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Chapter 1

Maritime Hub Terminals,

Operations and Optimization

Problems

In the last decades maritime transportation of goods is increased enor-

mously and, actually, accounts for at least 90 percent of global trade. Con-

tainerization has dramatically reduced the cost of freight handling. Further

reduction of transportation costs are obtained by increasing the economies

of scale building ever larger containerships for long-haul routes. In order to

efficiently handle these big ships, mega-terminals, with appropriate facilities

and technologies, are required. Due to the resulting network topology this

system is known as hub and spoke. Deep-sea vessels operate between a lim-

ited number of transshipment terminals called hubs. Smaller feeder vessels

link the hubs with the other ports which are the spokes of the system.

The transportation of finished vehicles has also grown impressively dur-

ing the last years. Maritime automotive transportation is developing along

the same lines of container transportation, therefore hub and spoke arrange-
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ment is widely adopted (Mattfeld, 2006). This network topology results in

the consolidation of capacity along the routes connecting the transshipment

ports, and in the growth of their importance. Deep-sea car carriers have a ca-

pacity of up to 6000 vehicles whereas the capacity of ships deployed on short-

sea segments can attain 1000 vehicles. Therefore, automotive transshipment

terminals manage large flows of incoming and outgoing cars.

A hub terminal, either container or automotive, is an highly complex sys-

tem that involves a lot of equipments, operations, and handling steps. Re-

sources allocations and operations scheduling become crucial planning is-

sues in such a system. According to the considered planning horizon, the

decision problems arising in hub terminals can be of strategic, tactical and

operational level. A time horizon in decisions for the strategic, tactical, and

operational level covers one to several years, weeks to months, and one or

few days, respectively.

This work faces some operational problems typical of maritime hub ter-

minals, both container and automotive. The following sections describe the

main key aspects of container and automotive hub terminals and the differ-

ences among these type of terminal.

1.1 Container terminal operations

A container port terminal provides transfer facilities for containers be-

tween a sea vessel and a truck or rail or between vessels, the last one is a

single-mode transportation which is called transshipment. A container ter-

minal can be viewed as an open system with two interfaces: the quayside,

where ships load and unload containers, and the landside, where containers

are loaded to and unloaded from trucks and trains.

To facilitate exchange between these interfaces a yard is used as a buffer

where to stack containers. A ship arriving at the terminal is assigned to a
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YARDQUAYSIDE
LANDSIDE

Figure 1.1: Schematic view of a container terminal system

berth, which is a portion of quay, equipped with cranes for loading and dis-

charging containers.

The unloaded (import) containers are transported to their assigned yard

positions by internal transportation equipment. Analogously, export contain-

ers are moved from yard positions to the quay in order to be loaded by quay

cranes. From an operational point of view, we can think of a terminal as di-

vided into two areas, the quayside and the yard, linked by an internal trans-

portation system. Therefore there are decisional problems related to each of

these areas and to the transportation system. Now we briefly describe some

of these problems.

1.1.1 Berth planning

The berth allocation problem consists of assigning incoming ships to ber-

thing positions. Berth planners have to decide where and when the ships

have to be moored. There are technical constraints to consider in deciding

where to moor: the length, the tonnage and the draft of the ship. Other

constraints are related to particular equipment required by the ship. In fact,

some new very wide ships, known as Post-Panamax ships, require appro-

priate cranes (Post-Panamax cranes) to load and discharge their containers.
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The technical characteristics of the quay, as its length, the dock draft and the

kind of cranes deployed, are fixed at the strategical level. A common crite-

rion used by the terminal manager to allocate ships to berths is that the whole

distance travelled by internal equipments to move containers from the yard

to the quay (and vice versa), should be minimized (Steenken et al., 2004). On

the other hand, the satisfaction of the ship owner can be reached by allocating

the ship to berth in order to minimize turnaround time, that is the total time

the ship stays in the port (Cordeau et al., 2005).

1.1.2 Crane split and scheduling

Solving the crane split and scheduling problem consists in allocating cra-

nes to a ship and in deciding in which order the ship sections, called also ship

bays, will be handled by cranes in such a way that all required transshipment

of containers can be accomplished. The optimization aims either at minimiz-

ing the ships delay or at maximizing the crane utilization, i.e., minimizing

the crane idle times. A feasible berth plan and a set of available cranes are

input data. Furthermore, for each vessel, the number of containers to be dis-

charged and/or loaded, as well as the maximum number of cranes allowed

to simultaneously work on it, are known. The problem can be approached

as a two phases process: the first one consists in assigning cranes to vessel

and the second one in scheduling cranes operations (Bierwirth and Meisel,

2010). The quay crane assignment is not a difficult problem and it is gener-

ally solved by rules of thumb. The Quay Cranes Scheduling Problem (QCSP),

on the contrary, is much more complex: it is usually formulated as a schedul-

ing problem, where the quay cranes operating on a single vessel are parallel

machines, performing a set of tasks, representing the loading/discharging

operations. Of course, each task has to be processed once, and each crane

can execute a task at a time. Precedence constraints between tasks are given,
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to ensure, for instance, that discharge tasks precede loading ones, and the

sequence of operations on the deck and in the hold are performed correctly.

Some spatial constraints, aimed to avoid crossing of cranes and to ensure a

safety distance between adjacent cranes, are also considered (Sammarra et al.,

2007). A solution to the problem is a feasible schedule of tasks to be executed

by each crane; the objective function, to be minimized, is the overall comple-

tion time for the service at the berthed vessel (makespan).

1.1.3 Stowage planning

Designing a stowage plan for a containership consists of two sequential

processes (Steenken et al., 2004; Alvarez, 2006). The first step is executed by

the shipping lines, whose planners have a complete view of both all contain-

ers that have to be loaded or discharged during the vessel trip, and the vessel

structure. They provide stowage plans for each port of the vessel port ro-

tation. The shipping-line objectives are to minimize the number of on-board

shifts during the port rotation and to maximize the ship utilization. The result

of this process is a list of documents, which are sent to the terminal planners

of all ports the containership will visit. These documents act as guidelines

(Prestow Plans) for the terminal planners, which are involved in the second

step of the stowage plan design, sometimes referred as ship loading or load

sequencing problem. As regards the objectives the terminal planners have to

pursue, they are quite different from the shipping-line ones. In order to speed

up the ship loading process, it is possible to minimize the transportation time

of containers from the yard to the quay, or minimize the yard reshuffles.

Reshuffles, or yard shifts, are time consuming unproductive moves, which

occur whenever some containers on the top of a yard stack have to be re-

moved (and then re-stacked) in order to pick up a container on the bottom of

the same stack.
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Yard management

The yard can be considered the heart of a container terminal. Most of the

processes start and terminate at the yard. With the growing of the traffic,

storage space is becoming a scarce resource. Yard management is influenced

by many factors: technological configuration of the internal transportation

equipment (Direct Transportation System vs Indirect Transportation System),

type of container traffic (import, export and transshipment) and level of de-

cisions (strategic, tactical and operational). The yard is organized in blocks,

each block is made up of rows divided in bays, generally suitable to store ei-

ther a 20 or a 40 feet container. Containers are stacked, and the maximum

number of tiers in a stack depends on the transportation system adopted

(straddle carriers or gantry cranes), and on the type of container (empty,

reefer, dangerous, etc.). At the operational level, the yard management must

decide where to allocate each container to be stored, but, whenever needed,

also the reallocation of entire groups of containers (housekeeping) should be

considered, in order to speed up the vessel handling (Moccia et al., 2009).

Yard-Quay-Yard connection

The containers have to be transported from the quay to the yard and vice

versa. The vehicles used for the horizontal transportation of containers can

be either active vehicles or passive vehicles. The active vehicles are able to

lift and transfer containers, while passive vehicles, as trucks with trailers and

AGVs (automated guided vehicles traveling along a predefined path), need

pick up equipments (yard crane). The transport capability of a truck is related

to the number of trailers (generally each trailer can carry 2 TEU), while an

AGV is capable to move either 1 or 2 TEU.

Straddle carriers, forklifts and reachstackers are active vehicles. Straddle

carriers, capable to transport either 1 or 2 TEU, are the most important ma-
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chines among the horizontal transportation equipments. The importance of

straddle carrier relies in their flexibility, since they can span all over the yard,

and, moreover, they can stack containers on, at most, four other ones. The

kind of transportation equipments to adopt is a strategical decision, whereas

at the tactical level the main problem is determining the proper number of

vehicles. Finally, at the operative level, assigning vehicles to cranes, routing

and scheduling vehicles for loading/discharging and housekeeping opera-

tions are the major tasks.

1.2 Automotive terminal operations

Terminal operations in vehicle transshipment can differ significantly from

container transshipment. Container flows are strongly fragmented and plan-

ning is done considering containers as single entity. Vehicles flow is much

similar to bulk cargos; vehicles can be grouped and the group of cars is the

planning entity. Unlike containers, cars are considered to be fragile objects

that require careful and consequently labour-intensive handling. For exam-

ple, cars cannot be stacked, which results in larger yards compared with con-

tainer terminals. In our study we consider a transshipment automotive ter-

minal in which cars must be parked in a yard made up of rows of varying

lengths. Whereas containers may be relocated several times during their stay

in a terminal, cars, once assigned to their parking rows, remain in the same

yard position for the duration of their stay in order to reduce the risk of dam-

age. This “no-relocation” rule, combined with the low density of the yard,

increases the importance of optimal yard assignment. Cars are transferred

from the quay to their parking slot by drivers, who are grouped in teams

and are transported by a mini-bus that brings them back to their starting

point. For drivers, the avoidance of damage is of top priority. Nevertheless,

efficient operations have to be ensured. The transport distance within the
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terminal, and consequently the sum of working hours for the driving per-

sonnel, is a crucial issue for planning. The best plan assigns cars to parking

slots minimizing the sum of storage and retrieval distance. However, plan-

ners may accept a longer driving distance for storage operation in periods of

small manpower utilization. This strategy could result in an advantage be-

cause most favorable positions that are closer to the quay, are left free and can

be used in a forthcoming period of congested manpower utilization. These

findings make yard management and loading/discharging operations in an

automotive hub terminal different from those in a container hub terminal.

Some other decisional problems in automotive terminals are very simi-

lar to the analogous ones in container terminals, and can be approached in

the same way. One of these problems is, for instance, the berth allocation

problem.

1.3 The port of Gioia Tauro

The problems covered in this work arise at the Gioia Tauro terminal, one

of the most important hub ports in the Mediterranean Sea. Its barycentric

position in the Mediterranean Sea makes this port very attractive as a hub

terminal (see Monaco et al. (2009) for a discussion about the Gioia Tauro con-

tainer terminal). At the Gioia Tauro port there are both a container terminal

and an automotive terminal.

The container terminal, managed by MCT (Medcenter Container Termi-

nal Contship Italia Group), started its activity with the first ship berthed in

1995 and in just five years reached the leadership position among the ports

operating in the Mediterranean Sea with a throughput of 2.652 millions of

TEUs. After some years of fluctuating performance, the latest available stati-

stics (ESPO, 2010), show a throughput of 3.468 millions of TEUs in 2008 and,

due to the world economic crisis, in 2009 the TEUs handled have decreased
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Figure 1.2: The port of Gioia Tauro

to 2.857 millions. Today, the worst part of economic crisis seems to be over,

and forecasts are for a new period of growth. At the Gioia Tauro container

terminal, for the yard-quay-yard transportation, is adopted a Direct Transfer

System DTS, implemented by means of a fleet of straddle carriers, mobile

cranes that move and stack containers; reachstackers are also used to handle

empty containers which are arranged in taller stacks.

Recently, at the Gioia Tauro port, an automotive hub terminal, carried

on by ICO BLG AUTOMOBILE LOGISTICS ITALIA S.P.A, has been estab-

lished. The automotive terminal has an area of 320.000 m2, a yard capacity of

15.000 vehicles, and equipments to technically process vehicles if necessary.

A siding track, 3 head ramps and RoRo pontoons are available for the load-

ing/discharging operations. The automotive terminal handles about 75000

cars per year. There is an area dedicated to transshipment traffic made up of

374 parking rows with lengths varying from 50 to 70 meters. The problem

addressed by this study is related to the transshipment flow.
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1.4 Summary of the thesis

This research is motivated by the cooperation between the LogiLab (the

Logistics Laboratory affiliated to the University of Calabria) and both the ter-

minal management companies operating at the Gioia Tauro port. The com-

mon aim of the joint research projects is to devise useful decision support

system for the optimal management of the operational activities. In particu-

lar, this work studies three management problems. The first two problems,

arising in transshipment container terminals, are: the Ship Stowage Planning

Problem (SSPP) and the Straddle Carriers Routing Problem. The third one is

the Yard Assignment Problem at an Automotive Transshipment Terminal.

Chapter 2 tackles the Ship Stowage Planning Problem (SSPP) from the

point of view of the terminal manager. SSPP consists in assigning a specific

container to each slot of a ship, according to a prestow plan and a loading list

provided by the shipping company, satisfying constraints related to ship sta-

bility. The objective is the minimization of the total ship berthing time. Since

we can assume as input data the shipping-line prestow plan, the number of

cranes allocated to the containership and the sequence of ship bays each of

them has to handle (as output of the QCSP), the total loading time of contain-

ers can be considered to be constant. Therefore the objective function reduces

to the sum of two terms: the time to transport the containers to be loaded

from the yard to the assigned slots, and the time needed to perform addi-

tional reshuffle moves. We present two mathematical model and a heuristic

based on the Tabu search algorithm. The chapter concludes with results com-

ing from a set of tests on real instances from the terminal container of Gioia

Tauro.

Chapter 3 deals with Scheduling and Dispatching Models for Routing

Straddle Carriers at a Transshipment Container Terminal. We analyze rout-

ing strategies for horizontal transportation equipment at a transshipment
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container terminal. In particular we consider a port with an extensive yard

where straddle carriers are used to move containers from the yard to the quay

and vice versa. On the basis of the information available at the beginning of

the planning horizon, we derive both scheduling and dispatching models for

straddle carriers operating in “pooling”modality (a group of SCs shared by

two or more quay cranes). The former yield optimal solutions to the prob-

lem, but apply when all the information related to the loading/discharging

process can be considered to be known. On the other hand, the dispatching

model does not require such a strong assumption, and thus it provides an

useful online optimization tool, but with some loss in the solutions’ quality.

To validate the proposed models, we present also some numerical experience

related to a case study, coming from the Gioia Tauro Container Terminal.

Chapter 4 addresses the Yard Assignment Problem at an Automotive Trans-

shipment Terminal. The problem consists in assigning cars that arrive by ves-

sels, to parking rows minimizing the total handling time. For an automotive

terminal, yard management is a crucial issue. Furthermore, since that cars

are transported by driver, some issues related to manpower planning need to

be also considered. We present two integer linear programming models, and

some extensions that take into account rolling horizon scenario, and man-

power leveling objective. In order to solve the models a metaheuristic based

on the ALNS framework applied to a rectangle packing problem is proposed.

In fact the problem can be viewed as a variant of the two-dimensional rectan-

gle packing problem, where an assignment of a group of cars to a set of yard

rows is represented by a rectangle with the duration of stay as height and the

number of occupied rows as width. Extensive experiments are provided in

order to prove the effectiveness of the proposed solution methods.

Chapter 5 contains conclusions and possible future developments.
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1.5 Sommario della tesi

L’attivitá di ricerca oggetto di questa tesi si colloca all’interno di una piú

ampia e consolidata collaborazione tra il LogiLab (il Laboratorio di Logis-

tica affiliato all’Universitá della Calabria) e le compagnie che gestiscono il

terminal container e il terminal automobilistico nel porto di Gioia Tauro.

Obiettivo condiviso dai progetti di ricerca congiunta é lo sviluppo di sis-

temi di supporto alle decisioni utili ai fini di una gestione ottimale delle at-

tivitá operative. In particolare, in questo lavoro sono analizzati e discussi tre

problemi gestionali. I primi due sono classici problemi in terminal di tran-

sshipment per container: il Problema della Pianificazione dello Stivaggio di

Navi (PPSN) e il Problema dell’ Instradamento di Straddle Carrier. Il terzo

problema riguarda l’Assegnamento del Piazzale in un Terminal Automobili-

stico di Transshipment.

PPSN consiste nell’assegnamento di uno specifico container a ogni slot

della nave, in accordo con il piano di prestivaggio e la lista di imbarco, forniti

dalla compagnia di navigazione e nel rispetto di vincoli legati alla stabilitá

della nave. L’obiettivo é la minimizzazione del tempo totale di servizio della

nave. Essendo noti in input: il piano di pre-stivaggio e la lista di imbarco, il

numero di gru operanti sulla nave e la sequenza delle operazioni che ciascuna

di esse dovrá compiere (come output del problema di scheduling delle gru di

banchina), il tempo totale di imbarco dei container puó considerarsi costante.

Pertanto la funzione obiettivo si riduce alla somma di due termini: il tempo

di trasporto dei container da imbarcare dal piazzale alla banchina e il tempo

necessario per eseguire movimentazioni aggiuntive di riordino (reshuffle).

Sono presentati due modelli matematici e una euristica basata sull’algoritmo

Tabu search. Il capitolo si chiude con la presentazione dei risultati ottenuti

eseguendo una serie di test su istanze reali relative al terminal container di

Gioia Tauro.
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Il Capitolo 3 si occupa del problema dell’instradamento degli straddle

carrier. Sono analizzate strategie di instradamento in un porto con piazzale

estensivo in cui si utilizzino gli straddle carrier per trasportare i container

dalla banchina al piazzale, e viceversa. Al fine di minimizzare la distanza

totale percorsa dai veicoli, ed in particolare quella percorsa “a vuoto” (senza

container), si considera la modalitá operativa “pooling”, che consiste nella

condivisione di un gruppo di straddle carrier tra due o piú gru operanti sulla

medesima nave. Sulla base delle informazioni disponibili all’inizio del perio-

do di pianificazione, vengono formulati un modello di scheduling ed uno

di dispatching. Il primo modello consente di ottenere soluzioni ottime per

il problema, ma puó essere utilizzato solo quando sono disponibili tutte le

informazioni che riguardano il processo di imbarco/sbarco. D’altro canto,

il modello di dispatching non necessita di una assunzione cosı́ restrittiva, e

fornisce quindi un utile strumento di ottimizzazione online, ma con qualche

perdita in termini di qualitá della soluzione. Per validare i modelli proposti,

sono presentati esperimenti numerici relativi ad un caso di studio ricavato

dal terminal container di Gioia Tauro.

Il Capitolo 4 affronta il Problema dell’Assegnamento del Piazzale in un

Terminal Automobilistico di Transshipment. Il problema consiste nell’asse-

gnare automobili che arrivano via nave a righe di piazzale, con l’obiettivo

di minimizzare il tempo totale di movimentazione. In un terminal automo-

bilistico, la gestione del piazzale é un aspetto cruciale. Inoltre, dato che le

macchine sono movimentate da autisti, occorre tenere conto di aspetti legati

alla pianificazione della forza lavoro. Sono proposti due modelli di program-

mazione lineare e alcune loro estensioni per l’adattamento a scenari con oriz-

zonte rullante e che consentono di ottenere un desiderato andamento nel

tempo dei livelli di utilizzo della forza lavoro. Per la soluzione di questi

modelli, é presentata una metaeuristica basata sul framework ALNS appli-

cato ad un problema di impacchettamento di rettangoli. Infatti, il problema



14 Chapter 1 - Maritime Hub Terminals, Operations and Optimization Problems

in esame puo essere visto come una variante del problema di impacchetta-

mento di rettangoli in due dimensioni, in cui l’assegnamento di un gruppo di

automobili ad un insieme di righe di piazzale é rappresentato da un rettan-

golo con altezza pari alla durata di permanenza delle automobili nel piazzale

e con larghezza pari al numero di righe occupate. Viene documentata un’am-

pia sperimentazione per la valutazione delle prestazioni della metodologia

risolutiva proposta.

