Qasmaoui, and M. Mbida, “A global hybrid intrusion
detection system for wireless sensor networks,” Procedia Computer Science,
vol. 52, pp. 1047 – 1052, 2015, the 6th International Conference on Ambient
Systems, Networks and Technologies (ANT-2015), the 5th International Conference
on Sustainable Energy Information Technology (SEIT-2015). [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1877050915009084

[63] M. G. Zapata, “Secure ad hoc on-demand distance vector (saodv) routing,” Working
Draft, IETF Secretariat, Internet-Draft draft-guerrero-manet-saodv-06, September 2006.
[Online]. Available: http://www.ietf.org/internet-drafts/draft-guerrero-manet-saodv-06.
txt

[64] J. von Mulert, I. Welch, and W. K. Seah, “Security threats and solutions in MANETs: A
case study using AODV and SAODV,” Journal of Network and Computer Applications,
vol. 35, no. 4, pp. 1249 – 1259, 2012, intelligent Algorithms for Data-Centric Sensor
Networks.

102

References

[65] Y.-C. Hu, D. B. Johnson, and A. Perrig, “Sead: secure efficient distance vector
routing for mobile wireless ad hoc networks,” Ad Hoc Networks, vol. 1, no. 1, pp.
175 – 192, 2003. [Online]. Available: http://www.sciencedirect.com/science/article/pii/
S1570870503000192

[66] Y.-C. Hu, A. Perrig, and D. B. Johnson, “Ariadne: A secure on-demand routing
protocol for ad hoc networks,” Wirel. Netw., vol. 11, no. 1-2, pp. 21–38, Jan. 2005.
[Online]. Available: http://dx.doi.org/10.1007/s11276-004-4744-y

[67] A. Perrig, R. Canetti, D. Song, and J. D. Tygar, “Efficient and secure source
authentication for multicast,” in In Network and Distributed System Security Symposium,
NDSS ’01, 2001, pp. 35–46.

[68] K. Sanzgiri, B. Dahill, B. N. Levine, C. Shields, and E. M. Belding-Royer, “A secure
routing protocol for ad hoc networks,” in 10th IEEE International Conference on
Network Protocols, 2002. Proceedings., Nov 2002, pp. 78–87.

[69] A. Perrig, R. Szewczyk, J. D. Tygar, V. Wen, and D. E. Culler, “Spins: Security
protocols for sensor networks,” Wirel. Netw., vol. 8, no. 5, pp. 521–534, Sep. 2002.
[Online]. Available: http://dx.doi.org/10.1023/A:1016598314198

[70] Z. Wan, K. Ren, and M. Gu, “Usor: An unobservable secure on-demand routing
protocol for mobile ad hoc networks,” IEEE Transactions on Wireless Communications,
vol. 11, no. 5, pp. 1922–1932, May 2012.

[71] L. Sellami, D. Idoughi, A. Baadache, and P. Tiako, “A novel detection intrusion
approach for ubiquitous and pervasive environments,” Procedia Computer Science,
vol. 94, pp. 429 – 434, 2016, the 11th International Conference on Future Networks
and Communications (FNC 2016) / The 13th International Conference on Mobile
Systems and Pervasive Computing (MobiSPC 2016) / Affiliated Workshops. [Online].
Available: http://www.sciencedirect.com/science/article/pii/S1877050916318166

[72] E. Hernandez-Orallo, M. Serrat Olmos, J.-C. Cano, C. Calafate, and P. Manzoni,
“CoCoWa: A collaborative contact-based watchdog for detecting selfish nodes,” Mobile
Computing, IEEE Transactions on, vol. 14, no. 6, pp. 1162–1175, June 2015.

[73] Y. Sun, W. Yu, Z. Han, and K. Liu, “Information theoretic framework of trust modeling
and evaluation for ad hoc networks,” Selected Areas in Communications, IEEE Journal
on, vol. 24, no. 2, pp. 305–317, Feb 2006.

[74] L. M. Feeney, “An energy consumption model for performance analysis of routing
protocols for mobile ad hoc networks,” Mobile Networks and Applications, vol. 6, no. 3,
pp. 239–249, Jun. 2001.

[75] D. Halperin, B. Greenstein, A. Sheth, and D. Wetherall, “Demystifying 802.11n power
consumption,” in Proceedings of the 2010 International Conference on Power Aware
Computing and Systems, ser. HotPower’10. Berkeley, CA, USA: USENIX Association,
2010, pp. 1–. [Online]. Available: http://dl.acm.org/citation.cfm?id=1924920.1924928

[76] N. R. Potlapally, S. Ravi, A. Raghunathan, and N. K. Jha, “A study of the energy
consumption characteristics of cryptographic algorithms and security protocols,” IEEE
Transactions on Mobile Computing, vol. 5, no. 2, pp. 128–143, Feb 2006.

103

References

[77] D. B. Johnson and D. A. Maltz, “Dynamic source routing in ad hoc wireless networks,”
in Mobile Computing. Kluwer Academic Publishers, 1996, pp. 153–181.

[78] A. Lupia, C. A. Kerrache, F. De Rango, C. T. Calafate, J.-C. Cano, and P. Manzoni,
“TEEM: Trust-based energy-efficient distributed monitoring for mobile ad-hoc
networks,” in 2017 IFIP Wireless Days (WD), Mar 2017.

[79] F. De Rango, F. Guerriero, and P. Fazio, “Link-stability and energy aware routing
protocol in distributed wireless networks,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 4, pp. 713–726, April 2012.

[80] C. A. Kerrache, N. Lagraa, C. T. Calafate, and A. Lakas, “TROUVE: A trusted
routing protocol for urban vehicular environments,” in 2015 IEEE 11th International
Conference on Wireless and Mobile Computing, Networking and Communications
(WiMob), Oct 2015, pp. 260–267.

[81] A. Lupia and F. De Rango, “Trust management using probabilistic energy-aware
monitoring for intrusion detection in mobile ad-hoc networks,” in 2016 Wireless
Telecommunications Symposium (WTS), April 2016, pp. 1–6.

[82] ——, “A probabilistic energy-efficient approach for monitoring and detecting
malicious/selfish nodes in mobile ad-hoc networks,” in 2016 IEEE Wireless
Communications and Networking Conference, April 2016, pp. 1–6.

[83] R. Chattamvelli and R. Shanmugam, “Continuous distributions,” in Statistics for
Scientists and Engineers. John Wiley & Sons, 2015, pp. 255–332.

[84] G. F. Riley and T. R. Henderson, “The ns-3 network simulator,” in Modeling and Tools
for Network Simulation, K. Wehrle, M. Güneş, and J. Gross, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 15–34.

[85] Boost C++ Libraries. (visited on Feb. 15, 2017). [Online]. Available: http:
//www.boost.org/

[86] Crypto++ Library. (visited on Feb. 15, 2017). [Online]. Available: http:
//www.cryptopp.com/

104

Appendix A

NS-3 Code

The full code of the tms module used for simulation in NS-3.26 is illustrated in this section.

For aodv module, the result of the diff command used for the comparison with the code

included in NS-3.26 is shown.

A.1 Module tms

The module is composed of the classes listed in this section. After the creation of the directory

"tms" in the source directory of NS-3, two more directories need to be created: "model" and

"helper". The following files have to be put inside the "model" folder:

• trust-manager.h;

• trust-manager.cc;

• trust-pmf.h;

• trust-pmf.cc;

• trust-table.h;

• trust-table.cc;

The files to put in "helper" directory are:

• tms-helper.h;

• tms-helper.cc.

The file wscript has to be placed in the main folder of the module, which is "tms".

