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Sommario

Nella Programmazione Logica Disgiuntiva (PLD) le regole sono costituite

da una testa e da un corpo. La testa è una disgiunzione di atomi, mentre

il corpo una congiunzione di letterali. La PLD, sotto la semantica degli

Answer Set [22, 12] è ampiamente riconosciuta come importante strumento

per la rappresentazione della conoscenza e del ragionamento non monotono.

Lifschitz, Tang e Turner [18] hanno esteso la semantica degli Answer Set

(solo nel caso proposizionale o ground) ad una classe di programmi logici dove

la testa e il corpo delle regole contengono espressioni innestate. Per espres-

sioni innestate si intendono congiunzioni, disgiunzioni e negazione innestati

arbitrariamente. Questa nuova classe di programmi è chiamata Programmi

Logici Innestati e generalizza la classe dei programmi logici disgiuntivi propo-

sizionali. Inoltre, i programmi logici innestati possono essere trasformati in

programmi logici disgiuntivi, come mostrato da Lifschitz, Tang e Turner in

[18] e da Pearce, et al. in [20]. Questi risultati ci permettono di valutare i

programmi logici innestati usando i sistemi esistenti che supportano la DLP ,

come DLV [16], GnT [13], oppure Cmodels3 [17]. Si noti che le trasfor-

mazioni che consentono di ottenere i programma PLD introducono nuovi

simboli e pertanto il programma risultante non è equivalente al programma

originario nel senso classico. Ad ogni modo esiste una corrispondenza bi-

univoca tra gli answer set del programma innestato con gli answer set del

programma trasformato. Sfortunatamente queste trasformazioni funzionano

solo per programmi proposizionali e dunque non si possono usare le variabili,

uno dei punti di forza dei programmi logici disgiuntivi. Questa limitazione

diminuisce drasticamente l’applicabilità dei programmi logici innestati so-

prattutto quando il ragionamento è fatto su un numero molto grande di

fatti.

Una generalizzazione di queste tecniche a programmi che contengono vari-

abili, non è ovvia. Per esempio, aggiungendo semplicemente le variabili al
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metodo descritto in [20] si ottengono regole dipendenti dal dominio. Intuiti-

vamente un programma che contiene variabili è dipendente dal dominio se la

semantica dipende dal particolare dominio che viene scelto per la sua inter-

pretazione. Questa proprietà è stata studiata per la prima volta nel contesto

dei sistemi di basi di dati (vedi [1] per approfondimenti). Per i programmi

DLP l’indipendenza dal dominio è assicurata imponendo ai programmi delle

condizioni sintattiche. Una di queste condizioni è nota come safety e per le

regole PLD significa che ogni variabile che compare nella regola deve com-

parire anche in almeno un letterale positivo del corpo.

Motivati da queste considerazioni, in questo lavoro di tesi estendiamo

i programmi logici disgiuntivi non-ground ad una classe di programmi nei

quali la testa delle regole è una formula in forma normale disgiuntiva com-

posta da atomi, mentre il corpo è una formula in forma normale congiuntiva

composta da letterali. Questi programmi sono chiamati programmi Normal

Form Nested (NFN) e diversamente dai programmi logici innestati di [18]

possono contenere variabili. In questo lavoro di tesi abbiamo studiato la

semantica e la proprietà di indipendenza dal dominio e una trasformazione

polinomiale dai programmi NFN ai programmi PLD, che preserva la safety.

Il bisogno di estendere la PLD con congiunzione nella testa e disgiunzione

nel corpo deriva molto spesso da problemi del mondo reale. Ad esempio, il

seguente problema si incontra spesso nelle applicazioni di data-integration.

Sia p(ID, nome, cognome, anni) una relazione globale (per persone) con

un vincolo di chiave sul primo attributo ID. Per realizzare un corretto query-

answering se due tuple condividono la stessa chiave, la relazione persona

viene “riparata” cancellando intenzionalmente una delle due tuple. In PLD,

questo problema viene modellato dalle seguenti regole (dove p rappresenta la

tupla da cancellare e p′ la relazione consistente risultante sulla quale vengono

calcolate le query).

p(I,N, S, A) ∨ p(I,M, T,B) :- p(I, N, S, A), p(I,M, T,B), N 6= M.
p(I,N, S, A) ∨ p(I,M, T,B) :- p(I, N, S, A), p(I,M, T,B), S 6= T.
p(I,N, S, A) ∨ p(I,M, T,B) :- p(I, N, S, A), p(I,M, T,B), A 6= B.
p′(I, N, S, A) :- p(I, N, S,A),not p(I, N, S, A).

La prima regola indica che una delle due tuple viene cancellata se esse

condividono la stessa chiave ma hanno nomi diversi. Analogamente, la se-

conda cancella una delle due tuple se esse hanno la stessa chiave ID ma

cognomi diversi. La terza cancella una delle due tuple se esse hanno la stessa

chiave ma anni diversi. L’ultima regola definisce la tabella riparata.
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Le prime tre regole DLP possono essere equivalentemente rappresentate

da una sola regola NFN , la quale è più succinta e quindi più leggibile:

p(I,N, S, A) ∨ p(I,M, T,B) :- p(I, N, S, A), p(I,M, T,B),
(N 6= M ∨ S 6= T ∨ A 6= B).

In particolare, la regola NFN rappresenta la cancellazione di una delle due

tuple se queste hanno lo stesso ID e nomi diversi, oppure cognomi diversi

oppure anni diversi.

Come ulteriore esempio, consideriamo un problema dal mondo della toeria

dei grafi : co-CERT3COL—che generalizza la 3-uncolorability, dovuto a I.

Stewart [24]. Dato un grafo G, i cui archi sono etichettati con un insieme non

vuoto di variabili v1, . . . , vn, trovare un assegnamento di verità per v1, . . . , vn

tale che il sottografo G′ di G, contenente tutti gli archi e tale che almeno un

letterale nelle etichette di e sia vero, non è 3-colorabile.

Supponiamo che gli archi etichettati siano rappresentati dai predicati

p(X,Y, V ), per indicare che l’arco che connette X ed Y ha un’etichetta posi-

tiva, e n(X, Y, V ) per indicare che l’arco che connette X ed Y ha un’etichetta

negativa V .

Nella seguente tabella, sulla sinistra riportiamo il programma DLP definito

in [5] che risolve co-CERT3COL, mentre sulla destra riportiamo un pro-

gramma NFN equivalente.

DLP encoding NFN encoding

r1 : v(X) :- p(X, Y, V ). ra : v(X), v(Y ) :- p(X, Y, V ) ∨ n(X, Y, V ).
r2 : v(Y ) :- p(X,Y, V ).
r3 : v(X) :- n(X, Y, V ).
r4 : v(Y ) :- n(X, Y, V ).
r5 : bool(V ) :- p(X, Y, V ). rb : t(V ) ∨ f(V ) :- p(X,Y, V ) ∨ n(X,Y, V ).
r6 : bool(V ) :- n(X, Y, V ).
r7 : t(V ) ∨ f(V ) :- bool(V ).
r8 : c(X, r) :- w, v(X). rc : c(X, r), c(X, g), c(X, b) :- w, v(X).
r9 : c(X, g) :- w, v(X).
r10 : c(X, b) :- w, v(X).

r11 : c(X, r) ∨ c(X, g) ∨ c(X, b) :- v(X).
r12 : w :- p(X, Y, V ), t(V ), c(X, A), c(Y, A).
r13 : w :- n(X, Y, V ), f(V ), c(X, A), c(Y, A).
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La regola ra sostituisce le regole da r1 a r4, la regola rb sostituisce le

regole da r5 a r7, ed il predicato bool non è necessario. In fine, la regola rd

sostituisce le regole da r8 ad r10. Le regole r11, r12 e r13 esistono in entrambe

le codifiche.

Si noti che nel linguaggio NFN riusciamo a rappresentare il problema

con un programma molto più succinto ed inoltre non abbiamo bisogno del

predicato intermedio bool.

Contributi I principali contributi della tesi possono essere riassunti come

segue.

1. Abbiamo esteso la DLP introducendo la congiunzione nella testa delle

regole e la disgiunzione nel corpo delle stesse, ottenendo una nuova

classe di programmi: i programmi NFN .

2. Abbiamo studiato le proprietà dei programmi NFN mostrando i seguenti

risultati.

• Abbiamo dato la definizione di Safety per i programmi NFN e

dimostrato che ogni programma safe è indipendente dal dominio

(cioè esso ha gli stessi answer set su ogni universo che estende le

costanti del programma).

• Gli answer set per i programmi NFN coincidono con gli answer

set definiti da Lifschitz et al. in [18] per i programmi NLP , sul

segmento del linguaggio comune.

• Gli answer set per i programmi NFN coincidono con i modelli

stabili di Herbrand definiti da Ferraris et al. in [7] per le formule

che corrispondono ai programmi NFN .

• Gli answer set per i programmi NFN coincidono con gli answer

set per i programmi DLP definiti da Gelfond e Lifschitz in [12].

• La nostra definizione di Safety per i programmi NFN è più gen-

erale di quella definita da Lee et al. in [15] sui programmi NFN ,

nel senso che ci sono programmi che non sono safe nella definizione

in [15] ma che sono safe secondo la nostra definizione.

3. Abbiamo progettato un algoritmo che trasforma i programmi NFN

in programmi DLP in modo efficiente e abbiamo dimostrato che esso

soddisfa importanti proprietà.
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• La trasformazione preserva la safety.

• La taglia del programma trasformato è polinomiale nella taglia

del programma NFN .

• Esiste una corrispondenza biunivoca tra gli answer set del pro-

gramma NFN e quelli del programma riscritto. In questo modo

si possono ottenere gli answer set del programma NFN , da quelli

del programma trasformato, con una semplice proiezione.

4. Abbiamo realizzato un sistema, nfn2dlp, che implementa l’algoritmo di

riscrittura. Inoltre abbiamo implementato anche un sistema che calcola

gli answer set di un programma NFN : nfnsolve. Entrambi i tool sono

disponibili al sito http://www.mat.unical.it/software/nfn2dlp/.
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Introduction

Context and Motivation

In Disjunctive Logic Programming (DLP ) the heads (resp. the bodies) of

rules are disjunctions (resp. conjunctions) of simple constructs, viz. atoms

and literals. DLP , under the answer set semantics [22, 12], is established as

an important tool for knowledge representation and reasoning [2].

Lifschitz, Tang and Turner [18] extended the answer set semantics (in the

propositional or ground case) to a class of logic programs where the heads

and the bodies of rules are nested expressions. These expressions are formed

from negation-as-failure literals, conjunction and disjunction, nested arbi-

trarily. This class of programs, called nested logic programs, generalizes the

class of (ground) disjunctive logic programs. Moreover, as shown in [18, 20],

nested logic programs can be transformed into disjunctive logic programs.

These results allow for evaluating ground nested logic programs using DLP

systems, such as DLV [16], GnT [13], or Cmodels3 [17]. Note that these

methods introduce new symbols implying that the result is not equivalent

in the classical sense to the original program. Anyway, there is a one-to-one

correspondence between the answer sets. However, given that these trans-

formations work only for ground nested logic programs, one of the strongest

features of logic programming, namely variables, cannot be used in problem

representations. This restriction limits the suitability of nested logic pro-

grams in many application domains, especially when reasoning is to be done

on large numbers of input facts.

Unfortunately, a generalization of these techniques to programs with vari-

ables is not straightforward. A major obstacle is domain dependence, a prop-

erty first studied in the realm of database systems (cf. [1] for a summary).

Essentially, when variables are present, the semantics of rules will in gen-

eral depend on the particular domain that is chosen for their interpretation.

1
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This entails several undesirable effects such as a strong dependence on the

context, even if this context is completely independent, issues with finiteness

and in general unintuitive semantics. When one would just add variables to

the method of [20], one easily obtains domain dependent rules.

Domain dependence is also an issue in DLP , and in this context (as in

databases) a syntactic requirement is imposed on programs, which guarantees

domain independence and therefore avoids all of the problems that domain

dependence entails. This requirement is known as safety, which for DLP rules

means that each variable in a rule must occur in a positive body literal.

Motivated by these considerations, we extend non-ground DLP to a class

of programs, in which rule heads are formulas in disjunctive normal form

consisting of atoms, and in which the rule bodies are formulas in conjunctive

normal form consisting of literals. These programs are referred to as Normal

Form Nested (NFN) programs, and are different to nested logic programs

of [18], since they may contain variables. We study semantic and domain

dependence properties of this class of programs, and provide a definition of

safety (which guarantees domain independence) and a polynomial translation

from NFN programs to DLP , which maintains safety.

The need for extending DLP with conjunction in the heads and disjunc-

tion in the body arises quite often in real world applications.

Databases

In this section we show an example that we met in a real-world data-

integration application.
Consider a global relation p(ID, name, surname, age) (for persons) with

a key-constraint on the first attribute ID. To perform consistent query an-
swering [3], when two tuples share the same key, the relation person is “re-
paired” by intensionally deleting one of them. In DLP , this is obtained by
the following rules (where p stands for deleted tuples, and p′ is the resulting
consistent relation on which query answers are computed).

p(I, N, S,A) ∨ p(I, M, T, B) :- p(I, N, S, A), p(I,M, T, B), N 6= M.
p(I, N, S,A) ∨ p(I, M, T, B) :- p(I, N, S, A), p(I,M, T, B), S 6= T.
p(I, N, S,A) ∨ p(I, M, T, B) :- p(I, N, S, A), p(I,M, T, B), A 6= B.
p′(I, N, S, A) :- p(I, N, S, A),not p(I, N, S, A).

The first rule deletes one of two tuples sharing the same key and having

different names. Similarly, the second rule deletes one of two tuples sharing

the same key and having different surnames. Finally, the third rule deletes
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one of two tuples if they have the same ID but different ages. The last rule

builds the repaired database.

The first three DLP rules can be equivalently encoded by a single NFN

rule, which is much more succinct and readable:

p(I,N, S, A) ∨ p(I,M, T,B) :- p(I, N, S, A), p(I,M, T,B),
(N 6= M ∨ S 6= T ∨ A 6= B).

In detail, the NFN rule deletes one of two tuples if the tuples have the

same ID and different names, different surnames or different ages.

Graph Theory

For a more involved example, we consider a problem from graph theory.

In particular, we consider the problem co-CERT3COL – a generalization of

graph 3-uncolorability, due to I. Stewart [24]. Given a graph G, whose edges

are labeled with nonempty sets of variables v1, . . . , vn, find a truth assignment

to v1, . . . , vn such that the subgraph G′ of G, containing all edges e such that

at least one literal in the label of e is satisfied, is not 3-colorable.

Let the labeled edges of G be represented by predicates p(X,Y, V ) and

n(X,Y, V ), indicating that the edge connecting vertices X and Y has a pos-

itive or negative label V , respectively.

On the left of the following table we report a DLP encoding as defined in

[5], whereas on the right we report an equivalent NFN encoding. Rules r11

to r13 belong to both encodings. In the NFN version we save seven rules and

the intermediate predicate bool.

DLP encoding NFN encoding

r1 : v(X) :- p(X, Y, V ). ra : v(X), v(Y ) :- p(X, Y, V ) ∨ n(X, Y, V ).
r2 : v(Y ) :- p(X,Y, V ).
r3 : v(X) :- n(X, Y, V ).
r4 : v(Y ) :- n(X, Y, V ).
r5 : bool(V ) :- p(X, Y, V ). rb : t(V ) ∨ f(V ) :- p(X,Y, V ) ∨ n(X,Y, V ).
r6 : bool(V ) :- n(X, Y, V ).
r7 : t(V ) ∨ f(V ) :- bool(V ).
r8 : c(X, r) :- w, v(X). rc : c(X, r), c(X, g), c(X, b) :- w, v(X).
r9 : c(X, g) :- w, v(X).
r10 : c(X, b) :- w, v(X).

r11 : c(X, r) ∨ c(X, g) ∨ c(X, b) :- v(X).
r12 : w :- p(X, Y, V ), t(V ), c(X, A), c(Y, A).
r13 : w :- n(X, Y, V ), f(V ), c(X, A), c(Y, A).
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Here, rule ra replaces r1 to r4, rule rb replaces r5 to r7, and the inter-

mediate predicate bool is not needed. Finally, rule rd replaces rules r8 to

r10.

Contribution

The main contributions are the following:

I We extend DLP with variables introducing conjunctions in the head of

rules and disjunctions in the body of rules, obtaining a new language,

NFN programs. We formally define the syntax and semantics of this

language, based on a new notion of answer set.

I We study the properties of NFN programs showing the following re-

sults:

– We provide a definition of safe NFN programs. We show that

every safe program is domain independent, that is, it has the

same answer sets on each universe extending the constants of the

program.

– The answer sets for NFN programs coincide with the answer sets

defined by Lifschitz, Tang, and Turner in [18] for NLP programs,

on the common language fragment.

– The answer sets for NFN programs coincide with the Herbrand

stable models defined by Ferraris, Lee, and Lifschitz in [7] for

formulas that correspond to NFN programs.

– The answer sets for NFN coincide with the standard answer sets

defined by Gelfond and Lifschitz in [12] on (possibly non ground)

DLP programs.

– Our definition of safety is more general than the one defined by

Lee, Lifschitz, and Palla in [15] on NFN programs, in the sense

that there are programs that are unsafe in the definition of [15],

but safe in our definition.

I We present an algorithm that transforms normal form nested programs

to disjunctive logic programs and show that it satisfies several impor-

tant properties:
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– The transformation preserves safety.

– The size of the transformed program is polynomial in the size of

the original NFN program.

– There is a one-to-one correspondence between the answer sets of

the original and the transformed program, such that the answer

sets of the original program can be read off the answer sets of the

transformed programs by a simple projection.

I We provide:

– A tool implementing the presented efficient translation from safe

NFN programs to safe DLP programs, called nfn2dlp.

– The tool nfnsolve that computes answer sets for NFN programs.

– At http://www.mat.unical.it/software/nfn2dlp/ both tools

are publicly available.

Structure of the Thesis

The thesis is organized as follows.

• Chapter 1 reviews Disjunctive Logic Programs. Syntax and semantics

of the underlying disjunctive logic language are reported. Then, an

important issue is discussed: Domain Independence, the question of

whether the semantics is independent of the considered domain. Finally

the class of safe programs is described that are guaranteed to be domain

independent.

• Chapter 2 introduces the NFN programs, an extension of disjunctive

logic programs with variables. Syntax and semantics are formally de-

fined. Moreover, the most important properties of the NFN programs

are studied.

• Chapter 3 describes the Guess and Check (G&C) technique for Knowl-

edge Representation and Reasoning using NFN programs. Further-

more, it is illustrated how the G&C technique can be applied on a

number of examples.
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• Chapter 4 describes a näıve transformation of NFN programs to DLP

programs based on distributivity that is in general not polynomial

. Then, an efficient algorithm transforming NFN to DLP programs

is provided that introduces new symbols. Finally, the computational

properties of the algorithm are studied.

• Chapter 5 presents the tool nfn2dlp, a compiler for NFN programs.

Moreover, a solver for NFN programs, called nfnsolve, is presented.

The implementation and the usage of these tools are described in detail.

• Chapter 6 related works are discussed.



Chapter 1

Disjunctive Logic Programs
DLP

In this chapter we present the Disjunctive Logic Programming (DLP )

framework, that has been recognized as a convenient and powerful method for

declarative knowledge representation and reasoning. In particular, we define

the syntax of the underlying disjunctive logic language and we describe the

associated answer set semantics. Since with the presence of variables, domain

independence is no longer guaranteed, we describe the class of the DLP safe

programs, which are guaranteed to be domain independent.

