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1

Introduction and Motivation

�Stay hungry, stay foolish.�

Steve Jobs, 5th June 2005

1.1 The Semantic Web

During the years, the World Wide Web has grown exponentially. The growing

number of computers, their a�ordability, the invention of new tools made the

Web one of the most successful inventions of human history.

People now spend hours on the Web every day, accessing knowledge and creat-

ing new knowledge: they write blogs, publish news and personal experiences on

social networks, and most of all they look for information they are interested

in.

For this purpose, search engines like Google or Yahoo perform �the dirty work�,

which makes life easier for those who search.

Nevertheless, here the problems arise. Often, in fact, information retrieved by

such engines are too general, o� topic, or incomplete. It is easy to have the

feeling that the search engine did not �get� what the purpose of the search was

about.

This is due to the fact that the original Web was designed around users: a

collection of documents, linked in a merely syntactic way by anchors, which

permit a hypertextual navigation between topics related to each other. Since

those days, though, the Web has changed, and nowadays a huge quantity of

information is available, often hidden, sometimes di�cult to be found. The new

Web, called Semantic Web [8] has been designed around machines, and it is an
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Fig. 1.1: The Semantic Web architecture

extension of the current Web through standards and technologies that enable

machines to understand the information on the Web so that they can support

richer discovery, data integration, navigation, and automation of tasks.

The Semantic Web will enhance the power of searches, making it possible to

provide better answers, and it will also provide tools for integrating di�erent

sources, and useful automated services.

Roughly, the main idea behind the Semantic Web is to add a machine-readable

meaning to Web pages, to use ontologies for a precise de�nition of shared terms

in Web resources, to make use of knowledge representation technology for au-

tomated reasoning from Web resources, and to apply cooperative agent tech-

nology for processing the information of the Web.

According to the original design the Semantic Web is divided into layers

At the bottom layer, standards to identify resources have been placed: URI

and Unicode. The �rst one is used to identify resources, the latter to represent

typed text.

The above layer hosts languages used to represent data in a semi-structured

way, and to provide annotations for them. We are talking, as it should be ob-

vious to the most, of the XML family (XML, namespaces and XML schema).

the third layer provides formalisms to express meta-data expressions using RDF
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and its extension RDF Schema.

the fourth layer is based on ontologies. It permits the expression of semantics

related to concepts, as we will deal with thoroughly in the following of this

thesis.

The �nal layers deal with logic, proof, and trust issues.

The Digital Signature layer is supposed to provide means to identify the proper

origin of a speci�c resource. We are interested especially in the Ontology Layer

and the Logic Level. The Ontology level has reached a good maturity, since

the Web Ontology Language (OWL) is now a standard by the w3c. The Logic

Level and the Rule Level are being developed actively. Several attempts have

been done in order to integrate the World of Rules Languages with the world

of Logics. We will deal with some of these ways in this document.

The question is due at this point: Is the Semantic Web the answer to user needs?

Will it be successful? We don't know that, but we believe the technologies be-

hind it will be exploited for sure, and it is likely that they are going to change

the web as we mean it nowadays, even if the complete vision will not take place.

1.2 Knowledge Representation

Knowledge representation (KR) is a branch of arti�cial intelligence. It is mainly

focused on represent information, or knowledge, in a way that is suitable to

support inference. In fact, it goes together with reasoning, which is a service

o�ered by �intelligent� systems in order to derive new knowledge from the al-

ready present one.

Knowledge representation tools are speci�ed in a formal way: one must de�ne

the reality of interest (by means of a vocabulary or ontology as we will see later

on), and the formal logics behind, which will then permit the user to derive the

new information. Usually the logics are de�ned by means of symbols, operators

and semantics, which in turn gives meaning to the sentences expressed in that

logics.

When one speci�es a logics, the compromise between expressivity and com-

plexity is raised. The more expressive logic is, the more complex is to actually

reason about it. You can represent more, but new information is harder to de-

rive, or not feasible at all.
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KR has been pushed, lately, by the Semantic Web, so it has been developed

actively, especially in the �eld of Ontologies (OWL language and related for-

malisms).

1.3 Integrating Di�erent Formalisms: Problems and Solutions

In the fast-changing world of Semantic Web, di�erent Knowledge Representa-

tion Formalisms have been proposed, and new ones are proposed very often.

This will be likely to happen until the Semantic Web is not a �solid� reality.

If you compare these formalisms, you will discover that they have deep di�er-

ences, both in syntax and semantics. To try to be clear about them, we can

divide them into families. On the one hand we �nd the Description Logic based

languages. They are really used in the Semantic Web, especially for modeling

Ontologies. We recall here that an Ontology is a formal speci�cation of a col-

lection of Concepts and the relationships between them, in a certain context.

The most used language, OWL (Web Ontology Language) has been inspired by

the Description Logics [4]. This family of logic formalisms is derived from the

world of First Order Logic, and brings many features of it. On the Contrary,

logic programming languages, like Datalog or Prolog, derive from the Database

World. When compared, leaving out for the moment the syntactic di�erences,

we can single out the main reason why these formalisms "clash" when used for

knowledge representation: Open World Assumption (OWA) vs Closed World

Assumption (CWA).

To better explain the problem, we discuss it informally, using an example.

Example 1.1. We have a relation �hasWife�. As the name suggests, it is used to

store the couples of men and women which are married, stating that the man

X has the woman Y as wife. To better specify this situation, we may add some

constraints to this relation. In Description Logics-based languages it is possible

to use the constructs domain and range. In this case, one might say that:

domain(hasWife,man)

range(hasWife, woman)
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In our knowledge base, there are the following axioms:

hasWife(“John′′, “Jim′′)

man(“John′′),man(“Jim′′)

Forgetting for a moment that this is illegal in some states, we ask if this is

permitted, and what are the semantic consequences.

Under Closed World Assumption, everything that is not explicitly contained in

the Model, i.e. what we know about the world, is supposed to be false. In this

case, the only thing we know is that there is a constraints over the knowledge

base, which is violated by the statement. So, under CWA the knowledge base

is inconsistent On the contrary, under OWA, even if there is a constraint,

since the semantics is monotonic, that statement is permitted. Constraints like

domain and range are used solely for inference (by default, the system would

say that a man is married to a woman), but not for excluding statement from

the model. It is necessary to say that, from an historical point of view, these

di�erences are closely connected with the scenario in which such assumptions

are used. Closed World is typical of Database World. In a typical DB, we will

have tables containing data, and this is everything we know. The answers to

queries must consist of tuples from the DB, and nothing else (that is to say

that nothing can be �invented�). On the other hand, Open World Assumption

is used mainly in the world of Web, in particular in RDF and all its extensions

(RDFS, OWL, etc.). In a web context, information is changing all the time,

and a limited �vision of things� is more suitable than an absolute knowledge.

There is another semantic di�erence, which is linked to OWA and CWA, but

slightly di�erent. We are talking about the problem of Unique Name Assump-

tion (UNA). In logics with the UNA, di�erent names always refer to di�erent

entities in the world. To better exemplify this concept, an example is again well

placed here.

Example 1.2.

hasWife(“John′′, “Jane′′)

Moreover we assume not to be in an Islamic country, therefore the following

also holds:



8 1 Introduction and Motivation

cardinality(“hasWife′′, 1)

In this case, the following information (false!) is given:

hasWife(“John′′, “Jenny′′)

If UNA is adopted, an error is triggered, because there is inconsistency.

If, instead, UNA is not used here, the deduction is that �Jenny� and �Jane� are

the same person, i.e. the same object in the knowledge base.

Usually, description-logic based systems don't assume Unique Names. This is

due to the nature of the Web. It is not di�cult to understand, in fact, that on

the Web there are many links and many names which refer to the same entities

(�les, images, resources). In this scenario, it is useful to have the possibility to

ensure equivalence between two syntactically di�erent ways of reference to the

same concept.

In logic programming, di�erently, constants are usually interpreted in terms of

themselves, which means that two di�erent constants relate always to di�erent

concepts.

1.4 Motivation and Related Work

In this thesis we focus on the problem of integrating hybrid logic formalisms.

We concentrate towards studying methods of translation from Semantic Web

formats to logic programming.

In particular:

1. We deal with the problem of conjunctive query answering in description

logics, and propose a solution based on the translation of ontologies to logic

programs.

2. We generalize the previous translation approach using modular translation

for various formalisms, like frame logics and OWL2 fragments.

3. We describe the realization of a OWL2 RL reasoner based on RIF and

dlvhex.

As for point one, we have designed a novel technique for dealing with descrip-

tion logics based ontologies, and turn them into logic programs,which can in

turn be evaluated using state-of-the-art logical engines such as dlv. The frag-

ment we chose id ELHI, because of its computational properties. We formally
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prove the e�ectiveness of our approach, which is also sperimentally con�rmed

by the prototype software we have designed and tested against competitors.

As for point two, we describe the modularization of di�erent formalisms, using

Logic Programming as �nal language. The �rst one is Frame Logic, which is

translated to be integrated into the dlt framework, in order to be exploited

for logic programming. Subsequently, we provide a formal translation for the

three fragments of OLW2, pointing out distinctive features.

Finally, for point three, we introduce the language RIF, which we use as a mid-

dleware for realizing a OWL2 RL reasoner. The reasoner is based on the dlvhex

platform. The implementation procedure is thoroughly described, and results

in a prototype which already delivers most of the OWL2 RL functionality, in-

cluding built-ins and datatypes.

1.4.1 Related Work

In addition to the abovementioned di�erences with respect to the �vision of the

world� occurring between this variety of formalisms, the crucial point is that

all of these logics have to coexist in a Web scenario: this a source of many tech-

nical problems. The supporters of this or that formalism push to apply their

own language, but do the user need all this diversity? Web is meant to help

people look for information and knowledge, and share data with others. It is

possible to state that a coherent vision of things would improve signi�cantly

the user experience.

Di�erent ways may be adopted in order to accommodate things. In the last

years, proposals were made in the scienti�c community, that try to solve these

problems.

There exists a more direct way of dealing with di�erent and apparently incom-

patible formalisms. Given two formalisms F1 and F2, we can translate theories

expressed in F1 into theories expressed in F2. Accomplishing this task is not al-

ways possible, depending solely on the two formalisms involved. In our �elds of

interest, i.e. Semantic Web and Logic Programming, many attempts have been

done, with di�erent results. In fact, this is still an open problem, since when

two formalisms which are actually very di�erent are put in contact, problems
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like inconsistencies, excessive computational complexity and incompatibilities

arise.

Translation between formalisms, though, has proven to be particularly useful

when dealing with certain tasks of interest. One of these is, query answering,

which is historically ine�cient in Description Logics knowledge bases.

In fact, in such knowledge bases, queries of instance retrieval and instance

checking are usually implemented by spawning a number of independent refu-

tation queries, so that they perform very badly.

For this reason, many techniques have been proposed for rewriting this kind of

knowledge bases to other formats, in which more e�cient evaluation algorithms

are known. Motik [54] presented a resolution-based algorithm for reducing very

expressive DL KBs to disjunctive datalog programs.

Kazakov [37] has exploited saturation-based theorem proving to derive a range

of decision procedures for various DLs of the EL family [2]. These approaches,

however, do not deal with conjunctive queries, which were taken into account

by Calvanese et al.[19] for the DL-Lite family of languages, for which query

answering was shown to be in LogSpace w.r.t. data complexity; and by Rosati

[63] for EL, for which query answering was shown to be PTime-complete w.r.t.

data complexity.

Moreover, another rewriting technique has been recently proposed by Lutz et

al. [47]. It is based on the EL family. They use a di�erent approach w.r.t. the

standard query rewriting techniques, since their algorithm rewrites both the

query and the ABox w.r.t. the TBox.

All the aforementioned techniques are closely related; however, they have been

designed to handle di�erent DLs.

One of our goals is to propose a new technique for rewriting Description Logics

in a scenario of conjunctive query answering. The e�ciency gain we claim is

based on the fact that we do not perform slow, exponentially costly rewriting

by eliminating function symbols, for example.

As a further step, we propose techniques that are modular, meaning that it

can be easily decomposed in basic steps, one for each of the aspects of starting

language. It is furthermore extensible, in the sense that if one wants to add new

features to the language, does not have to rewrite everything, but the additions

can be made �on the �y�.

Finally, we also investigate new Logic Languages such as RIF (Rule Interchange
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Format), and prove its usefulness in being a middleware for translation of het-

erogeneous formalisms (in particular OWL2RL and dlvhex [24]). In particular,

we will show how a novel Reasoner for OWL2RL has been realized. It is based

on the powerful language called dlvhex, a external-source �avoured version of

the popular dlv logic reasoner. RIF is used for the intermediate layer of trans-

lation. This is very important and general, as theoretically our reasoner can be

used with other logic engines, after writing the correct translator.

It's important to say, in this case, that the prototype we realized is possibly

the only one existing with such features, like full support to all RIF built-ins,

and full-�edged reasoning in OWL2RL.

1.5 Structure of this Thesis

This thesis is divided into three parts.

In the �rst part we will investigate the relationship between fragments of De-

scription Logics and Logic Programming, aiming at a translation which may

ease the process of Instance Retrieval. In particular, we will introduce a frag-

ment called ELHI, which belongs to the EL family.

We will de�ne the fragments used and the translation formally, and demon-

strate it is sound and complete.

In the second part we will study the problem of translating di�erent formalisms,

passing from a particular fragment to some dialects of the Web Ontology Lan-

guage. We will show that such translation can be easily performed using ap-

posite axiomatic modules. We will give a detailed explanation of all the mod-

ules necessary for the translation, evidencing the di�erences occurring between

them.

The fragments we are going to translate belong to di�erent families. In the last

part we will broaden the scope of the research, introducing the RIF language,

and in particular how to employ its power to build a bigger framework. The

target of such framework is the realization of a complete OWL2RL reasoner,

which exploits the reasoning qualities of the dlvhex system. To this end, an

intermediate step has proven to be necessary:using the RIF language as a mid-

dleware.
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Conclusions will then follow.



2

Preliminaries

�Stop! Who approaches the bridge of

death must answer me these

questions three, and the other side

he see...�

Monty Python and the Holy Grail

This chapter aims at introducing the main topics this thesis is about, giving

concepts necessary to better understand the following chapters.

In particular, we will give concepts regarding the following topics:

� Logic Programming and Answer Set Programming: features, syntax and

semantics.

� Frame Logic: syntax and semantics.

� Description Logics: introduction and basic language.

� OWL2 Pro�les.

� RIF.

2.1 Logic Programming and Answer Set Programming

In this section we introduce some general concepts about Logic Programming,

and of one of its �avors, Answer Set Programming (ASP from now on) which

will be used very often in the rest of this document. In fact, it will be necessary

for all the topics we will encounter, since logic programming is the ending point

of all the translation we will propose.

Logic programming consists, in its broadest sense, in the usage of mathematical
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logic for computer programming. In this view, logic is used as a purely declara-

tive representation language, and a theorem-prover or model-generator is used

as the problem-solver. The problem-solving task is split between the program-

mer, who is responsible only for ensuring the truth of programs expressed in

logical form, and the theorem-prover or model-generator, which is responsible

for solving problems e�ciently.

ASP is a branch of Logic Programming which has been receiving growing at-

tention in the last years. It has been based on the notion of Stable Model

Semantics, and lately on the Answer Set Semantics, which we will discuss in

the following. It, as a paradigm, lets the users represent knowledge by means

of logic theories, and to infer new knowledge, represented by themodels of the

given theory.

The most interesting feature of ASP, which distinguishes this paradigm from

languages like Prolog, is its f ull declarativity. It means that it makes no dif-

ference whatever order is used in specifying facts and rules. On the contrary,

Prolog, for example, has a procedural semantics, relying on the syntactic order

of rules and subgoals thereof.

ASP is nonmonotonic: this means that the already present knowledge is defea-

sible, as the arrival of new knowledge can alter what is believed to be true.

A very important feature of this kind of programs is the presence of N egation

as Failure, whose meaning is given in terms of the stable model semantics for

normal logic programs. This kind of negation is also known as Default Nega-

tion. The semantics has been subsequently extended by the same authors by

adding the support for Strong Negation, Disjunction in the head of rules and

other useful features.

We will describe the features used by the system named DLV [42] enhanced

with more features we have used in the thesis work. Most of these features

are available through some systems derived from DLV, which we will describe

subsequently.

After this, we will give a brief introduction of some systems which implement

the discussed features: dlvhex,dlt,dlv-complex.

2.1.1 Syntax

Here we introduce the logic language we will use later. It is basic logic program-

ming, augmented with the features that will prove to be necessary, especially
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function symbols and external atoms, which are non-standard in classical logic

programming.

HLP programs are Logic Programs supporting functions symbols, higher order

atoms, external atoms, lists and disjunction in the heads of rules.

Let P, V,C,E be four countable disjoint sets of predicate symbols , variable

symbols , constant symbols, external predicate symbols.

For convention (as used by most solvers) elements from V a are represented

by strings beginning with uppercase letters, while elements from P and C are

represented either as strings beginning with lowercase letters or as strings sur-

rounded by double quotes.

A normal term is either a variable or a constant. Let t1, . . . , tn be terms and f

be a function symbol (also called functor) of arity n, f(t1, . . . , tn) is a functional

term.

tor) of arity n. A list term can be of the two forms: [t1, . . . , tn], where t1, . . . , tn

are terms; [h|t], where h (the head of the list) is a term, and t (the tail of the

list) is a list term.

A term is either a normal term,a functional term or a list term.

Each predicate p has a �xed arity k ≥ 0. Let p, t1, . . . , tk be terms and, in

particular, let p be a predicate of arity k, p(t1, . . . , tk) is an higher order atom

(or atom). An atom having p as predicate name is usually referred as p(t). If p

is a constant then p(t) is an ordinary atom.

An external atom has the form

&g{Y1, . . . , Yn}(X1, . . . , Xm)

where Y1, . . . , Yn andX1, . . . , Xm are two lists of terms (called input and output

lists, &g ∈ G is an external predicate name. We assume that &g has �xed

lengths in(&g) = n and out(&g) = m for input and output lists, respectively.

Intuitively, an external atom provides a way for deciding the truth value of an

output tuple depending on the extension of a set of input predicates.

A (positive) disjunctive rule r is of the form: α1 ∨ . . .∨αk ← β1, . . . , βn., where

k > 0;α1, . . . , αk and β1, . . . , βn are atoms or external atoms. The disjunction

α1 ∨ . . . ∨ αk is called head of r, while the conjunction β1, . . . , βn. is the body

of r. We denote by H(r) the set of the head atoms, by B(r) the set of body

atoms; we refer to all atoms occurring in a rule with Atoms(r) = H(r)∪B(r).

A rule having precisely one head atom (i.e., k = 1 and then |H(r)| = 1) is
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called a normal rule. If r is a normal rule with an empty body (i.e., n = 0 and

then B(r) = ∅) we usually omit the ← sign; and if it contains no variables,

then it is referred to as a fact. A LPFHELD program P is a �nite set of rules.

A ∨-free program P is a program consisting of normal rules only.

2.1.2 Semantics

The semantics of LPFHELD programs extends and generalizes the (consistent)

answer sets semantics of dis- junctive datalog programs, originally de�ned in

[31] and subsequently in [13].

For any program P , let UP (the Herbrand Universe) be the set of all constants

appearing in P . In case no constant appears in P , an arbitrary constant ψ is

added to UP .

For any program P , let BP (Herbrand Literal Base) be the set of all ground

(classical) literals constructible from the predicate symbols appearing in P and

the constants of UP .

For any rule r, Ground(r) denotes the set of rules obtained by applying all

possible substitutions σ from the variables in r to elements of UP . Note that

for propositional programs, P = Ground(P ) holds.

An interpretation I is a set of ground classical literals, i.e. I ⊆ BPw.r.t. a

program P . A consistent interpretationX ⊆ BP is called closed under P (where

P is a positive disjunctive datalog program), if, for every r ∈ Ground(P ),

H(r) ∩ X 6= wheneverB(r) ⊆ X. An interpretation X ⊆ BP is an answer

set for a positive disjunctive datalog program P , if it is minimal (under set

inclusion) among all (consistent) interpretations that are closed under P .

2.1.3 dlvhex

We will now introduce dlvhex, which will be used thereafter especially thanks

to its external knowledge features. It will be exploited for importing ontologies

in the �rst part, and as terminal reasoner in the third part of this thesis.

dlvhex is the name of a prototype application for computing the models of so-

called HEX-programs, which are an extension of Answer-Set Programs towards

integration of external computation sources.

In particular, HEX-programs are higher-order logic programs (which accom-

modate meta-reasoning through higher-order atoms) with external atoms for
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software interoperability. Intuitively, a higher-order atom allows to quantify

values over predicate names, and to freely exchange predicate symbols with

constant symbols. Look at the following example:

C(X)← subClassOf(D,C), D(X).

An external atom facilitates to determine the truth value of an atom through

an external source of computation. For instance, the rule

reached(X)← &reach[edge, a](X)

computes the predicate reached taking values from the predicate &reach, which

computes via &reach[edge, a] all the reachable nodes in the graph edge from

node a, delegating this task to an external computation source (e.g., an external

deduction system, an execution library, etc.).

The architecture of dlvhex consists of a core language,which is ASP with higher

order, and a collection of plugins, i.e. external atoms written for answering

special needs, like the DL-plugin (for description logics), the Sparql plugin(for

using SPARQL queries to query the knowledge base) and the RIF plugin, which

is still in development, and will be described in detail in the remainder of this

thesis.

2.2 Frame Logic

We introduce next Frame Logic, which will be used in the second part. In par-

ticular, it will be integrated in logic programming using a modular translation.

Frame Logic(F-logic) [39, 71] is a knowledge representation and ontology mod-

eling language which combines the declarative semantics and expressiveness

of deductive database languages with the rich data modeling capabilities sup-

ported by the object oriented data model.

As such, F-logic constitutes both an important methodology and a tool for mod-

eling ontologies in the context of Semantic Web. Also, F-logic features play a

crucial role in the ongoing activity of the RIF Working group [38]. F-logic was

originally de�ned under �rst-order semantics [39], while a well-founded seman-

tics, satisfactorily dealing with nonmonotonic inheritance can be found in [71].
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F-Logic o�ers a declarative, compact and simple syntax, as well as the well-

de�ned semantics of a logic-based language. Features include, among others,

object identity, complex objects, inheritance, polymorphism, query methods,

encapsulation. F-logic stands in the same relationship to object-oriented pro-

gramming as classical predicate calculus stands to relational database program-

ming. The base of F-Logic is the de�nition of classes and individuals, as in any

other representation language.

Example 2.1.

man :: person.

woman :: person.

marco : man.

marina : woman.

This states, that �men and women are people� and that �Marco is a man�, and

�Marina is a woman�.

To add details to the classes, just like in object-oriented programming lan-

guages, it is possible to express attributes with values.

Example 2.2.

person[hasSon⇒ man].

marco[hasSon→→ {eustachio, genoveffa}].

married(marco,marina).

This de�nes that �the son of a person is a man�, �Eustachio and Genove�a are

the sons of Marco� and �Marco and Marina are married�.

In F-Logic it is also possible to express rules to describe relationships between

concepts and/or instances, like the following example shows:

Example 2.3.

man(X)← person(X) AND NOT woman(X).

FORALLX, Y ← X : person[hasFather → Y ← Y : man[hasSon→ X].
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These mean "X is a man if X is a person but not a woman" and "if X is the

son of Y then Y is the father of X".

2.2.1 Syntax

We use here some compact de�nitions, which can be found in[68].

The alphabet of an F-logic language comprises some object constructors, play-

ing the role of function symbols, a set of variables, and auxiliary symbols like

(, ), [, ],→,�, •→, •→→,⇒,⇒⇒ and the well-known �rst-order logic connectives.

For convention, object constructors start with lower case letters whereas vari-

ables start with uppercase ones.

We will use ID terms for names of objects, classes and methods. They are

formed by object constructors and variables.

In the sequel let o, c, c1, c2,m, p1, . . . , pn and r be ID-terms for n ≥ 0. An is-a

atom is an expression of the form o : c (the object o is a member of the class

c) or c1 :: c2, that is to say that the class c1 is a subclass of the class c2.

We will call data atoms the following expressions:

o[m@(p1, . . . , pn)→ r] (1)

o[m@(p1, . . . , pn) •→ r] (2)

o[m@(p1, . . . , pn) � r] o[m@(p1, . . . , pn)⇒⇒ r] (3)

(1) means that applying the scalar method m with the given parameters to o

(object) results in r; in (2), o (class in this case) provides the inheritable scala

method m to its members, which, if called with the given parameters, results

in r; (3) is the same as above, but for multivalued methods.

An eq-atom is an expression of the form p1 = p2 with the meaning that p1 and

p2 denote the same object.

A rule h← b1, . . . , bk with k ≥ 1, is a logic rule over atoms h, b1, . . . , bk. A f act

is a formula h., given an atom h.

A query is a formula b1, . . . , bk, k ≥ 1.

A emph program is a set of facts and rules.

Atoms can be combined in molecules in a short notation.

Note that F-logic does not distinguish between classes, methods, and objects

which uniformly are denoted by ID-terms; also variables can occur at arbitrary

positions of an atom.



20 2 Preliminaries

2.2.2 Semantics

The semantics of F-logic extends the semantics of �rst-order logic. Formulas

are interpreted over a semantic structure. We restrict our discussion to Her-

brand interpretations where the universe consists of all ground ID-terms. An

H-structure is a set of ground atoms describing an object world, thus it has to

satisfy several closure axioms related to general properties of Object Orienta-

tion.

De�nition 2.4. Let H be a (possibly in�nite) set of ground atoms. H is an

H-structure if the following conditions hold for arbitrary ground ID-terms

u, u0, . . . , un, ur, u
′
r and um:

� u :: u ∈ H (subclass re�exivity).

� if u1 :: u2 ∈ H and u2 :: u3 ∈ H then u1 :: u3 ∈ H (subclass transitivity).

� u1 :: u2 ∈ H and u2 :: u1 ∈ H then u1 = u2 ∈ H (subclass acyclicity).

� if u1 : u2 ∈ H and u2 :: u3 ∈ H then u1 : u3 ∈ H (instance-subclass

dependency).

� if u0[um@(u1, . . . , un ⇀⇀ ur)] ∈ H and u0[um@(u1, . . . , un ⇀⇀ u′r)] ∈ H

then ur = u′r ∈ H. where ⇀⇀ stands for → or •→ (uniqueness of scalar

methods).

Furthermore the well known free equality axioms for = have to hold.

