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Introduction

This thesis consists of two independent parts.
The first (Chapter 1, 2 and 3) is concerned with the following two problems of func-
tional analysis:

Problem 1 : The estimate of the measure of non convex total boundedness in terms of
simpler quantitative characteristics in the space L0 of measurable functions;

Problem 2 : The comparison of the measure of non equiabsolute continuity with the
Hausdorff noncompactness measure and the non convex total boundedness measure in con-
crete function spaces.

The second part (Chapter 4) deals with the study of the following topic of Non
Linear Operator Theory:

Implicit and inverse function theorems.

Throughout the first part of the thesis all linear spaces are real and all groups
are assumed to be additive and commutative. Moreover, we use the convention
inf ∅ := +∞.
In 1988 Idzik [25] proved that the answer to the well-known Schauder’s problem
[23, Problem 54]: does every continuous self-map f defined on a convex compact sub-
set M of a Hausdorff topological linear space have a fixed point? is affirmative if M is
convexly totally bounded.

A subset M of a topological linear space X is said to be convexly totally bounded
(ctb for short) if for every 0-neighborhood U there are points f1, ..., fn ∈ M and a

finite number of convex subsets C1, ..., Cn of U such that M ⊆
n⋃

i=1
(fi + Ci). If X is

locally convex every totally bounded subset of X is ctb. This is not true, in general,
if X is nonlocally convex (see [17],[43] and [47]).
De Pascale, Trombetta and Weber [17] defined the measure of nonconvex total bound-
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INTRODUCTION

edness, modelled on Idzik’s concept, that may be regarded as the analogue of the
well-known notion of Hausdorff measure of noncompactness in nonlocally con-
vex linear spaces. The above notions of ctb set and non convex total boundedness
are especially useful working in the setting of nonlocally convex topological linear
spaces (see e.g. [30], [36], [35]).
Let (G, ‖ · ‖G) be a normed group, Ω a non empty set and P(Ω) the power set of Ω.
The space L0 := L0(Ω,A, G, η) is a space of G−valued functions defined on Ω which
depends on an algebraA in P(Ω) and a submeasure η : P(Ω) −→ [0, +∞]. In partic-
ular, if (G, ‖ · ‖G) = (E, ‖ · ‖E) is a Banach space, µ : A −→ R, where R is the extend
real number system, is a finitely additive measure and η its total variation, then the
space L0 = L0(A, Ω, E, η) coincides with the space of measurable functions intro-
duced in [21, chapter III], in order to develop the integration theory with respect to
finitely additive measures.

In Chapter 2, under the hypothesis that (G, ‖·‖G) = (E, ‖·‖E) is a normed space
we estimate the measure of nonconvex total boundedness in L0(A,Ω, E, η) and we
characterize the convexly totally bounded subsets of L0. For a subset M of L0 we
introduce two quantitative characteristics λ0,w (M) and ω0,w (M) involving convex
sets, which measure, respectively, the degrees of nonconvex equal quasi-boundedness
and of nonconvex equal measurability of M . Then, let γ0,w (M) be the measure of non
convex total boundedness of M , we establish some inequalities between γ0,w (M) ,

λ0,w (M) and ω0,w (M) that give, as a special case, a Fréchet-Šmulian type convex
total boundedness criterion in the space L0. This generalizes previous results of
Trombetta [42]. Moreover, we extend our result to the space L0 that is a generaliza-
tion of the space L0 (see [7]).

Measures of noncompactness are very useful tools in various problems of func-
tional analysis and operator theory. They are very often used in the theory of func-
tional equations, including ordinary equations, equations with partial derivatives,
integral and integro-differential equation, in the optimal control theory, fixed point
theory, approximation theory and geometric theory of Banach space. There exist a
considerable literature devote to this subject (cf. [9], [8], [4], [2]). In several applica-
tions it is necessary to know the degree of noncompactness of a set of functions. For
this various authors introduced other quantitative characteristics (cf. [46],[32],[7])
and they compared such quantitative characteristics with the classical Hausdorff
or Kuratowski measures of noncompactness. By these comparisons they obtained
some inequalities, that give, as a special case the classical compactness criteria of
Arzelà-Ascoli, Fréchet-Šmulian and Vitali.
Assume that (G, ‖ · ‖G) = (E, ‖ · ‖E) is an F−normed space and let EΩ be the linear
space of all E−valued functions defined on Ω.
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INTRODUCTION

Motivated by the above considerations, in Chapter 3 we define a quantitative char-
acteristic, which measure the degree of nonequiabsolute continuity for subsets of
certain F -seminormed subspaces of EΩ.
We then compare the above quantitative characteristic with the Hausdorff noncom-
pactness measure and with the non convex total boundedness measure. By these
comparisons we establish some inequalities. In particular, as a special case of these
inequalities, we get sufficient conditions for the total boundedness of a set of func-
tions and for the convex total boundedness of a convex set of functions.
From our results we derive a Vitali-type compactness criterion and a convex to-
tal boundedness criterion in a particular class of F -seminormed subspaces of EΩ,

which contains the classical vector-valued Orlicz’s spaces.
Finally we point out that it is not so clear if the Schauder’s problem has been solved
in its generality. In particular, the proof given by Cauty in [10] contains some un-
solved gaps (see [11], [12],[13]). However, the results of this thesis are meant to be
independent from the Schauder’s problem.

Implicit function theorems are an important tool in nonlinear analysis. They
have significant applications in the theory of nonlinear integral equations. One of
the most important results is the classic Hildebrandt-Graves theorem. The main
assumption in all its formulations is some differentiability requirement. Applying
this theorem to various types of Hammerstein integral equations in Banach spaces,
it turned out that the hypothesis of existence and continuity of the derivative of the
operators related to the studied equation is too restrictive. In [48] it is introduced
an interesting linearization property for parameter dependent operators in Banach
spaces. Moreover, it is proved a generalization of the Hildebrandt-Graves theo-
rem which implies easily the second averaging theorem of Bogoljubov for ordinary
differential equations on the real line.

Let X = (X, ‖·‖X) and Y = (Y, ‖·‖Y ) be Banach spaces, Λ an open subset of
the real line R or of the complex plane C, A an open subset of the product space
Λ × X and L(X, Y ) the space of all continuous linear operators from X into Y .
An operator Φ : A −→ Y and an operator function L : Λ −→ L(X,Y ) are called
osculating at (λ0, x0) ∈ A if there exists a function σ : R2 → [0, +∞) such that

lim
(ρ, r)→(0,0)

σ(ρ, r) = 0

and
‖Φ(λ, x1)− Φ(λ, x2)− L(λ)(x1 − x2)‖Y ≤ σ(ρ, r) ‖x1 − x2‖X ,

when |λ− λ0| ≤ ρ and ‖x1 − x0‖X , ‖x2 − x0‖X ≤ r.
The notion of osculating operators has been considered from different points of
view (see [40], [41]).
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INTRODUCTION

In Capter 4 we prove an implicit function theorem in locally convex topological
linear spaces, where the classical conditions of differentiability, are replaced by the
above linearization property, suitably reformulated. Moreover, as an example of
application, we study the stability of the solutions of an Hammerstein equation
depending on a parameter.
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Chapter 1

Preliminary Topics

This chapter contains some basic concepts and background used throughout this
thesis. We first recall the definitions of pseudonormed group, F−seminormed
space, Riesz pseudonormed group and Riesz F−seminormed space. Then we re-
call the construction of the spaces L0 and the notions of Hausdorff noncompactness,
of non strongly convex and of non convex total boundedness measures. References
for this material are [1], [27], [34] for pseudonormed groups and for F−seminormed
spaces; [7], [46], [16], [5], [6] for the space L0; [9],[8], [4], [2] for the Hausdorff mea-
sure of noncompactness; [17] and [42], as well as papers [19], [47], [20] for the mea-
sures of non strongly convex and of non convex total boundedness.

1.1 Notations and definitions

Throughout this thesis we shall use the following notations. We will denote byN, R
and C the set of natural, real and complex numbers, respectively. Moreover Ω will
denote a non empty set and P(Ω) the power set of Ω. For two non empty sets A and
B we denote by BA the set of all maps from A to B.

Definition 1.1.1 Let G be a group. The map ‖·‖G : G −→ [0, +∞] is a group pseudonorm,
if

(1) ‖0‖G = 0,

(2) ‖ − f‖G = ‖f‖G,

(3) ‖f + g‖G ≤ ‖f‖G + ‖g‖G,

for all f, g ∈ G.

If ‖f‖G = 0 =⇒ x = 0 the group pseudonorms ‖ · ‖G is called a group norm.
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1.1. NOTATIONS AND DEFINITIONS

Let (G, ‖ · ‖G) be a pseudonormed group. For M ⊆ G. We denote by M
‖·‖G the

closure of M in (G, ‖ · ‖G). Further, we will use the notation

Br,f (G) := {g ∈ G : ‖f − g‖G ≤ r}

for the closed ball of center f and radius r > 0 in G.

In the case f = 0 we simple write Br,0(G) := Br(G).
Let X = X(+, ·) be a linear space and M be a subset of X. We denote by coM the
convex hull of M. Moreover, if (X(+), ‖ · ‖X) is a pseudonormed group, we call
coM‖·‖X := coM

‖·‖X the closed convex hull of M.

