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Preface

This thesis deals with the study and the evaluation of Peer-to-Peer distributed
models and algorithms for public resource computing. In particular, in this
work we present the design of a super peer model for public resource comput-
ing and its validation by simulation techniques.
The model and its simulator have been developed in the Grid Research Group
of University of Calabria in collaboration with CNR-ICAR and University of
Cardiff.
The first chapter gives and overview of distributed systems starting from
traditional systems to more recent distributed systems; some comparison is
discussed.
In the second chapter the Peer-to-Peer model is detailed, starting from a
comparison with the client server model, then describing the peer-to-peer ar-
chitecture,the super peer architecture, the discovery techniques used and the
most common applications.
Special attention is given to a distributed computing application named Pub-
lic Resource Computing, detailed in the third chapter.
The strength of this paradigm is emphasized by showing a successful project
like SETI@home, and the environment widely used to support the implemen-
tation of such project, the BOINC framework.
In the fourth chapter, after a detailed analysis of reference models, it is pro-
posed a new Super Peer model for Public Resource Computing which func-
tionalities and performance have been tested by using a simulator.
Finally, in the fifth chapter, is discussed how the model has been extended to
support a file sharing application represented by the Mrs DART use case.
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Prefazione

Questo lavoro di tesi consiste nello studio e la valutazione di modelli e algo-
ritmi distribuiti di tipo Peer to Peer ed in particolare nella progettazione di
un modello a super peer per il public resource computing e sua validazione
per mezzo di tecniche di simulazione. Il modello e il suo simulatore nascono
dal lavoro del Gruppo di Ricerca di Griglie dell’Universita’ della Calabria in
collaborazione con CNR-ICAR e Universita’ di Cardiff.
Nel primo capitolo e’ fornita una breve panoramica dai sistemi distribuiti piu’
tradizionali ai piu’ recenti, con relativi confronti.
Nel capitolo 2 e’ approfondito il modello Peer-to-Peer partendo da un con-
fronto con l’architettura client-server, e poi fornendo una descrizione della
architettura Peer-to-Peer, dell’architettura a Super Peer, del protocollo di co-
municazione, delle tecniche di discovery utilizzate e delle applicazioni piu’
diffuse.
Particolare attenzione e’ rivolta ad una applicazione di calcolo distribuito che
prende il nome di Public Resource Computing, descritta nel capitolo 3. Le
potenzialita’ di questo paradigma sono descritte fornendo un esempio di pro-
getto di successo, SETI@home, e l’ambiente piu’ utilizzato per il supporto
all’implementazione di tali progetti, il framework BOINC.
Nel capitolo 3, dopo aver accuratamente dettagliato i modelli di riferimento,
viene proposto un nuovo modello a super peer per il public resource comput-
ing, le cui funzionalita’ e potenzialita’ sono state testate mediante l’uso di un
Simulatore.
Infine, nel capitolo 5, viene mostrato come il modello possa essere esteso al
fine di supportare applicazioni di tipo file sharing, il caso di Mrs DART.
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Part I

Distributed computing: state of the art





1

Distributed systems

Computer technology has revolutionized science. Scientists have developed
accurate mathematical models of the physical universe, and computers pro-
grammed with these models can approximate reality at many levels of scale:
an atomic nucleus, a protein molecule, the Earth’s biosphere, or the entire
universe. Using these programs, we can predict the future, validate or dis-
prove theories, and operate ”virtual laboratories” that investigate chemical
reactions without test tubes [56].
Computer technology also has revolutionized itself to better support scientific
required tasks and thanks to the electronic innovation.

Since Internet diffusion many desktop computers, laptop, play stations and
so on were linked to the network to share data and to intercommunicate, as
side effect these computers constitute a huge virtual computer made by com-
putation resource and data spread over all the network. Distributed systems
is exactly the technology that incorporate this concept to use shared unused
resources.
There are several definitions and view points on what distributed systems
are. Coulouris defines a distributed system as ”a system in which hardware
or software components located at networked computers communicate and
coordinate their actions only by message passing” [1]; and Tanenbaum defines
it as ”A collection of independent computers that appear to the users of the
system as a single computer” [2]. Leslie Lamport once said that ”A distributed
system is one on which I cannot get any work done because some machine I
have never heard of has crashed” reflecting on the huge number of challenges
faced by distributed system designers. Despite these challenges, the benefits
of distributed systems and applications are many, making it worthwhile to
pursue.
The main features of a distributed system include [1, 2]:

• Functional separation: It’s based on functionality/services provided, capa-
bility and purpose of each entity in the system.
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• Inherent distribution: Entities such as information, people, and systems
are inherently distributed. For example, different information is created
and maintained by different people. This information could be generated,
stored, analysed and used by different systems or applications which may
or may not be aware of the existence of the other entities in the system.

• Reliability: Long term data preservation and backup (replication) at dif-
ferent locations is managed.

• Scalability: It consists in the addition of more resources to increase per-
formance or availability. In the opposite in centralize systems scalability
is usually restricted by the amount of centralized operation necessary and
such system largely avoid central instances or servers.

• Economy: Resources are shared by many entities to help reduce the cost
of ownership. As a consequence of these features, the various entities in a
distributed system can operate concurrently and possibly autonomously.
Tasks are carried out independently and actions are co-ordinated at well-
defined stages by exchanging messages.

As a consequence of these features, the various entities in a distributed system
can operate concurrently and possibly autonomously. Tasks are carried out
independently and actions are co-ordinated at well-defined stages by exchang-
ing messages. Also, entities are heterogenous, and failures are independent.
Generally, there is no single process, or entity, that has the knowledge of the
entire state of the system.

So far various types of distributed systems and applications have been
developed and are being used extensively in the real world.
Inside of the various types of distributed systems, we analyze Clusters [3],
Grids [5], and P2P (Peer-to-Peer) networks [27].

1.1 Cluster computing

A cluster is a dedicated group of interconnected computers that appears as a
single super-computer. It’s possible classify clusters depending from possible
applications to do with. High availability clusters have a single virtual host
on the network interface where a very big number of users can connect; an ex-
ample is a website as a websearch engine accessed bye many people frequently
or a huge database with a huge frequence of query access.
High reliability clusters are generally made bye to twins machine, one the
mirror of the other, that are opportunaly configured then once one is not
available the other starts work in sake of. Load condivision clusters are ar-
ranged in a way that different kind of concurrent users can access available
resources thanks the mediation of a Resource Manager. Load balance cluster
are arranged in a way that a resource request can be forwarded to any avail-
able node depending from the load, think for example about a cluster that
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must manage a growing number of users in an online game, a scientific data
management and business applications. High performance cluster are special
for process that generally can split in small subprocess and they are weakly
dependent as in scientific engineering, robot management, medical imagines
analysis, military control systems. Finally Cluster grid are clusters geograph-
ically distributed in stand of being inside a room, we will refer to them with
the name grid computing in the rest of this work.
Since they can support real time applications as well, cluster systems should
solve temporal constraints well defined to acceding resources of one appli-
cation. From software point of view they need operating systems ad hoc or
conventional operating systems with a software support for communication
and data sharing, also to perform their task they need again specific schedul-
ing algorithms.
Realizing a cluster means to build a ”parallel computer”, you need N com-
puting nodes (N > 1) linked by a communication network to allow the data
exchange among these nodes. No special requirements about net topology,
speed and if dedicated or not. About software, a cluster generally uses open-
source programs. Beowulf project [4] is the referement design model for many
cluster realized like this and in figure 1.1 there is an architectural schema of
it.
Beowulf clusters are tipically of computing centers where the issue is high

Fig. 1.1. Beowulf: the schema

performance computing, cpu intensive and storage intensive.
Thanks opensource software and reusing available unused old computers were
operating system linux works well, clusters can offer high reliablity and at the
same time not high costs.
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1.2 Grid computing

The older definition of what a grid is how it’s intended nowadays, it’s from
Ian Foster and Carl Kessellman that, in 1999, defined computation grids in
The Grid: Blueprint for a New Computing Infrastructure as ”A computational
grid is a hardware and software infrastructure that provides dependable, con-
sistent, pervasive and inexpensive access to high-end computational capabili-
ties”. In this vision, the Grid will be to all computational resources what the
World Wide Web presently is to documents containing information.
Grid users will have in fact at their disposal distributed high performance com-
puters able to access and process terabytes of data stored in global databases,
plus the appropriate tools to control and to share these resources.
In [17] Foster again try to define grids introducing the concept of virtual orga-
nizations. In this work the grid concept appears as the coordinated resources
sharing and problem solving in dynamic, multi-institutional virtual organi-
zations (VO). With V O is intended a set of individuals and/or institutions
defined by such sharing rules. Later Foster synthesize a grid by listing three

VO3

VO2 VO1
Resource Cluster1

Resource Cluster2

Fig. 1.2. Virtual Organizations accessing different and overlapping sets of resources

primary attributes [6]:

1. Computing resources are not administered centrally.
2. Open standards are used.
3. Non-trivial quality of service is achieved.

Plaszczak/Wellner define grid technology as ”the technology that enables re-
source virtualization, on-demand provisioning, and service (resource) sharing
between organizations”. IBM defines grid computing as ”the ability, using a
set of open standards and protocols, to gain access to applications and data,
processing power, storage capacity and a vast array of other computing re-
sources over the Internet. A grid is a type of parallel and distributed system
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that enables the sharing, selection, and aggregation of resources distributed
across ’multiple’ administrative domains based on their (resources) availabil-
ity, capacity, performance, cost and users’ quality-of-service requirements” [9].
Buyya defines a grid as ”a type of parallel and distributed system that en-
ables the sharing, selection, and aggregation of geographically distributed au-
tonomous resources dynamically at runtime depending on their availability,
capability, performance, cost, and users’ quality-of-service requirements” [10]
CERN, one of the largest users of grid technology, talk of The Grid: ”a service
for sharing computer power and data storage capacity over the Internet” [11].
A grid can be also intended as a type distributed system that enables coor-
dinated sharing and aggregation of distributed, autonomous, heterogeneous
resources based on users’ QoS (Quality of Service) requirements.
Conceptually, the Grid can be thought of in terms of three layers. Underlying
everything is the computational and data grid: the computer hardware and
data networks upon which the work will be conducted. Above this is the ’in-
formation grid’: the databases of information to be accessed by the hardware,
and systems for data manipulation. On top is the ’knowledge grid’, where
high-level applications will mine the data for the knowledge that can form the
basis of semantic understanding and intelligent decision making.
Middleware acts to interface between three types of entity: the users, the data
they wish to process, and the computational resources required for this pro-
cessing. Central to these interactions are metadata, that is to say descriptive
information about these three types of entity, organized in a systematic man-
ner that makes automated interactions possible.
Individual agents can continuously represent the users, the data and the re-
sources on the Grid by presenting their metadata, while who offer a grid ser-
vice must deal with authentication and authorization for manage payment,
scheduling of activities, task monitoring.
A key point for successful Grid computing, is in fact to provide security access
policies. When a single user account with a single log-on procedure must be
sufficient for pervasive (any time, any place) access to all the computational
resources required, with security permissions being handled automatically be-
tween the separate systems in a manner transparent to the user. This requires
the development of certification systems employing modern public key en-
cryption technology to establish the identity and trustworthiness of the user
(user authentication), and then to grant him/her access to those computa-
tional facilities and databases that the user has the right to use, perhaps by
virtue of institutional membership or subscription to a database service (user
authorization).
For the Grid to become a reality, there is the strict requirement that the appli-
cations used for information processing on both local and distant computers
become integrated and truly interoperable. New software developments such
as XML (eXtensible Markup Language), RDF (Resource Description Frame-
work) and CORBA (Common Object Request Broker Architecture), together
with systems for load balancing between distant computers, and task integra-
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tion toolkits such as Globus [16], are likely to form the basis of the Grid tools
that will be central to future interoperability, providing homogeneous access
to heterogeneous data and resources [7].
So far grids are commonly used to support applications emerging in the ar-
eas of e-Science and e-Business, which commonly involve geographically dis-
tributed communities of people who engage in collaborative activities to solve
large scale problems and require sharing of various resources such as comput-
ers, data, applications and scientific instruments.

1.3 Grids vs. Clusters

At first look it can seems that Grids and clusters can solve the same kind of
computations, in fact both may satisfy high-performance or high-throughput
requirements by enabling distributed computing. The point is that grids solve
the more complicated problem of providing computing resources to groups
that span organizational boundaries, where resources are spread among the
groups. In fact, a grid may marshal numerous clusters from different organi-
zations into a logical set of computational resources available to a group of
authorized users. By definition, grid services must live in more a complex en-
vironment where resources must be shared and secured according to policies
that may differ from organization to organization. In contrast, cluster comput-
ing evolved simple as a way of solving computationally demanding problems
by using large numbers of commodity CPUs together with commodity net-
working technology.
Over the last part of the 20th century as computing power increased and
prices dropped, it became clear that if large numbers of low-cost computers,
for example computer connected to Internet, could provide supercomputing
power at a much lower cost than purpose-built, high-performance supercom-
puters.

Because processes must communicate with other processes via the net-
work, rather than hardware on the motherboard, communication is much
slower. Also, high-speed RAM availability is limited by the amount of mem-
ory available to hosts in the cluster. Given these constraints, clusters have
still proven invaluable in high-performance computing for solving problems
that can easily be broken into many smaller tasks and distributed to workers.
Ideal problems require little communication between workers, and their work
product can be combined or processed in some way after the tasks have been
completed.
Grids can certainly solve these sorts of problems, but they might have a su-
percomputer available for tasks that cannot be broken up so easily. The grid
would provide a way to match this supercomputer with your problem, re-
serve it, authenticate your task and authorize its use of the supercomputer. It



1.4 P2P systems 9

Fig. 1.3. Columbia Super Cluster of NASA from 10.240 processors

would execute the task and provide a way to monitor progress on that super-
computer. When the supercomputer completes your task, it would send the
results to you. This supercomputer might even be in a different hemisphere
and owned by a different institution. Finally, the grid might even debit your
account for using this service.
By way of contrast, a cluster might provide some of these services. It might
even be a cluster of supercomputers, but the cluster would probably belong
entirely to your institution, and it probably wouldn’t bill you. In addition,
your institution probably would have a consistent policy and method of au-
thenticating your credentials and authorizing your use of the cluster. More im-
portant, the cluster would probably exercise complete and centralized control
over its resources [12]. Finally we must considerate that Grids emerged to solve
resource-sharing problems across academic and research institutions, where
funding for researching a broad topic might be distributed across a variety of
institutions that employed researchers focusing on particular aspects of that
topic. Sharing this experimental data among many geographically distributed
research organizations and researchers requires sophisticated resource-sharing
technology that can expose those resources in an open, standard, and secure
way. These requirements far exceed those of a cluster intended to provide
high-performance computing for a given institution.

1.4 P2P systems

The P2P idea is based on the notion of increasing the decentralization of
systems, applications, or simply algorithms. It is based on the principles that
the world will be connected and widely distributed and that it will not be
possible or desirable to leverage everything off of centralized, administratively
managed infrastructures. P2P is a way to leverage vast amounts of computing
power, storage, and connectivity from personal computers distributed around
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the world.
A P2P system then is one in which autonomous peers depend on other au-
tonomous peers. Peers are autonomous when they are not wholly controlled
by each other or by the same authority, e.g., the same user. Peers depend on
each other for getting information, computing resources, forwarding requests,
etc. which are essential for the functioning of the system as a whole and for
the benefit of all peers. As a result of the autonomy of peers, they cannot
necessarily trust each other and rely completely on the behaviour of other
peers, so issues of scale and redundancy become much more important than
in traditional centralized or distributed systems.
As with any computing system, the goal of P2P systems is to support appli-
cations that satisfy the needs of users.

Centralized systems that serve many clients typically bear the majority
of the cost of the system. When that main cost becomes too large, a P2P
architecture can help spread the cost over all the peers. Much of the cost
sharing is realized by the utilization and aggregation of otherwise unused re-
sources which results both in net marginal cost reductions and a lower cost
for the most costly system component, then P2P model brings a cost shar-
ing/reduction.

Either such system can give an improved scalability/reliability respect the
situation to have a strong central authority thanks autonomous peers.

A decentralized approach lends itself naturally to resource aggregation and
interoperability. Each node in the P2P system brings with it certain resources
such as compute power or storage space. Applications that benefit from huge
amounts of these resources, such as compute-intensive simulations or dis-
tributed file systems, naturally lean toward a P2P structure to aggregate
these resources to solve the larger problem.

In many cases, users of a distributed system are unwilling to rely on any
centralized service provider. Instead, they prefer that all data and work on
their behalf be performed locally. P2P systems support this level of autonomy
simply because they require that the local node do work on behalf of its user.
Related to autonomy is the notion of anonymity and privacy. A user may not
want anyone or any service provider to know about his or her involvement in
the system. With a central server, it is difficult to ensure anonymity because
the server will typically be able to identify the client, at least by Internet
address. By employing a P2P structure in which activities are performed
locally, users can avoid having to provide any information about themselves to
anyone else. P2P systems assume that the computing environment is highly
dynamic. That is, resources, such as compute nodes, will be entering and
leaving the system continuously. When an application is intended to support
a highly dynamic environment, the P2P approach is a natural fit. P2P system
even is linked to dynamism concept, that is enabling ad-hoc communication
and collaboration, where members come and go based perhaps on their current
physical location or their current interests.
A more detailed description of current P2P systems is given in next chapter.
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1.5 Grid vs. P2P

Generally moderate-sized communities use Grid services specially when it’s
mandatory a trusted information exchange. In contrast, current P2P systems
deal with many more participants and offer limited and specialized services,
have been less concerned with qualities of service and trust. Anyway the point
is that both two environments deal with the same general problem, namely,
resource sharing within VOs that may not overlap with any existing organiza-
tion.
Grid systems integrate resources that are more powerful, more diverse, and
better connected than the typical P2P resource. Anyway the two types of
system have both conceptual and concrete distinction about resources defini-
tion, target communities, connectivity, scalability, reliability and so on.
A Grid resource in fact might be a cluster, storage system, database, or sci-
entific Instrument of considerable value that is administered in an organized
fashion according to some well defined policy, while home computers arguably
represent the majority of P2P resources.
P2P has been popularized by file sharing and public resource computing ap-
plications, the latter is a high performance conputing based on volunteers
who donate their personal computers’ unused resources to a computationally
intensive research project.
In contrast with Grids, public resource computing involves an asymmetric
relationship between projects and participants. Projects are typically small
academic research groups with limited computer expertise and manpower.
Most participants are individuals who own Windows, Macintosh and Linux
PCs, connected to the Internet by telephone or cable modems or DSL, and
often behind network-address translators (NATs) or firewalls. The computers
are connected intermittently to the network, remaining available for a limited
time with reduced reliability. Anyway the number of nodes connected in a
P2P network at a given time is much greater than in a grid. Thus, partici-
pants are not computer experts, and participate in a project only if they are
interested in it and receive ”incentives” such as credit and screensaver graph-
ics. Projects have no control over participants, and cannot prevent malicious
behaviour [72, 19].
Grids generally include powerful machines that are statically connected through
high performance networks with high levels of availability. On the other hand,
the number of accessible nodes is generally low because access to grid resources
is bounded to rigorous accounting mechanisms.

About applications, P2P systems tend to be vertically integrated solutions
to specialized resource-sharing problems: currently deployed systems share ei-
ther compute cycles or files while Grid systems more data intensive. For ex-
ample, a recent analysis of Sloan Digital Sky Survey SDSS data [15] involved,
on average, 660 MB input data per CPU hour; In contrast, SETI@home [67]
moves at least four orders of magnitude less data: a mere 21.25 KB data per
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CPU hour. The reason is presumably, in part at least, better network con-
nectivity, which also allows for more flexibility in Grid application design: in
addition to loosely coupled Applications, Grids have been used, for example,
for numerical simulation and branch-and-bound based optimization problems.
Grid systems must address the problem of scalability and deal with failures

Fig. 1.4. The constellation Auriga, picture for Mapping the Universe project [15]

in terms of amount of activity, while P2P in terms of participating entities.
Early Grid implementations did not address scalability and self-management
as priorities. Thus, while the design of core Grid protocols does not preclude
scalability, actual deployments often employ centralized components. One ex-
ample of that is the Globus toolkit [16] where you can find central repositories
for shared data, centralized resource management components, and centralized
and/or hierarchical information directories. This situation is changing, with
much work proceeding on such topics as reliable and scalable management of
large job pools, distributed scheduling, replica location, and discovery.

Far larger P2P communities exist: millions of simultaneous nodes in the
case of file-sharing systems and several million total nodes in SETI@home.
The amount of activity is also significant, albeit, surprisingly, not always larger
than in the relatively smaller-scale Grids (1-2 TB per day in file sharing sys-
tems). This large scale has emerged from robust self-management of large
numbers of nodes.

