
	
	
	

UNIVERSITA’	DELLA	CALABRIA	
	

Dipartimento	di	Ingegneria	Informatica,	Modellistica,	Elettronica	e	Sistemistica	
	
	

Dottorato	di	Ricerca	in	
Information	and	Communication	Engineering	for	Pervasive	Intelligent	Environments	

	
	

CICLO	XXIX	
	
	
	

Efficient Incremental Algorithms
for Handling Graph Data	

	
	
	
	

Settore	Scientifico	Disciplinare	ING-INF/05	
	
	
	
	
	
Coordinatore:			Prof.	Felice	Crupi	
	
Tutor:									 				Prof.	Sergio	Greco	
	
	

Dottorando:	Ximena	Quintana	

To God. For allowing me to reach this point and for each
blessing that He has managed to crystallize each of my goals, in

addition to his infinite goodness and love.

To my father Bolivar. For his life because he has been an
example of perseverance and sacrifice, he has been the engine

that has driven this professional achievement.

To my mother Nancy. For having supported me at all times,
for her advice, her values, for her constant motivation, but more

than anything, for her immense love.

To my sister Lorena. For all the love shown and to have been
a real support in the difficult moments; To my nephews Anthony

and Antonella who despite their young age their love has been
greater than distance and time separated.

To my grandparents Arturo, Zoila, Julio and Aurorita.
that although only one of them is not in the sky the four have

been my angels during all this time.

To my teachers Professor Sergio Greco and Cristian
Molinaro. For their great support and for promoting the

development of this professional training.

Preface

There has been a significant growth of connected data in the last decade.
Enterprises that have changed the world like Google, Facebook, and Twitter
share the common thread of having connected data at the center of their
business. Such data can be naturally modeled as graphs.

In many current applications, graph data are huge and efficiently manag-
ing them becomes a crucial issue. Furthermore, one aspect that many current
graph applications share is that graphs are dynamic, that is, they are fre-
quently updated. In this setting, an interesting problem is the development
of incremental algorithms to maintain certain kind of information of interest
when the underlying data is changed. In fact, incremental algorithms avoid
the recomputation of the information of interest from scratch; rather, they
tend to minimize the computational effort to update a solution by trying to
identify only those pieces of information that need to be updated. In contrast,
non-incremental algorithms need to recompute new solutions from scratch ev-
ery time the data change, and this can be impractical when data are huge and
subject to frequent updates.

In this thesis, two classical graph theory problems are considered: the
maximum flow problem and the shortest path/distance problem. For both of
them efficient incremental algorithms are proposed.

The maximum flow is a classical optimization problem with a wide range
of applications. Nowadays, it is successfully applied in social network analysis
for link spam detection, web communities identification, and others. In such
applications, flow networks are used to model connections among web pages,
online voting systems, web communities, P2P and other distributed systems.
Thus, networks are highly dynamic.

While many efficient algorithms for the maximum flow problem have been
proposed over the years, they are designed to work with static networks, and
thus they need to recompute a new solution from scratch every time an update
occurs. Such approaches are impractical in scenarios like the aforementioned
ones, where updates are frequent.

VIII Preface

To overcome these limitations, we propose efficient incremental algorithms
for maintaining the maximum flow in dynamic networks. Our approach iden-
tifies and acts only on the affected portions of the network, reducing the
computational effort to update the maximum flow. We evaluate our approach
on different families of datasets, comparing it against state-of-the-art algo-
rithms, showing that our technique is significantly faster and can efficiently
handle networks with millions of vertices and tens of millions of edges.

The second problem considered in this thesis is computing shortest paths
and distances, which has a wide range of applications in social network anal-
ysis [46], road networks [63], graph pattern matching [22], biological net-
works [55], and many others. It is both an important task in its own right
(e.g., if we want to know how close people are in a social network) and a
fundamental subroutine for many advanced tasks.

For instance, in social network analysis, many significant network metrics
(e.g., eccentricity, diameter, radius, and girth) and centrality measures (e.g.,
closeness and betweenness centrality) require knowing the shortest paths or
distances for all pairs of vertices. There are many other domains where it
is needed to compute the shortest paths (or distances) for all pairs of ver-
tices, including bioinformatics [52] (where all-pairs shortest distances are used
to analyze protein-protein interactions), planning and scheduling [51] (where
finding the shortest paths for all pairs of vertices is a central task to solve
binary linear constraints on events), and wireless sensor networks [15] (where
different topology control algorithms need to compute the shortest paths or
distances for all pairs of vertices).

Although many algorithms to solve this problem have been proposed over
the years, they are designed to work in the main memory and/or with static
graphs, which limits their applicability to many current applications where
graphs are highly dynamic.

In this thesis, we present novel efficient incremental algorithms for main-
taining all-pairs shortest paths and distances in dynamic graphs. We experi-
mentally evaluate our approach on several real-world datasets, showing that it
significantly outperforms current algorithms designed for the same problem.

Main Contributions. As for the maximum flow problem, the main contri-
butions are:

• We propose efficient incremental algorithms to maintain the maximum
flow after vertex insertions/deletions and edge insertions/deletions/updates.
Our algorithms are designed to effectively identify only the affected parts
of the network, in order to reduce the computational effort for determining
the new maximum flow.
• We provide complexity analyses.
• We report on an experimental evaluation we conducted on several families

of datasets with millions of vertices and tens of millions of edges. Exper-
imental results show that our approach is very efficient and outperforms
state-of-the-art algorithms.

Preface IX

As for the shortest path/distance problem, the main contributions are:

• We consider the setting where graphs and shortest paths are stored in
relational DBMSs and propose novel algorithms to incrementally main-
tain all-pairs shortest paths and distances after vertex/edge insertions,
deletions, and updates. The proposed approach aims at reducing the time
needed to update the shortest paths by identifying only those that need to
be updated (it is often the case that small changes affect only few shortest
paths). To the best of our knowledge, [50] is the only disk-based approach
in the literature for incrementally maintaining all-pairs shortest distances.
In particular, like our approach, [50] relies on relational DBMSs.

• We experimentally compare our algorithms against [50] on five real-world
datasets, showing that our approach is significantly faster. It is worth
noticing that our approach is more general than [50] in that we keep
track of both shortest paths and distances, while [50] maintain shortest
distances only (thus, there is no information on the actual paths).

Organization. The thesis is organized as follows. In Chapter 1, basic concepts
and notations on relational and graph databases are introduced.

In Chapter 2, the incremental maintenance of the maximum flow in dy-
namic flow networks is addressed.

In Chapter 3, the incremental maintenance of all-pairs shortest paths (and
distances) in dynamic graphs is addressed.

Finally, conclusions are drawn.

Rende, Ximena Quintana
July 2017

Contents

1 Relational and Graph Databases . 1
1.1 Relational Databases . 1
1.2 Graph Databases . 2

1.2.1 Neo4j . 3
1.2.2 OrientDB . 8

2 Incremental Maintenance of the Maximum Flow 13
2.1 Introduction . 13
2.2 Related Work . 14
2.3 Preliminaries . 15
2.4 Incremental Maximum Flow Computation 16

2.4.1 Edge Insertions and Capacity Increases 17
2.4.2 Edge Deletions and Capacity Decreases 21

2.5 Experimental Evaluation . 24
2.6 Discussion . 26

3 Incremental Maintenance of All-Pairs Shortest Paths in
Relational DBMSs . 27
3.1 Introduction . 27
3.2 Related Work . 28
3.3 Preliminaries . 31
3.4 Incremental Maintenance of All-Pairs Shortest Paths 33

3.4.1 Edge Insertion . 34
3.4.2 Edge Deletion . 39
3.4.3 Edge Update . 47

3.5 Experimental Evaluation . 47
3.5.1 Experimental Setup . 48
3.5.2 Results on the DIMES Dataset . 50
3.5.3 Results on the RNNA Dataset . 51
3.5.4 Results on the Twitter Dataset . 51
3.5.5 Results on the Gnutella Dataset . 52

XII Contents

3.5.6 Results on the Instagram Dataset 52
3.5.7 Experimental conclusions . 53

3.6 Discussion . 53

Conclusions . 55

References . 57

1

Relational and Graph Databases

A database is a set of data belonging to the same context and stored sys-
tematically. Database Management Systems (DBMSs) allow us to store and
then access the data. Data can be structured according to different data mod-
els. This chapter briefly recalls the basics of relational databases and graph
databases.

1.1 Relational Databases

The existence of alphabets of relation symbols and attribute symbols is as-
sumed. The domain of an attribute A is denoted by Dom(A). The database
domain is denoted by Dom. A relation schema is of the form r(A1, . . . , Am)
where r is a relation symbol and the Ai’s are attribute symbols (we denote the
previous relation schema also as r(U), where U = {A1, . . . , Am}). A relation
instance (or simply relation) R over r(U) is a subset of Dom(A1) × · · · ×
Dom(Am). Each element of R is a tuple. Given a tuple t ∈ R and a set X ⊆ U
of attributes, we denote by t[X] (resp. R[X]) the projection of t (resp. R) on
X. Given the relation schemata r(U), s(V), . . . we will refer to their respective
instances as R,S, A database schema DS is a set {r1(U1), . . . , rn(Un)} of
relation schemata. A database instance (or simply database) DB over DS is
a set {R1, . . . , Rn} where each Ri is a relation over ri(Ui), i = 1..n. The set
of constants appearing in DB will be called active domain of DB. In the
following, we will also refer to the instance of the relation r in a database DB
as DB[r].
A conjunctive query Q is of the form ∃Y Φ(X,Y) where Φ is a conjunction
of atoms (an atom is of the form p(t1, . . . , tn) where p is a relation symbol
and each ti is a term, that is a constant or a variable), X and Y are sets of
variables with X being the set of free variables of Q. The result of applying
Q over a database DB is denoted by Q(DB).

2 1 Relational and Graph Databases

Integrity constraints express semantic information about data, i.e. rela-
tionships that should hold among data. They are mainly used to validate
database transactions.

Given a relation schema r(U), a functional dependency fd over r(U) is
of the form X → Y , where X,Y ⊆ U . If Y is a single attribute, the func-
tional dependency is said to be in standard form whereas if Y ⊆ X then
fd is trivial. A relation R over r(U) satisfies fd, denoted as R |= fd, if
∀t1, t2 ∈ R t1[X] = t2[X] implies t1[Y] = t2[Y] (we also say that R is con-
sistent w.r.t. fd). A key dependency is a functional dependency of the form
X → U . Given a set FD of functional dependencies, a key of r is a minimal
set K of attributes of r s.t. FD entails K → U . Each attribute in K is called
key attribute. A primary key of r is one designated key of r. In the following,
we will refer to the functional dependencies in FD over a schema r(U) also
as FD[r].
Given two relation schemata r(U) and s(V), a foreign key constraint fk is of
the form r(W) ⊆ s(Z), where W ⊆ U,Z ⊆ V, |W | = |Z| and Z is a key of
s (if Z is the primary key of s we call fk a primary foreign key constraint).
Two relations R and S over r(U) and s(V) respectively, satisfy fk if for each
tuple t1 ∈ R there is a tuple t2 ∈ S such that t1[W] = t2[Z] (we also say that
R and S are consistent w.r.t. fk).

1.2 Graph Databases

Although graph databases are a newer technology, they have had a strong
development in recent years and today there is a variety of graph database
systems. Graph databases use graph structures with nodes, edges, and prop-
erties to represent and store data. General graph databases that can store any
graph are different from specialized graph databases such as triple-stores and
network databases. There are two properties of graph databases one should
consider when investigating graph database technologies:

1. The underlying storage: Some graph databases use native graph stor-
age that is optimized and designed for storing and managing graphs. Not
all graph database technologies use native graph storage. However, some
serialize the graph data into a relational database, an object oriented
database, or some other general-purpose data store.

2. The processing engine: Some definitions require that a graph database
use index-free adjacency, meaning that connected nodes physically point
to each other in the database.

A graph database represents information as nodes of a graph and its rela-
tions with the edges thereof. An illustrative example is reported in Figure 1.1.

• Nodes represent entities and can be tagged with labels representing their
different roles in their domain

1.2 Graph Databases 3

Fig. 1.1: Graph with properties.

• Edges express relationships and connect nodes. Significant patterns emerge
when we consider the connections of nodes, properties, and edges. Note
that even when edges are directed, relationships can always be navigated
regardless of direction.

• Properties are pertinent information associated with nodes and edges.

A simple way to comprehend graph databases is to imagine social networks.
In this scenario we can imagine users as nodes and connections as edges. On
a social media platform relationships between users are complex and through
the application of this model one can get many kinds of relationships.

In the rest of this chapter, we discuss two popular graph database systems:
Neo4j and OrientDB.

1.2.1 Neo4j

Neo4j is a graph database developed by Neo Technology, open source, and
written in Java.

Architecture of Neo4j. Neo4j interaction can take place at various lev-
els, depending on the needs of the application. Figure 1.2 shows three levels:
the bottom level relative to the data storage disk, the top level that exposes
functions to interact with the database, and the intermediate level contains the
management system. The transactional management is optimized for graph
data model.

Neo4j uses the Cypher query language to manipulate data and issue
queries. Many APIs are available that allow users to make requests through
Cypher. Cypher generates the execution plan, finds start node, traverse
through relationships and retrieves the results. The Traversal API are of

4 1 Relational and Graph Databases

particular interest, as they offer functionalities for graph traversal. Traver-
sal happens from node to node via edges (relationships). Core API provides
functionalities for initiating embedded graph databases that receive client
connections. It also provides capabilities to create nodes, relationships and
properties [56].

Neo4j also provides indexes. Neo4j recently introduced the concept of la-
bels and their sidekick, schema indexes. Labels are a way of attaching one
or more simple types to nodes (and relationships), while schema indexes al-
low to automatically index labelled nodes by one or more of their properties.
Those indexes are then implicitly used by Cypher as secondary indexes and
to infer the starting point(s) of a query. This new indexing system allows for
indexing on an attribute of all nodes/relationships with a specific label and
automatically maintains the index as creation, deletion, and edit updates are
made.

The memory is managed efficiently through two cache, one at the level of
file system that keeps the parts of files stored as records (File System cache),
and a faster and higher level that keeps portions of the graph (Object Cache).
Caches in Neo4j are just part of the system memory used when Neo4j instances
are created and queries are being performed on those instances. Transaction
Management and Transaction log keep tracks of transactional consistency and
atomicity, while their record being maintained in the log. Record Files or Store
Files are those where Neo4j stores the graph data. Each store file contains data
for specific part of the graph (e.g nodes, relationships, properties, etc.). Some
of the store files commonly seen are

• neostore.nodestore.db
• neostore.relationshipstore.db
• neostore.propertystore.db
• neostore.propertystore.db.index
• neostore.propertystore.db.strings
• neostore.propertystore.db.arrays

Neo4j Features. Among the features of Neo4j there are high perfor-
mance in search operations between nodes [45], the ability to adapt to the
field of semantic networks [49], and the expressiveness of the query language
(Cypher). For the purpose of fully maintain data integrity and ensure the
proper transactional behavior, Neo4j supports the ACID properties.

For users, developers and database administrators, Neo4j provides the fol-
lowing features:

• Materializing of relationships at creation time, resulting in no penalties
for complex runtime queries.

• Constant time traversals for relations in the graph both in depth and in
breadth due to efficient representation of nodes and relationships.

1.2 Graph Databases 5

Fig. 1.2: Neo4j Architecture

• All relationships in Neo4j are equally important and fast, making it pos-
sible to materialize and use new relationships later on to “shortcut” and
speed up the domain data when new needs arise.

• Compact storage and memory caching for graphs.