Definition 1.1.2 (cf. [27], p.38). Let X be a linear space. An F -seminorm on X is a map
‖ · ‖X : X −→ [0, +∞[, which has the following properties:

‖λf‖X ≤ ‖f‖X , ∀f ∈ X, ∀λ ∈ R with |λ| ≤ 1; (1.1.1)

lim
n→∞ ‖

1
n

f‖X = 0, ∀f ∈ X; (1.1.2)

‖f + g‖X ≤ ‖f‖X + ‖g‖X , ∀f, g ∈ X. (1.1.3)

Notice that 1.1.2 implies ‖0‖X = 0. If the converse,

‖f‖X = 0 =⇒ f = 0, (1.1.4)

also holds, then the F− seminorm ‖ · ‖X is called an F− norm.

Let G := (G, ‖ · ‖G) be a normed group and GΩ the group of all G−valued
functions on Ω.

For f ∈ GΩ we denote by ‖f‖G the function x → ‖f(x)‖G.

Definition 1.1.3 Let K be a subgroup of GΩ. A Riesz group pseudonorm on K is a map
‖ · ‖K : K −→ [0,+∞] such that:

(1) ‖0‖K = 0,

(2) ‖f + g‖K ≤ ‖f‖K + ‖g‖K ,

(3) ‖f‖G ≤ ‖g‖G =⇒ ‖f‖K ≤ ‖g‖K ,

for all f, g ∈ K.
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1.2. THE SPACE L0

We observe that ‖f‖K = ‖ − f‖K ∀f ∈ K it is a consequence of (3). Let (E, ‖ · ‖E)
be an F− normed space and EΩ the linear space of all E−valued functions on Ω.

Definition 1.1.4 Let L be a linear subspace of EΩ. A Riesz F−seminorm on L is a map
‖ · ‖L : L −→ [0, +∞[ such that:

lim
n→∞ ‖

1
n

f‖L = 0, ∀f ∈ L; (1.1.5)

‖f + g‖L ≤ ‖f‖L + ‖g‖L, ∀f, g ∈ L; (1.1.6)

‖f‖E ≤ ‖g‖E =⇒ ‖f‖L ≤ ‖g‖L, ∀f, g ∈ L. (1.1.7)

We note that, if λ ∈ [−1, 1] then for all f ∈ L

‖λf(x)‖E ≤ ‖f(x)‖E ∀x ∈ Ω.

Then by 1.1.7 follows that

‖λf‖L ≤ ‖f‖L ∀f ∈ L,∀λ ∈ Rwith |λ| ≤ 1. (1.1.8)

Definition 1.1.5 A subset M of a topological group X is said to be totally bounded if for
all neighborhood V of 0 there exist a finite number of elements f1, ..., fn from X such that
f1 + V, ..., fn + V cover M.

Definition 1.1.6 The map α : A −→ [0,+∞] is a submeasure if

(1) α(∅) = 0;

(2) A ⊆ B =⇒ α(A) ≤ α(B) ∀A,B ∈ A (monotonicity);

(3) α(A ∪B) ≤ α(A) + α(B) ∀A,B ∈ A (subadditivity).

1.2 The space L0

In this section we recall briefly the definition of the space L0.
Let (G, ‖ · ‖G) be a normed group and let η : P(Ω) −→ [0, +∞] be a submeasure.
In this general setting it is possible to give a natural generalization of the topology
of the convergence in measure using a pseudonorm. This topology is generated
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1.3. THE HAUSDORFF NONCOMPACTNESS MEASURE .THE
MEASURES OF NON CONVEX AND OF NON STRONGLY CONVEX

TOTAL BOUNDEDNESS

on the group GΩ of all G−valued functions on Ω by the Riesz group pseudonorm
‖ · ‖0 : GΩ −→ [0, +∞] defined by

‖f‖0 := inf{a > 0 : η(‖f‖G ≥ a) ≤ a}

where {‖f‖G ≥ a} := {x ∈ Ω : ‖f(x)‖G ≥ a}.
Let A be an algebra in the power set P(Ω) of Ω and

S := S(Ω,A, G) = span{yχA : y ∈ G and A ∈ A}

the corresponding group of all G−valued simple functions on Ω, where χA denotes
the characteristic function defined on Ω.

Then the closure L0 := L0(Ω,A, G, η) = S
‖·‖0 of S in (GΩ, ‖ · ‖0) is a subgroup of L0.

In a more special setting the functions of L0 are called measurable.
Let (G, ‖ · ‖G) := (E, ‖ · ‖E) be an F−normed space. Then S(Ω,A, E) is a linear sub-
space of EΩ and the restriction of ‖ ·‖0 on S(Ω,A, E) is a Riesz F−seminorm, hence
also the restriction of ‖ · ‖0 on L0(Ω,A, E, η) is a Riesz F−seminorm. Identification
of function f, g ∈ EΩ for which ‖f−g‖0 = 0 turns (L0, ‖·‖0) into a F -normed linear
space.
Let (E, ‖ · ‖E) := (G, ‖ · ‖G) be a Banach space, µ : A −→ R a finitely additive mea-
sure and η its total variation. Then the space L0(Ω,A, E, η) coincide with the space
of measurable functions introduced in [21].
Let Ω be a Lebesgue-measurable subset of Rn, A the σ−algebra of all Lebesgue-
measurable subsets of Ω and η�A the Lebesgue measure. If η(Ω) < +∞, then
L0(Ω,A,R, η) coincides with the space M(Ω) of all real valued measurable func-
tions defined on Ω. If η(Ω) = +∞, then L0(Ω,A,R, η) coincides with the space
T0(Ω) of all real valued totally measurable functions defined on Ω (see [21]).

1.3 The Hausdorff noncompactness measure .The measures
of non convex and of non strongly convex total bound-
edness

The first to consider a quantitative characteristic α(A) measuring the degree of non-
compactness of a subset M in a metric space was K. Kuratowski in 1930, in connec-
tion with certain problems of General Topology. G. Darbo [15] used this measure
to generalized Schauder’s fixed point theorem to a wide class of operators, called
k−set-contractive operators, which satisfy the condition α(T (A)) ≤ kα(A) for some
k ∈ [0, 1). Other measure of noncompactness have been defined since then. The
most important ones are the Hausdorff measure of noncompactness introduced by
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1.3. THE HAUSDORFF NONCOMPACTNESS MEASURE .THE
MEASURES OF NON CONVEX AND OF NON STRONGLY CONVEX

TOTAL BOUNDEDNESS

Gohberg, Gold́enshtein and Markus [24] and the separation measure of noncom-
pactness considered by Istrǎţescu [26], Sadovskiǐ [38] and other authors.
Let G be a group and ‖ · ‖G : G −→ [0, +∞] be a group pseudonorm.
Recall that, if M ⊆ G, the Hausdorff measure of noncompactness of M is defined
by:

γG(M) := inf{ε > 0 : There is a finite subset F of G such that M ⊆ F + Bε(G)}

A subset M of G is totally bounded if and only if γG(M) = 0.

Proposition 1.3.1 below summarizes some properties of γG.

Proposition 1.3.1 Let M,N ⊆ G.

(a) Regularity: γG(M) = 0 iff M is totally bounded;

(b) Monotonicity: M ⊆ N implies γG(M) ≤ γG(N);

(c) Nonsingularity:γG is equal to zero on every one-element set;

(d) Semi-additivity: γG(M ∪N) = max{γG(M), γG(N)};

(e) Invariance under translations: γG(x + M) = γG(M) for any x ∈ G.

We can also define the internal measure of noncompactness βG of M by

βG(M) := inf{ε > 0 : There is a finite subset F of M such that M ⊆ F + Bε(G)}

It is easy to prove that the following inequalities hold:

γG(M) ≤ βG(M) ≤ 2γG(M) (M ⊆ G)

Assume that G(+, ·) is a linear space and that (G(+), ‖ · ‖G) is a pseudonorm
group . Then we can define the measure of non convex total boundedness γG,w of a
subset M of G.

Definition 1.3.2 Let M ⊂ G.

γG,w(M) : = inf{ε > 0 : There is f1, ..., fn ∈ G and convex subsets

C1, ..., Cn of Bε(G) such that M ⊆
n⋃

i=1

(fi + Ci)}

A subset M of G is called convexly totally bounded if and only if γG,w(M) = 0.

9
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Analogously we can define the internal measures of non convex total bounded-
ness βG,w of M.

Definition 1.3.3 Let M ⊂ G.

βG,w(M) : = inf{ε > 0 : There is f1, ..., fn ∈ M and convex subsets

C1, ..., Cn of Bε(G) such that M ⊆
n⋃

i=1

(fi + Ci)}

Proposition 1.3.4 below summarizes some properties of the parameters just de-
fined.

Proposition 1.3.4 Let M,N ⊆ G.