The chapter is organized as follows:

F Sections 1.1 and 1.2 provide a formal definition of the syntax and se-

mantics of disjunctive logic programs.

F In Section 1.3 we give the definition of domain independence and safety.

7
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1.1 Syntax

Let A be the alphabet containing digits, letters and ” ”. We call finite

sequences of symbols from A strings or words over A. A∗ denotes the set of

all strings over A.

Definition 1.1 (Predicates). The set Π of predicates is the set of all string

beginning with a lower-case letter.

Examples of predicates in Π are p, person and delete.

Definition 1.2 (Constants). The set C of constant symbols is the set of all

strings s ∈ A∗ such that s begins with a lower-case letter or digit.

Examples of constants in C are x, 5A b and 123.

Definition 1.3 (Variables). The set V of variable symbols is the set of all

strings s ∈ A∗ such that s begins with an uppercase letter.

For example, the strings X, V 2f and V i X3 are variables.

Definition 1.4 (Term). A term is a constant in C (see Definition 1.2) or a

variable in V (see Definition 1.3).

Definition 1.5 (Atom). Let p ∈ Π be a predicate and t1, . . . , tn terms, n ≥ 0;

then an atom of arity n is in the form p(t1, . . . , tn). If n = 0 the parentheses

around terms are omitted.

For example node(X), a(V 2f, 123) and true are atoms.

Definition 1.6 (Literal). A literal is an atom a (positive literal) or a negated

atom not a (negative literal).

We are now able to give the definition of DLP rules.

Definition 1.7 (Disjunctive Logic Rule). A (disjunctive logic) rule r is a

formula

a1 ∨ · · · ∨ an :- b1, . . . , bk, not bk+1, . . . , not bm. (1.1)

where a1, . . . , an, b1, . . . , bm are atoms and n ≥ 0, m ≥ 0 and k ≥ 0.
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The disjunction a1 ∨ · · · ∨ an is called head of r, while the conjunction

b1, . . . , bk, not bk+1, . . . , not bm is the body of r. A rule having precisely

one head literal (i.e. n = 1) is called a normal rule. If the body is empty (i.e.

k = m = 0), the rule is called fact and we usually omit the :- sign.

Example 1.1 (DLP rule). The following is a (disjunctive logic) rule:

male(X) ∨ female(X) :- person(X). (1.2)

The rule stands for “if X is a person then X is male of female” . The head of

the rule is the disjunction male(X)∨female(X) while the body is person(X).

Since the body rule contains only positive literals, the rule is positive.

An (integrity) constraint is a rule such that H(r) = ∅ (i.e. n = 0)

:- b1, . . . , bk, not bk+1, . . . , not bm. (1.3)

Definition 1.8 (DLP program). A disjunctive logic program (DLP program)

P is a finite set of rules, possibly including integrity constraints.

If all rules in P are positive than P is called positive. If all rules are

normal then P is called normal logic program.

Under the Answer Set Semantics, a constraint

:- body.

can be simulated through the introduction of a standard rule:

fail :- body,not fail.

where fail is a fresh predicate not occurring elsewhere in the program. So,

from a semantic point of view, we can assume that there are no constraints.

1.2 Semantics

The most widely accepted semantics for DLP programs is based on the

notion of answer set, proposed in [12] as a generalization of the concept of

stable model [11].
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1.2.1 Program Instantiation

The use of variables in a program allows for obtaining a more compact

representation of problems. In particular, variables are an abstraction of

constants.

Example 1.2. Let us consider the following program P :

a(X) :- b(X).
b(1).
b(2).

P is a shorthand for the program Pg which is the instantiation of P :

a(1) :- b(1).
a(2) :- b(2).
b(1)
b(2).

Let Σ be a symbol denoting a general expression (literal, disjunct, con-

junct, etc.). In the following, we denote by const(Σ) the set of constants that

appear in a construct Σ and by vars(Σ) the set of variables that appear in

Σ.

Definition 1.9 (Universe and Base of Herbrand). Let P a program then

• the Herbrand Universe (Domain) UP of P , is the set of constants ap-

pearing in P ;

• the Herbrand Base BP of P , is the set of all ground atoms obtainable

from the atoms of P by replacing variables with elements from UP .

In case no constant appears in P an arbitrary constant c is added to UP .

Example 1.3. Let us consider the program P1 of the Example 1.2, then

UP1 = {1, 2}

and

BP1 = {a(1), a(2), b(1), b(2)}.
Definition 1.10 (Substitution). Let U ⊇ UP be a set of constants and r a

DLP rule. A substitution is total function σ : vars(r) 7→ U that maps each

variable of r to a constant in U .



Chapter 1. Disjunctive Logic Programs DLP 11

Next we denote a substitution σ also as the set {X/c | σ(X) = c}.
Definition 1.11 (Ground Instances). Given a substitution σ, a ground in-

stance of a construct Σ w.r.t. σ is the application of σ on variables of Σ,

denoted by Σσ.

A construct without variables is called ground.

Example 1.4. Let us consider the rule

r = a(X) :- b(X)

of the Example 1.2, U = {1} and the substitution is σ = {X/1}. Then, rσ

is the ground rule

a(1) :- b(1).

Definition 1.12 (Instantiation of a rule). The instantiation of a rule r, de-

noted by Ground(r, U), is the set of ground instances of r w.r.t. U , obtained

by applying all possible substitutions w.r.t. r and U .

Example 1.5. Let U be the set {1, 2} and r = a(X) :- b(Y ). Ground(r, U)

is the following set of rules:

a(1) :- b(1).
a(2) :- b(2).
a(2) :- b(1).
a(1) :- b(2).

Definition 1.13 (Ground Program). Let P be a DLP program, the instan-

tiation of P w.r.t. U , denoted by Ground(P, U), is the union of all instanti-

ations of rules in P :

Ground(P,U) =
⋃
r∈P

Ground(r, U).

A ground program is also called a propositional program. As a special

case, let Ground(P ) = Ground(P, UP ).

1.2.2 Interpretation and Models

In this section we define an answer set for a program P .

Definition 1.14 (Interpretation). Given a ground program P , (Herbrand)

interpretation I for P is a subset of BP .
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In the following we define when a construct is true w.r.t. an interpreta-

tion.

Definition 1.15. Let P be a program and I be an interpretation for P :

1. A ground atom a is true (resp. false) w.r.t. I if a ∈ I (resp. a /∈ I).

2. A ground negative literal not a is true (resp. false) w.r.t. I if a /∈ I

(resp. a ∈ I).

Let r be a ground rule such that r ∈ Ground(P ):

3. The head H of r is true w.r.t. I if at least one atom of H is true w.r.t.

I; otherwise H is false w.r.t. I.

4. The body B of r is true w.r.t. I if all literals of B are true w.r.t. I;

otherwise B is false w.r.t. I.

5. r is satisfied w.r.t. I if the head is true w.r.t. I or the body is false

w.r.t. I.

P is satisfied w.r.t. I if all rules of Ground(P ) are satisfied.

In the following, we denote truth and falsity of a construct Σ with I ² Σ

and I 2 Σ respectively. Given a rule or a program ∆, we also denote the

satisfiability of ∆ w.r.t. I by I ² ∆, and unsatisfiability of ∆ w.r.t. I by

I 2 ∆.

Definition 1.16 (Model). Let P be a DLP program and M an interpretation

for P . M is a model for P if M ² P .

Example 1.6. Let P the program containing only the following rule:

a ∨ b ∨ c.

and M = {a} be an interpretation for P . M is a model for P because from

Definition 1.15 item 3. M ² a ∨ b ∨ c, that is M is a model for P .

Definition 1.17 (Minimal Model). Let P be a DLP program and M be an

interpretation for P . M is a minimal model for P if no model N for P exists

such that N ( M .

Example 1.7. In the Example 1.6, the model M is also a minimal model

for P since ∅ 2 P .
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1.2.3 Answer Set Semantics

We will next defne the notion of answer sets for DLP programs. First, we

provide the transformation by which the reduct of a ground program w.r.t.

an interpretation is formed. Note that this definition reported in [6] is an

alternative to the Gelfond-Lifschitz transformation for DLP programs that

has been shown to be equivalent.

Definition 1.18 (Reduct). Given a ground DLP program P and an interpre-

tation I, let P I denote the transformed program obtained from P by deleting

rules in which a body literal is false w.r.t. I.

Example 1.8. Consider the following program P :

a. b. d :- not e, b. c :- not b, a. (1.4)

If I = {a, b, d} then P I contains the following rules:

a. b. d :- not e, b. (1.5)

The last rule in the program (1.4) is deleted since the literal not b is false

w.r.t. I.

Definition 1.19 (Answer Set). Given a DLP program P , an interpretation

I of Ground(P ) is an answer set for P if it is a subset-minimal model of

Ground(P )I .

Note that any answer set I of P is also a model of P because Ground(P )I ⊆
Ground(P ), and rules in Ground(P ) \Ground(P )I are satisfed w.r.t. I.

Example 1.9. In Example 1.8, I is an answer set of P since I is a model

for P I and no subset of I satisfies all rules in (1.5).

For a more involved example, let us consider the following program Q :

a(X) ∨ b(Y ) :- c(X,Y ),not d(X).
d(1).
c(1, 2).
c(2, 1).

The instantiation of Q, Ground(Q), is the following ground program:

a(1) ∨ b(1) :- c(1, 1),not d(1).
a(2) ∨ b(2) :- c(2, 2),not d(2).
a(1) ∨ b(2) :- c(1, 2),not d(1).
a(2) ∨ b(1) :- c(2, 1),not d(2).
c(1, 2).
c(2, 1).
d(1).
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If we consider the interpretation J = {d(1), c(1, 2), c(2, 1), a(2)}, Ground(Q)J

is the following program:

a(2) ∨ b(1) :- c(2, 1),not d(2).
c(2, 1)
c(1, 2).
d(1).

J satisfyes all rules in Ground(Q)J . Moreover, no subset of J is a model for

Ground(Q)J , therefore J is an answer set of Q.

In the following, the set of answer sets for P is denoted by AS(P ).

1.3 Domain Independence and Safety

In this section we study the property of domain independence and define

a syntactic criterion for identifying DLP programs which are guaranteed to

be domain independent.

1.3.1 Domain Independence

Let us first examine some examples that highlight the importance of do-

main independence, which will be formally defined afterwards.

Example 1.10. Let consider the program Pu

a(X) :- b(Y ).
b(1).

where UPu = {1} then: Ground(Pu, UPu) is the following:

a(1) :- b(1).
b(1).

It is easy to see that I = {a(1), b(1)} is a minimal model for Ground(Pu, UPu)I ,

and no other interpretation has this property, therefore AS(Pu, UPu) = {I}.
If we consider as universe U = {1, 2}, Ground(Pu, U) is the following

program:

b(1).
a(1) :- b(1).
a(1) :- b(2).
a(2) :- b(1).
a(2) :- b(2).
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The interpretation J = {a(2), a(1), b(1)} is a minimal model for Ground(Pu, U)J ,

AS(Pu, U) = {J}. Therefore, we have different answer sets depending on the

considered universe.

As another example we consider a program containg negative literals.

Example 1.11. Let consider the following program Pu2

a(X) :- not b(X).
b(1).

Ground(Pu2, {1}) is

a(1) :- not b(1).
b(1).

The interpretation I2 = {b(1)} is the only answer set for Pu2. Let us consider

U2 = {1, 2}, then Ground(Pu2, U2) is the following program:

a(1) :- not b(1).
a(2) :- not b(2).
b(1).

It is simple to see that the interpretation J2 = {a(2), b(1)} is the only answer

set of Pu2 w.r.t. U2.

In the previous examples the answer sets of both programs Pu and Pu2

depend on the considered universe.

In the following, we show an example where the answer sets does not

change when the domain chages.

Example 1.12. Let us consider the program P
a(X) :- b(X).
b(1).

where UP = {1} then Ground(P , UP) is

a(1) :- b(1).
b(1).

It is easy to see that I = {a(1), b(1)} is a minimal model for Ground(P , UP)I ,

therefore AS(P) = {I}.
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If we consider as universe U = {1, 2}, Ground(P , U) is the following

program:

a(1) :- b(1).
a(2) :- b(2).
b(1).

I is also a minimal model for Ground(P , U)I and the only answer set w.r.t.

U . Therefore, the answer sets of P do not depend on the considered universe.

We now formally define domain independence, stating that the semantics

should be independent of the universe, as long as it is sufficiently large.

Definition 1.20 (Domain Independence). Let P be a DLP program and UP

be the set of constants appearing in P . P is domain independent if for each

U ⊇ UP ,

AS(Ground(P, U)) = AS(Ground(P,UP ))

holds.

Domain dependent programs have obvious weaknesses, such as those out-

lined in Examples 1.10 and 1.11. But the consequences of domain dependence

becomes even more drastic when finite programs with infinite domains (such

as domains representing numbers) are considered: While domain indepen-

dent programs guarantee finite answer sets, domain dependent programs can

yield infinite answer sets or an infinite number of them. For instance Pu of

Example 1.11 with an infinite universe U = UPu ∪N will yield infinite answer

sets. For further discussions on the significance of domain independence, we

refer to [1].

Examples 1.10 and 1.11 directly serve as a proof for the following fact.

Fact 1.3.1. A DLP program P is in general not domain independent.

1.3.2 Safe DLP Programs

In this section, we recall the class of DLP programs, which is characterized

syntactically, such that all programs in this class are guaranteed to be domain

independent.

Definition 1.21 (Safe rules and programs). A DLP rule r is safe if each

variable of r appears in a positive literal of the body of r, otherwise it is

unsafe. A DLP program P is safe if each rule is safe, otherwise it is unsafe.
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Example 1.13. Let us consider the DLP rule

a(X) ∨ b(Y ) :- a(X),not b(X), c(Y ).

The rule is safe indeed variable X appears in the positive literal a(X) of the

body. Similarly, variable Y is safe because it appears in the positive body

literal c(Y ). The rule

a(X) ∨ b :- not b(X).

is unsafe because the variable X does not appear in any positive body literal

(but only in the head and the negative body literal). The rule

a(X) :- b(Y ).

of Example 1.10 is unsafe because variable X does not appear in any positive

body literal (but only in the head). The rule

a(X) :- not b(X).

of Example 1.11 is unsafe. Indeed variable X appears only in the head and

the negative body literal of the rule.

Theorem 1.3.1. Let P a DLP program, if P is safe then P is domain

independent.

In the Section 2.3.2, we proove the Theorem 2.3.3 that is more general

than the Theorem 1.3.1.



Chapter 2

Normal Form Nested Programs
NFN

In this chapter we present the Normal From Nested (NFN) language. It

is essentially an extension of DLP with variables by allowing conjunctions of

atoms in place of atoms in rule heads and disjunctions of literals in place of

literals in rule bodies. In the following, we formally define the syntax of the

new language and the associated answer set semantics. However, with the

introduction of variables an important issue arises: domain independence,

the question of whether the semantics of a program is independent of the

considered domain (given that it is sufficiently rich). As seen in Section 1.3,

domain independence is desirable because it guarantees that the semantics

remains equal if unrelated information is added and also ensures finiteness of

intended models even if infinite domains are considered. In the presence of

variables, NFN programs in general are not domain independent. We study

this issue in depth and define the class of safe NFN programs, which are

guaranteed to be domain independent.

The chapter is organized as follows:

F In Sections 2.1 and 2.2 syntax and semantics of NFN programs are

formally defined.

F In Section 2.3 the most important properties of NFN programs are

studied.

18
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2.1 Syntax

Let A the alphabet containing digits, letters and “ ”. We call finite

sequences of symbols from A strings or words over A. A∗ denotes the set of

all strings over A.

Variables, constants, terms, atoms and literals are defined as in Sec-

tion 1.1.

Definition 2.1 (Basic Disjunction). A basic disjunction is of the form (k1∨
· · · ∨ kn) where each k1, . . . , kn is a literal; if each k1, . . . , kn is an atom, the

basic disjunction is positive.

For example a(X) ∨ b and c(X) are basic disjunctions and since a(X), b

and c(X) are atoms, both are positive.

Definition 2.2 (Basic Conjunction). A basic conjunction is of the form

(l1, . . . , ln) where each l1, . . . , ln is a literal. If each l1, . . . , ln is an atom, the

basic conjunction is positive.

For example b(X), d(X), c and c are basic conjunctions where b(X), d(X)

and c are literals.

The parentheses around basic conjunctions and disjunctions may be omit-

ted in unambiguous occurrences.

Definition 2.3 (NFN Rule). A (normal form nested) rule r is of the fol-

lowing form:

C1 ∨ · · · ∨ Cn :- D1, . . . , Dm. n,m ≥ 0

where C1, . . . , Cn are positive basic conjunctions and D1, . . . , Dm are basic

disjunctions.

The disjunction C1 ∨ · · · ∨ Cn is the head of r while the conjunction

D1, . . . , Dm is the body of r. The set of all basic conjunctions appearing in

r is denoted by H(r) while the set of all basic disjunctions appearing in r

is denoted by B(r). Moreover, the set of all positive basic disjunctions of

r is denoted by B+(r) and the set of remaining basic disjunctions, called

non-positive, is denoted by B−(r) (i.e. B−(r) = B(r) \B+(r)).

A rule is positive if B(r) = B+(r). If all Ci are atoms and all Dj are

literals respectively, the rule is called standard.
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Example 2.1 (Normal Form Nested Rule). The following is a (normal form

nested) rule:

node(X), node(Y ) :- edge(X, Y ).

The rule stands for “X is a node and Y is a node if there exists an edge

between X and Y ”. The head of the rule is the positive basic conjunction

node(X), node(Y ) while the body is the literal edge(X,Y ).

An another example we consider the following rule:

a(X) ∨ (b(X), c(X)) :- d(X), (e(X) ∨ not f(Y )), (d(X) ∨ s(Z) ∨ f(X)).

where d(X) and (d(X) ∨ s(Z) ∨ f(X)) are positive basic disjunctions, while

(e(X)∨not f(Y )) is non-positive, since it contains the negative literal not f(Y ).

Definition 2.4 (NFN Prgram). A Normal Form Nested (NFN program)

program P is a finite set of rules.

P is a positive program if all rules of P are positive. P is a standard

program if all its rules are standard.

2.2 Semantics

We use the standard DLP approach of defining the semantics on its (Her-

brand) instantiation by means of a reduct.

The instantiation on an NFN program is defined as in Section 1.2.1

Example 2.2. Let U = {1, 2} be a set of constants and r the rule:

(a(X), b(Y )) ∨ c(X) :- (p(X, Y ) ∨ q(Y )), q(X).

The instantiation Ground(r, U) is the set containing the following rules:

(a(1), b(1)) ∨ c(1) :- (p(1, 1) ∨ q(1)), q(1).
(a(1), b(2)) ∨ c(1) :- (p(1, 2) ∨ q(2)), q(1).
(a(2), b(2)) ∨ c(2) :- (p(2, 2) ∨ q(2)), q(2).
(a(2), b(1)) ∨ c(2) :- (p(2, 1) ∨ q(1)), q(2).
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2.2.1 Interpretation and Models

As in Section 1.2.2, an interpretation I, for an NFN program P , is a

set of ground atoms I ⊆ BP , where BP is the Herbrand base of P (see

Definition 1.9).

Next we extend the Definition 1.15 from DLP to NFN with the following.

Definition 2.5. Let P a program and I an interpretation for P , then the

items 1. and 2. from Definition 1.15 hold. Moreover:

N1. A ground basic disjunction L is true w.r.t. I if at least one literal of L

is true w.r.t. I; otherwise L is false w.r.t. I.

N2. A ground basic conjunction A is true w.r.t. I if all atoms of A are true

w.r.t. I; otherwise A is false w.r.t. I.

