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Abstract

River motion is one of the most attractive and fascinating phenomena in

nature. Since ancient times many scientists have been drawn into a vortex

of confusion observing river motion. Flow observation is often simplified,

running tests in a laboratory under controlled conditions, in order to test a

specific phenomenon of a much more complex issue. A great number of

these phenomena has been collected by researchers throughout the history of

science, and other researchers have tried to merge the available knowledge

to clarify the tangled phenomena. This work is focused on the turbulent

characteristics of Open-Channel Flows (OCFs) over a highly rough bed. The

use of coarse sediments is an attractive technique to solve many problems

in rivers as well as to safeguard aquatic life. Issues like sediment transport

phenomena or erosion and local scour, e.g. at bridge piers and abutments,

can be counteracted by introducing coarse sediments. In this work the bed

roughness effect on the turbulence characteristics of the flow is investigated

through the relative submergence parameter ∆, which is the ratio between the

roughness characteristic dimension and the water depth. Most of the theories

and literature works has been developed for smooth-wall flows and rough-bed

flows at very high relative submergence, whereas its applicability in OCFs

with low relative submergence remains questionable; the simplest example is

the velocity distribution (i.e., the universal logarithmic law). This thesis aims

at improving the knowledge of turbulence structure developed over a highly
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rough bed in OCFs by varying the relative submergence. According to the

relative submergence definition given before, it can be changed by modifying

the water depth for a fixed roughness or varying the roughness keeping the

water depth constant. The choice settled on the second strategy, because of

the measurement instrument configuration. It will be described in detail in the

chapter “Experimental equipment and procedures”. The relative submergence

varied in the range from 3.13 to 10.07. Three long-duration experiments

(each one with a given coarse sediment size) were performed in uniform flow

conditions by using a 100 Hz ADV down-looking probe, in order to record

the 3D velocity vector in each point of a given grid of measurements. The

contribution of the Reynolds stress, the viscous and the form-induced shear

stress was analysed, as well as the averaged velocity profiles, second- and

third-order moments .

A statistical tool will be proposed to verify the frozen-in Taylor hypothesis

by comparing two typical time-scales, namely the large scale advection time

and the characteristic nonlinear time. The proposed method based on the

characteristic eddies timescales is more restrictive with respect to the classic

frozen-in Taylor hypothesis, in which a simple comparison of the flow velocity

and the fluctuation magnitude is made.

Furthermore, one-point temporal correlations analysis will be performed

in order to give a first indication of the integral scales lengths along the

channel varying the relative submergence.

Spectral analysis is introduced both in the frequency and in wavenumber

domain. In experimental practice it is quite hard to obtain direct measures,

which can allow computing directly a wavenumber spectrum. Temporal

velocity signals are commonly recorded in a single point, and they are used to

compute the frequency spectrum and then converted to wavenumber spectrum
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through the Taylor frozen-in hypothesis. Hence, the k−5/3 slope is investigated

in the longitudinal velocity spectra. k is the wavenumber.

Spectral analysis will be introduced in order to test the observed k−5/3

slope, in order to confirm that the inertial subrange is well visible at the

investigated Re numbers. Furthermore, the validity of the −5/3 scaling region

will be also tested by using the third-order longitudinal velocity structure

function, which is expressed as a function of the turbulent kinetic energy

(TKE) dissipation rate.

The third-order longitudinal velocity structure function will be also used

to provide an estimate of the magnitude of the TKE dissipation rate.

In addition, in order to quantify the energy contribution of different eddy-

scales, premultiplied spectra will be employed. Thanks to this analysis, the

Large Scales (LSs) and the Very Large Scale (VLSs) will be investigated.

These scales will be associated with a characteristic wavenumber and inten-

sity.

ADV velocity measurement also allows exploring the longitudinal-vertical

velocity co-spectra.

In order to locate the normalized wavenumber associated with the peak in

the premultiplied spectra, a systematic procedure to find the correct position

of the peaks based on the center of mass concept will be proposed. Moreover,

the peak distribution over the water depth will be plotted in inner and outer

coordinates.





Table of contents

List of figures xvii

List of tables xxiii

List of Symbols xxv

1 Introduction 1

2 Theoretical background 7
2.1 Turbulence phenomena in rivers . . . . . . . . . . . . . . . 7

2.2 Time averaged equations . . . . . . . . . . . . . . . . . . . 8

2.2.1 Navier-Stokes equation . . . . . . . . . . . . . . . . 9

2.2.2 Vorticity equation . . . . . . . . . . . . . . . . . . . 12

2.2.3 Reynolds-Averaged Navier-Stokes (RANS) equation 16

2.3 Double-Averaged equations . . . . . . . . . . . . . . . . . . 20

2.3.1 DAM equations . . . . . . . . . . . . . . . . . . . . 23

2.3.2 Stress term decomposition . . . . . . . . . . . . . . 24

2.3.3 Double-Averaged continuity equation . . . . . . . . 25

2.3.4 Double-Averaged Navier-Stokes (DANS) equations . 26

2.3.5 Double-Averaged shear stress . . . . . . . . . . . . 26

2.4 Mean velocity distribution . . . . . . . . . . . . . . . . . . 28



xiv Table of contents

2.4.1 Logarithmic layer . . . . . . . . . . . . . . . . . . . 30

2.4.2 Outer layer . . . . . . . . . . . . . . . . . . . . . . 31

2.4.3 Interfacial sublayer . . . . . . . . . . . . . . . . . . 31

2.5 Scales in river flow . . . . . . . . . . . . . . . . . . . . . . 31

2.5.1 Stochastic processes . . . . . . . . . . . . . . . . . 32

2.5.2 Taylor frozen-in hypothesis . . . . . . . . . . . . . 37

2.5.3 Taylor microscale . . . . . . . . . . . . . . . . . . . 39

2.5.4 Kolmogorov hypothesis . . . . . . . . . . . . . . . 40

2.5.5 Richardson energy cascade concept . . . . . . . . . 43

2.5.6 Energy spectrum in turbulence . . . . . . . . . . . . 49

2.5.7 Large scales . . . . . . . . . . . . . . . . . . . . . . 55

3 Experimental equipment and procedure 61
3.1 Flume description . . . . . . . . . . . . . . . . . . . . . . . 61

3.2 Flow rate measurement . . . . . . . . . . . . . . . . . . . . 63

3.3 Bed surface acquisition . . . . . . . . . . . . . . . . . . . . 64

3.4 Roughness geometry function . . . . . . . . . . . . . . . . 67

3.5 Velocity measurements . . . . . . . . . . . . . . . . . . . . 70

3.5.1 Velocity Data Despking . . . . . . . . . . . . . . . 75

3.6 Flow conditioning . . . . . . . . . . . . . . . . . . . . . . . 76

3.7 Measuring grids . . . . . . . . . . . . . . . . . . . . . . . . 80

3.8 Experimental campaign . . . . . . . . . . . . . . . . . . . . 82

4 Bulk statistics 87
4.1 Momentum balance . . . . . . . . . . . . . . . . . . . . . . 88

4.1.1 Shear velocity . . . . . . . . . . . . . . . . . . . . . 90

4.2 Mean velocity profiles . . . . . . . . . . . . . . . . . . . . 92

4.3 Outer layer similarity hypothesis . . . . . . . . . . . . . . . 98

4.3.1 Turbulent intensity . . . . . . . . . . . . . . . . . . 98



Table of contents xv

5 Large scales in OCFs and influence of relative submergence 101
5.1 Validity of the Taylor frozen-in hypothesis . . . . . . . . . . 102

5.2 Integral Length Scale . . . . . . . . . . . . . . . . . . . . . 104

5.3 Spectral Analysis . . . . . . . . . . . . . . . . . . . . . . . 107

5.3.1 The 4/5 law of turbulence . . . . . . . . . . . . . . 110

5.4 Premultiplied Spectra . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions 131
6.1 Future Investigations and Engineering Applications . . . . . 136

6.1.1 Velocity Scale . . . . . . . . . . . . . . . . . . . . . 136

6.1.2 Drag Force . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 139

Appendix A Velocity Data 153





List of figures

1.1 Example of erosion protection through coarse-sediments coat-

ing in Crespiano Comunita Montana Lunigiana, Tuscany, Italy 3

2.1 vortex stretching propagation; (a) pure x-direction stretching;

(b) tilting stretching vortex . . . . . . . . . . . . . . . . . . 15

2.2 Reynolds variables decomposition . . . . . . . . . . . . . . 16

2.3 Distribution of flow energy with time and spatial scales in

river taken from Franca and Brocchini [50]. . . . . . . . . . 33

2.4 Time correlation of two variables . . . . . . . . . . . . . . . 36

2.5 Space correlation time of two variables . . . . . . . . . . . . 37

2.6 Distortion process of a vortex which drift in a measurement

point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.7 Graphic interpretation of Taylor microscale, the solid lines

represent the correlation function versus a distant r and the

dashed line is the obscuring parable that defines the Taylor

microscale to the intersection with r axes. . . . . . . . . . . 39

2.8 Energy migrations through the scales . . . . . . . . . . . . . 45

2.9 Harmonics superposition in Fourier Analysis . . . . . . . . 50

2.10 Turbulent length scales . . . . . . . . . . . . . . . . . . . . 51

2.11 Energy flux through the scales . . . . . . . . . . . . . . . . 56



xviii List of figures

3.1 Flume details; (a) picture of the installation; (b) 3D flume

reconstruction. . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2 Laser scanner Vivid 300/VI-300, produced by Minolta. . . . 64

3.3 Schema of a sensor that operates on the basis of the principle

of similar triangles. . . . . . . . . . . . . . . . . . . . . . . 65

3.4 Operation of the Galvano mirror for emission of laser on

predetermined area. . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Details of the installation used to acquire the surface. . . . . 67

3.6 Beds sediment grains. . . . . . . . . . . . . . . . . . . . . . 68

3.7 Bed acquisition through laser scanner. In the left side figure

pebbles bed surface, in center of figure the coarse gravel and

in right side figure the gravel bed surface. . . . . . . . . . . 69

3.8 (a) pebbles bed geometry roughness function; (b) coarse

gravel bed geometry roughness function; (c) gravel bed ge-

ometry roughness function. . . . . . . . . . . . . . . . . . . 71

3.9 Acoustic Doppler Velocimetry. . . . . . . . . . . . . . . . . 72

3.10 Acoustic Doppler Velocimetry operation [14]. . . . . . . . . 73

3.11 ADV sampling volume dimensions and position. . . . . . . 74

3.12 Goring and Nikora [59] Phase-space plots for clean dataset

(left panels) and contaminated dataset (right panels). . . . . 77

3.13 Inlet detail . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.14 Free-stream turbulence spectra. . . . . . . . . . . . . . . . . 79

3.15 Example of measurement grid. . . . . . . . . . . . . . . . . 80

3.16 Measurement grid in Test 1.1 (a), Test 1.2 (b) and Test 1.3 (c) 81

3.17 Piezometers equipment used to measure the water surface slope. 84



List of figures xix

4.1 Shear stress in Test 1.1 (a); Test 1.2 (b) and Test 1.3 (c). N

represent the turbulent shear stress (Reynolds stress), � the

form-induced stress, • green circles the viscous shear stress

and −−− is the gravity line. . . . . . . . . . . . . . . . . . 89

4.2 Relation between the constant of proportionality κ and rela-

tive submergence hd/∆; black and white symbols are those

presented in Koll [78] in which open circles are related to

beads roughness elements, square for cubes roughness ele-

ments, triangles are related to gravel bed, stars symbol for

armour layer and open red circles are related to tests 1.1, 1.2

and 1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.3 Velocity profiles fitted using the Koll [78] procedure. Test 1.1

(•), test 1.2 (•) and test 1.3 (•) . . . . . . . . . . . . . . . . 96

4.4 Velocity profiles in inner coordinates (z+ = zu∗/ν) in test 1.1

(•), test 1.2 (•) and test 1.3 (•). . . . . . . . . . . . . . . . 96

4.5 Vertical turbulent transport, in test 1.1 (•), test 1.2 (•) and

test 1.3 (•). . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.6 Streamwise turbulent intensities vs ẑ. Test 1.1 (•), test 1.2 (•)
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Chapter 1

Introduction

“In rivers, the water that you touch is the last of what has passed

and the first of that which comes; so with present time.”

Leonardo da Vinci

River motion is one of the most attractive and fascinating phenomena in

nature. Since ancient times many scientists have been drawn into a vortex of

confusion observing river motion.

The first one to discover the turbulent nature of water flow in a river was

Leonardo da Vinci in a writing titled La Turbolenza (15th century). In this

essay, da Vinci splits the flow into two components: the former describes

the mean flow, the latter the chaotic movement of the fluid particles. This

approach sounds familiar to modern scientists. In fact, 400 years after da

Vinci, this idea was rediscovered by Reynolds at the end of the 19th century

and applied to the Navier-Stokes equations, giving rise to the most famous

approach in fluid dynamics.

A set of complex phenomena is always found in a natural watercourse.

Complex thalweg paths, complex cross-section geometry, vegetated paths,
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coarse sediment paths, structures interfering with water (such as bridge piers

or abutments): all these aspects make it very hard to predict the flow evolution.

The influence of the different hydraulic characteristics is often investigated

under controlled conditions in a laboratory, by changing each parameter and

keeping the others constant. Simplifications are adopted, i.e. complex thalweg

paths become straight in a flume, complex cross-section geometry is often

neglected in channels of regular cross-sections, varied flow is studied as

steady-uniform flow, the presence of structures interfering with the flow is

not considered, and the flume bed is compounded only by coarse sediments,

randomly but uniformly spread on the bottom, neglecting the presence of

cohesive sediments.

The present work is focused on the effect of highly rough beds on the

flow field and the relevant turbulent quantities. It is important to underline

the importance of rough beds in engineering practice, from environmental

engineering interventions (e.g., safeguarding of aquatic life) to sediment

transport phenomena, countermeasures against erosion and local scour (e.g.,

at bridge piers/abutments), many phenomena can be addressed by using coarse

sediments, as reported in Figure 1.1.

Researchers and engineers need mathematical tools in order to study

problems like turbulence. Many techniques were developed in the past, like

spectral analysis, which emerged in the 1930s from a regular correspondence

between Ludwig Prandtl and Geoffrey Ingram Taylor [30]. Spectral analysis

in the related Fourier space is still the most accredited technique to analyze

turbulent issues, like the energy cascade, which was formulated by Richardson

in the 1920s and later formalized by Kolmogorov in 1941 [50]. Anyway,

most of the physical discussions between Kraichnan [81] and Batchelor [10]

dealt also with the real space, which is an important and meaningful tool

of analysis in turbulence. In particular, Kármán–Howarth [31] derived the
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Figure 1.1: Example of erosion protection through coarse-sediments coating
in Crespiano Comunita Montana Lunigiana, Tuscany, Italy

structure function of order p, which was used by Kolmogorov [79] to derive

his 4/5 law [30].

The knowledge of the involved scales in rivers is also a fundamental

question. The wide range of turbulent eddies, present in a river, are large

coherent structures, which are commonly called energy containing scales.

These coherent structures arise in the bottom boundary layer, where a promi-

nent shear is present, and their generation is due to the interaction between

regions with different momentum [50]. Different scales are employed in the

mechanisms of sediment entrainment in river flows [126, 20]. For instance,

the knowledge of the energy amount through different scales (from larger

to smaller) can help to understand how they act on the Reynolds stress. In

addition, many efforts in the literature on wall turbulence in OCFs are related

to high relative submergence, whereas intermediate and low relative submer-

gence are still an open field of investigation. The present work is based on a

laboratory campaign aimed at investigating the effect of highly rough beds
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(or, better, relative submergence) on the characteristics of wall turbulence. In

particular, it is the intention to characterize the influence of bed roughness on

the generation, transport and dissipation of the energy process operated by

turbulence. Furthermore, a significant portion of the work will be dedicated

to detecting the characteristic scales of turbulence.

Hence, the aim of the thesis is to investigate the effect of a highly rough

bed, consisting of granular sediment particles (pebble and gravel), in terms of

relative submergence on the properties of turbulent OCFs, specifically:

1. to investigate the influence of the relative submergence on the validity of

classical paradigms of wall turbulence, such as the outer layer similarity

hypothesis by Townsend (1976) and the occurrence of the log-law of

the wall;

2. to investigate the dependence of large scale eddies on the relative sub-

mergence, in terms of both size and contribution to the TKE production

and momentum transport.

In order to achieve the above aims, Chapter 1 describes the state-of-the-

art review on turbulence, starting from the Navier-Stokes (NS) equations,

the Reynolds-averaged Navier-Stokes (RANS) equations and the Double-

Averaging Method (DAM) to the turbulence characteristics in both real space

(Kolmogorov’s 4/5 law of turbulence, from which the TKE dissipation rate is

assessed) and Fourier space (Kolmogorov’s -5/3 law of turbulence, scales of

motion). Chapter 2 illustrates the laboratory experiments in which the detailed

turbulence measurements were carried out for different relative submergences

in turbulent OCFs. Chapter 3 presents preliminary results of the experiments.

First of all, the uniform flow condition is verified through the momentum

balance, as well as the outer layer similarity hypothesis by Townsend (1976)

and the non-occurrence of the log-law of the wall. Chapter 4 presents the
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results of the experiments about turbulent analysis. In particular, the Taylor

frozen-in approximation is validated through a new statistical tool developed

on purpose. Once the Taylor hypothesis is verified, a systematic spectral

analysis is proposed. The first step is to identify the inertial subrange, where

Kolmogorov’s -5/3 law is tested and in which Kolmogorov’s 4/5 law is used

to compute the TKE dissipation rate. Spectral analysis, in premultiplied form,

is extended to all the velocity components, including co-spectra, in order to

investigate the dependence of the turbulence scales on the relative submer-

gence. A new method is proposed to locate the peaks in the premultiplied

spectra and the analysis is carried out to identify the contribution of LSs and

VLSs to the TKE and turbulent momentum transport, by varying the relative

submergence within a range of values that are typical of gravel bed flows.





Chapter 2

Theoretical background

“I am an old man now, and when I die and go to heaven

there are two matters on which I hope for enlightenment.

One is quantum electrodynamics, and the other is

the turbulent motion of fluids.

And about the former I am rather optimistic.”

Horace Lamb

2.1 Turbulence phenomena in rivers

To date, two large classes of flow are recognized, laminar flow and turbulent

flow. Laminar flow is characterized by the regularity and predictability of the

streamlines. A main feature of laminar flow is motion organized in immiscible

layers. It occurs at relatively low flow velocity. This kind of flow does not

commonly occurs in rivers, which most often show a turbulent motion nature.

Turbulent flow is a mixture of streamlines that have a chaotic motion,

which includes continuous impacts of the fluid particles. This motion is more

complex than the laminar one and the chaotic nature of the turbulence gener-
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ates an unpredictable pattern. The first step to define the motion univocally

was made by Reynolds [118], who found a dimensionless group, “Re”, which

relates the inertial forces to the viscous forces (see below). This parameter

establishes whether the flow is in laminar condition, for Re < 103 (viscous

forces prevails over inertial forces), or it becomes turbulent, for Re > 106 (in-

ertial forces prevails over viscous forces). This dimensionless group is known

as the Reynolds number. Inertial forces are characterized by the product of

the density ρ times the mean velocity ū times the gradient of the velocity

dū/dz. Viscous forces are characterized by the kinematic viscosity coefficient

µ times the second gradient of the velocity d2ū/dz2. The Reynolds number

Re then becomes

Re =
ρ ū
µ

dū/dz
d2ū/dz2 ,

Replacing the velocity gradient with the proportional quantities dū/dz ∝ ū/l

and d2ū/dz2 ∝ ū/l2. Then

Re =
ρ ū
µ

ū/l
ū/l2 ,

obtaining:

Re =
ρ ūl
µ

. (2.1)

High Reynolds numbers indicate that inertial forces prevail over viscous

forces and the flow can be considered inviscid. On the other hand, low

Reynolds numbers confirm an important role of viscous forces.

2.2 Time averaged equations

As a first step, before dealing with relevant equations, a clarification on the

continuum hypothesis is needed. Pope [115] demonstrates that, in almost all
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the applications in fluid dynamics, the typical time-scales and length-scales

allow the continuum hypothesis to be considered as correct. In the next

sections, the Navier-Stokes (NS) equation will be presented. It provide the

description of the rate of change of momentum of a certain mass of fluid

under the action of a system of external forces [9]. They will be completed

by the continuity equation (mass-conservation equation). A further equation

will be found applying the vector operator curl to the NS equation to obtain

the vorticity equation.

2.2.1 Navier-Stokes equation

The NS equation is universally recognized to describe the momentum balance

of all fluid flows according to the continuum hypothesis. They are a general-

ization of Euler’s equation, which is derived for an ideal and inviscid fluid

and describe a fluid system characterized by density ρ(x, t), velocity u(x, t)
and pressure p(x, t); at given position (x) and time (t).

Here, the NS equation is presented in a tensorial form, which is valid for

an incompressible Newtonian fluid characterized by an inability to support

shear stresses. In other words, the viscosity effects are introduced in Euler’s

equations.

