
 
 

UNIVERSITÀ DELLA CALABRIA 
 

Dipartimento di Elettronica,  
Informatica e Sistemistica 

 
 

Dottorato di Ricerca in  
Ingegneria dei Sistemi e Informatica 

 

XXI Ciclo 
 

 

Tesi di Dottorato 
 
 

 

Modelling Complex Data Mining 

Applications in a Formal Framework 
 

 

Antonio Locane 

 
 

 
 



 
 
 
 
 
 
 
 



UNwnnsIrÀ nnnl CarlnRla

Dipartimento di Elettronica,
Informatica e Sistemistica

Dottorato di Ricerca in

Inge gne'* u'i:i:-,:: " Inrormatica

Tesi di Dottorato

Modelling Complex Data Mining
Applications in a Formal Framework

Antonio Locane

#-

-. í)
! -L\---\:
fi



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DEIS- DIPARTIMENTO DI ELETTRONICA, INFORMATICA E SISTEMISTICA 
Novembre 2008 
 
Settore Scientifico Disciplinare: ING-INF/05 



Dedicated to Sara





Contents

Part I Introduction

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Contribution of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 The knowledge discovery process . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 The data mining step . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Part II Defining and realizing a knowledge discovery framework

3 Design issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 Fundamental aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Main challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Basic requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Current approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Defining a formal framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.1 The 3W Model framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 The 2W Model framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 The D-World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2.2 The M-World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.2.3 Inter-worlds operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5 Realizing the formal framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.1 A 3-perspectives viewpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 The data retention dilemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60



VIII Contents

5.2.1 Dealing with complex data: events . . . . . . . . . . . . . . . . . . 62
5.3 Implementing the 2W algebra: tasks . . . . . . . . . . . . . . . . . . . . . . . . 63
5.4 Entering tables and models worlds: visualization and statistics . 66

Part III The RecBoost application

6 Boosting text segmentation via progressive classification . . . 71
6.1 Introduction and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Notation and preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 RecBoost methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5 RecBoost anatomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.6 An illustrative example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7 Evaluating RecBoost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.1 Basic setup and performance measures definitions . . . . . . . . . . . 97
7.2 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2.1 Basic classifier system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
7.2.2 Multiple classification stages . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.3 Comparative analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 A case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
7.3.1 Risk analysis in a bank intelligence scenario . . . . . . . . . . 113
7.3.2 Evaluation and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Part IV Conclusion

8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.1 Defining and realizing a knowledge discovery framework . . . . . . 125
8.2 The RecBoost application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129



Part I

Introduction





1

Introduction

1.1 Motivation

The fast growth of electronic data management methods in the last years, has
lead some to call recent times as the Information Age. Powerful systems for
collecting and managing data are currently exploited in virtually all large and
mid-range companies, it is very difficult to find a transaction that does not
generate a computer record somewhere.

More and more operations are being automated and computerized, each of
them generates data, and all these data hold valuable information (i.e. trends
and patterns) which could in principle be used to improve business decisions
and optimize success. However, today’s databases contain so much data that
it is practically impossible to manually analyze them for valuable decision-
making information. In many cases, hundreds of independent attributes need
to be simultaneously considered in order to accurately model a system behav-
ior, therefore, humans need assistance in their analysis capacity.

This need for automated extraction of useful knowledge from huge amounts
of data is widely recognized, and leads to a rapidly developing market of
automated analysis tools to discover strategic information hidden in very large
databases. The main needed capability is to analyze raw data and present the
extracted high level information to the analyst or decision-maker.

Knowledge discovery in databases (KDD or simply KD) addresses the
problem mentioned above by developing automatic and intelligent techniques
for automated discovery of useful and interesting patterns (knowledge) in
raw data. The main effort in the knowledge discovery community has so far
been devoted to the development of efficient mining algorithms, but there are
not many contributions aimed at tackling and ultimately solving the whole
problem. In other words, there is no set of widely accepted techniques and
methodologies to support the entire knowledge discovery process: even if many
knowledge discovery systems exist, each of them use its own methodology.

The need for a systematic description of the knowledge discovery process
has been recognized in the KD community. However, KD is a complex inter-



4 1 Introduction

disciplinary task, both data-centered and human-centered. So, if on one hand
it is naturally desirable to have an unifying platform (hopefully built on formal
basics) to perform the overall process, on the other hand the aforementioned
complexity makes the development of such a platform a great challenge.

1.2 Contribution of the thesis

This thesis tries to identify some common high-level problems that arise when
attempting to define a framework for the knowledge discovery process. Such
problems, as well as general open issues, are examined from a theoretical and
practical point of view, and then a possible solution is outlined. A discussion
is also made on basic requirements a KD framework must have, in order to
be sufficiently expressive to cope with usage patterns that commonly arise
in KD processes. As knowledge discovery is a wide, open and evolving topic,
a systematic approach aimed at modeling such process has to be open and
extensible.

To this purpose, we propose a framework that supports an operations flow
in which mining tasks can be performed, and the resulting models can be
further processed, visualized, evaluated and finally activated to leverage the
overall discovery process. In our vision, the essence of a knowledge discovery
process is the interaction between two apparently separate worlds: the data
world and the model world. Our proposal is based on an algebraic framework,
referred to as 2W Model, that defines the knowledge discovery process as a
progressive combination of mining and querying operators.

After analyzing typical problems related with the definition of a KD frame-
work, a possible implementation of such framework is proposed, which at-
tempts to solve all aforementioned issues. The proposed implementation is
compliant with the theoretic view defined in 2W Model, and also introduces
new features in order to deal with practical real-world problems such as man-
aging complex data types and efficiently storing and accessing huge amounts
of data. In addition, particular attention is given to data and models ex-
ploration, defining suitable environments where the analyst can effectively
and easily examine and inspect both data and models, taking advantage of
descriptive statistics, explanatory charts, and several models visualizations
metaphors.

In order to demonstrate the defined framework capabilities and better de-
scribe the framework itself, an applicative example is presented as a proof of
the concept. In particulary, a novel approach for reconciling tuples stored as
free text into an existing attribute schema is proposed. The basic idea is to
subject text to progressive classification, that is a multi-stage classification
scheme where, at each intermediate stage, a classifier is learnt that analyzes
the textual fragments not reconciled at the end of previous steps. Classifi-
cation is accomplished by an ad-hoc exploitation of traditional association
mining algorithms, and is supported by a data transformation scheme which



1.3 Organization 5

takes advantage of domain-specific dictionaries and ontologies. A key feature
is the capability of progressively enriching the available ontology with results
coming up from previous classification stages, thus significantly improving the
overall classification accuracy. An extensive experimental evaluation shows the
effectiveness of such approach.

1.3 Organization

The rest of the thesis is organized as follows.
Chapter 2 closes part I, giving some basic definitions regarding both the

knowledge discovery process and the central data mining phase.
In part II, a formal knowledge discovery framework is proposed. First of

all, chapter 3 introduces known design issues and main challenges, as well as
basic requirements the framework must fulfill. The 2W Model is then presented
in chapter 4, and finally a possible effective implementation of the proposed
theoretic framework is given in chapter 5.

In part III, an applicative example is used to better explain the pro-
posed framework capabilities. In chapter 6, an innovative methodology for
reconciling free text into a given attribute schema is proposed. Chapter 7 de-
scribes results coming from extensive experimental evaluation sessions, and
also presents a real-world case study.

Part IV is essentially dedicated to draw some conclusions regarding both
the KD framework definition/implementation defined in part II, and the
methodology proposed in part III.





2

Basic definitions

2.1 The knowledge discovery process

Historically the notion of finding useful patterns in data has been given a
variety of names, such as data mining, knowledge extraction, information
discovery, information harvesting, data archaeology, data pattern processing,
and much others. The term data mining has been mostly used by statisticians,
data analysts, and the management information systems communities, and has
also gained popularity in the database field.

The term KDD was coined at the first KDD workshop in 1989 (see [79])
to emphasize that knowledge is the end product of a datadriven discovery,
and since then it has been popularized in artificial intelligence and machine
learning.

Knowledge Discovery in Databases (i.e. the process of finding nuggets of
knowledge in data) is a rapidly growing field, whose development is driven by
strong research interests as well as urgent practical, social, and economical
needs. The KDD process is a complex task, heavily dependent on the prob-
lem and on the data at hand, and covers a wide range of applicative domains
(e.g. retail, marketing, finance, e-commerce, biology, privacy), several models
of representing extracted patterns and rules (e.g. classification models, asso-
ciation rules, sequential patterns, clusters) and a large number of algorithms
for data preprocessing, model extraction and model reasoning.

The knowledge discovery goals are defined by the intended use of the
process. Two types of goals can be distinguished:

1. Verification, where the goal is limited to verifying the user’s hypothesis;
2. Discovery, where the goal is to autonomously finds new patterns.

The Discovery goal can further be divided into:

• Prediction, where the goal is to find patterns for the purpose of predicting
the future behavior of some entities;



8 2 Basic definitions

• Description, where the goal is to find patterns for the purpose of presenting
them to a user in a humanunderstandable form.

Although the boundaries between prediction and description are not sharp
(some of the predictive models can be descriptive, to the degree that they are
understandable, and vice versa), the distinction is useful for understanding the
overall discovery goal. The relative importance of prediction and description
for particular data mining applications can vary considerably, for example,
prediction may be used to validate a discovered hypothesis.

There is still some confusion about the terms Knowledge Discovery in
Databases (KDD) and data mining (DM) and often these two terms are used
interchangeably. Actually, KDD refers to the overall process of discovering
useful knowledge from data while data mining refers to a particular step in
this process, in particular, data mining is the application of specific algorithms
for extracting patterns from data.

Hereafter, the term KDD will be used to denote the overall process of
turning low-level data into high-level knowledge. KDD can be defined as the
nontrivial process of identifying valid, novel, potentially useful, and ultimately
understandable patterns in data.

As described in the CRISP-DM process model [17] (see Fig. 2.1), KDD
typically consists of several repeated phases, including: business problem un-
derstanding, data understanding, data preparation, incorporating appropriate
prior knowledge, modeling (or data mining), proper interpretation of the re-
sults, evaluation and deployment. The development of KDD solutions requires
then to specify the tasks at each phase and the interactions/dependencies
among them. Most of the times, this results in a complex process, requiring
to combine different sources of data and knowledge, and with many tasks iter-
ated in order to ensure that useful knowledge is derived from the data. Blind
application of data mining methods can be a dangerous activity easily leading
to discovery of meaningless patterns.

KDD has evolved, and continues evolving, from the intersection of research
fields such as machine learning, pattern recognition, databases, statistics, arti-
ficial intelligence, knowledge acquisition for expert systems, data visualization,
and high performance computing. KDD overlaps with machine learning and
pattern recognition in the study of particular data mining theories and algo-
rithms: means for modeling data and extracting patterns. KDD also has much
in common with statistics, particularly exploratory data analysis methods.
The statistical approach offers precise methods for quantifying the inherent
uncertainty which results when one tries to infer general patterns from a par-
ticular sample of an overall population. KDD software systems often embed
particular statistical procedures for sampling and modeling data, evaluating
hypotheses, and handling noise.

In addition to its strong relation to the database field (the 2nd ’D’ in
KDD), another related area is data warehousing, which refers to the popular
business trend for collecting and cleaning transactional data to make them



2.1 The knowledge discovery process 9

Fig. 2.1. The CRISP-DM process model

available for online analysis and decision support. A popular approach for
analysis of data warehouses has been called OLAP (online an alytical process-
ing). OLAP tools focus on providing multidimensional data analysis, which is
superior to SQL in computing summaries and breakdowns along many dimen-
sions. OLAP tools are targeted towards simplifying and supporting interactive
data analysis, while the KDD tool’s goal is to automate as much of the process
as possible.

Knowledge Discovery in Databases can be formally defined as (see [37])

the nontrivial process of identifying valid, novel, potentially useful, and
ultimately understandable patterns in data.

In the definition above, data is a set of facts (e.g., cases in a database)
and pattern is an expression in some language describing a subset of the data
or a model applicable to that subset. Hence extracting a pattern also desig-
nates fitting a model to data, finding structure from data, or in general any
highlevel description of a set of data. The term process implies that KDD is
comprised of many steps, and requires repeated multiple iterations. Nontrivial
means that some search or inference is involved (i.e. it is not a straightfor-
ward computation of predefined quantities like computing the average value of
a set of numbers). The discovered patterns should be valid on new data with
some degree of certainty. We also want patterns to be novel (at least to the
system, and preferably to the user) and potentially useful, (i.e., lead to some
benefit to the user/task). Finally, the patterns should be understandable, if
not immediately then after some postprocessing.

The above implies that some quantitative measures for evaluating ex-
tracted patterns have to be defined. In many cases, it is possible to define
measures of certainty (e.g., estimated prediction accuracy on new data) or
utility (e.g. gain, perhaps in dollars saved due to better pre dictions or speedup



10 2 Basic definitions

in response time of a system). On the other hand, notions such as novelty and
understandability are much more subjective, whereas in certain contexts un-
derstandability can be estimated by simplicity (e.g., the number of bits to
describe a pattern). An important notion, called interestingness, is usually
taken as an overall measure of pattern value, combining validity, novelty, use-
fulness, and simplicity. Interestingness functions can be explicitly defined or
can be manifested implicitly via an ordering placed by the KDD system on
the discovered patterns or models.

Fig. 2.2. The KDD process

As can be seen in figure 2.2, the KDD process can involve significant
iteration and may contain loops between any two steps.

The aforementioned figure depicts the basic flow of steps, although not the
potential multitude of iterations and loops. Most previous work on KDD has
focused on the mining step, however, in real world application there are several
other preliminary and posterior operations which play a very important role,
those operations concern:

• Developing an understanding of the application domain;



2.1 The knowledge discovery process 11

• Identifying the goals of the process from the customer’s viewpoint;
• Acquiring or selecting a target data set, or focusing on a subset of variables

or data samples;
• Integrating and checking the data set;
• Performing data cleaning, preprocessing, and transformation (e.g. remov-

ing noise, deciding strategies for handling missing data fields, etc...);
• Reducing and projecting data (e.g. using dimensionality reduction or

transformation methods to reduce the effective number of variables un-
der consideration, or finding invariant representations for the data;

• Integrating data with pre-existent knowledge;
• Matching the goals of the KDD process to a particular data mining method

(e.g., summarization, classification, regression, clustering, etc...);
• Choosing suitable algorithms to be used for searching for patterns in the

data, and deciding which parameters may be appropriate;
• Matching a particular data mining method with overall criteria (e.g., the

enduser may be more interested in understanding the model than its pre-
dictive capabilities);

• Performing the mining step, searching for patterns of interest in the data;
• Interpreting the extracted patterns/models visualizing them in a human-

readable form, or visualizing the data given the extracted models, possibly
returning to any of the preceding steps;

• Results testing and verification;
• Consolidating discovered knowledge documenting it and reporting it to

interested parties, as well as checking for and resolving potential conflicts
with previously believed or extracted knowledge;

• Using mined models (e.g. incorporating them into other systems for further
action).

In real world application, domain knowledge usually resides in an expert’s
brain, so it is natural that such an expert would better guide the process, es-
pecially during the initial data preprocessing and during the final knowledge
identification. Furthermore, it would be convenient to be able to use an exist-
ing domain knowledge stored in a knowledge base, to integrate and possibly
refine the newly discovered knowledge coming as the outcome of the KDD
process.

Exploratory Data Analysis (EDA) plays also an important role in the
KDD process. Such analysis is the simply interactive exploration of a data
set without heavy dependence on preconceived assumptions and models, thus
attempting to identify interesting patterns. Graphic representations of the
data are used very often to exploit the power of the eye and human intuition.
While there are dozens of software packets available that were developed ex-
clusively to support data exploration, it might also be desirable to integrate
these approaches into an overall KDD environment. The human eye-brain
system itself still remains the best pattern-recognition device known. Visual-



12 2 Basic definitions

ization techniques may range from simple scatter plots and histogram plots
over parallel coordinates to 3D movies.

2.2 The data mining step

Data mining is just one step in the overall KDD process, consisting of applying
data analysis and discovery algorithms that, under acceptable computational
efficiency limitations, produce a particular enumeration of patterns over the
data. It have to be noticed that the space of patterns is often infinite, and
the enumeration of patterns involves some form of search in this space. As
a consequence, practical computational constraints place severe limits on the
subspace that can be explored by a data mining algorithm. It should also be
noted that several methods with different goals may be applied successively to
achieve a desired result. For example, to determine which customers are likely
to buy a new product, a business analyst might need to first use clustering
to segment the customer database, then apply regression to predict buying
behavior for each cluster.

The term Data Mining (DM) will be used to address the extraction of
patterns or models from observed data. Although at the core of the knowledge
discovery process, the mining step usually takes only a small part (15% to
25%) of the overall effort.

The data mining component of the KDD process is concerned with the
algorithmic means by which patterns are extracted and enumerated from data.
The overall KDD process (see fig. 2.2) includes the evaluation and possible
interpretation of the mined patterns to determine which patterns may be
considered new knowledge.

The objective of this section is to present a very brief overview of the pri-
mary goals of data mining, along with a description of the main methods used
to address these goals, and a very brief overview of data mining algorithms
which incorporate these methods.

Most data mining methods are based on tried and tested techniques from
machine learning, pattern recognition, and statistics: classification, cluster-
ing, regression, and so forth. The set of different algorithms under each of
these headings can often be quite bewildering to both the novice and experi-
enced data analyst. However, it should be emphasized that of the very many
data mining methods advertised in the literature, there are really only a few
fundamental techniques.

The goals of prediction and description are achieved via the following
primary data mining methods.

Classification

Learning a function that maps (classifies) a data item into one of several
predefined classes. Given a set of predefined categorical classes, determine to



2.2 The data mining step 13

which of these classes a specific data item belongs. For example, given classes
of patients that correspond to medical treatment responses, identify the form
of treatment to which a new patient is most likely to respond.

Regression

Learning a function which maps a data item to a realvalued prediction variable
and discovering functional relationships between variables. Given a set of data
items, regression is the analysis of the dependency of some attribute values
upon the values of other attributes in the same item, and the automatic
production of a model that can predict these attribute values for new records.
For example, given a data set of credit card transactions, build a model that
can predict the likelihood of fraudulence for new transactions.

Clustering

Identifying a finite set of categories or clusters to describe the data. Given a set
of data items, partition this set into a set of classes such that items with similar
characteristics are grouped together. Clustering is best used for finding groups
of items that are similar. For example, given a data set of customers, identify
subgroups of customers that have a similar buying behavior. Closely related
to clustering is the method of probability density estimation which consists of
techniques for estimating from data the joint multivariate probability density
function of all of the variables/fields in the database.

Dependency Modeling (or Association Analysis, or Link Analysis)

Finding a model which describes significant dependencies between variables.
Given a set of data items, identify relationships between attributes and items
such as the presence of one pattern implies the presence of another pattern.
These relations may be associations between attributes within the same data
item (e.g. ”Out of the shoppers who bought milk, 64% also purchased bread”)
or associations between different data items (e.g. ”Every time a certain stock
drops 5%, a certain other stock raises 13% between 2 and 6 weeks later”).
The investigation of relationships between items over a period of time is also
often referred to as sequential pattern analysis.

Outlier Detection (or Anomaly Detection)

An outlier is an observation that lies at an abnormal distance from other values
in a random sample from a population. In a sense, this definition leaves it up
to the analyst (or a consensus process) to decide what will be considered
abnormal. Before abnormal observations can be singled out, it is necessary to
characterize normal observations.



14 2 Basic definitions

Having outlined the general methods of data mining, the next step is to
construct specific algorithms to implement these methods. One can identify
three primary components in any data mining algorithm: model representa-
tion, model evaluation, and search. This reductionist view is not necessarily
complete or fully encompassing: rather, it is a convenient way to express the
key concepts of data mining algorithms in a relatively unified and compact
manner.

Model representation can be viewed as the language used to describe dis-
coverable patterns. If the representation is too limited, then no amount of
training time or examples will produce an accurate model for the data. It is
important that a data analyst fully comprehend the representational assump-
tions which may be inherent in a particular method. It is equally important
that an algorithm designer clearly state which representational assumptions
are being made by a particular algorithm. Note that more powerful repre-
sentational power for models increases the danger of over-fitting the training
data resulting in reduced prediction accuracy on unseen data.

Model evaluation criteria are quantitative statements of how well a partic-
ular pattern (a model and its parameters) meet the goals of the KDD process.
For example, predictive models are often judged by the empirical prediction
accuracy on some test set. Descriptive models can be evaluated along the di-
mensions of predictive accuracy, novelty, utility, and understandability of the
fitted model.

Search method consists of two components: parameter search and model
search. Once the model representation and the model evaluation criteria are
fixed, then the data mining problem has been reduced to purely an opti-
mization task: find the parameters/models selected from the set of parame-
ters/models that can be defined given the chosen representation, which opti-
mize the evaluation criteria. In parameter search the algorithm must search for
the parameters which optimize the model evaluation criteria given observed
data and a fixed model representation. Model search occurs as a loop over
the parameter search method: the model representation is changed so that
families of models are considered.

It should be clear from the above that data mining is not a single tech-
nique, any method that will help to get more information out of data is useful.
Different methods serve different purposes, each method offering its own ad-
vantages and disadvantages. Most methods commonly used for data mining
can be classified into the following groups.

Statistical Methods

Historically, statistical work has mainly focused on testing preconceived hy-
potheses and on fitting models to data. Statistical approaches usually rely on
an explicit underlying probability model. In addition, it is generally assumed
that these methods will be used by statisticians, and hence human interven-
tion is required for the generation of candidate hypotheses and models.



2.2 The data mining step 15

Case-Based Reasoning

Case-based reasoning is a technology that tries to solve a given problem by
making direct use of past experiences and solutions. A case is usually a specific
problem that has been previously encountered and solved. Given a particular
new problem, case-based reasoning examines the set of stored cases and finds
similar ones. If similar cases exist, their solution is applied to the new problem,
and the problem is added to the case base for future reference.

Neural Networks

Neural networks are a class of systems modeled after the human brain. As
the human brain consists of millions of neurons that are interconnected by
synapses, neural networks are formed from large numbers of simulated neu-
rons, connected to each other as brain neurons. Like in the human brain, the
strength of neuron interconnections may change (or be changed by the learn-
ing algorithm) in response to a presented stimulus or an obtained output,
which enables the network to learn.

Decision Trees

A decision tree is a tree where each non-terminal node represents a test or
decision on the considered data item. Depending on the outcome of the test, a
certain branch is chosen. To classify a particular data item, one starts at the
root node and follows the assertions down until a terminal node (or leaf) is
reached. When a terminal node is reached, a decision is made. Decision trees
can also be interpreted as a special form of a rule set, characterized by their
hierarchical organization of rules.

Rule Induction

Rules state a statistical correlation between the occurrence of certain at-
tributes in a data item, or between certain data items in a data set. The
general form of an association rule is X1 ∧ ... ∧Xn → Y [C,S], meaning that
the attributes X1, ..., Xn predict Y with a confidence C and a significance S.

Bayesian Belief Networks

Bayesian belief networks are graphical representations of probability distribu-
tions, derived from co-occurrence counts in the set of data items. Specifically, a
bayesian belief network is a directed, acyclic graph, where the nodes represent
attribute variables and the edges represent probabilistic dependencies between
the attribute variables. Associated with each node are conditional probability
distributions that describe the relationships between the node and its parents.



16 2 Basic definitions

Genetic algorithms (or Evolutionary Programming)

Genetic algorithms and evolutionary programming are algorithmic optimiza-
tion strategies that are inspired by the principles observed in natural evolu-
tion. Of a collection of potential problem solutions that compete with each
other, the best solutions are selected and combined with each other. In doing
so, one expects that the overall goodness of the solution set will become better
and better, similar to the process of evolution of a population of organisms.
Genetic algorithms and evolutionary programming are used in data mining
to formulate hypotheses about dependencies between variables, in the form of
association rules or some other internal formalism.

Fuzzy Sets

Fuzzy sets form a key methodology for representing and processing uncer-
tainty. Uncertainty arises in many forms in today’s databases: imprecision,
non-specificity, inconsistency, vagueness, etc. Fuzzy sets exploit uncertainty
in an attempt to make system complexity manageable. As such, fuzzy sets
constitute a powerful approach to deal not only with incomplete, noisy or
imprecise data, but may also be helpful in developing uncertain models of
the data that provide smarter and smoother performance than traditional
systems. Since fuzzy systems can tolerate uncertainty and can even utilize
language-like vagueness to smooth data lags, they may offer robust, noise tol-
erant models or predictions in situations where precise input is unavailable or
too expensive.

Rough Sets

A rough set is defined by a lower and upper bound of a set. Every member
of the lower bound is a certain member of the set. Every non-member of
the upper bound is a certain non-member of the set. The upper bound of a
rough set is the union between the lower bound and the so-called boundary
region. A member of the boundary region is possibly (but not certainly) a
member of the set. Therefore, rough sets may be viewed as fuzzy sets with a
three-valued membership function (yes, no, perhaps). Like fuzzy sets, rough
sets are a mathematical concept dealing with uncertainty in data. Also like
fuzzy sets, rough sets are seldom used as a stand-alone solution; they are
usually combined with other methods such as rule induction, classification, or
clustering methods.

An important point is that each technique typically suits some problems
better than others. For example, decision tree classifiers can be very useful for
finding structure in highdimensional spaces and are also useful in problems
with mixed continuous and categorical data (since tree methods do not re-
quire distance metrics). However, classification trees may not be suitable for



2.2 The data mining step 17

problems where the true decision boundaries between classes are described,
for example, by a 2ndorder polynomial). Thus, there is no universal data min-
ing method and choosing a particular algorithm for a particular application is
something of an art. In practice, a large portion of the applications effort can
go into properly formulating the problem (asking the right question) rather
than in optimizing the algorithmic details of a particular data mining method.





Part II

Defining and realizing a knowledge discovery
framework





3

Design issues

3.1 Fundamental aspects

The process of analyzing data can be roughly represented as an interaction
between the data mining engine and the user, where the user formulates a
query describing the patterns of his/her interest and the mining engine returns
the patterns by exploiting either domain-specific or physical optimizations. In
such a scenario, research on data mining has mainly focused on the definition
and implementation of specific data mining engines and mining algorithms.

Each algorithm describes specific operations to be performed in order to
build models from data, however, independently from the way models can be
built, there are some main components which characterize the overall process:

• the source data to analyze;
• the patterns to discover;
• the criterion for determining the usefulness of patterns;
• the background knowledge.

The first step in a knowledge discovery task is to identify the data to an-
alyze. These data represent the main input which the mining algorithm has
to take into account. Let Σ denote the primary knowledge sources. Σ is a
set of entities, equipped with a set of characterizing properties, which are of
interest for analysis purposes. Identifying relevant entities and properties is a
crucial task, since it requires a combination of basic operations which include
data integration and selection (i.e., the identification of the data relevant to
the analysis task, and its retrieval from a set of possibly heterogenous data
sources), and data cleaning and transformation (i.e., the processing of noisy,
missing or irrelevant data, and its transformation into appropriate forms). Al-
though the quality of the extracted patterns strongly relies on the effectiveness
of such operations, poor attention has been devoted to such a delicate task in
the current literature: as a result, the management of knowledge sources is still
informal and ad-hoc, and the current data mining tools provide little support



22 3 Design issues

to the related operations. Thus, typically a knowledge expert has the burden
to manually study and preprocess the data with several loosely-coupled tools,
and to select the most appropriate reorganization of such data that is suitable
for the extraction of patterns of interest.