(a) γG(M) ≤ γG,w(M);

(b) M is ctb iff γG,w(M) = 0

(c) If M ⊂ N, then γG,w(M) ≤ γG,w(N);

(d) γG,w(M) ≤ βG,w(M) ≤ 2γG,w(M);

(e) γG,w(M + N) ≤ γG,w(M) + γG,w(N)

10



Chapter 2

The Measure of Non Convex Total Boundedness
in the Space L0

In this chapter we deal with Problem 1 of the introduction in the space L0 :=
L0(Ω,A, E, η), where E is a normed space. To this end we introduce and study two
quantitative characteristics which measure the degree of nonconvex equal quasi-
boundedness and the degree of nonconvex equal measurability of a subset M of
L0. By the comparison of this with the measure of nonconvex total boundedness of
a subset M of L0 we obtain some inequalities, that give, as a special case, a Fréchet-
Šmulian type convex total boundedness criterion in the spaces L0. In the last section
we extend our results to the space L0 that is a generalization of the space L0.

2.1 Preliminaries

In this section we present some definitions and known results which will be needed
throughout this chapter. We set γL0 := γ0 and γL0,w := γ0,w. Let (G, ‖ · ‖G) be a
normed group and A1, ..., Am ∈ A be finite a partition of Ω. We set

S(A1, ..., Am) := {s ∈ S : s =
∑m

i=1 yiχAi , where yi ∈ G for i = 1, ...,m}.

In [46] the following two quantitative characteristic λ0 and ω0 are used to esti-
mate γ0 in L0(Ω,A, G, η):

λ0(M) : = inf{ε > 0 : there exists a finite subset F of G such that

M ⊆ (
FΩ ∩ S

)
+ Bε(L0)

}

and

ω0(M) := inf{ε > 0 : there exists a finite partition A1, ..., Am ∈ A of Ω such that

M ⊆ S(A1, ..., Am) + Bε(L0)}.

11



2.1. PRELIMINARIES

A subset M ⊆ L0 is called equally quasi-bounded iff λ0(M) = 0, and equally measur-
able iff ω0(M) = 0.
In [46, Theorem 2.2.2] is proved the following theorem

Theorem 2.1.1 Let M ⊆ L0. Then

max{λ0(M), ω0(M)} ≤ γ0(M) ≤ λ0(M) + 2ω0(M).

In particular M is ctb if and only if λ0(M) = ω0(M) = 0
Here we give a different prove of the above theorem with that assumption that
(G, ‖ · ‖G) = (E, ‖ · ‖E) is a normed space. For this we require the following lemma

Lemma 2.1.2 Let H ⊆ S(A1, ..., Am) with γ0(H) < +∞. Then

γ0(H) = λ0(H)

Proof. We prove that γ0(H) ≥ λ0(H).
Since ω0(H) = 0 and max{λ0(H), ω0(H)} ≤ γ0(H) it follows that

λ0(H) ≤ γ0(H)

We prove now that γ0(H) ≤ λ0(H)
Let α > λ0(H) then by definition of λ0 there exist F = {z1, ..., zn} ⊆ E such that

H ⊆ (FΩ ∩ S) + Bα(L0).

Let s ∈ H then s =
∑m

i=1 xiχAi with xi ∈ E for i = 1, ..,m.

Let ϕ ∈ (FΩ ∩ S) then ϕ =
∑k

j=1 zjχBj with zj ∈ F, j ≤ m

Since H ⊆ (FΩ ∩ S) + Bα(L0) it follows that ∀s ∈ H ∃ϕ ∈ (FΩ ∩ S) and ∃bα ∈
Bα(L0) such that s− ϕ = bα ⇒ ‖s− ϕ‖0 ≤ α.

For all s ∈ H we define the function

ϕ̄s =
m∑

i=1

z̄iχAi

where z̄i ∈ {zj : Bj ∩Ai 6= ∅} is such that ‖xi − zj‖E = min.

We have that ‖s− ϕ̄s‖0 ≤ ‖s− ϕs‖0 ≤ α.

Let K := {ϕ̄s : s ∈ H} then K is a finite subset of S and

H ⊆ K + Bα(L0).

This prove that γ0(H) ≤ λ0(H). ¤
Now we are in position to prove the theorem 2.1.1

12



2.1. PRELIMINARIES

Proof.
We prove the left inequality. It is trivially if γ0(M) = +∞.

Assume that γ0(M) < α < +∞.

By definition of γ0 there are function s1, ..., sn ∈ S such that

M ⊆
n⋃

i=1

si + Bα(L0).

Put F :=
⋃n

i=1 si(Ω) and A1, ..., Am ∈ A be a partition of Ω such that si|Aj is constant
for i = 1, ..., n and j = i, ...,m.

Then

M ⊆ (FΩ ∩ S(A1, ..., Am)) + Bα(L0) and M ⊆ S(A1, ..., Am) + Bα(L0).

Therefore max{λ0(M), ω0(M)} ≤ γ0(M).
We now prove the right inequality. Clearly, it is true if λ0(M) = +∞ or ω0(M) =
+∞.

Assume that λ0(M) < α < +∞ and ω0(M) < β < +∞.

By definition of λ0 there are a finite subset F of E such that

M ⊆ (FΩ ∩ S) + Bα(L0).

By definition of ω0 there is a partition A1, ..., Am ∈ A of Ω such that

M ⊆ S(A1, ..., Am) + Bβ(L0).

Set
H := (M −Bβ) ∩ S(A1, ..., Am).

Then M ⊆ H + Bβ(L0) and therefore γ0(M) ≤ γ0(H) + β. By Lemma 2.1.2 γ0(H) =
λ0(H) therefore γ0(M) ≤ λ0(H) + β ≤ λ0(M) + β + β ≤ α + 2β.

So
γ0(M) ≤ λ0(M) + 2ω0(M).

¤
In particular, M is totally bounded iff λ0(M) = ω0(M) = 0.

Moreover, in [7] it is defined the following quantitative characteristic σ(M) which
is useful for the calculation of λ0(M):

σ (M) := {ε > 0 : there exists a finite subset F of E such that for all f ∈ M

there is Df ⊆ Ω with η (Df ) ≤ ε and f (Ω\Df ) ⊆ F + Bε(E)}.

The following result was established in [7, Proposition 2.1].
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2.2. THE NON CONVEX TOTAL BOUNDEDNESS IN THE SPACE L0

Proposition 2.1.3 Let M ⊆ L0. Then

λ0(M) = σ(M)

.

We list below some properties, to be used later, of the quantitative characteristics γ0

and γ0,w.

Proposition 2.1.4 Let M,N ⊆ L0. Then

a. γ0(M) ≤ γ0,w(M);

b. if M ⊆ N , then γ0(M) ≤ γ0(N) and γ0,w(M) ≤ γ0,w(N);

c. γ0(M∪N) = max{γ0(M), γ0(N)} and γ0,w(M∪N) = max{γ0,w(M), γ0,w(N)};

d. γ0(M + N) ≤ γ0(M) + γ0(N) and γ0,w(M + N) ≤ γ0,w(M) + γ0,w(N).

Proposition 2.1.5 Let M,N ⊆ L0. Then

γ0,w (M) = inf{ε > 0 : there exist functions s1, ..., sn ∈ S and convex subsets

C1, ..., Cn of Bε(L0) such that M ⊆
n⋃

i=1
(si + Ci)}.

Proof. Set a := inf{ε > 0 : there are s1, ..., sn ∈ S and convex sets C1, ..., Cn of Bε(L0)

such that M ⊆
n⋃

i=1
(si + Ci)}. Obviously γ0,w(M) ≤ a. Clearly γ0,w(M) = +∞ im-

plies a = +∞. Assume that γ0,w(M) < α < +∞. Then there exist f1, ..., fn ∈ L0

and convex subsets C1, ..., Cn of Bα(L0) such that M ⊆
n⋃

i=1
(fi + Ci)}. Let δ > 0, we

choose si ∈ S such that ‖fi− si‖ ≤ δ
n for i ≤ n. Then Cδ := co{0, f1− s1, ..., fn− sn}

is a convex subset of Bδ(L0) and M ⊆
n⋃

i=1
(si + Ci + Cδ)}. Therefore a ≤ α + δ. So

a ≤ γ0,w(M). ¤

2.2 The non convex total boundedness in the space L0

Definition 2.2.1 Let M ⊂ L0. We define:

λ0,w (M) : = inf{ε > 0 : there exist a finite subset F of E and convex subsets

C1, ..., Cn of Bε(L0) such that M ⊆ (FΩ ∩ S) +
n⋃

i=1
Ci

}

14



2.2. THE NON CONVEX TOTAL BOUNDEDNESS IN THE SPACE L0

and

ω0,w (M) : = inf{ε > 0 : there exists a partition A1, ..., Am ∈ A of Ω and convex

subsets C1, ..., Cn of Bε(L0) such that M ⊆ S(A1, ..., Am) +
n⋃

i=1
Ci}.

We call M convexly equally quasi-bounded if λ0,w (M) = 0 and convexly equally
measurable if ω0,w (M) = 0.

We observe that if E = R, then the quantitative characteristics λ0,w and ω0,w

coincide with those introduced in [42].
Proposition 2.2.2 below summarizes some properties of the quantitative charac-

teristics just defined that follows immediately by the definitions.

