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Chapter 1

Introduction

Complex systems are characterized by a continuously evolving dynamics,
whose final state is unpredictable. The degree of complexity depends on
the number of elements (parameters) involved, which are often connected
via non-linear interactions. The more the number of relationships among
the elements, the more complex the system is. Thus, complexity is strongly
dependent on the number of parameters necessary for the description of a
system; this implies that complexity is not an intrinsic property of a system
but is related to its description and depends on the model used. However,
simplified models are often adopted. Examples of complex systems are: as-
trophysical systems, geophysical systems (as for example earthquakes and the
dynamics of the atmosphere), economy systems, social systems (communities
of interacting people), ecosystems.

In this thesis some aspects of complex phenomena in astrophysical con-
texts are investigated. In particular, we focus on problems related to the
particle acceleration and transport and to the characterization of plasma tur-
bulence in the interplanetary space, both from a theoretical point of view and
from data analysis. These phenomena are closely related, indeed, energetic
particles, traveling through the interplanetary medium, interact continuously
with the plasma present which is in a turbulent state.

The Earth’s atmosphere is continuously struck by particles having ener-
gies in the range 106–1022 eV [1]. The energetic flux of these particles, the
cosmic rays, is described by a power law, i.e., dN/dE ∼ E−γ, where the index
γ ∈ [2.5, 3.0] depends on the energy range. From 106 up to 1014 eV cosmic
rays have solar and Galactic origin, indeed, particles of energies around 1
GeV are accelerated at violent solar events, as flares and coronal mass ejec-
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Figure 1.1: Differential energy fluxes of low energy cosmic rays (on the left)
and of the high energy cosmic rays (on the right). The latter is normalized
to E−2.5

9 , where E9 is the energy in units of 109 eV. Adapted from Ref.s [1, 2].

tions (CMEs). Above roughly 1015 eV the spectrum steepens [2] and the
contribution to this energy range comes from cosmic rays having extragalax-
tic origin (for example from particles accelerated at supernova remnants).
In Fig. 1.1 the differential fluxes of low energy particles (left panel) and
high energy particles (right panel) are displayed. Around 1015 eV a knee
in the flux can be recognized; owing to a poor statistics (just one particle
every 100 years hits one km square of the Earth’s surface), the differential
flux at very high energies (around 1020) is affected by a large error. As well
as cosmic rays, energetic particles are routinely observed in the planetary
magnetospheres and close to interplanetary shocks. However, how particles
are accelerated in the various physical contexts is a topic poorly understood.
Another puzzling topic is the propagation of energetic particles in the in-
terplanetary plasma. Indeed, particles spread out in space interacting with
magnetic and electric turbulence present in the medium. Understanding how
particles are accelerated and propagate through the heliosphere is relevant in
space weather forecasts for assessing arrivals of energetic particle fluxes on
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the geospace environment, avoiding damages to spacecraft, astronauts, and
electronic systems. One of the aim of this work is to investigate the acceler-
ation processes and the transport properties of charged particles either via
theoretical models and with data analysis. Therefore, the first part of this
thesis is devoted to investigate these two crucial aspects from a theoretical
point of view. We start with a numerical study of transport regimes both
in position and velocity spaces, by integrating the equations of motion of
charged particles interacting with stochastic electromagnetic fields. We also
use the above numerical simulations in order to model protons acceleration
processes in the distant Earth’s magnetotail. Afterwards, in the framework
of stochastic acceleration, we propose another numerical study which repro-
duces a one dimensional modified Fermi-Ulam model. This has been used for
characterizing the formation of particles beams frequently observed in some
regions of the Earth’s magnetosphere. The results shown seem to be in good
agreement with observations. In the second part of this thesis, a diagnostic
tool for understanding the transport of energetic particles in the solar wind,
based on propagator formalism, has been applied to the analysis of temporal
profiles of energetic particles coming from interplanetary shocks.

As said before, cosmic rays propagate in the interplanetary space interact-
ing with the solar wind, a continuous magnetized flow of charged particles
(plasma) coming from the Sun and expanding into the whole heliosphere.
Thanks to spacecraft in situ observations, it has been possible to realize
that solar wind is in a state of fully developed turbulence [3]. The turbulent
character of the solar wind can be recognized in the high amplitude fluctu-
ations of macroscopic quantities, such as solar wind velocity, magnetic field,
density, and temperature. In Fig. 1.2 the temporal evolutions of speed, den-
sity, temperature and magnetic field of a fast solar wind stream (V ∼ 700
km/s) measured by Helios 2, are displayed [4]. Turbulent flows are extremely
sensitive to triggering disturbances, indeed, the details of the temporal be-
havior are very different by changing initial conditions just of a very small
quantity, even if the global stochastic character remains roughly unchanged.
In other words, average values are not sensitive to small initial fluctuations.
Therefore, a probabilistic approach is appropriate in turbulence dynamics.

Turbulence in the solar wind has been studied in analogy with the tur-
bulence in ordinary fluids [5]; indeed, by looking at the power spectra of
magnetic and velocity field fluctuations at intermediate scales [3], that is in
the range 10−3–10−1 Hz, the well know, universal, Kolmogorov law f−5/3 is
recovered [6], as in non-magnetized fluids. This means that, because turbu-



Figure 1.2: From top to bottom: temporal evolution of velocity, density,
temperature and magnetic field of a fast solar wind stream detected at 0.9
AU by the Helios 2 spacecraft. Adapted by Ref. [4].
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lence involves the formation of several structures (eddies) at all scales, the
energy of the flow contained at the largest scales cascades toward smaller and
smaller scales as a power law with a characteristic scale index. In ordinary
fluids the energy transfer goes on until structures are dissipated by effects of
fluid viscosity (dissipation range). This small-scale part of the spectrum is
described by an exponential function [5]. While in non-magnetized fluids it
is clear that energy dissipation takes place at small-scales, a much more puz-
zling situation is observed in the solar wind. The solar wind turbulent spec-
trum follows a Kolmogorov law in the intermediate frequency range, named
inertial range, but above the ion-cyclotron frequency, fci = eB/(2πmi) with
B the magnetic field and mi the mass of ions, which is a characteristic scale
in magnetized plasmas, the spectrum becomes steeper, forming a power law
f−s, with s ∈ [2, 4] [7]. An open question is whether this high frequency
range can be associated to a dissipation process, as in ordinary fluids, or
to a high frequency mechanism of energy transfer. On the other hand, in
the solar wind effects of dissipation via collisions are negligible, because the
particle mean free path is roughly equal to the Sun-Earth distance; further,
at variance with non-magnetized fluids, the high frequency range is a power
law and the fourth-order moment (flatness) of the distributions of magnetic
field fluctuations increases toward smaller scales (intermittency), leading to
a strong non-Gaussianity in the high frequency range. The presence of a high
level of intermittency, which is a property of the low frequency range, might
be an indication that a high frequency turbulent cascade is going on. Prob-
lems related to the knowledge of physical processes involved at small-scales
are also due to the fact that high resolution data from spacecraft have been
available just recently. In this work, we also try to understand small-scales
properties of turbulence by starting from a basic statistical analysis. In the
last part of this thesis, we study the character of anisotropy, induced by the
presence of a mean interplanetary magnetic field which selects a preferential
direction, not only in the solar wind, but also in other two regions of the helio-
spheric environment, the Earth’s foreshock and the Earth’s magnetosheath.
These are regions forming at 1 AU when the solar wind flow encounters the
Earth’s magnetosphere (see Chapter 4 for further details). Datasets used
allow to perform analysis at frequencies much higher than the ion-cyclotron
frequency, which is considered as a reference scale in this work. We high-
light that above the ion-cyclotron frequency, the trace of the one-point cross
correlation matrix, Si,j = 〈BiBj〉 − 〈Bi〉〈Bj〉 (involving the magnetic field
components), which is related to the magnetic field power spectrum, can-



not be defined unambiguously. Indeed, the eigenvalues of the matrix, giving
the degree of anisotropy present in the medium, exhibit a broad power law
distributions at those frequencies in all three regions. In addition, while in
the low frequency range magnetic field fluctuations are much more concen-
trated in a plane perpendicular to the mean magnetic field direction, above
the ion-cyclotron frequency the situation drastically changes, indeed, fluctu-
ations become less transverse to the large-scale magnetic field. This could be
an indication of a change in the nature of magnetic field fluctuations, which
pass from being transversely propagating Alfvèn waves to compressive ones.
This change should be taken into account when studying high frequency
turbulence, either in space and in laboratory plasmas.



Chapter 2

Numerical models for
stochastic acceleration

2.1 Acceleration of particles and transport

The problem of particle acceleration is one of the most challenging problems
both in astrophysics and in laboratory plasmas. In 1949 E. Fermi [8] proposed
a simple acceleration model for relativistic cosmic rays, in order to explain
the power-law energy spectrum observed. In this context, particles can be
accelerated through stochastic encounters with magnetized clouds present
in the interstellar medium, having either a probability of gaining energy
(head-on collisions) and a probability of loosing energy (tail-on collisions),
depending on the relative sign between particle and cloud velocities. The
variation of particle energy at each collision depends on the square of cloud’s
velocity (second-order Fermi acceleration), ∆E/E ≃ (V/c)2, being V the
speed of the cloud and c the speed of light [9]. However, this mechanism
cannot explain values of energy greater than those observed at frequency
above 1015 eV (above the “knee” of the spectrum). In order to reproduce the
high-energy part of the spectrum, an acceleration mechanism, involving the
interaction between particles and shock waves, was considered. Depending
on their energies (and consequently on their Larmor radii), particles can be
reflected from the shock front, owing to an increase in the magnetic field
strength, returning in the non-shocked upstream region. If another change
in the magnetic field is encountered in the upstream region, particles can
return to the shock front and here be accelerated again. In this process the
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Figure 2.1: Cartoons of the second order Fermi acceleration (on the left) and
of the first order Fermi acceleration (on the right). Adapted from Geisser,
1990.

variation of particle energy at each reflection is related to the velocity of the
shock front, i.e., ∆E/E ≃ V/c (first-order Fermi acceleration) [9]. A cartoon
of these two acceleration mechanisms is displayed in Fig. 2.1.

In the last century, this mechanism has been extensively applied in vari-
ous astrophysical contexts: shocks from supernova explosions can account for
the acceleration of galactic cosmic rays [10], solar flares, coronal mass ejec-
tion driven shocks (CMEs) and corotating interaction region shocks (CIRs)
can be considered a source of energetic particles. In 1982, Lee and Fisk [11]
modified the first-order Fermi acceleration mechanism by considering that
magnetic irregularities present in the plasma close to the shock can scatter
energetic particles back and forth through the shock front, allowing them to
reach high energy values. Magnetic irregularities can be generated or ampli-
fied by the shock, or produced by some kind of instability due to the presence
of accelerated particles themselves [12]. In this framework the motion of par-
ticles is a random walk in space and the number of shock encounters can be
very large. This theoretical model, called diffusive shock acceleration (DSA),
is largely used in cosmic rays acceleration at extragalactic, galactic and inter-
planetary shock waves. In order to reproduce different observational features,
up to now several mechanisms for particle acceleration have been proposed,
ranging from magnetic reconnection [13, 14] and turbulent dissipation [7, 15]
to surfing acceleration [16, 17] for solar energetic particles and cosmic rays
[18].

Fluxes of energetic particles reach continuously the Earth, then under-
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standing transport of particles in the interplanetary space is fundamental
for space weather forecasts. Indeed, energetic particles can be used as a
proxy for the arrival of strong solar disturbances on the geospace environ-
ment. The problem of particle transport has a crucial role also in controlled
fusion plasmas, because the knowledge of the transport scaling is important
in the design of fusion reactors [19]. The propagation of charged particles
in plasmas is strongly influenced by the presence of electric and magnetic
turbulence, which causes pitch angle scattering and perpendicular transport
[20, 21]. The standard scenario of normal transport (Brownian-like motion)
in position space has been considered for long time: from a dynamical point
of view, normal diffusion is an uncorrelated, Markovian (without memory)
process. On the other hand, from a probabilistic point of view this process
can be described by the probability P (x, t) of finding a walker at position
x at time t. x =

∑

i xi and t =
∑

i ti are the sum over the random dis-
placements xi performed at times ti. Displacements are uncorrelated and
after a large number of jumps (i.e., for long times) P (x, t) tends to a Gaus-
sian distribution with finite second order moment. This is a consequence of
the Central Limit Theorem, which assures Gaussian distribution and, conse-
quently, a mean square displacement growing linearly in time, 〈x2(t)〉 ≃ t, in
the limit of a large number of independent jumps [22]. The Gaussian distribu-
tion, P (x, t), is solution for the diffusive equation ∂/∂tP (x, t) = D∇2P (x, t),
where D is the diffusion coefficient having dimension [L2/T ]. However, recent
fluid and plasma experiments [23, 24], and numerical simulations [25, 26, 27]
have highlighted the presence of transport regimes both slower (subdiffusion)
and faster (superdiffusion) than the normal diffusion. These regimes, called
anomalous, imply the breaking of the Central Limit Theorem, indeed, they
are characterized by a non-Gaussian distribution for the probability of jump
lengths and by the presence of long-range correlations [28, 29]. Subdiffusion
is associated to trapping events described by a waiting-time distribution ψ(τ)
between jumps, which are not separated by regular time intervals as in the
normal diffusive regime; the probability density function for waiting times is
a power-law [19], ψ(τ) ≃ τ−(β+1), indicating that a particle can spend a long
time in a trap before performing a jump. In such a regime the mean square
displacement grows less than linearly in time, A superdiffusive regime arises
when the diffusion coefficient diverges; this can due either to a divergence of
the velocity variance (Lévy flights, or to the presence of strong correlations
decaying as a power-law in time (Lévy walks) [30]. In this case we have a
multi-step memory process and the mean square displacement is faster than



2.2. DYNAMICS OF TEST PARTICLES IN STOCHASTIC
ELECTROMAGNETIC FIELDS

linearly in time. In anomalous diffusion regimes the probability P (x, t) fol-
lows a generalized diffusion equation [31, 32], ∂α/∂tαP (x, t) = Dα∇2P (x, t),
where ∂α/∂tα represents the Riemann-Liouville fractional derivative and Dα

is the fractional diffusion coefficient with dimension [L2/T α].
The Fermi acceleration model is an example of diffusion also in the ve-

locity space (non-stationary process). The interesting point is to investi-
gate the relationship between dynamics in position and in velocity spaces
[33, 34, 35, 36]. This relation is strongly dependent on the correlations in-
troduced in the models, indeed, different models can be characterized by
different scaling properties in position and in velocity spaces.

In this Chapter two theoretical models have been developed in order
to investigate the dynamics of non-relativistic test particles interacting with
magnetized clouds in 1D and 2D geometries. Some results are compared with
observations of accelerated particles coming from various physical contexts
and also a theoretical study on particle diffusion has been performed.

2.2 Dynamics of test particles in stochastic

electromagnetic fields

In this study the diffusive dynamics of non-relativistic test particles, sub-
jected to a stochastic electromagnetic field, is investigated. The motion of
each particle is described by the usual equations of motion, that are

dr

dt
= v , (2.1)

dv

dt
=

q

mc
[E(r, t) + v × B(r, t)] . (2.2)

A simple synthetic model for the electromagnetic fluctuations can be ob-
tained by using a vector potential A lying on the (x, y)-plane, namely A =
(Ax(r, t), Ay(r, t), 0). In the gauge where the scalar potential is zero, the
electric field is given by E = (Ex, Ey, 0) = −∂A/∂t, while the magnetic
field lies in the direction perpendicular to the (x, y) plane, namely B =
(0, 0, B) = ∇× A. With these assumptions the particle dynamics becomes
bidimensional because the z-component of the Lorentz force is zero. Elec-
tromagnetic fluctuations are computed via a superposition of electric and
magnetic fields generated by random positioned magnetized “clouds” mov-
ing in time according to prescribed laws in the (x, y)-plane. At variance
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with the model proposed by Fermi [8], here charged particles do not undergo
collisions with the clouds, but a Lorentz force, due to the presence of the
electromagnetic fields, continuously acts on test particles. The basic simula-
tion box is a square of size L×L containing N clouds and repeated in space
in order to allow a long time diffusive analysis (see below). Therefore the
vector potential is given by

Ax = Ay = A0

N
∑

n=1

[

ψn(ξ) +
∑

m

ψ(ξ̃m)
]

, (2.3)

where ψ = e−ξn , ξn = |r−rn(t)|/R, rn(t) = (xn(t), yn(t)) are the coordinates
of the n-th cloud, R represents the typical spatial extension of the potential
produced by a single cloud, and ξ̃m = |r−r̃m(t)|/R, being r̃m the coordinates
of the clouds in the replicated neighbour boxes of the basic cell. According
to the hypothesis that the other cells are duplicates of the basic cell, we
have that r̃m = rn + (iL, jL), with i and j integer numbers and at least
one of them is non-zero. Moreover, in order to simplify the sum in Eq.
(2.3), R and N have been chosen in such a way that R is smaller than
the distance between nearby clouds, therefore in the summation

∑

n of Eq.
(2.3) it is sufficient to consider only the eight nearest boxes to the basic cell,
that is, (i, j) = (±1, 0), (0,±1), (±1,±1), (∓1,±1). Since we are interested
in investigating the diffusive properties of the model and not to reproduce
detailed properties of cosmic rays, at variance with the model by Fermi [8],
where clouds are allowed to move with a given bulk speed, here the motion
of the clouds is sinusoidal along both x and y. That is, the coordinates of
the n-th cloud xn(t) and yn(t) are given by

xn(t) = xn0 + an cos[ωnt+ αn]

yn(t) = yn0 + bn sin[ωnt+ βn] , (2.4)

where xn0 and yn0 are the initial random coordinates of the n-th cloud, an

and bn are the amplitudes of the oscillations of the n-th cloud along x and
y respectively, ωn is the oscillation frequency, and αn and βn are the initial
oscillation phases, randomly chosen within the interval [0, 2π]. For the sake
of simplicity, we used the same values of motion amplitudes and frequencies
for all clouds, namely an = bn = a and ωn = ω.

