
Università della Calabria
Dipartimento di Matematica

Dottorato di Ricerca in Matematica ed Informatica
XX Ciclo

———————————————————————————————
Settore Disciplinare INF/01 INFORMATICA

Tesi di Dottorato

Olex
Effective Rule Learning for

Text Categorization

Veronica Lucia Policicchio

Supervisore Coordinatore

Prof. Pasquale Rullo Prof.ssa Annamaria Canino

———————————————————————————————
A.A. 2006 - 2007

Olex
Effective Rule Learning for

Text Categorization

VeronicaLucia Policicchio

Dipartimento di Matematica,

Università della Calabria

87036 Rende, Italy
email : policicchio@mat.unical.it

1

Sommario

Le prime ricerche nell’ambito del Text Categorization, una sotto-area dell’ In-
formation Retrieval il cui obiettivo è la classificazione automatica di documenti
rispetto a un insieme di categorie predefinite, risalgono ai primi anni ‘60. Tuttavia
è nell’ultimo decennio che tale problema ha ricevuto interesse crescente sia nel
settore della ricerca scientifica che in contesti applicativi. Infatti, la disponibilità
di grandi quantità di dati, resa possibile dallo sviluppo delle moderne tecnolo-
gie informatiche e dei servizi web affermatisi di recente, ha posto il problema
della loro memorizzazione e organizzazione. Nell’ambito della comunità scien-
tifica, l’approccio dominante è basato sull’applicazione di tecniche di tipo Ma-
chine Learning, il cui obiettivo è la definizione di sistemi capaci di “apprendere”
automaticamente le caratteristiche di una o più categorie, sulla base di un insieme
di documenti precedentemente classificati (training set). Questo approccio pre-
senta numerosi vantaggi rispetto a quello di tipo Expert Systems (in cui esperti
di dominio sono impiegati nella definizione manuale dei classificatori per le cat-
egorie di interesse). I sistemi di apprendimento, infatti, mostrano generalmente
un’elevata efficacia, consentono un considerevole risparmio in termini di risorse
umane impiegate nel processo di definizione dei classificatori e garantiscono una
immediata portabilità verso nuovi domini.

Negli ultimi anni sono stati proposti numerosi metodi, basati su processi di
tipo induttivo, per l’apprendimento automatico di classificatori. Questi sistemi
sono generalmente basati su tecniche statistiche e spesso sono stati importati
nell’ambito del Text Categorization da altre aree dell’Information Retrieval e del
Data Mining, come nel caso delle Support Vector Machine, dapprima utilizzate
per problemi di regressione e attualmente considerate allo stato dell’arte per il
Text Categorization.
Un posto di rilievo nel paradigma dell’induzione di classificatori è occupato dagli
algoritmi di apprendimento rule-based. I classificatori, specificati come insiemi
di regole, hanno la proprietà desiderabile di essere comprensibili da un lettore
umano, al contrario della maggior parte degli altri approcci esistenti, come Sup-
port Vector Machine, Neural Network, che sono di tipo black-box, tali, cioè, che
un umano non possa interpretare i classificatori prodotti, né intervenire nel pro-
cesso di apprendimento.

2

Nell’ambito del Text Categorization, il problema dell’induzione di regole può
essere in generale formulato come segue. Dati:

1. Una conoscenza pregressa (background knowledge) B, rappresentata come
un insieme di fatti logici ground del tipo T ∈ d che indicano la presenza del
termine t nel documento d (anche altri fatti possono far parte di B);

2. un insieme di esempi positivi, rappresentati come fatti logici ground del tipo
d ∈ C , che individuano l’insieme dei documenti manualmente classificati
sotto la categoria c, cioè la classificazione ideale di c (l’insieme degli esempi
negativi è definito implicitamente secondo la Closed World Assumption, per
cui se un documento d non è esplicitamente definito come esempio positivo
per c, allora esso è un esempio negativo.);

costruire un insieme di ipotesi (il classificatore di c) che, insieme alla back-
ground knowledge, soddisfi tutti gli esempi (positivi e negativi).

Un problema di questo tipo è computazionalmente complesso, a meno che
non si rilassi il vincolo per il quale l’algoritmo di learning deve rappresentare
con esattezza il concetto target e si consentano, invece, delle approssimazioni. Il
teorema di Valiant della PAC-learnability (Probably Approximately Correct) for-
nisce un modello di “learning polinomiale” per un sottoinsieme della logica prepo-
sizionale. Nel framework PAC, la quantità di risorse polinomialmente limitate (sia
in termini di numero di esempi che di tempo computazionale) è controbilanciata
dall’accuratezza delle ipotesi indotte.
Le regole indotte a partire dalla background knowledge e dagli esempi (sia pos-
itivi che negativi) consentiranno predizioni sull’appartenenza di un documento a
una categoria, sulla base della presenza/assenza di un insieme di termini nel dato
documento. Comunque, mentre nella teoria computazionale del learning si as-
sume che gli esempi di input siano consistenti con qualche ipotesi nello spazio
delle ipotesi, nel Text Categorization ciò non è necessariamente vero. Infatti, in
generale, non è possibile classificare un documento sotto una data categoria solo
sulla base dei termini che appaiono in esso. L’ipotesi indotta, in tal caso, è una tra
quelle che massimamente soddisfa sia gli esempi positivi che quelli negativi.

In questa tesi presentiamo Olex, una nuova tecnica per l’induzione di regole di
classificazione di testi. Il problema dell’apprendimento di classificatori in Olex è
definito come un problema di ottimizzazione, in cui la F-misura è utilizzata come

3

funzione obiettivo. In particolare, obiettivo del task di ottimizzazione è quello
di determinare un insieme ottimo Xc di termini discriminanti (d-terms) capaci di
caratterizzare i documenti del training set della categoria c.

Un termine discriminante T s è una congiunzione di termini “semplici” con un
segno (positivo o negativo). Diciamo che T s appare nel documento d se tutti i
termini di cui T s è composto appaiono in d. Intuitivamente, un termine positivo
che appare in un documento d è indicativo dell’appartenenza di d alla categoria
c; dualmente, un termine negativo è indicativo di non appartenenza. Quindi, un
documento che contenga almeno un d-term positivo e non contiene alcun d-term
negativo è classificabile sotto c, secondo Xc.

Il task di ottimizzazione, quindi, può essere definito informalmente come il
problema di trovare un insieme Xc di termini tali che l’insieme dei documenti del
training set classificabili sotto c, secondo Xc, massimizzi la funzione obiettivo
(intuitivamente, aderisca quanto più possibile al training set della categoria c).

Dato un insieme (ottimo) di termini Xc, l’ipotesi corrispondente (il classifica-
tore di c) ha la forma seguente:

c ← T1 ∈ d, Tn+1 /∈ d, · · · , Tn+m /∈ d

.....

c ← Tn ∈ d, Tn+1 /∈ d, · · · , Tn+m /∈ d.

e stabilisce la classificazione del documento d sotto la categoria c, se d con-
tiene almeno uno dei termini positivi T1,, Tk e non contiene alcun termine neg-
ativo Tk+1, ..., Tn. Quindi, la presenza di un d-term positivo richiede la contestuale
assenza di tutti d-term negativi. I classificatori indotti contengono una regola per
ogni d-term positivo e tutte le regole condividono la stessa parte negativa, costi-
tuita da un letterale negativo per ogni termine negativo in Xc.
Notiamo che il linguaggio delle ipotesi di Olex, costituito essenzialmente da clau-
sole di Horn estese da congiunzioni negative di termini, non è PAC-learnable.
Siccome l’insieme che massimizza la funzione obiettivo dipende dalla scelta del
vocabolario (cioè l’insieme dei termini selezionati per l’induzione dei classifi-
catori), al fine di trovare i classificatori “migliori” l’algoritmo di ottimizzazione
viene ripetuto con diversi vocabolari di input e infine i classificatori con le migliori
prestazioni vengono scelti.

4

Il linguaggio delle ipotesi di Olex è originale e, come dimostrato dalla sper-
imentazione, molto efficace nel produrre classificatori accurati e compatti. Gli
esperimenti effettuati su due corpora di benchmark generalmente usati in letter-
atura al fine di confrontare algoritmi di learning, REUTERS-21578 e OHSUMED ,
hanno confermato le aspettative sul nostro modello. Infatti, su entrambi i data set,
Olex ha prestazioni molto elevate, tra le migliori in letteratura; inoltre, a differenza
di altri algoritmi di learning che mancano di interpretabilità, Olex ottieneinduce
modelli di classificazione che possono essere facilmente letti, compresi e modifi-
cati da un essere umano.
Le elevate prestazioni ottenute sui data set presi in considerazione mostrano che
il paradigma “un letterale positivo, zero o più letterali negativi” è molto efficace.
Intuitivamente, possiamo dire che esso consente di catturare gran parte dei doc-
umenti corretti (attraverso il letterale positivo) senza tuttavia commetter troppi
errori (grazie ai letterali negativi).
A differenza di altri sistemi di learning, Olex è basato su idee molto semplici
e dirette e perciò fornisce una chiara intuizione del modello alla base del pro-
cesso di apprendimento. Inoltre, Olex presenta diverse proprietà desiderabili per
l’apprendimento di classificatori:

• è accurato anche per categorie piccole, cioè con un basso numero di docu-
menti manualmente associati a esse;

• non richiede tutto l’insieme di termini del training set per l’apprendimento
ma, al contrario, lavora bene anche su piccoli vocabolari;

• è robusto, in quanto mostra un comportamento simile su tutti i data set
considerati.

Inoltre, grazie al fatto di essere rule-based, Olex consente una semplice in-
tegrazione della conoscenza di dominio, racchiusa in thesauri, nel processo di
apprendimento. L’utilità di tale conoscenza nel processo di learning è stata sper-
imentata in Olex su due data set, relativi al settore assicurativo e fornitici da una
società americana, la FCSI (Full Capture Solutions, Inc). Questa prima sperimen-
tazione ha mostrato che l’utilizzo di conoscenza di dominio dà solo un piccolo
contributo al miglioramento delle prestazioni dei classificatori prodotti. Tuttavia
questo risultato deve ritenersi parziale; uteriori test saranno effettuati per stabilire
se questo risultato può essere generalizzato oppure l’utilizzo di tesauri più ap-
propriati possa effettivamente apportare un importante contributo nella classifi-
cazione documentale.