Let r be a ground NFN rule such that r ∈ Ground(P ):

N3. The head H of r is true w.r.t. I if at least one basic conjunction of H

is true w.r.t. I; otherwise H is false w.r.t. I.

N4. The body B of r is true w.r.t. I if all basic disjunctions of B are true

w.r.t. I; otherwise B is false w.r.t. I.

N5. r is satisfied w.r.t. I if the head is true w.r.t. I or the body is false

w.r.t. I.

P is satisfied w.r.t. I if all rules of Ground(P ) are satisfied.

A model for P is an interpretation M for P such that M |= P . A model

M for P is minimal if no model N for P exists such that N ( M .

2.2.2 Answer sets

Next we define a reduct for ground NFN programs w.r.t. an interpreta-

tion. It can be viewed as a generalization of the reduct defined in Defini-

tion 1.18 and a simplification of the one in [18].

Definition 2.6 (Reduct). Let P be a ground NFN program and I an inter-

pretation. The reduct of P w.r.t. I, denoted by P I , is defined as follows:

(1) all rules with false body w.r.t. I are deleted;
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(2) false body literals w.r.t. I from the remaining rules are deleted.

Given a rule r ∈ P , let rI be the corresponding rule in P I (which does

not necessarily exist). Obviously rI exists unless it was deleted in step (1).

Observation 1. rI exists iff I |= B(r).

Example 2.3. Consider the following NFN program P :

a.
b.
f ∨ (d, e) :- (a ∨ not c).
p :- (not a ∨ not b).
g :- (b ∨ not a).

and interpretation I = {a, b, f, g}, then P I is the following program:

a.
b.
f ∨ (d, e) :- (a ∨ not c).
g :- b.

Definition 2.7 (Answer set for NFN program). Given an NFN program

P , an interpretation I is an answer set for P iff I is a minimal model for

Ground(P )I .

The set of answer sets for P is denoted by AS(P ).

Example 2.4. In Example 2.3, I is an answer set for the program P . Indeed,

I is a model for P I and it is easy to check that no subset J ( I exists such

that J satisfies all rules of P I . Therefore

AS(P ) = {a, b, d, e, g}.

Looking at Definition 2.6, similar to the reduct for DLP programs defined

in Definition 1.18, all rules with false body are deleted. Furthermore, from

rule bodies of the remaining rules all false body literals are deleted. Without

the latter deletion, in some cases it is possible to obtain unintuitive answer

sets as shown in the following example.

Example 2.5. Let us consider program

P = {c :- (c ∨ not c).}
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and interpretation I = {c}.
If we just deleted all rules with false body w.r.t. I, the reduct would be

again P and I would be an answer set for P . However, using the reduct of

Definition 2.6, we obtain

{c :- c.}
of which I is not a minimal model as ∅ is also a model. Indeed, I is unintu-

itive as c is only justified by its own truth, and it is also not an answer set

according to [18] (cf. Definition 6.1).

2.3 Language Properties

Since the NFN programs generalize the class of DLP programs, in gen-

eral an NFN program is not domain independent. Consequently, in this

section we define a syntactic criterion for identifying NFN programs which

are guaranteed to be domain independent.

2.3.1 Domain Independence

First of all we show some examples of domain dependent NFN programs.

Example 2.6. Consider the program Pu

c(1).
d(1).
a(X) ∨ b(Y ) :- (c(X) ∨ d(Y )).

where UPu = {1}. Then Ground(Pu, UPu) is the following:

c(1).
d(1).
a(1) ∨ b(1) :- (c(1) ∨ d(1)).

We can verify

AS(Ground(Pu, UPu)) = {{a(1), c(1), d(1)}, {b(1), c(1), d(1)}}.
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Now consider U = UPu ∪ {2}. Then Ground(Pu, U) is the following pro-

gram:

a(1) ∨ b(2) :- (c(1) ∨ d(2)).
a(2) ∨ b(1) :- (c(2) ∨ d(1)).
a(2) ∨ b(2) :- (c(2) ∨ d(2)).
a(1) ∨ b(1) :- (c(1) ∨ d(1)).
c(1).
d(1).

Then the set of answer sets of Ground(Pu, U) is

{{a(1), a(2), c(1), d(1)}, {a(1), b(1), c(1), d(1)}, {b(1), b(2), c(1), d(1)}}
which means that we obtain different answer sets for the program Pu, depend-

ing on the considered universe. So, for instance when a completely unrelated

fact x(2) is added to Pu, this will unexpectedly cause additional atoms con-

taining predicates a and b to become true in its answer sets. The problem is

that in the main rule of Pu the body can be satisfied without “binding” one

of the two variables that occur in the head.

Example 2.7. Consider the program Pu2:

c(1).
a :- (b(X) ∨ not c(X)).

where UPu2 = {1}. The ground program Ground(Pu2, UPu2) is

c(1).
a :- (b(1) ∨ not c(1)).

so the program has one answer set

AS(Ground(Pu2, UPu2)) = {c(1)}.
Now if U2 = UPu2 ∪ {2}, Ground(Pu2, U2) is

c(1).
a :- (b(1) ∨ not c(1)).
a :- (b(2) ∨ not c(2)).

which admits

AS(Ground(Pu2, U2)) = {a, c(1)}.
So here adding a completely unrelated fact x(2) to the program would unex-

pectedly give a reason to assume a. In this case the variable in the negative

literal does not necessarily have a restriction when the body is true.
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Now we give the formal definition of domain independence for an NFN

program, stating that the semantics should be independent of the universe,

as long as it is sufficiently large.

Definition 2.8. Let P be an NFN program and UP be the set of constants

appearing in P . P is domain independent if for each U ⊇ UP ,

AS(Ground(P, U)) = AS(Ground(P,UP ))

holds.

Examples 2.6 and 2.7 directly serve as a proof for the following fact.

Fact 2.3.1. An NFN program P is in general not domain independent.

Note that, since NFN programs contain the class of DLP programs, the

previous result follows from Facts 1.3.1.

2.3.2 Safe Programs

In this section, we will define a class of NFN programs, which is charac-

terized syntactically, such that all programs in this class are guaranteed to

be domain independent.

Definition 2.9 (Safe variable). Let r be an NFN rule. A variable X ∈
vars(r) is safe if there exists a positive basic disjunction D ∈ B(r), such that

for each atom a in D, X ∈ vars(a); we also say that D saves X or X is

made safe by D.

Example 2.8. Consider the rule

a :- (b(X) ∨ c(X, Z) ∨ d(X)), e(Y ), (s(Z) ∨ t(X)).

The safe variables of the rule are X and Y . Indeed, the variable X is safe

because it appears in all atoms of the positive basic disjunction D1 = (b(X)∨
c(X, Z)∨ d(X)), while the variable Y occurs in the only atom of the positive

basic disjunction e(Y ).

Definition 2.10 (Safe rules and programs). An NFN rule r is safe if each

variable that appears in the head of r and each variable that appears in some

negative body literal of r is safe. An NFN program P is safe if each rule is

safe.
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Example 2.9. The NFN rule

h :- (a(X) ∨ b(X)),not c(X).

is safe. In fact, variable X, which appears in the negative literal not c(X)

is made safe by (a(X) ∨ b(X)).

The rule

(h1(X), h2(X)) :- (a(X) ∨ b(Z)), (c(X) ∨ not s(Z)).

is not safe, since the variable X occurs in the head of the rule but no positive

basic disjunction in the body saves X. Moreover, variable Z, occurring in

negative body literal not s(Z), is also unsafe.

In the follows, we show that the class of safe programs is domain inde-

pendent.

Lemma 2.3.1. Let r be a safe NFN rule, I a set of ground atoms, U ⊇
const(I) and U ′ ⊃ U , then

I |= Ground(r, U) ⇒ I |= Ground(r, U ′).

Proof. Assume I |= Ground(r, U) and I 6|= Ground(r, U ′) . Then, a substi-

tution

σ : vars(r) → U ′

exists s.t. I 6|= rσ, so

I |= B(rσ) and I 6|= H(rσ).

Since I |= B(rσ), then for each positive basic disjunction Dp ∈ B+(r) an

atom a ∈ Dp exists s.t. aσ ∈ I so const(aσ) ⊆ U . Moreover, for each non-

positive basic disjunction Dn ∈ B−(r) a literal l ∈ Dn exists s.t. I |= lσ.

Therefore, if l is positive, lσ ∈ I and const(lσ) ⊆ U ; if l = not a, aσ /∈ I and

since r is safe, for all X ∈ vars(a) a positive disjunction Ds ∈ B+(r) exists s.t.

for all ā ∈ Ds, X ∈ vars(ā) and thus const(lσ) ⊆ U. Then, arbitrarily choose

a substitution σ′ : vars(r) 7→ U such that for all X/c ∈ σ s.t. c ∈ (U ′ \ U)

there exists s ∈ U s.t. X/s ∈ σ′, and for all X/c ∈ σ s.t. c ∈ U , X/c ∈ σ′.
Then it holds that I |= B(rσ′) and I |= H(rσ′) because rσ′ ∈ Ground(P,U).

Furthermore, r is safe so for all X ∈ vars(H(r)) a positive disjunction Dp ∈
B+(r) exists s.t. for all ā ∈ Dp, X ∈ vars(ā) and thus const(H(rσ)) ⊆ U ,

hence H(rσ′) = H(rσ), and we obtain a contradiction.
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Lemma 2.3.2. Let r be a safe NFN rule, I a set of ground atoms, and

U ⊇ const(I), then Ground(r, U)I = Ground(r, U ′)I for all U ′ ⊃ U .

Proof. Since U ′ ⊃ U , from Definition 1.13, Ground(r, U) ⊆ Ground(r, U ′)
and therefore, Ground(r, U)I ⊆ Ground(r, U ′)I .

Let r̄ ∈ Ground(r, U ′)I and assume r̄ /∈ Ground(r, U)I then there exists

a literal l ∈ B(r̄) s.t. I |= l (from Definition 2.6) and const(l)∩ (U ′ \U) 6= ∅.
If l is positive, l ∈ I and thus const(l) ⊆ U . If l = not a then a /∈ I but since

r is safe, for all X ∈ vars(a) a positive disjunction Dp ∈ B+(r) exists s.t. for

all ā ∈ Dp, X ∈ vars(ā) and thus const(l) ⊆ U. So we have a contradiction

with the hypothesis const(l) ∩ (U ′ \ U) 6= ∅.

Theorem 2.3.3. If P is safe then P is domain independent.

Proof. ∀U ⊇ UP : AS(Ground(P, UP )) ⊆ AS(Ground(P, U)) :

Let P be a safe program and assume that I ∈ AS(Ground(P,UP )) and ∃U ⊃
UP s.t. I /∈ AS(Ground(P,U)). (i) If I is not a model of Ground(P,U) ⇒
∃r ∈ P and a substitution σ : vars(r) 7→ U s.t. I 6|= rσ. Since I |=
Ground(P,UP ) =

⋃
r′∈P Ground(r′, UP ), for each r′ ∈ P I |= Ground(r′, UP )

and from Lemma 2.3.1, I |= Ground(r′, U). Then I |= rσ for each rσ ∈
Ground(P,U) and we obtain a contradiction. (ii) If I is a model for Ground(P,U)

but I is not a minimal model for Ground(P,U)I , then ∃J ⊂ I s.t. J is

a model for Ground(P, U)I . Since Ground(P,UP ) ⊂ Ground(P,U), then

(Ground(P,UP )I) ⊆ (Ground(P,U)I) and J is a model for Ground(P,UP )I

contradicting I ∈ AS(Ground(P, UP )).

∀U ⊇ UP : AS(Ground(P, U)) ⊆ AS(Ground(P,UP )) :

Let P be a safe program and assume that ∃U ⊃ UP s.t. I ∈ AS(Ground(P, U))

and I /∈ AS(Ground(P, UP )). (i) Since Ground(P, UP ) ⊂ Ground(P,U)

then I is a model for Ground(P, UP ). (ii) If I is a model for Ground(P,UP )

but I is not a minimal model for Ground(P,UP )I then there exists J ⊂ I s. t.

J ∈ AS(Ground(P,UP )I). By Lemma 2.3.2 it holds that Ground(P, UP )I =

Ground(P,U)I , and therefore J |= Ground(P, U)I and this is a contradiction

to I ∈ AS(Ground(P,U)).



Chapter 3

Knowledge Representation by
NFN Programs

Disjunctive Logic Programming under answer set semantics has been

proved to be a very effective formalism for Knowledge Representation and

Reasoning (KRR). It can be used to encode problems in a highly declara-

tive fashion, following the “Guess&Check”(G&C) methodology presented in

[4]. Applying this technology using NFN encodings we can obtain a more

compact and intuitive representation w.r.t. DLP encodings.

The chapter is organized as follows:

F In Section 3.1 we describe the G&C technique.

F In Section 3.2 we illustrate how to apply it on a number of examples

by using NFN programs.

28
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3.1 The Guess and Check Programming Method-

ology

Many problems, also problems of comparatively high computational com-

plexity (ΣP
2 -complete and ΠP

2 -complete problems), can be solved in a natural

manner by using this declarative programming technique. The power of dis-

junctive rules allows for expressing problems which are more complex than

NP, and the (optional) separation of a fixed, non-ground program from an

input database allows to do so in a uniform way over varying instances.

Given a set F I of facts that specify an instance I of some problem P, a

G&C program P for P consists of the following two main parts:

Guessing Part The guessing part G ⊆ P of the program defines the search

space, such that answer sets of G ∪F I represent “solution candidates”

for I.

Checking Part The (optional) checking part C ⊆ P of the program filters

the solution candidates in such a way that the answer sets of G∪C∪F I

represent the admissible solutions for the problem instance I.

Without imposing restrictions on what kind of rules G and C may con-

tain, in the extremal case we might set G to the full program and let C be

empty, i.e., checking is completely integrated into the guessing part such that

solution candidates are always solutions. Also, in general, the search space

may be limited by some rules, and such rules might be considered more ap-

propriately placed in the guessing part than in the checking part. We do

not pursue this issue further here, and thus also refrain from giving a formal

definition of how to separate a program into a guessing and a checking part.

In general, both G and C may be arbitrary collections of rules, and it

depends on the complexity of the problem at hand which kinds of rules are

needed to implement these parts (in particular, the checking part).

For problems with complexity in NP, often a natural G&C program can

be designed with the two parts clearly separated into the following simple

layered structure:

• The guessing part G consists of disjunctive rules that “guess” a solution

candidate S.
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• The checking part C consists of integrity constraints that “check” the

admissibility of S.

Each layer may have further auxiliary predicates, for local computations.

The disjunctive rules define the search space in which rule applications are

branching points, while the integrity constraints prune illegal branches.

It is worth remarking that the G&C programming methodology has also

positive implications from the Software Engineering point of view. Indeed,

the modular program structure in G&C allows for developing programs in-

crementally, which is helpful to simplify testing and debugging. One can

start by writing the guessing part G and testing that G∪F I correctly defines

the search space. Then, one adds the checking part and verifies that the

answer sets of G ∪ C ∪ F I encode the admissible solutions.

3.2 Applications of the Guess and Check Tech-

nique

In this section, we illustrate the declarative programming methodology

described in Section 3.1 by showing its application on a number of concrete

examples.

3.2.1 Connected Monochromatic Triangle

Let us consider a variation of the NP-complete problem Monocromatic

Triangle discussed by Garey and Johnson in [10].

Definition 3.1. Let G = (V,E) be an undirected graph where V is a set of

vertices and E is a set of edges. G is a connected monochromatic triangle

if there exists a partition of E in two disjoint sets E1 and E2 such that for

Vi = {a, b|(a, b) ∈ Ei}, i = {1, 2}, the following conditions hold:

1. E1 and E2 are non-empty;

2. both graphs G1 = (V1, E1) and G2 = (V2, E2) are connected;

3. neither of the two graphs G1 = (V1, E1) and G2 = (V2, E2) contain a

triangle.
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We can ignore isolated vertices because we are interested in partitions

of edges, therefore we suppose that the input graph G is specified only by

atoms edge(X,Y ), denoting that there is an edge from vertex X to vertex

Y . The following G&C program Pmt solves the problem.

GUESS: inPart(X,Y, 1) ∨ inPart(X, Y, 2) :- edge(X,Y ).
CHECK:

1.
{

hasElements(P ) :- inPart( , , P ).
:- not hasElements(1) ∨ not hasElements(2).

2.





vtxP (X, P ), vtxP (Y, P ) :- inPart(X, Y, P ).
reaches(X, Y, P ) :- vtxP (X, P ), vtxP (Y, P ), X <> Y,

(inPart(X,Z, P ) ∨ inPart(Z, X,P )), X <> Z,
(Y = Z ∨ reaches(Z, Y, P ) ∨ reaches(Y, Z, P )).

:- vtxP (X,P ), vtxP (Y, P ), X <> Y,not reaches(X,Y, P ).

3.





:- (inPart(X,Y, P ) ∨ inPart(Y,X, P )), X <> Y,
(inPart(Z, Y, P ) ∨ inPart(Y, Z, P )) , Y <> Z,
(inPart(X,Z, P ) ∨ inPart(Z, X, P )), X <> Z.

In the GUESS part, the NFN rule guesses the bipartition of E, repre-

sented by predicate inPart. Note that inPart is completely determined by

this rule and no further guessing is needed. Moreover, the rule assures that

all input edges are considered.

In the CHECK part, the set of rules in each item represents the corre-

sponding condition described in Definition 3.1. In detail in 1. it is checked

that each partition is non-empty. In 2. it is checked that each induced sub-

graph is connected. In detail, predicate vtxP represents the set of vertexes

in a partition P . The second rule defines the reachability of two vertexes and

the constraint enforces that each pair of vertices in a partition are reachable.

In the last item the constraint ensures that each induced graph does not

contain triangle.

It is easy to see that each partition of edges represented by answer sets

of Pmt is a bipartition of G satisfying all conditions. If Pmt does not admit

any answer set the input graph is not a connected monochromatic triangle.

Therefore, given a set of facts F for edge, the program Pmt∪F has an answer

set if and only if the input graph is a connected monochromatic triangle.
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3.2.2 The game of Marriage (Bipartite Matching)

The game of marriage is related to the Hall’s Theorem also known as

the marriage theorem [14].

Definition 3.2. In the game of marriage there are n single women and m

single men who desire to get married. Therefore each person indicates who

among the opposite sex would be acceptable as a potential spouse. X and Y

get married if X indicates only Y as a potential spouse and Y indicates only

X as a potential spouse.

The input is represented by atoms p(Name, Gender) (Gender ∈ {m,w},
m for man and w for woman) representing persons, and atoms prefer(X, Y )

denoting that X indicates Y as a potential spouse.

The following G&C program, Pmg solves the problem.

GUESS: wed(X, Y ), wed(Y, X) ∨ noWed(X, Y ) :- p(X, w), p(Y, m).

CHECK





:- prefer(X, Y ), prefer(Y,X),not wed(X, Y ).
:- wed(X, Y ), (not prefer(X, Y ) ∨ not prefer(Y,X)).
:- wed(X, Y ), (prefer(X, Z) ∨ prefer(Y, Z)), X <> Z, Y <> Z.

The rule in the GUESS part guesses all possible pairs of spouses. The

first constraint in the CHECK part guarantees that if X indicated Y as

a potential spouse and Y indicated X as a potential spouse than X and Y

wed. The second constraint guarantees that if X did not prefer Y or vice

versa, X cannot wed Y . Finally, the third contraint assures that if X or Y

expressed at least two preference than X cannot wed Y .

Let F be a set of facts for p and prefer, then F ∪ Pmg has an answer set

if and only if there exists at least a pair of persons X,Y such that X prefers

only Y as a potential spouse and vice versa.