The motion equations have been adimensionalized by using the following
normalization factors: B0 = A0/L for magnetic fields, ω0 = (qB0)/m for
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frequencies, t0 = 2π/ω0 for times, v0 = Lω0 for velocities and E0 = A0ω0 for
electric fields respectively. Finally, Eq. (2.2) can be rewritten as

dv

dt
= E(r, t) + v × B(r, t) , (2.5)

where

B(r, t) =
∑

n

1

R

∂ψ

∂ξn

{

[x− xn(t)] − [y − yn(t)]

|r − rn(t)|

}

+N.T. , (2.6)

Ei(r, t) =
∑

n

1

R

∂ψ

∂ξn

{

[x− xn(t)]ẋn(t) + [y − yn(t)]ẏn(t)

|r − rn(t)|

}

ei +N.T. . (2.7)

ei is the unit vector along the i-th direction on the plane, and N.T. stands
for the similar terms given by the clouds in the nearest cells. In Fig. 2.2 a
configuration of the synthetic fluctuations in the basic cell is displayed.

In the stationary case (ω = 0) the model becomes an electromagnetic
reformulation of the Lorentz model [37], which describes the motion of elec-
trons (treated as material points) in metals via kinetic equations, with the
sole difference that here the potential is smooth. When ω 6= 0 the model
can be considered Lorentz-like, owing to a time dependence of the cloud
positions.

2.2.1 Analysis of diffusion

Test particles simulations are performed by solving the equations of motion
via a 4th order Runge-Kutta scheme. npart = 6 × 103 particles are injected
at random positions within the basic cell with velocities extracted from a
2D Maxwellian distribution, i.e., P (vx, vy) ∝ exp[−(v2

x + v2
y)/2v

2
th], being

vth = 3 × 10−2 the thermal velocity. The results shown below come from
numerical simulations in which the parameters of the system are fixed to
N = 50, a = 10−3 and R = 7 × 10−2; the statistical analysis is performed
firstly by varying the oscillation frequency of the clouds motion, in particular
three different values are used, namely ω = 10−2, ω = 1 and ω = 10. In
Fig. 2.3 two examples of particle trajectories, for ω = 10−2 (left panel) and
ω = 10 (right panel) respectively, are displayed. At a glance it is possible
to notice that walks performed by particles in the two cases are completely
different, indeed, when the oscillation frequency assumes a small value, a
gyration motion is distinguishable in the trajectory and the particle spreading
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Figure 2.2: Contour levels of the module of the vector potential,|A|, in the
basic cell of length L = 1. N = 50 random positioned clouds oscillate at
frequency ω = 1 with amplitude a = 0.001.

is reduced; on the other hand, by increasing ω, the gyration is lost and particle
tends to “visit” a higher number of cells in space [36].

In order to study the diffusive properties of the system in both position
and velocity spaces, the mean square position and velocity displacements
are computed as functions of time, that is, 〈[r(t) − r0]

2〉 and 〈[v(t) − v0]
2〉,

where brackets represent averages over the particle population. In the case of
normal diffusion particles make a Brownian-like motion, with a mean square
position displacement growing linearly in time, 〈[r(t) − r0]

2〉 ∼ t. On the
other hand, if a power law dependence of the mean square position displace-
ment on time is found for long times

〈[r(t) − r0]
2〉 ∼ t2νx , (2.8)

with νx 6= 1/2, the diffusion is anomalous. The cases νx > 1/2 and νx <
1/2 are called superdiffusion and subdiffusion respectively. Diffusion in the
velocity space can be studied by conjecturing a scaling for the mean square
velocity displacements in analogy with Eq. (2.8), that is,

〈[v(t) − v0]
2〉 ∼ t2νv . (2.9)
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Figure 2.3: Examples of particle trajectories for ω = 10−2 (left panel) and
ω = 10 (right panel).

Table 2.1: Power law exponents νx and νv obtained from best fits of position
and velocity mean square displacements, respectively.

ω = 0.01 ω = 1 ω = 10
νx 0.49 0.89 1.19
νv 4.7 × 10−4 0.42 0.39

The mean square displacements of position and velocity are shown in Fig.
2.4 for the three values of ω used and for t = 104 Larmor times [36]. Power-
law best fits are also displayed as solid lines. The values of the exponents
νx and νv, calculated from the fit, are reported in Table 2.1. For ω = 10−2

the diffusion is nearly normal, indeed νx ≃ 0.5 and the velocity mean square
displacement remains constant after an initial transient. When the oscillation
frequency is increased, i.e., for ω = 1 and for ω = 10, the system passes from
a standard diffusive regime to a superdiffusive regime, characterized by the
presence of long jumps. In the velocity space a power-law temporal profile
for the mean square displacement is observed. As a consequence of the time
correlations, the relationship between the scaling exponents νx and νv is not
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Figure 2.4: Position mean square displacement (left panel) and velocity mean
square displacement (right panel) for ω = 10−2 (dotted lines), ω = 1 (dashed
lines), and ω = 10 (dashed-dotted lines) in log-log scale. Solid lines represent
power-law best fits.

simple [33, 35]. Indeed, a straightforward calculation shows that

〈[r(t) − r0]
2〉 ≃ 2

∫ t

0

∫ t−t′

0
〈|v(t′)|2〉C(t′, τ)dt′dτ, (2.10)

where C(t′, τ) = 〈v(t′)v(t′+τ)〉/〈|v(t′)|2〉. In the case of a standard diffusive
regime, where acceleration processes are absent, 〈|v(t′)|2〉 is constant, C(t′, τ)
is independent of t′, and 〈[r(t) − r0]

2〉 is just proportional to t, by integrat-

ing over t′, and to the diffusion coefficient, that is, D ∝ ∫ t−t′

0 〈v(0)v(τ)〉dτ .
On the other hand, in non-stationary cases, the presence of C(t′, τ) makes
the scaling exponents νx and νv not related in a simple way. Indeed, the
integration over t′ in Eq. (2.10) depends on the velocity correlations of the
system, i.e., on C(t′, τ). In such a case, only the upper bound νx ≤ νv + 1
can be derived [33]. When the electric field is strong, that is, when very
strong correlations of velocities are present, the equality νx = νv + 1 (the
maximum allowed difference between the scaling exponents) seems to oc-
cur [33, 35]. This indicates that a precise relationship between νx and νv is
strongly dependent on the correlations introduced in the model, therefore,
different models imply different scaling properties.

A parametric study of the model by fixing the oscillation frequency and
by varying the typical extension of the clouds R is also performed [38]. An
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Figure 2.5: Position mean square displacement (left panel) and velocity mean
square displacement (right panel) for R = 7 × 10−3 (dotted lines), and R =
7 × 10−2 (dashed lines) in log-log scale. Solid lines represent power-law best
fits. The value of the oscillation frequency is fixed to ω = 1.

example is displayed in Fig. 2.5 where the same plots as those in Fig. 2.4
are shown but for two different values of R, namely R = 7 × 10−3 and
R = 7×10−2, and for ω = 1. Best power-law fits highlight that a variation in
the values of the scaling exponents νx and νv is noticeable but no variations
in the properties of diffusion give rise. Indeed, from the scaling exponent
values reported in Table 2.2, it can be observed that the system persists in
the superdiffusive regime in all two cases, indicating a weak sensitive of the
model to variations of R.

Table 2.2: Power law exponents νx and νv obtained from best fits of position
and velocity mean square displacements when the typical size of the clouds
is changed.

R = 7 × 10−3 R = 7 × 10−2

νx 0.67 0.89
νv 0.25 0.44
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Figure 2.6: PDFs of the standardized velocity components at ω = 10−2

(dotted lines), ω = 1 (dashed lines), and ω = 10 (dashed-dotted lines),
collected at the end of the numerical simulations in log-lin scale. The PDFs
at t = 0 are displayed as solid lines for comparison.

2.2.2 Analysis of Probability Density Functions

The probability density functions (PDFs) of the two velocity components in
the (x, y)-plane at different ω, collected at the end of the numerical simula-
tions, are shown in Fig. 2.6 together with the PDFs of the initial velocities
(at t = 0), which are Gaussian. In order to make a comparison among PDFs,
the distributions of the standardized variables, (vi − 〈vi〉)/σvi

, are computed
(these variables have zero mean and unitary standard deviation). The shape
of the PDFs displayed in Fig. 2.6 does not change significantly with respect
to the initial Gaussian distribution. However, the standard deviations of vx

and vy increase as the oscillation frequency increases (see Table 2.3), that is
the velocity distributions become broader in the presence of superdiffusion
in the position space.

The strong energization is clearly visible by looking at the PDFs of the
particle energies. Thus, in Fig. 2.7 the PDFs of the energy at different ω
are plotted. By increasing the oscillation frequency of the clouds, particles
can gain a large amount of energy owing to the strong interaction with the
electromagnetic fields; when ω is below the Larmor frequency the efficiency
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Table 2.3: Standard deviations of the two velocity components collected at
the end of the numerical simulations for ω = 0.01, ω = 1, and ω = 10. As a
comparison the standard deviations of the initial velocities are shown in the
first two rows.

Standard deviation
Initial vx0 0.03

vy0 0.03
ω = 0.01 vx 0.03

vy 0.03
ω = 1 vx 0.21

vy 0.21
ω = 10 vx 1.49

vy 1.49

of the Fermi-like mechanism is rather low, indeed no significant deviations
from the initial particle distribution (solid line in Fig. 2.7) are noticeable.
As it has been discussed for velocity distributions, the shape of the PDFs
of energies remains Maxwellian in all three case, i.e., P (E) ∼ K exp(−λE),
where K and λ are constants. Then, in this model the anomalous diffusion
regime is associated to an energization of the bulk of the particle population
and not to the existence of high energy tails in the velocity distributions.

2.2.3 Application to the Earth’s Magnetosphere

Using the numerical model described in Sec. 2.2, a test particle simulation
has been performed in order to reproduce the interaction between electromag-
netic fluctuations and charged particles in the distant Earth’s magnetotail.
In the magnetospheric environment, a variety of accelerated particle popu-
lations is observed. Many spacecraft have detected energetic particles and
even beams in the geomagnetic tail, with energies in the range of tens of keV
and sometimes up to 100-200 keV [39, 40]. In the near-Earth neutral sheet
(−20 RE < X < −10 RE) AMPTE IRM reported observations of several
types of particle distributions functions [41], ranging from isotropic ones to
ring and beam types. Energetic particles are observed as beamlets at the
lobeward edge of the plasma sheet boundary layer (PSBL) [42, 43]. The



CHAPTER 2. NUMERICAL MODELS FOR STOCHASTIC
ACCELERATION

Figure 2.7: PDFs of the energies of particles collected at t = 104 Larmor
times for ω = 10−2 (diamonds), ω = 1 (triangles), and ω = 10 (squares) in
log-log scale. The solid line represents the initial Maxwellian distribution.

common idea is that these particles are accelerated in the magnetospheric
current sheet, which is a plane separating regions of oppositely directed mag-
netic field, and extends in the antisolar direction up to more than 200 Earth’s
radii (see Fig. 2.8). However, the acceleration mechanisms are poorly un-
derstood. The quasi-stationary dawn-dusk electric field Ey present in the
magnetotail can be a source of acceleration for ions performing Speiser-like
orbits [44, 45, 42, 43], but realistic values of the large scale electric field
(Ey ≃ 0.1–0.3 mV/m) lead to maximum potential drops of the order of 30
keV (corresponding to type I beams), while particles exceeding 150 keV (type
II beams) are sometimes observed [46, 47]. Besides energy values, these two
types of beams exhibit other different characteristics; indeed, type I beams
ion velocity distribution functions are highly collimated in energy (see left
panel of Fig. 2.9), they are observed during quiet periods in the PSBL, and
the beam duration is of the order of 20 minutes; type II beams ion velocity
distribution functions are wide in velocities parallel to the PSBL magnetic
field, as it is shown in the right panel of Fig. 2.9, they are detected both in
quiet and disturbed periods, and their observed duration is of few minutes
[47]. In Fig. 2.10 ion beams energy distributions along the y direction in
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Figure 2.8: Cartoon of the magnetospheric environment.

the GSM reference frame1 are shown [47], both for type I and for type II
beams. If the acceleration mechanism at work in the current sheet is only
due to the presence of the dawn-dusk electric field, its value should be of the
order of 1 mV/m in order to explain ion energies around 150-200 keV, but
this is not consistent with its realistic value. By analyzing the “geography”
of the observed ion beams, Ref. [47] has recently shown that, beside Ey,
another acceleration mechanism is required for type II beams. Since they are
regularly observed, the acceleration mechanism has to be of a quasi-steady
nature. One such mechanism can be the evolution of electromagnetic fluc-
tuations in the magnetotail [48]. The high variability of local and boundary
conditions in the magnetotail quasi-neutral sheet and the inhomogeneity of
the current sheet structure allow for the description of magnetic fluctuations
in terms of vortices and of localized moving clouds of plasma and magnetic
field [49, 50, 51].

In this work the Fermi-like acceleration, described in Sec. 2.2, due to the
presence of moving magnetic structures, which mimic the magnetic fluctu-

1The Geocentric Solar Magnetospheric (GSM) coordinate system has the X-axis along
the Earth-Sun line, the Y -axis is perpendicular to the Earth’s magnetic dipole, so that
the X-Z plane contains the dipole axis. The positive Z-axis is chosen to be in the same
sense of the northern magnetic pole.
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Figure 2.9: Ion velocity distribution functions observed by Geotail on 12
December 1994 during the PSBL crossing at 13:34-13:54 UT (left panel),
and at 19:18-19:20 UT (right panel). Adapted from Ref. [47].

ations observed by spacecraft in the distant magnetotail, is proposed as an
additional energization mechanism. Ions are assumed to move in the neutral
sheet along Speiser orbits, while the motion perpendicular to the plane is
neglected. We adopt a 2D model in order to compare the contribution to
the acceleration process of the stochastic mechanism and that coming from
the dawn-dusk electric field. Both these mechanisms are at work inside the
current sheet. By varying the features of electromagnetic fluctuations, we
show that the combined effect of Ey and of the moving clouds can explain
a range of energetic ion observations, including the typical energies and the
typical acceleration times.
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Figure 2.10: Ion beam energy distribution along the y direction in the GSM
reference frame. Both type I and type II beams are shown. Dashed lines
indicate the limit in ion energy gain if only the direct dawn-dusk electric
field acceleration is considered. Adapted from Ref. [47].

The model

In this case, the fields equations, B = ∇ × A and E = −∇φ + ∂A/∂t,
are solved in the gauge where −∇φ = Eyey, being Ey = const. The vector
potential is given by Eq. (2.3) but without the term relevant to the replicated
neighbour boxes, i.e.,

Ax = Ay = A0

∑

n

ψ(ξn), (2.11)

where ψ(ξn) = e−ξn and ξn = |r − rn(t)|/lcl, with |r − rn(t)| the difference
between particle and cloud positions and lcl the typical size of the clouds. The
simulation box has a size L corresponding to the width of the magnetotail
current sheet and particles are positioned in it with initial energies of the
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order of 100 eV. This is a characteristic value for protons coming from the
magnetospheric mantle and reaching the magnetotail. The usual equations
of motion for test particles (see Eq. (2.5)) are integrated until a particle
leaves the simulation box; at this point another one is injected in order to
keep the total number of particles constant. Assuming a typical size for the
simulation box of L = 105 km and a mean magnetic field B0 = 2 nT, in
agreement with the observations in the distant Earth’s neutral sheet [52],
a characteristic proton Larmor frequency ω0 = 0.2sec−1, a normalization
velocity v0 = ω0L = 2 × 104 km/sec and a normalization electric field E0 =
B0ω0L = 40 mV/m are obtained. The typical proton gyroperiod is nearly 30
sec. The electromagnetic field equations are:

Bz(r, t) = δBz = −A0

lcl

∑

n

∂ψ

∂ξn

[(x− xn(t)) − (y − yn(t))]

|r − rn(t)| (2.12)

E(r, t) = (δEx, Ey + δEy, 0)

where δEx = δEy = δE and

δE = −A0

lcl

∑

n

∂ψ

∂ξn

[(x− xn(t))ẋn(t) + (y − yn(t))ẏn(t)]

|r − rn(t)| . (2.13)

The equations of motion are integrated for an ensemble of 5000 test parti-
cles having initial random positions and velocities extracted from a 2D Gaus-
sian distribution with vth = 120 km/s (considering a proton temperature of
Tp ≃ 106 K).

Regarding to the system parameters, N = 100 clouds are put in the sim-
ulation box. These magnetized clouds mimic the electromagnetic perturba-
tions present in the neutral sheet, then it is reasonable to associate a charac-
teristic velocity corresponding to the Alfvèn wave velocity, i.e., VA ≃ 500
km/sec. In the present simulations we have been varying just one pa-
rameter, that is the cloud size. Three cases are reported here, i.e., lcl =
0.016L, 0.032L, 0.08L corresponding to oscillation frequencies ω = VA/lcl.
These frequencies fall in the range of those observed by Geotail in the dis-
tant magnetotail [52]. For simplicity, the amplitude a of the oscillation has
the same value as lcl. Finally, the typical value of the dawn-dusk electric
field has been fixed to Ey = 0.2 mV/m, in the range of the observed values
[52, 47], while the order of magnitude of the fluctuating electric field is 1
mV/m.
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Figure 2.11: Time evolution of the model magnetic field (on the left) and
of the electric field components (on the right) at a fixed position in the
simulation box.

Numerical results

Fig. 2.11 shows the time behavior of the magnetic field Bz and of the electric
field components Ex, Ey obtained from the numerical model for 100 Larmor
times at a fixed position, in this case the cloud dimension is R = lcl/L = 0.08.
Magnetic field evolution displayed in Fig. 2.11 compares rather well with
typical structures and irregular oscillations of the normal component of the
magnetic field observed, for instance, by Geotail in the distant tail (see Fig.
1 in Ref. [52]).