With respect to an H-structure the meaning of atoms and formulas is given in

the usual way, moreover, minimal models can be de�ned as standard meaning

of a program.

2.3 Description Logics

Description Logics has a very important role in this thesis, since it involved in

all topics we will deal with.

Description Logics [4](DLs) is a family of Knowledge Representation formalisms

that represent the knowledge of an application domain by �rst de�ning its rele-

vant concepts (terminology), and then using these concepts to specify properties

of objects and individuals occurring in the domain (the world description).
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Description Logics, as the name suggests, is characterized by a formal, logic-

based semantics.

Another distinguished feature is the emphasis on reasoning as a central ser-

vice: reasoning allows one to infer implicitly represented knowledge from the

knowledge that is explicitly contained in the knowledge base. Description Log-

ics support inference patterns that occur in many applications of intelligent

information processing systems, and which are also used by humans to struc-

ture and understand the world: classi�cation of concepts and individuals.

A knowledge base (KB) comprises two components, the TBox and the ABox.

The TBox introduces the terminology, i.e., the vocabulary of an application do-

main, while the ABox contains assertions about named individuals in terms of

this vocabulary.

The vocabulary consists of concepts, which denote sets of individuals, and roles,

which denote binary relationships between individuals. In addition to atomic

concepts and roles (concept and role names), all DL systems allow their users

to build complex descriptions of concepts and roles. The TBox can be used to

assign names to complex descriptions. The language for building descriptions

is a characteristic of each DL system, and di�erent systems are distinguished

by their description languages. The description language has a model-theoretic

semantics. Thus, statements in the TBox and in the ABox can be identi�ed

with formulae in �rst-order logic or, in some cases, a slight extension of it.

A DL system not only stores terminologies and assertions, but also o�ers ser-

vices that reason about them. Typical reasoning tasks for a terminology are

to determine whether a description is satis�able (i.e., non-contradictory), or

whether one description is more general than another one, that is, whether

the �rst subsumes the second. Important problems for an ABox are to �nd

out whether its set of assertions is consistent, that is, whether it has a model,

and whether the assertions in the ABox entail that a particular individual is

an instance of a given concept description. Satis�ability checks of descriptions

and consistency checks of sets of assertions are useful to determine whether a

knowledge base is meaningful at all.

With subsumption tests, one can organize the concepts of a terminology into

a hierarchy according to their generality. A concept description can also be

conceived as a query, describing a set of objects one is interested in. Thus, with

instance tests, one can retrieve the individuals that satisfy the query.
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In any application, a KR system is embedded into a larger environment. Other

components interact with the KR component by querying the knowledge base

and by modifying it, that is, by adding and retracting concepts, roles, and

assertions. A restricted mechanism to add assertions are rules. Rules are an

extension of the logical core formalism, which can still be interpreted logically.

However, many systems, in addition to providing an application programming

interface that consists of functions with a well-de�ned logical semantics, pro-

vide an escape hatch by which application programs can operate on the KB in

arbitrary ways.

2.3.1 Basic Language

Here we give some notions of the basic constructors it is possible to use to built

a DL knowledge base.

To describe a reality of interest, we need some constructors, useful to specify

concepts. They can give either simple or complex descriptions. The simple ones

are called atomic concepts and roles. Starting from these, one can form a more

complex description, the form of which depends on the language in use.

Here we will not focus on a language in particular, on the contrary this intro-

duction will deal with general concepts, universally applicable.

We have some atomic concepts and roles,i.e. they can be expressed only in

terms of themselves.

We call Basic Concept a concept which can be expressed using the constructors

of the language, starting from one or more atomic concepts. Without loss of

generality we assume these constructors to be used:

A v B(C1)

A uB v C(C2)

A v ∃R.B(C3)

∃R.A v B(C4)

∃R.> v B(C5)

B v ∃R.>(C6)

P v S(C7)

R− v S(C8)

R v S−(C9)
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Axiom ELHI H FOL formulaF(H)

A(a) A(a)

R(a, b) R(a, b)

A v B ∀xA(x)→ B(x)

A uB v C ∀xA(x) ∧B(x)→ C(x)

A v ∃R.B ∀xA(x)→ [∃yB(y) ∧R(x, y)]

∃R.A v B ∀x[∃yA(y) ∧R(x, y)]→ B(x)

∃R.> v B ∀x[∃yR(x, y)]→ B(x)

B v ∃R.> ∀xB(x)→ [∃yR(x, y)]

R v S or R− v S− ∀x,y R(x, y)→ S(x, y)

R v S− or R− v S ∀x,y R(y, x)→ S(x, y)

Table 2.1: Semantics of a DL knowledge base given in terms of the correspond-
ing FO formulas.

Semantics for a DL knowledge is given by means of �rst order logics (FOL).

In, particular, a DL ontology can be seen as a conjunction of FOL formulas.

the models of each axiom are the same of the ones of the corresponding FOL

formula. In the table 2.1, we show, for each axiom, the corresponding �rst

order formula.

Given a knowledge base, the semantics is given by the following formula:

F(KB) =
∧
H∈T
F(H) ∧

∧
H∈A
F(H).

2.4 OWL2 and OWL2 Pro�les

OWL2 is the new version of the popular Ontology Web Language (OWL). It

is divided into pro�les, as we will see later in detail. It was designed in order

to be more modular than its predecessor, and focused on tasks, giving di�erent

expressivity for di�erent scenarios.

Similarly to OWL, it is based on description logics, in particular there is a

di�erent fragment for each OWL2 pro�le. It permits, for this reason, to de�ne

vocabularies and axioms, to model reality. This is possible by de�ning ontolo-

gies.
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2.4.1 OWL2

An OWL 2 [41] ontology is a formal description of a domain of interest. OWL

2 ontologies consist of the following three di�erent syntactic categories:

� Entities, such as classes, properties, and individuals, are identi�ed by IRIs.

They form the primitive terms of an ontology and constitute the basic ele-

ments of an ontology. For example, a class a:Person can be used to represent

the set of all people. Similarly, the object property a:parentOf can be used

to represent the parent-child relationship. Finally, the individual a : Marco

can be used to represent a particular person called �Marco�.

� Expressions represent complex notions in the domain being described. For

example, a class expression describes a set of individuals in terms of the

restrictions on the individuals' characteristics. Axioms are statements that

are asserted to be true in the domain being described. For example, using

a subclass axiom, one can state that the class a : Student is a subclass of

the class a : Person. These three syntactic categories are used to express

the logical part of OWL 2 ontologies that is, they are interpreted under a

precisely de�ned semantics that allows useful inferences to be drawn. For

example, if an individual a : Marco is an instance of the class a : Student,

and a : Student is a subclass of a : Person, then from the OWL 2 semantics

one can derive that a : Marco is also an instance of a : Person.

� Expressions represent complex notions in the domain being described. For

example, a class expression describes a set of individuals in terms of the

restrictions on the individuals' characteristics. Axioms are statements that

are asserted to be true in the domain being described. For example, using a

subclass axiom, one can state that the class a : Student is a subclass of the

class a : Person.

In addition, entities, axioms, and ontologies can be annotated in OWL 2. For

example, a class can be given a human-readable label that provides a more

descriptive name for the class. Annotations have no e�ect on the logical aspects

of an ontology that is, for the purposes of the OWL 2 semantics, annotations

are treated as not being present. Instead, the use of annotations is left to the

applications that use OWL 2. For example, a graphical user interface might

choose to visualize a class using one of its labels.
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Finally, OWL 2 provides basic support for ontology modularization. In partic-

ular, an OWL 2 ontology O can import another OWL 2 ontology O′ and thus

gain access to all entities, expressions, and axioms in O′.

Fig. 2.1: OWL2 Typical Work�ow.

2.4.2 OWL2 Pro�les

An OWL 2 pro�le (commonly called a fragment or a sublanguage in computa-

tional logic) is a trimmed down version of OWL 2 that trades some expressive

power for the e�ciency of reasoning.

Here we describe three pro�les of OWL 2, each of which achieves e�ciency in

a di�erent way and is useful in di�erent application scenarios. The pro�les are

independent of each other. The choice of which pro�le to use in practice will

depend on the structure of the ontologies and the reasoning tasks at hand.
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OWL2 EL

OWL 2 EL is particularly useful in applications employing ontologies that con-

tain very large numbers of properties and/or classes. This pro�le captures the

expressive power used by many such ontologies and is a subset of OWL 2 for

which the basic reasoning problems can be performed in time that is poly-

nomial with respect to the size of the ontology [EL++]. Dedicated reasoning

algorithms for this pro�le are available and have been demonstrated to be im-

plementable in a highly scalable way. The EL acronym re�ects the pro�le's

basis in the EL family of description logics [EL++], logics that provide only

Existential quanti�cation.

OWL2 QL

OWL 2 QL is aimed at applications that use very large volumes of instance

data, and where query answering is the most important reasoning task. In

OWL 2 QL, conjunctive query answering can be implemented using conven-

tional relational database systems. Using a suitable reasoning technique, sound

and complete conjunctive query answering can be performed in LOGSPACE

with respect to the size of the data (assertions). As in OWL 2 EL, polyno-

mial time algorithms can be used to implement the ontology consistency and

class expression subsumption reasoning problems. The expressive power of the

pro�le is necessarily quite limited, although it does include most of the main

features of conceptual models such as UML class diagrams and ER diagrams.

The QL acronym re�ects the fact that query answering in this pro�le can be

implemented by rewriting queries into a standard relational Query Language.

OWL2 RL

OWL 2 RL is aimed at applications that require scalable reasoning without

sacri�cing too much expressive power. It is designed to accommodate OWL 2

applications that can trade the full expressivity of the language for e�ciency,

as well as RDF(S) applications that need some added expressivity. OWL 2

RL reasoning systems can be implemented using rule-based reasoning engines.

The ontology consistency, class expression satis�ability, class expression sub-

sumption, instance checking, and conjunctive query answering problems can be
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solved in time that is polynomial with respect to the size of the ontology. The

RL acronym re�ects the fact that reasoning in this pro�le can be implemented

using a standard Rule Language.

2.5 RIF

The Rule Interchange Format (RIF) is a new language, whose de�nition was

started in 2005 by the RIF working group.

RIF focused on exchange rather than trying to develop a single one-�ts-all rule

language because, in contrast to other Semantic Web standards, such as RDF,

OWL, and SPARQL, it was immediately clear that a single language would

not satisfy the needs of many popular paradigms for using rules in knowledge

representation and business modeling. But even rule exchange alone was recog-

nized as a daunting task. Known rule systems fall into three broad categories:

�rst-order, logic-programming, and action rules. These paradigms share little in

the way of syntax and semantics. Moreover, there are large di�erences between

systems even within the same paradigm.

Given this diversity, what is the most useful notion of rule exchange? The

approach taken by the Working Group was to design a family of languages,

called dialects, with rigorously speci�ed syntax and semantics. The family of

RIF dialects is intended to be uniform and extensible. RIF uniformity means

that dialects are expected to share as much as possible of the existing syntactic

and semantic apparatus. Extensibility here means that it should be possible

for motivated experts to de�ne a new RIF dialect as a syntactic extension to

an existing RIF dialect, with new elements corresponding to desired additional

functionality. These new RIF dialects would be non-standard when de�ned, but

might eventually become standards.

Because of the emphasis on rigor, the word format in the name of RIF is some-

what of an understatement. RIF in fact provides more than just a format.

However, the concept of format is essential to the way RIF is intended to be

used. Ultimately, the medium of exchange between di�erent rule systems is

XML, a format for data exchange. Central to the idea behind rule exchange
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through RIF is that di�erent systems will provide syntactic mappings from

their native languages to RIF dialects and back. These mappings are required

to be semantics-preserving, and thus rule sets can be communicated from one

system to another provided that the systems can talk through a suitable di-

alect, which they both support.

The RIF group, as stated previously, decided to create di�erent dialects, to

satisfy di�erent needs. The existing dialects are:

� Rif-Core

� Rif-BLD

� Rif-PRD

Here we will focus mainly on the BLD dialect, that has been used for our

purpose. In the following we will present the syntax and the semantics of this

particular dialect.

2.5.1 Syntax

We will use the Rif Presentation Syntax, which is not a concrete syntax (the

only concrete one is the XML syntax), but is well suited for better showing the

language features.

It deliberately leaves out details such as the delimiters of the various syntactics

components, escape symbols, and other similar symbols.

From now on, with a little abuse of notation, we talk about the elements of

RIF, but actually we are dealing with the elements of RIF presentation syntax.

The Alphabet of RIF-BLD consists of a countably in�nite set of constant sym-

bols C; a countably in�nite set of variable symbols V (disjoint from C); a
countably in�nite set of argument names, A (disjoint from C and V); con-
nective symbols And,Or,←; quanti�ers symbols Exists, Forall; the symbols =

,#,##,− >,External, Import, Prefix,Base; the symbolsGroup,Document;
the symbols for representing lists: List,OpenList;the auxiliary symbols (, ), [, ], <

,>,̂ .̂

The set of connective symbols, quanti�ers, =, etc., is disjoint from C and V.
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The argument names in A are written as Unicode strings that must not start

with a question mark, "?". Variables are written as Unicode strings preceded

with the symbol "?".

Constants are written as “literal′′̂ .̂symspace, where literal is a sequence of

Unicode characters and symspace is an identi�er for a symbol space. Symbol

spaces are de�ned in Section Constants, Symbol Spaces, and Datatypes of RIF-

DTB. For the description of RIF-DTB, please look at the following paragraphs.

The symbols =,#,## are used in formulas that de�ne equality, class mem-

bership, and subclass relationships. The symbol − > is used in terms that have

named arguments and in frame formulas. The symbol External indicates that

an atomic formula or a function term is de�ned externally (e.g., a built-in) and

the symbols Pre�x and Base enable compact representations of IRIs (RFC-

3987).

The symbol Document is used to specify RIF-BLD documents, the symbol

Import is an import directive, and the symbol Group is used to organize RIF-

BLD formulas into collections.

The language of RIF-BLD is the set of formulas constructed using the above

alphabet according to the rules given below.

In RIF-BLF it is possible to build several types of terms:

� Constants and variables. If t ∈ C or t ∈ V then t is a simple term.

� Positional terms. If t ∈ C and t1, . . . , tn, n ≥ 0, are base terms then t(t1 . . . tn)

is a positional term.

� Positional terms correspond to the usual terms and atomic formulas of clas-

sical �rst-order logic [Enderton01, Mendelson97].

� Terms with named arguments. A term with named arguments is of the form

t(s1 → v1 . . . sn → vn), where n ≥ 0, t ∈ C and v1, . . . , vn are base terms

and s1, . . . , sn are pairwise distinct symbols from the set A.

The constant t here represents a predicate or a function; s1, . . . , sn represent ar-

gument names; and v1, . . . , vn represent argument values. The argument names,

s1, . . . , sn, are required to be pairwise distinct. Terms with named arguments

are like positional terms except that the arguments are named and their order

is immaterial. Note that a term of the form f() is, trivially, both a positional
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term and a term with named arguments.

Terms with named arguments are introduced to support exchange of languages

that permit argument positions of predicates and functions to be named (in

which case the order of the arguments does not matter).

� List terms. There are two kinds of list terms: open and closed. A closed

list has the form List(t1 . . . tm), where m ≥ 0 and t1, . . . , tm are terms. An

open list (or a list with a tail) has the form OpenList(t1 . . . tmt), where

m > 0 and t1, . . . , tm, t are terms. Open lists are usually written using the

following: List(t1 . . . tm|t). The last argument, t, represents the tail of the

list and so it is normally a list as well. A closed list of the form List() (i.e.,

a list in which m=0, corresponding to Lisp's nil) is called the empty list.

� Equality terms. t = s is an equality term, if t and s are base terms.

� Class membership terms (or just membership terms). t#s is a membership

term if t and s are base terms.

� Subclass terms. t##s is a subclass term if t and s are base terms.

� Frame terms. t[p1 → v1 . . . pn → vn] is a frame term (or simply a frame)

if t, p1, . . . , pn, v1, . . . , vn, n ≥ 0, are base terms. Membership, subclass, and

frame terms are used to describe objects and class hierarchies.

� Externally de�ned terms. If t is a positional or a named-argument term then

External(t) is an externally de�ned term. External terms are used for repre-

senting built-in functions and predicates as well as "procedurally attached"

terms or predicates, which might exist in various rule-based systems, but

are not speci�ed by RIF.

Observe that the argument names of frame terms, p1, . . . , pn, are base terms and

so, as a special case, can be variables. In contrast, terms with named arguments

can use only the symbols from ArgNames to represent their argument names.

They cannot be constants from C or variables from V. The reason for not

allowing variables for those is to control the complexity of uni�cation, which is

used by several inference mechanisms of �rst-order logic.

RIF-BLD distinguishes certain subsets of the set Const of symbols, including

subsets of predicate symbols and function symbols. Section Well-formed For-

mulas gives more details, but we do not need those details yet.
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De�nition 2.5. (Atomic Formula). Any term (positional or with named argu-

ments) of the form p(. . . ), where p is a predicate symbol, is also an atomic

formula. Equality, membership, subclass, and frame terms are also atomic for-

mulas. An externally de�ned term of the form External(ϕ), where ϕ is an

atomic formula, is also an atomic formula, called an externally de�ned atomic

formula.

It is important to remark that simple terms (constants and variables) are not

formulas.

More general formulas are constructed from atomic formulas with the help of

logical connectives.

De�nition 2.6. (Formula). A formula can have several di�erent forms and is

de�ned as follows:

� Atomic: If ϕ is an atomic formula then it is also a formula.

� Condition formula: A condition formula is either an atomic formula or a

formula that has one of the following forms:

� Conjunction: If ϕ1, . . . , ϕn, n ≥ 0, are condition formulas then so is

And(ϕ1 . . . ϕn), called a conjunctive formula. As a special case, And()

is allowed and is treated as a tautology, i.e., a formula that is always

true.

� Disjunction: If ϕ1, . . . , ϕn, n0, are condition formulas then so is

Or(ϕ1 . . . ϕn), called a disjunctive formula. As a special case, Or() is

permitted and is treated as a contradiction, i.e., a formula that is always

false.

Existentials: If ϕ is a condition formula and ?V1, . . . , ?Vn, n > 0, are distinct

variables then Exists?V1 . . .?Vn(ϕ) is an existential formula.

Condition formulas are intended to be used inside the premises of rules. Next we

de�ne the notions of rule implications, universal rules, universal facts, groups

(i.e., sets of rules and facts), and documents.

Rule implication: ϕ← ψ is a formula, called rule implication, if: ϕ is an atomic

formula or a conjunction of atomic formulas, ψ is a condition formula, and none

of the atomic formulas in ϕ is an externally de�ned term (i.e., a term of the

form External(. . .)).

Universal rule: If ϕ is a rule implication and ?V1, . . . , ?Vn, n > 0, are distinct
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variables then Forall?V1 . . .?Vn(ϕ) is a formula, called a universal rule. It is

required that all the free variables in ϕ occur among the variables ?V1 . . . ?Vn

in the quanti�cation part. An occurrence of a variable ?v is free in ϕ if it is

not inside a subformula of ϕ of the form Exists?v(ψ) and ψ is a formula.

Universal rules will also be referred to as RIF-BLD rules. Universal fact: If

ϕ is an atomic formula and ?V1, . . . , ?Vn, n > 0, are distinct variables then

Forall?V1 . . .?Vn(ϕ) is a formula, called a universal fact, provided that all the

free variables in ϕ occur among the variables ?V1 . . .?Vn. Universal facts are

often considered to be rules without premises.

Group: If ϕ1, . . . , ϕn are RIF-BLD rules, universal facts, variable-free rule impli-

cations, variable-free atomic formulas, or group formulas then Group(ϕ1 . . .ϕn)

is a group formula. As a special case, the empty group formula, Group(), is

allowed and is treated as a tautology, i.e., a formula that is always true. Non-

empty group formulas are used to represent sets of rules and facts. Note that

some of the ϕi's can be group formulas themselves, which means that groups

can be nested.

Document: An expression of the form Document(directive1 . . . directivenΓ )

is a RIF-BLD document formula (or simply a document formula), if Γ is an

optional group formula; it is called the group formula associated with the doc-

ument. directive1, . . . , directiven is an optional sequence of directives. A direc-

tive can be a base directive, a pre�x directive or an import directive. A base

directive has the form Base(< iri >), where iri is a Unicode string in the form

of an absolute IRI [RFC-3987]. The Base directive de�nes a syntactic shortcut

for expanding relative IRIs into full IRIs, as described in Section Constants,

Symbol Spaces, and Datatypes of [RIF-DTB].

A pre�x directive has the form Prefix(p < v >), where p is an alphanumeric

string that serves as the pre�x name and v is an expansion for p � a Unicode

sequence of characters that forms an IRI. (An alphanumeric string is a sequence

of ASCII characters, where each character is a letter, a digit, or an underscore ,

and the �rst character is a letter.) Like the Base directive, the Pre�x directives

de�ne shorthands to allow more concise representation of constants that come

from the symbol space rif:iri (we will call such constants rif:iri constants). This

mechanism is explained in [RIF-DTB], Section Constants, Symbol Spaces, and

Datatypes.
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An import directive can have one of these two forms: Import(< loc >) or

Import(< loc >< p >). Here loc is a Unicode sequence of characters that

forms an IRI and p is another Unicode sequence of characters. The constant

loc represents the location of another document to be imported; it is called

the locator of the imported document. The argument p is called the pro�le of

import; it has the form of a Unicode character sequence in the form of an IRI

� see [RIF-RDF+OWL].

A document formula can contain at most one Base directive. The Base directive,

if present, must be �rst, followed by any number of Pre�x directives, followed

by any number of Import directives.

In the de�nition of a formula, the component formulas ϕ,ϕi, ψi, and Γ are said

to be subformulas of the respective formulas (condition, rule, group, etc.) that

are built using these components.

RIF-BLD Annotations in the Presentation Syntax

RIF-BLD allows every term and formula (including terms and formulas that

occur inside other terms and formulas) to be optionally preceded by one an-

notation of the form (* id ϕ *), where id is a rif:iri constant and ϕ is a frame

formula or a conjunction of frame formulas. Both items inside the annotation

are optional. The id part represents the identi�er of the term or formula to

which the annotation is attached and ϕ is the metadata part of the annota-

tion. RIF-BLD does not impose any restrictions on ϕ apart from what is stated

above. This means that it may include variables, function symbols, constants

from the symbol space rif:local (often referred to as local or rif:local constants),

and so on.

Document formulas with and without annotations will be referred to as RIF-

BLD documents.

Well formed formulas

Not all formulas and thus not all documents are well-formed in RIF-BLD: it is

required that no constant appear in more than one context. What this means

precisely is explained below. Informally, this means that each constant symbol

in RIF-BLD can be either an individual, a plain function, a plain predicate,

an externally de�ned function, or an externally de�ned predicate. However,
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symbols can be polyadic: the same function or predicate symbol (normal or

external) can occur with di�erent numbers of arguments in di�erent places.

Note that polyadic symbols could be replaced by non-polyadic symbols with

the arity information encoded in the function or predicate names.

The set of all constant symbols, C, is partitioned into the following subsets:

� A subset of individuals.

� The symbols in Const that belong to the symbol spaces of Datatypes are

required to be individuals.

� A subset of plain (i.e., non-external) function symbols.

� A subset for external function symbols.

� A subset of plain predicate symbols.

� A subset for external predicate symbols.

The above subsets do not di�erentiate between positional and named argument

symbols. Also, as seen from the following de�nitions, these subsets are not

speci�ed explicitly but, rather, are inferred from the occurrences of the symbols.

De�nition (Context of a symbol). The context of an occurrence of a symbol,

Const, in a formula, ϕ, is determined as follows:

If s occurs as a predicate of the form s(. . . ) (positional or named-argument)

in an atomic subformula of ϕ then s occurs in the context of a (plain) pred-

icate symbol. If s occurs as a function symbol in a non-subformula term of

the form s(. . .) then s occurs in the context of a (plain) function symbol. If

s occurs as a predicate in an atomic subformula External(s(. . .)) then s oc-

curs in the context of an external predicate symbol. If s occurs as a func-

tion in a non-subformula term External(s(. . .)) then s occurs in the context

of an external function symbol. If s occurs in any other context (in a frame:

s[. . .], . . . [s → . . .], or . . . [. . . → s]; or in a positional/named-argument term:

p(. . . s . . .), q(. . .→ s . . .)), it is said to occur as an individual.

De�nition 2.7. (Imported document). Let ∆ be a document formula and

Import(loc) be one of its import directives, where loc is a locator of another

document formula, ∆′. We say that ∆′ is directly imported into ∆.

A document formula ∆′ is said to be imported into ∆ if it is either directly

imported into ∆ or it is imported (directly or not) into some other formula that

is directly imported into ∆.



2.5 RIF 35

The above de�nition deals only with one-argument import directives, since

only such directives can be used to import other RIF-BLD documents. Two-

argument import directives are provided to enable import of other types of

documents, and their semantics are supposed to be covered by other speci�ca-

tions, such as [RIF-RDF+OWL].

De�nition (Well-formed formula). A formula ϕ is well-formed i�:

every constant symbol (whether coming from the symbol space rif:local or not)

mentioned in ϕ occurs in exactly one context. if ϕ is a document formula and

'k are all of its imported documents, then every non-rif:local constant symbol

mentioned in ϕ or any of the imported 'is must occur in exactly one context

(in all of the is). whenever a formula contains a term or a subformula of the

form External(t), t must be an instantiation of a schema in the coherent set

of external schemas (Section Schemas for Externally De�ned Terms of [RIF-

DTB]) associated with the language of RIF-BLD. if t is an instantiation of a

schema in the coherent set of external schemas associated with the language

then t can occur only as External(t), i.e., as an external term or atomic formula.

De�nition (Language of RIF-BLD). The language of RIF-BLD consists of the

set of all well-formed formulas and is determined by:

the alphabet of the language and a set of coherent external schemas, which

determine the available built-ins and other externally de�ned predicates and

functions.

2.5.2 Semantics

Truth Values

The set TV of truth values in RIF-BLD consists of two values, t and f.