We can represent this situation also by a bipartite graph. These graphs

are both useful and common so we give a full representation in the following

section.

3.2.3 Bipartite Graph

Let us consider another problem in the graph theory, namely Bipartite

Graph [19].
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Definition 3.3 (Bipartite Graph). Given a graph G = (V, E), where V is

a set of vertices and E is a set of edges, G is a Bipartite Graph if V can be

divided into two disjoint sets V1 and V2, such that the following conditions

hold:

1. V1 and V2 are not empty;

2. for each vi ∈ Vi there exists at least one edge connecting vi and vj,

vj ∈ Vj, i, j ∈ {1, 2}, i 6= j;

3. for each {vi, vj} ∈ Vi, i ∈ {1, 2} no edge connecting vi and vj exists.

The input graph G is specified by atoms vtx(X) denoting that X is a

vertex of G and by atoms edge(X, Y ), denoting that there is an edge from

vertex X to vertex Y . The G&C program Pbp representing the problem is

the following:

GUESS: pV tx(X, 1) ∨ pV tx(X, 2) :- vtx(X).

CHECK:

1.
{

hasElements(P ) :- pV tx(X, P ).
:- not hasElements(1) ∨ not hasElements(2).

2.





connected(X, P ) :- pV tx(X, P ), pV tx(Y, P2), P <> P2,
(edge(X,Y ) ∨ edge(Y,X)).

:- pV tx(X, P ),not connected(X, P ).

3.
{

:- pV tx(X, P ), pV tx(Y, P ), X <> Y, edge(X, Y ).

The rule in the GUESS part guesses subsets of vertices. In the CHECK

part, the set of rules in each item represents the corresponding condition

described in Definition 3.3. In particular, in item 1. the constraint assures

that each subset is nonempty. In the second item the constraint guarantees

that there exists at least an edge connecting a node in a partition with a node

in the another partition. The last constraint assures that no edge connects

nodes that are in the same partition.



Chapter 4

Translations From NFN to DLP
Programs

In this chapter we describe translations from Normal Form Nested pro-

grams into disjunctive logic programs. This allows for evaluating ground

nested logic programs using existing disjunctive logic programming systems

as a back-end.

The chapter is organized as follows:

F In Section 4.1 we describe a transformation which may produce a pro-

gram which is exponentially larger than the input program. The answer

sets of the DLP program are exactly the answer sets of the original pro-

gram and it maintains also safety.

F In Section 4.2 we discuss a polynomial translation, inspired by structure-

preserving normal form translations, that works for ground programs

only. This method introduces new symbols implying that the result is

not equivalent in the classical sense to the original program, but there

is a one-to-one correspondence between the answer sets.

F In Section 4.3 we present an algorithm that efficiently translates NFN

programs with variables to DLP programs. We show that this algorithm

also maintains safety, there is a one-to-one correspondence between

answer sets, and the size of the generated program is bounded by a

small polynomial of the original NFN program size.

34
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4.1 Näıve Transformation

In this section we describe a straightforward method to translate nor-

mal form nested programs into disjunctive logic programs. This method is

based on distributivity transformations and does not introduce new atoms.

It preserves the answer sets of the original program. Moreover, if the NFN

program is safe also the corresponding DLP program is safe. Unfortunately,

as common for this type of transformation and as shall be seen by an example,

this transformation may exponentially enlarge the program.

Definition 4.1. Let H = C1 ∨ · · · ∨ Cm, m ≥ 0 be a formula in disjunctive

normal form where Ci = ai1, . . . , aini
, ni ≥ 0. The corresponding list of

basic disjunctions H◦ of H is obtained first replacing H by a11 ∨ C2 ∨ · · · ∨
Cm; . . . ; a1n1 ∨ C2 ∨ · · · ∨ Cm, and then iterating on each Ci, i ≥ 2. As a

result:

H◦ = a11 ∨ . . . ∨ am1; . . . ; a1n1 ∨ . . . ∨ amnm

where |H◦| has n1 × n2 × . . .× nm disjunctions.

Example 4.1. Let H be the formula a(X), b(X) ∨ c(Y ), d(Y ), as first step

we obtain

a(X) ∨ (c(Y ), d(Y )); b(X) ∨ (c(Y ), d(Y ))

and as final step:

H◦ = a(X) ∨ c(Y ); a(X) ∨ d(Y ); b(X) ∨ c(Y ); b(X) ∨ d(Y )

and |H◦| has 2× 2 disjunctions.

Definition 4.2. Let B = D1, . . . , Dm, m ≥ 0 be a formula in conjunctive

normal form where Di = li1∨ . . .∨lini
, ni ≥ 0. The corresponding list of basic

conjunction B◦ of B is obtained first replacing B by l11, D2, . . . , Dm; . . . ; l1n1 , D2, . . . , Dm,

and then iterating on each Di, i ≥ 2. As a result:

B◦ = l11, . . . , lm1; . . . ; l1n1 , . . . , amnm

where |B◦| has n1 × n2 × . . .× nm conjunctions.

Example 4.2. Let B be the formula e(X, Y )∨f(X, Y ), g(X)∨ s(Z), as first

step we obtain

e(X, Y ), (g(X) ∨ s(Z)); f(X, Y ), (g(X) ∨ s(Z)).
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Therefore, as final step:

B◦ = e(X, Y ), g(X); e(X,Y ), s(Z); f(X, Y ), g(X); f(X,Y ), s(Z)

and B◦ has 2× 2 conjunctions.

Definition 4.3. Let r be an NFN rule, H◦(r) = H1; . . . ; Hn be the corre-

sponding list of basic disjunctions of H(r) built as defined in Definition 4.1,

and B◦(r) = B1; . . . ; Bm the corresponding list of basic conjunctions of B(r)

built as defined in Definition 4.2. The DLP program for r is defined as

Pr = {Hi :- Bj.| ∀i = 1, . . . , n and ∀j = 1, . . . , m}.

For an NFN program P the näıve transformation Pexp is

Pexp =
⋃
r∈P

Pr. (4.1)

Example 4.3. Let P be the following NFN program:

r1 : a(X), b(X) ∨ c(Y ), d(Y ) :- e(X, Y ) ∨ f(X, Y ).
r2 : e(1, 1).

Therefore

H◦ = a(X) ∨ c(Y ); a(X) ∨ d(Y ); b(X) ∨ c(Y ); b(X) ∨ d(Y );

as shown in Example 4.1. Moreover B◦(r) = e(X, Y ); f(X,Y ). Conse-

quently, the corresponding DLP program Pexp of P is:

a(X) ∨ c(Y ) :- e(X, Y ). a(X) ∨ c(Y ) :- f(X, Y ).
a(X) ∨ d(Y ) :- e(X,Y ). a(X) ∨ d(Y ) :- f(X, Y ).
b(X) ∨ c(Y ) :- e(X,Y ). b(X) ∨ c(Y ) :- f(X, Y ).
b(X) ∨ d(Y ) :- e(X, Y ). b(X) ∨ d(Y ) :- f(X,Y ).
e(1, 1).

Note that

AS(P ) = {{e(1, 1), a(1), b(1)}, {e(1, 1), c(1), d(1)}} = AS(Pexp).
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4.1.1 Properties of the näıve Transformation

Next we report some properties of the näıve transformation. The first

one is rather important and states that the näıve transformation maintains

safety.

Proposition 4.1.1. Given a safe NFN program P , then also Pexp is safe.

Proof. In P , a rule r must be safe, that is each variable occurring in H(r)

or in a negative body literal must occur in each atom of a positive basic

disjunction D of B(r). Now note that each element of B(r)◦ contains one

literal of each basic disjunction of D. Therefore, each variable that occurs

in H(r) or in a negative body literal of r also occurs in a positive literal

(stemming from D) in each rule of Pr. Since all head atoms or negative body

literals of rules in Pr have also been head atoms or negative body literals in

r, Pr is safe. Since these considerations hold for all rules in P , also Pexp is

safe.

We next want to show that the transformation also maintains answer sets.

In order to do this, we first show a preliminary result.

Lemma 4.1.2. Given an NFN rule r, a set of constants U , and an inter-

pretation I for Ground(r, U), I |= Ground(r, U) iff I |= Ground(Pr, U).

Proof. We first observe that for any substitution σ, Prσ = Prσ. In the

following, let s = rσ for an arbitrary substitution σ : vars(r) → U . We show

I |= s ⇔ I |= Ps, from which I |= Ground(r, U) ⇔ I |= Ground(Pr, U)

follows.

(⇒) Assume I |= s, and first assume I 6|= B(s). Then there exists a basic

disjunction D ∈ B(s) such that for each literal ` ∈ D, I 6|= `. We observe

that by construction each rule t ∈ Ps contains a literal of D in its body and

hence I 6|= B(t) and I |= t, thus I |= Ps. Now assume I |= H(s). This

means that there exists a basic conjunction C ∈ H(s) such that for each

atom a ∈ C, I |= a. Again, by construction each rule t ∈ Ps contains an

atom of C in its head and hence I |= H(t), which implies I |= t and thus

I |= Ps.

(⇐) Assume I |= Ps, and first consider the case in which I 6|= B(t) for all

t ∈ Ps. So there exists a literal `t ∈ B(t) such that I 6|= `t for each t ∈ Ps.

Due to the properties of CNF-to-DNF conversion, there is at least one basic

disjunction in B(s), in which all literals are false w.r.t. I, whence I 6|= B(s)
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and thus I |= s. Now consider that I |= B(t) for some t ∈ Ps, then I |= H(t)

as well. Note that Ps contains a rule having body B(t) for each Hi of the

sequence H◦ of Definition 4.3, and so I |= Hi for all 1 ≤ i ≤ n. This implies

that there must be a basic conjunction C in H(s) such that for each a in C

I |= a, whence I |= C, I |= H(s) and I |= s follows.

Corollary 4.1.3. Given an NFN program P , a set of constants U , and an

interpretation I, I |= Ground(P, U) iff I |= Ground(Pexp, U).

Lemma 4.1.4. Given a ground NFN program P and an interpretation I for

Ground(P,U), (P I)exp = (Pexp)
I .

Proof. An r ∈ P for which I 6|= B(r) is not in P I . For these r there is a

basic disjunction with all literals being false w.r.t. I. Since at least one of

these literals is contained in each t ∈ Pr also I 6|= B(t) for all t ∈ Pr. So if rI

does not exist, (Pr)
I = ∅. If I |= B(r), then each rule t ∈ Pr that contains a

false literal w.r.t. I in the body will not be in (Pr)
I . But since these literals

are not in rI , also PrI will not contain t. All other rules in Pr will be in both

(Pr)
I and PrI . In total, this implies (P I)exp = (Pexp)

I .

Proposition 4.1.5. Given a safe NFN program P , AS(P ) = AS(Pexp).

Proof. I ∈ AS(P ) iff I |= Ground(P )I and J 6|= Ground(P )I for each

J ( I. By Corollary 4.1.3 this is equivalent to I |= (Ground(P )I)exp and

J 6|= (Ground(P )I)exp for each J ( I. By Lemma 4.1.4 (Ground(P )I)exp =

(Ground(P )exp)
I and, since Ground(P )exp = Ground(Pexp), the statement is

equivalent to I |= Ground(Pexp)
I and J 6|= Ground(Pexp)

I for each J ( I

which is the definition for I ∈ AS(Pexp).

Proposition 4.1.6. Let P be a safe NFN program and PDLP the correspond-

ing standard program built by means of the näıve transformation, then PDLP

has exponential size in |P |.

Proof. Let m the total number of rules in P , let n = max{nd, nc} where nd

is the maximum number of basic disjunctions and nc the maximum number

of basic conjunctions in a rule. Moreover, let j = max{jd, jc} where jd is

the maximum number of literals in a basic disjunction and jc the maximum

number of atoms in a basic conjunction. Then |PDLP | ≤ m∗j2n and it is easy

to find programs for which the equality holds.
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4.2 Efficient Translation from Ground NFN

to Ground DLP programs

While the näıve transformation has desirable properties, such as main-

taining safety and answer sets, its exponential space behavior makes it im-

practical. Similar observations have been made for normal form transforma-

tions in classical logic and transformations have been suggested, which avoid

the exponential increase and preserve the formula structure by introducing

additional symbols.

In this section we describe the polynomial translation from ground nor-

mal form nested programs into ground disjunctive logic programs proposed

by Pearce et al. in [20]. This translation is derived from structure-preserving

normal form translations [21] and it introduces new labels, abbreviating sub-

formula occurrences. Moreover we propose an optimized definition of this

translation for NFN programs where a more succinct standard program is

built.

In the following, for any set of predicate symbols Π (see Section 1.1), we

use a new and disjoint alphabet ΠL = {Lφ|φ ∈ Π} of labels.

Definition 4.4 ([20]). Let P be a ground NFN program, then the corre-

sponding DLP program σ(P ) is defined as follows:

σ(P ) = {LH(r) :- LB(r). |r ∈ P} ∪ γ(P ),

where γ(P ) is constructed as follows:

1. for each positive literal occurring in P , γ contains the three rules

l :- Ll. Ll :- l.

2. for each negative literal not l occurring in P , γ contains the two rules:

ln :- Ll. Ll :- not l. :- ln, l.

3. for each expression φ = (φ1, φ2) occurring in P , γ contains the three

rules

Lφ :- Lφ1 ,Lφ2 . Lφ1 :- Lφ. Lφ2 :- Lφ.

4. for each expression φ = (φ1 ∨ φ2) occurring in P , γ contains the three

rules

Lφ1 ∨ Lφ2 :- Lφ. Lφ :- Lφ1 . Lφ :- Lφ2 .
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Example 4.4. Let us consider the following NFN program P

r1 : (a, b) ∨ (c, d) :- f ∨ g. r2 : f.

with predicate symbols of the alphabet A1 = {a, b, c, . . . , z}. Then σ(P ) is

a :- La. La :- a. b :- Lb. Lb :- b. c :- Lc. Lc :- c.
d :- Ld. Ld :- d. f :- Lf . Lf :- f. g :- Lg. Lg :- g.

La,b :- La,Lb. La :- La,b. Lb :- La,b.
Lc,d :- Lc,Ld. Lc :- Lc,d. Ld :- Lc,d.

Lf ∨ Lg :- LB(r1). LB(r1) :- Lf . LB(r1) :- Lg.
La,b ∨ Lc,d :- LH(r1). LH(r1) :- La,b. LH(r1) :- Lc,d.

LH(r1) :- LB(r1). Lf .

where

{a, b, c} ∈ Π

and

{La,Lb,Lc,Ld,Lf ,Lg,La,b,Lc,d,LH(r1),LB(r1)} ∈ ΠL.

It is quite obvious that the program σ(P ) is constructible in polynomial

time.

Theorem 4.2.1 ([20]). Let P be a ground NFN program with predicate sym-

bols in Π and σ(P ) the corresponding DLP program built according to the

Definition 4.4 with predicate symbols in ΠL ∪ Π, then

1. the time required to compute σ(P ) is polynomial in the size of P ;

2. AS(P ) = {I ∩ Π | I ∈ AS(σ(P ))};
3. σ(P ∪ P1) = σ(P ) ∪ σ(P1), where P1 is a ground NFN program.

Example 4.5. Let us consider the NFN program P in the Example 4.4, the

answer sets of σ(P ) are:

AS1 = {Lf , f,LB(r1),LH(r1),La,b,La,Lb, a, b};

AS2 = {Lf , f,LB(r1),LH(r1),Lc,d,Lc,Ld, c, d}.
Therefore AS1 ∩Π = {f, a, b} and AS2 ∩Π = {f, c, d} and it easy to see that

{f, a, b} and {f, c, d} are the answer sets of P .
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Besides the particular type of translation defined in Definition 4.4, there

are also other, slightly improved structure-preserving normal form transla-

tions in which fewer rules are introduced, depending on the polarity of the

corresponding subformula occurrences. (see Appendix A).

4.2.1 Optimized Efficient Translation for Ground NFN

Programs

In what follows, we propose a variant of the translation in Definition 4.4

building a smaller DLP program.

Definition 4.5. Let P be a ground NFN program and

r = C1 ∨ . . . ∨ Cn :- D1, . . . , Dm., n, m ≥ 0

be a rule of P , then the corresponding DLP program of r, σopt(r), is defined

as follows:

σopt(r) = {C1 ∨ . . . ∨ Cn :- D1, . . . , Dm. |r ∈ P} ∪ γopt(r),

where Ci is Ci if it is a literal, otherwise it is LCi
, i = 1, . . . , n. Similarly,

Dj is Dj if it is a literal, otherwise it is LDj
, j = 1, . . . , m. Moreover, the

set of rules γopt(r) is constructed as follows:

• for each basic conjunction C = (φ1, . . . , φk), k > 1, occurring in r, γopt

adds the k + 1 rules

LC :- φ1, . . . , φk. φ1 :- LC . . . . φk :- LC .

• for each basic disjunction D = (φ1 ∨ . . . ∨ φk) occurring in the body of

some rules of P , γopt adds the k rules

LD :- φ1. . . . LD :- φk.

Consequently, the corresponding DLP program of P is

σopt(P ) =
⋃
r∈P

σopt(r).
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Example 4.6. Let consider the program P of the Example 4.4, σopt(P ) is

the following program:

La,b :- a, b. a :- La,b. b :- La,b.
Lc,d :- c, d. c :- Lc,d. d :- Lc,d.

LB(r1) :- f. LB(r1) :- g.
La,b ∨ Lc,d :- LB(r1). f.

Note that |γopt(P ) | < |γ(P )|.
Theorem 4.2.2. Let P be a ground NFN program on the alphabet Π and

let σopt(Π) be the corresponding DLP program built according to the Defini-

tion 4.5, then

1. the time required to compute σopt(P ) is polynomial in the size of P ;

2. AS(P ) = {I ∩ Π | I ∈ AS(σopt(P ))};

3. σopt(P ∪ P1) = σopt(P )∪ σopt(P1), where P1 is a ground NFN program.

Proof. From the construction of the translation the items 3 and 1 follow. For

the proof of the item 2 see the proof of the more general Proposition 4.3.5.

Example 4.7. Consider the program P and the corresponding DLP program

σopt(P ) of the Example 4.6. Then, the answer sets of σopt(P ) are:

AS ′1 = {f,LB(r1),La,b, a, b}; AS ′2 = {f,LB(r1),Lc,d, c, d}.

Therefore AS ′1 ∩Π = {f, a, b} and AS ′2 ∩Π = {f, c, d} are the answer sets of

P .

4.3 Efficient Translation:

Algorithm rewriteNFN

The translation described in Section 4.2 is an efficient translation from

ground NFN programs to ground DLP programs based on structure-preserving

normal form translations. However, it works only in the propositional case,

in which variables cannot be used in problem representation. This restriction

limits the suitability of nested logic programs in many application domains,

especially when reasoning is to be done on large numbers of input facts.
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In this section we describe the transformation algorithm rewriteNFN,

which is efficient (similar to the efficient ground translation described in

Section 4.2) and preserves safety and answer sets.

The algorithm rewriteNFN is based on structure-preserving transforma-

tions but needs several non-straightforward modifications in order to main-

tain safety. Since rewriteNFN introduces new symbols, the answer sets of the

transformed program are not equal (as for the näıve transformation), but in

a one-to-one correspondence to the answer sets of the original program (as

for the efficient translation σopt described in Section 4.2.1), for which the

original answer sets can be obtained by applying a simple projection.