5

Infine, il sistema sviluppato supporta l’integrazione dell’approccio manuale nell’
apprendimento automatico di classificatori. Grazie all’interpretabilità dei classi-
ficatori prodotti, infatti, l’ingegnere della conoscenza può partecipare alla costru-
zione di un classificatore, specificando un insieme di regole da utilizzare congiun-
tamente a quelle apprese automaticamente. Più in dettaglio, al fine di supportare
un approccio ibrido, il sitema Olex è stato progettato in maniera tale che i clas-
sificatori prodotti automaticamente siano modificabili manualmente. Un’ulteriore
funzionalità introdotta al fine di sfruttare la conoscenza di dominio è quella che
prevede il completamento automatico di un classificatore scritto manualmente.
Questa funzionalità consente di:

• scrivere un insieme di regole di classificazione, sulla base delle indicazioni
dell’ esperto del dominio, e verificarne l’accuratezza

• chiedere al sistema di completare automaticamente il classificatore manuale
al fine di migliorarne l’accuratezza.

I risultati sperimentali hanno mostrato che questa cooperazione può avere effettivi
sinergici, consentendo di ottenere prestazioni migliori sia rispetto all’approccio
manuale che a quello automatico.

In sintesi, in questa tesi vengono affrontatele questioni su riportate e in particolare:

• viene definito formalmente il problema del Text Categorization e vengono
rivisitati i principali contesti applicativi nei quali sono sfruttate tecniche di
questo tipo;

• vengono discussi i metodi e i sistemi di classificazione documentale, al fine
di realizzare una valutazione comparativa delle loro peculiarità nell’ambito
della tematica di interesse;

• viene presentato il sistema Olex; in particolare, dopo aver definito il prob-
lema di selezione dei termini discriminanti, che rappresenta il cuore del
nostro metodo, viene dimostrato che tale problema è computazionalmente
difficile e viene poposta un’ euristica per la sua soluzione.

• vengono mostrati i risultati sperimentali ottenuti e viene effettuata una va-
lutazione comparativa delle prestazioni del nostro sistema rispetto ad altri
sitemi di learning esistenti in letteratura.

Contents

I Text Classification 14

1 Text Categorization 16
1.1 Problem Definition . 17
1.2 Application of Text Categorization 18

1.2.1 Automatic Indexing for Boolean IR Systems 18
1.2.2 Document Organization 19
1.2.3 Text Filtering . 19
1.2.4 Word sense disambiguation 20
1.2.5 Hierarchical categorization of Web pages 20

1.3 Approaches to Text Categorization 21
1.3.1 Expert Systems Approach 21
1.3.2 Machine Learning Approach 21
1.3.3 Hybrid Approach . 24

1.4 Use of external knowledge in Text Categorization 25

2 Categorization Effectiveness Evaluation 27
2.1 Precision and Recall Measures 28
2.2 Combining Precision and Recall 30
2.3 Other Effectiveness Measures . 31

3 Benchmark data sets 32
3.1 The REUTERS-21578 collection 32
3.2 OHSUMED . 35

II Machine Learning Approaches to Text Categorization 36

4 Probabilistic Induction Methods 38
4.1 Support Vector Machines . 38

6

CONTENTS 7

4.2 Example-based classifiers . 40

5 Rule Based Approaches 42
5.1 Decision Tree Inducers . 42
5.2 Associative Rule Learning . 43
5.3 Decision Rule Classifiers . 47

5.3.1 RIPPER . 48
5.3.2 Using WordNet Thesaurus in RIPPER 49
5.3.3 TRIPPER . 51

6 Exploitation of Negative Information 53
6.1 A variant of k-NN using negative information 53
6.2 Association Rules with Negation 55

6.2.1 Mining Positive and Negative Associative Rules 56
6.2.2 ARC-PAN Classifier . 57

6.3 Use of Negative Information in Features Selection 59

III OLEX: a New Technique for Learning Text Classifiers 61

7 Olex: Effective Rule Learning for TC 63
7.1 Olex Overview . 63
7.2 Preliminary Notation and Definitions 66
7.3 Selection of Discriminating terms: problem definition and com-

plexity . 67
7.4 Classifier definition . 73
7.5 A Heuristics for dealing with problem DT-GEN 74
7.6 The Learning Process . 76

8 Benchmark Experimentation and Comparison 78
8.1 Benchmark Corpora . 78
8.2 Document Pre-processing . 79
8.3 Experiments . 80
8.4 Performance Metrics . 81
8.5 Results with Reuters . 81
8.6 Results with Ohsumed . 86
8.7 Time Efficiency . 87
8.8 Performance Comparison . 89

CONTENTS 8

8.8.1 Reuters . 89
8.8.2 Ohsumed . 90

9 Experimentation on real use-case corpora 92
9.1 Data sets . 92
9.2 Document Pre-processing . 93
9.3 Experimental Methodology . 95
9.4 Experimental Results on FCSI 6024 96
9.5 Experimental Results on FCSI 2984 99

10 Discussion and Conclusion 102
10.1 Discussion . 102
10.2 Concluding Remarks . 105

Abstract

Text Categorization is the problem of the automatic categorization (or classifica-
tion) of texts into pre-specified categories. It dates back to the early 60s, but only
in the last ten years it has witnessed a booming interest, both in research area and
in applicative contexts. In fact, as the modern information technologies and the
web-based services successfully make a great volume of information available, the
problem of accessing, selecting and managing this information, usually expressed
as textual data, arises. In the research community the dominant approach to this
problem is based on the application of machine learning techniques: a general
inductive process automatically builds a classifier by learning, from a set of pre-
viously classified documents, the characteristics of one or more categories. The
advantages of this approach over the knowledge engineering approach (consisting
in the manual definition of a classifier by domain experts) are a very good effec-
tiveness, considerable savings in terms of expert manpower, and straightforward
portability to different domains.

In the last years, a great number of statistical classification and machine learn-
ing methods to automatically construct classifiers using labelled training data have
been proposed. The common target to all these systems is the definition of cate-
gory profiles, describing the characteristics that a document must have in order to
be associated to one o more categories. The differences among them rely on the
techniques used to this task, which vary from decision tree to genetic algorithms,
from probabilistic techniques to mathematic and geometrical methods. Among
them, rule learning algorithms has become a successful strategy for classifier in-
duction. While weighted solutions such as the linear probabilistic methods or
nearest-neighbor methods may also prove reasonable, the models they employ are
not explicitly interpretable; rule-based classifiers, instead, provide the desirable
property of being readable, easy for people to understand. Several approaches (ei-
ther rule-based or not) exploiting negative information for text classification can

9

CONTENTS 10

be found in the literature.

A general formulation of the induction problem (for text categorization) is as
follows. Given

• a background knowledge B as a set of ground logical facts of the form
t ∈ d, meaning that term t appears in document d (other ground predicates
may occur in B as well)

• a set of positive examples expressed as ground logical facts of the form
d ∈ c, meaning that document d belongs t o category c (ideal classifica-
tion); negative examples are implicitly stated according to the Closed World
Assumption (i.e., if d ∈ c is not a positive example, then it is a negative one)

constructs a hypothetical rule set (the classifier of c) that, combined with the back-
ground knowledge B, agrees all (both positive and negative) examples. It is well
known that this problem is computationally difficult, unless the requirement that
a learning algorithm identifies the target concept exactly is relaxed to allow ap-
proximations. The Valiant’s theory of PAC-learnability (Probably Approximately
Correct) provides a model of ”polynomial learning” for a subset of propositional
logic. In the PAC framework, the polynomially bounded amount of resources
(both number of examples and computational time) is traded-off against the accu-
racy of the induced hypotheses. The induced rules from both background knowl-
edge and examples will allow prediction about the belonging of a document to
a category on the basis of the presence or absence of some given terms in that
document. However, while in computational learning theory it is assumed that the
input sample is consistent with some hypothesis in the hypothesis space, in text
classification this is not necessarily true; indeed, it is not possible, in general, to
correctly categorize a document under a category only on the basis of the terms
occurring in it. Thus, the expected induced hypothesis in such a case is one which
maximally satisfies (both positive and negative) examples.

In this thesis we propose Olex, a novel method for the automatic induction
of rule-based text classifiers. In Olex, the learning problem is stated as an opti-
mization problem relying on the F -measure as the objective function. In partic-
ular, the optimization task is that of determining a best set Xc = {T+

1 , · · · , T+
n ,

T−
n+1, · · ·T−

n+m} of discriminating terms (d-terms) for c,capable of “best” charac-
terizing the documents in the training set TSc of c. A d-term is of the form T s,

CONTENTS 11

where T is a conjunction of (simple) terms with a sign (either positive or nega-
tive). We call T conjunctive term (co-term). A d-term T s occurs in a document
d if T occurs in d, i.e., if all the simple terms, of with T is made up, occur in
d. A positive d-term occurring in a document d is indicative of membership of
d in c, while a negative one is indicative of non-membership. Thus, a document
d containing any positive d-term in Xc and none of the negative d-terms in Xc,
is eligible for classification under c according to Xc. Hence, the aim of the opti-
mization task is that of finding a set Xc of d-terms such that, by classifying under
c the set of documents of the training set eligible for classification according to
Xc, the resulting F -measure is maximum (intuitively, this corresponds to finding
Xc such that the set of eligible documents best “fits” the training set of c). Not
surprisingly, the above task is computationally untractable.

Now, given a (best) set Xc = {T+
1 , · · · , T+

n , T−
n+1 · · ·T−

n+m} of d-terms, the
corresponding hypothesis (the classifier of c) is of the form

c ← T1 ∈ d, Tn+1 /∈ d, · · · , Tn+m /∈ d

. . .

c ← Tn ∈ d, Tn+1 /∈ d, · · · , Tn+m /∈ d

and states the condition “if any of the co-terms T1, · · · , Tn occurs in d and none of
the co-terms Tn+1, · · · , Tn+m occurs in d then classify d under category c”. That
is, the occurrence of a co-term Ti, 1 ≤ i ≤ n, in a document d requires the con-
textual absence of the (possibly empty) set of co-terms Tn+1, · · · , Tn+m in order
for d be classified under c. Notice that there is one rule for each positive d-term in
Xc and, for each rule, one negative literal for each negative d-term in Xc (thus, all
rules share the same negative part Tn+1 /∈ d, · · · , Tn+m /∈ d).
We remark that the Olex’s hypothesis language, essentially Horn clauses extended
by negative conjunctions of terms, is not PAC-learnable.
Since the set Xc which maximizes the objective function depends on the choice
of the vocabulary (i.e., the set of terms selected for rule induction), to pick the
“best” classifier Olex proceeds by repeatedly running the optimization algorithm
with different input vocabularies, and eventually selecting the classifier with the
best performance.