The technologies used to develop Grid and P2P applications differ both
in the specific services provided and in the emphasis placed on persistent,
multipurpose infrastructure. Grid provide to creating and operating persis-
tent, multipurpose infrastructure services for authentication, authorization,
discovery, resource access, data movement, and so forth.
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Many Grid communities use the open source Globus Toolkit [16] as a tech-
nology base. Significant effort has been channeled toward the standardization
of protocols and interfaces to enable interoperability between different Grid
deployments. P2P systems have tended to focus on the integration of simple
resources (individual computers) via protocols designed to provide specific
vertically integrated functionality. Such protocols do, of course, define an in-
frastructure, but in general the persistence properties of such infrastructures
are not specifically engineered but are rather emergent properties [18].





2

Peer-to-Peer

2.1 Historical

Peer-to-Peer (P2P ) is the model of earlier distributed applications and it aims
to employ distributed resources to perform function in a decentralized man-
ner; in P2P applications, resource can be computing, storage and bandwidth,
while function can be computing, data sharing, collaboration.
E-mail systems built on the SimpleMail Transfer Protocol (SMTP) and Usenet
News are first examples of such applications. The main idea is that there are
local servers that received a message then they built connections with peer (P)
servers to deliver messages into a user’s mail file or into a spool file containing
messages for the newsgroup. The File Transfer Protocol (FTP) currently is a
client-server application, in the beginning it was very common for individu-
als to run FTP servers on their workstations to provide files to their Ps for
such reason it’s can be intended as the precursor to today’s file sharing P2P
systems. Even an indexing system named Archie, was developed to provide a
central search mechanism for files on FTP servers. This structure with cen-
tral search and distributed files is exactly replicated in a very popular P2P
system: Napster.

At the time decentralized dial-up networks as UUNet and Fidonet were
used, they were composed of a collection of machines that made periodic
dial-up connections to one another. On a typical connection, messages (again,
typically e-mail or discussion group entries) were transferred bi-directionally.
Often, a message would be routed through multiple dial-up hops to reach its
destination. This multi-hop message routing approach can be seen in current
P2P systems such as Gnutella.

At the very beginning of Internet all the content was provided by ma-
chines at similar levels (ignoring routing intermediaries that provide services
like DNS and DHCP) with Arpanet. If someone wanted to publish something,
they published it on their machine (or one within their physical location).
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Things were balanced because equal amounts of traffic flowed both directions
- all the nodes were Ps. An historical example of P2P application was the
Internet Relay Chat (IRC). The origin of IRC can be traced back to the
Department of Information Processing Science at the University of Oulu1,
Finland during the latter part of August 1988. IRC consists of distributed
servers that relay chat information between each other. A set of these servers
is called a net. A user, or client, connects to one of these servers and joins a
channel (like a chat room). Once they are in a channel their chat is relayed
to every other client in that channel on that net. There are hundreds of es-
tablished nets available and a given net can have thousands of channels.
Gradually with time at the late-80’s and early- 90’s more transients users
connected to the network. This moved to more of a server model, with multi-
ple clients connecting to it. It also allowed the use of less expensive and less
functional computers such as desktop PCs. Today again with faster always on
connections a new type of connectivity between the individual clients is on
the rise.
The first wide use of P2P seems to have been in instant messaging systems
such as AOL Instant Messenger. These are typically hybrid P2P solutions
with discovery and brokering handled by a central server followed by direct
communication between the P messaging systems on the PCs. The current
phase of interest and activity in P2P was driven by the introduction of Nap-
ster [Napster 2001] in 1999. It came at a time when computers and their
network connections were nearing the level found previously in technical and
academic environments, and re-created earlier approaches with an interface
more suitable to a non-technical audience.

2.2 P2P networks: comparing to client-server model

Network configurations mainly include server and P networks. Typically in
server (or Client / Server) networks there are one or more central servers that
choreograph all networking activity between all the machines, and thanks to
technologies like DHCP assign network address to them, then technologies like
DNS allow one client to connect to the other using a common name without
needing to know the machines actual address. In the opposite in a P network
all the machines are equal, with each machine discovering what other machines
are on the network and obtaining an address without the help of a server.
The presence of servers aims to provide a central location allowing the entire
network to be administered from one location (or at least that is the theory.)
and it symbolizes a source that can spread contents by request.
The downside is that server and administrator do the extra work to make it
easier on the clients and end users. Servers, representing the single point of

1 IRC: http://www.oulu.fi/english/index.html
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failure of the whole network, are costly, both in time and money, so the more
computers to be serviced by a server, the more cost effective it is to have one.

Fig. 2.1. Communication Systems: (a)Client-Server, (b)Peer-to-Peer

A P network does not require a special central server; this makes it more
appealing to small networks, especially ones found in the home.
The downside is that it can take a while for a machine to find another machine
on the network, and the burden of connecting correctly and P2Pobtaining an
address is placed on each client. If a P network is going to be very large then
an administrator may be required to keep things running smoothly, unfor-
tunately there is no central server for them to administer, so they will be
required to administer each machine on the network.
A P can be seen as a client, where client indicates subservient to a server.
Instead of calling the model client to client we call it peer to peer since for
these connections they are equal or Ps.
The Ps may have to handle a limited connectivity, support possibly indepen-
dent naming, and be able to share the role of the server.
The fact that a central server may have made the initial connection to the
Internet (or some other network) possible is irrelevant in where the final ac-
tivity takes place. The outcome is that all the action is in the Ps, or the
fringes of the network as having all entities being client and servers for the
same purpose.
If you want to publish something, you do so on your own machine, instead of
on an external server. P2P is a new abstraction on top of the current Internet
structures.

2.3 P2P protocol definitions

To explain what P2P protocol aims to do, it’s suitable starting from common
definitions of it. P2P is defined by online dictionaries in the following ways:
”P2P is a communications model in which each party has the same capabilities
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and either party can initiate a communication session” by Whatis.com, ”A
type of network in which each workstation has equivalent capabilities and
responsibilities” by Webopedia.com, ”A P2P computer network refers to any
network that does not have fixed clients and servers, but a number of P nodes
that function as both clients and servers to other nodes on the network” by
Wikipedia.org.

Either there are several of the definitions of P2P that are being used by
the P2P community. The Intel P2P working group defines it as ”the shar-
ing of computer resources and services by direct exchange between systems”
[25]. Alex Weytsel of Aberdeen defines P2P as ”the use of devices on the
internet periphery in a nonclient capacity” [21]. P2P are a ”Class of systems
and applications that employ distributed resources to perform a function in a
decentralized manner” according to Vana Kalogeraki, Riverside. Ross Lee Gra-
ham defines P2P through three key requirements: a) they have an operational
computer of server quality; b) they have an addressing system independent
of DNS; and c) they are able to cope with variable connectivity [29]. Clay
Shirky of O’Reilly and Associate uses the following definition: ”P2P is a class
of applications that takes advantage of resources - storage, cycles, content,
human presence - available at the edges of the Internet. Because accessing
these decentralized resources means operating in an environment of unstable
connectivity and unpredictable IP addresses, P2P nodes must operate outside
the DNS system and have significant or total autonomy from central servers”
[26]. Finally, Tim Kindberg of HP Labs defines P2P systems as those with
independent lifetimes [22].

2.4 P2P architectures

Decentralization is one of the major concept of P2P systems. This includes
distributed storage, processing, information sharing and also control informa-
tion. Based on the degree of decentralization in a P2P system, we can classify
them into two categories: Purely Decentralized and Hybrid Architecture. Re-
cently a new architecture has been successfully proposed: the Super Peer (SP)
model [83], for details look at last section in this chapter.
Purely Decentralized seems to be the best but at the same time the hardest to
realize, it can’t rely on a always on servers, the case of Hybrid Architecture,
or on a P with extra features, the case of SP .

An architecture overview is depicted in the following figure:
Following a description of each architecture according the way P node are

linked and how they intercommunicate.
As well a valuation is done respect of main distributed application char-

acteristic: management extendibility scalability, security, fault-tolerance and
load balancing.
Lookup and discovery phases are detailed respect to P2P architecture.
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Fig. 2.2. Architecture

A pure P2P system is a distributed system without any centralized con-
trol. In such systems all nodes are equivalent in functionality. In such networks
the nodes are named as servent (SERver+cliENT), the term servent repre-
sents the capability of the nodes of a peer-to-peer network of acting at the
same time as server as well as a client.

Pure P2P systems are inherently scalable, they are inherently fault-
tolerant too, since there is no central point of failure and the loss of a P

or even a number of Ps can easily be compensated. They also have a greater
degree of autonomous control over their data and resources. On the other
hand such systems present slow information discovery infact a query of the
network must make many hops to reach many nodes, which takes much longer
and there is no guarantee about quality of services. If the network is very large
then you will most likely never query the entire network. Also because of the
lack of a global view at the system level, it is difficult to predict the system
behaviour.

Gnutella [39], Freenet [41], Chord [44] and CAN [46] are instances of such
purely decentralized systems.

Hybrid or Brokered P2P systems make use of a Central Server or Bro-
ker that maintains directories of information about registered users to the
network, in the form of meta-data. This server may provide other services to
aid in the matching of the Ps. Once the match is made then the end-to-end
interaction is directly between two P clients.

Each node only ever knows about the central server and any other nodes
that the central server introduces it too. The advantage of brokered in fact
is that it has the performance of centralized but also allows direct P connec-
tions. Later in this section is detailed how the indexing phase happen in such
systems, it can be centralized or decentralized as well.
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Fig. 2.3. Brokered architecture

2.5 Discovery mechanisms for P2P systems

Distributed P2P systems often require a discovery mechanism to locate spe-
cific data within the system. In general P2P systems have evolved from first
generation centralized structures to second generation flooding-based and then
third generation systems based on distributed hash tables (chord, can).
First taxonomy of search methods can be done according to the location of
the metadata , if centralized or decentralized, in informed approaches.

2.5.1 Centralized and decentralized indexes

Centralized indexes and repositories is the mechanism used in hybrid P2P
systems.

Centralized indexing scenario is the case of a central server maintains
an index with meta data (file name, time of creation etc.) of files that are
currently being shared by active Ps, a table of registered user connection
information (IP addresses, connection speeds etc.), a table listing the files that
each user holds and shares in the network. Each P maintains a connection to
the central server, which store all information regarding location and usage
of resources. Upon request from a P , the central index will match the request
with the best P in its directory that matches the request. The best P could
be the one that is cheapest, fastest, nearest, or most available, depending on
the user needs. Then the data exchange will occur directly between the two
Ps.

The user then opens a direct connection with the P that holds the re-
quested file, and downloads it. This architecture is used by Napster [51].

The disadvantage is that such systems are vulnerable to censorship and
malicious attack. Because of central servers they have a single point of failure.
They are not inherently scalable, because of limitations on the size of the
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Fig. 2.4. Centralized indexing

database and its capacity to respond to queries. As central directories are not
always updated, they have to be refreshed periodically.

To deals with this problems the decentralized indexing model comes up, in
this case the central server task is to register the users to the system and fa-
cilitates the P discovery process. The server doesn’t represent the single point

Fig. 2.5. Distributed indexing

of failure in fact some of the nodes assume a more important role than and
they are called ”supernodes” [55]. These nodes maintain the central indexes
for the information shared by local Ps connected to them and proxy search
requests on behalf of these Ps so queries are therefore sent to SuperNodes,
not to other Ps, this happens in Kazaa [49, 37] and Morpheus [52].

To be designed as SP , a P must have sufficient bandwidth and process-
ing power and a central server provides new Ps with a list of one or more
SuperNodes with which they can connect. Such node turns into regular P if
it doesn’t receives at least the required number of connections to client nodes
within a specified time, then it tries to become a SuperPeer again for another
probation period. The concept of Super Nodes is common in Gnutella [38].

Respect to purely decentralized systems, decentralized indexing hybrid
architectures reduce the discovery time and also they reduce the traffic on
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messages exchanging between nodes. Respect to centralized indexing, they
reduce the workload on central server but they present slower information
discovery.

2.5.2 Discovery techniques in unstructured P2P systems

Discovery techniques in unstructured P2P systems, according to the informa-
tion they utilize to locate objects, include Blind methods, the case of Gnutella,
Random Walks, and Informed methods, the case of Napster, Routing Indices.
Pure P2P model belong to unstructured P2P systems, this is the case in
which each P does not maintain any central directory and each P publishes
information about the shared contents in the P2P network. Since no single P

knows about all resources, Ps in need for resources flood an overlay network
queries to discover a resource, each request from a P is flooded (broadcasted)
to directly connected Ps, which themselves flood their Ps etc., until the re-
quest is answered or a maximum number of flooding steps occur. Flooding
based search networks are built in an ad hoc manner, without restricting a
priori which nodes can connect or what types of information they can ex-
change [31]. Different broadcast policies have been implemented to improve
search in P2P networks [36, 34, 35].

Flooding broadcast of queries algorithms include simple flooding, iterative
deepening, Random walk, Informed search. The base flooding algorithm is the
Simple Flooding ; according this algorithm a P sends the query to all of its
neighbour nodes, in the case a neighbour has the result, it will notify the query
initiator; and the query initiator can get the result directly from it. In the case
the neighbour hasn’t the result this will decrease TTL (Time To Live) and
forward the query to its neighbours. The forward of this query halts when
TTL becomes 0. It means that a query initiator can get redundant results,
coming from different nodes having the resource asking for, or no result even
if data exists in network.
The simple flooding generates a lot of network traffic, to deal with this, in

the Iterative Deepening the idea is that the search is started using flooding
with small TTL. In this way, in the case the result is close to the requiring P ,
the message doesn’t congest all the network.
If no result is found, new search is started with larger TTL. Then the algorithm
halts when result is found or limit of TTL is reached. To allow this a policy
array indicating for each search iteration the TTL, must be used. Otherwise
the TTL can change according a choosed math function. An other flooding
algorithm example is the Unstructured: Random Walk (Blind Search). In this
case the query initiator selects only one neighbor to send the query accord-
ing some heuristics. For example, if a neighbor always returns satisfactory
results, it might be selected more often. This is possible if it receives feedback
of whether neighbor was able to provide result, if the neighbor doesn’t have
the result, it will select one of its neighbors based on the heuristics. This pro-
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Fig. 2.6. Flooding algorithm: (a)Resource discovery in Napster, (b) Flooding-based
broadcast

cess will repeat until result is found or TTL is met.
The opposite of the Blind Search is the Informed Search approach, according
this in fact each P has a lookup index, neither complete nor accurate, storing
file locations which have been searched previously.
If a P finds the location for a file in the index, it will directly contact the file
holder and get the file. otherwise, it uses flooding for search. Once the file is
found, the reverse path of query path is used to inform the query initiator
about the location, it’s this the way so Ps on the query path can update their
indices speeding up next queries.
A Informed Search variation is that instead of storing the the file location
the file will be replicated along the reversed query path. This combined with
lookup indices is called Replication Search algorithm.
All the mechanisms analyzed so far, typicall of unstructured P2P systems
have some drawbacks as a the large amount of messages travelling inside the
network, the need of duplicate queries and the hard task to opportunely set
the TTl value, keeping under consideration that a too high TTL value brings
a high load in network, a too low value could bring to not found any result.
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Search in structured P2P systems: the routing model The routing model adds
structure to the way information about resources are stored using distributed
hash tables and in some special case content based hash table. This protocol
provide a mapping between the resource identifier and location, in the form
of a distributed routing table, so that queries can be efficiently routed to the
node with the desired resource.
Data items are distributed over Ps according to a well defined algorithm. Ps

choose their data items using additional replication mechanism to check for
availability. Each node has a unique identifier (Hash of IP) and each data item
(e.g. file) that must be assigned has a key (Hash of title, author etc). Each
node is responsible for storing files that have a key that is similar to the node
identifier: given a key, a node efficiently routes the query to the node with an
ID closet to the key.

This protocol reduces the number of P2P hops that must be taken to
locate a resource. The look-up service is implemented by organizing the Ps

in a structured overlay network, and routing a message through the overlay
to the responsible P [23]. Starting from infomation stored in a DHT many
services can be implemented as File sharing, Archiving, Database, names Di-
rectory, cat services, publish/subscribe systems, distributed Cache, streaming
audio/video systems. Example of Structured P2P systems that implement
Distributed Hash Table DHT are Chord [MIT], Pastry [Microsoft Research
UK, Rice University], Tapestry [UC Berkeley], Content Addressable Network
(CAN) [UC Berkeley], SkipNet [Microsoft Research US, University of Wash-
ington], Kademlia [New York University], Viceroy [Israele, UC Berkeley], P-
Grid [EPFL Ginevra].

An alternative of hash table structure is the bloom filter. A Bloom fil-
ter is an ingenious randomized data-structure for concisely representing a set
in order to support approximate membership queries. The space efficiency is
achieved at the cost of a small probability of false positives. It was invented
by Burton Bloom in 1970 for the purpose of spell checking and for many years
it was widely mentioned in a variety of large-scale network applications such
as shared web caches, query routing, and replica location. For more details
about refers to [77].

Search algorithms analyzed so far are classified inside the following com-
parison table 2.7.

2.6 Uses

P2P networks enable applications such as file-sharing, instant messaging, on-
line multiuser gaming and content distribution over public networks. Dis-
tributed storage systems such as NFS (Network File System) provide users
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Fig. 2.7. Search in P2P comparison

with a unified view of data stored on different file systems and computers
which may be on the same or different networks. The domains of P2P appli-
cations can be subdivided into four categories, particularly distributed com-
puting, file sharing, collaboration, platforms, as summarized in figure 2.8 [27].

Fig. 2.8. Taxonomy of P2P systems and applications

2.6.1 Distributed Computing

These applications use resources from a number of networked computers. The
general idea behind these applications is that idle cycles from any computer
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connected to the network can be used for solving the problems of the other
computers that require extra computation. Some distributed computing appli-
cations are chat systems (like ICQ, IRC, Jabber, etc.) and PRC applications,
see at next chapter.

2.6.2 File sharing

Content storage and exchange is one of the areas where P2P technology has
been most successful. File sharing applications [30, 32, 33] focus on storing
information on and retrieving information from various Ps in the network.
Distributed storage systems based on P2P technologies are taking advantage
of the existing infrastructure to offer the following features [27]:

• File exchange areas: some file sharing systems, such as Freenet, Gnutella,
and Kazaa provide the user with a potentially unlimited storage area by
taking advantage of redundancy. A given file is stored on some nodes in the
P2P community, but it is made available to any of the Ps. A P requesting
a given file just has to know a reference to a file, and is able to retrieve
the file from the community by submitting the file reference.

• Highly available safe storage The duplication and redundancy policies in
some projects, as in Chord, offer virtual storage places where critical files
get replicated multiple times, which helps ensuring their availability.

• Manageability: P2P systems, as Freenet, enable easy and fast retrieval of
the data by distributing the data to caches located at the edges of the
network. The location of the data is not known by the retriever, perhaps
not even after the data is retrieved.

2.6.3 File sharing: P2P example architectures

One of the best-known example of P2P systems is Napster, it became famous
as a music exchange system. Other instances are Gnutella, Freenet, Kazaa,
Chord, etc.. P2P systems, using a discovery mechanism based on hash tables,
are Chord, CAN and Pastry too. Following each system short description.

Napster

Napster was originally developed to defeat the copying problem and to enable
the sharing of music files over the Internet. Napster is a Brokered system,
Although search mechanism is centralized, the file sharing mechanism is de-
centralized. Everyone connected to the central Napster server (may it rest
in peace) and told the server what files it had available and how other Ps

could reach it. Then when a node is looking for a specific file or P it asks
the central server which responds with a listing of files and/or server connec-
tion information. At that point the two Ps connect to each other to transfer
the file. Napster uses the centralized directory model to maintain a list of
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Fig. 2.9. Napster architecture

music files, where the files are added and removed as individual users con-
nect and disconnect from the system. Users submit search requests based on
keywords such as ”title,” ”artist,”etc., the actual transfer of files is done di-
rectly between the Ps. Napster’s centralized directory model inevitably yields
scalability limitations and loss in performance.

Gnutella

Gnutella [38] was introduced in March of 2000, by two employees of AOL’s
Nullsoft division. It is an opensource file sharing program with functionality
similar to that of Napster. Gnutella originally was an Equal P Decentralized
architecture. Any new node could connect to any existing P in the network
and then have access to the network. Once connected to a P it then had access
to every P connected to that P , which continues out in a ripple effect until
the TTL expires. Such decentralized nature of Gnutella provides a level of
anonymity for users, but also introduces a degree of uncertainty.
With time Gnutella evolved to the SP Decentralized architecture. This helped
answer the issues of scalability and slow search speeds. With this system a new
node connects to one or more SP s and once connected has access to all Ps

(and SP s) connected to that SP , continuing out in a ripple patter until the
TTL expires. For a user to connect to a Gnutella network they only need to
know the address of one other machine on the network. Once that connection
is made then that node will discover other nodes on the network until a few
connections are made. The Gnutella discovery Protocol include four types of
messages:

• Ping: a request for a certain host to announce itself.



