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1 Introduction 
 
 
 
 
 

1.1 Motivation 
The ubiquitous diffusion and usage of the Internet have promoted the 
development of new kinds of distributed applications characterized by a huge 
number of participants, high decentralization of software components and 
code mobility, which are typical of application domains such as distributed 
information retrieval, content management and distribution, and e-
Commerce. In these application domains, the agent-based computing 
paradigm [72] has been demonstrated to be effective for the analysis, design 
and implementation of distributed software systems. In particular, in the 
context of the agent oriented software engineering (AOSE) [62], several 
agent-oriented methodologies based on suitable agent models, frameworks 
and tools, have been defined to support the development lifecycle of 
distributed agent systems (DAS). Their in-depth analysis has allowed to 
identify the key elements for the provision of an effective development of 
distributed agent systems: the agent model, the development methodology 
and the supporting CASE tool. 

The agent models aim at providing abstractions for the modelling of the 
agent behavior and interactions. Basically they can be classified in two large 
groups: (i) models based on intelligent agent architectures [72, 81] ranging 
from reactive agents (e.g. Brook’s subsumption architecture) to deliberative 
agents (e.g. BDI agents); (ii) models based on the mobile active object 
concept encompassing mobile agent architectures [11, 104]. Models of the 
first group are mainly oriented to problem-solving, planning and reasoning 
systems whereas models of the second group are more oriented to 
distributed computation in open and dynamic environments like the Internet. 
In the context of Internet computing, agent models and related frameworks 
based on lightweight architectures, asynchronous messages/events and 
state-based programming such as JADE [7], Bond [10], and Actors [2], have 
demonstrated great effectiveness for modeling and programming agent-
based distributed applications. In particular, such models define suitable 
abstractions for the modelling of reactiveness and proactiveness of agent 
behavior and agent interactions. However, they mainly consider messages 
(and related message-based protocols and infrastructures) as a means of 
interaction among agents and mobility as an auxiliary feature of agents. 
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Considering the exploitation of coordination models and infrastructures 
based not only on messages but also on events, tuples, blackboards and 
other coordination abstractions [16] can provide more effectiveness in 
designing complex agent interactions and more efficiency in their actual 
implementation. Moreover, mobility, if considered a main feature of agents, 
can provide a powerful means for dynamic organization of distributed 
components modelled as mobile agents [11]. Thus mobility also enables and 
demands for new non-message-based coordination models. 

The agent-oriented development methodologies aim at supporting the 
development lifecycle of agent-based systems from analysis to deployment 
and maintenance. They can be classified into general-purpose and domain-
specific methodologies. The general-purpose methodologies such as Gaia 
[113], PASSI [23], Tropos [12], Ingenias [89] are suitable for the development 
of multi-agent systems in different application domains whereas the domain-
specific methodologies can be more effectively exploited in a given, very 
specific application domain. Apart from their context of use, they are all 
based on a meta-model of multi-agent system which loosely or tightly 
depends on a reference agent model and a phase-based iterative 
development process. Agent oriented methodologies for Internet-based 
distributed agent systems should incorporate not only a MAS meta-model 
and related agent model suitable for distributed computation but also 
effective prototyping methods able to validate the design models before 
deployment in a large-scale distributed testbed. In particular, dynamic 
validation based on simulation is emerging as a powerful means for 
functional and non functional validation of designed agent systems in a large-
scale controlled environment. To date a few agent-oriented development 
methodologies have been proposed in the literature, such as Electronic 
Institutions [103], DynDEVS/James [99], CaseLP [76], GAIA/MASSIMO [41], 
TuCSon/pi [54], Joint Measure [101], Ingenias/Repast [90]. They incorporate 
simulation to support the design phase of the MAS development lifecycle 
with the main focus on the validation and performance evaluation of the 
designed MAS model. Moreover, two important characteristics of agent-
oriented methodologies are high degree of integration with other 
methodologies and availability of a CASE tool supporting the process 
phases. The former would allow for an easy integration with other 
methodologies for the purpose of enriching already existing methodologies or 
creating new and more effective ones. The latter would allow for automating 
the development process phases and their transitions so providing more 
robust development and rapid prototyping. 

1.2 Thesis proposal and contributions 
The main objective of the proposed thesis is the definition of a methodology, 
also supported by a CASE tool, for the simulation-based prototyping of 
distributed agent systems. The proposed methodology, hereafter referred as 
ELDAMeth, is based on the key features enabling the development of DAS 
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delineated in the previous section. In particular, ELDAMeth relies on the 
ELDA (Event-driven Lightweight Distilled Statecharts Agents) agent model 
and related frameworks and tools, and on an iterative development process 
seamlessly covering the modeling, coding and simulation phases of DAS. 
ELDAMeth can be used both stand-alone and in conjunction/integration with 
other agent-oriented methodologies which provide support to the analysis, 
(high-level) design, and implementation phases. A simplified process schema 
of ELDAMeth is shown in Figure 1.1. 
 

Mo deling Coding Simulation

[iterate]

[done]

DAS Model DAS Code Sim Results

ELDA Model
ELDA Meta-Model

ELDAFramework ELDASim

Schema:

Workproducts:

Models&Frameworks:

CASE Tool: ELDATool

High-level
System De sign

 
Figure 1.1: A basic ELDAMeth process schema. 

The Modeling phase produces the DAS Model on the basis of the High-Level 
System Design which is a high-level design of the distributed system to be 
prototyped. In particular, the DAS Model is specified according to the ELDA 
MAS meta-model which provides the structure and the behavior of agent 
systems based on the ELDA model. Moreover, the High-Level System 
Design can be defined either ad-hoc or by means of another methodology 
supporting the analysis and high-level design phases. 
The Coding phase receives the DAS Model and automatically produces the 
DAS code according to the ELDAFramework, which provides all the 
programming abstractions defined in the ELDA MAS meta-model. 
Finally, the Simulation phase produces the Simulation Results in terms of 
execution traces of the simulated DAS and calculation of the defined 
performance indices which must be carefully evaluated with respect to the 
functional and non-functional requirements. Such evaluation could lead to a 
further iteration step which starts from a new (re)modeling activity. In 
particular, the Simulation Results come from the execution of the DAS 
Simulator carried out through ELDASim, a discrete-event simulation 
framework for ELDA agents. The DAS Simulator is obtained by synthesizing 
the DAS Code with the simulation parameters and performance indices, 
defined on the basis of the requirements. 
All the described phases are fully supported by the ELDATool, a CASE tool 
completely developed in this thesis work to enable: (i) the visual modelling of 
the DAS under-development, (ii) the automatic translation into code of the 
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DAS Model, (iii) the execution of the DAS Simulator in a large-scale 
controlled environment. 
The main contributions of the thesis to the AOSE research field are in the 
following areas: 
- Agent models. The proposed ELDA (Event-driven Lightweight Distilled 

StateCharts-based Agents) model incorporates the three enabling 
features for distributed agent systems: lightweight reactive/proactive 
behavior, multi-coordination and mobility. In particular: (i) the agent 
behavior is based on the Distilled StateCharts formalism [50] which 
allows to effectively structure the behavior in hierarchies of states, 
transitions among states, and (re)actions attached to transitions; (ii) the 
agent interactions are based on high-level asynchronous events which 
enable multi-coordination among agents and between agents and non-
agent components through the exploitation of multiple coordination 
structures; (iii) the agent mobility relies on a coarse grain strong mobility 
model which allows for agent transparent migration (both autonomous 
and passive). Moreover, the structure of ELDA-based DAS is specified 
according to the well-defined ELDA MAS meta-model which provides the 
modelling abstractions related to agents and their infrastructures in which 
agents execute and through which agents interact. 

- Agent frameworks. The ELDAFramework is a Java-based 
implementation of the ELDA MAS meta-model and makes it available a 
rich set of programming abstractions enabling the implementation of 
distributed agent systems based on the ELDA model. ELDA-based agent 
systems developed through the ELDAFramework can be actually 
executed through simulation by the ELDASim framework. In particular, 
ELDASim is an ELDA-oriented discrete event simulation framework 
which provides simulation abstractions and components allowing 
functional validation and performance analysis of ELDA-based agent 
systems. 

- Agent methodologies. In this thesis work, ELDAMeth is also exploited to 
define other two agent-oriented methodologies based on simulation: 
PASSIM and MCP. PASSIM is a simulation-based process for the 
development of multi-agent systems which is obtained by integrating the 
well-known and established Process for Agent Societies Specification 
and Implementation (PASSI) methodology with ELDAMeth. In particular, 
PASSI-based design models of the multi-agent system under-
development are semi-automatically translated according to the ELDA 
MAS meta-model and then validated through simulation. The validated 
multi-agent system can be therefore implemented and deployed 
according to the PASSI phases. The Multi-Coordination based Process 
(MCP) is an iterative process for the design of mobile agent interactions 
based on two subsequent phases of modeling and evaluation. In 
particular, the modeling phase uses interaction patterns and coordination 
models to semi-automatically provide alternative coordination solutions 
whereas the evaluation phase relies on simulation to evaluate and 
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compare such solutions on the basis of ad-hoc defined performance 
indices. The evaluation phase is carried out through ELDAMeth. 

- Agent-oriented CASE tools. The ELDATool is an integrated development 
environment implemented as a Java-based Eclipse plug-in, which aims 
at supporting developers during the modelling, coding and simulation 
phases of ELDAMeth. In particular, ELDATool provides in an integrated 
fashion: (i) a visual editor for the modelling of agent behavior in terms of 
Distilled StateCharts machines; (ii) an automatic translator which 
implements the translation rules from the ELDA MAS meta-model to the 
ELDAFramework so allowing to translate ELDA-based models into Java 
code; (iii) a visual editor to configure the simulation parameters and to 
control the execution of ELDA-based simulation programs. 

- Distributed agent systems. The application of ELDAMeth for the 
prototyping of DAS in key Internet-based application domains such as e-
Commerce, content delivery and distributed information retrieval has 
resulted in the definition of novel distributed agent systems in such 
domains. In the e-Commerce domain, the objective is the design and 
validation of an agent-based e-Marketplace (AeM) modeled as a multi-
agent system. In particular, several new kinds of consumer agents 
characterized by mobility and related policies have been defined and 
their evaluation shows the effectiveness of the defined mobile consumer 
agents and their efficiency for searching, contracting and buying goods. 
In the context of Content Delivery Networks (CDN), the main goal is the 
design and evaluation of several distributed architectures for clustering 
surrogate. In particular, three novel architectures (master/slave, 
multicast-based, peer-to-peer) have been proposed. The obtained 
results show that the designed surrogate clustering architectures allow to 
improve performance with respect currently available CDN architectures. 
In the distributed information retrieval domain, the objective is the design 
and evaluation of novel agent-based solutions for searching information 
across a network of federated locations. In particular four solutions have 
been proposed in which agent interactions are designed by using single 
and multiple coordination models. The obtained results show that the use 
of the multi-coordination approach can improve efficiency of the provided 
agent solutions. 

1.3 Thesis organization 
After providing some background concepts and a discussion about related 
work in chapter 2, the thesis is organized in three main parts. In the first part 
involving chapter 3, ELDAMeth is described in detail; in particular, all the 
process phases are explained along with related models (ELDA model and 
ELDA MAS meta-model), frameworks (ELDAFramework and ELDASim) and 
supporting tool (ELDATool). The second part of the thesis (chapter 4) details 
a complete case study of the application of ELDAMeth in the Content 
Delivery Networks domain from modelling to evaluation. The third part 
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presents the use of ELDAMeth and, in particular, PASSIM and its application 
in the e-Commerce application domain (chapter 5), and the Multi-
Coordination-based Process and its application in the distributed information 
retrieval domain (chapter 6). Finally, conclusions summarizing the main 
contributions and results of this thesis are drawn and then the future work is 
briefly delineated. 
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2 Background and related work 
 
 
 
 
 
The objective of this chapter is to provide fundamental background concepts 
and a presentation of the literature work strongly related to the thesis 
proposal. In particular, the chapter is organized as follows: (i) the first section 
introduces basic agent-based concepts in distributed systems engineering 
and, particularly, in the context of AOSE (Agent Oriented Software 
Engineering); (ii) the second section describes the main agent models for 
distributed computing; (iii) the third section presents coordination models 
among agents; (iv) the last section discusses simulation-based 
methodologies related to the methodology proposed in this thesis. 

2.1 Distributed Computing and Agent Oriented 
Software Engineering 

Today’s distributed software engineering approaches are increasingly 
adopting abstractions deriving from the agent-based computing: the majority 
of modern distributed systems are intrinsically proper to be developed in 
terms of agent-based systems, and the modern distributed systems (e.g. 
control systems, mobile and pervasive computing environments, internet-
based applications) are de facto agent-based systems as they are indeed 
composed of autonomous, situated, and social components. 
Very often computing systems integrate autonomous components: autonomy 
implies that a component integrates an autonomous thread of execution, and 
can execute in a proactive way (i.e. taking the initiative). This is the case of 
most modern control systems for physical domains, in which control is not 
simply reactive but also proactive, implemented through a set of cooperative 
autonomous processes or, as is often the case, via embedded computer-
based systems interacting with each other or via distributed sensor networks. 
The integration in complex distributed applications and systems of (software 
running on) mobile devices can be tackled only by modeling them in terms of 
autonomous software components. Another example is represented by 
Internet-based distributed applications which are typically made up of 
autonomous processes, possibly executing on different nodes, and 
cooperating with each other. 
Moreover, computing systems are also typically situated: they have an 
explicit notion of the environment where components are associated to and 
executed, and with which components explicitly interact. Control systems for 



 
 
 
8 

 

physical domains, as well as sensor networks, tend to be built by explicitly 
managing data from the surrounding physical environment, and by explicitly 
taking into account the unpredictable dynamics of the environment via 
specific event-handling policies. Other examples are Internet applications 
and web-based systems that to dive into the existing Internet environment, 
are typically engineered by clearly defining the boundaries of the system in 
terms of the “application”, including the new application components to be 
developed, and ‘‘middleware’’ level, as environmental substrate in which 
components are to be embedded. In addition, mobile and pervasive 
computing applications recognize (under the general term of context-
awareness) the need for applications to model explicitly environmental 
characteristics rather than to model them implicitly in terms of internal object 
attributes. 
Finally, in modern distributed systems we can recognize sociality aspects 
which come in different flavors: (i) the capability of components of supporting 
dynamic interactions; (ii) the somewhat higher interaction level, overcoming 
the traditional client-server scheme; (iii) the enforcement of some sorts of 
societal rules governing the interactions. Control systems for critical physical 
domains typically run forever, cannot be stopped, and sometimes cannot 
even be removed from the environment in which they are embedded. 
Nevertheless, these systems need to be continuously updated, and the 
environment in which they live is likely to change frequently, with the addition 
of new physical components and, consequently, of new software 
components and software systems. For all these systems, managing 
openness and the capability to automatically re-organize interaction patterns 
is crucial, as is the ability of a component to enter new execution contexts in 
respect of the rules that are expected to drive the whole execution of the 
system. With reference to pervasive computing systems, lack of resources, 
power, or simply communication un-reachability can make nodes come and 
go in unpredictable ways, calling for re-structuring of communication 
patterns, as well as for high-level negotiations for resource provision. Such 
issues are even exacerbated in mobile networking and P2P systems, where 
interactions must be made fruitful and controllable despite the lack of any 
intrinsic structure and dynamics of connectivity. Similar considerations apply 
to Internet-based and open distributed computing. There, software services 
must survive the dynamics and uncertainty of the Internet, must be able to 
serve any client component, and must also be able to enact security and 
resource control policy in their local context: E-marketplaces are the most 
typical examples of this class of open Internet applications. 
Thus, the explicit adoption of agent-based concepts in distributed systems 
engineering would carry several advantages [84]: 
– autonomy of application components, even if sometimes directly forced 

by the distributed characteristic of the operational environment, enforces 
a stronger notion of encapsulation (i.e., encapsulation of control rather 
than of data and algorithms), which reduces the complexity of managing 
systems with a high and dynamically varying number of components; 
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– taking into account situatedness explicitly, and modeling environmental 
resources and active computational entities in a differentiated way, rather 
than being the recognition of a matter of fact, provides for a better 
separation of concerns which, in turn, helps reduce complexity; 

– dealing with dynamic and high-level interactions (i.e., with societal rather 
than with architectural concepts) enables to address in a more flexible 
and structured way the intrinsic dynamics and uncertainties of modern 
distributed scenarios. 

The above considerations make more appealing the use of techniques based 
on the agent-paradigm to deal with the design of distributed applications but 
however there is a big concern on its applicability in an industrial context. In 
fact, industrial applicability implies the definition of repeatable, reusable, 
measurable and robust software process and techniques for the 
development of multi-agent systems (MASs) [8]. 
To manage multi-agent systems complexity, the research community has 
produced a number of methodologies that aim to structure agent 
development. However, even if practitioners follow such methodologies 
during the design phase, there are difficulties in the implementation phase, 
partly due to the lack of maturity in both methodologies and programming 
tools. There are also difficulties in understanding the nature of what is a new 
and distinct approach to systems development and in implementation due to: 
- a lack of specialized debugging tools;  
- skills needed to move from analysis and design to code;  
- the problems associated with awareness of the specifics of different 

agent platforms;  
For these reasons, the development multi-agent systems requires providing 
reasoning at appropriate levels of abstraction, automating the design and 
implementation process as much as possible, and allowing for the calibration 
of deployed multi-agent systems by simulation and run-time verification and 
control [73]. 

Despite a number of languages, frameworks, development environments, 
and platforms that have appeared in the literature, implementing multi-agent 
systems is still a complex task. For this reason, a lot of effort in the agent 
field has been devoted to the definition of techniques, methods and tools for 
supporting Agent Oriented Software Engineering (AOSE). The main goal of 
AOSE is to determine how agent qualities affect software engineering, and 
what additional tools and concepts are needed to apply software engineering 
processes and structures to agent systems. Specific areas of interest here 
include [9, 72, 84]: 
- methodologies for agent based systems. Traditional methodologies of 

software development, driving engineers from analysis to design and 
development, must be tuned to match the abstractions of agent-oriented 
computing; 

- requirements engineering for agent based systems. The agent-
oriented community have introduced new concepts to cope with the 
needs arisen from these complex problems then requirements elicitation 
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techniques should provide a way to reason and model them since the 
early stages of agent-based software development process; 

- agent-oriented analysis and design. Novel formal and practical 
approaches to analysis and modeling agent-based systems are required 
to deal with agent’s features such as autonomy, situatedness, and 
sociality. 

- techniques for specification of (conceptual) designs of agent 
systems. The development of specific notation techniques to express 
the outcome of the various phases of an agent-based system 
development process are needed, because traditional object- and 
component-oriented notation techniques cannot easily apply; 

- verification, validation and testing techniques. Verification is normally 
based on formal theories that allow the analysis of a system in order to 
determine whether certain properties hold. When such properties consist 
on whether the application fulfils the requirements, usually verification is 
referred as validation. Testing is the activity of looking for errors in the 
final implementation; 

- agent design patterns. There is by now a growing literature on the use 
of patterns to capture common design practices for agent systems which 
aim at increasing re-use and quality of code and at the same time 
reducing the effort of development of agent based systems; 

- agent models. A variety of agent models are being investigated and 
each of them is suitable to model different types of agents or specific 
aspects of agents: purely reactive agents, logic agents, agents based on 
belief, desire and intentions, etc; 

- agent-based infrastructures. To support the development and 
execution of agent-based systems, novel tools and novel software 
infrastructures are needed. Various tools are being proposed to 
transform specifications into actual agent code and a variety of 
middleware infrastructures have been deployed to provide proper 
services supporting the execution of distributed agent based systems; 

- agent-based systems architecture. As it is necessary to develop new 
ways of modelling the agents, in the same way it is necessary to develop 
new ways of modelling an agent based systems as a whole. A variety of 
approaches are being investigated to model agent based systems such 
as, approaches inspired by societal, organisational, and biological 
metaphors. 

- tools to support the agent system development process. There is a 
need to integrate existing tools into Integrated Development 
Environments (IDEs) rather than starting from scratch. At present there 
are many research tools, but few are integrated with generic 
development environments, such as Eclipse; such advances would boost 
agent development and reduce implementation costs. 
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2.2 Agent models for distributed computing 
To date many agent models have been defined and proposed which share 
the fundamental notion of agent but significantly differ in terms of agent 
architectures and the problems they aim at solving. In particular, they can be 
roughly distinguished in two main categories: 
- Artificial Intelligence (AI)-oriented models which are based on intelligent 

agent architectures [72, 81] ranging from reactive agents (e.g. Brook’s 
subsumption architecture) to deliberative agents (e.g. BDI agents) and 
are mainly oriented to problem-solving, planning and reasoning systems;  

- Distributed Computing (DC)-oriented models which are based on the 
mobile active object concept encompassing mobile agent architectures 
[11, 104] and are more oriented to distributed computation in open and 
dynamic environments like the Internet. 

As features such as lightweight agent architectures, asynchronous agent 
interaction and state-based programming, which characterize many agent 
models belonging to the DC-oriented category, have demonstrated great 
effectiveness for modeling and programming agent-based distributed 
applications, only agent models of such category which share such basic 
features will be shown in the following. In particular, Jade [7], 
HSM/SmartAgent [66], Bond [10, 75] and Actors [2, 3] are briefly synthesized 
paying attention to the provided abstractions aimed at specifying behavior, 
interactions and mobility of agents. 

2.2.1 JADE 
JADE (Java Agent Development Environment) [7] is a software framework 
aimed at programming agent applications in compliance with the FIPA 
specifications for inter-operable intelligent multi-agent systems. In particular, 
the purpose of JADE is to simplify development while ensuring standard 
compliance through a comprehensive set of system services and agent 
behaviors and protocols. To design agent behavior, JADE offers several 
types of supplied programming abstractions which are defined as direct 
subclasses of the Behaviour class; such class provides the skeleton of an 
elementary task to be carry out by an agent. A CompositeBehaviour which 
extends the Behaviour class, is one of the available agent behaviors and it 
can have an arbitrary number of sub-behaviors: each CompositeBehaviour 
implements a particular scheduling policy used to select which sub-behavior 
to fire at each round. A particular CompositeBehaviour is the FSMBehaviour 
one [6] that schedules its children according to a finite state machine whose 
states, which are behaviors themselves, correspond to the FSMBehaviour 
children: it provides methods to register sub-behaviors as FSM states and to 
register transitions, marked by integer label, between states. Note that 
transitions only serve to link states and do not encapsulate any action. A 
FSMBehaviour keeps a pointer to the current sub-behavior: as soon as this 
sub-behavior ends, the FSMBehaviour checks its internal transition table 
and, according to the returned value of onEnd method of the current child 
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(returning the label of a transition), selects the next behavior that has to be 
executed. As a consequence, the execution semantics of the FSMBehaviour 
is not driven by events but by action completions. With respect to the 
interaction among agents, the provided communication model is peer-to-peer 
though a multi-message context which is provided by interaction protocols 
and conversation identifiers. In particular, communication among agents is 
performed through asynchronous message passing and the language used 
to represent messages is FIPA ACL. Each agent has a mailbox (agent 
message queue) where the system posts messages sent by others agents: 
whenever a message is posted in the message queue, the receiving agent is 
notified. However, when, or if, the agent picks up the message from the 
queue for processing is a design choice of the agent programmer. Moreover, 
to design agents’ interactions several interaction protocols are made 
available providing a sequence of acceptable messages and a semantic for 
those messages. With respect to agent mobility, JADE implements a weak 
mobility model: after migration the agent will continue its execution from the 
beginning of its behavioral code. It’s worthy noting that, in order to save 
agent execution state, programmers have to explicitly capture the agent 
execution state. More in detail, agent migration is triggered when an agent 
calls the doMove method that causes the agent to cease its current activities 
and suspend itself (i.e. the agent state goes from the ACTIVE to the 
TRANSIT state) while the system relocates it. Moreover, agent modeling is 
not directly supported by an official visual toolkit for developing MAS 
according to the JADE model. 

2.2.2 The HSM/SmartAgent model 
To realize flexibility, partitioning, and control when programming JADE 
agents, an architecture supporting hierarchical state machine based 
programming of agent behaviors, augmented with several flexibility 
enhancing mechanisms (such as events and dispatcher chains) has been 
proposed. In particular, HSM (Hierarchical State Machine) extends JADE 
framework with uniform message and system events, a multi-level 
dispatching mechanism that matches and routes events, and a hierarchical 
state machine that is based on the UML state machine model [56,  66]. 
Using JADE FSMBehaviour as their starting point, to design agent behavior 
authors defined HSMBehaviour which inherits from JADE ComplexBehaviour 
and can manage a set of nested HSMBehaviour (states) or any type of 
behavior. In particular, HSMBehaviour inherits onStart, onEnd and action 
method from JADE ComplexBehaviour to represent entry, exit and activity 
actions of an UML State, respectively.  
Like UML State Machine, transitions among states (HSMTransition), labeled 
by an ECA rule, are driven by an event (HSMEvent) and may have source 
and destination that are in any state within the entire hierarchy: when a 
transition happens across boundary, onStart and onEnd methods code are 
guaranteed to be executed in an appropriately hierarchical fashion. When an 
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HSMEvent is delivered to an agent (it is posted in the its message queue), 
HSMBehaviour searches for a valid transition in an hierarchical fashion 
through invoking trigger methods (passing the HSMEvent) and according to 
the returned value of the trigger method, the transition is evaluated if it 
should be fire: if the trigger returns true, then action associated to the 
transition is executed and the transition to the target state is performed 
whereas if any of transitions can fire, event is removed. It’s worthy noting that 
events processing in HSM JADE was implemented according to a Run-to-
Completion semantics: if a event that trigger a transition arrives in the middle 
of the execution of behavior, its execution is terminated and then the 
transition is taken. With respect to the interaction among agents, although 
HSM is explicitly event-driven (every action that an agent is subjected to is 
translated into an event), interaction among agents is mainly based on 
JADE’s interaction model that is asynchronous message passing. In 
particular, ACL messages sent by other agents are wrapped in a 
MessageEvent objects for uniform handling and processing and delivered to 
agents through their message queue. Moreover, system events such as 
ExceptionEvent and TimerEvent (external events) and events signaled by 
other behaviors and activities of the same agent, such as SuccessEvent and 
FailureEvent (internal events) are wrapped in a MessageEvent object. With 
respect to agent mobility, features supplied by HSM are the same of those 
offered by JADE’s mobility model. To develop agent based systems 
according to the HSM model, is made available an visual tool, HSMEditor, 
that allow for modeling an HSMBehaviour and generating Java code 
associated to the state machine modeled. Authors have also developed a 
tool that allows them to visualize the execution of an HSMBehaviour in order 
to check agent behaviors. 