The main structure of the algorithm is shown in Figure 4.1. It pro-

cesses one rule at a time and cumulatively creates the transformed program

PDLP . For each NFN rule, a DLP one, called major rule H :- B, is cre-

ated. The head of the major rule H is a disjunction comprised of as many

disjuncts as there are in the original rule head, where non-atomic disjuncts

have been replaced by new label atoms (and atomic disjuncts remain un-

altered). Creating label atoms and their defining rules is handled by the

procedure buildAuxiliaryHeadAtom, discussed in Section 4.3.3. The body of

the major rule B is a conjunction comprised of as many conjuncts as the

original rule body had, where non-atomic conjuncts have been replaced by

label atoms (and atomic conjuncts remain unaltered). The handling of label

atoms and their defining rules for rule bodies is more subtle (as safety issues

need to be dealt with) and is done by the procedure buildAuxiliaryBodyAtom,

described in Section 4.3.2. There are a few extra atoms and defining rules

to be added for particular kinds of variable occurrences in the rule body,

which are handled by the procedures matchSafeShared, matchUnResShared,

and defineDom, which will also be discussed in Section 4.3.2.

4.3.1 Informal Overview

In this section we will examine the critical issues that rewriteNFN has to

resolve. In particular we will motivate the handling of rule bodies.

Consider the rule

a(X) :- (b(X,Y ) ∨ c(X)), (not d(X) ∨ e(Y )). (4.2)

Note that this rule is safe, even though the variable Y is unsafe—it does

not occur in the rule head or a negative literal. Variable X, on the other

hand, is safe.
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begin rewriteNFN
Input: safe NFN program P
var B: conjunction of literals; H: disjunction of atoms;
Output: DLP program PDLP .

PDLP := ∅;
for each rule r ∈ P do

H := ε; B := ε;
for each C ∈ H(r) do

if H(r) contains only one atom a
H := H ∨ a;

else
buildAuxiliaryHeadAtom(C, H, PDLP ); (see Section 4.3.3)

end if
end for
for each D ∈ B(r) do

if D contains only one literal l
B := B, l;

else
buildAuxiliaryBodyAtom(D,B,PDLP ); (see Section 4.3.2)

end if
end for
matchSafeShared(B, PDLP ); (see Section 4.3.2)
matchUnResShared(B,PDLP ); (see Section 4.3.2)
defineDom(PDLP ); (see Section 4.3.2)
PDLP := PDLP ∪ {H :- B.}; (see Section 4.3.4)

end for
return PDLP ;

end.
Figure 4.1: Algorithm: rewriteNFN

If we lifted Definition 4.5 to the non-ground case without modifications

we would obtain a translation as follows. We associate an auxiliary predicate

auxr
D, with all variables of D as arguments, to each basic disjunction D ∈

B(r) and we would obtain the following program Pun

rDLP : a(X) :- auxr
D1

(X,Y ), auxr
D2

(X, Y ).
r1 : auxr

D1
(X,Y ) :- b(X, Y ).

r2 : auxr
D1

(X,Y ) :- c(X).
r3 : auxr

D2
(X,Y ) :- not d(X).

r4 : auxr
D2

(X,Y ) :- e(Y ).

which contains unsafe rules r2, r3, and r4. On the other hand, auxr
D1

and

auxr
D2

have to be of arity 2, because the values for X and Y of the original
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rule must match also in the rewritten program to preserve the one-to-one

correspondence between answer sets.

Consider the following example to see why we cannot simply delete vari-

ables from auxiliary atoms which do not occur in their defining rule bodies.

Example 4.8. Consider the program P1

s : ok :- (b(X,Y ) ∨ c(X)), d(Y ).
d(2).
b(1, 1).

It is easy to see that the only answer set of P1 is I = {d(2), b(1, 1)} and in

particular that I does not contain ok. Suppose that we rewrite P1 using a sim-

ple lifting of Definition 4.5 deleting unsafe variables from the corresponding

DLP program, we obtain PDLP
1

sm : ok :- auxs
D(X), d(Y )

sa : auxs
D(X) :- b(X, Y ).

sb : auxs
D(X) :- c(X).

d(2).
b(1, 1).

Therefore, the answer set of PDLP
1 is

IDLP = {d(2), b(1, 1), auxs
D(1), ok}

which does not contain ok. Consequently, IDLP ∩ BP = {d(2), b(1, 1), ok}
which is not an answer set of the NFN program. The problem is that the

major rule sm of s has lost information about the bounding for the variable

Y in D = b(X,Y ) ∨ c(X).

We need to take care of variables in NFN rules that occur in more than

one basic disjunction of the same rule body (or in the rule head).

Definition 4.6 (Shared Variables). Given an NFN rule r, a variable X is

shared in r, if it appears in two different basic disjunctions of r (body shared

in r), or if X appears in both head and body of the rule.

As we have observed above, shared variables may be safe or unsafe in a

rule.

Definition 4.7 (Unrestricted and Safe Shared Variables). Let D a basic

disjunction of an NFN rule r, then a variable X ∈ vars(D), such that X is

shared in r,
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• is safe shared in D if X is a safe variable of r but X is not saved by

D;

• is unrestricted shared in D if X is not a safe variable of r.

A variable X is safe shared in r if it is safe shared in some basic disjunction

of r, and X is unrestricted shared in r if it is unrestricted shared in some

basic disjunction of r.

In rule (4.2), X is safe shared, while Y is unrestricted shared, because X

is safe shared in (not d(X) ∨ e(Y )), while Y is unrestricted shared in both

basic disjunctions. Moreover, variable Y is safe shared in s of Example 4.8.

The basic idea used in our algorithm is to use a special, fresh constant #u

instead of unsafe variables in rule heads defining auxiliary atoms for body

literals. The constant #u can be read as can take any value. In our example

Pun, the defining rules then become

r1 : auxr
D1

(X,Y ) :- b(X, Y ).
r2 : auxr

D1
(X, #u) :- c(X).

r3 : auxr
D2

(X, #u) :- not d(X).
r4 : auxr

D2
(#u, Y ) :- e(Y ).

We observe now that r3 is still unsafe. This is because X occurs in a

negative literal in D2, but since rule (4.2) is safe, X must occur safe shared

in D2, implying that there is another basic disjunction (D1 in this case) that

saves X. So we add an atom with a new predicate symbol domr
X , which

defines the possible values of variable X in r. Since X is safe all possible

values are determined by the basic disjunctions that save X so we obtain the

following rules

r3 : auxr
D2

(X, #u) :- not d(X), domr
X(X).

r5 : domr
X(X) :- auxr

D1
(X, Y ).

Now we have shown how to make the rules which define the auxiliary pred-

icates safe. But we still have to deal correctly with the new constant #u,

which should be considered as being able to take an arbitrary value.

Example 4.9. Consider the program P consisting only of rule (4.2) and the

fact b(1, 1). The answer set of this program is {b(1, 1), a(1)}.
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The rewritten program of P , as seen so far, is the following

rDLP : a(X) :- auxr
D1

(X,Y ), auxr
D2

(X, Y ).
r1 : auxr

D1
(X,Y ) :- b(X, Y ).

r2 : auxr
D1

(X, #u) :- c(X).
r3 : auxr

D2
(X, #u) :- not d(X), domr

X(X).
r4 : auxr

D2
(#u, Y ) :- e(Y ).

r5 : domr
X(X) :- auxr

D1
(X, Y ).

b(1, 1).

The answer set of the DLP program is J = {auxr
D1

(1, 1), domr
X(1), auxr

D2
(#u, 1),

b(1, 1)} and J ∩ Π = {b(1, 1)} that is not an answer set of P . Indeed, rule

rDLP will not give rise to a(1), because the constants 1 and #u do not match.

Yet #u is supposed to mean “ can take any value” and therefore should match

any constant.

We need to define the nonstandard behavior of #u explicitly. We do this

for this example by defining predicates matchr
X and matchr

Y which define the

matching for a particular variable in the presence of #u. If the variable in

question is unrestricted shared, in our case Y , we define matchr
Y of arity 3,

where the first two arguments are the values to be matched, while the third

argument represents the matched value. If the first two arguments are both

regular constants (i.e., not #u), then they must be equal and in this case

the third argument must be the same constant as the first two. If one of the

first two arguments is #u and the other a regular constant, then the third

argument is the regular constant. In this case #u can be thought of having

taken a value. If the first two arguments are both #u, then also the third

argument is #u (can still take a value).

Therefore, if Y1 and Y2 are the new names for the variable Y appearing in

the basic disjunction D1 and D2 respectively, Y the resulting match between

Y1 and Y2, and c a constant, all the possible matches are

Y1 Y2 Y

#u #u #u
#u c c
c #u c
c c c
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To simulate this match we add to the DLP program the rules:

r8 : matchr
Y (Y, Y, Y ) :- domr

Y (Y ).
r9 : matchr

Y (Y, #u, Y ) :- domr
Y (Y ).

r10 : matchr
Y (#u, Y, Y ) :- domr

Y (Y ).
r11 : matchr

Y (#u, #u, #u).

Since we also want to restrict the values these constants can take, we

use the new predicate domr
Y for this purpose. domr

Y is slightly different to

domr
X , as Y is an unrestricted shared variable, so there is no saving basic

disjunction. We define it simply by means of each positive body literal in

which it occurs

r12 : domr
Y (Y ) :- b(X,Y ).

r13 : domr
Y (Y ) :- e(Y ).

If the variable in question is safe shared, then at least one basic disjunction

in the body is guaranteed to yield a value for this variable. X is a safe shared

variable, and it will always obtain a value from D1. We can thus optimize a

bit with respect to unrestricted shared variables and define matchr
X of arity

2, where the first argument will come from a basic disjunction that saves the

variable. So the first argument will never be #u, and the predicate will hold

if the two arguments are the same constant, or if the second argument is #u.

Therefore, if X is the safe variable appearing in D1, X2 is the new name

of the safe shared variable X appearing in the basic disjunction D2, and c a

constant we can have only the following cases

X X2

c #u
c c

We simulate this match adding the rules

r6 : matchr
X(X, X) :- domr

X(X).
r7 : matchr

X(X, #u) :- domr
X(X).

In order to restrict the values these constants can take, we reuse the

predicate domr
X .

As a final step, we modify rDLP such that the modified matching becomes
effective. This step involves renaming variable occurrences. For more than
two occurrences, we would have to form a chain of match predicates:

rDLP : a(X) :- auxr
D1

(X, Y1), auxr
D2

(X1, Y2), matchr
X(X, X1),

matchr
X(Y1, Y2, Y ).

(4.3)
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In this example we have informally seen all of the peculiar tasks that arise

when translating rule bodies. In the following section, we will see how these

techniques can be generalized.

4.3.2 Body Transformation

In this section we discuss the procedures matchSafeShared, matchUnResShared,

defineDom, and buildAuxiliaryBodyAtom, which treat the rule bodies of the

original NFN program. As seen in Figure 4.1, the algorithm rewriteNFN in-

vokes buildAuxiliaryBodyAtom for each non-atomic basic disjunction, while

procedures matchSafeShared, matchUnResShared, and defineDom are called

once per rule.

In the rest of this section, we will assume that any set of variables can be

turned unambiguously into a sequence (and viceversa) by using a fixed order

over all variables.

buildAuxiliaryBodyAtom

The task of this procedure is to build an auxiliary atom representing the

given basic disjunction and add it to the body of the major rule to be created.

Moreover, it adds rules which define the auxiliary predicate. Let us define

the atom which buildAuxiliaryBodyAtom adds to the body of the major rule.

Definition 4.8. The procedure buildAuxiliaryBodyAtom given a basic dis-

junction D of an NFN rule r, creates an atom auxr
D(V1, . . . , Vn) where auxr

D

is a new predicate symbol and V1, . . . , Vn are the shared variables in vars(D),

and adds it to B (that is the body of the corresponding standard rule of r

built by rewriteNFN).

For simplicity, we will often refer to auxr
D(V1, . . . , Vn) as auxr

D in the se-

quel.

Example 4.10. Consider the rule (4.2), for the basic disjunction b(X, Y )∨
c(X) the atom auxr

D1
(X, Y ) is built while for the basic disjunction not d(X)∨

e(Y ) the atom auxr
D2

(X, Y ) is built. Therefore, the procedure adds the fol-

lowing atoms to B:

auxr
D1

(X, Y ), auxr
D2

(X,Y ). (4.4)

The defining rules, which buildAuxiliaryBodyAtom adds to PDLP , can be

characterized as follows:
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Definition 4.9. Given a basic disjunction D of an NFN rule r, the procedure

buildAuxiliaryBodyAtom adds rules

{auxr
Dσ#u :- a. | atom a in D} (4.5)

{auxr
Dσ#u :- not a, domr

X1
(X1), . . . , domr

Xn
(Xn). |not a in D,

vars(a) = X1, . . . , Xn} (4.6)

to PDLP , where, respectively, σ#u is the substitution

{v 7→ #u |v ∈ vars(auxr
D) \ vars(a)}.

As we illustrated in Section 4.3.1, predicates domr
X and the constant #u

(which must not occur in the original NFN program) are necessary to create

safe rules defining the auxiliary predicates.

Example 4.11. Consider the rule (4.2), for the basic disjunction b(X, Y )∨
c(X) the procedure buildAuxiliaryBodyAtom adds the following rules to PDLP :

r1 : auxr
D1

(X,Y ) :- b(X, Y ).
r2 : auxr

D1
(X, #u) :- c(X).

Moreover, for the basic disjunction not d(X) ∨ e(Y ) it adds the rules:

r3 : auxr
D2

(X, #u) :- not d(X), domr
X(X).

r4 : auxr
D2

(#u, Y ) :- e(Y ).

to the standard program.

Defining rules for domr
X will be added later by the procedure defineDom.

matchSafeShared

This procedure is called once per rule, and its task is to handle the match-

ing of the new constant #u for safe shared variables, as discussed in Sec-

tion 4.3.1.

Definition 4.10. Given an NFN rule r and a safe shared variable X in r,

matchSafeShared adds the following two rules to PDLP :

matchr
X(X,X) :- domr

X(X). matchr
X(X, #u) :- domr

X(X). (4.7)
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Example 4.12. For the rule (4.2), procedure matchSafeShared adds the fol-

lowing rules to PDLP :

r6 : matchr
X(X,X) :- domr

X(X).
r7 : matchr

X(X, #u) :- domr
X(X).

Again, defining rules for the predicate domr
X will be added later by the

procedure defineDom. matchSafeShared also changes the DLP rule body B,

and replaces each occurrence of a safe shared variable in an auxiliary atom

with a fresh one and then adds appropriate match atoms.

Definition 4.11. Given an NFN rule r, a safe shared variable X in r, and a

DLP rule body B that has been created by calls to buildAuxiliaryBodyAtom,

matchSafeShared replaces each occurrence of X in an auxiliary atom auxr
D

by a new variable XD, if X is safe shared in D. Moreover, matchSafeShared

adds an atom matchr
X(X, XD) to B for each basic disjunction D in which X

is safe shared.

Example 4.13. Consider the rule (4.2), the corresponding DLP rule body

B, built so far, is (4.4). Then matchSafeShared modifies B obtaining:

auxr
D1

(X, Y ), auxr
D2

(X1, Y ), matchr
X(X, X1). (4.8)

matchUnResShared

This procedure is similar to matchSafeShared, but works on unrestricted

shared variables. As discussed in Section 4.3.1, it defines match predicates

with arity 3, and also adds match atoms to the body of the major rule in a

slightly different way.

Definition 4.12. Given an NFN rule r and an unrestricted shared variable

X in r, matchUnResShared adds the following rules to PDLP :

matchr
X(X,X, X) :- domr

X(X). matchr
X(#u,X, X) :- domr

X(X). (4.9)

matchr
X(X, #u, X) :- domr

X(X). matchr
X(#u, #u, #u). (4.10)

As mentioned earlier, the predicate domr
X will be defined later in proce-

dure defineDom.
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Example 4.14. Consider the rule (4.2), procedure matchUnResShared adds

the following rules to PDLP

r8 : matchr
Y (Y, Y, Y ) :- domr

Y (Y ).
r9 : matchr

Y (Y, #u, Y ) :- domr
Y (Y ).

r10 : matchr
Y (#u, Y, Y ) :- domr

Y (Y ).
r11 : matchr

Y (#u, #u, #u).

Just like matchSafeShared, matchUnResShared also changes the DLP rule

body B, and replaces each occurrence of an unrestricted shared variable in

an auxiliary atom with a fresh one and then adds appropriate match atoms.

The latter is somewhat more involved, as we need to form a chain of matches,

eventually ending with the original variable.

Definition 4.13. Given an NFN rule r, an unrestricted shared variable X in

r, and a DLP rule body B that has been created by calls to buildAuxiliaryBodyAtom,

matchUnResShared replaces each occurrence of X in an auxiliary atom auxr
D

by a new variable XD. Let X1, . . . , Xn be a sequence of the renamed variables,

matchUnResShared adds the following atoms to B matchr
X(X1, X2, X≤2), for

each 2 ≤ i < n−1 matchr
X(X≤i, Xi+1, X≤i+1), and finally matchr

X(X≤n−1, Xn, X)

to B if n > 2. For the special case n = 2, just matchr
X(X1, X2, X) is added

to B.

Example 4.15. Consider the rule (4.2), the corresponding DLP rule body

B, built so far, is (4.8). Then matchUnResShared modifies B obtaining:

auxr
D1

(X, Y1), auxr
D2

(X1, Y2), matchr
X(X, X1), matchr

X(Y1, Y2, Y ). (4.11)

After the application of this procedure the building of the body of the major

rule is completed.

defineDom

This procedure adds definitions for the dom predicates. These definitions

are needed only for safe and unrestricted shared variables in r. The definition

for safe shared variables is simpler, it can re-use the aux predicate of a basic

disjunction that saves the variable in question. For unrestricted shared vari-

ables, we use all body literals of the original NFN rule in which the variable

occurs. Note that, since an unrestricted shared variable is not safe, it cannot

occur in any negative literal if the original rule is safe.
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Definition 4.14. Given an NFN rule r and a safe shared variable X in r,

defineDom adds a rule

domr
X(X) :- auxr

Di
. (4.12)

where Di is some basic disjunction that saves X. Without loss of generality,

we choose i = min{j |Dj savesX, Dj ∈ B(r)}.
Given an unrestricted shared variable X in r, defineDom adds a rule

domr
X(X) :- l. (4.13)

for each literal l ∈ B(r) in which X occurs.

Example 4.16. Consider the rule (4.2) where X is a safe shared variable

and Y is an unrestricted shared variable, then for the variable X procedure

defineDom adds only the rule

r5 : domr
X(X) :- auxr

D1
(X, Y ).

while for the variable Y it adds two rules

r12 : domr
Y (Y ) :- b(X,Y ).

r13 : domr
Y (Y ) :- e(Y ).

4.3.3 Head Transformation

Rewriting an NFN rule head is simpler then rewriting an NFN rule body,

because we do not have to deal with safety issues, as each variable occurring

in the head needs to be safe. Moreover, each head variable is a shared

variable, and therefore will occur in the rule body of the transformed major

rule. As a consequence, the rewriting of the rule head is a fairly direct lifting

of the respective transformation in Definition 4.5. Obviously, in our case we

have to take care of variables. As a consequence, buildAuxiliaryHeadAtom is

essentially a simplification of buildAuxiliaryBodyAtom.

Definition 4.15. Given a basic conjunction C of an NFN rule r, the pro-

cedure buildAuxiliaryBodyAtom creates an atom auxhr
C(V1, . . . , Vn) where

auxhr
C is a new predicate symbol and vars(C) = {V1, . . . , Vn}, and adds it to

H.