28 2 Peer-to-Peer

• Pong: reply to a Ping message. It contains the IP and port of the respond-
ing host and number and size of files shared.

• Query: a search request. It contains a search string and the minimum
speed requirements of the responding host.

• Query hits: reply to a Query message. It contains the IP and port and
speed of the responding host, the number of matching files found and
their indexed result set.

Fig. 2.10. Gnutella Protocol

After joining the Gnutella network(by using hosts such as gnutellahosts.com),
a node sends out a Ping message to any node it is connected to. The nodes
send back a Pong message identifying themselves, and also propagate the ping
to their neighbours. Gnutella originally uses TTL-limited flooding (or broad-
cast) to distribute Ping and Query messages. At each hop the value of the
field TTL is decremented, and when it reaches zero the message is dropped.
In order to avoid loops, the nodes use the unique message identifiers to detect
and drop duplicate messages.
This approach improves efficiency and preserve network band width. Once a
node receives a QueryHit message, indicating that the target file has been
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identified at a certain node, it initiates a direct out-of-network download, es-
tablishing a direct connection between the source and target node. Although
the flooding protocol might give optimal results in a network with a small
to average number of Ps, it does not scale well. Furthermore, accurate dis-
covery of Ps is not guaranteed in flooding mechanisms. Also TTL effectively
segments the Gnutella network into subsets, imposing on each user a virtual
horizon beyond which their messages cannot reach. If on the other hand the
TTL is removed, the network would be swamped with requests. One more
problem is that the Gnutella protocol itself does not provide a fault tolerance
mechanism. The hope is that enough nodes will be connected to the network
at a given time such that a query will propagate far enough to find a result.

Freenet

The Freenet system [40, 41] was conceptualized by Ian Clarke in 1999 while
at the University of Edinburgh and its implementation began in early 2000.
The primary mission of Freenet is to make use of the system anonymous that
means provide storage and use the system without being possible identify
who determined who placed a file into the system and who made a request.
The idea is that FreeNet is creating a network where individuals can post
their opinion without the fear of their identity being revealed. And once their
opinion is posted, it will remain available as long as people are downloading
it. In Communication architecture Freenet is similar to Gnutella in commu-
nication architecture, it’s a completely decentralized system and it represents
the purest form of P2P system. One optimization is that each time a file is
requested a copy is made on the nodes closer to the requesting node. This
makes it more convenient the next time it is requested from the same loca-
tion, in fact Freenet is considered responsive as possible. In this system each P

from the network is assigned a random ID and each P also Every node in the
Freenet network maintains a set of files locally up to the maximum disk space
allocated by the node operator. When all disk space is consumed, files are
replaced in accordance with a least recently used (LRU) replacement strat-
egy. Freenet’s basic unit of storage is a file. Each file shared on such system,
is identified by an ID. These are typically generated using the hash SHA-1
Function [43]. Each P will then route the document towards the P with the
ID that is most similar to the document ID. This process is repeated until the
nearest P ID is the current P ′s ID. Each routing operation also ensures that
a local copy of the document is kept. When a P requests the document from
the P2P system, the request will go to the P with the ID most similar to the
document ID. This process is repeated until a copy of the document is found.
Then the document is transferred back to the request originator, while each
P participating the routing will keep a local copy.
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Fig. 2.11. Freenet: searching for data

The scalability of Freenet has been studied by its authors using extensive
simulation studies [42]. Their studies support the hypothetical notion that
route lengths grow logarithmically with the number of users.

Chord

Chord [44] uses a decentralized P2P lookup protocol that stores key/value
pairs for distributed data items. Given a key, it maps key a node responsible
for storing the key’s value. In the steady state, in an N-node network, each
node maintains routing information about O(logN) other nodes, and resolves
all lookups via O(logN) messages to other nodes. Updates to the routing
information for nodes leaving and joining require only O(log2N) messages.

CAN: Content Addressable Networks

CAN [46] is a mesh of N nodes in virtual d-dimensional dynamically parti-
tioned coordinate space. Each P keeps track of its neighbours in each dimen-
sion. When a new P joins the network, it randomly chooses a point in the
identifier space and contacts the P currently responsible for that point. The
contacted P splits the entire space for which it is responsible into two pieces
and transfers responsibility of half to the new P , the new P also contacts all
of the neighbours to update their routing entities. The CAN discovery mech-
anism consists of two core operations namely, a local hash-based look-up of
a pointer to a resource, and routing the look-up request to the pointer. The
CAN algorithm guarantees deterministic discovery of an existing resource in
O(N

1

d ) steps.
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Pastry

An approach similar to Cord was also used in Pastry [45]. In the Pastry each
node network has a unique identifier (nodeId) from a 128-bit circular index
space. The pastry node routes a message to the node with a nodeId that is
numerically closest to the key contained in the message, from its routing table
of O(logN), where N is the number of active Pastry nodes. The expected of
routing steps is O(logN). Pastry takes into account network locality; it seeks
to minimizes the distance messages travel, according to a scalar proximity
metric like the number of IP routing hops.

Kazaa (FastTrack)

Kazaa [49] is a Hybrid system that uses SuperNodes as local search hubs for
lookup. Each SP role reminds to the role of the central server in Napster, ex-
cept that here it is limited to a small part of the network. SP are nodes chosen
inside the network because better in elaboration power, bandwidth, average
time being connected on the net, respect others. Kazaa uses an intelligent
download system to improve download speed and reliability. Each user send
its files list to a SP node then SP s periodically send lists each others. The ad-
vantage is that when there is a file request, the system automatically finds and
downloads files from the fastest connections, failed transfers are automatically
resumed, and files are even downloaded from several sources simultaneously
to speed up the download. When files are imported, the system automatically
extracts meta-data from the contents of the files (such as ID3 tags for mp3
files). This makes for much faster andmore accurate searches.Kazaa also uses
a technique called MD5 hashing to make sure the contents of multi-sourced
files are identical.

Fig. 2.12. Kazaa hybrid model
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WASTE

WASTE [50] is a mesh-based workgroup tool that allows for RSA encrypted
communication between small groups workgroups of users. The network is
actually a partial mesh, with every possible connection made, limited by fire-
walls and routers. Communication is then routed over the network along the
route of lowest latency, which allows communication between firewalled Ps

via a non firewalled P .

2.6.4 Collaboration

Intuitively Collaboration is a new way to intend communication. If you wish
chat with your friends over the network you shouldn’t need to subscribe to
a central server. The regulation of members, content and connections has to
be determined by the members, instead of a service provider. Whenever you
want start a project with a few friends, sharing project files, discussion boards,
white boards, chat sessions and other necessities inside a collaborative envi-
ronment, you should have the chance to communicate directly. Collaborative
P2P applications then aim to allow application level collaboration between
users.

Fig. 2.13. Gaim: a client for instant messaging

Collaborative applications are generally event-based. Ps form a group and
begin a given task. The group may include only two Ps collaborating directly,
or may be a larger group. When a change occurs at one P (e.g., that P initi-
ates sending a new chat message), an event is generated and sent to the rest of
the group. At the application layer, each P’s interface is updated accordingly.
There are a number of technical challenges that make implementation of this
type of system difficult. Like other classes of P2P systems, location of other
Ps is a challenge for collaborative systems. Many systems rely on centralized
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directories that list all Ps who are online, refers to figure 2.14. To form a new
group, Ps consult the directory and select the Ps they wish to involve.

Fig. 2.14. Buddy list

Other systems, like Microsoft’s NetMeeting, can require that Ps identify
one another by IP address. This is much too restrictive, especially in environ-
ments where groups are large.

Fault tolerance is another challenge. In shared applications, messages of-
ten must be delivered reliably to ensure that all Ps have the same view of
the information. In some cases, message ordering may be important. While
many well-known group communication techniques address these challenges
in a non-P2P environment, most P2P applications do not require such strict
guarantees. The primary solution employed in P2P applications is to queue
messages that have been sent and not delivered (i.e., because a given P is down
or offline). The messages can then be delivered to the offline P when it comes
back online. Realtime constraints are perhaps the most challenging aspect of
collaborative implementations. Users are the ultimate end points in a collab-
orative environment. As such, any delay can be immediately perceived by the
user. Unfortunately, the bottleneck in this case is not the P2P technology,
but the underlying network. While many collaborative applications may work
well in a local- area systems, wide-area latencies limit P2P applications just as
they limit client-server applications. Generally applications range from instant
messaging and chat, to on line games, to shared applications that can be used
in business, educational, and home environments. The gaming environment is
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the one in which real time is the a constraint; The game DOOM is a so-called
First Person Shooter (FPS) game in which multiple players can collaborate
or compete in a virtual environment. DOOM uses a P2P structure in which
each player’s machine sends updates of the state of the environment (such as
the player’s movement) to each of the other machines. Only when all updates
have been received does the game update the view. This was marginally viable
in local-area, small-scale games, but did not scale to wide-area games. Long
latencies and uneven computing power at the various players machines made
this lock-step architecture unusable. All FPS games since DOOM have used
amore standard client-server architecture for communication. Jabber [47] is
a set of streaming XML protocols and technologies that enable any two en-
tities on the Internet to exchange messages, presence, and other structured
information in close to real time. Groove [48] provides a variety of applica-
tions for communication, content sharing (files, images and contact data), and
collaboration (i.e. group calendaring, collaborative editing and drawing, and
collaborative Web browsing).

2.6.5 Platforms

In terms of development, platforms such as JXTA [73], XtremWeb [74], Mi-
crosoft’s .NET My Services and BOINC provide an infrastructure to support
P2P applications. For example JXTA(TM) is based on Java technology and
it is a set of open protocols that enable any connected device on the net-
work, ranging from cell phones and wireless PDAs to PCs and servers, to
communicate and collaborate in a P2P manner. JXTA Ps create a virtual
network where any P can interact with other Ps and resources directly, even
when some of the Ps and resources are behind firewalls and network address
translations (NATs) or on different networks. A detailed description about
the platform BOINC is given in next chapter.

2.7 Bittorrent

BitTorrent is a P2P application that was invented because to facilitate fast
downloads of popular files from the Internet in opposite then centralized down-
load systems as in figure 2.15.
Thanks BitTorrent mechanism, each client can allow other clients to down-
load from it, data that it had already downloaded. Clients are available to
share their just downloaded files because they are foster to do that (+upload
= +download !) and in such way the free-riding is discouraged.
To understand how BitTorrent works, we describe the scenario of how it op-
erates when a single file is downloaded by many users. Typically the number
of simultaneous downloaders for popular files could be of the order of a few
hundreds while the total number of downloaders during the lifetime of a file
could be of the order of several tens or sometimes even hundreds of thousands.
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Fig. 2.15. Centralized download (a) vs. BitTorrent mechanism (b)

The basic idea in BitTorrent is to divide a single large file (typically a few
100 MBytes long) into pieces of size 256 KB each. For each file there is a cor-
responding description file, with .torrent extension, with segments number,
segments hash code and the server Tracker address. The Tracker is a central-
ized software that store all active Ps on a file, since the set of Ps attempting
to download the file do so by connecting to several other Ps simultaneously
and download different pieces of the file from different Ps. Clients report infor-
mation to the tracker periodically and in exchange receive information about
other clients that they can connect to. The tracker is not directly involved in
the data transfer and does not have a copy of the file.
In a BitTorrent network, a P that wants to download a file first connects

Fig. 2.16. BitTorrent segment files flow

to the tracker of the file. The tracker then returns a random list of Ps that
have the file. The downloader then establishes a connection to these other
Ps and finds out what pieces reside in each of the other Ps. A downloader
then requests pieces which it does not have from all the Ps to which it is
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connected. But each P is allowed to upload only to a fixed number (default is
four) at a given time. Uploading is called unchoking in BitTorrent. Which Ps

to unchoke is determined by the current downloading rate from these Ps, i.e.,
each P uploads to the four Ps that provide it with the best downloading rate
even though it may have received requests from more than four downloaders.

To allow each P to explore the downloading rates of other Ps, BitTorrent
uses a process called optimistic unchoking. Under optimistic unchoking, each
P randomly selects a fifth P from which it has received a downloading re-
quest and uploads to this P . Thus, including optimist unchoking, a P may
be uploading to five other Ps at any time. Optimistic unchoking is attempted
once every 30 seconds and to allow optimistic uncloaking while keeping the
maximum number of uploads equal to five, an upload to the P with the least
downloading rate is dropped.

BitTorrent distinguishes between two types of Ps, namely downloaders
and seeds. Downloaders are Ps who only have a part (or none) of the file
while seeds are Ps who have all the pieces of the file but stay in the system to
allow other Ps to download from them. Thus, seeds only perform uploading
while downloaders download pieces that they do not have and upload pieces
that they have. Ideally, one would like an incentive mechanism to encourage
seeds to stay in the system. However, BitTorrent currently does not have such
a feature. We simply analyze the performance of BitTorrent as is.
In practice, a BitTorrent network is a very complicated system. There may
be hundreds of Ps in the system. Each P may have different parts of the file.
Each P may also have different uploading/downloading bandwidth. Globally
this allows a better utilization of the available bandwidth (even download at
7MB/sec). At the same time this approach is not suitable for small dimension
files and the Tracker represent the single point of failure of the network and
it limits scalability. One more drawback is about security in fact inside this
download system, all client nodes are visible and they can’t hide their identity.
Further, each P only has partial information of the whole network and can
only make decisions based on local information. Anyway to deal with this
BitTorrent has a protocol (called the rarest-first policy) to ensure a uniform
distribution of pieces among the Ps and protocols (call the endgame mode)
to prevent users who have all but a few of the pieces from waiting too long to
finish their download [53, 54].

2.8 Super Peer

A special P2P architecture is the Super Peer (SP ) model [55]. It corresponds
to a hybrid between brokered and decentralized topology, but would still be
considered a sub-type to decentralized.
In this network there are P and SP nodes. A SP is a node that operates
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both as a server to a set of clients. A node to be designed as SP , typically
must have some special environmental advantages, it’s always connected and
specially it must have good connection speed, high visibility and long uptime.

Fig. 2.17. Decentralized and super peer models

The network resulting from the connection of all SP nodes operates ex-
actly like a pure P2P network, that catchs both the inherent efficiency of
centralized search, and the autonomy, load balancing and robustness to at-
tacks provided by distributed search.

We call a SP and its clients a cluster, where cluster size is the number of
nodes in the cluster, including the SP itself.

To better understand how this protocol works, we analyze P discovery
phase and resource discovery and querying, then some optimization intro-
duced in the model.
P2P systems like KaZaA and Gnutella are adopting SP s in their design.

2.8.1 Peer discovery and network creation

The startup phase of such network generation is quite easy. From the P point
of view it must know just about the address of the SP of the cluster it will be
added to, after it connects it will share with its cluster’s SP all information
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Fig. 2.18. Figure 1: Illustration of a SP network (a) with no redundancy, (b) with
2-redundancy. Black nodes represent SP s, white nodes represent clients. Clusters
are marked by the dashed lines.

related to resource it offers for sharing.

The SP otherwise must know the address of its neighbour SP s to join the
SP s net. Then he must discover its neighbour SP , every typical mechanism
of discovery inside pure network can be used for this purpose.

2.8.2 Resource discovery and querying inside a SP network

Since each client belongs just to a unique SP , once clients submit queries to
their SP they receive results just from it, as in a hybrid system.
When a SP receives a query from a neighbour, it will process the query on its
clients’ behalf, rather than forwarding the query to its clients, thanks a SP

keeps an index over its clients’ data.
As soon as the SP finds any results, it will return one Response message.

This Response message contains the results, and the address of each client
whose collection produced a result. When a client wishes to submit a query to
the network, it will send the query to its SP only. The SP will then submit the
query to its neighbours as if it were its own query, and forward any Response
messages it receives back to the client. Outside of the cluster, a client’s query
is indistinguishable from a SP ’s query. All the query processing and traffic
involves just SP nodes then Ps processing power is all dedicated at the jobs
execution and the whole system runs efficiently.

2.8.3 SP networks optimizations: redundancy

Even if the depicted scenario seems to be efficient, in the case a SP fails
or simply leaves, all its clients become temporarily disconnected until they
can find a new SP to connect to, this means that a SP can be a potential
bottleneck for its cluster, in fact it represents the single point of failure.
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The natural idea, detailed in [55], to provide reliability and performance to
the cluster and decrease the load on the SP , it’s to introduce redundancy into
the design of the SP .

A SP is defined to be k-redundant if there are k nodes sharing the SP

load, forming a single virtual SP .
Figure 2.19 illustrates a SP network topology with redundancy k = 2.

Fig. 2.19. A SP network topology with redundancy k = 2

In short every node in the virtual SP is a partner with equal responsibili-
ties: each partner is connected to every client and has a full index of the data
of clients, as well as the data of other partners. Clients send queries to each
partner in a round-robin fashion; similarly, incoming queries from neighbours
are distributed across partners equally. Hence, the incoming query rate on
each partner is a factor of k less than on a single SP with no redundancy,
though the cost of processing each query is higher due to the larger index.

Since all partners can respond to queries, if one partner fails, the others
may continue to service clients and neighbours until a new partner can be
found. Obviously the probability that all partners will fail before any failed
partner can be replaced is much lower than the probability of a single SP

failing.

The drawback of this approach is that:

• A client must send metadata to each of these partners when it joins, in
order for each partner to have a full index with which to answer queries.

• The aggregate cost of a client join action is k times greater than before.
• Neighbours must be connected to each one of the partners, so that any

partner may receive messages from any neighbour.
• The number of open connections amongst SP s increases by a factor of k2,

in the case that every SP in the network is k2-redundant.
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At first glance, SP redundancy seems to trade off reliability for cost, any-
way SP redundancy actually has the surprising effect of reducing load on each
SP , in addition to providing greater reliability [55].
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Public-Resource Computing

Nowadays scientific supercomputing requires high computer power and disk
space for massive data storage that even can’t find inside supercomputer cen-
ters and institutional machine rooms.
In this chapter a new distributed approach is analyzed: Public-resource com-
puting (PRC)(also known as Global Computing or Peer-to-peer computing).
It mainly consists in using the idle CPU time of hundreds of millions of per-
sonal computers currently spread all over the world and, in a few more years,
from other consumer devices like game consoles and television set-top boxes.
The idea of using those unused resources was first proposed in 1978 by the
Worm computation project at Xerox PARC. They used 100 computers to
measure the performance of Ethernet there. Many academic projects followed
to explore this approach including Condor, a toolkit developed at the Uni-
versity of Wisconsin for writing programs that run on unused workstations,
typically within a single organization.
Public-resource computing emerged in the mid-1990s with two projects,
GIMPS [61]and Distributed.net [62], after the Internet expanded to the con-
sumer market and there were millions of fast computers connected by a net-
work In 1999, a scientific search project, SETI (Search for Extraterrestrial
Intelligence)@home [67], was launched, with the goal of detecting radio sig-
nals emitted by intelligent civilizations outside Earth [68]. SETI@home acts as
a ”screensaver”, running only when the PC is idle, and providing a graphical
view of the work being done. SETI@home’s appeal extended beyond hobby-
ists; it attracted millions of participants from all around the world. It inspired
a number of other academic projects, as well as several companies that sought
to commercialize the public computing paradigm.

Large-scale public-resource projects can’t work without a middleware pro-
viding necessary functionality as client and server software, management tools,
user-centered web features, and so on, for this purpose in last section in this
chapter is detailed the middleware Berkeley Open Infrastructure for Network
Computing (BOINC) [72] that solves or helps solve most of these problems.
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Finally social implication of PRC are analyzes, specially its positive ef-
fects to encourage private user awareness of current scientific research and it
catalyzes global communities centered around scientific interests, and it gives
the public a measure of control over the directions of scientific progress.

3.1 PRC model

In PRC scenario a large numbers of computers, volunteered by members of
the general public, provides computing and storage resources [57]. Inside a
PRC application, scientific project jobs are executed by privately-owned and
often donated computers offering their unused idle CPU time. The point is to
get anybody with an Internet connection and spare compute power to donate
CPU cycles on their computer. This leads to a very heterogeneous distributed
model, because the network donator users and the donating machine types
from the performance and the hardware architecture point of view hetero-
geneity. The mechanism of using compute power that would otherwise go to
waste is often called cycle-scavenging or cycle-harvesting [82].

3.2 PRC problem features

To be amenable to public computing, a task must be divisible smaller indepen-
dent pieces whose ratio of computation to data is high. A long computation
causes low network traffic. This is necessary to keep server traffic at a man-
ageable level. A critical point is to coordinate the work of different clients with
possible frequent disconnection; many data dependencies in fact prevent an
efficient and self-sufficient work of the client so applications should be capable
of independent parallelism. Tasks should also be capable of tolerating errors.
A client may produce an error and return a wrong result or a malicious user
sends wrong results however the project should not be negatively affected by
this [57]. Anyway for this purpose the solution can be calculating redundant
results. Many types of computations have these properties:

1. Complex physical systems have a random and chaotic component. Their
outcome is probabilistic, not exact. Studying the statistics of this outcome
requires running large numbers of simulations with different random initial
and boundary conditions. These simulations can be run in parallel.