Semantic Structures

The key concept in a model-theoretic semantics for a logic language is the

notion of a semantic structure [Enderton01, Mendelson97]. The de�nition is

slightly more general than what is strictly necessary for RIF-BLD alone. This

lays the groundwork for extensions to RIF-BLD and makes the connection with

the semantics of the RIF framework for logic-based dialects [RIF-FLD] more

obvious.
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De�nition 2.8. (Semantic structure). A semantic structure, I, is a tuple of

the form <TV, DTS, D, Dind, Dfunc, IC, IV, IF, INF, Ilist, Itail, Iframe,

Isub, Iisa, I=, Iexternal, Itruth>. Here D is a non-empty set of elements called

the domain of I, and Dind, Dfunc are nonempty subsets of D. Dindis used to

interpret the elements of Const that occur as individuals and Dfunc is used to

interpret the elements of Const that occur in the context of function symbols.

As before, Const denotes the set of all constant symbols and Var the set of all

variable symbols. DTS denotes a set of identi�ers for datatypes (please refer to

Section Datatypes of [RIF-DTB] for the semantics of datatypes).

The other components of I are total mappings de�ned as follows:

IC maps C to D. This mapping interprets constant symbols. In addition:

If a constant, c ∈ C, is an individual then it is required that IC(c) We also

de�ne the following mapping from terms to D, which we denote using the same

symbol I as the one used for semantic structures. This overloading is convenient

and creates no ambiguity.

IV maps V to Dind. This mapping interprets variable symbols. IF maps D

to total functions D∗ind → D (here D∗ind is a set of all �nite sequences over

the domain Dind). This mapping interprets positional terms. In addition if

d ∈ Dfunc then IF (d) must be a function D∗ind → Dind. This means that when

a function symbol is applied to arguments that are individual objects then

the result is also an individual object. INF maps D to the set of total func-

tions of the form SetOfFiniteSets(ArgNamesxDind) → D. This mapping

interprets function symbols with named arguments. In addition if d ∈ Dfunc

then INF (d) must be a function SetOfFiniteSets(ArgNamesxDind)→ Dind.

This is analogous to the interpretation of positional terms with two di�erences:

Each pair < s, v >∈ AxDind represents an argument/value pair instead of

just a value in the case of a positional term. The arguments of a term with

named arguments constitute a �nite set of argument/value pairs rather than

a �nite ordered sequence of simple elements. So, the order of the arguments

does not matter. Ilist and Itail are used to interpret lists. They are mappings

of the following form: Ilist : D∗ind → Dind; Itail : Dind + xDind → Dind

In addition, these mappings are required to satisfy the following conditions:

(i) The function Ilist is injective (one-to-one); (ii) The set Ilist(D
∗
ind), hence-

forth denoted Dlist, is disjoint from the value spaces of all data types in DTS.

Itail(a1, . . . , ak, Ilist(ak+1, . . . , ak+m)) = Ilist(a1, . . . , ak, ak+1, . . . , ak+m).



2.5 RIF 37

Note that the last condition above restricts Itail only when its last argu-

ment is in Dlist. If the last argument of Itail is not in Dlist, then the list

is a general open one and there are no restrictions on the value of Itail ex-

cept that it must be in Dind. Iframe maps Dindto total functions of the

form SetOfFiniteBags(DindDind)D. This mapping interprets frame terms.

An argument, d ∈ Dind, to Iframe represents an object and the �nite bag

< a1, v1 >, . . . , < ak, vk > represents a bag of attribute-value pairs for d. We

will see shortly how Iframe is used to determine the truth valuation of frame

terms.

Isub gives meaning to the subclass relationship. It is a mapping of the form

DindxDind → D. Isub will be further restricted in Section Interpretation of

Formulas to ensure that the operator ## is transitive, i.e., that c1##c2 and

c2##c3 imply c1##c3.

Iisa gives meaning to class membership. It is a mapping of the form Dind Dind

D. Iisa will be further restricted in Section Interpretation of Formulas to ensure

that the relationships # and ## have the usual property that all members of a

subclass are also members of the superclass, i.e., that o#cl and cl##scl imply

o#scl.

I= is a mapping of the form DindxDind → D. It gives meaning to the equality

operator.

Itruth is a mapping of the form D → TV . It is used to de�ne truth valuation

for formulas.

Iexternal is a mapping from the coherent set of schemas for externally de-

�ned functions to total functions D∗ → D. For each external schema σ =

(?X1 . . .?Xn; τ) in the coherent set of external schemas associated with the

language, Iexternal(σ) is a function of the form Dn → D.

For every external schema, σ, associated with the language, Iexternal(σ) is as-

sumed to be speci�ed externally in some document (hence the name external

schema). In particular, if σ is a schema of a RIF built-in predicate or function,

Iexternal(σ) is speci�ed in [RIF-DTB] so that:

� If σ is a schema of a built-in function then Iexternal(σ) must be the function

de�ned in [RIF-DTB].
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� If σ is a schema of a built-in predicate then Itruth◦(Iexternal(σ)) (the compo-

sition of Itruth and Iexternal(σ), a truth-valued function) must be as speci�ed

in [RIF-DTB].

We also de�ne the following mapping from terms to D, which we denote using

the same symbol I as the one used for semantic structures. This overloading is

convenient and creates no ambiguity.

� I(k) = IC(k), if k is a symbol in C;

� I(?v) = IV (?v), if ?v is a variable in V ;

� I(f(t1 . . . tn)) = IF (I(f))(I(t1), . . . , I(tn));

� I(f(s1 → v1 . . . sn → vn)) = INF (I(f))(< s1, I(v1) >, . . . , < sn, I(vn) >);

Here we use . . . to denote a set of argument/value pairs.

For list terms, the mapping is de�ned as follows: I(List()) = Ilist(<>).

Here <> denotes an empty list of elements of Dind. (Note that the domain of

Ilist is D
∗
ind, so D

0
ind is an empty list of elements of Dind.)

I(List(t1 . . . tn)) = Ilist(I(t1), . . . , I(tn)), n > 0

.

I(List(t1 . . . tn|t)) = Itail(I(t1), . . . , I(tn), I(t))n > 0

.

I(o[a1 . . . v1 . . . ak → vk]) = Iframe(I(o))(< I(a1), I(v1) >, . . . , < I(an), I(vn) >)

Here . . . denotes a bag of attribute/value pairs. Jumping ahead, we note that

duplicate elements in such a bag do not a�ect the truth value of a frame formula.

Thus, for instance, [a→ ba→ b] and o[a→ b] always have the same truth value.

I(c1##c2) = Isub(I(c1), I(c2))

I(o#c) = Iisa(I(o), I(c))

I(x = y) = I = (I(x), I(y))
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I(External(t)) = Iexternal(σ)(I(s1), . . . , I(sn)), if t is an instantiation of the

external schema σ = (?X1 . . .?Xn; τ) by substitution ?X1/s1 . . .?Xn/s1.

Note that, by de�nition, External(t) is well-formed only if t is an instantia-

tion of an external schema. Furthermore, by the de�nition of coherent sets of

external schemas, t can be an instantiation of at most one such schema, so

I(External(t)) is well-de�ned.

The e�ect of datatypes.

The set DTS must include the datatypes described in Section Datatypes of

[RIF-DTB].

The datatype identi�ers in DTS impose the following restrictions. Given

dt ∈ DTS, let LSdt denote the lexical space of dt, V Sdt denote its value

space, and Ldt : LSdt → V Sdt the lexical-to-value-space mapping (for the

de�nitions of these concepts, see Section Datatypes of [RIF-DTB]). Then the

following must hold: V Sdt ⊆ Dind; and For each constant “lit′′̂ d̂t such that

lit ∈ LSdt, IC(“lit′′̂ d̂t) = Ldt(lit).

That is, IC must map the constants of a datatype dt in accordance with Ldt.

RIF-BLD does not impose restrictions on IC for constants in symbol spaces

that are not datatypes included in DTS.

Interpretation of Non-document Formulas

This section de�nes how a semantic structure, I, determines the truth value

TValI(ϕ) of a RIF-BLD formula, ϕ, where ϕ is any formula other than a doc-

ument formula. Truth valuation of document formulas is de�ned in the next

section.

We de�ne a mapping, TValI, from the set of all non-document formulas to TV.

Note that the de�nition implies that TValI(ϕ) is de�ned only if the set DTS

of the datatypes of I includes all the datatypes mentioned in ϕ and Iexternal

is de�ned on all externally de�ned functions and predicates in ϕ.

De�nition (Truth valuation). Truth valuation for well-formed formulas in RIF-

BLD is determined using the following function, denoted TValI:

Positional atomic formulas:

TV alI(r(t1 . . . tn)) = Itruth(I(r(t1 . . . tn)))
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Atomic formulas with named arguments:

TV alI(p(s1 → v1 . . . sk → vk)) =

Itruth(I(p(s1→ v1 . . . sk → vk))).

Equality: TV alI(x = y) = Itruth(I(x = y)).

To ensure that equality has precisely the expected properties, it is required

that: Itruth(I(x = y)) = t if I(x) = I(y) and that Itruth(I(x = y)) = f

otherwise. This is tantamount to saying that TV alI(x = y) = t if and only if

I(x) = I(y). Subclass: TV alI(sc##cl) = Itruth(I(sc##cl)). To ensure that

the operator ## is transitive, i.e., c1##c2 and c2##c3 imply c1##c3, the

following is required:

∀c1, c2, c3 ∈ D, if TV alI(c1##c2) = TV alI(c2##c3) = t then TV alI(c1##c3)

= t.

Membership: TV alI(o#cl) = Itruth(I(o#cl)). To ensure that all members of

a subclass are also members of the superclass, i.e., o#cl and cl##scl imply

o#scl, the following is required:

∀o, cl, scl ∈ D, if TV alI(o#cl) = TV alI(cl##scl) = t then TV alI(o#scl) = t.

Frame: TV alI(o[a1 → v1 . . . ak → vk]) = Itruth(I(o[a1 → v1 . . . ak → vk])).

Since the bag of attribute/value pairs associated with an object o represents the

conjunction of assertions represented by these pairs, the following is required,

if k > 0:

TV alI(o[a1 → v1 . . . ak− > vk]) = t if and only if TV alI(o[a1− > v1]) = . . . =

TV alI(o[ak− > vk]) = t.

Externally de�ned atomic formula:

TV alI(External(t)) = Itruth(Iexternal(σ)(I(s1), . . . , I(sn))), if t is an atomic

formula that is an instantiation of the external schema σ = (?X1 . . .?Xn; τ) by

substitution ?X1/s1 . . .?Xn/s1. Note that, by de�nition, External(t) is well-

formed only if t is an instantiation of an external schema. Furthermore, by the

de�nition of coherent sets of external schemas, t can be an instantiation of at

most one such schema, so I(External(t)) is well-de�ned.

Conjunction: TV alI(And(c1 . . . cn)) = t if and only if TV alI(c1) = . . . =

TV alI(cn) = t. Otherwise, TV alI(And(c1 . . . cn)) = f . The empty conjunc-

tion is treated as a tautology, so TV alI(And()) = t.

Disjunction: TV alI(Or(c1 . . . cn)) = f if and only if TV alI(c1) = . . . =

TV alI(cn) = f . Otherwise, TV alI(Or(c1 . . . cn)) = t. The empty disjunction
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is treated as a contradiction, so TV alI(Or()) = f .

Quanti�cation: TV alI(Exists?v1 . . .?vn(ϕ)) = t ⇐⇒ for someI∗TV alI∗(ϕ) =

t.

TV alI(Forall?v1 . . .?vn(ϕ)) = t ⇐⇒ ∀I∗TV alI ∗ (ϕ) = t.

Here I∗ is a semantic structure of the form < TV,DTS,D,Dind,Dfunc, IC, I∗
V, IF, INF, Ilist, Itail, Iframe, Isub, Iisa, I =, Iexternal, Itruth >, which is

exactly like I, except that the mapping I∗V , is used instead of IV . I∗V is de-

�ned to coincide with IV on all variables except, possibly, on ?v1, . . . , ?vn.

Rule implication: TV alI(conclusion← condition) = t;

if either TV alI(conclusion) = t or TV alI(condition) = f .

TV alI(conclusion← condition) = f otherwise.

Groups of rules: If Γ is a group formula of the form Group(ϕ1 . . . ϕn) then

TV alI(Γ) = t if and only if TV alI(ϕ1) = t, . . . , TV alI(ϕn) = t.

TV alI(Γ) = f otherwise.

This means that a group of rules is treated as a conjunction. In particular, the

empty group is treated as a tautology, so TV alI(Group()) = t.

Interpretation of Documents

Document formulas are interpreted using semantic multi-structures, which are

sets of closely related semantics structures. The need for multi-structures arises

due to the fact that a RIF-BLD document can import other documents and

thus is essentially a multi-document object. One interesting aspect of the multi-

document semantics is that rif:local symbols that belong to di�erent documents

can have di�erent meanings.

De�nition 2.9. (Semantic multi-structure). A semantic multi-structure Î is a

set of semantic structures of the form J, I; Ii1, Ii2, ..., where I and J are RIF-

BLD semantic structures; and Ii1, Ii2, etc., are semantic structures adorned

with the locators of distinct RIF-BLD formulas (one can think of these adorned

structures as locator-structure pairs). All the structures in Î (adorned and non-

adorned) are identical in all respects except for the following:

The mappings JC, IC, ICi1, ICi2, . . . may di�er on the constants in C that

belong to the rif:local symbol space.
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As will be seen from the next de�nition, the structure I in the above is used

to interpret document formulas, and the adorned structures of the form Iik are

used to interpret imported documents. The structure J is used in the de�nition

of entailment for non-document formulas.

The semantics of RIF documents is now de�ned as follows.

De�nition 2.10. (Truth valuation of document formulas). Let ∆ be a docu-

ment formula and let ∆1, . . . ,∆n be all the RIF-BLD document formulas that

are imported (directly or indirectly, according to De�nition Imported document)

into ∆. Let Γ,Γ1, . . . ,Γn denote the respective group formulas associated with

these documents. Let Î = J, I; Ii1, . . . , Iin, . . . be a semantic multi-structure

that contains the semantic structures adorned with the locators i1, ..., in of the

documents ∆1, ...,∆n. Then we de�ne:

TV alÎ(∆) = t if and only if TV alI(Γ) = TV alIi1(Γ1) = . . . = TV alIik(Γn) =

t.

Note that this de�nition considers only those document formulas that are reach-

able via the one-argument import directives. Two argument import directives

are not covered here. Their semantics is de�ned by the document RIF RDF

and OWL Compatibility [RIF-RDF+OWL].

Also note that some of the Γi above may be missing since all parts in a document

formula are optional. In this case, we assume that Γi is a tautology, such as

And(), and every TV al function maps such a Γi to the truth value t.

For non-document formulas, we extend TV alÎ(ϕ) from regular semantic struc-

tures to multi-structures as follows. Let Î = J, I; . . . be a semantic multi-

structure. Then TV alÎ(ϕ) = TV alJ(ϕ).

The above de�nitions make the intent behind the rif:local constants clear: oc-

currences of such constants in di�erent documents can be interpreted di�er-

ently even if they have the same name. Therefore, each document can choose

the names for the rif:local constants freely and without regard to the names of

such constants used in the imported documents.

Logical Entailment

We now de�ne what it means for a set of RIF-BLD rules (embedded in a group

or a document formula) to entail another RIF-BLD formula. In RIF-BLD we
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are mostly interested in entailment of RIF condition formulas, which can be

viewed as queries to RIF-BLD groups or documents. Entailment of condition

formulas provides formal underpinning to RIF-BLD queries.

De�nition 2.11. (Models). A multi-structure Î is a model of a formula, ϕ,

written as Î |= ϕ, ⇐⇒ TV alÎ(ϕ) = t. Here ϕ can be a document or a non-

document formula.

De�nition 2.12. (Logical entailment). Let ϕ and ψ be (document or non-

document) formulas. We say that ϕ entails ψ, written as ϕ |= ψ, if and only if

for every multi-structure, Î , Î |= ϕ implies Î |= ψ.
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Translating heterogeneous formalisms
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From Description Logics to Answer Set Programming

3.1 Introduction

In this chapter we address an important problem, which arises from the huge

quantity of formalisms present in the Semantic Web: Integration.

Knowledge representation is a very important task for the Semantic Web, and

many of the formalisms introduced to that end are ontology-based (see e.g.

[34]).

To accomplish this task, we will focus on some particular fragments. In partic-

ular, we will exploit the representation power of Description Logics, as well as

the reasoning power of logic programming.

The di�culties arise in choosing a �language family� which is nowadays suitable

to our end.

In this respect, the OWL language made recently a signi�cant step towards solid

maturity after the introduction of the OWL 2 W3C Recommendation [52]. We

gave several details about OWL2 in the previous chapter. This recommendation

gives legitimate focus on fragments of the OWL 2 general language tailored at

e�cient performance taken from di�erent perspectives and/or reasoning tasks

[50]: classi�cation of large ontologies (OWL EL), query answering (OWL QL),

and expressiveness tailored at rule-based axiomatization and implementation

(OWL RL). The OWL EL pro�le speci�cally identi�es a fragment of OWL 2

(based on the description logic EL++ [2, 3]) which sacri�ces expressiveness-yet

preserving many constructs used in practical ontologies- but allows classi�ca-

tion in polynomial time.

The fragment ELH has a fair theoretical complexity also when conjunctive

query (CQ, in the following) answering is considered (P-time complete, [63]),
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but this is beyond what is commonly considered the current complexity require-

ment for scalability on large ABoxes: roughly speaking, it is highly desirable

that conjunctive querying over ontologies comes at little or no additional cost

with respect to conjunctive querying over plain databases (recall that the data

complexity of CQ answering over plain databases is as elementary as the com-

plexity class AC0 [7]). This computational complexity requirement has direct

impact on implementation of query answering, since it calls for overcoming

some peculiar technical di�culties: while the OWL QL pro�le, based on the

DL−LiteR description logics, enjoys the so called FO-reducibility property, this

latter allowing scalable implementation on standard RDBMS systems, OWL2

EL does not enjoy this property [18].

On the other hand, the OWL2 RL pro�le allows a straightforward implemen-

tation via an axiomatization expressed in terms of FOL Horn clauses: this

latter enables the possibility of bottom-up materializing inferred information

in RDBMSs, via logic programming and/or deductive database tools. This is,

for instance, the approach taken by the Oracle 11g Database Semantic Tech-

nologies [70]. OWL2 EL lacks the possibility of a direct implementation like

the above, mostly due to the fact that unrestricted existential quanti�cation

implies that, when inferred information has to be materialized in practice, a

possibly in�nite number of new Skolem terms is obtained.

In order to demonstrate the practical viability of query answering on EL++

(or fragments/extensions thereof), a number of proposals has been devised,

aimed at circumventing these technical di�culties: in particular, in [47] it is

shown how ELHdr⊥ ontologies can be queried by pre-materializing a canonical

model which enlarges the database/ABox at hand. Furthermore, the query at

hand is appropriately rewritten (this latter step being independent from ter-

minological and instance data). This approach leads to the notion of combined

fo-rewritability, in which both Abox and Tbox are converted into a FO struc-

ture (an enlarged version of the ABox), which can be queried using traditional

�rst order queries (i.e. SQL).

As an alternative approach, in [55] query answering on the description logic

ELHIO¬ is treated by a preliminary resolution step which eliminates Skolem

terms from the equivalent FO representation of the ontology at hand.

We focus in this thesis on the ELHI description logic, which covers most of the

basic constructs of OWL EL, plus inverse roles. We propose a newly-devised
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approach to Conjunctive Query answering, which takes new signi�cant steps to-

wards a viable implementation using (deductive) database technologies and/or

logic programming techniques.

In particular:

1. TBoxes are rewritten into a set of corresponding Horn clauses, possibly

containing function terms: the corresponding class of logic programs �called

ELHI� is identi�ed and its properties analyzed.

2. We show that queries on ELHI-programs can be answered against a �-

nite portion of their ground instantiation, which is only polynomially larger

than the original ABox. As a by-product result, we show how conjunctive

querying in this class of programs can be �nitely evaluated, thus enlarg-

ing the family of fragments of logic programming [26, 27, 15, 9] for which

decidability of querying, even in the presence of function symbols, is known.

3. Function terms are neither eliminated nor pre-processed in any

way. Our approach can be directly implemented:

� over rule-based systems, provided that function terms or some form of

value invention is supported (the language fragment herein considered

is fully supported by solvers like XSB [65] or DLV [42]); or

� directly over DBMS systems, by a stored procedure which iteratively in-

vokes a series of SQL queries, producing a polynomially-bounded number

of new values.

4. The approach lend itself to two query-evaluation strategies:

� Pre-processing with storage of inferred information. Notably, and despite

the presence of function terms, a materialization step which computes

the least model of the �nite ground logic programs needed for answering

CQs, has only logspace complexity in the size of the ABox. Such a model

is polynomially larger than the original ABox.

� On-the-�y evaluation of queries: The non-ground ELHI program corre-

sponding to the TBox can be stored together with the original ABox,

avoiding the pre-materialization step. Then the program can be evalu-

ated on a query per query basis. Known optimization techniques, such

as magic sets [5], allow to signi�cantly reduce the size of data processed

when submitting queries.

It is known that the �rst approach might be space-consuming and system

bootstrap times might be non negligible when large ABoxes are loaded,



50 3 From Description Logics to Answer Set Programming

although small updates are usually performed in signi�cantly shorter time:

if storage space is a constraint, the second strategy might be desired.

5. Fast proof-of-concept prototyping: we show how our approach can be fast

prototyped using existing technologies [23, 1, 42]. In particular, reasoning

on knowledge bases can be axiomatized by meta-rules which can be declara-

tively speci�ed, and subsequently evaluated on a rule-based system. Prelim-

inary experimental results reveal encouraging performance of our prototype,

despite the lack of ad-hoc optimizations.

3.2 The description logics fragment: ELHI

We are going to introduce the fragment in use for our project. We reintroduce

syntax and semantics, specialized to the case, in order to better exemplify the

subsequent techniques.

3.2.1 Basic language.

We consider the description logic ELHI extending the basic EL [2] language

with inverse roles, and role containment.1 It is given a set NC of atomic concept

names, a set NR of atomic role names, and a set NI of constant (individual)

names. If R is an atomic role, then a basic role can be either R or R−. A basic

concept can be of the form A, >, ∃R.A, or B1 uB2, where B1 and B2 are basic

concepts, R is a role and A is an atomic concept. A TBox T is a set of concept

(resp. role) inclusion assertions of the form B1 v B2 (resp. R1 v R2), where

B1 and B2 are basic concepts (resp. R1 and R2 are basic roles). Without loss

of generality we assume that axioms in a TBox T are of the form A v B,

A u B v C, A v ∃R.B, ∃R.A v B, ∃R.> v B, B v ∃R.>, P v S, R− v S,

and R v S− for A, B, C atomic concepts, R an atomic role and P and S basic

roles.2 An ABox A is a set of membership assertions in two possible forms: A(a)

and R(a, b), where A is a concept, R is a role and a, b are individuals from the

domain NI . A ELHI knowledge base is de�ned as KB = 〈T ,A〉, where T is a

TBox and A is an ABox.

1 This language basically covers most of OWL-EL, and includes in addition inverse roles.
2 An equisatis�able TBox of this form can be obtained from a general ELHI TBox by
applying a number of syntactic substitutions.
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ELHI axiom H FOL sentence F(H) Rule set L(F(H))

A(a) A(a) A(a). (R1)

R(a, b) R(a, b) R(a, b). (R2)

A v B ∀xA(x)→ B(x) B(X)← A(X). (R3)

A uB v C ∀xA(x) ∧B(x)→ C(x) C(X)← A(X), B(X). (R4)

A v ∃R.B ∀xA(x)→ [∃yB(y) ∧R(x, y)] B(fA(X))← A(X). (R5)
R(X, fA(X))← A(X).

∃R.A v B ∀x[∃yA(y) ∧R(x, y)]→ B(x) B(X)← A(Y ), R(X,Y ).(R6)

∃R.> v B ∀x[∃yR(x, y)]→ B(x) B(X)← R(X,Y ). (R7)

B v ∃R.> ∀xB(x)→ [∃yR(x, y)] R(X, fA(X))← B(X). (R8)

R v S or
R− v S− ∀x,y R(x, y)→ S(x, y) S(X,Y )← R(X,Y ). (R9)

R v S− or
R− v S ∀x,y R(y, x)→ S(x, y) S(X,Y )← R(Y,X). (R10)

FOL Query Q(X) Rule L(Q(X))

∃Y q1(X1) ∧ . . . ∧ qn(Xn) ansQ(X)← (Q1)
q1(X1) ∧ . . . ∧ qn(Xn).

Table 3.1: Semantics of ELHI given in terms of corresponding FOL sentences.
For an axiom A in the form A v ∃R.B, fA denotes a fresh function symbol.
Analogously, for a query Q, ansQ denotes a fresh predicate name.

We give the semantics of a ELHI knowledge base in terms of a conjunction

of �rst order sentences. In particular, in Table 3.1, each ELHI axiom H is

associated to the corresponding �rst order sentence F(H). The semantics of

KB is given by its corresponding �rst order theory F(KB) =
∧
H∈T F(H) ∧∧

H∈AF(H).

3.2.2 Queries.

A conjunctive query Q(X) (or simply, query) is a formula ∃Y q1(X1) ∧ . . . ∧
qn(Xn), where: (i) {q1, . . . qn} ⊆ NC ∪ NR; each Xi(1 ≤ i ≤ n) is a list of

variables and constants, having according arity with the corresponding qi. (ii)

X is the non-empty list of free variables of Q(X), while Y is the remaining list

of bound variables of Q(X). We assume Q is connected, that is there exist a

permutation P of its atoms such that if qi precedes qj in P then qi and qj have

at least one variable in common. Let k be the arity of X. An answer to Q(X)

over a knowledge base KB, is a k-tuple of constants of NI such that F(KB) |=
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Q(x1, . . . , xk). We denote the set of answers to Q(X) as ans(Q(X),KB). A

particular case of query answering is Instance Retrieval (ir) in which n = 1.

3.2.3 Logic Programs

We refer here the general concepts regarding logic programs HLP, seen in 2,

adding some details which are necessary in this chapter.

A logic program P is a set of closed universally-quanti�ed FOL formulas (called

rules) of the form [44]:

r : a(X0)← b1(X1), . . . , bn(Xn).

For ease of notation, we omit universal quanti�ers while `,' stands for `∧'. 3. In a
rule r the atom a(X0) is called head, while the conjunction b1(X1), . . . , bn(Xn)

is called body. The set of atoms appearing in the body is denoted by B(r), sim-

ilarly, H(r) denotes the head of r. A rule is safe if all the variables occurring in

H(r) also occur in some atom of B(r); in the following, we assume that rules

are safe. An atom (resp. rule) is said to be ground if it does not contain variables.