Proposition 2.2.2 Let M, N ⊆ L0.

a. λ0(M) ≤ λ0,w(M) and ω0(M) ≤ ω0,w(M);

b. if M ⊆ N then λ0,w(M) ≤ λ0,w(N) and ω0,w(M) ≤ ω0,w(N);

c. λ0,w(M∪N) = max{λ0,w(M), λ0,w(N)} and ω0,w(M∪N) = max{ω0,w(M), ω0,w(N)};

d. λ0,w(M + N) ≤ λ0,w(M) + λ0,w(N) and ω0,w(M + N) ≤ ω0,w(M) + ω0,w(N).

The following lemma is crucial in the proof of Theorem 2.2.4.

Lemma 2.2.3 Let A1, ..., An ∈ A be a partition of Ω and H ⊆ S(A1, ..., An). Then

γ0(H) = γ0,w(H)

.

Proof. By proposition 2.1.4 (a) , γ0(H) ≤ γ0,w(H). Since ω0(H) = 0, it follows by
theorem 2.1.1 and proposition 2.1.3 that γ0(H) = σ(H). Then it is sufficient to show
that γ0,w(H) ≤ σ(H). Observe that the last inequality is trivial if σ(H) = η(Ω).
Hence we can assume that σ(H) < η(Ω). Let α ∈ ]σ(H), η(Ω)[. By the definition of
σ we can find a finite set F = {0, z1, ..., zp} ⊆ E and sets D0 =: ∅, D1, ..., Dr ⊆ Ω,

with η(Dj) ≤ α and Dj =
⋃k

l=1 Aj
il

for j = 1, ..., r, where
{

Aj
i1

, ..., Aj
ik

}
is a proper

subfamily of the partition A1, ..., An, such that for all s ∈ H there is j ∈ {0, 1, ..., r}
with s(Ω \Dj) ⊆ F + Bα(E). Put

{
Aj

ik+1
, ..., Aj

in

}
=: {A1, ..., An} \

{
Aj

i1
, ..., Aj

ik

}

for j = 1, ..., r. We define

C0
α := {s ∈ S(A1, ..., An) : s(Ω) ⊆ Bα(E)}

15



2.2. THE NON CONVEX TOTAL BOUNDEDNESS IN THE SPACE L0

and
Cj

α := {s ∈ S(A1, ..., An) : s(Aj
ik+1

∪ ... ∪Aj
in

) ⊆ Bα(E)}.
Then it is easy to check that Cj

α (j = 0, 1, ..., r) are convex subsets of Bα(L0).
Set H0 := {s ∈ H : s (Ω) ⊆ F + Bα(E)} and Hj := {s ∈ H : s (Ω\Dj) ⊆ F + Bα(E)}

for j = 0, 1, ..., r. We will prove that if Hj 6= ∅ then

Hj ⊆
[
FΩ ∩ S(A1, ..., An)

]
+ Cj

α for j = 0, 1, ..., r.

Hence

H =
r⋃

j=0

Hj ⊆
[
FΩ ∩ S(A1, ..., An)

]
+

r⋃

j=0

Cj
α.

It follows that γ0,w(H) ≤ α, and therefore γ0,w(H) ≤ γ0(H).
Let s =

∑n
i=1 yiχAi ∈ H . If s ∈ H0, we have that

s(Ω) =
n⋃

i=1

yi ⊆ F + Bα(E).

Hence for all i ∈ {1, ..., n} there is zi ∈ {0, z1, ..., zp} such that yi− zi ∈ Bα(E). Then
s = ϕ + h, where

ϕ :=
n∑

i=1

ziχAi ,

and

h :=
n∑

i=1

xiχAi +
n∑

i=1

(yi − zi)χAi .

Therefore s = ϕ + h ∈ [
FΩ ∩ S(A1, ..., An)

]
+ C0

α.
Suppose s ∈ H\H0. Then there is j ∈ {1, ..., r} such that s ∈ Hj , so

s(Aik+1
∪ ... ∪Ain) =

n⋃

l=k+1

yil ⊆ F + Bα(E).

Hence for all l ∈ {k + 1, ..., n} there is zil ∈ {0, z1, ..., zp} such that yil − zil ∈ Bα(E).
Then s = ϕ + h, where

ϕ :=
n∑

l=k+1

zilχAil
,

and

h :=
k∑

l=1

xilχAil
+

n∑

l=k+1

(yil − zil)χAil
.

Therefore s = ϕ + h ∈ [
FΩ ∩ S(A1, ..., An)

]
+ Cj

α.
We are now in a position to prove the main result of this chapter.
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2.2. THE NON CONVEX TOTAL BOUNDEDNESS IN THE SPACE L0

Theorem 2.2.4 Let M ⊆ L0. Then

max{λ0,w(M), ω0,w(M)} ≤ γ0,w(M) ≤ λ0,w(M) + 2ω0,w(M).

Proof. We first prove the left inequality which is trivial if γ0,w(M) = +∞. Assume
that γ0,w(M) < α < +∞. By proposition 2.1.5 there are functions s1, ..., sn ∈ S and
convex sets C1, ..., Cn in Bα(L0) such that

M ⊆
n⋃

i=1

(si + Ci).

Put F :=
⋃n

i=1 si(Ω) and let {A1, ..., Am} ⊆ A be a partition of Ω such that si|Aj is
constant for i = 1, ..., n and j = i, ..., m.Then

M ⊆ (FΩ ∩ S(A1, ..., Am)) +
n⋃

i=1

Ci,

and

M ⊆ S(A1, ..., Am) +
n⋃

i=1

Ci.

Therefore
max{λ0,w(M), ω0,w(M)} ≤ γ0,w(M) (∗) .

We now prove the right inequality. Clearly, it is true if λ0,w(M) = +∞ or ω0,w(M) =
+∞. Assume that λ0,w(M) < α < +∞ and ω0,w(M) < β < +∞. By the definition
of λ0,w there are a finite subset F of E and convex sets C1, ..., Cn in Bα(L0) such that

M ⊆ (FΩ ∩ S) +
n⋃

i=1

Ci.

Moreover, we can find a partition {A1, ..., Am} ⊆ A of Ω and a convex sets K1, ..., Km

of Bβ(L0) such that

M ⊆ S(A1, ..., Am) +
m⋃

j=1

Kj .

Set

H := (M −
m⋃

j=1

Kj) ∩ S(A1, ..., Am),

we have λ0,w(H) ≤ λ0,w(M) + β.
Finally, we prove that

λ0,w(H) = γ0,w(H).
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2.2. THE NON CONVEX TOTAL BOUNDEDNESS IN THE SPACE L0

Of course ω0(H) = 0. So by the above inequality (∗), it follows that λ0,w(H) ≤
γ0,w(H). Therefore

λ0,w(H) ≤ γ0,w(H) = γ0(H) = λ0(H) ≤ λ0,w(H),

which implies λ0,w(H) = γ0,w(H). By the definition of H it follows that

M ⊆ H +
m⋃

j=1

Kj .

Hence

γ0,w(M) ≤ γ0,w(H) + β = λ0,w(H) + β ≤ λ0,w(M) + β + β

≤ α + 2β,

and
γ0,w(M) ≤ λ0,w(M) + 2ω0,w(M).

The proof is complete.
As a corollary of Theorem 2.2.4 we obtain the following Fréchet-Šmulian type

criterion of convex total boundedness.

Corollary 2.2.5 A subset M of L0 is ctb if and only if λ0,w(M) = ω0,w(M) = 0.

Corollary 2.2.6 Let M ⊆ L0. Then

max{λ0,w(M), ω0,w(M)} ≤ λ0,w(
−
M) + 2ω0,w(

−
M)

≤ λ0,w(M) + 2ω0,w(M).

In particular, λ0,w(M) = λ0,w(
−
M) and ω0,w(M) = ω0,w(

−
M) if M is ctb.

Proposition 2.2.7 Let M be subset of L0 and suppose that λ0(M) = 0.Then γ0,w(M) ≤
2ω0,w(M) and λ0,w(M) ≤ 2ω0,w(M).

Proof. Let α > ω0,w(M). Then there are a partition A1, ..., An ∈ A and convex sets

C1, ..., Cn of Bα(L0) such that M ⊆ S(A1, ..., An) +
m⋃

j=1
Cj .

Set H :=

(
M −

m⋃
j=1

Cj

)
∩ S(A1, ..., An). Then M ⊆ H +

m⋃
j=1

Cj and therefore

γ0,w(M) ≤ γ0,w(H) + α.

We now prove that γ0,w(H) ≤ α. By 2.1.1 and 2.2.3 we have that γ0,w(H) = γ0(H) =

λ0(H). Hence, since H ⊆ M −
m⋃

j=1
Cj and λ0(M) = 0 we have that λ0(H) ≤ α. So

that γ0,w(M) ≤ 2α and γ0,w(M) ≤ 2ω0,w(M).
By theorem 2.2.4 it follows then λ0,w(M) ≤ 2ω0,w(M). ¤
Therefore we have that M is ctb iff λ0(M) = ω0,w(M) = 0.
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2.3. THE NON CONVEX TOTAL BOUNDEDNESS IN THE SPACE L0.