Patterns are sentences about primary knowledge sources, expressing rules,
regularities, or models that hold on the entities in Σ. Patterns are character-
ized by a language L which is fixed in advance, describing the set of all possible
properties which hold in the primary knowledge sources. In this respect, a data
mining algorithm describes a way to explore this set of all possible patterns,
and to detect the patterns which are of interest according to given criteria.
Patterns characterize a data mining task or method and they can be cate-
gorized as descriptive (when they describe or summarize the entities within
the source data) and predictive (when they characterize a property or a set of
properties of an entity according to the values exhibited by other properties).

A search criterion is defined on the involved entities and determines
whether a given pattern in the pattern language L is potentially useful. This
construct can be captured by a boolean constraint predicate q, which can be
described as relative to some pattern l ∈ L and possibly to a set Σ of entities.
If q(l, Σ) is true, then l is potentially useful. The KDD task then is to find the
set {l ∈ L | q(l, Σ)} is true. Patterns can be computed as a result of a post-
processing operation (among all the patterns discovered thus far, which are
the ones satisfying such a condition), or they can be pushed into a specialized
mining engine in order to solve them.

Sometimes, the domain knowledge that is already known in advance can
be incorporated in each of the previous dimensions. It can be used to enrich
the primary knowledge or to derive good initial hypotheses to start the pat-
tern search. Background knowledge can be exploited in the search strategy for
pruning the pattern space or it can serve as a reference for interpreting discov-
ered knowledge. Furthermore, since it is difficult to define adequate statistical
measures for subjective concepts like novelty, usefulness, and understandabil-
ity, background knowledge can be helpful in capturing such concepts more
accurately.

Clearly, any realistic knowledge discovery process is not linear, but rather
iterative and interactive. Any one step may result in changes in earlier steps
(see Fig. 2.2), thus producing a variety of feedback loops. As a consequence,
the design of final applications is still a handmade process, aimed at smoothly
composing algorithm libraries, proprietary APIs, SQL queries and stored pro-
cedure calls to RDBMS, and still a great deal of ad-hoc code. This motivates
the development of tools that support the entire KDD process, rather than
just the core data-mining step.

As stated in [54], the current situation is very similar to that in DBMS
in the early 1960s, when each application had to be built from scratch, with-
out the benefit of dedicated database primitives provided later by SQL and
relational database APIs. Such primitives are sufficient to support the vast
majority of business applications for which present DBMS are mainly designed



3.2 Main challenges 23

for. However, there are no similar primitives sufficient to capture the emerging
family of new applications dealing with knowledge discovery.

In a way, todays techniques of data mining would more appropriately
be described as file mining since they assume a loose coupling between the
data mining engine providing algorithms and a framework where to design
the entire KDD process. Hence, real data mining/analysis applications call
for a framework which adequately supports knowledge discovery as a multi-
step process, where the input of one (mining) operation can be the output of
another.

One may argue that performance improvement of I/O operations alone
would have never triggered the DBMS research field nearly 40 years ago. If
queries were predefined and their number was limited it would be sufficient
to develop highly tuned, stand-alone, library routines [54]. But queries are of
course not predefined, so query languages such SQL, along with researches
concerning query optimization and transaction processing, were the driving
ideas behind the tremendous growth of database field in the last four decades.
To be more specific, it was the ad hoc nature of querying that created a
challenge to build general-purpose query optimizers.

However, in a KDD environment, query have to be much more general
than SQL, and the queried objects have to be far more complex than records
(tuples) in relational database. Similarly, KDD query optimization would be
more challenging than relational query optimization due to the higher ex-
pressive power of KDD queries. Another difficulty is that the border between
querying and discovery is fuzzy: discovery is a very fuzzy term and is often
misused to describe the results of standard SQL querying.

The definition of a KDD framework or a an effective language support for
the KDD process are still open problems with several different proposals, but
without a predominant one.

3.2 Main challenges

Knowledge discovery is not simply machine learning with large data sets, and
essential needs are not only concerned with performance of mining operations
running on large persistent data sets and involving expensive I/O. Although
improving performance is an important issue, it is not sufficient to trigger a
qualitative change in system capabilities.

Some of the current primary research and application challenges for KDD
are cited in the following list, which is intended to give the reader a feel for
the types of problems that KDD practitioners wrestle with:

• massive datasets;
• high dimensionality;
• overfitting and assessing statistical significance;
• missing and noisy data;



24 3 Design issues

• complex relationship between fields;
• understandability of patterns;
• integration with other systems;
• integration with prior knowledge;
• managing changing data and knowledge;
• nonstandard, multimedia and object-oriented data.

Databases with hundreds of fields and tables, millions of records, and
multi-gigabyte size are quite commonplace, as well as terabyte (1012 bytes)
databases. These datasets create combinatorially explosive search spaces for
model induction and increase the chances that a data mining algorithm will
find spurious patterns that are not generally valid. Methods for dealing with
large data volumes include more efficient algorithms, sampling, approximation
methods, massively parallel processing, dimensionality reduction techniques,
and incorporation of prior knowledge.

Not only is there often a very large number of records in the database,
but there can also be a very large number of fields (attributes, variables) so
that the dimensionality of the problem is high. A high dimensional data set
creates problems in terms of increasing the size of the search space for model
induction in a combinatorially explosive manner. In addition, it increases the
chances that a data mining algorithm will find spurious patterns that are
not valid in general. Approaches to this problem include methods to reduce
the effective dimensionality of the problem and the use of prior knowledge to
identify irrelevant variables.

When the algorithm searches for the best parameters for one particular
model using a limited set of data, it may overfit the data, that is it may
model not only the general patterns in the data but also any noise specific to
that data set, resulting in poor performance of the model on test data. Pos-
sible solutions include crossvalidation, regularization, and other sophisticated
statistical strategies.

A problem related to overfitting occurs when the system is searching over
many possible models. For example, if a system tests N models at the 0.001
significance level, then on average, with purely random data, N = 1000 of
these models will be accepted as significant. This point is frequently missed
by many initial attempts at KDD. One way to deal with this problem is to
use methods which adjust the test statistic as a function of the search or
randomization testing.

Missing and noisy data problem is especially acute in business databases.
Important attributes may be missing if the database was not designed with
discovery in mind. Missing data can result from operator error, actual system
and measurement failures, or from a revision of the data collection process over
time (e.g., new variables are measured, but they were considered unimportant
a few months before). Possible solutions include more sophisticated statistical
strategies to identify hidden variables and dependencies.



3.2 Main challenges 25

Hierarchically structured attributes or values, relations between attributes,
and more sophisticated means for representing knowledge about the contents
of a database will require algorithms that can effectively utilize such infor-
mation. Historically, data mining algorithms have been developed for simple
attributevalue records, although new techniques for deriving relations between
variables are being developed.

In many applications it is important to make the discoveries more un-
derstandable by humans. Possible solutions include graphical representations,
rule structuring, natural language generation, and techniques for visualization
of data and knowledge. Rule refinement strategies also help address a related
problem: the discovered knowledge may be implicitly or explicitly redundant.

A standalone discovery system may not be very useful. Typical in tegration
issues include integration with a DBMS (e.g. via a query interface), integration
with spreadsheets and visualization tools, and accommodating realtime sen-
sor readings. Highly interactive human-computer environments as outlined
by the KDD process permit both human-assisted computer discovery and
computer-assisted human discovery. Development of tools for visualization,
interpretation, and analysis of discovered patterns is of paramount impor-
tance. Such interactive environments can enable practical solutions to many
real-world problems far more rapidly than humans or computers operating in-
dependently. There are a potential opportunity and a challenge to developing
techniques to integrate the OLAP tools of the database community and the
data mining tools of the machine learning and statistical communities.

Many current KDD methods and tools are not truly interactive and cannot
easily incorporate prior knowledge about a problem except in simple ways.
The use of domain knowledge is important in all of the steps of the KDD
process. For example, Bayesian approaches use prior probabilities over data
and distributions as one way of encoding prior knowledge. Others employ
deductive database capabilities to discover knowledge that is then used to
guide the data mining search.

Rapidly changing (nonstationary) data may make previously discovered
patterns invalid. In addition, the variables measured in a given application
database may be modified, deleted, or augmented with new measurements
over time. Possible solutions include incremental methods for updating the
patterns and treating change as an opportunity for discovery by using it to
cue the search for patterns of change only.

A significant trend is that databases contain not just numeric data but
large quantities of nonstandard and multimedia data. Nonstandard data types
include non-numeric, non-textual, geometric, and graphical data, as well as
non-stationary, temporal, spatial, and relational data, and a mixture of cat-
egorical and numeric fields in the data. Multimedia data include free-form
multilingual text as well as digitized images, video, and speech and audio
data. These data types are largely beyond the scope of current KDD technol-
ogy.



26 3 Design issues

3.3 Basic requirements

The design of a knowledge discovery framework aims at formally characteriz-
ing all aspects mentioned in section 3.2, and at providing both the theoretical
and methodological grounds for the investigation of the upcoming issues.

A natural question (investigated in 3.1) is whether data mining can be
put in the same methodological grounds as databases. Relational databases,
in this respect, represent the paradigmatic example, where a simple formalism
merges rich expressiveness and optimization opportunities. The set of math-
ematical primitives and their closure property allows to express a wide set of
queries as composition of such primitives. The same formalism enables query
execution optimization such as query decomposition, constraint pushing, ad-
vanced data structures, indexing methods. Thus, putting data mining in the
same methodological grounds essentially means being capable of decoupling
the specification from the execution of a data mining query. From an opti-
mization perspective, the challenge is how to merge the efficiency of DBMS
technologies with data mining algorithms, more specifically, how to integrate
data mining more closely with traditional database systems, above all with
respect to querying.

A further aspect to be investigated is the process-oriented nature of knowl-
edge discovery. The overall KDD process is quite complex, and requires com-
bining several forms of knowledge along with the cooperation among solvers
of different nature. Analytical questions posed by the end user need to be
translated into several tasks such as:

• choose analysis methods;
• prepare data in order to be processed;
• apply chosen methods to the data;
• interpret and evaluate obtained results.

Each of the above issues is concerned with a specific dimension and can,
in principle, be described in a different language and accomplished in a differ-
ent framework. However, using different languages/frameworks results in an
impedance mismatch between dimensions, which can be a serious obstacle to
efficiency and efficacy. A major challenge in building KDD frameworks con-
cerns the smooth cooperation between different dimensions. Thus, a coherent
formalism, capable of dealing uniformly with all dimensions, would represent
a breakthrough in the design and development of decision support systems in
diverse application domains. The advantages of such an integrated formalism
include the ability to formalize the overall KDD process, and the possibility
to tailor a methodology to a specific application domain.

Mining tasks and techniques are implemented by means of ad hoc algo-
rithms, whose results in most cases are not directly useful for analysis pur-
poses: they often need a tuning phase, in which they are interpreted and
refined. Typically, when analyzing data one needs to derive good initial hy-



3.3 Basic requirements 27

potheses to start the pattern search, to incrementally refine the search strategy
and to interpret discovered knowledge.

In addition, most data mining tools and methods require deep technical
and statistical knowledge by the data analyst, and a clear comprehension of
the data. An analyst is usually not a KDD expert but a person responsible
for making sense of the data using available KDD techniques. Since the KDD
process is by definition interactive and iterative, it is a challenge to provide
a high-performance, rapid-response environment that also assists users in the
proper selection and matching of appropriate tools and techniques to achieve
their goals. There needs to be more emphasis on human-computer interaction
and less emphasis on total automationwith the aim of supporting both expert
and novice users.

Even when results are clear and easy to understand, the interpretation
and usefulness of such results may not be immediate. Thus, analyzing data
requires a special framework to ease the burden of turning analytical questions
into calls to specific algorithms and mining tasks, and to turn mining results
into actionable knowledge.

From a methodological viewpoint, data mining can be seen as advanced
querying:

given a set of objects of interest Σ and a set of properties L, which
are the properties within L of interest according to the search criteria
q?

An ideal data mining framework should respect the closure of a query lan-
guage as a basic design paradigm. Furthermore, it should be capable of sup-
porting the user in specifying and refining mining objectives, combining mul-
tiple strategies, and defining the quality of the extracted knowledge. Finally,
it should act as an interface between analysts and underlying computational
systems. Within a simple perspective, the framework should ease the process
of describing the entities of interest and their properties, and the pattern
language upon which data mining algorithms should rely on. However, there
are several further problems which affect the knowledge discovery process.
Such issues require a structured, formal approach, as opposed to the informal
and ad-hoc approach which still nowadays describes the knowledge discovery
discipline.

Fundamental aspects the advocated framework has to consider are:

• the various forms of knowledge to represent;
• the repertoire of analytical questions to support;
• the type of analytical users to address.

Several forms of knowledge may be represented. The source data or pri-
mary knowledge (i.e. the data to be mined), the background or domain knowl-
edge (i.e. the rules which enrich data semantics in a specific context), the
mined or extracted knowledge (i.e. the patterns or models mined from the
source data).



28 3 Design issues

Answering to specific analytical questions is closely related to the particu-
lar characteristics of data that have to be supported and the type of reasoning
needed to express relations among such data, it also depends on which kind
of patterns and models are expected.

As far as users are concerned, there are two distinct types of analytical
profiles: the domain expert and the data mining expert. The domain expert
has to be supported in specifying and refining the analysis goals by means of
highly expressive declarative queries. On the contrary, the data mining expert
masters the KDD process and aims at constructing complex vertical analytical
solutions, so he/she has to be supported in specifying and refining the analysis
goals by means of procedural abstractions to control the KDD process.

A combination of design choices, according to the options offered by the
above three aspects, defines the requirements of a framework that has to
support knowledge discovery. The multiplicity of such options highlights the
complexity of the scenarios as well as explains the high number of existing
proposals, both in research and in industry.

In defining a knowledge discovery framework, four categories of criteria
have to be taken into account: functionality, usability, support of auxiliary
activities and performance.

Functionality

Functionality is the inclusion of a variety of capabilities, techniques, and
methodologies that enable the framework to cope with different data min-
ing problems and domains. Such capabilities include

• algorithmic variety;
• algorithm modifiability;
• model validation;
• prescribed methodology;
• reporting;
• model exporting;
• result feedback.

First of all, the framework has to provide an adequate variety of mining tech-
niques and algorithms, but the user must also have the ability to modify and
fine-tune the modeling algorithms. In addition to model creation, model vali-
dation has to be supported: in order to avoid spurious results, the framework
has to encourage validation as part of the overall step-by-step methodology.
Mining analysis results have to be reported in a variety of ways, providing
summary results as well as detailed results. Furthermore, it has to be possible
to select actual data records that fit a target profile, and after a model is
validated it has to be possible to export the model for external use.

Of primary importance, is the possibility to allow the results from a min-
ing analysis to be fed back into another analysis for further model building,



3.3 Basic requirements 29

in effect models extracted by data mining algorithms very often need to be
further processed (i.e. combined with other models). In addition, extracted
models can be applied on (new) data to predict features or to select data ac-
cordingly to the knowledge stored in the model. It has to be possible to query a
model for predictions and, possibly, to test the answers against known values,
in order to estimate model accuracy. Hence, a data mining API should allow
for defining a new model, populating it by extracting knowledge from data,
accessing the knowledge in the model and, for predictive models, predicting
values exploiting model knowledge. Mining operations composability should
also be pursued in the design of a middle-ware KDD language. Unfortunately,
however, the highlighted limits of present standards for model representation
and API do not allow for having composability with other KDD frameworks.
This is somewhat different from what happens in the relational databases
world, where transparent integration can be achieved in accessing/querying
external data sources.

As far as data are concerned, an abstraction level concerning logical data is
required, that is domains of data to be used as input to data mining operations
in order to specify the type of usage of attributes in building and applying a
mining model. For example, a classical distinction is made between discrete
and continuous attributes: discrete ones include binary, nominal, categorical
and ordinal values; continuous ones include interval-scaled and ratio-scaled
values. Taxonomies (or hierarchies) are another logical data element. While
from the physical point of view they are tables, from the logical point of
view they model domain-knowledge by defining hierarchies exploited by data
mining algorithms. Also, weights (or probabilities) are logical data elements
that make sense in affecting the role of an attribute or of an input row in the
construction of a model.

Initially, the logical level specification is completely induced by the physical
representation of data, but typically logical meta-data is then refined by the
user. Also, it is quite common that during the KDD process several different
specifications are tried in order to test performance of extracted knowledge
by varying weights, types, taxonomies. Hence, the system should allow for
specifying logical meta-data (such as attribute type, taxonomies, weights) in
addition to physical meta-data.

Anyway, data is not only an input to the KDD process, but also an inter-
mediate output and a final output. As an example, a classiffication/regression
model could be used to fill missing field values of corrupted buying transac-
tions. An intermediate table is then necessary to store the recovered trans-
actions, before using them further, e.g. before submitting them to a time
series analysis algorithm for predicting future levels of purchases of a partic-
ular brand. A data repository should be available as a data staging area for
storing input, output and intermediate data of the KDD process.

A data mining model represents knowledge extracted from data. As for
data, extracted mining models (either the final or the intermediate ones of
a complex KDD process) should be stored in an appropriate repository, for



30 3 Design issues

subsequent analysis or application. For instance, a classification model may
be visually presented to a domain expert, or it may be applied on unseen data
to predict unknown classes, or it can be input to an incremental classification
algorithm that revise it based on additional training data. A model repository
should be available as a model staging area for storing input, output and
intermediate models of the KDD process.

A proprietary binary representation for storing models can be adopted,
providing API’s for access from external programs, navigating models, is-
suing queries in proprietary query languages and for import/export in some
interchange format. Alternatively, an industry standard for actual models rep-
resentation as XML documents is the Predictive Model Markup Language
(PMML [80]), currently being adopted as interchange format, even if it can’t
be considered the equivalent of data connectivity standards for for data min-
ing. PMML consists of DTDs for a wide spectrum of models, including associ-
ation rules, decision trees, clustering, naive-bayes, regression, neural networks.
PMML only covers the core of data mining models, possibly missing some is-
sues, offering an extension tag, allowing for including additional contents in
the model representation. Anyway, in practice, two PMML-compliant systems
exporting models in different formats may not yield interchangeable models.
While PMML is becoming a primary standard, adopted by major commer-
cial suites, it is worth noting that it does not cover the process of extracting
models, but rather the exchange of the extracted knowledge.

Usability

Usability is accommodation of different levels and types of users without loss
of functionality or usefulness. One problem with easy-to-use mining tools is
their potential misuse. Since, KDD is a highly iterative process, practitioners
typically adjust modeling variables to generate more valid models. As a conse-
quence, not only should a tool be easily learned, it should also help guide the
user toward proper data mining rather than data dredging. In addition, a good
framework has to provide meaningful diagnostics to help debug problems and
improve the output.

• user interface;
• learning curve;
• user types;
• data visualization;
• error reporting;
• action history;
• domain variety.

The user interface has to be easy to navigate and uncomplicated, and results
have to be presented in a meaningful way. The tool needs to be easy to learn
and easy to use correctly. Preferably, several perspectives for beginning, in-
termediate, advanced users or a combination of users, has to be available,



3.3 Basic requirements 31

in order to well suit the tool for its target user type (analysts, business end
users, etc...). Data and modeling results have to be presented in a suitable
way, via a variety of graphical methods used to communicate information.
Error reporting has to be meaningful: error messages has to help the user
debugging problems. A history of actions taken in the mining process needs
to be kept. The user has to be capable of modifying parts of this history and
re-execute (part of) the script. It has to be possible to use the framework in
several different industries to help solve a variety of different kinds of business
problems.

Auxiliary tasks support

Auxiliary Tasks Support allows the user to perform the variety of data cleans-
ing, manipulation, transformation, visualization and other tasks that support
the KDD process. These tasks include data selection, cleansing, enrichment,
value substitution, data filtering, binning of continuous data, generating de-
rived variables, randomizing, deleting records, and so on. Since it is rare that
a data set is truly clean and ready for mining, the practitioner must be able
to easily fine-tune the data for the model building phase of the KDD process.

• data cleansing;
• data manipulation/filtering;
• data type flexibility;
• deriving attributes;
• data randomization;
• data sampling;
• record deletion;
• metadata manipulation.

Depending on the goals and requirements of the KDD process, analysts may
select, filter, aggregate, sample, clean and/or transform data. Automating
some of the most typical data processing tasks and integrating them seamlessly
into the overall process may eliminate or at least greatly reduce the need for
programming specialized routines and for data import/export, thus improving
the analysts productivity.

As far as the acquisition phase is concerned (where access to physical data
is performed), one can notice that very often data reside on databases. Hence,
essential tools for gathering data from multiple sources are needed, such as
database connectivity standards (e.g. ODBC or JDBC): the framework has to
be capable of interfacing with a variety of data sources without any auxiliary
tool. Data connectivity standards offer API’s for connecting to a data source,
issuing SQL queries, navigating returned record-sets, and accessing database
meta-data. In many cases, the data to be analyzed is scattered throughout the
corporation, it has to be gathered, checked, and integrated before a meaningful
analysis can take place. The capability to directly access different data sources
can thus greatly reduce the amount of data transforming.



32 3 Design issues

The user has to be capable of modifying spurious values in the data set
or perform other data cleansing operations, such as global substitution of one
data value with another (e.g., replacing ”M” or ”F” with 1 or 0 for uniformity)
or selection of subsets of the data based on user-defined selection criteria.
Other filtering activities are for example concerned with handling blanks,
which usually have to be replaced by a variety of derived values (e.g., mean,
median, etc...) or user-defined values. A wide-variety of data types have to be
supported, an important capability is binning of continuous data to improve
modeling efficiency. This can be done either implicitly, or the decision can
be left to user discretion. Some mining algorithms have restrictions upon the
attribute types of the input data. For example, neural networks usually require
all attributes to be of numeric type. Other approaches may not be able to
handle continuous (real) data, etc.

The creation of derived attributes based on the inherent attributes has to
be supported. A wide-variety of methods available for deriving attributes (e.g.
statistical functions, mathematical functions, boolean functions, etc.) has to
be provided. Randomization and sampling of data prior to model building are
of great importance. Randomization and sampling have to be effective and
efficient. It is also often required to delete entire records from entire segments
of the population that may be incomplete or may bias the modeling results in
some way, and sometimes these records have to be reintroduced later. Data
descriptions, types, categorical codes and formulae for deriving attributes are
also very useful, as well as the ability to manipulate tables’ metadata.

Performance

Performance is the ability to handle a variety of data sources in an efficient
manner. Hardware configuration has a major impact on tool performance from
a computational perspective. Furthermore, some data mining algorithms are
inherently more efficient than others. This requisite focuses on the qualitative
aspects of a framework’s ability to easily handle data under a variety of cir-
cumstances rather than on performance variables that are driven by hardware
configurations and/or inherent algorithmic characteristics.

• data size;
• efficiency;
• robustness;
• software architecture.

Scaling linearly to large data sets is of paramount importance, results have
to be produced in a reasonable amount of time relative to the data size and
the limitations of the algorithm. Maximum number of tables/rows/attributes
are are theoretical limitations on the processing capabilities of the discov-
ery tool, as well as practical limitations that are posed by computing time,
memory requirements, expressing and visualization capabilities and so on. A



3.4 Current approaches 33

tool that holds all data in main memory for example may be not appropri-
ate for very large data sources, even if the theoretical maximum number of
rows is unlimited. Once the analyses to be performed are defined, the tool
has to be capable of running on its own, but being monitored and with the
possibility of external intervention. If the tool cannot handle a data mining
analysis, it is preferable to fail early and not when the analysis appears to
be nearly complete. Once the analysis has started, the tool should run con-
sistently and autonomously without crashing. Finally, it is desirable that the
software run on a wide-variety of computer platforms, the possibility to choose
among several software architectures (stand-alone, client-server, both) is also
appreciated.

3.4 Current approaches

As discussed in the previous sections, nowadays most enterprises are actively
collecting and storing large databases and many of them have recognized the
potential value of these data as an information source for making business
decisions. The aforementioned issues received a deep and recurring attention
by data mining researchers, as well as data mining software producers. The
dramatically increasing demand for better decision support is answered by an
extending availability of knowledge discovery and data mining products, in
the form of research prototypes developed at various universities as well as
software products from commercial vendors.

The unifying goal is extracting highlevel knowledge from lowlevel data,
finding understandable patterns that can be interpreted as useful or interest-
ing knowledge. In order for a data mining tool to be able to cope with real
world applications, of fundamental importance are also scaling properties of
algorithms to large data sets. But the main observation is that in the cur-
rent state of the art, the lack of support to knowledge discovery as an actual
multi-step process makes impractical all those applications, that involve mul-
tiple stages of analysis and manipulation for both data and patterns, in which
the results at each stage are required to become the input to the subsequent
stages.

Until a few years ago, knowledge discovery tools were mainly used in re-
search environments, but nowadays it is primarily the commercial developers
who advance the application of these technologies to real business and sci-
entific problems, this is witnessed by the large number of commercial tools
and RDBMS offering KDD algorithms. Such sophisticated tools, which aim
at the mainstream business user, are rapidly emerging. Although several data
mining software tools currently share the market leadership, there is no single
best tool for all data mining applications, and yet new tools keep entering the
market.

Anyway, the business users demands on these tools continue to exceed the
available technology. As the KDD field matures in response to these demands,



34 3 Design issues

business users face the daunting task of deciding which tool best suits their
needs and budgets. Currently the dollar cost of these tools is substantial, but
the cost of selecting an improper data-mining tool for a particular application
is even more costly in terms of personnel resources, wasted time, and the
potential for acting on spurious results.

Currently available tools deploy either a single technique or a limited set
of techniques to carry out data analysis, however, there is no best technique
for data analysis. The issue is therefore not which technique is better than
another, but rather which technique is suitable for the problem at hand. A
truly useful tool has to provide a wide range of different techniques for the
solution of different problems, since different techniques outperform each other
for different problems. Some tools are based on the relational model and allow
querying of the underlying database. Anyway, many tools just take their input
in form of one table, where each sample case (record) has a fixed number of
attributes, and operate separately from data sources, requiring a significant
amount of time spent with data export, import, pre and post processing,
transformation.

Currently available data analysis products generally fall into two cate-
gories.

• Drill-down analysis and reporting, provided by vendors of RDBMSs, some-
times in association with on-line analytical processing (OLAP) vendors.
These systems provide a tight connection with the underlying database
and usually deploy the processing power and scalability of the DBMS.
They are also restricted to testing user provided hypotheses, rather than
automatically extracting patterns and models.

• Stand-alone pattern discovery tools, which are able to autonomously detect
patterns in the data. These tools tend to access the database off line;
that is, data is extracted from the database and fed into the discovery
engine. Many tools even rely on keeping all their data in main memory,
thus lacking scalability and, therefore, the ability to handle real world
problems. Additionally, these tools are often insufficiently equipped with
data processing capabilities, leaving the data preprocessing solely to the
user. This can result in repeated time-consuming import-export processes.

With the increasing number of proposed techniques as well as reported ap-
plications, it becomes clearer and clearer that any fixed arsenal of algorithms
will never be able to cover all arising problems and tasks. It is therefore impor-
tant to provide an architecture that allows for easy synthesis of new methods,
and adaptation of existing methods with as little effort as possible. There are
usually three stages at deploying KDD technology in an organization:

1. The potential of KDD is discovered. First naive studies are performed,
often by external consultants (which are data mining specialists).

2. Once the profitability of KDD is proven, it is used on a regular basis
to solve business problems. Users usually are teams of analysis experts



3.4 Current approaches 35

(with expertise in KDD technology) and domain experts (with extensive
knowledge of the application domain).

3. Fully exploitation of KDD technology within the organization. End users
are enabled to perform their own analysis according to their individual
needs. Although widely still a vision, the necessity for this stage is clearly
recognized.