Olex’s hypothesis language is original and, as shown by the experimental re-
sults, very effective in producing accurate and compact classifiers. Experiments,

CONTENTS 12

carried out on two standard benchmark data collections, namely, REUTERS-21578
and OHSUMED, confirm the expectations on our model. In fact,Olex achieves very
good performance on both data collections, among the best reported in the litera-
ture. In particular, Olex showed to outperform traditional classifiers such as k-NN,
Naive Bayesian, C4.5, Ripper, etc., and to be competitive with SVM. Further, un-
like SVM, that lacks interpretability, Olex yields classification models that can be
easily read, understood and modified by humans. The induced classifiers are in-
deed very compact: on the top ten categories of the REUTERS-21578, the number
of rules in a classifier ranges between 2 and 34.
High performance and compactness of classifiers are consequence of highly effec-
tive rules; intuitively, the paradigm ”one positive literal, more negative literals”
allows rules to catch most of the right documents (through the positive literal),
while not making “too many” mistakes (thanks to the negative ones).
Unlike other rule learning systems, Olex is based on very simple and straightfor-
ward ideas and, thus, provides a clear intuition of what learning is about. Further,
it is formally well-defined and understood.
Further, Olex enjoys a number of further desirable properties:

• it is accurate even for relatively small categories (i.e., it is not biased towards
majority classes);

• it can learn from small vocabularies;

• it is robust, i.e., shows a similar behavior on both data sets we have experi-
mented.

Further, thanks to its rule-based approach, the implemented prototype allows
an immediate and sound integration of background knowledge. The usefulness
of domain-specific knowledge has been evaluated on two data sets belonging to
an American insurance agency, by performing a Semantic Analysis task, whereby
documents have been represented in terms of the extracted concepts. This first
empirical evaluation showed that knowledge-based feature generation does not
substantially contribute to improve learning of text classification rules. This is a
partial result; further investigation have to be carried out, in order to state whether
this result can be generalized for our learning approach or some contribution is
obtained when using more appropriate thesauri.

Lastly, the system supports the integration of a manual approach into the au-
tomatic categorization. Thanks to the interpretability of the produced classifiers,
indeed, the Knowledge Engineer can participate in the construction of a classifier,

CONTENTS 13

by manually specifying a set of rules to be used in conjunction with those auto-
matically learned. Experimental results showed that this cooperation may bring
Text Categorization to an higher performance level.

In this thesis, after having described Text Categorization problem and discussed
some interesting related works, we introduce our learning approach. More specif-
ically, this thesis is organized as follows:

• In Part I, we formally define Text Categorization and its various subcases
and review the most important tasks to which Text Categorization has been
applied; eventually, we discuss the performance measures classically used
to evaluate the efficacy of a classifier and describe the benchmark corpora
used to test our system.

• In Part II, we give a survey of the state-of-the-art in Text Categorization,
describing some of the algorithms that have been proposed and evaluated in
the past.

• In Part III, after providing an overview of Olex and giving some prelimi-
nary definitions and notation, we state the optimization problem of select-
ing a best set of discriminating terms (which is the heart of our method) and
prove that this task is computationally difficult. Thus, we propose a heuris-
tic approach to solve it and give a description of the whole learning process.
Then, we present the experimental results and provide a performance com-
parison with other learning approaches. Finally, in the light of the obtained
results, we provide a discussion (Section 10.1).

Part I

Text Classification

14

15

In this part we present the Text Categorization problem (TC).

Text classification (TC) is a discipline at the crossroads of information retrieval
(IR), machine learning (ML), and computational linguistics (CL), and consists
in the realization of text classifiers, i.e. software systems capable of assigning
texts to one or more categories, or classes, from a predefined set. Applications
range from the automated indexing of scientific articles, to e-mail routing, spam
filtering, authorship attribution, and automated survey coding.

This part of the thesis will focus on the ML approach to TC, whereby a soft-
ware system (called the learner) automatically builds a classifier for the categories
of interest by generalizing from a training set of pre-classified texts.

The part is organized as follows:

• Chapter 1 provides a formal definition of the text classification problem.

• In Chapter 2 we give a detailed analysis of the performance measures de-
fined in Information Retrieval and their application to TC.

• Finally, in Chapter 3, we illustrate the benchmark corpora widely used to
evaluate text classifiers.

Chapter 1

Text Categorization

Text categorization (TC - also known as Text Classification or Document Classi-
fication) represents the activity of labelling natural language texts with thematic
categories from a predefined set. TC has a long history, dating back to the early
60s, but it was not until the early 90s that it became a major subfield of the infor-
mation systems discipline, largely due to increased applicative interest and to the
availability of more powerful hardware. Nowadays TC is used in many applica-
tive contexts, ranging from automatic document indexing based on a controlled
vocabulary, to document filtering, automated metadata generation, word sense
disambiguation, population of hierarchical catalogues of Web resources, and in
general any application requiring document organization or selective and adaptive
document dispatching.
In this chapter, we formally define the Text Categorization problem and review
the most important tasks to which TC has been applied. In section 1.3 we discuss
three types of approach to Text Categorization problem, here summarized:

Expert Systems approach, based on the manual definition of classifiers, has been
proposed in the ‘60. Experimental results showed that this technique achieves
very high performances but is a very costly activity;

Machine Learning approach, aiming at the construction not of a classifier, but
of an automatic builder of classifiers (the learner), appeared in Text Catego-
rization are since the early ’90s and eventually become the dominant one;

Hybrid approach, which exploits the cooperation between the above described
approaches for the development of a categorization workbench combining
the benefits of domain specific rules with the generality of automatically

16

Text Categorization 17

learned ones. This approach is of interest for us since our approach, sub-
stantially relying on a Machine Learning technique, allows the introduction
of domain expert knowledge in the classifier construction. An example of
combination of manual and automatic approaches in Olex is provided in
chapter 9.

Finally, we explore the use of external knowledge in Text Categorization, aiming
at finding an improvement of performance results by using formally represented
background knowledge in the form of thesauri. More precisely, the aim is to ex-
tend the classical document representation, based on the extraction of terms trough
simple linguistic techniques, by means of external vocabularies which should help
to “capture” the meaning of words.

1.1 Problem Definition

Text Categorization may be may be seen as the task of determining an assignment
of a boolean value to each pair 〈dj, ci〉 ∈ D × C where C = c1, ..., cm is a set of
pre-defined categories, and D = d1, ..., dn is a set of documents to be categorized.
A value of T for aij is interpreted as a decision to file dj under ci, while a value
of F is interpreted as a decision not to file dj under ci. More formally, TC repre-
sents the task of approximation of the unknown function Φ̃ : D × C → {T, F}
(that describes how documents ought to be classified) by means of a function
Φ : D × C → {T, F}, called the classifier (aka rule, or hypothesis, or model)
such that Φ and Φ̃ coincide as much as possible. In chapter 2, we will show how
to precisely define and measure this degree of coincidence.
Basic assumptions are that no additional knowledge about categories is provided
(they are just symbolic labels), neither exogenous information about documents
(metadata such as e.g. publication date, document type, publication source) is
available to help the process of building the classifier. The effect of these assump-
tions is that the algorithms that we will discuss are completely general and do not
depend on the availability of special-purpose resources that might be costly to de-
velop or might simply be unavailable.
Different constraints may be enforced on the categorization task; depending on
the application, we may want that:

1. {≤ 1 | 1 | ≥ 1 | ...} elements of C must be assigned to each element of
D. When exactly one category is assigned to each document this is often
referred to as the single-label categorization case.

Text Categorization 18

2. each element of C must be assigned to {≤ 1 | 1 | ≥ 1 | ...} elements of D.

A special case of single-label categorization (or “non-overlapping categories”
case) is binary categorization, in which each document dj must be assigned ei-
ther to category ci or to its complement ci. From a theoretical point of view, the
binary case (hence, the single-label case too) is more general than the multi-label
case, in the sense that an algorithm for binary classification can also be used for
multi-label classification: one needs only transform a problem of multi-label clas-
sification under categories {c1,, cm} into m independent problems of binary
classification under categories {ci, c̄i}, for i = 1, ..., m.

The techniques we will consider here are applicable irrespectively of whether
any of above-mentioned constraints are enforced or not and, in the rest of the
chapter, unless explicitly specified, we will be dealing with the binary case.

1.2 Application of Text Categorization

Since its first application in 1961, in Marons seminal work on probabilistic text
classification, TC has been applied in a number of different contexts. In this sec-
tion, we briefly review the most important applications, in which it has been used.
The borders between the different classes of applications listed here are fuzzy and
somehow artificial, and some of these may be considered special cases of others.
Other applications we do not explicitly discuss are speech categorization by means
of a combination of speech recognition and TC [64] [71], multimedia document
categorization through the analysis of textual captions [69], author identification
for literary texts of unknown or disputed authorship [32], language identification
for texts of unknown language [16], automated identification of text genre [46]
and automated essay grading [51].

1.2.1 Automatic Indexing for Boolean IR Systems

The first applications of TC were in the field of automatic document indexing for
IR systems relying on a controlled dictionary. Among them, the most prominent
is that of Boolean Systems, whose target is the assignment of a set of key words
and key phrases to each available document, in order to describe their content.
Key words and phrases belong to a finite set called controlled dictionary, often
consisting of a thematic hierarchical thesaurus (e.g. the NASA thesaurus for the
aerospace discipline, or the MESH thesaurus for medicine). Usually, this is a
costly activity because the selection of representative words and expressions is

Text Categorization 19

done by trained human indexers. If the entries in the controlled vocabulary are
viewed as categories, text indexing can be considered an instance of document-
pivoted TC [73], where new documents may be classified as they become avail-
able. Various text classifiers explicitly conceived for document indexing have
been described in the literature; see, for example, [34], [68], [77].
Another application, closely related to automatic indexing, is that of automated
metadata generation, which represent a fundamental tool in building and main-
taining digital libraries, where documents are tagged by metadata that describe
them under a variety of aspects (e.g., creation date, document type or format,
availability, etc.). Some of these metadata is thematic, that is, its role is to de-
scribe the semantics of the document by means of bibliographic codes, key words
or key phrases. The generation of metadata may thus be viewed as a problem of
document indexing with controlled dictionary, and thus tackled by means of TC
techniques.