2.3 The non convex total boundedness in the space L0.

Let (E, σ) be a Hausdorff locally convex linear space and τ a Frèchet-Nicodym
topology on P (Ω) [14]. Moreover, let {‖ · ‖i, i ∈ I} be a defining family of semi-
norms for the topology σ and {ηj , j ∈ J} a family of submeasures which generates
τ (see[31, Theorem 15, p. 188] and [14, Theorem 2.7] ) .
For (i, j) ∈ I × J, let EΩ

i,j :=
(
EΩ, ‖·‖i,j

)
where for

f ∈ EΩ,

‖f‖i,j := inf{a > 0 : ηj({x ∈ Ω : ‖f(x)‖i ≥ a}) ≤ a}.

Let τ0 be the topology generated by the family of group seminors {‖ · ‖i,j :
(i, j) ∈ I × J}. Moreover, let A ⊆ P (Ω) be an algebra and S := S(A, Ω, E) the
space of all E−valued A−simple functions of EΩ. We denote by A0 (the space of
measurable functions) the closure of S in (EΩ, τ0), by Li,j the closure of S in (EΩ, ‖ ·
‖i,j). Obviously, we have L0 ⊆ Li,j for all (i, j) ∈ I × J, because the topology τi,j

generated by ‖ · ‖i,j is less fine then τ0. We denote by λi,j
w and ωi,j

w the quantitative
characteristics ( constructed by means of ‖·‖i,j ) corresponding to λ0,w and ω0,w .
For M ⊆ L0 we denote γi,j

w (M) the measure of nonconvex total boundedness of M

with respect to ‖ · ‖i,j , and we define γw(M), λw (M) and ωw (M) as functions from
I × J to [0,∞] by

γw(M) (i, j) := γi,j
w (M),

λw(M) (i, j) := λi,j
w (M) ,

ωw(M) (i, j) := ωi,j
w (M) .

We consider the natural partial ordering in the set of all functions from I × J to
[0,∞], i.e. h1 ≤ h2 if and only if h1 (i, j) ≤ h2 (i, j) ,∀ (i, j) ∈ I × J . Since L0 is
dense in (Li,j , ‖·‖i,j), the measure of nonconvex total boundedness of a set M in L0

calculated in (Li,j , ‖·‖i,j) coincides with γi,j
w (M) calculated in (L0, ‖·‖i,j). Therefore

by Theorem 2.2.4 we get the following inequalities.

Theorem 2.3.1 Let M ⊆ L0. Then

max{λw(M), ωw(M)} ≤ γw(M) ≤ λw(M) + 2ωw(M).

2.4 Open Problem

In [17] has been introduced the notion of strongly convex total boundedness - a
somewhat stronger condition than convex total boundedness - and a quantitative
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characteristic, which measures the degree of nonstrongly convex total bounded-
ness. This notion and this quantitative characteristic are - in contrast to convex
total boundedness - invariant when one passes to the convex hull of a set. That
admits the formulation of a fixed point theorem of Darbo type [15] in nonlocally
convex linear spaces. The notion of strongly convexly totally bounded sets and the
corresponding noncompactness measure is the main tool in [19] to get a Fan’s best
approximation result in nonlocally convex linear spaces. In [47] strongly convex to-
tal boundedness is linked with affine embeddability in locally convex linear spaces.
The measure of nonstrongly convex total boundedness for a set M in L0(Ω,A, E, η)
is defined by

γ0,s(M) : = inf{ε > 0 : There is a finite subset F ⊂ L0(Ω,A, E, η) and a convex

subset C of Bε(L0(Ω,A, E, η)) such that M ⊆ F + C}

A set M is called strongly convexly totally bounded (sctb for short) if γ0,s(M) = 0.
Sufficient condition for the strongly convex total boundedness of a set in L0(Ω,A,R, η),
where η : Ω → [0, +∞[, was given in [17]. In [42] the following two quantitative
characteristics λs and ωs are used to estimate the nonstrongly convex total bound-
edness measure in L0(Ω,A,R, η) :

λs(M) : = inf{ε > 0 : There is an a ∈ [0, +∞) and a convex

subset C of Bε(L0(Ω,A,R, η)) such that M ⊆ [−a, a] + C}

ωs(M) : = inf{ε > 0 : There is a partition A1, ..., An ∈ A of Ω and a convex

subset C of Bε(L0(Ω,A,R, η)) such that M ⊆ S(A1, ..., An) + C}

Theorem 2.4.1 [42, theorem 4.6]. Let M ⊆ L0(Ω,A,R, η). Then

max{λs(M), ωs(M)} ≤ γ0,s(M) ≤ λs(M) + 2ωs(M).

In particular, M is sctb if and only if λs(M) = ωs(M) = 0
To estimate the measure of nonstrongly convex total boundedness in the space

L0(Ω,A, E, η) it seems natural to introduce two quantitative characteristics λ0,s and
ω0,s which are the natural generalizations of λs and ωs.

Definition 2.4.2 Let M ⊂ L0(Ω,A, E, η). We define:

λ0,s (M) : = inf{ε > 0 : there exist a finite subset F of E and a convex subset

C of Bε(L0(Ω,A, E, η)) such that M ⊆ (FΩ ∩ S) + C
}

20



2.4. OPEN PROBLEM

and

ω0,s (M) : = inf{ε > 0 : there exists a partition A1, ..., Am ∈ A of Ω and a convex

subset C of Bε(L0(Ω,A, E, η)) such that M ⊆ S(A1, ..., Am) + C}.

In particular, we call M strongly convexly equally quasi-bounded if λ0,s(M) = 0
and strongly convexly equally measurable if ω0,s(M) = 0

As in the proof of Theorem 2.2.4 it is easy to obtain the following inequality for
a subset M of L0(Ω,A, E, η) :

max{λ0,s(M), ω0,s(M)} ≤ γ0,s(M).

Moreover let A1, ..., An ∈ A be a partition of Ω and H ⊆ S(A1, ..., An) if

γ0,w(H) = γ0,s(H)

holds, with a proof similar to the one of Theorem 2.2.4 we obtain that

γ0,s(M) ≤ λ0,s(M) + 2ω0,s(M).

Therefore the following characterization of the strongly convex totally bounded
subsets of L0(Ω,A, E, η) :

M is sctb if and only if λ0,s(M) = ω0,s(M) = 0
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Chapter 3

Total and Convex Total Boundedness in F−
seminormed spaces

Let (E, ‖ · ‖E) be an F−normed space. In this chapter our purpose is to study the
Problem 2 of the introduction in a class of F−seminormed subspaces of the linear
space EΩ, which contains a large class of Riesz F−seminormed linear spaces.

3.1 The spaces L

Let (E, ‖ · ‖E) be an F−normed space, A an algebra in P(Ω), η : A −→ [0, +∞] a
submeasure and η0 : P(Ω) −→ [0, +∞] the submeasure defined by

η0(B) := inf{η(A) : B ⊂ A and A ∈ A}.

Set A0 := inf{A ∈ A : η0(A) < +∞}.
We will denote by

S0(A, E) := span{yχA : y ∈ E and A ∈ A0}

and by

A0,L := {A ∈ A0 : there exists y ∈ E \ {0} such that yχA ∈ L},
which is an ideal of A0.

Moreover for all f ∈ EΩ we denote by

‖f‖0 := inf{a > 0 : η0(‖f‖E ≥ a) ≤ a}

Throughout this chapter L := (L, ‖ · ‖L) stands for an F -seminormed subspace of
the linear space EΩ) with the following properties:
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3.2. THE HAUSDORFF MEASURE OF NON COMPACTNESS AND THE
MEASURE OF NON EQUIABSOLUTE CONTINUITY

(a) χAf ∈ L for all A ∈ A and for all f ∈ L;

(b) S0 ∩ L is dense in (L, ‖ · ‖L);

(c) if A ∈ A0, then lim
η(B)→0

A⊇B∈A
‖χBf‖L = 0 for all f ∈ L.

(d) there is k > 0 such that ‖f‖E ≤ ‖g‖E implies ‖f‖L ≤ k‖g‖L for all f, g ∈ L

Clearly, if the above condition is satisfies for k = 1, L is a Riesz F -seminormed
space.

3.2 The Hausdorff measure of non compactness and the mea-
sure of non equiabsolute continuity

We start to introduce a quantitative characteristic which measure the degree of non
equiabsolute continuity of a subset of the space L.

Definition 3.2.1 Let M ⊆ L. We define for A ∈ A0,L and δ > 0 :

ΠL (M,A, δ) := max





sup
f∈M

∥∥χΩ\Af
∥∥

L
, sup
f∈M

sup
A⊇B∈U
η(B)≤δ

‖χBf‖L





,

ΠL (M, A) := lim
δ→0

ΠL (M, A, δ) ,

ΠL (M) := inf
A∈A0,L

ΠL (M,A) .

A subset M of L is called ‖·‖L−equiabsolutely continuous (‖·‖L − eac for short)
if ΠL (M) = 0.

The space L is called regular if each singleton M = {f} with f ∈ L is ‖ · ‖L−eac.