2.2.3 The Bond agent model 
The major components of a Bond agent [10, 75] are: the model of the world, 
the agenda, strategies and the multi-plane state machine. The model of the 
world represents the information that an agent has about its environment; the 
agenda defines the goal of an agent; a strategy generate agent’s actions 
(based upon model of the world and agenda); and the multi-plane state 
machine is a data structure in which each state has associated a strategy. 
Bond model defines the agent behavior as a multi-plane state machine in 
which each plane is modeled as a flat finite state machine: multi-plane state 
machine can be seen as a different way to expressing parallelism amongst 
activity (Statecharts machines express parallelism as concurrent sub-states). 
Authors to make multi-plane state machine independent on the model of the 
world, adopt a simpler state machine in which transitions are unconditional 
and only states can generate actions. In particular, each state is associated 
to a strategy that performs actions which are considered atomic from the 
agent point of view (events cannot interrupt them). Moreover, adopted state 
machine cannot include embedded sub-states.  
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As the current state of each plane of a multi-plane state machine is defined 
by the active state, the state of the agent is defined by a vector of states (the 
active one for each plane). It is worthy noting that there is interdependency 
amongst planes hence all of them share a common model of the world and 
the transition triggered by one plane are applied to the whole structure of 
planes.  
Moreover, the behavior of an agent can be modified at run-time because it is 
possible to change the structure of the multi-plane state machine associated 
to an agent. Authors defined several operations on agent’s behavior such as 
joining, splitting and trimming. Joining two agents produces a new agent 
characterized by (i) a multi-plane state machine which contains all the planes 
of the joined agents and (ii) a model which is created by merging the models 
of the joined agents. In case of splitting of an agent, two agents are obtained 
which inherit the full model of the original agent whereas the union of their 
planes gives the planes of the original agent. Finally, the Trimming is an 
operation which is performed when the multi-plane state machine of an agent 
contains states and transitions unreachable and they can be eliminate in 
order to make the agent smaller. With respect to the interaction among 
agents, the Bond agent system uses asynchronous message passing and 
KQML as communication language although authors assert that design 
principles are largely independent on the communication language. In 
addition to asynchronous message passing, Bond agent system offers [10]: 

• support for synchronous communication; 
• an implementation of the publish-subscribe model; 
• an implementation of the tuples space model based on IBM 

TSpace 
Moreover, authors argue that agent interaction can be also described in 
terms of knowledge sharing then they provide two ways to share the model 
of the world which are dependent upon the agent initiating of the process: 

• Push mode: an agent copies part of its model to the model of the 
other agent 

• Pull mode: an agent copies part of the model of the remote agent 
into its own model. 

With respect to mobility, as authors considered agent migration a rare event 
in the life of agents, they deliberately choose to implement a weak migration 
model also reflecting the difficulties of migrating running Java threads. In 
particular, agents are only allowed to migrate when all their active strategies 
(at the time of the request of migration) complete their execution. More in 
detail, agent migration is performed when an agent requests migration 
through a specific message. Then, the Bond agent system (i) pauses the 
agent as soon as its current active strategies are completed; (ii) serializes the 
agent; (iii) sends to the new host the agent serialization and the model of the 
world held by the agent; (iv) creates a new agent and a new model at 
destination; (v) starts the new agent after deletes both the old agent and the 
old model in the initial location. To develop agent based systems according 
to Bond model several ways have been made available: the multi-plane state 
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machine can be constructed as a program but a more flexible approach is a 
declarative approach (Python-based) which is interpreted by an agent 
factory; moreover, Bond objects can be visualized and edited through a 
visual editor which allows for editing fields and dynamic properties of an 
agent. 

2.2.4 The Actor model 
Authors use the Actor model [2, 3] as a basis for modeling distributed 
software architectures since it provides a general and flexible model of 
concurrency: Actors may be used to build typical architectural elements 
including procedural, functional and object-oriented components. 
Conceptually, an Actor encapsulates a state, a single-thread of control and a 
set of procedure to manipulate its state. At design level, an Actor is an active 
object which consists of a private local state, a set of methods and a globally 
unique name; moreover, each Actor is associated to a mail buffer in which 
messages sent to it are queued. Actor computation step is defined in terms 
of processing messages and consists of removing a message from its mail 
buffer, processing it, and, eventually, changing the computational 
environment through three (abstract) basic actions: 

- Send messages to other Actors; 
- Create Actors with specified behaviors; 
- become Ready to process the next message. 

Such actions are factored into signal-notification pairs: an Actor generates 
signal events (which request the system to perform some actions) and then it 
blocks itself; as soon as the system sends back a notification event (which 
alerts the actor that its request has been performed) the requester Actor 
resumes its behavior. In particular, an actor blocked on a: 

• ready may be resumed by receiving a deliver notification; 
• transmit may be resumed by receiving a continue notification; 
• create may be resumed by receiving a newActor notification. 

Moreover, in order to enhance the Actor base model, the authors introduced: 
(i) the Meta-Actor concept aimed at customize the content of generated 
signal, which is an entity capable of processing signals generated by Actors; 
(ii) the Actor group concept aimed at model parallel computation, which 
represents a multi-thread component of the architecture. With respect to 
interaction among agents, Actors interact by asynchronously exchanging 
messages to one other: each Actor can generate messages and receive 
messages which are queued into its mail buffer. There isn’t any information 
about Actors mobility in their model but Actor Foundry, which is a Java-based 
programming environment for developing Actor systems, should implement 
the weak mobility notion. Currently, Actors modeling has to be performed by 
coding because there isn’t any official visual toolkit for developing agent base 
systems according to the Actor model. 
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2.2.5 A comparison 
With reference to the agent behavior model, Jade offers, among different 
agent behavior types, an agent behavior (called FSMBehaviour) based on 
flat finite state machines (FSMs), SmartAgent provides an extension of the 
Jade FSMBehaviour (named HSMBehaviour) based on hierarchical finite 
state machines (HSMs), Bond defines the agent behavior as a multi-plane 
state machine in which each plane is modeled as an FSM, and Actors are 
based on agents modeled as active objects with state variables and action 
methods. More in detail, the execution semantics of the HSMBehaviour, 
Bond behavior and the Actor behavior is very similar: a message/event 
triggers the execution of an action; when the action execution is terminated 
the next available message/event is fetched and processed. Conversely, the 
execution semantics of the Jade FSMBehaviour is not driven by 
messages/events but by action completions triggering transitions. 
With reference to the agent interaction model, all the models are mainly 
based on asynchronous message passing, even though Bond agents can 
also interact through synchronous message passing, a tuple space based on 
the IBM TSpace and a publish/subscribe event model.  
With reference to the agent mobility all the models, Jade, SmartAgent, Bond 
and Actors (in particular the implementation of Actors carried out in the 
ActorFoundry framework [3]) are based on a weak mobility model [52].  
In table 2.1 the main features of the above introduced related models with 
respect to the three main dimensions of agent modeling are synthesized. 

Table 2.1: Comparison of related Agent models. 
 

MODELS/DIMENSIONS BEHAVIOURAL INTERACTION MOBILITY 

Jade flat finite state machines 
(FSMBehaviour) Message passing Weak 

SmartAgent hierarchical finite state machines 
(HSMBehaviour) Message passing Weak 

Bond multi-plane state machine: 
each plane is an FSM 

Message passing,  
TSpace and P/S Weak 

Actors active objects with state 
variables and action methods Message passing Weak 

 

 

2.3 Agent interaction design 
Agent interaction design represents a very important stage during the design 
process of an agent-based distributed system as it influences both the 
efficacy and the efficiency of the developed agent system. 
As it initially happened for the agents behavior design, the use of patterns to 
drive the agent interaction design is notably increased and a lot of 
contributes have been provided in literature [1, 29, 64, 65, 106, 111] which 
will be shown in Section 2.4.1. On the other hand, several coordination 
models [22] have been introduced in literature to allow the agents interaction 
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design according to the interaction scenarios features which will be shown in 
Section 2.4.2. 

Table 2.2: Interaction and coordination patterns. 

AUTHORS PATTERN DESCRIPTION 
Meeting Provides a way for two or more agents to initiate local interaction at 

a given host. 
Locker Defines a private storage space for data left by an agent before it is 

temporarily dispatched (send) to another destination. 
Messenger Defines a surrogate agent to carry a remote message from one agent 

to another. 
Facilitator Defines an agent that provides services for naming and locating 

agents with specific capabilities. 

Aridor and Lange 
[1] 

Organized Group Composes agents into groups in which all members of a group travel 
together. 

Conversation Concerns with a sequence of messages between two agents, taking 
place over a period of time: agent messaging may occur within a 
context established by previous messages. 

Facilitator Allows for interaction among agents which do not have to have 
direct knowledge of one another as it is based on a Mediator agent 
which provides a gateway or clearinghouse for agent collaboration. 

Agent Proxy Enables agents to collaborate directly with one another through a 
proxy agent which provides distinct interfaces and allows agent to 
be engaged in multiple conversations. 

Protocol Establishes conversation policies that explicitly characterize 
communication sequences. 

Kendall et al. 
[64, 65] 

Emergent Society Enables reactive agents to collaborate without known protocols as 
actions performed by agents can stimulate behaviour of neighbour 
agents. 

Blackboard Decouples interacting agents from each other as instead of 
communicating directly, agents interact through an intermediary 
which provides both time and location transparency to the 
interacting agents. 

Meeting Allows for interaction among agents without the need for explicitly 
naming among them as they know a meeting point in which agent 
can coordinate themselves through a statically located agent. 

Market Maker Allows for interaction among agents through a third party agent 
which takes an active role in the coordination process enforcing the 
house rules of agent interaction. 

Master/Slave Allows for vertical coordination which is used to coordinate the 
activity of a delegating agent and two or more delegated agents in 
which delegated agents carry out a subtask for delegating agent. 

Deugo et al. 
[29] 

Negotiating Agents Deals with the situation where the interacting agents appear as peers 
to each other, but need to align their actions for some reason. 

  

2.3.1 Coordination and interaction patterns  
Patterns are reusable solutions to recurring design problems, and provide a 
vocabulary for communicating these solutions to others [53]. The purpose is 
to increase re-use and quality of code and at the same time reduce the effort 
of development of software systems. Selecting patterns as a methodology for 
agent development is being justified by referring to the previous successes of 
applying patterns in traditional software technology. There is by now a 
growing literature on the use of patterns to capture common design practices 
for agent systems [72, 107, 111]. In the following, some pattern-based agent 
design approaches, which also cover issues related to the design of 
interaction among agents, are summarized (see Table 2.2 for a brief 
description of each proposed patterns). 
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Aridor and Lange [1] describe a set of domain-independent patterns for the 
design of mobile agent systems. They classify mobile agent patterns into 
travelling, task, and interaction patterns and propose some patterns 
belonging to each the classes. Patterns in the travelling class specify 
features for agents that move between various environments, patterns of the 
task class specify how agents can perform tasks and patterns of the 
interaction class specify how agents can communicate and cooperate. In 
particular, with reference to the interaction patterns authors present the 
following ones: Meeting, Locker, Messenger, Facilitator, and Organized 
Group which concern with locating agents and facilitating their interactions. 
Kendall et al. [64] capture common building blocks for the internal 
architecture of agents in patterns. Authors suggest a seven-layer architecture 
pattern for agents, and sets of patterns belonging to each of the layers. The 
presented seven layers are: mobility, translation, collaboration, actions, 
reasoning, beliefs and sensory but the exact number of layer may vary. 
Compared to the previously mentioned pattern classification scheme in the 
work by Aridor and Lange, the layered architecture has a similar logical 
grouping of patterns. The mobility layer together with the translation layer 
corresponds to the class of traveling, the collaboration layer corresponds to 
the class of interaction, and the actions layer corresponds to the class of 
task. In particular, with reference to the interaction patterns authors present 
the following ones: Conversation, Facilitator, Agent Proxy, Protocol and 
Emergent Society which concern with how agents cooperate and work with 
other agents. The main difference between this and the previously mentioned 
approaches for mobile agents, is that this one aims to cover all main types of 
agent design patterns. 
Deugo et al. [29] identify a set of patterns for agent coordination, which are, 
again, domain-independent. Authors classify agent patterns into 
architectural, communication, traveling, and coordination patterns. Moreover, 
they identify an initial set of global forces (Mobility and Communication, 
Standardization, Temporal and Spatial Coupling, Problem Partitioning and 
Failures) which are different types of criteria that engineers use to justify their 
designs and implementations. In particular, with reference to the coordination 
patterns authors present the following ones: Blackboard, Meeting, Market 
Maker, Master/Slave and Negotiating Agents which are well-documented 
solutions to recurrent problems related to the coordination among agents. 
Kolp et al. [67] propose a catalogue of architectural styles and agent patterns 
for designing MAS architectures at a macro- and micro- level adopting 
concepts from organization theory and strategic alliances literature. Although 
interesting, these patterns define how goals assigned to actors participating 
in an organizational architecture will be fulfilled by agents without focus on 
coordination issues. 
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2.3.2 Coordination models 
Coordination basically implies the definition of a coordination model and 
related coordination architecture or related coordination language. In 
particular, in the context of Agents, an agent coordination model [22] is a 
conceptual framework which should cover the issues of creation and 
destruction of agents, communications among agents, and spatial distribution 
of agents, as well as synchronization and distribution of their actions over 
time. In this framework, the coordinables are the coordinated entities (or 
agents) whose mutual interaction is ruled by the model, the coordination 
media are the abstractions enabling the interaction among the agents, and 
the coordination laws are the rules governing the interaction among agents 
through the coordination media as well as the behavior of the coordination 
media itself.  
To date, agent coordination has been classified by using several taxonomies 
[16, 75, 88]. Agent coordination can be classified in control-driven and data-
driven according to the taxonomy proposed in [88]. In control-driven models, 
entities receive command and react to them whereas in data-driven models 
the entities receive data items, interpret and react to them. Another 
interesting coordination models taxonomy is that proposed in [75] in which 
coordination models have been classified in endogeneous and exogeneous. 
In coordination models belonging to the first category, entities are 
responsible for receiving and delivering coordination information whereas in 
models belonging to the latter category, the actual coordination is outside of 
their scope. However, in the context of Internet-based computing a reference 
taxonomy for agent coordination is proposed in [16]; here, the focus is on 
agents strongly characterized by mobility. It is worth noting that, although 
mobility can be an enabling feature for improving efficiency and effectiveness 
in distributed systems, mobility poses further issues on agent coordination as 
mobile entities demand for more complex coordination frameworks. The 
reference taxonomy for Internet-based mobile agent coordination takes these 
issues into consideration and, in particular, classifies coordination models on 
the basis of the degrees of spatial and temporal coupling induced by the 
coordination models themselves. Spatial coupling requires that the entities to 
be coordinated share a common name space or, at least, know the identity of 
their interaction partners; conversely, spatial decoupling allows for 
anonymous interaction, i.e. there is no need for an acquaintance relationship. 
Temporal coupling implies synchronization of the interacting entities whereas 
temporal decoupling allows for asynchronous interactions. 
On the basis of the reference taxonomy (see Table 2.3), the following 
coordination models have been classified: Direct, Meeting-oriented, 
Blackboard-based and Linda-like. 
In Direct coordination models, agents usually coordinate using RPC-like 
primitives or asynchronous message passing. The former coordination 
method implies temporal and spatial coupling whereas the latter implies only 
spatial coupling as temporal decoupling can be obtained by adopting 
message reception queues [115]. The majority of the Java-based mobile 
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agent systems [104], particularly the most famous ones, namely Aglets, 
Voyager, Ajanta and Grasshoppers, rely on this model.  
In Meeting-oriented models, agents coordinate using implicit or known 
meeting points (places where meeting can occour) which allow them to 
communicate and synchronize with other participating agents. In particular, 
this model solves the problem of locating agents, found in direct coordination, 
but requires agents to know the meeting point. Moreover, it requires 
synchronization among the agents, e.g. they must be co-located at the 
meeting point during at a certain period of time in order to be able to interact 
with each other. Examples of systems based on this coordination model are 
Ara [91] and MOLE [5]. 
In Blackboard-based models, agents interact through shared message 
repositories at each place, called blackboards, in which agents can store and 
retrieve information under the form of messages. The main advantage of this 
model is the temporal decoupling: messages are left on the blackboard no 
matter where the corresponding receivers are or when they will read the 
message. The drawback of backboard systems is the spatial coupling: the 
agents have to visit the correct place and agree on common messages types 
and formats. Ambit [18] is an example of a system using the blackboard-
based coordination. 
In Linda-like models, coordination is also based on a shared namespace, but 
unlike blackboards, it uses an associative tuple space which allow for 
insertion and retrieval of tuples; such models organize information as tuples 
which can be accessed and retrieved through associative pattern-matching. 
The main advantage of the Linda-like coordination is its temporal uncoupling 
and partial spatial uncoupling. Although it does not require agent 
synchronization, the patterns used to access the tuple space embody some 
implicit knowledge of the peer agent’s interaction requirements. 
Recently new coordination models which can be classified as spatially and 
temporally decoupled have emerged in the context of Internet applications: (i) 
the reactive tuple space models which enable programmable coordination 
spaces [15, 85], (ii) transiently shared tuple space models which handle 
interactions in the presence of active mobile entities [93], and (iii) the 
publish/subscribe event-based models [19, 27, 87]. 
The reactive tuple space model extends the simple tuple space model by 
introducing computational capability inside the coordination media under the 
form of programmable reactions, triggered by operations on the tuple space 
or by other reactions, which can influence the behavior of agents. This model 
also allows for the separation of concerns between agent computation and 
coordination issues.  
The transiently shared tuple space [93] is another Linda-like coordination 
model. As Linda offers a static, persistent and globally accessible tuple 
space, which is scarcely usable in presence of (physical or logical) mobility, 
the transiently shared tuple space model attempts to deal with these issues. 
In particular, each mobile agent owns a personal tuple space, named ITS 
(Interface Tuple Space). Whenever a mobile agent migrates, its ITS is 
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carried with it and merged to the other co-located agent’s ITS making a 
transiently shared tuple space. Shared means that co-located agents can 
interact through the merged tuple space and transient means that its content 
changes according to agent migrations.  
In the Publish/Subscribe event-based model, agents coordinate through 
asynchronous publication and notification of events so enabling temporal and 
spatial decoupling [87]. In particular, to be notified about a published event 
an agent has to previously subscribe to the topic/type/context of the 
published event. 

Table 2.3: A spatial/temporal taxonomy for coordination models. 
 

  Temporal 
  Coupled Uncoupled 

Coupled Direct Black-board 

Spatial Uncoupled Meeting 

Linda-like 
Reactive tuple space 
Transiently shared tuple 
space 
Publish/Subscribe  

 

2.4 Simulation-based agent-oriented 
methodologies 

The validation phase of software systems can be founded on several 
techniques such as formal methods, testing and simulation. In particular, 
testing requires the real deployment of the software system under-
development whereas formal methods and simulation don’t require the real 
deployment. Such considerations can drive the choice of the adopted 
validation technique especially if the target execution environment is 
distributed as it occurs in the case of agent-based systems executing in 
Internet-like environments. In fact, agent-based systems are typically 
constituted by a huge number of agents executing in a large scale system so 
testing could be a very inefficient validation technique; conversely, simulation 
and formal methods validation techniques can be effectively used to validate 
functional and not functional requirements of agent-oriented designs before 
their implementations and deployments. Although formal methods are 
recognized as suitable validation techniques of agent-based systems [84], 
simulation-based ones have recently emerged. 
In fact, to date a few multi agent-based systems development processes 
have been proposed in the literature that incorporate simulation to support 
the agent-based system development lifecycle with the main focus on the 
validation and performance evaluation of the designed solution. In the 
following, we briefly describe some interesting approaches for the 
development of agent-based systems which explicitly incorporate simulation 
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such as Electronic Institutions [103], DynDEVS/James [99], CaseLP [76], 
GAIA/MASSIMO [41], TuCSon/pi [54], Joint Measure [101], and 
Ingenias/RePast [90]. 

2.4.1 Electronic Institutions 
In [103] an integrated development environment for the engineering of multi-
agent systems (MASs) as Electronic Institutions (EI) is presented. EIs 
provide a computational analogue of human organizations in which intelligent 
agents playing different organizational roles and interact to accomplish 
individual and organizational goals; authors define an EI as a performative 
structure of multi agent protocols along with a collection of normative rules 
that can be triggered off by agents’ actions performed through speech acts. 
The development environment, aimed at facilitating the iterated and 
progressive refinement of the development cycle of EIs, is composed of a set 
of tools supporting the design, validation through simulation, development, 
deployment and the execution of EIs. In particular, the simulation tool 
SIMDEI, allows for the animation and analysis of the rules and protocols 
specification in an EI. Moreover, SIMDEI supports simulations of EIs with 
varying populations of agents to conduct what-if analysis. The institution 
designer is in charge of analyzing the results of the simulations and returning 
to the design stage if they differ from the expected ones. 

2.4.2 DynDEVS 
In [99] a modeling and simulation framework (DynDEVS) for supporting the 
development process of MAS from specification to implementation is 
proposed. Authors advocate the use of controlled experimentation in order to 
allow for the incremental refinement of agents while providing rigorous 
observation facilities. The exploited framework is JAMES (Java Based Agent 
Modeling Environment for DEVS-based Simulation) which is aimed at an 
agent-oriented model design and execution supporting a modular and flexible 
construction of experimental frames for MASs [108]. In particular, JAMES 
aims at exploring the integration of the agents paradigm within a general 
modeling and simulation formalism for discrete-event systems, DEVS 
(Discrete Event Systems Specification). Such formalism lends itself to an 
object-oriented model design and execution, facilitating the construction of 
experimental frames.  

2.4.3 CaseLP 
In [76] a logic based prototyping environment for multi-agent systems, 
CaseLP (Complex Application Specification Environment Based on Logic 
Programming) is presented. Authors propose an architectural description 
language which can be adopted to describe the prototype at the system 
specification level, in terms of agent classes, instances, their provided and 
requested services and communication links. Moreover, at the agent 
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specification level, authors propose a rule-based not executable language 
which can easily define the behavior of reactive and proactive agents; with 
respect to the implementation of prototype, authors propose a platform-
independent prolog-based language in which new primitives have been 
defined such as communication capabilities and safe state updates.  
It is worth pointing out that from a simulation point of view, CaseLP is a time-
driven centralized simulator with a global time known from all the agents in 
the system. Moreover, CaseLP integrates simulation tools for visualizing the 
prototype execution and for collecting the related statistics; more in detail, the 
CaseLP visualizer tool provides documentation about events that happen at 
the agent level during the MAS execution. Developers according to their 
needs can instrument the code of some agents after it has been loaded by 
adding probes to the code of agents. In this way, events related to state 
changes and /or exchanged messages can be recorded and collected for on-
line and/or off-line visualization.  

2.4.4 TuCSoN/ π-calculus 
In [54] authors promote the use of formal tools, such as Stochastic π-
Calculus process algebra, for simulating the dynamics of self-organizing multi 
agent systems through higher-level models defined at the early stages of 
design. In particular, authors assert that this approach appears to be almost 
unavoidable in order to foster evolving ideas and design choices, and to 
effectively tune parameters of the final system. Moreover, authors promote 
the use of SpiM (Stochastic PI-calculus Machine) which can be effectively 
used to simulate the Stochastic π-Calculus specifications and to track the 
dynamics of global system properties in stochastic simulations, validating 
design directions, inspiring new solutions, and determining suitable system 
parameters. 

2.4.5 Joint Measure 
In [101] a layered architectural framework to support agent-based system 
development in a collaborative, multidisciplinary engineering setting is 
proposed. In particular, such framework supports incremental specification, 
design, implementation, and simulation of agent-based systems. As authors 
distinguish between performing agents (executing in real-world settings) and 
simulated agents (simulated in a virtual environment), the proposed 
framework is intended to form the basis for environments that support 
development of agents, in both performance and simulation modes, as well 
as in hybrid combination (both performing and simulated agents interacting at 
the same time). Authors assert that for complex systems (e.g., distributed 
agent-oriented systems) adopting a single architectural framework, both for 
simulation and system development, can offer key advantages such as 
enable designers to study competing/alternative designs by employing a 
mixture of “simulated” and “performing” agents and, therefore, support 
migration from simulation design to operational design. The simulation is 
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enabled by Joint MEASURE (Mission Effectiveness Analysis Simulator for 
Utility, Research and Evaluation) which is built upon DEVS/HLA, a generic 
HLA-compliant distributed simulation environment. It’s worthy noting that 
although Joint MEASURE affords a baseline to consider the requirements for 
agent development simulation environments, it is not intended to focus on 
agents per se. 

2.4.6 INGENIAS/RePast 
In [90] authors propose an agent-oriented methodology aimed to support 
modeling and simulation of social systems based on MASs. In particular, with 
respect to the modeling, they propose the use of an agent-oriented modeling 
language to specify MAS models representing complex social systems. 
Whereas, with respect to the simulation, authors propose the use of 
simulation toolkits (RePast, MASON, etc) that execute code obtained through 
MAS models transformation according with Model Driven Engineering (MDE) 
practices. This methodology is supported by a set of tools belonging to the 
IDK (INGENIAS Development Kit), which facilitates the edition of models and 
the definition of transformations for automatic code generation. Currently, the 
defined software component of IDK aimed at automatic code generation 
implements the mapping from INGENIAS models to RePast simulation 
toolkit. 

2.4.7 GAIA/MASSIMO 
In [41] an integrated approach for the development and validation through 
simulation of MASs is proposed. Such approach centers on the instantiation 
of a software development process which specifically includes a simulation 
phase that makes it possible the validation of a MAS before its actual 
deployment and execution. In particular, the requirements capture is 
supported by a goal-oriented approach based on TROPOS methodology, the 
analysis and design phases are supported by the Gaia methodology, the 
detailed design phase is supported by the Agent-UML and the Distilled State-
Charts formalisms, the implementation phase is supported by the MAO 
Framework, the simulation phase is enabled by a Java-based event-driven 
simulation framework, and the deployment phase is supported by the MAAF 
framework which allows for the adaptation of the MAO Framework to 
programming abstraction provided by specific Java-based agent platforms. 

2.4.8 A comparison 
Although all the overviewed methodologies offer different approaches to the 
modeling and simulation of MAS, they are centered on the use of simulation 
to validate and evaluate the design of the MAS under-development. Actually, 
few of them represent a full-fledged methodology (i.e. covering all the MAS 
development lifecycle) for the simulation-driven development of general-
purpose MAS. Moreover, only INGENIAS and EI offer visual modeling tools 
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for supporting the development process. In table 2.4 the methodologies are 
compared with respect to the key features for the provision of an effective 
development of distributed agent systems: (i) Agent model (Mobility, Light-
weight Reactive/Proactive agent behavior, Multi-coordination); (ii) 
Methodology (Dynamic validation methods before implementation, 
Integrability with other methodologies); (iii) CASE Tool. In particular, the 
methodology proposed in this thesis supports all the mentioned features as it 
will be described in detail in the next section. 

Table 2.4: Comparison among simulation-based methodologies for MAS development. 
 

 Agent Model Methodology CASE Tool 

 Multi-
Coord. 