Obviously the different users at these stages have different demands and
also bring different prerequisites. Most of the available tools are aimed at
analysis experts, requiring an unaffordable amount of training before being
useful to novice end users. Typical end users are for example marketers, engi-
neers or managers. These users are less skilled in complex data analysis and
have less knowledge of the nature of the data available, but have a thorough
understanding of their occupation domain. Furthermore, they are usually not
interested in using advanced powerful technology, but only in getting clear,
rapid answers to their everyday business questions.

End users need simple-to-use tools that efficiently solve their business
problems. Existing software packages lack sufficient support for both di-
recting the analysis process and presenting the analysis results in a user-
understandable manner. If not, they are restricted to a very limited set of
techniques and problems. Optimally, a better usability by novice users would
have to be achieved without giving up other desirable features such as flexi-
bility and/or analysis power.

In many applications, including the vast variety of nearly all business prob-
lems, the data is not stationary, but rather changing and evolving. This chang-
ing data may make previously discovered patterns invalid and hold new ones
instead. Currently, the only solution to this problem is to repeat the same anal-
ysis process (which is also work-intensive) in periodic time intervals. There
is clearly a need for incremental methods that are able to update changing
models, and for strategies to identify and manage patterns of temporal change
in knowledge bases.

Todays databases do not contain only standard data such as numbers and
strings but also large amounts of nonstandard and multimedia data, such as
free-form text, audio, image and video data, temporal, spatial and other data
types. Those data types contain special patterns, which can not be handled
well by the standard analysis methods. Therefore, these applications require
special, often domain-specific, methods and algorithms. Object-oriented and
nonstandard data models, such as multimedia, spatial or temporal, are largely
beyond the scope of current KDD technology.

In conclusion, despite its rapid growth, KDD is still an emerging field,
and the development of successful data mining applications still remains a te-
dious process. However, while there are fundamental problems that remain to
be solved, there have also been numerous significant success stories reported,
and the results and benefits are sometimes very impressive. Although the cur-
rent methods still rely on fairly simple approaches with limited capabilities,



36 3 Design issues

reassuring results have been achieved, and the benefits of KDD technology
have been convincingly demonstrated in the broad range of application do-
mains. The combination of urgent practical needs and the strong research
interests lets us also expect a future healthy grow of the field, drawing KDD
tools into the mainstream of business applications.

As far as open source and academic software are concerned, the most
famous and distinguished data mining tool is presented below.

WEKA

Weka [94] is an open-source tool-bench for machine learning and data min-
ing, implemented in Java. The algorithms provide a standard interface which
makes them directly available within custom Java code. Weka main features
include a comprehensive set of data pre-processing (filtering) tools, several
learning algorithms for classification, regression, clustering, and association
mining, together with model evaluation tools, and standard interfaces for fil-
ters, algorithms and evaluation methods, which can be hence customized to
specific application needs.

The main strength of Weka lies in its flexibility: its specification as a li-
brary allows to model complex tasks within Java code, with the help of a
clean, highly customizable, object-oriented class hierarchy for each element
of interest in a knowledge discovery process. Clearly, the high flexibility in
Weka also represents its weakness: there is no standard way of encoding and
exploiting background knowledge, which is on the contrary demanded to the
user/programmer. In particular, there are no standard mechanisms for rea-
soning on the extracted knowledge, which should be explicitly encoded and
programmed.

Other leading vendors of data mining tools are cited in the following list.

Angoss Software

Angoss [86] is a data mining workbench provider and a traditional competi-
tor to SPSS’ Clementine or SAS’ Enterprise Miner. Angoss has several cus-
tomer sites, and many of its clients prefer specific elements of its solution
(for example, the decision tree KnowledgeSeeker application). Angoss has a
strong orientation and a considerable domain expertise toward the financial
services (banking, insurance and mutual funds) and telecommunication in-
dustries. Support for implementation and ongoing use is also provided. An-
goss offers the solution as either packaged software or an application service
provider (ASP) solution.



3.4 Current approaches 37

Fair Isaac

Fair Isaac [57] is pursuing a broader strategy of enabling enterprise decision
automation. The combination of its Blaze Advisor rule engine and analytical
modeling tools can be used to create extremely sophisticated and complex
automated decision processes for any business function. Fair Isaac can leverage
a strong service business to complement its analytical offerings, spanning the
range of services from hosting, to implementation, to a pure software sale.
Analytic models developed with Fair Isaac’s Model Builder software can be
deployed directly into the production environments, where they’ll be used via
the company’s Blaze Advisor rule engine.

IBM DB2 Intelligent Miner

Despite its name this product [70] is not dependent upon DB2 and may be
used with other data sources. More recently, IBM introduced a set of three
further DB2 Intelligent Miner products: Modeling, Visualizer and Scoring, all
of which may be implemented separately. In particular, DB2 Intelligent Miner
Scoring may be implemented not only in conjunction with Modeling (which
requires DB2) and Visualizer, but also with DB2 Intelligent Miner for Data
and with third party data mining products. Perhaps the most important dif-
ference between DB2 Intelligent Miner for Data and the other DB2 Intelligent
Miner products is that the former was originally designed as a work bench
style tool for environments where data mining was essentially regarded as a
stand-alone exercise.

Infor

Infor [56] has a great deal of experience in CRM, with its Interaction Advisor
product line. The acquisition of Infor CRM Epiphany by SSA Global, and
then by Infor, provided more development resources and an extensive sales
channel.

KXEN

KXEN [63] was founded with a vision of automating the rapid creation of
large numbers of models, and building models in environments where there
are thousands of potentially significant variables. As such, KXEN offers a sig-
nificant amount of analytical differentiation from the established vendors as
well as the other, smaller startups in the market. Although several vendors
(such as Advizor Solutions, Alterian and smartFocus) embed KXEN into their
applications, KXEN’s focus has increasingly moved toward independent posi-
tioning as a best-of-breed data mining tool targeting the CRM space, rather
than as a generic data mining toolset.



38 3 Design issues

Oracle Data Mining

Oracle Data Mining [71] is an option to Oracle Database 11g Enterprise Edi-
tion. It enables the user to build and deploy applications that deliver predictive
analytics and new insights. Application developers can build applications us-
ing ODM’s SQL and Java APIs that automatically mine Oracle data. Data,
models and results remain in the Oracle Database. Data analysts can quickly
access their Oracle data using the optional Oracle Data Miner graphical user
interface and explore their data to find patterns, relationships, and hidden
insights. Oracle Data Mining provides a collection of in-database data mining
algorithms. Anyone who can access data stored in an Oracle Database can
access Oracle Data Mining results-predictions, recommendations, and discov-
eries using SQL-based query and reporting tools including Oracle Business
Intelligence EE Plus.

Portrait Software

Portrait Software [87] has successfully capitalized on its acquisition of Quad-
stone from late 2005. Access to the Portrait sales channel and financial re-
sources gives the Quadstone (now Interaction Optimizer) division greater vi-
ability and visibility. Portrait has retained the analytical and marketing ori-
entation that Quadstone had prior to the acquisition. This should enable
the ongoing development of Portrait’s innovative applications, such as Uplift
modeling (to distinguish offer-driven responders from those who would have
responded anyway).

SAS

SAS [83] is the largest vendor in the overall data mining market. It has the
most analysts, the most client experience and tends to be the standard tool
with which data mining outsourcers and service providers must be familiar.
As such, there’s an unmatched ”ecosystem” of talent and experience for SAS
in the marketplace. With the most-complete set of data preparation and an-
alytical tools in the market, there are few problems that SAS technologies
can’t solve. Enterprises seeking a ”one-stop shop” platform for all analysis
(particularly data mining) and supporting capabilities should consider SAS.
Although much of SAS’ recognition in customer data mining space is due to
the popularity of its wide set of tool-based capabilities, the company is also
delivering packaged applications to support customer data mining. These so-
lutions have contributed to the breadth of experience and sophistication in
SAS’ customer base, providing plenty of best-practice examples of how to use
SAS to support a customer analytics initiative.



3.4 Current approaches 39

SQL Server Data Mining and OLE DB

A data mining component [72] is included in Microsoft SQL Server 2000 and
SQL Server 2005, one of the most popular DBMSs. Apart from a few algo-
rithms, the main contribution of SQL Server Data Mining is the implemen-
tation of OLE DB for Data Mining. OLE DB for Data mining [88] is an
industrial standard led by Microsoft and supported by a number of ISVs. It
leverages two existing relational technologies: SQL and OLE DB. It defines a
SQL language for data mining based on a relational concept. More recently,
Microsoft, Hyperion, SAS and a few other BI vendors formed the XML for
Analysis Council. XML for Analysis covers both OLAP and Data Mining.
The goal is to allow consumer applications to query various BI packages from
different platforms.

SPSS

SPSS [89, 25] has the broadest vision of the analysis of all types of data
(behavioral, demographic, survey and unstructured). SPSS has one of the
strongest visions for the emerging concept of the model management environ-
ment, which is a way of consolidating and managing the results of analyses
from several data mining tools for subsequent deployment and evaluation.
SPSS has spent the past several years acquiring analytical applications in
the predictive (Clementine for data mining and DataDistilleries for real-time
predictions) and nonpredictive (NetGenesis for Web site analytics, LexiQuest
for text mining and Dimensions for customer surveys) markets. SPSS has
combined these into a series of applications under the slogan, ”Predictive
Enterprise Services”.

ThinkAnalytics

ThinkAnalytics’ [91] products are based on an open platform with an open
library of extensible components that can be combined to perform a variety
of analyses. The models are deployed in ThinkAnalytics’ Think Intelligent
Enterprise Server, where they’re available for any application (usually tar-
geted at customer-facing applications, such as the call center or Web site)
for real-time scoring. ThinkAnalytics focuses on operationalizing and embed-
ding predictive analytics, and has also embedded a third-party rule engine to
provide the capabilities of a real-time recommendation engine.

Unica

Unica’s [92] origins in data mining left it with a tool that became a forerunner
of today’s trend toward the rapid building and testing of models. Although
the market has significantly moved on, Unica’s application is still a relatively
straightforward way of achieving this basic analysis goal. Unica has moved its



40 3 Design issues

development focus toward a series of markets adjacent to data mining. The
result is that Unica now offers one of the broadest marketing suites in the
market. Although the data mining module is a valuable component, beyond
its mere existence, it doesn’t represent a competitive advantage for Unica.



4

Defining a formal framework

The development of an effective data mining framework has been lately in-
vestigated from different perspectives, with two main objectives. On the one
hand, focus is to provide an interface between data sources and data mining
tasks: under this perspective, a data mining framework is seen as a standard
mean for specifying data sources, patterns of interest and properties char-
acterizing them. On the other hand, a data mining framework is meant to
support the design of specific procedural workflows, which integrate reason-
ing on the mining results and possibly define ad-hoc evaluation strategies and
activations of the data mining tasks. The underlying idea here is to define a
general data mining framework (in which eventually a data mining query lan-
guage could be embedded) in order to effective support the whole knowledge
discovery process.

In this thesis, we follow this research developing a foundational model
for the knowledge discovery process: the 2W Model, that enables progressive
data-mining workflows and provide an underlying procedural semantic for the
overall process. The 2W Model follows from an influential foundation for data
mining, namely the 3W Model, originally introduced into [59] and subsequently
refined by [18], where some theoretical issues arising from the idea of modeling
the KDD process have been discussed.

In our vision, a KDD process can be described as a functional expression.
Assume for example that a relational table R with schema R = {A,B, C}
is available. Also assume that in addition to traditional relational-algebra
operators for data preprocessing, two new operators are available, namely
~C(t), which extracts a decision tree from a table t, using C as class attribute,
and ./C (t, c), which given a table t and a classifier c (e.g. the aforementioned
decision tree), creates a table t′ which is identical to t but has an extra column
C, where each tuple gets the value computed by the classifier. Then, the
expression

t′ = ./D (~C(σB<3(R)), σB<3(R))



42 4 Defining a formal framework

represents a process where R is split in two partitions: the first partition
contains all the tuples such that B < 3, the second partition contains all
the tuples such that B > 3. Next, a decision tree is trained over the first
partition, with C as the class target. Finally, a prediction is made over the
second partition, by adding a new attribute D containing the result of the
prediction.

4.1 The 3W Model framework

Fig. 4.1. The 3W Model

3W Model stands for Three Worlds for data mining [59, 18]:

• the D(ata)-world;
• the I(ntensional)-world;
• the E(xtensional)-world.

The D-World represents the raw data to be analyzed in terms of the basic
entities of relational algebra, i.e. relational schemas and extensions. The at-
tributes of such entities are associated with corresponding domains, that can
be either categorical or numeric. Most activities, carried out in the prepro-
cessing phase of a typical knowledge discovery application, can be modeled
by means of specific operators of an extended relational algebra, that adds to
the usual algebraic operators.

Objects in the I-World represent, instead, a particular class of data mining
models, that is regions that can be defined as (sets of) conjunctions of linear
inequality constraints on the attributes of the entities in the D-World. Starting
from a set of basic regions, further regions can be formed via the definition of
composition operators.



4.1 The 3W Model framework 43

Since linear inequality constraints define regions in high dimensional
spaces, such regions can be equivalently represented in an extensional way,
as the set of all data points which satisfy those constraints.

In the E-World, a region is simply represented as an enumeration of all
the tuples belonging to that region. Relations in this world are obtained by
combining the relations of the two worlds previously defined, so that the
schema of the resulting relation is the union of the schemas of some relation in
the D-World and some other relation in the I-World. The algebra of the E-World
is very limited and only involves those operators, that maintain the strong
connection between regions and data tuples. Hence, aggregation, arithmetic
and selection are the only world-specific operators available in the E-World.

Entities in the three aforesaid worlds can be related via suitable inter-
worlds and intra-world operators:

• Pop: defines the extension of a model starting from its intentional repre-
sentation and a relation;

• π: maps an extension to its counterpart in the corresponding worlds;
• κ: generates constraints from data constants;
• λ: generates new constraints by elaborating others.

Notice that, κ and λ are used to model a mining function. The generic
mining operator κ extracts regions in the I-World from data in the D-World.
These regions can be iteratively refined by means of the λ operator from the
I-World to the I-World. The population operator Pop creates a relation in the
E-World starting from some regions in the I-World and some other relations
in the D-World. Finally, composite objects of the E-World can be projected
to the other two worlds via the operators πRDA and πA, that allow to return
in the I-World and D-World, respectively, via a simple selection of the proper
attributes (data or constraints) within the E-World relation.

The 3W Model is mightily interesting for many reasons. Foremost, it pro-
vides a view of data mining in algebraic terms: a knowledge discovery process
is the application of a sequence of operators in order to transform a set of ta-
bles. Furthermore, it is also fascinating from a methodological point of view:
the object representation of 3W Model entities and the implementation of a
suitable set of operators are key elements in the design of a powerful tool for
knowledge discovery. However, some major limitations affect the 3W Model. In
the D-World there is no possibility to express complex relations (i.e. cyclic re-
lation), because the nesting of this data model has a fixed depth. Furthermore,
a more serious limitation lies in the I-World, where regions are expressed by
linear inequality sets. This means that fundamental mining models are not ex-
pressible, since their representations require more complex mathematic struc-
tures (i.e. SVM and clustering results, time point series, surrounding regions
and so forth). The 2W Model in section 4.2 avoids both the foresaid limitations
of the 3W Model. Indeed, it enables the description of complex objects and
their properties and also supports the extraction all required patterns from
raw data.



44 4 Defining a formal framework

4.2 The 2W Model framework

Fig. 4.2. The 2W Model

The 3W Model presented in section 4.1 has several strengths: the KD
process is effectively modeled as a composition of operators, and the theoretic
framework can be easily extended to the case of multi-relational data mining.
However, the 3W Model also suffer from some main limitations:

• 3W Model is purely theoretical: no real-world data mining system could
seriously rely on κ and λ operators, even if other embedded operators can
also be imagined;

• 3W Model only supports basic data types;
• supported models have to be representable by means of sets of (linear

inequality) constraints, that is only frequent patterns and decision rules
are supported.

Amalgamating elements from different worlds causes an impedance mis-
match, since the proposed formalization has to deal with different representa-
tions and different objectives. Anyway, separating the data and model worlds
makes a lot of sense, and bridging such worlds through operators also intro-
duces a nice interaction model. The basic idea beneath our vision is concerned
with the extension of data and model worlds, through their equipment with
some appropriate bridging operators.

In the 2W Model the essence of a knowledge discovery process is summa-
rized as the interaction between two neatly divided worlds: the data world
and the model world.

• data world represents the entities to be analyzed, with their properties and
mutual relationship; raw data is organized in an object-relational format,



4.2 The 2W Model framework 45

and attribute domains can be either primitive or complex object data
types;

• model world offers an elegant and expressive framework for both ex-
ploratory analysis and reasoning; patterns concerning data entities, along
with their properties and relationships are mapped to objects in the model
world.

It is worth noticing that data objects are not necessarily tables composed
by regions, instead it is possible to represent more complex structures. in ad-
dition, the κ operator is not predefined, rather it represents a template to
extract a model from a table. Finally, models are generic objects, the Pop
operator represents a template that can be instantiated in different ways de-
pending on models classes (w.r.t. 3W Model, objects in E-World can be directly
mapped to D-World, without an explicit representation of E-World).

As shown in fig. 4.2, data pre-processing and model post-processing are
viewed as world-specific operations, whereas each intermediate pattern-mining
step is considered as a suitable interaction relating entities in the two worlds.

This allows to formalize any knowledge discovery process as an alge-
braic expression, that is essentially a composition of operators representing
(pseudo)elementary operations on the two worlds. There are three main kinds
of operators for data and models:

• Filtering operators are self-injecting operations. They take a set of entities
as input and produce a new set of entities, generating data from data
(import and preprocessing purposes) and models from models (essentially
post-processing). Within fig. 4.2, the data filtering and model filtering
arrows denote such operations.

• Mining operators relate data entities to model entities, enable transitions
from the D-World to the M-World. In practice, such operations correspond
to the application of a data mining algorithm to a given data source. The
result is a composite object, describing a pattern holding over such data
sources.

• Application is a sort of opposite (join) operation w.r.t. mining function.
In general, a model is a specification of a set of properties holding in the
data. Applying a model to a data source essentially means making such
properties explicit in extensional form: e.g., by associating each tuple in
a table with the most likely target class according to the model, or by
enumerating the frequent patterns appearing within the tuple. The only
requirement is a decidable containment operator which each data mining
model has to implement.

For the definition of the contours of the two worlds and their operators, one
has to concentrate on which entities (i.e. which patterns) are supported in the
model world, how data entities relate to model entities, and how constraint
solving takes place. The formalization of such aspects strictly depends on
the nature of the underlying applicative domain and pursued objectives. The



46 4 Defining a formal framework

2W Model is a general model for the knowledge discovery process within any
applicative setting.

Subsections 4.2.1 and 4.2.2 discuss, respectively, the D-World and M-World
along with their specific operators, whereas section 4.2.3 describes mining and
application operators, that allow worlds mutual interactions.

4.2.1 The D-World

The D-World represents the entities to be analyzed, as well as their proper-
ties and mutual relationships. Raw data is organized in an object-relational
format. The D-World can be viewed as a database D = {r1(R1), . . . , rn(Rn)}
of meaningful entities. The generic entity r(R) is a relation with schema R.

Formally,

R = {A1 : Dom(A1), . . . , Ah : Dom(Ah)}
where A1, . . . , Ah correspond to descriptive attributes of the data within r(R)
and Dom(A1), . . . , Dom(Ah) are their respective domains. Relation r(R) is
defined as r(R) ⊆ Dom(A1) × . . . Dom(Ah). Attribute domains can be ei-
ther primitive or object data types. Primitive types are assigned to simple
features of the data and divide into categorical and numerical domains. In-
stead, object data types abstractly represent complex real-world entities as
objects, equipped with application-dependant operations. Hereafter, we omit
the specification of relation schema and use the resulting simplified notation
to indicate an entity of D. Furthermore, we denote by t ∈ r a tuple of rela-
tion r and, also, exploit notation t[Ai] to indicate the value of tuple t over a
schema attribute Ai. The description of the D-World is general enough to be
employed within any applicative setting.

Example 4.1 (Paths relation).
To elucidate, we introduce the reference relation Paths, that shall be used
throughout this chapter to describe pedestrian and/or vehicle paths. Its
schema attribute comprises id of type integer, type which takes on categorical
values ’vehicle’ and ’pedestrian’, and path: an object data type, named Event
Collection.

id type path

1 vehicle location t1
1 , location t2

2 , location t3
3

2 vehicle location t3
2 , location t4

1 , location t8
3

3 vehicle location t1
5 , location t2

2 , location t5
5 , location t7

6

4 pedestrian location t1
7 , location t5

9

5 pedestrian location t1
1 , location t6

2 , location t9
3

6 pedestrian location t5
5 , location t9

6

The latter object type is used here to model the notion of a path, allowing to
model paths evolving over time, and also providing a set of basic operations
for manipulating paths data as well as answering topological and distance



4.2 The 2W Model framework 47

queries. An in-depth coverage of the Event Collection data type will be given
in section 5.2.1. In this example, given a tuple t ∈ Paths, t[path] is used to
depict a collection of locations (represented by events) labeled with a time-
stamp (a particular context of the corresponding event).
¤

D-World operators

Data in the D-World are manipulated using filtering operators. For example,
the usual (unary and binary) operators of traditional relational algebra such
as ρ, σ, π,∪,∩, \ and × are available, and also aggregation functions such as
SUM, COUNT, AVERAGE, MIN and MAX are allowed to operate on collections of
domain elements. Notably, aggregates are not relational algebra operators.
In principle, they are used as parameters of some suitable aggregate forma-
tion operator. In our formalization, we express queries involving aggregates by
means of suitably extended projection operators, in the spirit of the idea in [2],
that allow the incorporation of aggregation functions into the algebra. Alge-
braic operators can be used to model suitable data preparation/manipulation
tasks.

Example 4.2 (Data operators).
The composite operator πpath(σtype =’vehicle’(Paths)) represents a trivial
reduction of data size and dimensionality.
¤

More complex preparation/manipulation tasks can be expressed by incor-
porating the basic operations of the (domain-specific) object-relational entities
in the corresponding algebraic formulation, as shown in example 4.3.

Example 4.3 (Intersect operation).
A basic operation of the event collection data type is intersect, which queries
whether two collections have an event in common, regardless its contexts
values. Such a functionality can be exploited to filter from Paths and count
all those routes that encounter, somewhere and at any given point in time,
the route followed by a reference moving point having a specified identifier.
To this purpose, by means of the expression T = ρroute←path(σid =3(Paths))
one obtains a new answer relation T consisting of the route followed by the
moving point with id=3. Here, for convenience, the path attribute of T is
renamed as route. T can now be joined with the whole content of Paths to
find and count the desired routes, i.e. those paths that intersect the one in
T. This can be expressed as πcount(path)(σpath.intersects(route)(Paths × T))
where πcount(path)(·) is an extended projection operator that returns the size
of the column path if it appears in the input relation, 0 otherwise. Notice that,
the aforesaid extended projection operator can come in two flavors, depending
on whether or not the path column is viewed as a bag.
¤



48 4 Defining a formal framework

Notably, queries over data is relevant because it permits to abstract away
from the huge amount of punctual data, from this perspective, query for-
mulation can be considered as closer to the way humans reason. Indeed, the
D-World algebraic operators also play a fundamental role in post-processing
data resulting from the application of a pattern in the M-World to raw route
data.

4.2.2 The M-World

Patterns concerning data entities, along with their properties and relationships
are mapped to objects in the model world, which provides an elegant and ex-
pressive framework for both exploratory analysis and reasoning. The M-World
can be represented as a collection of objects P, representing patterns unveiled
at the different stages of the knowledge discovery process. Each pattern p is
associated with an object-relational schema R and represents a (possibly infi-
nite) relation r over R. Intuitively, p represents a decision region over schema
R, so that a decidable operator ` can be devised for bounding such a region.

Definition 4.4. A pattern p is any (possibly infinite) set {t1, . . . , tn, . . .} of
tuples in D such that, for each r ∈ D and t ∈ r, the assertion t ∈ p is
decidable. We denote the property t ∈ p as p ` t.

Fig. 4.3. A taxonomy of abstract model types in the M-World

As shown in fig. 4.3, the generic abstract data type P can be the prototype
for any predictive or descriptive model. Hence, various instantiations are pos-
sible for the ` operator. To elaborate on the latter aspect, we will exemplify
next the semantics of the operation for some models of fig. 4.3.

Example 4.5 (Single-class Classifier).
Let informally define a pattern p(pedestrian) to represents all those tuples ex-
hibiting instant speed less than 10Km/h, which, according to the common
sense, can be labeled as ’pedestrian’. Each moving object t ∈ Paths can be



4.2 The 2W Model framework 49

equivalently represented by its explicit route (l1, ts1)
speed1−→ (l2, ts2) · · ·

speedn−1−→
(ln, tsn), i.e. a time-ordered sequence of locations li with respective time
stamps tsi, where speed i is the instant speed of the transition between loca-
tions li−1 and li, which can be evaluated starting from locations’ time stamps.
Then, given a generic moving object t, p(pedestrian) ` t, if speed i ≤ 10Km/h
for all i ∈ [1, n− 1].
¤

Example 4.6 (T-pattern).
Let p be a pattern of the form r1

tc1−→ r2 · · · tcn−→ rn, where ri is a spatial region
and tci is a time constraint of the form t

(i)
min ≤ t ≤ t

(i)
max. A moving object

t ∈ Paths is recognized by p, i.e., p ` t, if t traverses all regions ri in sequence,
and the traversal time between ri and ri+1 is within the time constraint tci.
¤

Starting from the basic patterns in P, we can define composite patterns
as suitable combinations of patterns from possibly different prototypes. The
individual instance of a prototype enumerates only data that results into a
certain outcome when related to the pattern. However, in general, data can
originate multiple outcomes, such as in the case of a pedestrian that traverses
distinct T-patterns (see example 4.6). The notion of composite pattern is
essentially an abstraction that allows to succinctly query multiple patterns of
different prototypes for the recognized raw data.

Definition 4.7 (Composite pattern). A composite pattern p is defined as
follows:

• p ≡ p with p ∈ P is a composite pattern and the ` operator is straight-
forwardly extended to p, since p ` t coincides with p ` t in this basic
definition;

• the disjunction p′ ∨ p′′ of two composite patterns p′ and p′′ is still a
composite pattern and the ` operator is defined as p′ ∨ p′′ ` t if and only
if either p′ ` t or p′′ ` t;

• the conjunction p′ ∧ p′′ of two composite patterns p′ and p′′ is still a
composite pattern and the ` operator is defined as p′ ∧ p′′ ` t if and only
if both p′ ` t andp′′ ` t;

• the negation ¬p of a composite pattern is still a composite pattern, where
¬p ` t is it is not the case that p ` t.

In practice, a composite pattern is an abstraction for representing a new
decision region that follows from the ones associated to individual patterns.

Example 4.8 (Composite pattern).
Let p(pedestrian) be the predictor defined in example 4.5, and p′, p′′ two fur-
ther temporal annotated patterns introduced in example 4.6. The composite
pattern p = p(pedestrian) ∧ (p′ ∨ p′′) is a pattern characterizing all pedestrians



50 4 Defining a formal framework

traveling with an instant speed less than 10Km/h and traversing either p′ or
p′′.
¤

With an abuse of notation, in the following we shall assume that P is
extended to contain both singleton and composite patterns. The latter can
be further classified into local or global patterns, depending on whether such
patterns are capable of recognizing each tuple in the associated domain.

Definition 4.9 (Global/local pattern). Let p be a (composite) pattern and
R an object-relational schema. p is said a global pattern w.r.t. R if and only
if, for each relation r over R and each t ∈ r, it holds that p ` t. Otherwise, p
is said a local pattern.