Remark 3.2.2 Let Ω be a subset of Rn with finite Lebesgue measure, A the σ− algebra of
all Lebesgue measurable subsets of Ω and µ : A → [0, +∞[ the Lebesgue measure. For
p ∈ [1,+∞[, let L := Lp(Ω,A,R, µ) be the classical Lebesgue space. Then, in this setting,
the set function ΠL coincides with the parameter Πp introduced by Appell and De Pascale
in[[3],Definition 3.1, p.509].

Proposition 3.2.3 The space L is a regular space.
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MEASURE OF NON EQUIABSOLUTE CONTINUITY

Proof. Let f ∈ L and ε > 0. By (b) we can choose s ∈ S ∩ L such that ‖f − s‖L ≤
ε/k. Set As := supp(s) := {x ∈ Ω : s(x) 6= 0}. Then As ∈ A0,L and ‖χΩ\As

f‖L =
‖χΩ\As

(f − s)‖L ≤ k‖f − s‖L ≤ ε. Hence inf
A∈A0,L

‖χΩ\Af‖X = 0. On the other hand,

for all A ∈ A0,L by (c) we have ΠL({f} , A) := lim
δ→0

ΠL({f} , A, δ) = ‖χΩ\Af‖L. Then

ΠL({f}) = 0 . ¤

Theorem 3.2.4 Let M ⊆ L. Then

ΠL(M) ≤ kγL(M).

Proof. Let α > γL(M). By (a) there are s1, ..., sn ∈ S0 ∩L such that M ⊆ ⋃
i=1,...,n

(si +

Bα(L)). Set Ai := supp(si) for i = 1, ..., n. We have Ai ∈ A0,L for i = 1, ..., n

and therefore A :=
⋃

i=1,...,n
Ai ∈ A0,L. Let f ∈ M . Choose i ∈ {1, ..., n} such that

‖f − si‖L ≤ α. Then

‖χΩ\Af‖L ≤ ‖χΩ\A(f − si)‖L + ‖χΩ\Asi‖L ≤ k‖f − si‖L ≤ kα. (3.2.1)

Moreover, let δ > 0. For B ⊆ A,B ∈ A and η(B) ≤ δ, we have

‖χBf‖L ≤ ‖χB(f − si)‖L + ‖χBsi‖L ≤ k‖f − si‖L + ‖χBsi‖L

≤ kα + max
j=1,...,n

ΠL({sj} , A, δ)
(3.2.2)

By (3.2.1) and (3.2.2) and Proposition 3.2.3, it follows that

ΠL(M) ≤ kα + max
j=1,...,n

ΠX({sj}) = kα,

and therefore ΠL(M) ≤ kγL(M). ¤
The following example shows that the hypothesis (d) on the space in the above
theorem cannot be cancelled.

Example 3.2.5 Let L := L1 [0, 1, ] ⊆ R[0,1] be the space of all real Lebesgue-integrable
functions defined on the interval [0, 1]. Then ‖f‖L :=

∣∣ ∫
[0,1,]

f
∣∣ is a seminorm on L1

which does not satisfy condition (d). In fact if we consider the subset M = {fn =
(n + 1/n) χ[0,1/n] : n ∈ N} of L, then γL(M) = 0 and ΠL(M) = 1.

Theorem 3.2.6 Let M ⊆ L and A ∈ A0,L. Suppose β0(χAM) < c := supy∈E ‖y‖E and
let β0(χAM) < δ < c. Then

γL(M) ≤ 3ΠL(M,A, δ) + k ‖y0χA‖L, (3.2.3)

where y0 ∈ E and ‖y0‖E = β0(χAM).
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Proof. Let M ⊆ L and A ∈ A0,L. Then there are functions f1, ..., fn ∈ M such that

χAM ⊆ n∪
i=1

(χAfi + B0,δ).

Fix f ∈ M and let i ∈ {1, ..., n } such that ‖χA(f − fi)‖0 < δ. Set Df :={‖χA(f −
fi)‖E > δ}, then Df ⊆ A and η(Df ) < δ. Hence, by definition of η0 there exists
Cf ∈ A such that Df ⊆ Cf and η(Cf ) ≤ δ. Then Bf := A ∩ Cf ⊆ A, η(Bf ) ≤ δ

and χBf
χAfi = χBf

fi. Set a := ΠL(M, A, δ). By definition of ΠL(M,A, δ) it follows
‖χΩ\Af‖L ≤ a, ‖χBff‖L ≤ a and ‖χBf

χAfi‖L = ‖χBf
fj‖L ≤ a. Therefore

‖f − χAfi‖L ≤ ‖χΩ\Af‖L + ‖χA(f − fi)‖L

≤ ‖χΩ\Af‖L + ‖χA\Bf
(f − fi)‖L + ‖χBf

f‖L + ‖χBf
fi‖L

≤ 3ΠL(M,A, δ) + ‖χA\Bf
(f − fi)‖L.

Let y ∈ E such that ‖y‖E > δ. Then the function t → ‖ty‖E (t ∈ [0, 1]) is continuous
and lim

t→0
‖ty‖E = 0. Hence there are t0 and tδ ∈ [0, 1] such that ‖t0y‖E = β0(χAM)

and ‖tδy‖E = δ. We set y0 := t0y and yδ := tδy, then y0, yδ ∈ E. Since A ∈ A0,L, the
simple function χAyδ ∈ L. For each f ∈ M we have

‖χA\Bf
(f − fi)(x)‖E ≤ δ = ‖yδ‖E = ‖yδχA(x)‖E for all x ∈ A.

Hence ‖χA\Bf
(f − fi)‖E ≤ ‖yδχA‖E , so that

‖χA\Bf
(f − fi)‖L ≤ k ‖yδχA‖L.

Therefore
γL(M) ≤ 3ΠL(M, A, δ) + k ‖yδχA‖L,

Since lim
tδ→t0

‖tδy‖E = ‖t0y‖E , by the continuity of ‖ · ‖L it follows that

γL(M) ≤ 3ΠL(M,A, δ) + k ‖y0χA‖L.

¤
In the case in which the space L is endowed with a q-norm ‖ · ‖L (for 0 < q ≤ 1),

i.e., ‖αf‖L = |α|q‖f‖L, then (3.2.3) assumes the following simpler form

γL(M) ≤ 3ΠL(M,A, δ) + k β0(χAM)q‖y0χA‖L.

Remark 3.2.7 If c < ∞ then the case β0(χAM) = c can be considered.
Then we have

γL(M) ≤ ΠL(M,A, β0(χAM)) + k sup
f∈M

‖χAf‖L

and
γL(M) ≤ ΠL(M,A, β0(χAM)) + k ‖y0χA‖L

if β0(χAM) = ‖y0‖ for ‖y0‖ ∈ E.
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3.3. THE MEASURE OF NON CONVEX TOTAL BOUNDEDENESS AND
THE MEASURE OF NON EQUIABSOLUTE CONTINUITY

As corollary of the theorem 3.2.6 we obtain a sufficient condition for the total
boundedness of a subset of the space L.

Corollary 3.2.8 Let M be an ‖ · ‖L-eac subset of X and suppose that χAM is totally
bounded in (EΩ, ‖ · ‖0) for all A ∈ A0,L. Then M is totally bounded in (L, ‖ · ‖L).

Proposition 3.2.9 Let M be a totally bounded subset of L. Assume that given a sequence

{fn} in L, then fn
‖·‖L−→ 0 implies χAfn

‖·‖0−→ 0 for all A ∈ A0,L. Then χAM is totally
bounded in (EΩ, ‖ · ‖0) for all A ∈ A0,L.

Proof. Let M be a totally bounded subset of (L, ‖ · ‖L) and let A ∈ A0,L. We prove
first the following statement:

for all ε > 0 there exists δ > 0 such that χABδ(L) ⊂ Bε(EΩ) (∗)

Indeed, fixed ε > 0, we can choose k ∈ N such that 1
k ≤ ε. Suppose that for all

n ≥ k we have χAB 1
n
(L) * Bε(EΩ) and choose fn ∈

(
χAB 1

n
(L) \Bε(EΩ)

)
. Thus

we have fn
‖·‖L−→ 0, and therefore,χAfn = fn

‖·‖0−→ 0, a contradiction.
Fix now ε > 0. By (*) there exist δ > 0 such that χABδ(L) ⊂ Bε(EΩ). Since M

is totally bounded in (L, ‖ · ‖L), there exist a finite subset F of L such that M ⊂
F + Bδ(L). Hence χAM ⊂ χAF + χABδ(L) ⊂ χAF + Bε(EΩ), and therefore χAM is
totally bounded in (EΩ, ‖ · ‖0). ¤

Combining Theorem 3.2.6 and Proposition3.2.9, we obtain the following Vitali-
type total boundedness criterion

Theorem 3.2.10 Assume that given a sequence {fn} in L, then ‖fn‖L → 0 implies
‖χAfn‖0 → 0 for all A ∈ A0,L. Then a subset M of L is totally bounded in (L, ‖ · ‖L) iff
it is ‖ · ‖L-eac in L and χAM is totally bounded in (EΩ, ‖ · ‖0) for all A ∈ A0,L.