Il Capitolo 5 contiene conclusioni e possibili sviluppi futuri.



Chapter 2

The Ship Stowage Planning

Problem: Optimization Models

and Heuristics

2.1 Problem Description

Among all processes arising at a container terminal, the loading of con-

tainers, commonly considered the most time-consuming, is the only one which

involves, in some way, both the shipping lines and the terminal operators.

The former provide loading (discharging) instructions, that is a list of all con-

tainers to be loaded (discharged) and their positions within the container-

ship. The latter realize these instructions, by allocating sufficient terminal

resources in order to speed up the whole process. The instructions for load-

ing a containership are known as stowage plans.

Before discussing how a vessel stowage plan is drawn up, it is instructive

to describe, briefly, the structure of a modern containership. We can think of

a containership berthed at the quay as a box in a three dimensional space,
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with the larger side parallel to the quay. It consists of several smaller boxes,

which are called slots and are capable of holding one TEU. A slot, as well as

the position of a container within the containership, can thus be identified by

three coordinates: bay, row, tier.

Figure 2.1: Views of a vessel.

The bay is the longitudinal coordinate of a slot, while the row and the tier

represent, respectively, the transversal and vertical ones. Two adjacent slots,

sharing the same row and tier coordinates, are used for storing a two TEUs

container. In this case the bay coordinate is also referred as main bay. Bay and

tier coordinates take positive increasing numbers from the bow to the stern

and from the bottom to the top of the containership, respectively.

In order to differentiate main bays from bays the following coding is

adopted: the main bay takes an even value b and the corresponding two bays

are indexed by the odd numbers b−1 (F-bay) and b+1 (A-bay). In a similar

way, the tier index takes even values from 02 (indicating the lowest position)

to the maximum allowed for slots located below the deck (hold), while posi-

tions on the deck are labeled starting from 80. Decks and holds are separated
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by steel plates, called hatch covers. Finally the row index, is a positive odd

number for rows on the quay-side of the vessel, while rows on the sea-side

are indexed by even numbers (the row 0 is the central one). These issues

are highlighted in Figure 2.1, where the possible views of a containership are

shown.

The basic Ship Stowage Planning Problem (SSPP in the following) is then

the problem of assigning a slot to each container to be shipped by a vessel,

while satisfying several constraints mainly related to the capacity and stabil-

ity of the vessel.

Determining the arrangement of containers within a vessel is a very com-

plicated task, and it requires full information of containers and vessel char-

acteristics. Vessels are provided with a Cargo Securing Manual, which illus-

trates the maximum permissible load on each slot of the vessel, the lashing

pattern, the stack weight and eight. For these reasons, the design of a stowage

plan is made up, generally, by two consecutive steps (Steenken et al., 2004; Al-

varez, 2006). The first step is executed by the shipping line planners, which

have a complete view of both all containers to be loaded and discharged at

each port the containership calls during its journey, and the cellular structure

of the vessel. Containers are first classified on the basis of some attributes, like

the dimension (standard, 45-footer, high-cube, oversized), the weight class

(the basic ones are light, medium, and heavy), the type (reefer, open-top), the

load (dangerous, perishable), and, last but not least, the port of destination

(POD). Then, homogeneous containers, i.e. container of the same class, are

planned to be stowed into adjacent slots.

The result of the first planning phase is either a rough stowage plan, more

or less detailed, or an operative stowage plan. In the following we will call

pre-stow plan the output of the first step. In the former case the shipping line

planners indicate for each slot just the container class and the detail levels

depend on the definition of the classes. For example in Figure 2.2, where a
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rough plan for a vessel bay is shown, the containers are classified only by the

POD, the dimension, and the type.
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Figure 2.2: Class based stowage plan for bay 78 of a vessel.

On the contrary, an operative stowage plan, provided by the shipping

line planners, indicates the exact container to be stowed in each slot, as in

Figure 2.3. The details which can be retrieved by this stowage plan are (from

the left to right and from the top to the bottom of each slot): the destination

port (A), the loading port (B), the container code, the weight, the operating

temperature for reefer containers, the type, and, finally, the slot coordinates.

In any case, shipping line planners have to take into account a lot of con-

straints in order to guarantee static and dynamic equilibrium of the ship. This

is done by distributing weights in an uniform way, as indicated in the Cargo

Security Manual. The shipping-line objectives are to minimize the number of

on-board shifts, called re-stows, during the port rotation and to maximize the

ship utilization.

Then the pre-stow plan is sent, via an EDI File (Electronic Data Inter-

change File), to the terminal planners of all ports the containership will visit.
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Figure 2.3: Detail of the stowage plan for quay-side rows of bay 78.

It acts as an input datum for the terminals’ planners, which are involved in

the second step of the stowage planning, sometimes referred as ship loading

or load sequencing problem. In this phase the basic constraint planners have

to comply with is that the weight of container stacks must decrease from the

hold to the deck and it cannot exceed a predefined amount.

As regards the objectives the terminal planners have to pursue, they are

quite different from the shipping-line ones. In order to speed up the ship

loading process, it is possible to minimize the transportation time of contain-

ers from the yard to the quay, or minimize the yard reshuffles. Reshuffles,

or yard shifts, are very time consuming unproductive moves, which occur

whenever some containers on the top of a yard stack have to be removed

(and then restacked) in order to pick up a suitable container on the bottom of

the same stack.

We want to underline that when the pre-stow plan is an operative plan,
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as above defined, the second phase can be skipped. Reshuffles can be min-

imized, and thus a high loading efficiency achieved, by resorting to pre-

marshalling the export containers (Lee and Hsu, 2007; Lee and Chao, 2009),

that is by reallocating the containers in yard locations near the export berths

so that no further useless container moves will be done during the load-

ing process. As pointed out in Moccia et al. (2009), yard areas close to the

quay represent a strategic terminal resource and, at the same time, manage-

rial practice is aimed at reducing container reallocations. This amounts to

say that often terminal planners do not make use of pre-marshalling, design-

ing stowage plans with respect to the terminal objectives, although they are

provided with an operative plan.

This chapter addresses the ship stowage planning problem as it arises

at a transshipment container terminal. The strong interaction between the

problem under consideration and the yard layout and equipment is evident.

We will consider an extensive yard, where containers are moved by a fleet of

straddle carriers (Direct Transfer System - DTS). In such a context, yard stacks

are almost three/four containers high.

Looking at the problem from the point of view of the terminal manager,

the objective to minimize will be the total ship berthing time. The contribu-

tion to the ship berthing time related to the loading process is given by two

terms: the total transportation time of containers from yard to quay, including

the time wasted by reshuffles, and the total loading time. Since the shipping-

line prestow plan is an input datum, as well as the number of cranes allocated

to the containership and the sequence of ship bays each of them has to han-

dle, the time the cranes will take to load all the containers into the ship can be

considered a constant. It is worth noting that the stowage planning is an of-

fline optimization process, in the sense that the stowage plan is generated by

the ship planner before ship loading starts. Hence, the main modelling dif-

ficulty, in the case of many cranes working on the same vessel, relies on the
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reshuffles estimation, since the yard stack configurations vary dynamically

during the loading process.

Here we will reduce our attention to the minimization of the transporta-

tion times and of the yard reshuffles, by formulating the stowage planning

problem as an integer linear programming problem. In Section 2.2 we pro-

vide an analysis of related literature. Two Linear Integer Models for the

stowage problem are presented and discussed in Section 2.3. Section 2.4 de-

scribes a heuristic algorithm and is followed by numerical results in Section

2.5.

2.2 Literature Review

The SSPP has received a lot of attention by researchers. Nevertheless in

some of the previous studies the distinction between the two phases is not

so clear, which makes difficult the application in a real context of the models

and algorithms developed.

Avriel et al. (1998) have studied the SSPP from the point of view of the

shipping companies. The authors propose an Integer Linear Model, where

the objective is the minimization of on-board shifts, and a heuristic algorithm

to get feasible solutions to the problem.

In the paper of Wilson and Roach (1999) the whole stowage planning

problem is considered. First, the authors propose a Branch-and-Bound al-

gorithm for the pre-stow planning. Then the second phase is performed by

a Tabu Search algorithm. Similar studies are reported in Wilson and Roach

(2000); Wilson et al. (2001).

Dubrovsky et al. (2002) propose a genetic algorithm for the problem as

described in Avriel et al. (1998), but taking into account constraints on the

ship stability.

In Kang and Kim (2002) the SSPP is addressed by splitting the problem
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into two subproblems, one for assigning container groups into the holds and

one for determining a loading pattern of containers assigned to each hold,

with the objective of minimizing the on-board shifts and the crane move-

ments at all ports of the port rotation. The authors adopt a greedy heuris-

tic for the first subproblem, while the second one is tackled by a tree search

method.

Ambrosino and Sciomachen (2003) analyze the changes in the time nee-

ded to load a containership, when different picking strategies of containers

from the yard stacks are considered.

In Ambrosino et al. (2004) the ship planning problem at the first port of the

port rotation is described. The authors propose a Mixed Integer Program and

a three-step heuristic, with the aim of minimizing the total loading time. Dif-

ferent algorithms for the same problem are given in Ambrosino et al. (2006,

2009).

The paper of Kim et al. (2004) considers the loading-sequencing problem

at a port where a fleet of trucks moves containers between the yard and the

quay, while stacking and retrieving of containers in the yard is performed by

transfer cranes. The problem consists in determining a pick-up sequence of

containers for each transfer crane, and then, for each container, a loading se-

quence. The authors present a Nonlinear Integer Model and a Beam Search

algorithm. Similarly, Steenken et al. (2001) propose a just-in-time approach

combining stowage planning and the selection of loading and transport se-

quences of containers by a fleet of straddle carriers.

In Alvarez (2006) the author studies the SSPP at a port where containers

are moved by reachstackers and analyzes the problem from the point of view

of the terminal managers. The author provides an Integer Program, whose

objective function to minimize is a linear combination of the yard reshuf-

fles and of the total distance travelled by the reachstackers. The problem is

solved via a Tabu Search algorithm. Similarly in Ning and Weijian (2009)
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the authors consider not only yard reshuffling but also take into account the

moving frequency of yard cranes, the probability of wait by quay cranes and

the feasibility of several yard cranes feeding one quay crane during the load-

ing process. The authors provide a multi-objective linear integer model and

a genetic algorithm.

Sciomachen and Tanfani (2007) combines the design of optimal stowage

plans and the maximization of the terminal productivity.

Gumus et al. (2008) address the problem of assigning containers of vari-

ous types to specific storage locations in a vessel at each port of the port rota-

tion with the aim of maximizing the efficiency of the cranes and minimizing

the shipping costs. The authors propose a decomposition heuristic.

By the analysis of the literature, the SSPP seems have been addressed, in

the past, prevalently optimizing shipping lines’ objectives, which are basi-

cally related to the ships’ completion times. However, it should commonly

agreed that the terminal managers have an active role in minimizing the com-

pletion time of the ships, by optimizing the transportation of the export con-

tainers from the yard to the quay. In this context the SSPP we face with differs

from the previous ones, since it is mainly oriented to the terminal managers

objectives, but it is not in contrast with the objectives of the shipping lines

companies.

2.3 Mathematical Models

In this Section we describe two Linear Integer Models for the SSPP, which

share, as input data, the following:

1. the configuration of the ship in terms of bays, rows, and tiers;

2. the class based pre-stow plan;
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3. the set K of cranes allocated to serve the ship (|K| = m); the crane split

and scheduling, that is sequence of bays processed by each crane and,

for each bay, the operational modality of the crane (sea-to-shore, shore-

to-sea, row-wise, stack-wise);

4. the set N of all containers to be loaded (|N|= nC). For each container i ∈
N, we are given its class (ci), weight (wi), code, attributes, and position

in the yard.

Thanks to assumptions (1) and (3), the set of slots available for stowing the ex-

port containers can be sorted by means of positional indexes. Since for each

slot the pre-stow plan indicates the class of container which can be stowed

in that slot, the problem reduces to find a matching between compatible con-

tainers and slots-positions, subject to side constraints. In the following we de-

scribe two alternative sorting strategies, leading to two Mathematical Mod-

els.

2.3.1 Model F1

A first partial sorting of the slots can be achieved by mapping the slot

(b,r, t) into a sequence position indexe p of a crane k, if the slot (b,r, t) is the

p-th one in the sequence of slots assigned to the crane k. Let Pk be the set of

slots-positions pertaining to the crane k (Pk = nk ∀k ∈ Q). We indicate by cp,

∀k ∈K, p ∈ Pk the class of the slot-position p, as reported in the pre-stow plan.

Each sequence Pk describes the relative positions of two slots in time.

Analogously, slots can be related also in space. To this aim we define the

following matrices

Φ
k
nk×nk =

{
φ

k
pq

}
∀k ∈ Q (2.1)

where φ k
pq = 1 if and only if slots related to the position indexes p and q satisfy
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the conditions:

bp = bq, rp = rq, tp < tq (2.2)

otherwise φ k
pq = 0. Practically φ k

pq = 1 indicates that slots p and q belong to the

same stack and p is under q.

In a similar way, the relative position of the export containers in the yard

can be described by the matrix Γnc×nc =
{

γi j
}

, where γi j = 1 if containers i and

j are in the same yard stack and i lies below j; otherwise γi j = 0.

By introducing the decisional variables

xk
ip ∈ {0,1} ∀i ∈ N,k ∈ Q, p ∈ Pk (2.3)

where xk
ip = 1 if and only if the container i is assigned to the slot-position p of

the sequence Pk;

zi j ∈ {0,1} ∀i, j ∈ N (2.4)

where zi j = 1 if and only if container i precedes container j in some sequence

Pk

and defining

• τk
ip as the time needed to transport the container i from its location in

the yard to the bay b corresponding to the slot-position p of the crane k;

• σ as the time needed to perform a reshuffle of a container in the yard
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we can formulate the SSPP as follows (Model F1):

min ∑
i∈N

∑
k∈K

∑
p∈Pk

τ
k
ipxk

ip +σ ∑
i∈N

∑
j∈N

γi jzi j (2.5)

∑
k∈K

∑
p∈Pk

xk
ip = 1 ∀i ∈ N (2.6)

∑
i∈N

xk
ip = 1 ∀k ∈ K, p ∈ Pk (2.7)

∑
i∈N

wixk
ip−φ

k
pq ∑

j∈N
w jxk

jq ≥ 0 ∀k ∈ K, p,q ∈ Pk (2.8)

(2.9)

zi j ≥ xk
ip + ∑

q∈Pk

q>p

xk
jq−1 ∀k ∈ K, p ∈ Pk, p 6= nk, i, j ∈ N, γi j = 1 (2.10)

xk
ip = 0 ∀i ∈ N,k ∈ q, p ∈ Pk,ci 6= cp (2.11)

xk
ip ∈ {0,1} ∀i ∈ N,k ∈ K, p ∈ Pk (2.12)

zi j ∈ {0,1} ∀i, j ∈ N (2.13)

In the model F1 constraints (2.6) and (2.7) are the matching constraints be-

tween containers and available slot-positions. Constraints (2.8) ensure that

the containers stowed in the same ship stack satisfy the weight-decreasing

rule. The yard reshuffles are computed by constraints (2.10): when i is lo-

cated below j in the same yard stack, but i must be loaded before j by the

same crane k, then a yard reshuffle occurs and zi j = 1. In all the other cases

zi j = 0. As regards constraints (2.10) one could observe that they fail to take

into account yard reshuffles when containers i and j are loaded by differ-

ent cranes. This means that Model F1 returns, actually, a lower bound on

the total number of yard reshuffles. On the other hand, yard stacks, usually,

are homogeneous at least with respect to the port of destination of the con-
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tainers. Since the crane scheduling, which we assume as an input datum, is

done so that each crane handles entirely groups of homogeneous containers

(Sammarra et al., 2007), it is quite unusual that two containers belonging to

the same yard stack are handled by different cranes. Variable settings (2.11)

avoid containers to be assigned to unsuitable slot-positions. Finally the objec-

tive function (2.5), we minimize, sums the transportation and the reshuffling

times.

2.3.2 Model F2

If we assume that

• (1) and (3) hold, as for the Model F1;

• no idleness occurs in the crane work (this can be achieved considering

a suitable number of straddle carriers);

• cranes have the same productivity;

then we can associate to each slot-position p ∈ Pk a starting handling time,

that is the time when the crane k starts to load a container in to the slot (b,r, t).

Therefore, the sets Pk can be merged in the set P = {1, . . . , P} (|P| = ∑
n
k=1 nk),

and the latter set can be sorted with respect to the starting handling times of

the slots, breaking ties arbitrarily.

In order to formulate an alternative Model to F1, we extend our notation.

To this aim we define

• θp ∀p ∈ P the starting handling time of the slot p;

• τip ∀i ∈ N, p ∈ P, the time needed to transport the container i from its

yard location to the bay b corresponding to the slot p = (b,r, t);

• L = {1, . . . , |L|} the set of ship stacks;
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• Ψ(l) ∀l ∈ L the set of slot positions belonging to ship stack l;

• Wl ∀l ∈ L the maximum permissible weight for containers in the ship

stack l;

• N(p), ∀p ∈ P the set of containers i ∈ N such that ci = cp;

• P(i),∀i ∈ N the set of slot positions p ∈ P such that ci = cp;

• ∆(i) ∀i ∈ N the set of containers that are located above and in the same

yard stack of container i;

• π(p) the slot-position immediately above and in the same ship stack of

the slot p, i.e. if p is the slot (b,r, t), then π(p) corresponds to the slot

(b,r, t +1).

By means of the decisional variables

xip ∈ {0,1} ∀i ∈ N, p ∈ P (2.14)

where xip = 1 if and only if the container i is assigned to the slot-position

p ∈ P;

zi j ∈ {0,1} ∀i ∈ N, j ∈ ∆(i) (2.15)

where zi j = 1 if and only if container i is picked up by a straddle carrier before

the container j, i.e. an additional move (reshuffle) is needed, then the Model

F2 for the SSPP is the following
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min ∑
i∈N

∑
p∈P(i)

xipτip +σ ∑
i∈N

∑
j∈∆(i)

zi j (2.16)

∑
p∈P(i)

xip = 1 ∀i ∈ N (2.17)

∑
i∈N(p)

xip = 1 ∀p ∈ P (2.18)

∑
i∈N(p)

xipwi− ∑
j∈N(π(p))

x jπ(p)w j ≥ 0 ∀p ∈ P (2.19)

∑
p∈Ψ(l)

∑
i∈N(p)

xipwi ≤Wl ∀l ∈ L (2.20)

∑
q∈P( j)

x jq(θq− τ jq)− ∑
p∈P(i)

xip(θp− τip)≤ zi jM ∀i ∈ N,∀ j ∈ ∆(i) (2.21)

xip ∈ {0, 1} ∀i ∈ N,∀p ∈ P(i) (2.22)

zi j ∈ {0, 1} ∀i ∈ N,∀ j ∈ ∆(i) (2.23)

In this model the objective function is the same as in Model F1, and the con-

straints (2.17), (2.18), (2.19) act as the corresponding constraints (2.6), (2.7),

(2.8) of Model F1. Constraints (2.20) ensure that the maximum permissible

weight on each ship stack is not exceeded. Constraints (2.21) set the correct

value of the z variables whenever a yard reshuffling occurs. Actually the term

(θ − τ) represents the time when a container is picked-up from a yard stack.