The semantics of a logic program P is usually given in terms of its minimal

Herbrand model denoted by LM(P ). More in detail, let UP be the set of all

ground terms that can be built combining constants and functors appearing in

P . UP is called the Herbrand Universe of P . The Herbrand Base of P , denoted

by BP , is the set of all ground atoms obtainable combining predicate names

occurring in P with elements from UP . Given a ground atom a(t1, . . . , tn) we

denote by NL(a(t1, . . . , tn)) the number NL(a(t1, . . . , tn)) = max0<i<nNL(ti)

(n ≥ 0). The set of all ground instances of the rules of P w.r.t. the universe UP ,

denoted by Ground(P,UP ), is called (ground) instantiation of P . An Herbrand

model M is a subset of BP such that, for each r ∈ Ground(P,UP ), H(r) ∈M
or there is an atom a ∈ B(r) such that a /∈M . M is a minimal model if there

does not exist a Herbrand model N of P such that N ( M . Given an atom a

(resp. a set of atoms S), we write M |=LPa if a ∈M (resp. M |=LPS if S ⊆M),

3 Note that logic programs are by default interpreted under Unique Names Assumption
(UNA), while, in principle, the semantics of ELHI knowledge bases could be given in
terms of FOL theories without UNA. This latter choice has no impact on the description
logic herein considered, we thus assume semantic of ELHI knowledge bases is given in
terms of FOL theories with UNA.
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otherwise M 6|=LPa (resp. M 6|=LPS). A logic program P is guaranteed to admit

a unique minimal model LM(P ), which coincides with the intersection of all

its Herbrand models [44].

We recall some, easy to prove, relevant properties of logic programs. Hereafter

we assume that a program P is given. Note that UP , as well as Ground(P,UP )

and LM(P ), might be in�nite.

Proposition 3.1. For each U ⊆ UP ,
LM(Ground(P,U)) ⊆ LM(Ground(P,UP )) = LM(P ).

Let be Uk = {t ∈ UP |NL(t) ≤ k}, k ≥ 0, we denote by LMk(P ) the minimal

model of the program Ground(P,Uk). The following properties hold.

Proposition 3.2. (i) for 0 ≤ i < j, Ground(P,Ui) ⊆ Ground(P,Uj) and

LM i(P ) ⊆ LM j(P ); and (ii) for each atom a ∈ LM i(P ), NL(a) ≤ i.

Given a set I ⊆ BP , we say that a ground atom a is supported in I if there exists

a supporting rule r ∈ ground(P,UP ) such that the B(r) ⊆ I and H(r) = a.

Let P be a ground program and a ∈ P be a ground atom. A rule de�ning a

in P , is a rule r ∈ P such that H(r) = a. The program Pa de�ning a in P is

the smallest program Pa ⊆ P , such that it contains all rules de�ning a in P ,

and for each b ∈ B(r), r ∈ Pa, Pb ⊆ Pa. The atom a is well-supported in I if

there exists a strict well-founded partial ordering < on elements of I such that

there exists a rule r ∈ Ground(P,UP ) with H(r) = a, body(R) ⊆ I and for

any b ∈ B(r), b < a. I is well-supported if all its atoms are well-supported. The

following known result holds

Theorem 3.3. [29] For a logic program P , LM(P ) is well-supported.

3.3 ELHI-Programs

We now illustrate how ELHI knowledge bases can be translated to to cor-

responding logic programs. We then de�ne and focus on the class of ELHI-
programs and show some of their properties.

Given a ELHI knowledge base KB, the corresponding logic program L(F(KB))

is de�ned as In Table 3.1. For each type of axiom H it is reported the corre-

sponding FOL formula F(H) and, for each formula F(H) it is reported the

corresponding logic program L(F(H)) obtained by standard Skolemization.
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For ease of notation, we assume that both the predicate vocabulary of F(H)

and L(F(H)) contain NC and NR. The logic program corresponding to KB is:

L(F(KB)) :=
⋃

H∈KB
L(F(H)).

We recall the following.

Theorem 3.4 ([44]). Let KB be a ELHI knowledge base then:

� F(KB) satis�able ⇒ L(F(KB)) has a minimal model;

� F(KB) unsatis�able ⇔ L(F(KB)) is unsatis�able.

In general, the LM(L(F(KB))) is not �nite minimal model as shown in the

following example.

Example 3.5. Let consider the knowledge base K = {A v ∃R.A,A(c)}, thus the
corresponding L(F(K)) is

A(fA(X))← A(X). R(X, fA(X))← A(X). A(c).

The minimal model of P is

{A(c), A(fA(c)), R(c, fA(c)), A(fA(fA(c))), R(fA(c), fA(fA(c))), . . .}

which is in�nite.

Note that the binary predicates occurring in LM(L(F(KB))) contain terms

having a speci�c form as we will see later.

De�nition 3.6. A ELHI-program P is a logic program containing set of rules

in the form (R1)-(R9) (Table 3.1) and (possibly) one rule in the form (Q1).

It is easy to see that a ELHI-program is into one-to-one correspondence with

a ELHI knowledge base.

Lemma 3.7. Let P be a ELHI-program, then for each binary predicate R oc-

curring in P such that R(t1, t2) ∈ LM(P ), it holds that |NL(t2)−NL(t1)| ≤ 1.

Proof. (Sketch). As shown in Table 3.1, the binary predicates can be supported

in LM(P ) only in rules of the form (i) R(a, b) for NL(a) = NL(b) = 0, for which

the Lemma trivially holds; (ii) R(X, fA(X)) ← B(X) and R(fA(X), X) ←
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B(X): in this case, ground rules obtained by these two rules form can support

only atoms in the form R(t, fA(t)) or R(fA(t), t), for which the Lemma holds;

and, (iii) R(X,Y ) ← S(X,Y ), R(X,Y ) ← S(Y,X): for this two form of rules

note that, when grounded, they can in principle support an atom a = S(t1, t2)

for which |NL(t2)−NL(t1)| > 1. Note however that a cannot be well-supported:

thus it cannot appear in LM(P ) by Theorem 3.3.

3.4 Query answering

In this section we show how query answering on a ELHI knowledge base can

be done in practice by exploiting the corresponding ELHI-program L(F(KB)).

A query Q(X) on KB can be rewritten in the rule L(Q(X)) as shown in the

Table 3.1, and the following holds:

Theorem 3.8. Let KB be a ELHI knowledge base, Q be a query on KB, and
x1, . . . , xn be constants occurring in KB, then

(x1, . . . , xn) ∈ ans(Q(X),KB)⇔ ansQ(x1, . . . , xk) ∈ LM((L(F(KB)))∪L(Q)).

Proof. ansQ(x1, . . . , xk) /∈ LM((L(F(KB)))∪L(Q(x1, . . . , xk)))⇔ the body of

(L(Q(x1, . . . , xk))) is not satis�ed in any model of L(F(KB)) ⇔ F(KB) ∧
¬Q(x1, . . . , xk) is satis�able ⇔ F(KB) 6|= Q(x1, . . . , xk) ⇔ (x1, . . . , xn) /∈
ans(Q(X),KB).

Theorem 3.8 states that query answering on a knowledge base KB can be done

via query answering on the corresponding ELHI program. Despite the pos-

sibly in�nite size of LM(L(F(KB))), we now show that query answering on

L(F(KB)) can be done by considering only a �nite subset of its ground instan-

tiation. To this end we introduce the notions of inclusion graph and existential

depth. In the following, we assume that a ELHI knowledge base KB = 〈T ,A〉
is given.

De�nition 3.9 (Inclusion Graph). The Inclusion Graph (IG) of KB is a

labeled directed graph IG = (V,E) having a node in V for each concept/role

occurring in T , and:

• an arc (C,D, n) is in E for each axiom C v D in T ;
• arcs (R,C, n), (B,C, n) are in E for each axiom ∃R.B v C in T ;
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• arcs (B1, C, n), (B2, C, n) are in E for each axiom B1 uB2 v C in T ;
• arcs (C,R, f), (C,B, f) are in E for each axiom C v ∃R.B in T .

Let p be a simple path in IG, the f -length of p, denoted by |p|, is the number

of arcs e = (a, b, `) of p such that ` = f .

Example 3.10. Let consider the knowledge base:

A v ∃R.B B v ∃R.C ∃R.C v B

The corresponding inclusion graph IG = (V,E, `) is as follows: V = {A,R,B,C},
E = {(A,R, f), (A,B, f), (B,R, f), (B,C, f), (R,B, n), (C,B, n)}. The f-length
of p =< (A,R, f), (R,B, n), (B,C, f) > is |p| = 2.

De�nition 3.11 (Existential Depth). Let IG be the Inclusion Graph of KB
and, E be a concept or a role. The existential depth of E is de�ned as follows:

ED(E) = max
p∈ΦE

|p|

where ΦE = {p | p is a simple path in IG with E as ending node}.

Example 3.12. Consider the knowledge base of Example 3.10, the existential

depth of concept C is ED(C) = 2.

The role played by the existential depth of a concept become clear in the

following Theorem. We now show that instance retrieval of a concept/role can

be done by computing only a �nite portion of LM(L(F(KB)), corresponding

to LM0(L(F(KB)) for a role R and corresponding to LMED(C)(L(F(KB)) for

a concept C.

Lemma 3.13. Let P = L(F(KB)) be a ELHI-program, then:

(1)if R(t1, t2) ∈ LM(P ) with NL(R(t1, t2)) = 0 then R(t1, t2) ∈ LM0(P ).

(2)if C(t) ∈ LM(P ) with NL(t) = 0 then C(t) ∈ LMED(C)(P );

Proof. (1) Since NL(t1) = NL(t2) = 0, the program de�ning R(t1, t2) in

Ground(P,UP ) does not contain function symbols. From hypothesis R(t1, t2) ∈
LM(P ) it then holds that R(t1, t2) ∈ LM0(P ).
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(2) We proceed by induction, that is we demonstrate that the implication holds

when ED(C) = 0 (base) and, then we show that the thesis follows for ED(C) =

n if the thesis holds for each ED(C) < n (induction).

(base) If ED(C) = 0 then the program de�ning C(t) in Ground(P,UP ) does

not contain function symbols, therefore C(t) ∈ LM0(P ) and the thesis follows.

(induction) Assume that, for each concept E in KB such that ED(E) = i and

and E(t) ∈ LM(P ) it holds that E(t) ∈ LM i(P ), for each i < n.

Suppose that ED(C) = n, C(t) ∈ LM(P ), and C(t) ∈ LMn+1(P ) but C(t) 6∈
LMn(P ).

Next, we show that in this case ED(C) should be n + 1 contradicting the

hypothesis.

Since C(t) ∈ LMn+1(P ) and C(t) /∈ LMn(P ), there must be a rule r ∈
Ground(P,Un+1) supporting C(t) such that LMn(P )6|=LPB(r) and

LMn+1(P )|=LPB(r).

By Lemma 3.7, if we look at Table 3.1, r can be of the forms: (a) C(t) ←
E1(t); or (b) C(t) ← E1(t), E2(t); or (c) C(t) ← R1(t, t1); or (d) C(t) ←
R1(t, fA(t)), C1(fA(t)). Note that, both in case of rules of the form (a) and

(b), it holds Ej(t) /∈ LMn(P ) (otherwise C(t) ∈ LMn(P ), since NL(Ej(t)) =

NL(C(t))), j = 1, 2. Moreover, also in case of rules of the form (c), R1(t, t1) /∈
LMn(P ), from hypothesis LMn(P ) 6|=LPB(r).

Therefore, there must be a rule r1 such that LMn+1(P )|=LPB(r1), which be-

longs to the program de�ning C(t) in Ground(P,Un+1), of the form:

r1 : C̄(t)← R1(t, fB1(t)), C1(fB1(t)).

where C̄ corresponds to a concept C̄, which can either be C itself or C̄ is

subsumed by C in KB and C̄ is de�ned by a set of axioms C = C1 ∪ · · · ∪ Cz
(z ≥ 1) of the form:

Ci =

{K1 v K2} or

{K1 uK2 v K3, K1 v K2, K1 v K2}

Note that rule r1 corresponds to the axiom A1 := ∃R1.C1 v C̄.4 Since

LMn(P ) 6|=LPB(r1) then R1(t, fB1(t)) /∈ LMn(P ) or C1(fB1(t)) /∈ LMn(P ).

We now show that R1(t, fB1(t)) ∈ LMn(P ), thus C1(fB1(t)) /∈ LMn(P ). By

4 Note that, r1 can be of type (d).
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looking at Table 3.1, we have that R1(t, fB1(t)) can be supported only if in

Ground(P,Un+1) there is a rule of the form:

re1 : R̄1(t, fB1(t))← Q1(t)

where R̄1 denotes either R1 itself or a relation R̄1 subsumed by R1 trough a

sequence of axioms in KB of the form S′ v S′′. The rule re1 corresponds to the
axiom B1 := Q1 v ∃R̄1.C̄1 (note that function symbol fB1 can be generated only

by an axiom involving C̄1 of this form) and, thus ED(Q) ≤ ED(C)−1 = n−1.

Suppose that R̄1(t, fB1(t)) /∈ LMn(P ) then by rule re1, Q1(t) /∈ LMn(P ), but,

from the inductive hypothesis applied to Q1(t), we have that KB 6|= Q(t),

therefore Q(t) /∈ Mg, for each g ≥ n − 1. Since rule re1 is the only rule that

allows for deriving R̄1(t, fB1(t)), then it must be the case that Q(t) ∈ LMn(P ),

and also that R̄1(t, fB1(t)) ∈ LMn(P ). Since R1(t, fB1(t)) ∈ LMn(P ), and

LMn(P ) 6|=LPB(r1) we have that C1(fB1(t)) /∈ LMn(P ).

Now, the same considerations made for C(t) (i.e., there must be rule like r1)

can be done for C1(fB1(t)), and so there must be a rule r2 ∈ Ground(P,Un+1)

of the form:

r2 : C̄1(fB1(t))← R2(fB1(t), fB2(fB1(t))), C2(fB2(fB1(t)))

corresponding to the axiom A2 := ∃R2.C2 v C̄1, such that

R2(fB1(t), fB2(fB1(t))) ∈ LMn(P ) and C2(fB2(fB1(t))) /∈ LMn(P ), and so on

for each 1 < k ≤ n there must a rule rk ∈ Ground(P,Un+1) of the form:

rk+1 : C̄k(tk)← Rk+1(tk, fBk+1
(tk)), Ck+1(fBk+1

(tk))

where tk = fBk(fBk−1
(. . . (fB1(t)), corresponding to an axiom of the form Ak :=

∃Rk+1.Ck+1 v C̄k. Moreover, each Rk+1(tk, fk+1(tk)) is derived from a rule of

the form:

rek+1 : R̄k+1(tk, fBk+1
(tk))← Qk+1(tk)

corresponding to the axiom Bk+1 := Qk+1 v ∃Rk+1.C̄k+1.

For each k < n we have that C̄k(tk) /∈ LMn(P ) ∧ Rk+1(tk, fBk+1
(tk)) ∈

LMn(P ) ∧ Ck+1(fBk+1
(tk)) /∈ LMn(P ); whereas, for k = n since the atom

Rn+1(tn, fBn+1(tn)) /∈ LMn(P ) (having nesting level n+ 1), then

RBn+1(tn, fBn+1(tn)) is derived in Ground(P,Un+1) from rule ren+1. Thus, by
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construction of KB we have that ED(C) = n + 1, which contradicts the hy-

pothesis.

Theorem 3.14 (Instance Retrieval). Let C be a concept, R a role, and t1, t2

be constants, then:

1. 〈t1〉 ∈ ans(C(X),KB)⇔ C(t1) ∈ LMED(C);

2. 〈t1, t2〉 ∈ ans(R(X,Y ),KB)⇔ R(t1, t2) ∈ LM0;

Proof. Thesis follows from Lemma 3.13 and Proposition 3.1.

The above result can be extended to general conjunctive queries.

Lemma 3.15. Let P = L(F(KB)) then:

(1)if C(t) ∈ LM(P ) then C(t) ∈ LMn(P ) where n = NL(t) + ED(C);

(2)if R(t1, t2) ∈ LM(P ) then R(t1, t2) ∈ LMn(P ) where n ≥ NL(R(t1, t2)) +

ED(R).

Proof. Suppose that C(t) ∈ LM(P ), ED(C) = n, NL(t) > 0 and C(t) /∈
LMED(C)+NL(t)−1 but C(t) ∈ LMED(C)+NL(t); following analogous considera-

tion done to prove Lemma 3.13, only a rule rn of the following form can support

C̄(t) in Ground(P,UED(C)+NL(t)):

rn : C̄n−1(tn−1)← Rn(tn−1, fBn(tn−1)), Cn(fBn(tn−1)).

here tn−1 = fBn−1(fBn−2(. . . (fB1(t)) with NL(tn−1) = n−1 +NL(t), therefore

fBn(tn−1) ∈ UED(C)+NL(t) and rn ∈ Ground(P,UED(C)+NL(t)). This means

that C(t) ∈ LMED(C)+NL(t)(P ) if C(t) ∈ LM(P ).

(2) If R(t1, t2) ∈ LM(P ) and NL(ti) = 0, i = 1, 2, R(t1, t2) ∈ LM0 and

ED(R) = 0 as shown in the Lemma 3.13. If NL(ti) > 0, there must be a rule

r1, supporting R(t1, t2), of the following form:

r1 : R̄1(t, fA(tk))← Q(t).

where R̄1 denotes either R itself or a relation R̄1 subsumed by R1 trough

a sequence of axioms in KB of the form S′ v S′′. Therefore, ED(R) =

ED(Q) + 1 from the De�nition 3.11. Moreover, Q(t) ∈ LMk(P ), where

k = ED(Q) + NL(t), from item (1). Therefore, the rules supporting Q(t)

are active in Ground(P,Uk). Therefore,
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Consequently,

hen R(t1, t2) ∈ LMn(P ) where n ≥ k+ED(R), and k = max{NL(ti)|i = 1, 2}.

De�nition 3.16 (Level Mapping). Let Q := q(X0)← q1(X1), . . . , qn(Xn) a

query on an ontology K there is a level mapping || ||Q de�ned as follows:

1. for any ||qi[p]|| = 0, if ||qi[p]|| ∈ X0;

2. for any ||qi[p′]|| = ||qj [p′′]|| if qi[p′] == qj [p
′′];

3. for any ||qi[p′]|| ≤ ||qi[p′′]|| if p′ < p′′.

4. ||qi|| = ||qi[1]|| if concept
5. ||qi|| = ||qi[2]|| if role

||Q|| = max||qi||.

Lemma 3.17. Let K be an ELHI knowledge base, R be a role in K, and

ED(R) = m. Therefore, for each atom R(t1, t2) ∈ LM(L(K)) such that

NL(R(t1, t2)) = n holds that:

1. R(t1, t2) ∈ LMm−1(L(K)) i� m > n;

2. R(t1, t2) ∈ LMm+n(L(K)) i� m ≤ n.

Proof. Next we denote L(K) by P and LMn(P ) by Mn.

Note that, if K |= R(t1, t2) where n = 0 then R(t1, t2) ∈ LM0(P ). Suppose

that n = 1, K |= R(t, f(t)), R(t, f(t)) ∈ Mm+1 and R(t, f(t)) /∈ Mm. Since

R(t, f(t)) ∈ Mm+1 holds, there exists a ground rule r1 ∈ Ground(P,Um+1) of

the form:

r1 : R̄(t, f(t))← C1(t)

where R̄ denotes eitherR itself or a relation R̄ subsumed byR trough a sequence

of axioms in K of the form S′ v S′′. Rule r1 derives from an axiom of the

form A1 := C1 v ∃R̄.C2. Therefore, from de�nition of the existential depth,

ED(C1) = ED(R) − 1. Therefore, C1(t) ∈ Mm−1. Since NL(t) = 0 then

r1 ∈ Ground(P,Um−1) and R(t, f(t)) ∈Mm−1.

where ED(C1) = m− 1

Lemma 3.18. Let K be an ELHI knowledge base and C and R be a concept

and a role in K then

1. If K |= C(t) then C(t) ∈ LMn(L(K)) where n = ED(C) +NL(C(t));

2. If K |= R(t1, t2) then R(t1, t2) ∈ LMn(L(K)) where n = ED(R) +

NL(R(t1, t2)).
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Proof. (1.) If NL(t) = 0 and ED(C) = n, C(t) ∈Mn.

Suppose that the thesis holds for NL(t) = m − 1 and let NL(t) = m. From

the construction of PC , the following ground instance of the rules rk are in the

program PC ⊆ Ground(P,U) supporting C(t):

rk+1 : C̄k(tm+k)← Rk+1(tm+k, fm+k+1(tm+k)), Ck+1(fm+k+1(tm+k))

where NL(tm+k) = m + k, for each k = 1, . . . , n1 − 1. Therefore, PC ⊆
Ground(P,Un1+m) and, since C(t) ∈M thus C(t) ∈Mn+m.

Theorem 3.19 (Conjunctive Query Answering). Let K be an ELHI
knowledge base, Q := q(X0) ← q1(X1), . . . , qn(Xn) be a conjunctive query,

m = max{ED(qi)|i = 1, . . . , n} and j the number of roles appearing in B(Q)

then

K |= q(c0) ⇔ q(c0) ∈ LMk(L(K)) k = j +m

where NL(c0) = 0.

Proof. (⇐) Obvious. (⇒) Since K |= q(c0) then K |= q1(c1)∧ . . .∧ qn(cn). If all

qi are concepts, then NL(ci) = 0 for each 1 ≤ i ≤ n.

If Q contains roles, then they are of the form qi(t, f(t)) where NL(t) = k,

k ≥ 0.

Note that, if ED(qj) = i1 and NL(cj) = i2 then qj(cj) ∈ LM i1+i2 . Therefore,

let imax = maxi1+i2∈K) then {q1(c1) . . . qn(cn)} ∈ LM imax

3.5 Complexity

Theorem 3.20. It is given an integer k. For a concept or role CR appearing in

a ELHI knowledge base KB, deciding whether ED(CR) > k is NP-complete.

The above can be shown, e.g., by reduction to the Longest Path Problem (see

[30], problem [GT23]). Note however, that, under data complexity regime, for

KB = 〈T ,A〉, we can assume T �xed and compute required values of ED()

once and for all. In the cases in which this computation is not desirable, note

that the existential depth is bounded by the number Max of axiom of type

A v ∃R.C belonging to KB, and in virtue of Theorem regarding depth,
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Theorem 3.21. Given ELHI knowledge base KB = 〈T ,A〉, and an integer k,

G = grnd(L(F(KB), Uk) has size O(|A|2|T |s2k+2) where s is the number of

axioms of type A v ∃R.C in T . G can be computed in logspace in the size of

A.

Proof. As intermediate result, note that PT = L(F(T )) has size linearly pro-

portional to the size of T , while PA = L(F(A)) is at most a syntactical variant

of A; clearly, Ground(PA, Uk) = PA. Now, Uk consists of |A|sk+1 di�erent sym-

bols while each rule r ∈ PT contains at most two variables ranging over Uk: the

number of ground instances of r is thus in the worst case bounded by (|A|sk+1)2.

G can be easily generated by maintaining a �xed number of log-space counters

ranging over elements of Uk and rules of PT . It is also easy to see that one can

avoid storing PT and PL as intermediate byproducts of the computation (or,

standard composition techniques for logspace algorithms can be applied, see

e.g. [53]). Hence the result.

3.6 System Prototyping

In this section we show how we managed fast prototype a proof of concept

system. More details will follow later, about the implementation issues and

solutions. The work�ow of this latter is the following:

an input ABox A and a TBox T are given in OWL format; the DLVHEX system

[23] takes in input: A and T in form of a triple stream, and a logic program

S tailored at converting A and T into set of logic facts A' and T'. In order to

obtain LT = L(F(T )), we exploit the DLT system [1] which takes in input T ′,

a set of meta-axioms S and outputs LT . Meta-axioms are expressed using the

higher order syntax accepted by DLT, such as, for instance

S(Y,X) ← R(X,Y ), inverseOf(R,S)@ont.

which, when instantiated over actual role names r and s, produce the logic

program rule s(Y,X)← r(X,Y ).

LT and A′ can be then used by a logic programming solver such as DLV [42].

This latter system allows to generate GT = Ground(LT ∪ A′, Uk) for a �xed

k. k can be determined in terms of the maximum existential depth of T and

query length. LMk(GT ) can be then generated and stored for subsequent fast

query answering.



3.7 Remarks and Related Work 63

In alternative, for a given query Q, it is possible to apply the magic set trans-

formation M(LT , Q) [5] on LT and Q, and compute LM(ground(M(LT ∪
A′, Q), Uk)).

3.7 Remarks and Related Work

The approach shown in this chapter has clear points of contact with a) former

research on query answering over di�erent supersets of EL [3, 47, 55]; also,

ELHI-programs have a remarkable connection with b) other attempts of iden-

tifying fragments of logic programming whose presence of function terms does

not a�ect decidability of querying [15, 9, 27, 26] and with c) reasoning with

chase techniques [14, 63, 64].

As for the �rst category, this paper tackles the issue of query answering on EL
from a di�erent perspective: with respect to [55], we deal directly with Skolem-

ized logic programs and we do not require a function symbols elimination step.

For what implementation is concerned, this allows the elimination of an in-

termediate resolution module: obtained ELHI-programs can be directly piped

towards current logic programming engines with little or no modi�cation at all.

Similarly with [47, 3], our approach can be seen as one exploiting the property

of combined FO rewritability which ELHI knowledge bases enjoy. Note that in
[47] it is suggested to permanently store a pre-computed canonical model IK
of the knowledge base K at hand. Answering a query q by checking whether

IK |= q is not sound however, thus q is properly rewritten into a query qK

in order to regain soundness. Similarly, we can opt for storing implicitly the

model Lk = LMk(L(F(K))) for k a bound depending on the existential depth

of K and the maximum allowed size of queries. The size of Lk is comparable to

|IK|): also, queries do not require rewriting and can be directly answered (in

AC0 data complexity [7]) over Lk. Furthermore, we can opt for storing L(F(K))

only (whose size is linear in the size of K) and perform on demand reasoning

on a query per query basis.