For simplicity, we will often refer to auxhr
C(V1, . . . , Vn) as auxhr

C in the

sequel.
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Example 4.17. Consider the NFN rule

r : a(X), b(Y ) ∨ c, d(Z), f(X) :- e(X, Y, Z). (4.14)

Therefore, buildAuxiliaryHeadAtom builds the atom auxhr
C1

(X,Y ) for the

basic conjunction a(X), b(Y ) and it creates the atom auxhr
C2

(X, Z) for the

basic conjunction c, d(Z), f(X). Consequently, the DLP rule head H is

auxhr
C1

(X, Y ) ∨ auxhr
C2

(X, Z).

In addition to rules defining auxhr
C (as for auxiliary predicates in the

rule body), we also need rules that ensure the truth of all atoms in a basic

conjunction if its auxiliary atom becomes true.

Definition 4.16. Given a basic conjunction C of an NFN rule r, the pro-

cedure buildAuxiliaryHeadAtom adds the rule

auxhr
C :- C. (4.15)

and for each atom a in C a rule

a :- auxhr
C . (4.16)

Example 4.18. Consider the rule (4.14) in the previous example, then the

corresponding DLP program of r is the following

auxhr
C1

(X, Y ) :- a(X), b(Y ).
auxhr

C2
(X, Z) :- c, d(Z), f(X).

a(X) :- auxhr
C1

(X, Y ).
b(Y ) :- auxhr

C1
(X, Y ).

d(Z) :- auxhr
C2

(X,Z).
f(X) :- auxhr

C2
(X, Z).

c :- auxhr
C2

(X, Z).

rm : auxhr
C1

(X, Y ) ∨ auxhr
C2

(X, Z) :- e(X,Y, Z). (4.17)

In order to see why rules (4.15) are needed, consider the following (ground)

example.

Example 4.19. Let P

a ∨ b, c.
b.
c.
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The transformed program PDLP without rules generated by (4.15) would be

a ∨ auxh.
b :- auxh.
c :- auxh.
b.
c.

The answer sets of PDLP are AS = {{auxh, b, c}, {a, b, c}}, while P has

only an answer set {b, c}.

4.3.4 Major Rule

For each NFN rule, the algorithm rewriteNFN builds a corresponding

standard rule, called major rule that directly represents the NFN rule in the

standard program. The head of the major rule is built by buildAuxiliaryHeadAtom

and the body by buildAuxiliaryBodyAtom. Putting head and body together,

the algorithm rewriteNFN adds the major rule as the final step to the stan-

dard program.

In detail, if r is the following rule

C1 ∨ · · · ∨ Cn :- D1, . . . , Dm.

the corresponding major rule is of the form:

auxhr
C1
∨· · ·∨auxhr

Cn
:- auxr

D1
, . . . , auxr

Dm
,MATCHr

Xi
, . . . , MATCHr

Xk
.(4.18)

where X1, . . . , Xk are shared variables and MATCHr
Xi

represents the con-

junction of the match atoms added by functions matchSafeShared or matchUnResShared

for the variable Xi.

Example 4.20. The rule (4.3) is the corresponding major rule built for the

rule (4.2). Moreover, the rule (4.17) is the corresponding major rule for the

NFN rule (4.14).

4.3.5 Properties of the Algorithm

In this section we show some important properties of algorithm rewriteNFN,

namely that it maintains safety, that the answer sets of the transformed pro-

gram are in a one-to-one correspondence to the answer sets of the original

program, and that the obtained program is of polynomial size.
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We will first consider safety. In the algorithm we had to take a lot of care

for ensuring safety of the generated rules. We will now formally prove that

safety is guaranteed.

Proposition 4.3.1. Let P be a safe NFN program, then PDLP generated by

rewriteNFN is safe.

Proof. Observe that we can partition the rules of PDLP by the rule in P that

gave rise to their generation. Let Pr be the set of rules in PDLP created for a

rule r ∈ P . We show that safety of r implies safety of Pr.

To do this we will consider all rules that are generated for r. Rules of

the form (4.5) and (4.6) are safe because the substitution σ#u ensures that

each variable in the head appears also in the body; moreover, in a rule of

the form (4.6) each variable V in a negative literal appears also in a positive

body atom domr
V (V ), while in a rule of the form (4.5) there are no negative

literals. Rules of the form (4.7), (4.9), and (4.10) are trivially safe. Rules of

the form (4.12) are safe as the head variable occurs in the positive body by

construction. For rules of the form (4.13) we observe that unrestricted shared

variables may not occur in negative literals of r because these variables are

not safe, so rules (4.13) are guaranteed to have a positive body containing the

head variable. Rules of the form (4.15) and (4.16) are safe by construction,

as auxr
C contains all variables of C.

Finally, consider the major rule r′ generated in place of r. Note that all

variables in the head of r are shared variables, and thus they must occur in

some body literal of r′. Moreover, since r is safe, then each head variable

must occur in a positive basic conjunction, causing the variable to occur in

a positive body literal of r′. The only negative literals that r′ may contain

stem from basic disjunctions in r containing exactly one negative literal. So

variables occurring in negative literals in r′ need to occur in a positive basic

disjunction of r, which gave rise to a positive body literal in r′, containing

the variable. Given that rewriteNFN creates no other rules, we can conclude

the proof.

By the construction of the program rewriteNFN the following proposition

follows immediately.

Proposition 4.3.2. Let P1 and P2 be NFN programs then

rewriteNFN(P1 ∪ P2) = rewriteNFN(P1) ∪ rewriteNFN(P2).
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We next show that there is a one-to-one correspondence between answer

sets of a safe NFN program P and answer sets of the program produced by

rewriteNFN(P ).

Definition 4.17. Given a safe NFN program P and I an interpretation for

P , we define its expansion as :

ID := I ∪
⋃
r∈P

(π+
b (r) ∪ ωs(r) ∪ ωu(r) ∪ µs(r) ∪ µu(r) ∪ π−b (r) ∪ πh(r))

where

π+
b (r) = {auxr

Dσ′|atom a ∈ D, D ∈ B(r), aσ ∈ I,

σ′ = {v 7→ σ(v)|v ∈ vars(a)} ∪ {v 7→ #u|v ∈ vars(r) \ vars(a)}}
ωs(r) = {domr

X(σ(X))|X safe shared in r,Di the first basic disjunction

saving X, auxr
Di

σ ∈ π+
b (r)}

ωu(r) = {domr
X(σ(X))|X unrestricted shared in r,X occurs in l ∈ B(r),

lσ ∈ I}
µs(r) = {matchr

X(c, c), matchr
X(c, #u)|X safe shared in r, domr

X(c) ∈ ωs(r)}
µu(r) = {matchr

X(c, c, c), matchr
X(c, #u, c), matchr

X(#u, c, c)|X unrestricted

shared in r, domr
X(c) ∈ ωu(r)} ∪ {matchr

X(#u, #u, #u)}
π−b (r) = {auxr

Dσ′|not a ∈ D, D ∈ B(r), aσ /∈ I, ∀X ∈ vars(a) :

domr
X(σ(X)) ∈ ωs(r),

σ′ = {v 7→ σ(v)|v ∈ vars(a)} ∪ {v 7→ #u|v ∈ vars(r) \ vars(a)}}
πh(r) = {auxhr

Cσ|C ∈ H(r),∀a ∈ C : aσ ∈ I}

Note that there is exactly one ID for a fixed I.

Lemma 4.3.3. Let P be an NFN program, I be an answer set for P ,

and ID be the set built according to Definition 4.17 then ID is a model for

rewriteNFN(P ).

Proof. First of all, note that

ID ∩BP = I. (4.19)

Moreover, for each rule r ∈ P the algorithm rewriteNFN builds a corre-

sponding standard program Pr coinciding with rewriteNFN(r) where rm ∈ Pr
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is the corresponding major rule of r. For each ground instance rσ of r the

corresponding ground standard program Prσ is

Prσ = {rsσ | rs ∈ Pr, rs 6= rm}∪{rmσ′ | rmσ′ ∈ Ground(rm, UP∪#u), σ′|vars(r) = σ}.

Therefore, to show that ID is a model for PDLP = rewriteNFN(P ) it is enough

to show that ID |= Prσ, for each rσ ∈ Ground(P ).

Let rsσ ∈ Prσ be a rule such that ID |= B(rsσ) and suppose that rs was

built by means of function buildAuxiliaryBodyAtom.

• If the rule is of the form (4.5), then B(rsσ) = aσ and aσ ∈ Dσ. Since

ID |= aσ, from (4.19) aσ ∈ I. Consequently, from the construction of

ID, the auxiliary atom auxr
Dσ′ ∈ π+

b (r) (that is auxr
Dσ′ ∈ ID). More-

over, note that H(rsσ) = auxr
Dσ′, therefore ID |= rsσ.

• If the rule is of the form (4.6), since ID |= B(rsσ), ID |= not aσ then

aσ /∈ I and for each X ∈ vars(a), atom domr
Xσ ∈ ID. Therefore, from

the construction of ID, auxr
Dσ′ ∈ ID. Moreover, H(rsσ) = auxr

Dσ′, and

ID |= rsσ.

Similarly, it is no hard to see that for each rule rsσ built by procedures

matchSafeShared, matchUnResShared, and buildAuxiliaryHeadAtom, ID |=
rsσ.

So far we proved that for each basic disjunction Dσ ∈ B(rσ) such that

I |= Dσ, there is at least one atom auxr
Dσ′ ∈ ID, and for each basic conjunc-

tion C ∈ H(r) such that I |= C there is exactly one auxhr
Cσ ∈ ID.

Finally, consider the major rule rmσ′ ∈ Prσ and suppose that ID |=
B(rmσ′). Therefore, auxr

Dσ′ ∈ ID, for each D ∈ B(r) then I |= Dσ for each

Dσ ∈ B(rσ). Moreover, from the hypothesis that I ∈ AS(P ), I |= H(rσ).

Consequently, there exists a basic conjunction Cσ ∈ H(rσ) such that I |= Cσ

and from definition of ID, auxhr
Cσ ∈ πh(r). As a result, ID |= H(rmσ′),

since from the construction, H(rm) is the disjunction of all auxiliary atom

corresponding to the basic conjunctions of H(r).

Lemma 4.3.4. Let P be an NFN program, I be an answer set for P , and

ID be the set built according to Definition 4.17, then

ID ∈ AS(rewriteNFN(P )).
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Proof. From the Lemma 4.3.3, ID is a model for PDLP = rewriteNFN(P ).

Assume that ID is not a minimal model for Ground(PDLP )ID then there

exists a set of atoms JD ( ID such that JD is a model for Ground(PDLP )ID .

Let J be the set JD ∩ BP , we then prove that J ( I and J |= Ground(P )I

contradicting the hypothesis I ∈ AS(P ).

• J ( I

From the hypothesis JD ( ID, there exists an atom ag
D ∈ ID such that

ag
D /∈ JD. If ag

D = auxrg
D then there exists a rule rg

s ∈ Ground(PDLP )ID of

the form (4.5) or (4.6) such that H(rs) = auxrg
D and JD 6|= B(rg

s) (note

that from the construction of ID, since auxrg
D ∈ ID, ID |= B(rg

s) and

rg
s ∈ Ground(PDLP )ID). If rg

s is of the form (4.5), B(rg
s) = ag, where

ag ∈ I (since auxrg
D ∈ ID), and ag /∈ J . Otherwise, if rg

s is of the form

(4.6), since ID |= not ag and JD ( ID, in order to satisfy JD 6|= B(rg
s)

an atom domrg
X ∈ B(rg

s) exists such that domrg
X /∈ JD. If domrg

X is the

head of rule rg
s of the form (4.12) an atom auxrg

D′ /∈ JD where D′ is

a positive basic disjunction and from previous considerations an atom

ag ∈ I exists such that ag /∈ J . Even if domrg
X is the head of a rule of

the form (4.13), B(rg
s) = ag and ag ∈ I (since domrg

X ∈ ID) but ag /∈ J .

Finally, if ag
D = matchrg

X , defined by rule of the form (4.7), (4.9) or

(4.10), an atom domrg
X /∈ JD and, from previous considerations, there

exists an atom ag such that ag ∈ I and ag /∈ J . Consequently, J ( I.

• J |= Ground(P )I

Let rσ ∈ Ground(P ) be a ground NFN rule and rmσ′ be a correspond-

ing major rule. If ID |= B(rmσ′), then for each basic disjunction Dσ ∈
B(rσ) there is a corresponding auxiliary atom auxr

Dσ′ ∈ ID. Conse-

quently, from the construction of ID, there exists a literal lσ ∈ Dσ such

that I |= lσ for each Dσ ∈ B(rσ). As a result, rmσ′ ∈ Ground(PDLP )ID

if and only if rσ ∈ Ground(P )I (note that rσ ∈ Ground(P )I can have

fewer literals in the body than rσ ∈ Ground(P ) but this is not relevant

for the proof).

If JD |= B(rmσ′) then from the construction of ID, J |= B(rσ) and,

since JD |= H(rmσ′), J |= H(rσ). Moreover, it is easy to see that if

JD 6|= B(rmσ′) for each rmσ′ ∈ Ground(PDLP )I
D such that σ′|vars(r) = σ,

J 6|= B(rσ). Consequently, J is a model for Ground(P )I and this is a

contradiction to the hypothesis I ∈ AS(P ).
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Proposition 4.3.5. Let P be a safe NFN program, PDLP = rewriteNFN(P ),

then

AS(PDLP ) = {ID | I ∈ AS(P )}
.

Proof. Let ID be the set of atoms built according to Definition 4.17 then,

from Lemma 4.3.4, ID ∈ AS(PDLP ).

Assuming that K ∈ AS(PDLP ), we can show that its restriction to the

language of P , K ′ = K ∩ BP is in AS(P ) and that K ′
D = K. Again the

major observation is that each major rule in Ground(PDLP ) corresponds to

exactly one rule in Ground(P ). Moreover, an auxiliary atom representing a

ground basic disjunction D is true in K only if some literal of D is true in

K ′ due to construction and safety. Atoms in BP however can only be true

in K if the body of a ground rule stemming from rules (4.16) or an atom

directly contained in a major rule (of an atomic basic conjunction in P ) is

satisfied by K. Rules (4.16) in turn can support these atoms only if there

is a major rule that supports the respective auxiliary atoms. This however

means that also the rule in P that corresponds to the major rule supports

the same atoms, so K ′ must be a model of P . We can also check in a similar

way that no J ( K ′ satisfies the reduct of P . Finally, we are able to show

that K must contain (π+
b (r) ∪ ωs(r) ∪ ωu(r) ∪ µs(r) ∪ µu(r) ∪ π−b (r) ∪ πh(r))

for K ′ and each rule r ∈ P in order to satisfy PDLP . This implies that K is

of the form K ′
D.

Proposition 4.3.6. Let P be a safe NFN program, then the output of the

algorithm rewriteNFN(P ) has polynomial size in |P | and rewriteNFN(P )

runs in polynomial time in |P |.

Proof. Let m be the total number of rules in P , let k be the maximum

number of variables appearing in a rule and let t be the maximum number of

distinct predicates appearing in a rule. Let n = max{nd, nc} where nd is the

maximum number of basic disjunctions and nc is the maximum number of

basic conjunctions occurring in a rule. Moreover, let j = max{jd, jc} where

jd is the maximum number of literals appearing in a basic disjunction and jc

is the maximum number of atoms appearing in a basic conjunction.

For each rule r ∈ P rewriteNFN adds to PDLP at most n ∗ j rules of type

(4.16), at most n of type (4.15), and at most n ∗ j of types (4.5) and (4.6).

If all variables of a rule are unrestricted shared then rewriteNFN adds k ∗ t
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rules of type (4.13) and k ∗ 4 of type (4.9) and (4.10). In all other cases

(not all variables are unrestricted shared) we obtain fewer rules, possibly of

different types. Consequently |PDLP | ≤ m ∗ [n(j + 1) + (n ∗ j + k(t + 4))]

where |PDLP | refers to the cardinality of PDLP . Moreover, each rule in PDLP

clearly has polynomial size in |P |.
Next, observe that procedure buildAuxiliaryHeadAtom takes O(j) steps,

while buildAuxiliaryBodyAtom takes O(j ∗ k2) steps, as for each literal in a

basic disjunction, buildAuxiliaryBodyAtom iterates on each of its variables.

Procedures matchSafeShared and matchUnResShared both need O(n ∗ j ∗ k)

steps while defineDom runs in O(n∗k). The first loop in rewriteNFN therefore

runs in O(n∗j), and the second one invokes buildAuxiliaryBodyAtom n times,

so is O(n ∗ j ∗ k2), which is also the bound for the processing of each rule. In

total, rewriteNFN runs in O(m ∗ n ∗ j ∗ k2).



Chapter 5

Systems nfn2dlp and nfnsolve

In this chapter we describe the tools nfn2dlp and nfnsolve. The former

implements the algorithm rewriteNFN described in Section 4.3, the latter

computes the answer sets of NFN programs.

The chapter is organized as follows:

F In Section 5.1 we describe the implementation of nfn2dlp and also the

commandline interface is described.

F In Section 5.2 we describe the implementation of the tool nfnsolve

and its interface.

62
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class Term
attr :term

methods
isConst returns true if term is a constant
isAnonVar returns true if term is the string _

isVar returns true if term is a variable

Figure 5.1: class Term

5.1 The tool nfn2dlp

The system nfn2dlp translates safe NFN programs into safe DLP pro-

grams. It provides an NFN parser and safety checker, and an implementation

of the translation rewriteNFN presented in Section 4.3. The output program

is in the format of DLV, state-of-the-art implementation for disjunctive logic

programs under the answer set semantics, and thus allows for effective answer

set computation of NFN programs.

5.1.1 Implementation of nfn2dlp

The tool nfn2dlp has been implemented using the language Ruby [8].

Ruby is object-oriented: Every data type is an object, including classes and

types which many other languages designate as primitives (such as inte-

gers, booleans, and “nil”). This language supports multiple programming

paradigms, including functional, object oriented, imperative and reflective.

It also has a dynamic type system and automatic memory management.

Classes for Language Constructs

The tool nfn2dlp relies on a code base which has been constructed us-

ing an object-oriented design. For each language construct we implemented

an appropriate Ruby class described in the following. All classes contain

methods set and get. Moreover, they are represented by pseudocode.

First of all, we define the class Term (see Figure 5.1) representing a term.

The attribute of this class is a string according to Definition 1.4. Moreover,

it includes methods identifying whether a term is a constant or a variable or

an anonymous variable (the string “_”).

The class Atom (see Figure 5.2) represents atoms, according to Defini-

tion 1.5. The class Literal (see Figure 5.3), representing literals, is defined
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class Atom
attr :predicate_name

attr :terms represents the list of terms appearing in
the atom and can be empthy

Figure 5.2: class Atom

class Literal
attr :atom

attr :isNeg is a boolean variable that is true if the literal
is negative, false otherwise

Figure 5.3: class Literal

according to Definition 1.6. For the class Atom and Literal we provided

also all methods to manipulate the constructs in the other classes of the tool.

Using classes Atom and Literal we defined classes Basic-Conjunction

(see Figure 5.4) and Basic-Disjunction (see Figure 5.5) representing con-

structs basic conjunction (see Definition 2.2) and basic disjunction (see Def-

inition 2.1), respectively.

The attributes in the class Basic-Conjunction are the atoms and the

set of variables appearing in a basic conjunction. The set of variables is com-

puted by function set_vars (accessing the set of terms in the class Atom).

class Basic-Conjunction
attr :atoms

attr :vars contains all variables appearing in atoms

methods
set_vars computes the set vars

Figure 5.4: class Basic-Conjunction

In the class Basic-Disjunction the attributes are the literals appearing

in a basic disjunction and also the sets of its safe, safe shared and unrestricted

shared variables. To compute the set of safe shared and unrestricted shared

variables of a basic disjunction we need access to the body containing the

basic disjunction. Therefore, the methods set_sharedVars(body) (see Fig-

ure 5.6) and set_unResVars(body) (see Figure 5.7) are provided.