ρ
∂u
∂ t

=−ρu∇u−∇p+ρf+ρν∇
2u (2.2)

where the gradient is represented by the symbol ∇, ∇2 is the Laplacian

operator given by the divergence of the gradient of a function and f is an

external force system.

In equation 2.2, a deterministic character can be observed. How can NS

equation describe a turbulent motion which is, conversely, a chaotic motion?

This oddity was resolved by Lorentz in 1963, who demonstrated how a

nonlinear equation system can suffer from imperceptible perturbations in the
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initial conditions to the extent of producing very different solutions [115]. It is

possible to manipulate the equation 2.2 in order to make some considerations

about the evolution of kinetic energy over time and, consequently, about the

effect of the individual terms. According to the definition of kinetic energy

(K) of an incompressible fluid in a control volume V

K =
1
2

ρ

∫
V

u ·udV, (2.3)

and its time derivative
dK
dt

= ρ

∫
V

u · ∂u
∂ t

dV, (2.4)

multiplying the equation 2.2 by u and using the continuity equation definition

∇ ·u, the kinetic energy variation over time is recognizable at the right hand

side (rhs) of equation 2.2

∂K
∂ t

=
∫

V

[
−ρu∇(uu)−u∇p+ρuf+µu∇

2u
]

dV. (2.5)

Some of the terms of equation 2.5 can be rewritten, using again the continuity

as

u∇(uu) =
1
2

∇

(
u |u|2

)
,

u∇p = ∇ · (pu) ,

u∇
2u = ∇ ·∇(u ·u) .

(2.6)

Applying the divergence theorem (or Gauss’s theorem), after some mathemat-

ical derivations and considering that the velocity is zero at the control volume
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edge, the following result is achieved

dK
dt

=
∫

V
ρf ·udV −

∫
V

ρν |∇u|2 dV, (2.7)

in which the last term of equation 2.7 contains the definition of the energy

dissipation of kinetic energy in the unit mass

ε = ν |∇u|2 dV. (2.8)

The integral form of the kinetic energy equation 2.7 shows a dependence of

the volume force and viscous force, leaving no trace of the pressure field

or the non-linear term. In other words, the presence of the pressure and

convective derivative does not operate on the global budget of kinetic energy,

but their presence in the differential equations 2.2 suggests a role in the energy

transfer only.

Considering a (statistically) stationary flow, in equation 2.7 the term

dK/dt becomes 0 obtaining that
∫

V ρf ·udV =
∫

V ρεdV . Namely, the energy

produced by the system is dissipated proportionally to the fluid viscosity.

Although it can be asserted that viscosity is not a predominant phenomenon

in a turbulent flow (i.e, at high Reynolds numbers), according to the last

sentence and the experimental evidences, the kinetic energy is kept constant

through the viscosity. This statement suggests that a turbulent flow is also a

strongly dissipative motion.

The explanation resides in the scales of motion involved. The energy,

extracted at the energy containing scale, is transferred towards a smaller scale

until it becomes so much smaller that it is comparable to the viscous scales.

Finally, according to the equation 2.7, the energy transferred to the viscous

scales can be dissipated, maintaining the system in equilibrium.



12 Theoretical background

A further comment about the NS equation is related to the pressure field.

According to Davidson [29] the pressure p can be matched with the velocity

vector thanks to its solenoidal nature. This relationship is summarized as

p(x) =
ρ

4π

∫
[∇ · (u ·∇u)]′

|x−x′|
dx′. (2.9)

In his book, Davidson [29] highlights that p is no-local in an incompressible

fluid, where the pressure travels infinitely fast. Taking into account a space-

bounded motion like an “eddy” located in x, it sends out pressure waves,

which are felt everywhere in space. Hence, “every part of a turbulent flow

feels every other part and this means that eddies which are spatially remote

can interact with each other” [29]. The main implication of this view is the

fact that the velocity vector u have no spatial size (it is not localized in a finite

space), whereas the turbulent eddies have a definite size. A typical eddy size

will be introduced; thus, a new quantity, instead of u, needs to be defined.

Hence, the vorticity field ω = ∇×u, which is localized in space, is preferred

over the u, which instead can be instantaneously redistributed throughout

space by the pressure field [29].

2.2.2 Vorticity equation

The energy cascade concept, treated below, foresees an interaction through a

vortex set of different dimensions. The Kelvin theorem [72] suggests that a

potential flow, with negligible viscous effects, in a conservative force field

and isotropic pressure field will remain indefinitely irrotational. Last sentence

suggests that a non-swirling flow cannot be a turbulent motion. It is also

useful to introduce vorticity and the concept of energy cascade.
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The vorticity field is defined by

ω = ∇×u. (2.10)

The vorticity equation is a form of evolution equation, which is simpler than

NS equation. Although u, ω cannot be created or destroyed in a control

volume, it is transferred throughout the flow field through advection and

diffusion. Thus, the term “eddy” in a turbulent flow denotes a blob of vorticity

and its associated rotational motion [29].

Applying equation 2.10 to equation 2.2, it can be rearranged in the form

∂u
∂ t

= u×ω −∇C+ν∇
2u, C =

p
ρ
+

u2

2
(2.11)

where C is Bernoulli’s function which is identically equal to

∇

(
u2

2

)
= (u ·∇)u+u×ω (2.12)

applying the curl to equation 2.11 and recalling

∇× (u×ω) = (ω ·∇)u− (u ·∇)ω

the vorticity equation is obtained

Dω

Dt
= (ω ·∇)u+ν∇

2
ω (2.13)

in which the first term in the right hand side (rhs) is the vortex stretching.

Some extra comments on the vortex stretching phenomenon can lead to

two important aspects of turbulent flows, like Reynolds stress distribution and

a first introduction of the Kolmogorov scale.
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In general, coherent structures need a shear to maintain their energy and

the most energetic eddies are those that can absorb energy from the shear flow.

These vortexes are those which can rotate faster. The experimental evidence

of this process is given by the quadrant analysis, which links the higher values

of Reynolds stress in zones where the vortex stretching is larger (ejection

and sweep regions). Taking into account the following term in streamwise

direction x

(ω ·∇)u · x = ωx
∂ux

∂x
+ωy

∂ux

∂y
+ωz

∂ux

∂ z
. (2.14)

The first term in the rhs describes the vortex stretching and considering valid

the conservation of angular momentum, the rotational velocity will increase

and consequently the vorticity will increase. This process is due to the velocity

gradient in x-direction (figure 2.1 a). The latter two terms describe the rotation

of the vortex in the remaining direction: this process is called vortex tilting.

Furthermore, vortex tilting tends to align a vortex which has, for instance,

only ωz to the velocity gradient dū/dz. After some time, this process will

convert part of ωz in a streamwise vorticity component, say ωx (figure 2.1

(b)).

Taking into account Figure 2.1(a) having only ωx ̸= 0 and applying the

time derivation of the non-viscous term of equation 2.13, the follow equation

is obtained
∂ωx

∂ t
= αωx ⇒ ωx (t) = ωx (0)eαt (2.15)

which reveals an exponential increase. The α exponent is the eigenvalue of

the correlated eigenvector x. Figure 2.1(a) suggests that there is a link between

the diameter reduction of the tube and the vorticity increment, namely a scale

reduction.

This scale reduction is infinite and theoretically can reach the molecular

scales. Anyway, to respect the continuum hypothesis for which equation 2.15
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(a) (b)

Figure 2.1: vortex stretching propagation; (a) pure x-direction stretching; (b)
tilting stretching vortex

has been developed, the viscous term in equation 2.13 has to compensate the

scale reduction.

This equilibrium is translated into a process in which the vorticity incre-

ment is balanced by the radial diffusion. It is a stationary process in Burgers

vortex [54], in which the vortex radius is

rB =

√
ν

ω ′ ; (2.16)

where ω ′ is the rms of the vorticity fluctuation, thus

ω
′ =

√
ε

ν
⇒ rB =

(
ν3

ε

)1/4

(2.17)

which is defined as Kolmogorov scale.
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2.2.3 Reynolds-Averaged Navier-Stokes (RANS) equation

Averaging the Navier-Stokes equations over the realization/time/space after

application of Reynolds decomposition where a generic turbulent flow vari-

able can be divided in a turbulence-averaged component and a fluctuating

component [50]. Although several researchers have presented different forms

of the Reynolds-Averaged Navier-Stokes (RANS) equations [113, 105], to

the purpose of this section the time-averaged approach is considered. Hence,

the Reynolds decomposition is the first stage to account the fluctuation of

the variables due to turbulence . Taking into account a temporal series like

a velocity signal, it can be divided into two components, a mean velocity ū

and a fluctuation u′, provided it is long enough to assert that the phenomenon

can be considered ergodic. This idea was applied in hydraulics by Osborne

Reynolds in 1883 [118] (see figure 2.2).

Figure 2.2: Reynolds variables decomposition

The instantaneous value of velocity u(t) can be written as

u(t) = ū+u′ (2.18)

where t is time. A statistical approach to turbulence is contained in this simple

concept. An important issue in turbulence is conjugate variables (joint random

variables). A simplest example of these are Cartesian components of velocity
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in a generic velocity vector. Leaving aside the statistical analysis of a single

variable, one can take into account the statistical behavior of two (or more)

variables ( f and g) and try to extrapolate important information. Applying

the mean, which is a linear operator, to another linear operator like sum, it

is obtained f +g = f̄ + ḡ; the mean of a constant multiplied to the variable

is a f = a f̄ ; the mean of the mean value is ¯̄f = f̄ and again the mean of an

averaged variable multiplied to another variable is f̄ ḡ = f̄ ḡ. As regards the

derivative operator, the mean produces ∂ f
∂x = ∂ f̄

∂x , where x = (xi, t) and xi is

the direction (x1 = x, x2 = y, x3 = z).

The previous statistical properties of the mean operator will be useful in

the next sections, where a statistical approach of the theory of turbulence is

presented. As highlighted in Davidson [29], any theory of turbulence has

to be a statistical one. Taking into account a velocity signal registered in a

set of controlled experiments, with identical conditions, identical statistical

properties are shown even though the signals will appear different. This is true

owing to the imperceptible variations of the boundary and initial conditions;

these variations will be amplified in the velocity signal.

Owing to the fluctuating nature of the velocity and then of the motion

of the fluid particles, a very high uncertainty is introduced in the following

equations, justifying the use of a statistical approach.

The NS equation presents an extreme detail in terms of scales. Namely, the

NS equations can solve the entire flow field from the biggest to the smallest

scale motions; this detail requires a huge processing power to reach a solution

in a reasonable time using a direct method of computational mathematics.

Furthermore, the knowledge of the average value of the generic variable is

enough for most engineering applications.

A variable-like velocity is therefore split into two components: its average

value and the fluctuations around it, as specified in equation 2.18. In equation
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2.18 the mean is defined as

ū = lim
T→+∞

1
T

∫ T

0
u(t)dt, (2.19)

and the fluctuations

u′ (t) = u(t)− ū, (2.20)

hereinafter, u(t) = u, u’(t) = u’.

Before exploring the RANS equations, it is useful to see the effect of the

Reynolds decomposition on the following instantaneous continuity equation

∇u = ∇
(
ū+u′)= 0 ⇒ ∇ū = 0,∇u′ = 0. (2.21)

where the latter relation is the instantaneous continuity equation.

Applying Reynolds decomposition to the NS equation

∂u
∂ t

+∇ · (uu) =− 1
ρ

∇p+ν∇
2u, (2.22)

in which

∂u
∂ t

=
∂ ū
∂ t

+
∂u′

∂ t
, ∇p = ∇p̄+∇p′, ∇

2u = ∇
2ū+∇

2u′. (2.23)

the non-linear term in equation 2.22 is decomposed as follows

∇·(uu)=∇·
[(

ū+u′)(ū+u′)]=∇·(ūū)+∇ ·
(
ūu′)+∇ ·

(
u′ū
)
+∇·

(
u′u′) ,

(2.24)

knowing that ∇ ·
(
ūu′
)
= ∇ ·

(
u′ū
)
≡ 0 is obtained

∂u′

∂ t
+∇ · (ūū)+∇ ·

(
u′u′

)
=− 1

ρ
∇p̄+ν∇

2ū. (2.25)
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The non-zero second-order u′u′ or higher statistical moments are a track of a

turbulent flow. Davidson [29] highlights that u′u′ is not a true stress, but it

represents the mean momentum fluxes induced by turbulence. In other words,

using the u′u′ tensor the effect of turbulence on the stress can be captured.

Franca and Brocchini [50] states that in the instantaneous NS equation

new terms related to the fluctuations, which appear in the momentum equa-

tion, introduce non-linearity. In particular, the term ∇ · u′u′ contains the

indeterminacy of the RANS equations. Namely, the NS equation is formally

a closed system, whereas the RANS equations are made up of 4 equations,

which contain 13 unknown variables (u, p and the second-order tensor u′u′).

This indeterminacy is known in the literature as the closure problem.

Trying to solve it, one can get a new equation for fluctuations. Hence,

subtracting equation 2.25 from equation 2.22

∂u′

∂ t
+∇ ·

(
u′u′)+∇ ·

(
ūu′)+∇ ·

(
u′ū
)
−∇ ·

(
u′u′

)
=− 1

ρ
∇p̄′+ν∇

2u′,

(2.26)

which has to be multiplied by u′; applying an averaging operator and summing

it to its transpose equation, after some algebraic passages, it is obtained

∂u′u′

∂ t︸ ︷︷ ︸
1

+ ū ·∇u′u′︸ ︷︷ ︸
2

+u′u′ ·∇u︸ ︷︷ ︸
3

+
[
u′u′ ·∇ū

]T︸ ︷︷ ︸
4

+∇ ·u′u′u′︸ ︷︷ ︸
5

=

− 1
ρ

[
u′∇p′+u′∇p′

T
]

︸ ︷︷ ︸
6

+ν

[
u′∇2u′+u′∇2u′T

]
︸ ︷︷ ︸

7

. (2.27)

The main point is that in equation 2.27 a triple correlations term arose (u′u′u′).

A new equation can be found for the triple correlations term, using the same

process, but a further fourth-order correlation term like u′u′u′u′ is found
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triggering a never-ending process. This procedure highlights the closure

problem of turbulence.

Equation 2.27 can be still interpreted from the physical point of view,

where terms 1 and 2 can be seen as a material derivative, whilst terms 3

and 4 represent the interaction between the Reynolds stress and the flow

field. Terms 3 and 4 are equal to zero in the case of isotropic turbulence and,

conversely, they set the production of the Reynolds stress in zones where a

velocity gradient is present (like wall layer). Term 5 is the momentum transfer

operated by the fluctuations u′ in the relative Cartesian directions. Term 6

describes the interaction between pressure and velocity fields. The latter term

7 is the dissipation of turbulent fluctuation through the viscous effects.

2.3 Double-Averaged equations

In aerodynamics, like canopy flows, the spatially-averaging approach has

been used since the 1970s [144, 117, 47, 48]. Recently, the Double-averaging

Method (DAM) was also used in porous media hydrodynamics for describ-

ing high Reynolds number flows [4, 103, 33, 111, 66, 32] and in order to

model flows between rough surfaces in sliding motion [116]. The DAM is

obtained by applying the spatially-averaging approach to time-averaged vari-

ables. Double-average equations can be obtained applying the time-average

to spatially-averaged variables [4, 33, 32]. Another way to obtain double-

averaged equations was drawn by Wilson and Shaw [144], Raupach and

Shaw [117], Finnigan [47], Giménez-Curto and Lera [58]. They took the

RANS equations, which are already time-averaged, and applied the spatially-

averaging. Nikora et al. [110] stated that this second way is physically more

transparent and supported by several experimental campaigns differently from

space-time averaging which is strong experimental supported.
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Monin and Yaglom [99] defined the spatially-averaging operation as a

convolution integral, which has the physical meaning of an average in the

appropriate space or volume [47]. The use of volume is preferred, as it is

easily measurable in tests. Considering a generic flow variable in time and

space, Nikora et al. [107] defined the following equation

⟨θ⟩(x,y,z, t) = 1
Vf

∫
V f

θdV (2.28)

⟨θ⟩s (x,y,z, t) =
1

V0

∫
V f

θdV (2.29)

where θ is the flow variable in the space of the bed occupied by the fluid, the

angle brackets denote the spatial average in the volume, x, y and z are the

three Cartesian coordinates, t is time, Vf the volume occupied by fluid within

a fixed region, V0 the total volume and ⟨θ⟩s = φs ⟨θ⟩, where φs =Vf /V0 is the

roughness geometry function or porosity in the case of permeable bed [107].

Slattery [129] defines the equation 2.28 as intrinsically spatially-averaged and

the equation 2.29 as superficially spatially-averaged. In the following part of

the text, the equations will be written only in the intrinsic spatially-averaged

form, keeping in mind that they can be easily converted into superficially

spatially-averaged form.

Two theorems are available to obtain the double-averaged variables in the

rough-bed flow region [110]. The two following formulae have been derived

from the transport theorem and the Gauss theorem, respectively〈
∂θ

∂ t

〉
=

1
φs

∂φs ⟨θ⟩
∂ t

+
1

Vf

∫ ∫
Sint

θv ·ndS (2.30)
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〈
∂θ

∂xi

〉
=

1
φs

∂φs ⟨θ⟩
∂xi

+
1

Vf

∫ ∫
Sint

θnidS (2.31)

where Sint is the extension of the water-bed interface bounded by the averaging

domain, v the velocity in proximity to the bed-surface, n the normal unit vector

directed towards the bed surface, xi the ith direction (with i=1, 2, 3 for x,y,z,

respectively) and ni the ith component of n; angle brackets again denote

spatially-averaged instantaneous values.

In the case of a fixed bed, the bed-surface velocity is zero and in equation

2.30 the instantaneous variable is replaced with the time-averaged variable

[110]. On the other hand, in mobile bed surfaces Nikora et al. [110] proposed

the Gray and Lee [60] volume-averaged approach extended to time-space

averaging as follows〈
φt

∂θ

∂ t

〉
=

1
φs

∂φs
〈
θ̄
〉

∂ t
+

1
Vf

∫ ∫
Sint

θv ·ndS
S

(2.32)

〈
φt

∂θ

∂xi

〉
=

1
φs

∂φs
〈
θ̄
〉

∂xi
+

1
Vf

∫ ∫
Sint

θnidS
S

(2.33)

where φt = Tf /T0 is the time function (in analogy with the roughness geom-

etry function), T0 the total averaging time (e.g., in the case of solid particle

movement this time includes the period in which the space point is occupied

by solid particles), Tf the averaging time interval (the period in which the

space point is occupied by fluid only) and θ̄ S = φS ⟨θ⟩, where the overbar

denotes time-averaged values. In the case of coarse gravel beds, the bed

geometry is almost fixed or changes slowly over time. In this case, T0 and V0

can be considered as constants, with φt = 1 and v = 0. Equations 2.32 and
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2.33 are modified in the following way:〈
∂θ

∂ t

〉
=

1
φs

∂φs
〈
θ̄
〉

∂ t
(2.34)

〈
∂θ

∂xi

〉
=

1
φs

∂φs
〈
θ̄
〉

∂xi
+

1
Vf

∫ ∫
Sint

θ̄nidS (2.35)

Below, it is possible to see how the DAM acts on the equations of fluid

dynamics and their terms. Moreover, the DAM can be applied to several

analyses, in order to characterize the behavior of a rough-bed flow.

2.3.1 DAM equations

Hereinafter, the Einstein notation (or Einstein summation convention) will be

adopted. Properties resulting from the DAM have been previously introduced.

In fact, procedures available in time-averaging are also applicable to space-

averaged variables, operating a decomposition of the variables with respect to

time and space.

According to the previous section, a generic fluid dynamics equation can

be derived in both time-space and space-time, obtaining the same result in

both cases [111]. Square brackets and straight overbar denote spatial and

temporal averages, respectively, whereas deviations from the spatial and

temporal average are identified by tilde overbar and prime, respectively.

Pedras and de Lemos [111] identified the primary time decomposition

as ui = ūi +u′i, where ui is the instantaneous velocity, as before the overbar

denotes the time-averaged velocity (ū) and the related velocity fluctuation u′i;

the subscript i indicates the velocity component in the ith direction. The pri-

mary space decomposition is ui = ⟨ui⟩+ ûi, where ⟨ui⟩ is the space-averaged
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velocity in the xi direction and ûi is the spatial fluctuation of velocity. In

addition, it is possible to perform a second decomposition in time-space:

u′i = ⟨u′i⟩+u′′i ,ûi = ũi +u′′i , or in space-time: ⟨ui⟩= ⟨ui⟩+ ⟨ui⟩′, ûi = ũi +u′′i .

Using the property for which the spatial average of the u-fluctuation is equal

to the fluctuation of the spatial average of u, the following relationship is

obtained [114]

ui = ⟨ūi⟩+ ũi +
〈
u′i
〉
+u′′i (2.36)

where ⟨ūi⟩ is the double-averaged velocity in the xi direction, ũi the spatial

fluctuation of time-averaged velocity, ⟨u′i⟩ the spatially-averaged velocity

fluctuation and u′′i the spatial variation in the velocity fluctuation.