When i and j are located in the same yard stack (i is below j), then the left-

hand-side of the constraint (2.21) is not negative if i is picked up before j.

Therefore zi j must be equal to one. In the other case ( j is picked up before

i), the left-hand-side of (2.21) is negative, but the objective function forces the

corresponding zi j variable to be 0. We note that, with respect to constraints

(2.10), in this case we are able to evaluate correctly a yard reshuffling between

a pair of containers, without requiring that those containers have to be han-
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dled by the same crane. Nevertheless the number of reshuffling returned by

this model is always a lower bound, due to the assumptions we made at the

beginning of this Section.

2.4 Solution Algorithm

The ship stowage planning problem is, in general, N P-hard (Avriel,

2000). All the solution methods proposed in the papers cited in Section 2.2

are based on heuristic procedures, except for the algorithm in Wilson and

Roach (1999), where the SSPP is split up into two subproblems, and the first

subproblem is solved by a Branch-and-Bound algorithm.

In order to get feasible solutions to the Model F2, we devised a solution

algorithm based on the Tabu Search paradigm (Gendrau and Potvin, 2005).

It is well known that Tabu Search (TS in the following) is an iterative local

search heuristic provided with a memory mechanism. At each iteration h,

TS explores the neighborhood of the current solution xh in order to find an

improving one. When the algorithm fails to find such an improving solu-

tion, then it has reached a local optimum. Nevertheless, TS is allowed to ex-

plore the solution space by moving towards non-improving solutions, with

the hope of finding, later, a better one. In order to prevent TS reaching previ-

ously visited local optima, it keeps track, in some way, of the search history,

forbidding the search to move towards the previously (tabu) solutions. How-

ever the tabu status of a solution may be revoked when moving towards a

tabu solution yields a new incumbent (aspiration). This strategy implements

the short term memory mechanism.

TS is also provided with a long term memory tool, which keeps track of

the overall most visited solutions. The long term memory is used to lead the

search towards little explored regions of the solution space (diversification).

By means of the short and long term memory mechanisms, TS performs a



31

wide exploration of the solution space and, therefore, it is able to return much

better solutions than the standard local search algorithm.

For our TS algorithm the neighborhood of a solution is obtained by swap-

ping pairs of homogeneous containers in to compatible slots. The size of the

neighborhood of a solution is bounded from above by nc×nc.

2.4.1 Overall description of the Algorithm

According to Glover et al. (2007), we use attributive memory structures,

meaning that we represent a solution by its attributes. If x is a solution then

the set of attributes, identifying x, is the set

A(x) = {(i, p) | container i is assigned to the slot p} (2.24)

By this way the moving between solutions is performed by modifying the

attribute set of a solution, i.e adding or deleting attributes. If, at a given itera-

tion, an attribute (i, p) is removed from A(x) then its re-insertion is forbidden

for the next h̄ iterations (tabu tenure). According to the attributive memory

strategy, a move is declared tabu if at least one of the attributes describing

the solution obtained by that move is tabu. However a tabu move is allowed

when it yields an improving solution (aspiration criterion). For each attribute

(i, p), in the following we denote by

• αip, the aspiration level of the attribute;

• βip, the number of iterations for which the attribute is tabu (recency);

• δip the number of times the attribute has been used to identify a solution

(frequency);

Recency, as its name suggests, keeps track of solutions attributes that have

changed during the recent past. Frequency typically takes into account how
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many times a certain attribute has changed, and it is used, as mentioned

above, to diversify the search, that is to force the algorithm searching un-

explored regions of the solution space. This is achieved penalizing a non-

improving solution by the frequencies of the attributes added to describe that

solution.

Moreover, we define:

• x a feasible solution, x∗ the best known solution (incumbent);

• c(x) the cost of x, that is the value of the objective function (2.16) corre-

sponding to x;

• F(x) the neighborhood of x;

• F̄(x) ⊆ F(x) the set of solutions obtained by x performing non tabu

moves;

• hmax the maximum number of iteration performed by the algorithm;

• h̄ the number of iterations for which an attribute is tabu.

The algorithm is shown in Table Algorithm 1. In lines (1) to (6) is initial-

ized the data used by the algorithm. The set of non tabu solutions is gener-

ated throghout line (8) to (13), while the local search is performed from (14) to

(21). Lines (22) to (24) and (25) to (27) manage the short term and long term

memories, respectively. In lines (28) to (30) the incumbent is . The aspira-

tion level of the attributes describing the best non tabu solution in the current

neighborhood is updated by steps (31) to (33). Finally instructions (34) make

the algorithm to move towards the new solutions and to iterate.

2.4.2 Computing a starting feasible solution

The Algorithm 1 can be successfully used to construct an initial feasible

solution. To this aim, let x be a class based (perfect) matching between export
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Algorithm 1 Tabu Search Algorithm
1: x∗ = x, h = 1
2: for all (i, p)
3: αip = ∞, βip = 0, δip = 0
4: for all (i, p) ∈ A(x) do
5: αip = c(x)
6: end for
7: repeat
8: F̄(x) = /0
9: for all x̄ ∈ F(x) do

10: for all (i, p) ∈ A(x̄)\A(x) such that βip < h or c(x̄)< αip do
11: F̄(x) = F̄(x)∪{x̄}
12: end for
13: end for
14: for all x̄ ∈ F̄(x) do
15: if c(x̄)≥ c(x) then

16: g(x̄) = c(x̄)+ γ× c(x)× ∑
(i,p)∈A(x̄)\A(x)

(
δip

h

)
17: else
18: g(x̄) = c(x̄)
19: end if
20: end for
21: x̂ = argmin{g(x̄) | x̄ ∈ F̄(x)}
22: for all (i, p) ∈ A(x)\A(x̂) do
23: βip = h+ h̄
24: end for
25: for all (i, p) ∈ A(x̂)\A(x) do
26: δip = δip +1
27: end for
28: if c(x̂)< x∗ then
29: x∗ = x̂
30: end if
31: for all (i, p) ∈ A(x̂) do
32: αip = min{αip,c(x̂)}
33: end for
34: x = x̂, c(x) = c(x̂), h = h+1
35: until h≤ hmax
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containers and available slots, that is a vector satisfying constraints (2.17) and

(2.18), and not necessarily constraints (2.19) and (2.20). In particular we make

sure that constraints (2.19) are satisfied for portions of containers stacks hav-

ing the same Port Of Destination, type and dimension attributes. As regards

relations (2.21), since they represent together with constraints (2.23) the def-

inition of the z, they can be always satisfied whenever a x vector satisfying

constraints (2.17) to (2.20) is given. In other words, constraints (2.23) can be

relaxed without affecting the feasible region of the x variables.

Let us consider the following quantities:

λp(x) = max

{
− ∑

i∈N(p)
xipwi + ∑

j∈N(π(p))
x jπ(p)w j ; 0

}
∀p ∈ P (2.25)

µl(x) = max

{
∑

p∈Ψ(l)
∑

i∈N(p)
xipwi−Wl ; 0

}
∀l ∈ L (2.26)

and the function

v(λ (x),µ(x)) = ∑
p∈P

λp +∑
l∈L

µl (2.27)

Basically the λ and µ measure the amount by which the constraints (2.19)

and (2.20) are violated by a matching x and the function (2.27) represents the

total amount of the violation. Clearly, if at least a feasible solution for the

model F2 exists, the minimum value of (2.27) is zero, which means that all

the constraints (2.19) and (2.20) are satisfied.

In order to find such a vector returning a zero value for the function v, we

apply the Algorithm 1, using as starting point the above defined vector x and

minimizing the function v(λ (x),µ(x)). The steps of the algorithm are shown

in the Table Algorithm 2.
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Algorithm 2 Starting Solution Algorithm
1: Find the minimum cost perfect matching between export containers and avail-

able slots

x∗R = argmin

{
∑
i∈N

∑
p∈P(i)

xipτip | subject to 2.17, 2.18, 2.22

}

2: if x∗R satisfies constraints (2.19) and (2.20) then
3: STOP
4: else
5: Set x = x∗R, c(x) = v(λ (x),µ(x))
6: Call the Algorithm 1
7: end if

2.5 Computational Results

We have tested the Model F2 and the TS on a set of 20 real stowage

planning instances provided by Medcenter Container Terminal, the company

managing the Gioia Tauro port. The model has been implemented using

ILOG Concert 2.9 and solved by ILOG CPLEX 12.1 and the TS Algorithm

was coded in C++. The numerical experiments were run on a workstation

equipped with one Intel Xeon 3GHz processor and 4 GB of RAM. We have let

CPLEX running for at most one hour and adopting default settings, while the

parameters of the TS Algorithm have been chosen as follows:

• maximum number of iterations hmax = 500;

• tabu tenure h̄ = 10;

• diversification penalty γ = 0.005.

The results, together with the main characteristics of the instances, are

summarized in the Table 2.1. We report the lower bounds (LB) returned

by CPLEX which are used to evaluate the quality (GAP) of the feasible so-

lutions provided by the terminal planners as well as those found by solv-

ing the Model F2 and by running the TS Algorithm. Gaps are computed
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as Gap = (UB−LB)/UB. Moreover since the number of reshuffles is a very

important parameter for evaluating the efficiency of the yard operations, we

report explicitly these values in the Table 2.1 in order to have a prompt com-

parison of the three solutions. Finally we report the computation times for

both CPLEX and TS Algorithm.

Terminal Planners’ Solution CPLEX TS 500
Instance Cnts Classes GAP % Reshuffles LB GAP % Reshuffles Time (s) GAP % Reshuffles Time (s)
S438863 231 2 4,8 29 592292 0,0 0 19 0,0 0 31
S438173 337 2 5,6 46 809661 0,0 0 2259 0,0 0 51
S438031 633 2 8,6 164 1742350 — – 3600 0,0 0 183
S438905 84 3 8,4 22 240233 0,0 0 16 0,0 0 4
S438130 103 3 8,2 12 147869 0,0 0 3 0,0 0 5
S438744 212 3 5,3 32 578702 0,0 0 52 0,0 0 24
S438422 123 4 4,9 17 332478 0,0 0 2 0,0 0 5
S438950 394 4 8,1 8 173140 0,0 0 1208 0,3 0 35
S438877 700 4 0,1 0 995208 — – 3600 0,0 0 122
S438034 499 6 12,7 47 444200 0,0 0 1681 0,1 0 91
S437423 549 6 3,6 55 1487410 0,0 0 1182 0,0 0 57
S437412 523 7 2,1 20 917320 — – 3600 0,0 0 126
S416573 552 7 10,6 137 1088190 0,0 35 3256 0,1 35 44
S438190 617 7 8,2 88 1105290 0,0 0 2368 0,1 0 78
S438174 209 8 4,4 12 259849 0,0 0 3 0,0 0 7
S437698 360 8 7,0 67 894175 0,1 1 3600 0,0 0 33
S438932 375 8 7,2 70 927493 0,0 0 481 0,0 0 24
S437997 289 10 0,9 6 650122 0,0 0 523 0,0 0 22
S437976 516 10 5,1 73 1369310 0,0 0 1277 0,0 0 39
S417950 296 18 4,1 16 317858 0,0 4 27 0,0 4 19

Table 2.1: Computational results (“–”means that the corresponding values
are not available.)

From the analysis of Table 2.1 it is clear that both our approaches are able

to improve remarkably the number of reshuffles with respect to the solution

provided by the terminal planners, although with different efficiency levels

(computation times). As regards the comparison between CPLEX and TS, we

note that CPLEX has not been able to optimally solve four out of 20 instances

within the imposed time limit. In particular in three cases (instances S438031,

S438877, and SS437412) it has just returned a lower bound. On the contrary

TS, in the same four cases, has returned the optimal solution within a com-

putation time of at most three minutes. CPLEX can be considered efficient,

and thus the Model F2 effective, in solving seven instances with computa-

tion times ranging from a minimum of two to a maximum of 52 seconds. In
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the remaining cases CPLEX is poorly competitive, since it takes at least eight

minutes of computation time.

As for CPLEX, also TS fails to find the optimumal solution in four cases

(instances S438950, S438034, SS4173, S438190). However TS returns very

small gaps and takes computation times in the range [35,78] seconds, while

CPLEX takes 20 to 55 minutes for solving the same instances. Overall, the

TS Algorithm seems to be very effective and efficient, since it is able to find

optimal or quasi-optimal solutions with a little computational burden.





Chapter 3

Scheduling and Dispatching

Models for Routing Straddle

Carriers at a Transshipment

Container Terminal

3.1 Problem description

On the basis of the containers’ flow, container terminals can be classified

in import, export, import/export, and transshipment. Another distinction

can be made with respect to the vehicles adopted to transport containers

from the quay to the yard and vice versa during the discharge/loading pro-

cess of the berthed vessels (quayside transport ). In particular this task can be

performed either by active or by passive vehicles, where the attribute means

whether or not the vehicle can load the containers by itself. Together with

forklifts and reachstackers, the Straddle Carriers (SCs) belong to the family

of active vehicles and are capable to transport either one or two TEUs. They
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are flexible, because they potentially can span all over the yard, and, more-

over, they can stack containers as well as the Yard Cranes (YCs), although at

a lower stacking height (at most a straddle carrier can stack a container over

two or three other ones). Terminals adopting active vehicles for the quayside

transport are also known as Direct Transfer System (DTS) terminals. On the

contrary passive vehicles, as trucks, trailers, and AGVs (Automated Guided

Vehicles traveling along a predefined path), need cranes, both Yard Cranes

and Quay Cranes, for loading/discharging containers. The transport capa-

bility of a trailer is related to the number of trailers (generally each trailer can

carry two TEUs), while an AGV is capable to move either one or two TEUs.

Those terminals, where the quayside transport is performed by passive vehi-

cles, are also referred as Indirect Transfer System (ITS) terminals.

Adopting active or passive vehicles for horizontal transportation of con-

tainers is a strategic decision involving, therefore, several factors. Discussing

about these issues goes beyond the aim of this work. Here we just want to

underline that, basically, this decision depends on the yard width and on

its target storage capacity. Actually at those terminals with limited stacking

spaces the yard stacks must be higher than three containers to guarantee the

terminal works at a profitable capacity. Therefore these terminals have nec-

essarily to adopt the ITS technology. On the contrary the DTS terminals have

wide yard and, as a consequence, the target capacity can be reached by stack-

ing containers at lower height, which make possible the use of SCs.

We consider a transshipment DTS terminal, where one can observe a bidi-

rectional flow of containers: from the quay to the yard and in the opposite

direction, and we assume that the quay cranes (QCs), allocated to handle a

given ship, perform alternately loading and discharging of container batches

as in the usual practice. Under these assumptions, the management of the

horizontal transportation equipment at the quayside becomes very compli-

cated with respect to the case of import or export ports, where the containers
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flow along one direction.

When SCs are used to perform the quayside transport of containers, a

limited space under each crane portal works as crane buffer, meaning that QCs

likewise SCs pick up/release containers from/into these buffers. Generally

the crane buffers are capable to store (temporarily) up to five containers. The

management of SCs is then aimed at maintaining as much as possible not full

the buffers of cranes which are performing the discharging phase and not

empty those related to cranes which are loading containers. This reflects in

maximizing the cranes’ productivity.

In order to state the problem addressed in this chapter, we start by an-

alyzing the most widely used operational modalities for them: dedicated (or

gang) modality and shared modality (or pooling).

In the dedicated modality a given number of SCs is allocated to a given

QC, following its working phases. Therefore the SCs will move containers

from the quay to the yard when the QC is in the discharging phase, and

from the yard to the quay when it is in the loading phase. It is clear that the

synchronism between straddle carriers and cranes makes their productivities

mutually dependent. Actually, a decrease of cranes’ productivity, for exam-

ple during the removing of the hatch covers, causes unavoidable idle times

for the straddle carriers, as well as a decreasing in the productivity of the SCs,

due to the traffic congestion inside the yard, slackens the working rate of the

cranes. Moreover, in the dedicated modality, every time an SC moves a con-

tainer it has also to perform an unfruitful move of the same length, but in the

opposite direction (empty travel).

On the contrary, in the pooling modality a group of SCs is shared by two

or more QCs, working on the same ship or on adjacent berthed ships. It is

easy to show that this modality allows to reduce the total distance traveled

by the SCs, reducing the unproductive travels. Let us consider the following

example, where we are given two cranes (QC1 and QC2) operating on a ship
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and a pool C of SCs shared by them. We assume that QC1 is in the loading

phase, while QC2 is performing the discharging of containers (see Figure 3.1).

YARD

QC2QC1

Figure 3.1: The Pooling Modality

To this aim the straddle carriers of the pool C alternately move containers

from QC2 to the yard and then from the yard to QC1. Each straddle carrier c∈
C, during its operative cycle, has necessarily to travel some empty distances.

At the quay the empty distance corresponds to the distance between QC1

and QC2; in the yard it corresponds to the distance between the position of

the container just moved by c and the position of the next container c has to

transport to QC1. The latter distances are liable to be optimized, choosing

for c the most suitable container among those which must be loaded by QC1.

The same can not be done when the dedicated modality is used, since in this

case the empty traveled distances are constant.

However, the reduction of the empty traveled distances is not the only

benefit which derives from adopting the pooling modality. Since straddle

carriers are shared by cranes, the pooling modality allows to cope with all

those circumstances giving rise to sharp decays in the productivity of the



43

crane system. Actually, when a crane is not working, the straddle carriers

of a pool can speed up operations of the other cranes, and thus a more con-

stant value of the productivity, both of cranes and straddle carriers, can be

achieved.

A further cost saving for the terminal manager is related to the reduction

of the SCs fleet size allocated to the quayside transport. In fact, thanks to

the more rational use of the involved resources, the same workload could be

completed, in the same time, with a smaller number of SCs.

Therefore in this work we deal with the problem of the management of

the SCs when they work in the pooling modality. The Straddle Carriers Pooling

Problem (SCPP) then consists in a dynamic assignment of container moves

to SCs in order to speed up the loading/discharging operations. Based on

information available at the beginning of the planning horizon, the SCPP can

be formulated either as a dynamic scheduling problem on parallel machines,

or as a Real-Time Assignment Problem.

In the following we refer to the Gioia Tauro Container Terminal, in the

Southern Italy, although the models described in this work could be applied

to each transshipment port. Gioia Tauro is the main hub port in the Mediter-

ranean Sea, with a traffic volume of about 3.5 Million TEUs in 2007, and a

valuable number of feeder services connecting the terminal to some less than

60 spoke ports (Monaco et al., 2009). It is characterized by an extensive yard,

where the quayside transport is performed by a fleet of staddle carriers work-

ing, at the present, in gang modality. On the contrary, the yard-to-yard trans-

portation of containers (housekeeping) is usually performed by multitrailers.

Due to the high operational and upkeep costs of the straddle carriers, the

focus of the quayside transport optimization is the reduction of the empty

travels, although the crane productivity can not be overlooked.

The outline of the chapter is the following. Section 3.2 is dedicated to

a survey of the literature. Scheduling based models, where we assume to
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know the sequence of containers to be loaded/discharged by each crane, are

presented in Section 3. Then we address the pooling problem when some

data are not available at the beginning of the planning horizon. This leads to

devise a Real-Time model, which is presented in Section 4. The results of the

computational experience on both classes of models are discussed in Section

5. Finally, some conclusions are drawn in Section 6.

3.2 Literature Review

The scientific production on the quayside transport optimization at con-

tainer terminals is very wide: inspired by the application context in the main

ports around the world, different transportation equipment have been con-

sidered, including automated guided vehicles (AGVs), yard trailers or trucks

(YTs) and straddle carriers (SCs). For a complete and up-to-date literature re-

view in this field the reader can refer to Steenken et al. (2004) and Stahlbock

and Voß (2008).