2. There is an evolving field of ”random algorithms” that provide approxi-
mate solutions to exact problems. These often involve random trials that
can run in parallel.

3. ”Genetic algorithms” are applicable to many areas. This approach involves
creating a population of approximate solutions to a problem, and using
the mechanisms of natural selection to approach an optimal solution.
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4. Models of physical systems often have large numbers of underlying param-
eters whose optimal values are not known, and which combine nonlinearly.
Exploring such parameter spaces requires large numbers of independent
simulation runs. More generally, ”Monte Carlo” algorithms involve large
numbers of independent computations, corresponding to sampling in a
high-dimensional space.

5. Applications that involve analyzing large amounts of data, such as data
from a radio telescope (e.g., SETI@home) or from a particle accelerator,
have inherent parallelism. The limiting factor is the computation-to-data
ratio.

6. Some medical projects involve searching a set of millions or billions of
molecules (for example, searching for potential drugs). These tasks are
easily parallelized. Similarly some genetics projects involve matching a
set of proteins with a DNA sequence; again, this is easily parallelized.

3.3 PRC projects

Large-scale public-resource computing became feasible with the growth of
the Internet in the 1990s. Examples of volunteer computing paradigma im-
plementations include searching for extraterrestrial life), high-energy physics,
molecular biology, medicine, astrophysics, climate study, and other areas [57].
Early projects emerged in 1997: Great Internet Mersenne Prime (GIMPS)
[61], which searched for large prime numbers, and Distributed.net (d.net)
[62], which deciphers encrypted messages. These project attracted thousands
of participants. Anyway the pioneer project in this real is SETI@home, which
has attracted millions of participants wishing to contribute to the digital pro-
cessing of radio telescope data in the search for extra-terrestrial intelligence.
In 1999, SETI (Search for Extraterrestrial Intelligence)@home [67], aimed at
building a huge virtual computer based on the aggregation of the computer
power offered from internetconnected computers during their idle periods, has
attracted millions of participants worldwide. The project uses two major com-
ponents: the database server and the client. Clients can help with search for
extra-terrestrial life by running the search program for a specified portion of
the universe. This project strongly relies on its server to distribute jobs to
each participating peer and to collect results after processing is done.
More recent projects include Folding@home and the Intel-United Device Can-
cer Research Project.
Both belong to genetic field, especially The Folding@home project [63] is dedi-
cated to understanding protein folding, the diseases which result from protein
misfolding and aggregation, and novel computational ways to develop new
drugs in general.
A number of similar projects has supported today by the BOINC [72] sw in-
frastructure. The range of scientific objectives amongst these projects is very
diverse, ranging from Einstein@home’s [64], aiming at the detection of certain
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types of gravitational waves to Climate@home’s [65], which focuses on long-
term climate prediction

How one might conduct massively distributed search for gravitational
waveforms produced by binary stars orbiting one around the other is the
scenario defined for the GridOneD project [66].
In this case we have a data-intensive Grid application that in general can
require the distributed execution of a large number of jobs with the goal to
analyze a set of data files. In this scenario, a data file of about 7.2 MB of data
is produced every 15 minutes and it must be compared with a large number
of templates (between 5,000 and 10,000) by performing fast correlation. Data
can be analyzed in parallel by a number of Grid nodes to speed up computa-
tion and keep the pace with data production.
A new opensource project is PS3GRID, it is a volunteer computing project
based on the PlayStation3 and BOINC for full-atom molecular dynamics sim-
ulations and other scientific applications specially optimized for the Cell pro-
cessor [14].

The success of these projects is a proof that PRC can provide more com-
puting power than any supercomputer, cluster, or grid, and the disparity will
grow over time. The most important project, SETI@home, currently runs on
about 1 million computers. This provides a processing rate of 60 TeraFLOPS
(trillion floating-point operations per second). In contrast, the largest conven-
tional supercomputer, the IBM ASCI White, provides about 12 TeraFLOPs.
SETI@home’s 1 million computers represents a tiny fraction of the approxi-
mately 150 million Internet-connected PCs worldwide. The latter number is
projected to grow to 1 billion by 2015. Thus public computing has the poten-
tial to provide many PetaFLOPs of computing power.
Moore’s Law asserts that the speed of CPU chips doubles about every 18
months. The rate of progress is even faster for ”graphics coprocessors”, the
chips that handle 3D graphics in PCs and game consoles. Their doubling
time is about 8 months, and current graphics chips have a raw floating-point
arithmetic speed many times that of their host CPU. These graphics chips
are becoming more programmable and flexible, and researchers are actively
investigating their use for scientific computing. Because graphics chips are
integrated in modern personal computers, this trend favors public computing
over other paradigms.
Most computational tasks require storage (disk space) as well as computing.
Here also, public resources can provide unprecedented capacity. Today, a typ-
ical PC provides about 80 Gigabytes of storage space, which in most cases
is more than is used the PC owner. If 100 million computer users were each
to provide 10 Gigabytes of storage, the total would be an Exabyte (10 to the
18th power) - greater than the capacity of any centralized storage system.
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3.4 SETI@home

Currently several programs are looking for the evidence of life elsewhere out-
side of earth, the way is looking for some radio signals coming from our alien
neighbours trying to contact us. Collectively, these programs are called SETI
(the Search for Extra-Terrestrial Intelligence.).
One earlier, known as radio SETI, uses radio telescopes to listen for narrow-
bandwidth radio signals from space. Such signals are not known to occur
naturally, so a detection would provide evidence of extraterrestrial technology
[69].
Radio telescope signals consist primarily of noise (from celestial sources and
the receiver’s electronics) and man-made signals such as TV stations, radar,
and satellites. Modern radio SETI projects analyze the data digitally. This
analysis generally involves three phases:

1. Compute the data’s time-varying power spectrum.
2. Find candidate signals using pattern recognition on the power spectra.
3. Eliminate candidate signals that are probably natural or man-made.

More computing power enables searches to cover greater frequency ranges
with more sensitivity. Radio SETI, therefore, has an insatiable appetite for
computing power.
Radio SETI projects, as most of the SETI programs in existence today, build
large computers able to analyze data from a telescope in real time. None of
these computers look very deeply at the data for weak signals nor do they
look for a large class of signal types. The reason for this is because they are
limited by the amount of computer power available for data analysis.
To tease out the weakest signals, a great amount of computer power is nec-
essary. It would take a monstrous supercomputer to get the job done. Rather
than a huge computer to do the job, they could use a smaller computer but
just take longer to do it. But then there would be lots of data piling up.
The solution ideally take the best of both approaches, in PRC manner: use
LOTS of small computers, all working simultaneously on different parts of the
analysis. This is possible because fortunately, the data analysis task can be
easily broken up into little pieces that can all be worked on separately and in
parallel.
In 1995 David Gedye the project manager at Starwave Corp. proposed do-
ing radio SETI using a virtual supercomputer consisting of large numbers of
Internet-connected PCs. SETI@home was born to explore this PRC idea.
The first challenge for SETI@home was to find a good radio telescope. The
choose was Arecibo, Puerto Rico, the world’s largest and most sensitive radio
telescope. Arecibo is used for various astronomical and atmospheric research,
but it’s not possible to obtain its long-term exclusive use. However, in 1997 the
U.C. Berkeley SERENDIP project developed a technique for piggybacking a
secondary antenna at Arecibo [70]. As the main antenna tracks a fixed point
in the sky (under the control of other researchers), the secondary antenna
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traverses an arc that eventually covers the entire band of sky visible to the
telescope. This data source can be used for a sky survey that covers billions
of stars.
Unlike SERENDIP, SETI@home project need to distribute data through the
Internet. Since in the beginning Arecibo’s Internet connection was a 56 Kbps
modem, U.C. Berkeley decided to record data on removable tapes (35GB
DLT cartridges, the largest available at the time), mailed them from Arecibo
to their laboratories and distribute data from servers there.
In short the SETI@home software makes use of a computationally intensive
algorithm called ”coherent integration” and Volunteer user computers per-
form fast fourier transforms on the data, looking for strong signals at various
combinations of frequency, bandwidth, and chirp rates.
SETI@home collected data recording them at 5 Mbps from Arecibo telescope.
It used 35 GB digital linear tapes. The recording time per tape is 16 hours.
With one-bit complex sampling this yields a frequency band of 2.5 MHz which
is enough to handle doppler shifts for relative velocities of up to 260 km/sec
(or about the rate of the Milky Ways galactic rotation). The frequency-band is
like many other SETI-projects centered at the Hydrogen-line (1.42 GHz) be-
cause man-made transmissions are forbidden here by an international treaty.

SETI@home computational model

SETI@home fits well the PRC paradigma. SETI@home data have a high
computing-to-data ratio: each unit takes 3.9 trillion floating-point operations,
or about 10 hours on a 500 MHz Pentium II, yet involves only a 350KB down-
load and a 1 KB upload. This high ratio keeps server network traffic at a
manageable level, and imposes minimal load on client networks. Applications
such as computer graphics rendering require large amounts of data per unit
computation, perhaps making them unsuitable to public-resource computa-
tion. However, reductions in bandwidth costs will allay these problems, and
multicast techniques can reduce cost when a large part of the data is constant
across work units.
Secondly, tasks with independent parallelism are easier to handle. SETI@home
work unit computations are independent, so participant computers never have
to wait for or communicate with one another. If a computer fails while pro-
cessing a work unit, the work unit is eventually sent to another computer.
Applications that require frequent synchronization and communication be-
tween nodes have been parallelized using hardware-based approaches such as
shared-memory multiprocessors, and more recently via software-based cluster
computing, such as PVM [76]. Public-resource computing, with its frequent
computer outages and network disconnections, seems ill-suited to these ap-
plications. However, scheduling mechanisms that find and exploit groups of
LAN-connected machines may eliminate these difficulties.
Thirdly, tasks that tolerate errors are more amenable to public-resource com-
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puting. For example, if a SETI@home work unit is analyzed incorrectly or
not at all, it affects the overall goal only slightly. Furthermore, the omission
is remedied when the telescope scans the same point in the sky.
Theorically SETI@home’s computational model is simple. The signal data is
divided into fixed-size work units distributed via the Internet to the clients.
The client program computes a result (a set of candidate signals) and returns
it to the server. There is no communication between clients.
SETI@home employs redundant computation. Each work unit is processed
multiple times to compensate the detection and discard of results of faulty
processors or malicious users. A redundancy level of 2 or 3 is adequate for
this.
Work units are formed by dividing the 2.5 MHz signal into 256 frequency
bands. Each band is then divided into 107-second segments overlapping in
time by 20 seconds. As SETI@home looks for continues signals with a length
of up to 20 seconds the overlapp ensures that each signal is contained in at
least one work unit. The resulting work units are 350 KB. Enough to keep
a client busy for a while and small enough to be transfered in a matter of
minutes even by a 56K Modem.
The resulting architecture system keeps under consideration that the source
of failure for the project must be minimized so the distribution of data must
be allowed even when the database is down and dependencies between server
subsystem must be minimized, the resulting architecture is the one in figure
3.1.
The task of creating and distributing work units is done by a server complex
located in U.C. Berkley laboratorier.

The server complex contains a relational database which stores informa-
tion about tapes, work units, results, users and other aspects of the project. A
multi-threaded data/result server handles distribution of work units to clients.
HTTP is used so that users can participate in SETI@home even when connect-
ing from behind a firewall. A garbage collector program removes work units
from disk clearing an on-disk flag in their database records. Work units are
flaged depending on how many correct results were received from the clients
versus the intended level of redundancy.

The client program repeatedly gets a work unit from the data/result server,
analyzes it, and returns the result (a list of candidate signals) to the server. It
needs an Internet connection only while communicating with the server. The
client can be configured to compute only when its host is idle, or to compute
constantly at a low priority. The program periodically writes its state to a
disk file, and reads this file on startup; hence it makes progress even if the
host is frequently turned off.
Computational work of the clients deals with analyzing a work unit. This in-
volves computing signal power as a function of frequency and time, then look-
ing for several types of patterns in this power function: spikes (short bursts),
Gaussians (narrow-bandwidth signals with a 20-second Gaussian envelope,
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Fig. 3.1. The distribution of data

Fig. 3.2. The SETI@home display, showing the power spectrum currently being
computed (bottom) and the best-fit Gaussian (left).

corresponding to the telescope’s beam movement across a point), pulsed sig-
nals (Gaussian signals pulsed with arbitrary period, phase, and duty cycle),
and triplets (three equally-spaced spikes at the same frequency; a simple
pulsed signal). Signals whose power and goodness-of-fit exceed thresholds are
recorded in the output file.

The SETI@home client program is written in C++. The code consists of a
platform-independent framework for distributed computing (6,423 lines), com-
ponents with platform-specific implementations, such as the graphics library
(2,058 lines in the UNIX version), SETI-specific data analysis code (6,572
lines), and SETI-specific graphics code (2,247 lines).
The client has been ported to 175 different platforms. The GNU tools, includ-
ing gcc and autoconf, have greatly facilitated this task.
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Fig. 3.3. The collection and analysis of results.

The client can run as a background process, as a GUI application, or as a
screensaver. To support these different modes on multiple platforms, it used
an architecture in which one thread does communication and data process-
ing, a second thread handles GUI interactions, and a third thread (perhaps
in a separate address space) renders graphics based on a shared-memory data
structure.
Results are returned to the SETI@home server complex, where they are
recorded and analyzed (see Figure 3.3).

About Scientific data, the data/server writes the result to a disk file. A
program reads these files, creating result and signal records in the database. To
optimize throughput, several copies of this program run concurrently. About
Accounting information, for each result collected by the web browser, the
server writes a log entry describing the result’s user, its CPU time, and so on.
A program reads these log files, accumulating in a memory cache the updates
to all relevant database records (user, team, country, CPU type, and so on).
Every few minutes it flushes this cache to the database.
A redundancy elimination program examines each group of redundant results
and choose a ”canonical” result for each work unit and they are copied to a
separate database.
The final phase, back-end processing, consists of several steps. To verify the
system, there is a check for the test signals injected at the telescope. Man-
made signals (RFI) are identified and eliminated. The system look for signals
with similar frequency and sky coordinates detected at different times. These
”repeat signals”, as well as one-time signals of sufficient merit, are investi-
gated further, potentially leading to a final cross-check by other radio SETI
projects according to an accepted protocol [59, 68].
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Project results

In 1998 plans for SETI@home were announced. About 400.000 people pre-
registered in the following year. In May 1999 Windows and MAC version
were released and within a week 200.000 people downloaded and installed the
client. In August 2002 SETI@home counted 3.91 million participants in 226
countries. Back then 50% of the users were from the USA and 71% described
themselves as home users.
In the 12 months beginning July 2001 221 million work units were processed
with an average throughput in that period of 27.35 Teraflops.
On the 25-Oct-2005, according to statistics of a
http://www.boincsynergy.com/stats/index.php BOINC website, SETI@home
(running on BOINC, not counting the classic client) had 232.420 users with
494.090 computers. There is still a migration from the classic client (as de-
scribed here) to the new BOINC client going on. Therefor right now it is
hard to determine the real number of users and the real computating power
of SETI@home.
SETI@home did not find signs of extraterrestrial life until now, but together
with related projects it established the viability of PRC. Nevertheless PRC is
not limitless or free. Huge computing power causes huge data traffic which is
either expensive or limited or both. This limits the frequency range searched
by SETI@home, greater range means more bits per second. Compared to other
radio SETI projects, SETI@home covers a narrow frequency range, but does
a more through search within that range.

3.5 BOINC

In spite of global resource, and an abundance of promising applications, rela-
tively few large-scale public-resource projects have emerged so far.
Conducting a public computing project in fact requires adapting an ap-
plication program to various platforms, implementing server systems and
databases, keeping track of user accounts and credit, dealing with redundancy
and error conditions, and so on.
Some open-source systems have been developed, such as Cosm, jxta [73], and
XtremWeb [74],but these systems provide only part of the necessary function-
ality. Commercial systems such as Entropia [75] and United Devices are more
full-featured but not free. For this purpose the Space Sciences Laboratory
at the University of California, Berkeley, developed a Middleware projects
named BOINC (Berkeley Open Infrastructure for Network Computing) . It is
released under the GNU Lesser Public License, which allows the usage even
with proprietary software.
BOINC makes it easy for scientists to create and operate PRC projects. It
supports different applications, including those with large storage or commu-
nication requirements.
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PC owners can participate in multiple BOINC projects, and can specify how
their resources are allocated among these projects. BOINC projects are au-
tonomous; each one maintains its own servers and databases, and does not
depend on others. Participants can register with multiple projects, and can
control how their resources are shared.

BOINCs general goal is to advance the public resource computing paradigm:
to encourage the creation of many projects, and to encourage a large fraction
of the worlds computer owners to participate in one or more projects. Specific
goals include Reduce the barriers of entry to public-resource computing, in
fact research scientist with moderate computer skills can create and operate
a large public-resource in few because of BOINC; BOINCbased project can
use single machine configured with common open-source software as server.
BOINC goal is Share resources among autonomous projects too, BOINC-
based projects are autonomous, not centrally authorized or registered. Each
project operates its own servers and stands completely on its own. PC owners
can participate in multiple projects, and can assign to each project a ”re-
source share” determining how scarce resource (such as CPU and disk space)
are divided among projects.
By using BOINC is possible to Support a wide range of applications; it pro-
vides flexible and scalable mechanism for distributing data, and its scheduling
algorithms intelligently match requirements with resources. Existing applica-
tions in common languages can run as BOINC applications with little or no
modification.
According PRC paradigma BOINC must take in consideration the goal to Re-
ward participants that represent the main resources of each project: it provides
a credit accounting system according how much computation participants have
contributed and that reflects usage of multiple resource types (CPU, network,
disk); BOINC also makes it easy for projects to add visualization graphics to
their applications, which can provide screensaver graphics.

Current projects running on BOINC

The intention behind BOINC development was to provide the knowledge of
public resource computing from the SETI project to the public. It focus lies on
simple setup and less maintenance combinated with ı̈ncentives̈for the partici-
pants to encourage the creation of and the participation in projects, actually
PRC projects, moved on BOINC platform, are some very important scientific
projects about different topics. About climate change prediction there are both
Climateprediction.net and Climate@home. The aim of the first project (based
at Oxford University) is to quantify and reduce the uncertainties in long-term
climate prediction based on computer simulations. This is accomplished by
running large numbers of simulations with varying forcing scenarios (initial
and boundary conditions, including natural and manmade components) and
internal model parameters. Climate@home is a collaboration of researchers at
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NCAR, MIT, UCAR, Rutgers, Lawrence Berkeley Lab, and U.C. Berkeley.
Its scientific goals are similar to those of Climateprediction.net, but it will
be using the NCAR Community Climate System Model (CCSM). It will col-
laborate with Climateprediction.net to maximize compatibility and minimize
redundant effort, and to enable a systematic comparison of different climate
models.
The Einstein@home project search for gravitational signals, it involves re-
searchers from University of Wisconsin, U.C. Berkeley, California Institute of
Technology, LIGO Hanford Observatory, University of Glasgow, and the Al-
bert Einstein Institute. Its purpose is to detect certain types of gravitational
waves, such as those from spinning neutron stars, that can be detected only
by using highly selective filtering techniques that require extreme comput-
ing power. It will analyze data from the Laser Interferometry Gravitational
Observatory (LIGO) and the British/German GEO6000 gravitational wave
detector.
From the collaboration between researchers at the U.C. Berkeley Computer
Sciences Department and the Intel Berkeley Research Laboratory, UCB/Intel
study of Internet resources project was born. It seeks to study the structure
and performance of the consumer Internet, together with the performance, de-
pendability and usage characteristics of home PCs, in an effort to understand
what resources are available for peer-to-peer services. LHC@home: CERN
LHC particle accelerator are CERN (in Geneva, Switzerland) project deploy-
ing a BOINC-based project on 1,000 in-house PCs, and plans to launch the
project publicly in coordination with its 50th anniversary in October 2004.
The projects current application is a FORTRAN program that simulates the
behaviour of the LHC (Large Hadron Collider) as a function of the parame-
ters of individual superconducting magnets. Predictor@home project is about
protein-related diseases, based at The Scripps Research Institute, studies pro-
tein behavior using CHARMM, a FORTRAN program for macromolecular dy-
namics and mechanics. A similar project is Rosetta@home. A BOINC-based
project has been implemented starting from Cell Computing project about
biomedical research. Finally Folding@home [63], based at Stanford University
studies protein folding, misfolding, aggregation, and related diseases. It uses
novel computational methods and distributed computing to simulate time
scales thousands to millions of times longer than previously achieved.
Each of these projects using BOINC platform must be identified with a sin-
gle master URL, which describes the project and provides registration, client
download and the URL to scheduling servers. BOINC provides tools that let
participants remotely install the client software on large numbers of machines,
and attach the client to accounts on multiple projects.