Several simulations are performed by varying the parameter R, in order
to control the competition of the two acceleration mechanisms, the electric
field acceleration and the Fermi-like acceleration. In Fig. 2.12 the contour
level of magnetic fluctuations Bz (left panel) and five trajectories of charged
particles in the simulation box (right panel) are displayed, being the cloud
extension fixed to R = 0.016. It can be noticed that the influence of the
Fermi-like mechanism is weak with respect to the acceleration due to the
presence of the constant component of the electric field along the y direction,
indeed, particles are mainly accelerated along y, and exit from the simula-
tion box along the direction of Ey. Their trajectories are very smooth and
do not exhibit any gyration motion. A different situation is visible in Fig.
2.13 showing the results of a simulation in which clouds have a size R = 0.08:
here the particle-cloud interaction is increased and the Fermi-like mechanism
becomes highly competitive with the steady electric field acceleration. Parti-
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Figure 2.12: Contour level of Bz (left panel) and five trajectories of different
charged particles in the basic cell (right panel) coming from a simulation in
which R = 0.016.

cles remain in the simulation box for a longer time without rapidly escaping
along the y direction.

Fig. 2.14 displays the velocity distribution functions in log-lin axes along
the y direction at three different times and at the starting time (dotted line),
for three different values of the cloud size (R increases from the top to the
bottom). In the top panel where R = 0.016, it can be seen that particles
gain in few minutes a bulk velocity along positive y direction due to the
presence of the constant electric field. After that, different transient stages
are observed and the system reaches a stationary state after 10-15 minutes.
This time corresponds to the typical lifetime of protons into the simulation
box. In this state, the shape of the distribution function does not change
anymore. When the clouds are small, particles interact weakly with the
electromagnetic fluctuations, so that the steady electric field plays the main
role in the particle dynamics.

In the middle panel (i.e., R = 0.032), it can be seen that the distribution
is broader, because the stronger interaction with the electromagnetic clouds
provides a randomization of the velocities, and the evolution of the PDF is
faster with respect to the case displayed in the top panel.

Finally, in the bottom panel, corresponding to R = 0.08, the situation
drastically changes. Now the main acceleration source for particles comes
from their interaction with the clouds and the steady electric field has a
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Figure 2.13: Same as Fig. 2.12 but for R = 0.08.

minor importance for the particle dynamics. Indeed, the bulk velocity is
decreased with respect to the previous cases; on the contrary, the PDFs of
vy are very wide and particles in the tails gain velocities of the order of 2000
km/s in very few minutes. We notice that an acceleration time of roughly 10
minutes is comparable to the time a proton needs to cross the magnetotail
under a free acceleration by Ey, so that the Fermi acceleration mechanism
can be considered very fast. On the other hand, the shape of the velocity
distribution remains close to a Gaussian, that is, no power law tails are
developed, in agreement of what has been observed in Sec. 2.2.2. This is
shown in the inset of the bottom panel of Fig. 2.14, where the PDFs of the
standardized variables, (vy − 〈vy〉)/σvy

(〈vy〉 is the ensemble average of vy

and σvy
the standard deviation), are displayed in log-lin scale for the same

times plotted in the bottom main panel.

In Figure 2.15, we compare the steady state energy distribution function
for the three sets of parameters, along with the initial Gaussian energy dis-
tribution. We can notice that the energy gain increases with the size of the
clouds, which means that the interaction with them is stronger. In particular,
for R = 0.032 and R = 0.08, the energy acquired by particles is substantially
larger than the potential drop of 20 keV in the simulation box, due to Ey

and represented by the vertical dashed line in Figure 2.15. Increasing the
cloud interaction, the energy grows up to 100 keV. This allows to explain the
observations of 100 keV ions coming from the distant magnetotail [47].

From this study, a competition between stochastic and direct acceleration
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Figure 2.14: Evolution of the ion distribution function for Ey = 0.2 mV/m
and for R = 0.016 (top panel), R = 0.032 (middle panel), and R = 0.08
(bottom panel) in log-lin scale.
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Figure 2.15: Energy distribution functions for the various simulations. The
vertical dashed line at 20 keV corresponds to the potential drop across the
simulation box due to Ey. The dotted line represents the energy distribu-
tion at injection, while the dashed-dotted, the dashed-dotted-dotted, and
the solid lines represent the steady state energy distribution functions for
R = 0.016, 0.032, 0.08.

mechanisms gives rise: in the first case analyzed, with R = 0.016 (see top
panel of Fig. 2.14), the interaction between particles and cloud electromag-
netic fields is weak, then the cross-tail electric field is the main mechanism for
particle acceleration. When the cloud dimension increases, the interaction
becomes stronger, so that the Fermi-like mechanism becomes competitive,
and could even mask the steady effect of the constant electric field (see bot-
tom panel of Fig. 2.14), leading to a randomization of the velocities and
to an increase in the energy gained by particles. Assuming realistic values
of the parameters, this mechanism allows to reach the required energies in
the short times the ions spend in the magneotail performing Speiser orbits,
so that it appears to be very competitive. This work is an attempt to ex-
plain some observations in the magnetospheric environment by using a 2D
model of stochastic, Fermi-like acceleration. It could be also applied to other
astrophysical contexts, as the acceleration of particles at the solar wind ter-
mination shock.
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2.3 Particle acceleration in a Fermi-Ulam-like

model

The model proposed by Fermi [8] for the acceleration of cosmic rays, discussed
in Sec. 2.1, became rapidly popular and it was referred as a paradigm for
further studies in a wide range of different physical systems [53, 54, 55, 56].
For example, within a dynamical systems framework, a very simple model
for studying the acceleration of particles is the so called Fermi–Ulam model
(FUM) [57, 58, 59, 60, 61, 62]. It describes the bouncing of a ball between a
sinusoidally oscillating wall and a fixed one. This system can be written as
a two-dimensional map, whose coordinates are the velocity of the ball after
a collision with the wall and the phase of the moving wall [63]. A simpli-
fied version of the FUM has been proposed in order to reduce computational
time [58, 64]. In this system the displacement of the wall is ignored and only
the momentum exchanged between the ball and the wall is retained. How-
ever, this model underestimates the acceleration, and further modifications
have been done by taking into account the effect of the wall displacement
[61]. When both the original and the modified FUMs have been run for an
ensemble of particles with a well defined distribution function, an energiza-
tion of the whole distribution function has been observed. This means that
distribution functions of particles collected at different times can be prop-
erly rescaled to the initial one. The energization of the bulk of particles can
be observed also in numerical simulations of particles in turbulent [65] and
stochastic fields [36], as it has been largely discussed in Sec. 2.2.

However, observations in astrophysics and in space plasmas often high-
light the presence of collimated beams of accelerated particles. For example,
solar flares are characterized by the presence of particle beams [66, 67] which
form a different population with respect to the core, and the already men-
tioned field-aligned ion beams detected in the PSBL (see Sec. 2.2.3). Even if
beams of accelerated particles have never been observed in the framework of
stochastic acceleration mechanisms (but just an energization of the particle
bulk population), it has been conjectured [42] that the formation of beam-
lets could be due to the interaction between particles and moving magnetic
structures, with the aid of some underlying selection mechanism. The aim of
this work is to show that beamlets could be produced also within a Fermi-like
mechanism.
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2.3.1 The 1D model

The present model is a version of the FUM [57] in which non-relativistic
charged particles of mass m move between magnetic clouds of mass M ≫ m,
along the x direction (each quantity depends only on this direction). The
boundaries of magnetic clouds, that correspond to the moving wall in the
FUM, are initially placed at positions skX0. The index k stands for left
(L) and right (R) respectively, and sk = ±1 indicates the sign according
to the fact that the boundary of the L cloud is placed initially at position
−X0, while the boundary of R cloud is placed at X0. The regions of space
x ≤ −X0 and x ≥ X0 correspond, respectively, to the L and R cloud. Each
boundary moves independently following a given oscillating functional shape
described by

Xk(t) = skX0 + Ak sin(ωkt+ αk) (2.14)

around the positions X0 (ωk represents the frequency of the oscillating mo-
tion, Ak the amplitude of the motion and αk the random phase chosen in the
range [0, 2π]). The distance ℓ(t) between the clouds is assumed to be greater
than zero for all times t. A particle between the clouds moves following the
Newtonian laws of motion for a point body: if V = dX/dt and u represent
respectively the velocities of a cloud and of the charge before a collision, after
that the particle velocity becomes −u + 2V . Then the difference of energy
before and after a collision ∆E = 2m(V 2 − σ|u||V |) depends on the relative
(random) sign σ = uV/|u||V | between the speed of the charge and that of
the cloud during the collision. Head-on collisions (σ = −1) increase the en-
ergy of the particle by a factor ∆E, while tail-on collisions (σ = 1) lead to a
decrease in energy.

According to the original idea by Fermi [8], clouds are viewed as regions
of space where the magnetic field is concentrated and particle are allowed to
penetrate [36]. The dynamics of the model is characterized by the integration
of the equations of motion with a variable time step. However, since the
dynamics depends on encounters between particles and clouds, a discrete
variable n counting successive collisions has been introduced; a collision is
defined through the time tn at which |Xk(tn) − xp(tn)| < ǫ, where xp is the
particle position, and ǫ≪ 1. Then, un and φn = ωktnmod(2π) represents the
particle speed and the phase of the oscillating cloud after the n-th collision,
respectively. Since clouds represent regions of space where the magnetic field
is concentrated, a particle does not actually collide with a rigid wall, but when
it arrives at the cloud position at time tn with speed un−1, it can penetrate
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Figure 2.16: The space-time behavior of two test particles moving between
the clouds (full lines) is showed for two values of b0, namely b0 = 2 × 10−5

(left panel) and b0 = 2 × 10−7 (right panel). The oscillating positions of the
clouds, being amplitudes of the motion very low compared to the distance
between them, are viewed as a couple of vertical dotted lines at x = ±1.

the cloud before being reflected with speed un by the action of the Lorenz
force. We assume that the particle penetration depth is rn = Bnun−1, where
Bn is a random parameter which depends on the magnetic field intensity
within each cloud. As far as the value of un is concerned, inside the cloud
particle can radiate energy at the Larmor rate proportional to its squared
acceleration [55]

dQ

dt
∼ −γ(u∗n − un−1)

2, (2.15)

here u∗n = −un−1 + 2Vn is the velocity of the particle without considering
the energy losses via radiation emission. Then, the particle velocity after the
n-th collision is given by [55]

un = sign{u∗n} [|u∗n| − µ(γ)|u∗n − un−1|] , (2.16)
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where µ is a dimensionless free parameter that depends on the amplitude
of the radiation loss, that is γ. The corresponding energy is En, and the
radiated energy is Qn = E∗

n −En.

2.3.2 Statistical analysis and results

Eq.s (2.14) have been normalized by using as normalization parameters X0

for lengths and 1/ωL for times,

XL(t) = −1 + AL sin(t+ αL)

XR(t) = 1 + AR sin(Ωt+ αR),

where Ω = ωR/ωL is a parameter of the system. Particle velocities are
normalized to the thermal speed uth, therefore, the other parameters are
bn = [Bnuth/(X0ωR)]Ω, which is uniformly distributed in the range bn ∈
[0, b0], and µ = [2γ/(mωR)]Ω.

The investigation on the dynamics of the model is performed by varying
the parameters Ω, b0, and µ. The other quantities remain unchanged, that is
AL = AR = 0.01, the initial particle speed is randomly chosen in the interval
[−1, 1] and the particle is injected at a random position between the two
clouds. In Fig.s 2.16 the trajectories of a test particle between the clouds
for two values of b0, namely b0 = 2 × 10−7 and b0 = 2 × 10−5, indicating
the different penetration inside the clouds, are displayed. In this case µ = 0,
that is the particle does not radiate energy.

In order to investigate how the value of the penetration inside a cloud
influences the particle motion, the temporal variation of the particle energy
is studied by varying the parameter b0. In Fig.s 2.17 the time evolution of the
energy of a particle for three different values of b0 is displayed. In the upper
panel the energy is burst-like, meaning that the particle can completely lose
its energy, becoming quasi-stable for a finite period. In this case b0 is very
small and the system tends to be similar to a standard FUM; by increasing
the value of the particle penetration, a different behavior occurs, that is the
cooperative effect of the two oscillating clouds can confine the energy of the
particle by breaking the usual Fermi mechanism. The energy is acquired
by the system (owing to head-on collisions), but after an initial transient, it
remains almost constant around a given value and is never completely lost
in successive encounters with clouds.

This difference can be also highlighted by looking at the phase space
(u2

n, φn), where each point represents a single collision. In Fig.s 2.18 the
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Figure 2.17: Velocity square gained by a test particle as a function of time for
a system with Ω = 1. From top to bottom the penetration depth increases,
namely b0 = 2 × 10−7, b0 = 2 × 10−6, and b0 = 2 × 10−5.
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Figure 2.18: Phase space (u2
n, φn) of a test particle for a system with one

fixed and an oscillating cloud (Ω = 0), with b0 = 2 × 10−7 (upper panel),
b0 = 2 × 10−6 (middle panel) and b0 = 2 × 10−5 (lower panel). The value of
µ is set to 0.
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Figure 2.19: The same of Fig.s 2.18 but for Ω = 1.
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Figure 2.20: PDFs of the absolute value of standardized velocity fluctuations
of an ensemble of 106 particles for µ = 0 (upper panel), µ = 2 × 10−9

(middle panel) and µ = 2 × 10−7 (lower panel). Dotted line refers to the
initial maxwellian distribution, solid line corresponds to the distribution of
particles at time tmax = 5 × 105. The oscillation frequencies ratio is Ω = 1.
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phase space for a system with an oscillating cloud and a fixed one is displayed,
by varying b0 from top to bottom. When it assumes a value close to zero,
the phase space is characterized by the presence of KAM islands as in the
case of the classical FUM [58]. KAM islands are region of the phase space
representing regular (non chaotic) trajectories, along which the system is
integrable 2. These curves are destroyed when b0 increases, owing to a growth
in the stochasticity of the system. When both clouds oscillate (see Fig.s 2.19),
particle is “captured” by the clouds through a kind of resonance effect. It
continues to oscillate between clouds but the Fermi mechanism is, in some
sense, broken: energy is neither gained nor lost anymore, both tail-on and
head-on collisions work in a cooperative way.

The confinement of energy of a test particle depends also on the value
of µ, that is on the fact that it can lose energy not only through tail-on
collisions but also through radiative emission. Of course the lower the value
of µ the more test particles are captured through the resonance effect. When
the parameter b0 is nearly zero, the resonance effect is spread over a wide
region in the phase space (see upper panel of Fig.s 2.19).

Since now, the dynamics of a single test particles has been investigated.
It is reasonable to extend the analysis to an ensemble of test particles put
into the system of oscillating clouds. We could expect that the effect of the
energy confinement on each particle breaks the usual random acceleration
mechanism leading to a modification of the initial distribution function. By
following the motion of an ensemble of 106 particles for a time tmax = 5×105,
after which it is assumed that the whole ensemble of particles leaves the region
between the clouds, a statistical analysis is computed. Particles are injected
at random positions into the system with initial velocities extracted from a
1D Maxwellian distribution normalized to the unitary thermal velocity, that
is

P (u) =
1√
2π

exp[−u2/2]. (2.17)

In particular, we are looking for possible modifications of the PDF of particle
velocities at time tmax, with respect to the initial distribution. In Fig.s

2The survival of these structures under a non-integrable perturbations is a question
widely studied in literature [68, 59]. Indeed, Kolmogorov conjectured that KAM tori sur-
vive when an analytic and M times continuously differentiable perturbation is applied.
However, in several dynamical systems with no differentiable perturbations tori still sur-
vive. Sometimes Hamiltonian systems exhibit a coexistence of chaotic regions and exactly
integrable islands (local integrability) [68].
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Figure 2.21: The same as Fig. 2.20 but for Ω =
√

2.
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Figure 2.22: PDFs of the absolute value of standardized velocities of an
ensemble of 106 particles for µ = 0 and Ω = 1. Dotted line represents the
initial maxwellian distribution, solid lines correspond to the distributions of
particles at time tmax = 5 × 105 for the cases b0 = 2 × 10−5 (upper panel),
b0 = 2 × 10−6 (middle panel), and b0 = 2 × 10−7 (lower panel).
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Figure 2.23: Probability density functions of particle energies normalized to
the thermal energy. Dotted line refers to the initial Maxwellian distribution,
the red line is for a system realization with b0 = 2 × 10−5, while the green
line refers to b0 = 2 × 10−6.

2.20 PDFs of the absolute value of the standardized velocity fluctuations
(u − 〈u〉)/σ, collected at time tmax, compared to the initial one, for three
values of the parameter µ and for Ω = 1 are shown. The main feature of
PDFs is the clear formation of a beam, at variance with the usual Fermi-
like mechanism for which a maxwellian distribution with a larger thermal
velocity would be expected at the final time; after a time tmax, all particles
gain more or less the same energy thus generating a quasi mono-energetic
beam. This is more visible for lower values of µ, namely when µ increases the
beam broadens and the ensemble of particles tends to become maxwellian.
A beamlet is clearly formed even in the case of non rational ratio between
oscillation frequencies, i.e., Ω =

√
2, as it can be seen in Fig.s 2.21, and, at

variance with the case Ω = 1, it survives even for larger values of µ (cfr.
lower panel of Fig.s 2.20 and 2.21).

The generation of beamlets of energetic particles observed in Fig.s 2.20
and 2.21 is also evident by varying the parameter b0, i.e., the distance covered
by particle inside a cloud. Indeed, in Fig.s 2.22 PDFs of the standardized
velocities at tmax, for three values of b0, and for µ = 0 are displayed. The
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formation of one or more beamlets is clearly visible in all cases, especially
when particles can penetrate a longer distance inside the clouds, that is when
b0 is large, owing to the capture of particles by the system of two oscillating
clouds (resonance effect).