105

A.1 Module tms

trust-manager.h

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 /*

3 * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

4 *

5 * This program is free software; you can redistribute it and/or modify

6 * it under the terms of the GNU General Public License version 2 as

7 * published by the Free Software Foundation;

8 *

9 * This program is distributed in the hope that it will be useful ,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *

14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not , write to the Free Software

16 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

17 *

18 * Author: Andrea Lupia <alupia@dimes.unical.it >

19 */

20

21 #ifndef TRUST_MANAGER_H

22 #define TRUST_MANAGER_H

23

24 #include <map >

25 #include <list >

26 #include "trust -table.h"

27 #include "trust -pmf.h"

28 #include "ns3/object.h"

29 #include "ns3/ptr.h"

30 #include "ns3/ipv4 -l3-protocol.h"

31 #include "ns3/packet.h"

32 #include "ns3/wifi -net -device.h"

33 #include "ns3/ipv4 -address.h"

34 #include "ns3/timer.h"

35 #include "ns3/random -variable -stream.h"

36 #include "ns3/wifi -mac -header.h"

37

38 namespace ns3 {

39

40 class Node;

41

42 namespace tms {

43

44 struct BufferEntry

45 {

46 Timer *m_nextHopWait;

47 uint64_t m_uid;

48 Ipv4Address m_address;

49

50 BufferEntry (uint64_t uid , Ipv4Address address) :

51 m_uid (uid), m_address (address)

52 {

53 m_nextHopWait = new Timer(Timer:: REMOVE_ON_DESTROY);

54 }

55 };

56

57 class TrustManager : public Object

58 {

59 public:

60 static TypeId GetTypeId ();

61 TypeId GetInstanceTypeId () const;

62 TrustManager ();

63 virtual ~TrustManager ();

64 Ptr <TrustTable > GetTrustTable ();

65

66 bool IsProm () { return m_prom; }

67 protected:

68 virtual void DoInitialize (void);

69 private:

106

A.1 Module tms

70 // void ManageTx (Ptr <const Packet > packet , Ptr <Ipv4 > ipv4 , uint32_t interface);

71 void ManageTx (const Ipv4Header &header , Ptr <const Packet > packet , uint32_t interface);

72 // bool

73 void ManagePromiscRx (Ptr <NetDevice > device , Ptr <const Packet > packet , uint16_t protocol , const Address &from ,

74 const Address &to, NetDevice :: PacketType packetType);

75 void ManageTxError (WifiMacHeader const & hdr);

76

77 bool InsertInBuffer (uint64_t uid , Ipv4Address address);

78 bool EmptyBuffer ();

79 bool RemoveFromBuffer (uint64_t uid , Ipv4Address address);

80

81 Ipv4Address GetIpFromMac (Mac48Address address);

82 void NextHopWaitExpire (uint64_t uid , Ipv4Address address);

83

84 void SetProbabilisticMonitoring (bool f);

85 bool IsProbabilisticMonitoring () const;

86

87 void SetP (double p);

88 double GetP () const;

89

90 void SetQ (double q);

91 double GetQ () const;

92

93 void SetRho (double rho);

94 double GetRho () const;

95

96 void SetEpsilon (double epsilon);

97 double GetEpsilon () const;

98

99 void SetProm (bool prom) { m_prom = prom; }

100

101 Ptr <Node > m_node;

102 Ptr <Ipv4L3Protocol > m_ipv4;

103 Ptr <WifiNetDevice > m_device;

104

105 Ptr <UniformRandomVariable > m_urv;

106

107 std::map <uint64_t , BufferEntry > m_buffer;

108

109 Ptr <TrustTable > m_table;

110 Ptr <ProbabilisticMonitoring > m_pmf;

111

112 // Parameters

113 Time m_trustUpdateInterval;

114 Time m_nextHopWait;

115 bool m_probabilistic;

116 double m_p;

117 double m_q;

118 double m_rho;

119 double m_epsilon;

120

121 // Simulate promiscuous deactivation

122 bool m_prom;

123 };

124 }

125 }

126

127 #endif /* TRUST_MANAGER_H */

trust-manager.cc

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 /*

3 * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

4 *

5 * This program is free software; you can redistribute it and/or modify

6 * it under the terms of the GNU General Public License version 2 as

7 * published by the Free Software Foundation;

107

A.1 Module tms

8 *

9 * This program is distributed in the hope that it will be useful ,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *

14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not , write to the Free Software

16 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

17 *

18 * Author: Andrea Lupia <alupia@dimes.unical.it >

19 */

20

21 #include "trust -manager.h"

22 #include "ns3/log.h"

23 #include "ns3/pointer.h"

24 #include "ns3/boolean.h"

25 #include "ns3/double.h"

26 #include "ns3/simulator.h"

27 #include "ns3/node.h"

28 #include "ns3/config.h"

29 #include "ns3/packet.h"

30 #include "ns3/wifi -mac.h"

31 #include "ns3/node -list.h"

32 #include "ns3/timer.h"

33 #include "ns3/mac -low.h"

34

35 namespace ns3 {

36 namespace tms {

37

38 NS_LOG_COMPONENT_DEFINE ("TrustManager");

39 NS_OBJECT_ENSURE_REGISTERED (TrustManager);

40

41 TypeId

42 TrustManager :: GetTypeId (void)

43 {

44 static TypeId tid = TypeId ("ns3::tms:: TrustManager")

45 .SetParent <Object > ()

46 .SetGroupName ("Tms")

47 .AddConstructor <TrustManager > ()

48 .AddAttribute ("Node",

49 "Reference node.",

50 PointerValue (),

51 MakePointerAccessor (& TrustManager :: m_node),

52 MakePointerChecker <Node > ())

53 .AddAttribute ("TrustUpdateInterval",

54 "Trust values update interval.",

55 TimeValue (Seconds (2)),

56 MakeTimeAccessor (& TrustManager :: m_trustUpdateInterval),

57 MakeTimeChecker ())

58 .AddAttribute ("NextHopWait",

59 "Period of observation waiting until observation is negative.",

60 TimeValue (MilliSeconds (50)),

61 MakeTimeAccessor (& TrustManager :: m_nextHopWait),

62 MakeTimeChecker ())

63 .AddAttribute ("Probabilistic",

64 "Indicates whether the probabilistic monitoring is enabled.",

65 BooleanValue (true),

66 MakeBooleanAccessor (& TrustManager :: SetProbabilisticMonitoring ,

67 &TrustManager :: IsProbabilisticMonitoring),

68 MakeBooleanChecker ())

69 .AddAttribute ("BetaP",

70 "The \"p\" parameter of the Probabilistic Monitoring Function.",

71 DoubleValue (4.),

72 MakeDoubleAccessor (& TrustManager ::SetP ,

73 &TrustManager ::GetP),

74 MakeDoubleChecker <double > (0.))

75 .AddAttribute ("BetaQ",

76 "The \"q\" parameter of the Probabilistic Monitoring Function.",

77 DoubleValue (4.),

78 MakeDoubleAccessor (& TrustManager ::SetQ ,

79 &TrustManager ::GetQ),

108

A.1 Module tms

80 MakeDoubleChecker <double > (0.))

81 .AddAttribute ("Rho",

82 "The remembering factor of the trust framework.",

83 DoubleValue (0.89) ,

84 MakeDoubleAccessor (& TrustManager ::SetRho ,

85 &TrustManager :: GetRho),

86 MakeDoubleChecker <double > (0., 1.))

87 .AddAttribute ("Epsilon",

88 "The \"\\ epsilon \" parameter of the probabilistic monitoring model",

89 DoubleValue (0.001) ,

90 MakeDoubleAccessor (& TrustManager :: SetEpsilon ,

91 &TrustManager :: GetEpsilon),

92 MakeDoubleChecker <double > ())

93 ;