3.5.1 BOINC project implementation

BOINC consists of a client which is shared among all BOINC projects, and a
project specific server complex and application program(s). Figure 3.4 shows



3.5 BOINC 53

an overview of the BOINC system. BOINC has a central work queue, depicted
as the BOINC database in the figure, and clients connect to the scheduler.

Fig. 3.4. BOINC overview

Client side includes interfaces for participants and developers providing
the master URL, current project results and other information. The BOINC
client software appears monolithic to participants but actually consists of
several components. The core client performs network communication with
scheduling and data servers, executes and monitors applications, and enforces
preferences. It is implemented as a hierarchy of interacting finite-state ma-
chines, can manage unlimited concurrency of network transfers and computa-
tions, and is highly portable. The core client can operate in several modes: as
a screensaver that shows the graphics of running applications; as a Windows
service, which runs even when no users are logged in and logs errors to a
database; as an application that provides a tabular view of projects, work, file
transfers, and disk usage, and as a UNIX command-line program that com-
municates through stdin, stdout and stderr, and can be run from a cron job
or startup file. A client GUI provides a spreadsheet-type view of the projects
to which the host is attached, the work and file transfers in progress, and the
disk usage. It also provides an interface for operations such as joining and
quitting projects. It communicates with the core client via XML/RPC over a
local TCP connection. The Client API provides information about utilization
of resources and an interface for result visualisation. Finally the application
client does the work on the work units.
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A workunit represents the inputs to a computation: the application (but
not a particular version) a set of references input files, and sets of command-
line arguments and environment variables. Each workunit has parameters such
as compute, memory and storage requirements and a soft deadline for comple-
tion. A result is the output of computation with files and a reference to a work
unit. Files (associated with application versions, workunits, or results) have
project-wide unique names and are immutable. Files can be replicated: the
description of a file includes a list of URLs from which it may be downloaded
or uploaded. Files contain attributes, like a list of URLs for down-/uploading
and perhaps a compression flag.

When the BOINC client communicates with a scheduling server it reports
completed work, and receives an XML document describing a collection of
the above entities. The client then downloads and uploads files and runs ap-
plications; it maximizes concurrency, using multiple CPUs when possible and
overlapping communication and computation.

The server complex of a BOINC project is centered around a relational
database that stores descriptions of applications, platforms, versions, worku-
nits, results, accounts, teams, and so on. Server functions are performed by a
set of web services and daemon processes: Scheduling servers handles RPCs
to communicate with partecipant hosts; it issues work and handles reports of
completed results. Data servers handles input and output files distribution,
using a certificate-based mechanism to ensure that only legitimate files, with
prescribed size limits, can be uploaded. A relational database stores infor-
mation about work, results, and participants. File downloads are handled by
plain HTTP. BOINC provides tools (Python scripts and C++ interfaces) for
creating, starting, stopping and querying projects; adding new applications,
platforms, and application versions, creating workunits, and monitoring server
performance.

The BOINC server consists of at least one web server that handles up-
and downloads and a database server that keeps track of the state of the
WorkUnits and their associated results. As shown in figure there is a work
generator that firstly creates new jobs and their input files and a scheduler, a
CGI program that is run whenever a client connects to the project and asks
for work. Furthermore five different daemons periodically check the state of
the database and perform any needed tasks within their area of responsibility.
All these programs can be run on the same machine or they can be distributed
to different servers for performance reasons.

The transitioner examines jobs for which a state transition has occurred
and handles this change. The validator compares the instances of a work unit
to verify whether the returned results are valid or not.

The database purger removes jobs and instance database entries that are
no longer needed. The assimilator handels tasks which are done. The file
deleter deletes input and output files that are no longer needed. The feeder
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Fig. 3.5. BOINC task server

caches jobs which are not yet transmitted.

In this architecture servers and daemons can run on different hosts and
can be replicated, so BOINC servers are scalable. Availability is enhanced
because some daemons can run even while parts of the project are down (for
example, the scheduler server and transitioner can operate even if the science
database is down).

Summarizing the client application download work units from the Internet
and allow to share execution time among various project. The BOINC client
can be on execution on participant machine with the aspect of low priority
process, as screensaver at the same way it happened for SETI@home.

The server side includes some special function as homogeneous redun-
dancy, work unit preview and local scheduling. BOINC uses a simple but rich
set of abstractions for files, applications, and data and a project defines appli-
cation versions for various platforms (Windows, Linux/x86, Mac OS/X, etc.).
For participants who, for security reasons, want to only run executables they
have compiled themselves, whose computers have platforms not supported by
the project, and who want to optimize applications for particular architec-
tures, BOINC provides an anonymous platform mechanism. Such mechanism
is usable with projects that make their application source code available. Par-
ticipants can download and compile the application source code (or obtain
executables from a third-party source) and, via an XML con- figuration file,
inform the BOINC client of these application versions. Then, when the client
communicates with that projects server, it indicates that its platform is anony-
mous and supplies a list of available application versions; the server supplies
workunits (but not application versions) accordingly.

Redundant computing

BOINC supports redundant computing, a mechanism for identifying and re-
jecting erroneous computational results arising from malfunctioning comput-
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ers/participants. Redundant because project can specify that N results should
be created for each workunit. Once M over N of these have been distributed
and completed, an application-specific function is called to compare the re-
sults and possibly select a canonical result. If no consensus is found, or if
results fail, BOINC creates new results for the workunit, and continues this
process until either a maximum result count or a timeout limit is reached.
BOINC implements redundant computing using several server daemon pro-
cesses. First the transitioner implements the redundant computing logic in
fact it generates new results as needed and identifies error conditions; the
validater examines sets of results and selects canonical results. It includes
an application-specific result-comparison function. The assimilater handles
newly-found canonical results. Includes an application-specific function which
typically parses the result and inserts it into a science database. Some numer-
ical applications produce different outcomes for a given workunit depending
on the machine architecture, operating system, compiler, and compiler flags.
In such cases it may be difficult to distinguish between results that are cor-
rect but differ because of numerical variation, and results that are erroneous.
BOINC provides a feature called homogeneous redundancy for such applica-
tions.

Failure and backoff

Public-resource computing projects may have millions of participants and a
relatively modest server complex. If all the participants simultaneously try to
connect to the server, a disastrous overload condition will generally develop.
BOINC has a number of mechanisms to prevent this. All client/server com-
munication uses exponential backoff in the case of failure. Thus, if a BOINC
server comes up after an extended outage, its connection rate will be the
longterm average. The exponential backoff scheme is extended to computa-
tional errors as well. If, for some reason, an application fails immediately on a
given host, the BOINC client will not repeatedly contact the server; instead,
it will delay based on the number of failures.

Local scheduling

The BOINC core client, in its decisions of when to get work and from what
project, and what tasks to execute at a given point, implements a local
scheduling policy with the goal to maximize resource usage, to satisfy re-
sult deadlines, to respect the participants resource share allocation among
projects, to maintain a minimal variety among projects. This goal stems from
user perception in the presence of long workunits. Participants will become
bored or confused if they have registered for several projects and see only one
project running for several months. The core client implements a scheduling
policy, based on a dynamic resource debt to each project, that is guided by
these goals.
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Attracting people

Computer owners generally participate in distributed computing projects only
if they incur no significant inconvenience, cost, or risk by doing so. BOINC
lets participants control how and when their resources are used, during what
hours can BOINC do work, how much disk space can BOINC use, how much
network bandwidth can BOINC use; and so on. These preferences are edited
via a web interface, and are propagated to all hosts attached to the account.
Some BOINC-based applications perform computations that are so floating-
point intensive that they cause CPU chips to overheat. BOINC allows users
to specify a duty cycle for such applications on a given CPU.

The way to attract more participants and keep them involved is by the
accounting-credit mechanism. The idea is to stimulate a competition between
users or team of them, the best one in the competition is the one who gain
more credits, where a single unit of credit” is a weighted combination of com-
putation, storage and network transfer.
Credits information is typically displayed on web-based leaderboards show-
ing the ranking of participants, BOINC provides a mechanism that exports
credit-related data in XML files that can be downloaded and processed by
credit statistics sites operated by third parties. As part of the accounting
system, BOINC provides a cross-project identification mechanism that allows
accounts on different projects with the same email address to identified, in a
way that doesnt allow email addresses to be inferred. This mechanism allows
leaderboard sites to display credit statistics summed over multiple BOINC-
based projects.

3.6 PRC social aspects

To explain the relation among people and PRC is enough to explain how
SETI@home have attracted 4.6 million participants, and why 600,000 of them
remain active. First PRC, because its definition, is effective only if many peo-
ple participate so the project team always try to attract clients in fact, in
the case of SETI@home People could have learnt about it through several
mechanisms.
The mass media have covered SETI@home, as have Internet news forums like
Slashdot [60].
The same SETI@home’s screensaver graphics are a powerful promotionalmech-
anism: in offices and school, where computers are seen by many people, a
computer running SETI@home is a highly visible advertisement.
Research showes that 93% of SETI@home users are male, and that most of
them are motivated primarily by their interest in the underlying science: they
want to know if intelligent life exists outside earth.
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Another major motivational factor is public acknowledgement. SETI@home
keeps track of the contribution of each user (i.e. the amount of computation
performed) and provides numerous web-site ”leader boards” where users are
listed in order of their contribution. Users can also form ”teams”, which have
their own leader boards. The team mechanism turned out to be very effective
for recruiting new participants. In addition, users are recognized on the web
site and thanked by email when they pass work unit milestones [56]. Kind of
virtual communities were born around seti@home because people wanted be-
come popular easily meeting others people inside the net; to achieve this pur-
pose volunteers have translated the SETI@home web site into 30 languages,
and have developed many kinds of add-on software and ancillary web sites.
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Super peer model and super peer model

simulator

To execute a large number of jobs in a computer network is required an effi-
cient communication protocol.
A typical task is the analysis of a set of data files to support scientific research,
the case of PRC scenario. Otherwise it can be the execution of a workflow
over the net to process data and extract relevant information, as in recom-
mendation systems.
This kind of applications are usually managed through a centralized frame-
work, i.e. BOINC, in which one server assigns jobs to workers, sends them
input data, and then collects results, according to the client-server model ;
however this approach limits scalability. To cover the issue of scalability the
application requires a decentralized protocol.
Main distributed application frameworks work well in the case of a small
amount of data exchange, where the server congestion level rises not as much
to became the bottleneck of the network. Anyway, even if the client-server
model in some cases works well, a server node can be hard and expensive to
manage.
If the number of servers increases as the dimension of the network, there will
be a bigger set of servers and then the inter servers communication manag-
ment problem grows.
A scalable solution comes from the analisys of emerging paradigms for dis-
tribute computing as the P2P and the SP model. True decentralized systems
like the original Gnutella do not work well because they cannot scale - and
arguably this is the defacto example of a P2P topology i.e. completely decen-
tralized.
SP seems to balance the features of others existing paradigms: inherent effi-
ciency of centralized/hierarchical Virtual Organizations as well as autonomy,
load balancing and fault-tolerance of P2P networks.

Super-peer nodes act as centralized resources and connect to each other
forming a P2P system at a higher layer in the case of a limited number of
nodes.
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In PRC one node owns all the data, the data source node, and spreads these
across the network, and this why the PRC is intrinsecally slow. It becames
clear that at growing of network’s nodes the number of initial nodes owning
data files, the data cachers, must proportionally rise, specific loading algo-
rithm is named dynamic caching. At the time data cachers are acquiring data
files, they can immediatly forward them at any requiring node. This is possi-
ble thanks a decomposition of data files in smaller pieces, this idea reminds to
Bittorrent. The resulting model, proposed in this work, includes a super-peer
model to manage jobs submission in which node roles and their intercommu-
nication flow over the net are formally defined in next sections.

4.1 Job Submission protocol

The super-peer model relies on the definitions of different roles that can be
assumed by super-peers or by simple nodes:

• Data source (DS) is the node that owns all data files at the beginning of
computation. Such node could have received data from an external sensor,
for example a gravitational wave detector, for the GridOneD [66] scenario,
and provide this data to nodes for the execution of jobs. Each data file is
associated to a data advert, such as a metadata document which describes
the characteristics of this file.

• Job manager (JM) produces job adverts, files that describe the character-
istics of the jobs that must be executed, and is also responsible for the
collection of output results.

• Job assigner (JA) is a super-peer node that receives job advert messages
and stores them to be reassigned to workers asking for.

• Worker (W) is a node available for job execution. It first issues a job
query to obtain a job to execute and then a data query to retrieve the
input data file. A worker can disconnect at any time; if this occurs during
the execution of a job, the latter will not be completed.

• Super-peer (SP) is a very important node to allow the cluster generation,
in each peer’s cluster there must be at last a super peer node that connect
workers through a centralized topology. At the same time this SP is linked
to others SP through a high level P2P network constituting the backbone
of the super-peer overlay.
In the proposed protocol, each super-peers play the role of rendezvous
nodes, since they compare job and data description documents (job and
data adverts) with queries issued to discover these documents, thereby
acting as a meeting place for job or data providers and consumers.

• Data cacher (DCa) is a special super-peer which has additional abilities to
cache data (and associated data adverts) retrieved from a data source, and
can directly provide such data to workers. Super peers and data cachers
can be distributed on separate nodes if desired but in test cases, we just
hosted the data cachers on super peers for simplicity.
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In the following, a data source and a data cacher are both referred as
data center (DC), since collectively they are able to provide data to work-
ers, although at different phases of the process: data sources from the very
beginning, data cachers after retrieving data from data sources or other data
cachers.
For simplicity, it is assumed that only super-peer can assume the role of data
center, but the protocol can be easily extended to the case in which even sim-
ple peer can cache and provide data.

It’s not compromising supposing that the same user-driven process is used
to configure a peer; that is, each user decides if he wants to be a super peer
and/or data center, as well as a worker. In the BOINC scenario, the existing
dedicated machines would form the obvious data-center backbone and other
peers (with high storage and network capacity) would also make themselves
available in this model.

4.1.1 Job Assignment and Data Download

Figure 4.1 depicts the sequence of messages exchanged among Ws, SP and
DCs for the execution of the job submission protocol, in a sample topology
with 5 SP , of which one is a DS and two others are DCas. This example
describes the behavior of the protocol when a job query is issued by the
worker WA; in this case dynamic caching is not exploited because: (i) input
data is only available on the data source DS0, i.e., no data cachers have yet
downloaded data; (ii) data cannot be stored by the super-peer connected to
WA, since this is not a data cacher. The behavior of the protocol with dynamic
caching is explained later.

The protocol requires that job execution is preceded by two matching
phases: the job-assignment phase and the data-download phase. In the job-
assignment phase the job manager(the node JM in the figure) generates a
number of job adverts, which are XML documents describing the properties
of the jobs to be executed (job parameters, characteristics of the platforms
on which they must be executed, information about required input data files,
etc.), and sends them to the local rendezvous super-peer, which stores the
adverts. This corresponds to step 1 in the figure. Each worker, when ready to
offer a fraction of its CPU time (in this case, worker WA), sends a job query
that travels the network through the super-peer interconnections (step 2),
until the message time-to-live parameter is decremented to 0 or the job query
finds a matching job advert. A job query is expressed by an XML document
and typically contains hardware and software features of the requesting node
as well as CPU time and memory amount that the node offers. A job query
matches a job advert when the job query parameters are compatible with
the information contained in the job advert. Whenever the job query gets
to a rendezvous super-peer that maintains a matching job advert, such a
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rendezvous assigns the related job to the requesting worker by directly sending
it a job assignment message (step 3).

Fig. 4.1. Super-peer job submission protocol: sample network topology and se-
quence of exchanged messages to execute one job at the worker WA. Dynamic caching
is not used because it is assumed that data cachers have no yet stored data.

In the data-download phase, the worker that has been assigned a job in-
spects the job advert, which contains information about the job and the re-
quired input data file, i.e., size and type of data. In a similar fashion to the
job assignment phase, the worker sends a data query message (step 4), which
travels the super-peer network searching for a matching input data file stored
by a data center. Since the same file can be maintained by different data cen-
ters, a data center that successfully matches a data query does not send data
directly to the worker, in order to avoid multiple transmissions of the same
file. Conversely, the data center (in this example the data source DS0) sends
only a small data advert to the worker (step 5). The worker chooses a data
center, and initiates the download operation (steps 6 and 7). After receiving
the input data, the worker executes the job, reports the results to the job
manager (step 8) and possibly issues another job query.

It can be noticed that in the job assignment phase the protocol works in
a way similar to the BOINC software, except that job queries are not sent
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directly to the job manager, as in BOINC, but travel the super-peer network
hop by hop. Conversely, the data download phase differs from BOINC in that
it exploits the presence of multiple data centers in order to replicate input
data files across the network.

The case of multiple assigners

In the case of multiple assigners the job-assignment phase the change is in the
adverts propagation way, see at figure 4.2. The JM sends an assigner query
message to search for JA inside the network (step 1) and it waits a predefined
amount of time. Once a JA receives the message it replies with an assigner
advert (step 2). The JM can ignore or cache the messages depending the ar-
rival time, specially if it’s not outdate it generates a number of job adverts and
sends them to available JA if any (step 3), otherwise to the local rendezvous
super-peer as before, which stores the adverts.

Fig. 4.2. Sample network topology and sequence of exchanged messages to propa-
gate adverts to a JAi and following their assignment to workers Wi.

Each worker sends a job query, with fixed TTL, that travels the net through
the super-peer interconnections (step 4), until the job query finds a matching
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job advert from any of available JA after accepting job from it with. Finally
the job query assigns the related job to the requesting worker by directly
sending it a job assignment message (step 5).
About download phase almost nothing changes except that once a JM receives
a job result by a worker, in the case the job has been executed at last the
required number of times, it must inform all JA so they won’t ever assign this
job again.

4.1.2 Dynamic Caching

One of the main features of our super-peer protocol is the dynamic caching
funtionality which allows for the replication of input data files on multiple
data cachers. This leads to well known advantages such as increased degree
of data avalaibility and improved fault tolerance.
Dynamic caching allows for the replication of input data files on multiple
data cachers. This leads to well known advantages such as increased degree
of data availability and improved fault tolerance. Moreover, dynamic caching
allows for a significant saving of time in the data download phase, because
data queries have a greater chance to find an available data center, and most
Ws can download data from a neighbor data cacher instead of a remote data
source. The remaining part of this section illustrates the dynamic caching
mechanism, while the performance evaluation is discussed in Section 4.4.

Figure 4.3 shows how the protocol handles dynamic caching, both in the
replication phase (which occurs when data is downloaded from a data source
and stored by a data cacher) and in the retrieval phase (which occurs when
data is retrieved from a data cacher by a worker). These two mechanisms
are described by displaying the messages exchanged when two workers WB

and WC , connected to the same data cacher DC2, issue two job queries at
different times, first WB then WC . For simplicity, only messages related to the
download phase are shown, and they are distinguished by subscripts A and
B, corresponding to the two workers. The data query issued by WB finds a
matching in the data source DS0. As opposed to the case described in Figure
4.1, this time the super-peer connected to WB is a data cacher, DC2. To let
this data cacher store the data file, the data advert is not sent directly to the
worker WB , but first to DC2 and then from DC2 to the worker. Analogously,
the data file is downloaded by DC2, which replicates and caches it, and then
passed to the worker. Subsequently, DC2 will act like a data source for the
period of time in which it maintains the data file in its cache. In this example,
the data query issued by WC will be served directly by the cacher DC2 instead
of the data source DS0.

To increase performance, a file splitting approach is adopted: data files
are not downloaded as a whole but split in ordered fragments. This is useful
to avoid the generation of unnecessary messages, which would cause a larger
network load that is wasteful of resources. For example, if the data cacher
DC2 , when receiving a data query, does not hold the entire data file but has
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Fig. 4.3. Download phase of the super-peer job submission protocol, with dynamic
caching. After the request of worker WB , the data cacher DC2 retrieves the data
file from the data source DS0, replicates and caches the file, and delivers it to WB .
Subsequently, the request of worker WC is directly server by the data cacher DC2.

already received a part of it from DS0, it will not forward the data query,
because it will soon receive the remaining fragments from DS0. As soon as it
receives these fragments, DC2 will pass them to the requesting worker WC .

A further improvement could be obtained by enabling the parallel down-
load of data segmentes; it reminds to Bittorrent approach.
In the ideal scenario depicted so far, we never considerate that peers can dis-
connect. This anyway in real situations happen most of the time so in our
model we assumed that only super-peer node doesn’t disconnect. Since peer
then can disconnect it must be considerated that a job started will be com-
pletely waste and this can’t be avoid. One possible approach is to resume this
job at the point it was interrupted. In our dynamic scenario time is a con-
straint, to solve the job later can make no sense, infact it could have been in
that time complited by one other peer in the case of multiple job assignment
or just to be out of date, so we just choose to reassign new job belonging to
the current execution once a peer reconnects.