The results shown in this Section underline that the stochastic accelera-
tion, without any external electric field, should be a good physical mechanism
to increase the velocity of one or more beams of particles to about 10-100
times their initial thermal speed (depending on the free parameters). This is
clear when looking at the PDFs of energies acquired by particles at a given
time: in Fig. 2.23 the PDFs of particle energies normalized to the thermal
energy are shown for two values of the b0 parameter. Beamlets formation at
energy 10-1000 times the initial thermal energy is evident [69]. This result is
in good agreement with the observations of ion beamlets inside the Earth’s
magnetotail, indeed these structures have velocities of about 600-2000 km/s,
that is about 3-10 times the thermal speed of the ambient particles, which is
typically of the order of uth ≃ 200 km/s [46, 42]. Just for making a compar-
ison with some physical conditions in space plasmas, the oscillating clouds
present in this model can be associated to oscillations of magnetic structures
driven by typical instability mechanisms [70], as for example the thermal
instability [71] or the tearing instability [72, 73].



Chapter 3

Transport of particles through
the heliosphere

3.1 The Diffusive Shock Acceleration theory

Solar flares, CMEs, interplanetary shocks, and planetary magnetospheres
are sources of energetic particles observed both in space and at ground level.
The propagation of such particles in the interplanetary medium is one of the
most challenging subjects in space physics, indeed, understanding how parti-
cles spread out in space is important for assessing the propagation of particles
coming from the Sun and approaching the Earth’s atmosphere (especially for
space weather forecasts), for cosmic rays acceleration and transport, and even
for evaluating the influence of extragalactic cosmic rays on the fossil diversity
on Earth [74]. Transport of particles is influenced by various phenomena, as,
for example, the solar activity, the level of turbulence in the heliosphere,
which causes pitch angle scattering and perpendicular transport of magnetic
field lines [20, 75, 21, 27, 76], the energy of particles themselves, and the pres-
ence of discontinuities. As it has been discussed briefly in the Introduction
of Chapter 2, normal diffusion has long been considered, also in connection
with the diffusive shock acceleration (DSA) theory [10, 12, 11, 77, 78], be-
cause of the agreement with many observational features, as the cosmic rays
power law spectra [79]. DSA was developed in order to explain the origin
of Galactic cosmic rays [10, 12] but, subsequently, it was extended to other
astrophysical systems, as the Earth’s bow shock [80], corotating interaction
region shocks [81], and the solar wind termination shock (TS) [82]. Further,

45
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by using satellite observations, it has been possible to investigate the dynam-
ics of energetic particles coming from the Sun owing to the high recurrence
of solar energetic particle (SEP) events. Studies based on data revealed that
SEP events can be divided in two classes: “impulsive” and “gradual” events.
The former are associated to magnetic reconnection processes during solar
flares, the latter to a diffusive shock acceleration mechanism at an evolving
interplanetary shock driven by a CME [78].

DSA theory considers a shock front propagating in a plasma medium per-
meated by magnetic irregularities which scatter energetic particles present.
If energetic particles have a gyroradius much larger than the shock thickness
(usually considered of the order of the ion skin depth, λi = c/ωpi, being c
the speed of light and ωpi the plasma frequency), the acceleration mechanism
is not influenced by the internal shock structure and a continuous passage
of particles between regions upstream and downstream of the shock front is
possible. This condition is usually well satisfied by ions, while for electrons
very high injection velocities are required. In Ref.s [10, 12, 11] it has been
hypothesized that there exists a source of wave turbulence, with character-
istic wave velocity smaller than the particle velocities, in the vicinity of the
shock region, able to scatter energetic particles in pitch angle, leading to an
isotropization of the particle distribution function. Thus, close to the shock
front, where the level of turbulence is very high, particles can be repeatedly
scattered from upstream to downstream and vice-versa and, then, acceler-
ated by a first-order Fermi process. Since the streaming velocity of particles
escaping upstream, after being accelerated at the shock front, is greater than
the Alfvèn speed with respect to the background plasma, energetic particles
themselves are capable to excite Alfvèn waves upstream of the shock and
to be scattered by this self-generating wave turbulence [12]. The motion of
particles going back and forth through the shock front is described in terms
of the standard diffusion equation for the distribution function f [11], which
in the one-dimensional case (as for example for an infinite planar shock) is
given by [83]

∂f

∂t
− ∂

∂x
(D(x)

∂f

∂x
) + V

∂f

∂x
− 1

3

∂

∂x
(V p)

∂f

∂p
= Q(x, t, p), (3.1)

where the right-hand side indicates a source term, V is the background
plasma bulk velocity along the x direction, D(x) is the spatial diffusion co-
efficient, and the last term in Eq. (3.1) describes the work performed by
the background plasma on accelerating particles [11]. By assuming that the
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shock front is placed at x = 0, the upstream region is that at x < 0 having a
plasma bulk velocity V ′, while the downstream region is at x > 0 with V ′′. If
particles are injected at x = −∞ as a monoenergetic population of momen-
tum p0 and by imposing stationarity and continuity at x = 0, the solutions
of Eq. (3.1) upstream and downstream of the shock are respectively [11]:

f(x, p) ≃ 3

p0
r
(

p

p0

)−3r

exp[V ′x/D(p)], x < 0 (3.2)

f(x, p) =
3

p0

r
(

p

p0

)−3r

, x > 0 (3.3)

where r = V ′/(V ′ − V ′′) is the compression ratio of the shock. Then, by as-
suming a normal diffusive transport for particles accelerated at a shock front,
the distribution function at a given energy in the region upstream is a simple
exponential decay. Note that here the assumption of a homogeneous plasma
upstream and downstream has been taken into account, indeed, the diffusion
coefficient depends only on the particle momentum [11]. However, a large
number of in situ data shows that such profiles are not always observed [84],
but there is a variety of different behaviors [85]. In addition, recent observa-
tions of SEP events highlight transport properties varying from diffusive to
scatter-free (ballistic) regimes [86, 87, 88], and the proton parallel mean free
path ranging from ≃ 0.1 AU [89] to more than 1 AU [90, 87]. In a recent
paper, Ref. [78] emphasizes that transport can be diffusive in a layer around
the shock, and nearly scatter-free farther away from the shock. Clearly, a
more quantitative description of such a scatter-free regime is needed.

Recent numerical simulations of particle propagation in presence of mag-
netic turbulence have highlighted that subdiffusive regimes for particle per-
pendicular transport [26, 27] and superdiffusive regimes for particle parallel
transport [27, 76] are possible, depending on the turbulence level, the tur-
bulence anisotropy, and the ratio of the Larmor radius over the turbulence
correlation length. Anomalous transport regimes, characterized by a mean
square displacement growing as 〈x2(t)〉 ∝ t2ν , both slower (ν < 1/2) and
faster (ν > 1/2) with respect to Gaussian diffusion (ν = 1/2), have been
found in a large variety of systems [91, 92, 29, 93, 36]. The faster regime (su-
perdiffusion) is also characterized by Lèvy random walks which have a Lèvy
(power law) distribution for the probability of the jump lengths with diverg-
ing second-order moment (see Section 2.2.1). Thus, in order to interpret the
observations, it is important to understand whether, under appropriate con-
ditions, anomalous transport is possible for energetic particles propagating
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through the heliosphere. In this work, by studying the temporal profiles of
particles accelerated at interplanetary shock waves and at the termination
shock (TS) of the solar wind, evidences of superdiffusive transport both for
electrons [94, 95] and for ions are shown.

3.2 Propagator formalism

A spacecraft in the solar wind measures particles accelerated at various times
and positions, and the actual time profile reflects the propagation properties
from the source to the observer, as well as the source evolution. The propa-
gation of particles, accelerated by interplanetary shock waves and at the TS,
away from the shock is considered. As said above, particles undergo Fermi
acceleration by means of repeated crossings of the shock, thanks to diffusive
motion in the regions upstream and downstream of the shock [12, 10, 11].
However, in this analysis we are not concerned with the acceleration mecha-
nism, but with propagation away from the shock front.

The assumption of a large planar shock can be considered reasonable for
interplanetary shocks, which may be due either to fast CMEs or to corotating
interaction region shocks (CIRs), thanks to their large size (compared to the
relevant transport scales). CIR shocks form in some regions of the interplan-
etary space where the fast solar wind (Vsh ≃ 800 km/sec), coming from solar
coronal holes, encounters the slow wind (Vsh ≃ 400 km/sec), coming from
solar equatorial regions (see Fig. 3.1), giving rise to two collisionless shocks
moving in opposite directions (the reverse one sunward, and the forward one
anti-sunward) and including a compression region between them (see Fig.
3.2). In particular, CIR shocks form a spiral on the equatorial plane with
a radius of curvature comparable to the heliocentric distance. The scale of
these shocks is very large (several AU) and in a first approximation they can
be assumed to be planar.

The solar wind TS is the region of space at nearly 75-95 AU where the
supersonic and superalfvènic solar wind slows down to subsonic speed, due
to the interaction with the local interstellar medium (LISM) (see Fig. 3.3).
This causes a compression region characterized also by an enhanced level of
energetic particles, indeed TS is considered a source of accelerated particles.
Firstly Voyager 1 at the end of 2004 and later Voyager 2 in 2007 crossed the
TS, by allowing us to have precious information on this far and unknown re-
gion of the interplanetary space. Also in this case the shock can be viewed as
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Figure 3.1: Solar wind density and solar wind speed from the SWOOPS
plasma instrument (PI D. McComas) and magnetic field data plot from the
MAG instrument (PI A. Balogh) on board Ulysses.

a planar structure. Accordingly, we consider a steady state, one dimensional
shock model for both the physical systems under analysis.

In general a way of treating particle transport properties is the proba-
bilistic formalism which uses propagators. A propagator, defined as P (r, t),
is the probability of finding a particle in (r, t) if injected at the origin of
a coordinate system. In other words, the propagator is the solution of the
transport equation when the initial distribution is localized both in space
and time as a δ-function, P (0, 0) ≃ δ(x)δ(t) (see Section 51 of Ref [96]). In a
one-dimensional geometry, the energetic particle fluxes measured by a space-
craft at (x, t) can be viewed as the superposition of the energetic particles
accelerated at the shock moving according to x′ = Vsht

′ (in other words, at
t′ = 0 the shock will be at the origin of the coordinate system), with Vsh
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Figure 3.2: Cartoon of a corotating interaction region in a reference frame
corotating with the Sun (from Gosling et al., 1976 ).

assumed to be constant. To fix the ideas, the observer is at x = 0, upstream
of the shock, which is coming from x = −∞; then, t < 0 for the relevant time
interval. The particle omnidirectional distribution function f(x,E, t) at the
observer will be expressed in terms of the distribution function fsh(x

′, E, t′)
of particles accelerated at the shock as

f(x,E, t) =
∫

P (x− x′, t− t′)fsh(x
′, E, t′)dx′dt′ (3.4)

with fsh(x
′, E, t′) = λf0(E)δ(x′ −Vsht

′), where f0(E) represents the distribu-
tion function of particles of energy E emitted at the shock front and λ is a
characteristic length. Here, P (x − x′, t − t′) is the probability of finding a
particle at position x at time t, if it was injected at x′ and t′.
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Figure 3.3: Cartoon of the interaction between the solar wind and the lo-
cal interstellar medium. The positions of both Voyager 1 and Voyager 2
spacecraft are also shown in the period before the Voyager 2 TS crossing.

Normal transport

In the case of normal diffusion, particles accelerated at the shock are spread
in space according to the Gaussian propagator [93, 97]

P (x− x′, t− t′) =
C

√

4πD(t− t′)
exp

[

− (x− x′)2

4D(t− t′)

]

, (3.5)

where x − x′ is the distance upstream of the shock (the source of energetic
particles), t − t′ > 0, because of causality, C is a constant with dimension
[1/t], and D is the Gaussian diffusion coefficient. This form, P (x−x′, t− t′),
emphasizes the space-time translational invariance of the propagator. As
considered by Ref.s [98, 78], the diffusion coefficient can be smaller close
to the shock because of the enhanced level of turbulence self-consistently
generated by particles accelerated via the DSA mechanism. To exploiting
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translational invariance, we assume to be at some distance upstream of the
shock, where D is constant and the solar wind is statistically homogeneous.
Using the expression of the propagator in Eq. (3.5), it is possible to write
[99]

f(x,E, t) =
∫

C
√

4πD(t− t′)
exp

[

− (x− x′)2

4D(t− t′)

]

f0(E)δ(x′ − Vsht
′)dx′dt′.

(3.6)
Exploiting the δ function, considering that the observer is at the origin of
the coordinate system x = 0 and by introducing the variable τ = t− t′, the
particle distribution function is obtained, that is

f(0, E, t) = f0(E) exp

(

V 2
sht

2D

)

∫ ∞

0

C√
4πDτ

exp

[

−V
2
sht

2

4Dτ

]

exp

[

−V
2
shτ

4D

]

dτ

≡ f0(E) exp

(

V 2
sht

2D

)

I(t). (3.7)

It is easy to show that the integral I(t) is finite, since the integrand goes to
zero for τ → 0, and decays exponentially for τ → ∞. Application of the
Laplace transform given by Eq. (2.12) of Ref. [97],

∫ ∞

0

1√
τ

exp(−sτ) exp(− α

4τ
)dτ =

(

π

s

)1/2

exp
(

−α1/2s1/2
)

, (3.8)

taking into account that t < 0, gives I(t) = V −1
sh exp(−V 2

sh|t|/2D). Then,

f(0, E, t) =
f0(E)

Vsh
exp

[

−V
2
sh|t|
D

]

(3.9)

which coincides with the exponential decay expressed in Eq. (3.2) for the
energetic particle distribution function upstream of the shock [11, 98]. How-
ever, at variance with Eq. (3.2), V ′ = Vsh and x = Vsht, indeed, upstream
and downstream regions are here interchanged.

Superdiffusive transport

Conversely, in the case of non Gaussian, superdiffusive propagation, trans-
port can be described in the framework of continuous time random walks. For
Lèvy random walks, a jump probability ψ(r, t) = A|r|−µδ(t− r/v) of making
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a jump of length r in a time t can be adopted [28, 92, 100, 30, 93]. The power
law behavior of ψ(r, t) reflects the fact that very long jumps of length r have
small but non-negligible probability, contrary to the case of Gaussian ran-
dom walk, that is a different statistics is involved. For µ < 3, the probability
ψ(r, t) has diverging second order moment, which corresponds to an infinite
value of the mean free path; however, this does not imply an infinitely fast
transport because long jumps require long times, as implied by the space-
time coupling expressed by δ(t − r/v). In general, the propagator can be
obtained in the Fourier-Laplace space and its explicit inversion is only possi-
ble in limiting cases: close to the source, that is for |x−x′| ≪ k1/2

µ (t−t′)1/µ−1,
the propagator behaves as

P (x− x′, t− t′) = a0(t− t′)1/(1−µ) exp

[

− (x− x′)2

kµ(t− t′)2/(µ−1)

]

, (3.10)

where a0 and µ are constants [100], and kµ is an anomalous diffusion constant
(different from the anomalous diffusion coefficient Dν introduced below),
whose physical dimensions are [l2/t2/(µ−1)]; far off the source, for |x− x′| ≫
k1/2

µ (t− t′)1/µ−1 the propagator has a power law behavior described by

P (x− x′, t− t′) = b
t− t′

(x− x′)µ
, (3.11)

where b is a constant with dimension [t−2/l1−µ] and µ a dimensionless con-
stant, however, they may depend on particle velocity and on the relevant
transport process [100]; the propagator in Eq. (3.11) goes to zero for x−x′ >
v(t − t′), with v the particle velocity. Similar expressions of the propagator
for superdiffusive transport have been obtained in the framework of frac-
tional diffusion models, too [19, 101]. For 2 < µ < 3 superdiffusion with
〈x2(t)〉 = 2Dνt

2ν is obtained for large t, with ν = 2 − µ/2 [28, 92, 100, 30],
while for 3 < µ < 4 transport is diffusive, but the propagator has non Gaus-
sian, power law tails as above [100, 19].

Assuming to be at a large distance from the shock, that is in the tails
of the probability distribution, it is possible to obtain the energetic particle
profile by inserting the non Gaussian propagator given by Eq. (3.11) in Eq.
(3.4):

f(x,E, t) = f0(E)λb
∫ t− t′

(x− x′)µ
δ(x′ − Vsht

′)dx′dt′. (3.12)
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A first integration gives

f(x,E, t) = f0(E)λb
∫ t′′

t0

t− t′

(x− Vsht′)µ
dt′, (3.13)

where t0 is the shock start time and t′′ is a provisional end time [95]. By
defining an integration variable y = t− t′, Eq. (3.13) becomes

f(x,E, t) = −f0(E)λb
∫ t−t′′

t−t0

y

(x− Vsht+ Vshy)µ
dy

= −f0(E)λb
∫ t−t′′

t−t0

y

(α + Vshy)µ
dy,

where α = x− Vsht in the integral is constant. Introducing z = α+ Vshy, we
get

f(z, E, t) = −f0(E)λb
∫ b

a

( z−α
Vsh

)

(zµ)

dz

Vsh

= −f0(E)λb

V 2
sh

[
∫ b

a
z1−µdz − α

∫ b

a
z−µdz

]

= −f0(E)λb

V 2
sh

[

1

2 − µ
z2−µ

∣

∣

∣

∣

b

a
− α

1

1 − µ
z1−µ

∣

∣

∣

∣

b

a

]

,

where, for brevity, we defined a = α + Vsh(t − t′′) and b = α + Vsh(t − t0).
Then,

f(z, E, t) = −f0(E)λb

V 2
sh

[

1

2 − µ
(α + Vshy)

2−µ

∣

∣

∣

∣

t−t′′

t−t0

− α

1 − µ
(α + Vshy)

1−µ

∣

∣

∣

∣

t−t′′

t−t0

=

= −f0(E)λb

V 2
sh

[

1

2 − µ
(x− Vsht+ Vsht− Vsht

′)2−µ

∣

∣

∣

∣

t′′

t0

+

−(x− Vsht)

1 − µ
(x− Vsht+ Vsht− Vsht

′)1−µ

∣

∣

∣

∣

t′′

t0

]

This simplifies to

f(z, E, t) = −f0(E)λb

V 2
sh

[

1

2 − µ

(

(x− Vsht
′′)2−µ − (x− Vsht0)

2−µ
)

+

−
(

x− Vsht

1 − µ

)(

(x− Vsht
′′)1−µ − (x− Vsht0)

1−µ
)]

.
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Under the hypothesis of 2 < µ < 3 (superdiffusion), if t0 = −∞, which cor-
responds to a shock starting very far away, the previous expression becomes

f(x,E, t) ≃ −f0(E)λb

V 2
sh

[

1

2 − µ
(x− Vsht

′′)2−µ − (x− Vsht)

1 − µ
(x− Vsht

′′)1−µ
]

since the terms containing t0 have negative exponents. In as much as the
propagator is a power law, |x − x′| ≫ kµ|t − t′|1/µ−1 (the shock-observer
distance is just |x − x′|), both t′′ and t′ can reach t (the shock reaches the
observer only when t→ 0). Thus, by setting t′′ = t we obtain

f(x,E, t) ≃ −f0(E)λb

V 2
sh

[

1

2 − µ
(x− Vsht)

2−µ+

− 1

1 − µ
(x− Vsht)

2−µ
]

=
f0(E)λb

µ2 − 3µ+ 2

(x− Vsht)
2−µ

V 2
sh

(3.14)

Finally, considering that the observer is at x = 0,

f(0, E, t) ≃ f0(E)λb

µ2 − 3µ+ 2
V −µ

sh (−t)2−µ ∝ 1

(−t)γ
(3.15)

that is, far off the shock the time profile of the accelerated particles is a power
law profile with slope γ = µ−2. Accordingly, an energetic particle profile with
0 < γ < 1 implies superdiffusive transport with ν = (4 − µ)/2 = (2 − γ)/2,
while 1 < γ < 2 implies a non Gaussian propagator like that in Eq. (3.11)
and a long–tailed distribution for jump lengths, but a diffusive transport with
a mean square deviation growing linearly in time. It is clear from Eq. (3.14)
that the power law slope does not change if the observer moves in the solar
wind at constant speed, that is, x = Vswt.