Light-Weight  
R/P Behavior 

Mobility Dynamic 
validation 
through 
simulation 

Integrability  

TuCSon/Pi    X   

EI    X  X 

DynDEVS  X X X  partial 

GAIA/Massimo  X X X X  

JM-DEVS/HLA    X   

Ingenias/Repast    X  X 

CaseLP  partial 
 

 X  X 

ELDAMeth X X X X X X 

 
 





 
 
 

27 

  

 

3 ELDAMeth: A Methodology for the 
Simulation-based Prototyping of DAS 

 
 
 
 
 
 
ELDAMeth is a methodology specifically designed for the simulation-based 
prototyping of distributed agent systems (DAS). It is based on the ELDA 
agent model and related frameworks and tools [44, 46], and on an iterative 
development process covering the modeling, coding and simulation phases 
of DAS. ELDAMeth can be used both stand-alone and in 
conjunction/integration with other agent-oriented methodologies which fully 
support the analysis and (high-level) design phases. In particular, the 
development process of ELDAMeth (see Figure 3.1) consists of the following 
three phases: 
- The Modeling phase (see section 3.1) produces an ELDA-based MAS 

design object which is a specification of a MAS fully compliant with the 
ELDA MAS meta-model (MMM). This design object can be produced 
either by (i) the ELDA-based modeler which uses the ELDA MMM and 
the ELDATool [32], a CASE tool supporting visual modeling and coding 
of ELDA-based MAS, or by (ii) translation and refinement of design 
objects produced by other agent-oriented methodologies such as PASSI 
[23], GAIA [113], MCP [42], and others [12, etc]. In particular, while the 
translation process centers on (semi) automatic model transformations 
based on the MMM of the employed methodology and the ELDA MMM, 
the refinement process is usually carried out manually by the ELDA-
based Modeler by using the ELDATool. 

- The Coding phase (see section 3.2) produces an ELDA-based MAS 
code object which is a translation of the ELDA-based MAS design object 
carried out manually or automatically (by means of the ELDATool) 
according to the ELDAFramework, which is a set of Java classes 
formalizing all the modeling abstractions of the ELDA MMM. 

- The Simulation phase (see section 3.3) produces the Simulation Results 
in terms of MAS execution traces and calculation of the defined 
performance indices which must be carefully evaluated with respect to 
the functional and non-functional requirements. Such evaluation can lead 
to a further iteration step which starts from a new (re)modeling activity. In 
particular, the Simulation Results come from the execution of the ELDA-
based MAS simulation object carried out through the ELDASim engine 
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(ELDASim is a Java-based event-driven simulation framework for ELDA 
agents). The ELDA-based MAS simulation object is obtained by 
synthesizing the ELDA-based MAS code object with the simulation 
parameters and performance indices, defined on the basis of the 
requirements, by means of the ELDASim framework. 

In the following sections (3.1-3.3) each phase of the ELDAMeth process is 
described in detail. 
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Figure 3.1: Iterative process for prototyping ELDA-based MASs. 
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3.1 Modeling phase 
The aim of the modelling phase is to fully specify the DAS with respect both 
to micro-level and macro-level aspects [84]. In particular, to model micro-
level aspects of DAS, agent models based on lightweight architecture, 
asynchronous messages/events and state-based programming such as Jade 
[7], Bond [10], and Actors [2], have demonstrated great effectiveness. The 
modeling phase relies on the ELDA model that is based on the 
characteristics of the aforementioned models and, additionally, offers new 
abstractions suitable for distributed applications. In particular, the ELDA 
model is founded on the following basic concepts: 
- Behavior: agent behavior can be specified both in terms of environment 

reactions in which an agent executes (fluctuations of available resources, 
network topology modifications, actions of others agents, etc. ) and in 
terms of pro-active actions aimed to pursuing a specific objective; 

- Interaction: agents interactions can be specified through different 
coordination models according to the required degree of temporal and 
spatial coupling; 

- Mobility: both autonomous agent migration and passive agent migration 
are performed according to a strong mobility model in which code, data 
and execution state are transparently restored; 

Moreover, to easily model macro-level aspects of DAS, the ELDA MAS meta-
model is defined which, according to the distinctive ELDA modelling 
concepts, provides a structured representation of the system under-
development. 
In the following sections, both the ELDA model and the ELDA MAS meta-
model will be described in detail. 

3.1.1 ELDA model 
The Event-driven Lightweight Distilled Statecharts-based Agent (ELDA) 
model is based on the concept of event-driven lightweight agent which is a 
single-threaded autonomous entity interacting through asynchronous events, 
executing upon reaction, and capable of migration. In particular, an event-
driven lightweight agent is represented by the following tuple:  

<Id, Beh, DS, TC, EQ>, 
where, Id is the unique identifier of the agent, Beh is the agent behavior, DS 
is the data space or world knowledge of the agent, TC is the single thread of 
control supporting agent execution, and EQ is the event queue containing the 
incoming events targeting the agent. 
The ELDA model relies on the Behavioral, Interaction and Mobility models. 
The Behavioral model allows for the specification of the agent behavior (how 
the agent reacts to a specific set of events) through the definition of agent 
states, transitions among states, and agent reactions (i.e. atomic actions 
attached to transitions); in particular, an agent reaction can produce 
computations, and/or generation of one or more events, or a migration. The 
Interaction model, which is based on asynchronous events, enables multi-
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coordination among agents and between agents and non-agent components 
through the exploitation of multiple coordination structures. The Mobility 
model is based on a coarse grain strong mobility model which allows for 
agent transparent migration (both autonomous and passive) and easy 
programming of the migration points. 
These models are founded on the Distilled StateCharts (DSCs) formalism 
[50] which is derived from the Statecharts formalism [59], a visual formalism 
that has gained notable success in the Software Engineering community 
mainly due to its appealing graphical features and the means it offers for the 
modeling of complex software systems. In the following sections, the DSC 
formalism is briefly shown and then, the Behavioral, Interaction and Mobility 
models are presented in detail. 

3.1.1.1 Distilled StateCharts formalism 
The Distilled StateCharts (DSCs) formalism [50] is derived from the 
Statecharts formalism which, formerly introduced by Harel, was included in 
UML [82] and currently is the most used formalism for modeling the behavior 
of object-oriented reactive systems [58]. DSCs are obtained from Statecharts 
as follows: (i) deriving some basic and advanced characteristics from 
Statecharts (deriving process), (ii) imposing some constraints on Statecharts 
(constraining process), and (iii) augmenting Statecharts with some features 
(augmenting process). In particular such processes are described in the 
following and exemplified with respect to the example DSC shown in Figure 
3.2: 
- Deriving process. DSCs derive the following characteristics from 

StateCharts: 
o Structure based on a higraph consisting of rounded rectilinear blobs 

representing states, linked together with transitions. 
o Transitions based on ECA rules defined as E[C]/A, when E(vent) 

occurs and C(ondition) holds, the transition fires and A(ction) is 
atomically executed. 

o OR decomposition of states in hierarchies of states among which the 
enclosing states are called composite state (see States S0, S2, S3, 
S4), the nested states are called substates and states without nested 
states are called simple states (see States S1, S5, S6, S7). 

o Inter-level state transitions that can originate from or lead to nested 
states on any level of the hierarchy (see Transition t7). 

o History entrance pseudostates (shallow and deep) allow entering 
substates which were most recently visited. With respect to the 
composite state on which the pseudostate appears, shallow history 
indicates that history is applied only at the level of the composite state 
(see State S4) whereas deep history applies the same rule recursively 
to all levels of the state hierarchy of the composite state (see State 
S2). 
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o Default entrances indicate the substate of a composite state to be 
entered when a transition targets its border (see Transitions t0, t2, t4, 
t5). 

o Default history entrances indicate the substate of a composite state to 
be entered in the absence of any history (see Transition t3, t9). 

- Constraining process. DSCs impose the following constrains:  
o Each DSC has an enclosing top state (see State S0). 
o States do not include activity, entry and exit actions. So activity is only 

carried out under the form of atomic actions labeling transitions. 
o Transitions (apart from default entrances and default history entrances) 

are always labeled by an event. 
o Each composite state has an initial pseudostate  (see State S0, S2, 

S3, S4) from which the default entrance originates, which can only be 
labeled by an action (see Transitions t0, t2, t4, t5). 

o Run-to-completion execution semantics: an event can be processed 
only if the processing of the previous event has been fully completed. 
The sequence of operations which starts from fetching an event from 
the event queue to its complete processing is called run-to-completion 
(RTC) step. 

- Augmentation process. DSCs augment Statecharts with the following 
features: 

o Events are implicitly and asynchronously received through an event 
queue. 

o To explicitly and asynchronously emit events the action language 
provides the primitive generate(<event>(<parameters>)), where event 
is an event instance and parameters are its formal parameters 
including the sender, the target, and (possibly) a list of specific event 
parameters (see Section 3.1.1.3). 

o Variables can be declared in each state and inside the actions so 
forming a hierarchical data space. 

3.1.1.2 Behavioral model 
The Behavioral model allows for the specification of the agent behavior using 
the DSC formalism that is through the definition of agent states, hierarchical 
data-space, transitions among states, and agent reactions (i.e. atomic 
actions attached to transitions). In this way, each ELDA behavior is forged 
according to an extended version of the FIPA agent lifecycle template [35] in 
which the ACTIVE state is always entered through a deep history 
pseudostate (DHS) to restore the agent execution state after agent migration 
and, in general, after agent suspension. In particular, such ACTIVE state 
contains the active DSC (ADSC) composite state to which the default 
entrance of the DHS points: agent modelers can only refine the ADSC state 
to customize agent’s behavior leaving it compliant with the FIPA agent 
lifecycle specifications. The resulting FIPA template of an ELDA agent is 
shown in Figure 3.3 by using both the DSC formalism and a term-rewriting 
formalism [70]. 
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DSC ABSTRACTION EXAMPLE 
Simple State S1, S5, S6, S7 
Composite State S0, S2, S3, S4 
Default entrances t0, t2, t4, t5 
Default history entrances t3, t9 
History entrance pseudostates H, H* 
Final Transition t10 
Inter-level state transition t7, t8  

Figure 3.2: An example of Distilled StateCharts. 

As previously mentioned, in addition to computations, and/or migration, agent 
reactions can generate one or more events (see Section 3.1). Such feature 
can be used to model pro-activity in agents behavior in terms of events 
generated by agent itself driving new agent reactions. To exemplify such kind 
of pro-activity, the ADSC of an agent is shown in Figure 3.4. In particular, 
when the agent is in state A and the event E1 is handled, the action Ac1 is 
atomically executed and, at the end of its execution, the agent goes into state 
B and the RTC step is completed; as the action Ac1 generates the event E2, 
the agent will change its current state into state B and will execute the action 
Ac2. The state change from A to B is driven by the agent itself in a proactive 
way. 
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STATES: 
Composite States = {TopState, ACTIVE, ADSC}, 
Simple States = {INITIATED, TRANSIT, SUSPENDED, WAITING}, 
Final State=FS, Deep History Pseudostate=DHS,  
Initial State=TopState(INITIATED) 
TRANSITIONS: 

S)TopState(F)TopState(x:t
S)TopState(F)TopState(x:t

)CTIVE(DHS)TopState(AAITING)TopState(W:t
AITING)TopState(WCTIVE(x))TopState(A:t

)CTIVE(DHS)TopState(AUSPENDED)TopState(S:t
USPENDED)TopState(SCTIVE(x))TopState(A:t

)CTIVE(DHS)TopState(ARANSIT)TopState(T:t
RANSIT)TopState(TCTIVE(x))TopState(A:t

)CTIVE(DHS)TopState(ANITIATED)TopState(I:t

Quit
9

Destroy
8

WakeUP
7

Wait
6

Resume
5

Suspend
4

Execute
3

Move
2

Invoke
1

⎯⎯→⎯
⎯⎯ →⎯

⎯⎯⎯ →⎯
⎯⎯ →⎯

⎯⎯ →⎯
⎯⎯⎯ →⎯

⎯⎯ →⎯
⎯⎯ →⎯
⎯⎯ →⎯  

Default Entrance of DHS = ADSC; 
notation: A(B) = A encloses B, A(x) = any state inside A 

 
Figure 3.3: The FIPA-based template of the agent behavior. 

 
STATES: 
Simple States = {A, B, C}  
TRANSITIONS: 

(C)))CTIVE(ADSCTopState(A(B)))CTIVE(ADSCTopState(A:t

(B)))CTIVE(ADSCTopState(A(A)))CTIVE(ADSCTopState(A:t
Ac2 / E2

11

Ac11/  E
10

⎯⎯⎯ →⎯

⎯⎯ →⎯  

Default Entrance of ADSC=A; 
ACTIONS: 

2)generate(E :Ac1   
Figure 3.4: An example of agent proactiveness. 
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3.1.1.3 Interaction model 
Interactions of ELDA agents are based on Events which formalize both self-
triggering events (Internal events) and requests to or notifications from the 
local agent server (Management, Coordination and Exception events). 
Events are further classified into OUT-events which are generated by the 
agent and always target the local agent server and IN-events which are 
generated by the local agent server and delivered to target agents. In 
particular, an agent can generate through an OUT-event a service request 
(management, coordination, resource access, timer request, etc) and, if both 
the agent holds privileges and request is correct, the service will be supplied 
by the execution infrastructure. Moreover, depending on the type of the 
requested service, the requester agent will receive a notification through an 
IN-event which contains information about the service accomplishment or 
failure. 

3.1.1.3.1 Internal Events 
Internal events are generated by agents for proactively driving their behavior. 
In particular, a generated internal event is placed into the event queue of the 
generating agent so an internal event can be considered as both OUT and 
IN. 

3.1.1.3.2 Management Events 
Management events (see Table 3.1) which include requests to and 
notifications from the local agent server are further classified with reference 
to the following functionalities/services: agent lifecycle management, timer 
setting, and resource access. 
The agent lifecycle management events allow for the management of agent 
creation, cloning, migration, suspension and destruction. In particular:  

- agent creation is supported by the OUT-event CREATE and the IN-
event CREATENOTIFY, which respectively formalize the request for 
the creation of one or more agents and the creation notification (if 
requested); 

- agent cloning is enabled by the OUT-event CLONE and the IN-event 
CLONENOTIFY, which respectively formalize the request for cloning 
of an agent and the cloning notification (if requested);  

- agent migration is requested by the OUT-event MOVEREQUEST, 
which embodies the identifier of the agent to be migrated and the 
destination agent server location, and is actually carried out after 
delivering the IN-event MOVE to the agent; after migration the agent 
execution is resumed through the IN-event EXECUTE (see Section 
3.1.1.2);  

- agent waiting, suspension, and quit are respectively requested 
through the OUT-events WAITREQUEST, SUSPENDREQUEST, and 
QUITREQUEST, and actualized through the IN-events WAIT, 
SUSPEND and QUIT; a waiting agent is waken up through the IN-
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event WAKEUP whereas a suspended agent is resumed through 
the IN-event RESUME; finally, an agent is started and destroyed by 
the agent server through the IN-events INITIATE and DESTROY, 
respectively. 

The timer setting events allow for timing agent activities. In particular, the 
OUT-events CREATETIMER, STARTTIMER, STOPTIMER, RESETTIMER, 
RELEASETIMER allow for the creation, start, stop, reset and release of timers. 
A created timer is notified through the IN-event TIMERNOTIFY whereas a 
timeout event (i.e. an event raised when the timeout expires) is derived from 
the IN-event TIMEOUTNOTIFY. 
The resource access events allow for access to the resources of the agent 
server such as files, console, databases, and sensor/actuators. A resource is 
requested through the OUT-event RESOURCEREQUEST and granted through 
the IN-event RESOURCENOTIFY. An input operation on a resource is 
requested through the OUT-event RESOURCEINPUTREQUEST and the provided 
input is sent to the agent through the IN-event RESOURCEINPUT; an output 
operation on a resource is requested through the OUT-event 
RESOURCEOUTPUT; finally, a resource is released through the 
RESOURCERELEASE event. 

3.1.1.3.3 Coordination Events 
Coordination events (see Table 3.1) enable coordination acts between 
agents and between agents and non-agent components (e.g. remote objects, 
web services) according to specific coordination models. The inter-agent 
coordination models considered are the Direct (synchronous and 
asynchronous), the Tuple-based, and the Publish/Subscribe event-based 
models, whereas the considered interactions between agent/non-agent 
components are a general RMI Object model and a Web Services model. In 
particular: 

- The Direct model is supported by the OUT-event MSGREQUEST 
and the IN-event MSG for asynchronous message passing, and by 
the OUT-event RPCREQUEST and the IN-event RPCRESULT for 
synchronous message passing. MSGREQUEST formalizes a 
request for sending an asynchronous message and contains the 
actual message of the MSG type to be sent, whereas MSG 
contains the message content to be delivered to the target agent. 
RPCREQUEST formalizes a request for sending a synchronous 
message and contains the message of the MSG type to be 
delivered to the target agent along with the back event of the 
RPCRESULT type. When the receiving agent accomplishes the 
request, the return value is encapsulated in the RPCRESULT 
previously specified which is passed to the requesting agent.  

- The Linda-like Tuple-based model is enabled by the OUT-events 
IN, OUT, and RD, and by the IN-event RETURNTUPLE. OUT, IN, and 
RD formalize the corresponding Linda primitives for insertion, 
extraction and reading of a tuple, respectively. IN and RD can be 
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either synchronous or asynchronous whereas OUT is only 
asynchronous. RETURNTUPLE embodies the tuple/s associated to a 
previously submitted IN or RD event. 

- The Publish/Subscribe event-based model is supported by the 
OUT-events SUBSCRIBE, UNSUBSCRIBE, and PUBLISH, and by the 
IN-event EVTNOTIFICATION. SUBSCRIBE and UNSUBSCRIBE 
respectively formalize subscription and unsubscription to given 
events/topics, PUBLISH embodies a generated event, and 
EVTNOTIFICATION, which is specified in a previously submitted 
SUBSCRIBE event, contains an event notification. 

- The RMI Object model is supported by the OUT-event RMIINVOKE 
and the IN-event RMIRETURN for the invocation of methods on non-
agent components. RMIINVOKE contains the information needed to 
invoke a remote method on a remote object along with the back 
event of the RMIRETURN type which will embody the return value, if 
any, of the invoked method. 

- The Web Services model is supported by the OUT-event 
SERVICEDISCOVERY, WSDLREQUEST, SERVICEINVOKE and by the IN-
event DISCOVERYRESULT, WSDLRESULT e SERVICERESULT. 
SERVICEDISCOVERY formalizes the service discovery request and 
the DISCOVERYRESULT, which is sent back to the agent, contains 
the list of discovered services. WSDLREQUEST formalizes the 
WSDL request of the chosen service and the corresponding reply 
is provided through the WSDLRESULT event. SERVICEINVOKE 
formalizes the service invocation request and a possible return 
value is sent back through the SERVICERESULT event. 

In addition, the direct model was purposely extended to enable agents to 
communicate using ACL messages [34] by means of the IN-event ACLMSG 
(extending the IN-event MSG) which formalizes a message according to the 
ACL structure (performative, sender, receiver, reply-to, content, language, 
encoding, ontology, protocol, conversation-id, reply-with, in-reply-to, reply-
by). 
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Table 3.1: Classification of Management and Coordination events. 

MANAGEMENT 
Class Event Type OUT Event Type IN 

CREATE CREATENOTIFY 
CLONE CLONENOTIFY 

MOVEREQUEST MOVE, EXECUTE 
WAITREQUEST WAIT, WAKEUP 

SUSPENDREQUEST SUSPEND, RESUME 
QUITREQUEST QUIT 

INITIATE 

LIFECYCLE 

 DESTROY 
CREATETIMER TIMERNOTIFY 
STARTTIMER TIMEOUTNOTIFY 
STOPTIMER 

RESETTIMER 
TIMER 

RELEASETIMER 
 

RESOURCEREQUEST RESOURCENOTIFY 
RESOURCEOUTPUT  

RESOURCEINPUTREQUEST RESOURCEINPUT RESOURCE 

RESOURCERELEASE   
 

COORDINATION 
Model Event Type OUT Event Type IN 

MSGREQUEST MSG 
DIRECT RPCREQUEST RPCRESULT 

RD, IN RETURNTUPLE 
TUPLE-BASED OUT  

SUBSCRIBE  
UNSUBSCRIBE  

P/S_EVENT-
BASED PUBLISH EVTNOTIFICATION 

RMI OBJECT RMIINVOKE RMIRETURN 
SERVICEDISCOVERY DISCOVERYRESULT 

WSDLREQUEST WSDLRESULT WEBSERVICES 
SERVICEINVOKE SERVICERESULT  

 

3.1.1.3.4 Exception Events  
Exception events are modeled as IN-events which are sent from the local 
agent server to agents to notify the impossibility to execute services which 
were requested through the generation of corresponding OUT-events. An 
exception is defined per each OUT-event and includes the description of the 
raised exception and its typology. An exception also contains the causing 
Event, i.e. the instance of the event which has not been served by the local 
agent server and caused the exception. The exceptions are organized into a 
hierarchy which mirrors that of the Management and Coordination OUT-
events. 
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3.1.1.4 Mobility model 
The mobility model of ELDA agents is based on a strong mobility model 
which allows retaining the agent execution state. With respect to a fine-grain 
mobility type in which the agent migration can occur on a per-instruction 
basis the offered strong mobility model is of the coarse-grain type as ELDA 
agents can migrate on a per-action basis (i.e. after the execution on an 
action where an action is a set of instructions atomically executed). In 
particular the migration points of an ELDA agent match with the end of the 
RTC step (see Section 3.1.1.1) and represent the only agent execution 
points in which MOVE events can be processed.  
The migration of ELDA agents can be either autonomous (i.e. triggered by 
the agent itself) or passive (i.e. enforced by the system or induced by other 
agents) [114]. Specifically, in case of autonomous migration, migration points 
are known by the agent as they are specified in the agent behavior through 
an appropriate definition of states, events and transitions. In case of passive 
migration, migration points are not known in advance as they are induced by 
other agents or by the system; then, to obtain a behavior more reactive to 
passive migration could be necessary to program an ELDA agent with finer 
granularity of its actions. 
The ELDA migration process is defined as follows. According to the FIPA 
template (see Figure 3.3 for the referred transitions), an ELDA agent after 
receiving the MOVE event passes into the Transit state (see t2) where it rests 
until the migration is completed; at the destination location the ELDA agent 
receives the EXECUTE event, generated by the system, which brings the 
ELDA agent back into the state it was before the migration (see t3) by 
retaining the same execution state. State retention is intrinsic due to (i) the 
properties of the DSCs, particularly empty states and run-to-completion 
semantics, and (ii) the structure of the FIPA-based template, specifically the 
entrance with deep history in the ACTIVE state (see Section 3.1.1.2). In fact, 
after processing an event the execution state of an ELDA agent is 
automatically stored into its ACTIVE state so when the ELDA agent migrates 
it goes into the TRANSIT state without modifying its execution state as no 
exit action is allowed; after migration it is resumed and the ACTIVE state is 
re-entered through the deep history pseudostate which allows to set the 
current state to the state prior to migration without modifying the execution 
state as no entry action is allowed. 
To exemplify the migration mechanism defined above, the ADSC of an 
example agent is shown in Figure 3.5. In particular, when the agent is in 
state A and the event E is fetched and guard G holds, the action Ac is 
atomically executed. At the end of its execution the agent goes into state B 
and the RTC step is completed.  
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STATES: 
Simple States = {A, B}  
TRANSITIONS: 

(B)))CTIVE(ADSCTopState(A(A)))CTIVE(ADSCTopState(A:t Ac / [G] E
10 ⎯⎯⎯ →⎯

Default Entrance of ADSC=A; 
 

Figure 3.5: ADSC of an ELDA. 

If a MOVE event arrives during the execution of Ac it is enqueued as it cannot 
be processed until the end of RTC step; after the completion of the RTC 
step, the agent is ready to process the MOVE event and then transition t2 
(see Figure 3.3) is fired as follows: 

RANSIT)TopState(T(B)))CTIVE(ADSCTopState(A:t Move
2 ⎯⎯ →⎯ ; 

 

where the variable X is replaced by the current state (B) of the agent. This 
firing causes the update of the DHS to the simple state ADSC(B) to keep 
memory of the left state. 
After migration the EXECUTE event is delivered and transition t3 is fired as 
follows: 

(B)))CTIVE(ADSCTopState(ARANSIT)TopState(T:t Execute
3 ⎯⎯ →⎯ ; 

 

where DHS is replaced with its current value. 
The agent is therefore reactivated in the same execution state it was before 
migration as the agent execution state is represented by the current state 
and the values of the history pseudostates of the agent behavior. The agent 
data are automatically preserved due to the absence of entry and exit actions 
which could be executed during agent migration which makes the agent 
behavior pass from the Active to the Transit states and vice versa. 

3.1.2 ELDA MAS Meta-Model 
The modeling of agent-based systems based on the ELDA model is carried 
out through the ELDA MAS meta-model (ELDA MMM) which was specifically 
defined to provide design abstractions concerning with both agent modeling 
and environment modeling. However, as agent-system domains could 
require specific design abstractions which haven’t been originally included 
within the ELDA MMM, the structure of the ELDA MMM was suitably 
designed to be extensible; in fact, to increase the degree of environment 
modeling, ELDA MMM makes it possible to introduce new design 
abstractions (such as new services providers or new coordination spaces) 
which characterize a specific execution environment. An example of such 
extension mechanism will be shown in Section 3.1.2.1. 
As the ELDA MMM contains abstractions which concern very different 
aspects of agent-system modelling, its presentation is organized in six views 
correlated as shown in Figure 3.6: 
- Agent View, which represents the structure of an ELDA agent and its 

relationships with the coordination and system spaces. 
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- Event View, which represents the structure of events. 
- SystemSpace View, which represents the structure of the system space. 
- CoordinationSpace View, which represents the hierarchy of the 

coordination spaces. 
- DSC View, which represents the structure of a DSC. 
- FIPATemplate View, which represents the structure of the FIPA template 

of the ELDA behavior. 

DSC View Event View

CoordinationSpace View

FIPATemplate View

SystemSpace View

Agent View

<<import>>

<<import>> <<import>>

<<import>>

<<import>>

<<import>>

 
Figure 3.6: ELDA meta-model: Top-Level View. 

As shown in the Agent View (see Figure 3.7) an ELDA agent is composed of 
a single behavior which is specified through a refined version of the FIPA 
template (see Figure 3.3) whose structure is shown in the FIPATemplate 
View (see Figure 3.10): in particular, the FIPA template as well as the ADSC 
of an ELDA agent is modeled according to the DSC structure shown in the 
DSC View (see Figure 3.8). 
The Agent View also shows that an ELDA agent can interact with the System 
Space, which provides system services, through the ManagementOUT and 
ManagementIN events, and with the Coordination Space, which provides 
coordination services, through the CoordinationOUT and CoordinationIN 
events. These events along with the Internal and Exception events, defined 
in Section 3.1.1.3, are included in the Event View (see Figure 3.10). 