As for point b) above, it is worth noting that recently much work has been

devoted to the identi�cation of classes of logic programs, mostly under answer

set semantics, for which at least some form of reasoning is decidable in spite of

the presence of function symbols. Example of this research are �nitely-ground
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(FG) programs [15] and �nitely recursive programs [9]. Given the relationship

between existential restrictions and function symbols, often such kind of re-

search has been partially inspired by description logics, such as in the case of

FDNC programs [27] and bidirectional programs [26]. For space reason we can-

not report the formal de�nition of the abovementioned classes and we remaind

the reader to the corresponding papers: it is however worth remarking that

ELHI programs are not directly comparable with any of the above classes,

thus constituting a new fragment of logic programming for which query an-

swering is proven to be decidable.

Theorem 3.22. The following hold:

1. P ∈ELHI 6⇒ P ∈ FG;
2. P ∈ELHI 6⇒ P ∈ FDNC;
3. P ∈ELHI 6⇒ P is bidirectional;

4. P ∈ELHI 6⇒ P is �nitely recursive.

Proof. Proof can be easily given by counterexamples: note that the ELHI
program of Example 3.5 is not FG and also not FDNC. The ELHI program

{r1 : R(X, fA(X)) ← A(X)., r2 : B(fA(X)) ← A(X)., f : A(a).} is not

bidirectional, while the ELHI program {r1 : B(X) ← A(Y ), R(X,Y ). f :

A(a).} is not �nitely recursive.

Eventually, it is worth noting that our work has relationship with chase tech-

niques used in the relational database �eld: it can be seen that ELHI-programs

can be ported to equivalent Guarded Tuple Generating Dependencies [14]; also,

it has been shown how chase can be applied for answering conjunctive queries

under EL [63]: as a remarkable di�erence, note that chase rules require a spe-

ci�c order of application, and they can not be straightforwardly speci�ed in a

declarative way. In [64] it is identi�ed a bound in the number of Skolem terms

necessary for building a �nite chase in the case of databases with inclusion

dependencies (these latter include as a special case EL existential restrictions).

Such a bound depends on the number of atoms and occurrences of existential

variables in the query at hand and on the number of attributes a�ected by

inclusion dependencies; note that our similar notion of existential depth de-

pends also on how existential restrictions are structurally related in TBoxes,

and might enforce in practical cases a smaller bound. It is matter of future

research to investigate about relationship among the two notions.
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Implementation and Testing

4.1 System Prototype

To implement the aforementioned techniques, we have realized a system proto-

type, which relies on several technologies. Next we will give a short descriptions

of the main components of such system, pointing out the particular features it

has been given to better ful�ll its end.

The input to the system is an Ontology O, and a query Q over such ontology,

Fig. 4.1: The System Prototype

which in general is a conjunctive query. The ontology must obey the rules and

constraints of the description logics in use. In our case that is ELHI, which we

described in detail earlier in this thesis.

The system consists of various components:

� Ontology2Facts

� Modules Processor

� Optimizer

� Answer Set Solver
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Next we will describe them in detail.

4.1.1 the �Ontology2Facts� component

The original ontology, as well as the query, is usually expressed in RDF-like

syntax (and structure). Actually it is a sequence of triples, describing concepts,

roles and instances. This component performs the translation of the ontology

and query into facts. To this end, it employs the power of dlvhex. In particular,

we have used an external atom called rdf , the function of which is to retrieve

ontology data from an URL (the ontology URL) and inject it in a normal logic

atom. This

The so generated atoms are in turn converted into simple facts, named after the

keywords of the ontology language, i.e. the names used to recognize a class from

an object, etc. For example, if we give the system an RDF �le corresponding

to the following ontology:

∃r.d1 v d2
s v r
d1 v d2

The system returns the following higher order facts program:

FHEX :

existsInConcept(r, d1, d2).

subPropertyOf(s, r).

subClassOf(d1, d2).

This is realized using two separate modules: Fact Translator and T ranslator,

which we report:

FactTranslator:It transforms the ABox in unary and binary facts.

triple(X,Y, Z)← & rdf [ URL ](X,Y, Z).

C(X)← triple(X, “rdf : type”, C), C ! = “owl : Ontology”.

P (X,Y )← triple(X,P, Y ), P ! = “rdf : type”, P ! = “owl : imports”.

Translator:It Transforms the TBox in a set of facts, according to what is found.
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triple(X, Y, Z)← & rdf [ URL ](X, Y, Z).

subPropertyOf(P,Q) ← triple(P, “rdfs : subPropertyOf”, Q).

subClassOf(C,D) ← triple(C, “rdfs : subClassOf”, D).

range(P,R) ← triple(P, “rdfs : range”, R).

domain(P,D) ← triple(P, “rdfs : domain”, D).

label(P,L) ← triple(P, “rdfs : label”, L).

type(O, T ) ← triple(O, “rdf : type”, T ).

inverseOf(P,R) ← triple(P, “owl : inverseOf”, R).

someV aluesFrom(B,R,C) ← triple(B, “owl : someV aluesFrom”, C),

triple(B, “owl : onProperty”, R),

type(B, “owl : Restriction”).

class(C) ← triple(C, “rdf : type”, “owl : Class”).

property(P ) ← triple(P, “rdf : type”, “owl : ObjectProperty”).

property(P ) ← triple(P, “rdf : type”, “owl : DatatypeProperty”).

intersectionOf(A,B,C) ← triple(A, “owl : intersectionOf”, L),

triple(L, “rdf : first”, B), triple(L, “rdf : rest”, C).

intersectionOf(C,D,E) ← intersectionOf(A,B,C), triple(C, “rdf : first”, D),

triple(C, “rdf : rest”, E), E! = “rdf : nil”.

equivalentClass(C,D) ← intersectionOf(A,B,C), triple(C, “rdf : first”, D),

triple(C, “rdf : rest”, “rdf : nil”).

complementOf(C,D) ← triple(C, “owl : complementOf”, D).

transitive(R) ← triple(R, “rdf : type”, “owl : TransitiveProperty”).

4.1.2 Modules Processor

The end of this component is to combine the facts generated with the semantic

rules de�ning the description logic fragment in use. For this reason, we need

a ruleset for each constructors of ELHI. This component relies on the higher-

order capabilities of ASP.

We report next the various axiomatic modules necessary for ELHI. They cor-

respond to the ones seen in 3, but have been adapted to use the keywords of the

OWL2EL language. This is necessary since real-word ontologies are written in

such languages. The keyword �someValuesFrom� corresponds to ∃ ; the inverse
roles have been simulated with two rules which state that if r1 is the inverse of

r2, it must also be true that r2 is the inverse of r1.
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D(X) ← C(X), subClassOf(C,D).

R(X, f(ERC,X))← ERC(X), someV aluesFrom(ERC,R,C).

C(f(ERC,X)) ← ERC(X), someV aluesFrom(ERC,R,C).

D(X) ← R(X,Y ), C(Y ), existsInConcept(R,C,D).

R1(X,Y ) ← R2(Y,X), inverseOf(R1, R2).

R2(X,Y ) ← R1(Y,X), inverseOf(R1, R2).

C2(X) ← C1(X), equivalentClass(C1, C2).

C1(X) ← C2(X), equivalentClass(C1, C2).

R(X,Y ) ← S(X,Y ), subPropertyOf(S,R).

(4.1)

4.1.3 The Optimizer: The Magic Set Rewriting Technique

The Optimizer module aims at reducing the size of the instantiation of the

program. To this end, it employs the well known Magic Sets Rewriting Tech-

nique, originally de�ned in [5]. In the following, we will thoroughly describe

this technique, and in particular the modi�cations we have performed to make

it suitable for our needs.

Introduction

The Magic Sets rewriting technique takes a signi�cant place in the literature

about logic programming and deductive database systems, since its early de�-

nition.

Given a logic program P and a query Q over its vocabulary, this technique

consists in rewriting P with respect to Q, by adding some predicates and some

newly created rules: these latter are introduced in order to simulate the top-

down computation of the program. By using Magic Sets it is possible to reduce

the amount of unnecessary computation, due to portions of the ground version

of P which cannot alter the answer to Q, but are however evaluated if a pure

bottom-up scheme is used. Many extensions and modi�cations of the base tech-

nique have been proposed in literature, aimed at improving or extending it to

more speci�c cases. Among them, we mention here the extensions to disjunc-

tive logic programs in [20, 32], and the one realized for programs with (possibly

unstrati�ed) negation in [28]. In this paper we focus our attention on positive

disjunctive logic programs with function symbols, applying the magic set tech-

nique to this kind of programs. Some particular issues arise when considering
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this language, due to the presence of function symbols along with disjunction.

The main contributions of this work are: (i) we extend the magic set technique

to the case of positive disjunctive programs with function symbols by devising

an appropriate transformation algorithm; (ii) we give an implementation of the

algorithm, and we show how it works by example.

We de�ne the following entailment notion with respect to an interpretation I.

For a a ground atom: I |= a i� a ∈ I; For a1, . . . , an ground atoms:

I |= a1, . . . , an i� I |= ai, for each 1 ≤ i ≤ n; I |= a1 ∨ · · · ∨ an i� I |= ai for at

least one i, 1 ≤ i ≤ n. For a rule r: I |= r i� I |= H(r) or I 6|= B(r);

A model for P is an interpretation M for P such that every rule r ∈ grnd(P )

is such that M |= r. A model M for P is minimal if no model N for P exists

such that N is a proper subset of M . The set of all minimal models for P is

denoted by MM(P ).

An interpretation I for a program P is an answer set for P if I ∈ MM(P ) (i.

e., I is a minimal model for the positive program P ). The set of all answer sets

for P is denoted by ans(P ). We say that P |= a for an atom a, if M |= a for

all M ∈ ans(P ).

Informal Overview

The Magic Sets rewriting technique consists of a simulation of the top-down

evaluation of a query Q by modifying an original program P and producing

a rewritten program M(P,Q) which comprises additional rules, and updates

to the original ones. M(P,Q) is conceived in order to reduce computation to

what is actually relevant for answering the query. In fact, grnd(P ) contains,

in general, many ground rules that have no impact in answering Q as they are

related to atoms which Q does not depends on. In general, it is expected that

grnd(M(P,Q)) has smaller size than grnd(P ).

The original magic sets method was �rst described in [5] for the case of Datalog,

i. e. logic programs without function symbols. Following work considered the

presence of functional terms, yet not explicitly taking disjunction also into

account (see e.g. []). Concerning the stable model semantics, it is known how

to apply this rewriting technique to Datalog Programs with disjunction [20, 32]

and also (with some restricting assumption) to unstrati�ed programs [28].
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To give an intuition about the general magic set technique for Datalog pro-

grams, we can consider the following (traditional) example. Let us consider the

query Q = path(1, 5)? on the following program P1:

path(X,Y ):-edge(X,Y ). path(X,Y ):-edge(X,Z), path(Z, Y ).

As a �rst step, head predicates are �adorned". Basically, we simulate the top-

down computation and annotate the way how the variable bindings are prop-

agated from the head atom to body atoms. Each rule of the input program is

replaced by an �adorned" one in which the name of each predicate is modi�ed

by appending the binding information.

Given an IDB predicate, we denote a bound argument with the b letter, while a

free one is labeled with f . For instance pathbf is a predicate which is in principle

a subset of path: in particular its �rst argument is restricted to a set of values

(the magic set of pathbf ) which is usually much smaller than the range of path

on its �rst argument. The adornment process starts from the query Q. This

latter is adorned in a very simple manner: all constants in the query become

bound, all variables are marked as free (we obtain in this case the predicate

pathbb). Adornment is propagated to rules' heads in which path appears, and

subsequently from the head to the body. If a new adorned predicate is created

(as it is present in the head or the body of the rule), this is processed in turn in

the same way of the original adorned query, until no more adorned predicates

have to be processed. SIPs (Sideways Information Passing Strategies) are used

in order to establish the adornment policy.

In our example, the arguments of the given query are both constants,and thus

bound; we will build the adorned program according to pathbb:

Note that EDB predicates are excluded from adornment. The next step of the

transformation consists in generating magic rules starting from the adorned

program. These rules de�ne magic predicates. A magic predicate de�nes the

allowed range of values for bound arguments of a predicate. We start from the

head of the rule.

Given an adorned head atom a(t), we obtain the set of terms t′, derived from

t by removing all the terms corresponding to free arguments, and generate the

magic atom magica(t
′). Then, for each atom b in the body, we create its magic

version magicb(. . . ). Subsequently, we generate a magic rule having magicb in
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the head and magica in the body, followed by all the atoms of the adorned rule

which can propagate the binding.

The third step consists of the modi�cation of the adorned rules. In this step we

add to the bodies of the rules the magic atoms which have been generated in

the previous step. For each rule with head h, an according magic atom magich

is inserted in the body of the rule.

magic_pathbb(1, 5). magic_pathbb(Z, Y ):-magic_pathbb(X,Y ), edge(X,Z).

path(X,Y ):-magic_pathbb(X,Y ), edge(X,Y ).

path(X,Y ):-magic_pathbb(X,Y ), edge(X,Z), path(Z, Y ).

Finally, in the last step the query is processed by adding a magic fact

magic_q_ad if q is the query and ad its adornment; In our example we add

magic_pathbb(1, 5).

The resulting program is then evaluated w.r.t. the query.

Magic Sets for DLP with Function Symbols

Here we present an improved Magic Set technique. It is designed to be able to

deal with programs containing both disjunction and functions symbols. Even

if our programs do not contain disjunction, actually, we present the general

technique, assuming the non-disjunctive programs as a special case of.

The algorithm is sketched in Figure 4.2. The main procedure is called magify.

The function magify takes a program P and a query Q as input, and applies

the Magic Sets Transformation, generating M(P,Q) (the magi�ed program).

magify is made of other subprocedures, detailed in the following. Let us as-

sume it is given the query: Q2 = a(f(1))? and the program P2:

r1 : a(X) ∨ b(X):-c(X), e(X). r2 : c(f(X)):-c(X). r3 : e(1). r4 : c(1).

When a query is conjunctive, it is transformed into a rule, having in the head a

new atom which contains all the variables from the atoms in the original query.

The original query is replaced by a new one which consists of the head of the

newly created rule. This procedure is performed by the function normalize-

Query(Query Q).

The next step consists of creating the adorned program AP, by means of the

function createAdornedProgram(Program P, Query Q), reported in Fig-
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Program magify(Program P, Query Q)
{

Program M(P,Q)=∅;
if(Q.isconjunctive())
{

Rule R',Query Q';
(Q',R') = normalizeQuery(Q);
P.addRule(R');
Q=Q';

}
Program AP = createAdornedProgram(P,Q);
Program MR = createMagicRules(AP);
Program MP = addMagicAtoms(P);
Fact MF = createMagicFact(Q);
M(P,Q)=removeAdornments(MP∪MR∪MF);
return M(P,Q);

}

Fig. 4.2: Function createAdornedProgram

Program createAdornedProgram( Program P,
Query Q )
{

Stack S = ∅; Program AP = ∅;
S.push(createAdornedVersionOf(Q));
while(S. size > 0)

{
Atom x= S.pop();
for(Rule r in P)
Rules adornedRules = adornRule(r,x);
AP.add(adornedRules);setDone(X);
for(Rule ar in adornedRules)

for(Atom a in ar)
if(!done(a)) S.push(a);

}
return AP;

}

Fig. 4.3: Function createAdornedProgram

ure 4.3. A stack S is used in order to keep the atoms scheduled for adorn-

ment. The query is adorned using the function createAdornedVersionOf

and pushed in S at �rst. The main cycle pops out from S a given atom a and

accordingly adorns each rule having in the head an atom whose name matches

with it. When a certain adornment is generated for the �rst time for a pred-

icate, this is pushed into S, in order to be processed. The algorithm iterates

until S is empty.

The adornment of each rule is actually performed by the inner function

adornRule(r, x) which returns a set of adorned rules according to the labels of

x, to be added to the adorned program. If x is not in the head of r, adornRule
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returns an empty set. More in detail, the output of adornRule contains a set

R′ of adorned rules for each atom x′ ∈ H(r) which uni�es with x. Each r′ ∈ R′

is built according to the following strategy: per each x′ ∈ H(r) which uni�es

with x, x′ is labeled according to x, then such labelling is propagated to B(r),

according to a SIP. Successively, adornments are propagates from B(r) to the

remaining head atoms. Moreover, from the obtained adorned disjunctive rule

r′, corresponding to x′, we obtain |H(r)|−1 auxiliary rules obtained by leaving

in the head only one atom x ∈ H(r)\{x′} and having B(r)∪(H(r)\x) as body.

The obtained set of auxiliary rules in AP will not take part in the �nal program

M(P,Q), but will be further processed in order to obtain the set of magic rules

MR. In turn, magic rules are created, according with the traditional strat-

egy, by calling the CreateMagicRules function. In our example, we get �rst

from rule r1 and r2, the adorned versions r1′ : ab(X) ∨ bb(X):-cb(X), e(X)

and r2′ : cb(f(X)):-cb(X) then createMagicRules(Program P) obtains

from r1′ and r2′ the corresponding magic rules; and from r1′ we get the two

rules: ab(X):-cb(X), e(X), bb(X). bb(X):-cb(X), e(X), ab(X). , while r2′ is left

unchanged.

Now the function createMagicRules simply applies the normal Magic-Set

strategy to these intermediate rules, as seen in previous section. In our exam-

ple we obtain:

magic_cb(X):-magic_ab(X), e(X), bb(X).

magic_cb(X):-magic_bb(X), e(X), ab(X).

magic_cb(X):-magic_cb(f(X)).

The third rule has been obtained by applying the algorithm for the non dis-

junctive case.

Now, the function addMagicAtoms(P ) is called, which returns a version of

P including magic predicates within the body of each rule of P. In this sim-

ple step, for each atom in the head of the rule the corresponding magic atoms

are added in the body. Successively, a magic atom from the query is gener-

ated by the function createMagicFact(Query Q)) to be added to the �nal

output. In our example we get: magic_ab(f(1)). Finally, the function call re-

moveAdornments(MP ∪MR ∪MF ) removes all adornments from the non-

magic predicates. This is necessary as stated in [20]. The �nal output for our
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example is the following:

magic_cb(X):-magic_ab(X), e(X), bb(X).

magic_cb(X):-magic_bb(X), e(X), ab(X).

magic_cb(X):-magic_cb(f(X)). magic_ab(f(1)).

a(X) ∨ b(X):-c(X), e(X),magic_ab(X),magic_bb(X).

c(f(X)):-c(X),magic_cb(f(X)).

It must be noted here that two aspects of the class of programs we are treating,

disjunction and the presence of function symbols, need a particular treatment.

In particular:

Disjunction

requires modi�cations on the adornment strategy. Let r be a rule of the form:

r1 : h1(t1) ∨ . . . ∨ hn(tn):-b1(p1), . . . , bm(pm).

If we adorn the rule w.r.t. the atom hi(ti), also other head atoms have to be

taken into consideration, because they can contain variables which are actually

important for the evaluation. The function acts as follows:(i) the atom hi(ti)

is adorned w.r.t. the query; (ii) the body is adorned w.r.t. the adornments of

hi(ti) by using a suitable SIP; (iii) other head atoms h1(t1)∨ . . .∨ hi−1(ti−1)∨
hi+1(ti+1) ∨ . . . ∨ hn(tn) are adorned w.r.t. patterns found in the body.

In fact, it has been shown in [32] that if we want to keep the algorithm sound,

other head predicates cannot propagate bindings, but can only receive them. In

this case bindings are propagated from the body to the remaining head atoms.

Function symbols

have impact on the choice of the labelling for arguments: Given an atom a(. . . ,

t, . . . ) for t a functional term t , the corresponding argument of a is labelled as

bound i� all the subterms of t are set as bound at the moment of adornment

of a.

Remark. Our transformation applies to programs with function symbols, thus,

in general, an evaluation of the M(P,Q) is not guaranteed to terminate. How-

ever, there are language restrictions that ensures termination, for instance see

[16].
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Implementation Notes

The prototype has been implemented in the Java programming language as a

preprocessor able to generate a magi�ed programM(P,Q) compatible with the

DLV input format [42] from a given program P and a, possibly conjunctive,

query Q. The system uses a new Library, called DLVParser, which contains a

full framework of classes useful for both the parsing and the manipulation of a

Disjunctive Logic Programs in standard syntax.

Design patterns have been used, in order to keep the system �exible and easily

extensible. In particular, the S trategy pattern has been used for allowing the

implementation of multiple SIPs, so that the user of the API of our system is

allowed to de�ne his own strategy. To de�ne a new SIP, only a few methods

have to be implemented. We have implemented a default SIP, which mimics

the propagation of bindings in the Prolog SLD resolution. Inclusion of other

constructs such as negation and constraints are forthcoming.

4.1.4 The Solver

The solver is nothing else than the dlv system. It uses the last version of

dlv, called dlv-complex, which has interesting properties. In fact, it exploits

the higher-order capabilities of such system, since the program to evaluate is

higher-order (we do not eliminate function symbols, as other systems do).

The submitted program is evaluated, and the answer set is generated. It is only

one answer set because the original program does not contain disjunction in

the head, as the chosen DL-fragment has no need for it.

The answer set represent the answer to the query, in term of Tuples.

4.2 Experimental Results

4.2.1 The Leigh University Benchmark (LUBM)

The Leigh University Benchmark [33] is a suite created for testing purposes. It

provides the user an ontology of a University, called Univ-Bench. Univ-Bench

describes universities and departments and the activities that occur at them.

Its predecessor is the Univ1.0 ontology1, which has been used to describe data

about actual universities and departments.
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The authors created an OWL version of the Univ-Bench ontology. The ontology

is expressed in OWL Lite, the simplest sublanguage of OWL.

To keep the ontology suitable for our needs, some constructs have been dis-

abled, as ELHI is less expressive than OWL Lite. Test data of the LUBM are

extensional data created over the Univ-Bench ontology. For the LUBM, it is

available a method of synthetic data generation. This serves multiple purposes.

Data generation is carried out by UBA (Univ-Bench Arti�cial data genera-

tor), a tool developed for the benchmark. The support for OWL datasets in

the tool has been implemented. The generator features random and repeatable

data generation. A university is the minimum unit of data generation, and for

each university, a set of OWL �les describing its departments are generated. In-

stances of both classes and properties are randomly decided. To make the data

as realistic as possible, some restrictions are applied based on common sense

and domain investigation. Examples are �a minimum of 15 and a maximum of

25 departments in each university�, �an undergraduate stu- dent/faculty ratio

between 8 and 14 inclusive�, �each graduate student takes at least 1 but at most

3 courses�, and so forth. A detailed pro�le of the data generated by the tool

can be found on the benchmark?s webpage.

The generator identi�es universities by assigning them zero-based indexes, i.e.,

the �rst university is named University0, and so on. Data generated by the tool

are exactly repeatable with respect to universities. This is possible because the

tool allows the user to enter an initial seed for the random number generator

that is used in the data genera- tion process. Through the tool, we may specify

how many and which universities to generate.

Finally, as with the Univ-Bench ontology, the OWL data created by the gen-

erator are also in the OWL Lite sublanguage.

4.2.2 Tests run

We have used the UBA to generate universities knowledge bases of various
sizes.
In the following, we will indicate with�LubmX �, with X a positive integer, the
test set generated, which comprises X Universities, obviously connected to each
other.
The Lubm Testsuite delivers 14 queries, but for our tests we decided to use
only 3 of them, to better focus on the analysis of results.
The chosen queries are the following:
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Query1:

(type GraduateStudent ?X)

(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

- This query bears large input and high selectivity. It queries about just one
class and one property and does not assume any hierarchy information or in-
ference.

Query7

(type Student ?X)

(type Course ?Y)

(teacherOf http://www.Department0.University0.edu/AssociateProfessor0 ?Y)

(takesCourse ?X ?Y)

This query is similar to Query 6 in terms of class Student but it increases in
the number of classes and properties and its selectivity is high.

Query10

(type Student ?X)

(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

This query di�ers from Query 6, 7, 8 and 9 in that it only requires the (implicit)

subClassOf relationship between GraduateStudent and Student, i.e., subClas-

sOf relationship between UndergraduateStudent and Student does not add to

the results.

We tested our reasoner against the famous emph Pellet Reasoner [67]. The test

methodology is the following: We submit the queries to the reasoner, and take

the timestamps. Then, we subtract the parsing time from the total time, be-

cause parsing could be done only once in a realistic scenario.

To check the e�ectiveness of the optimization technique (the Magic Sets), we

used two versions of the reasoner, one of which does not exploit such technique.

For what it concerns Pellet, again we do not include the parsing time in the

timestamps reported, and set the dimensions of the Java Heap to the maximum

available on the test machine.

All the tests have been run on a Apple MacPro machine, which is a Xeon-

based multicore machine, with 8 Gigabytes of Ram memory. It runs Debian

Gnu-Linux, in the 64-bit �avor.

The results shown above are very interesting. First of all, it is necessary to

point out that Pellet resulted unable to handle a LUBM greater than 10. All
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Solver Solver No-Magic Pellet

Query 1 0.15 0.16 0.12

Query 7 0.73 0.74 0.1

Query 10 0.14 0.73 0.01

Table 4.1: Tests run on LUBM1

Solver Solver No-Magic Pellet

Query 1 0.47 0.5 0.5

Query 7 2.54 2.78 0.74

Query 10 1.31 1.05 0.23

Table 4.2: Tests run on LUBM10

Solver Solver No-Magic Pellet

Query 1 1.54 1.67 fail

Query 7 8.43 9.12 fail

Query 10 4.38 3.94 fail

Table 4.3: Tests run on LUBM30

Solver Solver No-Magic Pellet

Query 1 3.2 3.57 fail

Query 7 20.51 22.76 fail

Query 10 8.17 7.39 fail

Table 4.4: Tests run on LUBM45

the queries resulted in a OutOfMemory exception, for any heap size chosen.This

is probably due to the fact that Pellet stores all the data in memory, without

using any streaming technique.

In contrast, our prototype just loads data on the �y, keeping a small portion of

the program in memory at once. This results in the capacity of handling pro-

grams (and ABoxes) of any size. In case of small sizes, Pellet performs slightly

better than our reasoner.

It is interesting that the Magic Sets rewriting technique works very well for the

�rst two queries, but not on the third. This shows that the technique itself is
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valid, but the results also depend on the Sideways Information Passing (SIP)

used.





Part II

Axiomatization Techniques





5

Integrating Frame Logic in Answer Set Programming

5.1 Introduction

In this chapter we aim at closing the gap between F-logic based languages

and Answer Set Programming, in both directions: on one hand, Answer Set

Programming misses the useful F-logic syntax, its higher order reasoning capa-

bilities, and the possibility to focus knowledge representation on objects, more

than on predicates. On the other hand, manipulating F-logic ontologies un-

der stable model semantics opens a variety of modeling possibilities, given the

higher expressiveness of the latter with respect to well-founded semantics.