3.3 The measure of non convex total boundedeness and the
measure of non equiabsolute continuity

The next theorem shows the relationship between the measure of non equiabsolute
continuity and the measure of non convex total boundedness.

Theorem 3.3.1 Let M ⊂ L.

(a) ΠL(M) ≤ γw,L(M);
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(b) Suppose that M is convex. Let A ∈ A0,L and δ > β0,w(χAM). Then

γL,w(M) ≤ 3ΠL(M, A, δ) + k ‖y0χA‖L, (3.3.1)

where y0 ∈ E and ‖y0‖E = β0,w(χAM) .

Proof. (a) follows immedialely from Theorem 3.2.4 and Proposition 1.3.4 (a).
(b) Let δ > β0,w(χAM). Then there are functions f1, ..., fn ∈ M and convex sets

C1, ..., Cn of Bδ(EΩ) such that χAM ⊂
n⋃

i=1
(fiχA +CiχA). Since M ⊂ χAM +χΩ\AM,

by properties (c) and (e) of Proposition 1.3.4, it is sufficient to show that

γw,L(χAM) + γw,L(χΩ\AM) ≤ k ‖y0χA‖L + 3ΠL(M,A, δ). (3.3.2)

Put a := 3ΠL(M,A, δ). Then ‖χΩ\Af‖L ≤ a and ‖χBf‖L ≤ a for all B ∈ A, with
B ⊂ A and η(B) < δ, and for all f ∈ M. Since M is convex, Ki := [χAM ∩ (fiχA +

CiχA)] − fiχA (i = 1, ..., n) is convex. Clearly χAM ⊂
n⋃

i=1
(fiχA + Ki). Moreover,

if we fix i and g ∈ Ki then g = fχA − fiχA and as in the proof of theorem 3.2.6, it
follows that ‖χA(f − fi)‖L ≤ ‖yδχA|L + 2a and so

γw,L(χAM) ≤ 2a + k ‖y0χA‖L. (3.3.3)

By the convexity of M we have that χΩ\AM is convex. Hence, since

‖χΩ\AM‖L ≤ a for all f ∈ M, γw,L(χΩ\AM) ≤ a. (3.3.4)

Finally 3.3.2 follows immediately from 3.3.3 and 3.3.4. ¤
The following corollary of Theorem 3.3.1 (b) gives a sufficient condition for the

convex total boundedness of a convex set of L.

Corollary 3.3.2 Let M be a convex subsets of L. If M is ‖ · ‖L−eac and χAM ctb in
(EΩ, ‖ · ‖0) for all A ∈ A0,L, then M is ctb in (L, ‖ · ‖L).

Remark 3.3.3 Suppose that the condition fn
‖·‖L−→ 0 =⇒ χAfn

‖·‖0−→ 0 for all A ∈ A0,L

holds in L. Then M ctb in (L, ‖ · ‖L) implies χAM ctb in (EΩ, ‖ · ‖0) for all A ∈ A0,L

By Corollary 3.3.2 and Remark 3.3.3 we get the next convex total boundedness cri-
terion.
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Theorem 3.3.4 Suppose that the condition fn
‖·‖L−→ 0 =⇒ χAfn

‖·‖0−→ 0 for all A ∈ A0,L

holds in L. A convex subset of L is ctb in (L, ‖ · ‖L) iff it is ‖ · ‖L−eac in L and χAM is
ctb in (EΩ, ‖ · ‖0) for all A ∈ A0,L.

The following example [32, example 4.9] shows that the hypothesis of convexity in
the theorem 3.3.1 cannot be cancelled.

Example 3.3.5 Let Ω = [1, π2

6 ], A the σ− algebra of Lebesgue-measurable subsets of Ω
and µ the Lebesgue measure on A. Let L 1

2
(Ω,A, µ) be the corrisponding Lebesgue spaces

defined in [21, Chapter III], where ‖f‖ 1
2

:=
∫
Ω

|f |p. Then L 1
2
is a space of type L.

Fix a real number α ∈]3, 4[ and define for n ∈ N, n 6= 1 such that An :=
[

n−1∑
k=1

1
k2 ,

n∑
k=1

1
k2

]
,

fn := χAnnα and M := {fn : n ∈ N}. Then

(a) M is ctb in (EΩ, ‖ · ‖0);

(b) M is equiabsolutely continuous in
(
L 1

2
, ‖ · ‖ 1

2

)
;

(c) M is not ctb in
(
L 1

2
, ‖ · ‖ 1

2

)
.

3.4 Example

In this section we give an example of a class of F−seminormed spaces of type L.
We start to consider the space LN introduced in [16] in the same way as Dunford
and Schwartz [21, p.112] define the space of integrable functions and the integral
for integrable functions. We briefly recall the definition of the space LN .
Assume that (E, ‖ · ‖E) is a complete F−normed space. Set S0(A,R) := span{χA :
A ∈ A0} and let ‖ · ‖ : S0(A,R) −→ [0,+∞[ be a Riesz F−seminorm (a Riesz
pseudonorm in the terminology of [1, p.39]) such that η(A) = ‖χA‖ for all A ∈ A0.
Let n̄ ∈ N and N : [0, +∞) → [0, +∞) be a continuous, strictly increasing function
such that

(1) N (0) = 0

(2) N(s + t) ≤ n̄(N(s) + N(t)) for all s, t ≥ 0.

The latter condition holds if and only if N satisfies the ∆2-condition, that is, there
is a constant c ∈ [0, +∞[ with N(2t) ≤ cN(t) for all t ≥ 0 (see [16, p. 90]).
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For s ∈ S0(A, E), ‖s‖N is defined by

‖s‖N = ‖N ◦ ‖s‖E‖,

and the space LN := LN (E) is defined as [16, p. 92] the space of all functions
f ∈ L0(Ω,A, E, η0), for which there is a ‖ · ‖N - Cauchy sequence (sn) in S0(A, E)
converging to f with respect to ‖ · ‖0, and

‖f‖N = lim
n
‖sn‖N ,

the sequence (sn) is said to determine f.

We recall [16, Proposition 2.10 (b)], that ‖f‖N = ‖N ◦ ‖f‖E‖1, for all f ∈ LN .
The function ‖ · ‖N : LN −→ [0,+∞[ has the following properties:

(1) ‖0‖N = 0;

(2) ‖f + g‖N ≤ 2n̄max{‖f‖N , ‖g‖N} ∀f, g ∈ LN ;

(3) ‖αf‖N ≤ ‖f‖N , ∀α ∈ Rwith |α| ≤ 1 and ∀f ∈ LN ;

(4) lim
α→0

‖αf‖N = 0 ∀f ∈ LN .

Therefore ‖ · ‖N is a ∆−seminorm in the sense of [29, p. 2].
Moreover

‖f‖E ≤ ‖g‖E implies ‖f‖N ≤ ‖g‖N for all f, g ∈ LN (3.4.1)

Proposition 3.4.1 The space LN := (LN , ‖ · ‖N ) satisfies the properties (a) - (b) - (c) and
(d) of section 3.1.

Proof.(see [16, Proposition2.6]) ¤
Set L := LN . By [29, Theorem 1.2] if we choose p so that 2

1
p = 2n̄ then the

formula

‖f‖L = inf
{ n∑

i=1

‖fi‖p
N :

n∑

i=1

fi = f
}

defines an F -seminorm on L generating the same topology of the ∆−seminorm
‖ · ‖N .

Moreover, being 1
4‖f‖p

N ≤ ‖f‖L ≤ ‖f‖p
N [29, see proof Theorem 1.2] using (3.4.1)

we obtain that

‖f‖E ≤ ‖g‖E implies ‖f‖L ≤ 4‖g‖L for allf, g ∈ LN . (3.4.2)

By Proposition 3.4.1 and by 3.4.2 follows immediately that (L, ‖·‖L) is an F−seminormed
space of type L.
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Proposition 3.4.2 [16, 2.2] The ‖·‖0−topology on S0(A, E) is coarser than ‖·‖N−topology.

As consequence of Proposition 3.4.2 we have the following

Proposition 3.4.3 Let {fn} be a sequence in L, then ‖fn‖L → 0 implies ‖χAfn‖0 → 0
for all A ∈ A0,L.

Finally we obtain the following characterizations of totally bounded and convex
totally bounded subsets in the spaces L.

Theorem 3.4.4 A subset M of L is totally bounded in (L, ‖ · ‖L) iff it is ‖ · ‖L-eac in L

and χAM is totally bounded in (EΩ, ‖ · ‖0) for all A ∈ A0,L.

Theorem 3.4.5 A convex subset M of LN is convexly totally bounded in (L, ‖ · ‖L) iff it
is ‖ · ‖L-eac in L and χAM is convexly totally bounded in (EΩ, ‖ · ‖0) for all A ∈ A0,L.
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Chapter 4

Implicit Functions in Locally Convex Spaces

In the last chapter we present a new implicit function theorem in locally convex
spaces substituting the differentiability assumptions by the condition of the exis-
tence of a family of linear operator osculating with a given non linear map. As
application we consider the problem of stability with respect to a parameter of so-
lutions to Hammerstein type equation in a locally convex space.