94 return tid;

95 }

96

97 TypeId

98 TrustManager :: GetInstanceTypeId (void) const

99 {

100 return GetTypeId ();

101 }

102

103 TrustManager :: TrustManager () :

104 m_trustUpdateInterval (Seconds (2)),

105 m_nextHopWait (MilliSeconds (50)),

106 m_probabilistic (true),

107 m_p (4.),

108 m_q (4.),

109 m_rho (0.89) ,

110 m_epsilon (0.001)

111 {

112 m_table = CreateObject <TrustTable > ();

113 }

114

115 TrustManager ::~ TrustManager ()

116 {

117 }

118

119 void

120 TrustManager :: DoInitialize (void)

121 {

122 NS_LOG_FUNCTION (this << m_node ->GetId ());

123 m_ipv4 = m_node ->GetObject <Ipv4L3Protocol > ();

124 m_device = DynamicCast <WifiNetDevice > (m_node ->GetDevice (0));

125 m_node ->RegisterProtocolHandler (MakeCallback (& TrustManager :: ManagePromiscRx , this),

126 Ipv4L3Protocol :: PROT_NUMBER , m_device , true);

127 SetProm (false);

128 if (!m_ipv4 ->TraceConnectWithoutContext ("SendOutgoing",

129 MakeCallback (& TrustManager ::ManageTx , this)))

130 {

131 NS_FATAL_ERROR ("trace fail");

132 }

133 if (!m_ipv4 ->TraceConnectWithoutContext ("UnicastForward",

134 MakeCallback (& TrustManager ::ManageTx , this)))

135 {

136 NS_FATAL_ERROR ("trace fail");

137 }

138 // Allow neighbor manager use this interface for layer 2 feedback if possible

139 Ptr <WifiNetDevice > wifi = m_device ->GetObject <WifiNetDevice > ();

140 Ptr <WifiMac > mac = wifi ->GetMac ();

141 mac ->TraceConnectWithoutContext ("TxErrHeader",

142 MakeCallback (& TrustManager :: ManageTxError , this));

143 m_urv = CreateObject <UniformRandomVariable > ();

144 Type type = IsProbabilisticMonitoring () ? BETA : CONSTANT;

145 m_pmf = CreateObject <ProbabilisticMonitoring > (type);

146 if (m_pmf ->IsProbabilistic ())

147 {

148 m_pmf ->SetBetaParams (m_p , m_q);

149 m_pmf ->CreateDistribution ();

150 }

151 m_table ->SetRho (m_rho);

109

A.1 Module tms

152 m_table ->SetEpsilon (m_epsilon);

153 m_table ->SetTrustUpdateInterval (m_trustUpdateInterval);

154 }

155

156 Ptr <TrustTable >

157 TrustManager :: GetTrustTable ()

158 {

159 return m_table;

160 }

161

162 void

163 TrustManager :: ManageTx (const Ipv4Header &header ,

164 Ptr <const Packet > packet , uint32_t interface)

165 {

166 Ptr <Packet > p = packet ->Copy();

167 Socket :: SocketErrno socket_errno;

168 Ipv4Address dest = header.GetDestination ();

169 Ipv4Address nextHop = m_ipv4 ->GetRoutingProtocol ()->

170 RouteOutput (p, header , m_device , socket_errno)->GetGateway ();

171 if(dest != nextHop && nextHop != Ipv4Address ("127.0.0.1")

172 && m_ipv4 ->IsUnicast (dest))

173 {

174 NS_LOG_DEBUG ("ManageTx: (destination " << dest <<

175 ", nexthop " << nextHop <<

176 ", packet " << p->GetUid () << ")");

177 // Probabilistic monitoring

178 double rnd = m_urv ->GetValue (0, 1);

179 double probMon = m_pmf ->GetMonitoringProbability (m_table ->GetTrustValue (nextHop));

180 if (rnd < probMon)

181 {

182 NS_LOG_INFO ("The packet " << p->GetUid () << " will be monitored (" <<

183 rnd << " < " << probMon << ")");

184 InsertInBuffer (p->GetUid (), nextHop);

185 }

186 else

187 {

188 NS_LOG_INFO ("The packet " << p->GetUid () << " will NOT be monitored (" <<

189 rnd << " >= " << probMon << ")");

190 }

191 }

192 }

193

194 void

195 TrustManager :: ManagePromiscRx (Ptr <NetDevice > device ,

196 Ptr <const Packet > packet , uint16_t protocol , const Address &from ,

197 const Address &to, NetDevice :: PacketType packetType)

198 {

199 // Receive only IP packets and packets addressed to other hosts

200 if (packetType == NetDevice :: PACKET_OTHERHOST && IsProm ())

201 {

202 Ptr <Packet > p = packet ->Copy ();

203 Ipv4Header header;

204 p->RemoveHeader (header);

205

206 if (m_ipv4 ->IsUnicast (header.GetDestination ()))

207 {

208 Ipv4Address promiscSource = GetIpFromMac (Mac48Address :: ConvertFrom (from));

209 NS_LOG_DEBUG ("ManagePromiscRx: (source " << promiscSource <<

210 ", packet "<< p->GetUid () << ")");

211 if (RemoveFromBuffer (p->GetUid (), promiscSource))

212 {

213 NS_LOG_INFO ("Entry was found for packet " << p->GetUid () <<

214 " from source " << promiscSource);

215 // Add positive observation for promiscSource

216 m_table ->AddObservation (promiscSource , true);

217 }

218 }

219 }

220 }

221

222 void

223 TrustManager :: ManageTxError (WifiMacHeader const & hdr)

110

A.1 Module tms

224 {

225 Ipv4Address address = GetIpFromMac (hdr.GetAddr1 ());

226 for (std::map <uint64_t , BufferEntry >:: iterator i = m_buffer.begin ();

227 i != m_buffer.end (); ++i)

228 {

229 if (i->second.m_address == address)

230 {

231 i->second.m_nextHopWait ->Cancel ();

232 m_buffer.erase (i);

233 if (EmptyBuffer ())

234 {

235 SetProm (false);

236 }

237 }

238 }

239 }

240

241 bool

242 TrustManager :: InsertInBuffer (uint64_t uid , Ipv4Address address)

243 {

244 BufferEntry entry (uid , address);

245 if (m_buffer.insert(std:: make_pair (uid , entry)).second)

246 {

247 entry.m_nextHopWait ->SetFunction (& TrustManager :: NextHopWaitExpire , this);

248 entry.m_nextHopWait ->SetArguments (uid , address);

249 entry.m_nextHopWait ->SetDelay (m_nextHopWait);

250 entry.m_nextHopWait ->Schedule ();

251 SetProm (true);

252 return true;

253 }

254 return false;

255 }

256

257 bool

258 TrustManager :: EmptyBuffer ()

259 {

260 return m_buffer.empty ();

261 }

262

263 bool

264 TrustManager :: RemoveFromBuffer (uint64_t uid , Ipv4Address address)

265 {

266 std::map <uint64_t , BufferEntry >:: iterator i = m_buffer.find (uid);

267 if (i != m_buffer.end () && i->second.m_address == address)

268 {

269 i->second.m_nextHopWait ->Cancel ();

270 m_buffer.erase (i);

271 if (EmptyBuffer ())

272 {

273 SetProm (false);

274 }

275 return true;

276 }

277 return false;

278 }

279

280 Ipv4Address

281 TrustManager :: GetIpFromMac (Mac48Address address)

282 {

283 int32_t nNodes = NodeList :: GetNNodes ();

284 for (int32_t i = 0; i < nNodes; ++i)