Neo4j provides a web front end for manual database querying with Cypher
and for development and testing purposes, showing nodes and edges (cf. Fig-
ure 1.3). The interface presents returned results by interactive graph visual-
ization. On one hand it has a lightweight API that allows it to be included
into Java code and run as embedded database. If it shall be used as a stan-
dalone database, clients communicate via a RESTful [23] web service using
an API similar to its Java API. It supports transactions also provides a user
management.

Cypher. Cypher is a declarative query language. It enables one to tell
what should be selected, inserted, updated, or deleted from a graph database.
It is possible to run Cypher queries via CLI (Neo4j Shell), Java API, or by
REST API.

The basic idea of the Cypher query language is to express patterns to be
matched over the graph the user wants to query.

Nodes are enclosed by parentheses, relationships are enclosed by brackets.
Nodes are connected together by –, −→ , or ←− chars.

A pattern can also match nodes and relationships with specific labels. The
labels are written after the variable name separated with a colon. Nodes and
relationships can be matched by their properties. Properties are written into
braces as key-value pairs. Multiple properties are separated by a comma.

In the following, we briefly mention the main clauses that can be used in
Cypher.

6 1 Relational and Graph Databases

Fig. 1.3: Neo4j’s web front end.

The MATCH clause is used to express the graph pattern to match. This
is the most common way to get data from the graph. A matched result set
may be processed by the RETURN clause which may run a projection over
the result set. Figure 1.4 shows an example of a Cypher query with MATCH
and RETURN clauses in action.

Fig. 1.4: MATCH and RETURN Clauses.

The WHERE clause is inspired by SQL. Nodes and relationships can be
filtered by conditions using this clause. The query in Figure 1.5 returns all
name of movies that were liked by a user, but that user must not like ”The
Conjuring” movie.

Cypher allows for ordering and pagination by the ORDER BY, LIMIT,
and SKIP clauses.

The WITH clause allows query parts to be chained together, piping the
results from one to be used as starting points or criteria in the next. Figure 1.6
reports a Cypher query limits matched paths to m node to the last one and
then returns all adjacent nodes.

1.2 Graph Databases 7

Fig. 1.5: WHERE Clause.

Fig. 1.6: WITH Clause.

The UNION clause combines the result of multiple queries. The UNION
ALL clause is used to leave duplicates in the result set. An example is reported
in Figure 1.7.

Fig. 1.7: UNION Clause.

The SET clause updates labels on nodes and properties on nodes and
relationships. Setting property to the NULL removes the property. There are
also ON MATCH SET and ON CREATE SET for additional control over what
happens depending on whether the node was found or created, respectively.
An example is reported in Figure 1.8.

The DELETE clause deletes graph elements, such as nodes, relationships
or paths. As an example, the query in Figure 1.9 removes the nodes with
property name Anthony and all the node’s relationships.

8 1 Relational and Graph Databases

Fig. 1.8: SET Clause.

Fig. 1.9: DELETE Clause.

1.2.2 OrientDB

OrientDB [61] is an open source NoSQL database management system written
in Java. It is a multi-model database, supporting graph, document, key/value,
and object models.

The Graph Model is a data model that allows us to store data in the form
of nodes connected by edges. The vertex and edge components are the central
pieces of the graph model.

In the Document Model the data is stored in documents and groups of
documents are called “collections”.

The Key/Value Model means that data can be stored in the form of
key/value pairs where the values can be simple or complex types. It can sup-
port documents and graph elements as values.

The Object Model has been inherited by object-oriented programming and
supports inheritance between types, polymorphism and direct binding from/to
objects.

The following terminology is used in OrientDB:

• Record. The record is the smallest unit that the system can load and
store in the the database. Records can be stored as Document, Record
Bytes, Vertex or Edge.
• Record ID. When OrientDB generates a record, each record has its own

self-assigned unique ID within the database called Record ID or RID.
The RID looks like: 〈cluster-id〉:〈cluster-position〉 where 〈cluster-id〉 is the

1.2 Graph Databases 9

cluster identifier and 〈cluster-position〉 is the position of the data within
the cluster.

• Documents. Documents are defined by schema classes with defined con-
straints or without any schema.

• Class. The concept of class is derived from the object-oriented paradigm
and it is very similar to a relational table where classes can be schema-
less, complete or mixed schema. One class can inherit all attributes from
another. Each class has its own grouping, although it must have at least
one default cluster. When one runs a query on a class, it propagates to
the cluster that is part of the same class.

• Cluster. A cluster or group is a place where the records are stored. We can
compare the cluster concept to a table in the relational database model.
OrientDB by default creates a cluster for each class. All the records of a
class are stored in the same cluster having the same name of the class.
Although the default strategy is to create a cluster for each class, a class
can have multiple clusters.

• Relationships. OrientDB supports two kinds of relationships: referenced
and embedded.

– Referenced relationships. The reports in OrientDB are handled
natively, without making costly join performed in a relational DBMS.
OrientDB stores the direct link between objects in relation to each
other.

– Embedded relationships. It means it stores the relationship within
the record that embeds it. This type of relationship is stronger than
the reference relationship.

The table of data types is shown below.

10 1 Relational and Graph Databases

TYPE DESCRIPTION

Boolean Handles only the values True or False.

Integer 32-bit signed integers.

Short Small 16-bit signed integers.

Long Big 64-bit signed integers.

Float Decimal numbers.

Double Decimal numbers with high precision

Date-time Any date with the precision up to milliseconds.

String Any string as alphanumeric sequence of chars.

Binary Can contain any value as byte array.

Embedded The record is contained inside the owner. The contained
record has no RecordId.

Embedded list The records are contained inside the owner. The contained
records have no RecordIds and are reachable only by navi-
gating the owner record.

Embedded set The records are contained inside the owner. The contained
records have no RecordId and are reachable only by navigat-
ing the owner record.

Embedded map The records are contained inside the owner as values of the
entries, while the keys can only be strings. The contained
records have no RecordId and are reachable only by navigat-
ing the owner Record.

Link Link to another Record. It’s a common one-to-one relation-
ship

Link list Links to other Records. It’s a common one-to-many relation-
ship where only the RecordIds are stored.

Link set Links to other records. It’s a common one-to-many relation-
ship.

Link map Links to other records as value of the entries, while keys
can only be strings. It’s a common one-to-many relationship.
Only the RecordIds are stored.

Byte Single byte. Useful to store small 8-bit signed integers.

Transient Any value not stored on database.

Date Any date as year, month and day.

Custom Used to store a custom type providing the Marshall and Un-
marshall methods.

Decimal Decimal numbers without rounding.

LinkBag List of RecordIds as specific RidBag.

Any Not determinate type, used to specify collections of mixed
type, and null..

Table 1.1: OrientDB Data Types.

The OrientDB Console is a Java Application. OrientDB supports the fol-
lowing console modes:

1.2 Graph Databases 11

• Interactive Mode. This is the default mode. The Console starts in inter-
active mode. We can execute commands and SQL statements, the Console
loads data, and once done the console is ready to accept commands.

• Batch Mode. Running the console in batch mode takes commands as
an argument or as a text file.

OrientDB is implemented in Java, and therefore available to a good stan-
dard API for interfacing through this language. There are three models to
take advantage of APIs, depending on the model with which it wants to work:
Graph API, Documents API, and Object API.

• Graph API: These APIs allow one to work on graphs, one of the most
flexible data structures.

• Document API: These APIs are the most immediate to use because
they even match one of the most common uses of a NoSQL database.
They allow you to convert Java objects into documents and save them in
OrientDB.

• Object API: These APIs are based on documents and help one work
with real persistent Java objects, using the reflection mechanism.

The stratification of the functionality of the APIs above is represented by
the following figure:

Fig. 1.10: Component Architecture.

The operations that OrientDB can perform over a database are listed
below:

• Create Database
• Alter Database
• Backup Database
• Restore Database
• Connect Database

12 1 Relational and Graph Databases

• Disconnect Database
• Info Database
• List Database
• Freeze Database
• Release Database
• Config Database
• Export Database
• Import Database
• Commit Database
• Rollback Database
• Optimize Database
• Drop Database

To handle the records OrientDB offers the following commands

• Insert Record
• Displays Records
• Load Records
• Reload Record
• Export Record
• Update Record
• Truncate Record
• Delete Record

OrientDB allows users to handle classes and cluster by means of commands
to create, alter, truncate and drop.

The OrientDB commands to act on properties are:

• Create Property
• Alter Property
• Drop Property

The OrientDB commands to handles vertices and edges are:

• Create Vertex
• Move Vertex
• Delete Vertex
• Create Edge
• Update Edge
• Delete Edge

OrientDB offers also indexing mechanisms and support for transactions.
Furthermore, OrientDB supports JDBC and has a Python Interface.

2

Incremental Maintenance of the Maximum
Flow

The maximum flow problem is a classical optimization problem with a wide
range of applications. Nowadays, it is successfully applied in social network
analysis for link spam detection, web communities identification, and others.
In such applications, flow networks are used to model connections among web
pages, online voting systems, web communities, P2P and other distributed
systems. Thus, networks are highly dynamic, that is, subject to frequent up-
dates.

While many efficient algorithms for the maximum flow problem have been
proposed over the years, they are designed to work with static networks, and
thus they need to recompute a new solution from scratch every time an update
occurs. Such approaches are impractical in scenarios like the aforementioned
ones, where updates are frequent.

To overcome these limitations, in this chapter we propose efficient in-
cremental algorithms for maintaining the maximum flow in dynamic net-
works [36, 38]. Our approach identifies and acts only on the affected portions
of the network, reducing the computational effort to update the maximum
flow. We evaluate our approach on different families of datasets, comparing it
against state-of-the-art algorithms, showing that our technique is significantly
faster and can efficiently handle networks with millions of vertices and tens
of millions of edges.

2.1 Introduction

The maximum flow problem arises in settings as diverse as communication
systems, image processing, scheduling, distribution planning, and many oth-
ers [3, 33]. Even if the problem has a long history, revolutionary progress is
still being made and the number of applications is continuously growing—
e.g., see [33]. Interestingly, this problem is nowadays successfully applied in
social network analysis for link spam detection [58], for the identification of
web communities [25, 42], and to defend against sybil attacks [64, 62]. In such

14 2 Incremental Maintenance of the Maximum Flow

applications, flow networks are used to model connections among web pages,
online voting systems, web communities, P2P and other distributed systems.
Thus, networks are highly dynamic, that is, subject to frequent updates.

Even though many efficient algorithms for the maximum flow problem
have been proposed over the years, they are designed to work with static
networks, and thus they need to recompute a new solution from scratch every
time the network is modified. However, the aforementioned scenarios call for
incremental algorithms, as it is impractical to compute a new solution from
scratch every time an update occurs.

To overcome these limitations, we propose novel incremental algorithms
for maintaing the maximum flow in dynamic networks.

Contributions. Specifically, we make the following main contributions:

• We propose efficient incremental algorithms to maintain the maximum
flow after vertex insertions/deletions and edge insertions/deletions/updates.
Our algorithms are designed to effectively identify only the affected parts
of the network, in order to reduce the computational effort for determining
the new maximum flow.

• We show correctness of the algorithms and provide complexity analyses.
• We report on an experimental evaluation we conducted on several families

of datasets with millions of vertices and tens of millions of edges. Exper-
imental results show that our approach is very efficient and outperforms
state-of-the-art algorithms.

2.2 Related Work

The maximum flow problem is a classical optimization problem and many
algorithms to solve it have been proposed over the years [26, 20, 21, 32, 13,
8, 48, 41, 29, 30, 9, 10, 31]. The first solutions to this problem were mainly
based on finding augmenting paths in the residual network [26, 20, 21]—
roughly speaking, these are paths from the source to the sink along which it
is possible to send additional flow.

Approaches based on the push-relabel algorithm [32] have been proposed
in [13, 29, 30]. Push-relabel algorithms do not maintain a valid flow during
their execution. In particular, some vertices might have a positive flow excess.
By maintaining a label for each vertex denoting a lower bound on its dis-
tance to the sink along non-saturated edges, the excess is then pushed toward
vertices with smaller label or, eventually, sent back to the source.

The highest-level push-relabel implementation introduced in [13], named
HIPR, was for a long time a benchmark for maximum flow algorithms. Op-
timizations have been introduced in the partial augment-relabel algorithm
(PAR) [29]. The same data structures and heuristics of PAR are used by
the two-level push-relabel algorithm (P2R) [30]. These solutions use both the

2.3 Preliminaries 15

global update [32] and the gap relabeling [10] heuristics to improve the per-
formance of the push-relabel method.

There are also algorithms that solve the minimum cut and the maximum
flow problems without maintaining a feasible flow [41, 31]. The solution pro-
posed in [41], named HPF, terminates its execution with the min-cut and a
pseudoflow (which means that some vertices might have a positive or negative
flow excess). However, it is possible to convert the pseudoflow into a maximum
feasible flow by computing flow decomposition in a related network. As shown
in [24, 10], the time spent in flow recovery is typically small compared to the
time to find the min-cut.

Different from the above mentioned approaches, the algorithm of Boykov
and Kolmogorov (BK) [8] has no strongly polynomial time bound. However,
given its practical efficiency, it is probably the most widely used algorithm in
computer vision. BK is based on augmenting paths. It builds two search trees,
one from the source and the other from the sink, and reuses them.

The main limitation of all the aforementioned algorithms is that, when
dealing with dynamic networks, they need to recompute a new maximum
flow from scratch every time the network changes, which is impractical in
applications where updates occur frequently.

Recently, some solutions have been proposed that consider the maximum
flow problem in a dynamic setting [48, 31]. They mainly focus on solving a
given series of maximum flow instances, each obtained from the previous one
by relatively few changes in the input. The solution introduced in [48] is an
extension of the BK algorithm (E-BK) to the dynamic setting. In [31], the
Excesses Incremental Breadth-First Search (E-IBFS) algorithm is proposed.
E-IBFS maintains a pseudoflow (like HPF), and thus an additional step has to
be performed if a flow is required.

2.3 Preliminaries

In this section, we briefly recall the maximum flow problem and introduce
notation and terminology used in the rest of this chapter (we refer the reader
to [3] for a comprehensive treatment of the topic).

A flow network is a tuple N = (V,A, s, t, c), where

• (V,A) is a directed graph with vertex set V and edge set A;
• s and t are two distinguished vertices in V called the source and the sink,

respectively;
• c is a capacity function c : A → R+ assigning a positive real capacity
c(u, v) to each edge (u, v) in A.

For convenience, we define c(u, v) = 0 for every (u, v) /∈ A, and assume
that there are no self-loops.

A flow in N is a function f : V × V → R satisfying the following two
properties:

16 2 Incremental Maintenance of the Maximum Flow

• 0 ≤ f(u, v) ≤ c(u, v) for all u, v ∈ V ;
•

∑
v∈V

f(v, u) =
∑
v∈V

f(u, v) for all u ∈ V \ {s, t}.

The first property above says that the flow along an edge (u, v) cannot
exceed its capacity, and the second property says that for each vertex (other
than the source and the sink), its incoming flow must equal its outgoing flow.

The value of f is |f | =
∑
v∈V

f(v, t)−
∑
v∈V

f(t, v), that is, it is the net flow into

the sink. The maximum flow problem consists in finding a flow of maximum
value.

Given a flow f in N and two vertices u, v ∈ V , the residual capacity is
defined as rf (u, v) = c(u, v) − f(u, v) + f(v, u). The residual network of N
induced by f is the directed graph Nf = (V,Ef), where Ef = {(u, v) ∈
V × V : rf (u, v) > 0}. A simple path (i.e., a path without repeating vertices)
from s to t in Nf is called an augmenting path.

2.4 Incremental Maximum Flow Computation

In this section, we present algorithms for the incremental maintenance of
the maximum flow. We first propose an algorithm to handle edge insertions
and capacity increases (Section 3.4.1), and then address edge deletions and
capacity decreases (Section 3.4.2).