2.3.2 Stress term decomposition

As is well-known, the DAM produces additional terms in the NS equation, as

a combination of velocity components averaged in time and space [107]. The

non-viscous fluid stress can be expressed as follows

〈
uiu j

〉
= ⟨ūi⟩

〈
ū j
〉
+
〈
ũiũ j

〉
+
〈

u′iu
′
j

〉
(2.37)

with j =1, 2, 3; using the space-time averaged properties of the variables

shown previously, one can obtain

〈
uiu j

〉
= ⟨ui⟩

〈
u j
〉
+ ⟨ui⟩′

〈
u j
〉′
+
〈
ûiû j

〉
(2.38)

In the case of fixed bed or slowly changing bed topography, commutative

properties can be used: ⟨ui⟩= ⟨ūi⟩ and ⟨ui⟩′
〈
u j
〉′
=
〈
u′i
〉〈

u′j
〉

. Using equa-

tions 2.37 and 2.38, Nikora et al. [110] and Pokrajac et al. [114] highlighted

how time/space and space/time averaging and decomposition approaches lead
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to the same result

〈
ũiũ′j

〉
+
〈

u′iu
′
j

〉
=
〈
u′i
〉〈

u′j
〉
+
〈
ûiû j

〉
(2.39)

where in the left hand side (lhs) there is a sum of form-induced (or dispersive)

stresses
〈
ũiũ j

〉
and space-averaged Reynolds stresses

〈
u′iu

′
j

〉
, whereas in the

rhs there are large scale contributions of the Reynolds stresses
〈
u′i
〉〈

u′j
〉

and

the time-averaged correlations of spatial fluctuations
〈
ûiû j

〉
.

2.3.3 Double-Averaged continuity equation

The double-averaged continuity equation is〈
∂ρ

∂ t
+

∂ρui

∂xi

S〉
S

= ρ
∂φs

∂ t
+ρ

∂φs ⟨ūi⟩
∂xi

= 0 (2.40)

where ρ is the fluid density, which is constant for an incompressible fluid

(∂ρ/∂ t = 0) and ui is the ith component of the velocity vector.

2.3.4 Double-Averaged Navier-Stokes (DANS) equations

A double-averaged version of the Navier-Stokes equations is found in Nikora

[104]. Equations 2.41 were derived from the Navier-Stokes equation by

applying double-averaging theorems 2.34 and 2.35 to each term of the RANS

equation 2.27; in addition, instantaneous velocity decomposition shown in
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equation 2.36 and stress-term decomposition in equation 2.39 were used.

∂ ⟨ūi⟩
∂ t︸ ︷︷ ︸
1

+
〈
ū j
〉 ∂ ⟨ūi⟩

∂x j︸ ︷︷ ︸
2

= gi︸︷︷︸
3

− 1
ρφs

∂φs ⟨p̄⟩
∂xi︸ ︷︷ ︸

4

− 1
φs

∂φs
〈
ũiũ j

〉
∂xi︸ ︷︷ ︸
5

− 1
φs

∂φs

〈
u′iu

′
j

〉
∂x j︸ ︷︷ ︸
6

+
1
φs

∂

∂x j
φs

〈
ν

∂ui

∂x j

〉
︸ ︷︷ ︸

7

+
1

ρ ⟨φt⟩Vf

∫ ∫
Sint

pnids
S

︸ ︷︷ ︸
8

− 1
⟨φt⟩Vf

∫ ∫
Sint

ν
∂ui

∂x j
n jds

S

︸ ︷︷ ︸
9

.

(2.41)

The first and second terms of equation 2.41 are the local (or temporal) accel-

eration and the convective acceleration, respectively; the third term is gravity

(not subjected to the DAM, inasmuch the gravity field is constant); the fourth

term is the pressure gradient; the fifth term is the form-induced (or dispersive)

term; the sixth term is the space-averaged Reynolds stress; the seventh term

is the DA viscous fluid stress; the eighth and ninth terms represent the DA

pressure and viscous drag terms, respectively.

2.3.5 Double-Averaged shear stress

The DAM decomposition has implications on the shear stress definition as

well as in equation 2.41, where the sum of the fifth, sixth and seventh terms

can be enclosed in the total double-averaged shear stress in the streamwise

direction [57, 110, 90], as follows

⟨τ̄⟩=−ρ
〈
ũiũ j

〉
−ρ

〈
u′iu

′
j
〉
+ρν

∂ui

∂x j
(2.42)

where the first, second and third term of equation 2.42 are the corresponding

stress terms seen in equation 2.41. In fact, in the roughness layer a new term
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(form-induced term) arose to take into account the effects of the “form” of

the bed composed of a statistically chaotic distribution of roughness elements.

Manes et al. [90] observed how the Double-Averaged Reynolds Shear Stress

(DARSS) −ρ

〈
u′iu

′
j

〉
along the vertical axis is dominant in the outer layer

and in the logarithmic layer (if applicable), where it reaches its maximum

value before decreasing. In the near bed region, where the flow is influenced

by individual roughness elements, the DARSS decrement is compensated

in the roughness layer by the Form-Induced Shear Stress (FISS) −ρ
〈
ũiũ j

〉
and down to the roughness, very close to the solid surface, the Viscous Shear

Stress (VSS) ρν
∂ui
∂x j

. The same trends were found by Dey and Das [40], who

compared data sets by Nikora et al. [107], Mignot et al. [98], Sarkar and Dey

[123]: in these papers a damping was observed in the DARSS profile in cor-

respondence to the roughness layer, owing to a turbulence reduction partially

compensated by FISS and VSS. This particular behavior of the FISS profile

is useful also to delimit the form-induced sublayer in a thickness interested

by a non-negligible FISS value. In addition, Dey and Das [40], comparing

the aforementioned datasets, related the magnitude of the FISS increase with

the bed roughness increase through a greater velocity fluctuation
〈
ũiũ j

〉
. This

finding confirmed the results by Aberle et al. [2], who asserted that the FISS

vertical distribution is governed only by bed roughness characteristics.

The bed roughness characteristics introduce not only "form-induced"

stress but also further complexity by adding locally induced scales to the flow.

In a simplistic way, the last sentence introduces a much more complex issue

as the scales in a turbulent flow.
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2.4 Mean velocity distribution

Nezu and Nakagawa [101] proposed to classify a flow over a smooth walls

in layers. In particular, the flow is divided into two distinct flow layers of

a two-dimensional turbulent open-channel stream, namely the inner layer,

which is composed of a viscous sublayer and the buffer region, and the outer

layer, which is formed by the intermediate region and the free surface region.

Despite the smooth wall, which contains two typical scales (the viscous length

scale in the inner layer and the boundary layer thickness in the outer layer),

the presence of roughness at the wall introduces a new relevant length scale,

which is the characteristic roughness height, ks. Through the roughness length

scale a new dimensionless group can be computed, the roughness Reynolds

number, Reks = u∗ks/ν . This parameter can be of help to classify the flow in

terms of force:

• Reks < 5 suggest an important influence of the viscous force with

respect over the inertial one, the viscous sublayer is higher than the

roughness dimension and the flow is classified as hydrodynamically

smooth;

• 5 < Reks < 70 although the inertial forces prevails on the viscous ones,

the effect of the second is still important and the viscous sublayer is of

the order of the roughness dimension. The flow is called transitionally

rough;

• Reks > 70 in this case the inertial forces are bigger than the viscous

ones; this condition reduces the viscous sublayer uncovering roughness

elements. The flow regime is called fully rough.

To account for a very high bed roughness, Nikora et al. [107] introduced

the roughness effects and bed permeability in a new subdivision of the flow
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in an open-channel into five layer. The outer layer and the overlap layer are

identical to the those of the classification proposed by Nezu and Nakagawa

[101]; the form-induced sublayer is the layer where the effects of roughness

elements on the above flow are tangible; the interfacial sublayer is located

within the roughness elements themselves; finally, the last two layers belong

to the roughness layer.

Since the origin of the vertical coordinate is placed at the roughness crests,

zc = 0; hw and ht are the water depths measured above the maximum grain

crest level and the minimum trough level, respectively. From these statements

the relative submergence, which is given by the ratio of the flow depth to the

roughness height, is ∆ = hw/∆R, ∆R being the roughness height. According

to Nikora et al. [107], the flow in OCFs can be classified according to the

following flow types:

1. high relative submergence; all flow layers are present;

2. intermediate submergence; the roughness layer and the outer layer are

present whereas the overlap layer, where the velocity distribution is

logarithmic, is questionable;

3. low submergence; the roughness layer extends across the entire flow

depth;

4. the roughness elements protrude through the free surface, the interfacial

sublayer covers the entire water column.

It can be anticipated that the experiments in this thesis are carried out in

flow type 2.
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2.4.1 Logarithmic layer

The distribution of mean streamwise velocity is described through the univer-

sal logarithmic law, above the rough-bed, thanks to equation 2.43.

⟨ū⟩
u∗

=
1
κ

ln
(

z+d
∆R

)
+B (2.43)

where κ is the well-known von Kármán constant (= 0.41), d the zero-plane

displacement and B the wall constant. The use of the logarithm law is

subordinated to the presence of a region where the only relevant length scale

is the distance from the wall (z).

In contrast to the indication of Jiménez and del Alamo [71], who placed

40 as the lower limit of relative submergence to obtain an overlap region,

the logarithmic law is often applied to intermediate relative submergence

flows. This forced application produced a point of disagreement on the

universality of κ value. Values of κ contained between 0.41 and 1.6 were

found by Bayazit [12] in a flow having 1 < ∆ < 4. Koll 2006 proposed κ as a

function of ∆ for low relative submergence flows and found a minimum value

of 0.18 for 4 < ∆ < 7. In these studies problems related to the accuracy of

the measurements and overfitting issues can conduce to misinterpretation of

results.

Townsend [135] states that within the overlap layer the TKE production

and dissipation are commonly assumed to be in equilibrium. Nikora and

Goring [106] supposed that TKE production and dissipation are in equilibrium

in flow regions where TKE flux is nearly constant. This most rigorous

approach can be used to have a direct measurement of the overlap layer at

intermediate relative submergences.
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2.4.2 Outer layer

Out of upper edge of the overlap layer a deviations of the velocity profile

from the log law is observed. to account this deviation a further and empirical

function is added W (z/h)

⟨ū⟩
u∗

=
1
κ

ln
(

z+d
∆R

)
+B+W (z/h) (2.44)

and

W (z/h) =
2Π

κ
sin2

(
π

2
z
h

)
(2.45)

where Π is the wake strength parameter. The defect law, proposed by Coles

[24], was expressed in the form of equation 2.45 by Hinze [64] and confirmed

for OCFs in Nezu and Nakagawa [101].

2.4.3 Interfacial sublayer

The nearness to the bed of this region does not allow a model to be found

to describe the velocity distribution. Possible velocity distributions were

investigated by Nikora et al. [108], who proposed three velocity distributions:

constant, linear and exponential, respectively. To the purpose of this work,

this region is not further considered.

2.5 Scales in river flow

A wide range of scales is present in river dynamics. Temporal scales cover

time from centuries to micro-seconds and the corresponding spatial scales

contain distance from kilometers to micro-meters [50]. In a simplistic way,

one may say that matter in the fluid is often subjected to two main kinds

of random movements: one on the molecular scale, the thermal agitation
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of molecules, and one on a macroscopic scale, turbulence [28].The main

differences between molecular agitation and turbulent motions are the scales

involved (i.e. a typical turbulent motion, say a ’sweep’, is ordinarily very

large, compared to one molecular free path).

The larger scales are the most important for engineering work, which is

related to the interaction between water and structures, covering space scales

from kilometers to centimeters and time-scales from years to seconds. One

can just think about the erosion and sediment transport issue, bridge sour

problem or flood protection to have an idea of the large-scale range which

engineers are interested in. Events like sweep or burst are large-scale turbulent

expressions and their statistical occurrence also contributes to the formation

of an undular sediment bed, which in turn produces a flow separation and an

eddy system, which can influence the main flow even up to the free surface.

This process triggers a continuous interaction between bed and flow [44]. In

the next sections it will be clarified that every scale is characterized by an

energy level and how it is transferred to the near scales. An energy distribution

model across the scales is given in Figure 2.3 [50].

To talk about scales in a non-arbitrary way, some mathematical concepts

should be introduced. In this regard, as said in previous chapters, statistical

concepts are needed.

2.5.1 Stochastic processes

Turbulent occurrence can be seen from a stochastic point of view. Namely,

two random time variables x(t) and y(t) can be defined from their expected
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Figure 2.3: Distribution of flow energy with time and spatial scales in river
taken from Franca and Brocchini [50].

value

µX(t) = E [x(t)]

µY (t) = E [y(t)] . (2.46)
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Considering two instants t1 = t, t2 = t+T, where T is the time-lag, Covariance f unction

can be defined as

Cxx(t, t +T) = E [(x(t)−µX(t)) · (x(t +T)−µX(t +T))]

Cyy(t, t +T) = E [(y(t)−µY (t)) · (y(t +T)−µY (t +T))]

Cxy(t, t +T) = E [(x(t)−µX(t)) · (y(t +T)−µY (t +T))] (2.47)

Equation 2.47 suggests that Cxy ̸= Cyx, unless when T = 0; in that case,

Cxy =Cyx; Cxx and Cyy are the variance of x and y respectively.

Assuming a Gaussian process, the equations are functions only of the time-

lag T (stationary process) and the auto-covariance function can be defined

as

Cxx(T) = E [(x(t)−µX) · (x(t +T)−µX)] ;

Cyy(T) = E [(y(t)−µY ) · (y(t +T)−µY )] ; (2.48)

whereas, the cross-covariance function is

Cxy(T) = E [(x(t)−µX) · (y(t +T)−µY )] ; (2.49)

Developing the polynomial in 2.48 and 2.49

Rxx(T) = E [x(t) · x(t +T)] ;

Ryy(T) = E [y(t) · y(t +T)] ; (2.50)

and

Rxy(T) = E [x(t) · y(t +T)] . (2.51)
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where Rxx and Ryy are the auto-correlation function whereas Rxy is the cross-

correlation function. Finally,

Cxx(T) = Rxx(T)−µ
2
X ;

Cyy(T) = Ryy(T)−µ
2
Y ;

Cxy(T) = Rxy(T)−µX µY . (2.52)

Hence, it is possible to assert that the covariance function is the second

order moment computed with respect to the time-lag [8]. The auto-correlation

and cross-correlation functions are the basis for the turbulence analysis con-

ducted through the Fourier Transform (FT).

It can be useful to introduce the Schwartz inequality [125] for stationary

processes ∣∣Rxy(T)
∣∣2 ≤ Rxx(0) ·Ryy(0). (2.53)

Equation 2.53 suggests that any T considered, the cross-correlation function

square must be at least equal to the product of the auto-correlation functions

(also called one-point correlation).

At this stage, taking into account a generic variable as the velocity fluctu-

ations in a river, i.e. u′ and w′ which are the fluctuations in streamwise and

vertical direction, respectively, equation 2.53 at T= 0 assumes the meaning of

the Reynolds stress Rxz(0) = u′w′, confirming the link between the correlation

function and the second-order moments. In fact, using the same process one

can find all the components of the Reynolds stresses u′u′, v′v′ and w′w′ from

the auto-correlation function and u′v′, v′w′ and u′w′ from the cross-correlation

function.

In Figure 2.4 a typical behavior of the dimensionless correlation function

versus lag-time is shown. The lag-time increment generates an exponential



36 Theoretical background

decrease in the correlation function. This trend becomes unstable at the

lag-time for which no more correlation is observed.

Figure 2.4: Time correlation of two variables

Still considering a fluid particle subjected to velocity fluctuations, the

trend shown in figure 2.4 suggests a "memory" of the fluid particle motion

in the elapsed time T , whereas for a lag-time greater then T such memory is

deleted and there is no correlation through the velocity fluctuations.

Alternatively, the correlation can be seen as a function of space (r).

Namely, considering a vortex and two points belonging to the same coherent

structure, varying the distance r between the points the correlation function

assumes the shape shown in figure 2.5.

The use of the time-correlation function or the space-correlation function

is connected, in experimental field, to the instrument. Namely, two-points

measurements can exploit the space-correlation function, whereas single-

point measurements requires time-correlation function. However, space and

time are linked by the relation T = r/ū.
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Figure 2.5: Space correlation time of two variables

Unfortunately, the relation T = r/ū presents some limitations, in order to

be applied to the measurements. In fact, measuring the instantaneous velocity

by using a sensor at one location (single-point measurement) for a period of

time one can observe the vortex drift through the sensor. These eddies could

change size and shape as they drift by, making the measurement unclear and

difficult to interpret. This problem was solved by Taylor [133], thanks to the

Taylor frozen-in hypothesis (simply called the Taylor hypothesis).

2.5.2 Taylor frozen-in hypothesis

Just figure that a sensor measures the instantaneous flow velocity in a location.

In Figure 2.6 the passage of a vortex through the measurement point is ob-

servable. The Taylor hypothesis asserts that, in order to use the measurement

for instance in the FT analysis, the stream velocity should be much greater

than the variance of the velocity fluctuations (⟨σ̄u⟩=
〈√

u′u′
〉

), which cause

the vortex distortion.
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Figure 2.6: Distortion process of a vortex which drift in a measurement point

The condition ū ≫ ⟨σ̄u⟩ is what is called Taylor frozen-in hypothesis.

Moreover, when the aforementioned quantities are measured in a turbulent

flow it is challenging to link the temporal fluctuations with the spatial ones.

Furthermore, the main approximation in experimental turbulence studies is the

switching between frequency and wavenumbers. The frozen-in hypothesis,

proposed by Taylor [133], assumes that the flow field pushes the vortex

through the sensor measurement point in a quasi-frozen manner. Namely, the

velocity fluctuations evolve slowly, compared to the mean velocity, and the

vortex does not stretch nor distort during the measurement. This assumption

naturally restricts its application to low turbulence intensities, namely when

the variance of the velocity fluctuations is much smaller than the characteristic

mean flow.

The Taylor hypothesis can be easily respected in systems characterized

by fast fluids, such as in the case of solar wind as well as atmospheric flows

far from the boundary surface, contrariwise this hypothesis becomes difficult

to satisfy in bounded flows, especially near the wall. The Taylor hypothesis
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in OCFs is a delicate issue, which requires more and more attention, as

highlighted in Del Alamo and Jiménez [35] and Smits et al. [130].

2.5.3 Taylor microscale

The analytic behavior of the dimensionless correlation function is such that

it is equal to the unity in the origin, implying that its first derivative reveals

a maximum at r = 0 and the second derivative is always negative at r ≈ 0.

The correlation function shape, hypothesized by Taylor [132], is described by

equation 2.54.

lim
δ r→0

∣∣∣∣u(r+δ r)−u(r)
δ r

− du(r)
dr

∣∣∣∣2 = 0. (2.54)

where u(r) is a velocity component, which is function of the distance incre-

ment r and δ r is the space increment. This limit describes the obscuring

parabolic curve of the correlation function (see Figure 2.7).

Figure 2.7: Graphic interpretation of Taylor microscale, the solid lines rep-
resent the correlation function versus a distant r and the dashed line is the
obscuring parable that defines the Taylor microscale to the intersection with r
axes.
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The Taylor microscale is defined as the intersection between the zero

axes of correlation function and the mentioned obscuring parabolic curve.

According to Taylor [132]

2
u′2

λ 2 =−
(

du(r)
dr

)2

. (2.55)

where λ is called Taylor microscale. Assuming valid the isotropy condition,

the energy dissipation rate ε is defined by

ε = 15ν

(
du(r)

dr

)2

; (2.56)

From equation 2.55 and 2.56, the Taylor microscale is obtained as

λ =

√
15ν

u′2

ε
. (2.57)

Using equation 2.57, it is possible to link the Taylor microscale to the

Reynolds number ReR = uR/ν (related to the largest eddies R ∝ K3/2/ε)

as follows

λ =

√
10R
ReR

. (2.58)

This microscale has an historical importance, since it was replaced by the

more well-known Kolmogorov microscale.

2.5.4 Kolmogorov hypothesis

To introduce the Kolmogorov hypothesis, a qualitatively analysis of the

turbulence behavior with respect the main flow should be done. It is possible

to analyze how the energy of the large scale (LS) moves towards to the

small scale (SS), in particular from the large eddies, which take energy from
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the main flow and yield energy to the smaller eddies, which have universal

behavior in the universal subrange. In particular, the LS having a length scale

L and a velocity scale ū does not influence the SS, which has a length scale l

and a velocity scale u′. This involves a net scale separation and a statistical

independence between LSs and the isotropic SS structures. The isotropic

term implies that u′1u′1 = u′2u′2 = u′3u′3. Nevertheless, the mean flow acts on

the SSs indirectly. In fact, the energy flux through the LSs (which depends on

Re) towards the SSs should be balanced by the dissipation rate per mass unit

(ε). Namely, large Re numbers produce large ε , in order to have equilibrium;

then, the exchange between LSs and SSs should be a function of Re [8].