285 {

286 Ptr <Node > node = NodeList :: GetNode (i);

287 Ptr <Ipv4 > ipv4 = node ->GetObject <Ipv4 > ();

288 Ptr <NetDevice > netDevice = ipv4 ->GetNetDevice (1);

289 if (netDevice ->GetAddress () == address)

290 {

291 return ipv4 ->GetAddress (1, 0).GetLocal ();

292 }

293 }

294 return 0;

295 }

111

A.1 Module tms

296

297 void

298 TrustManager :: NextHopWaitExpire (uint64_t uid , Ipv4Address address)

299 {

300 if (RemoveFromBuffer (uid , address))

301 {

302 NS_LOG_INFO ("Packet " << uid << " not sensed , negative observation for node "

303 << address);

304 // Add negative observation for address

305 m_table ->AddObservation (address , false);

306 }

307 }

308

309 void

310 TrustManager :: SetProbabilisticMonitoring (bool f)

311 {

312 m_probabilistic = f;

313 }

314

315 bool

316 TrustManager :: IsProbabilisticMonitoring () const

317 {

318 return m_probabilistic;

319 }

320

321 void

322 TrustManager ::SetP (double p)

323 {

324 m_p = p;

325 }

326

327 double

328 TrustManager ::GetP () const

329 {

330 return m_p;

331 }

332

333 void

334 TrustManager ::SetQ (double q)

335 {

336 m_q = q;

337 }

338

339 double

340 TrustManager ::GetQ () const

341 {

342 return m_q;

343 }

344

345 void

346 TrustManager :: SetRho (double rho)

347 {

348 m_rho = rho;

349 }

350

351 double

352 TrustManager :: GetRho () const

353 {

354 return m_rho;

355 }

356

357 void

358 TrustManager :: SetEpsilon (double epsilon)

359 {

360 m_epsilon = epsilon;

361 }

362

363 double

364 TrustManager :: GetEpsilon () const

365 {

366 return m_epsilon;

367 }

112

A.1 Module tms

368 }

369 }

trust-pmf.h

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 /*

3 * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

4 *

5 * This program is free software; you can redistribute it and/or modify

6 * it under the terms of the GNU General Public License version 2 as

7 * published by the Free Software Foundation;

8 *

9 * This program is distributed in the hope that it will be useful ,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *

14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not , write to the Free Software

16 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

17 *

18 * Author: Andrea Lupia <alupia@dimes.unical.it >

19 */

20

21 #ifndef TRUST_PMF_H

22 #define TRUST_PMF_H

23

24 #include "ns3/object.h"

25 #include <boost/math/distributions/beta.hpp >

26

27 using boost::math:: beta_distribution;

28

29 namespace ns3

30 {

31 namespace tms

32 {

33

34 enum Type

35 {

36 CONSTANT ,

37 BETA

38 };

39

40 class ProbabilisticMonitoring : public Object

41 {

42 public:

43 static TypeId GetTypeId ();

44 TypeId GetInstanceTypeId () const;

45 ProbabilisticMonitoring (Type type);

46 void SetBetaParams (double p, double q);

47 void SetBetaP (double p);

48 void SetBetaQ (double q);

49 void CreateDistribution ();

50 double GetMonitoringProbability (double t);

51 bool IsProbabilistic ();

52 private:

53 Type m_type;

54 double m_p;

55 double m_q;

56 beta_distribution <> m_beta_pmf;

57 };

58

59 } /* namespace tms */

60 } /* namespace ns3 */

61

62 #endif /* TRUST_PMF_H */

113

A.1 Module tms

trust-pmf.cc

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 /*

3 * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

4 *

5 * This program is free software; you can redistribute it and/or modify

6 * it under the terms of the GNU General Public License version 2 as

7 * published by the Free Software Foundation;

8 *

9 * This program is distributed in the hope that it will be useful ,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *

14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not , write to the Free Software

16 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

17 *

18 * Author: Andrea Lupia <alupia@dimes.unical.it >

19 */

20

21 #include "trust -pmf.h"

22 #include "ns3/log.h"

23 #include "ns3/simulator.h"

24

25 using boost::math:: beta_distribution;

26

27 namespace ns3

28 {

29 namespace tms

30 {

31

32 NS_LOG_COMPONENT_DEFINE ("ProbabilisticMonitoring");

33

34 NS_OBJECT_ENSURE_REGISTERED (ProbabilisticMonitoring);

35

36 TypeId

37 ProbabilisticMonitoring :: GetTypeId (void)

38 {

39 static TypeId tid = TypeId ("ns3:: ProbabilisticMonitoring")

40 .SetParent <Object > ()

41 .SetGroupName ("Tms")

42 ;

43 return tid;

44 }

45

46 TypeId

47 ProbabilisticMonitoring :: GetInstanceTypeId (void) const

48 {

49 return GetTypeId ();

50 }

51

52 ProbabilisticMonitoring :: ProbabilisticMonitoring (Type type) :

53 m_type (type), m_p (1.), m_q (1.)

54 {

55

56 }

57

58 void

59 ProbabilisticMonitoring :: SetBetaParams (double p, double q)

60 {

61 m_p = p;

62 m_q = q;

63 }

64

65 void

66 ProbabilisticMonitoring :: SetBetaP (double p)

67 {

68 m_p = p;

69 }

114

A.1 Module tms

70

71 void

72 ProbabilisticMonitoring :: SetBetaQ (double q)

73 {

74 m_q = q;

75 }

76

77 void

78 ProbabilisticMonitoring :: CreateDistribution ()

79 {

80 m_beta_pmf = beta_distribution <> (m_p , m_q);

81 }

82

83 double

84 ProbabilisticMonitoring :: GetMonitoringProbability (double t)

85 {

86 double ans = 1.;

87 if (m_type != CONSTANT && t > 0)

88 {

89 ans -= boost::math::cdf (m_beta_pmf , t);

90 }

91 return ans;

92 }

93

94 bool

95 ProbabilisticMonitoring :: IsProbabilistic ()

96 {

97 return m_type == BETA;

98 }

99

100 } /* namespace tms */

101 } /* namespace ns3 */

trust-table.h

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 /*

3 * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

4 *

5 * This program is free software; you can redistribute it and/or modify

6 * it under the terms of the GNU General Public License version 2 as

7 * published by the Free Software Foundation;

8 *

9 * This program is distributed in the hope that it will be useful ,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *

14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not , write to the Free Software

16 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

17 *

18 * Author: Andrea Lupia <alupia@dimes.unical.it >

19 */

20

21 #ifndef TRUST_TABLE_H

22 #define TRUST_TABLE_H

23

24 #include <map >

25 #include <set >

26 #include "ns3/simulator.h"

27 #include "ns3/object.h"

28 #include "ns3/ipv4 -address.h"

29 #include "ns3/timer.h"

30 #include "ns3/callback.h"

31 #include "ns3/traced -value.h"

32

33 namespace ns3

115

A.1 Module tms

34 {

35 namespace tms

36 {

37

38 enum Action

39 {

40 TRANSMISSION ,

41 RECOMMENDATION // Not supported yet

42 };

43

44 struct TrustEntry

45 {

46 Ipv4Address m_agent;

47 Action m_action;

48 double m_value;

49 double m_numerator;

50 double m_denominator;

51 Time m_time;

52

53 TrustEntry (Ipv4Address agent) :

54 m_agent (agent), m_action (TRANSMISSION), m_value (0), m_numerator (1), m_denominator (2),

55 m_time (Simulator ::Now ())

56 {

57 }

58

59 };

60

61 class TrustTable : public Object

62 {

63 public:

64 TrustTable ();

65 ~TrustTable ();