It is worth noting that insertions and deletions of vertices can be straight-
forwardly reduced to our setting and thus can be handled by our algorithms
too: vertex insertions (resp. deletions) are handled by inserting (deleting) all
edges that are incident from/to the inserted (resp. deleted) vertices.1 As a
consequence, our algorithms can handle arbitrary sequences of edge inser-
tions/deletions/updates (the latter to be understood as capacity updates) and
vertex insertions/deletions. Since the insertion of an edge (a, b) s.t. either a
or b (or both) is a new vertex does not affect the maximum flow—i.e., the
flow along (a, b) will be zero and remain the same elsewhere—we assume that
both a and b belong to the current flow network.

Given a flow network N = (V,A, s, t, c), a pair of vertices (a, b) ∈ V × V ,
and a real value w, we use update(N, (a, b), w) to denote the flow network
N ′ = (V,A′, s, t, c′) such that c′ is the same as c except that c′(a, b) =
max{0, c(a, b) + w} and A′ = {(u, v) ∈ V × V | c′(u, v) > 0}. Thus, when
w > 0, if (a, b) ∈ A then the edge capacity is increased by w, otherwise the
new edge (a, b) with capacity w is inserted into the network. When w < 0, the
capacity of (a, b) is decreased by w, which corresponds to deleting the edge
altogether when c′(a, b) = 0.

We start by introducing two functions which will be used by both our
algorithms: ASP (Augmenting Shortest Path) and UF (Update Flow).

1 Vertices without incident edges can be neglected for our purposes.

2.4 Incremental Maximum Flow Computation 17

ASP takes as input a residual network Nf = (V,Ef) and two vertices
x, y ∈ V , and it returns two vertex-indexed arrays, prev and flow , containing
the shortest path from x to y (if it exists) and the maximum additional flow
that can be pushed along that path, respectively. Essentially, ASP performs
a breadth-first search from x, and for each vertex v reached during the visit,
it keeps track of the maximum additional flow (denoted flow [v]) that v can
receive from x along the discovered shortest (in terms of number of edges)
path connecting them, together with v’s predecessor in such a path (denoted
prev [v]). If y is reached, then it is possible to build the whole path from x to
y by following the chain of predecessors in prev starting from y. Otherwise (y
is not reachable from x), the algorithm stops when there are no more vertices
reachable from x. In the function, Q is a first-in, first-out queue. Also, we use
adj [u] to denote the set of u’s adjacent vertices (in Nf).

The UF function takes as input a flow network N , a flow f in N , an
additional flow value ∆f , two vertices x, y, and an array of predecessors prev
(which will be computed by ASP in Algorithms 3 and 2). The function simply
increases f by ∆f along the path from x to y stored in prev .

2.4.1 Edge Insertions and Capacity Increases

In this section, we present our algorithm to incrementally maintain the max-
imum flow after inserting a new edge or increasing the capacity of an exiting
one. Algorithm 3 takes as input a flow network N , a maximum flow f in N ,
an edge (a, b), and a positive capacity w, and computes a maximum flow in
update(N, (a, b), w).

First of all, notice that lines 2–27 are executed only if (a, b) is a new edge
or an existing one that has been used to its full capacity, because if this
condition does not hold, then the insertion/update of (a, b) has no effect on
the maximum flow. The algorithm works as follows. First, it computes the
new flow network N (line 2). Then, it looks for a (shortest) path from s to
a in the residual network by calling the ASP function (line 3). If such a path
exists, an analogous search is performed from b to t (line 6). If also such a
path exists, then there is an augmenting path p from s to t and the maximum
flow is increased on the edges of p (lines 9–12).

After that, if (a, b) has still positive residual capacity, Algorithm 3 repeats
the search of augmenting paths in Nf as follows (lines 16–27). If additional flow
can be sent from s to a along the previously discovered path, the algorithm
looks for a path from b to t (lines 17–18); otherwise (no additional flow can
be sent from s to a along the previously discovered path), if additional flow
can be sent from b to t along the previously discovered path, the algorithm
looks for a path from s to a (lines 20–21); otherwise (no more flow can be sent
along the previously discovered paths), the algorithm looks for both a path
from s to a and a path from b to t (lines 23–27). The search continues until
either the residual capacity of (a, b) gets to zero (i.e., no more additional flow

18 2 Incremental Maintenance of the Maximum Flow

Function 1 Augmenting Shortest Path (ASP)

Input: A residual network Nf = (V,Ef),
two vertices x, y ∈ V .

Output: Arrays prev and flow .

1: flow [1..|V |];
2: prev [1..|V |];
3: for each v ∈ V do
4: flow [v] := −1;
5: prev [v] := NIL;
6: flow [x] := +∞;
7: if x = y then
8: return 〈prev ,flow〉;
9: Q := {x};

10: while Q 6= ∅ do
11: u := Q.dequeue();
12: for v ∈ adj [u] s.t. flow [v] = −1 do
13: flow [v] := min{flow [u], rf (u, v)};
14: prev [v] := u;
15: if v = y then
16: return 〈prev ,flow〉;
17: Q.enqueue(v);
18: return 〈prev ,flow〉;

c

10/20

a

10/15

5/15

5/5

e b
5/5

5/5
10/15

d
10/10

S T f
20/40

0/5

Fig. 2.1: A flow network and a maximum flow.

can be pushed along (a, b)), or no other path from s to a or from b to t can
be found.

The following example shows how Algorithm 3 works.

Example 2.1. Consider the flow network and the maximum flow in Figure 2.1.
Each edge label x/y states that y is the edge capacity and x is the current
flow along the edge. Suppose the edge (c, d) with capacity 15 is added to the
network.

Figure 2.2 shows the augmenting paths computed by Algorithm 3. Specif-
ically, Figure 2.2 (left) highlights the path from the source to c (blue-colored

2.4 Incremental Maximum Flow Computation 19

Function 2 Update Flow (UF)

Input: A flow network N = (V,A, s, t, c),
a flow f in N ,
an additional flow value ∆f ,
two vertices x, y ∈ V ,
an array of predecessors prev .

Output: A flow in N .

1: b := y;
2: while b 6= x do
3: a := prev [b];
4: if (a, b) ∈ A then
5: diff := ∆f − (c(a, b)− f(a, b));
6: f(a, b) := f(a, b) + min{∆f, c(a, b)− f(a, b)};
7: if diff > 0 then
8: f(b, a) := f(b, a)− diff ;
9: else

10: f(b, a) := f(b, a)−∆f ;
11: b := a;
12: return f ;

c

10/20

a

10/15

5/15

5/5

e b
5/5

5/5
10/15

d
10/10

S T f
20/40

0/5
0/15

c

10/20

a

10/15

10/15

5/5

e b
5/5

5/5
10/15

d
10/10

S T f
20/40

5/5
5/15

Fig. 2.2: First (left) and second (right) iteration of Algorithm 3.

c

15/20

a

10/15

15/15

5/5

e b
5/5

5/5
10/15

d
10/10

S T f
25/40

5/5
10/15

Fig. 2.3: Updated flow network and maximum flow.

edge), whose residual capacity is 10, and the path from d to the sink (green-
colored edge), whose residual capacity is 5. The red edge is the new inserted

20 2 Incremental Maintenance of the Maximum Flow

Algorithm 1 Edge-Insertion-Maintenance (EIM)

Input: A flow network N = (V,A, s, t, c),
a maximum flow f in N ,
a pair of vertices (a, b),
a capacity w ∈ R+.

Output: A maximum flow for update(N, (a, b), w).

1: if c(a, b)− f(a, b) = 0 then
2: N := update(N, (a, b), w);
3: 〈prevsa,flowsa〉 := ASP(Nf , s, a);
4: ∆fsa := flowsa[a];
5: if ∆fsa > 0 then
6: 〈prevbt,flowbt〉 := ASP(Nf , b, t);
7: ∆fbt := flowbt[t];
8: while rf (a, b) > 0 ∧∆fsa > 0 ∧∆fbt > 0 do
9: ∆f := min{rf (a, b), ∆fsa, ∆fbt};

10: f(a, b) := f(a, b) +∆f ;
11: f := UF(N, f,∆f, s, a, prevsa);
12: f := UF(N, f,∆f, b, t, prevbt);
13: ∆fsa := ∆fsa −∆f ;
14: ∆fbt := ∆fbt −∆f ;
15: if rf (a, b) > 0 then
16: if ∆fsa > 0 then
17: 〈prevbt,flowbt〉 := ASP(Nf , b, t);
18: ∆fbt := flowbt[t];
19: else if ∆fbt > 0 then
20: 〈prevsa,flowsa〉 := ASP(Nf , s, a);
21: ∆fsa := flowsa[a];
22: else
23: 〈prevsa,flowsa〉 := ASP(Nf , s, a);
24: ∆fsa := flowsa[a];
25: if ∆fsa > 0 then
26: 〈prevbt,flowbt〉 := ASP(Nf , b, t);
27: ∆fbt := flowbt[t];
28: return f ;

one and its residual capacity is 15. The flow across the resulting augmenting
path is increased by 5.

Then, as both (c, d) and the path ending in c have still residual capacity
after updating the flow, the algorithm looks for a new path in the residual
network from d to the sink, and finds the one consisting of the green-colored
edges in Figure 2.2 (right). This allows the algorithm to identify a new aug-
menting path, the one highlighted in Figure 2.2 (right), along which the flow
is increased by 5.

After that, the path from the source to c is saturated, and since there is
no other path from the source to c in the residual network, the algorithm

2.4 Incremental Maximum Flow Computation 21

terminates. Figure 2.3 shows the updated network with its new maximum
flow.

The following theorems state the correctness and time complexity of Al-
gorithm 3.

Theorem 2.2. Given a flow network N , a maximum flow f in N , an edge
(a, b), and a capacity w > 0, Algorithm 3 returns a maximum flow in
update(N, (a, b), w).

Theorem 2.3. Algorithm 3 runs in O(mmin{nm,∆f}) time, where n = |V |,
m = |A|, and ∆f is the maximum flow value’s increase.

In light of the previous theorem, in the presence of small variations of
the flow value, our algorithm performs very well, confirming its incremental
nature, and, anyway, it never performs worse than the Edmonds-Karp algo-
rithm.

2.4.2 Edge Deletions and Capacity Decreases

In this section, we present our algorithm to maintain the maximum flow after
decreasing an edge capacity (recall that this case includes also the deletion of
an edge). Algorithm 2 below takes as input a flow network N , a maximum flow
f in N , an edge (a, b), and a negative capacity w, and computes a maximum
flow in update(N, (a, b), w).

The algorithm first computes the amount of flow that (a, b) cannot manage
anymore, namely excess (line 1). If excess is positive (i.e., the flow currently
assigned to (a, b) exceeds the new capacity), then lines 3–21 are executed.
Specifically, the new network is computed (line 3). Then, the flow on (a, b)
is set to its new capacity (line 4). After that, the following three phases are
performed:

(i) as vertex b has more outgoing than incoming flow, the exceeding one
(namely, excess) is sent back from t to b (line 5);

(ii) as vertex a has more incoming than outgoing flow, it tries to push this
excess to t along new routes not going through (a, b) (lines 6–13);

(iii) if, after the previous phase, a has still some excess, this is eventually
pushed back to s (lines 14–21).

Step (i) above uses the REF function to reduce the flow from a vertex to
the sink. Specifically, REF takes as input a flow network N , a flow f in N ,
a vertex x of N , and a positive real value excess. The function decreases the
flow from x to the sink by excess by iteratively searching (in a breadth-first
manner) paths from x to the sink having a positive flow on every edge.

Example 2.4. Consider the flow network and the maximum flow in Figure 2.3.
Suppose we delete the edge (e, f).

22 2 Incremental Maintenance of the Maximum Flow

Algorithm 2 Edge Deletion Maintenance (EDM)

Input: A flow network N = (V,A, s, t, c),
a maximum flow f in N ,
an edge (a, b) ∈ A,
a capacity w ∈ R−.

Output: A maximum flow for update(N, (a, b), w).

1: excess := f(a, b)−max{0, c(a, b) + w};
2: if excess > 0 then
3: N := update(N, (a, b), w);
4: f(a, b) := f(a, b)− excess;
5: f := REF(N, f, b, excess);
6: 〈prevat,flowat〉 := ASP(Nf , a, t);
7: ∆fat := min{flowat[t], excess};
8: while excess > 0 ∧∆fat > 0 do
9: excess := excess −∆fat;

10: f := UF(N, f,∆f, a, t, prevat);
11: if excess > 0 then
12: 〈prevat,flowat〉 := ASP(Nf , a, t);
13: ∆fat := min{flowat[t], excess};
14: ∆fas := min{flowat[s], excess};
15: prevas := prevat;
16: while excess > 0 do
17: excess := excess −∆fas;
18: f := UF(N, f,∆f, a, s, prevas);
19: if excess > 0 then
20: 〈prevas,flowas〉 := ASP(Nf , a, s);
21: ∆fas := min{flowas[s], excess};
22: return f ;

Figure 2.4 (left) shows the effect of the deletion by highlighting the excess
at nodes e and f (red-colored numbers). More specifically, vertex f has a neg-
ative excess as it is receiving less flow than that being sent. The REF function
sends this flow back to f from the sink, through the only path connecting
them—see green-colored edge in Figure 2.4 (right).

Then, the algorithm tries to push the excess at e toward the sink. Fig-
ure 2.5 (left) shows the path (blue-colored edges) computed by function ASP:
5 units can be pushed to the sink along this path.

After that, as there is still some excess at e, the algorithm looks for other
paths from e to the sink in the residual network, but none is found. As a
result, the exceeding flow at e has to be pushed back to the source. Even if
the last ASP search did not succeed in finding a path from e to the sink, it
found a path from e to the source, which is highlighted in Figure 2.5 (right).
The excess at e is decreased along such a path. Figure 2.6 shows the updated
network with its new optimal flow.

2.4 Incremental Maximum Flow Computation 23

Function 2 Reset Exceeding Flow (REF)

Input: A flow network N = (V,A, s, t, c),
a flow f in N ,
a vertex x ∈ V ,
excess ∈ R+.

Output: A flow in N .

1: if x 6= t then
2: while excess > 0 do
3: flow [1..|V |];
4: prev [1..|V |];
5: for each v ∈ V do
6: flow [v] := −1;
7: prev [v] := NIL;
8: flow [x] := excess;
9: Q := {x};

10: while Q 6= ∅ do
11: u := Q.dequeue();
12: for v ∈ V s.t. f(u, v) > 0 ∧ flow [v] = −1 do
13: flow [v] := min{flow [u], f(u, v)};
14: prev [v] := u;
15: if v = t then
16: go to line 16;
17: Q.enqueue(v);
18: b := t;
19: while b 6= x do
20: a := prev [b];
21: f(a, b) := f(a, b)− flow [t];
22: b := a;
23: excess := excess − flow [t];
24: return f ;

c

15/20

a

10/15

15/15

5/5

e b
5/5

5/5

d
10/10

S T f
25/40

5/5
10/15

-10

+10

c

15/20

a

10/15

15/15

5/5

e b
5/5

5/5

d
10/10

S T f
25/40

5/5
10/15

-10

+10

Fig. 2.4: Flow network with excess (left) and paths considered by the REF
function (right).

The following theorems state the correctness and the time complexity of
Algorithm 2.

24 2 Incremental Maintenance of the Maximum Flow

c

15/20

a

10/15

15/15

5/5

e b
5/5

5/5

d
10/10

S T f
15/40

5/5
10/15

+10

c	

20/20	

a	

10/15	

15/15	

5/5	

e	b	
5/5	

0/5	

d	
10/10	

S	 T	f	
20/40	

5/5	
15/15	

There	is	sFll	some	excess	on	e,	thus	the	algorFhm	tries	to	find	another	augmenFng	
path	to	T,	but	it	can	not	go	further	node	a	(green	edges).	As	a	result,	the	flow	has	to	
be	pushed	back	to	S.	Some	flow	goes	across	the	previously	founded	path,	stopping	to	
S.	