ELDA
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Behavior
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Event View::Event

1 1

Event View::Coordination
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+sender

*
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+sender
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*

*

Event View::ManagementIN

Event View::ManagementOUT
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*

*

+sender

+receiver

*
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Figure 3.7: ELDA meta-model: Agent View. 
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Figure 3.8: ELDA meta-model: DSC View. 
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Figure 3.9: ELDA meta-model: FIPA template View. 
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Coordination

CoordinationINCoordinationOUT

Event

Internal Management

ManagementINManagementOUT

Exception

 
Figure 3.10: ELDA meta-model: Event View (partial). 

As shown in the SystemSpace View (see Figure 3.11a), the System Space 
which provides system services is composed of three basic managers, 
LifeCycleManager, TimerManager, and ResourceManager which handle the 
Management events of the Lifecycle, Timer, and Resource classes, 
respectively. It is worth noting that the ResourceManager provides access 
services to consoles, databases, files, sensors and other available local 
resources through associated sub-managers (ConsoleManager, DBManager, 
FileManager, SensorManager, etc) which handle such specific resources. 
Moreover, to extend the provided system services new special-purpose 
managers can be defined by the designer along with the related OUT- and 
IN-events (see Section 3.1.2.1). 
A Coordination Space represents a local or global coordination structure 
based on a given coordination model through which agents can interact. As 
shown in the CoordinationSpace View (see Figure 3.11b), six coordination 
spaces are currently defined: DirectSpace (AsynchronousMsgSpace and 
SynchronousMsgSpace), TupleSpace, PublishSubscribeSpace, 
RMIObjectSpace, and WebServicesSpace. The interaction with these spaces 
is regulated by the Coordination events reported in Table 3.1 and described 
in Section 3.1.1.3. Moreover, new coordination spaces can be easily 
introduced by defining new coordination space structures along with their 
related OUT/IN events (see Section 3.1.2.1). 

3.1.2.1 ELDA MAS Meta-Model extensions 
In this section, it is shown how the ELDA meta-model can be extended to 
include new logical and physical interaction models by appropriately 
introducing new components in the system space and/or in the coordination 
space along with the associated events needed to the agents to interact with 
them. The extension mechanism of the ELDA meta-model is exemplified 
through the inclusion of the PACO model abstractions [63] into our model. In 
particular, the PACO model focuses on purely reactive agents situated in an 
environment. Each agent according to the PACO model is defined by three 
fields which determine what the agent can perceive about its environment 
(Perception field), which agents an agent can interact with (Communication 
field), the space in which an agent can perform its actions (Action field). 
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SystemSpace

LifeCycleManager ResourceManager TimerManager

1

1 1
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Manager

SpecialPurposeManager

1
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1

 
(a) System Space view 

CoordinationSpace

DirectSpaceTupleSpace PublishSubscribeSpace

AsynchronousMsgSpace SynchronousMsgSpace

RMIObjectSpace WebServicesSpace

 
(b) Coordination Space view 

Figure 3.11: ELDA meta-model: SystemSpace and CoordinationSpace Views. 

From a system point of view the PACO model splits the multi-agent system 
domain into some conceptual parts according to the VOWELS formalism [28] 
and thus decomposing the problem into four components: Agent, 
Environment, Interaction and Organization. To include the PACO model 
abstractions the ELDA meta-model was extended as follows: 
- to model the environment (in which PACO agents are situated) the ELDA 

System Space was first generalized into a LogicalSystemSpace 
(formerly SystemSpace, see Figure 3.11a) and a PhysicalSystemSpace 
which was appositely extended into an EnvironmentSpace. The 
EnvironmentSpace handles the position of the agents and applies them 
(through apposite OUT-events named FORCEEVENTS) the repulsion 
forces resulting from co-located agents. 

- to model the social laws defined in the PACO’s Organization component, 
a new coordination space (see Figure 3.11b), named 
PACOCordinationSpace, was introduced. In particular, the 
PACOCordinationSpace monitors the environment and the agents’ 
status (position, goals, etc.) and, if any of the pre-defined conditions are 
triggered, it informs the correct agent(s) on the actions to be performed 
through ad-hoc defined OUT-events named RULEEVENTS. 

3.2 Coding phase 
The aim of the coding phase is to translate DAS models which have been 
obtained in the modelling phase according to the ELDA MAS meta-model 
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into executable code. To meet such objective, an object-oriented agent 
implementation framework named ELDAFramework (see Section 3.2.1) was 
designed which consists of a set of abstractions which enable the actual 
implementation of the DAS. Moreover, to automate such phase a set of 
translation rules (which map concepts belonging to the ELDA meta-models to 
implementation abstractions belonging to ELDAFramework) were defined. 
In the following section, the structure of the ELDAFramework will be 
described (for technical details refer to the online documentation at the 
ELDATool site [32]). 

3.2.1 ELDAFramework: a framework for the coding of 
ELDA-based MAS 

The ELDAFramework is an object-oriented framework which allows 
developers to implement an ELDA-based application as it offers the 
implementation abstractions representing the modeling concepts offered by 
the ELDA MAS meta-model (ELDA MMM). Such abstractions are organized 
in classes inside the dsc, agent and eldaevent packages (see Figure 3.12). 
In particular, as the eldaevent package contains classes which include 
events (see Section 3.1.1.3) it is structured in internal, coordination, 
management and exception subpackages. In order to mirror events 
hierarchy, the coordination package has been further organized in direct, 
tuples, publish_subscribe, services and rmi subpackages whereas the 
management package has been further organized in lifecycle, timer and 
resource subpackages. 

3.2.1.1 DSC 
Classes grouped in the dsc package allow translating a DSC-based state 
machine (see Section 3.1.1.1) into executable code. In particular, such 
package (see Figure 3.13) consists of a class hierarchy (AState, 
SimpleState, CompositeState e TopState) which covers modelling 
abstractions related to DSC states and a Context class which enables the 
storing of the current state of a DSC-based state machine. 

3.2.1.2 Agent 
Classes grouped in the agent package (see Figure 3.14) allow translating 
agent-related modelling abstractions into executable code. In particular, the 
ELDABehaviour class uses: (i) the ELDAId class to uniquely identify an 
agent; (ii) the ELDAFIPATemplate class to specify the FIPA compliant agent 
behavior. Moreover, the ELDAFIPATemplate class is associated with the 
ELDAActiveState to specify the behavior of an agent which entered the 
Active state of the FIPA template. 
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Figure 3.12: Packages of the ELDAFramework. 
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Figure 3.13: The dsc package of the ELDAFramework. 

ELDABehaviour

ELDAFIPATemplate

ELDAID

ELDAActiveState

 
Figure 3.14: The agent package of the ELDAFramework. 
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3.2.1.3 ELDA events 
The eldavent package and its sub-packages (see Figure 3.15) contains 
classes which translate into code all the events defined in the events 
taxonomy shown in the Interaction model (see Section 3.1.1.3). 

ELDAEvent

ELDAEventInternal ELDAEventManagment ELDAEventCoordination ELDAException

 
Figure 3.15: The eldaevent package of the ELDAFramework. 

It is worth noting that classes representing functionalities requests sent by 
agents to the agent server (e.g. ELDAEventCreateRequest, 
ELDAEventCloneRequest, etc.) are implemented as final classes (to force 
developers to directly use them); whereas classes representing responses 
sent back by the agent server to the agents are implemented as abstract 
classes (to force developers to extend them); in this way, two or more 
transitions outgoing from the same state can be triggered by events which 
extend the same event (see Figure 3.16). 
 

ELDAEventMSG1 ELDAEventMSG2

ELDAEventMSG

  
Figure 3.16: An example of transitions labeling using the event hierarchy. 

3.2.1.3.1 Internal ELDA events 
This package offers an abstract class, which opportunely extended, allows 
translating internal events into executable code. 

3.2.1.3.2 Management ELDA events 
Classes grouped into the management package (see Figure 3.17) and its 
sub-packages allow translating management events into executable code; in 
particular, according to the management events hierarchy, management 
package is furthermore subdivided into lifecycle, resource and timer 
packages which are detailed in the following. 
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ELDAEventManagment

ELDAEventLifecycle ELDAEventResource ELDAEventTimer

 
Figure 3.17: The management package of the ELDAFramework. 

Lifecycle management ELDA events 
Classes grouped in the lifecycle management package (see Figure 3.18) 
allow translating lifecycle management events into executable code. In 
particular, classes mirroring events belonging to FIPA template, are 
implemented as final classes to force developers to directly use them; 
remaining classes have to be extended before their use. 

ELDAEventLifecycle

ELDAEventCreateRequest ELDAEventMoveRequest ELDAEventWaitRequest ELDAEventQuitRequest ELDAEventSuspendRequest

ELDAEventCloneRequest

ELDAEventDestroy

ELDAEventExecute

ELDAEventInvoke

ELDAEventWakeUp

ELDAEVentResume

ELDAEventCreateNotify ELDAEventMove ELDAEventWait ELDAEventQuit ELDAEventSuspend

ELDAEventCloneNotify

 
Figure 3.18: The lifecycle-managment package of the ELDAFramework. 

Resource management ELDA events 
Classes grouped in the resource management package (see Figure 3.19) 
allow translating resource management events into executable code. In 
particular, classes mirroring services requests 
(ELDAEVENTRESOURCEREQUEST, ELDAEVENTRESOURCEINPUT, 
ELDAEVENTRESOURCEOUTPUT, ELDAEVENTRESOURCERELEASE) are 
implemented as final classes to force developers to directly use them; 
moreover, classes mirroring responses sent back to the agents 
(ELDAEVENTRESOURCENOTIFY, ELDAEVENTRESOURCEINPUT) have to be 
extended before their use. 
 
Timer management ELDA events 
Classes grouped in the timer management package (see Figure 3.20) allow 
translating timer management events into executable code. In particular, 
ELDAEVENTCREATETIMER and ELDAEVENTRESETTIMER which mirror services 
requests are implemented as final classes to force developers to directly use 
them; ELDAEVENTCREATETIMERNOTIFY and ELDAEVENTTIMEOUTNOTIFY 
classes mirroring responses sent back to the agents have to be extended 
before their use. 
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ELDAEventResourceInput

ELDAEventResource

ELDAEventResourceRequest ELDAEventResourceOutput

ELDAEventResourceNotify

ELDAEventResourceInputRequest

ELDAEventResourceRelease

backEvent backEvent

 
Figure 3.19: The resource-managment package of the ELDAFramework. 

ELDAEventTimer

ELDAEventCreateTimerNotify ELDAEventCreateTimer ELDAEventTimeoutNotify

ELDAEventResetTimer

+backEventCTN backEventTN

 
Figure 3.20: The timer-managment package of the ELDAFramework. 

3.2.1.3.3 Coordination ELDA events 
Classes grouped in the coordination package (see Figure 3.21) allow 
translating coordination events into executable code; in particular, according 
to coordination events hierarchy, coordination packages is furthermore 
subdivided into direct, tuples, rmi, services and publish/subscribe packages 
which are detailed in the following. 
 
Direct coordination ELDA events  
Classes grouped into direct coordination package (see Figure 3.22) allow 
translating direct coordination events into executable code thus enable 
implementation of asynchronous/synchronous message passing. In 
particular, ELDAEVENTMSGREQUEST and ELDAEVENTRPCREQUEST classes 
which implement asynchronous and synchronous communication requests 
respectively, are implemented as final classes to force developers to directly 
use them; moreover, classes mirroring messages exchanged among agents 
(ELDAEVENTMSG, ELDAEVENTRPCRESULT) have to be extended before 
their use. 

ELDAEventCoordination

ELDAEventDirect ELDAEventTuples ELDAEventRMI ELDAEventServices ELDAEventP_S

 
Figure 3.21: The coordination package of the ELDAFramework. 
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ELDAEventDirect

ELDAEventMSGRequest ELDAEventRPCRequest ELDAEventRPCResultELDAEventMSG+msg msg +backEvent

 
Figure 3.22: The direct-coordination package of the ELDAFramework. 

Tuple coordination ELDA events 
Classes grouped  into the tuple coordination package (see Figure 3.23) allow 
translating tuples coordination events into executable code; in particular, 
classes mirroring services requests (ELDAEVENTIN, ELDAEVENTOUT and 
ELDAEVENTRD) are implemented as final classes to force developers to 
directly use them; only the ELDAEVENTRETURNTUPLE class which contains 
tuples sent back to the agents has to be extended before its use. 

ELDAEventTuples

ELDAEventIN ELDAEventRD ELDAEventOUTELDAEventReturnTuple+backEvent backEvent

 
Figure 3.23: The tuple-coordination package of the ELDAFramework. 

RMI coordination ELDA events 
Classes grouped in the rmi coordination package (see Figure 3.24) allow 
translating RMI coordination events into executable code; in particular, 
ELDAEVENTRMIINVOKE class which implements the RMI request is 
implemented as a final class to force developers to directly use it whereas 
the ELDAEVENTRMIRETURN has to be extended before its use. 

ELDAEventRMI

ELDAEventRMIInvoke ELDAEventRMIReturnbackEvent

 
Figure 3.24: The rmi-coordination package of the ELDAFramework. 

Services coordination ELDA events 
Classes grouped in the services coordination package (see Figure 3.25) 
allow translating web services coordinations events into executable code; in 
particular, classes mirroring requests (ELDAEVENTSERVICEDISCOVERY, 
ELDAEVENTWSDLREQUEST,  ELDAEVENTSERVICEINVOKE) are implemented 
as final classes to force developers to directly use them; remaining classes 
classes mirroring responses sent back to the agents 
(ELDAEVENTDISCOVERYRESULT,  ELDAEVENTWSDLRESULT e 
ELDAEVENTSERVICERESULT) have to be extended before their use. 
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ELDAEventWSDLReturn

ELDAEventWSDLRequest ELDAEventServiceInvoke

ELDAEventServiceReturn

ELDAEventServiceDiscovery

ELDAEventDiscoveryResult

ELDAEventServices

backEvent backEvent backEvent

 
Figure 3.25: The service-coordination package of the ELDAFramework. 

Publish/subscribe coordination ELDA events 
Classes grouped in the publish/subscribe coordination package (see Figure 
3.26) allow translating publish/subscribe coordination events into executable 
code; in particular, classes mirroring requests (ELDAEVENTSUBSCRIBE, 
ELDAEVENTUNSUBSCRIBE, ELDAEVENTPUBLISH) are implemented as final 
classes to force developers to directly use them; only the 
ELDAEVENTEVTNOTIFICATION class which contains notifications sent back to 
the agents has to be extended before its use. 

ELDAEventP_S

ELDAEventSubscribe ELDAEventPublish ELDAEventEVTNotification ELDAEventSubscribebackEvent

 
Figure 3.26: The publish/subscribe-coordination package of the ELDAFramework. 

3.3 Simulation phase 
The development process of ELDAMeth (see Figure 3.1) includes a 
simulation phase (see Figure 3.27) which consists of the following three 
subphases: 
1. Performance Indices Definition. On the basis of functional and non 

functional requirements, it produces the definition of the performance 
indices which will be evaluated during the simulation; 

2. Simulation Implementation. This subphase aims at the realization of a 
simulation program which takes into account the previously identified 
indices, the definition of the controlled environment and the 
ELDAFramework-based DAS implementation. In particular, such 
program uses abstractions provided by the ELDASim (see Section 
3.3.1), a discrete-event simulation framework able to execute ELDA 
models, to define: 
- the controlled execution environment (both features characterizing 

the computational nodes and the network) which mirrors the real 
execution environment; 

- the initial DAS configuration (agents and related locations); 
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3. Simulation Execution. It consists of the execution of the DAS within the 
controlled execution environment and the collection of the defined 
performance indices which allow the analysis and the validation of the 
DAS under-development. 

The simulation phase can be iteratively executed to modify, according to 
obtained simulation results, the modelling choices taken in a former iteration. 
In the following sub-section, the architecture of ELDASim will be explained in 
detail. 

 
Figure 3.27: Schema of the Simulation phase. 

3.3.1 ELDASim: a discrete-event simulation framework 
The ELDA simulation environment (ELDASim) is a Java-based execution 
environment for ELDA agents that has been obtained as an extension of 
MASSIMO simulation framework [38] and aims to validate and evaluate 
through simulation an ELDA model based solution with respect to efficacy 
and efficiency aspects. 
To accomplish this, ELDASim is equipped with: 
- The basics mechanisms of the distributed architectures supporting ELDA 

agents. In particular, agent servers, the network interconnecting agent 
servers, and several kinds of coordination infrastructures for fully 
supporting the distinctive multi-coordination feature of the ELDA model. 

- The simulation of accomplishment time of time-consuming operations 
such as agent actions, agent management operations, coordination acts, 
and agent migrations. 

- The capture of the traces of interactions (among agents and between 
agents and agent servers) in terms of exchanged events, filtered in an 
application-specific fashion. 

On the basis of the aforementioned features, the architecture of ELDASim  
(Figure 3.28) has been structured as following: 

a. Engine layer, which provides the basic mechanisms and classes to 
simulate general purpose systems; 
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b. Platform layer, which provides a distributed infrastructure formed by 
a network of interconnected agent servers; 

c. Agent layer, which provides abstractions needed to execute ELDA 
agents in the simulated environment; 

d. Setup layer, which provides abstractions needed to setup the 
simulation such as agent server available services, virtual network 
configuration, initial agent locations. 

 
Engine layer 
To support the ELDA model features, ELDASim was developed atop an 
general-purpose event-discrete simulation engine that allows simulating 
discrete-event systems. In particular, this framework consists of 
computational components, named ActiveEntity, interacting through 
asynchronous message passing. ActiveEntity can queue Messages into a 
global queue which is handled by the SimulationEngine as described in the 
following: the SimulationEngine extracts the forthcoming Message into the 
queue and delivered it to the correct ActiveEntity for the handling process. 
Moreover, it is possible to program the deferring of the delivering process 
through the Timer abstraction which encapsulates a Message with a timeout: 
such message will be delivered as soon as the timeout is expired. 
 
 

 
Figure 3.28: The layered architecture of ELDASim. 
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Platform layer 
The platform layer provides functionalities related to both the agent lifecycle 
(execution, suspensions, migration, etc.) [35] and agent interactions (several 
coordination spaces are available to enable interactions among agents).  
In particular, this layer supplies the agents execution environment though a 
set of AgentServer (in which ELDAs run) linked by the VirtualNetwork: each 
AgentServer can be differently customized in order to allow the simulation of 
a heterogeneous execution environment and the VirtualNetwork represents a 
network of AgentServer components. 
Moreover, the following coordination spaces are implemented: 
- The asynchronous Message-based coordination space which is based 

on proxies [115]. In particular, a message is delivered at the agent home 
location and, from here, forwarded to the actual agent location by 
following the chain of proxies left during agent migration. 

- The Publish/Subscribe coordination space which behaves like a state-full 
ELVIN event notification system [71]. In particular, before agent 
migration the system removes all existing subscription of the migrating 
agent and re-subscribes the agent to the same notifications after the 
agent arrives at the new location. 

- The Tuple coordination space which is based on TuCSoN [83]. In 
particular, each location has its own local tuple space, an instance of a 
TuCSoN tuple space which relies on text-based tuples. 
 
Agent Server. To take into account the extensible architecture feature of 
the ELDA Meta-Model (see Section 3.2.1) an AgentServer was designed 
through a component-based architecture (see Figure 3.29) in which a set 
of independent components named handlers offer specific services to 
the agents. In particular, using handlers in a cooperative fashion, an 
AgentServer provides the following functionalities: 

1. agent management lifecycle, which supports registration and 
execution of ELDAs; 

2. agent migration, which supports the migration of an ELDA from 
one AgentServer to another; 

3. agent interaction, which supports the event-based interaction 
among ELDAs; 

4. inter-AgentServer service signaling. 
Handlers were organized in a hierarchical fashion mirroring the events 
taxonomy (see Section 3.1.1.3):  
At the top level of the handler hierarchy the TopLevelHandler (TLH) is 
located which routes all the IN events targeting ELDA agents and the 
OUT events generated by ELDA agents. In particular, the TLH 
component (i) encapsulates the OUT events into MSG objects to route 
them within the AgentServer architecture and (ii) unwraps MSG objects 
including IN events to be delivered to ELDA agents. In addition to the 
TLH, the hierarchy of handlers consists of PrimaryHandlers, 
IntermediateHandlers and FinalHandlers. PrimaryHandlers and 
IntermediateHandlers aim to effectively route events, according to their 
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type, to the correct target whereas the FinalHandlers aim to provide the 
requested services to ELDA agents.  
Interaction among handlers (belonging both to the same AgentServer 
and to different AgentServers) takes place through exchange of MSG 
objects.  
Moreover, an AgentServer includes a WhitePage component which 
stores the ELDA agents running in the AgentServer. An entry of the 
WhitePage consists of pairs <ELDAId, ELDARef>, where ELDAId is the 
ELDA agent identifier and ELDARef is either (i) the reference to the 
ELDA agentidentified by ELDAId or (ii) the proxy of the ELDA agent 
identified by ELDAId and migrated to another AgentServer. 

AgentServer
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PrimaryHandlerTLH IntermediateHandler

FinalHandler

+successor
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+successor
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+predecessor
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1

*
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Figure 3.29: Agent Server Architecture. 

 
Virtual Network. AgentServers are mapped on computational nodes 
which are linked together by the VirtualNetwork component which relies 
on a graph-based network structure in which a network link is completely 
reliable and based on an end-to-end delay model (based on bandwidth, 
latency time and weight of the MSG). In particular, the calculated delay 
of a message transmission (which can contain both events and migrating 
agents), is used as timeout value of a Timer containing the MSG. 
Moreover, the VirtualNetwork aims to supply the hosts names resolving 
mechanism which allows for determine the host in which the message’s 
target is located. 

 
Agent layer 
The agent layer of the ELDASim architecture provides the SimELDA 
abstraction which allows to execute an ELDA agent into the simulation 
framework. In particular, a SimELDA (unambiguously identified by an 
ELDAId), for each simulation step, has (i) a location depending on the 
specific AgentServer in which it runs and (ii) has a specific state of the state 
machine which represents its behavior.  
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Simulation setup layer 
The simulation setup layer provides the MASSimulation abstraction which 
allows to setup the simulation. In particular, it allows for setup agent ‘s initial 
locations, the AgentServer’s features (available both system spaces and 
coordination spaces) and the VirtualNetwork configuration (network topology, 
nodes number, band and latency time of the links, transmission policy). 

3.4 ELDATool: An integrated development 
environment for prototyping ELDA-based MAS 

To facilitate the use of ELDAMeth, an integrated development environment, 
named ELDATool [32, 37], has been fully developed in this thesis work. It 
aims to support developers during the modelling, coding and simulation 
phases. In particular, ELDATool provides in an integrated fashion: 

- a visual editor which allows to model behavior, interaction and 
mobility aspects of an agent-system according to the ELDA model 
(see Section 3.1.1); 

- an automatic translator which implements the translation rules from 
ELDA meta-model to ELDAFramework (see Section 3.2.2); 

- a visual editor to configure simulation parameters used to generate a 
simulation program based on ELDASim framework (see Section 
3.3.1) 

To support the Modelling phase (see Section 3.1), the tool offers the basic 
functionality of visual modelling of the active state of the agent behavior 
according to DSC formalism. The following modelling features are supported: 

- definition of the internal states of the active state; 
- definition of the events, generated (or OUT-events) and received (IN-

events) by/from the ELDA agent, by extending appositely the base 
events provided by the ELDAFramework or events previously 
defined by the user; 

- definition of the transitions between states which involves: 
- the use of the IN-events previously defined for labelling the 

transitions; 
- (possibly) the definition and the use of the guards associated to 

the transitions; 
- (possibly) the definition and the use of the actions associated to 

the transitions. 
The obtained graphical modelling is serialized into XML-like files. 
To support the Coding phase (see Section 3.2), the tool offers the 
functionality of automatic code generation by translating the XML-like files 
produced after the Modelling phase into Java code based on the 
ELDAFramework. 
Finally, to support the Simulation phase offers a visual editor to configure 
simulation parameters which are used to generate the simulation program 
according to the ELDASim framework (see Section 3.3). 
Currently, the ELDATool is implemented in Java as a collection of Eclipse 
plug-in to exploit several frameworks which fully support the development of 
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visual editors; moreover, the high diffusion of Eclipse in the research 
community makes the tool immediately available to the Eclipse users and the 
learning process of the tool is therefore quicker. 

3.4.1 Architecture 
In order to keep ELDATool architecture as modular as possible, a 
component-based design approach was adopted: each component is 
responsible of the specific aspects of the Modelling, Coding and Simulation 
phases. In fact, for each different agents behavior modelling aspect have 
been identified several editors and each of them, is capable of visually 
handling the related elements of the ELDA MAS meta-model and producing 
an instance of such meta-model (or specific model) as output. In particular, 
the following editors have been identified and designed: 

- DSCEditor, for modelling the active state of an ELDA agent;  
- EventEditor, for defining the events; 
- GuardEditor, for defining the guards; 
- ActionEditor, for defining the actions; 
- FunctionEditor, for defining the supporting functions. 

The CodeGenerator component uses the models produced by the 
aforementioned editors as input to offer the functionalities needed for the 
code generation according to the classes constituting the ELDAFramework. 
The SimulatorEditor component allows to visually configure simulation 
parameters which are used as input by the SimulationCodeGenerator to 
produce a simulator program according to the ELDASim framework.  
Figure 3.30 shows the components, the dependence relationships among 
them, and their contextualization with respect to the development process 
phases. 

             Modelling         Coding          Simulation 

DSCEditor

ActionEditorGuardEditor

EventEditor

FunctionEditor

CodeGenerator SimulatorEditor

SimulatorCodeGenerator

 
Figure 3.30: The ELDATool components. 
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3.4.2 Implementation 
The ELDATool fully supports the three phases of the process: Modelling, 
Coding and Simulation. The architectural components described in the 
previous section are implemented in Java by exploiting: 
- the Eclipse platform [30], which is a widely-used Integrated Development 

Environment (IDE) with extensible architecture based on plug-ins, i.e. 
independent components which can be easily installed and integrated in 
the IDE; 

- the Graphical Editing Framework (GEF) [55] which allows for the 
development of visual editors in Eclipse by offering high support for the 
management of the user interactions; 

- the Eclipse Modelling Framework (EMF) [31] which supports the modelling 
phase of a structural model and the automatic generation and 
manipulation of its Java implementation. 