66 static TypeId GetTypeId ();

67 TypeId GetInstanceTypeId () const;

68 void AddObservation (Ipv4Address agent , bool outcome , Time time = Simulator ::Now(), Action action = TRANSMISSION);

69 double GetTrustValue (Ipv4Address agent);

70 bool IsTrustworthy (Ipv4Address agent);

71 void SetTrustUpdateInterval (Time t);

72 Time GetTrustUpdateInterval () const { return m_interval; }

73 void SetRho (double rho) { m_rho = rho; }

74 double GetRho () const { return m_rho; }

75 void SetEpsilon (double epsilon) { m_epsilon = epsilon; }

76 double GetEpsilon () const { return m_epsilon; }

77

78 void SetCallback (Callback <void , Ipv4Address > cb) { m_handleDistrust = cb; }

79 Callback <void , Ipv4Address > GetCallback () const { return m_handleDistrust; }

80

81 typedef void (* DistrustTracedCallback) (Ipv4Address);

82 typedef void (* TrustChangeTracedCallback) (Ipv4Address , double);

83 private:

84 void ComputeTrust (TrustEntry *entry);

85 void Refresh (TrustEntry *entry = 0);

86 double H (double p);

87 double Log2 (double x);

88

89 std::map <uint32_t , TrustEntry*> m_table;

90 std::set <uint32_t > m_distrusted;

91

92 Timer m_timer;

93

94 Callback <void , Ipv4Address > m_handleDistrust;

95

96 // Parameters

97 Time m_interval;

98 double m_rho;

99 double m_epsilon;

100

101 // Trace sources

102 TracedCallback <Ipv4Address > m_cDistrusted;

103 TracedCallback <Ipv4Address , double > m_trustChange;

104 };

105

116

A.1 Module tms

106 } /* namespace tms */

107 } /* namespace ns3 */

108

109 #endif /* TRUST_TABLE_H */

trust-table.cc

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 /*

3 * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

4 *

5 * This program is free software; you can redistribute it and/or modify

6 * it under the terms of the GNU General Public License version 2 as

7 * published by the Free Software Foundation;

8 *

9 * This program is distributed in the hope that it will be useful ,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *

14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not , write to the Free Software

16 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

17 *

18 * Author: Andrea Lupia <alupia@dimes.unical.it >

19 */

20

21 #include <math.h>

22 #include "trust -table.h"

23 #include "ns3/log.h"

24

25 namespace ns3

26 {

27 namespace tms

28 {

29

30 NS_LOG_COMPONENT_DEFINE ("TrustTable");

31

32 NS_OBJECT_ENSURE_REGISTERED (TrustTable);

33

34 TypeId

35 TrustTable :: GetTypeId (void)

36 {

37 static TypeId tid = TypeId ("ns3::tms:: TrustTable")

38 .SetParent <Object > ()

39 .SetGroupName ("Tms")

40 /*

41 * How to connect to this trace source:

42 *

43 * Config :: Connect (

44 * "/ NodeList /0/ $ns3::tms:: TrustTable/Distrusted",

45 * MakeCallback (&Class ::Method , this)

46 *);

47 *

48 * void Class :: Method (std:: string context , Ipv4Address address)

49 * {

50 * NS_LOG_UNCOND (" Traced " << context << " - " << Simulator ::Now () << " - " << address);

51 * }

52 */

53 .AddTraceSource ("Distrusted",

54 "Time and node distrusted",

55 MakeTraceSourceAccessor (& TrustTable :: m_cDistrusted),

56 "ns3::tms:: TrustTable :: DistrustTracedCallback")

57 .AddTraceSource ("TrustChange",

58 "Time and node distrusted",

59 MakeTraceSourceAccessor (& TrustTable :: m_trustChange),

60 "ns3::tms:: TrustTable :: TrustChangeTracedCallback")

61 ;

117

A.1 Module tms

62 return tid;

63 }

64

65 TypeId

66 TrustTable :: GetInstanceTypeId (void) const

67 {

68 return GetTypeId ();

69 }

70

71 TrustTable :: TrustTable () :

72 m_timer (Timer:: CANCEL_ON_DESTROY), m_rho (0.666) , m_epsilon (0.001)

73 {

74

75 }

76

77 TrustTable ::~ TrustTable ()

78 {

79

80 }

81

82 void

83 TrustTable :: AddObservation (Ipv4Address agent , bool outcome , Time time , Action action)

84 {

85 NS_LOG_DEBUG ("Observation for agent " << agent << ": " << outcome);

86 std::map <uint32_t , TrustEntry *>:: iterator i = m_table.find (agent.Get ());

87 TrustEntry *entry;

88 if (i == m_table.end ())

89 {

90 entry = new TrustEntry (agent);

91 m_table.insert (std:: make_pair (agent.Get (), entry));

92 }

93 else

94 {

95 entry = i->second;

96 }

97 if (! m_timer.IsRunning ())

98 {

99 m_timer.Schedule ();

100 }

101 else if (Simulator ::Now () > entry ->m_time)

102 {

103 Refresh (entry);

104 }

105 entry ->m_numerator += outcome;

106 entry ->m_denominator ++;

107 entry ->m_time = Simulator ::Now ();

108 ComputeTrust (entry);

109 }

110

111 void

112 TrustTable :: ComputeTrust (TrustEntry *entry)

113 {

114 double p = entry ->m_numerator / entry ->m_denominator;

115 if (p <= 0)

116 entry ->m_value = -1;

117 else if (p >= 1)

118 entry ->m_value = 1;

119 else

120 entry ->m_value = p >= 0.5 ? 1 - H (p) : H (p) - 1;

121 if (entry ->m_value < - m_epsilon && m_distrusted.insert (entry ->m_agent.Get ()).second)

122 {

123 NS_LOG_LOGIC ("Agent with address " << entry ->m_agent << " has a negative trust value and becomes distrusted");

124 m_cDistrusted (entry ->m_agent);

125 if (! m_handleDistrust.IsNull ())

126 m_handleDistrust (entry ->m_agent);

127 }

128 else if (entry ->m_value >= - m_epsilon && m_distrusted.erase (entry ->m_agent.Get ()) == 1)

129 {

130 NS_LOG_LOGIC ("Agent with address " << entry ->m_agent << " is now redeemed");

131 }

132 m_trustChange (entry ->m_agent , entry ->m_value);

133 NS_LOG_INFO ("New trust value for agent " << entry ->m_agent << ": " << entry ->m_value);

118

A.1 Module tms

134 }

135

136 double

137 TrustTable :: GetTrustValue (Ipv4Address agent)

138 {

139 std::map <uint32_t , TrustEntry *>:: iterator i = m_table.find (agent.Get ());

140 if (i == m_table.end ())

141 return 0;

142 Refresh (i->second);

143 return i->second ->m_value;

144 }

145

146 bool

147 TrustTable :: IsTrustworthy (Ipv4Address agent)

148 {

149 return m_distrusted.find (agent.Get ()) == m_distrusted.end ();

150 // return GetTrustValue (agent) >= - m_epsilon;

151 }

152

153 void

154 TrustTable :: SetTrustUpdateInterval (Time t)

155 {

156 m_interval = t;

157 m_timer.SetDelay (m_interval);

158 m_timer.SetFunction (& TrustTable ::Refresh , this);

159 m_timer.SetArguments <TrustEntry*> (0);

160 }

161

162 void

163 TrustTable :: Refresh (TrustEntry *entry)

164 {

165 if (entry == 0)

166 {

167 std::map <uint32_t , TrustEntry *>:: iterator i = m_table.begin ();

168 for (; i != m_table.end (); i++)

169 Refresh (i->second);

170 m_timer.Schedule ();