Researchers have devoted a lot of attention to the case of AGVs, since

their inherent lack of flexibility (no drivers experience and insight, routes

on fixed paths), their low speed, and their large number, require complex

management systems in order to speed up the deliveries and to synchronize

the work of QCs and YCs. Evers and Koppers (1996) propose a control sys-

tem using semaphores for the AGV traffic control problem. Vis et al. (2001)

devise a minimum flow algorithm to determine the fleet size of AGVs in a

semi-automated container terminal, assuming that containers are available

for transport at known time instants. Bish (2003) discusses the problem of dis-

patching vehicles to containers, while determining storage location for each

container and scheduling loading and unloading operations on the cranes,

so as to minimize the maximum service time for a given set of ships. The

dispatching problem for multi-load AGVs, i.e. automated guided vehicles
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which can carry more than one container at a time, has been addressed in

Grunow et al. (2004), where a flexible priority rule based approach has been

suggested, and in Grunow et al. (2006), which presents a simulation study of

AGV dispatching strategies.

Kim and Bae (2004) discuss the dispatching problem for single-capacity

AGVs as the tool for synchronizing operations of QCs and YCs. They pro-

pose a mixed-integer linear programming model, whose objective function

is a linear combination of the total delays of the QCs and the total travel

time of AGVs, and a heuristic algorithm for solving the mathematical model.

The main ideas presented in the paper of Kim and Bae (2004) have been af-

terward extended by Nguyen and Kim (2009), where the authors present a

mathematical model and a heuristic algorithm for the dispatching problem

of Automated Lifting Vehicles (ALV), which are special AGVs capable of lift-

ing containers from the ground by themselves. The authors consider also

constraints on the crane buffer capacity and suggest procedures to convert

them into time windows constraints on the moves of containers.

A similar context but a different problem is considered in Bish et al. (2005):

the fleet of vehicles moving containers between the ship area (QCs) and the

yard (YCs) are, more generally, vehicles with a one container capacity. Again

the port under consideration is a transshipment terminal, but more restrictive

assumptions are made: the dispatching problem concerns a fleet of vehicles

assigned to the QCs working on a single ship. Authors assume that the job

sequence of each crane always starts with the containers to be discharged,

followed by the containers to be loaded onto the ship and propose easily

implementable dispatching policies in order to minimize the ship makespan.

On the contrary, in the paper of Vis et al. (2005), the depicted application

context is quite different and a bit surprising: the authors consider a con-

tainer terminal with lifting vehicles (with one container capacity) travelling

between QCs and YCs, and limited-capacity buffer areas for the QCs. The
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vehicles, they say, could be SCs or AGVs, but it is assumed that they travel

on tracks in loop between yard stacks and ship, and each crane has its own

track. The mix of peculiarities of the AGVs and SCs is really unusual. Due

to the buffer area, each container has a time window, defined as the interval

between release time and due date, in which the transportation should start.

The problem is determining the minimum vehicle fleet size under the time

window constraints.

We note that the dispatching problem for AGVs sensibly differs from the

same problem in the case in which the containers are moved by SCs. In the

first case, an AGV needs to be available by the QC throughout the loading

and unloading operations, since the container to load or just discharged is

picked up/put on the vehicle directly by the crane. Since no buffer space for

the containers can be used and the QCs are the bottleneck resource in port

container terminals, the vehicle fleet size grows, with consequent possible

traffic congestion; moreover a lot of other parameters need to be neglected

(as, for example, those related to the YCs) and synchronization of the AGVs

routing and QCs operations becomes crucial. This to say that methods de-

veloped for the AGVs are not suitable for the SCs, although sometimes some

similarity can be found, as in the case of the problem described in Kim and

Bae (2004).

The routing problem for port terminals where SCs are used to move con-

tainers, has been studied by Steenken et al. (1993), Kim and Kim (1999a), Kim

and Kim (1999b), Das and Spasovic (2003), Bose et al. (2000) . Steenken et al.

(1993) have discussed the routing of SCs which have to perform internal and

landside moves within time windows. The problem is modeled as a multiple

rural postman problem and two heuristic algorithms are proposed for solv-

ing it. Kim and Kim (1999a) and Kim and Kim (1999b) focus on the routing

problem, respectively, for a single SC and many SCs, during loading oper-

ation of export containers, the objective being to minimize the total travel
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distance (or time) of the SCs on the yard. The latter paper generalizes the

problem introduced in the former one, on the same underlying assumptions:

only export containers are considered, which are handled by a combination

of SCs and yard trucks or yard trailers, assigned, in a dedicated way, to the

quay cranes. In order to transfer a loading container from the storage area to

the containership, a straddle carrier picks up the container in the yard bay,

moves it to the end of the yard bay and loads it onto a yard truck; then the

YT delivers the container to the corresponding quay crane. In Kim and Kim

(1999b) the problem is comprised of the container allocation problem and the

carrier routing problem. In the first subproblem, containers in the yard are

divided in multiple classes, each of which will be loaded by a quay crane and

thus transferred by a SC: this is modeled as a transportation problem. Then,

a beam search procedure is suggested in order to determine the number of

containers to be picked up at each yard bay, as well as the travel route of each

straddle carrier.

In Das and Spasovic (2003) port terminals where SCs are used to move

containers from trucks to the storage area and vice versa are considered. The

paper presents an SC scheduling procedure driven by an assignment algo-

rithm that dynamically matches SCs and trucks as each becomes available.

The objective is to minimize the empty travels of SCs, while minimizing any

delays in servicing customers.

The paper by Bose et al. (2000) is, to our knowledge, the first and only

work in which a routing problem very similar to the one we are consider-

ing is discussed. The authors explicitly refer to pooling policy for a fleet of

SCs, assuming that no other vehicles are used for moving containers between

the storage area and the quay cranes, in a transshipment container terminal.

Taking into account, for each quay crane, the limited capacity buffer and the

sequence of containers to be handled, their aim is to maximize the produc-

tivity of the cranes, i.e. to minimize the delays in delivery or pick up at the
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crane buffer caused by the SCs. No mathematical model for the described

problem is presented; the authors report, instead, some numerical experi-

ence with simple dispatching rules, showing that the pooling policy of SCs

can improve productivity.

The optimal routing of yard-trailers is discussed in Nishimura et al. (2005).

The authors focus on what they call “dynamic routing”of trailers, as oppo-

site to the dedicated assignment of trailers to specific quay cranes, which

is exactly the pooling strategy for their vehicles. They consider two differ-

ent situations, depending on the capacity of the vehicles: the yard trailers

are capable of carrying only one container (single-trailer), or more than one

(multi-trailer). They propose mathematical models for both cases, the ob-

jective being to minimize the total travel distance, and develop a heuristic

solution algorithm for the multi-trailer version of the problem, using a ge-

netic algorithm. The problem is described as a special case of the vehicle

routing problem with pick up and delivery; no attention is paid to the time-

dimension.

In Imai et al. (2007) a different problem, again falling in the class of vehi-

cle routing ones, is introduced: the Vehicle Routing Problem with Full Con-

tainer load (VRPFC). It arises in picking up and delivering full container load

from/to an intermodal terminal and consists in finding the optimal assign-

ment of the own and chartered fleets to a set of delivery and pick up point

pairs, in order to minimize the total distribution cost. The authors propose a

Lagrangean relaxation-based heuristic for solving the problem.

In a more general setting, Hartmann (2004) proposes a genetic algorithm

for dispatching various handling equipment and manpower in container ter-

minals; Meersmans (2002) addresses the simultaneous scheduling problem

for QCs, AGVs and YCs, proposing a branch and bound algorithm and a

beam search algorithm for scheduling handling activities.
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3.3 Scheduling Based Models

In a scheduling framework (Pinedo, 1995), we can associate straddle car-

riers to machines and containers to jobs. For each job a minimum starting time

for its processing (transportation) is defined (release date). Since we want to

avoid cranes’ idle times, we also associate to each container an upper bound

on its completion time (due date). Moreover, the time an SC needs to per-

form an empty travel between two consecutive container moves can be in-

terpreted, in a natural way, as a setup time. Therefore the SCPP can be for-

mulated as a scheduling problem on identical parallel machines, with release

and due dates on jobs and setup times.

In order to optimise the quayside transport, different objective functions

could be defined, depending on which resource is considered as the most

critical one, on the emphasis given by the terminal manager to the cost or

to the efficiency of the process, and so on. The interested reader can refer

to the seminal work of De Monie (1987) and to the already cited review pa-

pers Steenken et al. (2004), Stahlbock and Voß (2008) on the topics related to

the port performance indices and to the impact of the quayside transport on

these indices. Here we just note that the quay cranes are the most expensive

equipment in a container terminal, so that, with a large agreement, a common

aim is to enhance their productivity, which strongly affects the efficiency and

the competitiveness of the port. In the following we will propose three dif-

ferent objective functions, and thus as many different scheduling models for

the SCPP.

The scheduling based models rely on the following assumptions:

A1 the pool of SC serves a group of cranes which are adjacent on the quay,

meaning that either they are allocated to the same ship or to adjacent

berthed ships;

A2 the cranes work performing alternately sequences of loading and dis-
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charging operations;

A3 for each crane, the sequence of containers to be handled is known a

priori;

A4 for each outgoing container the position in the yard from which it will

be picked up (starting position) is known;

A5 for each ingoing container the position in the yard where it will be

stored (final position) is known;

A6 due to assumption A3, the starting position of ingoing containers and

the final position of outgoing containers are also known and correspond

to the positions of cranes which have to handle them;

A7 straddle carriers are identical machines, in the sense they have the same

average speed and the same pick up and release times.

Now we introduce the notation that will be adopted throughout the chap-

ter. We denote by C the pool of straddle carriers, |C|= m; by Q the set of adja-

cent cranes which are served by the pool C, |Q|= k; by J the set of containers

to be handled by the quay cranes in Q, |J| = n. The set J is partitioned into

the set of containers to be discharged Jd (ingoing containers) and the set of

containers to be loaded Jl (outgoing containers): J = Jd ∪ Jl .

For each container j ∈ J we define:

• p j, the processing time of j; it is the time an SC takes to move j from its

starting position to its final position;

• r j, the release date of j;

• d j, the due date of j;

• σ jl ∀l ∈ J \ { j}, the time an SC takes to reach the starting position of

container l from the final position of container j (setup time);
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• sc
j ∀c ∈C, the time the SC c takes to reach the starting position of j, if j

is the first container moved by c (starting setup time);

• ec
j ∀c ∈C, the time the SC c takes to reach its destination starting from

the final position of j, if j is the last container moved by c (ending setup

time);

As regards the cranes q ∈ Q we define:

• t0
q , the earliest availability time for q;

• t̄q, the average time q takes to handle a container, that is the time needed

to perform a crane cycle (locking, lifting up, lifting down, unlocking);

• bq, the capacity of the buffer of q;

• Jl
q, the set of containers to be loaded by q;

• Jd
q , the set of containers to be discharged by q;

Let us consider a QC q ∈ Q. Since q picks up (releases) containers from

(into) the buffer, to make the crane working as long as possible uninterrupt-

edly, each outgoing container j ∈ Jl
q must be available in the buffer when q is

ready to load it. This means that each j ∈ Jl
q must be delivered by an SC of

the pool to the buffer of q not later than the handling of all containers preced-

ing j has been completed by q. Analogously each ingoing container must be

transferred from the buffer to the yard before the buffer becomes full. By the

assumption A3, if j is the i-th container handled by q ∈ Q, then the due date

of j can be set as follows:

d j = t0
q +(i−1)t̄q ∀ j ∈ Jl

q (3.1)

d j = t0
q +(i+bq−1)t̄q + p j ∀ j ∈ Jd

q (3.2)
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Note that (3.2) is derived by considering the worst case for the QC’s buffer:

d j − p j is the latest time for the ingoing container j to be taken away from

the buffer, when all its (bq− 1) successors in the crane sequence are ingoing

containers too.

For what concerns the release dates, we note that each outgoing container

can be moved to the crane which has to load it, at any moment in the planning

horizon, since it is ready in the yard. On the contrary, each ingoing container

can not be moved to the yard before it has been discharged. Therefore we

have:

r j = 0 ∀ j ∈ Jl
q (3.3)

while, if j ∈ Jd
q is the i-th container handled by the QC q,

r j = t0
q + it̄q ∀ j ∈ Jd

q (3.4)

For convenience we also introduce two dummy containers 0 and n+ 1,

which correspond to the starting and final states of the machines (SCs). For

these dummy jobs we set p0 = pn+1 = 0, r0 = rn+1 = 0, d0 = dn+1 = K >> 0.

We note that the previously defined sc
j, ec

j ∀ j ∈ J,c ∈ C are, respectively, the

setup times σ0 j and σ j n+1 ∀ j ∈ J, with different possible values on different

machines. This choice allows to correctly model both the case of a common

depot for the SCs of the pool and the multi-depot case. The complete set of

containers will be denoted by J̄ = J∪{0,n+1}.
Finally we define the following decision variables:

• t j ≥ 0 ∀ j ∈ J̄, the starting time for the move of container j;

• wc
j l ∈ {0,1} ∀ j, l ∈ J̄, j 6= l, c ∈ C, where wc

j l = 1 if the SC c moves

container l immediately after j; 0 otherwise.

Now we are ready to derive three scheduling models for the pooling prob-
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lem, which share the above defined variables and the following constraints.

n+1

∑
l=1

wc
0 l = 1 ∀c ∈C (3.5)

n

∑
j=0

wc
j n+1 = 1 ∀c ∈C (3.6)

∑
c∈C

n+1

∑
l=1
l 6= j

wc
j l = 1 ∀ j ∈ J (3.7)

n+1

∑
l=1
l 6= j

wc
j l−

n

∑
l=0
l 6= j

wc
l j = 0 ∀ j ∈ J , ∀c ∈C (3.8)

(
1−∑

c∈C
wc

j l

)
M+ tl− t j ≥ σ j l + p j ∀l, j ∈ J, j 6= l (3.9)

(1−wc
0 l) M+ tl ≥ sc

l ∀l ∈ J , ∀c ∈C (3.10)(
1−wc

j n+1
)

M+ tn+1− t j ≥ ec
j + p j ∀ j ∈ J , ∀c ∈C (3.11)

t j ≥ r j ∀ j ∈ J̄ (3.12)

wc
j l ∈ {0,1} ∀ j, l ∈ J̄, c ∈C (3.13)

Constraints (3.5) to (3.8) properly define the sequences of containers to

be moved by each SC: constraints (3.5) and (3.6) impose, respectively, that

for each SC c, exactly one container is the first, and exactly one container is

the last one in its own sequence. Note that, including in the summations the

indices l = n+1 in (3.5) and j = 0 in (3.6), allows to consider feasible solutions

with less than |C|working straddle carriers: if, for some c∈C, wc
0 n+1 = 1, then

c is not used. Constraints (3.7) ensure that each container is moved by exactly

one SC. Constraints (3.8) impose that, if the container j is moved by the SC c,

then it must have exactly one predecessor and one successor in the sequence

of containers assigned to c. Constraints (3.9) define the variables t j ∀ j ∈ J as

functions of the variables wc
jl , taking into account the setup times σ jl : since M
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is a big number, it is easy to see that (3.9) imposes

tl ≥ t j + p j +σ jl

if and only if, for some c ∈C, wc
jl = 1 (otherwise it is redundant). In a similar

way, constraints (3.10) enforces

tl ≥ sc
l

if and only if l is the first container moved by c, while (3.11) ensures

tn+1 ≥ t j + p j + ec
j

if and only if j is the last container moved by c. We note that constraints (3.10)

and (3.11) can be included in constraints (3.9), with j ∈ J̄, when the starting

and final setup times are independent from the machine c. Finally, (3.12) are

the ready time constraints.

The above constraints define the feasible set of a scheduling problem be-

longing to the class P|r j,seq.dep.| • (), where •() is a regular function of the

jobs’ completion times.

On the other hand, looking at the same problem as to a Vehicle Routing

Problem (see Desrosiers et al. (1995)), it is well known that the w components

of each feasible solution to constraints (3.5) - (3.13), define m = |C| acyclic

paths in the weighted directed graph G = (J̄, J̄× J̄), from the origin 0 to the

destination n+1 obtained by suitably splitting the single depot or the multi-

ple depot nodes. What remains to be done is defining the objective function

to optimise. To this aim, let P be the polyhedron

P =
{

w ∈ R(n+2)2×m
+ , t ∈ Rn+2

+ | (3.5) to (3.12), hold
}

(3.14)
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Minimization of the total tardiness - Model F1

If the quay cranes productivity is the focus of the optimization problem,

then it is natural to define the objective function in order to minimize the

idle times in the cranes activity, caused by delays in the containers’ pick up

and/or delivery.

We recall that the the delay or tardiness Tj of job j is defined to be the

lateness L j = t j + p j−d j whenever L j > 0, and zero otherwise:

Tj = max
{

0, t j + p j−d j
}
∀ j ∈ J̄ (3.15)

Therefore one can choose to minimize either the number of tardy jobs (∑ j∈J̄ U j,

where U j = 1 if and only if Tj > 0, otherwhise U j = 0) or the maximum tar-

diness (max j∈J̄
{

Tj
}

) or, finally, the total tardiness of the jobs (∑ j∈J̄ Tj). There

is no doubt that in this context minimizing the total tardiness is the most

meaningful objective function, since this value clearly reflects the cranes’ pro-

ductivity. Actually minimizing the number of tardy jobs could result in few

but too long cranes’ idle times. On the contrary minimizing the maximum

tardiness could give schedules with shorter but too many idle times.

By linearisation of (3.15), the model F1 that minimizes the total tardiness

is the following:

min ∑
j∈J̄

Tj (3.16)

Tj ≥ t j + p j−d j ∀ j ∈ J̄ (3.17)

Tj ≥ 0 ∀ j ∈ J̄ (3.18)

(w, t) ∈P (3.19)

wc
j l ∈ {0,1} ∀ j, l ∈ J̄,c ∈C (3.20)

This model guarantees high cranes’ productivities, but it does not explic-
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itly take care of the unfruitful moves of SCs. In passing we note also that its

feasible set Ω(F1) is always not empty.

Models F2 and F3 - minimization of the setup times and of the
makespan

Alternative models to F1 can be derived by considering the due dates d j

as deadlines d̄ j and so requiring that the SCs perform container moves without

delays. Then constraints (3.17) become

t j + p j ≤ d̄ j ∀ j ∈ J̄ (3.21)

Including the above constraints into the model, different objective functions

can be considered, which are relevant to the transport optimization at the

quayside. A first objective, directly concerning the straddle carriers, is to

minimize the empty travels. In our notation, this is equivalent to minimize

the sum of the setup times: the related model F2 is the following

min ∑
c∈C

∑
l∈J

sc
l wc

0 l + ∑
c∈C

∑
j,l∈J

σ j lwc
j l + ∑

c∈C
∑
j∈J

ec
jw

c
j n+1 (3.22)

t j + p j ≤ d̄ j ∀ j ∈ J̄ (3.23)

(w , t) ∈P (3.24)

wc
jl ∈ {0,1} ∀ j, l ∈ J̄ , ∀c ∈C (3.25)

The above model corresponds to the classical Multi Traveling Salesman Problem

with Time Windows (Desrosiers et al., 1995).