The editor components (see Section 3.4.1) are implemented according to the 
architectural pattern Model-View-Controller (MVC) to support the user-
interaction handling (View-Controller) and the manipulation of the model in 
response to the generated events (Model). In particular, user-interaction 
handling is implemented by extending the classes provided by GEF whereas 
the model manipulation is carried out by the plug-ins automatically generated 
by EMF. It is worth noting that EMF generates a plug-in exposing the 
interfaces needed for the instantiation of the implemented meta-model. 
Accordingly, each editor component is constituted by an EMF-generated 
plug-in which manages the model and a plug-in which handles the user 
interaction. 
In order to ease the deployment of the ELDATool the number of its 
constituting plug-ins was minimized. In particular, the plug-ins which manage 
the models are separately implemented whereas the plug-ins handling the 
user-interaction and supporting the code generation are integrated in a 
unique plug-in, the ELDAEditor. 
As a consequence, the following plug-ins are implemented: 
- DSCModel, which contains the implementation of the DSC concepts of 

the ELDA MAS meta-model; 
- EventModel, which contains the implementation of the Event concepts 

of the ELDA MAS meta-model; 
- ActionGuardModel, which contains the implementation of the Action 

and Guard concepts of the ELDA MAS meta-model; 
- FunctionModel, which contains the implementation of the Supporting 

Function concept of the ELDA MAS meta-model; 
- ELDAEditor, which supplies the visual editor and the code generator 

components; 
- SimulatorEditor and SimulatorCodeGenerator, which allow us for the 

visual setup of the simulation parameters and the code generation of 
the simulator program; 
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Figure 3.31 highlights and clarifies the dependence relationships among the 
implemented plug-ins: the ELDATool is released as a set of plug-ins and a 
jar named ELDAFramework.jar which contains the Java implementation of 
the ELDA framework. It is worth noting that to install the ELDATool it is only 
necessary to copy the set of plug-ins and the ELDAFramework.jar into the 
plugins folder of Eclipse and restart Eclipse. The software requirements of 
the ELDATool are: Eclipse ver. 3.3, GEF ver. 3.3, EMF ver. 2.3.0 and JRE 
ver. 1.5. 
Figure 3.32 shows the ELDATool during the visual modeling of the ADSC of 
an ELDA agent and Figure 3.33 shows the dialogs which allow for simulation 
parameters setup and simulation execution control. 
 

SimulationFacilitator
<<Eclipse Plug-In>>

ELDAEditor
<<Eclipse Plug-In>>

DSCModel
<<Eclipse Plug-In>>

EventModel
<<Eclipse Plug-In>>

ActionGuardModel
<<Eclipse Plug-In>>

FunctionModel
<<Eclipse Plug-In>>

GEF
<<Eclipse Plug-In>>

EMF
<<Eclipse Plug-In>>

DSCEditor ActionEditor GuardEditor

EventEditor CodeGeneratorFunctionEditor

SimulatorEditor SimulatorCodeGenerator

ELDASim
<<Eclipse Plu-In>>

 
Figure 3.31: The ELDATool plug-ins. 

 

 
 Figure 3.32: Snapshot of the ELDATool during the modeling phase. 
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(a) (b) 
 

Figure 3.33:  Simulation dialogs: (a) simulation setup and (b) simulation execution control. 
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4 Modeling and Validation of Distributed 
Architectures for Surrogate Clustering in 
CDNs: a case study 

 
 
 

 
Content Distribution Networks (CDNs) have been introduced and extensively 
used in the Internet as effective solution for improving the performance of 
content delivery by means of coordinated content replication [14]. In 
particular, a CDN manages a geographically distributed set of surrogate 
servers, located at the network edge, that archive copies of identical content, 
so that users’ requests can be fulfilled by the optimal surrogate servers. In 
conventional CDN architectures, when a user request is redirected to a 
surrogate server which is not able to fulfill it by providing the requested 
content, the surrogate server fetches the requested content from the origin 
server, which stores all the offered content, and delivers it to the requesting 
user. As the origin server is usually far way from each surrogate server, this 
basic scheme to deal with missing content causes a high average user 
perceived latency.  
To overcome this issue, several cooperative caching mechanisms and 
architectures for CDNs have been proposed [39, 79, 105]. In this chapter, 
three kinds of distributed architectures (master/slave, multicast-based, and 
peer-to-peer) for surrogate clustering in CDNs have been modelled and 
analysed through ELDAMeth. In these architectures, which are an extension 
of the cooperative architectures proposed in [39, 43], surrogates are grouped 
into clusters of neighbour surrogates and cooperate to provide the requested 
content. In particular, a surrogate which is not able to provide the requested 
content checks for a surrogate of the same cluster having the content so as 
to forward the unfulfilled user request to it; otherwise, if no other surrogate 
has the content, the surrogate contacts the origin server as in the basic 
schema. As surrogates in the same cluster are much closer to each other 
than to the origin server, the average user perceived latency could be 
reduced. Moreover, as the cache of a cluster is larger than the cache of a 
single surrogate hit ratio of the cluster cache could be higher than hit ratio of 
a single surrogate. 
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4.1 CDN working principles 
The general architecture of a CDN, shown in Figure 4.1, consists of seven 
components: client, replica server (or surrogate), origin server, request 
routing system, distribution system, accounting system and billing 
organization [92]. The interactions among these components, represented 
with numbered lines in Figure 4.1, are described as follows: 
1. The origin server delegates the URI name space of the content (web 
objects, rich media, etc.) to be distributed and delivered by the CDN to the 
request routing system (or request redirection system). 
2. The origin server publishes the content, which is to be distributed and 
delivered by the CDN through the distribution system. 
3. The distribution system “intelligently” moves content to surrogates. This 
system also interacts with the request routing system and supports it during 
the surrogate selection phase triggered by client requests. 
4. The client requests content from what it perceives to be the origin server. 
However, due to URI name space delegation, requests are actually directed 
to the request routing system. 
5. The request routing system routes the client request to a suitable 
surrogate of the CDN. 
6. The selected surrogate delivers the requested content to the client. In 
addition, the surrogate sends accounting information about delivered content 
to the accounting system. 
7. The accounting system aggregates and distills the accounting information 
into statistics and the records of content detail and sends them to the origin 
servers and the billing organization. The billing organization uses the records 
of content detail to settle with each of the parties involved in the content 
distribution and delivery process. Statistics are also used as feedback to the 
request routing system and distribution system. 
 

 
Figure 4.1: A basic CDN Architecture. 
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4.2 Distributed architectures for surrogate 
clustering 

When a client issues a content request, the redirection system selects the 
most appropriate surrogate and routes the request to it. This surrogate 
serves the request if it has the requested content, otherwise it asks the origin 
server for the content and, once retrieved, sends it to the requesting client. A 
missing content (or miss) in the selected surrogate causes a high response 
time as the origin server is usually located far away from surrogates. Figure 
4.2 summarizes the service dynamics of a client’s content request in a stand-
alone surrogate-based (SA) architecture. Moreover, surrogates usually adopt 
a least recently used (LRU) strategy to evict content from their cache when 
storage space is needed. 

 
(a) 

 
(b) 

Figure 4.2: Content served by a stand-alone surrogate-based architecture. (a) the requested 
content is in the surrogate cache; (b) the requested content is not in the surrogate cache and 

must be therefore requested to the origin server. 
 

Although the SA architecture is simple to develop and maintain, it suffers of 
two main drawbacks: limited dimension of the cache and high response time 
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when content is not present in cache and must be fetched from the origin 
server. 
To deal with these drawbacks, surrogates can be grouped into clusters 
according to their proximity (e.g. neighboring surrogates belong to the same 
cluster). Surrogates in the same cluster (hereafter called peer surrogates or 
simply peers) cooperate to provide a requested content. A surrogate 
receiving a content request which cannot serve forwards such request to a 
peer. Only if none of the peers can provide the requested content, the 
request is forwarded to the origin server. Cooperation among peers can 
therefore enable:  
- higher hit rate as the available content is not only the content of a single 

surrogate but the total content of all peers; 
- shorter response time as distance between peers is much shorter than 

the distance between a surrogate and its origin server. 
However, cooperation among peers demands for the design and 
implementation of additional mechanisms for surrogate clustering to support 
cluster formation for grouping surrogates in clusters and cluster maintenance 
for handling join/leave of peers. 
Three different kinds of distributed architectures for surrogate clustering have 
been designed: master/slave, multicast-based and peer-to-peer. In the 
multicast-based architecture content duplication can occur whereas in the 
master-slave and peer-to-peer architectures the content stored in a given 
peer cannot be duplicated in the other peers of the same cluster. For all the 
defined architectures, each peer has a content location hash table (CLHT) to 
maintain the content location information for content lookup. Each content 
has a content identifier (or CId) generated by a collision-free hash function-
based algorithm (e.g. SHA-1 [77]). In addition, each surrogate has a 
surrogate identifier (SId) generated with the same algorithm. In the following 
subsections the designed distributed architectures are described. 

4.2.1 Master/Slave 
In the master/slave (M/S) architecture, a master/slave approach is exploited 
which is based on a master peer to manage the cluster CLHT whereas the 
other peers only manage a CLHT of their own content. When a request 
arrives, a peer first looks up its CLHT and then, if it does not find the content, 
forwards the request to the master peer that, in turn, forwards it either to the 
peer (which could also be the master itself) with that content or to the origin 
server. It is worth noting that every time a peer chooses to evict a content, it 
notifies the master that consequently updates the global CLHT. In this way 
consistency of the cluster is guaranteed by the master even though it could 
become a bottleneck. 
Three variants of the MS architecture (M/S_1, M/S_2, and M/S_3) have been 
defined. The dynamics of the scenarios related to content found/content not 
found in the cluster for M/S_1, M/S_2, and M/S_3 are reported in Figures 
4.3a/4.4a, 4.3a/4.4b and 4.3b/4.4a, respectively. The three variants consider 
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the architectures which averagely involve the lowest number of exchanged 
messages (M/S_2), the highest number of exchanged messages (M/S_3), 
and a number of exchanged messages between the highest and lowest ones 
(M/S_1). 
With reference to the two schemas for content found in the cluster (see 
Figure 4.3), the main difference is that in M/S_1 and M/S_2 the master peer 
forwards the request directly to the surrogate (S2) which has the content (see 
Figure 4.3a), whereas in M/S_3 the master peer notifies the address of S2 to 
the selected surrogate (S1) which, in turn, forwards the request to S2 (see 
Figure 4.3b). 

 
(a) 

 
(b) 

Figure 4.3: Master/slave architectures: content found in the cluster. (a) schema for M/S_1 and 
M/S_2; (b) schema for M/S_3. 
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With reference to the two schemas for content not found in the cluster (see 
Figure 4.4), the main difference is that in M/S_1 and M/S_3 the master peer 
replies to the selected surrogate (S1) which, in turns, downloads the content 
from the origin to serve the client (see Figure 4.4a); in M/S_2 the master peer 
contacts the origin which sends the missing content to the selected surrogate 
(see Figure 4.4b). 

 
(a) 

 
(b) 

Figure 4.4: Master/slave architectures: content not found in the cluster. (a) schema for M/S_1 
and M/S_3 and; (b) schema for M/S_2. 
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4.2.2 Multicast-based 
In the multicast-based (MC) architecture, each peer surrogate manages a 
CLHT in which stores the content location information of all peer surrogates. 
In particular it is adopted a soft-state multicast-based communication 
paradigm [95] with BASE (Basically Available, Soft State, Eventual 
Consistency) semantics [51] for which the CLHT could be different in each 
peer surrogate at any given time. As shown in Figure 4.5, a missing content 
in the selected peer is handled as follows: if the CLHT has an entry for that 
content, the request is forwarded to the peer that has the requested content 
and will then serve the client request; otherwise, the request is forwarded to 
the origin server. Every update of the CLHT is multicast from the peer that 
updated its content to all the others without an ACID (Atomicity, Consistency, 
Isolation, e Durability) coordination mechanism. Each peer uses update 
messages to update its own CLHT; this implies that:  
- according to its CLHT a peer could forward a request to another peer 

that may not have the requested content; 
- duplicated copies of the same content could be present in a cluster. 

Thus in this architecture the consistency of the CLHT is not guaranteed. 

 
(a) 

 
(b) 

Figure 4.5: Multicast-based architecture: (a) content not found in the selected surrogate but 
found in the cluster; (b) content not found neither in the selected surrogate nor in the cluster. 
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4.2.3 Peer-to-peer 
In the peer-to-peer architecture (P2P), each peer has an SLT (Surrogate 

Location Table) which contains the location information of all the peers and 
their respective contents. In particular, for each peer surrogate an SLT has 
an entry formalized by the pair <SId, CZ>, where CZ (Content Zone) is the 
space of the identifiers of the contents potentially stored in the peer identified 
by SId. Such an organization implies that a given content can only be stored 
in the peer responsible for such content, i.e. its CId is in the CZ of the peer. 
According to the peer-to-peer model, a content request issued by a client is 
served by the selected surrogate as follows: 

1. If the CId of the requested content belongs to its CZ, the content is 
looked up in the CLHT: if the content is present, it is sent to the client; 
otherwise, the content is retrieved from the origin, sent to the client and 
finally stored (see Figure 4.6a). 

2. If the CId of the requested content does not belong to its CZ, the request 
is forwarded to the peer responsible for CId which operates as follows: if 
the requested content is present, it sent it to the requesting client (see 
Figure 4.6b); otherwise, the content is fetched from the origin before 
sending it to the requesting client (see Figure 4.6c). 

As in the M/S architecture the P2P architecture provides consistency of 
the content in the cluster. Moreover it overcomes the main drawback of the 
M/S and MC architectures as a peer does not need to maintain content 
information belonging to the other peer surrogates. However this model has 
the following drawbacks: (i) since a given content can only be served by a 
given peer, a highly requested content can only be provided by a given peer 
leading to a service hotspot; (ii) since the mapping between content and 
surrogate is fixed, when content is added new CIds must be generated and 
mapped to given zones. This can lead to the problem of zone saturation 
which demands for a rearrangement of the zones in the cluster. However, if 
the rate of addition of new content is slow this does not introduce significant 
overhead.  

It is worth noting that the other two architectures can also suffer of the 
first drawback whereas the second drawback for such architectures does not 
subsist as content can be requested and stored by any peer. 



 
 
 

69 

  

 
(a) 

 
(b) 

 
(c) 

Figure 4.6: Peer-to-peer architecture: (a) content not found belonging to the selected surrogate 
CZ; (b) content not found not belonging to the selected surrogate CZ but present in the cluster; 
(c) content not found not belonging to the selected surrogate CZ and not present in the cluster. 
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4.3 ELDA-based modelling 
This section shows how the identified actors in a typical CDN scenario have 
been agentified and then modelled according to the ELDA model. As shown 
in Figure 4.7, Client and Origin servers have been agentified through a 
ClientAgent and an OriginAgent, respectively; moreover, in order to enable 
the concurrent processing of received content requests, each Surrogate 
server has been agentified through two agents: a SurrogateManagerAgent, 
which spawns a worker agent for each received request and a 
SurrogateAgent which actually fulfils the request. 

CDN 
Level

Agent 
Level

Client Surrogate server Origin server

ClientAgent SurrogateManagerAgent

SurrogateAgent

OriginAgent

+manages*

1

 
Figure 4.7: CDN actors and identified agent types. 

As shows the class diagram of the defined agent types for the 
aforementioned architectures (see Figure 4.8), the ClientAgent and 
OriginAgent types are shared among them whereas SurrogateManagerAgent 
and SurrogateAgent have been differently designed depending on the 
specific architecture for surrogate clustering. 

ClientAgent
<<ELDA>>

Surrogate
<<ELDA>>

OriginAgent
<<ELDA>>

MS_Surrogate
<<ELDA>>

MC_Surrogate
<<ELDA>>

P2P_Surrogate
<<ELDA>>

SurrogateManager
<<ELDA>>

MS_SurrogateManager
<<ELDA>>

MC_SurrogateManager
<<ELDA>>

P2P_SurrogateManager
<<ELDA>>

MS_MPSurrogate
<<ELDA>>

0..1 *
* *

 
Master/Slave Multicast-based Peer to Peer 

 
Figure 4.8: Class diagram of the defined agent types. 



 
 
 

71 

  

However, for sake of brevity, only the ELDA-based modelling of the agents of 
the M/S_1 variant of the master/slave architecture (see Section 4.2.1) will be 
explained in details. Events referred in the DSC diagrams are summarized in 
table 4.1. 
 

Table 4.1: Events exchanged among agents of the M/S_1 variant of the master/slave 
architecture. 

EVENT DESCRIPTION SOURCE TARGET 
CLIENTREQUEST 
 

It contains a content request. Client Surrogate 

SURROGATERESPONSE It contains the requested content. 
 

Surrogate Client 

SURROGATEREQUEST It contains a content request. 
 

Surrogate Origin 

ORIGINRESPONSE It contains the requested content. 
 

Origin Surrogate 

SURROGATEMASTERPEERREQUEST It contains the request of 
availability of a content within 
the cluster. 
 

Surrogate MasterPeer 

SURROGATEMASTERPEERRESPONSE It informs the Surrogate that a 
content is available within the 
cluster. 
 

MasterPeer Surrogate 

SURROGATEINFORMCONTENT It informs the MasterPeer that 
new contents have been 
downloaded from the 
OriginServer 
 

Surrogate MasterPeer 

SENDTOCLIENT,  
WORKCOMPLETED, 
CONTENTNOTFOUND,  UPDATECLHT, 
FORWARDINGNOTFOUND 
 

Internal events. 
 

Surrogate Surrogate 

 
ClientAgent 
A ClientAgent (see its behavior in Figure 4.9) requests contents to the CDN 
according to an exponential probability density function which is used to set-
up the timeout value of the timer driving the agent activity: as soon as a timer 
expires, a TIMEOUT event is delivered to the ClientAgent which sends the 
content request and creates a next timer (see action ac1); instead, as soon 
as a previously requested content is delivered to the ClientAgent through the 
SURROGATERESPONSE event, performance indices are updated (see action 
ac0). It is worthy noting that target surrogates are chosen by ClientAgents 
according to a uniform distribution whereas the requested content is chosen 
according to a contents popularity distribution (CPD) which can be either 
uniform or Zipf [102]. 
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(a) 

acInit:  
  tableRichieste = new Hashtable<Integer,Long>(); 
  tableRichiesteContent = new Hashtable<Integer,String>(); 
  genTimout4Request();  
ac0:     
  SurrogateResponse surrogateResponse = (SurrogateResponse)e; 
  String contentResponse = (String)surrogateResponse.getData(); 
  processContent(contentResponse); 
ac1: 
  int idRichiesta = pkgStatic.Variables.clientIdRequest++; 
  int indiceContenuto = -1; 
  if(distribution == 0){ 
    indiceContenuto = (int)(rnd.uniform(0, contents.length));  
  }else if(distribution == 1){ 
    indiceContenuto = zipfDistribution.getElement(); 
  } 
  int indiceSurrogato = (int)(rnd.uniform(0, surrogati.length)); 
  String request = contents[indiceContenuto]; 
  ClientRequest clientRequest = new ClientRequest(self(), 

surrogati[indiceSurrogato],request,idRichiesta); 
  generate(new ELDAEventMSGRequest(self(),clientRequest)); 
  genTimout4Request() ; 
genTimout4Request:  
  long timeout = getRandomTimeout(); 
  generate(new ELDAEventCreateTimer(self(),timeout,new Timeout(self()))); 

(b) 
Figure 4.9: ClientAgent behavior: (a) DSC and (b) related actions. 

OriginAgent 
OriginAgent (see its behavior in Figure 4.10) has to respond to content 
requests performed by agents representing Surrogate servers: as soon as a 
SURROGATEREQUEST event is delivered to the OriginAgent, it checks if the 
requested content is available and in this case sends back such content (see 
action ac0); otherwise, the SurrogateAgent is notified about the request 
failure (see action ac1). 
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(a) 

acinit:  
  contentsInitiating(); 
ac0: 
  SurrogateRequest surrogateRequest = (SurrogateRequest)e; 
  String contentRequest = (String)surrogateRequest.getData(); 
  String contentValue = (String)tableContent.get(contentRequest); 
  OriginResponse originResponse = new OriginResponse(self(), 

surrogateRequest.getSource(), 
contentValue, 
contentRequest, 
true, 
surrogateRequest.getIdRequest()); 

  generate( new ELDAEventMSGRequest(self(),originResponse)); 
ac1: 
  SurrogateRequest surrogateRequest = (SurrogateRequest)e; 
  String contentRequest = (String)surrogateRequest.getData(); 
  OriginResponse originResponse = new OriginResponse(self(), 

surrogateRequest.getSource(), 
"Content not found!", 
contentRequest, 
false, 
surrogateRequest.getIdRequest()); 

generate(new ELDAEventMSGRequest(self(),originResponse));  
(b) 

Figure 4.10: The OriginAgent behavor: (a) DSC and (b) the related actions. 

 
SurrogateManager 
A SurrogateManager agent (see its behavior in Figure 4.11) aims to manage 
the surrogate server in which it runs. Among the SurrogateManagers that 
belong to a cluster, only one of them has to create the MasterPeer agent 
which holds and maintains the cluster CLHT (see action acInit). Once 
initialized, a SurrogateManager waits for content requests sent by client or 
surrogate agents: as soon as a CLIENTREQUEST event is delivered, a 
SurrogateManager (see action ac0) creates a Surrogate agent which handles 
the received request. 
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(a) 

acInit:  
  if(detainsMasterPeer){ 
     ELDAEventCreate createEvent = new ELDAEventCreate(self(),"SurrogateMPActiveState" 
           params,masterPeer); 
     generate(createEvent); 
  } 
ac0:   
  ClientRequest clientRequest = (ClientRequest)e; 
  Object[] params = {originServer,self(),masterPeer,clientRequest.getSource(), 
                   clhtContenuti, String)clientRequest.getData(),clientRequest.getIdRequest() 
           }; 
  ELDAEventCreate createEvent = new ELDAEventCreate(self(),"MS1_SurrogateActiveState", 

 params,new ELDAId("Surrogate"+(agentID++))); 
  generate(createEvent); 

(b) 
Figure 4.11: SurrogateManager: DSC (a) and actions (b). 

 
Master Peer 
The MasterPeer agent (see its behavior in Figure 4.12) has to reply to 
content requests sent by other Surrogates through the 
SURROGATEMASTERPEERREQUEST event: if the requested content is available 
within the cluster (that is the contentFound guard holds), the MasterPeer 
agent forwards the client request to the target SurrogateManager (see action 
ac0); otherwise (that is the contentNotFound guard holds) the MasterPeer 
agent replies to the asking Surrogate (see action ac1) which directly 
downloads the requested content from the OriginServer. Moreover, a 
MasterPeer agent has to maintain the cluster CLHT: as soon as a 
SURROGATEINFORMCONTENT event is delivered to it (because new contents 
have been downloaded from the OriginServer into the cluster) it performs the 
cluster CLHT updating (see action ac2) in which new content entries are 
added and, eventually, obsolete content entries are removed from the cluster 
CLHT. 
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(a) 

ac0: 
  SurrogateMasterPeerRequest request = (SurrogateMasterPeerRequest)e;   
  String contentRequest = (String)request.getData(); 
  ELDAId entry = clht.getEntry(contentRequest); 
  SurrogateMasterPeerResponse response = new SurrogateMasterPeerResponse(self(), 

request.getSource(), 
entry, 
entry!=null); 

  generate( new ELDAEventMSGRequest(self(),response) ); 
  ClientRequest clRequest = new ForwardedRequest(request.getClient(),entry, 

contentRequest,request.getIdRequest()); 
  generate( new ELDAEventMSGRequest(self(),clRequest)); 
ac1: 
  SurrogateMasterPeerRequest request = (SurrogateMasterPeerRequest)e;   
  SurrogateMasterPeerResponse response = new SurrogateMasterPeerResponse(self(), 

request.getSource(), 
null, false); 

  generate( new ELDAEventMSGRequest(self(),response)); 
ac2: 
  SurrogateInformContent inform = (SurrogateInformContent)e; 
  String content = (String)inform.getData(); 
  if(inform.getContentEvicted()!=null) 
     clht.removeEntry(inform.getContentEvicted()); 
  clht.putEntry(content, inform.getSource());  

(b) 
Figure 4.12: MasterPeer: DSC (a) and actions (b). 

 
Surrogate 
A Surrogate agent (see its behavior in Figure 4.13) which receives a client 
request checks if the content is locally available (see action acInit): in this 
case, the content is sent to the ClientAgent (see action ac0) and then the 
Surrogate agent quits itself (see action acQuitting); otherwise, the content 
request is forwarded to the MasterPeer agent of the cluster (see action ac1). 
As soon as the MasterPeer agent sends back its response though the 
SURROGATEMASTERPEERRESPONSE event, the Surrogate agent verifies if the 
requested content is on another surrogate (that is the 
contentOnAnotherSurrogate guard holds) and then quits itself (see action 
acQuitting); otherwise (that is the contentNotOnAnotherSurrogate guard 
holds) the Surrogate agent: (i) downloads the requested content from the 
OriginServer (see action  ac2); (ii) stores locally the content sent back by the 
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OriginServer through the ORIGINRESPONSE event (see action ac3); (iii) 
notifies the MasterPeer agent about CLHT updating  (see action 
acNotifyMasterPeer); (iv) sends the stored content to the ClientAgent (see 
action ac0); and finally quits itself (see action acQuitting). 
 

 
(a) 

acInit: 
  if(clht.containsContent(content)){ 
    generate(new SendToClient(self())); 
  }else if(e instanceof ForwardedRequest){ 
    generate(new ForwardedNotFound(self())); 
  }else generate(new ContentNotFound(self())); 
ac0: 
  String value = (String)clht.getContentValue(content); 
  SurrogateResponse surrogateResponse = new SurrogateResponse(self(), 

client,value,idRequest); 
  generate(new ELDAEventMSGRequest(self(), surrogateResponse )); 
  generate(new WorkCompleted(self())); 
ac1: 
  SurrogateMasterPeerRequest smpRequest = new SurrogateMasterPeerRequest(self(), 

masterPeer,content, 
client, idRequest); 

   generate(new ELDAEventMSGRequest(self(),smpRequest)); 
ac2: 
  SurrogateRequest surrogateRequest = new SurrogateRequest(self(),originServer, 

content,idRequest); 
  generate(new ELDAEventMSGRequest(self(), surrogateRequest )); 
ac3: 
  OriginResponse originResponse = (OriginResponse)e; 
  if(originResponse.getFound()){ 
 String contentValue = (String)originResponse.getData(); 
       clht.putContent(content,contentValue); 
   } 
   generate(new UpdateCLHT(self())); 
acNotifyMasterPeer: 
  String contentEvicted = (String)clht.getLastContentEvicted(); 
  SurrogateInformContent inform = new SurrogateInformContent(manager, 

masterPeer,content, 
contentEvicted); 

  generate( new ELDAEventMSGRequest(self(), inform)); 
  generate(new SendToClient(self())); 
acquitting: 
  generate(new ELDAEventQuitRequest(self()));  

(b) 
Figure 4.13: Surrogate: DSC (a) and actions (b). 
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4.4 Performance Evaluation 

4.4.1 Simulation parameters 
The simulation parameters are presented in Table 4.2. C% is varied from 1% 
to 1/NS with a step of 1%. NS is set to {2, 3, 5, 10} to consider small and large 
surrogate clusters. The average latency times among architecture 
components (TCS, TSS, and TSO) are set according to the following model [49]: 
 

    )δK,δN(KδKδ mvmvmfi +=  (Eq. 4.1) 
 

0K,K1KK vfvf ≥=+                (Eq. 4.2) 
 

where δm is the mean delay and δi is the instantaneous delay for a given 
message. δi is the sum of a fixed part and a variable part. Eq. 4.2 guarantees 
that the mean of δi is equal to δm. The variable part of δi is generated by a 
normal random variable whose mean and variance are set to Kvδm. The 
distribution of the normal variable is truncated to -Kfδm in order to assure that 
δi cannot assume negative values. To limit the delay variability Kf is set to 
0.7. As clients are very close to surrogates, surrogates of the same cluster 
are close to each other, and the origin is usually far away from surrogates 
and clients, the following relationship among the average latency times are 
established: TSO=3* TSS=9* TCS. In the simulation runs average latency times 
are set as follows: TSO=90, TSS=30, TCS=10. 
The eviction policy (EP) can be of the following types:  
- Random. The object to be evicted is randomly chosen. 
- Last access. The evicted object is the one that has not been requested 

for longest time. 
- Rank. The evicted object is the one less requested. 
Client requests are issued according to an exponential probability density 
function with λC average rate (ranging from 0.1 to 0.01 requests per time 
unit). Objects are requested by clients according to a content popularity 
distribution (CPD) which can be uniform (i.e. all the NO objects have the 
same popularity) or Zipf (i.e. the NO objects are requested considering the 
object popularity distributed according to a Zipf). In particular, popularity of 
most popular and less popular objects is defined according to a variant of the 
algorithm proposed in [102] which has been developed for static Web 
objects. 
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Table 4.2: Simulation parameters. 