The model analyzes so far, has been proposed in [83, 84].
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4.2 Discovery mechanism

In most unstructured P2P system, discovery techniques consist in flooding al-
gorithms. Simple flooding and its variations fit our case. To modelize a limited
flooding is quite easy. In fact it’s enought to include in each query message
the information about the time to live TTL the upper limit of nodes it can
go through. Generally in flooding a message is spreaded over the net in any
destination by neighbour nodes. Possible optimizations of limited flooding al-
gorithm can be generated if we considerate that the messages do noy reach
the senders nodes, so they will not be forwarded if the query has been already
examined. This approach is used in Gnutella. The last feature can be im-
plemented assigning a random number to each query, then super-peer nodes
must know (store) which query (number) have already examined, so will not
forwarded again.
To implement iterative deepening algorithm again we must set the TTL; ob-
viously the main task is to set the appropiate value of it.
Above consideration avoid the cycle generation problem and avoid the net-
work messages overflow.
In our case the flooding is used only for query messages, because normally
other messages go directly to destination by address matching. The flooding
of query messages involves only the super-peers backbone, see at job query
and data query messages flow in figure 4.1. This means that only a limited
subset of nodes, the super-peer nodes, are throught inside the network.

4.3 Simulator description

One ad hoc event-based simulator, has been realized in C++ language to im-
plement the super-peer protocol as illustrated below. The protocol has been
simulated on different networks. To generate a network a membership man-
agement network generator protocol based on contact nodes has been used,
such protocol has been realized with a Java language program.

In the design of the simulator, it’s been preliminary assumed that all the
jobs have similar characteristics and that can be executed by any worker, each
data file is unique and a job execution fails upon the disconnection of the cor-
responding worker.

At the beginning of one simulation, you can act on different settable Sim-
ulation Parameters concerning the underlying network configuration as well
as jobs and data features in computation execution. To evaluate how perfor-
mance changes respect to simulation parameters setting, you can refers to a
fixed set of Performance Indices.
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4.3.1 Simulator messages

The event based simulator uses real messages travelling the network to sim-
ulate the underlying protocol as i.e. the request for an advert, a request or a
query. Anyway others messages are used to drive the simulation, expecially
management messages such as start and end of simulation, start of the work-
ers node, timers to notify the end of an operation or the beginning of a new
operation. Here we list all the messages, the second type is featured by the
(∗) symbol:

• End(*)
• StartSim(*)
• StartWorker(*)
• JobDescriptionQuery
• JobAdvert
• JobAssignment
• JobQuery
• DataDescriptionQuery
• DataDescriptionAdvert
• DataQuery
• DataMessage
• JobCompletion(*)
• JobResults
• FragmentDownLoad
• Interruption(*)
• JobCompletionVerification(*)
• JobCompletionAdvert
• DataFragmentAdvert(*)
• AssignerDescriptionQuery
• AssignerDescriptionAdvert
• TimerAssignerVerification(*)
• StopAssigner
• EndFragmentDownload(*)

A generic simulation starts after it has been activated by the Sim manager
(SM). Actions in the system happen after has been received a message and
this brings to the generation of new messages and eventually to the system
state changing.
The whole messages change can be synthesized in the following schemas; later
in this section the state automatas will be analyzed.
The case of SPs nodes:

Message Received: a JobAdvert that contains a job code, the character-
istics of the platforms on which must be executed, how many times it must
be executed (MTL), the code of JM asking for the job, and more info about
input data for job execution as filename and filesize.
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Precondition: The SP receiving such message is a JA.
Action: The JA stores in the cache these informations and then it’s ready to
assign the job MTL-times to workers asking for.

Message Received: a JobDescriptionQuery contains the characteristics of
the platform that will execute the job.
Action: If the query has been already processed, nothing happens. In gen-
eral the SP, that is a JA, searches inside its cache which job can assign by
matching characteristics of the platform sending the request. Once the job
has been found there are two possible situations: the case the JA it’s unique
and then it assignes the job to the requiring W by sending a JobAssignment
message and decreases the job MTL value; the other case, the JA sends a Job-
DescriptionAdvert to inform the W that a job is available. If the JA hasn’t
a matched job or the SP is not even a JA, if the request is valid (TTL > 0),
it forwards the JobDescriptionQuery to neighbour SPs except the one from
which it received the query.
Message Send: JobAssignment or JobDescriptionAdvert or JobDescription-
Query.

Message Received: JobQuery.
Precondition: The SP receiving such message is a JA with a job to assign,
please notice we are in the case of not unique JA.
Actions: the choosed JA sends a job assignment message and it decreases the
job MTL value. In case of peer disconnection and job re-assignment, the JA
must use a timer (JobCompletionVerification) to check if the task has been
completed and eventually to re-assign it.
Message Send: JobAssignment and JobCompletionVerification.

Message Received: DataDescriptionQuery.
Actions: If the query has been already processed, nothing happens. If the SP
is a DC and it owns data, it sends a DataDescriptionAdvert to the requiring
W, otherwise it forwards the data request query to all of its neighbours ex-
cept the one from which received the query. If the SP is a DC without data
or just a part of them, and the request comes from a W of its cluster, it sends
a DataDescriptionAdvert to the requiring W, and later it could eventually
search for data.
Message Send: DataDescriptionAdvert, DataDescriptionQuery.

Message Received: DataQuery.
Precondition: The SP is a DC.
Actions: If the DC hasn’t the data it starts searching for, sending to each
SP neighbour a DataDescriptionQuery. Once the DC has all the data, the
case of Total Caching or it has a part of them, the case of Partial caching, it
sends the first fragment to the requiring job and it informs about that with
a DataFragmentAdvert, and then it generates a EndFragmentDownload mes-
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sage.
Message Send: DataFragmentAdvert, DataDescriptionQuery, EndFragment-
Download.

Message Received: FragmentDownLoad is the request of a fragment.
Precondition: The SP is a DC that has the data.
Actions: The DC sends the fragment to the requiring W or DC and then it
sends a DataFragmentAdvert to inform about the end of the download, in the
case of the last fragment of a message it uses a DataMessage, anyway then it
generates a EndFragmentDownload message.
Message Send: EndFragmentDownload, DataFragmentAdvert, DataMes-
sage.

Message Received: JobCompletionAdvert contains the just completed job
code.
Precondition: The SP is a JA.
Actions: The JA that receives such messages from the Job-Manager can now
refresh its database updating the info about new completed jobs by matching
the job code.

Message Received: JobCompletionVerification contains the job code.
Actions: When SP receives this timer, it verifies if the job has been completed
by matching the job code, if not it must be re-assigned updating the database.
Please notice we are in the case of peer disconnection and job re-assignment.

Message Received: DataFragmentAdvert.
Precondition: The SP is a DC that has just received a data fragment, but
not the last.
Actions: The DC asks for the next fragment by sending a FragmentDown-
Load message. In the case of Partial Caching, the DC uploads the just received
fragment to Ws waiting for and it sends a DataFragmentAdvert, then it gen-
erates a EndFragmentDownload.
Message Send: FragmentDownLoad, EndFragmentDownload, DataFrag-
mentAdvert.

Message Received: AssignerDescriptionQuery.
Actions: If the query has been already processed, nothing happens. If the
SP is a JA, it sends to the JM a AssignerDescriptionAdvert otherwise the
SP forwards the query to all SP neighbours except the one who has sent the
request.
Message Send: AssignerDescriptionAdvert, AssignerDescriptionQuery.

Message Received: StopAssigner contains the already completed job code.
Precondition: The SP is a JA.
Actions: The JM sends this message to the JA to inform that the required
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number of execution for certain job has been reached, then the job mustn’t
be assigned anymore.

Message Received: EndFragmentDownload: a DC sends such message to
inform about the end of a fragment download.
Actions: it’s useful to update the number of P and SP connected to the DC.

Message Received: DataDescriptionAdvert contains the code of the DC
that has made a request for data.
Precondition: The SP is a DC.
Actions: At the first istance of this message the DC reply by sending a Data-
Query.
Message Send: DataQuery.

In the case the receiver is a JM there are all these possible messages:

Message Received: StartSim is the message sent by the SM to the JM
for starting the simulation.
Actions: If there is just one default JA, the Super-Peer of the custer, the JM
sends every JobDescriptionAdvert to it; otherwise the JM sends an Assign-
erDescriptionQuery to search for JA in the network and it sends to itself a
TimerAssignerVerification to prevent infinite time waiting.
Message Send: JobDescriptionAdvert, AssignerDescriptionQuery, TimerAs-
signerVerification.

Message Received: TimerAssignerVerification is a message arriving when
the waiting time to search for JA is gone.
Actions: if the JA required number have been already reached, the message
is ignored. If no JA has been found, JM sends all the JobDescriptionAdvert to
default JA, its cluster SP, otherwise it splits the descriptions among available
JA.
Message Send: JobDescriptionAdvert.

Message Received: AssignerDescriptionAdvert contains the code of the JA
available
Actions: If this message is out of date, the JA availability will be ignored.
If not yet the JA required number in the simulation has been reached, this
message is cached, otherwise it splits the process descriptions among available
JA by sending a JobDescriptionAdvert.
Message Send: JobDescriptionAdvert

Message Received: JobResults contains the job code and its execution re-
sult and the address of the JA assigned the job.
Actions: The JM stores code and result in its cache. In the case of peer dis-
connection, the JM adverts the JA about the job was assigned and ended by
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a JobCompletionAdvert. Then, in the case there are many JA and the job has
been executed at last Nexec times, the JM sends StopAssigner to all JA so
they won’t ever assign this job again.
Message Send: JobCompletionAdvert, StopAssigner.

Last group of messages refers to the case of the receiver is a Worker:

Message Received: StartWorker
Precondition: the W is in Interrupted or Idle state.
Actions: The peer’s state becomes ready. The W sends a JobDescription-
Query to local SP to find a job. In the scenario of Ps disconnection, the W
computes in how much time it’ll disconnect and it sends itself an Interruption
message.
Message Send: JobDescriptionQuery, Interruption.

Message Received: JobAssignment contains information about required in-
put data to execute the job.
Actions: if the job execution depends from data, the W, now in DataRequest
state, will send a DataDescriptionQuery to the local SP (the code of this W
is put into the query as a return pointer); otherwise the peer’s state becames
InProgress, the W executes the job, this means W calculates a (random) job
time Tj and it sends itself a JobCompletion message, that will be received
after currentSimTime+Tj .
Message Send: DataDescriptionQuery, JobCompletion

Message Received: JobDescriptionAdvert contains the code of the JA hav-
ing the described job.
Actions: This message is sent by a JA to inform a W that a new job is avail-
able. If the W is available as well, it sends a JobQuery.
Message Send: JobQuery.

Message Received: DataDescriptionAdvert contains the id of a DC owning
required data.
Actions: At the first istance of this message the W replies by sending a Data-
Query. The peer’s becames DataFound.
Message Send: DataQuery.

Message Received: DataMessage.
Actions: the W executes the job; the way to simulate the job execution is
that W calculates the job time Tj and sends itself a JobCompletion message,
that will be received after currentSimTime+Tj . The peer’s state becames In-
Progress.
Message Send: JobCompletion.

Message Received: JobCompletion alerts the W that a job has been ended.



74 4 Super peer model and super peer model simulator

Actions: The W sends a JobResults message directly to the Job Initiator (its
address was included in the last JobAssignment message received); The peer’s
state becames Pause. Then it can wait for a random time and it sends a new
JobDescriptionQuery to the local SP. The peer’s state becomes Ready again.
Message Send: JobResults, JobDescriptionQuery.

Message Received: Interruption alerts the W that it must disconnect
Actions: The W disconnects, this means that it computes a time Tj and sends
itself a StartWorker message that will be received after currentSimTime+Tj .
The peer’s state becomes Interrupted.
Message Send: StartWorker.

Message Received: DataFragmentAdvert.
Precondition: The W has just received a data fragment from a DC.
Actions: The W asks for the next fragment by sending a FragmentDownLoad.
Message Send: FragmentDownLoad.

Fig. 4.4. Worker finite state automata (case 1)

To modelize the workers behaviour inside the system, two possible scenar-
ios have been represented by a state automata, the first shows how a worker
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acts when there is just a JA in the network in figure 4.4, the second in case
of many JAs, see at figure 4.5.

Fig. 4.5. Worker finite state automata (case 2)

4.3.2 Membership protocol

The membership protocol exploits the characteristics of contact nodes. A con-
tact node is a node that plays the role of an intermediary node during the
building process of the network. One or more contact nodes are available and
once a super-peer node wants to connect to the net, contacts a subset of con-
tact nodes and registers at those nodes.
In turn, the selected contact nodes randomly choose a number of previously
registered super-peers and communicate their addresses to the requesting
super-peer, after that the super-peers add the new super-peer address to their
neighbour set.
The figure 4.6 shows a schema of the membership management protocol. A
number of contact nodes are depicted, and for each of them the correspond-
ing set of registered super-peers is reported. In Fig. 4.6(b), the super-peer S
wants to connect to the net and selects two contact nodes. In Fig. 4.6(b), the
selected contact nodes add S to the list of registered super-peers and respond
to it by communicating the addresses of a number of super-peers, which will
constitute the neighbour set of node S. The membership management proto-
col requires a proper setting of the contact parameter K, i.e. the number of
contact nodes at which a new super-peers registers (K=2 in Fig.4.6).
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Fig. 4.6. The membership management protocol: (a) a new super-peer registers at
a set of contact nodes and (b) receives the identities of its neighbour super-peers.

In general a super-peer communicates with contact nodes either periodi-
cally or whenever it detects the disconnection of a neighbour super-peer, in
order to ask for its substitution. In our case this never happens, in fact only
peer nodes can disconnect but not super-peer nodes. For our purpose a P is
connected at last to one SP so it belongs exactly to one cluster. This means
that one the network has been generated it doesn’t change, so we used the
same network for each simulation.
It’s pointless if ordinary nodes, i.e. simple peers, are already connected to
the super-peer before it initiates the joining procedure or can connect to the
super-peer after it has joined the cluster, it’s enough that peer knows the
cluster super-peer address.
Membership management input parameters are:

• graphSize: the total number of peer and super peer nodes inside the net-
work;

• clusterSize: the medium number of nodes inside a cluster, that corresponds
to the number of peers connected to a super-peer;

• nContactPeer : number of contact peer available;
• k : number of contact peer assigned to a super peer;
• Neighborhood : number of neighbour of a super-peer;
• DCpercentage: percentage of super-peer data centers respect to super-

peers.

To set the network simulator you must fill in a configuration file setting
the previous parameters value. Particularly cluster size, nContact and k are
required to generate the pure super-peers network, graph size is used to com-
pute the super peers number according the equation:
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n =
graphSize

clusterSize
(4.1)

To allow the full network generation, you need to design peers node and
clusters they belong to, required parameters are Neighborhood and DCper-
centage.
The algorithm described before generates the decentralized P2P network and
all the clusters with Ps. The network layout output is given in textual format,
specially a file containing the SPs nodes connections and number of Ps for
each SP inside a cluster. In these files a simple formalism is used:

• X → Y represents the direct monodirectional connection from the node
X to Y;

• X == Y [> 1] means that the SP X owns Y P and if the optional part > 1
appears in the expression it means that such SP is a datacenter.

Because structural constraint, for each X → Y connection, will be automati-
cally generated a Y → X connection.

4.3.3 Simulation Parameters

The network is characterized by the number of super peer (Nspeer) and by the
average number of workers each connected to the super peer. Each super-peer
with its peers composes a grid organization. The super-peer overlay network
is organized so that each super-peer is connected to at most at Maximum
number of neighbor for a super-peer.
You can also define which super-peer assumes the role of DS or DCa or JA
and which peer the role of JM.

In the model, Bandwidth and network Latency is either a settable parame-
ters, this to deal with realistic scenarios where local connections (i.e. between
a super-peer and a local simple peer) can have a larger bandwidth and a
shorter latency than remote connections. To limitate the network load it’s
possible to opportunatly set the TTL value, then to limitate the numbers of
hops that a messages does inside the net.
It must be setted for each file its size and, in the case of dynamic caching, the
size of each segments the file can be splitted in.
For a generic peer you must describe its runtime behaviour by setting its mean
job execution time and average connection/disconnection time of workers but
not the download time, since it’s calculated assuming that the downstream
bandwidth available at a data center is equally shared among all the down-
load connections that are simultaneous active from the data center to different
workers.
Generally you must set the Number of jobs to be executed but in redundant
computing each job will be executed more then once. To achieve multiple exe-
cution of every single job (which can be useful to enhance statistical accuracy
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or perform parameter sweep analysis) two parameters have been added: Num-
ber of execution requested for each jobs, Nexec and Matches to live, (MTL),
which must be not lower than Nexec. A proper choice of MTL can compensate
for possible disconnections of workers and consequent job failures.

4.3.4 Performance Indices

Performance indeces, valutated in our simulations are:

• Overall execution time Texec represents the time needed to execute all the
jobs, in general expressed in seconds. This index is crucial to determine
the rate at which data files can be retrieved from any extern source while
guaranteeing that the workers are able to keep the pace with data.

• Throughput Thr is the average number of jobs completed per time unit
(job/s). By Thr it’s possible to evaluate the efficiency of the job submission
system.

• Percentage of DC activity time Pact is the average percentage of time in
which a data center is active, i.e. has at least one download connection in
progress.

• Mean download time Tdl corresponds to the average time that it takes for
a worker to download a data file from a data center.

• Network load Nload is the average number of messages travelling inside the
network per time unit (messages/s).

• Max number of executed jobs Jmax represents the maximum number of
executed jobs from a single worker.

• Mean number of executed jobs Javg represents the average number of exe-
cuted jobs from a single worker.

The last performance indices help determine the load that is experienced by
data centers and by workers in different scenarios and the network load in
general.

4.4 Performance Evaluation

Performance evaluations have been based on realistic scenarios of distributed
applications, for example a data-intensive applications on Grids as the Gri-
dOneD project [66].
This project shows how one might conduct a massively distributed search for
gravitational waveforms produced by orbiting neutron stars. In this scenario,
a data file of about 7.2 MB of data is produced every 15 minutes and it must
be compared with a large number of templates (between 5,000 and 10,000)
by performing fast correlation. It is estimated that such computations take
approximately 500 seconds to compute. Data can be analyzed in parallel by a
number of Grid nodes to speed up computation and keep the pace with data
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production. A single job consists on the comparison of the input data file
with a number of templates, and in general must be executed multiple times
in order to assure a given statistical accuracy. Evaluation indices and specially
Texec allows to determine the rate at which data files can be retrieved from
the astronomic telescope.

The simulation scenario is described in Table 4.1. The parameters of the
representative astronomy scenario mentioned in Section 4.1 are used for the
test case (file size, job execution time, etc.). It is assumed that all the jobs
have similar characteristics and can be executed by any worker.

Table 4.1. Simulation scenario.

Scenariofeature Value

Number of super-peers, Nspeer 25 to 100
Maximum number of neighbors for a super-peer 4
Average number of workers connected to a super-peer 10
Average connection time of workers 4 h
Average disconnection time of workers 1 h
Number of data centers (data sources + data cachers) about 50% of Nspeer

Latency between two adjacent super-peers
(or between two remote peers in a direct connection) 100 ms
Latency between a super-peer and a local worker 10 ms
Bandwidth between two adjacent super-peers
(or between two remote peers in a direct connection) 1 Mbps
Bandwidth between a super-peer and a local worker 10 Mbps
Size of input data files 7.2 Mbytes
Mean job execution time 500 s
Number of jobs, Njob 50 to 500
Number of executions requested for each job, Nexec 10
Matches to live, MTL 10 to 30

In next chapter many simulations will be analyzed, starting from this base
scenario. In these simulations the performance indices will be computated to
analyze our model behaviour.
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Model analysis by simulation techniques

This chapter describes the result of our simulator respect to a decentralized
architecture for data-intensive scientific computing according to the PRC

model.
In the various scenarios presented here, a small group of nodes maintains
and advertises job description files and a large number of dispersed worker
nodes execute the required tasks. Job assignment is performed by a group
of rendezvous peers, which form a super-peer overlay network and match job
descriptions with job queries when they are issued by available worker nodes.
To provide support for this scheme, has been evaluated the impact of ap-
plication (the number of jobs and the number of times that each of them is
assigned to workers for statistical analysis) and network parameters (the num-
ber of workers and data centers) on performance indices such as the overall
time to execute a given set of jobs, the utilization of data centers, the network
load and the computational load of a single worker in different cases:

• base scenario
• redundant submission of job scenario
• dynamic caching scenario
• peers disconnection scenario
• multiple jobs assigner scenario
• comparition of variable size network scenarios

From the cross analysis comes up some meaningful combined scenarios such
base scenario with disconnection, multiple job submission with or without peers
disconnection.