Briefly, ε can be defined through the velocity components

ε =
1
2

ν ∑
i, j

(
∂ui

∂x j
+

∂u j

∂xi

)
. (2.59)

In turbulent flow, in which the viscosity effects are negligible, one can obtain

ε =
1
2

ν ∑
i, j

(
∂u′i
∂x j

+
∂u′j
∂xi

)
. (2.60)

Equation 2.60 suggests how the SSs are statistically independent of the mean

flow; therefore, the SSs are universal in each flow having the same Re number.

The SS hypothesis of isotropic condition is also known as the Kolmogorov

first hypothesis.

Kolmogorov first hypothesis - Kolmogorov microscale

The first similarity hypothesis asserts that the SS motions (at scales much

larger than η) are statistically isotropic and the distribution of the velocity

difference [u(x+ r, t)−u(x, t)] between two points in space is determined by
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the local length scale η = |r|, the kinematic viscosity ν and the mean energy

dissipation rate per mass unit ε [143]. Applying the Vaschy-Buckingham

theorem, a definition for the length scale η , the velocity scale uη and the

temporal scale τη is found

η ≡
(

ν3

ε

)1/4

; uη ≡ (νε)1/4 ; τη ≡
(

ν

η

)1/2

; (2.61)

where η is known as the Kolmogorov microscale, which is the threshold under

which the viscous force is converted into heat by the dissipation process. The

small-vortex Reynolds number can be obtained as follows

Reη =
uηη

ν
=

(εν)1/4 (
ν3/ε

)1/4

ν
= 1. (2.62)

In addition, Reη is a marker related to the edge between the inertial subrange

and the dissipation range. Dey [39] asserts that Reη < 1 indicates a dissipation

process, whereas Reη > 1 identifies an energy transfer process. It can be

useful to establish the relation between the Kolmogorov scale η and the LSs,

taking into account the definition ε ∼ u3/L

η

L
=

(
ν3

ε

)1/4 1
L
≈
(

ν3

u3L3

)1/4

= Re−3/4;

uη

u
≈ Re−1/4;

τη

τL
≈ Re−1/2. (2.63)

Its wording means that an increasing of the Reynolds number produces a

decrease in the Kolmogorov scale number. Hence, is possible to anticipate

that a net separation of scales between L and η occurs at high Re numbers.
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The last sentence introduces the need to have a net separation of scales and

then a criterion to set experiments.

Kolmogorov second hypothesis - scales separation

The Kolmogorov second hypothesis speculates the existence of a range where

there are no effects of viscosity; moreover, this range occurs at scales smaller

than the energy containing scales. This range is called inertial subrange; it

is delegated to pure energy transfer, where no generation nor dissipation are

present; this process is called Energy Cascade.

In the inertial subrange the main parameter is the energy dissipation rate

ε , which is the vector between the production range and the dissipation range.

Exploiting the dimensional analysis ε can be defined as

ε =
u3

η

η
=⇒ u(l) = uη

(
l
η

)1/3

∼ uT

(
l
L

)1/3

; (2.64)

ε =
η2

τ3
η

=⇒ τ(l) = τη

(
l
η

)2/3

∼ τT

(
l
L

)2/3

; (2.65)

where L represents the LS dimension and ε corresponds to the vortex in the

inertial subrange of size l.

Once the inertial subrange is defined, it is important to understand the

energy transfer mechanism in it.

2.5.5 Richardson energy cascade concept

In the following sections, one of the most difficult problems in turbulence is

introduced: predicting the evolution of freely decaying in isotropic turbulence;

where ’freely decaying’ means turbulence free from a mean shear which might

maintain and shape the turbulence [29].
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Before approaching the problem of freely decaying turbulence, it is impor-

tant to fix the range of vortex (shapes and dimensions) where it is applicable.

According to Figure 2.11, the isotropic turbulence is bounded in the upper

part by the integral length scale (or energy containing scale) and in the lower

part by the Kolmogorov length scale.

Freely decaying turbulence (hereinafter called isotropic turbulence) is

made up of a set of shapeless turbulent vortex tubes interacting in a chaotic

manner. The isotropic turbulence properties permit themselves to be inter-

preted by a rather formal, mathematical approach. Richardson speculates

that, in a turbulent flow, the energy flux is continually passed down from the

large-scale structures to the small scales, after which it is destroyed by viscous

stresses. On the other hand, Kolmogorov’s theory asserts that the statistical

properties of the small scales depend only on the viscosity and on the rate

at which energy is passed down through the energy cascade. Furthermore,

the main assumption of Kolmogorov’s theory is that the small scales are

statistically isotropic and universal.

The idea underlying the energy cascade process is that the largest vortex

splits or evolves into smaller vortices, without any energy loss. The smaller

vortices are themselves unstable; in turn, they pass their entire energy into

even smaller structures, and so on. Thus, at every instant a continual cascade

of energy from the LS down to the smaller one takes place. The whole process

is essentially driven by inertial forces, without any viscosity effect, until the

cascade comes to a halt (the size of the smallest vortices becomes so small that

Rη ≈ 1). The viscous forces become significant and the dissipation process

can start. The range affected by this process is called the dissipation range

[29] (see Figure 2.8).
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Figure 2.8: Energy migrations through the scales

Kolmogorov’s theory [79] of a universal equilibrium range is quite a

robust result in turbulence, which makes a very specific prediction (two-thirds

law). The starting point is the structure function 2.66

(Dui)
2 (r) =

[
u′i (xi + rêi)−u′i (xi)

]2 (2.66)

where (Dui)
2 is the second order structure function, u′i is the velocity fluc-

tuation in xi direction and r is the spatial increment times the unit vector

êi.

Davidson [29], using a limited list of parameters (u, l,r, t,ν), assumes that

(Dui)
2 (r) = F (u, l,r, t,ν) , (2.67)

where F (u, l,r, t,ν) is an universal function in isotropic turbulence (or better

the inertial subrange). Using the similarity theory, equation 2.67 can be

reduced to

(Dui)
2 (r) = u2

i F
(

r
η

)
, r ≪ l (2.68)
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where F
(

r
η

)
is still a universal function in isotropic turbulence (in the inertial

subrange).

Following Kolmogorov [79], the scales of size r ≪ l do not retain any of

the information which relates to the largest eddies (of size of l). Furthermore,

the SSs do not feel the effect of the LS structures, because of the different

velocities which these scales have. Namely, the characteristic time-scale

of the small eddies is very fast compared by the large eddies time-scale

[29]. To complete the comment, Davidson [29] suggested that: “the small

structures do not feel the large-scale anisotropy, nor do they feel the overall

time-dependence of the flow except to the extent that the flux of energy

down the energy cascade changes. So, at any instant the small eddies are in

approximate statistical equilibrium with the LSs and they are more or less

isotropic. This is what Kolmogorov meant by local isotropy and statistical

equilibrium. The regime r ≪ l is known as the universal equilibrium range”.

Going back to the function Dui

(
r
η

)
, it is a consequence of Kolmogorov’s

First Similarity Hypothesis, which for large Re and r ≪ l, asserts that (Dui)
2

have universal form. Recalling that, in isotropic turbulence, the dissipation

energy rate is

ε = 15ν

(
∂u1

∂x1

)2

; (2.69)

where x1 is the streamwise direction.

Moreover, considering an inertial sub-range η ≪ r ≪ l, the viscosity is

not expected to be a relevant parameter, according to Kolmogorov’s Second

Similarity Hypothesis. Hence, the function F(r) is uniquely determined by r
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and ε .

F1(r) =
ε

15ν
r2; (2.70)

where the subscript 1 indicates the streamwise direction x1; hereinafter sim-

ply named F . Following the similarity theory and paying attention to the

dimensions, one can yield

F(r) =Ck (εr)2/3 ; (2.71)

which, in terms of structure function 2.68, that is redefined thanks to 2.71

as follows

(Dui)
2(r) = uiCk (εr)2/3 . (2.72)

Equation 2.72 is known as two-thirds law and is valid in the inertial subrange.

Pope (2000) fixed the Ck constant equal to 2.0.

In general, p order structure can be defined as

(Dui)
p (r) =

[
u′i (xi + rêi)−u′i (xi)

]p (2.73)

which, according to Kolmogorov’s second similarity hypothesis, in the inertial

sub-range η ≪ r ≪ l the p order structure assumes the following form

(Dui)
p (r) =Cp (εr)p/3 . (2.74)

For p = 3 the four-fifths law is derived and the constant is universal when the

turbulence is globally isotropic and the value is Cp = 4/5. Hence, under the

hypothesis of three-dimensional homogeneous isotropic turbulence, limited
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to high Reynolds numbers, equation 2.74 can be rewrote as [80]

D3
ui
=−4

5
εr, (2.75)

or 〈
D3

ui

〉
=−4

5
⟨ε⟩r, (2.76)

The angle brackets ⟨·⟩ denote the DA value of a generic quantity. Da in specific

flow regions (far from the wall) is equivalent to the ensemble averaging which

in turn is equivalent to time averaging over a sufficiently long period of time

in a statistically steady turbulence at a high Reynolds number [53]. The

law in 2.76 was obtained assuming that the TKE dissipation rate remains

constant as kinematic viscosity ν tends to zero (ν → 0) in the inertial subrange

η ≪ r ≪ l. It is important to note that, since the TKE dissipation rate ε is

constant throughout the inertial subrange, the large-scale TKE generation

rate is equivalent to the small scale dissipation rate, as suggested by equation

2.69. The use of one velocity component is supported by experimental results,

which reveals that the 4/5-law is applicable even when data is analyzed in a

single direction [131]. The 4/5-law essentially states the energy conservation

in the inertial subrange, i.e. the measure of the TKE flux through scales. The

key assumption of the Kolmogorov hypothesis is the local isotropy (or the

isotropy at small scales), which holds in high Reynolds number turbulence.

The difference between equation 2.72 and 2.76 is that the total energy of

increments Dui is taken into account in the two-thirds law, where ui is the full

three-dimensional vector and Du1 refers only to the longitudinal increments,

as described in 2.76. Equation 2.72 can be derived directly from the two-point

correlation functions of the RANS equations [53, 7]. It expresses the nonlinear

normal stress fluxes through scales in the inertial subrange as a function of

measurable third-order moments. Both the third-order moments in 2.76 and
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2.72 arise from the hypothesis of homogeneous isotropic turbulence. They are

the exact laws and provide unique information in the inertial subrange, such

as characteristic length-scales and, most importantly, the TKE dissipation

rate. They require much more precision and effort to have a simple statistical

convergence, where many data sets are required. The third-order moments

were used successfully to determine and characterize the turbulent cascade

in atmospheric boundary layer flows [21]. In addition to homogeneity and

isotropy, the main assumptions were stationarity and high flow Reynolds

number. Regarding the isotropy, an alternative derivation is anyway possible

[100]. It is important to emphasize that the assumption of isotropy may not

be verified in many realistic situations, such as in a geophysical turbulence in

the presence of physical factors (e.g. rotation and strong stratification) which

modify the flow dynamics with different invariants and instabilities and break

the isotropic condition. Generally, the lack of isotropy renders the derivation

of the counterpart of the 4/3-law far more difficult to obtain [45].

2.5.6 Energy spectrum in turbulence

As already mentioned, in the inertial subrange the structure function 2.72

should have a universal behavior. To corroborate the last sentence, spectral

analysis can be useful. Taking a velocity record, it is made up of harmonics

in Fourier modes (see Figure 2.9).

It is quite hard to distinguish turbulent phenomena from a signal in time

domain and a further technique is useful to extrapolate information from it;

this technique was found in the Fourier analysis, which translate the signal in

the so-called Fourier space.
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Figure 2.9: Harmonics superposition in Fourier Analysis

In general, the direct Fourier transform is defined by

U( f ) =
1

2π

∫ +∞

−∞

u(τ)e−ı f τdτ (2.77)

and the inverse transform by

u(τ) =
∫ +∞

−∞

U( f )eι f τd f (2.78)

where u(t) is a velocity signal in the time domain and U( f ) the corresponding

signal in the Fourier space; f is the frequency or temporal frequency, i.e. the

number of occurrences of a repeating event per unit time. A recognizable

second type of frequency is the space frequency, which is indicated with the

name of wavenumber k. Using the dimensional analysis, one can easily find

the link between frequency and wavenumber. In fact, frequency is defined

as f = [T−1], whereas wavenumber has the following dimension structure

k = [L−1]. Combining these parameters, f/k = [LT−1] = u is obtained, where

u is a velocity. In particular, the velocity chosen to transform the wavenumber

into frequency and vice versa is the local mean velocity ū. One can write

k =
C f
ū

; (2.79)



2.5 Scales in river flow 51

where C is a constant coming from the Fourier transform (it is often = 2π).

The wavenumber is also defined as k =C/l. Therefore, Dey [39] yields the

length scale as a function of wavenumber as

(kη ,kλ ,kL) =C (lη , lλ , lL) . (2.80)

As shown in Figure 2.10, the LSs are on the right side, whereas the dissipation

scales are placed on the left side.

Figure 2.10: Turbulent length scales

Assuming a stochastic and ergodic process u(t) and its average value ū,

the related fluctuations u′(t) is sill definable as stochastic and ergodic. Hence,

the autocorrelation function Ruiui(τ) can be computed

Ruiui(τ) = E
[
u′i(t) ·u′i(t + τ)

]
⇒ Ruiui(0) = σ

2
uiui

; (2.81)

Assuming a signal with zero mean, as u′(t), the autocorrelation of this signal

coincides with the auto-covariance, which is twice the TKE (K).

In a limited time signal, it is licit to admit that

∫ +∞

−∞

|Ruiui(τ)| ·dτ < ∞; (2.82)
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and then the Fourier transform is computable as

Suiui( f ) =
∫ +∞

−∞

Ruiui(τ) · e
−ι2π f τdτ; (2.83)

where Suiui( f ) is the two-sided spectral densities (or simply spectra) and ι the

imaginary unit. The inverse Fourier transform is defined as

Ruiui(τ) =
∫ +∞

−∞

Suiui( f ) · e−ι2π f τd f . (2.84)

Equations 2.83 and 2.84 are called Wiener-Khinchine relations [136].

As stated, in a turbulent signal, where τ = 0, replacing in (2.84) highlights

how the sum of all harmonics represent twice the TKE (K) [61]

Ruiui(0) = σ
2
uiui

=
∫ +∞

−∞

Suiui( f )d f . (2.85)

This result can be converted easily from the frequency domain to the wavenum-

ber space using the 2.80, giving a faster comparison with the turbulent scales.

Moreover, the one-sided density spectra is preferred, since it is applied

easily to the most common equipment. Since the autocorrelation function is

even and real, the one-sided density spectra are defined as [61]

Guiui( f ) = 2Suiui( f ) = 2
∫ +∞

0
Ruiui(τ) · e

−ι2π f τdτ. (2.86)

Taking into account equation 2.80 and its derivative (dk = 2πd f/ūi), it is

possible to switch from the frequency to the wavenumber domain∫
∞

0
Guiui( f )d f = σ

2
ui
= Fuiui(k)dk (2.87)
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to yield

Guiui( f ) =
2π

ūi
Fuiui(k)k=2π f/ūi ⇒ f ·Guiui( f ) = k ·Fuiui(k); (2.88)

which is the premultiplied spectrum (or rather compensated spectrum). This

special representation of the energy spectrum gives direct and faster infor-

mation like peaks or specified spectrum slope (e.g. k5/3 ·Fuiui(k) is used to

identify the inertial subrange). Using the Einstein notation, Fuiui are simply

called spectra. Using the mixed components Fuiu j , one can define the cospec-

tra (or cross-spectra). In general, Fuiui is related to the TKE and Fuiu j to the

energy transport in the main directions.

In general, the cross-correlation function, already seen in 2.51, can be

rewritten with the Einstein notation

Ruiu j(τ) = E
[
ui(t) ·u j(t + τ)

]
. (2.89)

The relative Wiener-Khinchine function are given by

Ruiu j(τ) =
∫ +∞

−∞

Suiu j( f )eι2π f τd f

Suiu j( f ) =
∫ +∞

−∞

Ruiu j(τ)e
−ι2π f τdτ. (2.90)

being the relation 2.85 symmetric Ruiu j(τ) = Ru jui(−τ); then

Suiu j(− f ) = S∗uiu j
( f ) = Su jui( f ) (2.91)

where S∗uiu j
( f ) is the complex conjugate function of Suiu j(− f ). As it was

for 2.53, also the 2.90 for τ = 0 is recognized as the Reynolds stress in the
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frequency space [61].

Ruiu j(0) = u′iu
′
j =

∫ +∞

−∞

Su jui( f )d f . (2.92)

Guala et al. [61] use to convert the two-sided estimate cross-power spectral

density to one-sided wavenumber cospectrum

Φuiu j(k) = Suiu j(−k)+Suiu j(k) = 2Re
{

Suiu j(k)
}
. (2.93)

-5/3 law

The use of the velocity correlation function instead of the pure velocity signal

is supported by the hypothesis that small scales are statistically isotropic [53]

and then

• space translations x+ r;

• scaling (t,x,u)→
(
λ 1−ht,λx,λ hv

)
for any h and λ > 0;

where x is a space position, r a generic space increment and u a velocity

vector. The Kolmogorov treatment of small scale turbulence is based on the

hypothesis that, at high Reynolds numbers and far from boundaries, the sym-

metries of Navier-Stokes equation are restored for statistical quantities. Hence,

considering the velocity increment ∆u(x, l) with l ≪ L the homogeneity in a

statistical sense requires ∆u(x+r, l) law
= ∆u(x, l). The last relation attributes an

equal probability distribution function (PDF) of ∆u(x+r, l) and ∆u(x, l) [141].

The second Kolmogorov similarity hypothesis states that, at large Reynolds

number, in the inertial range, the PDF of ∆u(x, l) becomes independent of

viscosity ν . This hypothesis implies that the scaling invariance is statistically

recovered in the values of the scaling exponent ∆u(x,λ l) law
= λ h∆u(x, l). As

highlighted in section 2.5.5, the exponent is positive and h = p/3.
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According to the second-order structure, the spectrum associated to the

2/3-law in Fourier space is

Φuiui(k) =Cε
2/3k−5/3. (2.94)

This is the most important implication of the Kolmogorov hypothesis, pro-

viding the turbulent energy spectrum as a function of the wavenumber. The

analysis of the spectral density function involves the individuation of the iner-

tial subrange. Furthermore, the determination of the inertial subrange enables

turbulence scales and energy dissipation rates to be found. Hence, in the iner-

tial subrange the universal form of the Kolmogorov spectrum (equation 2.94)

is observed. This is a consequence of the already mentioned Kolmogorov

hypotheses applied to the second-order structures.

2.5.7 Large scales

Kolmogorov’s law is considered to be one of the successful results in turbu-

lence. As already mentioned, it is confined only at the small scales. This is

unfortunate, because of the small scales having slight practical importance in

the engineering field. Phenomena such as dispersal of pollutants or transport

of momentum are usually controlled by the large eddies [29].

Unfortunately, the LS motion can be influenced by the geometry of the

flow and the associated time-scales are comparable to the mean flow time-

scale. This statement suggests a memory of the LS towards the flow histories

and thus a non-universal form of the turbulent characteristics, not even in

statistical form, as in the inertial subrange [115].

According to the previous sections, there are enough elements to give a

rough graphical representation of the turbulent scales in Figure 2.11 [39].
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Figure 2.11: Energy flux through the scales

Hence, the turbulence can be split into two main ranges: isotropic turbu-

lent scale, in which universal laws seem to work quite well, and anisotropic

scale, where the mean flow influence makes any prediction more complex.

In addition, the LS structures play a key role in the transport phenomena,

explaining why they have been the target of numerous investigations, not

only in OCFs, but also in any canonical turbulent wall flow, such as pipe,

channel or Turbulent Boundary Layer (TBL) flows. In fact, the influence

of the topographic wall characteristics, regarded as the manifestation of the

shear instability [138, 137], is the major actor in LS energy production.

Moreover, large eddies in wall flows are classified according to the nomen-

clature introduced by Kim and Adrian [73], which distinguish LS from and

VLS. Kim and Adrian [73], using single hot-film probe and premultiplied

spectra analysis, found hairpins aligned coherently, which represent a LS of

about 2 times the pipe radius, and conjectured that the VLSs are formed by

hairpins packets, in turn, aligned coherently to reach dimension of about 10

times the pipe radius.

Adrian et al. [3] focused their attention on energy-containing structures in

the outer region, using 2D Particle Image Velocimetry (PIV), finding pack-

ets of hairpins, which can be seen as VLSs (more than 1000 wall units).
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This result was substantiated by Ganapathisubramani et al. [55], using a 15

Hz stereoscopic PIV. Dennis and Nickels [38], through 3D PIV measure-

ments, found that most of the structures had a length minor than 7 wall units,

which contradicts the existence of VLS. On the contrary, LS alignment in the

streamwise direction was observed; this fact suggests the existence of long

meandering streaks. Through Direct Numerical Simulation (DNS), VLSs

with a dimension of 10 times the water depth were also found by del Álamo

and Jiménez [34]. Further, Hutchins and Marusic [69] used the term “super-

structure” to identify meandering-type long structures captured through 10

hot-wires and compared with PIV and DNS literature results. They visualized

meandering structures with a dimension of 20 times the outer length. Mejia-

Alvarez et al. [97] describe a large spatial heterogeneity in the form of low-

and high-momentum flow pathways, suggesting that these pathways could

represent the meandering of the LS.