1.2.2 Document Organization

Among the applications that may be addressed to TC techniques, there are many
issues pertaining to document organization and filing, be it for purposes of per-
sonal organization or structuring of a corporate document base. As an instance,
we can consider the classification task to which the news are subjected, prior to
their publication, in order to be filed under the categories of the scheme adopted
by the newspaper; typical categories might be Personals, Cars for Sale, Real Es-
tate, etc. While most newspapers would handle this application manually, those
dealing with a high volume of classified ads might prefer an automatic system to
choose the most suitable category for a given ad. In this case a typical constraint
is that exactly one category is assigned to each document. Similar applications
are the organization of patents into categories for making their search easier, the
automatic filing of newspaper articles under the appropriate sections (e.g. Politics,
Home News, Lifestyles, etc.), or the automatic grouping of conference papers into
sessions.

1.2.3 Text Filtering

Text filtering (also known as document routing) is the activity of classifying a dy-
namic collection of texts, i.e. a stream of incoming documents dispatched in an
asynchronous way by an information producer to an information consumer [11].
A very useful document routing system is an e-mail filter, whose role is to reject

Text Categorization 20

“junk” mail, keeping only those ones that are relevant to the user. Mail filtering
can be seen as a case of single-label categorization, i.e. the classification of incom-
ing documents in two disjoint categories, relevant and irrelevant. Additionally, a
filtering system may also perform a further categorization into topical categories
of the documents deemed relevant to the consumer; in the example above, an e-
mail filter might be trained to discard “junk” mail [6] [27] and further classify
non-junk mail into topical categories of interest to the user [21].

1.2.4 Word sense disambiguation

Word sense disambiguation (WSD) refers to the activity of finding, given the oc-
currence in a text of an ambiguous (i.e. polysemous or homonymous) word, the
sense this particular word occurrence has. For instance, the English word bank
may have (at least) two different senses, as in the Bank of England (a financial
institution) or the bank of river Thames (a hydraulic engineering artifact). It is
thus a WSD task to decide to which of the above senses the occurrence of bank
in “Last week I borrowed some money from the bank” refers to. WSD is very
important for a number of applications, including natural language understand-
ing, or indexing documents by word senses rather than by words for IR purposes.
WSD may be seen as a categorization task (see e.g. [36] [39]) once we view word
occurrence contexts as documents and word senses as categories.

1.2.5 Hierarchical categorization of Web pages

Automatic document categorization has recently arisen a lot of interest also for
its possible Internet applications. One of these is automatically categorizing Web
pages, or sites, into one or several of the categories that make up commercial hier-
archical catalogues. When Web documents are catalogued in this way, rather than
addressing a generic query to a general-purpose Web search engine, a searcher
may find it easier to first navigate in the hierarchy of categories and then issue
his search from (i.e. restrict his search to) a particular category of interest. Au-
tomatically categorizing Web pages has obvious advantages, since the manual
categorization of a large enough subset of the Web is problematic to say the least.
Unlike in the previous applications, this is a case in which one might typically
want each category to be populated by a set of k1 ≤ x ≤ k2 documents, and one
in which category-centered categorization may be aptest.

Text Categorization 21

1.3 Approaches to Text Categorization

1.3.1 Expert Systems Approach

Since the first applications of Text Categorization, during the early ’60s and un-
til the ’80s, the main approach used to the construction of automatic document
categorizers involved knowledge-engineering techniques: domain experts used to
process and analyze documents to manually build an expert system capable of
taking categorization decisions. Such an expert system might have typically con-
sisted of a set of manually defined rules (one per category) of type

if < DNFBooleanformula > then < category >

which has the effect of classifying the document under < category >, if it satis-
fies the disjunctive normal form < DNF Booleanformula >.
A well known example of an expert system for this task is the CONSTRUE sys-
tem [38] built by Carnegie Group and used by the Reuters news agency. The
drawback of this “manual” approach to the construction of automatic classifiers is
the existence of a knowledge acquisition bottleneck. That is, rules must be manu-
ally defined by a knowledge engineer with the aid of a domain expert (in this case,
an expert in document relevance to the chosen set of categories). If the set of cat-
egories is updated, then these two professional figures must intervene again, and
if the classifier is ported to a completely different domain (i.e. set of categories),
the work has to be repeated anew.
On the other hand, it was suggested that this approach can give very good effec-
tiveness results: Hayes et al. [38] report a .90 “break-even” result (that we will
discuss, together with other effectiveness measures for TC, in chapter 2) on a sub-
set of the REUTERS-21578 . While these are exceptionally good results, the test
set seems to have been relatively sparse when compared to the number of possible
topics.

1.3.2 Machine Learning Approach

Since the early ’90s, the Machine Learning approach to the construction of text
classifiers has gained popularity and eventually become the dominant one, at least
in the research community (see [63] for a comprehensive introduction to ML). In
this approach a general inductive process (also called the learner) automatically

Text Categorization 22

builds a classifier for a category ci by observing the characteristics of a set of doc-
uments that have previously been classified manually under ci or ci by a domain
expert; from these characteristics, the inductive process gleans the characteristics
that a novel document should have in order to be classified under ci .
In ML terminology, the classification problem is an activity of supervised learn-
ing, since the learning process is driven, or “supervised”, by the knowledge of
the categories and of the training instances that belong to them. The advantages
of this approach over the previous one are evident. The engineering effort goes
towards the construction not of a classifier, but of an automatic builder of clas-
sifiers. This means that if a learner is (as it often is) available off-the-shelf, all
that is needed is the inductive, automatic construction of a classifier from a set
of manually classified documents. The same happens if a classifier already exists
and the original set of categories is updated, or if the classifier is ported to a com-
pletely different domain. In the ML approach the manually classified documents
are then the key resource. The most favorable case is the one in which they are
already available; this is the typical case of an organization that had already been
carrying out the same categorization activity manually and decides to automate
the process. The less favorable case is when no manually classified documents
are available; this is typically the case of an organization that starts a categoriza-
tion activity and decides to opt for an automated modality straightaway. In this
case, the ML approach is still more convenient than the KE approach. In fact, it
is easier to manually classify a set of documents than to build and tune a set of
rules, for the simple reason that it is usually easier to characterize a concept ex-
tensionally (i.e. to indicate instances of it) than intensionally (i.e. to describe the
concept in words, or to describe a procedure for recognizing its instances). Clas-
sifiers built by means of ML techniques nowadays achieve impressive levels of
effectiveness (see chapter 2), making automatic classification a qualitatively (and
not only economically) viable alternative to manual classification.

Training set, test set and validation set

The ML approach relies on the existence of an initial corpus Ω = {d1, ..., dΩ},
(Ω ⊂ D) of documents previously classified under the same set of categories
C = {c1, ..., cm}, with which the system will need to operate. This means that
the values of the total function Φ̃ : D × C → {T, F} are known for every pair
〈dj, ci〉 ∈ Ω× C. For a given a category ci, a document dj is said

- positive example if Φ̃(dj, ci) = T

Text Categorization 23

- negative example if Φ̃(dj, ci) = F

In research settings (and in most operational settings too), once a classifier has
been built it is desirable to evaluate its effectiveness. In this case, prior to classifier
construction the initial corpus is usually split in two sets, not necessarily of equal
size:

• a training(-and-validation) set TV = {d1, .., d|TV |}. This is the set of doc-
uments observing the characteristics of which the classifiers for the various
categories are inductively built;

• a test set Te = {d|TV |+1, .., dΩ}. This set will be used for the purpose of
testing the effectiveness of the classifiers. Each document in Te will be fed
to the classifiers, and the classifier decisions Φ(dj, ci) compared with the
expert decisions Φ̃(dj, ci); a measure of classification effectiveness will be
based on how often the Φ(dj, ci) values match the Φ̃(dj, ci) values.

Note that, in order to carry out a scientific realistic evaluation of a learning al-
gorithm, the documents in Te cannot participate in the inductive construction of
the classifiers, since if this condition were not satisfied the experimental results
obtained would probably be unrealistically good [63]. In an operational setting,
after evaluation has been performed one would typically re-train the classifier on
the entire initial corpus, in order to boost effectiveness. This means that the results
of the previous evaluation would be a conservative estimation of the real perfor-
mance, since the final classifier has been trained on more data than the evaluated
classifier. This approach is called the train-and-test approach.
An alternative approach is the k-fold cross-validation approach (see [63]), whereby
k different classifiers Φ1, ..., Φk are induced by partitioning the initial corpus into k
disjoint sets Te1, ..., T ek, and then iteratively applying the train-and-test approach
on pairs 〈TVi = Ω\Tei, T ei〉. The final effectiveness figure is obtained by individ-
ually computing the effectiveness of the resulting k classifiers Φ1, ..., Φk, different
among each other because they have been generated from k different training-and-
validation sets, and then averaging the individual results in some way.
In both the train-and-test and k-fold cross-validation approaches, it is often the
case that in order to optimize the classifier its internal parameters should be tuned
by testing which values of the parameters yield the best effectiveness. In order to
make this optimization possible, in the train-and-test approach the set {d1, .., d|TV |}
is further split into a training set Tr = {d1, .., d|Tr|}, from which the classifier is
inductively built, and a validation set V a = {d|Tr|+1, .., d|TV |} (sometimes called

Text Categorization 24

a hold-out set), on which the repeated tests of the classifier aimed at parameter
optimization are performed; the obvious variant may be used in the k-fold cross-
validation case. Note that, basically for the same reason why we do not test a
classifier on the documents it has been trained on, we do not test it on the doc-
uments it has been optimized on; that is, test set and validation set must be kept
separate.

1.3.3 Hybrid Approach

The Machine Learning and Expert Systems Approaches, described in the above
sections, have sometimes been combined for the development of categorization
workbench combining the benefits of domain specific rules with the generality of
automatically learned ones. This cooperation, in fact, may be very effective, since
both approaches have some limits, that can be overcome if used in synergy. As
noticed by [75], in real world applications, users of automatic categorization are
confronted with two problems:

1. Getting the needed quantity of training samples for a taxonomy can be a
laborious task, especially for category topics chosen which are semantically
close to each other.