The class which represents the head of a rule is called Disjunction (see

Figure 5.8) and its attribute is a collection of basic conjunction. The method

vars computes all variables appearing in the disjunction using the attribute
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class Basic-Disjunction
attr :literals

attr :allVars is the set of all variables
attr :safeVars is the set of all safe variables
attr :sharedVars is the set of all safe shared variables
attr :unResVars is the set of all unrestricted shared variables

methods:
set_sharedVars(body)

set_unResVars(body)

Figure 5.5: class Basic-Disjunction

def set_sharedVars(body)

vars = allVars\safeVars
sharedVars = ∅
for each basic disjunction bd in body

sharedVars = sharedVars ∪ (vars ∩ bd.safe_vars)
end

end

Figure 5.6: method set sharedVars of the class Basic-Disjunction

vars of the class Basic-Conjunction.

The class representing the body is called Conjunction (see Figure 5.9)

and its attribute is a collection of its basic disjunctions. This class pro-

vides methods safeVars, safeShardVars, safeUnResVars computing the

set of safe, safe shared and unrestricted shared variables appearing in the

body. All methods use the corresponding set of variables present in Basic-

Disjunction objects.

We have also implemented the class Rule (see Figure 5.10) representing

rules according to Definition 2.3.

The most important method of this class is the method isSafe (see Fig-

ure 5.11). The method checks if any atom in the head or any negative literal

of the body contains any anonymous variable, in this case the rule is unsafe.

Moreover, the method checks if all variables in the head and in the negative

body literals are safe in the body of the rule.

Finally, we provide the class Program that represents programs and its

attribute is a set of rules.
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def set_unResVars(body)

vars = allVars\safeVars
unResVars = ∅
for each basic disjunction bd in body

unResVars = unResVars ∪ (vars ∩ bd.allVars)
end

end

Figure 5.7: method set unResVars of the class Basic-Disjunction

class Disjunction
attr :basic-conjunctions

methods
vars computes all variables occurring in basic-conjunctions

Figure 5.8: class Disjunction

class Conjunction
attr :basic-disjunctions

methods
negativeVars computes negative literal variables
safeVars computes all safe variables
safeShardVars computes all safe shared variables
safeUnResVars computes all unrestricted shared variables
includeNegLitAnonVars returns true if any negative literal

contains anonymous variables

Figure 5.9: class Conjunction

Parser

The NFN parser is implemented using the tool treetop [23]. It pro-

vides a parser generator for Parsing Expression Grammars (PEGs) [9] for

Ruby. PEGs are a novel concept for parser specification, which look similar

to classical BNF grammars but differ in semantics; most importantly these

grammars avoid ambiguity.

The parser contains a collection of rules for recognizing the constructs.

Moreover, during the parsing, the objects representing the language construct

are built.
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class Rule
attr :head

attr :body

methods
isSafe returns true is the rule is safe

Figure 5.10: class Rule

begin isSafe
for each basic conjunction bc in the head

if bc contains anonymous variables
return false

end
end
if Conjunction.includeNegLitAnonVars is true

return false
end
safeHead_vars = Disjunction.vars ∩ Conjunction.safeVars
safeNeg_vars = Disjunction.negativeVars ∩ Disjunction.safeVars
if(safeHead_vars == Conjunction.vars) &&

(safeNeg_vars == Conjunction.negativeVars)
return true

end
return false

end.
Figure 5.11: method isSafe of the class Rule

Rewriting

Two classes for handling the rewriting have been defined, RewriteHead

and RewriteBody. For the full encoding of this classes, see Appendix B.

The class RewriteHead contains as attribute nfn_head representing

the head of NFN head, dlp_head representing the head of the corresponding

DLP major rule and a set of auxiliary DLP rules. The DLP head dlp_head

is built by means of function rewriteHead. This function is the effective

implementation of the procedure buildAuxiliaryHeadAtom described in Sec-

tion 4.3.3. The auxiliary DLP rules built by rewriteHead are collected in

the attribute dlp_rules.



Chapter 5. Systems nfn2dlp and nfnsolve 68

class RewriterHead
attr :nfn_head

attr :dlp_head

attr :dlp_rules

methods
rewriteHead

The class RewriteBody contains attributes nfn_body representing the

body of the NFN rule, dlp_body representing the body of the correspond-

ing DLP major rule and dlp_rules, that is a set of auxiliary standard

rules. It has also attributes Dom, a set of dom atoms, and Match, a set

of match atoms. The method rewriteBody is the implementation of the

procedure buildAuxiliaryBodyAtom described in Section 4.3.2. In particu-

lar, buildAux is used for building the corresponding auxiliary atom for each

basic conjunction in nfn_body, buildAtomMatch constructs the set Match,

and buildDomAtom builds the set of dom atoms. Moreover, addDomRules

and addMatchRules create and add to dlp_rules the defining rules for the

atoms in Dom and Match, respectively.

class RewriterBody
attr :nfn_body

attr :dlp_body

attr :dlp_rules

attr :Dom

attr :Match

methods
rewriteBody

buildAux builds aux atoms
buildAtomMatch builds match atoms
buildDomAtom builds dom atoms
addMatchRules builds defining match rules
addDomRules builds defining dom rules

5.1.2 Using nfn2dlp

The interface of nfn2dlp is via the command-line. By default, nfn2dlp

reads the files provided as arguments, treats their contents as one NFN

program, analyzes its well-formedness and safety, and eventually translates

it into a DLP program, which will be provided on standard output.
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Example 5.1. Consider the program P represented in the text file ex.nfn

as

a,b(X) :- c(X) ∨ d(X,Y).
c(1).

d(2,3).

In order to test for safety and to transform P into a DLP program, we issue

$ nfn2dlp.rb ex.nfn

on the command line. Since the program is safe, the rewritten program is
printed on standard output:

a :- auxh1_0(X).
b(X) :- auxh1_0(X).
auxh1_0(X) :- a, b(X).
aux1_0(X) :- c(X).
aux1_0(X) :- d(X,Y).
auxh1_0(X) :- aux1_0(X).
c(1).
d(2,3).

The answer sets of the NFN program can be computed by pipelining the output

into DLV using the command

$ nfn2dlp.rb ex.nfn | DLV --

yielding answer set

{c(1),d(2,3),a,auxh1_0(1),auxh1_0(2),b(1),b(2),aux1_0(1),aux1_0(2)}.

The answer sets of the original NFN program P can be obtained by fil-

tering on the original predicates in P :

$ nfn2dlp.rb ex.nfn | DLV -- -filter=a,b,c,d

yielding the answer set

{c(1),d(2,3),a,b(1),b(2)}

As another example we consider an unsafe program.
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Example 5.2. Consider the unsafe program Pu represented in the text file

ex2.nfn as

a,b(X) :- c(X) v not d(X).

In order to test for safety and to transform P into a DLP program, we issue

$ nfn2dlp.rb ex2.nfn

on the command line. Since the program is unsafe, the following message is

printed on standard output:

Rule a,b(X):-(c(X) v not d(X)). is not safe.

5.2 The tool nfnsolve

The tool nfnsolve computes the answer sets for the NFN programs com-

bining systems nfn2dlp and DLV.

The architecture of the system nfnsolve is shown in Figure 5.12. For

nfnsolve, all predicate symbols of the NFN program are collected during

parsing, which are then used to filter the answer sets of the rewritten program

computed by the external solver (exploiting the -filter option of DLV),

which then represent precisely the answer sets of the NFN program.

5.2.1 Using nfnsolve

Also the tool nfnsolve is invoked via command-line interface. As nfn2dlp,

nfnsolve reads the files provided as arguments, and treats their contents as

one NFN program, analyzes its well-formedness and safety, and eventually

translates it into a DLP program. In addition, it invokes DLV as a backend.

The location of the DLV executable can be specified using the option -d or

alternatively --dlv, the default being DLV. Moreover, additional options can

be passed to DLV by means of the option --dlvoptions; care should be

taken that those options should form one word for the shell, which means

that usually this option string should be quoted.

Example 5.3. Continuing Example 5.1 and program P represented in file

ex.nfn, we can issue (provided that the default DLV is an executable in the

path):
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Figure 5.12: System nfnsolve
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$ nfnsolve.rb ex.nfn
DLV [build BEN/Oct 11 2007 gcc 4.1.2]

{c(1),d(2,3),a,b(1),b(2)}

If the DLV executable is to be invoked as ./d and if this executable is to be

passed options -silent (suppressing the banner with version and compiler

information) and -nofacts (not printing facts), we issue and obtain:

$ nfnsolve.rb -d ./d --dlvoptions ’-silent -nofacts’ ex.nfn
{a,b(1),b(2)}



Chapter 6

Related Work

In this chapter we discuss the relationship to the most important related

work.

The chapter is organized as follows:

F In Section 6.1 we show that the answer sets for NFN programs coincide

with the answer sets defined by Lifschitz, Tang, and Turner in [18] for

NLP programs, on the common language fragment.

F In Section 6.2 we show that the answer sets for NFN programs coincide

with the Herbrand stable models defined by Ferraris, Lee, and Lifschitz

in [7] for formulas that correspond to NFN programs.

F In Section 6.3 we show that the definition of safety for the NFN pro-

grams is more general than the one defined by Lee, Lifschitz, and Palla

in [15] on NFN programs, in the sense that there are programs that

are unsafe in the definition of [15], but safe in our definition.

73
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6.1 Equivalence to the Semantics of Lifschitz,

Tang, and Turner

Lifschitz, Tang, and Turner defined an answer set semantics for (propo-

sitional) programs with nested expressions in [18]. We recall their definition

adapted for ground NFN programs.

Definition 6.1 (Answer Sets of Lifschitz, Tang, and Turner [18]). The reduct

P IL of a ground NFN program P w.r.t. an interpretation I is defined as

{HIL :- BIL . | H :- B. ∈ P}

where

• for an atom a, aIL = a,

• (not a)IL =

{ ⊥, if I 6|= (not a);
>, if I |= (not a);

• (l1, . . . , ln)IL = (l1
IL , . . . , ln

IL),

• (k1 ∨ · · · ∨ km)IL = (k1
IL , . . . , km

IL).

The symbols ⊥ and > represent falsity and truth, respectively, where I 6|=
⊥ and I |= > hold for any interpretation I. An interpretation I is an NLP

answer set for a ground NFN program P iff it is a minimal model of P IL.

Example 6.1. Consider the following NFN program P :

a.
b.
f ∨ (d, e) :- (a ∨ not c).
p :- (not a ∨ not b).
g :- (b ∨ not a).

and interpretation I = {a, b, f, g}. Then P IL is the following program:

a.
b.
f ∨ (d, e) :- (a ∨ >).
p :- (⊥ ∨⊥).
g :- (b ∨ ⊥).

We can verify that I is an NLP answer set of the program P IL.
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In order to prove the equivalence of answer sets, we first show two equiv-

alence results concerning the satisfaction of reducts.

Lemma 6.1.1. Let r be a ground NFN rule and I a set of atoms, then:

(1) I 6|= B(r) ⇔ I 6|= B(rIL);

(2) if rI exists, ∀J ⊆ I : J |= rI ⇔ J |= rIL.

Proof. (1) The only difference between r and rIL is on negative literals. But

by definition I |= `IL iff I |= ` for an arbitrary negative literal `, from which

the claim follows.

(2) rI and rIL differ only in their treatment of body literals. Given a

literal ` in the body of r, we distinguish (a) I |= ` and (b) I 6|= `. In case (a),

if ` is positive, then ` remains both in rI and rIL , if ` = not a, then `IL = >
while rI conserves `. However, since a 6∈ I also a 6∈ J ⊆ I, hence J |= `.

Concerning (b), ` is not in rI . If ` is positive and thus remains in rIL , then

` 6∈ I and hence ` 6∈ J ⊆ I and J 6|= `. If ` is negative, then it is replaced

with ⊥. In total, we obtain that J satisfies rI exactly when it satisfies rIL .

Theorem 6.1.2. Given an NFN program P , an interpretation I is an an-

swer set of P according to Definition 2.7 iff I is an NLP answer set of P

according to Definition 6.1.

Proof. (⇒) If I is a minimal model for Ground(P )I , for each r ∈ Ground(P ),

s.t. rI exists, from Observation 1, I |= B(r) and from (2) of Lemma 6.1.1

(for the special case I = J), I |= B(rIL) follows. For rules r ∈ Ground(P ),

for which no rI exists, I 6|= B(r) and from (1) of Lemma 6.1.1, I 6|= B(rIL).

Consequently I is a model for Ground(P )IL . Moreover, no J ⊂ I is a model

for Ground(P )IL , as it would also be a model for Ground(P )I because of (2)

of Lemma 6.1.1.

(⇐) Let I be a minimal model for Ground(P )IL . For each rI ∈ Ground(P )I ,

since I |= rIL holds by (2) of Lemma 6.1.1, I |= rI holds as well. As a re-

sult, I is a model for Ground(P )I . Furthermore, no J ⊂ I is a model for

Ground(P )I because J would also be a model for Ground(P )IL . In fact,

for each rI ∈ Ground(P )I from (2) of Lemma 6.1.1, J |= rIL . For each

r ∈ Ground(P ) s.t. no rI exists, from Observation 1 I 6|= B(r), therefore

a disjunction D ∈ B(r) exists s.t. I 6|= D iff I 6|= l for all l ∈ D. The

corresponding disjunction DIL ∈ B(rIL) contains the same atoms of D and
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DIL contains ⊥ for each negative literal of D. Consequently J 6|= DIL for all

J ⊆ I therefore J 6|= B(rIL) and J |= rIL .

Since the grounding of a standard program defined in this paper is the

same as in [12] we obtain, by virtue of Theorem 6.1.2 and results of [18], the

following.

Proposition 6.1.3. Given a standard DLP program P , the answer sets of P

according to Definition 2.7 coincide with the answer sets defined by Gelfond

and Lifschitz in [12].

6.2 Equivalence to Stable Models for First

Order Formulas

In this section we show that NFN semantics coincides with Herbrand sta-

ble models proposed by Ferraris, Lee, and Lifschitz in [7] on NFN programs

written as first order formulas.

An NFN rule H :- B becomes a formula

B′ → H ′

where B′ and H ′ are obtained from B and H, respectively, by substituting

each comma by ∧, and each negative literal of the form not a by the formula

a → ⊥

An NFN program is the first-order formula formed by the conjunction of

the universal closures of the transformed rules.

Example 6.2. Let us consider the NFN program P , consisting of rules:

a(X) ∨ c(X) :- g(X, Y ), t(X, Z).
b :- a(X) ∨ d(Z).

corresponding first-order formula is

∀X, Y, Z((g(X, Y )∧t(X,Z)) → a(X)∨c(X))∧∀X, Z((a(X)∨d(Z)) → b)(6.1)

Definition 6.2 (Stable Models of Ferraris, Lee, Lifschitz [7]). Let F be a

first-order sentence and let p be the list of all predicate constants p1, . . . , pn

appearing in F . Let SM [F ] be the second order formula

F ∧ ¬∃u((u < p) ∧ F ∗(u)) (6.2)
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where u is a list of n distinct predicate variables u1, . . . , un, u < p stands for
∧n

i=1 ∀X1, . . . Xα(pi) : ui(X1, . . . Xα(pi)) → pi(X1, . . . Xα(pi))
∧¬∧n

i=1 ∀X1, . . . Xα(pi) : ui(X1, . . . Xα(pi)) ↔ pi(X1, . . . Xα(pi))

where α(p) denotes the arity of a predicate p, and F ∗(u) is defined recursively

as

• pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);

• (F ¯G) = (F ∗ ¯G∗), for ¯ ∈ {∧,∨};

• (∀XF )∗ = ∀XF ∗;

• (F → G) = (F ∗ → G∗) ∧ (F → G).

A model of F is stable if it satisfies SM [F ].

Example 6.3. Let F = a(1) ∧ (∀X, Z(a(X) ∨ d(Z)) → b) then

F ∗ = u1(1)∧∀X,Z(((u1(X)∨u2(Z)) → u3)∧((a(X)∨d(Z)) → b))(6.3)

and

SM [F ] ≡ a(1) ∧ (∀X,Z (a(X) ∨ d(Z)) → b) ∧
¬(∃u1, u2, u3 (∀X1 u1(X1) → a(X1)) ∧
(∀X1 u2(X1) → d(X1)) ∧ (u3 → b) ∧
(∃X1 ¬(u1(X1) ↔ a(X1))) ∨ (∃X1 ¬(u2(X1) ↔ d(X1)))

∨¬(u3 ↔ b) ∧ u1(1) ∧ (∀X, Z ((u1(X) ∨ u2(Z)) → u3) ∧
((a(X) ∨ d(Z)) → b)).

In the following, we will limit ourselves to Herbrand interpretations for

formulas, which can be denoted as sets of ground atoms which they satisfy.

Theorem 6.2.1. Let P be an NFN program and F its corresponding first-

order formula, then I ∈ AS(P ) iff I is a Herbrand stable model of F .

Proof. The main observations are that (1) I |= P iff I |= F , (2) each structure

for u in SM [F ] that satisfies u < p corresponds to a J ( I and vice versa (by

substituting predicate names) and (3) J |= P I iff the corresponding structure

for u it satisfies (together with I) F ∗.
In order to see (3), consider first that each formula ∀X B → H for a

rule in P is duplicated for F ∗ to yield ∀X(B∗ → H∗) ∧ (B → H). Since
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B → H contains only original predicates, it is covered by I, and since I must

satisfy F for satisfying SM [F ], this copy will be satisfied for each possible

substitution of rule variables with elements of the Herbrand universe.

Now consider a rule rσ ∈ Ground(P ) for which (rσ)I does not exist, that

is I 6|= B(rσ). That means that there is a Dσ ∈ B(rσ) such that for each

`σ in Dσ I 6|= `σ holds. We show that the corresponding formula in F ∗

representing D is satisfied for the variable binding corresponding to σ for an

interpretation for u corresponding to an arbitrary J ( I. If ` is a positive

literal, then aσ 6∈ I, hence aσ 6∈ J ( I and J 6|= aσ. If `σ = not aσ, then

F ∗ contains a formula (a∗ → ⊥) ∧ (a → ⊥) which is false for the variable

binding corresponding to σ because I |= aσ. In total, if I 6|= B(rσ) then the

formula in F ∗ corresponding to B(r) under a variable binding corresponding

to σ is not satisfied by I and any interpretation of u satisfying u < p.

Next suppose that (rσ)I does exist for a rule rσ ∈ Ground(P ). Above

we have shown that if I 6|= `σ for some ground literal `σ then the formula

corresponding to ` in F ∗ is false under a variable binding corresponding to

σ w.r.t. I and any interpretation of u. If I |= `σ for some ground literal

`σ, then it will be contained in (rσ)I . If ` is positive, it occurs unchanged

in rσI and F ∗. In case ` = not a, the corresponding formula in F ∗ will be

(a∗ → ⊥)∧ (a → ⊥), where the second conjunct is satisfied by I. In this case

J |= `σ iff the interpretation of u corresponding to J satisfies the formula in

F ∗ corresponding to ` under a variable binding corresponding to σ.

Since the structure of conjunctions and disjunctions is preserved in F ∗, we

can thus conclude (3): Given any I and an interpretation for u corresponding

to J ( I, a rule and a variable binding σ for it, we can see that J |= (rσ)I or

(rσ)I does not exist iff I and the interpretation for u satisfy the formula for

r in F ∗ under a variable binding corresponding to σ. Thus J |= Ground(P )I

iff I and the interpretation for u satisfy ∃u (u < p) ∧ F ∗. We can thus

conclude that I is a minimal model of Ground(P )I (hence I ∈ AS(P )) iff I

satisfies SM [F ].