A second significant aim, more strictly related to the efficiency of the ter-

minal, is to minimize the berthing times of the containerships served by the

pool. In the machine scheduling framework, this is equivalent to consider as

objective function the makespan Cmax, i.e. the time when the move of the last
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container to be loaded/discharged ends. Since Cmax = max j∈J̄
{

t j + p j
}
= tn+1,

we get the model F3

min tn+1 (3.26)

t j + p j ≤ d̄ j ∀ j ∈ J̄ (3.27)

(w , t) ∈P (3.28)

wc
jl ∈ {0,1} ∀ j, l ∈ J̄ , ∀c ∈C (3.29)

We have included F2 and F3 in the same subsection since they model

very closely related problems. Actually in absence of release times and due

dates, minimizing the makespan with setup times on a single machine re-

duces to a Traveling Salesman Problem, while the same problem on parallel

machines is equivalent to a Multi Traveling Salesman Problem with min-max

objective (Gendreau et al., 2001).

Due to the min-max structure of the objective, the model F3 should force,

whenever possible, to share the workload in a balanced way between the

straddle carriers of the pool: this is a secondary, but not negligible, aim of the

planner.

Note that, as a consequence of constraints (3.21), every feasible solution

to F2 and F3 is also optimal for F1. By the last observation and since models

F2 and F3 take into account both crane productivities and unfruitful travels

of SCs, they should be preferred to F1, whenever feasible. On the other hand,

as it is easy to guess, they are more difficult to solve than the model F1.

3.4 A Real-Time Model

To derive the scheduling models we have assumed to know:

• the sequence of containers handled by each QC;
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• the position assigned in the yard to each ingoing container.

Sometimes these assumptions are not realistic, especially for ingoing contain-

ers. Consider a containership which has been planned to tranship containers

across some ports. The shipping company, owner of the containership, draws

up the stowage plan which is sent to all terminals the containership has to

visit. The stowage plan reports in detail, for each terminal, the positions of

containers into the containership and it is constructed on the basis of con-

tainer attributes, like the destination port, the weight and so on. Containers

with the same attributes (homogeneous containers) are stowed in adjacent slots

within a ship bay. On the basis of the stowage plan, a suitable number of

quay cranes are allocated to handle the containership and the ship planners

can determine the sequence of operations they will perform. It is clear that

stowing a container into a slot which is different from that reported in the

stowage plan, has a chain repercussion to next ports in the ship route. Dif-

ferent causes can lead to this situation. For example, to avoid cranes’ work

stoppage, the deckman can accept the loading of a container j before con-

tainer l, although the stowage plan indicates that j should be stowed on the

top with respect to l. At the next port, where containers j and l have to be dis-

charged, the planners expect to discharge j before l. If the scheduling models

are used to plan SCs moves, wrong release and due dates will be assigned

to j and l, with the consequence that the moves of SCs could not respect the

predefined schedule.

As far as regards the second assumption, usually the stowage plan is used

to determine the blocks in the yard where to allocate groups of homogeneous

containers (see Moccia and Astorino (2007) on these topics). The precise po-

sition within a block (identified by a triple: bay, row and tier) may be as-

signed to ingoing containers only after they have been really discharged and

checked. This is to say that the information needed to make possible the use

of the scheduling models is completely available only when containers are
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into the crane buffers.

To derive dispatching models which do not use the discussed hypothesis,

let H = [0,h] be the planning horizon and τ ∈ H the time when an SC, say c,

has finished the move of a previously assigned container. At this time a new

move, among the available ones, must be decided for c. Of course, the best

choice for c, minimizing its next empty travel, can be done. However, taking

a decision only for a single SC could result in a wrong strategy, as it can be

seen by the example in Figure 3.2. At time τ the SC c1 has finished to move

the container j1, wile c2 is still moving j2. Suppose that the next containers

to be transported to the crane buffers are j3 and j4 (σ j1 j3 ≤ σ j1 j4 , σ j1 j4 ≤ σ j2 j4 ,

and σ j1 j3 ≈ σ j2 j3) and that their due dates are sufficiently large so that no

delay is incurred whatever SC will move them.

QC1

SC c1

j1

j3

j4

QC2

SC c2

j2

Figure 3.2: The lookahead policy.

Clearly the (locally) best choice for c1 is to move j3, while the solution

minimizing the sum of the empty travels is obtained by assigning j4 to c1

and j3 to c2. It turns out that to avoid these myopic choices, the next move

for c1 must be decided contextually to possible next moves of all other SCs.

This means that at time τ we are assigning certainly the next move to a SC and

we are also trying to assign next operations to SCs which are still performing

the moves previously decided for them (Lookahead Policy). These further de-
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cisions could be updated, if needed, at the next breakpoint, i.e. at time τ1 > τ

when another container move will be completed. One of the main benefits

of this policy relies in a possible dynamic adjustment of all model parameters

which have been assumed to be constant in the scheduling framework (crane

productivity, average speed of SCs). By this way the dispatching model re-

sults to be more faithful to the real process.

To formalize these ideas, we have to extend our notation, suitably defin-

ing containers, buffers and SCs attributes varying with the time. Let Jl
q(τ),

Jd
q (τ), be, respectively, the sets of outbound and inbound containers, in the

sequence of the QC q, which are ready to be moved at time τ , and

Jl(τ) = ∪q∈QJl
q(τ)

Jd(τ) = ∪q∈QJd
q (τ)

More precisely, at the time τ , the containers in Jl
q(τ) are still in the yard, those

in Jd
q (τ), already discharged, are still in the buffer of q. Therefore we can set:

r j(τ) = 0 ∀ j ∈ Jl(τ)∪ Jd(τ) (3.30)

Denoting by bq(τ) the number of containers in the buffer of q at the time τ ,

we can also define the dynamic due dates of containers in Jd(τ) as follows:

d j(τ) = τ +(bq−bq(τ))t̄q + p j ∀ j ∈ Jd
q (τ),q ∈ Q. (3.31)

For the containers in Jl(τ), let j be the i-th container to be handled by q. Then

we set

d j(τ) = τ̄q +(i− k−1)t̄q ∀ j ∈ Jl
q(τ),q ∈ Q (3.32)
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where k is the position index, in the working sequence of crane q, of the last

container handled by q, and τ̄q its completion time. We note that the dynamic

due dates obtained by (3.31) and (3.32) are more reliable then those computed

by the respective static definitions (3.2) and (3.1), since they include current

values instead of estimated values of the process parameters. Furthermore,

they reduce to the static due dates whenever nor delays neither unforeseen

events occurred in the work of both cranes and straddle carriers, from the

time 0 to the time τ .

Let us sort the containers in Jl(τ)∪ Jd(τ) in increasing order of their due

dates. At the time τ , the first |C| containers in this ordered list define the set

of “forthcoming containers”: J(τ). Then we are able to define the following

quantities:

• ρc ≥ 0 the residual time the SC c needs to complete the move previously

assigned to it (its current move);

• σc j ∀c ∈C, j ∈ J(τ), the time needed to the SC c for the empty travel

between its final position (i.e. the position where c will end its current

move) and the starting position of container j;

• γc j ∀c ∈C, j ∈ J(τ), the time when the move of container j would end

if performed by the SC c (completion time of j if moved by c). It can be

expressed as:

γc j = τ +ρc +σc j + p j (3.33)

Introducing the decision variables xc j ∈ {0,1} ∀c ∈C, j ∈ J(τ), where xc j =

1 if the SC c performs the move of container j, and xc j = 0 otherwise, the

decision problem to be solved at the time τ can be modeled as the following
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Assignment Problem with side constraints AP(τ):

min ∑
c∈C

∑
j∈J(τ)

σc jxc j (3.34)

∑
j∈J(τ)

xc j = 1 ∀c ∈C (3.35)

∑
c∈C

xc j = 1 ∀ j ∈ J(τ) (3.36)

(γc j−d j(τ))xc j ≤ 0 ∀c ∈C, j ∈ J(τ) (3.37)

xc j ∈ {0,1} ∀c ∈C, j ∈ J(τ) (3.38)

Constraints (3.35) and (3.36) in the above model are standard assignment

constraints; constraints (3.37) force the variable xc j to be zero if the straddle

carrier c is not able to complete the move of container j within the due date

d j(τ). The objective function is the sum of the empty travel times. Therefore,

solving the problem AP(τ) is equivalent to find, at the time τ , for the forth-

coming containers J(τ), the dispatching strategy which minimizes the empty

travel times, while ensuring no idle times for the quay cranes. In other words,

it is the “real time version”of the model F2.

As for the model F2, the due dates d j(τ) are playing the role of deadlines

on the completion time of the moves: this could lead, quite often, to unfea-

sible problems. For this reason, we prefer to relax the deadline constraints,

putting them in the objective function and weighting their violation by suit-

able penalty coefficients, in a Lagrangian Relaxation fashion.

In order to simplify the notation, in what follows we will omit the de-

pendence from the time if not strictly necessary: it should be clear that, in

the context of a real time model, all parameters are dynamically computed or

updated, and, in the problem AP(τ), their values are function of τ . Consider
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the following constraints:

∑
c∈C

γc jxc j ≤ d j ∀ j ∈ J(τ) (3.39)

For binary xc j satisfying the assignment constraints (3.35), they are equiva-

lent to constraints (3.37), eventhough they are weaker (in fact they are im-

plied by (3.37) and (3.35)). Constraints (3.39) are suitable for dualization; for

each choice of multipliers µ j ≥ 0 ∀ j ∈ J(τ), we can define the Lagrangean

Relaxation :

min ∑
c∈C

∑
j∈J(τ)

σc jxc j− ∑
j∈J(τ)

µ j(d j−∑
c∈C

γc jxc j)

∑
j∈J(τ)

xc j = 1 ∀c ∈C

∑
c∈C

xc j = 1 ∀ j ∈ J(τ)

xc j ∈ {0,1} ∀c ∈C, j ∈ J(τ)

Thanks to constraints (3.36), on the feasible region the Lagrangean objective

function can be rewritten as follows:

min ∑
c∈C

∑
j∈J(τ)

λc jxc j (3.40)

where

λc j = σc j +µ j(γc j−d j) (3.41)

Note that Lc j = γc j−d j is the Lateness of the container j if it is moved by the

SC c : thus, replacing, in the problem AP(τ), the original objective function

(3.34) with the Lagrangean function (3.40), is equivalent to reward the assign-

ment of container j to the SCs c which will move it on time, and to penalize
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the assignment to those which will cause a delay. Therefore, at each break-

point τ , the dispatching strategy will be obtained by solving the following

relaxed assignment problem:

min ∑
c∈C

∑
j∈J(τ)

λc jxc j

∑
j∈J(τ)

xc j = 1 ∀c ∈C

∑
c∈C

xc j = 1 ∀ j ∈ J(τ)

xc j ∈ {0,1} ∀c ∈C, j ∈ J(τ)

(3.42)

where λc j are defined in (3.41).

As far as concerns the definition of the multipliers µ j, we set:

µ j(τ) =
1

d j− τ
∀ j ∈ J(τ) : d j > τ (3.43)

The above formula can be motivated by noting that:

• for fixed τ , the multipliers of containers j ∈ J(τ) are inversely propor-

tional to their due dates d j;

• for a fixed container j, the multiplier µ j is increasing with respect to τ .

Of course, (3.43) can not be used if d j ≤ τ , since the corresponding multi-

plier would result to be either undefined or negative. However, if the condi-

tion d j ≤ τ holds for some j ∈ J(τ), then those containers are definitely late,

and what we can do at best, at the time τ , is to force the SCs of the pool

to move them as soon as possible. For this reason, when the set of the “ex-

pired”containers at the time τ is not empty, i.e.:

E(τ) = { j ∈ J(τ) | d j ≤ τ} 6= /0
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we solve the assignment subproblem on E(τ), with cost coefficients γc j (so as

to minimize their completion time).

3.5 Computational Experience

In this section we report on the computational experience, aimed at val-

idating the proposed scheduling and dispatching models for the SCPP. We

have based our analysis on the historical data retrieved from the database

of the Gioia Tauro Container Terminal, where all information on containers’

movements are stored. This allows us to compare performance of the gang

modality adopted in the past for the SCs with the pooling modality proposed

in our approach. Of course this comparison allows to highlight only the po-

tential benefit of the new modality, since it is applied to the historical data of

the containers’ movements. We first describe the features of the test instances

and how they have been constructed; then we discuss the numerical results.

3.5.1 The Test Problems

We have derived the test problems, with different and increasing dimen-

sions. Among the ships which called the port in April 2005, we have selected,

randomly, two feeder ships and two mother vessels, so that in each class there

were both ships with low and high volume of handled containers. These val-

ues have been fixed up to 60 and 120 containers for feeder ships and up to

300 and 600 containers for mother vessels. The above query, on the termi-

nal historical database, returned four basic instances (A, B, C, D); in Table

3.1 we report their characteristics and the number of SCs which have been

used to perform the quayside transport. The dimension of each gang, or,

equivalently, the number of SCs assigned to each QC, depends on the num-

ber of containers to be handled, but also on contractual clauses between the
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terminal manager and the shipping line. Anyway, to avoid traffic congestion

around the cranes, at most four SCs are assigned to each gang.

Instance Ship |J| |Q| SC
A feeder 40 2 6
B feeder 120 2 6
C mother 200 4 12
D mother 540 4 12

Table 3.1: Characteristics of the basic test problems.

In order to make the data available for the scheduling models, as de-

scribed in Section 3.3, some parameters must be set beforehand. In particular

we refer to the earliest availability time of cranes t0
q , their work speed t̄q, and

the capacity of their buffers bq. Moreover, since we know the starting and

final positions of each handled container, we must translate these distances

into time values. To this aim we have set

p j =
|XS( j)−XF( j)|+ |YS( j)−YF( j)|

v̄
+ tpr ∀ j ∈ J (3.44)

σi j =
|XF(i)−XS( j)|+ |YF(i)−YS( j)|

v̄
∀i, j, i 6= j ∈ J (3.45)

where (XS(),YS()), (XF(),YF()) are, respectively, the starting and final xy-coor-

dinates of each container (available in the database), v̄ is the average speed of

a straddle carrier and tpr its pick up-release time. The value of these parameters

are summarized in Table 3.2.

Entries in Table 3.2 deserve some comments. First we note that there are

two values for t0
q ; the null value is given to all cranes which start their work

sequence with the unloading phase, while we let loading cranes to start at

360 s, in order to cope with the natural transient phenomena (some containers

must be in the buffers, before cranes can start to load them). The value for

t̄q corresponds, in practice, to consider a working rate of 24 moves per hour,
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Parameter Value
t0
q 0 or 360 s
t̄q 150 s
bq 5
v̄ 4 m/s

tpr 60 s

Table 3.2: Parameter values.

which is the average QCs productivity at Gioia Tauro, but also at many of the

most efficient container terminals in the world. The average speed value for

the SCs has been retrieved by the terminal database.

Finally, the adoption of the L1 norm in the expressions (3.44) and (3.45),

gives a good approximation of the real route travelled by the SCs, since they

are constrained to move along straight lines, due to the yard layout.

The solution approach to the scheduling models, described in Section 3.3,

is based on a Rolling Horizon strategy. This is equivalent to decompose each

problem in several subproblems of smaller size, characterized by the same

number of machines, but a smaller number of jobs. The reason for this choice

is the inherent computational complexity of the problems under considera-

tion (it is well known that they are N P − hard) and the big size of the real

instances (thousand of variables and constraints). However this approach is

quite reasonable, since ship operation is a dynamic process in practice and,

thus, demands online optimization. Therefore, taking decisions about con-

tainer moves which are faraway to be performed, could be not only unnec-

essary but also poorly meaningful. Moreover, as for the real-time model, the

rolling horizon strategy allows to update, whenever needed, the equipment

working rates (average speed of SCs and average productivity of QCs), al-

though in our experiments they have been kept constant.

The width h of the rolling horizon, that is the number of containers that
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should be considered in each subproblem, has been assumed to be either

equal or two times the number of straddle carriers in the pool. As far as

concerns the pool size, we have conducted some computational experiments

in order to verify the expected reduction, with respect to the gang modality,

discussed in the Introduction. We have observed that a pool of SCs obtained

as a simple merging of the gangs allocated to a containership is oversized:

some of them would not be used. Therefore, we have defined |C|, starting

from Table 3.1, so as to save a straddle carrier for each two cranes.

The above arguments lead to eight test instances, whose features are re-

ported in Table 3.3, which have been used to validate the Rolling Horizon

strategy on scheduling models F1 and F2. The dispatching model has been

tested on the corresponding instances defined in Table 3.1, where we set the

pool size (|C|) as in Table 3.3. The results are discussed in the following sub-

section. Here we want just to observe that the validation of the proposed

routing strategies with respect to the gang modality, is based on a single per-

formance index, i.e. the reduction of the empty travels:

∆ET =
ET (gang)−ET (pool)

ET (gang)
(3.46)

where ET (•) is the total empty traveled distance in the corresponding op-

erational modality for the SCs. There is a twofold reason for this choice:

ET (gang) is the only one indicator we are able to compute from the histor-

ical database which is not affected by aleatory phenomena (as in the case of

time-based indicators) and, moreover, it is one of the most relevant indicator

for the terminal manager.

3.5.2 Computational Results

We have coded the Rolling Horizon algorithm and the Dispatching heu-

ristic in C++, adopting CPLEX 10.1 with Concert Technology to solve each
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Instance |J| |Q| |C| h
A1 40 2 5 5
A2 40 2 5 10
B1 120 2 5 5
B2 120 2 5 10
C1 200 4 10 10
C2 200 4 10 20
D1 540 4 10 10
D2 540 4 10 20

Table 3.3: Features of the test problems.

scheduling subproblem as well as the relaxed assignment problems (3.42).

We have run our experiments on a machine equipped with one Intel Xeon

3GHz processor and 4 GB of RAM, giving to CPLEX a time limit of two hours

for solving each subproblem generated by the Rolling Horizon algorithm.

The results are summarized below in Tables 3.4 and 3.5. In both tables

we report the reduction in empty travels with respect to the gang modality

(∆ET (%)); in Table 3.4, related to the scheduling models, the number of sub-

problems generated (N), the number of those optimally solved (N∗), and the

average Gap (Ḡ), are also shown.

The most evident result in Table 3.4 is the high computational complexity

of the scheduling models, despite of the small dimension of the subprob-

lems in which they have been decomposed: very often CPLEX fails to find

the optimal solution within the wide time limit (see Instances C2 and D2).

We have observed that when CPLEX returns a non optimal solution for the

model F1, the GAP((UB− LB)/UB) is always 100%; this is because, during

the exploration of the Branch-and-Bound tree, it has not been able to improve

the lower bound at the root node, which is, trivially, zero. As a consequence,

even when the number of subproblems not solved at optimality is small, the

resulting average GAP is relatively high.
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Model F1 Model F2
Instance N N∗ Ḡ ∆ET (%) N∗ Ḡ ∆ET (%)

A1 8 8 0 14 8 0 32
A2 4 4 0 16 3 15 32
B1 24 24 0 12 24 0 26
B2 12 12 0 16 10 10 24
C1 20 17 15 10 3 71 22
C2 10 7 30 10 0 75 22
D1 54 54 0 6 5 85 14
D2 27 16 41 2 0 87 14

Table 3.4: Comparison of computational results on scheduling models.

The entries in Table 3.4 show that model F2 outperforms F1, in terms

of solution quality, also when for both models only feasible solutions have

been found. As disclosed in Section 3.3, the superiority of F2 over F1 is due

to the definition of the objective function. In the former we explicitly min-

imize the sum of the empty travels, while in F1 this is done implicitly via

the minimization of the total tardiness. On the other hand, comparing the N∗

columns, F1 seems to be “easier”to solve than F2. In both cases, however,

a sensible reduction in the empty travels can be observed, although this re-

duction deteriorates for instances D1 and D2, because of the small number of

optimally solved subproblems.