Ballistic transport

Finally, in the case of a strictly ballistic transport, the propagator can be
expressed in terms of δ functions as [97]

P (x− x′, t− t′) =
1

2
a[δ(x− x′ − v(t− t′)) + δ(x− x′ + v(t− t′))], (3.16)

where a is a constant with dimension [1/t]. The δ functions represent the fact
that for scatter-free transport, x−x′ = ±v(t− t′), a propagation at constant
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velocity away from the source on both sides occurs. By substituting Eq.
(3.16) above in Eq. (3.4), we obtain

f(x,E, t) =
1

2
f0(E)aλ

∫ t′′

t0
[δ(x− x′ − v(t− t′)) + δ(x− x′ + v(t− t′))] ×

×δ(x′ − Vsht
′)dx′dt′. (3.17)

After straightforward calculations and variable changes, Eq. (3.17) reduces
to

f(x,E, t) =
1

2
f0(E)aλ

[

1

v − Vsh

∫ u′′

u0

δ(u)du− 1

v + Vsh

∫ w′′

w0

δ(w)dw
]

=

=
1

2
f0(E)aλ

(

1

v − Vsh
− 1

v + Vsh

)

= f0(E)aλ
Vsh

v2 − V 2
sh

, (3.18)

being u = (x − vt) + (v − Vsh)t
′ and w = (x + vt) − (v + Vsh)t

′. Then, the
particle time profile, in a given energy channel, is constant when particle
transport is scatter-free.

However, in the framework of continuous time random walk (CTRW) and
Lévy motions, ballistic transport is also described by the jump probability
ψ(r, t) = A|r|−µδ(t−r/v) for µ < 2. In such a case, for µ = 1.5, the following
propagator is found [100]

P (x− x′, t− t′) ≃ a

π(v2(t− t′)2 − (x− x′)2)1/2
. (3.19)

This propagator exhibits a δ-like spike for x−x′ = v(t− t′) and also a tail of
scattered particles for x− x′ < v(t− t′). As an example of ballistic propaga-
tion, in Ref. [88] the solar impulsive event of 7 August 1999 is reported. The
electron time profiles coming from WIND observations show rapid and sym-
metric rise and decay indicating a free motion, indeed, scattering would tend
to create a slowly decaying tail. In addition, nearly “scatter-free” motion can
also be inferred by comparing the velocity of particles with the time delay
between electron injection in the corona and the onset time at WIND. By
comparing these temporal electron profiles with the propagator for ballistic
transport, it is possible to notice a strict resemblance [102] (see Fig. 3.4). In
the right panel of Fig. 3.4, the propagator is plotted as a function of the scal-
ing variable ξ = r/vt; when ξ = 1, that is r = vt, the propagator diverges,
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Figure 3.4: Left panel–Electron time profiles for the impulsive event of 7
August 1999 observed by WIND at 1 AU. Energies range between 27-300 keV
(the blue label refers to the blue line at 180 keV).The vertical dashed line
indicates the injection time at the Sun, the peak of the electron distribution
is delayed of few minutes, each tick mark corresponding to ≃ 9 min (adapted
from Ref. [88]). Right panel–Propagator for ballistic regime as a function
of the dimensionless variable ξ = r/vt ; note that time is increasing from
the right to the left. The dashed line represents the analytical expression in
Eq. (3.19), solid lines come from numerical simulations (adapted from Ref.
[100]).

corresponding to the spike in the plot. This shape is well compared with
the green and light-blue curves in the left panel in Fig. 3.4, then, electron
time profiles in this event seem to recover the scatter-free propagator. The
presence of a small tail of late particles in the electron time profiles could be
probably due to the scattering undergone by some electrons while interacting
with the turbulence in the interplanetary medium, although the majority of
them moves fast enough to have 〈r2(t)〉 ∝ t2.

3.3 Data analysis

In order to study the spreading of particles accelerated at shock waves in the
interplanetary medium, we have selected those datasets which agree with the
hypothesis of a “local” acceleration at the shock, then, no particles coming
from SEP events are present. In addition, the investigated shock events
happened at large heliocentric distance where the assumption of an infinite
planar shock wave can be considered reasonable [94, 95]. Here we present
two main dataset analysis, concerning the Ulysses and Voyager 2 s/c. Other
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datasets will be investigated in the future.

3.3.1 CIRs detected by the Ulysses spacecraft

Four repeated shock crossings observed by the Ulysses spacecraft in 1992–
1993 are analyzed. The heliocentric distance of Ulysses, after the Jupiter
encounter, was more than 5 AU, so the assumption of planar shock can be
considered a reasonable first approximation. From July 1992, Ulysses moved
into the fast solar wind from a newly developed coronal hole, which gave rise
to a long series of forward-reverse shock pairs associated with CIRs [103] (see
Fig. 3.5). We concentrate on the period from the beginning of 1992 (latitude
13◦ S) to late 1993 (latitude 41◦ S), because of the low influence of transient
events like SEPs, due to the decline in solar activity, so that the background
conditions remained relatively unperturbed (see Fig. 3.5). Conversely, the
sun was more active during the previous period, and this caused irregular
variations in the number of background particles which can be accelerated
at the shock. On the other hand, after 1993, no CIR shocks were observed
[103].

Both electron and proton fluxes obtained from the CDAWeb service of
the National Space Science Data Center (cdaweb.gsfc.nasa.gov) are studied.
Particles are accelerated both at the forward and at the reverse shock of
the CIR, with clear enhancements associated with the shock fronts. The
energetic particle profiles extended several days before (after) the forward
(reverse) shock. We analyze the time profile at some distance from the shock
(close to the shock the propagator is Gaussian-like even for the case of Lèvy
walks, see Eq. (3.10)), looking for those events which exhibit long tails, either
in the proton or in the electron flux.

Electron transport

A first event is shown in Fig. 3.6, where the energetic particle fluxes are
displayed for the CIR shock event of January 19-22, 1993. Ulysses was at a
heliocentric distance of 5.01 AU and at a latitude of 25◦ S.

From top to bottom, the panels show one hour averages for the plasma ra-
dial velocity and the plasma temperature from SWOOPS (PI D. McComas),
the proton fluxes measured by LEFS 60 of HI-SCALE (PI L. Lanzerotti) in
the energy channels 546–761 keV, 761–1223 keV, and 1.233–4.974 MeV, and
the electron fluxes measured by LEFS 60/ HI-SCALE in the energy chan-
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Figure 3.5: Daily averaged fluxes of protons and helium particles detected by
the COSPIN/LET instrument on board Ulysses from the launch to 1997 (top
panel). The temporal variation of the heliographic latitude of the spacecraft
is also shown in the bottom (adapted from Ref. [104]).
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Figure 3.6: Plasma and energetic particle profiles for the Ulysses shock cross-
ing of 1993 January 22. From top to bottom, the panels show 1 hr averages for
the plasma radial velocity and the plasma temperature from SWOOPS (PI
D. McComas); proton fluxes measured by HI-SCALE LEFS 60 (PI L. Lanze-
rotti) in different energy channels; electron fluxes measured by HI-SCALE
LEFS 60 in different energy channels. The vertical dashed line indicates the
shock position. Note that each tick mark corresponds to 10 hr.
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nels 42–65 keV, 65–112 keV, 112–178 keV, and 178–290 keV. In the semi-log
plots, power law profiles are evidenced by lines which have upward concavity.
In this case the particle profile is particularly broad after the reverse shock
at 02:57 of January 22 (from about 10:00 of January 22 to 04:00 of January
31, 1993). It is possible to notice that the electron fluxes vary slightly more
than one order of magnitude over about 200 hours and that several fluctu-
ations with time scales of 20–30 hr are seen in these time profiles, as well
as in the following events. As shown by Ref. [84], these irregularities in the
energetic particle profiles are due to the low frequency magnetic turbulence,
normally present in the solar wind. This turbulence has a correlation length
λ of 3–5× 106 km at 1 AU, which corresponds to time scales of 3–4 hr [105].
Ref. [106] analyzed the breakpoint frequency of magnetic fluctuations, which
corresponds to the inverse of the correlation time, as a function of the helio-
centric distance and of the latitude. The reported breakpoint frequencies at
4–5 AU correspond to correlation times in the range of 10–30 hr. Turbulence
affects the magnetic connection between the spacecraft and shock, causing
temporal changes in the energetic particle profiles with the corresponding
time scales, as confirmed by the fact that these variations are seen at the
same time in all energy channels, including those of protons. Further, the
magnetic fluctuations cause the shock surface to be distorted and corrugated,
with a corresponding variability in the acceleration efficiency along the shock
surface [84].

To better appreciate the power law scaling, the energetic particle fluxes
are plotted in log-log axes, considering the logarithm of the observation time
t upstream of the shock minus the time of the shock crossing tsh, i.e., log(|t−
tsh|). The precise shock time is obtained from the Table of Ref. [103]. Fig.
3.7 displays the electron fluxes upstream of the reverse shock of 1993 January
22, and for the considered energy channels, with the dashed lines representing
the corresponding power law fits. For clarity, not all of the fitting lines have
been plotted. Considering that the energetic particle flux J is proportional
to f(x,E, t), we assume for the fit J = A (∆t)−γ, with ∆t = |t − tsh|. The
fitted values of the slopes for each electron energy channel are given in Table
3.1. Values of χ2

pl are also given and compared to those obtained, on the same

time interval, by fitting the data with an exponential decay, J = K e−∆t/τ ,
expected for normal diffusion. Since the analyzed data are counting, it is
possible to estimate an error for the y-axis values via a Poissonian statistics,
that is, the error associated to energetic particle fluxes is given by

√
J . It can
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Figure 3.7: Electron fluxes upstream of the reverse shock of 1993 January 22
in log-log scale. Different colors refer to different energy channels. Dashed
lines represent the power law best fits (not all shown for readability).

be seen that for the power law fit, χ2
pl is much less than χ2

e for the exponential
decay for most energy channels. Note that the power law behavior is obtained
over more than one decade in particle flux, and over almost 200 hr in time,
so that the variations due to the turbulence do not appreciably influence the
fit. For this event, values of γ = 0.81–0.98 imply µ = γ + 2 = 2.81–2.98,
that is superdiffusion with 〈∆x2〉 ∼ t4−µ = t1.02– t1.19. Although we cannot
exclude the contribution of transport perpendicular to the magnetic field, we
consider it smaller than the parallel transport, in agreement with Ref. [98]
and with the results of recent numerical simulations [76].

A second event is shown in Fig. 3.8, where the energetic particle fluxes are
reported for the CIR of 1993 May 10. Ulysses was at a heliocentric distance
of 4.73 AU and a latitude of 30◦ S. Because of the high southern latitude
only the reverse shock at 19:17 of May 10 was observed. The electron fluxes
vary by one order of magnitude over about 70 hr. Also in this event, time
variations in the profiles on the scale of 10–20 hr are seen, as above. The
electron fluxes as a function of the time difference to the shocks are shown
in Fig. 3.9 in log-log axes. A fit of the electron time profiles yields a power
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Figure 3.8: Same as Fig. 3.6, but for the Ulysses shock crossing of 1993 May
10.
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Figure 3.9: Electron fluxes in log-log axes for the Ulysses shock crossing of
1993 May 10. The different energy channels have been displaced by a factor√

10 for clarity.

law index of γ ≃ 0.62–0.85 for the 65–112 keV, 112–178 keV and 178–290
keV energy channels (see Table 3.1), which also gives µ = 2.62–2.85, and
superdiffusion with 〈∆x2〉 ∼ t1.15–t1.38.

A third event is shown in Fig.s 3.10, 3.11, for the shock of 1992 January 10.
The considered shock is reverse and the electron profile in the energy channel
of 42–65 keV is well described by a power law with index γ ≃ 0.60 (see Table
3.1), leading to a distinctly superdiffusive behavior, that is 〈∆x2〉 ∼ t1.4.
On the other hand, we note that this event should be considered with some
caution, because, as shown by Fig. 3.10, variations of the background are
possible due to a non negligible level of solar activity at the beginning of
1992, or to other local effects, causing weak spikes in the energetic particle
profiles.

The last event considered is shown in Fig.s 3.12 and 3.13, for the shock
of 1992 October 11, detected at ≃ 5 AU. Power law fits in the tails of the
electron temporal profiles give values of the scaling exponent γ ≃ 0.30–
0.56 (see Table 3.1), implying µ = 2.30–2.56, that is superdiffusion with
〈∆x2〉 ∼ t1.44–t1.70. This means that in the energy range 112-178 keV (see
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Figure 3.10: Same as Fig. 3.6, but for the Ulysses shock crossing of 1992
January 10.
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Figure 3.11: Electron fluxes in log-log axes for the Ulysses shock crossing of
1992 January 10. Energies as indicated.

Table 3.1) the transport is quasi-ballistic and particles travel trough the
interplanetary medium at nearly constant velocity. The reduced chi square
computation shows that a power law describes better the tail decaying over
almost 100 hr.

In this analysis some effects such as solar wind convection and adiabatic
deceleration [11, 107] have been neglected. About the former effect, it does
not influence the power law slope of the time profile, but only its duration.
This can be seen from Eq. (3.14) by setting x = Vswt, with constant Vsw,
rather than x = 0. Even if the observer moves with respect to the plasma
frame, the time slope does not change, but only the pre-factor. About the
latter effect, it causes a decrease in the intensity of particle fluxes with time,
so that far away from the shock the observed particle profiles are lower than
they would be based on propagation effects only. In Ref. [107] a typical time
for adiabatic deceleration has been estimated, being of τAD ≃ 1 day at 1
AU. If we extrapolate this to 5 AU, considering that the characteristic time
for the adiabatic deceleration is proportional to the heliocentric distance, we
can expect a τAD ≃ 5 days. This means that electron fluxes in Fig.s 3.7,
3.9, 3.11, 3.13 could be stronger at 100-200 hr from the shock, leading to a
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Figure 3.12: Same as Fig. 3.6, but for the Ulysses shock crossing of 1992
October 11.
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Figure 3.13: Electron fluxes in log-log axes upstream of the reverse shock of
1992 October 11.

smaller slope γ. In other words, a correction of the time profiles, by taking
into account the effect of adiabatic deceleration, should lead to superdiffusion
with larger values of ν = (2 − γ)/2.

Proton transport

The same analysis has been performed for protons accelerated at CIR shocks.
Three representative cases are displayed. Fig. 3.14 shows the proton time
profiles in log-log axes during the forward shock crossing of 1992 September
12: it can be seen that the profiles become the steeper the longer ∆t, so that
power laws are not good fits for such cases (look at the results of the analysis
reported in Table 3.2).

On the contrary, proton time profiles displayed in Fig. 3.15 exhibit a
power law shape over roughly 100 hr in time but with an exponent γ rang-
ing between 1.0–1.3, indicating that proton transport is at the “borderline”
between normal diffusion and superdiffusion.

The third event analyzed is that of 1993 January 22, plotted in Fig. 3.16,
where proton temporal profiles are better fitted by power laws (see the values
of χ2

pl in Table 3.2) even if the values of γ are greater than one. In such a
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Table 3.1: Values of the parameters of the fits for the electron time profiles
detected by Ulysses

DD/MM/YYYY E (keV) γ 2ν χ2
pl τ(hr) χ2

e

10/01/1992 42-65 0.60 ± 0.03 1.40 0.06 357 ± 19 0.15
65-112 0.45 ± 0.03 1.55 0.18 455 ± 3 0.10

11/10/1992 42-65 0.56 ± 0.08 1.44 0.80 144 ± 20 3.20
65-112 0.44 ± 0.09 1.56 0.40 190 ± 40 2.40
112-178 0.3 ± 0.1 1.70 0.50 270 ± 130 1.40
178-290 0.4 ± 0.2 1.60 1.00 202 ± 85 2.50

22/01/1993 42-65 1.00 ± 0.01 1.00 1.42 133 ± 2 1.76
65-112 0.92 ± 0.02 1.08 0.90 152 ± 2 1.21
112-178 0.81 ± 0.03 1.19 0.17 182 ± 8 0.33
178-290 0.98 ± 0.05 1.02 0.11 152 ± 8 0.33

10/05/1993 42-65 0.71 ± 0.08 1.29 0.10 83 ± 11 0.03
65-112 0.62 ± 0.07 1.38 0.03 112 ± 14 0.11
112-178 0.69 ± 0.08 1.31 0.03 102 ± 14 0.15
178-290 0.85 ± 0.08 1.15 0.07 77 ± 8 0.18

case proton transport is normal but the statistics of the random walk is in
according to Lévy walk models [100].