Our approach is set in between a pure model theoretic semantics (proper of

F-logic and many of its extensions [39, 71]), and a pure �rewriting" semantics,

in which inheritance is speci�ed by means of an ad-hoc translation to logic

programming [36]. More details on F-Logic may be found in the Preliminaries

Chapter 2 In the former case, semantics is given in a clean and sound manner:

however, the way inheritance (and in general, the semantics of the language)

is modeled is hardwired within the logic language at hand, and cannot be easy

subject of modi�cations. In the latter case, semantics is enforced by describing a

rewriting algorithm from theories to appropriate logic programs. In such a set-

ting the semantics of the overall language can be better tuned by changing the

rewriting strategy. It is however necessary to have knowledge of internal details

about how the language is mapped to logic programming, making the process

of designing semantics cumbersome and virtually reserved to the authors of the

language only.

Here we de�ne a basic stable model semantics for fas programs which does not

purposely �x a special meaning for the traditional operators of F-logic, such
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as class membership � : " and subclass containment � : :". Indeed, fas programs

are conceived as a test-bed on which an advanced ontology designer is allowed

to choose the behavior of available operators from a prede�ned library, or to

design her own semantics from scratch. The ability to customize the semantics

of the language is crucial especially in presence of inheritance constructs. In

fact, when one has to model a particular problem, a speci�c semantics for

inheritance may be more suitable than another, and it is often necessary to

manipulate and/or combine the prede�ned behaviors of the language.

The topics we focus in the following of this chapter are:

1. We present the family of Frame Answer Set Programs (fas programs), al-

lowing usage of frame-like constructs, and of higher order atoms. Interestingly,

positively nested frames may appear both in the head and in the body of rules.

The language allows to reason in multiple contexts which are called framespaces.

2. We provide the model-theoretic semantics of fas programs in terms of their

answer sets.

3. We show how semantics features can be introduced on top of the basic

semantics of the language by adding an appropriate axiomatization. Structural,

behavioral, and arbitrary semantic for inheritance can be easily designed and

coupled with user ontologies. In some cases, we show how these axiomatizations

relate with F-logic under �rst order semantics.

4. We illustrate in which terms contexts can be exploited for manipulating

hybrid knowledge bases having many data sources working under di�erent en-

tailment regime;

5. The language has been implemented within the dlt system, a front-end

for answer set solvers. Besides the fragment of language herein presented, dlt

allows negated nested molecules, and re-usable template programs. If coupled

with a proper answer set solver, the same front-end allows usage of complex

terms (e.g. functions, lists, sets), and external predicates [23]).

5.2 Syntax

We present here the syntax of fas programs. Informally, the language allows
disjunctive rules with negation as failure in the body; with respect to ordinary
Ans-Prolog (the basic language of Answer Set Programming), there are three
crucial di�erences. First, besides traditional atoms and predicates, the language



5.2 Syntax 85

supports frame molecules in both the body and the head of rules, following the
style of F-logic [39]. When representing knowledge, frame molecules allow to
focus on objects, more than on predicates. An object can belong to classes, and
have a number of property (attribute) values. As an example, the following is
a frame molecule:

brown : employee [ surname→ “Mr. Brown”,

skill→→ {java, asp},

salary → 800,

gender → male,

married→ pink ]

The above molecule de�nes membership of the subject of the molecule (brown)

to the employee class and asserts some values corresponding to the properties

(which we will call also attributes) bound to this object. This frame molecule

states that brown is male (as expressed by the value of the attribute gender),

and is married to another employee identi�ed by the subject pink. brown knows

java and asp languages, as the values of the skill property suggest, while he has

a salary equal to 800. Intuitively, one can see a class membership statement in

form x : c as similar to a unary predicate c(x). Accordingly, x[m → v] can be

seen has a binary predicate m(x, v).

As a second important di�erence, higher order reasoning is a �rst class citizen

in the language: in other words, it is allowed quanti�cation over predicate, class

and property names. For instance, C(brown) is meant to have the variable C

ranging over the Herbrand universe, thus having employee(brown) as possible

ground instance.

Finally, our language allows the use of framespaces to place atoms and molecules

in di�erent contexts. For example, suppose there are two Mr. Brown, one work-

ing for Sun and the other for Ibm. We can use two di�erent assertions, related

to two di�erent framespaces to distinguish them, e.g. brown : employee@sun

and brown : employee@ibm.

We formally de�ne the syntax of the language next.

Let C be an in�nite and countable set of distinguished constant and predi-

cate symbols. Let X be a set of variables. We conventionally denote variables

with uppercase �rst letter (e.g. X, Project), while constants will be denoted
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with lowercase �rst letter (e.g. x, brown, nonWantedSkill). A term is either a

constant or a variable.

Atoms can be either standard atoms or frame atoms. A standard atom is in the

form t0(t1, . . . , tn)@f , where t0, . . . , tn, f are terms, t0 represents the predicate

name of the atom and f the context (or framespace) in which the atom is

de�ned.

A frame atom, or molecule, can be in one of the following three forms:

� s[v1, . . . , vn]@f

� s � c@f
� s � c[v1, . . . , vn]@f

where s, c and f are terms, and v1, . . . , vn is a list of attribute expressions. Here

and in the following, the allowed values for the meta-symbol � are � :" (instance

operator), or � : :" (subclass operator). Moreover, s is called the subject of the

frame, while f represents the context (or framespace).

To simplify the notation, whenever the context term f is omitted, we will

assume f = d, for d ∈ C a special symbol denoting the default context.

An attribute expression is in the form p, p ⇀ v1 or p ⇀⇀ {v1, . . . , vn}, where p
(the property/attribute name) is a term, and v1, . . . , vn (the attribute values) are

either terms or frame molecules. Here and in the following, the meta-symbols⇀

and⇀⇀ are intended to range respectively over {→, •→} and {⇒,→→,⇒⇒, •→→}.
Note that, according to this de�nition, when used within attribute expressions,

the symbols in the set {⇒,→→,⇒⇒, •→→} allow sets of attribute values on their

right hand side, while → and •→ allow single values.

A literal is either an atom p (positive literal), or an expression of the form ¬p
(strongly negated literal or, simply, negated literal), where p is an atom. A naf-

literal (negation as failure literal) is either of the form b (positive naf-literal),

or of the form not b (negative naf-literal), where b is a literal.

A formula is either a naf-literal, a conjunction of formulas or a disjunction of

formulas.

A simple atom is either a standard atom, or a frame atom in the forms s� c@f ,
s[p ⇀ v]@f or s[p ⇀⇀ {v}]@f , for s, c, p, v and f terms of the language. The

notion of simple literal and of simple naf-literal are de�ned accordingly on top

of the notion of simple atom.

A Frame Answer Set program (fas program) is a set of rules, of the form
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a1 ∨ · · · ∨ an ← b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an and b1, . . . , bk are literals, not bk+1, . . . , not bm are naf-literals,

and n ≥ 0, m ≥ k ≥ 0. The disjunction a1 ∨ · · · ∨ an is the head of r, denoted

by H(r), while the conjunction b1∧· · ·∧bk∧not bk+1∧ . . . ,∧not bm is the body

of r, denoted by B(r). A rule with empty body will be called fact, while a rule

with empty head is a constraint.

A plain higher order fas program contains only standard atoms, while a plain

fas program contains only standard atoms with a constant predicate name. A

positive fas program do not contain negation as failure and strongly negated

atoms. In the following, we will assume to deal with safe fas programs, that is,

programs in which each variable appearing in a rule r appears in at least one

positive naf-literal in B(r).

Example 5.1. The following one rule program is a valid fas program. Intuitively,

it represents the fact that each person is male or female.

P [gender → “male”] ∨ P [gender → “female”] :- P : person.

5.3 Semantics

Semantics of fas programs is de�ned by adapting the traditional Gelfond-

Lifschitz reduct, originally given for a ground disjunctive logic program with

strong and default negation [31], to the case of fas programs.

Given a fas program P , its ground version grnd(P ) is given by grounding rules

of P by all the possible substitutions of variables that can be obtained using

consistently elements of C1. A ground rule thus contains only ground atoms;

the set of all possible simple ground literals that can be constructed combining

predicates and terms occurring in the program is usually referred to as Herbrand

base (BP ). We remark that the grounding process substitutes also nonground

predicates names with symbols from C (e.g., a valid ground instance of the

atom H(brown,X) is married(brown, pink), while a valid ground instance of

brown[H → yellow] is brown[color → yellow]).

1 As shown next, our semantics implicitly assumes that elements of C are mapped to them-
selves in any interpretation, thus embracing the unique name assumption.
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An interpretation for P is a set of simple ground literals, that is, an interpre-

tation is a subset I ⊆ BP . I is said to be consistent if ∀a ∈ I we have that

¬a 6∈ I.
We de�ne the following entailment notion with respect to an interpretation I.

For a a ground atom:

(E1) If a is simple, then I |= a i� a ∈ I;
(E2) I |= not a i� I 6|= a.

For l1, . . . , ln ground literals:

(E3) I |= l1 ∧ · · · ∧ ln i� I |= li, for each 1 ≤ i ≤ n;
(E4) I |= l1 ∨ · · · ∨ ln i� I |= li for some 1 ≤ i ≤ n.

For s, p, f ground terms, and m1, . . . ,mn ground frame molecules:

(E5) I |= s[ p ⇀⇀ {m1, . . .mn} ]@f i� I |= s[ p ⇀⇀ {mi} ]@f , for each 1≤i≤
n.

For s, s′, c, p, f, f ′ ground terms, and v = {v1, . . . , vn} a set of ground attribute

value expressions:

(E6) I |= s[ v1, . . . , vn ]@f i� I |= s[ v1 ]@f ∧ · · · ∧ s[vn]@f ;

(E7) I |= s � c[ v ]@f i� I |= s � c@f ∧ s[ v ]@f ;

(E8) I |= s[ p ⇀ s′[ v ] ]@f i� I |= s[ p ⇀ s′]@f ∧ s′[ v ]@f ;

(E9) I |= s[ p ⇀⇀ {s′[ v ]} ]@f i� I |= s[ p ⇀⇀ {s′}]@f ∧ s′[ v ]@f ;

(E10) I |= s[ p ⇀ s′[ v ]@f ′ ]@f i� I |= s[ p ⇀ s′]@f ∧ s′[ v ]@f ′;

(E11) I |= s[ p ⇀⇀ {s′[ v ]@f ′} ]@f i� I |= s[ p ⇀⇀ {s′}]@f ∧ s′[ v ]@f ′.

Note that rules (E8) and (E9) force s′[ v ], which does not have an explicit

framespace, to belong to the context f of the molecule containing it. On the

contrary, s′[ v ]@f ′ in (E10) and (E11) has a proper framespace f ′, and the

entailment rules take care of this fact. Then, rules (E6) to (E11) de�ne the

context of a frame molecule as the nearest framespace explicitly speci�ed.

For a rule r :

(E12) I |= r i� I |= H(r) or I 6|= B(r);

A model for P is an interpretation M for P such that M |= r for every rule

r ∈ grnd(P ). A model M for P is minimal if no model N for P exists such
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that N is a proper subset of M . The set of all minimal models for P is denoted

by MM(P ).

Given a program P and an interpretation I, the Gelfond-Lifschitz (GL) trans-

formation of P w.r.t. I, denoted P I , is the set of positive rules of the form {a1∨
· · ·∨an ← b1, · · · , bk } such that {a1∨· · ·∨an ← b1, · · · , bk, not bk+1, · · · , not bm}
is in grnd(P ) and I |= not bk+1 ∧ · · · ∧ not bm. An interpretation I for a pro-

gram P is an answer set for P if I ∈ MM(P I) (i.e., I is a minimal model for

the positive program P I) [58, 31]. The set of all answer sets for P is denoted

by ans(P ). We say that P |= a for an atom a, if M |= a for all M ∈ ans(P ).

P is consistent if ans(P ) is non-empty.

For a positive program P allowing only the term d in context position, we de�ne

the F-logic �rst-order semantics in terms of its F-models. A F-model Mf is a

model of P subject to the conditions

(F1) � : :" encodes a partial order in Mf ;

(F2) if a : b ∈Mf and b : :c ∈Mf then a : c ∈Mf ;

(F3) if a[m⇀ v] ∈Mf and a[m⇀ w] ∈Mf then v = w, for ⇀∈ {→, •→};
(F4) if a[m ≈> v] ∈Mf and b : :a then b[m ≈> v] ∈Mf , for ≈>∈ {⇒,⇒⇒};
(F5) if c[m⇒ v], a : c and a[m→ w] ∈Mf then w : v ∈Mf ;

(F6) if c[m⇒⇒ v], a : c and a[m→→ w] ∈Mf then w : v ∈Mf ;

We say that P |=f a for an atom a if Mf |= a for all F-models of P .

Example 5.2. The program in Example 5.1 together with the fact brown : person.

has two answer sets, M1 = { brown : person, brown[ gender → “male” ] }
andM2 = { brown : person, brown[gender → “female”] }. BothM1 andM2 are

F-models. Note thatM3 = { brown : person, brown[ gender → “female” ],

brown[ gender → “male” ] } is neither an F-model nor an answer set for dif-

ferent reasons: it is not an F-model because of condition (F3) given above,

while it is not an answer set because it is not minimal. Note also that dis-

junctive rules trigger in general the existence of multiple answer sets, while the

presence of constraints may eliminate some or all constraints: for instance, the

same program enriched with the constraints ← brown[gender → “male”] and

← brown[gender → “female”] has no answer set2.

2 A constraint← c can be seen as a rule f ← c, not f , for which there is no model containing
c.



90 5 Integrating Frame Logic in Answer Set Programming

5.4 Modeling semantics and inheritance

Given the basic semantics for a fas program P , it is then possible to en-

force a speci�c behavior for operators of the language by adding to P speci�c

�axiomatic modules". An axiomatic module A is in general a fas program.

Given a union of axiomatic modules S = A1 ∪ · · · ∪ An, we will say that P

entails a formula φ under the axiomatization S ( P |=S φ ) if P ∪ S |= φ. The

answer sets of P under axiomatization S are de�ned as ansS(P ) = ans(P ∪S).

We illustrate next some basic axiomatic modules.

Basic class taxonomies.

The axiomatic module C, shown next, associates to � : " and � : :" the usual

meaning of monotonic class membership and subclass operator.

c1 : A : :B ← A : :C, C : :B.

c2 : A : :A← X :A.

c3 : ← A : :C, C : :A, A 6= C.

c4 : X :C ← X :D, D : :C.

Rules c1 and c2 enforce transitivity and re�exivity of the subclass operator,

respectively. Rule c3 prohibits cycles in the class taxonomy, while c4 implements

the class inheritance for individuals by connecting the � : :" operator to the � : "

operator. The acyclicity constraint can be relaxed if desired: we de�ne in this

case C′ as C \ c33.

Single valued attributes.

Under standard F-logic, the operators → and •→ are associated to families of

single valued functions: indeed, in a F-model M it can not hold both a[m⇀ v]

and a[m ⇀ w], unless v = w. Under unique names assumption, we can state

the above condition by the set F of constraints:

f5 : ← A[M → V ], A[M →W ], V 6= W

f6 : ← A[M •→ V ], A[M •→W ], V 6= W

Structural and behavioral inheritance.

We show here how to model some peculiar types of inheritance, such as struc-

tural and behavioral inheritance.

3 Note that the atom A 6= C amounts to syntactic inequality between A and C.
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Structural inheritance is usually associated to the operator ⇒. Let P1 be the

following example program:

webDesigner : :javaProgrammer. javaProgrammer : :programmer.

webDesigner : :htmlProgrammer. javaProgrammer[salary ⇒ medium].

htmlProgrammer[salary ⇒ low].

For short, we denote in the following webDesigner as wd, javaProgrammer as jp and

htmlProgrammer as hp.

Under structural inheritance, as de�ned in [39], property values of superclasses

are �monotonically" added to subclasses. Thus, since c1 is subclass of c2 and

c4, one expects that P1 |=C∪S webDesigner[salary ⇒ {low,medium}] for some

axiomatic module S.
The axiomatic module S shown next, associates this behavior to the operators

⇒ and ⇒⇒.

s7 : D[A⇒ T ]← D : :C, C[A⇒ T ].

s8 : D[A⇒⇒ T ]← D : :C, C[A⇒⇒ T ].

Note that s5 (resp. s6) do not enforce any relationship between �⇒" and �→"

(resp. �⇒⇒" and �→→") as in [39]. We will discuss this issue later in the section.

Behavioral inheritance [71], allows instead nonmonotonic overriding of prop-

erty values. Overriding is a common feature in object-oriented programming

languages like Java and C++: when a more speci�c de�nition (value, in our

case) is introduced for a method (a property, in our case), the more general

one is overridden. In case di�erent information about an attribute value can be

derived from several inheritance paths, inheritance is blocked. Let us assume to

add to P1 the assertions jp[income •→ 1000] and hp[income •→ 1200] .

Under behavioral inheritance regime [71]4, the assertions jp[income •→ 1000] and

hp[income •→ 1200] would be considered in con�ict when inherited from wd. In-

deed, both wd[income •→ 1000] and wd[income •→ 1200] under the three-valued

semantics of [71] are left unde�ned. Under fas semantics it is then expected to

have some axiomatic module B where neither P1 |=B∪F∪C wd[income •→ 1000] nor

P1 |=∩B∪F∪C wd[income •→ 1200] hold.

4 Note that in [71] the above semantics is conventionally associated to the→ operator, while
we will use •→
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The above behavior can be enforced by de�ning B as follows

b9 : overridden(D,M,C) ← E[M •→ V ], C : :E, E : :D, C 6= E, E 6= D.

b10 : inheritable(C,M,D) ← C : :D, D[M •→ V ], not overridden(D,M,C).

b11 : C[M •→ V ] ∨ C[M •→ V ]@false ← inheritable(C,M,D), D[M •→ V ].

b12 : exists(C,M) ← C[M •→ V ].

b13 : ← inheritable(C,M,D), not exists(C,M).

b14 : existsSubclass(A,C) ← A :C,A :D,D : :C,C 6= D.

b15 : A[M → V ]@candidate ← A :C,C[M •→ V ], not existsSubclass(A,C).

b16 : A[M → V ] ∨A[M → V ]@false ← A[M → V ]@candidate.

b17 : exists′(A,M) ← A[M → V ].

b18 : ← inheritable(C,M,C), A :C, not exists′(A,M).

The above module makes usage of stable model semantics for modeling multiple

inheritance con�icts. By means of rule b11 and b16 it is triggered the existence

of multiple answer set in the presence of inheritance con�icts, one for each

possible way to solve the con�ict itself.

Note that ansB∪F∪C(P1) contains two di�erent answer sets M1 and M2 which

respectively are such that M1 |= wd[income •→ 1200] and M2 |= wd[income •→

1000]. However, both assertions do not hold in all the possible answer sets.

Thus, similarly to �well-founded optimism" semantics, we obtain that P1 6|=C∪B
wp[income •→ X] for any X.

Constructive vs well-typed semantics.

The operator⇒ is traditionally associated to→. For instance if both jp[keyboard⇒

americanLayout] and jim : jp[keyboard → ibm1050] hold, one might expect that

ibm1050 : americanLayout.

However, one might wonder whether to implement the above required behavior

under a constructive or a well-typed semantics.

The two type of semantics di�er in the way incomplete information is dealt with.

In a �well-typed" �avored semantics, most axioms are seen as hard constraints,

which, if not ful�lled, make the theory at hand inconsistent.
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In the �rst case, it may be desirable to use the �⇒" operator for de�ning strong

desiderata about range and domain of properties, while the �→" could be used

to denote actual instance values such as in the following program P2:

programmer[salary ⇒ integer].

g : programmer[salary → aSalary].

← X : programmer[salary → Y ], not Y : integer5

Note that ans(P2) is empty, unless it is not explicitly asserted (well-typed) the

fact aSalary : integer.

On the other hand one may want to interpret constructively desiderata about

domain and range of properties, as it is typical, e.g. of RDFS. Consider the

program P3:

programmer[salary ⇒ integer].

g : programmer[salary → aSalary]

Y : integer ← X : programmer[salary → Y ]

Here P3 has a single answer set containing the fact aSalary : integer.

The two types of semantics stem from profound philosophical di�erences: well-

typedness is commonly (but not necessarily) associated to modeling languages

inspired from database systems, living under a single model semantics and

Closed World Assumption. To a large extent one can instead claim that �rst

order logics (and descendant formalisms, such as descriptions logics and RDFS),

is much more prone to deal constructively with incomplete information.

It is however worth noting that despite their conceptual di�erence, constructive

and well-typed semantics are often needed together. As a matter of example,

modeling in Java (as well as C++ and F-logic) needs both �avors. Construc-

tiveness comes into play in inheritance within class taxonomies (e.g., if A : :B

and B : :C hold, the information A : :C does not need to be well-typed and is in-

ferred automatically), but well-typedness is required in several other contexts,

(e.g. strong type-checking prescribes that a function having a given signature

can not be invoked using actual parameters which are not explicitly known to

ful�l the function signature).

Whenever required, fas programs can be coupled with axiomatic modules en-

coding both well-typed and constructive axioms.

5 With some liberality we use here �integer" as class name more than a concrete datatype,
without losing the sense of our example.
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The following axiomatic module CO encodes constructively how the operators

⇒ and → can be related each other:

co15 : V :T ← C[A⇒ T ], I :C, I[A→ V ].

while W, shown next, encodes the same relation under a well-typed semantics.

w16 : ← C[A⇒ T ], I :C, I[A→ V ], not V : T.

5.5 Properties of fas programs

fas programs have some property of interest. First, F-logic entailment can me

modeled on top of fas programs by means of the axiomatic modules C,S,F ,
and CO. Let A = C ∪ S ∪ F ∪ CO.

Theorem 5.3. Given a positive, non-disjunctive, fas program P with default

contexts only, and a formula φ, then P |=A φ i� P |=f φ.

Proof. (Sketch). (⇒) Assume P ∪A is inconsistent. Given that P is a positive

program, then inconsistency amounts to the violation of some instance of con-

straints c3, f5 or f6. We can show that, accordingly, there is no F-model for P .

On the other hand, if P ∪A is consistent, one can show that the unique answer

set of P is the least F-model of P .

(⇐) It can be shown that if P has no F-model, then P ∪ A is inconsistent.

Viceversa, if P has some F-model its least model corresponds to the unique

answer set of P ∪ A. �

One might wonder at the signi�cance of |=A-entailment for disjunctive programs

with negation. This entailment regime diverges quickly from the behavior of

monotonic logic as soon as negation as failure and disjunction is considered,

and is thus incomparable with �rst order F-logic. It is matter of future research

to investigate on the relationship between fas programs and F-logic under

well-founded semantics.

As a second important property, we show that contexts can be exploited for

modeling hybrid environments in which more than one semantics has to be

taken in account. For instance one might desire a context s in which only C ∪S
hold as axiomatic modules (this is typical e.g. of RDFS reasoning restricted to

ρ-DF [51]), while in a context b we would like to have a di�erent entailment

regime, taking in account e.g. B and F .
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We will say that an axiomatic module (resp. a program, a formula) A is de�ned

at context c if for each rule r ∈ A, each atom c ∈ r has context c. If an axiomatic

module (resp. a program, or a formula) A is de�ned at the default context d,

then the axiomatic module A@c, de�ned at context c, is obtained by replacing

each atom a appearing in A with a@c.

Example 5.4. Consider the program P4 de�ned as follows. P4 has two contexts,

rdf and inh. P4 contains knowledge coming from an RDF triplestore de�ned in

term of the facts t(gb, rdf: type, hp)@rdf , t(gb, name, “Gibbi”)@rdf , etc. Also P4 con-

tains the rules X :C@rdf ← t(X, rdf : type, C)@rdf , X[M → V ]@rdf ← t(X,M, V )@rdf ,

C : :D@rdf ← t(C, rdfs : subClassOf,D)@rdf . Then, we add to P4 the program

P1@inh where P1 is taken from Section 5.4, plus the rule X : C@inh← X : C@rdf .

We want that C and S hold under the rdf context, while C and B hold under the

inh context. This can be obtained by de�ning A = (C ∪ S)@rdf ∪ (C ∪ B)@inh

and evaluating P4 under |=A-entailment.

For instance, P4 |=A gb : [income •→ 1000]@inh .

We clarify next how contexts interact each other. First, we consider programs in

which contexts are strictly separated: that is, each rule in a program contains

only atoms either with context a or only atoms with context b. This way, a

program can be seen as composed by two separate modules, one de�ning a and

the other de�ning b. The following proposition shows that programs de�ned in

separated context behave separately under their axiomatic regime.

Proposition 5.5. It is given a program P = P ′@a ∪ P ′′@b, and axiomatic

modules A@a and B@b. Then, for formulas φ@a and ψ@b, we have that, if

P ∪A@a ∪B@b is consistent,

P |=A@a∪B@b φ@a ∧ ψ@b⇔ P ′ |=A φ ∧ P ′′ |=B ψ

Contexts can be seen in some sense as separate knowledge sources, each of

which having its own semantics for its data. In such a setting, it is however

important to consider cases in which knowledge �ows bidirectionally from a

context to another and viceversa.

This situation is typical of languages implementing hybrid semantics schemes.

For instance, DL+log [62] is a rule language where each knowledge base com-

bines a description logic base D (living under �rst order semantics), with a
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rule program P (living under answer set semantics). D and P can mutually

exchange knowledge: in the case of DL+log , predicates of D can appear in P ,

allowing �ow of information from D to P .

Similarly, we are assuming to have a program P , two contexts a and b, each of

which coupled with axiomatic modules A@a and B@b. The program P freely

combines atoms with context a with atoms with context b, possibly in the same

rule.

For simplicity, the following theorem is given for programs containing simple

naf-literals only.

Given an interpretation I we de�ne Ia as the subset of I containing only atoms

with context a. The extended reduct P ∗Ia of a ground program P is given by

modifying each rule r ∈ P in the following way:

� if l@a ∈ H(r) and l@a 6∈ Ia then delete l@a from r;

� if l@a ∈ H(r) and l@a ∈ Ia then delete r;

� if l@a ∈ B(r) and l@a ∈ Ia then delete l@a from r;

� if l@a ∈ B(r) and l@a 6∈ Ia then delete r;

� if not l@a ∈ B(r) and l@a 6∈ Ia then delete not l@a from r;

� if not l@a ∈ B(r) and l@a ∈ Ia then delete r;

Theorem 5.6. Let P be a program containing only atoms with context a and

b, and A@a and B@b be two axiomatic modules.