Results show that the use of several DSs can bring benefits to network
applications in terms of lower total execution times, higher throughput and
load balancing among worker nodes. However, since a large number of DSs
also causes a smaller utilization of a single DS, the study can also be used
to determine the number of DSs that can maximize the return of investment
related to the deployment of new DSs.
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We present the analysis of (1) redundant computing for applications that re-
quire multiple executions of each job; (2) caching of data file fragments on the
P2P network, instead of storing entire files, to improve data download per-
formance. Further development can take on account the study of performance
of the super-peer protocol in the case that input data is progressively fed as
a data stream by an external source.

5.1 Base scenario

It’s now analyzed a simple scenario [83] based on a net containing 25 super-
peers and 250 ordinary peers.
Simulation parameters, and corresponding values, are reported in table 5.1.
The network is composed of 25 cluster organizations, each containing one
super-peer node and 10 regular nodes on average. The super-peer overlay
network is organized so that each super-peer is connected to at most 4 neighbor
super-peers. It is assumed that local connections (i.e. between a super-peer
and a local simple peer) have a larger bandwidth and a shorter latency than
remote connections. To compute download times with a proper accuracy, a
data file is split in 1 MB segments, and for each segment the download time
is calculated assuming that the downstream bandwidth available at a DS is
equally shared among all the download connections that are simultaneous
active from the DS to different workers.
In this preliminary study, it is assumed that the DSs download input data
files before the workers join the system and issue their job queries. In the rest
of the chapter, analysis will focus on a more complex scenario in which data
files are replicated.
The last two rows of Table 1 are related to parameters that were given varying
values in the simulation runs, specifically the number of jobs Njob and the
number of data sources Nds i. e. the number of super-peer nodes that own
data files at the time job execution starts.

Figure 5.1 shows that the overall execution time decreases as more DSs
are made available in the network, for two main reasons: first DSs are less
heavily loaded and therefore data download time decreases, second workers
can exploit a higher parallelism both in the downloading phase and during the
execution of jobs. However, depending on the number of jobs to be executed,
it is possible to determine a suitable number of DSs, beyond which the inser-
tion of a further DS produces a performance increase which does not justify
the related cost. For example, if 10,000 jobs are to be executed, a significant
reduction of Texec is perceived as the number of DSs is increased up to a value
of 9, whereas if the number of jobs is not greater than 1,000 two or three DSs
are sufficient to achieve a good performance level. Analogous comments can
be made about the throughput index, reported in figure 5.2. A further con-
sideration is that the throughput increases with the number of jobs because
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Table 5.1. Simulation parameters

Scenariofeature Value

Number of super-peers, Nspeer 25
Maximum number of neighbors for a super-peer 4
Average number of workers connected to a super-peer 10
Latency between two adjacent super-peers
(or between two remote peers in a direct connection) 100 ms
Latency between a super-peer and a local worker 10 ms
Bandwidth between two adjacent super-peers
(or between two remote peers in a direct connection) 1 Mbps
Bandwidth between a super-peer and a local worker 10 Mbps
Size of input data files 7.2 Mbytes
Mean job execution time 500 s
TTL parameter for job and data queries 4
Number of jobs, Njob from 250 to 10000
Number of Data sources, Nds 1, 2, 3, 5, 7, 9, 11, 13

download and execution periods are alternated more efficiently if workers ex-
ecute a larger number of jobs. But this increase tends to be negligible as the
number of jobs is so large that the job submission system begins to approach
a stable working condition.
Figure 5.3 reports the average percentage of time in which a generic DS sup-
ports at least one download connection. Results confirm that the presence of
an excessive number of DSs can be inappropriate, especially if the number of
jobs is not very large. Indeed when the percentage of activity time decreases
below 60%, machine utilization is very low resulting in a poor return of in-
vestment (ROI).
Figures 5.4 and 5.5 show performance results related to workers. Figure 5.4
proves that the download time decreases as the number of DSs is increased,
resulting in smaller overall execution time. On the other hand, the download
time hardly depends on the number of jobs because the simultaneous number
of connections that a DS must serve is only related to the number of workers
(250), not to the number of jobs. Finally, figure 5.5 compares number of jobs
executed by a worker on average (obtained as Njob/250) to the maximum
number of jobs executed by a single worker, dotted line. It is interesting to
note that the two indices approach one another as the number of DSs is in-
creased, leading to a fairer load balancing among workers.
Finally figure 5.6 show network load, this by number of messages traveling
over the net per second, respect to number of DSs. Network load grows, this
because the fast download in fact the single W mean download time decreases
as seen in figure 5.4.
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Fig. 5.2. Throughput vs. the number of data sources for different numbers of jobs.
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Fig. 5.3. Percentage of activity vs. the number of data sources for different numbers
of jobs.

5.2 Redundant submission of job scenario

Respect to the base scenario, redundant executions of each job can be sub-
mitted to more peers, obviously not less peers then how many executions are
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required Nexec.
In this scenario simulations the DSs number is setted with value 13, and then
has been analysed how performance indices changes when multiple executions
of each job is submitted to more then 10 peers with Nexec = 10. The number
of jobs varies from 100 to 1000.
Scientific analysis performed inside PRC context, can require multiple execu-
tion of every single job, either to enhance statistical accuracy or minimize the
effect of malicious executions. The parameter Nexec is set to 10 in this analy-
sis. To achieve this objective, redundant job assignment is exploited: each job
advert can be matched and assigned to workers up to a number of times equal
to the parameter Matches To Live (MTL), whose value must be not lower
than Nexec. The job manager assigns a job until either the MTL parameter
is decremented to 0 or the job manager receives the results for at least Nexec

executions of this job. A proper choice of MTL can compensate for possible
disconnections of workers and consequent job failures.
The performance parameters, starting from the TExec, are examined respect
to NJob and multiple submissions time (MTL) variation in certain conditions.

Figure 5.7 shows the overall execution time vs. the MTL value, with the
number of jobs Njob ranging from 50 to 500. The execution time tends to
decrease as the value of MTL increases, then it gets stabilized.
The reason of this is that a larger MTL allows to better compensate for the
possible hetereogeneity of job execution time duration, it’s reasonable to imag-
ine that al last 10 jobs end on time having assigned 50 jobs to hetereogenus
workers. This represents a further test that our simulator can capture W with
different behaviour and it captures the scenario that a job can take longer for
a W and shorter for one other, exactly as in real life it happens.
All the jobs ended later are not taken under account, then it means network
resources, see at figure 5.9 and 5.10, and peer working time waste, but this
last point is not a big deal in PRC scenario.
This effect disappears once the MTL exceeds a threshold: in fact very large
values of MTL are not exploited because the job manager stops the assign-
ments of job adverts when output data related to Nexec executions have been
received.

Figure 5.8 shows that the average utilization of data centers, and hence the
efficiency of the protocol, increases with the amount of computation assigned
to workers, i.e., with the number of jobs and, more slightly, with the MTL
value. To understand this, it must be considered that data cachers are not
heavily utilized in the first phase of the process, because they have not yet
retrieved data from the data source, whereas they are fully exploited only
after they have retrieved such data. Therefore, the utilization of data centers
is high only when the number of required job executions is large enough to
make the caching of data convenient. On the other hand, when the amount
of computation is low, the time interval required by data cachers to retrieve
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data files is relevant with respect to the overall execution time, therefore data
cachers are not exploited for a large fraction of time, which explains the low
values of the utilization index.
After this preliminary set of experiments, it was decided to set MTL to a
constant value, in order to better evaluate the effect of other parameters and
configuration options. The value of MTL was set to the lowest value for which
the overall execution time is at most 10% higher that the ”steady” execution
time, for every tested value of Njob. This steady value was set as the execution
time obtained with MTL equal to 50, beyond which no further variations of
Texec can be perceived. According to this strategy, the set of MTL was then
set to 20. Furthermore, this value allows for the successful execution of jobs in
most of the considered scenarios, as will also be discussed in the next section.

0

2000

4000

6000

8000

10000

12000

14000

16000

10 15 20 25 30

T
E

xe
c 

(s
)

Matches To Live MTL

Njob = 50
Njob = 100
Njob = 250
Njob = 500
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Fig. 5.10. Network load vs. the value of MTL, for different numbers of jobs.
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Fig. 5.11. Maximum number of jobs executed by a single worker vs. the value of
MTL for different numbers of jobs. This index is compared to average number of
jobs executed by single worker (dotted lines).

5.3 With data caching scenario

The base scenario can be extended removing the assumption that data cen-
ters already acquired all data they could need in start up. Once a peer asks
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for data, a DC acquires data dynamically and start to deliver them (totally
caching) even before they are not yet all available (partially caching). The
effectiveness of the dynamic caching mechanism has been evaluated in differ-
ent experiments. Simulations were performed for a network analogous to that
examined before.
This analysis essentially compares how our approach may affect a BOINC-
like network if the administrator provides more data cachers into the net-
work. BOINC-like applications infact are able to replicate their current static
data server functionality through a dynamic and decentralized data distri-
bution system that enables projects to automatically scale their data needs
without additional administrative overhead as their user-base or problem size
increases.
Instead of 13 DSs at the beginning of simulation, here we have one DS with
required data and 12 DCs ready to dynamically download data. Making a
comparison between without and with caching scenario performances indices
behaviour there is not a big difference in quality. For example analyzing figures
5.7 respect to 5.12 we can see that Texec grows faster in the second scenario.
Comparing 5.8 and 5.13 the throughtput decreases in the second because Ws

must wait for DSs loading all the data. Comparing 5.9 and 5.14 you can
avvert a diminution of DCs utilization in fact they are not sending data until
they don’t finish caching them. Comparing 5.10 and 5.15 message interchange
in the network increases in the second case because data query messages.
The differences among with and without caching scenario are more evident
specially at job number decreasing. In fact in the case of a shorter execution
time, the preliminary caching phase affects proportionaly a longer time, in the
opposite, in the case of a longer execution, the caching phase can be ignored.
Introduce caching mechanism then allows to simulate a more realistic scenario
without lose too much in performances.
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Fig. 5.13. Throughput vs. the value of MTL for different numbers of jobs.
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Fig. 5.14. Percentage of activity vs. the value of MTL for different numbers of jobs.

To proof that really the introduction of data caching mechanism doesn’t
affect the overall performances, further analysis have been done. This time in
total DCs are 13, the number of available DSs is varied from 1 to 13 by step
2, the number of DCas is the complement.

Number of data sources variation affects slightly performance indexes so it
seems reasonable to project the network in a way that at the beginning there
are not more then one DS, in fact it seems that it makes no difference if there
are many DSs or not.
In the following only DCas number changes and the number of DSs is one.
Anyway the results are almost the same obtained in first scenario.
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Fig. 5.15. Network load vs. the value of MTL for different numbers of jobs.
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Fig. 5.18. Throughput vs. the number of data sources for different numbers of jobs.
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Fig. 5.20. Network load vs. the number of data sources for different numbers of
jobs.

5.4 Peers disconnection scenario

In a more realistic scenario Ws could end a job out of date or not end it.
It happens respectively according the peer structure and because peers could
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Fig. 5.24. Percentage of activity vs. the number of data centers for different numbers
of jobs.
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disconnect. In general all nodes can disconnect except SP node and JM. The
mechanism to handle with disconnection follows two behaviours:

1. a priori assignment of jobs with fixed MTL value: the idea is to assign
all required jobs to peers and to activate a timer for the result, all the
results that haven’t been calculated on time aren’t taken into account for
the final result.

2. dynamically re-assignment jobs with fixed minimum MTL value: the idea
is to assign all required jobs to peers and to activate a timer for the result,
while there is a job which results haven’t been calculated on time, the job
has assigned to a peer again with a timer. Eventual results that will be
calculated on late are accepted, even if they have been re-assigned.

The JM starts the job assignment phase. Please notice that anytime a
JA assigns a job, it automatically increases the available assignment value
without even know if such job will ended on time. In the first situation when
the worker doesn’t deliver the results before timeout, the partially completed
job execution has been totally waste, so it makes sense to calculate well the
timer value. A timer value is good if the job totally completed percentage is
high. The JA starts the timer only once the it has assigned all the jobs to
the workers. The timer value is chosen according an intuitive algorithm which
uses input and intermediate calculated parameters:

• NJobTot: effectively total job required number.
• currentT: current time in millisecond.
• NCompletedJob: represents the number of job which result has been al-

ready calculated until currentT.
• NIncompletedJob: represents the number of job which result hasn’t been

yet calculated at currentT.
• TPerJob: job estimated execution average time.

The Timer is calculated as Timer = C ·(NIncompletedJob ·TPerJob), where
the constant value C (10 in our case) has been chosen according different sim-
ulation running.
In the base scenario only the Job-Manager could end the simulation once it
receives the results for any job, now it can be ended also by the JA once the
timer expires. For this scenario Texec parameter has been analysed. In the case
MTL value is exactly equals or near to NExec value, TExec strictly depends
from the timer imposed by JA. When MTL >> Nexec, obviously Texec is
lower and the simulation is ended by the JM.

In the second case the timer rule assumes a different meaning, in fact a
timer is set per each job assigned and not to the whole simulation. For this
reason the Job Assigner node has to memorize the status (assigned or not,
completed or not) for each job. Anytime one job timer expires, the Job As-
signer checks the job status, if it’s assigned but not yet completed then it put
the status to not assigned and it allows the job to be re-assigned and executed.
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The idea is that if the job timer expires because the worker node hasn’t yet
finished the computation, at the end this job result will be delivered anyway,
even if on late.
For each re-assigned job a new timer value has been calculated dynamically
according the well known Jacobson algorithm. This re-assignment approach
guarantees the wished minimum Nexec has been reached.
Every time a worker ends a job execution it sends a job results message to the
JM that sends a jobCompletionAdvert message to the JM so it can update
the current job status. As well as in the base scenario only the JM can end
the simulation once it receives the expected results for any job.

This second case requires a complex protocol, it requires additional data
structure and computation resources, and all that it’s far from PRC approach
and out of our modelization intension. For these reasons this second case
haven’t been further analyzed but only the first.
In the following new simulation parameters have been introduced because
disconnection and they are the connection and the disconnection time, re-
spectively 3 hours and 1 hours in our case. Firstly a network with 1 DS and
12 DCas have been used. The performance index for this scenario have been
evaluated and can be compared with the analogous DS and DCas situation in
the section 5.3.

Figure 5.27 shows the overall execution time vs. the MTL value, with the
number of jobs Njob ranging from 50 to 500. The execution time tends to
decrease as the value of MTL increases, then it gets stabilized, this behaviour
reminds at without disconnection scenario.
Note that the execution time could not be computed for values of MTL next
to Texec (i.e. lower then 13 if Njob is 500). In such cases, worker disconnections
do not allow to perform at least Nexec executions for each job. Therefore, the
redundant approach is not only useful to decrease the execution time, but it is
even necessary to complete the required job executions. Not depending from
NJob and MTL the Texec is bigger then in without disconnection scenario, see
at figure 5.12.
The throughput value is lower respect the base scenario, obviously because
the working time of a peer that can disconnect is discontinuos, this seems clear
at first look of figure 5.13 and 5.28, same consideration work for the Network
load value, this consideration comes from the comparison of figure 5.15 and
5.30.

Figure 5.29 shows that the average utilization of data centers, and hence
the efficiency of the protocol, increases with the amount of computation as-
signed to workers, i.e., with the number of jobs and, more slightly, with the
MTL value. To understand this, it must be considered that data cachers are
not heavily utilized in the first phase of the process, because they have not
yet retrieved data from the data source, whereas they are fully exploited only
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after they have retrieved such data. Therefore, the utilization of data centers
is high only when the number of required job executions is large enough to
make the caching of data convenient. On the other hand, when the amount
of computation is low, the time interval required by data cachers to retrieve
data files is relevant with respect to the overall execution time, therefore data
cachers are not exploited for a large fraction of time, which explains the low
values of the utilization index, see at figure 5.14.

In figure 5.16 respect to figure 5.31 the maximum number of jobs executed
by a single worker increases. This happens because peers of DC cluster, since
they are the faster nodes in downloading phase, take few time to complete
a job and even if we are in the case of disconnection, generally they have a
lower number of interrupted jobs.

These analysis brings to the consideration that opportunly choose MTL
value is mandatory to optimize the execution but also this time to allow the
end of Nexec executions for each job.
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Fig. 5.27. Overall execution time vs. the value of MTL for different numbers of
jobs.

Now the case of DCas variable has been analyzed with MTL=20, this case
aims at evaluating the effectiveness of the dynamic caching mechanism.

Simulations were performed for the same network as before, except that
the number of available data centers is varied from 1 to 13: one of these data
centers is the data source, the others are data cachers.

Figure 5.32 shows the values of the overall execution time calculated for
this scenario. The time decreases as more data centers are made available in
the network, for two main reasons:

• data centers are less heavily loaded and therefore data download time
decreases,
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Fig. 5.28. Throughput vs. the value of MTL for different numbers of jobs.

0

0.2

0.4

0.6

0.8

1

10 15 20 25 30

U
til

iz
at

io
n 

of
 D

at
a 

C
en

te
rs

Matches To Live MTL

Njob = 50
Njob = 100
Njob = 250
Njob = 500

Fig. 5.29. Percentage of activity vs. the value of MTL for different numbers of jobs.
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Fig. 5.30. Network load vs. the value of MTL,s for different numbers of jobs.

• workers can exploit a higher parallelism both in the downloading phase
and during the execution of jobs.
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Fig. 5.31. Maximum number of jobs executed by a single worker vs. the value of
MTL, for different numbers of jobs. This index is compared to average number of
jobs executed by single worker (dotted lines).

Depending on the number of jobs to be executed, it is possible to determine
a suitable number of data centers, beyond which the insertion of a further
data center produces a very low decrease of execution time, or even a small
increase of it. For example, if the number of jobs is 250, a significant reduction
of Texec is perceived as the number of data centers is increased up to a value
of 7, whereas if the number of jobs is 25 or 100, 5 data centers are sufficient
to achieve a good performance level, and adding more data centers is not
effective.

Figure 5.32 does not report results for some combinations of the number
of DCs and the number of jobs, because the disconnections of workers do not
allow for the completion of all the required job executions.

In fact, if only a few data centers are available, each of these is likely to
be overloaded by a large number of workers’ requests; as a consequence, the
download time increases and the disconnection of a worker during the down-
load phase becomes a more probable event. Analyzing it we can choose the
right number of DCs to be sure that the jobs execution will end.

It is very hard to deduce the overall execution time in an analytical way,
due to the large number of network parameters (e.g., the number of workers
and super-peers, the bandwidth and latency between nodes and so on) and the
complexity of the super-peer protocol. However, we made several tests with
different application scenarios and used Matlab tools to obtain a mathematical
expression that is able to approximate simulation results as much as possible
and at the same time is coherent with the dynamics of the protocol. We derived
the expression shown in formula (5.1), that relates the overall execution time
to the number of jobs to execute, Njob, and to the number of available data
centers, Ndc.
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Texec = C1log(Ndc) + C2

Njob

Ndc

+ C3

Njob

(Ndc)2
(5.1)

Very interestingly, we found that this expression is valid for all the per-
formed tests, regardless of the values of the other network parameters. Of
course, the impact of these parameters is encompassed by the values of the
coefficients that appear in formula (5.1).

The expression in the formula is composed of three terms, each of which
can be associated to a basic characteristic of the protocol. In particular, the
first term relates to the dissemination of input data to the network data cen-
ters. This term is logarithmic with respect to Ndc, because each data cacher,
after retrieving data from a data center, is able to provide this data to a num-
ber of other data cachers. Due to the log-type relation, this term increases
slightly with the number of data centers. The second term takes into account
the time needed by workers to download data files from a single data center
and execute the corresponding jobs (indeed we can consider one data center,
since operations are made in parallel on different data centers). Specifically,
this term is proportional to the average number of jobs which require a down-
load operation from a single data center, Njob/Ndc. Finally, the third term
gives an estimation of the additional amount of time that is required by worker
disconnections. This ”extra” time corresponds for the most part to the time
taken by download operations that have to be re-executed because they failed
during their first try. In fact, the third term comes out as the product of the
time that would be taken if all the download operations failed (which is pro-
portional to Njob/Ndc) and the probability that a single download operation
actually fails. It was found that this probability is inversely proportional to
the number of data centers, since download operations are longer and more at
risk of failure as the number of data centers decreases. The third term takes
into account only the possibility of repeating a download operation just once.
The impact of multiple repetitions of download operations is actually negligi-
ble if the failure probability is much lower than 1. In conclusion, the overall
execution time is the sum of three terms, of which the first increases with the
number of data centers while the other two decrease. However, the effect of
the first term is relatively low, except for the cases in which the number of
data centers is large and the number of jobs is small, as can be seen in Figure
5.32. In fact, in such cases the overall execution time slightly increases with
the number of data centers.