The obtained time constant τ (see Tables 3.1 and 3.2) can give us a quick
estimate of the scattering mean free paths. In the case of normal diffusion,
the flux of energetic particles decreases as J = K exp[−(Vsh/Dx)x], where Vsh

is the upstream shock speed with respect to the solar wind rest frame, andDx

is the diffusion coefficient in the direction perpendicular to the shock. For the
forward shock of 1992 September 12, reported in Table 3.2, x = (Vsw+Vsh)∆t,
so that [86]

1

τ
=
Vsh(Vsw + Vsh)

Dx
. (3.20)

Disregarding transport perpendicular to the magnetic field, which under typi-
cal solar conditions is expected to be much smaller than the parallel transport
[98, 76], the diffusion coefficient Dx can be expressed in terms of the diffusion
coefficient parallel to the magnetic field as Dx = D|| cos2 ψ, being ψ the an-
gle between the magnetic field and the radial direction [98]. Considering the
standard relation between the mean free path λ|| and the diffusion coefficient
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Figure 3.14: Proton fluxes in log-log axes for the Ulysses shock crossing of
1992 September 12. Energies as indicated.

D||, D|| = λ||v/3, Eq. (3.20) becomes

λ|| =
3Vsh(Vsw + Vsh)τ

v cos2 ψ
(3.21)

Then, considering 1 MeV protons, velocities are v ≃ 14000 km/s, and as-
suming a solar wind speed Vsw ≃ 400 km/s, a shock speed Vsh ≃ 200 km/s,
a typical value of ψ = 75◦ at 5 AU and, from Table 3.2, τ = 77 hours, a
parallel mean free path λ|| ≃ 0.7 AU is obtained, which is much larger than
the so called Palmer consensus, i.e., λ|| ≃ 0.1 AU [89].

3.3.2 Shocks detected by Voyager 2

The analysis reported above has been also performed on ion temporal pro-
files detected by the Voyager 2 spacecraft after some shock crossing events,
including the TS crossing at the end of August 2007. Data used are hourly
and daily averages of energetic ion fluxes from the Low Energy Charged
Particle (LECP) instrument, which measures ion fluxes with energies > 30
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Figure 3.15: Proton fluxes in log-log axes for the Ulysses shock crossing of
1992 October 11. Different colors refer to different energy channels.

keV and electrons fluxes with energies > 20 keV3. In particular ion fluxes
for the eight energy channels PL01 (0.028–0.043 MeV), PL02 (0.043–0.080
MeV), PL03 (0.080–0.137 MeV), PL04 (0.137–0.215 MeV), PL05 (0.215–
0.540 MeV), PL06 (0.540–0.990 MeV), PL07 (0.990–2.140 MeV), and PL08
(2.140–3.500 MeV) from the LECP experiment on board Voyager 2 satellite
have been analyzed. The plasma data, that is plasma density, velocity, and
temperature, are obtained from the Plasma Science (PLS) instrument.

CIR shock event at 6.7 AU

In Fig. 3.17 (bottom panel) temporal profiles are displayed in log-lin scale
for the CIR forward shock event detected at 6.7 AU [108], while the upper
panels show the proton thermal speed and the magnitude of proton speed
versus time. At this heliocentric distance the approximation of the shock to
an infinite planar structure can be considered valid. It is easy to notice that
ion fluxes in different energy channels exhibit a different temporal behavior
especially at some distance from the shock front. By plotting the tails of the

3see sd-www.jhuapl.edu/VOYAGER/vgr data files.html
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Figure 3.16: Proton fluxes in log-log axes for the Ulysses shock crossing of
1993 January 22. For clarity, energetic proton profiles have been separated
by a multiplicative factor.

distributions in log-log scale (see Fig. 3.18), anomalous transport properties
can be highlighted, indeed, profiles are power law in time with a scaling
exponent 0 < γ < 1. In this case power law fits have been performed on
the energy channels 40-80 keV and 80-140 keV because the 30-40 keV energy
channel is highly fluctuating, and this kind of analysis is not suitable. In
the previous events that we analyzed[94, 95], a normal diffusive transport
for protons and ions in the interplanetary space was found, implying that
an exponential decay for the temporal particle profiles is expected [11, 98].
The data are fitted for nearly one decade and values of γ = 0.87, γ =
0.92 are found (see Table 3.3), corresponding to a mean square displacement
growing faster than linearly in time, 〈∆x2(t)〉 ∼ t1.08–t1.13. An estimation
of the reduced chi-square both for the power law fit and for the exponential
one indicates that a power law decay is definitely better for describing the
temporal profiles in the tails (see Table 3.3). The relatively large value of χ2

is due to the small number of data points and to the large scatter of them.
This event shows that superdiffusion is possible for ions, too.
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Figure 3.17: CIR shock detected by the Voyager 2 spacecraft at 6.7 AU. From
top to bottom, the panels show 1 day averages for the proton thermal speed
and the proton speed, measured by PLS (PI H. Bridge), and the ion fluxes
measured by LECP (PI S. Krimigis) in the energy channels PL01, PL02 and
PL03. The vertical dashed line indicates the position of the forward shock.



CHAPTER 3. TRANSPORT OF PARTICLES THROUGH THE
HELIOSPHERE

Table 3.2: Values of the parameters of the fits for the proton time profiles
detected by Ulysses

DD/MM/YYYY E (keV) γ 2ν χ2
pl τ(hr) χ2

e

12/09/1992 546-761 1.12 ± 0.09 1.0 0.26 67 ± 5 0.04
761-1223 1.2 ± 0.1 1.0 0.28 63 ± 5 0.05
1223-4974 0.97 ± 0.07 1.0 0.38 77 ± 5 0.1

11/10/1992 546-761 1.0 ± 0.2 1.0 0.53 57 ± 5 2.2
761-1223 1.2 ± 0.3 1.0 0.49 44 ± 9 2.3
1223-4972 1.3 ± 0.2 1.0 0.85 40 ± 6 3.7

22/01/1993 546-761 2.0 ± 0.1 1.0 0.09 57 ± 4 0.22
761-1223 2.3 ± 0.1 1.0 0.14 47 ± 3 0.16
1223-4974 2.33 ± 0.08 1.0 0.38 45 ± 2 0.38

The Termination shock crossing

Ion particle profiles have been studied also during a very recent period of
time of two years, from the beginning of 2006 to the end of 2007. In this
temporal interval Voyager 2, after a travel more than 30 years long, crossed
the TS at the boundary of the Solar System (at nearly 100 AU). In this
Section, we analyze data of particle time profiles from Voyager 2 in order to
explore the possibility of a superdiffusive transport for ions accelerated at
the solar wind TS.

The event is displayed in Fig. 3.19: the upper panels show the solar wind
velocity and the thermal speed, which allow to identify the shock event; in
the bottom panel, the PL05, PL06, PL07, and PL08 energy channels have
been plotted. Low energy channels have not been considered because they
are near the background level until 32 days before the TS crossing [109].
However, all energy channels are affected by a high level of background due
to high energy cosmic rays (especially particles with energies greater than
70 MeV) [109]. Indeed, at large distance from the Sun particle densities
are low, while the cosmic ray fluxes are relatively high due to the decreased
screening by the solar wind. Therefore, it has been necessary to perform
the statistical analysis by using background cleaned data. The background
level has been estimated as the lowest value of the signal in each energy
channel for the analyzed period; this procedure gives results in excellent
agreement with background subtracted particle profiles published in [109],
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Figure 3.18: Ion fluxes in log-log axes for the Voyager 2 shock crossing of
1980 June 20. Dashed lines represent the power law best fits.

and are also consistent with the background levels given in Ref. [110] for the
Voyager 1 energy channels. In addition, in order to minimize the background
contribution to the temporal particle profiles at some days from the shock
front, data displayed in Fig. 3.19 have been filtered via a threshold method
[111]: only the signal which is roughly equal or greater than 1.7 times the
background level is retained, in other words the background correction has
to be less than 60% of the signal for considering the data acceptable. This
is a very severe filter, that allows to analyze data cleaned with a good level
of accuracy.

After the background correction explained above, only PL06, PL07 and
PL08 channels retain a number of points in the tails of the temporal profiles
suitable for a statistical analysis. The filtered data and the corresponding
fitting lines in log-log axes are shown in Fig. 3.20. Thus, by looking at
the results of the fits shown in Table 3.3), we can see that for these energy
channels, the reduced χ2 indicates that the power law fits the tails of the
ion profiles better than the exponential function, that is the transport for
ions in those energy ranges is superdiffusive. The exponent of the power
laws lies in the range γ = 0.68–0.71, leading to a mean square displacement



CHAPTER 3. TRANSPORT OF PARTICLES THROUGH THE
HELIOSPHERE

Figure 3.19: TS crossing at 85 AU by the Voyager 2 spacecraft. From top
to bottom, the panels show 1 day averages for the proton speed and the
proton thermal speed measured by PLS (PI H. Bridge), ion fluxes measured
by LECP (PI S. Krimigis) in the energy channels PL05, PL06, PL07, PL08
after background subtraction. The vertical dashed line indicates the position
of the shock.
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〈∆x2(t)〉 ∼ t1.29–t1.32. Power law fits have been performed over a temporal

Figure 3.20: Same as Fig. 3.18 but for the TS event. Only data points for
which the background correction is less than 60% of the signal have been
plotted. The temporal profiles have been shifted by a factor ∼ 3 for clarity.

interval of 200 days, starting from 10 days from the TS front. It is worth
noticing that a recent study shown in Ref. [112] highlighted that the TS is
expected to move at nearly constant speed in this period of time, then our
model, which assumes a shock moving at constant velocity, is appropriated
for these datasets.

3.4 Discussion

In agreement with the results of recent numerical simulations [27, 76] the
analysis presented in this chapter shows that the propagation of energetic
particles in the turbulent environment of the solar wind can be interme-
diate between diffusive and ballistic (or scatter-free), the latter being of-
ten deduced from SEP observations for electron propagation [88]. From
the analysis of temporal fluxes of particles accelerated at CIR shocks de-
tected by Ulysses, a difference in the transport regimes between electrons
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Table 3.3: Values of the parameters of the fits for the ion time profiles de-
tected by Voyager 2

DD/MM/YYYY E (keV) γ 2ν χ2
pl χ2

e

20/06/1980 40-80 0.87 ± 0.01 1.13 33.2 49.4
80-140 0.92 ± 0.02 1.08 14.8 20.5

30/08/2007 (TS) 540-990 0.70 ± 0.07 1.30 0.22 0.40
990-2140 0.71 ± 0.08 1.29 0.18 0.25
2140-3500 0.68 ± 0.15 1.32 0.05 0.07

and protons has been found. One explanation of this evidence can be re-
lated to their different Larmor radii and of the consequent different resonant
interaction with magnetic turbulence. At 5 AU, assuming a magnetic field
B = 2 nT, the Larmor radii of the electrons at the analyzed energy channels
range from 80 km to 360 km, while those of protons go from 56000 km to
125000 km. Magnetic turbulence in the solar wind exhibits a Kolmogorov-
like spectrum, δB2(k) ≃ k−5/3, from the correlation length λ down to the
dissipation scale λdiss, which is usually assumed to be of the order of the
thermal proton gyroradius ρthp. Considering a proton temperature Tp = 105

K, one has ρthp ≃ 200 km. The turbulence power at the wavelengths in
resonance with energetic electrons is considerably weaker than that at the
wavelengths in resonance with energetic protons. For instance, introducing
the resonant wavenumber ke = 1/ρe (kp = 1/ρp) for electrons (protons), we
have δB2(ke)/δB

2(kp) ∼ (kp/ke)
5/3 ∼ (ρe/ρp)

5/3 ∼ 10−4. Although the elec-
tron rigidity is much smaller than the ion one, leading to faster pitch angle
diffusion, if the electron gyroradius is below ρthp, i.e., in the dissipation range
of magnetic turbulence, a very weak gyroresonant interaction is found (see
Ref. [89]). In such a case, the electron propagation is nearly scatter-free
and characterized by very long “jumps” in the parallel motion which lead
to a superdiffusive behaviour. Ref. [76] have found a parallel superdiffu-
sive transport, in the case of a low turbulence level, even when Larmor radii
correspond to the turbulence correlation length. This could be interesting
in the interpretation of the results coming from the analysis performed on
temporal profiles of particles detected by the Voyager 2 spacecraft, indeed,
for the two events under investigation, a superdiffusive transport has been
found also for ions in several energy channels. Because of the large helio-
centric distances, the level of magnetic turbulence upstream of the shocks
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(that is in the unshocked solar wind) is going down, leading to a quasi-free
streaming of particles accelerated at the shocks front.

These findings are likely to have a profound impact on the models of
cosmic ray acceleration due to diffusive shock acceleration, as well as on
the analysis of energetic particle propagation throughout the heliosphere.
Indeed, a lot of current research is concerned with acceleration models which
depend either on parallel diffusion, or on perpendicular diffusion, or both,
e.g. [77, 78]. Here we can see that, superdiffusive transport (parallel to the
background magnetic field) has to be taken into account. Since superdiffusion
allows a faster escape of particles from the shock region, the efficiency of the
DSA could be decreased. Early attempts to take into account non Gaussian
transport in cosmic ray shock acceleration have been carried out by Ref.
[113] for the subdiffusive case and by Ref. [114] for both anomalous regimes.

The hypothesis of a superdiffusive transport for energetic particles could
be intriguing for explaining Voyager 1 and Voyager 2 observations of anoma-
lous cosmic rays (ACRs) during the TS crossings. ACRs represent a popu-
lation of interstellar neutral atoms ionized and picked up by the solar wind;
the standard scenario expects that, once convected by the plasma to the
TS, ACRs are here accelerated up to 100–200 MeV by DSA. However, by
studying the daily-averaged particle intensity profiles, Ref.s [116] and [117]
observed a continuous increase of particle intensities after the TS crossing in-
stead of a “peak” of energetic particles at the shock front. This means that
these particles are not accelerated at the TS front. For this reason, several
new acceleration models have been proposed (see Ref. [111] and references
therein). Assuming a superdiffusive motion, which allows a faster escape of
particles from the shock region, the peak of energetic particles around the
shock front could be missed. In addition, the spectral index coming from
spectra of suprathermal ions detected by Voyager 2 in the heliosheath region
is inconsistent with that predicted by the standard DSA theory [109], this
could be due to some theoretical assumptions, such as the isotropy of particle
distribution functions and the diffusive propagation, which are not supported
by spacecraft observations.

Another puzzling subject in space physics is the interpretation of the time
profiles of SEPs. Part of the difficulty comes from the fact that the time se-
quence of acceleration at flares and/or at the associated CME is not well
understood [90] and part comes from the fact that transport is not easily
studied in a medium where all parameters are changing with the heliocentric
distance. Propagation models take into account effects on the transport prop-
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erties such as the spatial and temporal variation of the source, the variation
of acceleration efficiency along the shock surface, convection and adiabatic
deceleration, the variation of the scattering mean free path λ‖ with radial
distance and particle rigidity [107, 86, 115]. Our results show that a further
ingredient should be added to propagation models, that is superdiffusion.
For example, even in the case of impulsive SEP events the decay phase of the
SEPs time profile should be fitted with a modified Gaussian (see Eq. (3.10)),
where the thickness of the distribution grows superlinearly with time, while
the long time behavior of the propagator decays in time as t1/(1−µ) with
3 < µ < 2, that is faster than the standard t−1/2 scaling (see Eq. (3.5)).
Thus, the possibility of superdiffusive transport represents a new tool for the
interpretation of SEPs propagation as well as for the analysis of particles
accelerated throughout the heliosphere.



Chapter 4

Turbulence in the heliosphere

4.1 General characteristics of turbulence in

the interplanetary space

The interplanetary space is permeated by the solar wind, a continuous su-
personic and superalfvènic flow of charged particles having solar origin and
streaming away from the sun. From the second half of the last century,
space missions allowed a large number of in situ observations, providing a
rich description of the plasma state and dynamics. Solar wind is a natu-
ral laboratory for studying turbulence in collisionless, magnetized plasma
because of the presence of strong magnetic fields and of the small collision
mean free path, that approximates the Sun-Earth distance. Then, instead of
a hydrodynamic approach [6], solar wind turbulence is well described by the
magnetohydrodynamic (MHD) theory, even if the presence of a large num-
ber of characteristic space and temporal scales does not allow to have a sole
theoretical framework enable to explain the different phenomena observed.
What is well known is that solar wind presents a power law energy spec-
trum of magnetic field fluctuations extended over many frequency decades.
In Fig. 4.1 power density spectra of magnetic field fluctuations observed
by the Helios 2 spacecraft at various heliocentric distances are displayed.
At frequencies below 10−4 Hz the spectra scale as roughly f−1, this is the
“energy injection” range due to the presence of large-scale structures in the
solar wind, as stream interaction regions, shocks, and large-amplitude Alfvèn
waves [118]. At higher frequencies power law shape changes and the slope
becomes f−5/3, that is the Kolmogorov spectrum: this range, named “inertial
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range”, describes the energy transfer from large scales up to the ion cyclotron
frequency fci = eB0/mi. At frequency of ≃ 0.1 Hz there is a break in the
power spectrum, beyond which the slope increases with variations ranging
from f−2 to f−5 [119, 120, 121]. It is still unclear the origin of this slope in-
crease in the power spectrum: some authors argue that it could be associated
to the dissipation of magnetic energy via particle-wave interactions (kinetic
processes) [120, 121, 7, 122], others suggest that another turbulent cascade,
as in the inertial range, takes place [123, 124, 125]. Some evidences seem

Figure 4.1: Magnetic field density power spectra as seen by the Helios 2
spacecraft at different heliocentric distances. The blue dots indicate the
power break separating the energy injection range from the inertial range
(adapted from Ref. [4]).

to disregard the hypothesis of a dissipation range, indeed, in the usual fluid
turbulence the dissipation range is characterized by an exponential decay [5]
and the magnetic fluctuations, after the spectral break, become Gaussian and
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the coherent structures smoothed by dissipation. In the solar wind the non
Gaussianity of magnetic fluctuations increases with frequency after the break
(intermittency), as it happens in the low frequency inertial range [4, 125];
this could be an indication of a small-scale energy cascade.