2. Though using automatic categorization, some customers wish to keep con-
trol of the assignment of certain documents. Instead, text categorization
methods are determined by categorization model generated on the basis of
training samples and the customer can only let the model be modified by
altering the training data.

These problems awake the need for an integration of manual categorization rules
into the overall categorization process with which the sample complexity should
be reduced and the user should be enabled to influence the categorization result
more directly and effectively. A trivial way to allow the intervention of the knowl-
edge engineer into the classifier definition problem is to let him build some cat-
egorization rules and then adding them to the automatic learned ones. A more
interesting way to exploit domain knowledge is to use the domain knowledge in
the automatic induction of a classifier. As shown in chapter 9, the Olex system
supports the integration of a manual approach into the automatic categorization.
Thanks to the interpretability of the produced classifiers, indeed, the Knowledge
Engineer can participate in the construction of a classifier, by manually specifying
a set of rules to be used in conjunction with those automatically learned.

Text Categorization 25

Unlike automatic categorizers, the manual categorization performed by knowl-
edge engineers is based on the semantic of words. Usually, humans associate
each category with its characteristics which can be symbolized by and embodied
in words. So categories can be discriminated by domain-specific lexicon. Com-
pared with automatic categorizer, manually defined classifiers have lower preci-
sion, but often achieve higher recall, since a domain expert has over those of the
training set more extensive domain-specific vocabulary.
Conversely, machine learning methods are not able to choose features according
to their semantic relevance like humans do. A study on automatic feature selec-
tion shows that in order to achieve a precision of more than 90% with decision
tree method C4.5 either at least ca. 200 training sample are needed, or applied al-
gorithm is able to determine an appropriate subset with few features [50]. In their
study, [65] show that benefiting from the incorporation of user’s domain knowl-
edge, the categorization workbench can improve the recall by a factor of two till
four with the same number of training samples as the automatic categorizer uses,
Further, to get a comparable categorization quality, the categorization workbench
just needs an eighth till a quarter of the training samples as the automatic catego-
rizer does.

1.4 Use of external knowledge in Text Categoriza-
tion

Recently proposed works aim at finding an improvement of text classification re-
sults by using formally represented background knowledge in the form of thesauri
to extend the classical bag-of-words feature representation paradigm. The latter,
together with the multi-words expression one, often shows to be sufficient for ac-
curate learning, since individual words and their combination carry and important
part of the meaning of the text. However, this doesn’t always hold, due to the
polysemy and synonymy of words. In fact, synonymous words are mapped into
different features while polysemous ones are treated as one single feature (but the
may actually have multiple distinct meanings). Further, there is a lack of general-
ization (as an instance, there is no way to generalize similar terms like “beef” and
“pork” to their common hypernym “meat”.
Thus, thesauri have sometimes been introduced in Text Categorization approaches
to exploit semantic relations among terms. Formally speaking, a thesaurus is made
up of three components, described below.

Text Categorization 26

Definition 1.1 (Core Component) It is a structure T := (C; <C) consisting of a
set C, whose elements are called concept identifiers, and a partial order <C on C,
called concept hierarchy or taxonomy.

Definition 1.2 (Relation between Concepts) If c1 <C c2 for any c1, c2 ∈ C, then
c1 is a subconcept (specialization) of c2 and c2 is a superconcept (generalization)
of c1. If c1 <C c2 and there exists no c3 ∈ C with c1 <C c3 <C c2, then c1 is a
direct subconcept of c2, and c2 is a direct superconcept of c1, denoted by c1 ≺ c2.

Definition 1.3 (Lexicon) A lexicon for a thesaurus T is a tuple Lex := (SC ; RefC)

consisting of a set SC , whose elements are called signs for concepts (symbols),
and a relation RefC ⊆ SC × C called lexical reference for concepts, where
(c, c) ∈ RefC holds for all c ∈ C ∩ SC . Based on RefC , for s ∈ SC we
define RefC(s) := {c ∈ C|(s, c) ∈ RefC}. Analogously, for c ∈ C it is
Ref−1

C (c) := {s ∈ SC |(s, c) ∈ RefC}.

Examples of thesauri used for Text Categorization tasks are WordNet [14] and
Mesh [2]. WordNet is a lexical database which organizes simple words and multi-
word expressions of different syntactic categories into so called synonym sets
(synsets), each of which represents an underlying concept and links these through
semantic relation. The MeSH Thesaurus is has more complex structure. It is
an ontology that has been compiled out of the Medical Subject Headings (MeSH)
controlled vocabulary thesaurus of the United States National Library of Medicine
(NLM). The ontology contains more than 22000 concepts, each enriched with
synonymous and quasi-synonymous language expressions.
Different strategies have been explored in the literature in order to use domain
specific knowledge in the automatic induction of category classifiers; some rule-
based approaches exploiting thesaurus knowledge based are provided in section
5.3.

Chapter 2

Categorization Effectiveness
Evaluation

The evaluation of a text classifier is typically conducted experimentally. The rea-
son to select the experimental way rather than the analytical one is that, in or-
der to evaluate a system analytically (e.g. proving that the system is correct and
complete) we always need a formal specification of the problem that the system
is trying to solve (e.g. with respect to what correctness and completeness are
defined), and the central notion of document classification (namely, that of rele-
vance of a document to a category) is, due to its subjective character, inherently
non-formalizable. The experimental evaluation of classifiers, rather than concen-
trating on issues of efficiency, usually tries to evaluate the effectiveness of a clas-
sifier, i.e. its capability of taking the right categorization decisions. The main
reasons for this bias are that:

• efficiency is a notion dependent on the hw/sw technology used. Once this
technology evolves, the results of experiments aimed at establishing effi-
ciency are no longer valid. This does not happen for effectiveness, as any
experiment aimed at measuring effectiveness can be replicated, with identi-
cal results, on any different or future hw/sw platform;

• effectiveness is really a measure of how the system is good at tackling the
central notion of classification, that of relevance of a document to a category.

27

Categorization Effectiveness Evaluation 28

2.1 Precision and Recall Measures

While a number of different effectiveness measures have been used in evaluating
text categorization in the past, almost all have been based on the same model of
decision making by the categorization system.

Generally, classification effectiveness with respect to a category ci is measured
in term of the classic IR notions of precision (P) and recall (R), adapted to the case
of text categorization [74]. Intuitively, P indicates the probability that if a random
document dx is classified under ci, the decision is correct; while R indicates the
probability that, if a random document dx should be associated to the category
ci, then the right decision is taken. More specifically, given a category ci, the
precision P with respect to ci is defined as the conditional probability P (caix =

T |aix = T) and, analogously the recall R is defined as the conditional probability
P (aix = T |caix = T). As they are defined here, P and R are to be understoodas
subjective probabilities, i.e. values measuring the expectation of the user that the
system will behave correctly when classifying a random document under ci. These
probabilities may be estimated in terms of the contingency table for category ci
on a given test set (see Table 2.1).

Category expert judgment
ci YES NO

classifier YES TPi FPi

judgment NO FNi TNi

Table 2.1: Contingency table for category ci.

Here, FPi (false positives wrt ci, also known as errors of commission) is the
number of documents of the test set that have been incorrectly classified under ci;
TNi (true negatives wrt ci), TPi (true positives wrt ci) and FNi (false negatives
wrt ci, also known as errors of omission) are defined accordingly. Precision wrt ci
and recall wrt ci may thus be estimated as

P =
TPi

TPi + FPi

; (2.1)

R =
TPi

TPi + FNi

. (2.2)

Categorization Effectiveness Evaluation 29

In multi-label TC, when effectiveness is computed for a set of categories the
precision and recall results for individual categories may be averaged in two dif-
ferent ways: here, one may opt for

• microaveraging, rewards classifiers that behave well on heavily populated
(“frequent”) categories, which count proportionally to the number of their
positive training examples:

µP =

|C|∑
i=1

TPi

|C|∑
i=1

(TPi + FPi)

; (2.3)

µR =

|C|∑
i=1

TPi

|C|∑
i=1

(TPi + FNi)

. (2.4)

• macroaveraging, emphasizes classifiers that perform well also on infre-
quent categories, since “all categories count the same”. To compute macro
averages, precision and recall are first evaluated locally for each category,
and then “globally” by averaging over the results of the different categories:

MP =

|C|∑
i=1

Pi

|C| ; (2.5)

MR =

|C|∑
i=1

Ri

|C| . (2.6)

Note that these two methods may give quite different results, especially when
the different categories are unevenly populated: for instance, if the classifier per-
forms well on categories with a small number of positive test instances, its effec-
tiveness will probably be better according to macroaveraging than according to

Categorization Effectiveness Evaluation 30

microaveraging. There is no agreement among authors on which is better. Some
believe that “microaveraged performance is somewhat misleading (. . .) because
more frequent topics are weighted heavier in the average” [84] and thus favour
macroaveraging, while others believe that topics should indeed count proportion-
ally to their frequence, and thus lean towards microaveraging. As we will see in
chapters 8 and 9, our system achieves a desirable balance between microaverage
and macroaverage values, which are very close to each other, on all the test cases
considered in our experimentations.

2.2 Combining Precision and Recall

Some of the performance measures may be misleading when examined alone. For
example, a trivial algorithm that says YES to every category for any document
will have a perfect recall of 100%, but an unacceptably low score in precision.
Conversely, if a system rejects every document for every category, it will have a
perfect score in precision, but will sacrifice recall to the extreme. Usually, a classi-
fier exhibits a trade-off between recall and precision when the internal parameters
or decision threshold in the classifier are adjusted; to obtain a high recall usually
means sacrificing precision and vice-versa. If the recall and precision of a classi-
fier can be tuned to have an equal value, then this value is called the break-even
point (BEP) of the system [57]. BEP has been commonly used in text categoriza-
tion evaluations. If the recall and precision values cannot be made exactly equal,
the average of the nearest recall and precision values is used as the interpolated
BEP [9, 53]. A problem with the interpolation is that when the nearest recall and
precision values are far apart, the BEP may not reflect the true behavior of the sys-
tem. The most popular way to combine the two is the function Fα function [54],
for some 0 ≤ α ≤ 1, i.e.:

Fα =
1

α 1
P

+ (1− α) 1
R

(2.7)

In this formula α may be seen as the relative degree of importance attributed
to P and R: if α = 1, then Fα coincides with P, if α = 0 then Fα coincides with
R. Usually, a value of α = 0.5 is used, which attributes equal importance to P and
R. As shown in [89], for a given classifier Ψ, its breakeven value is always less or
equal than its 1 value.