Example 4.10. Let us consider the pattern p(vehicle), which recognizes tuples
representing routes exhibiting an instant speed greater than 10Km/h. The
pattern p(vehicle) ∨ p(pedestrian) is a global pattern for Paths, as it recognizes
each tuple in the relation.
¤

As stated before, a generic abstract model type P (see fig 4.3) can be
associated to a given pattern p, depending on whether the decision region
characterizes the pattern as a predictive or descriptive. In practice, a prototype
P enumerates a subset of P, such that some attributes ϕ

(P)
1 , . . . , ϕ

(P)
n can be

associated to each p ∈ P. Formally, a prototype associates each pattern with
a relational schema, where some specific pattern properties can be specified.

Definition 4.11. Let R a relational schema. A pattern schema P on R is
defined as P = {S × r|S ⊆ P, r ∈ R}. P ∈ P is defined a pattern instance.

Example 4.12 (Classifier).
Assume that O = {pedestrian, vehicle} is a set of class labels denoting two
alternative types of routes. Then, ClassifierO is any subset of P × O. In
practice, each pair 〈p, c〉 ∈ ClassifierO represents a decision region de-
noted by p, whose tuples are associated to class c. For example, the tuple
〈p(pedestrian), pedestrian〉, where p(pedestrian) is defined in example 4.5) repre-
sents the pattern which classifies a path as pedestrian if its ground instant
speed is below 10Km/h.
¤

M-World operators

We can extend the usual definitions of the σ and π (relational) operators, as
follows. Let P be a pattern instance of P, then:

• σE(P ) = {〈p, t〉 ∈ P |E(t)} where E is any boolean expression over the
schema R;



4.2 The 2W Model framework 51

• πX(P ) = {〈p, πX(t)〉|〈p, t〉 ∈ P} where X ⊆ R.

Example 4.13 (Pattern schema).
Assume that prototype T− pattern is a pattern schema consisting of three
attributes, namely Pattern, Length and Type, that associates each tempo-
ral annotated pattern in P with two characteristic features, respectively the
length of the pattern in terms of consecutive spatial regions and the kind of
routes that traverse it. Given the below instance P of P

Pattern Length Type
p1 5 vehicle
p2 2 pedestrian
p3 3 mixed
p4 4 vehicle
p5 2 pedestrian
p6 3 mixed

p2 ∨ p5 2 pedestrian
p3 ∧ p6 3 mixed

the intra-world operators σE(P ) and πX(P ) can be used to suitably manip-
ulate P . For instance, σLength≥4∧Type=′vehicle′(P ) selects those patterns in P
(i.e. p1 and p4) that consist of at least 4 spatial regions and are traversed only
by vehicles. In the selected fragment of P , the Type feature assumes a uniform
value, thus becoming uninteresting. Thus, it can be filtered by means of the
projection operator πPattern,Length(σLength≥4∧Type=′vehicle′(P ))
¤

4.2.3 Inter-worlds operators

Patterns are originated into the M-World from the raw data in the D-World via
a mining operator. Such patterns are in turn used to inject new data into the
D-World via the application operator. Mining and application operators for-
malize suitable interactions between data within the D-World and patterns in
the M-World. Such interactions are the basic building-blocks in the definition
of a knowledge discovery workflow.

The population of the M-World starting from the raw data in the D-World
is performed through the mining operator.

Definition 4.14 (Mining operator). Let r ∈ D be a relation from which
to extract suitable patterns. The inter-world mining operator is defined as
κ : Dk → 2P . κ represents a generic mining scheme, that receives a cer-
tain number of input relations and instantiates a mining model (i.e., multiple
patterns) of a particular prototype (that is a pattern schema).

Example 4.15 (Mining operator).



52 4 Defining a formal framework

Assume that D = {Paths}, where Paths is the reference relation of exam-
ple 4.1. If κ represents the T − pattern mining scheme defined in example 4.6,
κ(Paths) results into an instance T − pattern of a prototype T− pattern.
¤

Once accomplished the forward population of the M-World with the re-
quired patterns, these can be employed in the opposite direction, i.e. to back-
wardly populate the D-World with further data. Interestingly, this does not
involve the explicit representation of further (composite) objects as in the
E-World of the 2W Model. More simply, the raw data that falls within the de-
cision region of a certain pattern is accumulated in the D-World as new data.
The inter-world application operator on: P × D → D, is the basic step of the
application process.

Definition 4.16 (Basic application operator). Let p be a pattern in P and
r a relation in D over an object-relational schema R. The basic application
operator p on r yields a new relation including each tuple t ∈ r within the
decision region of p. Formally,

p on r , {t ∈ r|p ` t}

Clearly, the resulting relation p on r is still an instance of R.

Example 4.17 (Basic application operator).
Let D and P be respectively the D-World and M-World of Example 4.15. If p is
a pattern over the T− pattern prototype, the expression Paths′ , p on Paths
results into D′ = {Paths, Paths′}, where Paths’ is a new relation including
those moving entities from Paths, whose routes traverse the temporal an-
notated pattern p. In practice, D′ represents the population of the original
D-World with the new data Paths’, whose schema is identical to the one of
the Paths relation.
¤

The application operator can be straightforwardly generalized to deal with
a composite pattern.

Definition 4.18 (Extended population operator). Let p be a composite
pattern and r a relation in D over an object-relational schema R. By abuse
of notation, we define the extended population operator on: 2P → D as follows

p on r , {t ∈ r|p ` r}

Relation p on r is again an instance of R.

The above expression yields an enumeration of all the tuples in r that fall
within the composite decision region p.



4.2 The 2W Model framework 53

Example 4.19 (Extended population operator).
Again, let D and P be respectively the D-World and M-World of Example 4.15.
Moreover, assume that p = pi ∨ pj is a composite pattern such that both
pi and pj are two patterns from the Paths relation. The below expression
Paths′′ = p on Paths populates the original D-World with a further Paths′′

relation, that enumerates all moving objects of Paths that traverse either pi

or pj

¤

Besides the application operator, a pattern identification operator can also
be defined, that is dual with respect to the former.

Definition 4.20 (Pattern identification operator). Assume that P is a
prototype and P an instance of P. Let S be any subset of P . The pattern
identification operator /. : 2P ×D → 2P is defined as follows:

S/.r = {p ∈ S|∃t ∈ r : t ∈ p on r}
In practice, the pattern identification operator queries a homogeneous pat-

tern collection S for those models that recognize certain raw data.

Example 4.21 (Pattern identification operator).
One may ask which are the temporal annotated patterns from pedestrian
routes, that are also traversed by vehicles. To this purpose, let Paths′ =
πtype=’pedestrian’Paths and Paths′′ = πtype=’vehicle’Paths be the two re-
quired partitions of the Paths relation. If T-pattern is an instance of the
T− pattern prototype, that consists of the patterns in Paths′, the foregoing
query can be expressed via the following expression T-pattern/.Paths′′

¤

As a final remark, we emphasize that pattern-identification and application
operators can be suitably combined to express complex analytical queries.

Example 4.22 (A complex analytical query).
With respect to the setting of Example 4.21, one may further ask which are the
individual vehicle paths that traverse the pedestrian T-patterns. This query
can be expressed as (T-pattern/.Paths′′) on Paths′′

¤

4.2.4 Discussion

In [18], the authors study the expressiveness of the underlying model subject
to different choices for the operators. In particular, there are some specific op-
erators which make the resulting algebra computationally complete. A major
limitation in the proposed approach is in the I-World, which is populated, as
mentioned, by linear inequality constraints. This limitation means that the re-
sults of some data mining operations might not be expressible, as they require



54 4 Defining a formal framework

more complex mathematical objects. Each world has its own entities, together
with properties and relations: e.g., relational tables and operators in the data
world, and conjunctions of linear inequality constraints in the model world.
Now, since linear inequality constraints specify regions in high-dimensional
spaces, such regions can be equivalently represented in an equivalent exten-
sional way, as the set of all data points which satisfy those constraints.

The 2W Model introduces several meaningful differences w.r.t. the 3W
Model:

• Entities in the M-World can represent any required patterns, even if with a
mathematically complex structure, whereas I-World models correspond to
simple regions, expressible via linear inequalities on the data attributes.

• In the 2W Model mining (κ) is not predefined and acts as a template to
extract a model from a table. Currently, within the proposed formalization,
the mining operator is instantiated by several different mining operators,
according to the underlying applicative requirements. In this respect, a
further improvement would be using a limited set of basic operators and
derive all others from these via composition.

• In the 2W Model objects in the E-World are directly mapped to counter-
parts in the D-World, without an explicit representation in the E-WorldḂy
definition of population operator, the application of any model to the data
in a relation of the D-World always produces a further relation within the
D-World. This ensures that mining results can be progressively analyzed
on a par with raw data via further manipulations, as exemplified next.

Example 4.23 (Modeling KD workflows).
Consider the case where one wishes to uncover the groups objects that move
close to each other within a certain pattern. In such a case, patterns are first
extracted into the M-World via a specific mining operator κ from the Paths
relation. This results into an instance κ(Paths), that groups all the unveiled
patterns. The latter are then treated on a par with data, to the purpose of
identifying the paths inside the required pattern, which is accomplished by
means of the inter-world application operator. Clusters can then be discovered
in the required pattern, by applying a second mining operator κ′ to the newly
obtained data. In the 2W Model, the algebraic formulation of the aforesaid
knowledge discovery workflow is κ′(p on Paths) where p ∈ κ(Paths) is the
pattern to investigate for moving clusters, that can be chosen by means of
specific intra-world operators. The above expression reveals the fundamental
role of the application operator in the definition of a knowledge discovery
workflow. Indeed, the operator enables the progressive and seamless discovery
of further patterns in the data resulting at the end of a previous analytical
process.
¤

Finally, we recall that the D-World operators contribute to the expressive-
ness of the 2W Model framework, by playing a twofold role. On the one hand,



4.2 The 2W Model framework 55

such operators can be used to represent preprocessing tasks, e.g. the reduction
in size and/or dimensionality of the available data. On the other hand, they
are useful for postprocessing purposes, such as in the act of filtering interesting
patterns.





5

Realizing the formal framework

The aim of this chapter is to provide a concrete solution to the definition of a
knowledge discovery framework, where the main purpose is to drive the user
in defining and executing a workflow which represents a data mining process.

5.1 A 3-perspectives viewpoint

The framework we propose is a graphical environment for designing and man-
aging KD processes. KD processes are defined by means of workflows, whose
elements are node of a graph connected by directed edges. Graph nodes can
be either tables, models or tasks. To put it simply, tasks are operators that
allow transitions between the other two entities (tables/models), the genera-
tion of a table (or model) from another table is achieved by means of a task
node. Workflow execution consists on sequential or parallel execution of tasks
nodes, which are the connections between tables and models.

The defined framework includes the following functionalities:

• intelligent support to design workflows representing KD processes;
• execution and storing of generated workflows or subsets of components;
• visual environment to perform data analysis;
• visual environment to perform model analysis.

The general architecture of the system is shown in fig 5.1. We can see three
basic kinds of modules, namely CORE, GUI (Graphical User Interface) and
several other components that can be plugged into the system: tasks, tables,
models, table visualizers, models visualizers and bridges.

The CORE module represents system kernel, tasks, tables and models, are
realized as plugins, and represents workflow nodes (i.e. steps of the KD pro-
cess). The CORE module exposes a rich set of API by which those plugins can
be connected to each other, so KD processes are defined by a directed acyclic
graph (DAG), whose components are plugins. Table visualizers and models



58 5 Realizing the formal framework

Fig. 5.1. System architecture

visualizers are also plugins, but they are not present in workflow composition,
instead they are strictly connected to tables and models respectively, and are
exploited to perform data and model explorations, as discussed in section 5.4.
The bridges components are strictly related to tables, and represents a place
where to store tables’ data (a detailed discussion is made in section 5.2). Fi-
nally, the graphical user interface (GUI ), which is developed upon a series of
API exposed by CORE.

According to the above definitions, it comes out that a main feature of the
proposed framework is its extensibility, since the system can be enriched by
user-defined plugins, which can be implemented to accomplish ad-hoc needs
and easily plugged into the system.

Another important feature of the proposed framework is its easy of use.
The workflow is designed exploiting a graphical editor, which makes it sim-
ple to create, position, move and connect the aforementioned elements. User
interaction takes place according to three different perspectives:

• workflow perspective: used to create, configure and connect nodes;
• data perspective: allows to perform data exploration;
• model perspective: allows a graphical representation of models.

Picture on figure 5.2 shows the workflow perspective, data and model
perspectives are shown in figure 5.3 and better examined in section 5.4. The
workflow represented in fig. 5.2 is composed by an acquisition task, a table, a
mining task and the corresponding generated model. As can be seen, different
elements are typified with different shapes.

By means of workflow view, user can design a KD process selecting and
connecting nodes. Placing a node into the workflow is carried out by means of
drag and drop operations from a node repository which contains all available
nodes (i.e. a table node and all available models and tasks) to the work area
(i.e. the place where the workflow is composed). When a node is placed on



5.1 A 3-perspectives viewpoint 59

the work area, a new instance of the node will appear. Instantiated nodes can
be moved, resized, renamed or deleted, those operations are accomplished by
drag and drop or by selecting corresponding commands on some appropriate
menu that will come out right-clicking on the node. Nodes can be connected
joining source and destination ports with a drag and drop operation.

Fig. 5.2. Workflow view

Fig. 5.3. Data and model views

In the node repository, nodes are organized into several categories, as spec-
ified in the following schema.

• Models: contains mining algorithms divided in several subcategories (see
fig. 4.3):
– predictive: contains all predictive models, grouped by their character-

istic;
– descriptive: contains all descriptive models grouped by their character-

istic;
– dependency : contains all dependency models grouped by their charac-

teristic;



60 5 Realizing the formal framework

Instantiated nodes represent models generated with the specific corre-
sponding algorithm. Specific features of each mining models group was
previously presented in section 2.2.

• Tables: contains a sole table object, responsible for data storage during
preprocessing and mining operations. A table can be inserted in the work
area in two ways: dragging the aforementioned node (like other nodes) or
directly drawing a connection from a task output port. The second option
works for all tasks that can guess their output tables structure before their
execution. A discussion aimed at explaining the way tables are capable of
backing up data using either main memory or external sources, is done in
section 5.2.

• Tasks: contains several subcategories:
– acquisition: contains tasks that allow to import data from external

sources, as well as models saved in previous sessions;
– mining : contains tasks to extract a model from a table, eventually

testing it on the fly;
– application: contains tasks used to apply previously generated models

to tables;
– filters: contains tasks to handle and transform tables;
– export : contains tasks that allow to export data and models in various

formats. A detailed presentation of task is done in section 5.3.

Fig. 5.4. A complex workflow

A typical utilization of the framework by means of the graphical user
interface takes place in four phases, which are typically iterated many times:

• knowledge discovery process composition;
• partial or complete execution of generated workflow;
• exploration and visualization of generated tables and models;
• generation of new data by means of application of generated models.

5.2 The data retention dilemma

Bridges and tables are used to store and manage data. Bridges are not part
of a workflow, then cannot be inserted in the workflow-perspective work area,



5.2 The data retention dilemma 61

they only represent the physical device used to store data accessed via tables
nodes. In a sense, a bridge represents the connection between logical and
physical representation of data, and can be seen as a tables’ container. More
specifically, a table is always connected to its own bridge, and a bridge can
contain many tables.

Fig. 5.5. Tables and bridges

Two straightforward examples of bridges are MemoryBridge and DBMS-
Bridge. A MemoryBridge is responsible for providing support to MemoryTa-
bles, backing up tables’ data into system main memory. A DBMSBridge bridge
is responsible for providing support to DBMSTables, backing up table’s data
in an external DBMS. Let’s clarify this concept saying that a DBMSBridge
contains required logic for DBMS connection, whereas a DBMSTable is ca-
pable of accessing its own data (which physically reside on a DBMS) via the
underlying DBMSBridge.

As can be seen from figure 5.6, once a table has been created the whole
table-bridge mechanism remains behind the scenes, and from a user’s perspec-
tive, data can be written and read row by row using the same conventional
methods for all kinds of tables, regardless of the particular associated bridge.

Fig. 5.6. Abstract and physical representation of data



62 5 Realizing the formal framework

Table structure is defined by means of metadata, used to specify table’s
attributes which define table’s columns types. A table metadata object con-
tains a collection of attributes, whereas table content consists of a collection of
rows, whose values are interpreted according with the corresponding attribute
type specified in table metadata.

The following attribute’s types are supported:

• integer : to represents integer values;
• double: to represents numeric values which can vary in a continuum;
• nominal : to represents a set of possible values;
• string : to represents free text;
• event collection: to represents collection of events where an event is a

complex object.

The definition of integer, double and string attributes is straightforward. Nom-
inal attributes are used when values can be chosen among a set. When defining
a nominal attribute, a list of all possible values can be specified, in effect it is
not always possible to know which values an attribute will take when speci-
fying table metadata (for example, in acquisition tasks), so when writing on
a table, if a new entry is seen for a given nominal attribute value, the en-
try is added to the set. Event collection attributes are described in details in
section 5.2.1.

5.2.1 Dealing with complex data: events

Working with real-world applications, ordinary attributes types are not al-
ways suitable to model all kind of data. In order to overcome this issue, our
implementation of the KD framework is equipped with a complex data type:
event collection.

(a) Event collection

(b) Event

Fig. 5.7. Model visualization

As can be seen in figure 5.7, an event collection is a collection of complex
objects named events (see 5.7(a)). In turn, an event is an object that has



5.3 Implementing the 2W algebra: tasks 63

a name (the context name), and a collection of properties named contexts
(see 5.7(b)). Each context holds a value, which can be either a basic data
type or an event collection.

Event collection attributes can be used, as an example, to model textual
data. A textual document can be easily mapped to an event collection of terms.
Each term (i.e. a string from the document mapped to an event) will have a
set of properties (i.e. event’s contexts) such as: string length, string category,
frequency within the document, and so on. Modeling textual data this way,
one can easily perform data exploration via statistics on the aforementioned
properties, as well as performing data filtering operations such as stop-words
removal, non frequent terms identification, etc.

5.3 Implementing the 2W algebra: tasks

Data pre-processing, models post-processing, mining and application opera-
tors can be devised as functions having a domain in a given world and a
codomain into the same or another world. In section 4 a set of basic operators
have been proposed, discussing the expressiveness of the resulting model.

In our proposed implementation, those basic operators are modeled by
means of tasks objects. Tasks are operators capable of manipulating and trans-
forming tables and models. In practice, a task can produce/populate one or
more output tables or/and models, on the basis of one or more input tables
or/and models. Two other kinds of task which have no input/output compo-
nent respectively are introduced for data/model import/export, namely data
acquisition, model acquisition, data export and model export. Tasks can thus
be divided in:

• acquisition: import tables/models from external sources;
• mining (i.e. mining algorithms): allow transitions from tables (data-world)

to models (model-world);
• application: join operators that allow transitions from model-world to

data-world;
• data-filters: data pre-processing;
• model-filters: model post-processing;
• export: export tables/models to external destinations.

Tasks can be configured using specific parameters, for example, an acqui-
sition task in charge of importing a text file, needs to know the path where to
find the particular text file, or still, a task capable of transforming somehow
a table attribute, needs to know which particular attribute of the input table
needs to be transformed.

Figure 5.8 shows a table acquisition task (see 5.8(a)) and a model acqui-
sition task (see 5.8(b)). Those kinds of tasks have no input and exactly one
output, of type table and model respectively.



64 5 Realizing the formal framework

(a) Table acquisition (b) Model acquisition

Fig. 5.8. Acquisition tasks

(a) Table filtering with 1 input and 1
output

(b) Model filtering with 1 input and 1
output

(c) Table filtering with 2 inputs and 1
output

(d) Table filtering with 1 input and 2
outputs

Fig. 5.9. Filtering tasks

Figure 5.9 shows several filter tasks. Table filtering tasks (see 5.9(a) 5.9(c)
5.9(d)) can have an arbitrary number of tables/models in input or output. As
an example, data-filtering tasks are used for performing SQL-like operations
on tables, sampling tables, transforming attributes types (e.g. from numeric to
nominal), discretizing attributes, and so on. Model-filtering tasks (see 5.9(b))
are used for example to prune a tree using some given criteria, to reduce a set
of rule basing on a minimum support/confidence, and so on.

Figure 5.10 shows three kinds of mining tasks, namely simple mining
(see 5.10(a)), hold out and cross validation (see 5.10(b)). The simple min-
ing task has one input table and one output model, and its only responsibility
is to build the output model using the whole input table.

The hold out mining task has an input table and two outputs: a model
and a table. This task is capable of building the output model upon a fraction
only of the input table (the so-called training set), the remaining data (the
so-called test set) are used to test model accuracy. In effect, the output table



5.3 Implementing the 2W algebra: tasks 65

(a) Simple mining task

(b) Hold out and cross-validation mining
tasks

Fig. 5.10. Mining tasks

is filled with tuples used to test the model, having the same structure of
the input table, plus one extra column which represents the outcome of the
inferred model (e.g. the class value or the cluster label). The fraction of data
to be used as training/test set is fixed by a task’s parameter.

The cross validation mining task is similar to the hold out mining task,
since it is used for building a model and at the same time evaluating it.
Anyway, this task does not perform a simple split between training and test
set, instead an n-fold cross-validation technique is used (see [74]). The number
of folds is fixed using a specific task’s parameter.

The application task has two inputs: a model and a table, and one table
as output. This task is a sort of opposite (join) operation with respects to the
mining tasks. In effect, this task is used to build a table using previously mined
patterns currently stored in a model object. More specifically, since a model
is a specification of a set of properties holding in the data, applying a model
to data essentially means making such properties explicit in extensional form.
In order to be applied to data, each data mining model has to implement
a decidable containment operator. This task is of paramount importance,
since it is capable of putting the mined knowledge stored in the model-world
back into data-world, for example associating each tuple with the most likely
target class according to a given model, or enumerating all frequent patterns
appearing within a tuple.

(a) Table export (b) Model export

Fig. 5.11. Export tasks



66 5 Realizing the formal framework

Figure 5.11 shows a table export task (see 5.11(a)) and a model export
task (see 5.11(b)). Those kinds of tasks have one input of type table and
model respectively, and no output, since their effect is to store data or models
in some external repository.

5.4 Entering tables and models worlds: visualization and
statistics

By double clicking on table/model nodes in the workflow perspective, a
data/model perspective will be opened respectively. From that perspectives, it
is possible to perform data/models analyses by means of graphical exploration
and different representations of data/models. Picture on figure 5.3 shows data
and model perspectives.

(a) Pie chart (b) Box plot

(c) Scatter plot (d) Parallel coordinates

Fig. 5.12. Data visualization

When entering the data perspective, user can specify which statistics or
graphical representations to use. Like in the workflow perspective, where a
node repository contains all available nodes, in the data perspective there is



5.4 Entering tables and models worlds: visualization and statistics 67

a repository where data visualizers are organized into several categories, as
specified in the following schema:

• Statistics: contains descriptive statistics divided in several subcategories:
– basic: such as missing values, distinct values, unique values, etc...
– numeric: such as maximum, minimum, mean, standard deviation, me-

dian, percentiles, etc...
– nominal : such as mode, value-counter, etc...

• Charts: contains several subcategories:
– univariate:

· numeric: such as histograms, lines, box plots (see 5.12(b)), etc...
· nominal : such as pie charts (see 5.12(a)), bar charts, etc...

– multivariate:
· numeric: such as scatter plots (see 5.12(c)), parallel coordinates

(see 5.12(d)), correlation matrixes, etc...
· nominal : such as segment viewers, confusion matrixes, etc...

When entering the model perspective, the user can graphically analyze
generated models. As in data perspective, there is a repository where model
visualizers are organized into several categories. A main difference between
model and data perspective is that model visualizers cannot be applied to all
kinds of models. As a matter of fact, models are significantly different from
each other (see fig. 4.3), and only specific visualizers are suitable to represent
a particular model. Figure 5.13 presents two kinds of model visualizers.

(a) Clustering regions (b) Cluster bubbles

Fig. 5.13. Model visualization





Part III

The RecBoost application





6

Boosting text segmentation via progressive
classification

6.1 Introduction and motivation

The wide exploitation of new techniques and systems for generating, collect-
ing and storing data has made available a huge amount of information. Large
quantities of such data are stored as continuous text. In many cases, this in-
formation has a latent schema consisting of a set of attributes, that would in
principle allow to fit such textual data into some field structure, so that to
exploit the mature relational technology for more effective information man-
agement. For instance, personal demographic information typically comprises
names, addresses, zip codes and place names, which indicate a convenient or-
ganization for the these kind of data. However, the extraction of structure
from textual data poses several challenging issues, since free text does not
necessarily exhibit a uniform representation.

Foremost, the order of appearance of the attributes across the individ-
ual lines of text may not be fixed. In addition, their recognition is further
complicated by the absence of both suitable field separators and a canoni-
cal encoding format, which is mainly due to erroneous data-entry, misspelled
terms, transposition oversights, inconsistent data collection a nd so forth [51].
As a concrete example, common issues in personal demographic data are the
adoption of abbreviations for both proper names and common terms and the
availability of multiple schemes for formatting addresses, phone numbers and
birth dates. Also, distinct records may lack different attribute values, which
makes them appear with a variable structure. Yet, the same data may be
fragmented over disparate data sources, which further exacerbates the afore-
mentioned difficulties.

The notion of Entity Resolution [9, 26, 95], denotes a complex process
for database manipulation that embraces three primary tasks. Schema rec-
onciliation consists in the identification of a common field structure for the
information in a data source. Data reconciliation is the act of discovering
synonymies in the data, i.e. apparently different records that, as a matter of
fact, refer to a same real-world entity. Identity definition groups tuples previ-



72 6 Boosting text segmentation via progressive classification

ously discovered as synonymies, and extracts a representative tuple for each
discovered group.

In this part of the thesis a novel approach to schema reconciliation, called
RecBoost, is proposed, that adopts classification as an effective mechanism
for fragmenting free text into tuples with a common attributes structure.
RecBoost works by performing two macro-steps, namely preprocessing and
reconciliation. The former step is primarily thought for formatting the indi-
vidual lines of text, with potentially-different encoding format, into a uniform
representation. Domain-specific ontologies and dictionaries are then exploited
to associate each such a token with a label denoting its ontological or syntactic
category. Reconciliation is accomplished in terms of progressive classification,
i.e., a multi-stage classification scheme where, at each intermediate stage, a
classifier is learnt from the previous classification outcome, thus being specif-
ically targeted at handling with those textual fragments not reconciled yet.

The main contribution here is thus a methodological approach in which a
strict cooperation between ontology-based generalization and rule-based clas-
sification is envisaged, which allows to reliably associate terms in a free text
with a corresponding semantic category. A key feature is the introduction
of progressive classification, which iteratively enriches the available ontology,
thus allowing to incrementally achieve accurate schema reconciliation. This
ultimately differentiates this approach from previous works in the current lit-
erature, which adopt schemes with fixed background knowledge, and hence
hardly adapt to capture the multi-faceted peculiarities of the data under in-
vestigation.

Moreover, due to the variable number of classification stages, RecBoost
gives the user finer control over the trade-off between accuracy (i.e. the pro-
portion of correctly classified tokens w.r.t. the classification behavior of the
overall RecBoost system) and recall (i.e. the proportion of correctly classi-
fied tokens w.r.t. the actual tokens to reconcile). In practice, the user can
choose a classifier with a trade-off satisfying the requirements of the specific
application.