PARAMETER DESCRIPTION 
NO The number of objects which are contained in the origin server 
C% The percentage of objects that are stored in a surrogate with respect 

to the objects stored in the origin server 
NS The number of surrogates in the cluster 
TCS The average latency time between clients and surrogates of the same 

cluster 
TSS The average latency time among surrogates of the same cluster 
TSO The average latency time between surrogates and origin server 
EP The type of policy for the eviction of content in surrogates 
λC Average rate of client requests 

CPD The type of distribution of the content popularity 

4.4.2 Simulation results 
Simulation results are obtained with reference to the simulated CDN 
architecture shown in Figure 4.14. When a client request is generated it is 
forwarded to a surrogate randomly selected to simulate the request 
redirection system (RS). 

Client

Surrogate1

SurrogateNs

Cluster

λC
Content Request Origin

Reply

RS

TC S

TSS

TSO
C%

C%

NO

 
Figure 4.14: Reference simulated CDN architecture. 

The simulation results analyzed in the following are obtained with reference 
to the following architectures (see Section 4.1): SA, M/S_2, MC, MC_PS, and 
P2P. In particular, as the M/S architectures have almost equal performances, 
M/S_2 has been selected as representative M/S architecture. Moreover, 
MC_PS refers to an implementation of the multicasting based on the 
Publish/Subscribe model whereas MC is based on message passing. Figure 
4.15 shows the AUPL and CHR performance indices obtained by setting 
NS=2, CPD=uniform, and EP=Rank. The distributed architectures outperform 
the SA architecture for both performance indices. In particular, with reference 
to the AUPL, an actual performance improvement can be obtained with 
C%>=30. The CHR of the distributed architectures is almost the same 
whereas the AUPL for C%<30 is better for the multicast-based architectures. 
By increasing NS the AUPL and CHR of the SA architecture does not change 
(see Figure 4.16) whereas the AUPL and CHR really improve for all the 
distributed architectures (as an example, see Figure 4.17 for the M/S_2 
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architecture). Moreover performance differences cannot be observed by 
changing EP. 
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Figure 4.15: Performance indices for two surrogates, uniform content request distribution, and 

rank eviction policy. 
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Figure 4.16: Performance indices for the SA architecture by varying the number of surrogates 
and with uniform content request distribution and Rank eviction policy.  

 
Figure 4.18 shows the AUPL and CHR obtained by setting NS=2, CPD=Zipf, 
and EP=Rank. The distributed architectures outperform the SA architecture 
for both performance indices. In particular, with reference to the AUPL, an 
actual performance improvement can be obtained with C%>=25. The CHR of 
the distributed architectures is almost the same whereas the AUPL for 
C%<30 is better for the multicast-based architectures as happed for 
CPD=uniform. In this case performance differences can be observed by 
changing EP for all the architectures (see Figure 4.19 for the M/S_2 
architecture). The best EP is the Rank whereas the worst one is the Last 
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access. By increasing NS both AUPL and CHR improve (as an example, see 
Figure 4.20 for the M/S_2 architecture) for the distributed architectures 
whereas they do not change for the SA architecture as observed in case of 
CPD=uniform. 
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Figure 4.17: Performance indices for the M/S_2 architecture by varying the number of 
surrogates and with uniform content request distribution and Rank eviction policy. 
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Figure 4.18: Performance indices for two surrogates, Zipf content request distribution, and 
Rank eviction policy. 
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Figure 4.19: Performance indices for the M/S_2 architecture by varying the eviction policies 

and with Zipf content request distribution.  
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Figure 4.20: Performance indices for the M/S_2 architecture by varying the number of 
surrogates and with Zipf content request distribution and Rank eviction policy. 
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5 A Process for Agent Specification, 
Simulation and Implementation 

 
 
 

 
 
PASSIM (Process for Agent Specification, Simulation and IMplementation) is 
an agent-oriented software development process that uses simulation for 
validating the requirements of the agent system under-development [24]. The 
creation of the PASSIM process was carried out through the composition of 
parts coming from two existing methodologies: PASSI (Process for Agent 
Societies Specification and Implementation) [23] and ELDAMeth. The 
composition of this new process can be regarded as an experiment of 
Situational Method Engineering (SME) [60] which is currently supported by 
several approaches in the literature [13, 25, 41, 61, 94]. In particular, 
PASSIM was created according to a process-driven approach [25, 41] which 
involves: 
(i) The choice or the definition of a software development life-cycle 

suitable for the specific problem and for the specific application 
domain. An iterative-incremental life-cycle was chosen which is partly 
also derived from the Royce's final waterfall model [100] and 
specifically introduces the simulation phase to validate the system 
design before coding. In particular, the chosen life-cycle is articulated 
into five phases (see Figure 5.1): (1) Requirements Specification, (2) 
Design, (3) Prototyping, (4) Coding, and (5) Deployment. After the 
Prototyping phase, the designers can either proceed with the 
remaining part of the process, if they want to implement the software 
final release, or use the results of the Prototyping to feedback the 
Design phase and/or the Requirements Specification phase. 

(ii) The selection of suitable method fragments for carrying out each 
phase of the chosen software development life-cycle. Method 
fragments can be both derived from already existing 
methodologies or ad-hoc defined ones. Table 5.1 reports the 
method fragments which were selected from both the PASSI 
methodology and the proposed methodology for carrying out each 
phase of the chosen software development life-cycle of Figure 1. For 
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each method fragment the Table shows the related activities and 
delivered work products. The selection of these fragments was easily 
performed since all the method fragments of the two exploited 
methodologies were available and ready-to-use. The so obtained 
software development process (PASSIM) consists of five phases 
carried out by six different method fragments. 

(iii) The adaptation of method fragments in order to allow their 
integration in the new methodology. The Prototyping method 
fragment has been modified to take as input the work products 
produced by the Agent Implementation method fragment, selected 
from PASSI. In particular, the modified version of the method fragment 
translates the structural and dynamic diagrams produced by the Agent 
Implementation fragment into an agent system model based on ELDA 
MAS meta-model (see Section 3.1.2). 

The phases of PASSIM carried out by the method fragments selected from 
PASSI are fully supported by the PASSI Toolkit (PTK), developed as a 
Rational Rose plug-in, whereas the Prototyping phase is supported by the 
ELDATool (see Section 3.4). 

In the following subsections each phase of PASSIM is described with 
reference to the method fragments selected for carrying it out. 

5.1 PASSIM 

5.1.1 Requirements Specification 
The Requirements Specification phase is carried out by the System 
Requirements method fragment selected from PASSI that produces a model 
of system requirements in terms of agency and purpose. This method 
fragment is composed by four atomic fragments: Domain (Requirements) 
Description, Agents Identification, Roles Identification and Tasks 
Specification.  
The Domain Description produces a use-case diagram that represents actors 
and use-cases (a functional description of the system) identified for the 
system using a hierarchical decomposition if its is required by the problem 
complexity. In the Agents Identification, agents are identified by assigning 
responsibility to each agent for a part of the functionalities of the whole 
system; this fragment produces a use-case diagram, called Agents 
Identification diagram (AId). In particular, the designer clusters some of the 
use cases within a package and gives it the name of the agent that will be 
responsible for accomplishing the specific functionalities of the clustered use 
cases. Once all the use cases have been assigned to the identified agents, 
the designer can define scenarios in which the agents will be involved (Roles 
Identification). Such scenarios are modeled through a set of UML sequence 
diagrams which show that each agent may be involved in several different 
activities and may appear more than once in each scenario playing different 
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roles. Finally, in the Tasks Specification, the tasks of each agent are 
specified through UML activity diagrams. 

5.1.2 Design  
The Design phase is carried out by two (composed) method fragments 
extracted from PASSI: the Agent Society and the Agent Implementation. 

5.1.2.1 The Agent Society Fragment 
The Agent Society composed method fragment includes four atomic method 
fragments: Domain Ontology Description, Communication Ontology 
Description, Roles Description, and Protocols Description. 
In the Domain Ontology Description the design of the domain ontology is 
performed by means of a class diagram (DOD diagram) that describes the 
ontology in terms of concepts (categories, entities of the domain), predicates 
(assertions on properties of concepts) and actions (performed in the domain). 
This diagram can also be regarded as an XML schema that can be used to 
obtain a Resource Description Framework (RDF) [36, 96] which encodes the 
ontological structure.  
The Communication Ontology Description produces a class diagram (COD 
diagram) that shows all the agents and all their communications 
(relationships among agents). This diagram is drawn on the basis of the AId 
(see Section 5.1.1). A class is introduced for each agent, and an association 
is introduced for each communication between two agents. Being 
communications a way to exchange knowledge, it is also important to 
introduce the proper data structure (coming from the entities described in the 
DOD diagram) in each agent. The association line that represents each 
communication is drawn from the initiator of the conversation to the other 
agent (participant) as can be deduced from the description of their interaction 
performed in the Roles Identification. Each communication is characterized 
by three attributes, Ontology, Agent Interaction Protocol and Content 
Language, which are grouped into an association class. The roles, initially 
identified in the Agents Identification, are completely defined in the Roles 
Description that produces a UML class diagram in which classes are used to 
represent roles. In particular, each role uses several elementary tasks to 
implement its complex behavior and, finally, roles are grouped in packages 
representing agents.  
The Protocols Description is required only when the FIPA standard protocols 
are not sufficient to solve some communication problems and new protocols 
must be introduced. 

 



 
 
 
88 

 

Table 5.1: The method fragments of PASSIM. 

PHASE 
COMPOSED 

METHOD 

FRAGMENT 

 ATOMIC METHOD 

FRAGMENTS  
WORK PRODUCT (KIND) 

SOURCE 

METHODOLOGY 

Requirements 
Specification 

System 
Requirements  

- Domain Description 
 

- Agents 
Identification 
 

- Roles Identification 
 

- Tasks Specification 
 

- Domain Description diagram 
(use-case diagram)  

- Agents Identification diagram 
(use-case diagram)  

- Roles Identification  diagrams 
(sequence diagram) 

- Tasks Specification  diagrams 
(activity diagram) 

PASSI 

Agent Society 
 

- Domain Ontology 
Description 

- Communication 
Ontology 
Description  

- Roles Description 
 

- Protocols 
Description 
 

- Domain Ontology Description 
diagram (class diagram)  

- Communication Ontology 
Description diagram (class 
diagram) 

- Roles Description diagram 
(class diagram) 

- Protocols Description  
(sequence diagram) 

PASSI 

Design 

Agent 
Implementation  

- Agent Structure 
Definition 
 
 
Agent Behavior 
Description 
 

- Single-Agent Structure 
Definition diagrams (class 
diagram) 

- Multi-Agent Structure 
Definition diagram (class 
diagram) 

- Single.Agent Behavior 
Description diagrams 
(activity/state diagram) 

- Multi-Agent Behavior 
Description diagram 
(activity/state diagram) 

PASSI 

Prototyping 
Simulation-

based 
Prototyping 

- ELDA-based Multi-
Agent-System 
Model Definition 
 

- Multi-Agent System 
Code Generation 

 
- Simulation 

Implementation 
 
- Simulation 

Execution 

- Multi-Agent System Distilled 
StateChart Simulation Model 
(MASDSC diagram) 

 
- MAS Code (C(MASDSC) 

diagram)  
 

- Simulator Program 
 

- Simulation Results 

Proposed 
Simulation-based 

process 

Coding Code  - Code Reuse 
- Code Refinement 

- Code for the target agent 
platform 

PASSI 

Deployment Deployment  - Deployment 
Configuration  

- Deployment Diagrams  PASSI 



 
 
 

89 

  

 

Requirements
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Prototyping

Coding

Prototyping
Work Products

Coding
Work Products

Design
Work Products

Deployment

Deployment
Work Products

Phase

Work Products

[Next Iteration ]

Requirements
Specification

Work Products

 
Figure 5.1: The software development life-cycle of PASSIM. 

5.1.2.2 The Agent Implementation Fragment 
The Agent Implementation method fragment is composed by two different 
atomic fragments, each of them carried out at both the multi- and single-
agent level of abstraction. The multi-agent level models the overall structure 
of the system (MAS structure and behavior, inter-agent communications, 
etc.). The single-agent level of abstraction focuses on the implementation 
details of each agent. 
In particular, the following two atomic method fragments are carried out at 
the multi- and single-agent levels: 
- Agent Structure Definition (ASD), which uses conventional class 

diagrams to describe the structure of agents (represented by classes) 
and produces both the Single-Agent Structure Definition (SASD) 
diagrams and the Multi-Agent Structure Definition (MASD) diagram; 

- Agent Behavior Description (ABD), which uses activity diagrams or 
statecharts to describe the behavior of agents and produces the Single-
Agent Behavior Description (SABD) diagrams and the Multi-Agent 
Behavior Description (MABD) diagram. 

The MASD diagram represents the multi-agent system from the structural 
point of view. Agents are represented as classes with their behaviors in the 
operation compartment and attributes specifying the agent knowledge. 
The agent behavior at the multi-agent level is described by the MABD 
diagram. This is a UML activity diagram used to illustrate the dynamics of the 
system during the agents’ lifecycle. In this diagram, the involved agents and 
their tasks are represented with swim-lanes, operations are displayed as 
activities, and transitions among activities represent events like method 
invocations (when relating activities in the same swim-lane), new behavior 
instantiations/invocations (when relating activities of the same agent but in 
different swim-lanes) or messages (when activities from two different agents 
are involved). 
In the SASD diagram one class diagram is used for depicting the internal 
structure of each agent. This is a very detailed diagram, reporting attributes 
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and methods of both the agent class and the classes of the tasks. The details 
of the behavior of each agent are specified in the SABD diagram.  

5.1.3 Prototyping 
The Prototyping phase is carried out by a (composed) method fragment, Simulation-
based prototyping, which is composed by four atomic method fragments: ELDA-
based Multi-Agent-System Model Definition, Multi-Agent-System Code Generation, 
Simulation Implementation, and Simulation Execution. 
 

 
Figure 5.2: The ELDA-based Simulation method fragment. 

 
The ELDA-based Multi-Agent-System Model Definition is enabled by ELDA MAS 
Meta-Model which supports the specification of the agents types and the interaction 
protocols among them. The ELDA-based specification of a MAS, denoted as 
MASDSC, is expressed as: 
 

MASDSC = {Beh(AT1), Beh(AT2), …, Beh(ATn)}, 
 

where Beh(ATi) is the specification of the dynamic behavior of the i-th agent type 
modeled according to the ELDA model (see section 3.1.1). The ELDA-based Multi-
Agent-System Model Definition is an adapted fragment which takes as input the 
structural and dynamic diagrams (SASD, SABD, MASD, and MABD diagrams) 
produced by the Agent Implementation which are semi-automatically translated into 
a MASDSC as described in section 5.2. 
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The Multi-Agent-System Code Generation is made according to the 
ELDAFramework (see Section 3.2) and fully supported by ELDATool (see Section 
3.4): given a MASDSC, it produces C(MASDSC) representing the code of MASDSC. 
The Simulation Implementation and Simulation Execution are supported by 
ELDASim (see Section 3.3.1): on the basis of functional and non-functional 
requirements and the MAS code, a simulator program can be implemented by using 
ELDASim in the Simulation Implementation; in the Simulation Execution the 
simulator program is executed to obtain the simulation results containing validation 
traces and performance parameter values. Moreover, the simulation results can be 
used to feed back the ELDA-based Multi-Agent-System Model Definition. 

5.1.4 Coding 
The Coding phase is carried out by the Code (composed) method fragment 
selected from PASSI which produces the code of the MAS under-
development. The Code is composed by two atomic method fragments: 

1. Code Reuse, in which code generation is directly supported by 
the PTK. In particular, it is possible to generate not only the 
skeletons but also largely reusable parts of the methods 
implementation based on a repository of reused patterns and 
associated design descriptions. Currently, the pattern repository 
includes a set of reusable portions of JADE and FIPA-OS agents 
and corresponding behaviors; a more detailed description of the 
pattern repository can be found in [20, 26]; 

2. Code Refinement, where code is manually completed by the 
programmer. 

5.1.5 Deployment 
The Deployment phase is carried out by the Deployment (composed) method 
fragment selected from PASSI which specifies the distribution of the parts of 
the system (agents) across the available agent platforms. The Deployment is 
composed by only the Deployment Configuration atomic method fragment 
which produces the deployment diagrams describing the allocation of agents 
to the available agent platforms and any constraints on agent migration. In 
particular, these diagrams also specify the libraries or hardware devices 
(sensors or actuators) that should be available on the agent platforms in 
order to ensure the proper system functionalities. 

5.2 Adapting the design for the prototyping 
As previously introduced, in order to prototype the MAS under-development, 
the work products of the Agent Implementation, carried out in the Design 
phase, must be translated into a Multi-Agent System Distilled StateChart 
Model (MASDSC) which represents the work product of the Multiagent-System 
ELDA-based Model Definition (see Table 5.1). The input to the translation 
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process consists the SASD, SABD, MASD, and MABD diagrams whereas 
the output of the translation process is represented by a MASDSC. 
The translation process is semi-automatic which means that these diagrams 
are automatically translated into a MASDSC skeleton and, then, the MASDSC 
skeleton is manually refined through programming. In particular, the following 
steps are carried out: 

1. The agent types of the MASDSC are directly derived from the agent 
types of the MASD diagram through a one-to-one mapping. 

2. The interactions in terms of events exchanged between the agent 
types of the MASDSC are directly derived from the MABD diagram. 

3. The ADSC of an agent type is based on the SASD and the SABD 
diagrams of the agent type. As a SASD is a platform-dependent 
diagram (e.g. FIPA-OS-based or JADE-based) the SASDs are 
designed to be ELDA-model oriented. In particular, attributes and 
methods of the agent type are inserted into the ADSC as state 
variables and supporting functions, respectively. These state variables 
and supporting functions need to be manually finalized, i.e. the specific 
type of all the state variables is defined and the methods are 
implemented. The activities reported in the SABD diagram become 
states of the ADSC and the transitions among activities become 
transitions among the states corresponding to these activities. Finally, 
the ADSC has to be refined through manual programming which is 
needed for model consistency and optimization purposes. This 
refinement step involves the introduction/deletion of states, transitions, 
transition labels (event[guard]/action), state variables and supporting 
functions. 

In the following we use a simple example to show how the semi-automatic 
translation from the work products of the Agent Implementation to a MASDSC 
can be obtained. 
The example MAS we considered is composed of two agent types: (i) an 
information retrieval agent (IRA) whose task is to visit a given number of 
locations to retrieve information through a query; (ii) an information provider 
agent (IPA) whose task is to process the query received from the IRA and to 
provide it with the query result. 
The work products produced by the Agent Implementation activities are 
shown in Figure 5.3, 5.4, 5.5, 5.6. 

User

InformationRetrievalAgent
itinerary : Itinerary
query : Query
data : Vector

archiveQueryResult()
moveNextLocation()
submitQuery()

InformationProviderAgent
dataSource

searchForInformation()
provideQueryResult()

 
Figure 5.3: the MASD of the example MAS. 
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SubmitQuery

StoreInfoRetrieved

MigrateNext
Location

[ itineraryNotCompleted ]

InformationRetrievalAgent.
Searching

ProvideInfo

InformatonProviderAgent.
Providing

ReportData[ itineraryCompleted ]

InformationRetrievalAgent.
Reporting

 
Figure 5.4: the MABD of the example MAS. 

ELDAAgent
(from ELDAFramework)

ADSC
(from ELDAFramework)

ELDABehaviour
(from ELDAFramework)

IRA_ADSC
itinerary : Itinerary
query : Query
data : Vector

archiveQueryResult()
submitQuery()
moveNextLocation()

IRA_Behavior

ELDAQueue
(from ELDAFramework)

ELDAID
(from ELDAFramework)

InformationRetrievalAgent

 
(a) 

InformationRetrievalAgent.
Searching

SubmitQuery

StoreInfoRetrieved

MigrateNext
Location

InformationRetrievalAgent.
Reporting

ReportData
[ ItineraryNotCompleted ]

[ ItineraryCompleted ]

 
(b) 

Figure 5.5: the (a) SASD and (b) SABD of the IRA. 
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ADSC
(from ELDAFramework)

ELDAAgent
(from ELDAFramework)

IPA_ADSC
dataSource

searchForInformation()
provideQueryResult()

IPA_Behaviour

ELDAID
(from ELDAFramework)

ELDABehaviour
(from ELDAFramework)

InformationProviderAgentInformationProviderAgent
ELDAQueue

(from ELDAFramework)

 
(a) 

ProvideInfo

InformatonProviderAgent.
Providing

WaitForQuery

[ stop ]

[ continue ]

 
(b) 

Figure 5.6: the (a) SASD and (b) SABD of the IPA. 

  
Given the MASD of the example MAS (Figure 5.3), the agent types of the 
MASDSC are: InformationRetrievalAgent and InformationProviderAgent. 
 
InformationRetrievalAgent 
Given the MABD of the example MAS (Figure 5.4), the events exchanged 
between the two agent types are: QUERYREQUEST (QUERY) and 
QUERYINFORM (QUERYRESULT), which correspond to the two main 
messages of the FIPA Query Protocol which was selected for the 
communication between the two agents. 
Given the SASD and SABD diagrams of the InformationRetrievalAgent (see 
Figure 5.5), the ADSC skeleton of the InformationRetrievalAgent of the 
MASDSC reported in Figure 5.7 was obtained. The names of the states of the 
ADSC have as suffix the names of the activities of the SABD diagram and as 
postfix “Done” which means that the activity corresponding to the state has 
been carried out. The event labeling the transition from SubmitQueryDone to 
StoreInfoRetrieveDone corresponds to the message QUERYINFORM sent from 
the IPA agent. The events labeling the transitions from 
StoreInfoRetrieveDone are derived from the guards of the selection block of 
the IRA SABD diagram (see Figure 5.5b). The event labeling the transition 
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from MigrateNextLocationDone to SubmitQueryDone assumes the name of 
the activity corresponding to the target state as each transition of a DSC 
must be labeled by an event. 

 
Figure 5.7: the ADSC skeleton of the IRA. 

 
The ADSC of the InformationRetrievalAgent which was obtained after 
refinement is shown in Figure 5.8. The actions have been purposely defined 
“by programming” on the basis of the state variables and supporting 
functions derived from the SASD diagram (see Figure 5.5a).  

 
ac0: generate(new QueryRequest(self(), IPA, query)); 
ac1: QueryInform qi = (QueryInform)evt; 
archiveQueryResult(qi.getInfo()); 
if (itinerary.hasNextLocation()) 
 generate(new ItineraryNotCompleted(self())); 
else 
 generate(new ItineraryCompleted(self())); 
ac2: Location nextLoc = itinerary.getNextLocation(); 
generate(new Move(self(), nextLoc, new SubmitQuery(self())); 
ac3: reportData(); 
ac4: ac0; 

Figure 5.8: the refined ADSC of the IRA. 
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InformationProviderAgent 
Given the SASD and SABD diagrams of the InformationProviderAgent (see 
Figure 5.6), the ADSC skeleton of the InformationProviderAgent of the 
MASDSC was obtained (see Figure 5.9). Two states are derived: 
WaitForQueryDone, referring to the end of the WaitForQuery activity, and 
ProvideInfoDone, referring to the end of the ProvideInfo activity. The event 
labeling the transition from WaitForQueryDone to ProvideInfoDone 
corresponds to the message QueryRequest sent from the IRA agent. The 
Continue event labeling the transition from ProvideInfoDone to 
WaitForQueryDone is derived from the guard of the selection block of the 
IPA SABD diagram (see Figure 5.6b). 

 
Figure 5.9: the ADSC skeleton of the IPA. 

 
The ADSC of the InformationProviderAgent which was obtained after 
refinement is shown in Figure 5.10. The actions have been purposely defined 
“by programming” on the basis of the state variables and supporting 
functions derived from the SASD diagram (see Figure 5.6a). 

 
ac1: QueryRequest qr=(QueryRequest)evt; 
Result r = searchForInformation(qr.getQuery()); 
generate(new QueryInform(self(), qr.getSource(), r); 
generate(new Continue(self(), self())); 
 

Figure 5.10: the refined ADSC of the IPA. 

5.3 A case study: from the analysis to the 
validation of an Agent-based E-Marketplace 

An electronic marketplace (e-Marketplace) is a platform for buyers and 
sellers exchanging products and services [33, 98]: (i) buyers specify the 
items they want to buy, along with their desired price ranges; (ii) the e-
Marketplace then matches trading partners for the buyers and provide the 
Request for Quotation (RFQ); (iii) on the basis of the specification and price 
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range, sellers return the quotation to the buyers and wait for the confirmation; 
(iv) after receiving all quotations, buyers can select the best offer and issue a 
purchase order to the selected sellers. Nowadays, many e-Marketplaces are 
based on software agents which are capable of fully supporting and 
automating the stages of the consumer-buying behavior (CBB) model [57, 
74]. The CBB model defines the decision process which consumers undergo 
when purchasing a product. Such a process is articulated in six stages: 

1. Need Identification: This stage characterizes the buyer that 
becomes aware of some unmet/desired need. Within this stage, 
the buyer can be stimulated through product information. 

2. Product Brokering: This stage comprises the retrieval of 
information to help determine what to buy. This encompasses 
the evaluation of product alternatives based on buyer-provided 
criteria. The result of this stage is the "consideration set" of 
products. 