4.1 Preliminaries.

Before providing the main results, we need to introduce some basic facts about
locally convex topological linear spaces. We give these definitions following [28]
, [33], [34]. Let X be a Hausdorff locally convex topological vector space over the
field K, where K = R or K = C. A family of continuous seminorms P which
induces the topology of X is called a calibration for X . Denote by P (X) the set of
all calibrations for X . A basic calibration for X is P ∈ P (X) such that the collection
of all

U (ε, p) = {x ∈ X : p (x) ≤ ε} , ε > 0, p ∈ P ,

is a neighborhood base at 0. Observe that P ∈ P (X) is a basic calibration for X if
and only if for each p1, p2 ∈ P there is p0 ∈ P such that pi (x) ≤ p0 (x) for i = 1, 2
and x ∈ X . Given P ∈ P (X), the family of all maxima of finite subfamily of P is a
basic calibration.

A linear operator L on X is called P -bounded if there exists a constant C > 0
such that

p (Lx) ≤ Cp (x) , x ∈ X , p ∈ P.

Denote by L(X) the space of all continuous linear operators on X and by BP (X)
the space of all P -bounded linear operators L on X . We have BP (X) ⊂ L(X).
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Moreover, the space BP (X) is a unital normed algebra with respect to the norm

‖L‖P = sup {p (Lx) : x ∈ X , p ∈ P and p (x) = 1} .

We say that a family {Lα : α ∈ I} ⊂ BP (X) is uniformly P -bounded if there exists a
constant C > 0 such that

p (Lαx) ≤ Cp (x) , x ∈ X , p ∈ P ,

for any α ∈ I .
In the following we will assume that X is a complete Hausdorff locally convex

topological linear space and that P ∈ P (X) is a basic calibration for X .

4.2 An Implicit Function Theorem in Locally Convex Spaces

Let Λ be an open subset of the real line R or of the complex plane C. Consider the
product space Λ ×X of Λ and X provided with the product topology. Let A be an
open subset of Λ×X and (λ0, x0) ∈ A. Consider a nonlinear operator Φ : A −→ X

and the related equation
Φ(λ, x) = 0. (1)

Assume that (λ0, x0) is a solution of the above equation. A fundamental problem in
nonlinear analysis is to study solutions (λ, x) of the equation (1) for λ close to λ0.

We say that an operator Φ : A −→ X and an operator L : Λ −→ L(X) are called
P -osculating at (λ0, x0) if there exist a function σ : R2 → [0, +∞) and q ∈ P such
that

lim
(ρ, r)→(0,0)

σ (ρ, r) = 0

and for any p ∈ P

p (Φ (λ, x1)− Φ(λ, x2)− L(λ)(x1 − x2)) ≤ σ (ρ, r) p (x1 − x2) ,

when |λ− λ0| ≤ ρ and x1, x2 ∈ x0 + U (r, q).
Now we prove our main result.

Theorem 4.2.1 Suppose that Φ : A −→ X and (λ0, x0) satisfy the following conditions:
(a) (λ0, x0) is a solution of the equation (1) and the operator Φ(·, x0) is continuous at

λ0;
(b) there exists an operator function L : Λ −→ L(X) such that Φ and L are P -

osculating at (λ0, x0);
(c) the linear operator L(λ) is invertible and L(λ)−1 ∈ BP (X) for each λ ∈ Λ. More-

over the family
{

L (λ)−1 : λ ∈ Λ
}

is uniformly P -bounded.

32



4.2. AN IMPLICIT FUNCTION THEOREM IN LOCALLY CONVEX
SPACES

Then there are ε > 0, q ∈ P and δ > 0 such that, for each λ ∈ Λ with |λ− λ0| ≤ δ, the
equation (1) has a unique solution x(λ) ∈ x0 + U (ε, q).

Proof. Let Φ and L : Λ −→ L(X) be P -osculating at (λ0, x0). Consider the operator

T : A −→ X defined by

T (λ, x) = x− L(λ)−1Φ(λ, x) .

Let p ∈ P . By the assumption (c) there exist C > 0 such that

p (T (λ, x1)− T (λ, x2)) ≤ C p (Φ(λ, x1)− Φ(λ, x2)− L(λ)(x1 − x2)) ,

for any (λ, x1) , (λ, x2) ∈ A. Moreover, since Φ and L are P -osculating at (λ0, x0),
there are a function σ : R2 → [0, +∞) and q ∈ P such that

p (Φ(λ, x1)− Φ(λ, x2)− L(λ)(x1 − x2)) ≤ σ(ρ, r)p (x1 − x2) ,

for |λ− λ0| ≤ ρ and x1, x2 ∈ x0 + U (r, q). Hence

p (T (λ, x1)− T (λ, x2)) ≤ Cσ(ρ, r)p (x1 − x2) ,

for |λ− λ0| ≤ ρ and x1, x2 ∈ x0 + U (r, q).
Choose ε > 0 such that

p (T (λ, x1)− T (λ, x2)) ≤ 1
2
p (x1 − x2) ,

for |λ− λ0| ≤ ε and x1, x2 ∈ x0 + U (ε, q). Therefore, for each λ ∈ Λ such that
|λ− λ0| ≤ ε, the operator T (λ, · ) from x0 + U (ε, q) into X is a contraction in the
sense of [39].

Since Φ( · , x0) is continuous at λ0, we may further find δ′ > 0 such that

p (Φ(λ, x0)) ≤ ε

2C
,

and
p (T (λ, x0)− x0) ≤ Cp (Φ(λ, x0)) ≤ ε

2
,

for |λ− λ0| ≤ δ′. Set δ := min {ε, δ′} we have

p (T (λ, x)− x0) ≤ p (T (λ, x)− T (λ, x0)) + p (T (λ, x0)− x0) ≤ ε

2
+

ε

2
= ε,

for |λ− λ0| ≤ δ and x ∈ x0 + U (ε, q). This shows that

T (λ, ·) (x0 + U (ε, q)) ⊆ x0 + U (ε, q) ,

for each λ such that |λ− λ0| ≤ δ. Then, by [39, Theorem 1.1], when |λ− λ0| ≤ δ, the
operator T (λ, · ) has a unique fixed point x(λ) ∈ x0 + U (ε, q), which is obviously a
solution of the equation (1). ¤
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4.3 An application

As an example of application of our main result, we study the stability of the solu-
tions of an operator equation with respect to a parameter.

Consider in X the Hammerstein equation

x = λKFx, (2)

containing a parameter λ ∈ Λ. In our case K is a continuous linear operator on X

and F : X → X is the so-called superposition operator. We have the following:

Theorem 4.3.1 Let K be P -bounded. Suppose that for each x ∈ X there exists q ∈ P such
that the operator F satisfies the Lipschitz condition

p (Fx1 − Fx2) ≤ ω (r) p (x1 − x2) ,

for any p ∈ P and x1, x2 ∈ x + U (r, q), where limr→0 ω(r) = 0. If x0 ∈ X is a solution
of the equation (2) for λ = λ0, then there exist ε > 0 and δ > 0 such that, for each λ ∈ Λ
with |λ− λ0| ≤ δ, the equation (2) has a unique solution x(λ) ∈ x0 + U (ε, q).

Proof. Since the linear operator K is P -bounded we can find a constant C > 0 such
that

p (Kx) ≤ Cp (x) , x ∈ X , p ∈ P.

If λ = 0 then x0 = 0 is clearly a solution of the equation (2). Consider the operator
Φ0 : Λ×X −→ X defined by

Φ0(λ, x) = x− λKFx,

and set L0(λ)x = x for any λ ∈ Λ and x ∈ X . Clearly the operator Φ(·, 0) is
continuous at 0. By the hypothesis made on the operator F , there exists q ∈ P such
that

p (Φ0 (λ, x1)− Φ0 (λ, x2)− L0(λ)(x1 − x2)) ≤ Cρω (r) p (x1 − x2) ,

for any p ∈ P , when |λ| ≤ ρ and x1, x2 ∈ U (r, q), the operators Φ0 and L0 are
P -osculating at (0, 0). Moreover, for each λ ∈ Λ, we have L0(λ)−1 = L0(λ) and
p

(
L0(λ)−1x

)
= p (x), for any x ∈ X and p ∈ P . Then the result follows by Theorem

4.2.1.
Now assume that x0 ∈ X is a solution of the equation (2) for some λ0 6= 0. Let
Φ : Λ×X −→ X be defined by

Φ(λ, x) =
x

λ
−KFx,
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and set L(λ)x = x
λ for any λ ∈ Λ and x ∈ X . The operator Φ(·, x0) is continuous at

λ0 and there exists q ∈ P such that

p (Φ (λ, x1)− Φ (λ, x2)− L(λ)(x1 − x2)) ≤ Cω (r) p (x1 − x2) ,

for any p ∈ P , when λ ∈ Λ and x1, x2 ∈ x0 + U (r, q). So the operators Φ and L are
P -osculating at (λ0, x0). Further, assuming |λ− λ0| ≤ a for some a > 0, we can find
b > 0 such that p

(
L(λ)−1x

) ≤ bp (x), for any p ∈ P and x ∈ X . As before, the proof
is completed by appealing to Theorem 4.2.1. ¤
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