Then,

M ∈ ansA@a∪B@b(P )⇔Ma ∈ ansA@a(P ∗Mb) ∧Mb ∈ ansB@b(P
∗Ma)

Roughly speaking, the above theorem states that from the point of view of

context a one can see atoms from context b as external facts, and viceversa. An

answer set M of the overall program is found when, assuming Ma as the set

of true facts for a, we obtain that Mb is the answer set of P
∗Ma ∪B@b, i.e. an

answer set of the program obtained by assuming facts in Ma true. Viceversa,

if one assumes Mb as the set of true facts for context b, one should obtain Ma

as the answer set of P ∗Mb ∪A@a.

Proof. (Sketch). ( ⇒ ) Assume M ∈ ans(P ∪ A@a ∪ B@b), it is easy, yet

tedious, to construct Ma and Mb and verify that Ma ∈ ans(P ∗Mb ∪A@a) and

Mb ∈ ans(P ∗Ma ∪B@b). Given Pa = P ∗Mb ∪A@a and Pb = P ∗Ma ∪B@b, the
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proof is conducted by showing that Ma (resp. Mb) is a minimal model of PMa
a

(resp. PMb
b ).

( ⇐ ) Given Ma and Mb such that Ma ∈ ans(P ∗Mb ∪ A@a) and Mb ∈
ans(P ∗Ma ∪ B@b), the proof is carried out by showing that M = Ma ∪Mb

is a minimal model of P ∪A@a ∪A@bM . �

5.6 System Overview

fas programs have been implemented within the dlt environment [35]. The

current version of the system is freely available on the dlt Web page, together

with examples, a tutorial, and the axiomatic modules herein presented.

dlt works as a front-end for an answer set solver of choice S. Programs are

rewritten in the syntax of S and then processed. Resulting answer sets in the

format of S are then processed back and output in dlt format. dlt is com-

patible with most of the languages of the dlv family such as dlv [42], dlvhex

[24] and the recent dlv-complex. The native features of the solver of choice

are made available to the dlt programmer: this way features such as soft con-

straints, aggregates (dlv), external predicates (dlvhex), and function, list and

set terms (dlv-complex) are accessible. Limited support is given also for other

ASP solvers.

dlt allows the syntax presented in this paper and implements the presented

semantics. Atoms without context speci�cation are assumed to have the default

context d. In order to avoid typing, the default implicit context can be switched

by using a directive in the form @name., which sets the implicit context to name

for the rules following the directive.

We overview next some of the other features of dlt, which, for space reasons,

can not be focused in the present work.

Complex nested expression.

dlt allows the usage of negated attribute expressions. From the operational

point of view, if a frame literal in the body of a rule r has subject o and a

negative attribute not m, our prototype removes not m from the attributes of

o, adds not a to the body of r, where a is a fresh auxiliary atom, and adds

a new rule a:-o[m]. to the program. This procedure can be iterated until no

negated attribute appears in the program. Then, the answer sets of the original
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program are the answer sets of the rewritten program without auxiliary atoms.

Since negated attributes can appear in negative literals and can be nested, they

behave like the nested expressions of [43], allowing in many case to represent

information in a more succinct way. The model-theoretical semantics of this

aspect of the language is not focused in this paper and is matter of future

work.

Example 5.7. The following rule states that a programmer P is suitable for

project p3 if P know c++ and perl, but is not married to another programmer

knowing c++ and perl.
P [suitable→→ p3] ← X : programmer,

P : programmer[skills→→ {“c++”, “perl”},
not married→ X[skills→→ {“c++”, “perl”} ].

Template de�nitions.

A dlt program may contain template atoms, that allow to de�ne intensional

predicates by means of a subprogram, where the subprogram is generic and

reusable. This feature provides a succinct and elegant way for quickly introduc-

ing new constructs using the dlt language, such as prede�ned search spaces,

custom aggregates, etc. Di�erently from higher order constructs, which can be

used for the same purpose, templates are based on the notion of generalized

quanti�er, and allow more versatile usage. Syntax and semantics of template

atoms are described in [17].

5.7 Remarks and Related Work

We summarize here the main topics we focused in this chapter, pointing out

signi�cant features and issues.

Stable vs well-founded semantics.

fas programs have some peculiar di�erences with respect to the original F-logic.

Importantly, while well-founded semantics [31] is at the basis of the nonmono-

tonic semantics of F-logic, fas programs live under stable model semantics. The

two semantics are complementary in several respects. The well-founded seman-

tics is preferable in terms of computational costs: at the same time, this limits
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expressiveness with respect to the stable model semantics, which for disjunctive

programs can express any query in the computational class Σp
2 .

On the other hand, the well-founded semantics is three-valued. Having a third

truth value as �rst class citizen of the language is an advantage in several sce-

narios, such as just in the case of object inheritance. Indeed, the unde�ned

value is exploited in F-Logic when inheritance con�icts can not be solved with

a clear truth value. Note, however, that the stable model semantics gives �ner

grained details in situations in which the well-founded semantics leaves truth

values unde�ned. The reader can �nd a thorough comparison of the two seman-

tics in [31]. fas answer sets should not be confused with the notion of stable

object model given in [71].

Semantic Web languages.

Since F-logic features a natural way for manipulating ontologies and web data,

it has been investigated for a long as suitable basis for representing and rea-

soning on data on the web. The two main F-Logic systems Flora and Florid

([72, 46]) share with fas programs the ability to work both on the level of

concepts and attributes and on instances.

F-logic has been investigated as a logical way to provide reasoning capability

on top of RDF in the system TRIPLE ([66]) that has native support for con-

texts (called models), URIs and namespaces. It is possible also to personalize

semantics either via rule axiomatization (e.g. one can simulate RDFS reason-

ing by means of TRIPLE rules) or by means of interfacing external reasoners.

The semantics of the full TRIPLE language has not been clearly formalized:

its positive, non-higher order fragment coincides with Horn logic.

The possibility to de�ne custom rule set for specifying the semantics which best

�ts the concrete application context is also allowed in OWLIM ([40]).

Answer Set Programming

Several works share some point in common with the described techniques in the

�eld of Answer Set Programming. An inspiring �rst de�nition of F-logic under

stable model semantics can be found in [21]. The fragment considered focuses

on �rst order F-logic with class hierarchies, and do not explicitly axiomatize

structural inheritance with constructive semantics and single valued attributes.

Higher order reasoning is present in dlvhex [24]. Contexts were investigated

under stable model semantics also in [56]. In this setting, context atoms are
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exploited to give meaning to a form of scoped negation, useful in Semantic Web

applications where data sources with complete knowledge need to be integrated

with sources expected to work under Open World Assumption. Similarly to our

work, multi-context systems of [10] are used in order to de�ne hybrid system

with a logic of choice. Contexts can transfer knowledge each other by means of

bridge rules, while in our setting it is not necessary a clear distinction between

knowledge bases and bridge rules.

Nested attribute expressions behave like nested expressions as in [43], although

we do not allow the use of negation in the head of rules. A di�erent approach

to nonmonotonic inheritance in the context of stable model semantics was pro-

posed in [12], in which modules (which can be overridden each other) are as-

sociated with each object, and objects are partially sorted by an isa relation.

The idea of de�ning an object-oriented modeling language under stable model

semantics has been also subject of research in [61] and [60].



6

Translating OWL2 Pro�les to ASP with Axiomatic

Modules

OWL2, as stated previously, is divided into three di�erent pro�les. Each pro�le

has been created for answering to di�erent problems, and is based on di�erent

description logic fragments. We give next some modular translations from the

fragments of OWL2 to Logic Programming. Such translations may be used for

improving query answering, as we have seen for the case of ELHI. We propose

separate translations for the three pro�les, even if some of the constructs are

in common, to better esemplify the language and what it takes to perform the

operation of translating it to a di�erent formalism. As in the case of ELHI,
we �rst trasform the rules in �rst order sentences, then we apply a classical

skolemization procedure to have the corresponding logic programming rules.

6.1 OWL2-EL

For OWL2-EL, being it very similar to ELHI, we just report the conversion

table. In particular, we give the semantics of a ELHI knowledge base in terms

of a conjunction of �rst order sentences. More speci�cally, in Table 6.2, each

ELHI axiom H is associated to the corresponding �rst order sentence F(H).

The semantics of KB is given by its corresponding �rst order theory F(KB) =∧
H∈T F(H) ∧

∧
H∈AF(H).
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ELHI axiom H FOL sentence F(H) Rule set L(F(H))

A(a) A(a) A(a). (R1)

R(a, b) R(a, b) R(a, b). (R2)

A v B ∀xA(x)→ B(x) B(X)← A(X). (R3)

A uB v C ∀xA(x) ∧B(x)→ C(x) C(X)← A(X), B(X). (R4)

A v ∃R.B ∀xA(x)→ [∃yB(y) ∧R(x, y)] B(fA(X))← A(X). (R5)
R(X, fA(X))← A(X).

∃R.A v B ∀x[∃yA(y) ∧R(x, y)]→ B(x) B(X)← A(Y ), R(X,Y ).(R6)

∃R.> v B ∀x[∃yR(x, y)]→ B(x) B(X)← R(X,Y ). (R7)

B v ∃R.> ∀xB(x)→ [∃yR(x, y)] R(X, fA(X))← B(X). (R8)

R v S or ∀x,y R(x, y)→ S(x, y) S(X,Y )← R(X,Y ). (R9)
R− v S−
R v S− or ∀x,y R(y, x)→ S(x, y) S(X,Y )← R(Y,X). (R10)
R− v S

FOL Query Q(X) Rule L(Q(X))

∃Y q1(X1) ∧ . . . ∧ qn(Xn) ansQ(X)←
q1(X1) ∧ . . . ∧ qn(Xn). (Q1)

Table 6.1: Semantics of ELHI given in terms of corresponding FOL sentences.
For an axiom A in the form A v ∃R.B, fA denotes a fresh function symbol.
Analogously, for a query Q, ansQ denotes a fresh predicate name.
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6.2 OWL2-QL

DL-lite axiom H FOL sentence F(H) Rule set L(F(H))

A(a) A(a) A(a). (R1)

R(a, b) R(a, b) R(a, b). (R2)

A v B ∀xA(x)→ B(x) B(X)← A(X). (R3)

A v ⊥ ∀xA(x)→ ← A(X). (R3)

A v ¬B ∀xA(x)→ ¬B(X)← A(X). (R3)
¬B(x), ∀xB(x)→ ¬A(x) ¬A(X)← B(X).

A v C1 u C2 ∀xA(x) ∧B(x)→ C(x) C1(X)← A(X), (R4)
C2(X)← B(X).

∃R.> v B ∀x[∃yR(x, y)]→ B(x) B(X)← R(X,Y ). (R7)

B v ∃R.> ∀xB(x)→ [∃yR(x, y)] R(X, fA(X))← B(X).(R8)

R v S ∀x,y R(x, y)→ S(x, y) S(X,Y )← R(X,Y ). (R9)

FOL Query Q(X) Rule L(Q(X))

∃Y q1(X1) ∧ . . . ∧ qn(Xn) ansQ(X)←
q1(X1) ∧ . . . ∧ qn(Xn). (Q1)

Table 6.2: Semantics of DL-lite given in terms of corresponding FOL sen-
tences. For an axiom A in the form A v ∃R.B, fA denotes a fresh function
symbol. Analogously, for a query Q, ansQ denotes a fresh predicate name.

6.3 OWL2-RL

For OWL2-RL we need to use a di�erent approach. This fragment, in fact, is

noticeably more complex than the others. In particular, it permits the use of

more concept costructors, as well as equivalence between concepts. We can now

de�ne a OWL2-RL Tbox and Abox. The TBox is built using expressions of the

form Sub ⊆ Super, or e1 ≡ e2, where Sub, Super, e1, e2 can have any value

from the corresponding lists in the following:

Sub : class|Sub t Sub|Sub u Sub|∃R.Sub

Super : class|¬Sub|∀R.Super|∃R.Super

e : class|e1 u e2|dataExpression
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dataExpression deserves a special treatment. OWL2RL, as stated before, al-

lows for the full xml-schema datatypes, as well as equivalence expressions. The

increased expressivity introduces new kinds of problems.

Here we present an axiomatization based on [50], but adapted for the ASP

syntax. It models the rdf-based semantics of OWL2RL, expressed in ASP. In

particular, we need modi�cations for the variables and for the lists, which are

di�erent in ASP. Lists in OWL2RL (RDF syntax) are represented using the

paradigm �rst-rest. To better esemplify this behaviour,we show a table con-

taining the triples necessary to represent a list of elements e1, e2, . . . , en−1, en.

T (h, rdf : first, e1) T (h, rdf : rest, z2)

T (z2, rdf : first, e2) T (z2, rdf : rest, z3)

... ...

T (zn, rdf : first, en) T (zn, rdf : rest, rdf : nil)

Table 6.3
Pattern used to expand a list in OWL2RL

In classical ASP lists are not supported by default. The new version of DLV,

called DLV-complex, introduces this useful feature, as well as other interesting

capabilities, which enhance the expressive power of the language.

To implement OWL2RL lists in ASP, we use the following method: we introduce

an atom called whose predicate name is "List". It has two arguments: the �rst

is a variable , the second is a List term.

list(X, [A])← first(X,A), rest(X,nil)

list(X, [A|B])← first(X,A), rest(X,Y ), list(Y, [B])

In DLV-complex Lists can be represented by a single construct. A list of ele-

ments e1, . . . , en can be represented with the term [e1, . . . , en]. From now on

we will use this construct when dealing with lists of any kind.
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OWL2RL axiom code H ASP axiom

eq-ref sameAs(S, S)← P (S,O)
sameAs(P, P )← P (S,O)
sameAs(O,O)← P (S,O)

eq-sim sameAs(Y,X)← sameAs(X,Y )

eq-trans sameAs(X,Z)← sameAs(X,Y ), sameAs(Y,Z)

eq-rep-s P (S,O)← sameAs(S, S′)

eq-rep-p P (S,O)← sameAs(P, P ′)

eq-rep-o P (S,O)← sameAs(O,O′)

eq-di�-1 ← sameAs(X,Y ), differentFrom(X,Y )

eq-di�-2 ← allDifferent([z1, . . . , zn]), sameAs(zi, zj)

eq-di�-3 ← allDifferent([z1, . . . , zn]), sameAs(zi, zj)

eq-di�-4 ← allDifferent([z1, . . . , zn]),
distinctMembers([z1, . . . , zn]), sameAs(zi, zj)

Table 6.4
Semantics of Equality in OWL2RL given in terms of corresponding ASP rules.
For axioms eq-di�-2, eq-di�-3,eq-di�-4 the condition is that 1 ≤ i < j ≤ n

The table above models the semantics for equality. In fact, it is necessary to

specify how equality is handled by the system. Apart from the �rst axioms

(re�exivity, symmetry and transitivity the meaning of which is trivial), the

allDifferent axioms are important, as they introduce constraints to avoid

that an equivalence is forced by mistake.
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Axiom Code ASP axiom

prp-dom C(X)← P (X,Y ), domain(P,C)

prp-rng C(Y )← P (X,Y ), range(P,C)

prp-fp sameAs(Y1, Y2)← functionalProperty(P ), P (X,Y1),
P (X,Y2)

prp-ifp sameAs(X1, X2)← inverseFunctionalProperty(P ),
P (X1, Y ), P (X2, Y )

prp-irp ← irreflexiveProperty(P ), P (X,X)

prp-symp P (Y,X)← symmetricProperty(P ), P (X,Y )

prp-asyp ← asymmetricProperty(P ), P (X,Y ), P (Y,X)

prp-trp P (X,Z)← transitiveProperty(P ), P (X,Y ), P (Y, Z)

prp-spo1 P2(X,Y )← P1(X,Y ), subPropertyOf(P1, P2)

prp-spo2 P (U1, Un+1)← propertyChainAxiom([p1, . . . , pn]),
P1(U1, U2), P2(U2, U3), . . . , Pn(Un, Un+1)

prp-eqp1 P2(X,Y )← P1(X,Y ), equivalentProperty(P1, P2)

prp-eqp2 P1(X,Y )← P2(X,Y ), equivalentProperty(P1, P2)

prp-pdw ← propertyDisjointWith(P1, P2), P1(X,Y ), P2(X,Y )

prp-adp ← allDisjointProperties([P1, Pn]), Pi(U, V ), Pj(U, V )
∀ 1 ≤ i < j ≤ n

prp-inv1 P2(Y,X)← inverseOf(P1, P2), P2(X,Y )

prp-inv2 P1(Y,X)← inverseOf(P1, P2), P1(X,Y )

prp-key sameAs(X,Y )← hasKey(C, [P1, . . . , Pn]),
C(X), P1(X,Z1), . . . Pn(X,Zn)
C(Y ), P1(Y, Z1), . . . Pn(Y, Zn)

prp-npa1 ← sourceIndividual(X, I1), assertionProperty(X,P ),
targetIndividual(X, I2), P (I1, I2)

prp-npa2 ← sourceIndividual(X, I), assertionProperty(X,P ),
targetV alue(X,Lt), P (I, Lt)

Table 6.5
Semantics of Properties in OWL2RL given in terms of corresponding ASP

rules.

The above table de�nes all the axioms for the Properties. Between all the ax-

ioms, some are trivial (the �rst ones until prp-spo1). The axiom prp-spo2. on

the contrary, is very interesting. It models the propertyChainAxiom, which is

a brand new construct introduced in OWL2. It is used to model a set of prop-

erty which are applicable in a chain. Using transitivity, one can derive that

P (U1, Un+1) holds if the a chain of properties between them exist.

One can also model a set of Disjoint properties (prp-pdw, prp-adp), as well as
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Complex Keys. This is, as propertyChainAxiom, a new feature of OWL2. The

axiom prp-key, in fact, lets the user express a key formed by a set of properties.

This was not possible in the original OWL language.

Some of these new constructs exploit the power of lists, which make possible

to express sets of elements in a compact way. Of course this is not directly

expressible in OWL2 (xml syntax), but it is natural and easy in logic program-

ming, making the notation easy to use and straightforward.



108 6 Translating OWL2 Pro�les to ASP with Axiomatic Modules

Axiom Code ASP axiom

cls-thing class(thing)

cls-nothing1 class(nothing)

cls-nothing2 ← nothing(X)

cls-int1 C(Y )← intersectionOf(C, [C1, . . . , Cn]), C1(Y ), . . . , Cn(Y )

cls-int2 C1(Y )← intersectionOf(C, [C1, . . . , Cn]), C(Y )
. . .
Cn(Y )← intersectionOf(C, [C1, . . . , Cn]), C(Y )

cls-uni C(Y )← unionOf(C, [C1, . . . , Cn]), Ci(Y ), ∀ 1 ≤ i ≤ n
cls-com ← complementOf(C1, C2), C1(X), C2(X)

cls-svf1 X(U)← someV aluesFrom(X,Y ), onProperty(X,P ),
P (U, V ), Y (V )

cls-svf2 X(U)← someV aluesFrom(X, thing), onProperty(X,P ),
P (U, V )

cls-avf Y (V )← allV aluesFrom(X,Y ), onProperty(X,P ),
P (U, V ), X(U)

cls-hv1 P (U, Y )← hasV alue(X,Y ), onProperty(X,P ), X(U)

cls-hv2 X(U)← hasV alue(X,Y ), onProperty(X,P ), P (U, V )

cls-maxc1 ← maxCardinality(X, 0),
onProperty(X,P ), X(U), P (U, V )

cls-maxc2 sameAs(Y1, Y2)← maxCardinality(X, 1),
onProperty(X,P ), X(U), P (U, Y1), P (U, Y2)

cls-maxqc1 ← maxQualCardinality(X, 0), onProperty(X,P ),
onClass(X,C), X(U), P (U, Y ), C(Y )

cls-maxqc2 ← maxQualCardinality(X, 0), onProperty(X,P ),
onClass(X, thing), X(U), P (U, Y )

cls-maxqc3 sameAs(Y1, Y2)← maxQualCardinality(X, 1),
onProperty(X,P ), onClass(X,C), X(U),
P (U, Y1), C(Y1), P (U, Y2), C(Y2)

cls-maxqc4 sameAs(Y1, Y2)← maxQualCardinality(X, 1),
onProperty(X,P ), onClass(X, thing), X(U), P (U, Y1), P (U, Y2)

cls-oo C(Y1)← oneOf(C, [Y1, . . . , Yn])
. . .
C(Yn)← oneOf(C, [Y1, . . . , Yn])

Table 6.6
Semantics of Classes in OWL2RL given in terms of corresponding ASP rules.

The table above speci�es the axioms about classes. The interesting axioms

here are the ones regarding intersection: cls-int1 and cls-int2. In the �rst one,
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an object C(Y ) is derived if it is de�ned as the intersection of n other classes,

and Ci(Y ) exists. In the second one, the opposite condition is expressed: Ci(Y )

is derived if C(Y exists.

Axiom Code ASP axiom

cax-sco C2(X)← subclassOf(C1, C2), C1(X)

cax-eqc1 C2(X)← equivalentClass(C1, C2), C1(X)

cax-eqc2 C1(X)← equivalentClass(C1, C2]), C2(X)

cax-dw ← disjointWith(C1, C2), C1(X), C2(X)

cax-adc ← allDisjointClasses([C1, Cn]), Ci(Z), Cj(Z) ∀ 1 ≤ i < j ≤ n

Table 6.7
Semantics of Class Axioms in OWL2RL given in terms of corresponding ASP

rules.

Axioms from the table above (semantics of class axioms) are rather straightfor-

ward, yet some of them appear interesting. In particular, the last two deal with

the concept of d isjointness. cax-dw states that two disjoint classes cannot have

individuals in common; cax-adc generalizes that to a list of pairwise disjoint

classes.

For datatypes, the following holds:

� dt-type1: rdfs : Datatype(dt) for each datatype dt supported by OWL2 RL.

� dt-type2: dt(lt) for each literal lt and each datatype dt which are supported

by OWL2 RL. Moreover, the data value of lt must belong to the value space

of dt.

� dt-eq: sameAs(lt1, lt2) for all literals t1 and t2 with the same data value.

� dt-di�: differentFrom(lt1, lt2) for all literal t1 and t2 with di�erent data

values.

� dt-not-type: ← dt(lt) for each literal lt and each datatype dt supported by

OWL2 RL, for which lt does not belong to the value space of dt
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Axiom Code ASP axiom

scm-cls subClassOf(C,C)← owl : Class(C)
equivalentClass(C,C)← owl : Class(C)
subClassOf(C, owl : Thing)← owl : Class(C)
subClassOf(owl : Nothing, C)← owl : Class(C)

scm-sco subclassOf(C1, C3)← subclassOf(C1, C2), subclassOf(C2, C3)

scm-eqc1 subclassOf(C1, C2)← equivalentClass(C1, C2)
subclassOf(C2, C1)← equivalentClass(C1, C2)

scm-eqc2 equivalentClass(C1, C2)←
subclassOf(C1, C2), subclassOf(C2, C1)

scm-op subPropertyOf(P, P )← objectProperty(P )
equivalentPropertyOf(P, P )← objectProperty(P )

scm-dp subPropertyOf(P, P )← datatypeProperty(P )
equivalentPropertyOf(P, P )← datatypeProperty(P )

scm-eqp1 subPropertyOf(P1, P2)← equivalentProperty(P1, P2)
subPropertyOf(P2, P1)← equivalentProperty(P1, P2)

scm-eqp2 equivalentProperty(P1, P2)← subPropertyOf(P1, P2),
subPropertyOf(P2, P1)

scm-dom1 domain(P,C2)← domain(P,C1), subclassOf(C1, C2)

scm-dom2 domain(P1, C)← domain(P2, C), subpropertyOf(P1, P2)

scm-rqn1 range(P,C2)← range(P,C1), subclassOf(C1, C2)

scm-rqn2 range(P1, C)← range(P2, C), subPropertyOf(P1, P2)

scm-hv subclassOf(C1, C2)← hasV alue(C1, I), onProperty(C1, P1),
hasV alue(C2, I), onProperty(C2, P2)subPropertyOf(P1, P2)

scm-svf1 subclassOf(C1, C2)← someV aluesFrom(C1, Y1),
onProperty(C1, P )someV aluesFrom(C2, P ),
onProperty(C2, P2), subclassOf(Y1, Y2)

scm-svf2 subclassOf(C1, C2)← someV aluesFrom(C1, Y ),
onProperty(C1, P1), someV aluesFrom(C2, Y ),
onProperty(C2, P2), subpropertyOf(P1, P2)

scm-avf1 subclassOf(C1, C2)← allV aluesFrom(C1, Y1),
onProperty(C1, P ), allV aluesFrom(C2, Y2),
onProperty(C2, P ), subclassOf(Y1, Y2)

scm-avf2 subclassOf(C2, C1)← allV aluesFrom(C1, Y ),
onProperty(C1, P1), allV aluesFrom(C2, Y ),
onProperty(C2, P2), subpropertyOf(P1, P2)

scm-int subclassOf(C,C1)← intersectionOf(C.[C1, . . . , Cn])
. . .
subclassOf(C,Cn)← intersectionOf(C.[C1, . . . , Cn])

scm-uni subclassOf(C1, C)← unionOf(C.[C1, . . . , Cn])
. . .
subclassOf(Cn, C)← unionOf(C.[C1, . . . , Cn])

Table 6.8
Semantics of Schema Vocabulary in OWL2RL given in terms of corresponding

ASP rules.
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In the table regarding the semantics of Schema Vocabulary, all the constructors

are used, in order to deliver the features they o�er. For example, it is stated

that domain respects the subclassOf-subPropertyOf paradigm (sqc-dom1 and

sqc-dom2) as well as range (scm-rqn1 and scm-rqn2). It is stated, moreover,

the behaviour of subclass w.r.t. to intersectionOf and unionOf (scm-int and

scm-uni); equivalentClass is considered, of course, as a special case of sub-

classOf (scm-eqc1 and scm-eqc2). subclassOf is put in relationship with all-

ValuesFrom and someValuesFrom (scm-svf1, scm-svf2, scm-avf1, scm-avf2).

6.4 Remarks

The translation of OWL2 fragments permits, as said, to use the power of logic

programming to deal with ontologies expressed in such languages. The trickiest

fragment is undoubtfully OWL2 RL, which was designed to be the most ex-

pressive one. Many translation rules are necessary, in fact, to implement all the

features this language o�er.