3. Merchant Brokering: This stage combines the "consideration 
set" from the previous stage with merchant-specific information 
to help determine who to buy from. This includes the evaluation 
of merchant alternatives based on buyer-provided criteria (e.g., 
price, warranty, availability, delivery time, reputation, etc.). 

4. Negotiation: This stage is about how to settle on the terms of 
the transaction. The negotiation varies in duration and complexity 
depending on the market. 

5. Purchase and Delivery: The purchase and delivery of a product 
can either signal the termination of the negotiation stage or occur 
sometime afterwards. 

6. Product Service and Evaluation: This post-purchase stage 
involves product service, customer service, and an evaluation of 
the satisfaction of the overall buying experience and decision. 

The objective of our case study is to apply PASSIM to the design and 
validation of an agent-based e-Marketplace (AeM) which supports stages 3, 
4, and 5 through the following specific consumer-buying process [41]:  

i. Request Input. When users wish to buy a product, they identify a set of 
product parameters (product description, maximum price PMAX), log 
into the e-Marketplace and submit a request containing the product 
parameters. The e-Marketplace checks if users are trustworthy (i.e. 
from a commercial and security viewpoint) and decides if requests can 
be accepted. If so, the Consumer Assistant System (CAS) of the e-
Marketplace starts satisfying the user request. 

ii. Searching. The CAS obtains a list of locations of vendors by using the 
Yellow Pages Service (YPS) of the e-Marketplace. The YPS is a 
federation of autonomous components at which vendors register to 
advertise their products. In particular the following YPS organizations 
were established: 

- Centralized: each YPS component stores a complete list of 
vendors; 
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- One Neighbor Federated: each YPS component stores a list of 
vendors and keeps a reference to only one other YPS 
component; 

- M-Neighbors Federated: each YPS component stores a list of 
vendors and keeps a list of at most M YPS components. 

iii. Contracting & Evaluation. The CAS interacts with the found vendors to 
request an offer (POFFER) for the desired product, evaluates those 
received, and selects an offer, if any, for which the price is acceptable 
(i.e., POFFER ≤PMAX).  

iv. Payment. The CAS purchases the desired product from the selected 
vendor using a given amount of e-cash (or bills). The following steps 
are performed to execute the money transaction between the CAS and 
the vendor:  

- the CAS gives the bills to the vendor;  
- the vendor sends the bills to its bank;  
- the bank validates the authenticity of the bills, exempts them 

from reuse, and, finally, issues an amount of bills equal to that 
previously received to the vendor;  

- the vendor notifies the CAS. 
v. Reporting. The CAS reports the buying result to the User. 

This description can be considered as an initial requirements document on 
the basis of which the Requirements Specification phase is carried out. In the 
following subsections selected work products of the first four phases of 
PASSIM (see Section 5.1) are shown and described. In particular, Section 
5.3.1 presents the Requirements Specification work products, Section 5.3.2 
shows the Design work products, and, finally, Section 5.3.3 shows the 
establishment and the results of the Prototyping phase which allows for both 
functional validation and performance evaluation of the MAS under-
development. 

5.3.1 The Requirements Specification phase  
From the previously reported description of the system to be designed, the 
AId (see Section 5.1.1) was drawn which reports three actors (User, Vendor 
and Bank) and the use cases, coming from the Domain Description, which 
were packaged into the following six agents: 

- User Assistant Agent (UAA) is associated with a user and assists 
her/him in looking for a specific product that meets her/his needs 
and buying the product according to a specific buying policy. 

- Yellow Pages Agent (YPA) represents an entry point of the 
federated yellow pages service (or “Yellow Pages”) which provides 
the location of agents selling a given product. 

- Vendor Agent (VA) represents the vendor of specific goods. 
- Mobile Consumer Agent (MCA) is an autonomous mobile agent 

dealing with searching, contracting, evaluation, and payment of 
goods. 
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- Access Point Agent (APA) represents the entry point for the e-
marketplace, accepts requests for buying a product from a 
registered UAA and fulfils them by generating a specific MCA. 

- Bank Agent (BA) represents a reference bank of MCA and VA. 
It is worth noting that the <<communicate>> relationship shown in Figure 
5.11 represents agents interaction. 

UserAssistantAgent
<<Agent>>

AccessPointAgent 
<<Agent>>

MobileConsumerAgent
<<Agent>>

YellowPagesAgent
<<Agent>>

BankAgent
<<Agent>>

VendorAgent
<<Agent>>

Evaluate_Offer

Request_an_Offer

Search_for_Vendors 

Autenticate_User

Negotiate_Offer

<<include>>

<<include>>

Pay_for_Goods

Search_for_Vendors 

<<communicate>>. 

Login

<<communicate>>.
 

Manage_Transaction 

<<include>> 

<<include>>

<<include>> 

User

Validate_User_Request 

<<communicate>>. 

Search_for_goods 

<<communicate>>.

Register_Vendor_and_
Goods

Propose_an_Offer

Vendor 

Register_Vendor_Data

Bank 

Manage_Vendors 

<<include>>

<<include>>

Supervise_Money_Trans
action

Do_Bank_Transaction 

<<include>> 

<<communicate>>. <<communicate>>. 

 
Figure 5.11: The AId for the proposed case study. 

 
On the basis of the AId, the Roles Identification diagram (RId) was designed. 
A portion of the obtained RId is shown in Figure 5.12 where the APA 
(UserRequestValidatorAndForwarder role) after validating the order, forwards 
it to the MCA (Searcher role); afterwards the MCA asks for the vendors list to 
the YPA (VendorListProvider role). After getting the list, the MCA 
(Contr&Eval role) contacts all the VAs (OfferProposer role) and asks them for 
their offers. Finally, the MCA selects the best offer and pay for the product 
(Payer role). 
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Searcher : 
MobileConsumerAgent

UserRequestValidator 
AndForwarder : AccessPointAgent

VendorListProvider : 
YellowPagesAgent

Contr&Eval : 
MobileConsumerAgent

OfferProposer : 
VendorAgent

Payer : 
MobileConsumerAgent

12: SelectBestOffer

1: ValidateOrder

2: ForwardProductRequest

3: RequestVendorList

4: CreateList

5: ReturnVendorsList

6: * [for each vendor] MoveToVendorLocation
7: SendMeYourOffer

8: GenerateOffer

9: ReturnOffer

10: EvaluationOffer

11: ContactNextVendor

 

Figure 5.12: A portion of the RId regarding a specific-product vendors search scenario. 

 
An initial definition of the dynamic behavior of each agent is the work product 
produced by the last atomic method fragment of this phase (Tasks 
Specification). The Tasks Specification produces a set of Tasks Specification 
diagrams (one for each identified agent) which are UML activity diagram 
representing the agent tasks. Each diagram is composed of two swim-lanes 
(see Figure 5.13): the right-hand highlights the roles of the agent which the 
diagram refers to and the activities the agent performs in playing these roles, 
whereas the left-hand reports the roles played by other agents interacting 
with the agent of right-hand.  

YellowPagesAgent. 
VendorListProvider

VendorAgent. 
OfferProposer

VendorAgent.Biller

UserAssistantAgent. 
ProductBuyer

AccessPointAgent. 
UserRequestValidatorandForwarder

Interacting Agents

Searcher

Contr&Eval

Payer

Reporter

Mobile Consumer Agent

 
Figure 5.13: The Tasks Specification diagram for the MCA. 
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In figure 5.13, the Tasks Specification diagram of the MCA is shown. In 
particular, the MCA is involved in: (i) searching the list of vendors through a 
query to the YPA (Searcher role), (ii) contracting with VAs and evaluating 
their offers (Contr&Eval role), (iii) buying the product from the VA proposing 
the best offer (Payer role), (iv) reporting the transaction results to the UAA 
(Reporter role). Afterwards the MCA can either play again the Searcher role 
or be terminated. 

5.3.2 The Design phase 
The Agent Society method fragment (see Section 5.1.2) produces diagrams 
which represent social interactions and dependencies among the identified 
agents (see Section 5.3.1). A portion of the DOD diagram is reported in 
Figure 5.14 in which some concepts, predicates and actions used to define 
the problem domain are shown. For instance the Vendor concept 
(representing the vendor of the real-world scenario) is related with the 
Product(s) it sells. A vendor registers its products in the agent-based yellow 
pages service by executing the RegisterProduct action which is performed by 
the VA (action Actor) and its outcome received by the YPA (action Receiver). 
A portion of the COD diagram is reported in Figure 5.15. It shows three 
identified agents (APA, VA, MCA) and two communications among them 
(Forward_Product_Request, Offer_Request). In particular, the Offer_Request 
communication happens when the MCA asks the VA for the best offer (see 
the scenario reported in Figure 5.12). This communication refers to the 
OfferPrice predicate from the ontology of Figure 5.14 and adopts the 
FIPAQuery agent interaction protocol and the RDF content language. Roles 
played by agents during the interaction (as described in the RIds) are 
reported at the beginning and the end of the association line. 
The Agent Implementation method fragment (see Section 5.1.2.2) produces 
work products representing the MAS architecture. In particular, a portion of 
the Multi-Agent Structure Description (MASD) diagram, which describes the 
structure of the VA, MCA and APA agents, is shown in Figure 5.16. It is 
worth noting that the VA is in relationship with an (human) actor; this is an 
extension of UML that is useful to represent all the possible agent 
relationships (communications and GUI-based interactions with the user) in a 
unique diagram. 
A portion of the obtained Multi-Agent Behavior Description (MABD) diagram 
is reported in Figure 5.17, which illustrates the activities occurring during the 
Vendor_Request communication between MCA and YPA and the 
Offer_Request communication between MCA and VA. In particular, this 
portion of the MABD diagram describes the request for the VA list from the 
MCA to the YPA, the migration of the MCA to the retrieved VA location and 
the contracting phase carried out by the MCA with the VA. 
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OfferPrice
Theproduct : Product

<<predicate>>

RegisterProduct
Actor = VendorAgent
Receiver = YellowPagesAgent

<<act>> Register()

<<action>>

BuyProduct
Actor = MobileConsumerAgent
Receiver = AccessPointAgent

<<act>> Negotiate_and_buy()

<<action>>

Offer
Quantity : int
Price : int
DeliveryDate : Date

<<concept>>VendorsList
Theproduct : Product

<<predicate>>

Product
Name : String
Type : String
Quantity : int

<<concept>>

TheProduct

TheProduct

11..n 11..n

Vendor
Social_Name : String
Personal_Name : String
Personal_Surname : String
Country : String
Address : String
CAP : String

<<concept>>

1..n

1

1..n

1

 
Figure 5.14: A portion of the DOD diagram. 

Forward_Product_Request
Ontology : BuyProduct
Language : RDF
Protocol : FIPARequest

<<Communication>>

Offer_Request
Ontology : OfferPrice
Language : RDF
Protocol : FIPAQuery

<<Communication>>

AccessPointAgent
UserData
ProductParameters
LoginUser
FindProduct

<<Agent>>

MobileConsumerAgent
ProductParameters
UserData
VendorList
Offer
Bill
FindProduct
CreateVendorList
NegotiateOffer
SendBill

<<Agent>>

UserRequestValidatorAndForwarder

Searcher
VendorAgent

Vendor
Product
Offer
Bill
RegisterProduct
DoTransaction
NegotiateOffer
SendBill
User
UserData
Transaction

<<Agent>>

Contr&Eval OfferProposer

 
Figure 5.15: A portion of the COD diagram. 

AccessPointAgent
UserData
ProductParameters
LoginUser
FindProduct

ValidateAndForwardUserRequest()
ValidateAutentication()

<<Agent>>

MobileConsumerAgent
ProductParameters
UserData
VendorList
Of f er
Bill
FindProduct
CreateVendorList
NegotiateOf f er
SendBill

Searching()
Contr&Ev al()
Pay For()
Reporting()

<<Agent>>VendorAgent
Vendor
Product
Of f er
Bill
RegisterProduct
DoTransaction
NegotiateOf f er
SendBill
User
UserData
Transaction

ProposeOf f er()
Billing()
RegisterData()

<<Agent>>

Vendor

 
Figure 5.16: A portion of the MASD diagram. 
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Request_VAList

MoveToVendor
Location

Process_YPA_ 
Reply

[ Contracting ]

MobileConsumerAgent. Searching

Create_and_
Return_List

( Request; VendorsList; RDF )

( Inform; VendorsList; RDF )

YellowPagesAgent. 
ProvideVendorsList

Request_An_Offer_
From_VATarget

Evaluate_ 
VAOffer

MobileConsumerAgent.Contr&Eval

GenerateOffer

( Query; OfferPrice;  RDF )

( Inform; OfferPrice; RDF )

VendorAgent.ProposeOffer

...

 
Figure 5.17: A portion of the MABD diagram with some interactions among MCA, YPA and 

VA. 

Figure 5.18 shows the Single-Agent Behavior Description (SABD) diagram 
for the MCA, which provides a high-level specification of the behavior of the 
MCA. In particular, the MCA plays 4 different roles in the following sequence: 
Searching, Contr&Eval, PayFor and Reporting. They also correspond to the 
phases of the MCA lifecycle. In particular, in the Searching phase, the MCA 
moves to the location of the next YPA (YPATarget), requests the list of 
vendors (VAList), and processes the reply (YPA_Reply). If the Searching 
phase is not completed ([Searching] is evaluated to true), the MCA continues 
searching. If the guard [Contracting] holds (i.e. the VAList is not empty) the 
MCA passes into the Contr&Eval phase. If the guard [Reporting] holds (i.e. 
the VAList is empty) the MCA directly goes into the Reporting phase. In the 
Contr&Eval phase, the MCA moves to the location of a vendor in the VAList 
(VATarget), requests an offer (VAOffer) and evaluates it. If the MCA decides 
to accept the received VAOffer (i.e. the guard [BuyingSoon] holds) or another 
received VAOffer (i.e. the guard [MovingAndBuying] holds), it passes into the 
PayFor phase. If the MCA desires a new offer, it keeps contracting (i.e. guard 
[Contracting] holds true). If no offer is selected the MCA goes into the 
Reporting phase (i.e. guard [Reporting] holds true). Finally, in the Reporting 
phase, the MCA moves to the APA location and reports to its UAA. 
Figure 5.19 shows the SASD diagram for the MCA and its derived agents. In 
particular, two specific MCAs are derived: 
- the ItineraryConsumerAgents (or ICA), which performs the Searching 

and Contr&Eval phases (see Figure 5.18) by sequentially moving from 
one location to another within the e-Marketplace; 

- the ParallelConsumerAgent (or PCA), which performs the Searching and 
Contr&Eval phases (see Figure 5.18) by means of the support of a set of 
mobile agents:  
o the ItinerarySearcherMobileAgent or the 

SpawningSearcherMobileAgent for carrying out sequential or parallel 
searching of vendors during the Searching phase;  
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o the ContractorMobileAgent for carrying out parallel negotiation during 
the Contr&Eval phase. 

 

MoveTo_Next_ 
YPATarget

Request_VAList

Process_YPA_
Reply

MobileConsumerAgent. 
Searching

Request_An_Offer 
_from_VATarget

Evaluate_ 
VAOffer

MobileConsumerAgent. 
Contr&Eval

MoveTo_Next_ 
VATarget

Pay_VATarget_ 
ForProduct

MobileConsumerAgent. 
PayFor

MoveTo_VATarget_ 
Location

MoveTo_APA_ 
Location

ReportTo_UAA

MobileConsumerAgent. 
Reporting

[ Searching ] [ Contracting ]

[ Reporting ]

[ Contracting ]

[ BuyingSoon ]

[ MovingAndBuying ]
[ Reporting ]

 
Figure 5.18: The SABD diagram for the MCA. 

5.3.3 The Prototyping phase 
The aim of the Prototyping phase is the functional validation of the designed 
AeM and the performance evaluation of different types of MCAs for 
optimization purposes. In particular, the functional validation is carried out on 
the basis of simple simulation scenarios aiming at validating the behavior of 
the agent types, the agent interaction protocols, and the global behavior of 
the AeM. The performance evaluation is carried out to evaluate the 
completion time of the buying task of different types of MCAs.  
In the following subsections, first the refined ELDA-based MCAs derived from 
the Multiagent-System ELDA-based Model Definition are described (Section 
5.3.3.1) and, then, the functional validation (Section 5.3.3.2) and the 
performance evaluation (Section 5.3.3.3) are presented. 
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ELDAAgent
(from ELDAFramework)

ADSC
(from ELDAFramework)

ELDABehaviour
(from ELDAFramework)

PCA_ADSC

ItineraryConsumerAgent

ISMA_ADSC

SSMA_ADSC

PCA_Behavior

CMA_ADSC

ISMA_Behavior

SSMA_Behavior

MobileConsumerAgent

ItinerarySearcherMobileAgent

SpawningSearcherMobileAgent

ParallelConsumerAgent

0..10..1

0..n0..n

CMA_Behavior

ELDAQueue
(from ELDAFramework)

ELDAID
(from ELDAFramework)

ContractorMobileAgent

1..n1..n

 

Figure 5.19: The SASD diagram for the MCA and derived agents. 

5.3.3.1 ELDA-based MCAs 
Two types of ELDA-based MCAs were obtained according to the adapting 
Multiagent-System ELDA-based Model Definition (see Section 5.2): ICA and 
PCA. Both ICA and PCA are equipped with policies for searching and buying 
(see Table 5.2) during the Searching and the Contr&Eval phases, 
respectively. 
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Table 5.2: Searching and Buying Policies of MCA. 

SEARCHING POLICY (SP) DESCRIPTION 
ALL All YPA agents are contacted 
PA-PARTIAL A subset of YPA agents are contacted 
OS-ONE-SHOT Only one YPA agent is contacted 

BUYING POLICY (BP) DESCRIPTION 

MP-Minimum Price 
The MCA first interacts with all the VA agents; then, 
it buys the product from the VA offering the best 
acceptable price 

FS-First Shot 
The MCA interacts with the VA agents until it obtains 
an offer for the product at an acceptable price, then it 
buys the product 

FT-Fixed Trias 
The MCA interacts with a given number of VA agents 
and buys the product from the VA which offers the 
best acceptable price 

RT-Random Trias 
The MCA interacts with a random number of VA 
agents and buys the product from the VA which offers 
the best acceptable price 

 
In the following, we focus on the PCA as the ICA possesses a more simple 
behavior, which is encompassed by the PCA. Figure 5.20 shows the refined 
ADSC (see Section 3.1.1.2) of the PCA which was derived from the MASD, 
MABD, SASD and SABD diagrams (see Figures 5.16-5.19) of the MCA and 
from the SABD diagram specific to the PCA, not reported here for the sake of 
brevity, which is a specialization of the SABD diagram of the MCA. 

 
Figure 5.20: The ADSC of the PCA. 
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Table 5.3: Association between the activities of the SABD diagram of the MCA and the 

ADSC action of the PCA. 

SABD ACTIVITY ADSC ACTION 
MoveTo_Next_YPATarget ac1, ac2 
Request_VAList ac3 
Process_YPA_Reply ac4 
MoveTo_Next_VATarget sa1 
Request_An_Offer_From_VA_Target ac5 
Evacuate_VAOffer ac6 
MoveTo_VATarget_Location ac11 
Pay_VATarget_ForProduct ac7, ac8 
MoveTo_APA_Location ac9 
ReportTo_UAA ac10 

 
The messages that the MCA exchanges with the YPA, VA, and UAA agents 
during its lifecycle, reported in the MABD diagram, are implemented through 
events in the ADSC; the association between messages and events is 
reported in Table 5.4 for the interactions with YPA and VA. 

 
Table 5.4: Association between the messages of the MABD diagram of the MCA and the 

ADSC events of the PCA. 

MABD MESSAGE SENDER RECEIVER ADSC EVENT 
(Request, VendorsList, RDF) MCA  YPA VAListRequest 
(Inform, VendorsList, RDF) VA  YPA VAListInform 

(Query, OfferPrice, RDF) MCA  VA OfferPriceQuery 
(Inform, OfferPrice, RDF) VA  MCA OfferPriceInform 
(Request, Payment, RDF) MCA  VA PayForRequest 

(Inform, Payment, RDF) VA  MCA PayForInform 

 
The names of the composite states of the ADSC corresponds to the names 
of the phases of the MCA shown in the related SABD diagram (see Figure 
5.18). For the sake of modularity the Searching and Contr&Eval states are 
embodied into the Search&Buy state. 
The activities reported in the SABD diagram are implemented by the actions 
of the ADSC; the association between activities of the SABD diagram and 
actions is reported in Table 5.3. 
The PCA agent fulfils the searching phase in the Searching state. In 
particular, as soon as the PCA agent is created, it moves (ac1) to the first 
Yellow Page Agent (YPA) location and locally interacts (ac2) with the 
YPATarget by sending it the VAListRequest event. The YPATarget replies to 
the PCA agent with the VAListInform event which can contain a list of VA 
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agents with the linked YPA agents. After processing the reply (ac3), the PCA 
agent can do one of the following: 
- create an Itinerary Searcher Mobile Agent (ISMA), which sequentially 

moves from one YPA location to another, if the YPS organization is of 
the One-Neighbor Federated type, and pass (ac4) into the contracting 
phase as soon as a PList event sent by the ISMA agent is received; 

- create M Spawning Searcher Mobile Agents (SSMAs), if the YPS 
organization is of the M-Neighbors Federated type, and pass (ac4) into 
the contracting phase when all the PList events sent by the directly 
created SSMA agents are processed. In particular, an SSMA agent 
moves to the assigned YPA agent and, in turn, creates a child SSMA 
agent for each reachable YPA agent. This parallel searching technique 
generates a spawning tree, with SSMA agents as nodes, which is 
rooted at the PCA agent. If an SSMA agent interacts with a YPA agent 
which has already been visited by an SSMA agent belonging to the 
same spawning tree, the YPA agent notifies the SSMA agent which 
then returns to its parent; 

- directly pass into the contracting phase if the YPS organization is of 
the Centralized type; 

- report an unsuccessful search to the UAA agent. 
The contracting phase accomplished in the Contr&Eval state involves the 
creation (ac5) of Contractor Mobile Agent (CMA) according to the modes 
reported below. Each CMA agent is able to move to the assigned VA 
location, contract with the VA agent, and report the obtained offer. The VA 
offers (PPrice events) reported by the CMA agents are evaluated and a 
decision about when and from which VA agent to purchase is therefore taken 
(ac6). In the PayFor state the PCA agent pays (ac7) the VA agent using the 
PayForRequest event which contains the bills. After receiving the 
PayForInform event, the PCA agent passes (ac8) to the Reporting state from 
where it moves back (ac9) to the original APA location and finally reports 
(ac10) to its UAA agent. 
When using agent techniques in e-Marketplaces, a large number of agents 
are generated in the e-Marketplace network which could lead to many 
problems such as server loading, network congestion and, more generally, 
scalability of the whole system [69]. So to optimize the performance of the 
PCA during the Contr&Eval phase with respect to time and resources, two 
types of CMAs (see Figure 5.21) have been defined: 
- Full Parallel CMA (CMA_FP): the PCA spawns an instance of the 

CMA_FP for each VA location so that the CMA_FP contracts with the 
assigned VA and returns the obtained offer to the PCA. The advantage 
of this solution is that CMAs, once created by the PCA, can soon move 
to the assigned VA location and contract with the VA so minimizing 
waiting times. However, the creation of a large number of CMAs on a 
single agent server can increase the agent server load as well as the 
network congestion in the proximity of the agent server. Moreover, if 
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the buying policy is of the MP type, such solution is effective; 
otherwise, such solution would create more CMAs than those needed. 

- Binary CMA (CMA_BIN): after organizing the list of the VAs retrieved in 
the Search phase as a binary tree, the PCA spawns a CMA_BIN to the 
VA location, root of the tree. A CMA_BIN, in turn, spawns at most two 
other CMA_BIN agents if the left and/or right branches/leaves exist. In 
this operational mode, at most two agents are created on a single 
agent server so reducing the server load due to agent creation and the 
network congestion due to agent migration [110]. According to the way 
the CMA_BIN returns the results of the negotiation with the VA to the 
PCA, the following types of CMA_BIN have been modeled: 
o CMA_BIN_FW_R2PCA: the agent directly reports to the PCA 

through an external event. The advantage of this solution rests 
on its simplicity whereas, if the number of CMA created is high, 
there would be a high number of external events targeting the 
PCA which would become a bottleneck. 

o CMA_BIN_FW_R2O: the agent reports to its owner (i.e. the CMA 
agent that has spawn it) through an external event. In this way, 
only the root CMA agent reports to the PCA. In this mode, the 
disadvantage of the previous solution is avoided. 

o CMA_BIN_BW_R2O: the agent reports to its owner (i.e. the 
agent that has spawn it) by moving to its site. Also in this case, 
only the root CMA agent reports to the PCA. This operational 
mode preserves the same advantage as the previous one and, in 
addition, can be effectively exploited in the case the agents can 
only communicate through local interactions (e.g. based on 
tuple-based systems). 

Figure 5.22 shows the ADSC of the CMA_BIN_FW_R2PCA; the ADSCs of 
the other CMA_BINs are variants of the ADSC of the CMA_BIN_FW_ 
R2PCA. Migration and child spawning are carried out in the 
Migrate_And_Create state, whereas negotiation is carried out in the Contract 
state. In particular, after its creation the CMA moves to the location of the 
assigned VA (ac0), where it tries to spawn two other CMAs, and goes into 
the Contract state (ac1). In this state, the CMA sends the OfferPriceRequest 
event to the VA (ac2), process (ac3) the offer contained in the 
OfferPriceInform event and, finally, reports to the PCA (ac4). 
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Figure 5.21: the SASD of the CMA. 

 
Figure 5.22: The ADSC of the CMA_BIN_FW_R2PCA. 
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5.3.3.2 Functional Validation 
Functional validation is supported by ELDASim (see Section 3.3.1) through 
the generation of event traces which can be analyzed off-line to validate 
agent behaviors, agent interaction protocols and the behavior of the whole 
MAS. 
Validation of a single agent type behavior relies on a simple simulation 
scenario which allows for the generation of the response of the agent 
behavior to all its admissible events. Validation of an agent interaction 
protocols is based on simple simulation scenario which allows for the 
generation of the flow of events exchanged between the involved agents. 
Validation of the whole system is carried out by setting more complex 
simulation scenarios. In particular, the simulation scenario for the validation 
of the global behavior of the AeM, also used during the performance 
evaluation phase, was set up as follows: 

- Each stationary agent (UAA, APA, YPA, VA, BA) executes in a 
different agent server. 

- Agent servers are mapped onto different network nodes which are 
completely connected through links having the same 
characteristics and modeling the communication delay (δ) as a 
lognormally distributed random variable. 

- Each VA is reachable from any YPA and sells the same set of 
products. 

- Each product is always offered by a VA at a fixed price, which is an 
integer number uniformly distributed between a minimum (PPMIN) 
and a maximum (PPMAX). 

- The user is willing to pay, for a desired product, a maximum price 
PMAX, which is an integer value between PPMIN and PPMAX. 