+5	

Fig. 2.5: Augmenting path from e to the sink (left) and augmenting path from
e to the source (right).

c

20/20

a

10/15

15/15

0/5

e b
0/5

0/5

d
10/10

S T f
20/40

5/5
15/15

Fig. 2.6: Updated flow network.

Theorem 2.5. Given a flow network N , a maximum flow f in N , an edge
(a, b), and a capacity w < 0, Algorithm 2 returns a maximum flow in
update(N, (a, b), w).

Theorem 2.6. Algorithm 2 runs in O(mmin{nm, excess}) time, where n =
|V | and m = |A|.

It is worth noting that Theorem 2.6 says that our algorithm performs very
well in the presence of small variations of the flow value, that is, when excess is
small, confirming its incremental nature. Moreover, in any case, the algorithm
performs no worse than the Edmonds-Karp algorithm.

2.5 Experimental Evaluation

In this section, we report on an experimental evaluation we performed to
compare our approach against state-of-the-art algorithms on different families
of datasets.

All experiments were run on an Intel i7 3770K 3.5 GHz, 12 GB of memory,
running Linux Mint 17.1.

Datasets. We used a variety of networks taken from the following repos-
itories: The Maximum Flow Project Benchmark [2] and Computer Vision

2.5 Experimental Evaluation 25

Datasets Execution times (secs)

Family Name # of vertices # of edges HIPR PAR P2R HPF BK E-BK E-IBFS EIM EDM

multiview
gargoyle-med 8,847,362 44,398,548 46.27 22.17 18.81 10.06 88.54 92.16 8.94 0.72 2.37

camel-med 9,676,802 47,933,324 56.14 33.84 27.88 14.26 17.95 17.33 6.88 0.83 4.56

3D segmentation

bone-sx6c100 3,899,396 23,091,149 6.58 1.76 1.79 1.68 3.46 3.54 1.47 0.06 0.19

liver6c100 4,161,604 22,008,003 16.47 7.90 7.81 6.66 7.74 7.69 3.32 0.17 0.85

babyface6c100 5,062,504 29,044,746 27.45 14.77 14.05 16.06 6.38 6.50 3.28 0.76 5.19

bone6c100 7,798,788 45,534,951 13.62 3.33 3.46 3.02 4.07 4.16 2.07 0.10 0.71

adhead6c100(64bit) 12,582,916 74,245,555 35.04 11.91 12.43 16.45 17.76 18.41 7.91 0.76 1.97

surface fitting bunny-med 6,311,088 38,739,041 18.33 10.72 12.27 6.60 1.05 1.08 0.84 0.74 0.78

lazy-brush

lbrush-mangagirl 593,032 2,379,695 2.81 1.69 1.38 0.45 0.28 0.28 0.22 0.02 0.70

lbrush-elephant 2,370,064 9,492,348 15.17 9.96 9.59 9.82 1.79 1.89 2.46 0.15 1.67

lbrush-bird 2,372,116 9,505,709 16.31 9.03 9.28 10.81 2.72 2.80 2.42 0.16 5.25

lbrush-doctor 2,373,272 9,522,523 11.98 7.54 6.28 2.52 1.15 1.15 0.91 0.07 0.97

PUNCH

punch-us22p 1,674,084 4,718,690 4.76 1.67 1.76 3.41 28.51 29.11 6.09 0.14 24.51

punch-us22u 1,674,084 4,718,690 4.02 1.36 1.61 1.34 4.35 4.42 1.40 0.15 0.16

punch-eu22p 2,020,897 5,715,868 10.88 4.05 3.70 2.52 3.41 3.54 1.41 0.26 2.76

punch-eu22u 2,020,897 5,715,868 8.45 2.80 2.55 1.02 1.20 1.24 0.61 0.190 0.090

bisection cal 1,800,723 4,434,236 8.81 3.68 4.05 1.28 0.51 0.53 0.33 0.34 0.12

Table 2.1: Execution times (secs).

Datasets [1]. We chose these datasets as they have been extensively used
in the literature to compare maximum flow algorithms (e.g., they have been
used in [31, 24]). In particular, we chose the largest networks of different fam-
ilies. Details are reported in (the first four columns of) Table 2.1. Most of the
networks have millions of vertices (up to 12.5M vertices) and tens of millions
of edges (up to 74M edges).

Algorithms. We compared our algorithms against state-of-the-art al-
gorithms for the maximum flow computation, namely HIPR [13], PAR [29],
P2R [30], HPF [41], BK [8], E-BK [48], and E-IBFS [31] (see Section 3.2 for a
discussion of them). We used the implementations of the algorithms provided
by their authors. Our algorithms were written in Java.

Results. For each of the datasets listed in Table 2.1, we randomly chose
250 edges to be inserted and 250 edges to be deleted. The EIM (resp. EDM)
column reports the average time taken by our insertion (deletion) algorithm to
handle the 250 edge insertions (deletions). The average time taken by each of
the competitors to handle the edge insertions slightly differs from the average
time taken to handle the edge deletions (the difference was on the order of
10−2 seconds or less), so we report only one time. Thus, each competitor’s
running time in Table 2.1 is to be interpreted as both the average time to
handle the 250 insertions and the average time to handle the 250 deletions.
The reason of the negligible difference between the two average times is that
a one-edge modification does not affect much the overall running time, which
is mainly determined by the size of the whole network.

To ease readability, for each dataset, the lowest running times are high-
lighted in blue. As for edge insertions, EIM is always the fastest algorithm,

26 2 Incremental Maintenance of the Maximum Flow

except for the last dataset, where E-IBFS is faster, even though the difference
is negligible. In most of the cases (around 75% of the datasets), EIM is more
efficient than the second-fastest algorithm by at least one order of magnitude.

Regarding deletions, EDM is the fastest algorithm in most of the cases. In
the remaining cases E-IBFS is the fastest one, with the only exception of the
punch-us22p dataset. However, we point out that E-IBFS computes only the
value of a flow, rather than the flow function, while EDM computes the flow
function (which gives the flow for each edge). For the punch-us22p dataset,
the fastest algorithm is PAR (which is based on the push-relabel approach),
while algorithms based on augmenting paths showed poor performances in
this case.

Finally, we observe that handling edge deletions showed to be more ex-
pensive than handling edge insertions.

2.6 Discussion

While many algorithms have been proposed for the maximum flow problem,
many current applications deal with dynamic networks and thus call for in-
cremental algorithms, as it is impractical to compute the new maximum flow
from scratch every time updates occur.

We have proposed efficient incremental algorithms to maintain the max-
imum flow in evolving networks. Experimental results have shown that our
approach outperforms state-of-the-art algorithms and can easily handle net-
works with millions of vertices and tens of millions of edges.

We point out that our algorithms can be directly applied to incrementally
maintain the minimum cut too, because of the well-known max-flow/min-cut
theorem (i.e., the maximum flow value is equal to the minimum cut capacity),
thereby widening further the range of applications.

As directions for future work, we plan to generalize our algorithms to
handle batches of updates at once, and leverage graph database systems.

3

Incremental Maintenance of All-Pairs Shortest
Paths in Relational DBMSs

Computing shortest paths is a classical graph theory problem and a central
task in many applications. Although many algorithms to solve this problem
have been proposed over the years, they are designed to work in the main
memory and/or with static graphs, which limits their applicability to many
current applications where graphs are highly dynamic, that is, subject to
frequent updates.

In this chapter, we present novel efficient incremental algorithms for main-
taining all-pairs shortest paths and distances in dynamic graphs [35, 37]. We
experimentally evaluate our approach on several real-world datasets, show-
ing that it significantly outperforms current algorithms designed for the same
problem.

3.1 Introduction

Computing shortest path and distances has a wide range of applications in
social network analysis [46], road networks [63], graph pattern matching [22],
biological networks [55], and many others. It is both an important task in its
own right (e.g., if we want to know how close people are in a social network)
and a fundamental subroutine for many advanced tasks.

For instance, in social network analysis, many significant network metrics
(e.g., eccentricity, diameter, radius, and girth) and centrality measures (e.g.,
closeness and betweenness centrality) require knowing the shortest paths or
distances for all pairs of vertices. There are many other domains where it
is needed to compute the shortest paths (or distances) for all pairs of ver-
tices, including bioinformatics [52] (where all-pairs shortest distances are used
to analyze protein-protein interactions), planning and scheduling [51] (where
finding the shortest paths for all pairs of vertices is a central task to solve
binary linear constraints on events), and wireless sensor networks [15] (where
different topology control algorithms need to compute the shortest paths or
distances for all pairs of vertices).

28 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

Though several techniques have been proposed to efficiently compute
shortest paths/distances, they are designed to work in the main memory
and/or with static graphs. This severely limits their applicability to many
current applications where graph are dynamic and the graph along with the
shortest paths/distances do not fit in the main memory. When graphs are
subject to frequent updates, it is impractical to recompute shortest paths or
distances from scratch every time a modification occurs.

To overcome these limitations, we propose efficient algorithms for the in-
cremental maintenance of all-pairs shortest paths and distances in dynamic
graphs stored in relational DBMSs.

Contributions. We consider the setting where graphs and shortest paths are
stored in relational DBMSs and propose novel algorithms to incrementally
maintain all-pairs shortest paths and distances after vertex/edge insertions,
deletions, and updates. The proposed approach aims at reducing the time
needed to update the shortest paths by identifying only those that need to
be updated (it is often the case that small changes affect only few shortest
paths).

To the best of our knowledge, [50] is the only disk-based approach in the
literature for incrementally maintaining all-pairs shortest distances. In partic-
ular, like our approach, [50] relies on relational DBMSs. We experimentally
compare our algorithms against [50] on five real-world datasets, showing that
our approach is significantly faster. It is worth noticing that our approach
is more general than [50] in that we keep track of both shortest paths and
distances, while [50] maintain shortest distances only (thus, there is no infor-
mation on the actual paths).

3.2 Related Work

Different variants of the shortest path problem have been investigated over
the years: single-pair shortest path (SPSP)—find a shortest path from a
given source vertex to a given destination vertex; single-source shortest paths
(SSSP)—find a shortest path from a given source vertex to each vertex of the
graph; all-pairs shortest paths (APSP)—find a shortest path from x to y for
every pair of vertices x and y.

Variants of these problems where we are interested only in the shortest
distances, rather than the actual paths, have been studied as well. We will
use SPSD, SSSD, and APSD to refer to the single-pair shortest distance,
single-source shortest distances, and all-pairs shortest distances problems, re-
spectively.

3.2 Related Work 29

In this section, we discuss the approaches in the literature to solve the
above problems. We first consider non-incremental algorithms, and then in-
cremental ones.

Non-Incremental Algorithms. Since the introduction of the Dijkstra’s al-
gorithm [19], a plethora of algorithms have been proposed to improve on its
performance (see [59] for a recent survey).

Most of the recently proposed methods require a preprocessing step for
building index structures to support the fast computation of shortest paths
and distances [11, 44, 4, 34, 65, 53, 54, 66, 12, 27].

Specifically, [11, 44, 4] address the SPSD problem, and a similar approach
for the SPSP problem has been proposed in [34]. [65] considers both the
SPSP and SPSD problems. There have been also proposals addressing the
approximate computation of SPSD [53, 54]. These methods are based on the
selection of a subset of vertices as “landmarks” and the offline computation
of distances from each vertex to those landmarks. [66] and [12] propose disk-
based index structures for solving the SSSP and SSSD problems, while disk-
based index structure for the SPSP and SPSD problems have been proposed
in [27].

[28] addresses the SPSP problem and, like our approach, relies on relational
DBMSs.

Besides the fact that most of the aforementioned techniques assume that
graphs, shortest paths/distances, and auxiliary index structures fit in the main
memory (which is not realistic in many current applications), the main limit
of all the approaches mentioned above is that they need to recompute a so-
lution from scratch every time the graph is modified, even if we make small
changes affecting a few shortest paths/distances. In many cases this requires
an expensive pre-processing phase to build the index structures that are nec-
essary to answer queries. Then, of course, shortest paths/distances have to
be computed again for all pairs. Thus, these methods work well if the graph
is static. In contrast, if the graph is dynamic, the expensive pre-processing
phase and the re-computation of all shortest paths/distances have to be done
every time a change is made to the graph, and this is impractical for large
graphs subject to frequent changes.

Incremental Algorithms. Several approaches have been proposed to incre-
mentally maintain shortest paths and distances when the graph is modified.
[43] introduces data structures to support APSP maintenance after edge dele-
tions in directed acyclic graphs. [17] considers both edge insertions and dele-
tions. [5] presents a hierarchical scheme for efficiently maintaining all-pairs
approximate shortest paths in undirected unweighted graphs and in the pres-
ence of edge deletions. [47] proposes an algorithm for maintaining all-pairs
shortest paths in directed graphs with positive integer weights bounded by a
constant. Another approach for the incremental maintenance of APSPs is [46].
[14] proposes an algorithm for maintaining nearest neighbor lists in weighted

30 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

graphs under vertex insertions and decreasing edge weights. The approach is
tailored for scenarios where queries are much more frequent than updates.

Approximate APSP maintenance in unweighted undirected graphs has
been addressed in [5, 57, 40], while [6] considered edge deletions and weight
increases in weighted directed graphs.

All the techniques above share the use of specific complex data struc-
tures and work in the main memory, which limits their applicability. In fact,
as pointed out in [16, 18], memory usage is an important issue of current
approaches, limiting substantially the graph size that they can handle (for
instance, the experimental studies in [16, 18] could not go beyond graphs of
10,000 vertices).

Algorithms to incrementally maintain APSDs for graphs stored in rela-
tional DBMSs have been proposed in [50]. These algorithms improve on [39]
(which addresses the more general view maintenance problem in relational
databases) by avoiding unnecessary joins and tuple deletions. However, [50]
can deal only with the APSD maintenance problem while [39] works with
general views (both in SQL and Datalog).

To the best of our knowledge, [50] is the only disk-based approach for
maintaining APSDs (incremental algorithms to find a path between two ver-
tices in disk-resident route collections have been proposed in [7], but paths are
not required to be shortest ones). We are not aware of disk-based approaches
to incrementally maintain APSPs. [50] is the closest work to ours, but with
significant differences.

First, our algorithms maintain both shortest paths and shortest distances,
while [50] is able to maintain shortest distances only—knowing the actual
(shortest) paths is necessary in different applications.

Second, while both [50] and our algorithms proceed by first identifying “af-
fected” shortest paths (i.e., those whose distance might need to be updated
after the graph is changed) and then acting on them, the two approaches differ
in how this is done. Specifically, the strategy employed by our approach to
identify affected shortest paths is different and more effective. For both edge
insertions and deletions, we have two distinct phases, one looking forward
and the other looking backward. This allows us to filter out earlier shortest
paths that do not play a role in the maintenance process. On the other hand,
[50] identifies affected shortest paths in a more blind way: for both edge in-
sertions and deletions, all shortest distances starting at the inserted/deleted
edge are combined with all shortest distances ending in the inserted/deleted
edge, leading to computationally expensive joins. Moreover, in our deletion
algorithm, the recomputation of deleted shortest distances is done in an in-
cremental way, as opposed to [50], which performs this step by combining all
shortest distances that are left after the deletion phase.

Third, as shown in our experimental evaluation (cf. Section 3.5), our al-
gorithms are significantly faster than those of [50].

3.3 Preliminaries 31

The algorithms proposed in this chapter generalize the ones presented
in [35] in that the former are able to maintain both shortest paths and dis-
tances, while the latter maintain shortest distances only.