171 }

172 else

173 {

174 NS_LOG_DEBUG ("Actualizing trust value of agent " << entry ->m_agent);

175 entry ->m_numerator --;

176 entry ->m_denominator -= 2;

177 entry ->m_numerator *= std::pow (m_rho , Simulator ::Now ().GetSeconds () - entry ->m_time.GetSeconds ());

178 entry ->m_denominator *= std::pow (m_rho , Simulator ::Now ().GetSeconds () - entry ->m_time.GetSeconds ());

179 entry ->m_numerator ++;

180 entry ->m_denominator += 2;

181 entry ->m_time = Simulator ::Now ();

182 ComputeTrust (entry);

183 }

184 }

185

186 double

187 TrustTable ::H (double p)

188 {

189 return - p * Log2 (p) - (1 - p) * Log2 (1 - p);

190 }

191

192 double

193 TrustTable ::Log2 (double x)

194 {

195 return std::log(x) / std::log (2.0);

196 }

197

198 } /* namespace tms */

199 } /* namespace ns3 */

tms-helper.h

119

A.1 Module tms

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 /*

3 * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

4 *

5 * This program is free software; you can redistribute it and/or modify

6 * it under the terms of the GNU General Public License version 2 as

7 * published by the Free Software Foundation;

8 *

9 * This program is distributed in the hope that it will be useful ,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *

14 * You should have received a copy of the GNU General Public License

15 * along with this program; if not , write to the Free Software

16 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

17 *

18 * Author: Andrea Lupia <alupia@dimes.unical.it >

19 */

20

21 #ifndef TMS_HELPER_H

22 #define TMS_HELPER_H

23

24 #include "ns3/trust -manager.h"

25 #include "ns3/node -container.h"

26

27 namespace ns3 {

28

29 class TmsHelper {

30 public:

31 TmsHelper ();

32 ~TmsHelper ();

33

34 /**

35 * \brief Enable TMS on a set of nodes

36 * \param nodes A NodeContainer holding the set of nodes to work with.

37 */

38 void Install (NodeContainer nodes);

39 /**

40 * \brief Enable TMS on a single node

41 * \param node A Ptr <Node > to the node on which to enable TMS.

42 */

43 void Install (Ptr <Node > node);

44 /**

45 * \brief Enable TMS on all nodes

46 */

47 void InstallAll ();

48 };

49 }

50

51 #endif /* TMS_HELPER_H */

tms-helper.cc

1 /* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

2 /*

3 * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

4 *

5 * This program is free software; you can redistribute it and/or modify

6 * it under the terms of the GNU General Public License version 2 as

7 * published by the Free Software Foundation;

8 *

9 * This program is distributed in the hope that it will be useful ,

10 * but WITHOUT ANY WARRANTY; without even the implied warranty of

11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

12 * GNU General Public License for more details.

13 *

14 * You should have received a copy of the GNU General Public License

120

A.1 Module tms

15 * along with this program; if not , write to the Free Software

16 * Foundation , Inc., 59 Temple Place , Suite 330, Boston , MA 02111 -1307 USA

17 *

18 * Author: Andrea Lupia <alupia@dimes.unical.it >

19 */

20

21 #include "tms -helper.h"

22 #include "ns3/pointer.h"

23 #include "ns3/node.h"

24 #include "ns3/node -list.h"

25 #include "ns3/ipv4 -routing -protocol.h"

26 //#include "ns3/ipv4 -l3-protocol.h"

27 //#include "ns3/ipv6 -l3-protocol.h"

28

29 namespace ns3 {

30

31 TmsHelper :: TmsHelper ()

32 {

33 }

34

35 TmsHelper ::~ TmsHelper ()

36 {

37 }

38

39 void

40 TmsHelper :: Install (Ptr <Node > node)

41 {

42 Ptr <tms:: TrustManager > trustManager = CreateObjectWithAttributes <tms:: TrustManager > ("Node", PointerValue (node));

43 // FIXME Workaround to make stats with promiscuous mode

44 node ->AggregateObject (trustManager);

45 Ptr <Ipv4RoutingProtocol > protocol = node ->GetObject <Ipv4RoutingProtocol > ();

46 if (protocol)

47 {

48 protocol ->AggregateObject (trustManager ->GetTrustTable ());

49 }

50 else

51 {

52 NS_FATAL_ERROR ("Cannot find Ipv4RoutingProtocol installed on nodes");

53 }

54 // From the routing protocol:

55 // Ptr <tms:: TrustManager > tms = GetObject <tms:: TrustManager > ();

56

57 //Ptr <Ipv4L3Protocol > ipv4 = node ->GetObject <Ipv4L3Protocol > ();

58 //if (ipv4)

59 //{

60 //Ptr <TrustManager > trustManager = Create <TrustManager > (node);

61 //}

62 //Ptr <Ipv6L3Protocol > ipv6 = node ->GetObject <Ipv6L3Protocol > ();

63 //if (ipv6)

64 //{

65 // NOT SUPPORTED YET

66 //}

67 }

68

69 void

70 TmsHelper :: Install (NodeContainer nodes)

71 {

72 for (NodeContainer :: Iterator i = nodes.Begin (); i != nodes.End (); ++i)

73 {

74 Ptr <Node > node = *i;

75 //if (node ->GetObject <Ipv4L3Protocol > () || node ->GetObject <Ipv6L3Protocol > ())

76 //{

77 // Install (node);

78 //}

79 if (node ->GetNDevices () > 0)

80 {

81 Install (node);

82 }

83 }

84 }

85

86 void

121

A.2 Module aodv (diff)

87 TmsHelper :: InstallAll ()

88 {

89 for (NodeList :: Iterator i = NodeList :: Begin (); i != NodeList ::End (); ++i)

90 {

91 Ptr <Node > node = *i;

92 //if (node ->GetObject <Ipv4L3Protocol > () || node ->GetObject <Ipv6L3Protocol > ())

93 //{

94 // Install (node);

95 //}

96 if (node ->GetNDevices () > 0)

97 {

98 Install (node);

99 }

100 }

101 }

102

103 }

wscript

1 # -*- Mode: python; py -indent -offset: 4; indent -tabs -mode: nil; coding: utf -8; -*-

2

3 # def options(opt):

4 # pass

5

6 # def configure(conf):

7 # conf.check_nonfatal(header_name='stdint.h', define_name='HAVE_STDINT_H ')

8

9 def build(bld):

10 module = bld.create_ns3_module('tms', ['wifi', 'internet '])

11 module.source = [

12 'model/trust -pmf.cc',

13 'model/trust -table.cc',

14 'model/trust -manager.cc',

15 'helper/tms -helper.cc',

16]

17

18 headers = bld(features='ns3header ')

19 headers.module = 'tms'

20 headers.source = [

21 'model/trust -pmf.h',

22 'model/trust -table.h',

23 'model/trust -manager.h',

24 'helper/tms -helper.h',

25]

26

27 if bld.env.ENABLE_EXAMPLES:

28 bld.recurse('examples ')

29

30 # bld.ns3_python_bindings ()

A.2 Module aodv (diff)

The changes listed in this section have to be applied to the following files, all located under

the "model" directory of the aodv module:

• aodv-rtable.h;

• aodv-rtable.cc;

122

A.2 Module aodv (diff)

• aodv-routing-protocol.h;

• aodv-routing-protocol.cc.

In the wscript file in the "aodv" main folder, the dependency to tms module needs to be added.