Still, the approach is further strengthened by the adoption of local rule-
based classification models, i.e., patterns of term co-occurrence associated with
specific class labels. Local models work practically well in combination with
progressive classification, since they only handle the local specificities they
are able to cope with, and postpone the unknown cases to subsequent classifi-
cation stages. By contrast, traditional approaches from the literature exploit
global classification models, which are more prone to overfitting when dealing
with the several contrasting specificities occurring across individual sequences.
In addition, the combination of rule-based classification models with domain-
specific ontologies makes the generic RecBoost classifier very intuitive, i.e.
easier to interpret than state-of-the-art probabilistic methods, such as DATA-
MOLD [12] and Mallet [69].

In order to take advantage from results obtained in the previous stages, we
effectively exploit the 2W Model framework defined in 5. Notice that the afore-



6.2 Related work 73

mentioned approach can be modeled outside the 2W Model, but the exploita-
tion of our KD framework ease the definition of the overall KD workflow. In
the following sections, both the ad-hoc modeling and the 2W Model approach
will be discussed, showing the benefits of the second mentioned approach.

6.2 Related work

Text reconciliation is clearly related with Part Of Speech (POS) Tagging and
Shallow Parsing, Wrapping and, in general, with the problem of extracting
structure from free text. The aim of POS Tagging is to assign labels to speech
words that reflect their syntactic category. To this purpose, both statistical
and rule-based techniques [14, 62, 67, 68] have been proposed in the litera-
ture. In practice, the basic idea behind POS tagging consists in disambiguating
phrases by exploiting dictionaries and analyzing the textual context surround-
ing each candidate entity. However, the approach fails at treating exceptions,
i.e., words that are not included in a dictionary, such as proper names, cities,
or addresses. By contrast, these are exactly the features which characterize
our scenario.

The point is that POS Tagging always allows the assignment of a set of
labels to each word and, consequently, focuses on finding the most adequate
candidate. However, a term can generally assume very different meanings, de-
pending on both its position in the free text and its neighboring words. Hence,
this imposes a different treatment for known lexicons and for the aforemen-
tioned exceptions. The former can be labeled by resorting to suitable look-up
tables, whereas the latter would require some ad hoc processing, that takes
into account the assigned labels. Viewed in this respect, our approach first
employs dictionaries for associating reliable labels to common terms in a free
text. Then, automatically-generated rules are exploited for classifying those
remaining terms that cannot be found in the cited dictionaries.

As far as wrapping is concerned, most algorithms considerably rely on
HTML separator tags, and on the fact that data represent a regular multi-
attribute list [38]. Such approaches are not effective in domains where data
do not necessarily adhere to a fixed schema. Indeed, instances in our prob-
lem are more irregular, since the order of fields is not fixed, not all attributes
are present, etc. The classification of an item is better performed accord-
ing to its neighboring words, absolute/relative position in the string, nu-
meric/alphanumeric characters, and so on. To our knowledge, few exception
are capable of effectively dealing with such features [3, 19, 85]. For example,
WHISK [85] can deal with missing values and permutations of fields, but it
requires a “complete” training set, i.e. a set of examples including all the
possible occurrences of values.

ILP provides a solid framework for designing rule-based systems aimed at
text categorization and information extraction [27, 41]. In particular, a divide-
and-conquer approach to the problem of learning rules for accomplishing both



74 6 Boosting text segmentation via progressive classification

these latter tasks is proposed in [60]. In principle, such a technique can be
employed for text reconciliation, since it allows the extraction of focussed tex-
tual fragments and their subsequent labeling. However, its exploitation for
practical applications is problematic, due to the fact that rules have to explic-
itly locate fragment boundaries. This imposes a non-trivial learning phase,
that requires two distinct sets of training examples, respectively necessary
for denoting what specific (aggregates of) words can be taken into account
as possible boundaries within the underlying textual data and for specifying
how to label their intermediate fragments. Also, fragment extraction relies on
tests on the occurrences of domain-specific words, that are either learnt from
the training examples, or exhibit some degree of positive correlation to such
examples. However, locating all relevant fragments determined by meaning-
ful combinations of these words is computationally unfeasible. This imposes
the exploitation of various indexing structures to accelerate the evaluation of
rule predicates on the underlying text. By contrast, RecBoost pursues token-
by-token reconciliation, thus overcoming all of the above issues related to
fragment boundaries.

Several recent approaches to schema reconciliation rely on Hidden Markov
Models (HMM) [4, 12, 64, 42, 76]. Schema reconciliation with HMM can be ac-
complished by learning the structure of a HMM, and applying the discovered
structure to unknown examples. As an example, DATAMOLD [12] employs a
training phase to learn a HMM, that consists of a set of states and directed
edges among such states. Two particular states are the initial and the final
states. The former has no incoming edges, whereas the latter has no outgoing
edges. Every state of the HMM, except from the initial and final ones, repre-
sents a class label and is associated with a dictionary, grouping all the terms
in the training set that belong to the class. Edges among states are associ-
ated with transition probabilities. A textual sequence can be classified if its
constituting terms can be associated to states of the HMM, that form a path
between the initial and final states. Precisely, DATAMOLD pursuits classifi-
cation by associating a single term to all those states, whose corresponding
dictionaries include the term. Hence, a sequence of textual terms is mapped
to multiple paths throughout the HMM. Transition probabilities are then ex-
ploited to identify the most probable path and, hence, to accordingly classify
the terms in the sequence at hand. Clearly, those sequence, whose tokens do
not form any path between the initial and final states, cannot be classified.

The effectiveness of the approaches based on HMMs strongly depends on
the number of distinct terms occurring in the training set. Indeed, in order to
associate terms that do not appear in the training set with a corresponding
state, DATAMOLD relies on smoothing, i.e. on the exploitation of ad-hoc
probabilistic strategies.

Furthermore, the classification of individual term sequences in one step,
i.e. subjected to the existence of corresponding paths throughout the automa-
ton, is a major limitation of HMMs. Indeed, depending on the outcome of
the training phase, these cannot undertake the reconciliation process, when-



6.2 Related work 75

ever a path for the sequence at hand does not exist. Also, the existence of
one or more paths for a given input sequence may not determine a proper
reconciliation. This latter aspect is clarified in fig. 6.1, where it is shown that
the HMM topology prevents the correct reconciliation of the input sequence
Harry Hacker London. Notice that node labels indicate input tokens for the
automaton. Moreover, the color of node labels corresponds to actual token
classes (i.e. name/green, surname/red and city/blue), whereas the color of a
node contour denotes the class assigned by that node to its label. Clearly,
discrepancies between node and label colors represent reconciliation errors.
The illustration shows that four paths exist in the automaton and, hence, as
many alternatives to reconcile the input sequence. However, all such paths
lead to erroneous reconciliations. The only sequence of states in the automa-
ton, that would lead to a correct reconciliation, does not form a path between
the ending states I .S . and F .S ., thus being unemployable to reconciliation
purposes.

I.S.

Harry

Harry

Hacker

Hacker

Hacker

London

London

F.S.

Fig. 6.1. Unreliable token reconciliation due to HMM topology

Worst, HMMs represent ”global classification models”, since they tend to
classify each term of the sequence under consideration, and hence are quite
sensitive to unknown tokens. Consider the sequence Harry 348.2598781 London,
where the second token represents a phone number. Although the correct la-
bel is unknown to the model shown in fig. 6.1, the latter will still try to assign
a known label to the token. As a consequence, the whole sequence will result
in a low fitting. It is worth noticing, however, that some regularities in the
structure (e.g. the high probability that a sequence starts with a name) would
allow to correctly classify the ”known part” of the sequence, by avoiding to
classify the ”unlikely” term.

Recently, emphasis has been paid to the analysis of token context (i.e. of
the tokens following and preceding the one at hand) for more accurate rec-
onciliation. In particular, Maximum Entropy Markov Models (MEMMs) [42],
i.e. conditional models that represent the probability of reaching a state given
an observation and the previous state, can be seen as an attempt at contex-



76 6 Boosting text segmentation via progressive classification

tualizing token reconciliation. However, MEMMs suffer from the well known
label-bias problem [64].

Conditional random fields (CRFs) [64, 69] are a probabilistic framework,
that can be employed for text labeling and segmentation. The underlying idea
is to define a conditional probability distribution over label sequences, given
a particular observation sequence, rather than a joint distribution over both
label and observation sequences. CRFs provide two major advantages. First,
their conditional nature relaxes the strict independence assumptions required
by HMMs to guarantee tractable inference. Second, CRFs avoid the label bias
problem. Still, such improvements in the HMM technology represent global
classification models, since they tend to classify each term into the sequence
under consideration, and hence do not prevent the problem of misclassifying
unknown tokens.

Though CRFs outperform both MEMMs and HMMs in a variety of ap-
plicative scenarios, including bioinformatics, computational linguistics and
speech recognition,

An unsupervised approach to text reconciliation is introduced in [4]. The
basic idea here is to exploit reference relations for building segmentation mod-
els. The notion of reference relation denotes a collection of structured tuples,
that are specific to a domain of interest and exemplify clean records for that
domain. The approach consists of a two-step process. Assume that R is a
reference relation with an attribute schema A1, . . . , An. Each column of R
is considered as a dictionary of basic values for the corresponding attribute.
Initially, a preprocessing step is performed for building an attribute recogni-
tion model (ARM) for each attribute of the reference relation schema. The
generic ARMi is a HMM that allows the evaluation of the probability with
which a subsequence of tokens in an input string belongs to the domain of the
corresponding schema attribute Ai.

A fixed three-layered topology and the exploitation of a feature hierarchy,
i.e. a set of generalizations for basic values, make each ARM capable of dealing
with unknown tokens and robust to noise within input data. A fixed BMT
topology is adopted for ARMs. This guarantees accurate text segmentation
and robustness to noise in the reference table, while avoiding the reliance on
cross-validation techniques and stochastic optimizations [12] to automatically
decide proper HMM topologies, that would otherwise require several scans of
the underlying reference table.

The ARMs of all attributes can be exploited to determine the best seg-
mentation of an input string at the second (run-time) step. This involves to
first learn the total order of attributes from a batch of input strings and to
subsequently segment the individual input strings with respect to the detected
attribute order. More specifically, the identification of a total attribute order
requires the previous computation of pairwise precedence probabilities. These
are probabilistic estimates of precedences between all pairs of attributes, that
are provided by their corresponding ARMs. A total ordering among all of the
attributes is hence discovered by choosing the best sequence of attributes,



6.2 Related work 77

i.e. the sequence that maximizes the product of precedence probabilities of
consecutive attributes with respect to the given order. Finally, an exhaustive
search is employed to determine the best segmentation of an input string s into
n token subsequences s1, . . . , sn, such that the reconciliation of each si with
the corresponding schema attribute Asi maximizes the overall reconciliation
quality

∏n
i=1 ARMsi

(si) among all possible segmentations.
Notice that the exploitation of reference tables is a natural way of auto-

matically building training sets for the text reconciliation problem described
beforehand. And indeed, although declared as an unsupervised approach, this
technique suffers from two general weaknesses, that are inherent of super-
vised methods. Foremost, a reference relation may not exist for a particular
applicative scenario. Also, whenever the overall number of tuples involved
is not sufficiently large, the columns of the employed relations may not be
adequately rich dictionaries of basic domain tokens. This would affect the
construction of ARMs and, hence, the overall segmentation effectiveness.

As to a more specific comparison with our contribution, the reference table
approach [4] requires to initially learn the order with which attributes appear
within the input data. By contrast, though being a supervised approach, Rec-
Boost does not rely on learning attribute order from training data. This is due
to the adoption of classification rules, that allow the reconciliation of a given
token on the sole basis of the relationships among the entities (i.e. further tex-
tual tokens, ontological categories and attributes) in the context surrounding
the token at hand. Moreover, segmentation with respect to a given attribute
order relies on the underlying assumption that such an ordering is fixed across
input sequences. This may make reconciliation problematic when, instead, the
tokens of two or more attribute values are interleaved (rather than being con-
catenated) in the data to segment.

Furthermore, the reference table approach adopts ARMs for reconciliat-
ing individual attribute values. However, ARMs are basically HMMs and,
hence, suffer from the aforementioned limitations. Roughly speaking, ARMs
are global classification models and, hence, overly specific in attribute recog-
nition as far as three aspects are concerned, namely positional, sequential and
token specificity. These aspects impose suitable generalizations for the ARMs:
the adoption of a fixed three-layered topology capable of dealing with posi-
tional and sequential specificities and the exploitation of token hierarchies for
mitigating token specificity. On the contrary, RecBoost relies on association
rules for attribute value reconciliations. Association rules are better suited
at detecting local patterns, especially when the underlying data to segment
contain many contrasting specificities. Moreover, a natural generalization of
classifiers, i.e. the improvement of their classification accuracy, is trivially ob-
tained by attempting to reduce classifier complexity, via attribute and rule
pruning.



78 6 Boosting text segmentation via progressive classification

6.3 Notation and preliminaries

To formalize the Schema Reconciliation problem, we assume the basic defini-
tions in the following section.

An item domain M = {a1, a2, . . . , aM} is a collection of items. Let s be a
sequence a1, . . . , am where ai ∈M. The set of all possible sequences is denoted
byM∗. In general, an item ak belongs to a sequence s (denoted by ak∈s) if s =
a1, a2, . . . , ak, . . . , an. Moreover, we denote the subsequence a1, a2, . . . , ak−1 as
pres(ak), and the subsequence ak+1, ak+2, . . . , an as posts(ak).

A descriptor R = {A1, . . . , An} is a set of attribute labels. A descriptor cor-
responds to a database schema, with the simplification that, for each attribute
label Ai, domain information is omitted. Thus, our specific problem can be
viewed as follows: given a descriptor (database relation) R = {A1, . . . , An},
and a data set of sequences (free text) S = {s1, . . . , sm} ⊆ M∗, we want to
segment each sequence si into subsequences s1

i , . . . , s
n
i , such that each token

a∈sh
i is associated with the proper attribute Aj .
For example we may want to fit an unstructured collection of personal

demographic information representing names, addresses, zip codes and cities,
in a proper schema with specific fields for each category, as exemplified in
fig. 6.2.

s1 Harry Hacker Northern Boulevard 3001 London

s2 C Cracker Salisbury Hill Flushing

s3 Tony Tester Brooklyn Johnson Avenue 2

(a)

NAME ADDRESS ZIP CODE CITY

s1 Harry Hacker Northern Boulevard 3001 London

s2 C Cracker Salisbury Hill Flushing

s3 Tony Tester Johnson Avenue 2 Brooklyn

(b)

Fig. 6.2. (a) Unstructured data. (b) Reconciled data.

Text reconciliation can be profitably employed in several contexts. We
briefly mention a wide range of major applications, to provide a taste of
the generality of our approach. The harmonization of postal addresses affects
large organizations like banks, telephone companies and universities, which
typically collect millions of unformatted address records. Since each address-
record can, in principle, be retrieved from a different data source (designed
with different purposes), variations in the way such records are stored are far



6.3 Notation and preliminaries 79

from unusual. Further applicative scenarios requiring to deal with the schema
reconciliation problem include processing bibliographic records, collections of
information about products, medical sheets, and so forth.

A typical applicative setting which motivates our work is the mentioned en-
tity resolution problem, which roughly consists in discovering/disambiguating
duplicate tuples [26, 9, 85]. When tuples consist of free text, which however
contains a hidden structure, tuple disambiguation can be accomplished by
exploiting either exact matching techniques, based on specific segments of
the strings, or simpler (fuzzy) techniques, that ignore segmentation. Clearly,
exact matching is more reliable, provided that the original text is correctly
segmented. Consider, e.g., the strings

s1 Jeff, Lynch, Maverick, Road, 181, Woodstock
s2 Jeff, Alf., Lynch, Maverick, Rd, Woodstock, NY

that clearly represent the same entity. A correct segmentation of the strings
would eventually ease the task of recognizing the similarity:

NAME ADDRESS CITY STATE
s1 Jeff, Lynch Maverick, Road, 181 Woodstock
s2 Jeff, Alf., Lynch Maverick, Rd Woodstock NY

In principle, various schemes may be followed to catch string resemblance.
Without loss of generality, we here focus on two basic approaches, namely Jac-
card similarity and weighted Jaccard similarity. The former measure catches
resemblance between any two strings by measuring their degree of overlap, i.e.
the proportion of common tokens. Formally, the Jaccard similarity between
the above strings s1 and s2 is defined as

dJ(s1, s2) =
|s1 ∩ s2|
|s1 ∪ s2|

The latter measure weights segment matches by the relevance of the corre-
sponding attributes. Let w1, w2, w3, w4 be four weights respectively denoting
the relevance of segment matches in correspondence of the attributes NAME,
ADDRESS, CITY and STATE. The definition of the weighted Jaccard similarity
between the foresaid strings s1 and s2 is

d′J(s1, s2) =
∑4

i=1 widJ(ai, bi)∑4
i=1 wi

where entities ai and bi denote two corresponding segments, respectively
within s1 and s2.

It is easy to see that dJ(s1, s2) = 0.44. Such a result does not fully re-
flect the evident similarity of s1 and s2, which may generally prevent their



80 6 Boosting text segmentation via progressive classification

disambiguation. To overcome such a limitation, it is sufficient to reasonably
assume that a low degree of overlap between string segments corresponding to
the ADDRESS and STATE attributes should not heavily penalize the overall
similarity. Indeed, multiple addresses can be associated to an individual in a
same city, whereas the latter resides in only one state. By accordingly fixing
w1 = 0.5,w2 = 0.1,w3 = 0.35 and w4 = 0.05, it follows that d′J (s1, s2) = 0.71,
which more appropriately reflects the actual resemblance between the two
strings under comparison. This confirms that exact matching techniques en-
able more effective string de-duplication, whenever the original strings can be
accurately segmented.

Thus, a de-duplication system adopting a text segmentation methodol-
ogy, would effectively leverage its performance, provided that the embedded
segmentation methodology is reliable.

Reliability here has a strict meaning: strings should be correctly seg-
mented, and errors in segmenting should be absolutely avoided. Indeed, a
wrong segmentation would likely result in a worsening of the de-duplication
effectiveness, even when compared to simpler schemes. As an example, let us
consider the following wrong segmentation of the above strings:

NAME ADDRESS CITY STATE
s1 Jeff, Lynch Maverick Road 181 Woodstock
s2 Jeff, Alf. Lynch Maverick, Rd Woodstock NY

In such a case, it still holds that dJ(s1, s2) = 0.44, whereas d′J(s1, s2) = 0.125.
In other words, though previously shown more effective, weighted Jaccard
similarity now reveals unreliable. Instead, simpler schemes disregarding seg-
mentation, such as basic Jaccard similarity, could still somehow enable string
disambiguation in an acceptable way.

The point is the trade-off between precision (i.e., the capability of correctly
segmenting a tuple) and recall (i.e., the capability of segmenting a whole). It
is clear that classification systems exhibiting high precision, even at the cost
of low recall, can be safely embedded into a deduplication system, according
to the scenario described in fig. 6.3.

In this scenario, a text segmentation system has two choices: either a
sequence can be safely segmented, and the result of the segmentation is re-
liable, or the segmentation result is not affordable. In the former case, exact
matching techniques based e.g. on weighted Jaccard similarity can be ap-
plied, whereas the latter case can still provide a reconciliation, which is how-
ever based on fuzzier schemes. Unfortunately, the state-of-the-art approaches
from current literature, based on probabilistic modeling, do not properly fit
the above scheme, since they foresee a segmentation even in presence of high
uncertainty.



6.4 RecBoost methodology 81

Input sequence
Can be

segmented?
Reconciled sequence

YES

NO

Reconcile via exact matching

Reconcile via some looser scheme

Fig. 6.3. Example reconciliation

RecBoost is an approach for contextualized reconciliation that moves away
from probabilistic modeling. The idea is to first foresee a segmentation of tex-
tual sequences into tokens and, then, to perform a token-by-token classifica-
tion, that involves the analysis of the surrounding context. This basic task is
at the heart of progressive classification, i.e. a strategy for text reconciliation,
consisting in the exploitation of multiple, consecutive stages of classification.
At each intermediate stage, a classifier learns from the outcome of its an-
tecedent how to deal with those tokens, that were not reconciled at the end of
the previous stage. This ensures reconciliation effectiveness even on unknown
terms.

6.4 RecBoost methodology

The reconciliation of a set S = {s1, . . . , sm} of sequences with an attribute
schema R = {A1, . . . , An} consists in the association of each token a within
the generic sequence s ∈ S with an appropriate attribute of R. Using complex
data type defined in 5.2.1, the aforementioned sequences can be modeled using
event collections. More precisely, a sequence s is modeled by an event collection
ec whose events e1, ..., ek represent token a1, ..., ak of the sequence s. Since we
are going to show both the ad-hoc approach and the KD framework approach,
from now on, we use both the terms sequence and event collection to denote
a string that has to be reconciled. Similarly, we use both the terms token and
event to refer to a particular element of the aforementioned string.

RecBoost pursues text reconciliation via term generalization. Precisely, two
types of generalizations are involved, namely syntactic and ontological analy-
sis, and contextual generalization. The former aims at labeling textual tokens
with their syntactic or ontological categories. The latter employs knowledge
of the relationships among textual tokens, ontological categories and schema
attributes, for assigning each token to a proper schema attribute.

As an example, a token a composed by multiple consecutive digits may
be ontologically denoted as a number. Subsequently, the contextual presence



82 6 Boosting text segmentation via progressive classification

on the same sequence containing a of two further ontological labels, such as
city and street (respectively following and preceding a), may determine the
reconciliation of a with an attribute address of the schema descriptor.

Syntactic and ontological analysis.

RecBoost exploits a user-defined domain ontology, in the style of the ones
employed in [4, 12], to preprocess sequences within S. In practice, a domain
ontology is specified as G = 〈L, /,A〉, where L is a set of categories, / is a
precedence relation defined on L, and A is a set of rules whose structure is
sketched below:

if Condition
then Action

L represents a set of ontological concepts, which can be exploited in order
to generalize tokens within a sequence. Such concepts are structured in a
concept hierarchy, specified by the / relation. Fig. 6.4 shows an exhaustive set
of concepts and their hierarchical relationships.

Fig. 6.4. A concept hierarchy for personal information in a banking scenario

A = {r1, . . . , rh} is a set of rules, that are useful to specify background knowl-
edge about the domain under consideration, and are meant to provide a trans-
formation of a set of tokens appearing in a sequence. Formally, the generic
rule ri ∈ A relates a basic textual token with some corresponding ontological
concept in L, i.e. ri : M∗ → L. Generally, the prior definition of a num-
ber of rules allows to properly deal with several tokens in a wide variety of
applicative settings, with no substantial human effort.

As to the interpretation of ontological rules, Condition specifies a pattern-
matching expression defined over the tokens of a sequence, and Action speci-
fies some actions to take on such tokens. We here focus on two main actions,



6.4 RecBoost methodology 83

exemplified in the context of the ontological rules A = {r1, r2, r3} adopted
for the concept hierarchy of fig. 6.4. The following two rules r1 and r2 in-
volve both type of actions, in : r2 tag is a context of event e (see refrealiz-
ing:eventCollection).

ad-hoc system KD framework

r1:
if a is a four-digits token
then replace a with ZIP-CODE

if e is a four-digits event
then e.tag = ZIP-CODE

ad-hoc system KD framework

r2:

if ai is a four-digits token
and ai+1 is a token

containing digits
then merge ai and ai+1

if ei is a four-digits event
and ei+1 is an event

containing digits
then merge ei and ei+1

In general, relabeling actions, such as r1, substitute a token (or a set of
tokens) with a concept in L. Restructuring actions, such as r2, operate on a
set of tokens, by applying basic transformation operations (such as deleting,
merging or segmenting).

Rules can also exploit user-defined dictionaries. As an example, the below
rule r3 specifies that each token appearing in the set Dictionary of all known
toponyms (which comprises, e.g., street, road, blvd, etc.) can be generalized
by the category TOPONYM in L.

ad-hoc system KD framework

r3:
if a ∈ Dictionary
then replace a with TOPONYM

if e ∈ Dictionary
then e.tag = TOPONYM

By exploiting G, syntactic generalization performs two steps. First, it trans-
forms the original sequences in S = {s1, . . . , sn} into a new set S′ =
{s′1, . . . , s′n}, where each sequence s′i is obtained from si by applying the rules
in A 1. Second, the available tokens in each sequence are further generalized
1 Notice that multiple matching preconditions can hold for the same set of tokens.

This potential ambiguity is solved via a user-defined order over the rules in A:
when multiple rules can be applied, the first rule is chosen, and the others are
ignored. In the above example, both rules r1 and r2 can be potentially applied
to a sequence of digits. However, a token containing 4 digits can be interpreted
as a zip code if and only if it is not followed by a new number (in which case,
the former token has to be interpreted as an area code within a phone number).
Thus, in order to disambiguate rule selection, r2 is given a precedence on r1, so
that to initially favor the attempt at generalizing longer digit sequences.



84 6 Boosting text segmentation via progressive classification

by an ad-hoc exploitation of the hierarchy described by the / relation. The
exploitation is a direct result of a cooperation with contextual analysis, which
reconciles tokens in S′ as described in the next subsection.

Contextual analysis.

This step is meant to associate tokens (event collections) in S with their
corresponding attributes in R. We approach the problem from a supervised
learning perspective. Formally, we assume that there exists a partial function
λ : M∗ 7→ M 7→ R that, for each sequence s ∈ M∗, labels a token (event)
a into a schema attribute Aj , namely λs(a) = Aj ∈ R. Hence, the problem
can be stated as learning λ from a training set T such that, for each sequence
(event collection) s ∈ T and for each token (event) ai ∈ s, the label λs(ai) is
known.

In order to correctly classify each token ai∈s, we exploit information about
its neighborhood. More specifically, the neighborhood features(ai) of a generic
token ai ∈ s, is the set of all the items preceding and following ai in s and is
formally defined as follows:

features(ai) = 〈pres(ai), ai , posts(ai)〉

In the above notation, pres(ai) is the fragment of features(ai) that pre-
cedes ai. Dually, posts(ai) indicates the context segment that follows ai. The
set T = {〈features(a), λs(a)〉|s ∈ T, a∈s} represents the training set for our
classification problem.

Using event collections, instead, we can easily model pres(ai) and posts(ai)
as event contexts. In practice, tokens (event) in pres(ai) will be grouped in
an event collection, and such event collection will be the value of the e.pre
context. Similarly, tokens (event) in posts(ai) will be grouped in an event
collection, and such event collection will be the value of the e.post context.

The idea beyond contextual analysis is to examine the context features(a)
of each token a within any sequence s, in order to learn meaningful asso-
ciations among groups of tokens of S. These associations can be then ex-
ploited to learn a rule-based classifier, that associates each individual token
in S with an attribute in R. In practice, our objective is to build a classifier
C : (M∪L ∪R)∗ 7→ M 7→ R, specified by rules such as the one sketched
below:

if Condition
then λs(a) = Class

Here, a and s represent, respectively, token (events) and sequence (event
collection) variables. Moreover, Condition represents a conjunction of terms,



6.4 RecBoost methodology 85

and Class represents an attribute in R. Terms in Condition can be specified
in three different forms: either as a = v, v ∈ pres(a) or v ∈ posts(a), where
v is any constant in M∪L ∪ R. Working with event collections, instead, we
will have: e = v, v ∈ e.pre or v ∈ e.post

The latter two conditions strictly relate token reconciliation with context
inspection. Indeed, condition v ∈ pres(a) (resp. v ∈ posts(a)) narrows context
analysis to what actually precedes (resp. follows) token a.

In the process of distilling a rule-based classifier from a training set T , a
holdout approach is adopted to partition T into a validation set V and an
actual training set D = T − V . The goal is learning a classifier from D that
has highest accuracy on V . In principle, any rule-based classifier could be used
here. However, we found that classification based on association rules is more
effective in this setting than, e.g., traditional algorithms based on decision-
tree learning. The intuition behind the above statement is that association
rules are better suited to detect local patterns which hold locally on small
subsets of D. This is especially true when D is large, and contains many con-
trasting specificities across individual sequences. By contrast, decision trees
represent global models, which are hardly able to capture such specificities
without incurring into the overfitting phenomenon. In addition, the intrinsic
unstructured nature of the feature space to analyze does not allow an immedi-
ate application of decision-tree learning techniques, whereas association rule
mining techniques naturally fit the domains under consideration.