3.3 Preliminaries

In this section, we introduce the notation and terminology used in the rest of
this chapter.

A graph is a pair (V,A), where V is a finite set of vertices and A ⊆ V ×V
is a finite set of pairs called edges. A graph is undirected if A is a set of
unordered pairs; otherwise (edges are ordered pairs) it is directed. A (directed
or undirected) weighted graph consists of a graph G = (V,A) and a function
ϕ : A → R+ assigning a weight (or distance) to each edge in A.1 We use
ϕ(u, v) to denote the weight assigned to edge (u, v) by ϕ.

A sequence v0, v1, . . . , vn (n > 0) of vertices of G is a path from v0 to vn
iff (vi, vi+1) ∈ A for every 0 ≤ i ≤ n − 1. The weight (or distance) of a path

p = v0, v1, . . . , vn is defined as ϕ(p) =
∑n−1

i=0 ϕ(vi, vi+1). Obviously, there can
be multiple paths from v0 to vn, each having a distance. A path from v0 to
vn with the lowest distance (over the distances of all paths from v0 to vn) is
called a shortest path from v0 to vn (there can be multiple shortest paths from
v0 to vn) and its distance is called the shortest distance from v0 to vn. We
assume that the shortest distance from a vertex to itself is 0, and the shortest
distance from a vertex v0 to a distinct vertex vn is not defined if there is no
path from v0 to vn.

In the rest of the chapter we consider directed weighted graphs and call
them simply graphs—the extension of the proposed algorithms to undirected
graphs is trivial. Without loss of generality, we assume that graphs do not
have self-loops, i.e., edges of the form (v, v) (the reason is that self-loops can
be disregarded for the purpose of finding shortest distances).

We consider the case where graphs and shortest paths are stored in rela-
tional databases. Notice that this allows us to take advantage of full-fledged
optimization techniques provided by relational DBMSs.

Specifically, the set of edges of a graph is stored in a ternary relation E
containing a tuple (a, b, w) iff there is an edge in the graph from a to b with
weight w. We call E an edge relation. Vertices without incident edges can be
ignored for our purposes.

A relation SP of arity 4 is used to represent the shortest paths for all
pairs of reachable vertices of the graph (obviously, for a pair of reachable
vertices we keep track of only one shortest path). Specifically, a shortest path
v0, v1, . . . , vn (n ≥ 1) from v0 to vn with (shortest) distance d0n is represented
with the set of tuples {(v0, vi, d0i, vi−1) | 1 ≤ i ≤ n} in SP , where d0i denotes
the shortest distance from v0 to vi. Clearly, it is always possible to build

1 In this chapter, we consider positive real weights.

32 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

the whole path from v0 to vn by following the chain of predecessors in SP
starting from vn. Analogous approaches are employed by different algorithms
for shortest path computation, such as the well-known Dijkstra’s algorithms.
Thus, a tuple (x, y, d, z) in SP can be read as follows: there is a shortest path
from x to y with (shortest) distance d and z is the predecessor of y along the
path. We also say that SP is a shortest path relation for E .

Notice that an edge relation can admit different shortest path relations
(depending on which shortest path is stored for a pair of reachable vertices
in case of multiple shortest paths for that pair). We assume we are given an
arbitrary shortest path relation for an edge relation, and are interested in
computing an arbitrary shortest path relation for the updated edge relation.
More precisely, we consider the shortest path maintenance problem defined
below.

Problem (All-Pairs Shortest Paths Maintenance). Given an edge rela-
tion E , a shortest path relation SP for E , and an edge e, compute a shortest
path relation for E ∪ {e} (or E \ {e}).
The case where we want to compute a shortest path relation for E ∪ {e}
(resp. E \ {e}) corresponds to the scenario where the original edge relation
E is modified by adding a new edge (resp. deleting an edge). Indeed, we will
also consider the case where the weight of an edge is updated; however, as
shown in Section 3.4.3, our algorithms to deal with insertion and deletion can
be used to address this case too. We are interested in solving the problem in
an efficient incremental fashion, i.e., avoiding to compute the new shortest
path relation from scratch.

Clearly, a solution to the all-pairs shortest paths maintenance problem
immediately gives the all-pairs shortest distances.

In addition to the edge relation for a graph and the corresponding shortest
path relation, our algorithms will use auxiliary relations of arity arity 4 to
store tuples of the form (x, y, d, z), which we also call distance tuples, whose
meaning is that there is a path from x to y with distance d, and z is the
predecessor of y along the path.

We will use the relational algebra operators π (projection), 1 (join), n
(left semi-join), × (Cartesian product), ∪ (union), and \ (difference).

We will refer to the i-th attribute of a relation as $i. For instance, the
projection of a relation R on the first and third attribute is written as π

$1,$3
R.

We will use the generalized projection so that we can write expressions like
π

a,$1
R, which is equivalent to {a} × π

$1
R.

Given a tuple t = (t1, ..., tn), the i-th element of t is denoted as t[i]. Given
two tuples t1 and t2, we say that t1 and t2 are similar, denoted t1 ∼ t2, iff
t1[1] = t2[1] and t1[2] = t2[2]. Intuitively, in our setting, two tuples are similar
when they refer to (possibly different) paths between the same pair of vertices.

Below we define the operators min, prune, ⊕, 	, and u, which will be
used in the proposed algorithms. Let R and S be relations containing distance
tuples (and thus of arity 4).

3.4 Incremental Maintenance of All-Pairs Shortest Paths 33

The min operator is defined as follows:

min(R) = {t ∈ R | t[1] 6= t[2] ∧ @t′ ∈ R s.t. t′ ∼ t ∧ t′[3] < t[3]}.

Thus, min(R) returns all the distance tuples t in R with t[1] 6= t[2] (i.e., t
refers to a path whose endpoints are distinct vertices) and s.t. R does not
contain a similar distance tuple with a strictly lower distance.

The binary operator prune is defined as follows:

prune(R,S) = {t ∈ R | @t′ ∈ S s.t. t′ ∼ t ∧ t′[3] ≤ t[3]}.

Thus, prune(R,S) returns all the distance tuples t in R for which there is no
similar distance tuple in S with a lower distance.

The binary operator ⊕ is defined as follows:

R⊕ S = R ∪ {t ∈ S | @t′ ∈ R s.t. t′ ∼ t}.

Thus, R ⊕ S returns a relation obtained by adding to R the distance tuples
of S that are not similar to any of the distance tuples in R.

The binary operator 	 is defined as follows:

R	 S = R \ {t ∈ R | ∃t′ ∈ S s.t. t′ ∼ t ∧ t′[3] = t[3]}.

Thus, R	S returns the set obtained from R by deleting every distance tuple
for which there exists a similar distance tuple in S with the same distance.

Finally, the binary operator u is defined as follows:

R u S = {t ∈ R | ∃t′ ∈ S s.t. t′ ∼ t ∧ t[3] = t′[3]}.

Thus, R u S returns all the distance tuples of R having a similar distance
tuple in S with the same distance.

Notice that none of the above binary operators is symmetric. Also, all the
operators above can be expressed in the relational algebra as well as in SQL.

3.4 Incremental Maintenance of All-Pairs Shortest Paths

In this section, we present algorithms for the incremental maintenance of all-
pairs shortest paths (as already mentioned, they immediately provide all-pairs
shortest distances too).

We first propose an algorithm to handle edge insertions (Section 3.4.1)
and then address edge deletions (Section 3.4.2). After that, we show how such
algorithms can be used to handle edge updates too (Section 3.4.3).

It is worth noting that insertions and deletions of vertices can be straight-
forwardly reduced to our setting and thus be handled by our algorithms too:
vertex insertions (resp. deletions) are handled by inserting (deleting) all edges
that are incident from/to the inserted (resp. deleted) vertices. Therefore, our
algorithms can handle arbitrary sequences of edge insertions/deletions/updates
and vertex insertions/deletions.

34 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

Algorithm 3 Edge-Insertion-Maintenance (EIM)

Input: Edge relation E ,
Shortest path relation SP ,
Edge e=(a, b, w) s.t. @(a, b, d, z) ∈ SP with d ≤ w.

Output: Shortest path relation for E ∪ {e}.
1: ∆Pf = π

a,$2,$3+w,$4
(σ

$1=b
SP);

2: ∆SPf = prune(min(∆Pf), SP);
3: ∆P` = π

$1,b,$3+w,a
(σ

$2=a
SP);

4: ∆SP` = prune(min(∆P`), SP);
5: ∆Pi = π

$1,$6,$3+$7−w,$8
(∆SP` ×∆SPf);

6: e′ = (a, b, w, a);
7: ∆SP = prune(min(∆SP` ∪∆Pi ∪∆SPf ∪ {e′}), SP);
8: SP ∗ = ∆SP ⊕ SP ;
9: return SP ∗;

3.4.1 Edge Insertion

Algorithm 3 below deals with edge insertions. We point out that the algo-
rithm (as well as Algorithm 2 presented in Section 3.4.2) is written in a form
that eases presentation, without applying optimizations to relational algebra
expressions. However, relational DBMSs have full-fledged query optimization
techniques to easily optimize the code—indeed, this is one of the advantages
of relying on a relational DBMS.

Given a shortest path relation SP for an edge relation E , and an edge
e = (a, b, w) to be added to E , Algorithm 3 computes a shortest path relation
for E ∪ {e}. The precondition @(a, b, d, z) ∈ SP with d ≤ w is imposed just
because if it does not hold, then the insertion of e has no effect on the shortest
path relation, and thus there is no need to recompute it.

The algorithm performs the following four steps.

1. (Forward step). First, the algorithm looks at paths (in the new graph)
having e as the first edge to see if new paths improving on the current
ones can be obtained (lines 1–2).

2. (Backward step). Then, the algorithm looks at paths (in the new graph)
having e as the last edge to see if new paths improving on the current
ones can be obtained (lines 3–4).

3. (Combination step). After that, the algorithm “combines” the paths ob-
tained from the forward and backward steps (line 5)—more details on how
the combination is done are provided in the following. The aim is to build
paths having e as an intermediate edge, and that might improve on the
current ones.

4. (Final step). Finally, a path consisting only of the inserted edge is built
(line 6), and all the paths built so far that improve on the original ones
are incorporated into the shortest path relation (lines 7–9).

We now go into the details of each of the steps above.

3.4 Incremental Maintenance of All-Pairs Shortest Paths 35

(Forward step). First, the algorithm computes the set ∆Pf of all the dis-
tance tuples obtained by concatenating e with shortest paths starting from
vertex b (line 1), that is, tuples of the form (a, y, d, z) s.t. there is a path from
a to y with distance d (in the updated graph), the predecessor of y in the path
is z, the first edge along the path is e, and the path from b to y is a shortest
one (w.r.t. the original edge relation).

Then, among these distance tuples, the algorithm selects only those that
improve on current shortest distances, that is, those tuples (a, y, d, z) in ∆Pf

s.t. either there is no shortest path from a to y in SP or there is one with
distance greater than d (line 2).

(Backward step). Next, two analogous steps are performed. First, shortest
paths ending in vertex a are concatenated with e (line 3), yielding a set ∆P`

of tuples of the form (x, b, d, a) s.t. there is a path from x to b with distance
d (in the updated graph), the predecessor of b in the path is a, the last edge
along the path is e, and the path from x to a is a shortest one (w.r.t. the
original edge relation). Then, among the tuples in ∆P`, the algorithm selects
only those that improve on the shortest distances in SP (line 4).

(Combination step). Then, the distance tuples obtained at lines 2 and 4
(which correspond to path whose first or last edge is e, respectively) are com-
bined via a Cartesian product (line 5). Specifically, this step computes a re-
lation ∆Pi by combining each tuple (x, b, d1, z1) in ∆SP ` with each tuple
(a, y, d2, z2) in ∆SPf so as to get a tuple (x, y, d1 + d2 − w, z2). Notice that
the distance of tuples in ∆Pi is diminished of w because e is taken into account
both in tuples of ∆SP ` and in tuples of ∆SPf .

(Final step). Then, a distance tuple e′ representing the path that consists
only of e is built (line 6). Finally, the algorithm selects those tuples in ∆SP `∪
∆Pi ∪ ∆SPf ∪ {e′} that improve on the shortest paths in SP (line 7) and
incorporates them into SP (line 8).

The following example illustrates how Algorithm 3 works.

Example 3.1. Consider the graph in Figure 3.1 (top). A shortest path relation
SP for the graph is represented in Figure 3.1 (bottom) as follows: an edge from
x to y labeled with (d, z) means that there is a tuple (x, y, d, z) in SP . Thus, for
instance, the edge from b to a with label (2, c) means that (b, a, 2, c) ∈ SP , that
is, there is a shortest path from b to a with distance 2 and c is the predecessor
of a along that path.

Suppose we add the edge (a, d, 1) to the graph.
Figure 3.2 shows the path computed by the forward step (dotted edge), that

is, we have ∆SPf = {(a, e, 2, d)}.
The paths computed by the backward step are shown in Figure 3.3 (dashed

edges), that is, we have ∆SP ` = {(c, d, 2, a), (b, d, 3, a)}.
Figure 3.4 shows the paths computed by the combination step (dotted-and-

dashed edges), that is, we have ∆Pi = {(c, e, 3, d), (b, e, 4, d)}.
As all the distance tuples computed in the previous steps correspond to

shortest paths (in the updated graph) improving on the original shortest paths,

36 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

b ec d
3

a

1

11

3

b	 e	c	 d	3,c	

a	

1,c	

1,d	

5,d	

4,c	

2,c	

4,d	

1,b	

Fig. 3.1: A graph (top) and its shortest paths (bottom).

b	 e	c	 d	3,c	

a	

1,c	

1,d	

5,d	

4,c	

2,c	

4,d	

1,b	

1	

2,d	

Fig. 3.2: Forward step of Algorithm 3.

they are incorporated into the shortest path relation at the final step. Notice
that also (a, d, 1, a) is incorporated into the shortest path relation, as d was
not reachable from a in the original graph.

Figure 3.5 shows the updated graph and the new shortest path relation.

The following theorem states the correctness of Algorithm 3.

Theorem 3.2. Given an edge relation E, a shortest path relation SP for E,
and an edge e, Algorithm 3 computes a shortest path relation for E ∪ {e}.

3.4 Incremental Maintenance of All-Pairs Shortest Paths 37

b	 e	c	 d	2,a	

a	

1,c	

1,d	

5,d	

3,a	

2,c	

4,d	

1,b	

1	

2,d	

Fig. 3.3: Backward step of Algorithm 3.

b	 e	c	 d	2,a	

a	

1,c	

1,d	

4,d	

3,a	

2,c	

3,d	

1,b	

1	

2,d	

Fig. 3.4: Combination step of Algorithm 3.

Proof. Let En = E ∪ {e} and SPn be a shortest path relation for En. Before
proving the claim (i.e., showing that SP ∗ = SPn) we make the following two
observations, which will be used later on in the proof.

First, if a distance tuple (x, y, d, z) is in SP ∗ (resp. ∆Pf , ∆SPf , ∆P`,
∆SP `, ∆Pi), then there is a path from x to y in En whose distance is d and
where z is the predecessor of y along the path. Indeed, this property holds
also for ∆Pf , ∆SPf , ∆P`, ∆SP `, ∆Pi, and ∆SP .

Second, SP ∗ does not contain two distance tuples (x, y, d1, z1) and (x, y, d2, z2)
s.t. d1 6= d2 or z1 6= z2 (to see why, it suffices to look at lines 7–8 and the
definitions of min, prune and ⊕).

In the following, whenever the fourth element of a distance tuple (x, y, d, z)
is irrelevant, we simply write the distance tuple as (x, y, d,−).