A part from highlighting the superiority of the pooling over the gang

modality, the computational experience on the scheduling models also help

us to evaluate the performance of the Real Time model, whose results are

shown in Table 3.5. As expected, the reduction of the empty travels is lower

than that obtained by the scheduling models. However it is fair to recall that

the aim of a dispatching model is not to optimise a merit function, but to give

simple and, in the same time, effective rules, in order to dynamically manage

a complex system.
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Instance ∆ET (%)

A 12
B 8
C 6
D 4

Table 3.5: Dispatching Model - Computational Results.

We want to point out that the figures in the above tables are related to

relatively small cases: the instance D, where ten straddle carriers are used

to move 540 containers, corresponds to about a quarter of a working day.

Therefore one should translate them in a more wide context, where thousand

of container must be, daily, moved and a little unit saving gives rise to re-

markable economic benefits to the terminal managers.

These arguments and the saving in the number of straddle carrier used to

perform the quayside transport, should validate the reliability of the pooling

strategy.





Chapter 4

Optimizing Yard Assignment at

an Automotive Transshipment

Terminal

4.1 Problem description

An automotive transshipment terminal manages large flows of incoming

and outgoing cars. The cars arrive and depart by ships in large batches in a

given planning period, and the yard planners have to dynamically assign in-

coming cars to the yard that is made up of rows of varying lengths. The main

objective is the minimization of the total handling time. In order to reduce

the risk of damage, once assigned to parking rows, the cars are not relocated

inside the yard, i.e. their initial yard position is not modified during their du-

ration of stay. This “no-relocation” rule, combined with the low density of the

yard, increases the importance of optimal yard assignment. Cars are trans-

ported from the quay to their parking slot by drivers organized in groups of

5 or 6, dedicated to a taxi responsible for the relocation of the group. In the
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following a set of cars that arrive and depart by the same vessel pair, and are

of the same type (model and brand) will be called a group. To facilitate the

yard management and the driver busing process, a group is allocated to a

set of adjacent parking rows. The number of required rows depends on the

car length and on the row length. Yard managers prefer not to share a row

between different groups, which often results in partially empty rows.

This study was motivated by an application at the BLG Italia automotive

transshipment terminal which operates in the port of Gioia Tauro located in

southern Italy, on the West coast. The automotive terminal handles 75000

cars per year. The yard is spread over an area of 11 ha, and its 374 parking

rows have lengths varying from 50 to 70 meters. Figure 4.1 provides an aerial

view of the terminal and highlights the two main yard areas. Mother vessels

unload cars while berthing at the quay on the right of Figure 4.1, and feeder

vessels load cars while berthing at the quay on the left of Figure 4.1. The

Figure 4.1: Aerial view of the BLG Italia terminal, port of Gioia Tauro

remainder of this chapter is organized as follows. We present in Section 4.2

an optimization model for the yard allocation process, and we analyze the

computational complexity of the problem. Two integer linear programming

formulations and model extensions are discussed. The relationships between

the yard assignment problem and other known problems are investigated

in Section 4.3. We describe in Section 4.4 a metaheuristic algorithm for our
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problem, while Section 4.5 presents computational experiments followed by

some conclusions.

4.2 Optimization Model

We first introduce the notation used to derive integer linear programming

formulations for our problem. We then discuss the computational complexity

of the problem and some extensions.

4.2.1 Notation

The problem is defined on a time horizon discretized in |T | time steps

indexed by t ∈ T = {1, ..., |T |}. The set of groups to allocate during the time

horizon is indicated by K = {1, ..., |K|}, and R = {1, ..., |R|} is the set of parking

rows. The data related to groups are:

• nk, number of cars in group k;

• vk
r , maximum number of cars of group k that can fit in row r;

• ak ∈ T, arrival time of group k;

• bk, departure time of group k;

• ok, quay unloading position of group k;

• dk, quay loading position of group k;

• ck
a, largest admissible handling time when unloading group k;

• ck
b, largest admissible handling time when loading group k.

The considered groups are those arriving inside the time horizon, and the

departure time of a group may exceed the time horizon.
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Rows are numbered in their filling direction, i.e. if row r is filled before

row s then r < s. The row ordering is such that if rows r and s are adjacent

and r < s, then s = r+ 1. We will consider later in this section the case of an

“ending-row” arising when a given row r does not have an adjacent row in

the filling direction. In the following we assume that there always exists an

adjacent row. For each group k we have to find a set of free adjacent rows

of sufficient capacity. Since we consider parking rows of varying lengths,

the number of required rows is variable as well. In other words, if r is the

first row in the filling direction assigned to group k, then the last row will be

r+qk
r −1, where qk

r is the smallest positive integer value satisfying

qk
r−1

∑
α=0

vk
r+α ≥ nk.

The qk
r value expresses the number of rows needed by the group k when the

first row of the group is r, i.e. the group would occupy the row interval

Fk
r defined as Fk

r = {r,r+ 1, ...,r+ qk
r − 1}. Analogously, we denote by uk

s the

number of rows that group k will require if s is the last row of the group, i.e.

uk
s is the smallest positive integer value satisfying

uk
s−1

∑
α=0

vk
s−α ≥ nk.

Consequently, we have the row interval Bk
s = {s−uk

s +1,s−uk
s +2, ...,s}which

is equivalent to Fk
r whenever r = s− uk

s + 1. Since the qk
r and uk

s values are

related to the filling direction, we refer to them as “forward row request”,

and “backward row request”, respectively. For notational compactness, we

define the following sets:

• T (k) = {t ∈ T : ak ≤ t ≤ bk},∀k ∈ K, the set T (k) represents the duration

of stay of group k in the planning horizon;
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• K(t) = {k ∈ K : t ∈ T (k)},∀t ∈ T, groups that are in the terminal at time

step t;

• Ka(t) = {k ∈ K : t = ak},∀t ∈ T, groups that arrive at the terminal at time

step t;

• Kb(t) = {k ∈ K : t = bk},∀t ∈ T, groups that leave the terminal at time

step t.

The set of feasible first row assignments for a group k is denoted by R(k)⊆ R.

The set R(k) handles some aspects of the planning problem in a rolling hori-

zon framework. In fact, the assignments must comply with rows occupied by

groups already in the yard at the first time step. Therefore, these pre-assigned

groups are taken into account in the definition of the sets R(k).

The “ending-row” case is now treated by considering as infeasible an as-

signment of a group k to a first row r such that qk
r > 1 and the set {r,r+1, ...,r+

qk
r−2} contains an ending row. Let R̄⊂ R be the set of ending rows. We define

as R(k) the subset of R such that there does not exist an intermediate ending

row for any assignment of k to r ∈R(k), i.e. R(k) = {r ∈R : Fk
r \{r+qk

r−1}∩ R̄=

/0}.
With this notation we can characterize the assignment of a group by its

assignment to a first row. Our decision variables are:

• yk
r ∈ {0,1},k ∈ K,r ∈ R(k), yk

r = 1 if the first row of the group k is r, i.e.

the group occupies the row set {r,r+1, ...,r+qk
r −1}.

The assignment of row r as the first row for group k, i.e. yk
r = 1, forbids some

assignments of groups to rows. The affected groups are those that are present

in the yard during the stay of group k, i.e. groups h such that T (k)∩T (h) 6= /0.

Any such group h cannot be assigned to any row s that interferes with group

k. A forbidden row s for h is such that Fk
r ∩Fh

s 6= /0. We define the set Φ as the



78 Chapter 4 - Optimizing Yard Assignment at an Automotive Transshipment Terminal

set of quadruples (k,r,h,s):

Φ = {(k,r,h,s) : k,h ∈ K,h > k,r ∈ R(k),s ∈ R(h), Fk
r ∩Fh

s 6= /0, T (k)∩T (h) 6= /0}.

A quadruple (k,r,h,s) belonging to Φ indicates that the variables yk
r and yh

s

cannot be both equal to one.

We now introduce the data required for the objective function of our prob-

lem. Since we want to minimize the total handling time, we define as cvz the

handling time required to move a car between v ∈ R∪O and z ∈ R∪D, where

the set O represents the unloading positions O =
⋃

k∈K{ok}. Similarly we in-

dicate by D the set of loading positions, D =
⋃

k∈K{dk}.
Our decision variables induce cost coefficients defined as follows:

• ck
okr, unloading handling time for the group k when the first assigned

row is r:

ck
okr = ∑

qk−2
α=0 cok,r+αvk

r+α + cok,r+qk−1(n
k−∑

qk−2
α=0 vk

r+α).

• ck
rdk , loading handling time for the group k when the first row is r:

ck
rdk = ∑

qk−2
α=0 cr+α,dk vk

r+α + cr+qk−1,dk(nk−∑
qk−2
α=0 vk

r+α).

These cost coefficients are used in the objective function. Observe that the

loading handling time is defined for all groups, hence also for those leaving

the terminal after the end of the planning horizon. Thus we account for a

future loading handling time in the current planning horizon. Moreover, these

cost coefficients are used to define the set of feasible assignments R(k). A row

r does not belong to R(k) whenever ck
okr > ck

a or ck
rdk > ck

b. We observe that this

models loading and unloading priorities. The ck
a (respectively ck

b) coefficient

of a group k can be set to smaller values to ensure that the group k is assigned

to rows closer to the unloading (respectively loading) quay position. This

results in user-controlled parameters to specify group priorities, since closer

rows mean shorter handling times.
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4.2.2 Integer linear programming formulations

We can now formulate our problem, hence called the adjacent row dy-

namic assignment problem (ARDAP), by means of the following model F1:

minimize ∑
k∈K

∑
r∈R(k)

(ck
okr + ck

rdk)yk
r (4.1)

subject to

∑
r∈R(k)

yk
r = 1 ∀k ∈ K, (4.2)

yk
r + yh

s ≤ 1 ∀(k,r,h,s) ∈Φ, (4.3)

yk
r ∈ {0, 1} ∀k ∈ K,∀r ∈ R(k). (4.4)

The objective function (4.1) minimizes the sum of the handling times. The

constraints (4.2) state that each group k must be allocated to one and only

one admissible first row r, since r must belong to R(k). The feasibility of the

assignment is guaranteed by constraints (4.3) which forbid pairs of incom-

patible assignments as defined by the set Φ.

The model uses |K| × |R| binary variables and the number of constraints

is O(|K|+ |K|2×|R|2). We can obtain a more compact model F2 by replacing

constraints (4.3) with

∑
k∈K(t)

∑
s∈Bk

r

yk
s ≤ 1 ∀r ∈ R,∀t ∈ T. (4.5)

Indeed, for a given k ∈ K(t) the variables yk
r−uk

r+1, ...,y
k
r are such that if one of

them is equal to one, then the row r is used by group k as first row (the case

yk
r = 1), or as last row (the case yk

r−uk
r+1 = 1), or as intermediate row in the

other cases. Thus, constraints (4.5) state that if row r is used by a group at
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time step t, but not necessarily as a first row, then its use is forbidden for all

other groups staying in the yard at that time step.

The new model F2 still has |K|×|R| binary variables, but the number of its

constraints is now O(|K|+ |T |× |R|). We found that model F1 can only solve

small instances, whereas we are able to solve model F2 for larger instances.

We will present this comparison in Section 4.5.

4.2.3 Computational complexity

In the following we prove that ARDAP is strongly N P-hard.

Theorem 4.2.1. ARDAP is strongly N P-hard. Proof — We prove this

result by showing that the generalized assignment problem (GAP), which is

is strongly N P-hard, is a particular case of the ARDAP. In the GAP the aim

is to determine a minimum cost assignment of a set of weighted items to a set

of knapsacks (Martello and Toth, 1992). Let N = {1, ...,n} be the set of items,

and M = {1, ...,m} the set of knapsacks. We indicate by ci j the assignment cost

of item i to knapsack j, by wi j the weight of item i when assigned to knapsack

j, and by Wj the capacity of knapsack j. An equivalent ARDAP instance can

be defined as follows:

• an item i corresponds to a group k and vice versa, i.e K = N, and in the

following we equivalently refer to items or groups;

• the ARDAP time horizon consists of only one time step, |T |= 1, and all

groups defined above arrive and leave the terminal at this time step, i.e.

K(1) = K;

• the number of rows is equal to the sum of the knapsacks capacities,

|R|= ∑ j∈M Wj;
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• we partition the set R into m subsets S j, j ∈ M: S j = {r j, ....,s j}, where

r j = ∑
j−1
l=1 Wl + 1 and s j = r j +Wj− 1, i.e. |S j| = Wj; in the following we

denote these sets as artificial knapsacks;

• the group forward row request qk
r is constant for the row belonging to a

given subset S j, and it is equal to the corresponding weight of the item:

qk
r = wk j,∀r ∈ S j, j ∈M; similarly, the group backward row request uk

s is

equal to the weight of the item in each subset S j;

• the group to row assignment cost ck
okr + ck

rdk is constant for the row be-

longing to a given subset S j, and it is equal to the corresponding cost of

the item, i.e ck j,∀r ∈ S j, j ∈M;

• the set R(k) is constructed so as to avoid assignments of group k to rows

that would exceed the capacity of the artificial knapsack: row r /∈ R(k)

if there are two artificial knapsacks j and l such that Fk
r ∩ S j 6= /0 and

Fk
r ∩Sl 6= /0.

The procedure outlined above constructs an ARDAP instance equivalent to

a GAP. An optimal solution for this ARDAP instance could be polynomially

transformed into an optimal solution for the GAP. Therefore, if there exists

a pseudo-polynomial algorithm A for the ARDAP, then A would solve the

GAP as well. Since the GAP is known to be strongly N P-hard, the result

follows. �

4.2.4 Extensions of the model

In real-life, yard assignment decisions are made on a daily basis by the

yard planner who knows with a high degree of reliability the list of calling

vessels and the groups of cars that will arrive and depart within a planning

horizon of one week. Data regarding the following weeks are considered to

be insufficiently reliable for yard planning. Every day the planner assigns
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the groups expected to arrive within the planning horizon, but assignment

for an incoming group can change between two subsequent plans. The fi-

nal assignment is determined upon the arrival of the group. In this sense, the

yard management operates according to a rolling horizon framework. This dy-

namic setting, and the favorite policy of assigning a group to adjacent rows

can cause infeasibilities because of yard fragmentation. This occurs when-

ever the number of free rows is at least equal to the number of requested

rows, but is insufficient to park the cars according to the favorite “adjacent

rows” policy. Whenever this situation occurs the yard planner must deter-

mine a configuration amenable to the favorite policy. He can decide to break

an incoming group into smaller ones, or to relocate some groups of cars. This

last option is the least preferred and it is avoided as much as possible.

We have devised a modification of the objective function in order to con-

sider this issue. The idea consists in favoring yard plans that have a large set

of free adjacent rows at the end of the planning horizon. Thus, the fragmen-

tation risk is minimized when the new plan is drawn on the following day.

Let Lt be the largest total length of free adjacent rows at time step t in a given

yard plan. Then, the modified objective function is

minimize ∑
k∈K

∑
r∈R(k)

(ck
okr + ck

rdk)yk
r − γ1L|T |, (4.6)

where γ1 > 0. In Section 4.5 we will highlight the tradeoff between minimiz-

ing handling times and minimizing fragmentation.

The yard planner faces another set of issues related to manpower plan-

ning. Whenever the handling activities are low, he can choose assignments

of incoming groups to less favorable positions, i.e. more distant ones. This

strategy could result in an advantage because positions that are closer to the

quay, and thus more favorable, are left free for busier periods. It is then of

paramount importance to profile the level of handling activity in the termi-



83

nal as a result of the yard allocation process. The concept of resource pro-

file of planning activities upon shared terminal resources was introduced by

Won and Kim (2009), and was also used by Giallombardo et al. (2010) for

quay cranes in berth allocation plans. At time t the total handling induced

by yard allocation is equal to ∑k∈Ka(t) ∑r∈R(k) ck
okry

k
r +∑k∈Kb(t) ∑r∈R(k) ck

rdk yk
r . We

have added the following additional term to the objective function in order

to obtain “close to desired” handling profiles:

γ2 ∑
t∈T

[
∑

k∈Ka(t)
∑

r∈R(k)
ck

okry
k
r + ∑

k∈Kb(t)
∑

r∈R(k)
ck

rdk yk
r −Ht

]+
. (4.7)

Here we indicate by Ht the largest desired handling value at time t. Thus

(4.7) is the sum of the positive deviation from the desired handling profile.

The positive weighting factor γ2 is used to control the relative importance of

this term of the objective.

The model can be solved iteratively by using arbitrarily large Ht values at

the first iteration, which in fact disables the term (4.7). Then, if the planner

prefers to smooth the resulting handling peaks of this first solution, the model

is solved by imposing the desired Ht values. The process is iterated until a

feasible and satisfactory solution has been found.

The model extensions just introduced suggest an iterative use of the mo-

del under different assumptions and input data such as group priorities, fore-

casts, desired fragmentation, desired handling profile, etc. The modified ob-

jective function (4.6), plus the term (4.7), could be incorporated within the in-

teger linear programming formulation by adding proper variables and con-

straints. However, solving this problem exactly is impractical even for the

basic model because of its computational complexity. These are additional

motivations for the metaheuristic algorithm presented in Section 4.4.
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4.3 Relations with other optimization problems

The scientific literature related to the management of container termi-

nal yards is rich and expanding. For reviews see Vis and De Koster (2003),

Steenken et al. (2004), and Stahlbock and Voß (2008). The wide range of con-

tributions is justified by the many possible technological configurations, the

different decision levels (strategic, tactical, operational, real-time), and the

types of container flows (import, export, transshipment) that exist. Automo-

tive terminals can be seen as another type of technological setting. The distin-

guishing features of yard management in automotive terminals with respect

to container terminals have been discussed in Mattfeld and Kopfer (2003),

and Mattfeld (2006). These features derive from the no-relocation policy, and

the low density yard in this type of terminals. Therefore, container terminal

based approaches cannot be straightforwardly applied to this context.

The work of Mattfeld and Orth (2006) is the closest to our study. These au-

thors present a task scheduling and allocation problem in a large automotive

terminal under different assumptions than ours. They differentiate between

inbound storage tasks and outbound retrieval tasks. Both types of tasks must

be executed within given time windows. This flexibility is exploited to han-

dle the objective of leveling manpower utilization. This feature does not arise

in our application because the terminal in our case deals mainly with vessel

to vessel flows, and the arrival and departure times of groups are input data.

Furthermore, in Mattfeld and Orth (2006) the space allocation is modeled

at a more aggregate level than in our model (with knapsack type capacity

constraints). This is justified by the larger and more complex layout of the

terminal of Bremerhaven which serves as a basis for their study. The smaller

size of the Gioia Tauro terminal enables us to optimize the assignment of cars

to parking rows under the favorite policy of adjacent rows for groups.

The ARDAP can be also viewed as a variant of the two-dimensional rect-
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angle packing problem. An assignment of a group to a set of yard rows is

represented by a rectangle with the duration of stay as height and the num-

ber of occupied rows as width. The two dimensions of a bin are rows and

time, and there are as many bins as the number of ending rows. Thus, solv-

ing the ARDAP is equivalent to packing a set of rectangles in several bins

so that placement cost is minimized. Figure 4.2 illustrates the solution of an

ARDAP instance with 20 groups to be allocated on a yard with 374 rows (hor-

izontal axis) in a time horizon of 31 time steps (vertical axis), and with only

one ending row (resulting in one bin). In this instance group 8 arrives at time

0, departs at time 9, and occupies rows 0 to 57. However, the ARDAP ex-

ti
m
e

row

Figure 4.2: Optimal solution of an ARDAP instance in the row-time plane

hibits many differences with respect to classical rectangle packing problems.