A variant of the Apriori algorithm [5] is exploited to extract from the
explicit representation of token contexts, D = {〈features(a), A〉|s ∈ D, a ∈
s,A ∈ R}, a set of association rules that meet pre-specified requirements on
their support and confidence values and whose consequents are narrowed to
individual schema attributes. A classifier can hence be built on the basis of
such discovered rules, by selecting the most promising subset, i.e, the subset of
rules which guarantees the maximal accuracy. To this purpose, we adopted the
CBA-CB method [53], which allows an effective heuristic search for the most
accurate association rules. Succinctly, its basic idea is to sort the extracted
associations by exploiting a precedence operator ≺. Given any two rules ri

and rj , ri is said to have a higher precedence than rj , which is denoted by
ri ≺ rj , if (i) the confidence of ri is greater than that of rj , or (ii) their
confidences are the same, but the support of ri is greater than that of rj , or
(iii) both confidences and supports are the same, but ri is shorter than rj .
Hence, a classifier can be formed by choosing a set of high precedence rules
such that

1. each case in the training set D is covered by the rule with the highest
precedence among those that can actually cover the case;

2. every rule in the classifier correctly classifies at least one case in D, when
it is chosen.

The resulting classifier can be modeled as 〈r1, r2, . . . , rn〉, where ri ∈ D,
ra ≺ rb if b > a. While considering an unseen case of D, the first rule that



86 6 Boosting text segmentation via progressive classification

covers the case also classifies it. Clearly, if no rule applies to a given case, the
case is unclassified.

We revised the scheme of [53] by implementing a post-processing strategy,
which aims at (1) further improving the classification accuracy of the discov-
ered rules, and at (2) reducing the complexity of the discovered rules. The
postprocessing is mainly composed by attribute and rule pruning. The idea
behind attribute pruning consists in removing items from classification rules,
whenever this does not worsen the error rate of the resulting classifier. The
validation set V is exploited to assess classification accuracy.

Precisely, let r be a generic classification rule containing at least two terms
in the antecedent. Also, assume that s denotes a generic sequence in V and
that x represents a token within s. The error rx of rule r on x is a random
variable

rx =
{

1 if r misclassifies x
0 otherwise

Hence, the overall error of r on V can be defined as follows,

E(r) =
1

nV

∑

x,s/x∈s,s∈V

rx

where nV indicates the overall number of tokens within V . A new rule r′

can now be generated by removing from the antecedent of r any of its terms.
We replace r by r′ if two conditions hold, namely E(r′) < E(r) and the dis-
crepancy E(r)−E(r)′ is statistically relevant. To verify this latter condition,
we exploit the fact that for nV large, the distribution of E(r) approaches the
normal distribution. Hence, we compute a τ% confidence interval [α, β], whose
lower and upper bounds are respectively given by

α = E(r)− cτ

√
E(r)[1− E(r)]

nV

and

β = E(r) + cτ

√
E(r)[1− E(r)]

nV

where, constant cτ depends on the confidence threshold τ . The above in-
terval represents an estimate for the actual error of rule r. Finally, we retain r′

instead of r, if it holds that E(r′) < α. In such a case, we analogously proceed



6.5 RecBoost anatomy 87

to attempt at pruning further items from the antecedent of r′. Otherwise, we
reject r′.

Rule pruning instead aims at reducing the number of rules in a classifier.
As in the case of attribute pruning, the idea consists in removing rules from a
classifier, whenever this does not worsen the accuracy of the resulting classifier.

To this purpose, all rules in a classifier are individually evaluated on the
basis of their precedence order. A generic rule r is removed, if one of the
following conditions holds:

• r does not cover a minimum number of cases in V ;
• the accuracy of r on V is below a minimum threshold;
• the removal of r from the classifier increases its overall accuracy on V .

6.5 RecBoost anatomy

Association rules for classification allow to tune the underlying classification
model to a local sensitivity. However, in principle their adoption can yield a
high number of unclassified tokens, i.e., tokens for which no rule precondition
holds. In a reconciliation scenario, this is due to the presence of unknown
or rare tokens, as well as errors in the text to segment. The adoption of
a concept hierarchy mitigates such a drawback and, indeed, it has already
been adopted in traditional approaches based on HMM [4, 12]. The novelty
in the RecBoost reconciliation methodology relies on a finer cooperation be-
tween synthactic/ontological analysis and contextual analysis. The reiteration
of the process of transforming tokens and learning a rule-based classifier allows
progressive classification, i.e., the adoption of multiple stages of classification
for more effective text reconciliation. Precisely, a pipeline P = {C1, . . . , Ck}
of rule-based classifiers is exploited to this purpose. At the generic step i,
i = 2, . . . , k, a classifier Ci is specifically learnt to classify all those tokens,
that were not reconciled at the end of step i − 1. The length k of the classi-
fication pipeline is chosen so that to achieve accurate and exhaustive classi-
fication. Conceptually, this requires to minimize the overall number of both
misclassified and unclassified tokens. In practice, a further classification stage
is added to P whenever such values do not meet application-specific require-
ments, such as in the case where the misclassification rate is acceptable, but
the unclassification rate is not satisfactory.

The generic classifier Ci can be formally described as a partial mapping
Ci : (M∪L ∪R)∗ 7→ M 7→ R, and its construction relies on a specific training
set Ti, that is obtained from Ti−1 by adding domain information provided by
Ci−1. Given any sequence s ∈ Ti−1, Ci is learnt from the evaluation of the set
Xs of unknown tokens, i.e. the set of those tokens in s, that are not covered by
any rule of Ci−1. This is accomplished by enriching the domain information
in G with a new set of rules directly extracted from the set of classification
rules in Ci−1. Specifically, each classification rule r ∈ Ci−1 such as the one
below:



88 6 Boosting text segmentation via progressive classification

if Condition
then λs(a) = Class

is transformed into a labeling rule r′, having the following structure:

ad-hoc system KD framework

r′: if Condition
then replace a with Class

if Condition
then e.tag = Class

The new rule r′ is then added to the set A of rules available for syntactic
analysis. Then, syntactic analysis is applied to each sequence s in Ti−1, and
the resulting transformed sequences are collected in Ti. A new training set Ti is
then generated by collecting, for each sequence s ∈ Ti and each token a ∈ Xs,
the tuples 〈features(a), λs(a)〉. Notice that there is a direct correspondence
between the context features(a) computed at step i and the context computed
at step i− 1. Indeed, the new context features(a) follows from the context of
a within Ti−1 by replacing each token b 6∈ Xs of s with its corresponding
attribute Ci−1(b).

Notice that the aforementioned methodology can be modeled in an easy
and elegant way using 2W Model and the relative KD framework, as illustrated
in figure 6.5.

On the other hand, outside 2W Model and without event collection data
type, the discussed methodology is quite complex to be modeled, and the
application has to be supported by three main components, namely a prepro-
cessor (tokenizer), a classifier learner and a postprocessor. The components
have to cooperate both in the training and in the classification phases, as
detailed in figure 6.6. In the following, we explain the role played by each of
the aforementioned modules, illustrating also the corresponding proceedings
in the KD framework modeling case.

Preprocessor

Initially, a cleaning step has to be performed by this component, to the pur-
pose of encoding the initial data sequences of a free text S into a uniform
representation. This phase involves typical text-processing operations, such
as the removal of stop-words, extra blank spaces, superfluous hyphens and
so forth. The preprocessor then proceeds to split free text into tokens. The
main goal of this phase is to recognize domain-dependent symbol-aggregates
(e.g. acronyms, telephone numbers, phrasal construction, and so on) as single
tokens. As an example, aggregates such as ’I B M ’, ’G. m. b. H.’ or ’as well
as’ are more significant as a whole, rather than as sequences of characters in
the text. The identification of symbol aggregates as well as domain/specific



6.5 RecBoost anatomy 89

Fig. 6.5. RecBoost methodology in the KD framework

cleaning steps are accomplished by using domain-specific transformation rules
suitably defined in G.

In the KD framework, all those operations are performed by task elements
(i.e. data filters). In this step, input string are also transformed in event col-
lections objects.

Classifier learner

The classifier learner is responsible for producing an optimal set of classifi-
cation rules, as shown in figure 6.6(a). It consists of four main elements: a
generalizer, an association rule miner, a filter for classification rules and a
classifier pruner. In particular, the generalizer performs ontological general-
ization, by exploiting the labeling rules and the / relationship defined in G.
Its role is mainly to enable the discovery of accurate association/classification
rules, by providing an adequate degree of generalization among the data. To
accomplish this task, the generalizer employs the labeling rules in A. Next,
for each label replacing a token somewhere in a textual sequence, the related
concept hierarchy is inspected and the textual sequence is extended to also
include the ancestors of the specific label. The latter operation is performed
by the association rule miner, that extracts generalized association rules from
the above extended sequences. The classification rules filtered by the classifi-
cation rules filter, which in principle could contain several redundancies (due



90 6 Boosting text segmentation via progressive classification

(a)

(b)

Fig. 6.6. Training (a) and Classification (b) phases in the RecBoost methodology

to the exploitation of the hierarchy in the association mining step), are fur-
ther postprocessed by the classifier pruner. The latter attempts to reduce the
overall size of the discovered rules by exploiting the aforementioned attribute
and rule pruning techniques.

In the KD framework, all those operations are performed by a mining task
in conjunction with a suitable model object.

Post-processor

The postprocessor rebuilds the sequences reconciled by a rule-based classi-
fier, at any stage of progressive classification, by fitting them into a relational
structure with schema R, as shown in figure 6.6(b). This is accomplished by
interpreting each (partially) reconciled sequence as a structured tuple, and or-
ganizing the tokens that have been so far reconciled as values of corresponding
schema attributes.



6.6 An illustrative example 91

Postprocessing enables progressive reconciliation: at any stage, a classifier
is specifically learnt for dealing with those sequence tokens, that were not rec-
onciliated at the end of the previous stage. The postprocessor is also exploited
during the training phase, as shown in figure 6.6, to yield the i-th training set
Ti, by generalizing the tokens in each sequence s ∈ Ti−1 via the application
of the rules in Ci−1.

In the KD framework, this step is very simple, since the overall input string
structure is practically maintained the same, and the class of a particular event
can be directly discovered looking at the tag context.

6.6 An illustrative example

Problem formulation

We elucidate the overall RecBoost methodology, by exemplifying the reconcil-
iation of a collection of personal demographic information, shown below, in
compliance with the attribute descriptor R = {NAME, ADDRESS, ZIP,CITY}.

s1 Harry Hacker 348.2598781 ”Northern - Boulevard” (3001) London

s2 C. Cracker ... Salisbury Hill, Flushing

s3 Tony Tester Johnson Avenue 2 -Brooklyn- 323-45-4532

In particular, we assume to exploit a dictionary containing all known to-
ponyms, and a domain-specific ontology G = 〈L, /,A〉, where

L = {PHONE-NUMBER, SSN,TOPONYM,ZIP-CODE}

and A consists of the ontological rules in fig. 6.7
The example data collection is corrupted by noise, i.e. by the absence of a uni-
form representation for all of its constituting sequences. Indeed, a comparative
analysis of their formatting encodings reveals that:

• there is a telephone number in sequence s1 that has to be discarded, since
it is not expected by the descriptor R;

• character ’-’ is employed in sequence s1 as a separator between the words
Northern and Boulevard, that are in turn delimited by double quotes;

• brackets are exploited to separate the zip-code information in sequence s1;
• three non-relevant dots precede the address information in sequence s2;
• two hyphens in sequence s3 demarcate the word Brooklyn;
• there is a social security number (SSN) in sequence s3 that has to be

discarded, since it is not expected by the descriptor R.



92 6 Boosting text segmentation via progressive classification

ad-hoc system KD framework

r1:
if a is a four-digits token
then replace a with ZIP-CODE

if e is a four-digits event
then e.tag = ZIP-CODE

r2:

if a is a token containing
more than four digits

then replace a with
PHONE-NUMBER

if e is an event composed by
more than four digits

then e.tag = PHONE-NUMBER

r3:

if a is a token of
type ddd-dd-dddd

and d is a digit
then replace a with SSN

if e is an event of
type ddd-dd-dddd

and d is a digit
then e.tag = SSN

r4:
if a ∈ Dictionary
then replace a with TOPONYM

if e ∈ Dictionary
then e.tag = TOPONYM

Fig. 6.7. Ontological rules

The identification of a uniform representation format for all of the indi-
vidual sequences in the textual database enables an effective segmentation of
such sequences into tokens and, hence, a reliable reconciliation. A preprocess-
ing step is performed to this purpose.

Preprocessing

The input textual sequences are suitably tokenized. This is accomplished by
exploiting the presence in the original text of domain-specific delimiters such
as single or double quotes, hyphens, dots, brackets and blanks. After segmen-
tation, such delimiters become spurious characters, i.e. play no further role in
the reconciliation process, and are hence ignored.

The output of this step, with respect to the hypothesized data, is repre-
sented below, in the cases of both ad-hoc system and KD framework.

s1 Harry Hacker 3482598781 Northern Boulevard 3001 London
s2 C Cracker Salisbury Hill Flushing
s3 Tony Tester Johnson Avenue 2 Brooklyn 323-45-4532

s1 event coll:{Harry,Hacker,3482598781,Northern,Boulevard,3001,London}
s2 event coll:{C,Cracker,Salisbury,Hill,Flushing}
s3 event coll:{Tony,Tester,Johnson,Avenue,2,Brooklyn,323-45-4532}



6.6 An illustrative example 93

As shown in figure above, as far as the first row is concerned, the preprocessor
removed two brackets, two inverted commas and a hyphen. In practice, after
the preprocessing all sequences are represented with the same format.

The fragmented text is now subjected to a pipeline of rule-based classifiers,
that reconciliate groups of tokens across the individual sequences s1, s2, s3

with the attributes in R.
For the sake of convenience, we assume that two stages of classification

allow the accomplishment of an actual reconciliation. Furthermore, since pro-
gressive classification involves a similar processing for each sequence in the
tokenized text, we proceed to exemplify the sole reconciliation of s1.

Progressive classification divides into syntactic and contextual analysis.

Syntactic analysis

This step performs token generalization. Here, the exploitation of the above
ontological rules allow the generalization of a number of tokens in s1 as shown
below, where labels denoting ontological categories are enclosed between stars.

Harry Hacker *PHONE* *TOPONYM* Boulevard *ZIP* London

To this point, s1 undergoes two levels of contextual analysis, where at each
level a suitable set of rules is applied.

First-level classifier.

A classifier is generally distilled from the analysis of the relationships among
textual tokens, ontological categories and, also, attributes in the context of
each token within the generalized sequences at hand. In particular, we suppose
that the classifier resulting from the learning phase includes the classification
rules listed in fig 6.8.

The first-level classification hence starts by classifying the tokens of s1,
according to their features. In particular, being s1 composed of six to-
kens, a first-level classifier is applied against the six context representations
features1

(a) = 〈pres1
(a), a , posts1

(a)〉, shown below, where a is any token of
s1.

Notice that, at this stage of contextual analysis, s1 does not include at-
tribute labels. Hence, reconciliation takes into account relationships among
ontological labels and textual tokens. These enable the reconciliation of the
entities *TOPONYM*, Boulevard, London and *ZIP*, but fail in dealing with *PHONE*

and Hacker. In particular, this latter token is not covered by the rule that
classified Harry, since pres1

(Hacker) = {Harry} 6= ∅. At the end of this step of
classification, sequence s1 assumes the following form,



94 6 Boosting text segmentation via progressive classification

ad-hoc system KD framework

r5:

if pres(a) == ∅
and *TOPONYM*,*ZIP*

∈ posts(a)
then λa = [NAME]

if e.pre == ∅
and *TOPONYM*,*ZIP*

∈ e.post
then e.tag = [NAME]

r6:
if a == *TOPONYM*
then λa = [ADDRESS]

if e == *TOPONYM*
then e.tag = [ADDRESS]

r7:
if *TOPONYM* ∈ pres(a)
and *ZIP* ∈ posts(a)
then λa = [ADDRESS]

if *TOPONYM* ∈ e.pre
and *ZIP* ∈ e.post
then e.tag = [ADDRESS]

r8:
if a == *ZIP*
then λa = [ZIP]

if e == *ZIP*
then e.tag = [ZIP]

r9:

if *TOPONYM*,*ZIP*
∈ pres(a)

and posts(a) == ∅
then λa = [CITY]

if *TOPONYM*,*ZIP*
∈ e.pre

and e.post == ∅
then e.tag = [CITY]

Fig. 6.8. Classification rules

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [ZIP] [CITY]

where reconciliated tokens are replaced by their corresponding attribute
labels, enclosed between square brackets.

Second-level classifier

To this point, as a consequence of progressive classification, the original do-
main information in G is updated to yield an enriched ontology G′ = 〈L, /,A′〉.
The set A′ of ontological rules is obtained by augmenting the original one,
A, with the classification rules learnt at the end of the previous reconciliation
step. Formally, A′ = A ∪ {r5, r6, r7, r8, r9}.

Without using the KD framework, first-level classification rules have to be
transformed into labeling rules before being added to A′. Instead, using the
KD framework, there is no need to transform classification rules, since this
step is accomplished by an application task.

Contextual analysis is then reiterated to reconciliate those tokens that
were not associated with a schema attribute at the end of the previous step.



6.6 An illustrative example 95

Again, we assume that a second-level classifier is learnt from the training data
and, and it is composed by the following individual rule:

ad-hoc system KD framework

r10:

if [NAME] ∈ pres(a)
and [ADDRESS],[ZIP]

∈ posts(a)
then λa = [NAME]

if [NAME] ∈ e.pre
and [ADDRESS],[ZIP]

∈ e.post
then e.tag = [NAME]

There are only two tokens in s1 that were not associated with a schema
attribute and, hence, the above classifier is applied against two context rep-
resentations:

PRE WORD POST

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [ZIP] [CITY]

[NAME] Hacker *PHONE* [ADDRESS] [ADDRESS] [ZIP] [CITY]

As a result, the classifier further generalizes s1 into the following sequence:

[NAME] [NAME] *PHONE* [ADDRESS] [ADDRESS] [ZIP] [CITY]

Notice that *PHONE* is still not reconciliated, since no classification rule
applies to it.

Post-processor

The post-processor rebuilds the original sequence s1, by fitting its corre-
sponding tokens in a suitable structure defined by the descriptor R =
{NAME,ADDRESS,ZIP, CITY}. If using the KD framework, this step is ac-
complished by a task that transforms event collections into a relational struc-
ture, basing on events contexts.

NAME ADDRESS ZIP CITY

Harry Hacker Northern Boulevard 3001 LONDON

Notice that the structure above exactly complies with R. However, in
some cases, it may be useful to add an extra column NOISE, to the purpose of
tracing all the original tokens. This would correspond to the following tuple:

NAME ADDRESS ZIP CITY (NOISE)

Harry Hacker Northern Boulevard 3001 London 3482598781





7

Evaluating RecBoost

In this section, we describe the experimental evaluation we performed on
the proposed methodology. Experiments were mainly aimed at evaluating the
effectiveness of the proposed methodology in segmenting strings. To this pur-
pose, we accomplish the following tasks:

1. We evaluate the effectiveness of the basic rule-based classifier systems pro-
posed in section 6.4. Since the classification methodology represents the
basic infrastructure upon which the RecBoost system bases, it is impor-
tant to assess its effectiveness in the domain at hand. In particular, we
evaluate two main aspects: (i) its dependency from the parameters which
are needed to tune the system, and (ii) the effectiveness of the pruning
strategy introduced.

2. Next, we evaluate classification accuracy obtained by the progressive clas-
sification methodology nested in the RecBoost approach, as described in
section 6.5. Our aim here is to investigate in which respect the envisaged
pipeline boosts the performance of a basic classifier. We also compare our
results with other state-of-the art text segmentation systems.

7.1 Basic setup and performance measures definitions

In order to accomplish the above tasks, we considered the following datasets:

• Addresses, a real-life demographic database consisting of information
about the issue-holders of credit situations in a banking scenario. Such
a dataset is of particular interest, since it contains several fragments of
noisy data. The dataset consisted of 24,000 sequences, with an average
of 8 tokens per sequence. The schema to reconcile consisted of the fields
Name, Address, Zip, State/Province, and City.

• BigBook, a publicly-available dataset1 consisting of a set of business ad-
dresses. Each business description consists of the 6 items Name, Address,

1 http://www.isi.edu/info-agents/RISE/repository.html



98 7 Evaluating RecBoost

City, State, AreaCode, and Phone. The dataset consists of 4,224 sequences,
with 10 tokens per sequence in the average. The dataset is of particular
interest, since the relatively small size of the available dataset allows us to
evaluate whether RecBoost is sensitive to the number of training tuples.

• dblp, a collection of articles extracted from the DBLP website2. Each entry
refers to an article appeared in a Computer Science Journal, and contains
information about author, title, journal, volume, year. We extracted 19,401
sequences, with an average sequence length of 20 tokens.

The evaluation of RecBoost effectiveness requires the design of a domain-
specific ontology for each of the aforementioned datasets. Specifically, the
concept hierarchy devised for the Addresses dataset is shown in fig. 6.4. This
consists of 11 concepts for token generalization, suitably organized into a
compact hierarchical structure. The ontological rules include rules r1, r2, r3

and r4 at sec. 6.6 (as relabeling rules) and rule r2 at sec. 6.4 (as a restructuring
rule).

LOCATION

STREET NUMBERTOPONYM AREA CODE

NUMBER

PHONE

BUSINESS

NAME

ANY

Fig. 7.1. The concept hierarchy for the BigBook dataset

The ontology employed for the BigBook dataset embraces 9 concepts and
is shown in fig. 7.1.

In such a context, no use is made of restructuring actions, so that back-
ground knowledge reduces to the relabeling rules shown in fig. 7.2.

Finally, the ontology for the dblp dataset is shown in fig. 7.3. Again,
background knowledge only involves relabeling rules, that are reported in
fig. 7.4.

Notice that the definition of the above rules relies on a number of
domain-specific dictionaries. In particular, JOURNAL DICTIONARY in-
cludes several alternative ways of denoting a journal article, such as j., jour-
nal, trans. and transaction. GRAMMATICAL-ARTICLE DICTIONARY
groups English-language articles a, an and the. Similarly, PREPOSITION
DICTIONARY collects commonly used prepositions, such as by, to, with

2 http://www.informatik.uni-trier.de/ ley/db/



7.1 Basic setup and performance measures definitions 99

ad-hoc system KD framework

r1:
if a ∈ Dictionary
then replace a with

TOPONYM

if e ∈ Dictionary
then e.tag = TOPONYM

r2:

if a is a token of
type ddd-dddd

then replace a with
PHONE NUMBER

if a is an event of
type ddd-dddd

then e.tag = PHONE NUMBER

r3:
if a is a token of type ddd
then replace a with

AREA CODE

if a is an event of type ddd
then e.tag = AREA CODE

r4:

if a is a digit-sequence
followed by TH or ST
or ND or RD

then replace a with
STREET NUMBER

if a is a digit-sequence
followed by TH or ST
or ND or RD

then e.tag = STREET NUMBER

r5:
if a is a digit-sequence
then replace a with NUMBER

if e is a digit-sequence
then e.tag = NUMBER

Fig. 7.2. Relabeling rules

and via. DELIMITER DICTIONARY is a set of token delimiters, that
comprises ’, ”, ;, ,, -, ., and *.

DELIMITER

ARTICLE PREPOSITION

AUTHOR

VOLUME

TITLE

YEAR

ANY

NUMBER JOURNAL

Fig. 7.3. The concept hierarchy for the dblp dataset

It is worth noticing that the analysis of the above domain-specific ontolo-
gies reveals a key feature of RecBoost methodology. Roughly speaking, it can



100 7 Evaluating RecBoost

ad-hoc system KD framework

r1:
if a ∈ Journal Dict.
then replace a with JOURNAL

if e ∈ Journal Dict.
then e.tag = JOURNAL

r2:
if a is a four-digits token
and a ∈ [1950, 2006]
then replace a with YEAR

if e is composed by four-digits
and e ∈ [1950, 2006]
then e.tag = YEAR

r3:
if a is a digit-sequence
then replace a with NUMBER

if e is a digit-sequence
then e.tag = NUMBER

r4:
if a ∈ Delimiter Dict.
then replace a with DELIMITER

if e ∈ Delimiter Dict.
then e.tag = DELIMITER

r5:
if a ∈ Gramm-Art Dict.
then replace a with ARTICLE

if e ∈ Gramm-Art Dict.
then e.tag = ARTICLE

r6:
if a ∈ Preposition Dict.
then replace a with PREPOSITION

if e ∈ Preposition Dict.
then e.tag = PREPOSITION

Fig. 7.4. Relabeling rules

be easily employed for pursuing text reconciliation in a wide variety of applica-
tive settings, by simply providing a domain-specific concept hierarchy along
with a corresponding compact set of ontological rules. The overall process of
ontology design is rather intuitive and does not require substantial effort by
the end user.

The evaluation of the results relies on the following standard measures
which are customized to our scenario. Given a set N of tokens to classify, we
define:

• the number of tokens, which were classified correctly, TP ;
• the number of tokens, which were misclassified, FP ;
• the number of tokens, which were not classified, FN - notice that this is a

different meaning with respect to the standard literature.

In the following, we shall report and illustrate the above measures over the
mentioned datasets. Two further important measures, however, can give an
immediate and summarizing perception of the capabilities of our classification
system. In particular, Precision (or Accuracy) can be defined as the number
of correctly classified tokens, w.r.t. the classification behavior of the system:

P =
TP

TP + FP



7.2 Experimental evaluation 101

Analogously, Recall can be defined as the number of correctly classified
tokens, w.r.t. the tokens to classify:

R =
TP

TP + FN
Intuitively, Recall describes the locality issues, that affect the system: if

a classifier contains rules which can cover all the examples, then it has 100%
recall (i.e., no locality effect). Precision, by the converse, describes the accu-
racy of the rules contained: the higher is the error rate of a rule, the lower is
its precision.

A measure which summarizes both precision and recall is the F measure,
defined as

F =
(β2 + 1)PR

P + β2R

The F measure represents the harmonic mean between Precision and Re-
call. The β term in the formula assigns different weights to the components:
when β = 1 both the components have the same importance. The tuning of
the β parameter is application-dependent. Here, we are interested in the cases
where β > 1 (which assigns higher importance to Precision than to Recall).
This is a crucial requirement of many application domains, such as the one
described in section 6.3. Hence, in the following we shall study the situations
where β > 1, and in particular we are interested in the cases where β ranges
into the interval (1, 10].

7.2 Experimental evaluation

7.2.1 Basic classifier system

In an initial set of experiments, we classified the data without exploiting on-
tologies and multiple classification stages. In these trials, support was fixed
to 0.5%, with ranging values of confidence. Figure 7.5 shows the outcome of
classification for the three datasets. Each bar in the graph describes the per-
centage of correctly classified tokens, together with the percentages of misclas-
sified and unclassified tokens. As we can see, the effectiveness of the classifiers
strongly relies on the confidence value. In particular, low confidence values
(up to 40% in both Addresses and dblp, and 60% in BigBook) to classify all
the tokens, but the percentage of misclassified is considerably high. This is
somehow expected, since low confidence values induce rules exhibiting a weak
correlation between the antecedent and the consequent.