Soundness (SP ∗ ⊆ SPn). Let (x, y, d, z) ∈ SP ∗. As noticed above, this
means that there is a path from x to y in En; thus, there must be a shortest

38 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

b	 e	c	 d	
3	

a	

1	

1	1	

3	 1	

b	 e	c	 d	2,a	

a	

1,c	

1,d	

4,d	

3,a	

2,c	

3,d	

1,b	

1,a	

2,d	

Fig. 3.5: Updated graph (top) and its shortest paths (bottom).

one too, which implies that a distance tuple (x, y, d′,−) is in SPn. We show
that d = d′. One of the following two cases must occur.

1. There is a shortest path p′ from x to y in En (its distance is d′) which
does not go through e. Since p′ goes only through edges in E , then there
is a distance tuple (x, y, d′, z′) in SP . Since ∆SP contains distance tuples
corresponding to paths in En that strictly improve on shortest distances
in SP (line 7), then there is no distance tuple (x, y, d′′,−) in ∆SP . Since
SP ∗ = ∆SP ⊕ SP (line 8), then (x, y, d′, z′) ∈ SP ∗. Hence, d = d′ (and
z = z′).

2. Every shortest path from x to y in En (whose distance is d′) goes through
e. Let p′ be one of such shortest paths. Then, e is either (i) the first edge
of p′, or (ii) the last edge of p′, or (iii) an intermediate edge of p′. Notice
that in case (i) the subpath of p′ that goes from b to y is a shortest path
in En and also in E (because p′ does not go though e twice); in case (ii)
the subpath of p′ that goes from x to a is a shortest path in En and also
in E ; in case (iii) the subpath of p′ that goes from x to a and the subpath
of p′ that goes from b to y are shortest paths in En and also in E . Now
it is easy to see that a distance tuple for p′ is computed at line 1 (resp.
3 and 5) when case (i) (resp. (ii) and (iii)) occurs. In particular, in case
(iii), since every shortest path from x to y in En goes through e, it must
be the case that every shortest path from x to b in En has e as last edge,
and every shortest path from a to y in En has e as first edge, and thus a
distance tuple for p′ is computed at line 5. Notice that since every shortest

3.4 Incremental Maintenance of All-Pairs Shortest Paths 39

path from x to y in En goes through e, this is the case where the insertion
of e strictly improves the shortest distance from x to y. Thus, a distance
tuple (x, y, d′,−) belongs to ∆SP (line 7) and SP ∗ (line 8). Hence, d = d′.

Completeness (SP ∗ ⊇ SPn). Consider a distance tuple (x, y, d, z) in SPn.
If there is a shortest path p from x to y in En (its distance is d) that does not
go through e, then (x, y, d, z) ∈ SP . This means that ∆SP does not contain a
distance tuple (x, y, d′,−) because distance tuples in ∆SP `∪∆Pi∪∆SPf∪{e}
correspond to paths in SPn and thus do not strictly improve on p (see line 7).
Hence, (x, y, d, z) ∈ SP ∗ (see line 8). If every shortest path from x to y in En

goes through e, then it can be verified that (x, y, d, z) ∈ SP ∗ by applying the
same reasoning used in part (2) above. 2

3.4.2 Edge Deletion

We now turn our attention to edge deletions, which are handled by Algo-
rithm 2 below. It consists of two phases: a deletion phase (lines 5–20), which
deletes from SP shortest paths that might go through the deleted edge; and
a recalculate phase (lines 21–28), which recomputes the new shortest paths (if
any) for the pair of vertices deleted in the first phase.

The precondition is imposed because if it does not hold, that is there is
no distance tuple of the form (a, b, w, z) in SP , then there is a path from a
to b not using e and with a distance strictly lower than w, which means that
the deletion of e does not affect the shortest path relation, and thus there is
no need to recompute it (recall that we consider positive weights).

First of all, the algorithm checks whether there is an alternative path in
the updated graph from a to b with distance w (lines 1–2). If so, the distance
tuple in SP for the shortest path from a to b is updated into (a, b, w, z′),
where z′ is the predecessor of b along the alternative path (line 3). Since there
is an alternative path from a to b with the same distance as the weight of the
deleted edge, the remaining shortest paths are not affected by the deletion,
and the algorithm terminates (line 4).

If no alternative path is found, handling the edge deletion is much more
involved, and the algorithm proceeds with the two aforementioned phases as
follows.

Deletion phase. Similar to Algorithm 3, the deletion phase consists of dif-
ferent steps:

1. a forward step, looking at paths having e as the first edge (lines 5–9);
2. a backward step, looking at paths having e as the last edge (lines 10–14);
3. a combination step, combining paths of the previous two steps, whose aim

is to look at paths having e as an intermediate edge (lines 15–18); and
4. a deletion step, (lines 19–20), where paths computed at the previous steps

are deleted from the shortest path relation.

We now go into the details of each of the steps above.

40 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

Input: Edge relation E ,
Shortest path relation SP ,
Edge e=(a, b, w) s.t. ∃z.(a, b, w, z) ∈ SP .

Output: Shortest path relation for En = E \ {e}.
1: AP =π

$1,$5,$3+$6,$7
(σ

$1=a
En 1

$2=$1

σ
$2=b

SP);

2: if ∃(a, b, w, z′) ∈ AP then
3: SP ∗ = {(a, b, w, z′)} ⊕ SP ;
4: return SP ∗;
5: ∆Pf = π

a,$2,$3+w,$4
(σ

$1=b
SP);

6: APf =π
$1,$2,$3,$1

(σ
$1=a

En) ∪ (π
$1,$5,$3+$6,$7

(σ
$1=a

En 1
$2=$1

SP));

7: ∆SPf = (SP u∆Pf)	APf ;
8: NPf = (APf u (SP u∆Pf));
9: SP = NPf ⊕ SP ;

10: ∆P` = σ
$2=b∧$4=a

SP ;
11: AP`=π

$1,$2,$3,$1
(σ

$2=b
En) ∪ (π

$1,$6,$3+$7,$5
(SP 1

$2=$1

σ
$2=b

En));

12: ∆SP` = ∆P` 	AP`;
13: NP` = (AP` u∆P`);
14: SP = NP` ⊕ SP ;
15: NP i = (π

$1,$6,$3+$7,$8
((σ

$2=a
SP) 1

$2=$1

NPf)) u SP ;

16: SP = NP i ⊕ SP ;
17: ∆Pi = π

$1,$6,$3+$7−w,$8
(∆SP` ×∆SPf);

18: ∆SP i = SP u∆Pi;
19: SP− = ∆SP` ∪∆SPf ∪∆SP i ∪ {(a, b, w, z)};
20: SP = SP \ SP−;
21: ∆P =(π

$1,$2,$3,$1
En∪(π

$1,$5,$3+$6,$7
(En 1

$2=$1

SP))) n
$1=$1∧
$2=$2

SP−;

22: ∆SP = min(∆P);
23: SP+ = ∆SP ;
24: while ∆SP 6= ∅ do
25: ∆P = π

$1,$5,$3+$6,$7
(En 1

$2=$1

∆SP) n
$1=$1∧$2=$2

SP−;

26: ∆SP = prune(min(∆P), SP+);
27: SP+ = ∆SP ⊕ SP+;
28: SP ∗ = SP ∪ SP+;
29: return SP ∗;

(Forward step). First, the algorithm computes all the distance tuples ob-
tained by concatenating e with shortest paths starting from vertex b (line 5),
that is, tuples of the form (a, y, d, z) s.t. there is a path from a to y with
distance d, the first edge along such a path is e, the path from b to y is a
shortest one (w.r.t. the original edge relation), and z is the predecessor of y.
Such distance tuples are stored in ∆Pf—intuitively, they correspond to paths
from a, using e as the first edge, and that might be affected by the deletion
of e.

3.4 Incremental Maintenance of All-Pairs Shortest Paths 41

Then, alternative paths in the new graph from a to other vertices are
computed and stored in APf (line 6).

After that, the distance tuples in ∆Pf that correspond to shortest paths
(w.r.t. the original graph) and for which there are no alternative paths (in
APf) with the same distance are stored in ∆SPf (line 7). These distance
tuples will be later deleted from SP .

On the other hand, the distance tuples in ∆Pf corresponding to shortest
paths (w.r.t. the original graph) and for which there is an alternative path
with the same distance are incorporated into SP (lines 8–9). This is done
to properly update the predecessor of the destination vertex (i.e., the last
element of the distance tuples).

(Backward step). Then, shortest paths having e as the last edge are simi-
larly processed. Specifically, the algorithm selects all the distance tuples cor-
responding to shortest paths (w.r.t. the original edge relation) having b as
destination vertex and e as the last edge (line 10). Such distance tuples are
stored in ∆P` and correspond to paths to b, using e as the last edge, and that
might be affected by the deletion of e.

After that, alternative paths to b (from other vertices) in the new graph
are computed and stored in AP ` (line 11).

Then, the distance tuples in ∆P` (recall that they correspond to shortest
paths in the original graph) for which there is no alternative path (in AP `)
with the same distance are stored in ∆SP ` (line 12)—they will be later deleted
from SP .

On the other hand, the distance tuples in ∆P` for which there is an alter-
native path with the same distance are incorporated into SP (lines 13–14).
This is done to properly update the predecessor of the destination vertex (i.e.,
the last element of the distance tuples).

(Combination step). Then, the algorithm computes distance tuples ob-
tained as the concatenation of distance tuples in SP ending in a with distance
tuples in NPf (the latter correspond to shortest paths from a). Among them,
only those that correspond to shortest paths are kept in NP i (line 15) and
incorporated into SP (line 16). This step is done so that shortest paths in
the original graph that possibly had e as an intermediate edge are replaced
by alternative paths with the same distance in the updated graph.

After that, the distance tuples in ∆SP ` computed in line 12 (corresponding
to paths where the last edge is e) are combined with the tuples in ∆SPf

computed in line 7 (corresponding to paths where the first edge is e) via a
Cartesian product (line 17). Analogous to line 5 of Algorithm 3, since edge
e is taken into account twice, the distance of the tuples obtained from the
Cartesian product is diminished of w. Among the so-obtained distance tuples,
only those that correspond to shortest paths are kept (line 18).

(Deletion step). The distance tuples computed in lines 7, 12 and 18, to-
gether with the distance tuple (a, b, w, z), are stored in relation SP− (line 19)
and deleted from SP (line 20).

42 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

Recalculate phase. The second phase of Algorithm 2 (lines 21–28) computes
the new shortest paths (when they exist) for the endpoints of the distance
tuples in SP−, and eventually adds them to SP .

More specifically, the algorithm first adds to En all the distance tuples
obtained by concatenating edges in En with shortest paths in the updated
shortest path relation SP (line 21). Indeed, only those distance tuples whose
endpoints are in a tuple of SP− are kept and stored in ∆P . Among these
distance tuples, the minimum ones are selected and stored in ∆SP (line 22).
These distance tuples are then added to SP+ (line 23), which is the set that
will be eventually added to SP .

Then, SP+ is iteratively updated as follows (lines 24–27). The algorithm
computes all the distance tuples obtained by concatenating edges in En with
tuples in ∆SP , and keeps only those whose endpoints are in a tuple of SP−

(line 25). Among these, only distance tuples that improve on shortest distances
in SP+ are kept (line 26) and incorporated into SP+ (line 27). When no more
better distance tuples can be obtained, SP+ is added to SP (line 28) and the
result is returned (line 29).

It is important to notice that this way of computing the new shortest paths
allows the algorithm to prune the search space, as computed paths that are
not shortest ones are disregarded and no further explored.

An example illustrating how Algorithm 2 works is provided below.

Example 3.3. Consider the graph of Figure 3.6 (top) and the shortest path
relation SP in Figure 3.6 (bottom). Once again, the shortest path relation is
represented as follows: an edge from x to y labeled with (d, z) means that there
is a tuple (x, y, d, z) in SP , that is, there is a shortest path from x to y with
distance d and z is the predecessor of y.

Suppose we delete the edge (a, b, 1) from the graph.
Since there is no alternative path in the updated graph from a to b, then

Algorithm 2 performs the deletion phase.
The forward step identifies the two dotted paths in Figure 3.7 as possibly

affected by the edge deletion.
Indeed, for the path from a to d there is an alternative one with the same

distance, namely the one going through e. Thus, the predecessor of d is updated
into e (i.e., (a, d, 2, b) is updated into (a, d, 2, e)), see Figure 3.8. Since there
is no alternative path from a to c with distance 4, the path from a to c will be
later deleted by the algorithm (i.e., (a, c, 4, b) ∈ ∆SPf).

Then, the backward step identifies the dashed path in Figure 3.9 as possibly
affected by the edge deletion. Since there is no alternative path from f to b,
such a path will be later deleted by the algorithm (i.e., (f, b, 3, a) ∈ ∆SP `).

After that, the combination step realizes that, for the path from f to d, the
predecessor of d has to be updated into e (Figure 3.10).

Moreover, the combination step identifies the dashed-and-dotted path in
Figure 3.11 as possibly affected by the deletion. Indeed, since there is no al-

3.4 Incremental Maintenance of All-Pairs Shortest Paths 43

a

e

c

3b

1

11

2f d

1

3

a

e

c

3,db

2,f
f d

2,b

4,b

6,b

3,a

4,d

4,b

3,a

Fig. 3.6: A graph (top) and its shortest paths (bottom).

a

e

c

3,db

2,f
f d

2,b

4,b

6,b

3,a

4,d

4,b

3,a

Fig. 3.7: Forward step of Algorithm 2 (1 of 2).

ternative path with the same distance, this path will be later deleted (i.e.,
(f, c, 6, b) ∈ ∆SP i).

In the deletion step of the deletion phase, all the non-solid paths in Fig-
ure 3.11 are deleted from the shortest path relation.

44 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

a

e

c

3,db

2,f
f d

2,e

4,b

6,b

3,a

4,d

4,b

3,a

Fig. 3.8: Forward step of Algorithm 2 (2 of 2).

a

e

c

3,db

2,f
f d

2,e

4,b

6,b

3,a

4,d

4,b

3,a

Fig. 3.9: Backward step of Algorithm 2.

Then, the algorithm tries to recompute the deleted shortest paths. Fig-
ure 3.12 shows the new shortest paths computed by the recalculate phase. At
this point, Algorithm 2 terminates.

Figure 3.13 shows the shortest path relation for the updated graph.

The following theorem states the correctness of Algorithm 2.

Theorem 3.4. Given an edge relation E, a shortest path relation SP for E,
and an edge e, Algorithm 2 computes a shortest path relation for E \ {e}.

Proof. Let En = E − {e} and SPn be a shortest path relation for En.
First of all, notice that each iteration of the while loop in lines 24–27

computes shortest paths that strictly improve on the currently computed ones.
As we consider positive edge weights, the number of iterations is bounded by

3.4 Incremental Maintenance of All-Pairs Shortest Paths 45

a

e

c

3,db

2,f
f d

2,e

4,b

6,b

3,a

4,d

4,e

3,a

Fig. 3.10: Combination step of Algorithm 2 (1 of 2).

a

e

c

3,db

2,f
f d

2,e

4,b

6,b

3,a

4,d

4,e

3,a

Fig. 3.11: Combination step of Algorithm 2 (2 of 2).

the number of simple paths (i.e., paths without multiple occurrences of the
same vertex), which is finite, and thus the algorithm terminates.

In the following, whenever the fourth element of a distance tuple (x, y, d, z)
is irrelevant, we simply write it as (x, y, d,−). Likewise, we sometimes write
(x, y,−,−) in place of (x, y, d, z).

If a distance tuple (x, y, d, z) is in SP and there exists a distance tuple
(x, y, d,−) in SPn, then there is a path from x to y with distance d in the
updated graph. One of the following two cases occurs:

• None of the shortest paths from x to y in the original graph goes through
e. Then, it is easy to see that (x, y, d, z) remains in SP and thus is in SP ∗.
• At least one shortest path from x to y goes though e in the original graph.