Categorization Effectiveness Evaluation 31

2.3 Other Effectiveness Measures

Other effectiveness measures different from the ones discussed here have occa-
sionally been used in the literature. Together with precision and recall, accuracy
and error have been often used to evaluate category classifier performance values.
With respect to Table 2.1 for category ci, they are defined as:

accuracy =
TPi + TNi

N
(2.8)

error =
FPi + FNi

N
(2.9)

where N indicates the total number of documents in the test set.
Although accuracy and error are common performance measures in the machine
learning literature and have been used in some evaluations of text categorizations
systems, there is a potential pitfall in using them to train or evaluate a binary
classifier. When the number of categories is large and the average number of cate-
gories per document is small, the accuracy or error may not be a sensible measure
of the effectiveness or usefulness of a classifier in text categorization.
Fundamentally, these difficulties in using accuracy and error as performance mea-
sures raised from their definitions. Unlike recall and precision, accuracy and error
have N , the number of test documents, in their divisor. Therefore, a small change
in Table 2.1 of the value TPi or TNi will produce only a small change in the
value of accuracy(likewise a small change in FPi or FNi will produce only a
small change in the value of error). However, for rare categories the maximum
value of TPi or FNi is small. Consequently, TPi and FNi may range from zero
to their maximum value without having much effect on the value of accuracy or
error, respectively. Now consider the value of recall, defined as TPi/(TPi+FNi);
the potential values of TPi and FNi are both small, and furthermore the quantity
TPi + FNi is always constant and equal to the number of documents that belong
to the category in question. Consequently, any change in the value of TPi will
produce a relatively large change in the value recall. So, recall and precision mea-
sures are often preferred in classifiers evaluation, as they are more sensitive with
respect to rare categories than accuracy or error.

Chapter 3

Benchmark data sets

Text Categorization algorithms are usually tested on public available standard
benchmarks test collections. The existence of such corpora is beneficial to re-
search on this task, since they allow different researchers to experimentally com-
pare their own systems by comparing the results they have obtained on this bench-
mark. In the following sections, we analyze the two most used benchmark data
sets in Text Categorization, the REUTERS-21578 and the OHSUMED corpora,
and discuss the problem of the existence of different sub-collections. In fact,
while using the same data sets, different researchers have “carved” different sub-
collections out of the collections, and tested their systems on one of these sub-
collections only.
As we will see in chapter 8, we used these two benchmark corpora in order to
evaluate our learning approach and to compare it with other existing methods.

3.1 The REUTERS-21578 collection

The REUTERS-21578 test collection, together with its earlier variants, has been
such a standard benchmark for the text categorization task throughout the last ten
years. REUTERS-21578 is a set of 21,578 news stories appeared in the Reuters
newswire in 1987, which are classified according to 135 thematic categories,
mostly concerning business and economy. This collection has several charac-
teristics that make it interesting for Text Categorization experimentation:

• similarly to many other applicative contexts, it is multi-label, i.e. each doc-
ument may belong to more than one category;

32

Benchmark data sets 33

• the set of categories is not exhaustive, i.e. some documents belong to no
category at all;

• the distribution of the documents across the categories is highly skewed, in
the sense that some categories have very few documents classified under
them, while others have thousands;

• there are several semantic relations among the categories (e.g. there is a
category Wheat and a category Grain, which are obviously related), but
these relations are “hidden”(i.e. there is no explicit hierarchy defined on the
categories).

This collection is also fairly challenging for Text Categorization systems based
on machine learning techniques, since several categories have (under any possible
split between training and test documents) very few training examples, making
the inductive construction of a classifier a hard task. All of these properties have
made REUTERS-21578 the benchmark of choice for Text Categorization research
in the past years.
The data contained in the “REUTERS-21578 , Distribution 1.0 corpus consist of
news stories appeared on the Reuters newswire in 1987. The data was originally
labelled by Carnegie Group, Inc. and Reuters, Ltd. in the course of developing
the CONSTRUE text categorization system [38], and was subsequently collected
and formatted by David Lewis with the help of several other people. A previ-
ous version of the collection, known as REUTERS-22173 , was used in a number
of published studies up until 1996, when a revision of the collection resulted in
the correction of several other errors and in the removal of 595 duplicates from
the original set of 22173 documents, thus leaving the 21578 documents that now
make REUTERS-21578 . The REUTERS-21578 documents actually used in Text
Categorization experiments are only 12902, since the creators of the collection
found ample evidence that the other 8676 documents had not been considered
for labelling by the people who manually assigned categories to documents. In
order to make different experimental results comparable, standard “splits” (i.e.
partitions into a training and a test set) have been defined by the creators of the
collection on the 12902 documents. Apart from very few exceptions, researchers
have used the “ModApté” split, in which 9603 documents are selected for train-
ing and the other 3299 form the test set. In this thesis we will always refer to
the ModApté split. There are 5 groups of categories that label REUTERS-21578
documents: EXCHANGES, ORGS, PEOPLE, PLACES, and TOPICS. Only the

Benchmark data sets 34

TOPICS group has actually been used in experimental research, since the other
four groups do not constitute a very challenging benchmark for Text Categoriza-
tion. The TOPICS group contains 135 categories. Some of the 12902 “legitimate”
documents have no categories attached to them, but unlike the 8676 documents re-
moved from consideration they are unlabelled because the indexers deemed that
none of the TOPICS categories applied to them. Among the 135 categories, 20
have (in the ModApté split) no positive training documents; as a consequence,
these categories have never been considered in any experiment, since the Text
Categorization methodology requires deriving a classifier either by automatically
training an inductive method on the training set only, and/or by human knowledge
engineering based on the analysis of the training set only.
Since the 115 remaining categories have at least one positive training example
each, in principle they can all be used in experiments. However, several re-
searchers have preferred to carry out their experiments on different subsets of
categories. Globally, the three subsets that have been most popular are

R10 the set of the 10 categories with the highest number of positive training ex-
amples.

R90 the set of the 90 categories with at least one positive training example and
one positive test example

R115 the set of the 115 categories with at least one training example

Reasons for using one or the other subset have been different. Several re-
searchers claim that R10 is more realistic since machine learning techniques can-
not perform adequately when positive training examples are scarce, and/or since
small numbers of positive test examples make the interpretation of effectiveness
results problematic due to high variance. Other researchers claim instead that only
by striving to work on infrequent categories too we can hope to push the limits
of Text Categorization technology, and this consideration leads them to use R90
or R115. Obviously, systems that have been tested on these different REUTERS-
21578 subsets are not immediately comparable. In our experiments, we used
the R90 subset, that makes our results directly comparable with those proposed
in [43], where learning approaches such as naive Bayes classifiers, Rocchio algo-
rithm, the c4.5 decision tree/rule learner and SVM have been tested and compared
on this subset.
A full description of the REUTERS-21578 collection and a discussion of the ex-
perimentation results on its subsets can be found in [26].

Benchmark data sets 35

3.2 OHSUMED

OHSUMED1 is a bibliographical document collection, developed by William He-
rsh and colleagues at the Oregon Health Sciences University [40]. The test col-
lection is a subset of the MEDLINE database, which is a bibliographic database
of medical documents maintained by the National Library of Medicine (NLM).
There are currently over seven million references in MEDLINE dating back to
1966, with about 250000 added yearly. The majority of references are to journal
articles, but the test collection also contains a number of references to letters to the
editor, conference proceedings, and other reports. About 75% of the references
contain abstracts, while the remainder (including all letters to the editor) have only
titles. Each reference has been manually assigned to one of more subject headings
from the 17000-term Medical Subject Headings (MeSH) thesaurus [2].
As for REUTERS-21578 , different subsets of OHSUMED have been used by
researchers for experimental purposes. Among these, a commonly used subset
firstly appeared in [43]. Out of 50216 original documents for the year 1991, the
first 20000 documents which are classified into the 23 MeSH ‘disease’ categories
and labelled with one or multiple categories have been chosen by T. Joachims [43].
Here, various learning approaches have been compared on this data collection,
using the first 10000 for training and the second 10000 for testing the produced
classifiers. As for REUTERS-21578 , in our experiments on this corpora we chose
the same subset of OHSUMED proposed in [43]. More details on this experimen-
tation phase are provided in chapter 8.

Other researchers used the OHSUMED collection for TC experiments, but
the employed document set and categories vary: among the others, Yang in [90]
chose only documents of 1991 and 1992, using the 1991 ones for training and the
remaining to form the test set.
The various subsets showed that OHSUMED dataset is a “difficult” one. Litera-
ture results can give an indication of the magnitude order of the Ohsumed perfor-
mance. For instance, from the fact that accuracy does not overcome 70% in all
results obtained in different portion of Ohsumed, it possible to argue that this cor-
pus is more difficult than Reuters, for which classifiers reaches 86% of accuracy.
This is because the data are more “noisy” and the word/category correspondences
are more “fuzzy” in OHSUMED. Consequently, the categorization is more diffi-
cult to learn for a classifier.

1The OHSUMED collection may be freely downloaded for experimentation purposes from
ftp:// medir.ohsu.edu/pub/ohsumed.

Part II

Machine Learning Approaches to
Text Categorization

36

37

A growing number of statistical classification methods and machine learning
techniques to automatically construct classifiers using labelled training data have
been applied to text categorization in recent years. The most of them are de-
voted to binary problems, where a document is classified as either relevant or not
relevant with respect to a predefined topic, while the common approach for the
multi-label case, where a document belong to more than one class, is to break
the task into disjoint binary categorization problems, one for each class. In these
approaches, the classification of a new document needs the application of all the
binary classifiers, whose predictions are combined into a single decision.
In the following chapters, we discuss some classical approaches to Text Catego-
rization; unless specified otherwise, we will refer to binary classification problem.
Since it is impossible to give a exhaustive overview of the inductive approaches
proposed in Text Categorization literature, we will focus our attention on some
of them. These algorithms are organized into classes, following their classical
classification or according to the properties they share. In particular:

• In chapter 4, we discuss some of the best known approaches considered
the state-of-art in Text Categorization area. Algorithms introduced here are
Support Vector Machines [43] and k-NN [88], with which Olex shows to be
competitive.