Nevertheless, the previous literature is in accord with the hairpin packs

conjecture, Hwang and Cossu [70] designed a “conceptual” numerical ex-

periment, where they gradually remove the smaller scales from the flow.

The authors found that the LSs can self-sustain, even when smaller-scale

structures, populating the near-wall and logarithmic regions, are artificially

quenched. Despite the fact that natural OCFs are almost always in rough-bed

condition, rough-wall received less attention, because of the undoubted dif-

ficulties in measuring inside the layers influenced by the roughness. Often,

such measures encounter errors, identified as high noise. This noise is diffi-

cult to eliminate without a strong data manipulation, which can distort the

measures and then the results. One of the first works is due to Klaven [77],

who observed LSs with dimensions between 4 and 7 times the water depth,

which decrease as roughness increases. LSs in low-submergence OCFs was

also observed by Kirkbride and Ferguson [76],Buffin-Bélanger et al. [16],
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Shvidchenko and Pender [127], Hofland and Booij [65], Roy et al. [122],

Marquis and Roy [92] and Franca and Lemmin [52]. Kirkbride [75] refers the

LSs origin with vortex shedding and wake flapping in the lee of asperity bed

roughness elements. Moreover, a feedback mechanism between large-scale

coherent structures and vortex shedding in the nearness of pebble clusters

was proposed by Roy et al. [121] and Roy and Buffin-Bélanger [120].

Rosenberg et al. [119], through the streamwise velocity spectra reported

for smooth- and rough-wall turbulent pipe flow over a large range of Reynolds

numbers, found that the turbulence structure far from the wall is seen to be

unaffected by the roughness. An approach to identify LS structures formed

by flow interaction with large roughness elements was proposed by MacVicar

and Roy [87, 88], Lacey and Roy [82], who detected the LSs using turbulent

wake statistics. Most recently, Cooper and Tait [25, 27, 26] and Hardy et al.

[62, 63] used PIV to have the whole flow field view in flume experiments in

rough-wall conditions at high Reynolds numbers. The key findings suggest

that, as the Reynolds number increases, the visual distinctiveness of the

coherent flow structures becomes more defined, and these are clearly seen

as ‘bulges’ of lower velocity fluid originating at the bed and intruding into

the outer flow. To my knowledge, the only results that show coherent flow

structures similar to VLSs of velocity fluctuations measured in a gravel-bed

river, describing the so-called flow pulsations, are reported in Marquis and

Roy [93], in which LSs and VLSs are recognized to occupy the entire flow

depth.

As one can see, in the literature no deal has been attained about the LS

and VLS formation process or even existence. Hence, the open question on

the nature of LS structure in OCFs over a rough-wall promotes new works. In

the next chapters, a systematic analysis, using premultiplied power spectra

of autocorrelation and cross-correlation velocity function, is proposed to
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establish which scales are involved in the TKE and turbulent momentum

transfer in the main directions.





Chapter 3

Experimental equipment and
procedure

“The best way to show that a stick is crooked

is not to argue about it or to spend time denouncing it,

but to lay a straight stick alongside it.”

Dwight Lyman Moody

3.1 Flume description

The experiments on turbulent OCFs over rough beds were performed at the

Laboratorio “Grandi Modelli Idraulici”, Università della Calabria, Italy, in

a 1 m wide, 0.8 m deep and 16 m long rectangular tilting flume. A 2.5 m long

test section was placed at 10 m from the inlet. It had glass walls, in order to

permit the observation of the runs. The flume inlet consisted of a stilling tank,

an uphill slipway, a perforated-pipe diffuser, a fine grid (having cell size of 1

mm × 1 mm) and a honeycomb to straighten the flow and to damp the residual

pump vibrations. The honeycomb was made of polycarbonate triangular ducts.
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Each duct was 40 cm long and had 1 cm long sides. An adjustable tailgate

was placed at the outlet in order to set the water depth. Water was collected in

a downstream tank, from which it fell in a restitution channel, where another

honeycomb and a Bazin weir were placed to measure the discharge before

the water entered the main sump. In the sump, a submerged pump was placed

to feed the flume inlet (see Figure 3.1 (a) and (b)).

(a)

(b)

Figure 3.1: Flume details; (a) picture of the installation; (b) 3D flume recon-
struction.
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The slope was adjusted through two hydraulic jacks, whereas the water

depth was set through the downstream tailgate, which was never moved after

having set the design water depth. The hydraulic conditions were fixed at the

beginning of each experiment and kept constant easily by switching the pump

on/off.

3.2 Flow rate measurement

The flume ends with a stilling chamber which feeds an underground restitution

channel. The 13.5 m long and 0.993 m wide restitution channel was fitted out

with a flow rate measurer, a Bazin weir. The discharge predictive formula for

a rectangular weir is given by Kindsvater and Carter [74]

Q =CeBeH2/3
e (3.1)

where Q is the discharge, He = Hs + 0.001 m is the effective water depth

(in which Hs is the water depth above the weir and 0.001 m a calibration

correction factor), Be = Bs + 0.001 m = 0.994 m is the effective channel

breadth (Bs being the channel breadth) at the weir edge level and 0.001 m

a calibration correction factor. The discharge coefficient Ce is given by the

following formula

Ce = 1.78+0.22
He

ps
(3.2)

where the weir height is ps = 0.355 m. The constancy of the flow rate was

carefully checked during the experiment through the Bazin weir, which had

an accuracy of less than 2%.
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3.3 Bed surface acquisition

Before each test started, the bed surface was acquired with a 3D laser scanner

(model Vivid 300/VI-300, produced by Minolta, Figure 3.2).

Figure 3.2: Laser scanner Vivid 300/VI-300, produced by Minolta.

The laser scanner adopts the principle of similar triangles to identify the

location of points on the surface. This technique is one of the most commonly

used methods by 3D scanners, since the laser can digitize data with high

accuracy during the acquisition time. To illuminate the object surface, the

beam of light emitted by the laser diode and propagating towards the object

was adequate (Figure 3.3).

The light beam reflected from the object was projected by a lens system

and then acquired with a device sensitive to light (the receiver) or a position

sensitive photo-detector (PSD). Two amplifiers convert the two photocurrents

generated by the PSD voltage signals. Afterwards, these signals are processed

from analogue signals into digital signals through the A/D converters and a

processor. The displacement of the light stripe along a relevant predetermined
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Figure 3.3: Schema of a sensor that operates on the basis of the principle of
similar triangles.

direction was carried out through the use of a Galvano mirror. This device

consisted of a mirror able to rotate around a horizontal axis. Therefore,

changing the mirror inclination angle resulted in the movement of the light

beam reflected from the same location (Figure 3.4). As Figure 3.4 shows, all

the surface can be acquired through the light beam emitted from inside the

scanner.

Accuracy and installation of 3D laser scanner By using the 3D laser scan-

ner Minolta Vivid 300/VI-300, the object surface elevation can be captured

from the distance of HL = 0.55 m to a maximum distance of 1.2 m from the

instrument (Figure 3.5). The acquisition range consisted of a square area with

side size varying from 185 mm at the minimum distance (0.55 m) to 395

mm at the maximum distance HL = 1.2 m. The accuracy of the instrument

depends on HL and on the direction. In fact, the accuracy along the parallel

direction (with respect to the flume bed) varies from 0.95 mm at the minimum
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Figure 3.4: Operation of the Galvano mirror for emission of laser on prede-
termined area.

HL to 1.91 mm at the maximum HL; analogously, along the vertical direction

it ranges from 0.45 mm to 1 mm. As the distance from the instrument to the

surface decreases, the resolution and accuracy of the acquisition increases. In

contrast, at a lower distance more images are usually needed and the measure

uncertainty increases during the operation of image merging, since the cor-

responding points of two different images cannot always be superimposed

exactly. In this study, in order to measure the bed surface, the laser scanner

was placed on a suitable support-box and carriage, so that the laser emission

window and entrance of the camera were parallel to the flume bed; in addition,

the baseline of the instrument was set in accordance with the flow direction,

i.e. the longitudinal flume axis (Figure 3.5). The support-box was installed on

a carriage moving longitudinally along the rails mounted on the flume walls

and transversally along other rails orthogonal to the previous ones. In order

to acquire the sediment bed surface and to process the related data, the 3D

laser scanner was connected through an SCSI port to a computer with a 2.2
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GHz processor and 512 MB RAM. In this study, the laser scanner was located

at a distance of HL ≈ 70 cm from the bed surface, with accuracy along the

parallel and vertical directions (with respect to the bed surface) at 1.2 and 0.6

mm, respectively. For each image, the acquisition window was a rectangular

area of about 22.5 cm × 24.5 cm.

Figure 3.5: Details of the installation used to acquire the surface.

In the next section, the laser scanner data will be used to define a statistical

function (φs), in order to find unambiguous values characterizing the bed

roughness.

3.4 Roughness geometry function

A characteristic of fluvial gravel beds is their poor sorting. To simulate these

beds, gravel was randomly spread in a layer of height equal to approximately
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of 4d50, in order to create the sediment bed. Many authors attempted to derive

a roughness parameter from the grain size distribution [83, 86, 17, 15, 11].

The median diameter d50 is often used as a parameter to describe the bed

roughness. Three sediments were selected for the experimental campaign:

pebbles, medium gravel and coarse gravel; the median diameters are reported

in table 3.1. Figure 3.6 shows three samples of the sediment grains used in

the experiments; three tests were performed, each one for a given d50.

Figure 3.6: Beds sediment grains.

Test1.1 Test1.2 Test1.3
d50 (mm) 70.0 30.0 10.0

Table 3.1: Sediment median size.

The single parameter d50, is not sufficient to give statistical information

as required by the DAM. In fact, different sediment beds with the same d50

but different grain-size distribution present different roughness. In addition,

pebbles are not easy to sieve, and the oblong shapes produce inaccurate results.

Hence, according to the DAM, a roughness geometry function (RGF) is
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introduced to characterize the sediment bed in terms of sediment distribution.

The use of the laser scanner for bed surface acquisition is crucial in order to

assess an accurate roughness geometry function. Figure 3.7 shows the laser

scanner acquisitions of the three beds.

Figure 3.7: Bed acquisition through laser scanner. In the left side figure
pebbles bed surface, in center of figure the coarse gravel and in right side
figure the gravel bed surface.

In the technical literature [41], the Gaussian Distribution (GD) was found

to be adequate to describe a gravel bed. In the present tests, the GD described

well the gravel bed statistical parameters, but it was inappropriate in the

pebble bed case. Therefore, several statistical distributions were tested and

the best fit between experimental and statistical distributions was obtained

through the gamma distribution (here named φs). It is more general than

the GD and, through the variation of its parameters, it can assume different

shapes. The gamma distribution φs has two free parameters, usually named a

and b. In brief, φs(ẑ) is

φs(ẑ) =
∫ ẑ

0
Γ(ẑ)dẑ; Γ(ẑ) =

ba

Γ(a)
ẑa−1ebẑ; Γ(a) =

∫
∞

0
ẑa−1ebẑdẑ (3.3)

where, with respect to the maximum crest level, ẑ = z/hw is the dimensionless

elevation, z is the elevation and hw is the water depth; Γ is the Gamma function

with shape parameter a and inverse scale parameter b (both parameters are
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positive real numbers). Figure 3.8 shows the φs function computed through

the Gamma function for both gravels and pebble tests.

Note that, by using a point gauge or an overhead scanner, the estimation of

the φs-function is only suitable for the upper 70% of the interfacial sub-layer

thickness, in order to avoid the function becoming zero below the maximum

crest level of the porous medium [1, 40]. In the present tests, the use of

the laser scanner produced φs functions equal to zero at negative elevations

(Figure 3.8); however, no velocity measurements were taken in the lower 30%

of the interfacial sub-layer thickness and hence the φs functions were used

only in the appropriate range.

The value of the standard deviation of φs is assumed as the mean rough-

ness length, ks = a0.5b. Table 3.2 reports the values of ks and the statistical

roughness scale (∆R = 3 · ks), which is defined as the biggest gap (≈ 99%)

into the granular bed.

Test1.1 Test1.2 Test1.3
ks (mm) 16.91 8.86 6.19

∆R = 3ks (mm) 50.73 26.28 18.57

Table 3.2: Roughness parameters.

According to the DAM, φs(ẑ) was used to compute the form-induced

stress, whereas ∆R was be tested as a possible scale of many quantities.

3.5 Velocity measurements

A four-beam down-looking Acoustic Doppler Velocimeter (ADV) probe

(Nortek Vectrino) was used to measure the 3-D instantaneous velocity com-

ponents (streamwise, u, spanwise, v, and vertical, w, with fluctuations u′, v′

and w′, respectively).
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Figure 3.8: (a) pebbles bed geometry roughness function; (b) coarse gravel
bed geometry roughness function; (c) gravel bed geometry roughness func-
tion.
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The ADV consists of one emitter surrounded by four receivers (Figure

3.9), each of them measuring one projection of the velocity components.

Figure 3.9: Acoustic Doppler Velocimetry.

The emitter generates an acoustic wave of frequency fe and wavelength

λe = c/ fe, c being the celerity of sound in the fluid. The acoustic wave is

scattered by acoustic targets (water impurities) moving at the fluid velocity v,

which are reflected and detected by the receiver. The reflected wavelength λr

and the corresponding frequency fr = c/λr of the acoustic wave are distorted

by the target velocity (Figure 3.10).

The data sampling rate and the sampling duration were 100 Hz and

300 s, respectively; they were found to be adequate in order to achieve the

statistically time independent turbulence quantities, as obtained by Dey and

Das [40].

An ADV down-looking configuration probe was selected, because it

allows exploring deeply into the roughness layer. On the other hand, since

the ADV control volume is located 5 cm below the probe, the upper ∼ 5 cm

of the water column (close to the water surface) could not be an object of
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Figure 3.10: Acoustic Doppler Velocimetry operation [14].

measurement, owing to the fact that the ADV probe cannot work out of water

(Figure 3.11). Hence, measurements were taken from the gaps among the

sediment grains up to ∼ 5 cm below the water surface.

In the ADV user manual, the sampling volume is described as a cylinder

with a fixed diameter of 6.5 mm and a variable height from 1 to 9 mm.

The definition of the sampling volume is a crucial issue, in order to set

the properly resolved scales in the spectral analysis: as widely discussed

in the following sections, the resolved scales cannot be smaller than the

sampling volume, producing a significant limit for the resolved scale even if

the sampling frequency of the ADV could resolve smaller scales. This is due

to the fact that inside the sampling volume an average velocity is computed.

Namely, the particles (which are simultaneously present inside the sampling

volume) transmit to the receiver their own distorted frequencies, which will

be averaged by the instrument. Hence, it is easy to image that only coherent
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Figure 3.11: ADV sampling volume dimensions and position.

particle motions bigger than the sampling volume will be observed in the

spectral analysis.

Although high resolution ADV measurements are known to suffer from

parasitical noise contributions [49, 56, 84, 140, 95, 67], the four-receiver ADV

gives redundant information on one velocity component, which provides an

assessment of the noise level.

The four-beam Vectrino system has a redundancy for the w component,

since two components w1 and w2 are simultaneously measured by two beams.

The variance σ2
z of the noise is expressed as σ2

z = 0.5(σ2
z1 +σ2

z2), where

σ2
z1 = w′

1w′
1−w′

1w′
2 and σ2

z2 = w′
2w′

2−w′
1w′

2. It was considered that data with

σ2
z < 0.3 had no noise, as they corresponded satisfactorily to Doppler signal

correlations between transmitting and receiving pair of pulses greater than 70.

During the experiments, a minimum signal-to-noise ratio (SNR) was kept as

15. Even if the measurements are carefully taken and the conditions regarding

the SNR and correlation coefficient are satisfied, the velocity signals can be
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still affected by errors, producing spikes. Despiking is therefore necessary to

discard the wrong measurements.

3.5.1 Velocity Data Despking

Goring and Nikora [59] detect the spikes as a result of aliasing of the Doppler

signal and the phase shift between the outgoing and incoming pulses caused

by the reflection from surfaces of complex geometries (e.g., pebbles). The

first step of despiking is the spike individuation, which is based on a restrictive

analysis of both methods which are presented here: the Acceleration Thresh-

olding Method (ATM) and the Phase-Space Thresholding Method (PSTM).

The ATM is based on the fact that in steady flow conditions the instantaneous

acceleration cannot exceed the acceleration of gravity g increased by a certain

factor λa. By observation, respecting this condition can produce the rejection

of valid data points. Therefore, an additional condition was introduced: in

order to reject the points detected as spikes, the acceleration threshold and

the absolute standard deviation λσ σ with respect to the mean velocity should

both exceed their respective limit values. The ATM can be summarized in the

following steps:

1. calculate the temporal acceleration;

2. calculate the absolute standard deviation;

3. verify the condition on the acceleration threshold;

4. verify the condition on the absolute standard deviation;

5. if both conditions are satisfied, then replace the spikes with an aver-

age value (as explained later), otherwise the detected points are not

considered as spikes and are not replaced;
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6. repeat all the above steps until no more spikes are detected.

Goring and Nikora [59] introduced the PSTM, which uses the phase-space

plot, in which the variable and its derivatives are plotted in various combina-

tions. The authors identified an ellipsoid cloud, formed by a cluster of first

and second velocity derivatives. Points outside the ellipsoid are designated as

spikes and then rejected. The PSTM is an iterative method, which runs until

the number of points identified as spikes falls to zero. Note that the PSTM

uses no-temporal derivatives, because their values can procedure complex

solutions. The iterative PSTM follows the next steps:

1. calculate non-temporal first and second derivatives (do not divide by

the time step);

2. calculate the maximum standard deviations of all the three variables

(velocity, first and second derivatives); note that the combination of the

standard deviations is used to compute the ellipsoid axes;

3. calculate the rotation angle of the principal axis;

4. for each projection in phase-space, identify the points that lie outside

the ellipse and replace them with an average value (as explained later).

Figure 3.12 from Goring and Nikora [59] shows the PSTM plots of a

spike-contaminated signal. Spike replacement is an arbitrary procedure; for

the purpose of this work, which is focused on the largest scale motion, the

overall mean of the signal is considered as appropriate to replace the spikes.

3.6 Flow conditioning

A series of preliminary tests were conducted in order to prevent any source of

noise in the measurements as much as possible. First of all, the free-stream
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Figure 3.12: Goring and Nikora [59] Phase-space plots for clean dataset (left
panels) and contaminated dataset (right panels).

turbulence intensity, defined as the ratio Tu of the second order velocity

moment urms (rms: root mean square) to the mean free-stream velocity U∞,

was computed as follows

Tu =
urms

U∞

. (3.4)
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In order to capture the incoming turbulence at the flume entrance, this param-

eter was calculated taking a measure near the inlet in a position out of the

turbulent boundary layer (at 0.5hw and 0.5 m downstream of the honeycomb

in Figure 3.13).

Figure 3.13: Inlet detail

In this position, the velocity signal is taken as an indicator of incoming

turbulence generated by the pump-inlet pipe system. In table 3.3 the values

of Tu are reported in a configuration without any tool to reduce the incoming

turbulence (C0) and in a second configuration compounded by the perforated-

pipe diffuser, the fine grid and the honeycomb described at 3.1 (C1)

Tu
C0 (%) 16.91
C1 (%) 3.68

Table 3.3: Free stream turbulence

Configuration C1 presents a strong reduction of Tu. Furthermore, the

measurement window, located 10 m downstream of the inlet, is far enough to



3.6 Flow conditioning 79

guarantee the complete dissipation of incoming turbulence, which is replaced

by the turbulence generated by the rough bed.

In addition, preliminary spectral analysis was carried out in order to

compare the signal not affected by the turbulence generated in the highly

rough bed, but only by the free-stream turbulence (measuring point is at

0.5hw and 0.5 m downstream of the honeycomb). Figure 3.14 anticipates the

spectral analysis presented in the next chapter.
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Figure 3.14: Free-stream turbulence spectra.

Figure 3.14 shows that the energy contained in the spectra is of the order

of 10−4 m2/s2 for the spectra (diagonal subfigures) and 10−5 m2/s2 for the

co-spectra (off-diagonal subfigures). However, this residual energy, generated

by the pump, is negligible with respect to that generated by the bed roughness

and flow motion. A specific frequency (30 Hz) is affected by a precise peak;

this frequency is influenced by the pump rotation frequency, which is about

30 Hz. Anyway, the peak related to the pump was dissipated and it was not

visible in any other spectra downstream (see section 5.3). The shape of ⟨u′w′⟩



80 Experimental equipment and procedure

premultiplied cospectra was very relevant, namely its mean value was ∼ 0

at any frequency, which is a sign of isotropic turbulence from large to small

scales.

3.7 Measuring grids

As specified in section 3.8, the test section is placed at 10.8 m downstream of

the inlet, along the flume centerline, in order to avoid the side-wall effects.