Since there is an alternative path with the same distance in the new graph,
then (x, y, d, z) is updated into a distance tuple (x, y, d, z′) either at line 9

46 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

a

e

c

3,db

2,f
f d

2,e

5,d

7,d

4,d

4,e

3,a

Fig. 3.12: Recalculate phase of Algorithm 2.

a

e

c

3,db

2,f
f d

2,e

5,d

7,d

4,d

4,e

3,a

Fig. 3.13: Shortest paths of the updated graph.

(when an original shortest path from x to y has e as the first edge) or
line 14 (when an original shortest path from x to y has e as the last
edge) or line 16 (when an original shortest path from x to y has e as an
intermediate edge).

Regarding distance tuples (x, y, d, z) is in SP s.t. there does not exists
a distance tuple (x, y, d,−) in SPn, we now show the following property: if
(x, y, d, z) ∈ SP and there is no (x, y, d,−) in SPn, then (x, y, d, z) ∈ SP−.
Suppose (x, y, d, z) ∈ SP and there is no (x, y, d,−) in SPn. Then, one of the
following cases occurs.

(i) There is a shortest path from x to y in E whose first edge is e and there
is no shortest path from x to y in En with distance d. In such a case
(x, y, d, z) ∈ ∆SPf (see lines 5–7) and thus (x, y, d, z) ∈ SP− (see line 19).

3.5 Experimental Evaluation 47

(ii) There is a shortest path from x to y in E whose last edge is e and there is no
shortest path from x to y in En with distance d. In such a case (x, y, d, z) ∈
∆SP ` (see lines 10–12) and thus (x, y, d, z) ∈ SP− (see line 19).

(iii) There is a shortest path from x to y in E where e is an intermediate edge
and for the two subpaths starting from and ending in e conditions (i) and
(ii) apply, respectively. In such a case (x, y, d, z) ∈ ∆SP i (see lines 17–18)
and thus (x, y, d, z) ∈ SP− (see line 19).

(iv) e = (x, y, d, z). Then, (x, y, d, z) ∈ SP− (see line 19).

Because of the property above, if the shortest distance from x to y changes
in the updated graph, then (x, y,−,−) is deleted from SP . Then, it can be
easily verified that a shortest path from x to y (if any) in the updated graph
is correctly computed by the recalculate phase on lines 21–28. 2

3.4.3 Edge Update

In this section, we show how our algorithms can be easily used to handle an
edge update (i.e., the edge weight update).

Given an edge relation E , a shortest path relation SP for E , and an edge
(a, b, w) whose weight w must be changed into w′, we can compute a shortest
path relation for (E \ {(a, b, w)}) ∪ {(a, b, w′)} as follows:

1. if w′ < w, then we call Algorithm EIM with input E \{(a, b, w)}, SP , and
(a, b, w′);

2. if w′ > w, then we call Algorithm with input (E \{(a, b, w)})∪{(a, b, w′)},
SP , and (a, b, w).

Thus, when the new weight w′ “improves” on the old one w, we reduce
the problem to an edge insertion, otherwise we reduce the problem to an
edge deletion. As stated in the following theorem, this way of processing edge
weight updates is correct.

Theorem 3.5. Given an edge relation E, a shortest path relation SP for E,
an edge e = (a, b, w) in E, and a weight w′, then

1. if w′ < w, EIM(E \ {(a, b, w)}, SP, (a, b, w′)) returns a shortest path rela-
tion for (E \ {(a, b, w)}) ∪ {(a, b, w′)};

2. if w′ > w, EDM((E\{(a, b, w)})∪{(a, b, w′)}, SP, (a, b, w)) returns a short-
est path relation for (E \ {(a, b, w)}) ∪{(a, b, w′)}.

Proof. Item 1 can be proved by proceeding in the same way as in the proof
of Theorem 3.2. Likewise, Item 2 can be proved by proceeding in the same
way as in the proof of Theorem 3.4. 2

3.5 Experimental Evaluation

In this section, we report on an experimental evaluation we carried out to
assess the validity of our approach.

48 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

3.5.1 Experimental Setup

Below we describe the algorithms and datasets used in the experimental eval-
uation.

Algorithms. We compared our algorithms against the ones proposed by Pang
et al. [50], which are, to the best of our knowledge, the only disk-based ap-
proach for the incremental maintenance of all-pairs shortest distances—in
particular, they rely on relational DBMSs too. Indeed, we also compared the
algorithms presented in this chapter with our previous proposal [35], and the
running times of the two approaches were nearly the same. Thus, in the fol-
lowing, we do not report the execution time of the algorithms proposed in [35].
Also, recall that while the algorithms presented in this chapter maintain both
shortest paths and distances, the approach of [35] is able to maintain shortest
distances only. To sum up, in this section we will consider the EIM algorithm
(Algorithm 3), the EDM algorithm (Algorithm 2), and the insertion and dele-
tion algorithms of [50] (denoted PDR).

Datasets. Experiments were carried out on the following real-world networks.

• DIMES public data repository.2 This dataset provides monthly snap-
shots of Autonomous Systems on the Internet. Vertices represent Au-
tonomous Systems and edges represent direct links between Autonomous
Systems that were found for a given month. Since the original graphs were
unweighted, we assigned unitary weight to every edge.
• Road Network of North America (RNNA).3 This dataset is a road

network of North America, thus edge weights stand for road lengths.
• Twitter social network.4 This network contains information about who

follows whom on Twitter. Vertices represents users and edges represent
follow relationships. We assigned unitary weight to every edge, as the
original graph was unweighted.
• Gnutella peer-to-peer network.5 This dataset stores the Gnutella

peer-to-peer file sharing network. Vertices represent hosts in the Gnutella
network and edges represent connections between the Gnutella hosts. As
the original graph was unweighted, we assigned unitary weight to every
edge.
• Instagram social network.6 This dataset was originally collected in

2014 and introduced in [60]. Vertices represents users and edges represent
follow relationships. We assigned unitary weight to every edge (connecting
a pair follower-followee).

2 http://www.netdimes.org/new/
3 http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
4 http://konect.uni-koblenz.de/networks/munmun_twitter_social
5 http://snap.stanford.edu/data/p2p-Gnutella31.html
6 http://uweb.dimes.unical.it/tagarelli/data/

http://www.netdimes.org/new/
http://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
http://konect.uni-koblenz.de/networks/munmun_twitter_social
http://snap.stanford.edu/data/p2p-Gnutella31.html
http://uweb.dimes.unical.it/tagarelli/data/

3.5 Experimental Evaluation 49

The datasets’ features are reported in Table 3.1. The number of shortest
distances is the number of pairs of reachable vertices (which is also the number
of stored shortest paths, as we store one shortest path for each pair of reachable
vertices).

Datasets # Vertices # Edges # Shortest distances

DIMES 17,148 53,833 ≈ 1.02× 108

RNNA 175,813 179,179 ≈ 2.76× 108

Twitter 465,017 834,797 ≈ 8.03× 108

Gnutella 62,586 147,892 ≈ 8.84× 108

Instagram 54,017 963,881 ≈ 9.3× 108

Table 3.1: Properties of the considered datasets.

A couple of remarks on the size of the datasets are in order.
(1) As we deal with the problem of incrementally maintaining all-pairs

shortest paths, the input of the algorithms consists of both a graph and the
corresponding shortest paths7, with the size of the latter being much bigger
than the size of the former. The datasets we considered have up to hundreds
of millions of shortest distances—indeed, the biggest dataset (namely, the
Instagram network) has nearly one billion shortest distances.

(2) We also run the algorithms proposed in [16] and [46], which are state-
of-the-art algorithms for the APSD maintenance working in the main memory,
over the aforementioned datasets. We used the implementations of the algo-
rithms provided by their authors, which work in the main memory. [16] run
out of memory on all datasets, not being able to handle the graph, the short-
est distances, and the employed data structures. [46] showed higher running
times than our approach on the DIMES dataset, while run out of memory on
the the remaining datasets.

A couple of remarks on the size of the datasets are in order.
(1) As we deal with the problem of incrementally maintaining all-pairs

shortest paths, the input of the algorithms consists of both a graph and the
corresponding shortest paths8, with the size of the latter being much bigger
than the size of the former. The datasets we considered have up to hundreds
of millions of shortest distances—indeed, the biggest dataset (namely, the
Instagram network) has nearly one billion shortest distances.

(2) We also run the algorithms proposed in [16] and [46], which are state-
of-the-art algorithms for the APSD maintenance working in the main memory,
over the aforementioned datasets. We used the implementations of the algo-
rithms provided by their authors, which work in the main memory. [16] run

7 Clearly, the input of PDR consists of a graph and the corresponding shortest
distances, rather than the actual paths.

8 Clearly, the input of PDR consists of a graph and the corresponding shortest
distances, rather than the actual paths.

50 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

0

50

100

150

200

250

300

Ti
m

e
 (

se
c)

Edges

EIM PDR

(a) Entire dataset – Inser-
tion.

0

1

2

3

Ti
m

e
 (

se
c)

Edges

EDM

(b) Entire dataset – Dele-
tion.

0

20

40

60

80

100

120

140

160

50 100 200 300

Ti
m

e
 (

se
c)

Vertices

EDM PDR

(c) Induced subgraphs –
Deletion.

Fig. 3.14: DIMES Dataset.

0

10

20

30

40

50

60

70

Ti
m

e
 (

se
c)

Edges

EIM PDR

(a) Entire dataset – Inser-
tion.

0

5

10

15

20
Ti

m
e

 (
se

c)

Edges

EDM

(b) Entire dataset – Dele-
tion.

0

20

40

60

80

100

120

140

1,000 2,000 3,000 4,000 5,000

Ti
m

e
 (

se
c)

Vertices

EDM PDR

(c) Induced subgraphs –
Deletion.

Fig. 3.15: RNNA Dataset.

out of memory on all datasets, not being able to handle the graph, the short-
est distances, and the employed data structures. [46] showed higher running
times than our approach on the DIMES dataset, while run out of memory on
the the remaining datasets.

Indeed, it was already as pointed out in [16, 18] that memory usage is an
important issue of current approaches, limiting substantially the graph size
that they can handle (for instance, the experimental studies in [16, 18] could
not go beyond graphs of 10,000 vertices). Moreover, as shown in the following,
the datasets are already too large for PDR, but can be efficiently maintained
by our algorithms.

All experiments were run on an Intel i7 3770K 3.5 GHz, 12 GB of memory,
running Linux Mint 17.1 and MySQL 5.5.43.

3.5.2 Results on the DIMES Dataset

In this section, we discuss the experimental results for the DIMES dataset. As
the DIMES dataset is an evolving graph and its repository provides different
snapshots of it, we could run experiments with real edge insertions/deletions—
we considered the first two snapshots (namely, January and February 2007).

Runtimes for the insertion of 90 edges are reported in Figure 3.14a. PDR
shows an unstable behavior, as its running times are around 200 secs (i.e.,

3.5 Experimental Evaluation 51

three orders of magnitude slower than EIM) for about half of the edges, and
are similar to EIM for the remaining edges.

Results for the deletion of 90 edges are reported in Figure 3.14b. PDR is
not reported as it did not terminate within one hour in all cases. On the other
hand, we can see that EDM performs very well.

In order to allow PDR to answer in a reasonable amount of time and
compare its behavior with EDM, we considered smaller induced subgraphs of
the original DIMES graph. An induced subgraph of a graph G = (V,E) is
a graph G′ = (V ′, E′) where V ′ ⊆ V and E′ ⊆ E contains all edges of E
connecting two vertices in V ′. To generate these graphs we started from a
randomly chosen vertex in the DIMES dataset and visited connected vertices
in a breadth-first fashion, adding to the graph in construction all edges of the
original graph involving vertices so far encountered, until the desired size was
reached.

Runtimes for both PDR and EDM are reported in Figure 3.14c (each run-
ning time is the average time over 10 edges), which shows that PDR becomes
impractical very quickly.

3.5.3 Results on the RNNA Dataset

We now discuss the experimental results for the Road Network of North Amer-
ica.

Figure 3.15a shows the execution times for the insertion of 150 edges (ran-
domly chosen). Algorithm EIM outperforms PDR being always faster with a
difference from one to three orders of magnitude—in most of the cases the
difference is at least two orders of magnitude.

Figure 3.15b shows the execution times for the deletion of 150 edges (ran-
domly chosen). Like for the DIMES dataset, execution times for PDR are not
reported as no answer was given within one hour in all cases. The EDM algo-
rithm performs quite well being able to handle deletion in reasonable time.

Once again, to compare PDR with EDM, we also considered smaller in-
duced subgraphs of the original RNNA network, generated in the same way
as for the DIMES dataset. However, in this case, the starting vertex was one
with highest degree (this choice was not possible for the DIMES dataset be-
cause the resulting subgraphs were too large to be handled by PDR). As shown
in Figure 3.15c, PDR’s running times quickly diverge from those of EDM.

3.5.4 Results on the Twitter Dataset

In this section, we consider the Twitter network. Figures 3.16a and 3.16b show
running times for the insertion and deletion of 200 randomly chosen edges,
respectively.

For insertion, EIM is faster than PDR by one order of magnitude for over
90% of the edges, while for remaining ones they have similar running times.

Regarding deletion, EDM was very fast, while PDR did not provided an
answer within one hour.

52 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

0

5

10

15

20

25

Ti
m

e
 (

se
c)

Edges

EIM PDR

(a) Entire dataset – Insertion.

0

1

2

3

4

Ti
m

e
 (

se
c)

Edges

EDM

(b) Entire dataset – Deletion.

Fig. 3.16: Twitter Dataset.

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Ti
m

e
 (

se
c)

Edges

EIM PDR

(a) Entire dataset – Insertion.

0

5

10

15

20

25

30

Ti
m

e
 (

se
c)

Edges

EDM

(b) Entire dataset – Deletion.

Fig. 3.17: Gnutella Dataset.

3.5.5 Results on the Gnutella Dataset

The running times for the insertion and the deletion of 200 randomly chosen
edges over the Gnutella network are reported in Figures 3.17a and 3.17b,
respectively.

Similar to the DIMES Dataset, PDR shows an unstable behavior, as its
running time is over 2500 secs (i.e., PDR is four orders of magnitude slower
than EIM) for over one third of the edges, and is similar to EIM’s running time
for the remaining edges.

As for deletion, PDR did not terminate within one hour in all cases, while
EDM has good performances.

3.5.6 Results on the Instagram Dataset

We now discuss the experimental results over the biggest network we consid-
ered, namely Instagram, which has nearly one billion shortest distances.

Figures 3.18a and 3.18b show running times for the insertion and deletion
of 100 randomly chosen edges, respectively.

3.6 Discussion 53

0

500

1,000

1,500

2,000

2,500

3,000

3,500

Ti
m

e
 (

se
c)

Edges

EIM PDR

(a) Entire dataset – Insertion.

0

5

10

15

20

25

30

35

40

Ti
m

e
 (

se
c)

Edges

EDM

(b) Entire dataset – Deletion.

Fig. 3.18: Instagram Dataset.

As for insertion, the difference between PDR and EIM is significant, with
EIM being four orders of magnitude faster in most of the cases.

Regarding deletion, like for the other datasets, PDR was not able to answer
within one hour, while EDM has good running times.

3.5.7 Experimental conclusions

From the experimental results reported in this section, we can draw the fol-
lowing conclusions.

We run state-of-the-art algorithms working in the main memory (namely,
[46, 16]) over five real-world datasets and they run out of memory in all cases.
This suggests the need of resorting to disk-based approaches for APSD and
APSP maintenance.