While the solar wind represents a magnetized plasma freely evolving
through the heliosphere, there are some regions of the interplanetary space
in which plasma is confined by boundaries due to the presence of large-scale
structures whose geometries have high influence on the plasma turbulence
state. Examples are the Earth’s Magnetosheath (MS) and the Earth’s Fore-
shock (FS), the former is the region behind the bow shock where the solar
wind (SW, hereafter) is slowed down and heated, the latter is a region of con-
vected SW plasma, in which incoming particles are reflected and accelerated
upstream by the Earth’s bow shock. See Fig. 4.2 for a general overview. The
MS is strongly influenced by the geometry of the bow shock with respect to
the interplanetary magnetic field. Indeed, if the shock normal and the inter-

Figure 4.2: Cartoon of the Earth’s magnetosphere and of the region of in-
teraction between the solar wind flow and the magnetosphere, i.e., the bow
shock region. Also the magnetosheath is displayed and the upstream side of
the bow shock, where reflecting particles present give rise to the foreshock
formation.
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planetary magnetic field form an angle less than 45◦ (quasi-parallel shock),
magnetic fluctuations convected by the SW are amplified (δB/B0 ≃ 1, being
B0 the large-scale magnetic field intensity), making the region downstream
of the bow shock highly turbulent; if the geometry is quasi-perpendicular
(the angle between the shock normal and the interplanetary magnetic field
is greater than 45◦), the level of amplitude of magnetic fluctuations is much
lower (δB/B0 ≃ 0.1) [51]. The study of turbulence properties in such differ-
ent regions is also important for better understanding plasma dynamics in
other astrophysical contexts and in laboratory plasmas.

4.2 Turbulence anisotropy and Minimum Vari-

ance Analysis

As it is well known, magnetic field, convected by the SW plasma in the inter-
planetary space, is on average a spiral at very large scales, that is ≃ 27 days.
However, going toward smaller and smaller scales, interplanetary magnetic
field is characterized by fluctuations superimposed to the average large-scale
field. From observations we know that these magnetic fluctuations have an
extended power law spectrum (see discussion in Sec. 4.1) and their nature
depends on the frequency range. For example, low frequency fluctuations (at
frequencies lower than the ion-cyclotron frequency) are associated to incom-
pressible large amplitude Alfvèn waves propagating away from the Sun [118],
while the high frequencies part of the spectrum is related to more compressive
modes [125].

Thanks to spacecraft observations, it was possible to perform statistical
analysis on magnetic fluctuations at several scales and in different SW con-
ditions in order to improve the knowledge on magnetic structures present in
the interplanetary space. Ref. [118] showed that magnetic turbulence in the
SW is anisotropic, that is there is a preferential direction, often associated
to the mean magnetic field direction, along with the power of magnetic field
fluctuations is small. Therefore, this direction presents a very low ampli-
tude of fluctuations and is called “minimum variance” direction. Ref. [126]
introduced the minimum variance analysis as a way to better evidence the
anisotropy of fluctuations. This simple technique requires the determination
of eigenvalues and eigenvectors of the one-point cross correlation matrix, de-
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fined as
Sij = 〈BiBj〉 − 〈Bi〉〈Bj〉 (4.1)

where i and j denote the components of the magnetic field B along the
axes of a given reference system, and brackets means averages over a given
time base. The background magnetic field B0 is calculated at the largest
scale of duration T . By computing averages in Eq. (4.1) over different
periods of increasing duration ∆t ≪ T , scaling properties of anisotropy can
be investigated. Eigenvalues λi of the variance matrix, and in particular their
ratios, determine statistical properties of anisotropy of magnetic fluctuations.
Eigenvectors b give three unitary vectors forming the minimum variance
reference system with one of the axis aligned with the direction along which
the field has the smallest fluctuations [126]. This gives information on the
spatial distribution of the fluctuations of the magnetic field vector.

In previous works the direction of minimum variance was found nearly
aligned to the mean magnetic field. Indeed, Ref. [118], by using Mariner
5 data, found that the maximum variation of magnetic fluctuations is per-
pendicular to the ecliptic plane, while the minimum variance direction is
parallel to the magnetic field; in addition, the values of the eigenvalues of
the variance matrix computed are λ1 : λ2 : λ3 = 5 : 4 : 1, where λ1 is the
eigenvalue along the maximum variance direction, λ2 along the medium vari-
ance direction, and λ3 the eigenvalue of minimum variance. Other systematic
analysis of the one-point correlation matrix in Eq. (4.1) at frequencies below
the ion-cyclotron frequency highlighted that one of the eigenvalues is always
much smaller than the others, that is λ3 << λ2 ≤ λ1, and the minimum
variance is roughly aligned to the magnetic field [127, 128, 129] with just a
small amplitude spread of 10◦ [3, 4]. This implies that magnetic turbulence is
approximately two-dimensional. In the plane perpendicular to the direction
of minimum variance, say b3, turbulence remains weakly anisotropic. Typical
global values, frequently reported in literature, are λ1 : λ2 : λ3 = 10 : 3.5 : 1.2
[4]. Such kind of observations may be due to the predominance in the ana-
lyzed frequency ranges of Alfvènic fluctuations. In Ref. [130] the minimum
variance matrix has been expressed as a function of two scalar quantities: the
magnetic energy density spectra I [1](k) and I [2](k) of the two allowed polar-
izations perpendicular to the mean magnetic field B0. The phenomenological
expression given in Ref. [130] is

I [s](k) = C [s]
[

(ℓ[s]x kx)
2 + (ℓ[s]y ky)

2 + (ℓ[s]z kz)
2
]−1−µ[s]/2

, (4.2)
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where the index s = 1, 2 indicates the two polarizations, kx, ky and kz are

the cartesian components of the wave vector k, C [s], ℓ
[s]
i and µ[s] (i = x, y, z)

are the free parameters of the model. Under the assumptions of statistical
homogeneity and stationarity of the medium, and by considering the tur-
bulent fluctuations, present in the solar wind, “frozen” in the flow (Taylor
hypothesis) 4, the parameters in Eq. (4.2) were computed fitting the ex-
pressions for the eigenvalues of the variance matrix with the values found
by Ref. [129] for the Helios 2 data at several temporal scales. This proce-
dure highlighted that the polarization [1] is more energetic than the [2] one;
ℓ[1]x > ℓ[1]y >> ℓ[1]z , indicating that in the energy distribution of polarization [1],
wave vectors parallel to B0 (z direction) dominate (quasi one-dimensional
configuration); ℓ[2]x >> ℓ[2]y , ℓ

[2]
z , indicating that the spectrum I [2](k) is flat

(quasi two-dimensional configuration). Therefore, for each temporal scale it
has been possible to calculate unambiguously eigenvalues of the variance ma-
trix, as well as the sum λ1 +λ2 +λ3, and consequently well defined magnetic
field power spectra.

In a more recent work described in Ref. [131], a study of anisotropy
was performed by analyzing ACE observations at 1 AU, spanning both the
inertial (up to 0.1 Hz) and the dissipation range of the turbulence spectrum
(from 0.3 to 0.8 Hz). Data enclose fast, slow streams and magnetic clouds,
in order to characterize turbulence in various physical regimes. One of the
main results is that magnetic fluctuations are less transverse to the mean
field in the high frequency range than in the inertial range in all datasets
under analysis, implying that the nature of fluctuations changes above the
ion-cyclotron frequency.

In this chapter, via a statistical analysis, it will be shown that, in the
high frequency range of the magnetic field power spectrum, a wide power-
law distribution of eigenvalues of the variance matrix is found, which implies
that it is not possible to obtain characteristic values for λi and, consequently,
unambiguous information on the power spectrum, as done in the previous
works mentioned. Indeed, in this case very high standard deviations are
found to be associate to mean values of the eigenvalues.

4Owing to the superalfvènic speed of the solar wind, fluctuations, having velocities
much smaller than the wind speed, can be considered in first approximation “frozen” in
the flow, allowing to pass from temporal variations to spatial variations via the relation,
δr = V δt, with V the solar wind speed. This is useful when observations from only one
satellite are available.
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4.3 Characterization of anisotropy via eigen-

values of the variance matrix

In the present work statistical properties of eigenvalues and eigenvectors of
the variance matrix are investigated, by using magnetic field time variation
measurements by the Cluster spacecraft 5 behind the Earth’s quasi parallel
bow shock. In particular, three different datasets have been used, namely in
the period during which the four spacecraft were orbiting in the SW, in a
second period in the FS and in a third in the MS. These regions are charac-
terized by different spatial and temporal characteristic scales and locally by
different plasma parameters. As discussed in Sec. 4.1, for a quasi-parallel
geometry of the bow shock the magnetic field and plasma fluctuations are
intensified in magnitude, so that the MS is one of the most turbulent plasma
environments in the near Earth space. The minimum variance analysis gives
information about the power spectra of the three components of the mag-
netic field and is appropriate for characterizing magnetic turbulence in these
regions. Indeed, the aim of this work is to study statistical features of eigen-
values and eigenvectors of the variance matrix for investigating anisotropy of
magnetic turbulence above and below the ion-cyclotron frequency.

On April 16th, 2003, Cluster crossed the FS, afterwards it was in the SW
and subsequently, after the bow shock crossing, entered the turbulent MS.
The plasma beta, i.e., the ratio between plasma and magnetic pressure, is
close to unity in the FS and in the pure SW (about β ≃ 1.1 and β ≃ 1.6,
respectively), while it is very high in the MS (β ≃ 15). The magnetic field
data were sampled at a frequency ∆f = 22 Hz (∆t = 0.04 sec) by the
Fluxgate magnetometer (FGM) on board the Cluster spacecraft [132]. This
is a high frequency sampling rate compared with the ion-cyclotron frequency,
which is close to ∆tic ≃ 10 sec both in the SW and in the FS, and ∆tic ≃ 5
sec in the MS. For the purpose of this work, the data were transferred in a
reference frame defined by the bow shock model, where the X axis is directed
along the bow shock normal, Y is in the plane defined by the SW velocity and
the X direction, and Z completes the frame. From the time series the variance

5The Cluster mission is devoted to study the SW, the Earth’s magnetosphere and the
bow shock region, allowing to investigate space regions with different turbulence properties.
It is formed by 4 identical spacecraft flying in a tetrahedral configuration in order to have
a 3D overview. Satellites can resolve small-scale plasma structures both in space and time
with an unprecedented accuracy.
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matrix at different scales is computed. Thus, for each time series of duration
T and for each spacecraft s = {1, 2, 3, 4}, the variance matrices are computed
on running windows of variable length ∆tn = 2n/∆f (n = 0, 1, . . . , 13 being
the scale index), centered on the time tl (l = 1, 2, . . . , T − ∆tn being the
window index)

S
(s)
ij (∆tn, tl) = 〈B(s)

i (t)B
(s)
j (t)〉 − 〈B(s)

i (t)〉〈B(s)
j (t)〉 . (4.3)

Eigenvalues λ
(s)
i (∆tn, tl) and eigenvectors b

(s)
i (∆tn, tl) are then obtained, as

well as the angle θ(s)(∆tn, tl) between the background magnetic field and the

local minimum variance direction b
(s)
3 (∆tn, tl).

This study is devoted to describe the properties of turbulence as a func-
tion of frequency ranges, therefore hereafter the term “large-scale” refers to
time variations below the ion-cyclotron frequency, and “small-scale” to time
variations above the ion-cyclotron frequency.

In Fig.s 4.3, 4.4 and 4.5 we show, for Cluster-1, the time evolution of
the eigenvalues λ

(s)
i (∆tn, tl) of the variance matrix for three different scales

∆tn, crossing the ion-cyclotron characteristic scale, and for the three regions
under analysis. It is interesting to notice that, while at large-scales eigen-
values have smooth variations, the behavior completely changes below the
ion-cyclotron scale (high frequencies). In this frequency region the eigenval-
ues of the variance matrix are usually low, but large amplitude fluctuations,
highly localized in time, appear (intermittent character). This is evident
for all spacecraft in each region investigated, so that it represents a typical
characteristic of small-scale magnetic turbulence. It is worth noting that
the intermittency found at small-scales does not necessarily coincide with
the presence of small-scale strong intermittent structures which have been
recently reported in literature [125].

In order to better describe the change of the gross statistical properties
of the anisotropy with the scale, we now investigate the scaling behavior of
the relevant Probability Density Functions (PDF) of the eigenvalues of the

variance matrix. Therefore, the whole range of values of λ
(s)
i (∆tn, tl) has been

divided in discrete bins, and the probability of occurrence p(λ
(s)
i )within the

m-th bin has been calculated. In Fig. 4.6 the PDFs of the eigenvalues of the
variance matrix calculated at different scales ∆tn in the SW are displayed. At
a glance, there is a very weak statistical dependence on the single spacecraft,
especially at larger scales; thus, the four spacecraft can be considered as four
different ensembles of the same phenomenon in a given region, at least as far
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Figure 4.3: Amplitude of the eigenvalue along the maximum variance direc-
tion as a function of time at three scales in the SW (on the left), in the FS
(in the middle) and in the MS (on the right). It is interesting to notice the
burst-like behavior at the smallest scales, implying an high level of dispersion
in the λ1 values. Note that in the MS the level of magnetic fluctuations is
higher than in the other two regions of the heliosphere.
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Figure 4.4: Same as Fig. 4.3 but for the eigenvalue of medium variance.
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Figure 4.5: Same as Fig. 4.3 but for the eigenvalue of minimum variance.



CHAPTER 4. TURBULENCE IN THE HELIOSPHERE

as our analysis is concerned. Therefore, in the following a combined dataset,
obtained joining together the four Cluster satellites datasets, will be used for
investigating variations in statistical properties of anisotropy as a function
of frequency.

In Fig. 4.7 the PDFs p(λi) of the eigenvalues of the variance matrix
λi(∆tn, tl) in the three different zones of the heliosphere are compared. A
variation with the scale, already visible for Cluster-1 data in the SW (see
Fig. 4.6), is observed for all zones, that is, while at large-scales PDFs are
roughly peaked around a given value, as the scales cross the ion-cyclotron
frequency, the PDFs evolve toward a broader, power law behavior. To our
knowledge this scale-dependence has never been evidenced. In addition, note
that in the Earth’s MS the eigenvalues are larger in amplitude by more than
one order of magnitude than in the SW. This is consistent with the presence
of an high level of magnetic fluctuations in this region of the near Earth’s
space. The important point here is that below the ion-cyclotron scale the
burst-like temporal behavior of the eigenvalues is reflected in the power law
distribution of λi, which implies the absence of a given characteristic value.
In this frequency range it is not possible to compute an average value for
the eigenvalues of the variance matrix because the presence of a power law
distribution indicates a sort of multi-scale dynamics.

In order to characterize the degree of anisotropy of magnetic fluctuations,
a statistical study of the ratios λ3/λ1 and λ2/λ1 is performed. In Fig. 4.8,
the time behavior of the ratios in the SW at scale ∆t = 46 sec is displayed.
We used, as an example, the Cluster-1 data. The nature of anisotropy seems
to be noticeable variable in time, for example, in the period from 73820 sec
to 73860 sec a well defined minimum variance direction is observed, while
the maximum variance and the medium variance directions are comparable
(their ratio is close to 1). This is the standard situation in which magnetic
fluctuations are confined in a plane roughly perpendicular to the minimum
variance direction and the geometry is quasi bidimensional. Such a situation
is often associated in literature to Alfvèn waves propagating away from the
sun [118]. On the other hand, just after this temporal interval both ratios
become almost zero, indicating that magnetic fluctuations exhibit large am-
plitude values along the maximum variance direction (quasi 1D geometry),
and so on. Thus, the degree of anisotropy strongly depends on the presence
of specific structures at each time interval.

The PDFs of the ratios between the minimum and the maximum eigen-
value, and between the intermediate and the maximum eigenvalue, calculated



4.3. CHARACTERIZATION OF ANISOTROPY VIA
EIGENVALUES OF THE VARIANCE MATRIX

Figure 4.6: Probability density functions of the eigenvalues along the max-
imum (on the left), the medium (in the middle) and the minimum (on the
right) variance directions at three scales in the SW. Different colors refer
to the four spacecraft, Cluster-1 (black line), Cluster-2 (red line), Cluster-3
(green line), Cluster-4 (blue line). A change in the shape of the distribution
is clear when crossing the ion-cyclotron frequency.
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Figure 4.7: Probability density functions of the eigenvalue along the maxi-
mum (on the left), the medium (in the middle), and the minimum (on the
right) variance directions, at three scales (reported in the panels) in the SW
(black curve), in the FS (red curve) and in the MS (green curve).
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Figure 4.8: Time behavior of ratios λ3/λ1 (solid line) and λ2/λ1 (dashed
line) at scale ∆t = 46sec in the SW. Only Cluster-1 data are used.

at three different scales in the three regions, are plotted in Fig. 4.9. These
PDFs give information about the change in the degree of anisotropy with
the scale. Two main features can be noticed: first of all large-scale values of
the ratios are different for the SW with respect to both the MS and the FS.
In particular, values of both λ3/λ1 ≤ 0.1 and λ2/λ1 ≤ 0.1 are dominant at
large-scales for the SW data. On the contrary, the FS and the MS seem to
be more isotropic, since values for these cases are confined to λ2/λ1 ≥ 0.1.
Thus, turbulence in the SW is anisotropic already at large-scales [4]. The
weak anisotropy found at large-scales for both the MS and the FS, could be
due to some mechanisms of energy injection at these scales, owing to the
close presence of the bow shock, which yields a partial isotropization of tur-
bulence [133]. Values of λ2/λ1 ≤ 0.1 have a great probability of occurrence
in all the three regions below the ion-cyclotron scale, therefore, fluctuations
are statistically confined along the maximum variance direction. This sug-
gests that anisotropy evolves towards a quasi-1D situation and, because of
distributions are nearly overlapped, is similar in all the three regions in these
frequency ranges.
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Figure 4.9: Probability density functions of the ratios λ3/λ1 (on the left) and
λ2/λ1 (on the right) at three scales (reported in the panels) in the SW (black
line), in the FS (red line) and in the MS (green line). Vertical dashed lines
indicate the typical values of the ratios reported in previous works.
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4.4 Parameterization of scale-dependence

The scale-dependence effect described above, visible through the scaling evo-
lution of PDFs of eigenvalues, can be quantitatively characterized through
the analysis of statistical properties of the eigenvalues. Indeed, by computing
the surviving functions of eigenvalues λi, namely

P (Λi) =
∫ ∞

Λi

p(λi)dλi, (4.4)

which represents the number of eigenvalues λi ≥ Λi normalized to the total
number of events within each dataset, a scale-dependence, if any, can be
easily detected in changes of the distribution shape. Values of P (Λi) vs.
Λi/〈Λ2

i 〉1/2 are reported in Fig. 4.10. It is clear that the shape of such curves
changes considerably with the scale, mainly for high values of Λi.