Figure 3.15 shows the measuring grid compound by 25 vertical velocity

profiles, equally spaced each 2 cm along the streamwise direction, 0.5 cm

vertically spaced in the upper part of the water depth (80% starting from the

water surface) and 0.3 cm vertically spaced in the lower part of the water

depth (in the remaining 20% of the water depth). The velocity profiles were

measured in order to use the DAM properly in the following chapters. The

measurement grid in the xz-plane was extended from the lowest accessible

position into the bed gaps up to a level below the water surface where the last

measure was compatible with the ADV configuration (see Figure 3.15).

Figure 3.15: Example of measurement grid.

In Figure 3.16a a lack of points is visible in the measurement grid. In

fact, some points were missing owing to the very high number of spikes in
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Figure 3.16: Measurement grid in Test 1.1 (a), Test 1.2 (b) and Test 1.3 (c)

the measurement records, which made the despiking method inapplicable.

Such a situation may occur when the ADV pulses are reflected from a bed of

complex geometries (e.g., pebbles or cobbles on the bed of a stream; [59]).
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Hence, the cause of this kind of noise in a rough-bed is the overlap of reflected

echoes because of the non-regular bed surface. Namely, the sound waves

emitted by the ADV probe were reflected by the bed surface, overlapping

the sound waves reflected in the ADV sampling volume. The velocity data

corresponding to the missing points showed very noisy signals; therefore, a

severe data manipulation was required, since the spikes affecting u(t), v(t)

and w(t) should be deleted and replaced in some way [59]. Hence, in order

not to introduce an over-manipulation of the velocity signals, it was chosen

to erase them. Today techniques do not allow clearing this kind of noise;

therefore, the signals have to be discarded and reacquired. Unfortunately, after

the reacquisition process, several missed points were still present because of

the bed of complex geometries and could not be replaced (Figure 3.16 (a)).

3.8 Experimental campaign

The experimental campaign consisted of three long-duration tests. Each test

referred to a different bed sediment (pebbles, coarse gravel and medium

gravel); the median diameters are in table 3.1.

The number of 25 velocity profiles was chosen owing to the fact that

the average velocity computed at a given elevation for all the longitudinal

positions became constant (according to the equation 3.5) when more than 20

profiles were considered, whereas it varied for a lesser number.

i

∑
0

ūi =
i+1

∑
0

ūi (3.5)

where i is the ith measurement in x direction at a certain z. Hence, the

measurement grid supported by a “real-time” analysis guaranteed a statistical

convergence of the different mean quantities [41].
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Table 3.4 reports the main hydraulic parameters of the experiments, S

being the flume slope, B the flume breadth, Q the water discharge, hw the

water depth measured above the maximum grain crest level, ∆ the relative

submergence computed as ∆ = hw/∆R, Re the Reynolds number and Fr the

Froude number.

Parameter Test 1.1 Test 1.2 Test 1.3
S (%) 0.04 0.04 0.03
B (m) 1.00 1.00 1.00
Q (l/s) 46.5 57.2 57.8
hw (m) 0.185 0.175 0.187

∆ 3.13 6.58 10.07
Re 46500 57200 57800
Fr 0.19 0.25 0.23

Table 3.4: Flow details and hydraulics dimensionless numbers.

Table 3.4 shows that tests were designed in order to explore how the rela-

tive submergence can act on turbulent quantities. According to the following

flow type classification proposed by Nikora et al. [107]:

• type 1, or high relative submergence flow, for hw >> ∆;

• type 2, or intermediate relative submergence flow, for δt < hw < (2÷
5)∆, δt being the thickness of the boundary between the logarithmic

and linear flow regions;

• type 3, or low relative submergence flow, for hw < δt .

Dingman [42] asserts that, in turbulent flows, eddies preclude the existence

of strictly steady or uniform flow. Therefore, it is necessary to modify the

definition of “steady” and “uniform” using average quantities, namely time-

averaged over a period longer than the time-scale of turbulent fluctuations

and space-averaged over a cross-section. Then, uniform flow is given by
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Figure 3.17: Piezometers equipment used to measure the water surface slope.

dū/dx = 0 at any instant. As stated by Chow [22]: “Theoretically speaking,

the varied depth at each end approaches the uniform depth in the middle

asymptotically and gradually. For practical purposes, however, the depth can

be considered constant (and the flow uniform) if the variation in depth is

within a certain margin, say, 1%, of the average uniform-flow depth.”

The water surface slope Sw within the test section was computed as the

difference between the upstream water level and the downstream water level

divided by Lp. Afterward, Sw was compared to the flume slope S. The

hydraulic conditions (discharge, flume slope, water depth) were varied until

the condition Sw = S was satisfied. According to Dingman [42] and Chow

[22], in all tests the “steady-uniform” flow condition was carefully checked
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in the test section by using two piezometers (see Figure 3.17). They were

placed 5 cm before and after the test section at a mutual distance of Lp = 2.6

m. The piezometers were equipped with an electronic Vernier point gauge

with an accuracy of 0.1 mm.





Chapter 4

Bulk statistics

“Mechanical progress there is apparently no end:

for as in the past so in the future, each step in any direction will remove limits

and bring in past barriers which have till then blocked the way in other

directions;

and so what for the time may appear to be a visible or practical limit will

turn out

to be but a bend in the road.”

Osborne Reynolds

The chapter describes the results of Acoustic Doppler Velocimeter mea-

surements made in a streamwise-wall-normal plane along the channel center-

line. The aim of this chapter is twofold. First, a more rigorous analysis of the

flow uniformity is shown and a further investigation on the distributions of

spatially-averaged bulk velocity statistics is proposed. Evidence will be pro-

vided that momentum balance (as predicted through the DA Navier-Stokes)

equation is respected along the streamwise direction; confidence will be also

furnished about the quality of ADV data. Second, the validity of two classical

paradigms of wall turbulence, namely the existence of a universal velocity
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profile and the outer layer similarity hypothesis formulated by Townsend, will

be investigated.

4.1 Momentum balance

In Figures 4.1 an overview is provided of the Reynolds stress along ẑ, with

the relative form-induced and viscous stresses.

For a steady and uniform flow over a rough bed, the DA total shear stress

⟨τ̄⟩ (see Eq. 2.42 ), coming from the DANS equations [58, 107], is rewritten

here as follows

⟨τ̄⟩=−ρ⟨ũw̃⟩−ρ⟨u′w′⟩+ρν
d⟨u⟩
dz

(4.1)

where −ρ⟨ũw̃⟩ is the form-induced shear stress, −ρ
〈
u′w′

〉
the DA Reynolds

shear stress and ρν d⟨u⟩/dẑ the DA viscous shear stress. In turbulent flows,

the viscous shear stress in Eq. 4.1 is negligible across the flow depth.

Above the roughness layer, −ρ
〈
u′w′

〉
dominates over −ρ⟨ũw̃⟩. The latter

is not negligible only within the roughness sublayer, namely just above and

below the roughness tops, i.e. for ẑ < 0.1 in tests 1.1 and 1.2, and for ẑ < 0

in test 1.3. In Eq. 4.1, all the shear stresses can be made non-dimensional

dividing by ρu2
∗ and expressed as a function of the non-dimensional vertical

distance ẑ.

It is obvious that above the crests the main contribution to the DA total

shear stress comes from the DA turbulent shear stress −ρ
〈
u′w′

〉
, as suggested

for flows over rough beds by many authors [89, 145, 85]. In fact, the total

shear stress expressed by Eq. 4.1 is tantamount to the turbulent shear stress

above the grain crests, where the maximum shear stress is recorded.
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Figure 4.1: Shear stress in Test 1.1 (a); Test 1.2 (b) and Test 1.3 (c). N
represent the turbulent shear stress (Reynolds stress), � the form-induced
stress, • green circles the viscous shear stress and −−− is the gravity line.
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The −
〈
u′w′

〉
/u2

∗ attains a peak close to the crest level ẑ ≈ 0 and shows

a sharp damping within the interfacial sublayer (ẑ < 0.1 in tests 1.1 and 1.2,

whereas this elevation decreases down to ẑ < 0 in test 1.3). This behavior

is clearly visible in Figure 4.1 (a) and in a gradually decreasing way in

Figures 4.1 (b) and (c). In the interfacial sublayer, the DARSS −
〈
u′w′

〉
/u2

∗

is compensated by the FISS −⟨ũw̃⟩/u2
∗ (Figure 4.1). The FISS −⟨ũw̃⟩/u2

∗,

which has a threshold point slightly above the maximum crest level, increases

within the form-induced sublayer up to ẑ = 0.1 and then diminishes as ẑ

further decreases, approaching the maximum value among the roughness

elements. While in Figure 4.1 (a) the FISS −⟨ũw̃⟩/u2
∗ contributes up to

≈ 30% to the total shear stress, in Figures 4.1 (b) and (c) this contribution

diminishes, according to the roughness ∆ decrement; this result supports the

work of Giménez-Curto and Lera [58], Manes et al. [90]. It may be pointed

out that the ρν d⟨u⟩/dẑ and −ρ⟨ũw̃⟩ are negligible above the roughness layer.

Thus, the −
〈
u′w′

〉
/u2

∗ is the governing shear stress across the main flow layer

[107, 98, 40].

4.1.1 Shear velocity

The shear velocity, u∗, is a basic parameter in order to scale the turbulence

statistics. Unfortunately, over rough bed flows, inconsistency remains in its

definition [112].

The well-known Clauser [23] method is commonly used to determine the

shear velocity, by using the least-squares fitting of the measured time-averaged

velocity distribution, assuming a universal logarithmic form. The log-law

existence is, in turn, linked to the so-called overlap layer, which should appear

somewhere across the water column [107]. Moreover, according to Nikora

et al. [107], in the low and intermediate relative submergence the log-law

distribution is not verified a priori. The Townsend [135] hypothesis asserts
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that the overlap layer appears when the wall distance is the only relevant

length scale influencing the flow. This means that there is need of more

sophisticated analysis to establish the presence of the log-law distribution.

Consequently, the Clauser chart method is not considered here.

Turbulent stress along ẑ follows satisfactorily the gravity line computed as√
τuw/ρ = u∗/(1− ẑ) according to the hypothesis of steady and uniform flow.

The sum of the three shear stress contributions reported in Eq. 4.1 is roughly

linear above ẑ ≈ 0.1 in each test, whereas beneath this elevation it becomes

difficult to calculate accurately all the contributions to the shear stress. Hence,

the linear trend of τuw up to ẑ ≈ 0.1 can be exploited to extrapolate the correct

value of shear stress at the reference bed level.

A new uncertainty arises from the choice of the reference bed level at

which the bed shear stress can be extrapolated. This level can be set as the

position obtained by considering of the so-called zero-plane displacement

(ZPD) [78, 109], in the hypothesis of the occurrence of the log-law velocity

distribution. The ZPD definition is a debated issue, since the low value of

the relative submergence in the present tests would exclude the occurrence of

the log-law velocity distribution. Moreover, Pokrajac et al. [112] suggested

that the choice of the ZPD to define the reference bed level can lead to data

misinterpretation. Pokrajac et al. [112] argued that the reference bed level

can be set up at the crest level, providing an appropriate velocity scale.

Once confident that the total shear stress follows a linear trend, the bed

shear stress can be extrapolated from the linear total shear stress profile, from

the water surface to the bed reference level, which is fixed at the maximum

crest level following the procedure by Manes et al. [90].

Table 4.1 compares the values of shear stress and shear velocity computed

using the bed slope and the water depth (uhW =
√

τ0/ρ =
√

ghwS), by using
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the hydraulics radius (uR =
√

τR/ρ =
√

gRS), and the turbulent shear stress

value extrapolated from the experimental data-set at ẑ = 0 (u∗ =
√

τ0/ρ).

Test1.1 Test1.2 Test1.3
τR (Pa) 0.5297 0.5085 0.5338
τhw (Pa) 0.7256 0.6864 0.7335
τ0 (Pa) 0.5723 0.5988 0.5412

uR (m/s) 0.0230 0.0225 0.0231
uhw (m/s) 0.0269 0.0262 0.0271
u∗ (m/s) 0.0239 0.0245 0.0233
Re∗ (-) 1211.7 639.5 433.4

Table 4.1: Bed-shear stress, shear velocity and shear Reynolds number in
tests 1.1, 1.2 and 1.3.

Given the difficulties to compare the water surface slope with the granular

bed slope (owing to the bed irregularities), the steady and uniform flow

hypothesis was verified through the condition τR < τ0 < τhw , which guaranties

a good measurement accuracy and the applicability of the uniform flow

equations [145]. In addition, the previous analysis provides confidence about

the reliability of the ADV measurements, which respect the momentum

balance across the flow depth, where the turbulent shear stress is the dominant

one with respect to the sum of all the contributions.

4.2 Mean velocity profiles

The logarithmic velocity profile seems to be a feature of turbulent wall flows

over rough walls, provided that the relative submergence is high enough.

Manes et al. [90] assert that, using u∗ as a unique velocity scale, even at low

relative submergence (i.e., in a condition in which the universal log-law does

not occur) the option of a fictitious bed level (like that obtained with the ZPD)

has to be avoided, since it does not provide a universal velocity scale. Hence,
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the value of the shear velocity in Table 4.1 is considered reliable to scale the

streamwise velocity distributions.

Despite Jiménez and del Alamo [71] indication on the logarithmic law

application in lower relative submergence (see section 2.4.1), many efforts

were made by the researcher in order to fit the universal log-law in these

flow conditions. In particular, in rough-wall flows the log-law of the wall is

determined by the von Kaŕmań constant, the ZPD, the roughness length and

the friction velocity. The latter is provided by interpolating the shear stress

profiles, as done in the previous section; the other three flow characteristics

can be found by only interpolating experimental data, although this leads

to a problem of overfitting. To overcome this issue, Nikora et al. [109]

defined a ZPD (d), which can be determined from velocity measurements

only, removing the hypothesis of a fixed value of the von Kaŕmań constant.

Precisely, a linear region in the distribution of dz/d ⟨ū⟩ should be present to

corroborate the existence of a logarithmic layer. The procedure proposed in

Nikora et al. [109] and recalled in Koll [78] can be summarized as follows.

Over rough beds, the water column can be divided into three layers: the

outer layer, the wall region and the subsurface layer. Furthermore, the wall

region can be subdivided into the logarithmic layer and the roughness layer,

with the top of the logarithmic layer at the 20% of the flow depth above the

roughness layer [78]. In order to investigate the parameters of the vertical

velocity profile, Koll [78] used the following equation

⟨ū⟩
u∗

=
1
κ

ln
(

z−d
zr −d

)
+

ur

u∗
(4.2)

where ⟨ū⟩ is the DA local velocity, κ the von Kaŕmań constant, d the ZPD, zr

the upper bound of the roughness layer and ur the velocity at the elevation zr.
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The parameters involved in the above method can be computed directly

by the streamwise velocity component through a linear and a logarithmic

regression analysis in the roughness and logarithmic layer, respectively, as

widely explained in Nikora et al. [109] and Koll [78]. The only exception is

given by u∗, which is assessed as illustrated in the previous section.

Hence, following Koll [78], the ZPD and the von Kaŕmań κ were obtained

and summarized in Table 4.2. Table 4.2 shows that the von Kaŕmań κ is a

Test1.1 Test1.2 Test1.3
z(d) (-) -0.049 -0.040 -0.032

κ (-) 0.35 0.35 0.41

Table 4.2: zero plane displacement and von Kaŕmań constant in tests 1.1, 1.2
and 1.3.

function of the relative submergence for both data presented herein and taken

from the literature. Specifically, at increasing ∆, κ approaches the classical

value of 0.41. In Figure 4.2, the results of tests 1.1, 1.2 and 1.3 (red open

circles) were compared with those presented in Koll [78], where the κ versus

∆ plot shows a good agreement (hd/∆ is the relative submergence in Figure

4.2) .

Finally, the velocity fitting, which was obtained by using the procedure

illustrated before, are shown in Figure 4.3.

To have a complete view, the velocity profiles in inner coordinates are

plotted in Figure 4.4. As expected, the velocity profiles do not collapse on a

single curve, suggesting that roughness governed the entire flow depth in the

three tests.

Ultimately, considering that there are not enough elements to speculate

on the log-law velocity distribution, a further analysis is required to dispel the

remaining doubts on the existence of a log-law velocity distribution.
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Figure 4.2: Relation between the constant of proportionality κ and relative
submergence hd/∆; black and white symbols are those presented in Koll [78]
in which open circles are related to beads roughness elements, square for
cubes roughness elements, triangles are related to gravel bed, stars symbol
for armour layer and open red circles are related to tests 1.1, 1.2 and 1.3.

In OCFs over rough beds, the shear production corresponds to the mean

TKE, as stated by Ferreira et al. [46]. If the relative submergence is high

enough, a local equilibrium between TKE production and dissipation is

expected sufficiently far from the roughness elements.

Ferreira et al. [46] continues saying that: “in an open-channel flows

over hydraulically rough beds with large enough relative submergence for

which wall similarity holds [135], the longitudinal velocity profile above the

roughness-influenced layer can be fitted to a logarithmic profile. For low

submergence flows, considerable debate has taken place relatively to the

parameters most affected by the higher relative protrusion of the roughness

elements [43, 110, 51]”.

In the literature few experiments are present having intermediate relative

submergence with a high spatial variability, as in the present tests. In tests
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Figure 4.3: Velocity profiles fitted using the Koll [78] procedure. Test 1.1
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Figure 4.4: Velocity profiles in inner coordinates (z+ = zu∗/ν) in test 1.1 (•),
test 1.2 (•) and test 1.3 (•).
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with not high relative submergence, no equilibrium layer is expected. In order

to verify this, an analysis based on the third-order moment equilibrium was

performed. The log-law can be present only in the so-called overlap layer,

in which the vertical turbulent transport term assumes a constant trend [106].

The vertical turbulent transport is defined as

〈
T KE

〉
w =

〈
u′u′w′

〉
+
〈
v′v′w′

〉
+
〈
w′w′w′

〉
. (4.3)
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Figure 4.5: Vertical turbulent transport, in test 1.1 (•), test 1.2 (•) and test
1.3 (•).

Figure 4.5 shows that
〈
T KEw

〉
/u3

∗ attain their peaks at ẑ ≈ 0.3 above the

grain crests having a magnitude between 0.4 and 0.65, which are in agreement

with results of Hurther et al. [68]. The vertical TKE flux approaches the zero

value at the crest level and becomes negative inside the roughness gaps,

indicating a change in the direction of energy transfer.

Figure 4.5 shows that a clear plateau was evident only in test 1.3, i.e. in

the run with the highest submergence, thus confirming that a log-law can be

observed only when the scale separation between outer and inner variables

is sufficiently high. According to Townsend [135] for highly rough flow, the
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log-layer lower bound should appear at z = 5×∆R. These results refine the

observations drawn from the von Kaŕmań constant analysis shown in Figure

4.2. It seems that test 1.3 showed a logarithmic layer, whereas tests 1.1 and

1.2 definitely did not.

In fact, following Townsend [135], the only experiment supported by the

third-order moment analysis is test 1.3, in which the log-law can occur and

the von Kaŕmań κ assumes the universal value (0.41).

4.3 Outer layer similarity hypothesis

In the following sections, the second-order velocity statistics are used to test

the outer layer similarity. In particular, the streamwise and vertical turbulent

intensities are employed to this purpose.

4.3.1 Turbulent intensity

Figure 4.6 and Figure 4.7 show the spatial average turbulence intensity in

streamwise and vertical direction, respectively.

All the profiles collapse fairly well above ẑ = 0.2. Regarding Figure 4.6, a

greater scattering is observable as the grain crests are approached, where the

spatial average turbulence intensity distributions reach a magnitude contained

in the range from 2.5 to 3 at an elevation between (−0.05÷0.05) ẑ. These

peak magnitudes are in line with those reported in Nezu and Nakagawa [102].

The peak elevation of ⟨σ̄u⟩ over a rough bed shows disagreement with respect

to literature results; e.g., Wang et al. [142] found the peak at ∼ 0.1hw above

the crests in gravel-bed OCFs at a relative submergence of 0.64÷6. On the

other hand, Mignot et al. [98] showed a peak below the crests for gravel-bed

OCFs, whereas a simulation by Singh et al. [128] over a rough-bed made
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of spheres with ∆ = 4 showed a peak of the streamwise turbulence intensity

at the crests level. The peaks in 4.6 contains all these cases; in particular,

a dependence on relative submergence was observed. Namely, the smallest

∆ (test 1.1) showed a peak at ẑ ∼ 0.05, whereas intermediate ∆ (test 1.2)

presented a peak at the crest level and higher ∆ (test 1.3) put in evidence a

peak placed below the crest level.
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Figure 4.6: Streamwise turbulent intensities vs ẑ. Test 1.1 (•), test 1.2 (•)
and test 1.3 (•).

Finally, the vertical turbulence intensities are shown in Figure 4.7. Ac-

cording to Manes et al. [90] and Singh et al. [128] these profiles do not show

a clear peak; they evidenced that the distribution reached maximum values

from 0.8 to 1.0. Once again, a good collapse is visible above ẑ = 0.2.