6.3 Safety for First Order Formulas under

Stable Models

Lee, Lifschitz, and Palla in [15] generalize the concept of a safe rule defin-

ing safe first-order formulas. Stable models of a safe formula are domain
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independent. In this section we show that our safety definition is more gen-

eral than the one provided in [15] (on the common language fragment).

In Section 6.2 we showed how an NFN program can be rewritten in a

first-order formula. Next we denote by FNFN the class of first order formulas

corresponding to the class of NFN programs.

Definition 6.3 (Safe Formula of Lee, Lifschitz, and Palla [15]). A first-order

formula F = ∀V (G → H) in FNFN is safe as of [15] if each variable in F is

restricted in G. A variable X is restricted in G according to [15] if X is safe

according to an equivalent of Definition 2.9.

We can thus conclude the following result.

Theorem 6.3.1. Each first-order formula F ∈ FNFN that is safe according

to Definition 6.3 is safe according to Definition 2.10. Moreover, there are

F ∈ FNFN which are safe according Definition 2.10, but not according to

Definition 6.3.

Example 6.4. Let r be the safe NFN rule a :- b∨ c(X). The corresponding

first order formula ∀X((b∨ c(X)) → a is unsafe according to Definition 6.3.



Conclusions

This thesis extends the formalism of Disjunctive Logic Programming un-

der answer set semantics, a very powerful and expressive formalism which is

quite popular in the areas of non-monotonic reasoning and logic program-

ming. Although many efficient DLP solvers have been developed in the last

years, encouraging a number of applications in many real-world contexts,

some aspects of DLP are limiting. One of them is the simplicity of the lan-

guage syntax. For this reason some problems have to be represented by pro-

grams having a large number of structurally rules. In this way the programs

are suboptimal with respect to readability and maintainability.

In this thesis we have introduced NFN programs, an extension of non-

ground disjunctive logic programs, where conjunctions of atoms and disjunc-

tions of literals are permitted in the heads and bodies of the rules, respec-

tively. We have defined syntax and semantics of the new language and, since

ground NFN programs are NLP programs, we showed that the respective

notions of answer sets coincide on this fragment. Moreover, we showed that

Herbrand stable models as defined in [7] for first-order formulas that corre-

spond to NFN programs coincide with the answer sets for NFN programs.

Furthermore, we have defined the class of safe NFN programs and showed

that each program of this class is domain independent, that is, has the same

answer sets for each universe containing the constants of the program.

We have developed an algorithm that rewrites a given NFN program P

into a DLP program PDLP . The algorithm runs in polynomial time (thus also

the size of PDLP is polynomial in |P |) and preserves program safety, and the

answer sets of PDLP are in a one-to-one correspondence to the answer sets of

P .

We have implemented the system nfn2dlp of the presented algorithm us-

ing the programming language Ruby and the Treetop framework for parsing.

nfn2dlp rewrites NFN programs into DLP programs in the format of DLV,
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a state-of-the-art implementation for disjunctive logic programs under the

answer set semantics, and thus allows for effective answer set computation of

NFN programs. Moreover, we implemented the tool nfnsolve, which com-

putes the answer sets for the NFN programs combining the systems nfn2dlp

and DLV.

The tools are available at

http://www.mat.unical.it/software/nfn2dlp/.

Future work consists of the identification of generalization of the class of

NFN programs such that the safety definition and algorithm rewriteNFN can

be reused and extended for that class. Moreover, we examine the possibility

of relaxing the safety definition of [15], such that all safe NFN programs as

defined in this work correspond to safe first-order formulas under the stable

model semantics of [7].
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Appendix A

Optimized Translation From
NLP to DLP

The Definition 4.4 holds also if P is a ground NLP program. On the

contrary, the optimized Definition 4.5 is valid only for ground NFN programs.

Therefore, in this section, we give a more general optimized definition holding

for NLP programs.

In the follows, we consider NLP program without negative literal in the

head.

Definition A.1. Let P be a ground NLP program without negative literals in

the head of the rules, then the corresponding DLP program σopt(P ) is defined

as follows:

σopt(P ) = {H(r) :- B(r). |r ∈ P} ∪ γopt(P ),

where H(r) (resp. B(r) ) is H(r) (resp. B(r)) if it is a literal otherwise is

LH(r) (resp. LB(r)) and γopt(P ) is constructed as follows:

• for each expression φ = (φ1, φ2) occurring in P , γopt contains the three

rules

Lφ :- φ̄1, φ̄2. φ̄1 :- Lφ. φ̄2 :- Lφ.

• for each expression φ = (φ1 ∨ φ2) occurring in the body of some rules

of P , γopt contains the rules

Lφ :- φ̄1. Lφ :- φ̄2.

• for each expression φ = (φ1 ∨ φ2) occurring in the head of some rules

of P , γopt contains the rules

φ̄1 ∨ φ̄2 :- Lφ. Lφ :- φ̄1. Lφ :- φ̄2.
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where

φ̄i =

{
φi, if φi is a literal;
Lφi

otherwise;

i ∈ {1, 2}.

Note that if P is a NLP program without disjunction in the head then

σopt(P ) is a normal program and the corresponding computational complexity

is smaller than σ(P ).

Theorem A.0.2. Let P be an NLP program and σopt(P ) be the corresponding

DLP program built according to Definition A.1, then

AS(P ) = {I ∩ Π | I ∈ AS(σopt(P ))}.

To show the theorem we define the following translation.

Definition A.2. Let P be an NLP then σL
opt = σopt∪γL

opt where γL
opt is defined

as follows

• for each positive literal occurring in P , γ contains the two rules

l :- Ll. Ll :- l.

• for each negative literal not l occurring in P , γ contains the two rules:

ln :- Ll Ll :- not l. :- ln, l.

Lemma A.0.3. Let P be an NLP program with only positive literals in the

head rules, σ(P ) be the standard program built according to Definition 4.4,

and σL
opt(P ) be the DLP program built according to Definition A.2. Then

AS(σ(P )) = AS(σL
opt(P )). (A.1)

Proof. From definition of translation σ and σL
opt:

σ(P ) \ σL
opt(P ) = {Lφ1 ∨ Lφ2 :- Lφ. | φ1 ∨ φ2 ∈ B(r),∀ r ∈ P}. (A.2)
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• AS(σ(P )) ⊆ AS(σL
opt(P )).

Suppose that M ∈ AS(σ(P )) and M /∈ AS(σL
opt(P )) then M 6|= σL

opt(P )

or M is not a minimal model for (σL
opt(P ))M .

If M 6|= σL
opt(P ) then, since σL

opt(P ) ⊆ σ(P ), M 6|= σ(P ) and this is a

contradiction to the hypothesis M ∈ AS(σ(P )).

If M is not a minimal model for (σL
opt(P ))M there exists N ( M such

that N |= (σL
opt(P ))M . For each formula φ := φ1∨φ2 occurring in a body

rule of P such that {Lφi
:- Lφ.} ∈ (σL

opt(P ))M , i = 1, 2, the formula

{Lφ1 ∨ Lφ2 :- Lφ.} ∈ (σ(P ))M . Consequently, if N |= Lφ1 or N |= Lφ2

then N |= Lφ1 ∨Lφ2 :- Lφ. Moreover, if N 6|= Lφ, N |= Lφ1 ∨Lφ2 :- Lφ.

As a result, N |= (σ(P ))M and this is a contradiction to the hypothesis

M ∈ AS(σ(P )).

• AS(σL
opt(P )) ⊆ AS(σ(P )).

Suppose that M ∈ AS(σL
opt(P )) and M /∈ AS(σ(P )). If M 6|= σ(P )

then there exists a rule r ∈ (A.2) such that M |= Lφ and M 6|= Lφ1 ∨
Lφ2 . That is, M 6|= Lφ1 and M 6|= Lφ2 . Therefore, M 6|= Lφi

:- Lφ,

i = {1, 2}, where Lφi
:- Lφ ∈ σL

opt(P ), contradicting hypothesis M ∈
AS(σL

opt(P )).

If M is not a minimal model for (σ(P )M), there exists N ( M such

that N |= (σ(P )M). Since σL
opt(P ) ⊆ σ(P ) then σL

opt(P )M ⊆ σ(P )M . As

a result, N |= (σL
opt(P )M) and this is a contradiction to the hypothesis

M ∈ AS(σL
opt(P )).

Proof. (Theorem A.0.2) From Lemma A.0.3, since AS(σL
opt(P )) = AS(σ(P )),

then

AS(P ) = {I ∩ Π | I ∈ AS(σL
opt(P ))}.

Moreover, it easy to see that,

AS(σopt(P )) = {I ∩ L | I ∈ AS(σL
opt(P ))}

where L = {Lφ | φ is a literal of P}, and the theorem holds.



Appendix B

Classes for Handling Rewriting

In this section we report the full implementation for the classes Rewrite-

Head and RewriteBody described in Section 5.1.1.

class RewriteHead

require ‘disjunction_class’

require ‘rule’

class RewriterHead

attr :nfn_head

attr :dlp_head

attr :std_rules_chr

def initialize(head)

@nfn_head = head

@dlp_head = Disjunction.new([ ])

@std_rules_chr = [ ]

end

def rewrite_head(number_rule)

i = 1

@nfn_head.each do |bc|

if bc.size == 1 then

@dlp_head.add(bc.to_atom)

else

terms = Terms.new([])

bc.each do |a|
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terms = terms + a.getTerms

end

terms = terms.deleteDuplicates

pred = auxh + i.to_s + ‘_’ + number_rule.to_s

aux = Atom.new(pred,terms)

# builds auxilary rules to define

# the auxiliry predicate

bc.each do |a|

aux_r = Rule.new(a,aux)

@std_rules_chr = @std_rules_chr + [aux_r.to_s]

end

@std_rules_chr = @std_rules_chr + [Rule.new(aux,bc).to_s]

@dlp_head.add([aux])

i+=1

end

end

end

end

class RewriteBody

require ’rule’

$UNRES = Term.new(unRes”)”

class RewriterBody

attr :nfn_body #formula in CNF

attr :dlp_body #conjunction of literals

attr :std_rules_chr #array with standard rule

attr :Univ #array of predicate Univ

attr :aux_hash #basic disjunction with corresponding atom

attr :match #array match atoms

attr :UnResSharedVars

def initialize(b)

@nfn_body = b

@dlp_body = Conjunction.new([])

@std_rules_chr = Array.new

@Univ = Array.new
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@aux_hash = Hash.new

@match = Array.new

@UnResSharedVars = Terms.new([])

end

# Given a basic disjunction, function build_aux builds

# a new atom auxiliary with fresh predicate name,

# representing the basic disjunction.

# @bd: basic disjunction

# @n_rule: number of the NFN rule containing bd

def build_aux(bd, n_rule, head)

n_disj = bd.num_bd

pred = ‘aux’ + n_disj.to_s + ‘_’ + n_rule.to_s

terms = Terms.new([])

safe_shared = (bd.safe_vars & @nfn_body.shared_vars) +

(bd.safe_vars & head.vars_disj)

safe_shared = safe_shared.deleteDuplicates

terms = safe_shared + bd.sharedVars + bd.unResVars

return Atom.new(pred,terms)

end

# Function atomsJoiningUnresVars

# 1. renaming unrestricted variables appearing in each

# auxiliary atom;

# 2. build fresh atoms match” to define an explicit match”

# between unrestricted variables and contant $UNRES;

# 3. adds rules defining the predicate match.

# @nr: number rule

def atomsJoiningUnresVars(nr)

@nfn_body.unRes_vars.each do |sv|

pred = ‘match’ + sv.term.to_s + ‘_’ + nr.to_s

svArray = Array.new

@aux_hash.each_key do |bd1|

if bd1.unResVars.include?(sv)

# rename sv appearing in the

# corresponging auxiliary atom of bd1

svNew = sv.term.to_s + bd1.num_bd.to_s + ‘_’ + nr.to_s
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svNewT = Term.new(svNew)

aux_hash[bd1].terms.set_term(aux_hash[bd1].

terms.index(sv),svNewT)

svArray.push(svNew)

end

end

tmp=svArray.length

while tmp > 0

(tmp-1).times{|i|

if svArray[i] > svArray[i+1]

svArray[i],svArray[i+1] = svArray[i+1],svArray[i]

end

}

tmp-=1

end

svArray

# build atom match to define macching between X and $UNRES

varCorr = svArray[0]

for n in 1.. svArray.size - 1

termsMatch = Terms.new([])

termsMatch.set_term(0, Term.new(varCorr))

termsMatch.set_term(1, Term.new(svArray[n]))

varCorr = sv.term.to_s + (n-1).to_s + n.to_s + ‘_’ + nr.to_s

termsMatch.set_term(2, Term.new(varCorr))

@match = @match + [Atom.new(pred,termsMatch)]

end

bodyMatch = Atom.new(‘univ’ + sv.term.to_s + ‘_’ +

nr.to_s,[sv])

addUnivUnresRules(bodyMatch)

# Add rule defining match predicate

@std_rules_chr = @std_rules_chr +

[Rule.new(Atom.new(pred,

Terms.new([sv,sv,sv])),bodyMatch).to_s]

@std_rules_chr = @std_rules_chr +

[Rule.new(Atom.new(pred,

Terms.new([sv,$UNRES,sv])),bodyMatch).to_s]

@std_rules_chr = @std_rules_chr +
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[Rule.new(Atom.new(pred,Terms.new([$UNRES,sv,sv])),

bodyMatch).to_s]

@std_rules_chr = @std_rules_chr +

[Rule.new(Atom.new(pred,Terms.new(

[$UNRES,$UNRES,$UNRES])),[]).to_s]

end

end

# Function addUnivUnresRules build rules defining

# univ predicate of unrestricted variables.

#

# @univ: predicate to define

def addUnivUnresRules(univ)

nfn_body.each do |bd|

bd.each do |lit|

if lit.isNegative == false &&

lit.internal_atom.terms.include?(univ.terms[0])

@std_rules_chr = @std_rules_chr+

[Rule.new(univ, lit).to_s]

end

end

end

end

# Function addUnivSharedRule build rules defining

# univ predicate of safe variables.

#

def addUnivSharedRules

@Univ.each do |univ|

body = Conjunction.new([])

# atom univ contains only a variable

var = univ.terms[0]

# an aux atom is added to body only if var

# is a safe variable of the corrisponding

# basic disjunction
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@aux_hash.each_key do |bd|

num = bd.num_bd

if bd.safe_vars.include?(var)

body = Conjunction.new([aux_hash[bd]])

@aux_hash.each_key do |bd2|

if bd2.safe_vars.include?(var)

if bd2.num_bd < num

body = Conjunction.new([aux_hash[bd2]])

end

num = bd2.num_bd

end

end

break

end

end

@std_rules_chr = @std_rules_chr +

[Rule.new(univ,body).to_s]

end

end

# Function atomsJoiningSharedVars

#

# 1. it renames each shared variables X assuming

# value $UnRes in all auxiliary atoms

# 2. build fresh atoms ‘match’ to define an explicit match

# between shared variables and contant $UNRES;

# 3. adds rules defining the predicate match.

#

# @nr: number rule

def atomsJoiningSharedVars(nr)

@aux_hash.each_key do |bd|

nd = bd.num_bd

bd.sharedVars.each do |sv|

# rename each variable shared assuming value $UNRES

# appearing in the corresponging auxiliary atom of bd

if @UnResSharedVars.include?(sv)
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svNew = sv.to_s + nd.to_s + ‘_’ + nr.to_s

svNewT = Term.new(svNew)

@aux_hash[bd].terms.set_term(aux_hash[bd].terms.

index(sv),svNewT)

pred = ‘match’ + sv.to_s + ‘_’ + nr.to_s

match_atom = Atom.new(pred, Terms.new([sv,svNew]))

@match = @match + [match_atom]

univ_atom = Atom.new(‘univ’ + sv.term.to_s + ‘_’ +

nr.to_s,[sv])

# if univ_atom does not contained in @Univ

# then it is added to @Univ

add = true

@Univ.each do |a|

if (a == univ_atom)

add = false

end

end

if add == true

@Univ = @Univ + [univ_atom]

end

@std_rules_chr = @std_rules_chr +

Rule.new(Atom.new(pred,Terms.new([sv,sv])),

univ_atom).to_s]

@std_rules_chr = @std_rules_chr +

[Rule.new(Atom.new(pred,Terms.new([sv,$UNRES])),

univ_atom).to_s]

end

end

end

end

# Given an auxiliary atom, function build_aux_rules

# builds the rules that define the auxiliary predicate

# The function substitutes constant $UNRES for each

# variable appearing only in the head of the rule.

#
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# @a: auxiliary atom

# @bd: basic disjunction

# @nd: number disjunction

def build_aux_rules(a,bd,nd,nr)

# for each literal of bd a new rule is built

bd.each do |l|

head_aux_rule = a.copy

body_aux_rule = Conjunction.new([l])

# unbound is the array of variables appearing in

# head_aux_rule and that do not appear in the

# literal l

unbound = head_aux_rule.terms - l.internal_atom.terms

# each variable of unbound in aux is substituted

# with the constant #unRes to build a safe rule

unbound.each do |t|

head_aux_rule.terms.set_term(head_aux_rule.

terms.index(t),$UNRES)

# Each safe shared variable assuming value $UNRES

# is added to @UnResSharedVars

@UnResSharedVars = @UnResSharedVars.push(t)

end

# il l is a negative literal

# for each shared variable of l a new atom

# is added to body_aux_rule in order to build

# a safe rule

if l.isNegative == true

l.internal_atom.terms.each do |sv|

pred = ’univ’ + sv.to_s + ’_’ + nr.to_s

ts = Terms.new([sv])

univ_atom = Atom.new(pred,ts)

body_aux_rule.add(univ_atom)

# if univ_atom does not contained in @Univ

# then it is added to @Univ

add = true

@Univ.each do |a|

if a == univ_atom

add = false
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end

end

if add == true

@Univ = @Univ + [univ_atom]

end

end

end

@std_rules_chr = @std_rules_chr + [(Rule.new(head_aux_rule,

body_aux_rule)).to_s]

end

end

# Function rewrite_body builds corresponding standard body

# @dlp_body of NFN body rule @dlp_body

def rewrite_body(number_rule,head)

num_disj = 1

@nfn_body.each do |bdis|

bdis.set_num_bd(num_disj)

if bdis.size == 1 then

# since the basic disjunction contains only a literal

# the aux atom is not built

@dlp_body.add(bdis.to_literal)

if !bdis[0].isNegative

# the atom is added to aux_hash because all its variables

# are safe

aux = Atom.new(bdis[0].internal_atom.predicate_name,

bdis[0].internal_atom.terms)

@aux_hash = aux_hash.merge({bdis => aux})

end

else

# auxiliary atom corresponding to the basic disjunction

# is built

aux = build_aux(bdis,number_rule, head)

@aux_hash = @aux_hash.merge({bdis => aux})

build_aux_rules(aux, bdis, num_disj, number_rule)

end
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num_disj += 1

end # the function builds match atoms for shared variables

# and rename shared variables in each auxiliary atom

atomsJoiningSharedVars(number_rule)

addUnivSharedRules

# the function builds match atoms for unrestricted variables

# and rename unrestricted variables in each auxiliary atom

atomsJoiningUnresVars(number_rule)

@aux_hash.each_key do |bd|

if bd.size > 1

@dlp_body.add(aux_hash[bd])

end

end

@match.each do |lit|

@dlp_body.add(lit)

end

end

end