An indirect functional validation of the AeM was carried out by defining the 
following index, calculating such index both through analytical methods and 
simulation, and comparing the outcoming results: 

- the Probability of Successful Buy (PSB), which is defined as the 
probability of successfully buying a desired product within the e-
Marketplace. 

On the basis of the assumptions made for the simulated e-marketplace, PSB 
can be easily calculated as follows:  
 

PSB =1-[(PPMAX-PMAX)/(PPMAX -PPMIN+1)]V, 
 

where: V is the number of VA agents contacted by the MCA for buying the 
product, PPMAX-PMAX  represents the number of prices that exceed PMAX (i.e. 
that are not acceptable for the user), whereas PPMAX-PPMIN+1 represents the 
number of all the possible prices for the product. V depends on the BP 
adopted by the MCA; in particular: if BP is of the MP type or of the FS type 
V=NVA; if BP is of the FT type V is VFT=NVA/2+1 as in the simulations the 
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MCA always performs NVA/2+1 trials; if BP is of the RT type V belongs to 
the range [1..NVA]. 
The values of PSB calculated both analytically and through simulation for 
each defined BP and with PPMAX=200, PPMIN=100, PMAX=PPMIN, and 
NVA=100, are reported in Figure 5.23. It is worth noting that the analytical 
value for BP=RT is calculated by using the mean value of the uniform 
distribution defined in the range [1..NVA]. 
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Figure 5.23: Evaluation of PSB for the defined BPs with PPMAX=200, PPMIN=100, 

PMAX=PPMIN, and NVA=100. 

 
Such results confirm that the global behavior of the AeM is correct and this 
confirmation also provides an indirect functional validation of the AeM. 

5.3.3.3 Performance Evaluation 
The aim of the performance evaluation phase is to evaluate and compare the 
efficiency of the 5 types of MCA (ICA, PCA/CMA_FP, 
PCA/CMA_BIN_FW_R2PCA, PCA/CMA_BIN_FW_R2O, 
PCA/CMA_BIN_BW_R2O) in terms of the following performance index: 
 

Buy Task Completion Time (TBTC)=TCREATION-TREPORT 
 
where, TCREATION is the creation time of the MCA and TREPORT is the reception 
time of the MCA report. 
Given the scenario described in section 5.3.3.2, the evaluation of the TBTC 
performance index is focused on an MCA adopting a searching policy (SP) of 
the ALL type and a buying policy (BP) of the MP type (see Table 5.3), 
moreover it is supposed that PMAX=PPMAX so always guaranteeing a 
successful purchase at the best price. 
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Figure 5.24: (a) Evaluation of TBTC for the five types of MCA with SP=ALL, BP=MP, 
NYPA=10 and variable NVA; (b) Zoom in of the TBTC curves of the PCA/CMA_BIN 

agents. 

The results, obtained adopting a YPA organization in which the YPAs are 
logically connected as a binary tree, are reported in Figure 5.24(a-b) with 
NYPA=10 and varying NVA, where NYPA is the number of the YPA agents 
and NVA is the number of the VA agents.  
The results show that the PCA outperforms the ICA and that the 
PCA/CMA_FP is the better solution from the point of view of time efficiency 
even though it suffers the resource consumption issues highlighted in 
Section 5.3.3.1. It is worth saying that the simulated PCA/CMA_FP is only an 
ideal implementation and that the obtained curve is a lower bound for a real 
implementation of the PCA/CMA_FP. Among the PCA/CMA_BINs, the 
PCA/CMA_BIN_FW_R2PCA exhibits better performance even though it 
could cause bottlenecking issues at the PCA site. 
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6 A Multi-Coordination based process for 
the design of mobile agent interactions 

 
 
 
 
Code mobility paradigms have been introduced to support the design and the 
implementation of flexible, dynamic and reconfigurable distributed 
applications in terms of software components which are not confined in a 
single run-time context for their entire lifecycle but can migrate autonomously 
or on-demand across different contexts [52]. Among them, the most 
fascinating paradigm is represented by the mobile agents, executing 
software components capable of autonomous migration by retaining code, 
data and execution state. Although it is advocated that the exploitation of 
mobile agents can provide many benefits [68], they have introduced specific 
and not yet fully addressed issues that actually limit their advertised wide-
spread use [109]. Among them, an interesting issue concerns with the design 
of mobile agent interactions. To deal with this issue several approaches have 
been to date defined which are mainly based on mobile agent 
interaction/coordination design patterns [1, 29] and coordination models [4, 
15, 16, 17, 21, 78, 85, 86, 93] (refer to chapter 2 for a description of models 
and patterns). Recent interesting proposals on how to obtain and integrate 
agent-oriented coordination models are the programmable coordination 
spaces [97] and the multi-coordination approach [40]. The former proposal is 
based on the concept of Linda-like reactive tuple space in which the 
reactions can be programmed through a logic-based language (ReSpecT) so 
that already existing coordination models as well as new ones can be easily 
programmed. Conversely, the multi-coordination approach enables an 
integrated and simultaneous exploitation of multiple coordination models 
(both existing and to-be-defined) so that agents can choose among a variety 
of different coordination models which best fit their interaction needs. This 
can actually enhance design effectiveness, improve efficiency, and enable 
adaptability in dynamic and heterogeneous computing environments. All the 
aforementioned coordination models can be effectively used for supporting 
mobile agent interactions. 
Although interaction patterns and coordination models can be jointly 
exploited for the design of mobile agent interactions, an automated design 
process which includes these techniques and produces effective and efficient 
design solutions (or coordination solutions) is still not available. To address 
this lack, this chapter proposes the Multi-Coordination based Process (MCP) 
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for the design of mobile agent interactions which, starting from a set of 
application-specific agent coordination requirements, produces an effective 
coordination solution by using two subsequent phases (Modeling and 
Evaluation).  
To show a concrete application of the proposed process, a significant case 
study related to mobile agent-based distributed information retrieval is 
presented. In particular, alternative coordination solutions, which use 
different coordination models (asynchronous message passing, Linda-like 
tuple space, publish/subscribe), are produced on the basis of specific agent 
coordination requirements and evaluated against significant time- and 
resource-related performance indices. 

6.1 The Multi-Coordination based Process (MCP) 
The proposed Multi-Coordination based Process (MCP) [42] is iterative and 
consists of the two phases (Modeling and Evaluation) shown in Figure 6.1. 
The Modeling phase, on the basis of a coordination statement (CS) which 
derives from a preliminary analysis and includes a description of the agents 
along with their interactions (coordination requirements - CRs), and a set of 
coordination properties (CPs), provides alternative coordination solutions 
which fulfill the CS. In the Evaluation phase, a specific solution is chosen 
among such alternative coordination solutions which are evaluated through 
simulation and then compared on the basis of ad-hoc defined performance 
indices (e.g. time and resource consumption). 

 
Figure 6.1: The MCP design process. 

 
Each phase of the process is described in details and exemplified in the 
following two sections with reference to a simple yet effective case study 
concerning with a distributed information retrieval task in a distributed 
computing system. A possible solution consists in carrying out this task 
through a coordinated set (or task force) of mobile agents. In particular, a 
user can search for specific information over a network of federated 
information locations by creating and launching a task force of mobile agents 
(called searcher agents) onto different locations. As soon as the task force 
finds the desired information, the user (represented by the owner agent) is 
notified with the found information. 
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6.2 The Modeling Phase 
The Modeling phase is detailed in Figure 6.2 and is composed by three 
subsequent activities (IP Selection and Setting, IP-CM Matching, Selection 
and Design of Coordination Solutions) described and exemplified with 
reference to the case study in the following correlated sub-sections. 

 
Figure 6.2: The Modeling phase. 

6.2.1 IP Selection and Setting 
Starting from the CS this activity identifies the rules governing the agent 
interactions by exploiting interaction design patterns (IPs). In particular, for 
each coordination requirement (CR), this activity (i) selects the IPs, from a 
given IP repository, which best fit the requirement, and (ii) sets the 
characteristics of each selected IP on the basis of the CPs so obtaining the 
set of selected and set IPs (SSIP) related to the requirement. In particular, 
CPs characterize the interactions among the agents as identified in the CRs 
on the basis of the following characteristics: 
- Number of participants (PN), which can assume values in the range 

[2..N]. 
- Participant identity (PI), which concerns with the mutual knowledge 

among interacting agents. PI can therefore assume the values known or 
unknown. 

- Locus (L), which indicates remote or local interactions among agents. L 
can assume the values local or remote. 

- Temporality (T), which refers to the type of temporal coupling among 
interacting agents. T can assume two values: async for time decoupling 
and sync for time coupling. 

The set of SSIPs, one SSIP for each coordination requirement, constitutes 
the result of this activity. 
With reference to the case study, the proposed solution for the coordination 
of the task force during its information retrieval task is based on the following 
CRs: 
- CR1: every time a searcher agent visits a location not yet searched by 

other agents of the same task force, it notifies the other agents that such 
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location has already been searched so avoiding unnecessary and 
resource-consuming duplicate searches; 

- CR2: as soon as a searcher agent finds the desired information on a 
given location, it reports the found information to the owner agent; 

- CR3: when a searcher agent finds the desired information on a given 
location, it signals such event to all the other searcher agents to stop 
them; 

and on the following CPs: 
- CPa: the task force is constituted by at least two searcher agents; 
- CPb: the agents of the task force may or may not know each other 

whereas they know the identity of the owner agent and vice-versa; 
- CPc: the interactions among all the agents (searcher and owner) are 

always asynchronous.  
- CPd: the interactions required by CR1 may be local or remote, that 

required by CR2 and CR3 are remote. 
Figure 6.3 shows, with reference to each CR, the selected IPs and the 
setting of their characteristics carried out by also taking into account the 
aforementioned CPs. In particular, the IPs selected from the repository for 
modeling the interactions as derived from the CRs are the following: 
- Location-based notification (LBN), which involves agents passing 

through a given location to be notified about events occurring/occurred in 
such location. 

- Report to owner (R2O), which involves a child agent reporting to its 
owner agent when its task is completed. 

- Group-based notification (GBN), which involves an agent notifying all its 
peer agents when a given event occurs. 

The star indicates that the value of the PI characteristic of the LBN and GBN 
IPs was not fixed according to the CPb. 

IP CHARACTERISTICS IP PN PI L T 
LBN 2..N * LOCAL ASYNC 
GBN 2..N * REMOTE ASYNC 

(a) The SSIP for CR1  
IP CHARACTERISTICS/PROPERTIES IP PN PI L T 

R2O 2 KNOWN REMOTE ASYNC 
(b) The SSIP for CR2   
IP CHARACTERISTICS/PROPERTIES IP PN PI L T 

GBN 2..N * REMOTE ASYNC 
(c) The SSIP for CR3  

Figure 6.3: The result of the IP Selection and Setting activity. 

6.2.2 IP-CM Matching 
Starting from both a set of coordination models (CMs) and the set of the 
SSIPs, as it results from the previous activity (see Figure 6.2), this activity, 
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for each CR and characterized IP in the associated SSIP, and for each CM 
constructs a checklist (CKL) which specifies the characteristics of the IP 
supported by the considered CM. In presence of a not completely 
characterized IP (i.e. an IP with one or more not fixed characteristics), 
different complete characterizations of the IP are to be considered (one for 
each possible combination of the values of the not fixed characteristics). 
The set of the so obtained CKLs constitutes the result of this activity. 
With reference to the case study and to the result of the previously described 
activity (see Figure 6.3), the obtained CKLs, one for each CR, are reported in 
Figure 6.4. In particular, the considered CMs are the following: 

- Local Linda-like tuple space (LTS), which supports a high number 
of participants, allows temporal decoupling but only local 
interaction is supported [40]. 

- Topic-based publish/subscribe (TPS), which supports a high 
number of participants, allows for distributed interactions and does 
not require temporal coupling between participants [71]. 

- Queue–based unicast asynchronous message passing (QAMP), 
which supports a variable number of participants, allows for both 
local and remote interactions, does not require temporal coupling, 
but requires spatial coupling among participants [115]. 

With reference to the PI characteristic, which was not fixed for the LBN and 
GBN IPs, in Figure 6.4.a-c all the different complete characterizations of the 
IPs are considered. 

6.2.3 Selection and Design of Coordination Solutions 
This activity partitions the set of the obtained CKLs in subsets (candidate 
solutions) which are obtained by selecting for each CR one and only one 
related CKL, and selects the subsets which satisfy specific admissibility and 
optimality criteria. In particular, the admissibility criteria are based on the CPs 
whereas the optimality criteria are based on the support of the IP 
characteristics by the considered CM. 
Finally, from each selected subset a coordination solution is provided by 
implementing the related coordination models. 
The so obtained coordination solutions constitute the result of this activity 
and of the whole modeling phase (see Figure 6.5). 
With reference to the case study, the selected criteria are: 
- Admissibility. Only the solutions which have the same value of the PI 

characteristics for the IPs associated to CR1 and CR3 are admissible. 
- Optimality. The selected solutions are those in which the considered CM 

fully supports the IP (the related CKL is completely set with ‘x’). 
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SUPPORTED IP CHARACTERISTICS CHARACTERIZED IP CM PN PI L T 
LTS X  X X 
TPS X   X LBN [2..N, known, local, async] 

QAMP X X X X 
LTS X X X X 
TPS X X  X LBN [2..N, unknown, local, async] 

QAMP X  X X 

LTS X   X 
TPS X  X X GBN [2..N, known, remote, async] 

QAMP X X X X 
LTS X X  X 
TPS X X X X GBN [2..N, unknown, remote, async] 

QAMP X  X X 
(a) The CKLs for CR1  

SUPPORTED IP CHARACTERISTICS CHARACTERIZED IP CM PN PI L T 
LTS X   X 
TPS X  X X R2O [2, known, remote, async] 

QAMP X X X X 
(b) The CKLs for CR2  

 

SUPPORTED IP CHARACTERISTICS CHARACTERIZED IP CM PN PI L T 
LTS X   X 
TPS X  X X GBN [2..N, known, remote, async] 

QAMP X X X X 
LTS X X  X 
TPS X X X X GBN [2..N, unknown, remote, async] 

QAMP X  X X 
(c) The CKLs for CR3  

Figure 6.4: The result of the IP-CM Matching activity. 
On the basis of the obtained results, it is possible to refine and/or modify the 
choices made in the activities of the modeling phase; in particular: (i) other 
IPs and CMs can be chosen and/or defined to be subsequently used for the 
IP Selection and Setting and IP-CM Matching activities; (ii) new criteria of 
admissibility and optimality can be defined in the Selection and Design of 
Coordination Solutions activity for generating a new set of alternative 
coordination solutions; (iii) different implementation descriptions for the 
indentified coordination solutions can be given. 
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CR CHARACTERIZED 

IP CM IMPLEMENTATION DESCRIPTION 

CR1 
LBN  

[2..N, known, local, async] QAMP 

When a searcher agent searches in a location which has not 
been already searched by another agent of its task force, it 
clones itself so that its clone, stationing in this location, can 
prevent the other agents of its task force from searching. As 
soon as an agent visits a location looks for a clone of an 
agent of its task force to avoid searching. 

CR2 
R2O 

[2, known, remote, async] QAMP 
When a searcher agent finds the desired information, it sends 
a message containing the found information to its owner. 

CR3 
GBN  

[2..N, known, remote, async] QAMP 
A searcher agent which has found the desired information 
sends a notification message to all the other searcher agents 
of the task force to stop them. 

(a) 
 

CR CHARACTERIZED 
IP CM IMPLEMENTATION DESCRIPTION 

CR1 
GBN  

[2..N, known, remore, async] QAMP 
A searcher agent to notify that it has searched a given 
location sends a message containing the location identifier 
to all the other searcher agents of the task force. 

CR2 
R2O 

[2, known, remote, async] QAMP 
When a searcher agent finds the desired information, it 
sends a message containing the found information to its 
owner. 

CR3 
GBN  

[2..N, known, remote, async] QAMP 

A searcher agent which has found the desired information 
sends a notification message to all the other searcher agents 
of the task force to stop them. 

(b) 
 

CR CHARACTERIZED 
IP CM IMPLEMENTATION DESCRIPTION 

CR1 
LBN  

[2..N, unknown, local, async] LTS 

When a searcher agent searches in a location which has not 
been already searched by another agent of its task force, it 
inserts a signaling tuple into the LTS to signal that this 
location has been searched. As soon as an agent visits a 
location and reads the signaling tuple, it avoids searching. 

CR2 
R2O 

[2, known, remote, async] QAMP 
When a searcher agent finds the desired information, it 
sends a message containing the found information to its 
owner. 

CR3 
GBN  

[2..N, unknown, remote, async] TPS 

When a searcher agent finds the desired information, it 
publishes an event of a specific topic related to its task force 
which signals the stop of the retrieval task. All the other 
agents of the task force will be thus asynchronously notified 
since they subscribed to the specific topic at creation time. 

(c) 
 

CR CHARACTERIZED 
IP CM IMPLEMENTATION DESCRIPTION 

CR1 
GBN  

[2..N, unknown, remote, async] TPS 

A searcher agent to notify that it has searched a given 
location publishes an event of a specific topic related to its 
task force and containing the location identifier. All the 
other agents of the task force will be thus asynchronously 
notified since they subscribed to the specific topic at 
creation time. 

CR2 
R2O 

[2, known, remote, async] QAMP 
When a searcher agent finds the desired information, it 
sends a message containing the found information to its 
owner. 

CR3 
GBN  

[2..N, unknown, remote, async] TPS 

When a searcher agent finds the desired information, it 
publishes an event of a specific topic related to its task 
force which signals the stop of the retrieval task. All the 
other agents of the task force will be thus asynchronously 
notified since they subscribed to the specific topic at 
creation time. 

(d) 
 

Figure 6.5: The result of the Selection and Design of Coordination Solutions activity 
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6.3 The Evaluation phase 
In this phase (see Figure 6.6) the alternative coordination solutions identified 
in the modeling phase are evaluated through simulation and then compared 
on the basis of ad-hoc defined performance indices.  
The phase is currently supported by the proposed methodology and related 
tools which provide rapid prototyping of the coordination solutions and their 
simulation. In particular, the ELDA model directly supports the concept of 
multi-coordination by providing multiple coordination models through which 
the interactions among the agents can be easily modeled. Moreover, its 
related tools support the visual programming of the modeled coordination 
solution and the automatic generation of code which can be directly executed 
by a ELDASim (see Section 3.2, Section 3.3 and Section 3.4). 
The Evaluation phase starts with two parallel activities:  
- Simulation Model Definition, which provides an ELDA-based simulation 

model for each considered alternative coordination solution. 
- Performance Indices Definition, which defines specific performance 

indices for evaluation and comparison purposes also taking into account 
the CRs and CPs. 

In particular, the defined ELDA-based simulation models are subsequently 
implemented (Code Generation and Simulation Implementation activities) 
and simulated (Simulation Execution activity) for being evaluated and 
compared with reference to the identified performance indices. The 
simulation results therefore allow to identify the best coordination solution. 
On the basis of the obtained results, it is possible to refine and/or modify the 
choices made in the activities of the modeling phase; in particular: (i) 
performance indices can be modified and/or new performance indices can be 
defined in the Performance indices Definition activity; (ii) agent-based 
simulation models can be refined in the Simulation Model definition activity; 
(iii) new simulator programs can be defined and executed. 
In the following subsection an example of evaluation with reference to the 
case study is presented. 
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Figure 6.6: The Evaluation phase. 

6.3.1 Performance Evaluation of Coordination 
Solutions: an example 

With reference to the case study, in the Performance Indices Definition 
activity the following performance indices have been defined: 
- Task completion time (TTC): the temporal gap between the spawning of 

the first created searcher agent and the first report message received 
from the owner agent. 

- Number of coordination messages (NM): the number of coordination 
messages transmitted through the network. 

- Notification time (TN): the temporal gap between the information finding 
and the notification to the last searcher agent. 

- Number of visits (NV): after finding the information: the total number of 
locations visited by the searcher agents after the information finding. 

- Number of searches (NS): after finding the information: the total number 
of the locations searched by the searcher agents after the information 
finding. 

To exemplify the Evaluation phase, all the alternative coordination solutions 
reported in Figure 6.5 have been implemented and integrated into a 
simulator program along with the calculation of the defined performance 
indices; in the following, solutions reported in Figure 6.5a, 6.5b, 6.5c and 
6.5d will be named A, B, C, D solutions, respectively. 
The Simulation Execution activity relies on two simulation parameters (the 
number of locations and the number of searcher agents) and on the following 
settings of the simulation topology at network and information level: 
- Locations are connected through a fully connected logical network 

composed of FIFO channels. In particular, channels are characterized by 
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the same delay and bandwidth parameters modeled as uniform random 
variables. 

- The information to be found is contained exactly at one location and the 
locations keep references (randomly generated) to other locations at 
information level to be all reachable. 

In particular, simulation runs are carried out with the number of locations 
equals to 100 and the number of searcher agents in the range [2-20]. 
Moreover, for each simulation run, all the alternative solutions are executed 
on the same network and information topologies. In Figures 6.7-6.11 the 
simulation results are reported; the obtained values of the performance 
indices are averaged over 50 simulation runs. 
The TTC performance index, which measures the speed with which the 
information search task is carried out, decreases as the number of searcher 
agents increases (see Figure 6.7). 
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Figure 6.7: The Task Completion Time. 

In fact, the use of more searcher agents augments the degree of parallelism 
which, consequently, increases the probability to find the searched 
information with a smaller number of migrations which are time-consuming. 
The performances of the all the solutions are almost the same. 
The NM parameter (see Figure 6.8), which measures the network load, is 
significantly better in the A and C solutions thus saving network resources 
with respect to the other solutions. 
The TN performance index measures how fast all the searcher agents are 
notified after finding the information: the shorter TN, the fewer are the 
resources consumed throughout the networked agent platform. 
The A and C solutions outperform the other solutions (see Figure 6.9) as the 
network load is less heavy than the ones of the B and D solutions. 
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Figure 6.8: The Number of coordination messages. 
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Figure 6.9: The Notification Time. 

The NV and NS parameters are measures of the consumption of resources 
after the information is found. The values of such parameters should be kept 
as low as possible. As shown in Figures 6.10 and 6.11, the A and C solutions 
outperform the other solutions. 
On the basis of the obtained simulation results (see Figures 6.7-6.11), the 
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solutions A and C are more effective than the other solutions. In fact, 
although the TTC value is similar to the solutions B and D, the other 
performance indices values are significantly better. Moreover, it's worth 
noting that solution A requires the cloning of a signalling agent for each 
visited location but such operation may not be allowed according to security 
policies of the locations. 
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Figure 6.10: The Number of visits after finding information. 
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Figure 6.11: The Number of searches after finding information. 
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7 Conclusion and Future Work 

 
 
 

7.1 Summary 
Internet-based distributed applications need development methodologies 
able to capture their key characteristics through powerful abstractions at 
modelling, validation and implementation levels. The agent oriented software 
engineering (AOSE) has promoted effective agent-oriented models, 
frameworks and methodologies to fulfil the requirements posed by new kinds 
of distributed applications emerging in a variety of challenging application 
domains, e.g. e-Commerce, content delivery, information retrieval, pervasive 
computing. 
This thesis has proposed ELDAMeth, a novel methodology supported by a 
CASE tool for the simulation-based prototyping of Internet-oriented 
distributed agents systems (DAS). Although a significant number of general-
purpose and domain-specific agent-oriented methodologies have been 
already proposed, ELDAMeth incorporates important and distinctive key 
features for an effective prototyping of Internet-oriented DAS. Such features 
refer to the reference agent model, the defined methodology and the 
supporting CASE tool.  
The defined ELDA agent model incorporates the three main enabling 
features for distributed agent systems: lightweight reactive/proactive 
behavior, multi-coordination and mobility. In particular: (i) reactive/proactive 
agent behavior based on lightweight architectures has been demonstrated to 
be particularly suitable to model reactive and/or proactive components in 
large-scale, dynamic and distributed environments; (ii) multi-coordination has 
been experimentally recognized as a new key feature enabling effective 
design and efficient execution of complex interactions among distributed 
agents; (iii) mobility has emerged as an enabling feature for defining new 
distributed algorithms for code and computation dissemination. 
The proposed ELDAMeth is characterized by two important features: 
effective dynamic validation based on simulation and high-degree of 
integrability. The first feature, which is indeed the main distinctive feature of 
ELDAMeth, supports the validation of designed distributed agent systems in 
a simulated controlled environment to analyze both functional and 
performance-oriented requirements. The second feature, which partly relates 
to the first feature, allows using ELDAMeth to empower already existing 
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agent-oriented methodologies or to create new ad-hoc ones with a very 
effective validation phase before implementation and deployment.  
Finally, the developed ELDATool fully supports ELDAMeth during all the 
prototyping process, from modelling to simulation. In particular, ELDATool 
provides highly effective visual support to the modelling of agent behaviors 
and subsequently automatic translation into code so minimizing programming 
errors and speeding up the prototyping process. Moreover, it supports the 
simulation configuration phase through general-purpose and case-specific 
graphical windows, the simulation execution which can be controlled (started, 
paused, and stopped) by a control panel, and the storing of the execution 
traces in an RDBMS. 
ELDAMeth has been applied according to different perspectives: 
methodology-oriented and application-oriented. 
In the former case ELDAMeth has been integrated with PASSI to obtain a 
full-fledged agent-oriented methodology, namely PASSIM, and has been 
used to create a new methodology for designing mobile agent interactions, 
namely MCP. 
In the latter case ELDAMeth has been directly used to prototype distributed 
agent systems such as e-Marketplaces, architectures of surrogates for 
content delivery, and information retrieval systems. These different 
applications have demonstrated the suitability and great effectiveness of 
ELDAMeth for the rapid prototyping of Internet-based DAS. 

7.2 Future Work 
A number of future research directions in relation to this thesis can be 
devised. In particular, the following three research directions will be 
investigated: 
- Enhancement of the ELDAMeth with an ad-hoc implementation/deployment 
phase after simulation. Two approaches can be envisaged: (i) 
ELDAPlatform-oriented and (ii) Model-driven development. According to the 
former approach, the ELDAPlatform should be developed as a new agent 
platform able to execute ELDA agents programmed through the 
ELDAFramework. According to the second approach, the ELDA-based 
models, or PIMs (Platform-Independent Models) in the MDD (Model-Driven 
Development) language,should be converted into agent models specific to a 
target platform or PDMs (Platform Dependent Models). In particular, JADE 
will be considered as executing target platform due to its wide diffusion in 
academic and industrial contexts. 
- Extension of the ELDA agent model with the new agent-oriented concepts 
of Organization and Environment. The ELDA model currently does not exploit 
interesting agent oriented concepts such as Organization and Environment. 
Nevertheless, these concepts could be seamlessly introduced as new types 
of spaces or meta-spaces apart from the already existing system and 
coordination spaces. 
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- Formalization of the ELDA agent model to validate agent-based systems 
through formal methods. The objective is to provide a formalization of the 
ELDA model through term rewriting and use rewriting logic and related tools 
(e.g. Maude) to validate ELDA-based models of agent systems.
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