Hence, according to the literature [90, 90, 89], both ⟨σ̄u⟩/u∗ and ⟨σ̄w⟩/u∗
showed a linear trend, whereas ⟨σ̄u⟩/u∗ collapsed on a single curve above

ẑ = 0.2 (which is typical of OCFs on rough beds) and ⟨σ̄w⟩/u∗ seemed to

be influenced by the complex bed roughness geometry and the water surface

fluctuations, showing a fair collapse in the range 0.2 < ẑ < 0.5.
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Figure 4.7: Vertical turbulent intensities vs ẑ. Test 1.1 (•), test 1.2 (•) and
test 1.3 (•).

Hence, second-order statistics for all the tests seemed to collapse on a

curve when plotted in outer-layer coordinates. This fact means that, despite

the low submergence characterizing the three tests, the outer layer similarity

hypothesis was respected, in line with the results of Schultz and Flack [124]

for turbulent boundary layers and Manes et al. [90] for turbulent OCFs on

rough beds.



Chapter 5

Large scales in OCFs and
influence of relative submergence

“See now the power of truth; the same experiment which at

first glance seemed to show one thing, when more carefully

examined, assures us of the contrary.”

Galileo Galilei

This chapter addresses turbulence-scaling in OCFs using a range of sta-

tistical methods, including auto-correlation functions, third-order structure

functions and spectral methods. These techniques are used for two purposes:

(i) investigating the existence and scaling of LS eddies; and (ii) verify the

scaling of small scale turbulence and the existence of the so-called inertial

sub-range for different relative submergence conditions and elevations above

the bed. Before discussing the main core of the analysis, a relatively in-depth

check of the Taylor hypothesis of frozen turbulence is presented to cast the

discussion of results within a spatial framework of analysis, which, with

respect to its temporal counterpart, is more intuitive and clearer.
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5.1 Validity of the Taylor frozen-in hypothesis

The Taylor hypothesis [133] states that, at a measurement point, the flow

field sensed by a hypothetical probe advects downstream without significant

distortion (namely, the velocity fluctuations evolve slowly as compared to the

mean velocity). When this condition is satisfied, it is possible to switch from

the temporal to the spatial domain of analysis by multiplying time-scales by

the local time-averaged velocity. Within the context of spectral analysis, if

the Taylor hypothesis is respected, it is possible to switch from frequency

to wave-number domain simply dividing the frequencies by the mean local

velocity.

The condition, which should be verified in order to respect the classic

Taylor frozen-in hypothesis, is

⟨σ̄u⟩ ≪ ⟨ū⟩ (5.1)

where ⟨σ̄u⟩ is the DA standard deviation of the velocity fluctuations and ⟨ū⟩
is the local DA velocity. The DA method can be applied in order to obtain

local statistics that are a function of the elevation only. This applies especially

for flow regions in proximity of the rough-bed where the time-averaged

flow is highly heterogeneous. Figure 5.1 shows that the condition ⟨σ̄u⟩/⟨ū⟩
approaches unity only in proximity of the roughness tops where the Taylor

hypothesis is therefore violated.

A more stringent condition for the Taylor hypothesis validity is provided

by the work of Matthaeus and Goldstein [94]. According to these authors

it is possible to carry out a more rigorous check of the Taylor hypothesis

by comparing the advection time-scale of large eddies and a characteristic
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Figure 5.1: Classic Taylor violation along ẑ; • represent the test 1.1, • test
1.2 and • test 1.3.

nonlinear time-scale. The former is given by

τ⟨ū⟩(kx) =
λ

⟨ū⟩
=

2π

kx ⟨ū⟩
. (5.2)

This time should be always smaller than the characteristic nonlinear time

τnl(kx) =
1

kx
√

kx ⟨Φuu(kx)⟩
. (5.3)

where ⟨Φuu(kx)⟩ is the spectrum and kx ⟨Φuu(kx)⟩ is its premultiplied form.

Equation 5.3 can be viewed as the typical eddy time distortion. The Taylor

hypothesis is valid if τ⟨ū⟩(kx)≪ τnl(kx). This condition can be lumped into a

single scalar function [45] as

ψ(kx) =
2π
√

kx ⟨Φuu(kx)⟩
⟨ū⟩

≪ 1 (5.4)

The condition expressed by equation 5.4 is well summarized in figure

5.2, where the maximum value of ψ(kmax) is plotted as a function of ẑ. In
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Figure 5.2: Taylor violation along ẑ;• represent test 1.1, • test 1.2 and • test
1.3.

figure 5.2 kxmax represents the wavenumber at which the maximum value of

ψ is obtained. As anticipated, comparing the results reported in Figure 5.1

and 5.2, it is clear that the method proposed by Matthaeus and Goldstein [94]

is more restrictive. In fact, while in Figure 5.1 the Taylor hypothesis seems

to be respected in all the tests even at the crest level, in Figure 5.2 ψ(kmax)

approaches 1 at ẑ = 0.1 in test 1.1 and at ẑ = 0 in tests 1.2 and 1.3.

Hence, in the spirit of a conservative approach, the Taylor hypothesis can

be considered satisfied for ẑ > 0.1.

5.2 Integral Length Scale

The auto-correlation function as expressed by equation 2.91 is here computed

accounting for spatial heterogeneities and, consistently with the DAM, aver-

aged over bed-parallel planes. The auto-correlation function 2.91 at a given
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point x can be defined as

R(x,τ) = u′i(x, t)u′i(x, t + τ), (5.5)

Note that the spatial dependence in the equation above is appropriate because,

given the heterogeneity of the rough beds, the auto-correlation function

depends slightly on the point where it is measured x = (x, ẑ). Using the Taylor

hypothesis, we can transform time lags into space increments, namely r = |u|τ
(where the time-averaged velocity is a function of ẑ). With the transformation

R(x,τ)→ R(x,r), it is possible to define the integral length scale λc as

λc(x,r) =
1

R(x,0)

∫ rmax

0
R(x,r)dr. (5.6)

where rmax is the maximum space increment corresponding to a value of the

auto-correlation function that is not significantly different from the noise-

correlation value. Following the procedure suggested by Roy et al. [122],

this noise value (i.e. Rlim) was estimated by correlating (with zero time-lag)

two uncorrelated portions of the velocity time series. The results from this

analysis showed that Rlim is about (1÷2) σ2
u . The integral length scale can be

interpreted as a measure of the large-scale eddies in a turbulent flow. However,

being an integral length scale, it represents only a “bulk” estimate.

Figure 5.3 shows the spatially-averaged integral length scale in streamwise

direction ⟨λc⟩ normalized by the water depth hw versus ẑ. Here the spatial

averaging provides two benefits: on one hand, it allows smoothing out spatial

variations. On the other hand, it allows having more reliable estimates of the

auto-correlation, which are computed over a large number of measurements

at different points and hence result being associated with small confidence

intervals. Although the linear increase in ⟨λc⟩ near the wall (ẑ < 0.1) is in line

with the observation of Volino et al. [139] the determination of ⟨λc⟩ based
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Figure 5.3: Energy containing scale ⟨λc⟩/hw versus ẑ (• test 1.1, • test 1.2
and • test 1.3), −−− Taylor hypothesis edge.

on single point measurements (i.e. ADV measurements) requires the use of

the Taylor hypothesis. Thus, according to the previous section, the results

below the red-dashed line in Figure 5.3 are not considered. As expected,

⟨λc⟩ increases with ẑ for all the experiments and in particular it has a weak

steady growth across the water depth. More interestingly, it shows a strong

dependency on the relative submergence ∆. In particular the size of large-scale

eddies in experiment 1.1 (i.e. the experiment with the lowest ∆), seems to be

significantly smaller than that of the large eddies in the other flow conditions.

This is in line with current paradigms suggested in the literature, as it

seems that the larger the inner-outer scale separation (i.e., in this case, high

relative submergence) the larger the size of energetic eddies [76, 52, 50].

This issue has been particularly investigated in smooth-wall flows, where it

is commonly observed that LS eddies grow in size with increasing Re∗ =

u∗hw/ν (where ν/u∗ is the viscous length scale), which is effectively the ratio

of outer and inner scales for smooth walls. For rough walls, the dependency

of large-scale eddies on inner-outer scale separation (relative submergence)
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has been only recently addressed by Cameron et al. [19], who found LSs size

of the order of ⟨λc⟩.
A deeper analysis of LS eddies is provided in the following section through

spectral analysis. In particular, spectra and co-spectra in premultiplied form

are used to identify the scales of turbulence that contributes the most to TKE

and to momentum transport. The next section, besides discussing large-scale

eddies, provides also a general assessment of the existence of the inertial

subrange, as defined by Kolmogorov, to identify spectral regions affected

by experimental measurement noise, which is a crucial step to assess the

reliability of the experimental measurements presented herein.

5.3 Spectral Analysis

The Welch method [13] with a weighting window was used to compute the

frequency spectral densities from the velocity time series. Spectral densi-

ties were computed as follows: first auto-correlation functions R(x,τ) =
u′(x, t + τ)u′(x, t) were calculated. Then, the Fourier transform of the above

correlation function was tapered with a Hann window, which led to the spec-

tral density Φuu( f ,x)≡ Φuu( f ,x, ẑ) in the frequency domain. As expected,

spectra computed at different stream-wise locations x and located at the same

vertical elevation ẑ were very similar, as they are associated with similar

“footprints” (i.e., velocities measured at one point are the result of eddies

advecting from upstream, that were generated by shear instabilities induced

by an upstream portion of the rough bed, which, in turbulence jargon, is

usually referred to as footprint). Hence, spectra that were estimated from

measurements at the same vertical elevation were ensemble- (i.e., spatially-)

averaged to improve the confidence interval associated with each spectral

estimate ⟨Φuu⟩.
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In order to investigate the scales that mostly contribute to momentum trans-

port, co-spectra were obtained from the cross-correlation function R(x,τ) =
u′(x, t + τ)w′(x, t) and were spatially-averaged following an analogous proce-

dure as described above for spectra.

Section 5.1 highlighted that the Taylor hypothesis can be applied fairly

confidently for flow regions over 90% of the water depth. Here, for com-

pleteness, results from spectral analysis converted to the wavenumber domain

are presented down to the elevation corresponding to the roughness tops (see

analogous analyses in Dennis and Nickels [37], Cameron and Nikora [18],

Ferraro et al. [45]), but they need obviously to be taken with caution as scales

can be severely affected by the non-validity of the Taylor hypothesis.

Regarding Figure 5.4, it shows the spatial-averaged spectra ⟨Φuu⟩ for

several vertical distances ẑ in tests 1.1, 1.2 and 1.3. A first comment is that the

k−5/3 slope is observed in all the spectra having different vertical elevation.

We can say that the inertial subrange is well visible at the investigated Re

numbers, showing a net scale separation, in which the inertial subrange is

developed within a wavenumber range which is almost a logarithmic decade.

At scales corresponding to kxhw ∼ 10, a bulge is present. This bulge is also

observed in the ⟨Φvv⟩ spectra, but not in the ⟨Φww⟩ spectra. This fact suggests

that its occurrence is related to the shape of the ADV sampling volume, (see

Appendix A), which is characterized by a vertical length scale that is much

smaller than the horizontal and lateral ones. Hence, the bulge is likely to be

an instrument artefact associated with aliasing effects. Furthermore, within

the range kxhw > 2, spectra become gradually affected by noise and hence are

not reliable to infer the turbulence behavior.
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Figure 5.4: Spatial-averaged spectra ⟨Φuu⟩ for several vertical distances ẑ. •
represent test 1.1, • test 1.2, • test 1.3, −−− is the k−5/3 slope.
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5.3.1 The 4/5 law of turbulence

The appearance of a −5/3 scaling region suggests for the occurrence of an

inertial range within the Fourier space. In real space a more stringent way to

check the existence of the Kolmogorov scaling is to consider the third-order

structure functions [53].

According to Kolmogorov [79], within the inertial subrange, third-order

longitudinal structure functions D3
u should follow equation 5.7. By plotting

⟨ε⟩ versus r then, the appearance of a plateau indicates the existence of an

inertial subrange and provides a way to estimate the TKE dissipation rate, as

will be seen in the following [45].

One of the few exact theorems of turbulence is the Kolmogorov 4/5-

law, described by equation 2.76, which can be applied to locate the inertial

subrange and to obtain the averaged TKE dissipation rate as

⟨ε⟩=− 5
4r

〈
D3

u

〉
, (5.7)

where Du = u(x∗,x+ r)−u(x∗,x) is the space increment of the streamwise

velocity. As usual, the overbar and the angle brackets identify time and spatial

average, respectively. Equation 5.7 can be used to measure, in a reliable way,

the TKE dissipation rate in any turbulent flow. The compensated Kolmogorov

4/5-law, given by 5.7 for different vertical distances ẑ in all the tests, is

presented in Figures 5.5, where the horizontal dashed lines represent the fit of

5.7 in the inertial subrange.

Comparing Figures 5.5 and Figures 5.3, it is important to notice that the

law is lost at scales comparable to the integral scale (or energy containing

scale), as expected from the statistical theory of turbulence [53].

Figures 5.5 do display a plateau and, hence, suggest the occurrence of

an inertial subrange as for the Kolmogorov theory. However, a word of
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ent vertical distances showing the fit of 5.7 by the horizontal lines. Subfigure
(a) refers to the test 1.1, (b) to 1.2 and (c) to 1.3.
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caution is in order here. The corresponding plateaus in Figures 5.5 locate the

inertial subrange observed in Figure 5.4 and the growth at r < 0.01÷0.02

corresponds to the wavenumber bulge already mentioned.

Note that, as reported in Ferraro et al. [45], the dissipation rate measured

using the power spectrum as

⟨εν⟩= 2ν

∫
∞

0

〈
k2

xΦuu
〉
(kx)dk, (5.8)

can somewhat underestimate the realistic dissipation rate. That is, it converges

only if the Kolmogorov scale is well-resolved, which is usually a difficult

proposition in experiments [45]. Hence, the TKE dissipation rate estimated

from the 4/5 law is considered a more robust and precise method in order to

measure the cascade intensity in laboratory experiments or natural-bed flows,

such as in rivers.

Finally, the TKE dissipation rate computed from the 4/5-law is shown in

Figures 5.6 as a function of ẑ. The ⟨ε⟩ along z shows a sort of similarity in all

the tests (Figure 5.6).
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Figure 5.6: TKE dissipation rate ⟨ε⟩ as a function of ẑ.• test 1.1, • test 1.2, •
test 1.3..
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This should be expected, because all the experiments are characterized

by similar friction velocities and zero-plane displacements (if applicable).

In fact, assuming that within the overlap (i.e. logarithmic) layer TKE pro-

duction and dissipation are balanced, the dissipation rate can be estimated

as ε = u3
∗/κ(z−d), which therefore should be roughly the same for all flow

conditions as reported in Figure 5.6. Hence, it is concluded that the inertial

sub-range identified by the third-order structure functions is not an artefact of

measurements.

5.4 Premultiplied Spectra

In the literature pertaining to wall flows, 3-D velocity measurements are

rare, as most studies report measurement of the longitudinal component and

very few of the vertical one. This fact can provide an incomplete view of

how turbulence structures contribute to TKE and momentum transport. This

section attempts to fill this experimental gap by investigating relevant spectra

and cospectra of all the three velocity components.

Premultiplied spectra provide a way to quantify the contribution of dif-

ferent eddy-scales to the TKE. Namely, peaks in the premultiplied spectra

indicate wavelengths in which a significant amounts of energy resides.

Hence, the aim of this section is to exploit premultiplied spectra to identify

the size of the large-scale eddies (which is identified as the wavelength

where premultipled spectra show a peak) and how this depends on relative

submergence.

Before proceeding with the analysis, a short preamble is needed. In

Figure 5.7 the streamwise velocity spectra of test 1.1 is shown, in order to

give some indications on how to interpret the plots. As expected, a clear

peak at dimensionless wavenumbers that are compatible with LSs is clearly
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visible, whereas the second peak at higher wavenumbers can be attributed to

measurement noise associated with the sampling volume of the ADV probe

across the longitudinal direction (see Appendix A). Hence, the dashed vertical

red line constitutes a limit over the wave-number domain, beyond which the

spectral analysis is not reliable.
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Figure 5.7: Spatial-averaged Premultiplied one-dimensional spectra kx⟨Φuu⟩
at ẑ = 0.2, red dashed vertical line represents the ADV sampling volume
wavelength

.

Figure 5.8 refers to the spanwise velocity spectra, which, according to the

literature, should display a peak corresponding to LSs at about kxhw ∼ 1÷2

[36, 134]. Unfortunately, the bulge peak also observed in kx ⟨Φvv⟩ disturbs

the LS peak in figure 5.8.

Therefore, analysis of LS as inferred from spectra of the spanwise veloci-

ties will be omitted in this thesis.

As discussed in Appendix A, the ADV sampling volume is a cylinder of

height significantly smaller than width. This implies that vertical velocity

spectra ⟨Φww⟩ are less affected from noise than spectra of longitudinal and
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Figure 5.8: Spatial-averaged Premultiplied one-dimensional spectra kx⟨Φvv⟩
at ẑ = 0.2, red dashed vertical line represents the sampling volume wave-
length.

spanwise velocity components. Figure 5.9 indeed shows that vertical velocity

spectra do not display the fictitious peak at high wavenumbers ranges.
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Figure 5.9: Spatial-averaged Premultiplied one-dimensional spectra kx⟨Φww⟩
at ẑ = 0.2, red dashed vertical line represents the sampling volume wave-
length.

Figure 5.10 shows kx ⟨Φuu⟩/u2
∗ in outer scaling for tests 1.1, 1.2 and 1.3.
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Figure 5.10: Comparison of kx ⟨Φuu⟩/u2
∗ at ẑ = 0.2 in test 1.1 (•), test 1.2 (•)

and test 1.3 (•).

This figure is characterized by three striking features:(i) the premultiplied

spectra of the longitudinal velocity fluctuations presented herein do not show

a bimodal distribution showing a LS and a VLS peak; (ii) the intensity of the

spectral estimates increases with decreasing relative submergence; (iii) the

normalized wavenumber associated with the peak in the premultiplied spectra

increases with decreasing relative submergence.

Features (i) and (ii) will be discussed in this section, whereas feature

(iii) will be treated in the next one, as it requires a preamble that describes

the procedure used to extrapolate the wave-numbers associated with spectral

peaks.

Point (i) is at odds with results presented by Cameron et al. [19] for

OCFs over rough walls. Furthermore, it is at odds with results presented

for other canonical (hydrodynamically smooth) wall flows such as in pipes,

channels and boundary layers, which also show the appearance of a bi-modal

distribution too.

It is believed that this is unlikely to be a measurement artefact, as the

ADV should be perfectly capable of capturing scales at such low frequen-
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cy/wavenumbers; however it is not possible to provide a full explanation of

the observed phenomenon. Usually, the appearance of VLSs is attributable

to large separation between length scales characterizing the inner and outer

layers. In the case of turbulent flows over rough walls, this translates in large

values of the relative submergence. However, the experiments by Cameron

et al. [19] and those presented herein were carried out at very similar ranges

of relative submergence, meaning that this non-dimensional parameter is

not appropriate to provide a reliable diagnostics of VLS occurrence. The

only difference between the experiments presented herein and in Cameron

et al. [19] resides in the ratio between the channel width (B) and the flow

depth (hw), which in Cameron et al. [19] ranges between 9 and 40, whereas

in the present work is about 5. Cameron et al. [19] observed that the size of

VLSs decreases significantly with decreasing B/hw. This means that, in the

experiments presented in this thesis, VLSs (if present) have perhaps reached a

size, which is comparable with that of LSs and, therefore, is not detectable by

spectral analysis. This hypothesis is speculative and cannot be substantiated

herein. However, if verified, it would suggest that VLSs are a characteristic

of “thin” wall flows, where “thin” should be interpreted as having a vertical

size much smaller than the spanwise domain over which the flow develops.

However, it is not clear which is the underlying physical mechanism. Why

should the size of the flume interfere with VLS development?

There is an alternative explanation. Experiments in OCFs are usually

carried out in flumes with relatively short length, i.e. of the order of 15÷20m

as in Cameron et al. [19] and in the present case. In such experiments, a

turbulent boundary layer develops from the flume inlet and measurements are

taken at usually 10÷15m downstream of it, making sure that the boundary

layer has developed enough to reach the free surface. Boundary layer devel-

opment is notoriously a slow process, whereby turbulence statistics adjust to
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the underlying surface very slowly (i.e. much slower than the mean velocity

profile which is commonly used as the diagnostic turbulence statistics), with

shear and normal Reynolds stresses being the slowest-to-adjust quantities

[5, 6]. Since such stresses are the integral of spectra and co-spectra, it is

plausible to assume that they also develop slowly with the boundary layer,

perhaps even more slowly than their integral: in fact, energy and turbulent

momentum transport, while being self-similar in their integral form, may still

be subject to reshuffling among scales, while the boundary layer develops

further downstream. Were the experiments carried out at fetches long enough

to allow the occurrence of equilibrium boundary layer? This question still

remains open. It is not possible to verify whether the boundary layer at the

measurement location in both experimental setups was fully developed (in the

sense of allowing the appearance of VLS), as that would require turbulence

measurements over the entire length of the flume to verify self-similarity.