The enhancements implemented with respect to the "vanilla" version of AODV protocol in

NS-3.26 are the following:

• integration with tms module;

• capability for each node to drop a percentage of received data packets;

• HELLO packets broadcasting only when a node is part of an active route.

aodv-rtable.h

--- original\aodv -rtable.h

+++ modified\aodv -rtable.h

@@ -1,6 +1,7 @@

/* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

/*

* Copyright (c) 2009 IITP RAS

+ * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License version 2 as

@@ -24,6 +25,8 @@

*

* Authors: Elena Buchatskaia <borovkovaes@iitp.ru>

* Pavel Boyko <boyko@iitp.ru>

+ *

+ * Active routes enhancement by Andrea Lupia <alupia@dimes.unical.it >

*/

#ifndef AODV_RTABLE_H

#define AODV_RTABLE_H

@@ -31,10 +34,12 @@

#include <stdint.h>

#include <cassert >

#include <map >

+# include <set >

#include <sys/types.h>

#include "ns3/ipv4.h"

#include "ns3/ipv4 -route.h"

#include "ns3/timer.h"

+# include "ns3/callback.h"

#include "ns3/net -device.h"

#include "ns3/output -stream -wrapper.h"

@@ -229,6 +234 ,12 @@

* 3. The Lifetime field is updated to current time plus DELETE_PERIOD.

*/

void InvalidateRoutesWithDst (std::map <Ipv4Address , uint32_t > const & unreachable);

+ /// Update active routes (used for hello transmission)

+ void UpdateActiveRoutes (RoutingTableEntry & rt);

+ /// Set callback for in active route

+ void SetActiveRouteCallback (Callback <void > cb) { m_arc = cb; }

+ /// Set callback for not in active route

+ void SetNoActiveRouteCallback (Callback <void > cb) { m_narc = cb; }

/// Delete all route from interface with address iface

void DeleteAllRoutesFromInterface (Ipv4InterfaceAddress iface);

/// Delete all entries from routing table

123

A.2 Module aodv (diff)

@@ -248,8 +259 ,12 @@

std::map <Ipv4Address , RoutingTableEntry > m_ipv4AddressEntry;

/// Deletion time for invalid routes

Time m_badLinkLifetime;

- /// const version of Purge , for use by Print () method

- void Purge (std::map <Ipv4Address , RoutingTableEntry > &table) const;

+ /// Set of active routes (used for hello transmission)

+ std::set <Ipv4Address > m_activeRoutes;

+ /// Callback for in active route

+ Callback <void > m_arc;

+ /// Callback for not in active route

+ Callback <void > m_narc;

};

}

aodv-rtable.cc

--- original\aodv -rtable.cc

+++ modified\aodv -rtable.cc

@@ -1,6 +1,7 @@

/* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

/*

* Copyright (c) 2009 IITP RAS

+ * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License version 2 as

@@ -24,6 +25,8 @@

*

* Authors: Elena Buchatskaia <borovkovaes@iitp.ru>

* Pavel Boyko <boyko@iitp.ru>

+ *

+ * Active routes enhancement by Andrea Lupia <alupia@dimes.unical.it >

*/

#include "aodv -rtable.h"

@@ -236,6 +239,9 @@

{

NS_LOG_FUNCTION (this << dst);

Purge ();

+ // DeleteRoute called only when no route is found after a route request , deleted entry is never in VALID state

+ RoutingTableEntry rt;

+ NS_ASSERT (LookupValidRoute (dst , rt) == false);

if (m_ipv4AddressEntry.erase (dst) != 0)

{

NS_LOG_LOGIC ("Route deletion to " << dst << " successful");

@@ -254,6 +260,7 @@

rt.SetRreqCnt (0);

std::pair <std::map <Ipv4Address , RoutingTableEntry >:: iterator , bool > result =

m_ipv4AddressEntry.insert (std:: make_pair (rt.GetDestination (), rt));

+ UpdateActiveRoutes (rt);

return result.second;

}

@@ -268,6 +275,7 @@

NS_LOG_LOGIC ("Route update to " << rt.GetDestination () << " fails; not found");

return false;

}

+ UpdateActiveRoutes (rt);

i->second = rt;

if (i->second.GetFlag () != IN_SEARCH)

{

@@ -290,6 +298,7 @@

}

i->second.SetFlag (state);

i->second.SetRreqCnt (0);

+ UpdateActiveRoutes (i->second);

124

A.2 Module aodv (diff)

NS_LOG_LOGIC ("Route set entry state to " << id << ": new state is " << state);

return true;

}

@@ -326,8 +335 ,29 @@

{

NS_LOG_LOGIC ("Invalidate route with destination address " << i->first);

i->second.Invalidate (m_badLinkLifetime);

+ UpdateActiveRoutes (i->second);

}

}

+ }

+}

+

+void

+RoutingTable :: UpdateActiveRoutes (RoutingTableEntry & rt)

+{

+ NS_LOG_FUNCTION (this);

+ if ((rt.GetFlag () != VALID || rt.IsPrecursorListEmpty () == true)

+ && m_activeRoutes.erase (rt.GetDestination ()) > 0

+ && m_activeRoutes.empty () == true && m_narc.IsNull () == false)

+ {

+ NS_LOG_LOGIC ("Calling not in active route callback");

+ m_narc ();

+ }

+ else if (rt.GetFlag () == VALID && rt.IsPrecursorListEmpty () == false

+ && m_activeRoutes.insert (rt.GetDestination ()).second == true

+ && m_activeRoutes.size () == 1 && m_arc.IsNull () == false)

+ {

+ NS_LOG_LOGIC ("Calling in active route callback");

+ m_arc ();

}

}

@@ -372,39 +402,7 @@

{

NS_LOG_LOGIC ("Invalidate route with destination address " << i->first);

i->second.Invalidate (m_badLinkLifetime);

- ++i;

- }

- else

- ++i;

- }

- else

- {

- ++i;

- }

- }

-}

-

-void

-RoutingTable ::Purge (std::map <Ipv4Address , RoutingTableEntry > &table) const

-{

- NS_LOG_FUNCTION (this);

- if (table.empty ())

- return;

- for (std::map <Ipv4Address , RoutingTableEntry >:: iterator i =

- table.begin (); i != table.end ();)

- {

- if (i->second.GetLifeTime () < Seconds (0))

- {

- if (i->second.GetFlag () == INVALID)

- {

- std::map <Ipv4Address , RoutingTableEntry >:: iterator tmp = i;

- ++i;

- table.erase (tmp);

- }

- else if (i->second.GetFlag () == VALID)

- {

- NS_LOG_LOGIC ("Invalidate route with destination address " << i->first);

- i->second.Invalidate (m_badLinkLifetime);

+ UpdateActiveRoutes (i->second);

++i;

125

A.2 Module aodv (diff)

}

else

@@ -439,7 +437,6 @@

RoutingTable ::Print (Ptr <OutputStreamWrapper > stream) const

{

std::map <Ipv4Address , RoutingTableEntry > table = m_ipv4AddressEntry;

- Purge (table);

*stream ->GetStream () << "\nAODV Routing table\n"