• In chapter 5, we explore the class of rule-based algorithms, of which our
method is an example. In particular, we analyze the two subclasses of deci-
sion tree inducers and inductive rule learners, presenting some interesting
methods, such C4.5 [67] and Ripper [20].

• In chapter 6, we discuss some approaches (both rule-based and not) that,
like Olex does, use the evidence provided by negative training instances in
the categorization decision. At first, we discuss a variant of k-NN, proposed
in [35], where some weight is given to negative information; then we focus
our attention on some rule-based approaches aiming at the construction of
rules containing negative information. Finally, we shortly describe some
methods for the extraction of positive and negative features from the training
data.

Chapter 4

Probabilistic Induction Methods

In this chapter, we discuss some inductive approaches among the most represen-
tative of text categorization literature. At first, we describe Support Vector Ma-
chines (SVMs) approach, which embodies the latest results in statistical learning
theory [79] and is considered one of the most accurate classifier. Then, we ex-
plore lazy learning approach and we discuss the k-NN algorithm, at first applied
to pattern recognition problems and introduced in Text Categorization in the early
‘90s [88]. This algorithm was chosen as representative of this family because it is
considered among the top-performing methods in Text Categorization problem.

4.1 Support Vector Machines

The support vector machines (SVM) method has been introduced in Text Catego-
rization by Joachims [43,44] and subsequently used in [27,29,28,48,76,89]. The
SVMs integrate dimension reduction and classification. This technique has been
mostly applied to binary classification tasks and only recently it has been used to
multi-class categorization problems [25].
This technique is based on recent advances in statistical learning theory. They
map documents into a high dimensional feature space, and try to learn a separat-
ing hyperplane, that provides the widest margins between two different types of
documents. SVMs use Lagrange multipliers to translate the problem of finding
this hyperplane into an equivalent quadratic optimization problem for which effi-
cient algorithms exist, and which are guaranteed to find the global optimum.
In geometrical terms, it may be seen as the attempt to find, among all the surfaces
σ1, σ2, ... in |T |-dimensional space that separate the positive from the negative
training examples (decision surfaces), the surface σi that separates the positives

38

Probabilistic Induction Methods 39

from the negatives by the widest possible margin, i.e. such that the separation
property is invariant with respect to the widest possible translation of σi [74].
The simplest case we can take into consideration, which can give an idea about
how SVMs work, is that in which the positives and the negatives are linearly sep-
arable, i.e. the decision surfaces are (|T | − 1)- hyperplanes. As an example, see
figure 4.1, which shows a 2-dimensional case: here, various lines may be chosen
as decision surfaces. The decision hyperplane chosen by SVMs is the bold solid
line, which corresponds to the largest possible separation margins. The squares
indicate the corresponding support vectors. The SVM method chooses the middle
element from the “widest” set of parallel lines, i.e. from the set in which the max-
imum distance between two elements in the set is highest. It is noteworthy that
this “best” decision surface is determined by only a small set of training examples,
called the support vectors. The method described is applicable also to the case in
which the positive and the negative examples are not linearly separable.

Figure 4.1: Example of a two class, linearly separable problem and two possible
separation hyperplanes with corresponding margins.

As argued by Joachims in [43], the main advantages of SVMs are the follow-
ing: first, term selection is often not needed, as SVMs tend to be fairly robust to
overfitting and can scale up to considerable dimensionalities; second, no human
and machine effort in parameter tuning on a validation set is needed, as there is
a theoretically motivated, “default” choice of parameter settings, which has also
been shown to provide the best effectiveness. The main drawback of SVM is that
the classifiers generated are not understandable by humans.

Probabilistic Induction Methods 40

4.2 Example-based classifiers

Example-based classifiers are often called lazy learners, since they do not build
an explicit, declarative representation of the category of interest, but rely on the
category labels attached to the training documents similar to the test document.
Example-based methods (also known as memory-based reasoning methods) have
been applied to text categorization since the early stages of the research [61, 87,
41].
A well known example based approach is k-NN (for “k nearest neighbours”) al-
gorithm implemented by Yang in the ExpNet system [88]. The basic idea in k-NN
algorithm is that of finding, for a given test document, the k nearest neighbors
among the training documents, and to use the categories of the k neighbors to
weight the category candidates. The similarity score of each neighbor document
to the test document is used as the weight of the categories of the neighbor docu-
ment. If several of the k nearest neighbors share a category, then the per-neighbor
weights of that category are added together, and the resulting weighted sum is
used as the likelihood score of that category with respect to the test document.
By sorting the scores of candidate categories, a ranked list is obtained for the
test document. By thresholding on these scores, binary category assignments are
obtained. The decision rule in k-NN can be written as:

y(−→x , cj) =
∑

di∈kNN

sim(−→x ,
−→
di)y(

−→
di , cj)− bj

where y(
−→
di , cj) ∈ {0, 1} is the classification for document di with respect

to category cj , sim(−→x ,
−→
di) is the similarity between the test document −→x and

the training document
−→
di ; and bj is the category-specific threshold, automatically

learned by using a specific validation set. The construction of a k-NN classifier
also involves determining a threshold k that indicates how many top-ranked train-
ing documents have to be considered for computing y(−→x , cj) ; k is usually deter-
mined experimentally on a validation set. For instance, Larkey and Croft [52] use
k = 20, while Yang [87,89] has found 30 ≤ k ≤ 45 to yield the best effectiveness.
Anyhow, various experiments have shown that increasing the value of k does not
significantly degrade the performance.

A number of different experiments have shown k-NN to be quite effective.
However, its most important drawback is its inefficiency at classification time:
while e.g. with a linear classifier only a dot product needs to be computed to
classify a test document, k-NN requires the entire training set to be ranked for

Probabilistic Induction Methods 41

similarity with the test document, which is much more expensive. This is a char-
acteristic of “lazy” learning methods, since they do not have a true training phase
and thus defer all the computation to classification time [74].

Chapter 5

Rule Based Approaches

In this chapter, we focus our attention on the class of rule-based algorithms, of
which our method is an example. This kind of approach is gaining considerable
appeal in research area, since rule-based classifiers provide the desirable property
of being readable, easy for people to understand, contrary to most of the other
approaches, such as probabilistic induction methods which, even showing to be
effective, lack of interpretability. We can distinguish two principal subclasses of
rule-based algorithms: the decision tree inducers and the inductive rule learners,
both analyzed in the following sections.

5.1 Decision Tree Inducers

A decision tree (DT) text classifier is a tree in which internal nodes are labelled
by terms, branches departing from them are labelled by tests on the weight that
the term has in the test document, and leaf nodes are labelled by categories. Such
a classifier categorizes a test document dj by recursively testing for the weights
that the terms labelling the internal nodes have in vector

−→
dj , until a leaf node is

reached; the label of this node is then assigned to dj . Most such classifiers use
binary document representations, and thus consist of binary trees.
There are a number of standard packages for DT induction, and most DT appro-
aches to Text Categorization have made use of one such package. Among the most
popular ones are ID3 (used in [33]), C4.5 (used in [22, 24, 43, 56]) and C5 (used
in [59]). TC efforts based on experimental DT packages include [29, 57, 83].

A possible procedure for the induction of a DT for category ci consists in a
“divide and conquer” strategy, made up of the following step:

1. check whether all the training examples have the same label (either ci or ci);

42

Rule Based Approaches 43

2. if not, select a term tk, partition the training set into classes of documents
that have the same value for tk, and place each such class in a separate
subtree.

These step are recursively repeated on the subtrees until each leaf of the tree
so generated contains training examples assigned to the same category ci, which
is then chosen as the label for the leaf.

The key step, in DT algorithms, is the choice of the term tk on which to op-
erate the partition. This choice, generally made according to an information gain
(e.g C4.5) or Gini coefficient (e.g. CART), tends to maximize the homogeneity
(in terms of attached label) of the produced sets, hence to minimize the depth of
the tree. However, such a “fully grow” tree may be prone to overfitting, as some
branches may be excessively specific to the training data. In order to avoid over-
fitting, two strategies are used: either the growth of the tree is interrupted before
excessively specific branches are produced, or the tree is pruned, removing the
overly specific branches, in a subsequent step. An example of Decision Tree al-
gorithm employing a pruning phase to revisit the produced classifiersis the C4.5
algorithm.

C4.5 Classifier

C4.5 is a decision tree classifier that was developed by Quinlan [66]. The training
algorithm constructs a decision tree by recursively splitting the data set using a
test of maximum gain ratio, subject to the constraint that information gain due to
the split must also be large. The tree can be pruned back based on an estimate of
error on unseen cases. During classification a test vector is evaluated according
to the chosen tests at each split, and when it arrives at a leave, estimated are
given for probabilities of its belonging to each category. In binary classification,
for each category a tree is built using all the training data labeled as “yes” or
“no” for that category. Although the principle is simple and the construction is
very clear, the dilemma between overfitting and achieving maximum accuracy
is seldom resolved. As the large feature set of text vector, overfitting is a hard
controlled problem.

5.2 Associative Rule Learning

Association rule mining is a data mining task that discovers relationships among
items in a transactional database. Association rules have been extensively studied

Rule Based Approaches 44

in the literature for their usefulness in many application domains such as recom-
mender systems, diagnosis decisions support, telecommunication, intrusion de-
tection, etc. The efficient discovery of such rules has been a major focus in the
data mining research community. From the original apriori algorithm [3], there
have been a remarkable number of variants and improvements of association rule
mining algorithms i.e. [37].
Formally, association rules are defined as follows: Let I = i1, i2, ...in be a set of
items. Let D be a set of transactions, where each transaction T is a set of items
such that T ⊆ I . Each transaction is associated with a unique identifier TID. A
transaction T is said to contain X , a set of items in I , if X ⊆ T . An association
rule is an implication of the form X ⇒ Y , where X ⊆ I , Y ⊆ I , and X ∩Y = ∅.
The rule X ⇒ Y has a support s in the transaction set D if s% of the transactions
in D contain X ∪Y . In other words, the support of the rule is the probability that
X and Y hold together among all the possible presented cases. It is said that the
rule X ⇒ Y holds in the transaction set D with confidence c if c% of transactions
in D that contain X also contain Y . In other words, the confidence of the rule
is the conditional probability that the consequent Y is true under the condition of
the antecedent X .