By contrast, higher confidence levels lower the misclassification rate, but
the degree of unclassified tokens raises considerably. It is worth noticing that,
in all the examined cases a confidence rate of 100% guarantees a percentage
of misclassified data which is nearly zero. This is the locality effect : high



102 7 Evaluating RecBoost

confidence values produce extremely accurate rules that, as a side effect, apply
only to a limited number of tokens. By lowering the confidence, we relax the
locality effect (the resulting rules apply to a larger number of tokens), but the
resulting rules are less accurate.

The dblp dataset is particularly interesting to investigate in this context,
since it exhibits the worst performances. The best we can obtain in this dataset
is with confidence set to 40%, which guarantees a significantly high percent-
age (30.52%) of misclassified tokens. A ”safer” confidence value leverages the
number of unclassified tokens considerably.

100 95 90 85 80 75 70 65 60 55 50 45 40
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

ag
e

TP
FP
FN

(a) Addresses

100 95 90 85 80 75 70 65 60
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

ag
e

TP
FP
FN

(b) BigBook

100 95 90 85 80 75 70 65 60 50 40
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

ag
e

TP
FP
FN

(c) dblp

Fig. 7.5. Classification results, single stage of classification

We now present several charts in order to discuss upon system accuracy,
all those charts can be easily generated using the data perspective (see 5.4) of
the KD framework. Figure 7.6 describes the accuracy of the classifier with the
adoption of domain-specific concept hierarchies. We exploited the hierarchies
described in figures 6.4, 7.1 and 7.3 respectively. The benefits connected
with the exploitation of such simple ontologies are evident: the generalization
capabilities of the classification rules are higher, thus lowering the number of
unclassified tokens. Notice how the dblp dataset still exhibits unacceptable
performances.

100 95 90 85 80 75 70 65 60 50 40
0

10

20

30

40

50

60

70

80

90

100

Confidence rate

P
er

ce
nt

an
ge

TP
FP
FN

(a) Addresses

100 95 90 85 80 75 70 65 60
0

10  

20

30 

40

50 

60

70 

80

90 

100

Confidence rate

P
er

ce
nt

ag
e

TP
FP
FN

(b) BigBook

100 95 90 85 80 75 70 65 60 50 40
0

10

20

30

40

50

60

70

80

90

100

Confidence Rate

P
er

ce
nt

ag
e

TP
FP
FN

(c) dblp

Fig. 7.6. Classification results with the exploitation of concept hierarchy



7.2 Experimental evaluation 103

Results in the above figures were obtained by exploiting the pruning steps
detailed in section 6.4. Indeed, the contribution of the classifier pruner to the
misclassification rate is investigated in table 7.1, which describes how the error
rate changes if pruning is not applied. The effectiveness of the classifier pruner
can be appreciated at lower confidence values: there, the classifier produces
weaker rules, which clearly benefit of a re-examination.

Confidence 100 90 80 70 60 50 40

FP

Addresses
Unpruned 0.11% 1.73% 3.93% 5.52% 6.45% 7.69% 8.05%

Pruned 0.09% 1.53% 3.77% 5.32% 5.94% 6.47% 6.24%

BigBook
Unpruned 0.25% 1.47% 1.50% 1.53% 1.94% 1.94% 1.95%

Pruned 0.21% 0.70% 0.70% 0.72% 0.98% 0.98% 0.98%

Dblp
Unpruned 0.01% 3.30% 3.81% 7.13% 14.55% 17.02% 17.12%

Pruned 0.01% 3.26% 3.77% 7.09% 14.38% 16.06% 16.20%

Table 7.1. Pruning effectiveness

7.2.2 Multiple classification stages

The above analysis allows us to test the effectiveness of the progressive classi-
fication methodology. We recall the underlying philosophy: starting from the
following observations,

• ontological analysis eases the classification task (as testified by the com-
parison between graphs in figures 7.5 and 7.6);

• a richer set of relabeling rules should in principle boost the results of
classification;

the adoption of multiple classification stages, where at each stage the re-
labeling rules of the previous stage are enriched by exploiting the results of
classification at earlier stages, should boost the performance of the overall
classification process. And indeed, figure 7.7 describes the results obtained by
applying a second-level classifier to the unclassified cases of the first stage of
classification. In detail, the input to the second-level classifier is the output
of the first-level classifier, built by fixing support to 0.5% and a confidence to
100% (described by the first bar of each graph in fig. 7.6). Again, support was
set to 0.5% and confidence was ranged between 100% and 80%.

As shown in the figure, the second-level classifier is in general able to
correctly classify a portion of the data, that were unlabeled at the end of the
previous stage. For example, in the Addresses dataset, a 95% threshold allows
to classify a further 62% of the (originally unclassified) data. By combining
such a result with the outcome of the first-level classifier, we obtain nearly
91% of correctly classified data, less than 1% of misclassified data and nearly
8% of unclassified data. Table 7.2 summarizes the cumulative results achieved
by two levels of classification over the employed datasets.



104 7 Evaluating RecBoost

100 95 90 85 80
0

20

40

60

80

100

Confidence rate

P
er

ce
nt

ag
e

(a) Addresses

100 95 90 85 80
0

20

40

60

80

100

Confidence rate

P
er

ce
nt

ag
e

(b) BigBook

100 95 90 85 80
0

20

40

60

80

100

Confidence rate

P
er

ce
nt

ag
e

(c) dblp

Fig. 7.7. Classification results at the second stage of classification.

Confidence Addresses BigBook dblp

P R P R P R

100 99,13% 87,87% 99,78% 94,95% 99,73% 41,40%
95 99,06% 91,44% 99,68% 96,30% 97,51% 55,52%
90 98,74% 92,96% 99,57% 97,13% 94,59% 66,75%
85 97,95% 95,26% 99,56% 97,17% 93,92% 69,72%
80 97,24% 97,45% 99,39% 97,93% 91,89% 76,80%

Table 7.2. Precision and recall at varying degrees of confidence over the selected
datasets.

The effectiveness of the second stage of classification is even more evident
in the graphs of fig. 7.8. The graphs depict the trend of F for different values
of β. The graphs compare a selection of 2-level classifiers with the single-level
classifier (among those shown in fig. 7.6) exhibiting the best performance
in terms of TP . In all the cases shown, the 2-level classifiers exhibit better
performances for β > 2.

Since each classification level boosts the performance of the system, two
important questions raise, that are worth further investigation in the following:

1. how many levels allow to achieve an adequate performance?
2. how should the parameters at each level be tuned?

The dblp dataset is particularly interesting in this context, since the accu-
racy of RecBoost is still low after two classification levels. We start our study
by investigating the number of needed classifiers. Figures 7.9(a) and (b) de-
scribe an experiment performed by allowing a hypothetical infinite number
of levels, where at each level support was set to 1% and confidence to 100%.
Roughly, the strategy implemented is the following: since high confidence val-
ues bound the number of misclassified tokens, and further levels allow to
recover unclassified tokens, just allow any number of levels, until the number
of unclassified tokens is nearly 0.

As we can see from figure 7.9(b), however, this strategy does not necessarily
work: although the number of misclassified tokens is kept low, the capability of



7.2 Experimental evaluation 105

(a) Addresses

(b) BigBook

(c) dblp

Fig. 7.8. Trends of F-measures compared.



106 7 Evaluating RecBoost

each classifier to recover tokens unclassified in the previous stages decreases.
The 5th level looses the capability to further classify tokens, thus ending de-
facto the classification procedure. Figure 7.9(a) shows the cumulative results
at each level.

Thus, an upper bound in the number of stages can be set by the classifica-
tion capability of the stages themselves. A smarter tuning of the parameters
which rule the performance of each single stage, allows to achieve best classifi-
cation accuracy. Figures 7.9(c) and (d) report a different classifier, generated
by fixing the following constraints: each classification stage should classify
at least 30% of the available tokens, and should misclassify at most 10% (if
possible). The methodology adopted for achieving this was to perform several
tuning trials at each stage, by starting from the value 100% of confidence and
progressively lowering it until the criterion is met. Figure 7.9(d) describes the
tuning occurred at each classification stage. The constraint over the classifi-
cation percentage clearly boosts the performance of each single classification
stage: as a result, the overall number of classified tokens is 86.7%, with a
misclassification rate of 10.2% and 3.1% unclassified tokens.

Notice that further effective strategies can be employed, by fixing e.g.
different constraints: in fig.7.9(e), for example, each classification stage should
classify at least 20% of the available tokens, and should misclassify at most
5% of them. Figure 7.9(g), reports a different experiment, where the number
of stages is fixed to 4: here, confidence is progressively lowered, and the last
stage is tuned to minimize the number of unclassified. Again, figure 7.9(h)
describes the tuning occurred at each stage.

Similar conclusions can be drawn with the other datasets: fig. 7.10, e.g., de-
scribes the results on both BigBook and Addresses. In particular, we adopted
three levels (with confidence fixed to 100% in the first two levels) for BigBook
and four levels (with thresholds 100%, 100%, 85% in the first three levels) for
Addresses. The bars report the cumulative classification results when differ-
ent confidence levels are applied in the last classification level.

The adoption of multiple classification stages over BigBook deserves fur-
ther discussion about the relation between the size of the labeled data and the
number of classification levels which can be defined. Each classification level
should build on a separate training set (preprocessed by the preceding levels).
Clearly, given a dataset D, the amount of unclassified tokens of D diminishes
at subsequent levels. Hence, the size of the training set Ti required for learning
rules at level i should be large enough to guarantee that an adequate number
of unclassified tokens are available at that level.

Thus, the size of the training has an influence over the number of clas-
sification levels which can be defined: the larger the training set, the higher
the number of significant levels. In other words, a small dataset saturates the
potential of progressive classification within few levels, and adding further
levels does not yield any improvements. This is what happens in the case of
the BigBook dataset. As already mentioned, the available training set here
is quite small. Thus, a classifier exhibiting 100% confidence in the last level,



7.2 Experimental evaluation 107

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Levels

P
er

ce
nt

ag
e

(a) 5 levels (cumulative)

1st (C=100) 2nd (C=100) 3rd (C=100) 4th (C=100) 5th (C=100)
0

10

20

30

40

50

60

70

80

90

100

Level

P
er

ce
nt

ag
e

(b) 5 levels (stages)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Levels

P
er

ce
nt

ag
e

(c) 5 levels (cumulative)

1st (C=100) 2nd (C=95) 3rd (C=100) 4th (C=80) 5th (C=75)
0

10

20

30

40

50

60

70

80

90

100

Level

P
er

ce
nt

ag
e

(d) 5 levels (stages)

1 2 3 4 5
0

10

20

30

40

50

60

70

80

90

100

Levels

P
er

ce
nt

ag
e

(e) 5 levels (cumulative)

1st (C=100) 2nd (C=95) 3rd (C=100) 4th (C=90) 5th (C=80)
0

10

20

30

40

50

60

70

80

90

100

Level

P
er

ce
nt

ag
e

(f) 5 levels (stages)

1 2 3 4
0

10

20

30

40

50

60

70

80

90

100

Levels

P
er

ce
nt

ag
e

(g) 4 levels (cumulative)

1st (C=100) 2nd (C=95) 3rd (C=90) 4th (C=60)
0

10

20

30

40

50

60

70

80

90

100

Level

P
er

ce
nt

ag
e

(h) 4 levels (stages)

Fig. 7.9. Effects of multiple classification levels on dblp



108 7 Evaluating RecBoost

would produce at most 2500 unclassified tokens. This amount would not allow
to learn a further meaningful set of rules, since such tokens distribute over
different sequences and different attributes.

60 70 80 90 100
Confidence

(a) Addresses

60 70 80 90 100
Confidence

(b) BigBook

Fig. 7.10. Effects of multiple classification levels.

The conclusion we can draw is that the adoption of multi-stage classifica-
tion allows to increase recall, by contemporarily controlling the decrease in the
overall classification accuracy. The above figures show how a proper manipu-
lation of the confidence threshold value over each classification stage allows to
achieve this. The contribution of the support threshold is less restrictive for
two main reasons: first, it should anyway be kept at very low levels, in order
to enable a significant amount of rules; second, small variations are of little
significance, and at most at the first level. We here provide details on a set of
tests performed on a pipeline of three classifiers, over the Addresses dataset.
In particular, for brevity sake, we investigate the effects of varying support
and confidence for the first-level classifier, whereas the remaining two stages
have instead both parameters fixed to respectively 0.5% and 98%. Specifically,
in figures 7.11(c) and 7.11(a) confidence is fixed to 98% and support varies,
whereas in figures 7.11(d) and 7.11(b) support is set to 0.5% and confidence
varies. Figures 7.11(a) and 7.11(c) show that classification accuracy and re-
call do not significantly change, especially at higher levels. By the converse,
even small variations in the confidence cause significant changes, as testified
by figures 7.11(b) and 7.11(d).

It is interesting to see that, in the above described experiments, the av-
erage number of rules which are exploited is nearly stable even on different
values of support and confidence (which instead affect the number of discov-
ered rules). Figures 7.12(a) and 7.12(b) depict such a situation. In general,
a decrease in support or confidence causes an increase in the overall number
of discovered classification rules. However, from experimental evaluations, it
emerges that the average number of rules actually applied in the classification
process does not significantly vary. This is testified by the bold hatched line
in both subfigures, which represents such an average value. As we can see, the



7.2 Experimental evaluation 109

(a) Precision vs. support threshold

(b) Precision vs. confidence threshold

(c) Recall vs. support threshold

(d) Recall vs. confidence threshold

Fig. 7.11. Stability of Precision and Recall with variable parameter values



110 7 Evaluating RecBoost

(a) Number of rules vs. support

(b) Number of rules vs. confidence

Fig. 7.12. Size of classifiers and average number of rules applied

number of rules applied fluctuates around 50% of the total number of rules
obtained in correspondence of the maximum values of support and confidence.

7.2.3 Comparative analysis

The exploitation of the ”recursive boosting” strategy proposed in this paper
is quite new, as it relies on the capability of recovering unclassified tokens in
the next stages. To this purpose, the former experiments aimed essentially
at checking whether this strategy is effective. In order to asses the practi-
cal effectiveness of RecBoost, we here compare the behavior of the RecBoost
methodology with consolidated approaches from the literature. To this end we
preliminarily observe that, although many results are available in the litera-
ture, a direct comparison is often difficult, as different data collections and/or
different ways of tuning the algorithm parameters have been used. For exam-
ple, although bibliographic citations extracted from the DBLP database have
been extensively used in the literature, the datasets used for the analysis were
not made publicly available.

In the following we provide a comparison by exploiting the datasets de-
scribed in the previous sections. We compare our system with the Mal-



7.2 Experimental evaluation 111

(a) Addresses

(b) BigBook

(c) dblp

Fig. 7.13. Trends of F-measures compared.



112 7 Evaluating RecBoost

let system [69], which provides the implementation of Conditional Random
Fields [64] and with the DataMold system [12]. We refer the reader to sec-
tion 6.2 for a detailed description of the techniques underlying such systems.
Both Mallet and DataMold are equipped with the same ontology and pre-
processing used in RecBoost. In addition, contextual information in the CRF
implemented by Mallet was provided by resorting to the Pre/Post informa-
tion.

An overall comparison is shown in the graphs of fig. 7.2.3, which plot the
F values obtained by Mallet, DataMold, and several different instantiations
of the RecBoost system. In particular, we consider the classifiers of figures 7.9
and 7.10, and choose, for each dataset, the three instantiations which guar-
antee the lowest (constrained) value of FN , the lowest (constrained) value of
FP , and a ”middle” value. The constraint refers to the possibility of main-
taining an acceptable value of TP . For the dblp dataset, we also show an
instantiation

As we can see from the figure, the gain in the F value is evident for β > 2.
Table 7.3 details the results. Here we compare with Mallet, DataMold and
the version of RecBoost (RecBoost1 in the tables), relative to a single stage of
classification which achieves the highest value of TP in fig. 7.6. Mallet (and in
some cases even Datamold) typically achieves a high rate of correctly classified
tokens at the expense of a higher misclassification rate. Also, RecBoost1 may
achieve a higher TP than the approaches with multiple classification stages.
However, the latter exhibit a higher affordability (which is even higher than
that of Mallet and DataMold). In practice, the adoption of multiple stages
allows to achieve a higher precision, at the expense of a lower recall. Clearly,
a proper tuning at the higher levels makes the RecBoost system highly com-
petitive: in Addresses, for example, the performance of the more conservative
classifier (the one which tries to minimize FN ) is even better than Mallet.

In practice, the recursive boosting offered by progressive classification al-
lows to maintain a higher control over the overall misclassification rate, by
forcing stronger rules which, as a side effect, exhibit a higher locality. Thus,
RecBoost is more reliable in scenarios where misclassifying is worst than avoid-
ing to classify.

Finally, two major arguments emerge in favor of RecBoost as a further
result of our comparative analysis.

• Due to the variable number of classification stages, RecBoost gives the user
better control over the trade-off between accuracy and recall. In practice,
the user can choose a classifier with a trade-off satisfying the requirements
of the specific application.

• The generic RecBoost classifier is easier to interpret than existing methods
such as DATAMOLD [12] and Mallet [69], since it produces symbolic rules
using vocabulary from a domain-specific ontology.



7.3 A case study 113

Methods Addresses

TP FP FN P R F1 F2 F3

DataMold 96.23% 3.77% 0% 96.23% 100% 98.08% 96.96% 96.59%

Mallet 96.96% 3.04% 0% 96.96% 100% 98.45% 97.55% 97.25%

RecBoost
1 93,74% 6,24% 0,02% 93,76% 99,98% 96.77% 94.94% 94.34%

RecBoost
� 96,96% 2,86% 0,18% 97,14% 99,81 98.45% 97.66% 97.40%

RecBoost
+ 95,53% 1,95% 2,52% 98,00% 97,43 97.71% 97.88% 97.94%

RecBoost
© 92,21% 1,09% 6,70% 98,83% 93,23% 95.95% 97.65% 98.24%

Methods BigBook

TP FP FN P R F1 F2 F3

DataMold 97.97% 2.03% 0% 97.97% 100% 98.97% 98.36% 98.16%

Mallet 99,37% 0,63% 0% 99,37% 100% 99.68% 99.49% 99.43%

RecBoost
1 99,01% 0,98% 0,01% 99,02% 99,99% 99.50% 99.21% 99.11%

RecBoost
� 99,21% 0,65% 0,14% 99,35% 99,83% 99.59% 99.44% 99.40%

RecBoost
+ 97.55% 0.28% 2.17% 99.71% 97.82% 98.75% 99.32% 99.51%

RecBoost
© 96,31% 0,25% 3,44% 99,74% 96,55% 98.11% 99.08% 99.41%

Methods dblp

TP FP FN P R F1 F2 F3

DataMold 81,55% 18,45% 0% 81,55% 100% 89,83% 84,67% 83,08%

Mallet 89,83% 10,17% 0% 89,83% 100% 94,64% 91,69% 90,75%

RecBoost
1 83,80% 16,20% 0% 83,80% 100% 91,18% 86,60% 85,18%

RecBoost
� 88,20% 10,66% 1,14% 89,22% 98,73% 93,73% 90,97% 90,09%

RecBoost
+ 85,69% 9,74% 4,57% 89,80% 94,94% 92,30% 90,78% 90,29%

RecBoost
© 81,53% 7,10% 11,37% 91,98% 87,76% 89,82% 91,10% 91,54%

Table 7.3. Comparison against Mallet and DataMold.

7.3 A case study

7.3.1 Risk analysis in a bank intelligence scenario

In this section we propose a hash-based technique for data reconciliation, i.e.
the recognition of apparently different records that, as a matter of fact, refer
to the same real-world entity.

Risk analysis is a key business analysis task for bank organizations, since
these typically invest considerable amount of money to support customers’
business initiatives. Precisely, risk analysis is required to identify and assess
those critical factors that may negatively affect customer successful payback
or somehow lower the expected revenues.

In our scenario, the starting point is the construction of a specific data mart
capable of ranking the credit risk of a customer by looking at the past insol-
vency history involving the customer. Usually, a business transaction identifies
a creditor and a debtor. A bank agency acts as a mediator in the transaction,
by supporting the creditor in collecting the amount she claims. This is accom-
plished by providing billing services, or by anticipating the monetary flow.
Here, risk analysis is accomplished by identifying all possible critical factors
for a given transaction. Next, the occurrence probabilities of such critical fac-
tors are computed. These probabilities are eventually employed both to iden-
tify suitable measures that help prevent critical factors from occurring and to



114 7 Evaluating RecBoost

develop effective risk management plans, i.e. countermeasures that allow the
bank organization to avoid/recover from insolvencies, partial paybacks and
unexpectedly low revenues.

Risk assessment for a given transaction can greatly benefit from the ad-
vantages offered by the data warehousing technology. Among these, fast data
access and predictive multidimensional analysis. In particular, the latter en-
ables and expedites a number of management and/or analytical tasks. The
multidimensional data warehouse design allows the user (either executive,
manager, analyst) to perform very complex business analysis over million of
transactions in an easy and effective manner. Examples of typical queries are:

• how does the transaction counter value correlate with the quarterly un-
solved effects?

• which is the volume of effects regularly met per district and working cat-
egories during last year?

• how does effect collection carry on during the year?

However, the definition of such a data warehouse in a real-life operational
scenario is quite complex, and clashes with the impedance mismatch: the same
informative unit can be represented into several different ways. This problem
is due to the fact that bank data is originally stored within heterogeneous
sources, namely separated operational databases, unstructured repositories,
legacy systems and papery archives. Moreover, bank data are inherently het-
erogeneous in nature. Indeed, the foresaid sources of- ten contain data of
varying quality and also adopt heterogeneous as well as inconsistent repre-
sentations, values and formats, that require to be suitably consolidated. In
particular, data within legacy systems are not directly accessible and are,
hence, typically gathered via reporting functionalities, that conform to pro-
prietary representations. Apart from the aforementioned difficulties related
to the management of electronic data, further issues arise when addressing
papery files, ordinarily filled in by both clerks and customers. Indeed, docu-
ment filling is subjected to erroneous data-entry, misspelled terms, transpo-
sition over- sights, inconsistent abbreviations, lack of attribute values and so
forth. These further increase the heterogeneity of bank data by making the
individual records of a same textual document (e.g. a collection of personal
demographic information) appear with a varying structure.

Impedance mismatch calls for effective preprocessing methodologies and
tools, that enforce data quality and consistency within a centralized data
warehouse, so that to ultimately ensure the reliability of business-intelligence
results. In particular, a schema reconciliation technique is required to identify
a common field structure for heterogeneous bank data, in order to exploit
the mature relational technology for more effective information management.
Also, a suitable methodology for handling with data duplication is useful to
discover synonymies in the data, i.e. apparently different records that, as a
matter of facts, refer to a same real-world entity. This would allow to per-
form tasks such as summing up the singularities (insolvencies, for instance) of



7.3 A case study 115

seemingly distinct individuals and associating them to a unique customer, so
that to mark the latter as seriously critical.

In this section, we present a decision support system, that enables risk
analysis in a banking environment. The core of the system is a centralized
data warehouse, allowing the end user to perform predictive, multidimensional
analysis, over millions of transactions from customers of a bank agency.

Innovative preprocessing methodologies, based on data mining techniques,
are exploited to populate the warehouse. These are highly effective at dealing
with schema reconciliation and duplicate detection issues and, hence, assure
a reliable integration and consolidation of heterogeneous bank data into a
unique archive.

The overall architecture of the decision support system is illustrated in
fig. 7.14.

Fig. 7.14. Bank intelligence system anatomy

Focus, here, is on its main constituting components, namely the pay-
ments/collections (PC) data mart and the suite of data min- ing tools, that
are discussed next. In our modeling, the focus is on business transactions:
these corresponds to facts, and the chosen measures are the overall number
and countervalue. Four the dimensions identified:

• creditor, i.e. individuals collecting transactions;
• debtor, i.e. people required to pay for transactions;
• transaction category, i.e. the class of financial service delivered to the cus-

tomer;
• state, i.e. current transaction status (e.g. payed, unsolved, protested, under

judicial action).



116 7 Evaluating RecBoost

Information from each transaction comes from several sources, such as
legacy operational databases and papery documents. The design of the PC
data mart plays a key role in the process of decision making. In particular, the
identification of its dimensions actually determines the capability of the overall
system to answer meaningful business queries. However, several difficulties
arise while constructing the foresaid warehouse. More specifically, these divide
into syntactic and semantic issues. The former involve two major problems,
namely schema reconciliation and data reconciliation.

In our bank scenario, the requirement for schema reconciliation mainly
follows from the textual format of the personal information concerning both
debtors and creditors. This information may not be uniformly formatted and,
hence, its constituting records may apparently conform to different schemas.
In practice, there is a similar situation to that showed in 7, where order of
appearance of personal information attributes across the individual lines of
text may not be fixed. Indeed, the collection of personal information may be
fragmented over disparate data sources, which further exacerbates the afore-
mentioned difficulties.

The requirement for data reconciliation originates from the fact that de-
mographic information about creditors/debtors does not follow a canonical
encoding, but differentiates on the basis of the category of the underlying
transaction. Thus, certain transactions may not need address information or
SSN codes, whereas others allow for such information to be manually inserted
within the enterprise registry through papery forms. As a result, this hetero-
geneity yields lack of certainty in the identification of an individual.

As to the semantic issues behind the construction of our PC Data mart,
the choice of how to model dimensions is crucial to ensure flexibility and
efficiency at querying time. In our setting, modeling the States dimension
(which groups possible transaction states, such as payed, unsolved, and so
forth) is particularly critical. In particular, we identified two possible ways of
modeling such states:

1. via a single dimension state containing all the admissible states for a
transaction;

2. by adopting a single dimension for each possible state.

We chose the second option for two main reasons. First, since OLAP
queries were defined by exploiting the Multidimensional Expressions (MDX,
see [65]) technology, it simplifies the definition of MDX queries and avoids
the well-known double count problem [78]. Notice that MDX is not strictly
required in our applicative setting. Nevertheless, we still exploited MDX ex-
pressions, since they considerably simplify the definition of multidimensional
queries.

Secondly, adopting a single dimension for each possible state also ensures
a high efficiency since the aggregates are all computed at the same time, i.e.
as soon as the data cube is built. However, in principle, such a choice may
limit the incrementality of data warehouse. As a matter of fact, if a new state



7.3 A case study 117

occurs for a given transaction (e.g., it passes from being originally unsolved to
the payed status), all the tuples already inserted into the data warehouse need
be updated. Worst, if the bank organization decides to add a new state to the
set of those already identified, the reorganization of the data warehouse may
be required, which consequently implies acting on all data marts built on top
of it. Nevertheless, state updates are rarely occurring in practical applications
and this justifies our design choice.

In the remaining part of this section, we discuss an efficient clustering
technique, that allows to discover groups of duplicate tuples in an incremental
way. The core of the approach is the usage of a suitable indexing technique
which, for any newly arrived tuple µ, allows to efficiently retrieve a set of tuples
in the database which are likely mostly similar µ, and hence are expected to
refer to the same real-world entity associated with µ. The indexing technique
is based on a hashing scheme exploiting a family of Locality-Sensitive hashing
functions [46].

Clustering approach

Let M = {a1, a2, . . . , am} be an item domain. We assume m to be very
large: typically, M represents the set of all possible strings available from a
given alphabet. Moreover, we hypothesize that M is equipped with a distance
function distM(·, ·) : M×M 7→ [0, 1], expressing the degree of dissimilarity
between two generic items ai and aj . For the sake of simplicity, we view a
tuple µ as a subset of M. For instance, the tuple below represents a record of
personal information on an individual.

{Alfred, Whilem, Salisbury, Hill, 3001, London}

Notice that, a more appropriate representation can take into account a rela-
tional schema in which each tuple fits. However, the results which follow can
be easily generalized to such a similar context.