Figure 5.34 shows the average utilization of data centers for the same sce-
nario. This index decreases as the number of data centers increases and, in
contrast with the execution time, curves do not get to a relatively stable value.
This is another useful indication for setting a proper number of data centers.
For example, let’s consider the submission of 500 jobs. While the overall exe-
cution time can be decreased until the number of data centers is increased to
about 11, the utilization index continue to decrease as more data centers are



5.5 Scalability analysis 101

made available. With 13 data centers there would be a worse exploitation of
data centers and no significative reduction in the execution time, from which
it can be concluded that an appropriate number of data centers is indeed 11.

Figure 5.35 shows the number of messages per second that circulate in
the network. It can be noticed that the network load increases as DCs num-
ber increases, specially non depending by jobs number, in the case of a small
number of DCs.

Finally, Figure 5.36 helps to examine the load balancing features of the
protocol. Figure 5.36 reports the maximum number of jobs executed by a
single worker. It is interesting to note that the a wider availability of data
centers improves load balancing among workers, as the maximum number of
executed jobs decreases and approaches the average number. In fact, with few
DCs, the workers which are closer to them tend to execute more jobs, because
the download phase is faster. However, if more data centers are installed,
the differences among workers are attenuated, in particular when the overall
computation load is high.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 7 9 11 13

T
E

xe
c 

(s
)

Number of data centers Ndc (NExec=10)

Njob = 25
Njob = 50

Njob = 100
Njob = 250
Njob = 500

Njob = 1000
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numbers of jobs.

5.5 Scalability analysis

An additional set of simulations were performed to evaluate the behavior of
the protocol in variable-sized networks, to specifically examine its scalability.
We analyzed networks having 250, 500 and 1000 workers, that is with 25, 50
and 100 super-peers, respectively. As in the previous simulations, one data
source is available, while the overall number of data centers, including this
data source and the data cachers, is varied from 1 to half the number of
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Fig. 5.36. Maximum number of jobs executed by a single worker vs. the number
of data centers, for different numbers of jobs. This index is compared to average
number of jobs executed by single worker (dotted lines).

super-peers (the maximum value is approximated to 13 in the case of 25
super-peers). The required number of executions of each job, Nexec, is set to
10, while the maximum number of assignments per job, MTL, is set to 20. All
such features are summarized in table 5.2.

Table 5.2. Simulation scenario

Scenariofeature Value

Number of workers, Npeer 250 to 1000
Average number of workers connected to the one super-peer 10
Maximum number of neighbors of a super-peer 4
Average connection time of workers 4 h
Average disconnection time of workers 1 h
Number of data centers (1 data source + data cachers) 1 to 50% of super-peers
Size of input data files 7.2 Mbytes
Latency between two adjacent super-peers
(or between two remote peers in a direct connection) 100 ms
Latency between a super-peer and a local worker 10 ms
Bandwidth between two adjacent super-peers
(or between two remote peers in a direct connection) 1 Mbps
Bandwidth between a super-peer and a local worker 10 Mbps
Number of jobs, Njob 100 to 1000
Number of executions requested for each job, Nexec 10
Matches to live, MTL 10 to 25
Mean job execution time 500 s

Two different scenarios are taken into consideration [86]. In the first, the
number of jobs is constant, and set to 500, while the number of workers
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is increased: this is useful to verify if the availability of more workers can
actually improve performance. In the second scenario, the number of jobs
and the number of workers are increased with the same pace: this analysis is
particularly useful to verify if the protocol is able to sustain an increase in
the problem size in the case that the average computational load of a worker
is maintained constant.

Figure 5.37 shows results related to the first scenario. Because of the high
range of the values obtained, a logarithmic scale is adopted for the y axis. This
figure shows that, with a constant problem size, that is, a fixed number of jobs,
the availability of a larger number of workers actually improves performance,
on condition that a proportional number of data centers are installed. For
example, if half the number of super-peers are set up as data centers, the
execution time is reduced by about 50% (from 11023 seconds to 5421 seconds)
if the number of workers is increased from 250 to 1000. The performance gain
is therefore relevant.
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Fig. 5.37. Overall execution time vs. the number of data centers. The number of
jobs is set to 500, and different network sizes are tested.

Figure 5.38 reports the overall execution time for the second scalability
test, namely the test with variable problem size, which aims to verify if it
is effective to increase the number of workers proportionally to the amount
of computation load. Here the number of workers is maintained equal to the
number of jobs, each of which - it is useful to recall - must be executed at
least 10 times. Again, the results obtained when using a fixed percentage
of data centers are to be compared. The dashed line in figure 5.38 connects
points obtained when the mentioned percentage is set to 50% and shows that
the proposed approach is satisfactory scalable. In fact, the execution time is
equal to 5770 seconds when the number of jobs (and the number of workers)
is 250, while it increases to 6886 seconds with 500 jobs, and to 8301 with
1000 jobs. Therefore, if the amount of computation is doubled, the execution
time increases by only 19%, while if it is quadruplicated, the execution time
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Fig. 5.39. Maximum number of jobs performed by a worker vs. the number of
data centers, for different numbers of jobs. The network size is proportional to the
amount of computation.

increases by only 43% per cent. Analogous results are obtained for different
percentages of data centers in the network. This proves the good scalability
of the approach presented in this paper, as the pace at which the execution
time increases is much lower than the corresponding increase in the problem
size.

Scalability actually derives from the ability of the protocol to fairly dis-
tribute the computational load to workers, even when the problem and the
network size increase. This can be observed in Figure 5.39: the dashed line
highlights the values of the maximum number of jobs executed by a worker,
obtained when the number of data centers is equal to 50% of super-peers. The
maximum number of jobs is 25.2 in a network with 250 workers, and increases
very slightly with the computational load: specifically, it increases to 30.0 and
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to 31.1 as the number of jobs increases to 500 and 1000, respectively.

5.6 Multiple jobs assigner scenario

Instead of manipulating the TTL value by increasing it respect to the growing
of the network, it’s possible to change the JA number in a way to allow all
the Ws obtaining a job assignment [87]. This is possible inside our model, in
fact in the beginning of simulation it’s possible to consider more then one JA
and spread to them job advert messages. Increasing the JAs number Ws can,
with higher probability, find a JA in their neighborhood. Then it’s reasonable
to use a low TTL value. An indirect consequence is that a smaller number of
queries cross the network, see at figure 5.43 and 5.44, and in a shorter time a
JA is found. This is a sign of communication protocol scalability.
The drawback is that if the TTL value is too small, some Ws will never find
their JA; then they can’t work as you can see examining the load balancing
features of the protocol in figure 5.45 and from Texec value in figure 5.40 that
increases at decreases TTL.
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Fig. 5.41. Throughput vs. the number of Assigner for different TTL.
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Fig. 5.42. Percentage of activity vs. the number of Assigner for different TTL.
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6

P2P networks for music information retrieval

In this chapter it is analyzed the simulations results of the distribution of bun-
dled workflows across ubiquitous peer-to-peer networks for music information
retrieval in the context of the DART project [89, 88]. The DART project aims
to develop a novel music recommendation system (MRS), by gathering sta-
tistical data using collaborative filtering techniques and the analysis of the
audio itself in order to create a reliable and comprehensive database of the
music that people own and which they listen to.
Mrs DART [90] employs the use of the underlying Distributed Audio Re-
trieval using Triana (DART) peer-to-peer subsystem in order to provide a
fan-out mechanism for distributing workflows across the network and for re-
trieval and aggregation of results.
In the DART scenario, the home users, the Ws, perform analysis of their own
music collection by executing Triana workflows that encompas the analysis to
be performed at that time, according to PRC paradigm.
Triana [89] is a graphical Problem Solving Environment (PSE) for composing
data-driven applications by executing workflows [94, 92]. Given its modular-
ity, its support for high quality audio, and its ability to distribute processes
across a Grid of computers, Triana has the potential to be an extremely use-
ful piece of software that allows users to implement custom audio processing
algorithms from their constituent elements, no matter their computational
complexity.
DART uses a similar approach to BOINC [71] but differs in that the workers
receive input data in the form of a bundled Triana workflow, which is executed
in order to process any MP3 files that they own on their machine. Once anal-
ysed, the results are returned to DART’s distributed database that collects
and aggregates the resulting information. DART employs the use of package
repositories, the DC, to decentralise the distribution of such workflow bun-
dles. This approach is validated through simulations that show that suitable
scalability is maintained through the system as the number of participants
increases.
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6.1 DART scenario

Dart project utilises a combination of distributed systems technologies, its
goal is to leverage this technology such that the some kind of digital signal
processing can be achieved with audio rate signals for the purposes of signal
analysis, feature extraction, synthesis, and music information retrieval (Mrs
DART).
DART uses a peer-to-peer approach, it is based on the super peer architec-
ture but extends this idea to employ the use of secure Data Servers (called
package repositories) that cache the workflow bundles for DART, to be able
to replicate and decentralise the distribution of the workflows. Other tech-
niques were considered, such as Bittorrent but this is unacceptable within the
BOINC framework because of security constraints.
In DART, we are interested in forming unstructured P2P networks and there-
fore need to employ technologies that can adapt and scale within such an envi-
ronment. For distribution across dynamic networks, we use the P2PS binding
for Triana. Peer-to-Peer Simplified (P2PS) [91] was a response to the com-
plexity and overhead associated with JXTA [73]. As its name suggests, it
is a simple yet generic API for developing P2P systems. P2PS encompasses
intelligent discovery mechanisms, pipe based communication and makes it
possible to easily create desirable network topologies for searching, such as
decentralised ad-hoc networks with super peers or rendezvous nodes. P2PS is
designed to cope with rapidly changing environments, where peers may come
and go at frequent intervals.
At the core of P2PS is the notion of a pipe: a virtual communication chan-
nel that is only bound to specific endpoints at connection time. When a peer
publishes a pipe advertisement it only identifies the pipe by its name, ID,
and the ID of its host peer. A remote peer wishing to connect to a pipe must
query an endpoint resolver for the host peer in order to determine an ac-
tual endpoint address that it can contact. In P2PS a peer can have multiple
endpoint resolvers (i.e. TCP, UDP etc), with each resolving endpoints in dif-
ferent transport protocols or returning relay endpoints that bridge between
protocols (i.e. to traverse a firewall). Also, the P2PS infrastructure employs
XML in its discovery and communication protocols, which allows it to be
independent of any implementation language and computing hardware. As-
suming that suitable P2PS implementations exist, it should be possible to
form a P2PS network that includes everything from super-computer peers to
PDA peers.

To simulate this application a new protocol has been modelized, in this
scenario, see figure 6.1, we represent the decentralised DART network in which
nodes are organized in a super peer topology using the P2PS middleware. In
P2PS, producers (i.e. providers of packages containing workflows or results)
create adverts to advertise that they have something that is of interest to
other participants in the network. Consumers (i.e. the peers that wish to use
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Fig. 6.1. High-level overview of the DART system, showing the various peers and
their connectivity.

available packages, result sets and so on) issue queries in order to search for
relevant adverts. P2PS rendezvous nodes are then responsible for matching
queries with adverts within their local cache, in order to search for matches and
respond appropriately. Consumers receive adverts when their query matches,
and these adverts can be used to retrieve the relevant information they re-
quire, i.e. download the new workflow package to perform the analysis. The
DART Manager node produces and advertises the workflow package repre-
senting the new DART bundle (called DART Package Adverts) containing
algorithms that the worker nodes need to run (new Triana units and work-
flows). With the DART system, the data files that undergo analysis are on
the users local systems hard drive, and therefore all data processing is local
so network bandwidth is not consumed transferring large data files over the
DART network. Although local, the processing is massively parallel, as par-
ticipants analyse their own audio files in parallel.

Workers are available to execute the algorithms and workflows, and there-
fore issue a package query to download a package in order to start the analy-
sis of their music collections. The entire workflow is executed by each worker
which downloads the package; the workflow is not then broken down and
farmed out to separate nodes to complete different tasks.

Super peer interconnections are used to make package queries travel across
the network rapidly; super peers play the role of rendezvous nodes, since they
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can store package adverts and compare these files with queries issued to dis-
cover them; thereby acting as a meeting place for both package providers and
consumers. Since packages could require a reasonable amount of storage space,
it is assumed that only some of the peers in the network will cache these files.
These peers are called Package Repositories (PR) and can also be super peers
or worker peers. Each node in the system decides if they want to be a super
peer and/or package repository, as well as a worker.

Figure 6.2 shows a sample topology with 5 super peers (2 of which are
also package repositories), and the sequence of messages exchanged among
different nodes in order to perform the package submission protocol. These
messages are related to the execution of a workflow by a single worker, labelled
as W0. Note that in this figure, normal peers are not considered as package
repositories.

Fig. 6.2. Super peer protocol for the dissemination of workflow packages: sample
network topology and sequence of exchanged messages to execute one package cycle.
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When a new DART workflow package is available, the DART manager puts
this package on one or more package repositories and propagates an associated
metadata file, or package advert, on the super peer network. This advert is
an XML file describing the properties of the algorithms to be executed (i.e.
workflow parameters containing the units/tools, platform requirements if any,
information about required input audio data files, etc.).

When available to offer some of its CPU time, a worker searches the net-
work to verify if a new version of the package is available. More specifically,
the worker sends a package query that travels the network through the super
peer interconnections (message 1 in Figure 6.2). A package query is expressed
by an XML document that contains hardware and software features of the
worker node, if this is necessary i.e. available RAM, disk space or JDK ver-
sion. The query succeeds whenever it matches an advert of a package that can
be actually executed by the requesting worker. This package advert is then
sent directly to the worker.

Thereafter, the worker must search for a package repository that stores
the updated workflow package, and sends a data query to the network. As
more than one package repository can match the query, a matching repository
does not send the package directly to the worker, in order to avoid multiple
transmissions of the same file. Conversely, the repository returns only a data
advert to the worker.

A worker can choose a repository according to policies that can rely on
the distance of repositories, their available bandwidth etc. Then the worker
initiates the download operation from the selected repository.

The DART protocol allows for the progressive dissemination of workflow
packages on different repositories. Initially these packages are stored on one
or few repositories. However, when a worker downloads a package, if the local
super peer plays also the role of a repository, the package is first downloaded
and cached by this super peer, then forwarded to the worker. In the future
another package query can be matched directly by this package repository.
Replication of the workflow package on multiple package repositories allows
for a significant saving of time in the querying phase and enables the simul-
taneous retrieval of packages from different repositories.

Once the worker has received the updated package, the workflow is exe-
cuted by the workers, and they begin to analyse the audio files on the workers
system during the systems idle time. Once a package cycle is complete and
the worker has results to present, the worker then creates an XML advert
containing the results and metadata generated by the algorithm specified in
the package (a results advertisement). As the actual results generated would
be extremely small in size in this DART system, the functionality of the super
peer has been extended in order to also cache and make them available.

Each worker on the network can also be thought of a results provider on
the DART system, as well as act as a user, as it can query for results (in this
case a suitable music/song suggestion as generated on the super peer). There



114 6 P2P networks for music information retrieval

is no central results collector, but rather DART utilises a fully decentralised
model and allows the results to propagate through the network hop-by-hop,
to be stored on the super peers. The super peers can process the metadata
and issue an XML results advertisement on receipt of a results query from the
user. Once the query is received, the results may be sent to the user.

6.2 Distributed Simulations

Here it’s analyzed the case of a workflow package of around 10.4MB in size,
that correspond to the current size of the Triana audio toolkit, that is to be
distributed to the worker nodes on the network. It is here assumed that the
workflow can be executed by any worker and that only super peers can be
package repositories. The simulation scenario is described in Table 6.1.

Table 6.1. Simulation scenario.

Scenario feature Value

Number of workers, or simple peers, Npeer 1,000 to 20,000
Number of super peers, Nspeer 100 to 2,000
Average number of workers connected to a super peer 10
Maximum number of neighbors for a super peer 4
Average connection time of workers 4 hours
Average disconnection time of workers 1 hour
Number of package repositories 1 to 50% of Nspeer

Size of input data files 10.4 Mbytes
Latency between two adjacent super peers 100 ms
Latency between a super peer and a local worker 10 ms
Bandwidth between two adjacent super peers 2 Mbps
Bandwidth between a super peer and a local worker 1 Mbps
Mean workflow execution time 10 hours

This scenario simulates the performance and behaviour of a distributed
P2P network with 1,000 to 20,000 workers, with a maximum value of 2,000
super peers as the number of super peers is assumed to be 10% of the num-
ber of workers. Workers can disconnect and reconnect to the network at any
time. This implies that the download or execution of a workflow fails upon the
disconnection of the corresponding worker. It is assumed that connections be-
tween two adjacent super peers have a larger bandwidth and a longer latency
than local connections (i.e. between a super peer and a local simple node).

In the simulation scenario, each worker has to download and execute a
workflow package; to this aim it issues a package query and follows the pro-
tocol described in previous section. If the download operation fails due to a
worker disconnection, a new package query is forwarded and the procedure is
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repeated.

The experiment is aimed at evaluating the effectiveness of the dynamic
caching mechanism. Therefore, the number of available package repositories
was varied from 1 to half the number of super peers: one of these repositories
provides the workflow package from the beginning, while the others act as
cachers, as they can download, store and provide data on the fly.

Simulations have been performed to analyze the overall dissemination
time, Tdiss, defined as the time needed to propagate the workflow package
to at least 95% of the workers. This time is crucial to determine the rate at
which workflow packages can be retrieved from the package repositories in
order to guarantee that the workers are able to keep the pace with the avail-
ability of new versions of the package. The average time needed to perform a
single download operation, Tdl, is also calculated.

The average utilization index of package repositories, Pact, is defined as the
fraction of time that a package repository is actually utilized, i.e., the fraction
of time in which at least one download connection, from a worker (or another
repository), is active with this repository. The value of Pact is averaged on all
the repositories and can be seen as an efficiency index.
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Fig. 6.3. Time at which 95% of workers have downloaded a new version of the
workflow package from a package repository.

Figure 6.3 shows that the dissemination time decreases as the number of
package repositories increases, as worker nodes can exploit higher parallelism
and download workflow packages from multiple repositories (possibly closer)
and also because the repositories themselves are under less stress and there-
fore data download time decreases. Conversely, if the number of repositories
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is constant, the dissemination time increases with the number of workers as
more download operations must be performed and therefore a single reposi-
tory has to serve more workers on average.

In these simulations, the protocol is shown as scalable when one observes
the results obtained with a fixed percentage of repositories. As an example,
observe results obtained when the number of repositories is set to 5% of peers
(i.e., 50% of super peers, see dashed line in Figure 6.3). It is interesting to note
that as the number of peers increases, the dissemination time increases very
slightly, much less than the number of peers. For example, with 1,000 peers and
50 repositories, dissemination time is approximately 2,200 seconds; however
with 20,000 peers and 1,000 repositories, dissemination time is approximately
4,100 seconds.
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Fig. 6.4. Average download time of single worker from package repository when
worker disconnection does not interrupt the download.

Figure 6.4 shows the average download time of a single worker from a
package repository when a worker disconnection does not interrupt the down-
load operation. The results here are analogous to the behaviour previously
observed when considering Figure 6.3; the qualitative behaviour is the same,
but the values are lower. The download time decreases as the number of repos-
itories increases, and the download time will increase as the number of workers
increases.

Figure 6.5 shows the percentage of time in which a repository is actually
exploited (i.e. there is at least one download in progress). We can observe
that as more repositories become available, the percentage of time decreases;
therefore, one should be hesitant in setting up a high number of reposito-
ries, because while this can slightly decrease dissemination time, they can
also be under-exploited. Another interesting result is that the utilisation of
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Fig. 6.5. Percentage of time in which a package repository is actually exploited (at
least one download in progress).

a given number of repositories increases as the network becomes bigger and
more workers need to download the workflow package. This is another verifi-
cation of the scalability behaviour discussed earlier. It should be noticed that
this percentage never reaches 100% because a data cacher (a package repos-
itory that has no data at the beginning) must download data from another
repository before it can serve a worker.
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Fig. 6.6. Percentage of interrupted downloads.

Figure 6.6 displays the percentage of download operations that are inter-
rupted due to the disconnections of corresponding downloading workers. In
this simulation, only results for which this percentage is lower than 30% are
displayed. It was observed that the percentage of interrupted downloads de-
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creases as the number of repositories increases. In fact, the download time
decreases if more repositories are available (see Figure 6.4), then a worker has
more chances to conclude its download operation. Finally, if the percentage
of repositories with respect to the number of peers is set to a given value
(for example 5%), the percentage of interrupted downloads is almost constant
(see dashed line), which is a further confirmation about the scalability of the
dissemination protocol.
Summarizing we have performed extensive simulations using our ad-hoc event
simulator to explore how the transmitted workflows will propagate through-
out the network as the number of peers and super peers increases. The results
show that the network scales as the number of members increases as long as
the number of super peers that act as data providers increases by the same
ratio. This shows that the real application should be capable of operating at
an Internet scale with acceptable performance.
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