<< "Destination\tGateway\t\tInterface\tFlag\tExpire\t\tHops\n";

for (std::map <Ipv4Address , RoutingTableEntry >:: const_iterator i =

aodv-routing-protocol.h

--- original\aodv -routing -protocol.h

+++ modified\aodv -routing -protocol.h

@@ -1,6 +1,7 @@

/* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

/*

* Copyright (c) 2009 IITP RAS

+ * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License version 2 as

@@ -24,6 +25,8 @@

*

* Authors: Elena Buchatskaia <borovkovaes@iitp.ru>

* Pavel Boyko <boyko@iitp.ru>

+ *

+ * Expanding ring search and TTL fix: Andrea Lupia <alupia@dimes.unical.it>

*/

#ifndef AODVROUTINGPROTOCOL_H

#define AODVROUTINGPROTOCOL_H

@@ -86,6 +89,8 @@

bool GetHelloEnable () const { return m_enableHello; }

void SetBroadcastEnable (bool f) { m_enableBroadcast = f; }

bool GetBroadcastEnable () const { return m_enableBroadcast; }

+ void SetTrustEnable (bool f) { m_enableTrust = f; }

+ bool GetTrustEnable () const { return m_enableTrust; }

/**

* Assign a fixed random variable stream number to the random variables

@@ -138,6 +143 ,12 @@

bool m_gratuitousReply; ///< Indicates whether a gratuitous RREP should be sent

bool m_enableHello; ///< Indicates whether a hello messages enable

bool m_enableBroadcast; ///< Indicates whether a a broadcast data packets forwarding enable

+

+ // Malicious node attributes

+ double m_dropPercentage;

+

+ // Trust management attribute

+ bool m_enableTrust;

//\}

/// IP protocol

@@ -269,6 +280 ,10 @@

void RouteRequestTimerExpire (Ipv4Address dst);

/// Mark link to neighbor node as unidirectional for blacklistTimeout

void AckTimerExpire (Ipv4Address neighbor , Time blacklistTimeout);

+ /// Schedule hello transmission

+ void ScheduleHello ();

+ /// Cancel hello transmission

+ void CancelHello ();

/// Provides uniform random variables.

Ptr <UniformRandomVariable > m_uniformRandomVariable;

126

A.2 Module aodv (diff)

aodv-routing-protocol.cc

--- original\aodv -routing -protocol.cc

+++ modified\aodv -routing -protocol.cc

@@ -1,6 +1,7 @@

/* -*- Mode:C++; c-file -style :"gnu"; indent -tabs -mode:nil; -*- */

/*

* Copyright (c) 2009 IITP RAS

+ * Copyright (c) 2016 CULTURE TELELAB , DIMES - Universita ' della Calabria

*

* This program is free software; you can redistribute it and/or modify

* it under the terms of the GNU General Public License version 2 as

@@ -24,6 +25,8 @@

*

* Authors: Elena Buchatskaia <borovkovaes@iitp.ru>

* Pavel Boyko <boyko@iitp.ru>

+ *

+ * Expanding ring search and TTL fix: Andrea Lupia <alupia@dimes.unical.it>

*/

#define NS_LOG_APPEND_CONTEXT \

if (m_ipv4) { std::clog << "[node " << m_ipv4 ->GetObject <Node > ()->GetId () << "] "; }

@@ -41,6 +44,7 @@

#include "ns3/adhoc -wifi -mac.h"

#include "ns3/string.h"

#include "ns3/pointer.h"

+# include "ns3/trust -table.h"

#include <algorithm >

#include <limits >

@@ -143,6 +147,8 @@

m_destinationOnly (false),

m_gratuitousReply (true),

m_enableHello (false),

+ m_dropPercentage (0.),

+ m_enableTrust (false),

m_routingTable (m_deletePeriod),

m_queue (m_maxQueueLen , m_maxQueueTime),

m_requestId (0),

@@ -277,6 +283 ,17 @@

StringValue ("ns3:: UniformRandomVariable"),

MakePointerAccessor (& RoutingProtocol :: m_uniformRandomVariable),

MakePointerChecker <UniformRandomVariable > ())

+ .AddAttribute ("DropPercentage",

+ "Drop percentage , if >0 node is malicious",

+ DoubleValue (0.),

+ MakeDoubleAccessor (& RoutingProtocol :: m_dropPercentage),

+ MakeDoubleChecker <double > ())

+ .AddAttribute ("EnableTrust",

+ "Enable trust management",

+ BooleanValue (false),

+ MakeBooleanAccessor (& RoutingProtocol :: SetTrustEnable ,

+ &RoutingProtocol :: GetTrustEnable),

+ MakeBooleanChecker ())

;

return tid;

}

@@ -389,6 +406 ,10 @@

}

UpdateRouteLifeTime (dst , m_activeRouteTimeout);

UpdateRouteLifeTime (route ->GetGateway (), m_activeRouteTimeout);

+ if (dst.IsBroadcast () == false && dst != rt.GetInterface ().GetBroadcast ())

+ {

+ m_nb.Update (route ->GetGateway (), m_activeRouteTimeout);

+ }

return route;

}

@@ -561,6 +582 ,21 @@

return true;

}

127

A.2 Module aodv (diff)

+ // Malicious drop code

+ Ptr <Packet > pkt = p->Copy ();

+ UdpHeader udpHeader;

+ pkt ->PeekHeader (udpHeader);

+ if (udpHeader.IsChecksumOk ())

+ {

+ pkt ->RemoveHeader (udpHeader);

+ }

+ TypeHeader aodvHeader;

+ pkt ->PeekHeader(aodvHeader);

+ if (! aodvHeader.IsValid () && m_uniformRandomVariable ->GetValue (0., 1.) < m_dropPercentage)

+ {

+ return true;

+ }

+

// Forwarding

return Forwarding (p, header , ucb , ecb);

}

@@ -1184,6 +1220 ,16 @@

}

}

+ if (m_enableTrust)

+ {

+ // TMS -> If node is not trustworthy , RREQ is not taken into account

+ if (GetObject <ns3::tms:: TrustTable > ()->IsTrustworthy (src) == false)

+ {

+ NS_LOG_DEBUG ("Node is not trustworthy , ignoring RREQ");

+ return;

+ }

+ }

+

uint32_t id = rreqHeader.GetId ();

Ipv4Address origin = rreqHeader.GetOrigin ();

@@ -2052,15 +2098 ,42 @@

RoutingProtocol :: DoInitialize (void)

{

NS_LOG_FUNCTION (this);

+ if (m_enableHello)

+ {

+ m_htimer.SetFunction (& RoutingProtocol :: HelloTimerExpire , this);

+ m_routingTable.SetActiveRouteCallback (MakeCallback (& RoutingProtocol :: ScheduleHello , this));

+ m_routingTable.SetNoActiveRouteCallback (MakeCallback (& RoutingProtocol :: CancelHello , this));

+ }

+ if (m_enableTrust)

+ {

+ Ptr <ns3::tms::TrustTable > trust = GetObject <ns3::tms::TrustTable > ();

+ if (trust)

+ {

+ trust ->SetCallback (MakeCallback (& RoutingProtocol :: SendRerrWhenBreaksLinkToNextHop , this));

+ }

+ else

+ {

+ NS_FATAL_ERROR ("Cannot enable trust (trust table is missing)");

+ }

+ }

+ Ipv4RoutingProtocol :: DoInitialize ();

+}

+

+void

+RoutingProtocol :: ScheduleHello ()

+{

+ NS_LOG_FUNCTION (this);

uint32_t startTime;

- if (m_enableHello)

- {

- m_htimer.SetFunction (& RoutingProtocol :: HelloTimerExpire , this);

- startTime = m_uniformRandomVariable ->GetInteger (0, 100);

- NS_LOG_DEBUG ("Starting at time " << startTime << "ms");

- m_htimer.Schedule (MilliSeconds (startTime));

- }

128

A.2 Module aodv (diff)

- Ipv4RoutingProtocol :: DoInitialize ();

+ startTime = m_uniformRandomVariable ->GetInteger (0, 100);

+ NS_LOG_DEBUG ("Starting in " << startTime << "ms");

+ m_htimer.Schedule (MilliSeconds (startTime));

+}

+

+void

+RoutingProtocol :: CancelHello ()

+{

+ NS_LOG_FUNCTION (this);

+ m_htimer.Cancel ();

}

} // namespace aodv

129