The description of the scale-dependence of the surviving functions can
be done through a single function, which depends on two free parameters,
whose scaling evolution will eventually characterize scale-dependence effects.
Let us conjecture that, when Λ are changed by an amount dΛ, the surviving
function varies according to a power law with a given exponent k, namely

dP (Λ)

dΛ
= −

[

P (Λ)

ℓ

]k

,

where ℓ is a free parameter. This expression, once integrated, allows to
immediately recover the heuristic probability distribution

P (Λ) =
[

1 − (1 − k)
(

Λ

ℓ

)]1/(1−k)

. (4.5)

This expression is able to fit the surviving functions of different phenomena in
different regimes [134]. The parameter k is directly related to the functional
form of the curve. Indeed, in the limit k = 1, the distribution has the
exponential shape P (Λ) = exp(−Λ/ℓ), meaning that the stochastic process,
underlying the generation of intense values for the eigenvalues of the variance
matrix, is without memory [135]. The value k = 2 gives rise to a hyperbolic
decrease P (Λ) = 1/[1+(Λ/ℓ)]. For intermediate values of k, that is 1 < k < 2,
the curve decays asymptotically as a power law, suggesting the presence of
memory effects in the process. A fit of Eq. (4.5) on the data allows to recover
the scaling behavior of both k(∆tn) and ℓ(∆tn).
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Figure 4.10: Cumulative distribution P (Λi) as a function of Λi/〈Λ2
i 〉1/2 for

the SW (upper panel), the FS (middle panel) and the MS (lower panel), at
three different scales, namely ∆t = 0.2 sec. (crosses), ∆t = 5.7 sec. (stars),
and ∆t = 23 sec. (diamonds). Solid lines represent the best fits.
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In Fig.s 4.11 and 4.12 the scaling behaviors of parameters k(∆tn) and
ℓ(∆tn) respectively are displayed. The first result is that the parameter k
changes with scales, describing the shape changes in the surviving functions.
In particular, the parameter increases from values k < 1 (indicating decor-
relations at large scales) to k > 1 (indicating correlations at small scales).
Indeed, if for k = 1 the distribution in Eq. (4.5) becomes a simple expo-
nential, for values k < 1 the tails of the distribution decay faster than an
exponential, indicating the absence of correlations in the stochastic process.
The critical value k = 1 is found around the ion-cyclotron scale. The values
of the parameter, namely the degree of correlation of the process, and its
scaling behavior depend on the case at hand. In particular, in the SW and
in the FS k is roughly constant after the rapid increase at the ion-cyclotron
scale, and is higher in the FS than in the SW, indicating a higher level of cor-
relations among magnetic fluctuations. In the MS, the parameter increases
regularly going toward small scales, and values comparable to those in the
FS case are reached at the smallest scales. The scale-dependence effect at
the ion-cyclotron frequency is less sharp in this case.

Concerning the parameter ℓ, Fig. 4.12 shows that it is roughly constant
in all cases, with a very slow decrease going toward small-scales, mainly in
the MS. This parameter seems to play no role in the description of the curves.

4.5 The minimum variance direction

A different characterization of anisotropy can be performed by using values
of the angle θ(s)(∆tn, tl) between the minimum variance direction and the lo-
cal mean magnetic field computed at different scales ∆tn for the four Cluster
satellites. This analysis gives more detailed information about the geomet-
rical properties of the anisotropy. In Fig. 4.13 time evolutions of the angle
θ(s)(∆tn, tl) in the three regions and at three different scales, by using the
Cluster-1 data, are displayed. Mainly at small scales, θ(s)(∆tn, tl) is strongly
variable, and it can assume all values in the range [0, π/2], apparently in a
random way. To evidence scale-dependence effects we calculate the proba-
bility of occurrence Pm(θ(s)) of the angle θ(s)(∆tn, tl) within the m-th bin, as
already done for the eigenvalues of the variance matrix. Even in this case
no characteristic trends for each satellite are observed, so we use the four
samples to define statistical average values θ̄(∆tn), weighted with discrete
PDFs, at each scale ∆tn. In order to have an estimate of the statistical
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Figure 4.11: Parameter k vs scale ∆t for the SW (upper panel), the FS
(middle panel) and the MS (lower panel), calculated by fitting the surviving
functions with the heuristic probability in Eq. (4.5). The three different
lines refer to the three surviving functions fitted, i.e., P (Λ1) (solid line),
P (Λ2) (dotted line) and P (Λ3) (dashed line). The vertical dotted-dashed
line indicates the ion-cyclotron scale, while the horizontal grey line refers to
the critical value k = 1.
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Figure 4.12: Same as Fig. 4.11 but for the parameter ℓ.

dispersion of the values, the standard deviation σ(θ,∆tn) has also been com-
puted. In Fig.s 4.14, 4.15, and 4.16 the Pm(θ(s)) of the angles at different
scales ∆tn are displayed. A scale-dependence effect is evident even from this
analysis (see also Table 4.1). At scales of minute, PDFs are roughly peaked
around small angles, especially in the SW and in the FS, thus indicating that
the direction of minimum variance is close to the local background magnetic
field B0, even if a perfect alignment is never recovered. At small-scales the
probability of occurrence for small θ decreases and a broadening at values
of θ > 45◦ is observed. In the MS region (see Fig. 4.16) PDFs at all scales
indicate a small probability of occurrence for values of θ < 40◦, but below the
ion-cyclotron scale there is a tendency for the minimum variance direction
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Figure 4.13: The angle between the direction of minimum variance and the
direction of the mean magnetic field as a function of time at three different
scale in the pure SW (on the left), in the FS (in the middle) and in the MS
(on the right). At scale of the order of the minute, the two directions seem
to be nearly aligned in the SW and in the FS, while at small-scales the angle
can assume several values in the interval [0, π/2].
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Figure 4.14: PDF of the angle θ at three scales in the SW. The probability
of finding a minimum variance direction roughly parallel to the local mean
magnetic field increases at large-scales.

to be nearly perpendicular to the mean magnetic field. For summarizing,
magnetic fluctuations, localized in the plane perpendicular to the local back-
ground magnetic field at scales of minute, become less transverse to B0 at
small-scales, in agreement with the results reported in Ref. [131].

4.6 Remarks

The scaling behavior of anisotropy of magnetic turbulence, as measured by
Cluster spacecraft in three different regions of the near Earth space, has been
characterized through the analysis of the eigenvalues and eigenvectors of the
magnetic field variance matrix calculated at different scales.

Some important results highlighted in previous works by using measure-
ments of various spacecraft in the SW have been confirmed in this study.
Indeed, one of the three eigenvalues of the variance matrix is smaller than
the other ones in all regions considered. This indicates that a well defined
direction, along which magnetic fluctuations have a very low amplitude, ex-
ists. Then, magnetic field fluctuations lie in a plane perpendicular to the
this direction, named minimum variance direction. In addition, eigenvalues
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Figure 4.15: The same as Fig. 4.14 but for the FS region.

assume higher values in the MS and in the FS regions than in the SW, in-
dicating that the amplitude of turbulent fluctuations increases near the bow
shock.

By looking at the time evolution of the eigenvalues above and below the
ion-cyclotron scale, it has been underlined that the behavior passes from
being smooth to burst-like. This stochastic process, characterized by the
presence of very high amplitude spikes below the ion-cyclotron scale, leads
to wide power law PDFs of the eigenvalues in all three regions. As a conse-
quence it is not possible to define a characteristic value (as the average value)
for the eigenvalues of the variance matrix at those scales and, therefore, to
obtain unambiguous information about the anisotropic power spectrum. A
more detailed study of anisotropy, by using statistical properties of both
eigenvalues and eigenvectors of the variance matrix, is required. The pres-
ence of a scale-dependence can be characterized through a parameterization
of the scaling behavior of the PDFs of the eigenvalues. This has been per-
formed here by fitting the surviving probabilities at different scales with a
function depending on two free parameters. Results show that the cross-scale
is around the ion-cyclotron frequency, that separates scales at which the sur-
viving functions decay faster than an exponential (large-scales), indicating
that the process involved is uncorrelated, from those scales in which the
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Figure 4.16: The same as Fig. 4.14 but for the MS region. At all scales the
minimum variance direction has not negligible probability of being at angles
θ > 45◦.

tails of the distribution functions decrease slower than an exponential decay
(small-scales), that is as a power law, indicating the presence of correlations
in the stochastic process.

In all regions examined, the probability of occurrence for small values
of the ratios between the minimum and the maximum eigenvalue, and be-
tween the intermediate and the maximum eigenvalue, increases going toward
small-scales, so that the degree of anisotropy becomes higher below the ion-
cyclotron scale. From Fig. 4.9 a strong level of anisotropy can be observed in
the SW at scale of minute, while in the FS and in the MS turbulence seems
to be more isotropic. The three curves shown become overlapped below the
ion-cyclotron scale, increasing the level of anisotropy in all the regions an-
alyzed. This means that at large-scales the mechanisms of energy injection
or energy transfer are very different in the three regions; this might be due
to the presence of the bow shock which acts as a source of isotropic fluc-
tuations at large-scales. On the other hand, at small scales either energy
dissipation processes or energy transfer become roughly similar. In addition,
by investigating the temporal behavior of the ratios, it has been found that
anisotropy evolves continuously, depending on the type of structures present
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Table 4.1: Mean values of the angle θ

∆t (sec) SW FS MS
0.09 54 ± 23 52 ± 23 60 ± 22
0.2 52 ± 23 49 ± 23 61 ± 22
0.4 49 ± 23 45 ± 23 62 ± 22
0.7 44 ± 24 41 ± 22 63 ± 22
1.4 38 ± 24 37 ± 21 62 ± 22
3 31 ± 24 35 ± 21 62 ± 22
6 24 ± 23 35 ± 20 61 ± 22
11 21 ± 21 35 ± 20 61 ± 21
23 19 ± 21 35 ± 20 58 ± 21
46 18 ± 19 34 ± 19 55 ± 21
91 20 ± 16 32 ± 17 59 ± 19
180 11 ± 11 26 ± 8 52 ± 20
360 8 ± 4 25 ± 5 33 ± 17

in the medium at that time. Another step could be the study of the nature
of these structure in each temporal interval.

A scale-dependence is evident also when investigating the geometrical
properties of turbulence anisotropy through the angle between the minimum
variance direction and the local background magnetic field. This quantity
varies in the range [0, π/2]. In the SW and in the FS the minimum variance
direction is typically aligned with the background magnetic field at scale of
minute. However, below the ion-cyclotron scale the distribution of the angles
becomes broader and also values of the angle θ > 45◦ have not negligible
probability. In the MS a tendency of θ(∆t) to assume a wide range of values
is found. Indeed, also at large-scales the distribution is much broader than
in the SW. The scaling behavior of θ(∆t) in the SW and in the FS might
be due to a change in the nature of magnetic fluctuations, in particular to
an increase of compressibility in the high frequency range [125], while the
MS region exhibits a turbulence that is much more compressible even at
large-scales.



Chapter 5

Conclusions

This thesis addresses some different topics in the framework of the study of
complexity in astrophysical systems. We have focused both on the problem
of transport and acceleration of particles in the interplanetary medium (via
numerical studies and data analysis) and on the characterization of small-
scale magnetic turbulence in different regions of the heliospheric environment.
Below we summarize the main findings:

1. We numerically investigated the transport properties of an ensemble
of non relativistic charged particles interacting with stochastic time-
dependent electromagnetic fields. The field is generated by oscillating
magnetic clouds. When the oscillating frequency increases, we found
that the diffusion in real space goes from a Brownian-like regime to
a superdiffusive one. Correspondingly, a change in the diffusion prop-
erties in velocity space is also observed, owing to the presence of a
stochastic acceleration. The relationship found between scaling expo-
nents of the mean square displacement in real and in velocity spaces is
not universal but depends on the time correlations introduced in the
model at hand.

2. The numerical model described above has been applied to the problem
of particle acceleration in the current sheet of the Earth’s magnetotail
in order to reproduce a range of particle energy values coming from
satellite observations. Besides stochastic time-dependent electromag-
netic fields located in the x-y plane, the dawn-dusk constant electric
field component along the y direction has been added. Realistic values
of this constant electric field component can explain particle energies
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of the order of ∼ 30 keV, that is the maximum energy allowed by the
potential drop, while particles exceeding 100 keV are also observed.
Considering the stochastic, Fermi-like, acceleration process, due to the
time-dependent fields, as an additional acceleration mechanism, parti-
cles can reach energies around 100 keV, in agreement with spacecraft
observations. Therefore, we propose that, as well as the steady accelera-
tion coming from the constant dawn-dusk electric field, another source
of acceleration of particles in the current sheet can be the stochas-
tic interaction between particles and electromagnetic field fluctuations
present in the Earth’s magnetosphere.

3. Collimated beams of accelerated particles are frequently observed in
space plasmas, as for example in the plasma sheet boundary layer of
the Earth’s magnetosphere. The Fermi-Ulam model for stochastic ac-
celeration applied to an ensemble of particles results in an energization
of the bulk, namely the probability density function at different times
can be rescaled to the initial one. We introduced a one-dimensional
modified Fermi-Ulam model, where particles are allowed to penetrate
the oscillating clouds and are reflected by the magnetic field inside the
clouds. The penetration depth is a parameter of the system and, as
it increases, a particle energy confinement is observed. Indeed, after a
transient time, particle energy remains nearly constant and the usual
Fermi acceleration mechanism is broken. Particles start ’resonating’
with the clouds, leading to beams formation in the distribution func-
tions. Energetic beams observed in this model have velocities roughly
3–50 times the initial particle thermal speed, in agreement with beams
observations in the plasma sheet boundary layer of the terrestrial mag-
netosphere. Oscillations of accelerating magnetic structures in space
plasmas could be driven by instability mechanisms.

4. The analysis of time profiles of particles accelerated at interplanetary
shocks and at the solar wind termination shock showed that the prop-
agation of energetic particles in the turbulent environment of the solar
wind can be superdiffusive, both for electrons and for ions. By comput-
ing particle time profiles with the propagator for Lévy random walks,
a power law decay with a characteristic index was obtained instead of
an exponential decay, expected in the case of normal diffusion. The
analysis of data of particles accelerated at corotating interaction re-



gion shocks, at nearly 6 AU, indicates that time profiles of electrons
are power law at some distance from the shock front, therefore, these
particles propagate in a superdiffusive way. On the contrary, protons
exhibit a normal diffusion. This difference between electrons and pro-
tons has been interpreted in terms of their different interaction with
magnetic turbulence due to their Larmor radii values. However, by
studying the particle time profiles close to the termination shock front,
a superdiffusion was found also for ions. This could be due to the low
level of turbulence present at this distance from the Sun (∼ 100 AU),
which leads to a weaker particle pitch-angle scattering. These results
indicate that current models of cosmic rays acceleration processes, in-
volving normal diffusion, need to be revisited, as well as models for
particles propagation through the heliosphere.

5. The scaling behavior of anisotropy of magnetic turbulence in three dif-
ferent regions of the near Earth space has been investigated by using
high-resolution Cluster data. Anisotropy is characterized through the
analysis of the eigenvalues and eigenvectors of the magnetic field vari-
ance matrix, calculated at different scales. One of the three eigenvalues
is found smaller than the other ones in all regions considered. This in-
dicates that turbulent fluctuations are roughly confined in a plane per-
pendicular to the direction along which magnetic fluctuations exhibit
a small variation. A very interesting result is the time intermittency
of eigenvalues of the variance matrix at small-scales. This behavior
generates a cross-scale effect in magnetic turbulence. Indeed, PDFs of
eigenvalues evolve with the scale, that is they become power laws at
scales smaller than the ion-cyclotron scale. As a consequence we cannot
define a characteristic value for the eigenvalues of the variance matrix
at those scales. Therefore, because the variance matrix is related to
the magnetic field power spectra, it is not possible to obtain unam-
biguous information about them above the ion-cyclotron frequency, at
least by using single-spacecraft measurements. A scale dependent ef-
fect is evident also when investigating the geometrical properties of tur-
bulence anisotropy through the angle between the minimum variance
direction and the background magnetic field. In the solar wind and in
the foreshock the minimum variance direction is typically aligned with
the mean magnetic field above the ion-cyclotron scale. At small-scales
PDFs become very broad, increasing the probability of occurrence for
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values of the angle greater than 45◦. In the magnetosheath the ten-
dency of having a minimum variance direction nearly perpendicular to
the mean magnetic field is highly evident at small-scales. This scaling
behavior might be due to a change in the nature of magnetic field fluc-
tuations, which become more compressive at high frequencies. Further
analysis are required in order to clarify the nature of small-scale mag-
netic field fluctuations and the processes involved in the formation of
the high-frequency range of the magnetic turbulence power spectrum.
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