To the best of our knowledge, [50] is the state-of-the-art approach for the
all-pairs shortest distances maintenance problem working on the secondary
memory (in particular, graphs are stored in relational DBMSs as in our ap-
proach). In all cases, our algorithms notably outperform the algorithms pro-
posed in [50], being able to handle both insertions and deletions with very good
performances over networks with hundreds of millions of shortest distances—
indeed, [50] was not able to handle any deletion within one hour for every
dataset.

3.6 Discussion

Computing shortest paths and distances is a fundamental problem in social
network analysis and many other domains.

We have proposed efficient algorithms for the incremental maintenance of
all-pairs shortest paths and distances.

Our experimental evaluation showed that current main-memory algo-
rithms run out of memory even with reasonably sized graphs, and thus disk-
based approaches are needed. Our algorithms rely on relational databases and

54 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

significantly outperform the state-of-the-art algorithms designed for the same
setting.

Conclusions

There has been a significant growth of connected data in the last decade.
Enterprises that have changed the world like Google, Facebook, and Twitter
share the common thread of having connected data at the center of their
business. Such data can be naturally modeled as graphs.

In many current applications, graph data are huge and efficiently manag-
ing them becomes a crucial issue. Furthermore, one aspect that many current
graph applications share is that data are dynamic, that is, they are frequently
updated. In this setting, an interesting problem is the development of incre-
mental algorithms to maintain certain kind of information of interest when
the underlying data is changed. In fact, incremental algorithms avoid the re-
computation of the information of interest from scratch; rather, they tend to
minimize the computational effort to update a solution by trying to identify
only those pieces of information that need to be updated. In contrast, non-
incremental algorithms need to recompute new solutions from scratch every
time the data change, and this can be impractical when data are huge and
subject to frequent updates.

In this thesis, we have considered two classical graph theory problems,
namely the maximum flow and the shortest path/distance problems.

For the former, we have proposed efficient incremental algorithms to
maintain the maximum flow after vertex insertions/deletions and edge inser-
tions/deletions/updates. Our algorithms are designed to effectively identify
only the affected parts of the network, in order to reduce the computational
effort for determining the new maximum flow. We have provided complexity
analyses and reported on an experimental evaluation we conducted on several
families of datasets with millions of vertices and tens of millions of edges. Ex-
perimental results show that our approach is very efficient and outperforms
state-of-the-art algorithms.

As for the shortest path/distance problem, we have considered the setting
where graphs and shortest paths are stored in relational DBMSs and pro-
posed novel algorithms to incrementally maintain all-pairs shortest paths and
distances after vertex/edge insertions, deletions, and updates. The proposed

56 3 Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs

approach aims at reducing the time needed to update the shortest paths by
identifying only those that need to be updated (it is often the case that small
changes affect only few shortest paths).

We have experimentally compared our algorithms against state-of-the-art
algorithms designed for the same setting on five real-world datasets, showing
that our approach is significantly faster.

References

1. Computer Vision Datasets. http://vision.csd.uwo.ca/data/.
2. The Maximum Flow Project Benchmark. http://www.cs.tau.ac.il/

~sagihed/ibfs/benchmark.html.
3. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network flows - Theory, Algo-

rithms and Applications. Prentice Hall, 1993.
4. T. Akiba, Y. Iwata, and Y. Yoshida. Fast exact shortest-path distance queries

on large networks by pruned landmark labeling. In Proc. of International Con-
ference on Management of Data (SIGMOD), pages 349–360, 2013.

5. S. Baswana, R. Hariharan, and S. Sen. Maintaining all-pairs approximate short-
est paths under deletion of edges. In Proc. of ACM-SIAM Symposium on Dis-
crete Algorithms (SODA), pages 394–403, 2003.

6. A. Bernstein. Maintaining shortest paths under deletions in weighted directed
graphs: [extended abstract]. In Proc. of ACM on Symposium on Theory of
Computing (STOC), pages 725–734, 2013.

7. P. Bouros, S. Skiadopoulos, T. Dalamagas, D. Sacharidis, and T. K. Sellis.
Evaluating reachability queries over path collections. In Proc. of International
Conference on Scientific and Statistical Database Management (SSDBM), pages
398–416, 2009.

8. Y. Boykov and V. Kolmogorov. An experimental comparison of min-cut/max-
flow algorithms for energy minimization in vision. IEEE Trans. Pattern Anal.
Mach. Intell., 26(9):1124–1137, 2004.

9. M. Calautti, S. Greco, and I. Trubitsyna. Detecting decidable classes of finitely
ground logic programs with function symbols. In PPDP, pages 239–250, 2013.

10. B. G. Chandran and D. S. Hochbaum. A computational study of the pseud-
oflow and push-relabel algorithms for the maximum flow problem. Operations
Research, 57(2):358–376, 2009.

11. L. Chang, J. X. Yu, L. Qin, H. Cheng, and M. Qiao. The exact distance to
destination in undirected world. VLDB Journal, 21(6):869–888, 2012.

12. J. Cheng, Y. Ke, S. Chu, and C. Cheng. Efficient processing of distance queries
in large graphs: a vertex cover approach. In Proc. of International Conference
on Management of Data (SIGMOD), pages 457–468, 2012.

13. B. V. Cherkassky and A. V. Goldberg. On implementing the push-relabel
method for the maximum flow problem. Algorithmica, 19(4):390–410, 1997.

http://vision.csd.uwo.ca/data/
http://www.cs.tau.ac.il/~sagihed/ibfs/benchmark.html
http://www.cs.tau.ac.il/~sagihed/ibfs/benchmark.html

58 References

14. T. Crecelius and R. Schenkel. Pay-as-you-go maintenance of precomputed near-
est neighbors in large graphs. In Proc. of ACM Conference on Information and
Knowledge Management (CIKM), pages 952–961, 2012.

15. A. Cuzzocrea, A. Papadimitriou, D. Katsaros, and Y. Manolopoulos. Edge
betweenness centrality: A novel algorithm for qos-based topology control over
wireless sensor networks. Journal of Network and Computer Applications,
35(4):1210–1217, 2012.

16. C. Demetrescu, S. Emiliozzi, and G. F. Italiano. Experimental analysis of dy-
namic all pairs shortest path algorithms. In Proc. of ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 369–378, 2004.

17. C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest
paths. Journal of the ACM, 51(6):968–992, 2004.

18. C. Demetrescu and G. F. Italiano. Experimental analysis of dynamic all pairs
shortest path algorithms. ACM Transactions on Algorithms, 2(4):578–601, 2006.

19. E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269–271, 1959.

20. E. A. Dinic. Algorithm for Solution of a Problem of Maximum Flow in a Network
with Power Estimation. Soviet Math Doklady, 11:1277–1280, 1970.

21. J. Edmonds and R. M. Karp. Theoretical improvements in algorithmic efficiency
for network flow problems. J. ACM, 19(2):248–264, 1972.

22. W. Fan, J. Li, S. Ma, N. Tang, Y. Wu, and Y. Wu. Graph pattern matching:
From intractable to polynomial time. Proc. of the VLDB Endowment (PVLDB),
3(1):264–275, 2010.

23. R. T. Fielding. Architectural styles and the design of network-based software
architectures. PhD thesis, University of California, Irvine, 2000.

24. B. Fishbain, D. S. Hochbaum, and S. Mueller. A competitive study of the
pseudoflow algorithm for the minimum s-t cut problem in vision applications.
J. Real-Time Image Processing, 11(3):589–609, 2016.

25. G. W. Flake, S. Lawrence, and C. L. Giles. Efficient identification of web com-
munities. In KDD, pages 150–160, 2000.

26. D. R. Ford and D. R. Fulkerson. Flows in Networks. Princeton University Press,
2010.

27. A. W.-C. Fu, H. Wu, J. Cheng, and R. C.-W. Wong. Is-label: an independent-set
based labeling scheme for point-to-point distance querying. Proc. of the VLDB
Endowment (PVLDB), 6(6):457–468, 2013.

28. J. Gao, J. Zhou, J. X. Yu, and T. Wang. Shortest path computing in relational
dbmss. IEEE Transactions on Knowledge and Data Engineering, 26(4):997–
1011, 2014.

29. A. V. Goldberg. The partial augment-relabel algorithm for the maximum flow
problem. In ESA, pages 466–477, 2008.

30. A. V. Goldberg. Two-level push-relabel algorithm for the maximum flow prob-
lem. In AAIM, pages 212–225, 2009.

31. A. V. Goldberg, S. Hed, H. Kaplan, P. Kohli, R. E. Tarjan, and R. F. Werneck.
Faster and more dynamic maximum flow by incremental breadth-first search.
In ESA, pages 619–630, 2015.

32. A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow prob-
lem. J. ACM, 35(4):921–940, 1988.

33. A. V. Goldberg and R. E. Tarjan. Efficient maximum flow algorithms. Commun.
ACM, 57(8):82–89, 2014.

References 59

34. A. V. Goldberg and R. F. F. Werneck. Computing point-to-point shortest
paths from external memory. In Proc. of Workshop on Algorithm Engineering
and Experiments and Workshop on Analytic Algorithmics and Combinatorics
(ALENEX/ANALCO), pages 26–40, 2005.

35. S. Greco, C. Molinaro, C. Pulice, and X. Quintana. All-pairs shortest distances
maintenance in relational DBMSs. In ASONAM, 2016.

36. S. Greco, C. Molinaro, C. Pulice, and X. Quintana. Efficient maximum flow
maintenance on dynamic networks. In Proceedings of the 26th International
Conference on World Wide Web Companion, Perth, Australia, April 3-7, 2017,
pages 1383–1385, 2017.

37. S. Greco, C. Molinaro, C. Pulice, and X. Quintana. Incremental maintenance
of all-pairs shortest paths in relational dbmss. Social Network Analysis and
Mining, (to appear), 2017.

38. S. Greco, C. Molinaro, C. Pulice, and X. Quintana. Incremental maximum flow
computation on evolving networks. In Proceedings of the 31st Annual ACM
Symposium on Applied Computing, 2017.

39. A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incremen-
tally. In Proc. of International Conference on Management of Data (SIGMOD),
pages 157–166, 1993.

40. M. Henzinger, S. Krinninger, and D. Nanongkai. Dynamic approximate all-pairs
shortest paths: Breaking the O(mn) barrier and derandomization. In Proc. of
IEEE Symposium on Foundations of Computer Science (FOCS), pages 538–547,
2013.

41. D. S. Hochbaum. The pseudoflow algorithm: A new algorithm for the maximum-
flow problem. Operations Research, 56(4):992–1009, 2008.

42. N. Imafuji and M. Kitsuregawa. Finding web communities by maximum flow al-
gorithm using well-assigned edge capacities. IEICE Transactions, 87-D(2):407–
415, 2004.

43. G. F. Italiano. Finding paths and deleting edges in directed acyclic graphs.
Information Processing Letters, 28(1):5–11, 1988.

44. R. Jin, N. Ruan, Y. Xiang, and V. E. Lee. A highway-centric labeling approach
for answering distance queries on large sparse graphs. In Proc. of International
Conference on Management of Data (SIGMOD), pages 445–456, 2012.

45. S. Jouili and V. Vansteenberghe. An empirical comparison of graph databases.
In Social Computing (SocialCom), 2013 International Conference on, pages 708–
715. IEEE, 2013.

46. S. S. Khopkar, R. Nagi, A. G. Nikolaev, and V. Bhembre. Efficient algorithms for
incremental all pairs shortest paths, closeness and betweenness in social network
analysis. Social Network Analysis and Mining, 4(1):220, 2014.

47. V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and
transitive closure in digraphs. In Proc. of IEEE Symposium on Foundations of
Computer Science (FOCS), pages 81–91, 1999.

48. P. Kohli and P. H. S. Torr. Dynamic graph cuts for efficient inference in markov
random fields. IEEE Trans. Pattern Anal. Mach. Intell., 29(12):2079–2088,
2007.

49. K. Nagi. A new representation of wordnet using graph databases on-disk and
in-memory. International Journal on Advances in Software Volume 6, Number
3 & 4, 2013, 2013.

60 References

50. C. Pang, G. Dong, and K. Ramamohanarao. Incremental maintenance of short-
est distance and transitive closure in first-order logic and SQL. ACM Transac-
tions on Database Systems, 30(3):698–721, 2005.

51. L. Planken, M. de Weerdt, and R. van der Krogt. Computing all-pairs shortest
paths by leveraging low treewidth. Journal of Artificial Intelligence Research,
43:353–388, 2012.

52. N. Przulj, D. A. Wigle, and I. Jurisica. Functional topology in a network of
protein interactions. Bioinformatics, 20(3):340–348, 2004.

53. Z. Qi, Y. Xiao, B. Shao, and H. Wang. Toward a distance oracle for billion-node
graphs. Proc. of the VLDB Endowment (PVLDB), 7(1):61–72, 2013.

54. M. Qiao, H. Cheng, L. Chang, and J. X. Yu. Approximate shortest distance
computing: A query-dependent local landmark scheme. In Proc. of IEEE Inter-
national Conference on Data Engineering (ICDE), pages 462–473, 2012.

55. S. A. Rahman, P. Advani, R. Schunk, R. Schrader, and D. Schomburg. Metabolic
pathway analysis web service (pathway hunter tool at cubic). Bioinformatics,
21(7):1189–1193, 2005.

56. I. Robinson, J. Webber, and E. Eifrem. Graph databases: new opportunities for
connected data. ” O’Reilly Media, Inc.”, 2015.

57. L. Roditty and U. Zwick. Dynamic approximate all-pairs shortest paths in
undirected graphs. SIAM Journal on Computing, 41(3):670–683, 2012.

58. H. Saito, M. Toyoda, M. Kitsuregawa, and K. Aihara. A large-scale study of
link spam detection by graph algorithms. In AIRWeb, 2007.

59. C. Sommer. Shortest-path queries in static networks. ACM Computing Surveys,
46:45:1–45:31, 2014.

60. A. Tagarelli and R. Interdonato. Time-aware analysis and ranking of lurkers in
social networks. Social Network Analysis and Mining, 5(1):46:1–46:23, 2015.

61. C. Tesoriero. Getting Started with OrientDB. Packt Publishing Ltd, 2013.
62. D. N. Tran, B. Min, J. Li, and L. Subramanian. Sybil-resilient online content

voting. In NSDI, pages 15–28, 2009.
63. L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou. Shortest path and

distance queries on road networks: An experimental evaluation. Proc. of the
VLDB Endowment (PVLDB), 5(5):406–417, 2012.

64. H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman. Sybilguard: defending
against sybil attacks via social networks. In SIGCOMM, pages 267–278, 2006.

65. A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou. Shortest path and
distance queries on road networks: towards bridging theory and practice. In
Proc. of International Conference on Management of Data (SIGMOD), pages
857–868, 2013.

66. A. D. Zhu, X. Xiao, S. Wang, and W. Lin. Efficient single-source shortest path
and distance queries on large graphs. In Proc. of ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (KDD), pages 998–1006,
2013.

	Relational and Graph Databases
	Relational Databases
	Graph Databases
	Neo4j
	OrientDB

	Incremental Maintenance of the Maximum Flow
	Introduction
	Related Work
	Preliminaries
	Incremental Maximum Flow Computation
	Edge Insertions and Capacity Increases
	Edge Deletions and Capacity Decreases

	Experimental Evaluation
	Discussion

	Incremental Maintenance of All-Pairs Shortest Paths in Relational DBMSs
	Introduction
	Related Work
	Preliminaries
	Incremental Maintenance of All-Pairs Shortest Paths
	Edge Insertion
	Edge Deletion
	Edge Update

	Experimental Evaluation
	Experimental Setup
	Results on the DIMES Dataset
	Results on the RNNA Dataset
	Results on the Twitter Dataset
	Results on the Gnutella Dataset
	Results on the Instagram Dataset
	Experimental conclusions

	Discussion

	Conclusions
	References