The most popular of these problems, see e.g. Lodi et al. (2002), are the bin

packing problem (BPP), and the strip packing problem (SPP), where the ob-

jective function to be minimized is the number of bins (for the BPP), or the
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Figure 4.3: Cost function for each group of the instance depicted in Figure
4.2

height of the strip containing all rectangles (for the SPP). The ARDAP ob-

jective function is different because for each rectangle placement there is a

position specific cost whose sum must be minimized. We also point out that

the placement cost along the row axis is non-convex in our application and is

specific for each group (i.e. for each rectangle). In the following we provide

an illustrative example which needs some additional information about the

application context.

The instance depicted in Figure 4.2 is derived from historical data of the

operational database of the Gioia Tauro terminal. The assignment cost func-

tion is obtained considering the road network of the yard, and Figure 3 de-

picts these cost functions for all groups of this instance. Figure 4.4 illustrates

the yard layout with the parking rows. Filled parking rows are represented as

gray shaded. A similar shade intensity between adjacent rows indicates that
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these rows are assigned to a group of cars. Cars are usually unloaded from

vessels berthing at the North quay (where the vessel on the right of Figure 4.4

is berthed) and loaded in vessels at the East quay (on the left of Figure 4.4).

This results in unloading and loading costs for each assignment of groups to

sets of adjacent rows. In Figure 4.4 we denote as area Ai and area Bi the set

of rows relative to the same quay segment, and Ai is closer to the quay than

Bi is. The set of rows are numbered in increasing order from left to right of

Figure 4.4, with the exception of area B0 which is a special area. This same

ordering is applied to the numbering of individual rows and the rows of type

A have a lower index than those of type B. In order to relate the cost functions

of Figure 4.3 with the layout of Figure 4.4 we mention that the row numbered

as 178 is the last row of area A6 on the right of Figure 4.4. In fact, this row

could be considered as an ending row not adjacent to the row 179 which is in

the area B1 on the left of Figure 4.4. Considering ending rows would cause

discontinuities in the cost functions. We preferred to omit ending rows in

the example for simplicity. This is not arbitrary because the yard planner of-

ten does not enforce the ending row concept and some groups are allocated

following this numbering order.

We can now discuss the impact of these rules on the solution method. The

usual search strategy in rectangle packing heuristics explores the space of

contiguous rectangles because this allows area minimization, but this could

result in non-optimal solutions for the ARDAP. The solution of Figure 4.2 is

optimal even though some rectangles are not contiguous. The optimal solu-

tion tends to assign some rectangles close to positions that would minimize

their cost function, whereas other rectangles are “sacrificed” with different

placements that tend to be as close as possible to other locally minimum po-

sitions. This issue is not particular to this problem. For example, it also occurs

in berth allocation problems where yard costs are considered in the objective

function. For the berth allocation problem see, e.g. Park and Kim (2003),
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A1

A2

A3 A4 A5 A6

B1

B2

B3 B4 B5 B6B0

Figure 4.4: Example of yard allocation at the BLG Italia terminal

Cordeau et al. (2005), Meisel and Bierwirth (2009), and for a recent survey

Bierwirth and Meisel (2010). This is the reason that motivated us to develop

a metaheuristic algorithm that looks for the explicit minimization of the cost

function instead of the used area.

The ARDAP is more similar to the rectangle packing problem with gen-

eral spatial costs introduced by Imahori et al. (2003), and Imahori et al. (2005).

However, the ARDAP exhibits distinctive features: the width of a rectangle

is dependent on the assigned position (the qk
r values in our notation), and

the placement cost also depends on the assigned position. The general pack-

ing problem of Imahori et al. (2003), and Imahori et al. (2005) could handle

the ARDAP artificially by expanding the number of modes of a rectangle.

In the framework of these authors, a rectangle can have different modes, i.e.

dimensions, and mode specific costs. The ARDAP could be modeled by in-
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troducing a mode (r,k) for each r ∈ R(k), and assigning a sufficiently high

value to the cost of assigning a mode (r,k) to a row l with l 6= r. However,

it is clear that these ARDAP specific features (position dependent rectangle

dimensions and position specific costs) render the adaption of an existing

algorithm for the rectangle packing impractical. Another ARDAP feature

which makes the problem more constrained is that a rectangle can only move

horizontally. The vertical placement cannot change since the arrival and de-

parture times are fixed. In view of this, we are interested in exploiting the

features of our problem. In particular, we can use the information of given

duration of stay of groups. We have thus defined search schemes using this

information.

The literature concerning storage assignment for automatic warehouse

systems is also relevant to our problem. For example, an implicit assumption

in yard management is the use of a shared storage policy (as opposed to a dedi-

cated storage policy) whose merits have been discussed in the seminal paper

of Goetschalkx and Ratliff (1990).

In the previous paragraphs we have examined the relationships between

the ARDAP and the GAP. Moccia et al. (2009) have introduced an extension of

the GAP, called the dynamic GAP (DGAP). Like the ARDAP, the DGAP con-

siders a discretized time horizon and associates a starting time and a finishing

time with each task. The ARDAP is more constrained than the DGAP which

allows relocation during the duration of stay of the tasks (groups), whereas

the ARDAP does not. However, the main difference between the two prob-

lems consists in the degree of detail on the spatial allocation: whereas the

DGAP has knapsack-like capacity constraints, the ARDAP defines adjacent

row assignment for each group.
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4.4 A metaheuristic algorithm for the ARDAP

In the following we introduce a metaheuristic algorithm based on the

adaptive large neighborhood search (ALNS) framework. In the ALNS a num-

ber of simple heuristics compete to modify the current solution (Pisinger and

Ropke, 2007). A master level layer adaptively selects heuristics to intensify

and diversify the search. At each iteration a heuristic is chosen to destroy

the current solution, and another is chosen to repair it. The new solution is

accepted if it satisfies the criteria of the local search algorithm chosen at the

master level. The ALNS framework can be applied to a wide class of opti-

mization problems. The adaptive layer chooses the heuristics according to

the scores obtained at previous iterations. We denote the past score of the

heuristic Hi by πi, and the probability of selecting the heuristic H j is

π j

∑
z
i=1 πi

, (4.8)

where z is the number of heuristics. Details about the scores will be given

in Section 4.4.5. In order to solve a given optimization problem using the

ALNS framework one needs to design some destroy and repair heuristics,

as well as a local search framework at the master level. The destroy heuris-

tics remove groups from the yard, and the repair heuristics try to insert them

in new positions. Sections 4.4.1 and 4.4.2 describe these two sets of heuris-

tics. In our ALNS implementation we use a two-phase mechanism. A first

phase looks for feasibility only, whereas the second phase tries to obtain good

quality solutions. The reason for this is that some of our destroy and repair

heuristics are either useful for feasibility or for optimality. We have designed

a first phase in which the criterion for choosing the destroy and repair com-

bination of heuristics is fixed. The algorithm starts by assigning each group

to a dummy position with a high assignment cost. This is the starting in-
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feasible solution. The first phase ends when a feasible solution is obtained,

or the maximum number of iterations has been reached, in which case no

feasible solution has been identified and an error message is returned. After

this first phase, the selection of the destroy and repair heuristics is guided by

the adaptive heuristic selection mechanism described in Section 4.4.5. Each

improving solution is refined by applying a post-optimization procedure to

be presented in Section 4.4.3. The master level local search is described in

Section 4.4.4. Algorithm 3 outlines the ALNS algorithm.

Algorithm 3 ALNS algorithm
1: Construct a starting solution x
2: x∗ = x
3: repeat
4: Choose a destroy heuristic H− and a repair heuristic H+ according to

a given rule (first phase), or according to the probability based on the
previously obtained score π (second phase)

5: Generate a new solution x′ from x using the heuristics H− and H+

6: if x
′
can be accepted then

7: x = x′

8: Update score
9: if f (x)< f (x∗) then

10: Apply a post-optimization procedure
11: x∗ = x
12: end if
13: end if
14: until stopping criterion is met
15: if x∗ is feasible then
16: return x∗

17: else
18: return an error message
19: end if
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4.4.1 Destroy heuristics

A destroy heuristic takes as input a given solution x and determines the

ω groups to remove from the yard, where ω is an input parameter. When

selecting the group to be removed it is important to consider the time relat-

edness of groups. Two groups are considered time related if they are both in

the yard at the same time step, i.e. if T (k)∩T (h) 6= /0. Figure 4.5 depicts an

example of time related groups. The main idea is that by re-assigning a set of

A B

C

D
E

FGH

L M
N

O

t

r

I

Figure 4.5: Example of time related groups in a space-time representation.
D, F, G, H, I and L are the groups related to group C

groups such that each group is time related to at least another group in the

set increases the likelihood of improving the objective function value.

In order to select the groups to be removed, the list of groups is sorted

according to some criterion. The groups are then chosen by scanning the list

and selecting a group with probability p, where p is an input parameter in the

interval (0,1]. This is accomplished by randomly drawing a random number

ρ in (0,1] and comparing it with p. Whenever ρ ≤ p the current group is

chosen from the list; otherwise the next group in the list is considered. The

parameter p plays a randomization role. Whenever p = 1 the groups are se-

lected exactly as in the list order. A smaller value of p increases the probabil-

ity of choosing groups at the end of the list. The removed groups are added

to a destroy set to be used by the repair heuristic that will try to reallocate
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them. Removing a group from the yard corresponds to releasing the yard

rows previously assigned to that group. Algorithm 4 outlines a generic de-

stroy heuristic. We use four destroy heuristics that differ mainly in the sorting

Algorithm 4 Generic scheme of a destroy heuristic
1: Sort groups according to some criterion
2: repeat
3: Select a group k scanning the sorted list according to the randomization

parameter p
4: Add k to Destroy set
5: Remove k from the list, from the current solution x and free yard rows

previously assigned to k
6: Perform some heuristic specific operations
7: until ω groups are removed

criterion of the list of groups. The first is used only at the beginning of the

process, to find a feasible initial solution.

Largest-out heuristic

The largest-out heuristic lists the groups in non-decreasing order of num-

ber of cars, which is a proxy for the number of rows that will be used by a

group. The list is then scanned and a first group is selected with probability

p. We denote the first chosen group as the seed group. As soon as a seed

group is selected, groups that follow in the list are chosen only if they are

time related to the seed group. If the end of the list is reached before selecting

ω groups, then the procedure iterates by choosing another seed group among

the remaining ones in the list.

Time-step destroy heuristic

The purpose of this heuristic is to remove a set of groups that are con-

temporary in the yard. The algorithm randomly chooses a time t, and then
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creates a list of groups such that each group in the list is in the yard at time

t. Whenever the number of groups in this list is less than ω all of them are

added to the destroy set and the procedure iterates by choosing a different

time step. Otherwise, exactly ω groups are selected from the list by using the

randomization parameter p.

Worst-out heuristic

The worst-out heuristic is based on the quality of group-row assignments.

For each group k we define the quality index 4 fk as the difference between

the current assignment cost for the group k and the ideal cost f ∗k . The value

f ∗k is the best assignment cost that the group k could have if the yard was

entirely available, i.e. f ∗k = minr∈R(k){ck
okr + ck

rdk}. The heuristic first chooses

a group k by scanning the list of groups ordered by non-increasing values

of 4 fk . It then chooses groups that are time related to k by scanning the list

starting from a random position. The process is iterated until ω groups are

selected.

Random removal heuristic

This is the simplest heuristic. It randomly selects ω groups to remove

from the yard, the only condition being that a group must be time related to

at least another group already in the destroy set. The aim of this heuristic is

to diversify the search.

4.4.2 Repair heuristics

We now describe two greedy repair heuristics. As mentioned, the first

heuristic is aimed at recovering feasibility. This heuristic is used in the first

phase of the algorithm. The second heuristic tries to balance feasibility and



95

cost minimization and is always applied in the second phase after a feasible

solution has been found.

Largest-first heuristic

The largest-first heuristic exploits as greedy principle the dimension of a

group, defined as the product of the total length of the cars of a group and

their duration of stay expressed in number of time steps. This value is a

proxy for the area of the rectangle in the row-time plane. Observe that in this

plane the spatial dimension is variable, whereas this dimension index has

the advantage of being fixed. The groups are assigned to the yard in non-

increasing order of this index and according to the randomization parameter

p. Every selected group is assigned to the first feasible position in the yard

filling direction. The aim of this heuristic is to minimize the used area in the

row-time plane, which helps reaching feasibility.

Worst-first heuristic

The worst-first heuristic favors the worst allocated groups in order to give

them the opportunity to be assigned first. This algorithm orders the groups

by non-increasing values of4 fk . Groups are chosen by scanning the list with

the randomization parameter p. Once selected, a group is assigned to the

yard at the minimum cost feasible position with probability p, otherwise it is

assigned to the first feasible position in the yard filling direction. Thus, this

heuristic looks at both cost and area minimization.

4.4.3 Post-optimization procedure

Every time an improving solution is found we apply a post optimization

process that removes and then reassigns each group to a more favorable po-

sition, if any. Groups are selected according to non-increasing values of 4 fk .
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The process is iterated until, after a complete scan of the sorted list of groups,

no more improvement has been registered.

4.4.4 Master level local search

At the master level we choose to use simulated annealing as local search

framework. We accept a new found candidate solution x′, given a current

solution x, with probability

e−( f (x′)− f (x))/τ , (4.9)

where τ is the temperature which starts from τstart and decreases at each iter-

ation i according to the expression τi = cτi−1, where 0 < c < 1 is the cooling

rate. We only accept new solutions that have not been accepted before.

4.4.5 Adaptive heuristic selection mechanism

As mentioned, we have designed a first phase in which the criterion for

choosing the destroy and repair combination of heuristics is fixed and it re-

sults in the application of the largest-out (Section 4.4.1) and the largest-first

(Section 4.4.2) pair of heuristics. This is because the largest-out and the largest-

first heuristics is a destroy and repair combination that excels at feasibility,

while the other destroy heuristics and the worst-first repair heuristic (Sec-

tion 4.4.2) are particularly useful for generating good quality solutions. The

adaptive selection mechanism of heuristics is used in the second phase of

the algorithm. It is based on the scores π j assigned to each destroy heuristic.

The repair heuristic is always the worst-first heuristic. To select the destroy

heuristics, we collect the scores, as suggested by Pisinger and Ropke (2007),

over a segment of 100 iterations. The score πi j of a heuristic i in a segment

j is obtained from the score in the previous segment incremented, at each it-
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eration, with the following values depending on the new obtained solution

x′:

• σ1, if x′ is a new best solution;

• σ2, if x′ is better than the current solution;

• σ3, if x′ is worse than the current solution, but it is accepted.

Since we accept only solutions not accepted before, a long term memory

is needed in order to keep track of all solutions already accepted.

4.5 Computational experiments

We now present computational experiments. We first describe how test

instances were generated, we then provide implementations details, and fi-

nally we discuss results obtained with the metaheuristic algorithm and with

a commercial integer linear programming solver applied to the proposed for-

mulations.

4.5.1 Generation of test instances

We have generated a set of 63 instances for the ARDAP problem using

real-life data of the Gioia Tauro terminal. We have considered a time step of

one day and a time horizon of 31 days. This results in a planning horizon of

one month, i.e. four times larger than the usual horizon of one week. The

reasons for this choice are the following:

• A longer planning horizon gives more challenging instances.

• Terminal expansion and volume increase could occur in the future, and

would result in more difficult yard assignment problems.
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• The current practice of planning with a time step of one day could also

change. Container terminals normally plan with a time step equal to

the length of a work shift, which results in four time steps per day, usu-

ally. If the Gioia Tauro terminal were to adopt this practice, the number

of time steps per week would be equal to 28, close to the number con-

sidered in the generated instance set.

• Another change that could require solving larger instances in the length

of the time horizon would be the inclusion in the planning of forecasts

for weeks following the current one.

Furthermore, we observe that one-month instances are useful to assess the

effect of the rolling horizon. By solving the full instance of 31 days we obtain

a lower bound on what can be achieved by solving smaller problems with

one week of time horizon for each day of the month.

At the time of our study, average speeds between yard positions where

not available in the terminal operational database. We have used physical

distances as proxies for handling times. The yard layout is the one described

in the introduction. Each instance was generated by fixing the number of

groups, and generating randomly the values for the numbers of cars and

the duration of stay for each group according to discrete uniform distribu-

tions within historical ranges. Arrival times were considered to be uniformly

distributed in the time period of 31 days, and every group must leave the

terminal during this period. Tables 4.1 and 4.2 report average, minimum,

and maximum values for a set of characteristics of the generated instances.

We indicate by yard saturation degree at a time step the ratio between the

total length of rows required to allocate cars at that time step, and the total

length of the parking rows in the yard. The total length of required rows at

a time t is computed by assigning the groups in the set K(t) to consecutive

parking rows. The sum of the length of the used row defines the total length
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of required rows at the time t. This is clearly an optimistic saturation index

because it does not account for interferences in the spatial allocation due to

the duration of stay of the groups. These 63 instances are the feasible ones

of a larger set. Feasibility was established by running one of the proposed

formulations on the instance set.
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Yard saturation degree Number of cars Duration of stay Number of cars
Instance per time step per time step per group (days) per group

|K| index avg min max avg min max avg min max avg min max
20 1 0.63 0.10 0.85 2390 371 3238 8 2 14 410 27 958

2 0.61 0.15 0.85 2327 564 3261 7 3 16 476 83 993
3 0.62 0.20 0.85 2372 802 3254 6 2 15 503 60 930
4 0.65 0.21 0.86 2490 836 3288 7 1 16 488 13 964
5 0.67 0.20 0.86 2557 790 3297 8 2 15 449 30 973
6 0.64 0.21 0.86 2451 820 3294 6 2 15 501 12 948
7 0.57 0.23 0.74 2204 881 2839 7 1 16 439 13 916
8 0.54 0.22 0.79 2053 853 3021 7 1 15 415 23 941
9 0.59 0.35 0.86 2245 1338 3292 7 1 16 501 46 949
10 0.58 0.21 0.78 2232 808 2967 7 2 16 440 26 936
11 0.57 0.21 0.77 2185 838 2938 7 1 16 468 63 966
12 0.59 0.32 0.80 2261 1224 3046 6 2 15 530 48 999

40 13 0.68 0.03 0.87 2584 122 3257 7 1 16 243 15 470
14 0.64 0.02 0.85 2423 87 3212 7 1 16 239 20 487
15 0.64 0.13 0.86 2423 491 3279 7 1 15 275 23 494
16 0.64 0.13 0.86 2402 491 3276 7 1 16 242 10 497
17 0.67 0.16 0.89 2530 613 3370 7 1 16 245 28 499
18 0.63 0.02 0.92 2371 81 3490 7 1 16 238 10 481
19 0.57 0.20 0.76 2142 767 2876 7 1 16 229 11 482
20 0.59 0.08 0.73 2242 305 2783 7 1 16 222 10 465
21 0.56 0.12 0.81 2110 444 3054 6 1 15 239 13 484
22 0.62 0.14 0.78 2339 538 2961 7 2 15 243 12 483
23 0.61 0.19 0.80 2325 732 3048 7 2 16 233 10 497
24 0.56 0.06 0.81 2121 223 3078 7 1 15 229 10 481

50 25 0.56 0.12 0.77 2095 462 2893 7 1 16 160 20 290
26 0.55 0.07 0.81 2092 255 3022 7 1 15 165 18 295
27 0.58 0.01 0.80 2178 31 2987 7 1 16 162 11 298
28 0.57 0.11 0.77 2151 423 2882 7 1 16 155 13 294
29 0.56 0.06 0.82 2122 243 3065 8 1 16 145 12 293
30 0.56 0.01 0.77 2101 49 2876 7 1 16 154 11 290

Table 4.1: Characteristics of the generated instances, Part I.