In this way, by circumventing the well known semantic problems we have dealt

with in previous sections, it is possible to use the expressive power of such

language combined with the e�ciency of logic programs reasoning engines. It

is interesting to take note that the translation is very general and, with some

syntactic changes, other systems than dlv may be used for evaluation, given

they support similar features.
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Implementing a OWL2 reasoner with RIF and
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Implementation of a OWL2RL Reasoner with RIF

and DLVHEX

7.1 Introduction

The W3C is currently developing RIF (Rule Interchange Format) [38], a uni-

versal layer designed for exchanging rules between di�erent and possibly het-

erogeneous systems over the Semantic Web. It is focused on the exchange more

than on the development of a single system to �t all needs of all the already

available rule systems, because it appears clear that a system which �ts all

needs is very di�cult, if not impossible to build, due to the large syntactic

and semantic di�erences between di�erent systems or even in di�erent modules

of the same system. The RIF working group divided the language into dialects

which are meant to be used in di�erent situations, while maintaining the largest

subset of rules in common. They are called RIF pro�les: Core, BLD and PRD.

While Core is formed by the base constructs of the language, BLD (Basic Logic

Dialect) is focused on logic, while PRD (Production Rules Dialect) is based on

the concept of production rules. Among other features, by treating F-Logic like

frames equivalently to RDF triples, particularly the RIF Core and RIF BLD

fragments, promise a standard format for publishing and exchanging rules on

top of RDF.

Likewise, ontologies in OWL2RL[49], a rule-based sublanguage of the Web on-

tology language OWL2 [52], enables the support of inference over ontologies

directly in rule-based system. This is achieved by giving a partial axiomatisa-

tion of the RDF OWL2 semantics in terms of �rst-order implications that can

be encoded as rules.

At the moment few implementations of OWL2RL and RIF-Core exist since both

languages are quite new. Moreover, we are not aware of any implementations �
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as of yet � that implement the combinations of RIF and OWL as standardized

[11].

To �ll this gap we propose and implemented a reduction of those languages to

DLVHEX [24], a powerful disjunctive logic reasoner based on the Answer Set

Programming paradigm. DLVHEX has it roots in DLV, a disjunctive Datalog

system, but adds several features to the base language. The most interest-

ing of them is the possibility to use natively higher order atoms and external

atoms, which are added to the core language by means of a plug-in architecture.

Through external atoms it is possible to inject procedural code in the otherwise

purely declarative semantics of the language. This concept is very similar to li-

braries for other reasoners which enable interaction with external data sources,

such as, e.g., the integration of RDF support in SWI-Prolog [69]. There already

exist a rich collection of DLVHEX plugins for Semantic Web languages, such

as SPARQL [57], RDF and OWL DL [25]. Our new plugin for RIF-Core and

OWL2RL not only expands the interoperability of DLVHEX with these two

new standards, but also enables the combination of both with the other data

models and extensions, already accessible by plugins, for an evaluation, exper-

iments and new applications by combining these languages with the expressive

features of Answer Set Programming [6, 22].

Our plugin allows DLVHEX to load and process RIF rule sets as well as

OWL2RL ontologies. These are transformed to DLVHEX programs in a two-

step translation: we �rst rewrite from OWL2RL to RIF-Core, and then perform

a translation into DLVHEX. To this end there exist two di�erent OWL2RL-

to-RIF reduction methods, though, a static RIF rule set [59, Appendix 8.1] or

dynamic a translation function from OWL2RL ontologies to RIF documents

which yields RIF rules speci�cally to the input ontology [59, Appendix 8.2]. In

comparison, the former approach bears some limitations in relation to inter-

operability with other RIF rule sets, and the combination of RIF with OWL

ontologies as speci�ed in [11] is rather based on the latter. Despite these re-

strictions, our current version of the OWL2RL reasoner transforms OWL2RL

ontologies into RIF rules by the static rule set for the sake of a rapid �rst im-

plementation. We will explain the limitations of this approach when doing it

naively, and approximate the full dynamic combination of [11] by some exten-

sions of the naive �rst translation.
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In the following we give a description of our system, its current development

status as well as an accompanying example in Section 7.2 and 7.2, and conclude

with a report on our future plans in Section 7.4.

7.2 System Description

Our plugin consists of three parts: the OWL2RL to RIF-Core translation fol-

lowing [59], a RIF-Core to DLVHEX translator component, and the DLVHEX

reasoner. In sequel we will provide more details to these components while we

describe the system's work�ow partitioned into its three essential stages:

Phase I - Translation from OWL2RL to RIF-Core An OWL2RL ontol-

ogy, given in RDF/XML, as input is forwarded to the OW2RL to RIF-Core

translator which translates RDF triples of the input ontology to RIF frames

and merges them with the static rule set from [59] to a RIF-Core document.

The application of the static rule set to the RIF frames gained from the input

will be performed during the evaluation of this RIF document later on.

Fig. 7.1: Translation OWL2RL to RIF-Core

Phase II - Reduction of RIF-Core to DLVHEX The previously obtained

RIF-Core document is preliminary reduced to a DLVHEX program. For that,

the document is �rst parsed into an abstract syntax tree that is translated

into a HEX program by a tree walking algorithm which gradually generates,

adherent to a prede�ned set of translation rules, the corresponding HEX ex-

pressions from the visited tree nodes. This transformation includes reduction

of features from RIF not directly expressible in our system to the processable

input language of DLVHEX, e.g. Lloyd-Topor [45] transformation of rule bodies

with disjunction, static type checking, or un-nesting of external predicates, i.e.
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built-ins. Eventually, the generated program is forwarded to DLVHEX which

returns a collection of answer sets.

Fig. 7.2: Reduction of RIF-Core to DLVHEX

Phase III - Answer Construction from DLVHEX to OWL2RL Even-

tually, the answer sets, which are basically sets of ground facts, are simply

transformed into a set of RIF ground atomic formulas.

Fig. 7.3: Answer Construction from DVLHEX to OWL2RL

Example � RIF to DLVHEX

The OW2RL to RIF-Core translation, executed in Phase I is straightforward.
We give here only a small example for the RIF-Core to DLVHEX translation,
occurring in Phase II. We apply it here to a test case from the RIF devel-
opment group, http://www.w3.org/2005/rules/wiki/Factorial_Forward_
Chaining:

Document(

Prefix(pred <http://www.w3.org/2007/rif-builtin-predicate#>)

Prefix(func <http://www.w3.org/2007/rif-builtin-function#>)

Prefix(ex <http://example.org/example#>)

Group

(

ex:factorial(0 1)

Forall ?N ?F? ?N1 ?F1 (
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ex:factorial(?N ?F) :-

And(External(pred:numeric-greater-than-or-equal(?N1 0))

?N = External(func:numeric-add(?N1 1))

ex:factorial(?N1 ?F1)

?F = External(func:numeric-multiply(?N ?F1)) )

) ) )

This document describes the computation of the factorial for a positive integer
n. Our DLVHEX plugin rewrites the above RIF document into the following
two DLVHEX rules:

"ex:factorial"("0", "1") :- .

"ex:factorial"(VAR_N, VAR_F) :- &pred_numeric_geq[VAR_N1, "0"](),

equal(VAR_N, VAR_extOutput_1),

&func_numeric_add[VAR_N1, "1"](VAR_extOutput_1),

"ex:factorial"(VAR_N1, VAR_F1),

equal(VAR_F,VAR_extOutput_2),

&func_numeric_multiply[VAR_N,VAR_F1](VAR_extOutput_2) .

The translation generates two rules, a fact and a proper rule, correspond-

ing to the two input RIF rules. The universal quanti�er of the second RIF

rule is omitted here since DLVHEX rules are per se universal. RIF constants

(CURIes, typed literals, quoted unicode strings, etc.), such as ex:factorial

or 1, are embraced by double quotes. Pre�x names in curies will generally be

expanded, but for better readability we didn't resolve them here. RIF built-

in predicates and functions, such as pred:numeric-greaterthan-or-equal

and func:numeric-add, are rewritten to an corresponding external DLVHEX

atoms1. So far we support all RIF built-ins which may appear in a RIF doc-

ument yielded by the OWL2RIF to RIF-Core translation. Beyond that, we

also support all numeric predicates and functions implementable via calls to an

XPath/XQuery Functions&Operators library.

Besides, the lack of higher-order atoms in the resulting HEX program is no

coincidence. In fact, those are not needed for a pure RIF-Core implementation.

Our planned support for RIF-BLD as well as future RIF extensions similar to

[25] will potentially demand higher-order features though.

Handling RIF-OWL2RL Combinations

The choice of a translation via the static rule set, applied in Phase I, seemed

more convenient to implement at �rst view. since it supports a fast imple-

1 Actually, for this particular example, we could have also exploited the built-in predicates
of DLVHEX, which supports natively simple arithmetic functions such as sum, multiply
and comparisons between variables. For the sake of the example, though, we decided to
show how the systems can handle such external predicates and functions, in a simple way
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mentation. However, several limitations arise when translating OWL2RL into

RIF via the static rules. Firstly, this method is rather ine�cient compared to

Reynolds's dynamic, pattern based approach [59, Appendix8.2], which creates

more e�cient RIF rules containing fewer free variables thus smaller grounding.

Further and more problematic, the static rules as such are not suitable for RIF-

OWL2RL combinations [11], i.e, a blend of OWL2RL rules with arbitrary RIF-

Core rules. As pointed out in [11] the static rules create problems w.r.t. equality

if applied to a RIF-OWL2RL combination, even if the RIF component is of RIF-

Core. The reason lies in the possible introduction of equality through OWL2RL

(via [Object|Data]MaxCardinality and {Universe}FunctionalObjectPro-

perty) that can also a�ect the predicates existing in the RIF-Core component.

In RIF-Core equality is only allowed in rule bodies and, thus, implications of

equalities are not natively expressible. Likewise, our base system, DLVHEX,

does not support equality natively, so we represent equality (which may only

appear in rule bodies in RIF-Core) using owl:sameAs. This works out perfectly

for the equality resembled by owl:sameAs on the level of RDF triples in the

OWL2RL component [49, rules eq-ref, eq-sym, eq-trans, eq-rep-s, eq-rep-p,

eq-rep-o], by axiomatisation in the OWL2RL rule set, but it is not compre-

hensively applicable in an analogous way to terms in RIF-Core, since arbitrary

predicates or deeply nested external functions might occur in RIF rule sets

which are una�ected by this axiomatisation.

Since we use the static rule set for the OWL2RL to RIF translation, at least for

the time being, we developed a approximative rewriting for RIF rule sets for

RIF-OWL2RL combination that allows us to catch these e�ects of equality. For

a given RIF-OWL2RL combination < R,G >, where R is a RIF rule set and G

is an RDF Graph, potentially encoding an OWL2RL ontology, our algorithm

runs through the following steps and outputs a rewritten RIF-Core program S:

1. Initialise S with R. Flatten all nestings of external predicates and functions

in S by recursive substitution of nested terms with variables. For that,

we need to express various equalities between arbitrary function terms.

However, owl:sameAs is only applicable to express equality between sim-

ple terms. Thus, we need to introduce a new equality symbol `
.
=' which

expresses equality between arbitrary terms. Since the value of each func-
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tion term, by de�nition, belongs to an XML datatype we can think of
.
= as

equality as evaluated by XPath.2

2. Add the static RIF-Core rule set of Reynolds to S.

3. Add G in form of frame facts to S.

4. For any constant c that appears in R but not in G add the fact

c[owl:sameAs->c] . to S.

5. For each rule of R in S rewrite any occurring atom p(t1, ..., tn) where p is a

constant and ti is a simple RIF term (1 ≤ i ≤ n) to an atom p(X1, ..., Xn)

where Xi = ti if ti is a variable, else (i.e., ti is a constant) Xi is a fresh

variable.

6. Apply Lloyd-Topr rewriting for non-conjunctive rule bodies in S.

7. Optimisation by removing unnecessary owl:sameAs and
.
= statements from

the rule bodies in S.

Let us illustrate the e�ects of this algorithm by an example. Say R3 contains

p(?x) :- Or( q(?x) r(?x,b) ) .

r(c(2 * 2 + 2)).

q(a).

q(d) :- s( 1.3 + 0.7 ).

s(1+1).

and G = {(a, owl:sameAs, b)}. Then we get the following intermediate results

for S:

After step 1:
p(?x) :- Or (q(?x) r(?x,b) ) .

r(c,?Y1) :- And( (?Y2
.
= 2 * 2) (?Y1

.
= ?Y2 + 2) ).

q(a).

q(d) :- And( s( ?Y1 ) (?Y1
.
= 1.3 + 0.7) ).

s(?Y1) :- (?Y1
.
= 1 + 1).

After step 2: S := S ∪ "Static Rule Set"

After step 3: S := S ∪ {a[owl:sameAs->b]}

After step 4: S := S ∪ {c[owl:sameAs->c], 2[owl:sameAs->2]}

2 In fact, on the stage of DLVHEX `
.
=' is evaluated by an external equality predicate imple-

mented through XPath equality checks.
3 Please note, that R deviates from the formal RIF syntax as we use here `+' and `∗' for
the built-in functions func:numeric-add and func:numeric-multiply in in�x-notation for
better readability
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After step 5:
p(?x) :- And ( Or (q(?x) r(?x,?X1) ) ?X1[owl:sameAs->b] ) .

r(?X1,?Y1) :- And( ?X1[owl:samAs->c] (?Y2
.
= 2 * 2) (?Y1

.
= ?Y2 + 2) ).

q(a).

q(?X1) :- And( ?X1[owl:samAs->d] s( ?Y1 ) (?Y1
.
= 1.3 + 0.7) ).

s(?Y1) :- (?Y1
.
= 1 + 1).

After step 7:
p(?x) :- q(?x) .

p(?x) :- And ( r(?x,?X1) ?X1[owl:sameAs->b] ) .

r(?X1,?Y1) :- And( ?X1[owl:samAs->c] (?Y2
.
= 2 * 2) (?Y1

.
= ?Y2 + 2) ).

q(a).

q(?X1) :- And( ?X1[owl:samAs->d] s( ?Y1 ) (?Y1
.
= 1.3 + 0.7) ).

s(?Y1) :- (?Y1
.
= 1 + 1).

Our translation is realized as a plugin4 to the DLVHEX system5. Furthermore,

RIF-Core contains many built-ins in form of external predicates and functions.

These external functions are computed by use of a standard XML Library that

implements most of the common XPath/XQuery Functions& Operators [48]. At

present, we support a subset of those, as we focused our attention on the built-

ins which are mandatory for the reduction of OWL2RL reasoning to DLVHEX

via RIF.

� The reduction of OWL 2 RL to RIF is facilitated through the static rule set

given in [59]. In this approach RDF-triples of an OWL 2 RL ontology are

translated to RIF frames. Afterwards there semantics are represented by a

static set of RIF-Core rules. In our implemented, we add this static rules

as axioms to each RIF program together with the frames yielded from the

initial OWL2RL ontology.

� Limitations of embedding OWL 2 RL into RIF via the static rule set from

Dave Reynolds

� According to Dave Reynolds this is approach is correct but ine�cient;

will be replaced with template or dynamic method in the future

� According to the author this rule set is correct, but creates problems

in terms of combination with existing RIF-Core rule sets: As Jos points

out the static rules create problems w.r.t. equality if applied to a RIF-

OWL2RL combination, even if the RIF component is of RIF-Core. The

4 For the source code and installation/usage instructions, please refer to http://

sourceforge.net/projects/dlvhex-semweb/ as well as http://dlvhex-semweb.svn.

sourceforge.net/viewvc/dlvhex-semweb/dlvhex-rifplugin/.
5 http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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reason lies in the potential introduction of equality through the OWL2RL

rules for predicates in existing in the RIF-part, speci�cally:

· Equality in OWL2RL is represented by ObjectMaxCardinality and

DataMaxCardinality restrictions, as well as FunctionalObjectProp-

erty UniverseFunctionalObjectProperty, SameIndividual, and HasKey

axiom.

· Equality in rule heads is not a part of RIF-Core, the static rules sim-

ulate equality by replication. This works �ne for the equality in terms

of triples. But replication is not analogously a comprehensive solution

for RIF terms in Core, since arbitrary deeply nested external func-

tions are allowed there and equality replication would yield in�nity

replica rules.

· Conclusion:

· Thus the embedding of OWl-2-RL RIF-Core combos in RIF-Core

can yield problems due to the lack of equality in RIF-Core, thus,

a correct representation of equality in a RIF-Core - OWL2RL

combination is not possible.

· A reduction of OWL-2RL rule set to RIF-Core without the addi-

tion of any external rules is possible, but evidently prevents the

possibility to use these reduced rule sets with RIF rules form other

sources. This breaks the essential notion of RIF in terms of exten-

sible rule sets.

7.3 Implementation Notes

We want to focus now on some details regarding implementation of the proto-

type.

The basis of our reasoner is the dlvhex system, which is a logic engine we de-

scribed previously. At the time of working on our reasoner, the dlvhex system

was already very complete and full of capabilities. which are available through

a full-�edged system of plug-ins. We decided, in fact, to realize anything as a

plug-in for dlvhex.

The point-of-view is important in this case: in fact if you consider dlvhex the

main feature, you may see whole reasoner as a plug-in for it: if, on the contrary,

one watches it from the OWL2 RL scenario, dlvhex is nothing else than a logic
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engine, which is likely to be substituted with another one if the case.

We will focus here especially on two of the modules of the architecture.

The XML translator

Starting from the ontology, which is expressed in a XML-like syntax, the �rst

step consists of a translation in the presentation syntax. This is necessary for

two reasons:

� Human Readability: XML syntax is not human readable at all.

� Interoperability with other systems: some of them may use Presentation

Syntax as well. In this case an additional layer is necessary.

The implementation of the translator has been realized using the C++ pro-

gramming language. Moreover, we have exploited the power of a very famous

GNU C library: libxml2. It was originally designed for the Gnome Desktop En-

vironment, for handling xml documents.

The parser is top-down: parsing is started from the higher level symbol, down

to the terminal symbols. Next we report an example of code used for parsing

RIF documents.

Example 7.1. Function for translating an And of Formulas

xmlChar* RifParser::processAndFormulas(xmlTextReader* reader)

{

bool hasAnnotation = false;

xmlChar* annotation = xmlCharStrdup("");

if(DBG)

fout << "processing and of formulas" << endl;

int ret;

xmlChar* formulas = xmlCharStrdup("");

do

{

ret = xmlTextReaderRead(reader);

if(xmlStrEqual(xmlTextReaderConstName(reader),

xmlCharStrdup("id"))==1

&& hasAnnotation == false)
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{

hasAnnotation = true;

annotation = processAnnotation(reader);

}

if( xmlStrEqual(xmlTextReaderConstName(reader),

xmlCharStrdup("formula"))==1)

{

formulas = xmlStrcat(formulas, processFormula(reader));

formulas = xmlStrcat(formulas, xmlCharStrdup("\n"));

}

}

while(xmlStrEqual(xmlTextReaderConstName(reader),

xmlCharStrdup("And"))==0);

xmlChar* And = xmlCharStrdup("And(");

And = xmlStrcat(And, formulas);

And = xmlStrcat(And, xmlCharStrdup(")\n"));

if(hasAnnotation)

return xmlStrcat(annotation, And);

return And;

}

The code is used for translating a particular construct, i.e. the And of Formulas.

We recall here a part of the RIF grammar:

FORMULA ::= IRIMETA? 'And' '(' FORMULA* ')' |

IRIMETA? 'Or' '(' FORMULA* ')' |

IRIMETA? 'Exists' Var+ '(' FORMULA ')' |

ATOMIC |

IRIMETA? 'External' '(' Atom ')'

Please look at the �rst line. It explains that a formula may be expressed as an

�And� of Formulas, i.e. a conjunction of N formulas, N ≥ 0. Of course such

de�nition is recursive. This conjunction can be preceded by an annotation, in-

dicated by the word �IRIMETA�. The question mark, as usually for EBNF,

means that the annotation is optional.

First, the presence of an annotation is looked for. Its presence goes together
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with the keyword �id�. If the annotation is found, it is stored and the com-

putation goes on. Then we look for the sequence of formulas, identi�ed by the

keyword �formula�. Such sequence is closed by the word �And� (note that, being

a top-down parser, the presence of the opening �And� had triggered the calling

of this function). For each formula encountered, the �processFormula� function

is recursively invoked.

The work�ow of the parsing is a sequence of similar functions, with the obvious

syntactic di�erences for di�erent constructs.

The DTB Datatypes and built-ins

For the reasoner it has been necessary to implement a greatest part of the

RIF Datatypes and Built-ins. The datatypes are based on Xml-schema. Again,

to implement them libxml2 was used, which provided the necessary support.

Datatypes handle several aspects related to integer values, �oating point,

strings, dates and times.

Built-ins regard utility function over strings and lists especially. To manage

and manipulate lists, in fact, it is possible to rely on functions like union,

di�erence, intersection, concatenation, etc. In the following example, the func-

tion reverse is de�ned. It takes a list l : list(e1, . . . , en) as an argument, and

returns the list lr de�ned as list(en, . . . , e1). Lists in RIF may be nested, so

they are �attened before any operation on them. This is possible because ac-

cording to the semantics nested lists are equivalent to �at list. For example,

list(a, b, c) = list(a, list(b, c).

Example 7.2. This function reverses the given list and returns the result

string ListChecker::reverse(string & list)

{

string toReturn("List(");

string flatList = flatten(list);

int i = flatList.length()-1;

int count = 0;
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string item("");

while(i>=0)

{

count++;

if(flatList.at(i) == ' ')

{

item = flatList.substr(i+1,i+count);

toReturn += item + " ";

item = " ";

count = 0;

}

i--;

}

toReturn += ")";

return toReturn;

}

7.4 Remarks and Future Work

We presented a DLVHEX plugin for OWL2RL and RIF-Core reasoning. The

former is based on a 2-step reduction to DLVHEX via RIF-Core. This is, to our

knowledge, the �rst attempt to implement RIF-OWL combinations a la [11],

At our current stage of development we facilitate the translation to RIF by the

static rule set of [59] which, as we have explained earlier, imposes restrictions

on reasoning in combination with other RIF-Core documents. For the future

we, therefore, will consider to modify the implementation of the �rst phase,

switching from the static rule set to the dynamic rewriting by [59, Appendix8.2]

similarly used in [11] which is based on RIF-BLD. Consequently, we will also

try to extend the RIF-Core to DLVHEX translation in Phase II to more features

of RIF-BLD. Moreover we plan to implement the remaining RIF built-ins to

have a more complete translation from RIF-BLD to DLVHEX.
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Conclusions and Future Work

In this thesis we have shown various techniques for the translation of logic for-

malisms in the Semantic Web.

First, we have introduced the background of the research, that is to say the

tools, techniques and theories we have used in order to broaden our vision of the

problem. Then, we have given a thorough insight of what the research activity

was useful to �nd out.

In the �rst part, we discussed our approach to the problem of integration of

heterogeneous formalisms in the Semantic Web. Such problem is actually very

complex, and we proposed our solution, speci�cally oriented to query answer-

ing. In fact, since the query answering task in the Semantic Web Language is

often not e�cient, we have developed a technique which permits the translation

of an ontology in a logic program, which can in turn be used as input to a logic

engine, usually faster in such query tasks.

We have chosen a description logic fragment to be translated, ELHI, and ex-

plained in detail how the translation is performed, and why it is sound and

complete. We have shown, moreover, that our ideas have been realized with

a prototype software, which makes use of reusable logic modules to translate

in a semantic way the input ontology. In order to assess the validity of this

approach, we have performed some tests, and shown the results compared to a

direct competitor, as Pellet [67] is.

In the second part we have generalized the modular approach, proposing other

formalisms which can be modularized and integrated with logic programming.

One of them is Frame Logic, which is a formalism aimed at bringing the power

of Object-Oriented Programming languages into logic. We designed a modular

framework to implement all F-Logic constructs into a system called dlt, which
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is a dialect of the popular logic programming system dlv.

Later on, we moved forward to the pro�les of OWL2, which is the new ver-

sion of the popular Ontology Web Language. This language has been divided

into pro�les, corresponding to di�erent Description Logic Fragments. Again,

we performed the translation using a modular approach.

Finally, we have moved our attention to a di�erent representation formalism,

although remaining in the Semantic Web scenario: RIF.

The latter is the name for a fresh standard for the exchange of Rules between

heterogeneous logic systems. We have used it to build a Reasoner able to process

OWL2RL ontologies. The Ontology is translated into a RIF program, which

is in turn converted into a dlvhex program (dlvhex is another system based on

dlv, with interesting capabilities). This implementation work has proven to be

particularly interesting, as at the time of it we were not aware of any existing

complete implementation of RIF, or any complete OWL2RL reasoner. Part of

research work herein reported has been acknowledged by the scienti�c commu-

nity on the following reported papers:

� Mario Alviano, Giovambattista Ianni, Marco Marano.Alessandra Martello

�Versatile Semantic Modeling of Frame Logic Programs under Answer Set

Semantics�, ASWC 2008, Springer, pages 106-121, 2009.

� Marco Marano, Giovambattista Ianni, Francesco Ricca �A Magic set im-

plementation for Disjunctive Logic Programming with Function Symbols�,

CILC 2009.

� Marco Marano, Phillip Obermeier, Axel Polleres �Translating OWL2RL to

DLVHex via RIF�, RR 2010, Springer, pages 244-250, 2010.

� Marco Marano, Giovambattista Ianni: �Semantic Modeling of heterogeneous

Logics with Logic Programming� (Technical Report)

� Anna Bria, Giovambattista Ianni, Marco Marano, Francesco Ricca: �A pure

forward-chaining approach for query answering on EL knowledge bases�

(Technical Report)

Future Work

The work described in this thesis has shown good results. As scientists, though,

we want to improve and complete the various techniques described previously,
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For what concerns the �rst part, we mean to extend the described transla-

tion technique to more expressive logic fragments. ELHI is interesting, but it

lacks some features that would be interesting to have in the future. Constructs

like unrestricted universal quanti�cation, bottom and top concepts, and others

would prove very useful for more complex reasoning tasks.

Moreover, the prototype needs some polishing and additional features, in order

to be used on a larger, non-academic scale.

The work on Frame Logic is also interesting. Possible developments in this di-

rection could be the introduction of more semantics, con�gurable on-the-�y as

usually, or a full integration with the dlv system, instead of dlt.

Finally, there seems to be a great interest around RIF in recent times. The rea-

soner already works, but it would be important to compare it with the other

reasoners which are going to be released, to measure performances and accuracy.
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