It can be suggested that the non-dimensional parameter which drives the

occurrence of VLSs is X/hw (where X is the upstream fetch over which

the boundary layer developed during the experiment) rather than B/hw, as

suggested by Cameron et al. [19], owing to the fact that this is related to a

clearly defined physical mechanism, i.e. the boundary layer development.

In Cameron et al. [19], X/hw ranged between 130 and 530, whereas in the

present experiments it was fixed at about 50.

The lack of bimodal behavior in kx ⟨φuu⟩ occurs across the whole flow

depth as shown in the premultiplied color maps reported in Figure 5.11.

This figure also confirms that in the near-wall region the flow with the

lowest relative submergence is characterized by the most energetic peak in

the co-spectra as already commented in point (ii). Similar considerations on

point (i) and (ii) can be made on the vertical velocity spectra (Figures 5.12

and 5.13).
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Figure 5.11: Premultiplied color maps of kx ⟨Φuu⟩/u2
∗. Subfigure (a) refers

to the test 1.1, (b) to 1.2 and (c) to 1.3.
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Figure 5.12: Comparison of kx ⟨Φww⟩/u2
∗ at ẑ = 0.2 in test 1.1 (•), test 1.2

(•) and test 1.3 (•). Colored arrows represent the wavenumber roughness
dimension in the color-related tests.

Premultiplied cospectra are reported in Figures 5.14 and 5.15. These show

that co-spectra display behavior and shape similar to longitudinal velocity

spectra, meaning that the near-wall peak is located at scales similar to those

associated with peaks in the longitudinal velocity spectrum; the near wall

peak of the lowest-submergence case is the one with the highest (normalized)

energetic content. Furthermore, as per longitudinal spectra, no bimodal

behavior is observed.

The similarity between longitudinal velocity spectra and cospectra was

reported for atmospheric flows by McNaughton [96]. In this context, for

the sake of clarity, Figure 5.16 provides an overall view of peak locations

for longitudinal and vertical velocity spectra and for co-spectra. This figure

confirms the alignment of spectral peaks of longitudinal spectra and co-

spectra.

As regards point (ii), it is difficult to explain why the lowest submergence

experiment displays the most energetic peaks in spectra and co-spectra. To

this purpose, further experiments and data analysis are required.
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Figure 5.13: Premultiplied color maps of kx ⟨Φww⟩/u2
∗. Subfigure (a) refers

to the test 1.1, (b) to 1.2 and (c) to 1.3.
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Figure 5.14: Comparison of kx ⟨Φuw⟩/u2
∗ at ẑ = 0.2 in test 1.1 (•), test 1.2

(•) and test 1.3 (•).

Spectra Peaks analysis

In order to provide an in-depth analysis of LSs and their dependence on

relative submergence, it is needed to define an unambiguous procedure to

extract the peaks from premultiplied spectra.

The proposed procedure exploited the center of mass (CM) or centroid

concept, which is briefly recalled.

The moment of a curve is the tendency to rotate around a point. Clearly,

the greater the area (and the greater the distance from the selected point), the

greater the moment is. In this work, the aim is to find the CM of the system,

which is defined as the point which does not allow the rotation of the system

itself.

The procedure consists in dividing the kx ⟨Φuu⟩ in rectangles, as reported

in Figure 5.18, and in finding the abscissa associated with the CM as

kx peak =
∑Mi

∑Ai
(5.9)
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Figure 5.15: kx ⟨Φuw⟩/u2
∗. Subfigure (a) refers to the test 1.1, (b) to 1.2 and

(c) to 1.3.
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Figure 5.17: Maximum value position of kx ⟨Φuu⟩ versus ẑ.

where Mi is the ith moment of the ith area Ai.

Figure 5.18: Center of mass calculation scheme.

The proposed procedure resulted to be very reliable in identifying spectral

peaks.

Figure 5.19 (a) shows the peak distributions along ẑ in outer scaling,

namely kxhw, whereas figure 5.19 (b) reports the peak distributions in inner

scaling (kxz).

Both inner and outer scaling indicate that peak wavenumbers are weakly

dependent on relative submergence. In outer scaling, especially for the flow

region ẑ < 0.3, wavenumbers weakly decrease with increasing submergence.

This is consistent with the idea that the size of near-wall turbulence structures
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Figure 5.19: Outer scaling kx ⟨Φuu⟩ peaks distribution (a) and inner scaling
kx ⟨Φuu⟩ peaks distribution (b), • represents test 1.1, • test 1.2 and • test 1.3.

depends on inner-outer scale separation. In inner scaling this trend is observed

too. However, this is reversed at ẑ > 0.3, and this fact is difficult to be

interpreted. It can be considered that these results should be taken with

caution, as peak detection is difficult and the validity of the Taylor hypothesis,

especially in the near-wall region, can be questionable. As expected, peaks of

co-spectra behave as in the longitudinal velocity spectra; therefore, they are

not commented further (see Figure 5.20).
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Figure 5.20: Outer scaling kx ⟨Φuw⟩ peaks distribution (a) and inner scaling
kx ⟨Φuw⟩ peaks distribution (b), • represents test 1.1, • test 1.2 and • test 1.3.
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Figure 5.21 presents the distribution of peak wavenumbers for the vertical

velocity spectra in inner and outer scaling. Two comments are necessary.
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Figure 5.21: Outer scaling kx ⟨Φww⟩ peaks distribution (a) and inner scaling
kx ⟨Φww⟩ peaks distribution (b), • represents test 1.1, • test 1.2 and • test 1.3.

Firstly, in inner scaling the wavenumber profile is never constant along z,

indicating that eddies do not seem to scale with elevation over the bed or,

in other words, they are not “attached” in the sense of Townsend. Secondly,

peak wavenumbers associated with intermediate and highest submergence

seem to overlap in both inner and outer scaling, whereas peaks associated
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with the lowest submergence stand out, being much higher in both scaling.

This data suggests that attached eddies do not strictly occur at the investigated

submergences (or they are not the main contributors to TKE) and that the

vertical dimension of energetic eddies seems to be significantly dependent on

relative submergence.

The only roughly linear relationship between peak location and ẑ was

observed in test 1.1 having the smallest relative submergence, in accordance

with the work of McNaughton [96], suggesting that eddies are attached to the

bed surface even when their size increases up to the water depth.





Chapter 6

Conclusions

This thesis is aimed at adding some knowledge on the turbulence structure de-

veloped over a highly rough bed in OCFs by varying the relative submergence.

Namely, three long-duration experiments were performed by using a 100 Hz

ADV down-looking probe, in order to register the 3D velocity vector in each

point belonging to a grid composed of 25 vertical profile of 30÷40 points

each. The sampling time was 300 s in each point. The velocities signals

were despiked by using Goring and Nikora [59] procedure and in case of a

signal severely disrupted the velocity signal were re-measured. In order to

investigate different relative submergences, the bed roughness was varied by

using three sediment sizes, from pebble to gravel. In this way, the relative

submergence assume the values of 3.13 in test 1.1, 6.58 in test 1.2 and 10.07

in test 1.3.

First of all, averaged velocity profiles, second- and third-order moments

results were discussed. These statistics were in accordance with those already

observed for canonical turbulent OCFs having the same range of relative

submergence.
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The uniform flow condition, preliminarily checked through the compari-

son between the bed-slope and the water surface slope, was confirmed by the

linearity of the total fluid shear stress distribution across the water column.

The turbulent Reynolds stress, −ρ
〈
u′w′

〉
, was dominant over the roughness

crest level, whereas the viscous and the form induced shear stress give a

contribution in the near bed and inside the roughness gaps, respectively. In

addition, while the viscous shear stress is one order of magnitude less than

the turbulent shear stress, the form induced stress shows an influence equal

to ≈ 30% in test 1.1 and ≈ 5% in tests 1.2 and 1.3. Once confident that the

total shear stress follows a linear trend, the bed shear stress was extrapolated

from the linear total shear stress profile, from the water surface onto the bed

reference level, which is fixed at the maximum crest. Hence, by the use of

the bed shear stress, the shear velocity was computed and used as the unique

velocity scale.

The existence of a logarithmic velocity profile was investigated showing

von Kaŕmań constant values slightly smaller than the well-known 0.41 value

in the experiments which showed the lowest relative submergences. This fact

prompted the author to investigate the existence of the overlap layer, which is

required in order to have a universal log-law. Finally, the vertical momentum

transfer was computed and a non-constant trend was observed in tests 1.1 and

1.2 suggesting the absence of an overlap layer, which is theoretically needed

in order to fit a universal log-law. A clear plateau in the vertical momentum

transfer was shown only in experiment 1.3, i.e. in the test with the highest

submergence, confirming that a universal log-law can be observed only when

there is enough scale separation between outer and inner variables. It seems

that experiment 1.3 is likely to show a logarithmic layer, whereas experiments

1.1 and 1.2 definitely not. Regarding second-order moment, according to the

literature [91, 89], both ⟨σ̄u⟩/u∗ and ⟨σ̄w⟩/u∗ show a linear trend, reaching
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the maximum value of 2÷3 at the crest level ⟨σ̄u⟩/u∗ and ≈ 1 for ⟨σ̄w⟩/u∗.

The outer layer similarity hypothesis formulated by Townsend was tested,

showing a fairly well collapse of the data over ẑ > 0.2.

Within the context of spectral analysis, which was fundamental in this

work, the Taylor hypothesis violation was checked through an alternative

validation. It was computed comparing two time-scales, namely the LS

advection time and the characteristic nonlinear time. The Taylor hypothesis

resulted violated near the bed ẑ > 0.1 in test 1.1 and ẑ > 0 in tests 1.2 and 1.3,

identifying a value of ẑ under which no speculation was made in the analysis.

The proposed method, based on the characteristic eddies time-scales, is more

restrictive with respect the classic frozen-in Taylor hypothesis view, in which

a simple comparison between the flow velocity and the fluctuation magnitude

is made.

The integral length scale ⟨λc⟩ can be interpreted as a measure of the large-

scale eddies in a turbulent flow. In this work ⟨λc⟩ increased with z for all the

experiments, showing a strong dependency on the relative submergence ∆. In

particular, the size of large-scale eddies in experiment 1.1. (with the lowest

relative submergence) was significantly smaller than the that of large eddies

in the other flow conditions, in accordance with the work of Cameron et al.

[19], who found LS size of the order of ⟨λc⟩.

A deeper analysis of LS eddies was provided thanks to the spectral analysis

which was carried out in the wave-number domain by dividing frequencies by

local mean velocities as in Dennis and Nickels [37], Cameron and Nikora [18],

Ferraro et al. [45]. The k−5/3 slope observed in all the spectra at different

vertical elevations confirmed that the inertial subrange is well visible at the

three investigated Re numbers, showing a net scale separation, in which

the inertial subrange was developed within a wavenumber range which was

almost a logarithmic decade.
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The legitimacy of the −5/3 scaling region was corroborated by using

the third-order longitudinal velocity structure function, which, expressed

as a function of TKE dissipation rate, showed a constant trend within the

inertial subrange. The 4/5-law is a sophisticated method to define the inertial

subrange. The constant region of ε versus r is then a test of the existence of

an inertial subrange and provides an estimate of the magnitude of the TKE

dissipation rate.

Premultiplied spectra provide a way to quantify the contribution of differ-

ent eddy-scales (peaks in the premultiplied spectra) and indicate wavelengths

in which a significant amount of energy resides.

The main results are summarized as follows: (i) the premultiplied spectra

of the longitudinal velocity fluctuations presented herein do not show a

bimodal distribution, but an LS and a VLS peak in contrast to Cameron

et al. [19]; (ii) the spectral intensity increases as the relative submergence

decreases; (iii) the normalized wavenumber associated with the peak in the

premultiplied spectra increases as the relative submergence decreases. Similar

considerations on points (i) and (ii) can be made on the vertical velocity co-

spectra.

The experiments by Cameron et al. [19] and those presented herein were

carried out at very similar ranges of relative submergence, meaning that this

non-dimensional parameter is not appropriate to provide a reliable diagnostics

of VLS occurrence. The only difference between the experiments presented

herein and in the study of Cameron et al. [19] resides in the ratio between the

channel width (B) and the flow depth (hw), which in Cameron et al. [19] ranges

between 9 and 40, whereas in the present work is about 5. Cameron et al. [19]

observed that the size of VLS decreases significantly with decreasing B/hw.

However, it is not clear what is the underlying physical mechanism. The

question why the size of the flume should interfere with the VLS development
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is still open. Anyway, there is an alternative explanation. Experiments in

OCFs are usually carried out in flumes of relatively short length, whereas

the boundary layer development is notoriously a slow process, the shear

and normal Reynolds stresses being the slowest-to-adjust quantities [5, 6]

as, consequently, their integral (spectra and co-spectra). Further research

can be devoted to investigating whether the experiments were carried out

at fetches long enough to allow the occurrence of the equilibrium boundary

layer. Although in the present work no measurements were taken over the

entire flume length to verify self-similarity, it can be hypothesized that the

non-dimensional parameter which drives the occurrence of VLS is X/hw (X

being the upstream fetch over which the boundary layer developed during the

test).

In order to locate the normalized wavenumber associated with the peak

in the premultiplied spectra, a systematically procedure to find the correct

position of these peaks is proposed. It is based on the center of mass concept,

resulting very reliable in identifying spectral peaks. The results about the

peaks of longitudinal velocity spectra and co-spectra suggest that both inner

and outer scaling indicate that peak wavenumbers are weakly dependent

on relative submergence. In outer scaling, especially for the flow region

ẑ < 0.3, wavenumbers weakly decrease as relative submergence increases, but

these results should be taken with caution, as peak detection is difficult. The

distribution of peak wavenumbers for the vertical velocity spectra, in inner

scaling, is never constant with z, indicating that eddies do not seem to be

“attached” in the sense of Townsend. These data suggest that attached eddies

are not strictly occurring at the investigated relative submergences and that

the vertical dimension of energetic eddies seems to be significantly dependent

on relative submergence.
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6.1 Future Investigations and Engineering Appli-

cations

The explanation of the difference between the experiments presented herein

and the study of Cameron et al. [19] about the occurrence of the VLS require

further investigations. Namely, the physical mechanism suggested in Cameron

et al. [19], who link the VLS development to the ratio B/hw, is not clear.

Moreover, an additional non-dimensional parameter which can drive the

occurrence of VLS could be X/hw rather than B/hw as suggested by Cameron

et al. [19], which has a clearly defined physical mechanism (i.e. the boundary

layer development). To this purpose, future experiments are required to clarify

the conjecture expressed before. The Kolmogorov 4/5 law (Eq. 5.7) can be

used to measure, in a reliable way, the TKE dissipation rate in any turbulent

flow. It was verified that ⟨ε⟩ can be computed through velocity signals

coming from user-friendly instruments (i.e. ADV), which can be employed

in field. Hence, new scenarios of research can be opened as well as direct

engineering applications. In order to make the following procedure available

in engineering practice, a series of experimental campaign should be carried

out. These experimental campaigns need to be focused on the definition

of a rough estimator of ⟨ε⟩ as a function of dimensionless parameters (i.e.

Reynolds number, relative submergence, and so on).

6.1.1 Velocity Scale

A new velocity scale can be computed exploiting the most general definition

of the TKE energy dissipation rate

ε =
u̇3

ḋ
, (6.1)
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where u̇ is a velocity associated with a length scale ḋ, ε being valid in the

range from the Taylor microscale λτ to the integral length scale λc [53]. With

this assumption, λc at the bed crest level ẑ = 0 should be of the order of

the maximum roughness height (∆R); therefore, a new velocity scale can by

calculated as follows:

u̇ = 3
√

ε∆R. (6.2)

6.1.2 Drag Force

Manipulating the hydrodynamic drag force FD

FD =
1
2

CDρL2ū2, (6.3)

where CD is the dimensionless drag coefficient, ρ is the fluid density function,

L2 is the object area exposed to the flow and ⟨ū⟩ is the flow velocity. Further-

more, CD is a function of Reynolds number, and in particular it becomes a

constant at high Re. Davidson [29] calculates the amount of kinetic energy

distribution per unit time as

W = FDū =
1
2

CDρL2ū3, (6.4)

which becomes per unit mass

ε =
W

ρL3 =
1
2

CD
ū3

L
. (6.5)

Equation 6.5 is bound by the same limitations, suggesting that CD does not

depend on Re. Applying the results obtained by the 4/5-law [80], one can



138 Conclusions

assess the TKE dissipation rate and, then, find CD as a function of

CD =
2εL
ū3 . (6.6)
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Appendix A

Velocity Data

ADV measurements test

Instruments like the Acoustic Doppler Velocimeter (ADV) constrain the user

to adopt many precautions before taking correct measures.

A first check is related to the misalignment of the ADV probe. In our tests,

such error has been checked moving the ADV Vectrino with an automatic

movement system (the Traverse System by HR Wallingford Ltd., UK) in still

water. Namely, the flume was filled with water up to a certain level; then, the

ADV probe was moved in the streamwise direction and it must be checked

that the registered velocity signals be u ̸=Vt , v = 0 and w = 0, where Vt is the

velocity of the Traverse System (see figure A.1).

A second check must be performed using the Vectrino+ software. The

Vectrino+ mask displays:

• Signal-to-noise ratio (SNR), which should not be less than 15÷20;

• Correlation, which should not be less than 70% in turbulent flows.
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Figure A.1: Traverse System.

Moreover, the ADV requires setting the sampling frequency and volume.

As a general rule, the user should operate using the minimum sampling

volume height. As we can see in figure A.2, the ADV sampling volume is a

cylinder having a diameter d of 6.5 mm and a variable height (1 ≤ z′ ≤ 9.1

mm).

Why should the user set the sampling volume height as small as possible?

The answer resides into the fact that most of the known laws in turbulence

must be applied in the so-called inertial subrange. Hence, the sampling

volume has to be compatible with this range. Just remind that the inertial sub-

range is contained between the integral scale and the Kolmogorov microscale

[29]

η ∼
√

15lRe−1/2. (A.1)
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Figure A.2: ADV probe sampling volume.

The Kolmogorov microscale, being the lower limit of the inertial subrange, is

quite difficult to reach by using laboratory instruments like ADV. Hence, we

can exploit the Taylor microscale definition, which is still contained in the

inertial subrange, but it is larger than the Kolmogorov one.

λ ∼ lRe−3/4. (A.2)

Equation A.2 can be used to check and set a-priori the ADV sampling volume,

which should be of the order of λ to glimpse the inertial subrange.

After a careful check of these parameters, the next step is to have a look

at the acquired raw velocity signals. Usually we observe signals affected by

spikes, as reported in figure A.3. Goring and Nikora [59] identify these spikes

as a result of a sum of problems like the Doppler noise floor, the aliasing of
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the Doppler signal and the phase shift between the outgoing and incoming

pulses reflected from the bed complex geometries.

According to the indication on the SNR and the correlation, the points

not respecting such limit must be rejected. After this step, the Phase-Space

Thresholding Method by Goring and Nikora [59] has to applied in order to

despike the signals. The steps described before were implemented in Maltab,

making the entire process automatic. A despiking example is reported in

figure A.3.
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Figure A.3: Comparison of raw velocity signal and the velocity signal after
despiking process.

Proceeding in the analysis shown in chapter 5, we notice a bulge in

the spectra, which always occurs at frequencies of 10÷ 20 Hz (see figure

5.4). Such, unexpected bulge prompted us to make further checks. First of

all, a check on the ADV literature and the ADV Nortek forum was carried

out. Unfortunately, there was nothing interesting for our case; only a lot of

confusion on this problem reported in the ADV Nortek forum.

To be more precise the bulge was observed in the ⟨φuu⟩ and ⟨φvv⟩, whereas

in ⟨φww⟩ it disappeared, but why? The answer to this question resides in the

shape of the sampling volume, which has an equal length in streamwise x as in
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spanwise y direction, and a different length in vertical z direction, according

to figure A.2.

It is a short step to find a solution. Just imagine a vortex which crosses

the ADV sampling volume, having similar dimensions along the streamwise

and spanwise directions. Such vortex will have a drift velocity equal to the

local mean flow velocity, let’s say ū. The interesting vortices which create

the bulge in the spectra should have, at least, the same dimension of the

sampling volume d. The relation linking these quantities to the frequency is

the following one:

ū = d · fbulge, (A.3)

from which we can calculate the bulge expected frequency

fbulge =
ū
d
. (A.4)

Anyway, something more can be done. As visible in the spectra of chapter

“Results and Analysis”, the bulge influences the spectra in a certain frequency

band. Extending the previous procedure, it is still possible to individuate the

bulge influence frequency band. To compute the low and high frequencies

edge, the standard deviation of the velocity signal has to be evaluated, as

follows

ū−3σu < ū < ū+3σu. (A.5)

Hence, using the velocities ū−3σu and ū+3σu, the frequency edges are

found to be

fbulge− =
ū−3σu

d
, (A.6)

and

fbulge+ =
ū+3σu

d
. (A.7)
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An example of the bulge frequencies, computed thanks to the previous method

is reported in Figure A.4.
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Figure A.4: Example of bulge frequencies calculation.

This method can be applied along the spanwise and vertical directions.

Just remind that the sampling volume height is quite smaller than the stream-

wise and spanwise sizes, resulting most of the time appropriate to produce no

bulge in the ww spectrum.
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