101

Yard saturation degree Number of cars Duration of stay Number of cars
Instance per time step per time step per group (days) per group

|K| index avg min max avg min max avg min max avg min max
20 31 0.73 0.38 0.94 2785 1450 3615 7 2 15 572 14 997

32 0.73 0.39 0.94 2771 1514 3604 9 3 16 466 46 956
33 0.77 0.35 0.93 2947 1319 3572 7 2 16 554 56 965
34 0.72 0.24 0.97 2765 930 3715 7 2 16 494 42 986
35 0.72 0.22 0.93 2757 844 3543 7 2 15 527 68 972
36 0.77 0.29 0.88 2935 1124 3381 8 2 14 472 67 985
37 0.68 0.27 0.91 2625 1026 3475 6 2 14 529 17 935
38 0.65 0.21 0.86 2490 836 3288 7 1 16 488 13 964
39 0.67 0.30 0.90 2553 1169 3423 8 1 16 449 49 992
40 0.69 0.26 0.91 2638 996 3474 7 1 15 545 26 970
41 0.69 0.33 0.90 2652 1258 3427 7 2 16 533 13 916
42 0.66 0.32 0.89 2532 1226 3419 7 3 16 465 22 893

40 43 0.73 0.10 0.97 2789 389 3690 7 1 16 281 41 496
44 0.72 0.21 0.95 2742 828 3595 7 2 16 255 18 489
45 0.73 0.24 0.91 2764 939 3435 8 1 16 263 12 495
46 0.72 0.12 0.88 2740 454 3342 7 1 16 263 22 493
47 0.72 0.18 0.98 2746 686 3714 7 2 16 269 18 489
48 0.73 0.10 0.93 2754 383 3519 8 3 16 249 21 476
49 0.68 0.03 0.87 2584 122 3257 7 1 16 243 15 470
50 0.67 0.18 0.92 2534 705 3487 8 1 16 237 16 471
51 0.73 0.24 0.91 2764 939 3435 8 1 16 263 12 495
52 0.67 0.12 0.89 2525 457 3378 7 2 15 254 26 481
53 0.72 0.12 0.88 2740 454 3342 7 1 16 263 22 493
54 0.68 0.17 0.91 2598 628 3462 7 1 15 261 13 484

50 55 0.66 0.09 0.93 2494 343 3497 8 1 16 164 20 299
56 0.68 0.17 0.93 2538 640 3490 8 1 16 163 11 299
57 0.68 0.07 0.93 2556 246 3521 8 3 16 166 19 298
58 0.66 0.12 0.89 2496 455 3349 8 2 16 169 19 300
59 0.67 0.13 0.87 2496 507 3264 8 2 16 165 19 300
60 0.67 0.06 0.92 2515 231 3490 8 3 16 160 19 298

30 61 0.78 0.32 0.96 2979 1205 3660 8 2 16 344 56 599
62 0.78 0.15 0.99 2986 576 3760 8 2 16 327 25 600
63 0.77 0.22 0.99 2954 829 3769 8 2 16 333 50 598

Table 4.2: Characteristics of the generated instances, Part II.

4.5.2 Implementation details

We have implemented the mathematical formulations by using the inte-

ger linear programming solver CPLEX 11.1. When reporting the experiments
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with the two formulations F1, and F2 implemented in CPLEX we denote

their results by the name of the formulation, i.e. F1 indicates the formulation

as well as its CPLEX implementation. We have not tweaked the CPLEX pa-

rameters. We have only set the stopping rule for CPLEX to 3% of the integer

solution gap. The computational experiments were executed on a computer

equipped with two Xeon 3 GHz processors and 4 GB of RAM.

The metaheuristic algorithm was coded in C++. We have executed the

tests for a maximum number of η iterations, and we report the results for

different values of this parameter: η = 50×103 and, η = 200×103. The ALNS

input parameters were determined by some testing on a subset of the in-

stance set. In our tests we have found that good values for the σ parameters

are σ1 = 2,σ2 = 0.1, and σ3 = 0.01. We have used randomly generated integer

values for ω in the interval [min{5, |K| × 0.2]}, ...,min{12, |K| × 0.8}], and the

randomization parameter p was set equal to 0.3. Regarding the master level

simulated annealing parameters, we have used a τstart value such that a new

solution with objective function value differing by 0.5% from the initial fea-

sible solution will be accepted with a probability of 50%. The cooling rate c

was set in such a way that the temperature value at the final iteration is equal

to a given value (1000 in our experiments).

We denote by ALNS the algorithm with the same objective function as

formulations F1, and F2, and by ALNS-RH the modified version with the

objective function (4.6). The γ1 parameter for ALNS-RH was set in such a way

that the second term of the objective function (4.6) is one order of magnitude

larger than the first term.

The metaheuristic algorithm with the objective function of the formula-

tions F1 and F2, and the additional term (4.7) is referred to as ALNS-PS for

its peak shaving capabilities. We will report an example of using this algo-

rithm with the parameter γ2 set equal to one.
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4.5.3 Results

We report in Table 4.3 the comparison between the formulations F1 and

F2. The listed four instances are the only ones out of the 63 instances where

the formulation F1 does not exceed memory limits. For these instances we

report the objective function values at the best found solutions, as well as

the gaps. Here and in the following tables the (percent) gaps are computed

as 100× (upper bound− lower bound)/upper bound. The formulation F2

clearly outperforms F1 and it has been exclusively used in the following ex-

periments.

Tables 4.4 and 4.5 compare F2 and ALNS. We list the lower bounds ob-

tained by F2 at the end of the computation, the computational times, and

the gaps. The metaheuristic algorithm obtains high quality solutions within

short computational times, whereas CPLEX can be rather slow on some in-

stances. Using a larger number of iterations for ALNS (η = 50× 103 versus

η = 200×103) improves solution quality only slightly. This is why in the fol-

lowing experiments we have used η = 50× 103. Formulation F2 is rather

useful in assessing the quality of the metaheuristic because it provides good

lower bounds. However, we already mentioned that the devised solution ap-

proach requires an iterative use of the algorithm for different data assump-

tions, and for the evaluation of different objective functions. Tables 4.6 and

4.7 assess the effect of the rolling horizon. Here formulation F2 and the meta-

heuristic algorithms solve smaller instances with a planning horizon of one

week. The assignments of groups arriving on the first day of the planning

horizon are then fixed, and a new instance is derived as long as the end of

the planning horizon does not coincide with the end of the period of 31 days.

The lower bound for this type of problem is the same of the one computed

by assuming the full month knowledge. Therefore, the solution quality is

measured in terms of the gap with respect to this lower bound. For consis-
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tency, the reported gap for ALNS-RH considers as upper bound the value

of the first term of the objective function only. Because of the rolling hori-

zon framework F2, ALNS, and ALNS-RH present some infeasibility issues,

both F2 and ALNS fail in eighth instances. The modified objective function

of ALNS-RH allows a significant reduction of the number of infeasible so-

lutions which are now only three. However, this advantage comes at the

expense of a noticeable worsening of the handling times. We observe that the

handling times resulting from the rolling horizon are on average four per-

centage points worse than those obtained when the instance is solved with

the full 31 days horizon. This could be defined as the price to pay for the

limited knowledge about the future. When we use ALNS-RH we have an ad-

ditional eighth percentage points worsening which could be seen as the price

of the more prudent assumptions of ALNS-RH. Whether the more costly, but

more resilient yard plans obtained by ALNS-RH are valuable is a decision to

be left to planners’ judgment.

Figure 4.6 illustrates the flexibility given by the objective function term

(4.7) in the ALNS-PS algorithm. The dashed line represents the handling

profile induced by the yard assignment decisions computed by the ALNS al-

gorithm for instance 13. This handling profile has a very high peak of 450000.

By imposing a desired largest handling value of 350000 in the ALNS-PS al-

gorithm we obtain the profile represented in Figure 4.6 by a solid line. This

avoids the high handling peak. However, the yard plan computed by ALNS-

PS has a total handling cost 7.6 percentage points higher than the one com-

puted by ALNS.
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Figure 4.6: Comparison of handling profiles between ALNS and ALNS-PS
algorithms

F1 F2
Instance Objective Time Objective Time

|K| index value (sec) Gap (%) value (sec) Gap (%)
20 3 5179419 798 2.7 5164749 27 2.3

7 4054548 457 1.8 3987629 12 0.0
10 4113687 429 2.0 4082843 27 0.5
42 4678907 1366 0.1 4791606 62 2.4

Average 763 1.6 32 1.3

Table 4.3: Comparison between the formulations F1 and F2 using CPLEX
as integer linear programming solver. The gaps are computed as 100×
(upper bound− lower bound)/upper bound.
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F2 ALNS ALNS
Instance η = 50×103 η = 200×103

|K| index Lower bound Time (sec) Gap (%) Time (sec) Gap (%) Time (sec) Gap (%)
20 1 3992465 106 2.9 30 0.4 163 0.3

2 4682893 75 0.4 30 0.8 159 0.8
3 5043894 27 2.3 32 0.6 172 0.5
4 4840143 108 2.7 30 0.8 165 0.8
5 4453641 209 3.0 32 1.6 172 1.3
6 4928722 112 0.9 32 0.5 172 0.6
7 3987629 12 0.0 32 0.2 189 0.0
8 3734106 13 1.6 40 0.1 175 0.1
9 4710034 17 0.0 36 0.1 175 0.1
10 4060795 27 0.5 49 0.0 180 0.0
11 4368846 13 1.6 51 0.6 181 0.3
12 5064482 13 0.0 48 0.1 194 0.1

40 13 4739218 454 2.4 32 1.5 242 1.4
14 4525567 755 2.9 33 2.0 234 1.6
15 5143900 1410 2.5 32 1.3 219 1.1
16 4662518 306 1.5 33 1.0 244 1.0
17 4722832 1316 0.9 32 1.6 233 1.1
18 4705636 1812 1.0 32 2.3 225 1.7
19 4109508 327 2.1 51 1.8 267 1.0
20 4057705 860 1.9 54 1.9 268 1.7
21 4379150 301 0.5 52 1.0 264 0.6
22 4507207 467 1.0 53 2.5 291 0.6
23 4241235 643 2.7 55 2.3 299 1.5
24 4094234 341 0.9 50 1.1 247 0.9

50 25 3560322 844 2.6 48 2.0 255 2.2
26 3674739 2959 1.6 51 1.3 283 1.2
27 3752604 2847 0.5 52 1.4 278 0.9
28 3448997 2865 3.0 52 2.1 260 2.3
29 3279645 411 2.9 53 2.5 260 1.1
30 3505008 820 2.3 50 2.5 284 1.6

Average 682 1.6 42 1.3 225 1.0

Table 4.4: Computational results, Part I. The gaps are computed as 100×
(upper bound− lower bound)/upper bound.
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F2 ALNS ALNS
Instance η = 50×103 η = 200×103

|K| index Lower bound Time (sec) Gap (%) Time (sec) Gap (%) Time (sec) Gap (%)
20 31 5812495 22 1.6 34 0.4 202 0.4

32 4777588 167 0.8 29 0.5 142 0.5
33 5609889 711 2.0 30 0.7 130 0.7
34 5101031 30 0.0 28 2.2 142 0.2
35 5457213 183 2.4 31 1.4 160 1.2
36 4870599 203 1.1 34 1.8 159 1.3
37 5243680 41 1.6 49 0.4 181 0.4
38 4840143 107 2.7 45 0.8 166 0.8
39 4515430 61 2.2 46 2.4 158 0.9
40 5560969 28 2.8 53 0.7 194 0.7
41 5424514 491 0.8 48 0.4 165 0.3
42 4678045 62 2.4 50 0.4 175 0.3

40 43 5477806 1123 2.0 29 4.0 174 3.8
44 5118623 5290 2.6 29 1.9 200 1.7
45 5284799 7811 1.5 29 1.5 217 1.5
46 5035190 14052 2.9 31 3.0 227 2.5
47 5399131 3686 2.9 29 2.9 176 2.0
48 4881591 18963 1.2 28 5.0 169 4.0
49 4739218 455 2.4 46 1.5 242 1.4
50 4594082 9790 1.7 41 4.1 184 2.9
51 5284799 7832 1.5 43 1.5 218 1.5
52 4851810 377 2.4 42 3.3 191 2.1
53 5035190 14942 2.9 46 3.0 226 2.5
54 5046526 5645 2.8 43 2.0 217 1.4

50 55 3932682 10380 2.4 41 3.9 193 1.8
56 3995910 510 0.5 44 1.6 216 1.6
57 4084447 6736 1.3 43 2.0 182 1.9
58 4030744 817 2.8 47 2.1 220 1.4
59 3962657 7768 1.3 47 2.3 228 1.4
60 3868591 6787 1.3 42 3.6 187 2.3

30 61 5225164 690 2.1 43 4.0 156 2.2
62 5105719 38357 2.6 45 4.5 127 4.3
63 5270800 559 0.4 43 3.7 129 3.0

Average 4990 1.9 40 2.2 183 1.7

Table 4.5: Computational results, Part II. The gaps are computed as 100×
(upper bound− lower bound)/upper bound.
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Rolling horizon
F2 ALNS ALNS-RH

Instance index Gap (%) Gap (%) Gap (%)
1 7.2 4.3 14.8
2 2.9 1.8 8.8
3 4.8 2.0 11.8
4 n.a. 4.0 5.5
5 6.1 5.9 5.2
6 2.9 3.8 9.9
7 1.7 0.1 13.5
8 3.8 0.4 23.0
9 2.6 1.7 18.3

10 12.4 10.0 16.2
11 4.7 5.0 16.2
12 6.3 4.9 12.6
13 7.0 6.7 17.6
14 7.2 4.6 13.4
15 3.9 6.2 10.9
16 10.6 9.2 13.6
17 n.a. n.a. n.a.
18 6.5 6.2 12.6
19 5.1 4.6 11.3
20 6.0 8.2 19.5
21 7.2 3.1 17.1
22 6.8 2.6 20.1
23 7.3 6.8 13.5
24 5.8 7.4 16.8
25 10.2 5.3 14.2
26 9.6 4.1 17.3
27 6.2 5.8 14.6
28 7.8 5.2 13.9
29 11.7 5.8 12.0
30 13.7 6.7 14.7

Average 6.7 4.9 14.1

Table 4.6: Rolling horizon results, Part I. The gaps are computed as 100×
(upper bound− lower bound)/upper bound. We indicate by “n.a.” when-
ever the algorithm fails in obtaining a feasible solution.
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Rolling horizon
F2 ALNS ALNS-RH

Instance index Gap (%) Gap (%) Gap (%)
31 n.a. n.a. 7.0
32 5.5 n.a. 9.7
33 n.a. n.a. 12.3
34 14.7 14.1 8.2
35 7.5 3.5 8.7
36 7.0 3.6 9.7
37 7.7 n.a. 5.4
38 n.a. 4.0 5.5
39 2.8 7.1 8.3
40 4.7 4.0 7.4
41 n.a. n.a. n.a.
42 1.8 3.5 4.9
43 4.7 2.1 16.2
44 7.9 5.7 11.6
45 7.4 3.9 16.3
46 6.4 6.0 12.7
47 8.4 5.3 13.7
48 6.9 7.4 12.2
49 7.0 6.7 17.6
50 8.9 10.0 13.5
51 7.4 3.9 16.3
52 9.4 7.2 12.3
53 6.4 6.0 12.7
54 11.4 6.9 16.0
55 7.8 8.7 18.0
56 7.1 5.4 9.1
57 7.6 6.1 15.3
58 10.5 7.7 16.3
59 7.9 6.3 13.5
60 6.0 7.0 15.4
61 5.5 8.8 11.4
62 n.a. n.a. n.a.
63 n.a. n.a. 8.9

Average 7.3 6.2 13.5

Table 4.7: Rolling horizon results, Part II. The gaps are computed as 100×
(upper bound− lower bound)/upper bound. We indicate by “n.a.” when-
ever the algorithm fails in obtaining a feasible solution.





Chapter 5

Conclusion and future work

In Chapter 1 we have first presented operations and typical optimization

problems arising in container hub terminals. Then we have described man-

agement aspects of automotive hub terminals, highlighting the differences

with respect to container terminals.

In Chapter 2 we have addressed the Ship Stowage Planning Problem, as

it arises at a transshipment container terminal. We have proposed two Linear

Integer Models F1 and F2, where the objective function to minimize is the

sum of the transportation and the reshuffling times of containers. The ship

stowage planning is an offline process, whereas the exact computation of the

yard reshuffles can be done only online, since the yard configuration dynami-

cally changes during the loading/discharging operations. Therefore, both F1

and F2, although they lie on the same assumptions, underestimate the yard

reshuffles. However the lower bound returned by F2 is more accurate than

the lower bound which F1 yields. We have devised a Tabu Search Algorithm

and we have implemented the model F2. Both have been tested on a set of

real instances. The computational results show the superiority of the Tabu

Search Algorithm over CPLEX. Moreover, the Tabu Search algorithm is able

to find optimal or near-optimal solutions with a small computational burden.
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In Chapter 3 we have analyzed the routing problem for straddle carriers at

a transshipment container terminal. We have focused on the pooling modal-

ity and we have derived scheduling and dispatching models. The computa-

tional experiments on real instances from the Gioia Tauro Container Terminal

has highlighted both the effectiveness and the complexity of this operational

modality. The observed reduction of the empty travels with respect to the

gang modality could be further enhanced, by acting at the tactical decision

level on the yard management. The re-organization of the yard should sup-

port the new operational modality for the quayside transport, for example

by resorting to “off line”, and thus inexpensive, movements of containers in

the yard areas near to the loading points (housekeeping). In order to face the

computational complexity of the problem, efficient heuristic algorithms for

the scheduling models should be developed; on the other hand, more sophis-

ticated dispatching rules for the real time model, based on a wider lookahead

policy, could be devised.

In Chapter 4 we have described, formulated and solved a yard manage-

ment problem arising in an automotive transshipment terminal. Several con-

straints and objectives resulting from managerial rules and policies were con-

sidered. Computational experiments show that the proposed metaheuristic

algorithm obtains high quality solutions when benchmarked with a state-of-

the-art integer linear programming solver. Furthermore, the metaheuristic al-

gorithm can handle application specific issues such as a rolling horizon, and

a manpower leveling objective. A solution approach based on the iterative

use of this fast metaheuristic algorithm is then possible for the application

under study.

The discussed problems share many common features: the strong interac-

tion with other complex logistic problems (the ship stowage planning, for ex-

ample, is strictly related to the quay crane scheduling, the yard management

and the routing of the transportation vehicles); the dynamic and aleatory na-
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ture of some processes that can hardly be taken into account in a determin-

istic optimization model (think, for instance, to the effect of yard congestion

on the containers transportation time and thus on the productivity of quay

cranes).

The scientific community is aware that improved terminal performances

could be obtained by an integrated approach to the various operations con-

nected to each other, and some preliminary contributions in this direction

have been proposed (Won and Kim, 2009): this is a very difficult but chal-

lenging field.

As far as regards the nondeterministic issues, a viable approach seems to

be the joint use of optimization and simulation techniques. In Mazza et al.

(2010), in order to evaluate the effectiveness of the Tabu search algorithm for

the ship stowage planning problem, we use a queuing network simulation

model to estimate the number of reshuffles.

The next step could be the solution of the problem with an Optimization

via Simulation approach, i.e. by embedding simulation into the tabu search

algorithm as a tool for counting the yard shifts. A similar framework is un-

der development to deal with the Straddle Carrier Routing Problem, in which

a multi-agents based system is adopted in order to simulate the actual con-

tainer terminal processes.
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