In this setting, our clustering approach to de-duplication can be roughly
stated as the problem of detecting, within a database DB = {µ1, . . . , µN}
of tuples, a suitable partitioning C1, . . . , CK of the tuples, such that for each
group Ci, intra-group similarity is high and extra-group similarity is low. This
is essentially a clustering problem, but it is formulated in a specific situa-
tion, where there are several pairs of tuples in DB that are quite dissimilar
from each other. This can be formalized by assuming that the size of the set
{〈µi, µj〉 | dist(µi, µj) ' 1 } is O(N2): thus, we can expect the number K of
clusters to be very high – typically, O(N).

A key intuition is that, in such a situation, it suffices to compare few close
neighbors in order to obtain the appropriate cluster membership. Therefore,
cluster membership can be detected by means of a minimal number of com-
parisons, by considering only some relevant neighbors for each new tuple, effi-
ciently extracted from the current database through a proper retrieval method.



118 7 Evaluating RecBoost

Moreover, we intend to cope with the clustering problem in an incremental
setting, where a new database DB∆ must be integrated with a previously
reconciled one DB.

The retrieval of neighbors in our clustering approach can be performed
by resorting to an indexing scheme that supports the execution of similarity
queries, and can be incrementally updated with new tuples. The basic idea is
to map any tuple to a proper set of features, so that the similarity between
two tuples can be evaluated by simply looking at their respective features [23].

Hierarchical approximate hashing based on q-Grams

Our objective consists in defining a suitable hash-based index. In particular,
we aim at defining an effective and efficient key-generation scheme which al-
lows a constant number of disk writes and reads, being simultaneously capable
of keeping a fixed (low) rate of false negatives. To this purpose, we combine
two different techniques: (i) the adoption of hash functions based on the no-
tion of minwise independent permutation [15], for bounding the probability of
collisions, and (ii) the use of q-grams (i.e., contiguous substrings of size q) for
a proper approximation of the similarity among string tokens [48].

Informally, a locally sensitive hash function H for a set S equipped with a
distance function D is a function which bounds the probability of collisions to
the distance between elements. Clearly, such a function H can be exploited in
order to assign similar tuples to a same bucket. The theory of minwise inde-
pendent permutations [15] can employed to this purpose. Indeed, a minwise
independent permutation is a coding function π of a set X of generic items
such that, for each x ∈ X, the probability of the code associated with x being
the minimum is uniformly distributed.

A minwise independent permutation π naturally defines a locally sensitive
hash function H over an itemset X, defined as H(X) = min(π(x)). Indeed,
for each two itemsets X and Y , it can be easily verified that Pr[min(π(X)) =
min(π(Y ))] = (|X ∩ Y |)/(|X ∪ Y |). This suggests that, by approximating
distM(ai, aj) with the Jaccard similarity among some given features of ai

and aj , we can adopt the above envisaged solution for a suitable indexing
approach. When M contains string tokens (as it usually happens in a typical
information integration setting), the features of interest of a given token a can
be represented by the q-grams of a. It has been shown [48] that the comparison
of the q-grams provides a suitable approximation of the Edit distance, which
is typically adopted as a classical tool for comparing strings.

In the following, we show how minwise functions can be effectively ex-
ploited to generate suitable keys. Consider the example tuples:

µ1 Jeff, Lynch, Maverick, Road, 181, Woodstock
µ2 Jef, Lync, Maverik, Rd, Woodstock



7.3 A case study 119

Clearly, the tuples µ1 and µ2 refer to the same entity (and hence should
be associated with the same key). The detection of such a similarity can be
accomplished by resorting to the following observations:

1. some tokens in µ1 are strongly similar to tokens in µ2. In particular, Jeff
and Jef, Lynch and Lync, Road and Rd, and Maverick and Maverik. Thus,
the tuples can be represented as:

µ1 a1, a2, a3, a4, 181,Woodstock
µ2 a1, a2, a3, a4, Woodstock

where a1 (resp. a2/a3/a4) represents an “approximately common” term.
2. the postprocessed tuples exhibit only a single mismatch. If a minwise

permutation is applied to both, with high probability the resulting key
shall be the same.

Thus, a minwise function can be applied over the purged representation
of a tuple µ, in order to obtain an effective key. The purged version of µ
should guarantee that tokens exhibiting high similarity with tokens in other
tuples, change their representation towards a “common approximate” token.
Again, the approximate representation of a token, described in point 1 of
the example above, can be obtained by resorting to minwise functions. Given
two tokens ai and aj , recall that their dissimilarity dM(ai, aj) is defined in
terms of the Jaccard coefficient. In practice, if feat(ai) and feat(aj) represent
two sets of features for tokens ai and aj respectively, then dM(ai, aj) = 1 −
|feat(ai) ∩ feat(aj)|/|feat(ai) ∪ feat(aj)|. Both sets feat(ai) feat(aj) can be
defined in terms of q-grams. Hence, by applying a minwise function to the set
of q-grams of a, we again have the guarantee that similar tokens collapse to a
unique representation.

Thus, given a tuple µ to be encoded, the key-generation scheme we propose
works in two different hierarchical levels. At the first level, each element a ∈ µ
is encoded by exploiting a minwise hash function H l. This guarantees that two
similar but different tokens a and b are with high probability associated with a
same code. As a side effect, tuples µ and ν sharing “almost similar” tokens are
purged into two representations where such tokens converge towards unique
representations. Instead, at the second level, the set rep(µ) = {H l(a)|a ∈ µ}
obtained from the first level, is encoded by exploiting a further minwise hash
function Hu. Again, this guarantees that purged tuples sharing several codes
are associated with a same key.

A key point is the definition of a proper family of minwise indepen-
dent permutations upon which to define the hash functions. In our approach
we exploit the family of “practically” minwise independent permutations
π(x) = ((a · c(x) + b) mod p) (introduced in [15]), where a 6= 0 and c(x)
is a unique numeric code associated with x (such as, e.g. the code obtained
by the concatenation of the ASCII characters it includes).



120 7 Evaluating RecBoost

Moreover, in order to further act on the randomness of the encoding,
we exploit in disjunctive manner h different encodings (H l

1, . . . ,H
l
h) at first

encoding level, and k different encodings (Hu
1 , . . . , Hu

k ) in conjunctive manner
at second level of encoding. By varying h and k parameters, we act on the
effectiveness (recall and precision respectively) of our hashing approach [23].

7.3.2 Evaluation and discussion

We here provide the results of an empirical evaluation performed to investi-
gate the effectiveness of our methodologies for dealing with data duplication
(schema reconciliation effectiveness was already tested in 7).

Our tests are performed by considering the Addresses data-set, the real-
life demographic database, consisting of registry information about the issue-
holders of credit situations in the afore described bank scenario. Such a data-
set is of particular interest, since it contains several fragments of noisy data.
We concentrate on a subset of 24,000 sequences of the Addresses data-set,
where each sequence exhibits an average of 8 tokens per sequence. The schema
to reconcile consists of the fields Name, Address, Zip, State/Province, and City.

The discussion on the hash-based approach for the de-duplication shows
that the effectiveness of the approach relies on proper values of h (number
of minwise functions at first level of encoding) and k (number of minwise
functions at second level of encoding). Suitable values of such parameters
fixing a high correspondence between the retrieved and the expected neighbors
of a tuple were investigated [23], where we justified and showed that best
performances are obtainable for h = k = 5. Again, experiments are conducted
over Addresses data-set.

For a generic tuple µ we newly consider the number TP (i.e., the tuples
which are retrieved and that belong to the same cluster of µ), and compare
it to the number of FP (i.e., tuples retrieved without being neighbors of µ),
and FN (i.e., neighbors of µ which are not retrieved). As global indicators we
exploit the average Precision and Recall per tuple, i.e. P = 1

N

∑
µ∈DB

TP
TP+FP

and R = 1
N

∑
µ∈DB

TP
TP+FN , where N denotes the number of tuples in DB.

The values of such quality indicators influence the effectiveness of the our
clustering scheme. In general, high values of precision allow for correct de-
duplication. When precision is low, the clustering method can be effective
only if recall is high.

More precisely, if we fix h = k = 5, fig. 7.15(a) shows the results obtained
for precision and recall by using different values of q-gram size q, whereas
fig. 7.15(b) summarizes the average number of retrievals and quality indices.
Notice that, in fig. 7.15(a), q = 3 allows a recall quite high even if precision
is low (thus allowing for a still effective clustering). Moreover, fig. 7.15(b)
indicates that, by using the same parameter combination, we are able to keep
the average number of retrievals low, thus guaranteeing a good scalability of
the approach.



7.3 A case study 121

(a) Precision and recall

(b) Average number of retrievals, TP, FP and FN

Fig. 7.15. Results on real data using different q-gram sizes

In conclusion, this case study showed how business-targeted data ware-
houses require complex efforts for their definition and setting. In particular,
enterprise data require to be suitably cleaned, reconciled and integrated, be-
ing originally stored in a federation of operational databases, scattered across
various departments of an organization (e.g. the accounts, production and
R&D departments). Preprocessed data are stored into data warehousing in-
frastructures, that provide fast access facilities to such data as well several
functionalities for efficient query processing and data analysis.

Starting from a real-life scenario involving risk analysis in banking organi-
zations, we showed how effective data mining techniques can effectively ease
the process of identifying and solving critical factors which affect the quality



122 7 Evaluating RecBoost

of the data warehouse itself. In particular, we devised two effective techniques
for schema and data reconciliation, and applied them to the aforementioned
scenario. As a result, this enables and expedites a number of management
and/or analytical tasks, such as well informed decision making, learning mod-
els of customer behavior and future trend prediction.

Clearly, the application scenario described here is not the only one where
the proposed techniques apply. To this purpose, we plan to test their effective-
ness in other domains, where failure in either schema or data reconciliation
may significantly affect the quality of analysis results.



Part IV

Conclusion





8

Conclusion

8.1 Defining and realizing a knowledge discovery
framework

The definition of a unifying framework, wherein to accommodate and combine
mining and data-processing tasks as components of a multi-step analytical
process, has not received the necessary attention: despite some preliminary
ideas, it is still an open issue without a predominant proposal. The absence
of such a framework is a primary limitation for the real-world applications
of data analysis, where it rarely happens that a single pattern-mining ac-
tivity suffices to meet the underlying analytical requirements: the process of
knowledge discovery can actually never be reduced to a single pattern-mining
activity.

A main contribution of this thesis was the definition and implementation
of a knowledge discovery framework built upon formal basis. In effect, the
operational semantics of the framework was founded on the 2W Model, a
theoretic model that views the knowledge discovery process as a progressive
combination of mining and querying operators. The aforementioned theoretic
model, was introduced after having recognized some common high-level prob-
lems that arise when attempting to define a KD framework, and consequently
having identified some basic requirements such a framework must have. The
essence of the defined 2W Model framework is the interaction between data
world and model world, thus the proposed framework supports an operations
flow in which mining tasks can be performed, and the resulting models can
be further exploited to leverage the overall discovery process.

A possible implementation of the 2W Model framework was also proposed.
In defining such implementation, easy of use and fully extensibility was two
main requirements, but we also solved real-world problems such as manag-
ing complex data types and efficiently storing and accessing huge amounts of
data. Besides being completely compliant with the theoretic 2W Model, the
proposed implementation also allows the analyst to easily examine and in-



126 8 Conclusion

spect both data and built models, using statistics, charts, and various models
visualizations metaphors.

There are some challenging issues, that are worth further research. Fore-
most, the identification of a compact 2W Model algebra, consisting of a fixed,
minimal set of operators. Analogously to the case of the 3W Model framework,
this is useful in two respects: (i) the possibility of expressing the required pat-
terns via suitable combinations of such basic operators, rather than relying on
an arbitrary number of task-oriented mining operators; (ii) the development
of a solid theoretical background concerning expressiveness and complexity
results. As far as optimization perspectives are concerned, the development of
strategies for decoupling specification from execution and optimizing process-
ing plans would increase the overall performance of the proposed framework
engine. Finally, it is worth noticing that the 2W Model can in principle be
adopted as a foundation for the definition of the procedural semantics of a
data mining query language.

8.2 The RecBoost application

Another contribution of this thesis was RecBoost, a novel approach to schema
reconciliation, that fragments free text into tuples of a relational structure
with a specified attribute schema. Within RecBoost, the most salient features
are the combination of ontology-based generalization with rule-based clas-
sification for more accurate reconciliation, and the adoption of progressive
classification, as a major avenue towards exhaustive text reconciliation. An
intensive experimental evaluation on real-world data confirms the effectiveness
of our approach. Also, a comparative analysis with state-of-the-art alternative
approaches reveals the following two main arguments in favor of RecBoost:

• due to the variable number of classification stages, RecBoost gives the user
better control over the trade-off between accuracy (i.e. the proportion of
correctly classified tokens w.r.t. the classification behavior of the overall
RecBoost system) and recall (i.e. the proportion of correctly classified to-
kens w.r.t. the actual tokens to reconcile). In practice, the user can choose
a classifier with a trade-off satisfying the requirements of the specific ap-
plication;

• the generic RecBoost classifier is easier to interpret than existing methods
such as DATAMOLD [12] and Mallet [69], since it produces symbolic rules
using vocabulary from a domain-specific ontology.

There are some directions that are worth further research. First, notice
that the proposed methodology is, in some sense, independent from the un-
derlying rule-generation strategy. In this respect, it is interesting to investigate
the adoption of alternative strategies for learning local classification models.
This line is also correlated with the effort for identifying a fully-automated
technique for setting the parameters of progressive classification, in terms of



8.2 The RecBoost application 127

required classification stages. Since parameters are model-dependent, two al-
ternate strategies can be either to investigate different, parameter-free models,
or to detect ways to enable a natural way of fixing the parameters of the sys-
tem, on the basis of the inherent features of the text at hand, rather than
relying on pre-specified estimates. The experimental section already contains
some pointers in the latter direction: however, more robust methods need
in-depth investigation.

In addition, we plan to investigate the development of an unsupervised
approach to the induction of an attribute descriptor from a free text. This
would still allow reconciliation, even in the absence of any actual knowledge
about the textual information at hand. Finally, we intend to examine the
exploitation of RecBoost in the context of the Entity Resolution process, to
the purpose of properly filling in missing fields and rectifying both erroneous
data-entry and transpositions oversights.





References

1. A. Abdulghani, T. Imielinski, and A. Virmani. Disovery board application pro-
gramming interface and query language for database mining. In KDD96 (Port-
land, Ore.), pages 20–26, 1996.

2. S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley,
1995.

3. B. Adelberg. A tool for semi-automatically extracting semistructured data from
text documents. In ACM SIGMOD Conference on Management of Data, 1998.

4. E. Agichtein and V. Ganti. Mining reference tables for automatic text segmenta-
tion. In ACM SIGKDD Conference On Knowledge Discovery and Data Mining,
pages 20–29, 2004.

5. R. Agrawal and R. Srikant. Mining generalized association rules. In 21th Inter-
national Conference on on Very Large Databases, pages 407–419, 1995.

6. T. Anand and R. Brachman. The process of knowledge discovery in databases:
A human centered approach. In AKDDM, pages 37–58, 1996.

7. JSR-73 Expert Group. Java Data Mining API. Website. http:// www.jcp.org/
en/ jsr/ detail?id=73.

8. M. Baglioni and F. Turini. Mql: An algebraic query language for knowledge
discovery. In 8th Congress of the Italian Association for Artificial Intelligence
on Advances in Artificial Intelligence (AI∗IA 2003), pages 225–236, 2003.

9. R.A. Baxter, L. Gu, D. Vickers, and et al. Record linkage: Current practice and
future directions. In Technical report, CSIRO Mathematical and Information
Sciences, 2003.

10. M. Benedikt, G. Dong, L. Libkin, and L. Wong. Relational expressive power of
constraint query languages. In Journal of the ACM, pages 1–34, 1998.

11. Bernhardt, S. Chaudhuri, U.M. Fayyad, and A. Netz. Integrating data mining
with sql databases: Ole db for data mining. In IEEE ICDE Int. Conf. on Data
Engineering, pages 379–387, 2001.

12. V.R. Borkar, K. Deshmukh, and S. Sarawagi. Automatic segmentation of text
into structured records. In ACM SIGMOD Conference on Management of Data,
pages 175–186, 2001.

13. J.F. Boulicaut, M. Klemettinen, and H. Mannila. Modeling kdd processes within
the inductive database framework. In DaWaK International Conference on Data
Warehousing and Knowledge Discovery, pages 293–302, 1999.



130 References

14. E. Brill. Transformation-based error-driven learning and natural language pro-
cessing: A cased study in POS tagging. In Computational Linguistics, pages
543–565, 1995.

15. A.Z. Broder, M. Charikar, A.M. Frieze, and M. Mitzenmacher. Min-wise in-
dependent permutations. In 30th Symp. on the Theory of Computing, pages
327–336, 1998.

16. W. Buntine. Graphical models for discovering knowledge. In AKDDM, pages
59–82, 1996.

17. CRISP-DM: Step by-step data mining guide. Website. http:// www.crisp-
dm.org.

18. T. Calders, L.V.S. Lakshmanan, R.T. Ng, and J. Paredaens. Expressive power
of an algebra for data mining. In ACM Transactions on Database Systems,
pages 1169–1214, 2006.

19. M.E. Califf and R.J. Mooney. Relational learning of pattern-match rules for
information extraction. In 15th National Conference on Artificial Intelligence,
pages 328–334, 1998.

20. B. Carey and C. Marjaniemi. A methodology for evaluating and selecting data
mining software. In Thirty-second Annual Hawaii International Conference on
System Sciences, 1999.

21. E. Cesario, F. Folino, A. Locane, G. Manco, and R. Ortale. Recboost: A super-
vised approach to text segmentation. In SEBD - Italian Symposium on Advanced
Database Systems, 2005.

22. E. Cesario, F. Folino, A. Locane, G. Manco, and R. Ortale. Boosting text seg-
mentation via progressive classification. In KAIS - Knowledge and Information
Systems, 2008.

23. E. Cesario, F. Folino, G. Manco, and L. Pontieri. An incremental clustering
scheme for duplicate detection in large databases. In 9th Int. Symp. on Database
Engineering and Applications, pages 89–95, 2005.

24. S. Chauduri. Data mining and database systems: where is the intersection? In
Bulletin of the Technical Committe e on Data Engineering, pages 4–8, 1998.

25. CLEMENTINE. Website. http:// www.spss.com/ clementine/.
26. M. Cochinwala, S. Dalal, and A.K. et al Elmagarmid. Record matching: Past,

present and future. In ACM Computing Surveys, 2003.
27. W.W. Cohen. Learning to classify english text with ilp methods. In Advances

in Inductive Logic Programming, pages 124–143, 1996.
28. G. Costa, F. Folino, A. Locane, G. Manco, and R. Ortale. Data mining for

effective risk analysis in a bank intelligence scenario. In ICDE Workshop on
Data Mining and Business Intelligence, 2007.

29. M. Craven, S. Ray, and M. Skounakis. Hierarchical hidden markov models for
information extraction. In 18th International Joint Conference on Artificial
Intelligence, pages 427–433, 2003.

30. L. De Raedt. A logical database mining query language. In ILP International
Conference on Inductive Logic Programming, pages 78–92, 2000.

31. J.S. Deogun, V.V. Raghavan, A. Sarkar, and H. Sever. Data mining: Research
trends, challenges, and applications. In Roughs Sets and Data Mining: Analysis
of Imprecise Data, 1997.

32. S. Dzeroski. Inductive logic programming for knowledge discovery in databases.
In AKDDM, 1996.

33. S. Dzeroski. Multi-relational data mining: an introduction. In SIGKDD Explo-
ration Newsletter, pages 1–16, 2003.



References 131

34. M.G. Elfeky, S.A. Fouad, and A.A. Saad. Odmql: Object data mining query
language. In Objects and Databases, pages 128–140, 2000.

35. U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. The kdd process for extracting
useful knowledge from volumes of data. In Communications of the ACM, pages
27–34, 1996.

36. U. Fayyad, G. Piatetsky-shapiro, and P. Smyth. Knowledge discovery and data
mining: Towards a unifying framework. In 2nd Int. Conf. on Knowledge Dis-
covery and Data Mining, 1996.

37. U.M. Fayyad, G. PiatetskyShapiro, and P. Smyth. From data mining to knowl-
edge discovery: An overview. In AKDDM, pages 1–30, 1996.

38. F. Flesca, G. Manco, and E. Masciari. Web wrapper induction: A brief survey.
In AI Communications, pages 57–61, 2004.

39. Magic Quadrant for Customer Data-Mining Applications. Herschel, g. In Gart-
ner RAS Core Research Note, 2007.

40. E. Frank and I.H. Witten. Data Mining: Practical Machine Learning Tools and
Techniques with Java Implementations. Morgan and Kaufmann, 2000.

41. D. Freitag. Toward general-purpose learning for information extraction. In 17th
National Conference on Computational Linguistics, pages 404–408, 1998.

42. D. Freitag, A. McCallum, and F. Pereira. Maximum entropy markov models for
information extraction and segmentation. In 17th International Conference on
Machine Learning, pages 591–598, 2000.

43. Y. Fu, J. Han, K. Koperski, and W. et al Wang. Dbminer: A system for mining
knowledge in large relational databases. In International Conference on Data
Mining and Knowledge Discovery, pages 250–255, 1996.

44. Y. Fu, J. Han, K. Koperski, and W. et al Wang. Dmql: A data mining query
language for relational databases. In SIGMOD Workshop on Research Issues in
Data Mining and Knowledge Discovery, 1996.

45. I. Geist and K. Sattler. Towards data mining operators in database systems: Al-
gebra and implementation. In DBFusion International Workshop on Databases,
Documents, and Information Fusion, 2002.

46. A. Gionis, P. Indyk, and Motwani R. Similarity search in high dimensions via
hashing. In 25th Int. Conf. on Very Large Data Bases, pages 518–529, 1999.

47. M. Goebel and L. Gruenwakd. A survey of data mining and knowledge discovery
software tools. In SIGKDD Explorations, pages 20–33, 1999.

48. L. et al Gravano. Approximate string joins in a database (almost) for free. In
27th Int. Conf. on Very Large Data Bases, pages 518–529, 2001.

49. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, San Mateo, CA, 2000.

50. D. Hand, H. Mannila, and Smyth. Principles of Data Mining. MIT Press,
Cambridge, MA, 2001.

51. M.A. Hernández and J. Stolfo. Real-world data is dirty: Data cleansing and the
merge/purge problem. In Data Mining and Knowledge Discovery, pages 9–37,
1998.

52. H. Hirsh and T. Imielinski. Query-based approach to database mining. In
Technical report, Rutgers University, 1993.

53. W. Hsu, B. Liu, and Y. Ma. Integrating classification and association rule min-
ing. In 4th ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 80–86, 1998.

54. T. Imielinski and H. Mannila. A database perspective on knowledge discovery.
In Communications ACM, pages 58–64, 1996.



132 References

55. T. Imielinski and A. Virmani. Msql: A query language for database mining. In
Data Mining and Knowledge Discovery, pages 373–408, 1999.

56. Infor. Website. http:// go.infor.com/ inforcrm/.
57. Fair Isaac. Website. http:// www.fairisaac.com/ fic/ en.
58. H. Jagadish, L. Lakshmanan, and D. Srivastava. What can hierarchies do for

data warehouses? In VLDB, pages 530–541, 1999.
59. T. Johnson, L. Lakshmanan, and R.T. Ng. The 3w model and algebra for unified

data mining. In International Conference on Very Large Data Bases (VLDB
2000), pages 21–32, 2000.

60. M. Junker, M. Rinck, and M. Sintek. Learning for text categorization and
information extraction with ilp. In Learning Language in Logic, pages 247–258,
2001.

61. V. Kumar, P.N. Tan, and M. Steinbach. Introduction to Data Mining. Addison-
Wesley, 2006.

62. J. Kupiec. Robust part-of-speech tagging using a hidden markov model. In
Computer Speech and Language, pages 225–242, 1992.

63. KXEN. Website. http:// www.kxen.com.
64. J.D. Lafferty, A. McCallum, and F.C.N. Pereira. Conditional random fields:

Probabilistic models for segmenting and labeling sequence data. In 18th Inter-
national Conference on Machine Learning, pages 282–289, 2001.

65. MDX: Microsofts language for OLAP. Website. http:// www.microsoft.com.
66. A. Locane, G. Manco, R. Ortale, and E. Ritacco. A 2w algebra model for

knowledge discovery. In Technical report ICAR-CNR, 2008.
67. C.D. Manning and C. Schultze. Foundations of Statistical Natural Language

Processing. MIT Press, 1999.
68. L. Marquez, L. Padro, and H. Rodriguez. A machine learning approach to pos

tagging. In Machine Learning, pages 59–91, 2000.
69. A. McCallum. Mallett: Advanced machine learning for language toolkit. In

http://mallet.cs.umass.edu, 2002.
70. IBM DB2 Intelligent Miner. Website. http:// www-01.ibm.com/ software/

data/ iminer/.
71. Oracle Data Mining. Website. http:// www.oracle.com/ technology/ products/

bi/ odm.
72. SQL Server Data Mining. Website. http:// www.sqlserverdatamining.com/

ssdm/.
73. B. Mitbander, W.M. Shen, K. Ong, and C. Zaniolo. Metaqueries for data mining.

In Advances in Knowledge Discovery and Data Mining, pages 375–398, 1996.
74. T. Mitchell. Machine Learning. Mc Graw-Hill, 1997.
75. T. Morzy and M. Zakrzewicz. Sql-like language for database mining. In AD-

BIS First East-European Symposium on Advances in Databases and Information
Systems, pages 311–317, 1997.

76. S. Mukherjee and I.V. Ramakrishnan. Taming the unstructured: Creating
structured content from partially labeled schematic text sequences. In 12th
CoopIS/DOA/ODBASE International Conference, pages 909–926, 2004.

77. KDD Nuggets. Website. http:// www.kdnuggets.com.
78. T.B. Pedersen, C.S. Jensen, and Dyreson C.E. A foundation for capturing and

querying complex multidimensional data. In Information Systems, page 383423,
2001.

79. G. Piatetsky-Shapiro. Knowledge discovery in real databases. In AI Magazine,
pages 68–70, 1991.



References 133

80. The DataMining Group. PredictiveModelMarkup Language (PMML). Website.
http:// http://www.dmg.org.

81. D. Pyle. Data Preparation for Data Mining. Morgan Kaufmann Publishers, San
Francisco, 1999.

82. A. Romei, S. Ruggieri, and F. Turini. Kddml: a middleware language and system
for knowledge discovery in databases. In Data Knowledge and Engineering,
pages 197–220, 2006.

83. SAS. Website. http:// www.sas.com.
84. C. Seidman. Data mining with microsoft sql server 2000. In Technical Reference.

Microsoft Press, 2001.
85. S. Soderland. Learning information extraction rules for semi/structured and

free text. In Machine Learning, pages 233–272, 1999.
86. Angoss Software. Website. http:// www.angoss.com.
87. Portrait Software. Website. http:// www.portraitsoftware.com.
88. OLE DB DM Specifications. Website. http:// www.microsoft.com/ data/ oledb/

dm/.
89. SPSS. Website. http:// www.spss.com.
90. Exeura technical-scientific reports on Data Mining Suite and Rialto. Techinical

reports. http:// www.exeura.com.
91. ThinkAnalytics’. Website. http:// www.thinkanalytics.com.
92. Unica. Website. http:// www.unica.com.
93. H. Wang and C. Zaniolo. Atlas: A native extension of sql for data mining. In

Third SIAM International Conference on Data Mining, 2003.
94. WEKA. Website. http:// www.cs.waikato.ac.nz/ ml/ weka/.
95. W.E. Winkler. The state of record linkage and current research problems. In

Technical report, Statistical Research Division, U.S. Census Bureau, 1999.