The main steps in building an associative classifier when a data set is given are
the following:

1. Generating the set of association rules from the training set. In this phase
association rules of the form setoffeatures ⇒ class label are discovered
by using a mining algorithm.

2. Pruning the set of discovered rules. In the previous phase a large set of as-
sociation rules can be generated especially when low support is given. That
is why pruning techniques are a challenging task to discover the best set of
rules that can cover the training set. This phase is employed to weed out
those rules that may introduce errors or are overfitting in the classification
stage.

3. Classification phase. At this level a system that can make a prediction for a
new object is built. The task here is how to rank and make use of the set of
rules from the previous phase to give a good prediction.

The two most known models presented in the literature are CMAR [58] and
CBA [60]. Although both of them proved to be effective and achieve high accu-

Rule Based Approaches 45

racy on relatively small UCI datasets, they have some limitations. Both models
perform only single-class classification and were not implemented for text cate-
gorization. In many applications, however, and in text categorization in particular,
multiple class classification is required. An attempt to overcome this limitation
and construct an associative classification model that allows single and multiple-
class categorizations of text documents based on term co-frequency counts (i.e. a
probabilistic technique that doesnt assume term independence) is provided in [7].
In this approach, given a data collection, a number of steps are followed until
the classification model is found. Data preprocessing represents the first step,
in which cleaning techniques can be applied such as stopwords removal, stem-
ming or term pruning according to the TF/IDF values (term frequency/inverse
document frequency). The next step in building the associative classifier is the
generation of association rules using an apriori-based algorithm. Once the entire
set of rules has been generated, an important step is to apply some pruning tech-
niques for reducing the set of association rules found in the text corpora. The
last stage in this process is represented by the use of the association rules set in
the prediction of classes for new documents. The first three steps belong to the
training process while the last one represents the testing (or classification) phase.
More details on the process are given below. If a document Di is assigned to
a set of categories C = {c1, c2, ..., cm} and after word pruning the set of terms
T = {t1, t2, ..., tn} is retained, the following transaction is used to model the doc-
ument: Di = c1, c2, ..., cm, t1, t2, ..., tn and the association rules are discovered
from such transactions representing all documents in the collection. The associa-
tion rules are, however, constrained in that the antecedent has to be a conjunction
of terms from T , while the consequent of the rule has to a member of C.

Association Rule Generation

The algorithm takes advantage of the apriori algorithm to discover frequent term-
sets in documents. Eventually, these frequent itemsets associated with text cate-
gories represent the discriminate features among the documents in the collection.
The association rules discovered in this stage of the process are further processed
to build the associative classifier. Using the apriori algorithm on transactions rep-
resenting the documents would generate a very large number of association rules,
most of them irrelevant for classification. The used apriori-based algorithm is
guided by the constraints on the rules to be discovered, i.e. rules that indicate a
category label, rules with a consequent being a category label. In other words,
given the document model described above, the task is to find rules of the form

Rule Based Approaches 46

T ′ ⇒ ci where T ′ ⊆ T and ci ∈ C. To discover these interesting rules efficiently,
the rule shape constraint is used in the candidate generation phase of the apriori
algorithm in order to retain only the suitable candidate itemsets. Moreover, at the
phase for rule generation from all the frequent k-itemsets, the rule shape constraint
is used again to prune those rules that are of no use in classification. There are
two possible approaches in building an associative text classifier. The first one
ARCAC (Association Rule-based Classifier with All Categories) [91] is to extract
association rules from the entire training set following the constraints discussed
above. As a result of discrepancies among the categories in a text collection of
a real-world application, it has been showed that is difficult to handle some cate-
gories that have different characteristics (small categories, overlapping categories
or some categories having documents that are more correlated than others). The
second technique (proposed to solve such problems) is ARC-BC, that stands for
Associative Rule-based Classifier By Category. In this approach each set of doc-
uments belonging to one category is considered as a separate text collection to
generate association rules from. If a document belongs to more than one category
this document will be present in each set associated with the categories that the
document falls into.
Although the rules are human readable and understandable if the amount of rules
generated is too large it is time consuming to read the set of rules for further tuning
of the system. This problem has been solved by using pruning methods.

Pruning the Set of Association Rules

The number of rules that can be generated in the association rule mining phase
could be very large. Because such a huge amount of rules could contain noisy
information which would mislead the classification process and make the classi-
fication time longer, [7] present some pruning methods based on the definition of
more general rule and higher ranked rule: eliminate the specific rules and keep
only those that are more general and with high confidence, and prune unnecessary
rules by database coverage.

Prediction of Classes Associated with New Documents

The set of rules selected after the pruning phase represent the actual classifier.
This categorizer is used to predict with which classes new documents are labelled.
Given a new document, the classification process searches in this set of rules for
finding those categories that are the closest to be assigned to the document pre-

Rule Based Approaches 47

sented for categorization by employing a dominance factor (proportion of rules of
the most dominant category in the applicable rules for a document to classify).

Experimental results reported in [7] show that the association rule-based clas-
sifier performs well and its effectiveness is comparable to most well-known text
classifiers. One major advantage of the association rule-based classifier is its rel-
atively fast training time. The drawback lies in the huge set of rules generated
that have to be submitted to a time-consuming phase of pruning. Notwithstanding
this, the use of associative rules to text classification introduced in [7] is interest-
ing as rules generated are understandable and can easily be manually updated or
adjusted if necessary.

5.3 Decision Rule Classifiers

A classifier for category ci built by an inductive rule learning method consists
of a disjunctive normal form (DNF) rule, i.e. of a conjunction of conditional
formulae (“clauses”), whose premises denote the presence or absence of terms in
the test document, while the head denotes the decision whether to classify it or
not under ci. DNF rules are similar to decision trees in that they can encode any
Boolean function. However, one of the advantages of DNF rule inducers is that
they tend to generate more compact classifiers than DT inducers. Rule induction
methods usually attempt to select from all the possible covering rules (i.e. those
rules that correctly classify all the training examples) the “best” one according
to some minimality criterion. While DTs are typically induced by a top-down,
divide-and-conquer strategy, DNF rules are often induced in a bottom-up fashion.

At the beginning of the classifier induction for category ci, every training ex-
ample is viewed as a clause η1, ..., ηn → γi, where η1, ..., ηn are the terms con-
tained in the document and γi equals ci or ci according to whether the document is
a positive or negative example of ci. This set of clauses is already a DNF classifier
for ci, but obviously scores high in terms of overfitting. The induction algorithm
employs then a process of generalization in which the rule is simplified through a
series of modifications (e.g. removing premises from clauses, or merging clauses)
that maximize its compactness while at the same time not affecting the “covering”
property of the classifier. At the end of this process, a “pruning” phase similar in
spirit to that employed in DTs is applied, where the ability to correctly classify all
the training examples is traded for more generality.

For rule induction, the objective is to find sets of decision rules that distinguish
one category of text from the others. Obviously, the set of rules promoted as “best

Rule Based Approaches 48

rule set” has to be, at the same time, accurate and not excessively complex. Ac-
curacy of rule sets can be effectively measured on large numbers of independent
test cases. Complexity can be measured in terms of numbers of rules or rule com-
ponents, where smaller rule sets that are reasonably close to the best accuracy are
sometimes preferred to more complex rules sets with slightly greater accuracy.
DNF Rule learners vary widely in terms of methods, heuristics and criteria em-
ployed for generalization and pruning. In the following section we will analyze
RIPPER algorithm, eventually discussing some attempts of improving its perfor-
mance results by introducing external knowledge in it.

5.3.1 RIPPER

Ripper algorithm attempts to find a small hypothesis, i.e. a set of rules, in the
form of a small disjunction of conjunctions, which accurately classifies the train-
ing data. The conjunctions included in RIPPER’s hypothesis always represent
“contexts” that are positively correlated with the class being learned.
The algorithm used by RIPPER consists of two main stages: (1) a greedy process
constructs an initial rule set; (2) an optimization phase attempts to further improve
the compactness and accuracy of the rule set.

Stage 1: Building an Initial Rule Set

The first stage is a “set-covering” algorithm, called IREP* (based on the earlier
rule-learning algorithm called Incremental Reduced Error Pruning IREP). Rules
are constructed one at time, and once the construction of the rule is ended, the
covered positive example are removed form the training data. In this phase of
learning, different ad hoc heuristic measures are used to guide the greedy search
for new conditions, and greedy search for simplifications [19]. All the heuristics
used in constructing a rule are intended to ensure that the rule covers many positive
examples and few negative examples. To construct a rule, the uncovered examples
are randomly partitioned into two subsets, a “growing set” containing two-thirds
of the examples and a “pruning set” containing the remaining one-third. IREP*
will first grow a rule, and then simplify or prune the rule. A rule is “grow” by
repeatedly adding conditions to rule r0 with an empty antecedent. This is done is
a greedy fashion: at each stage i, a single condition is added to the rule ri, produc-
ing a longer and more specialized rule ri+1. The greedy addition of new literals
continues until the clause covers no negative examples in the growing set, or until
no “good” condition is found.

Rule Based Approaches 49

After growing a rule, the rule is pruned (i.e., simplified). This is another
greedy process, in which IREP* considers deleting any final sequence of con-
ditions from the rule and chooses the deletion that maximizes the function

f(ri) =
U+

i+1−U−i+1

U+
i+1+U−i+1

where U+
i+1 (respectively, U−

i+1) is the number of positive (negative) examples
in the pruning set covered by the new rule. After pruning, the pruned clause is
added to the rule set, and the examples covered by it are removed [23].

Stage 2: Optimization of a Rule Set.

When the construction of the rule set is finished, it has to be “optimized” to further
reduce its size and improve its accuracy. Rules are considered in turn in the order
in which they were added. For each rule r, two alternative rules are constructed.
The replacement for r is formed by growing and then pruning a rule r′, where
pruning is guided so as to minimize error of the entire rule set on the pruning data.
The revision of r is formed analogously, except that it is grown by greedily adding
literals to r, instead of to the empty rule. Finally a decision is made as to whether
the final theory should include the revised rule, the replacement rule, or the orig-
inal rule. This decision is made using the description length heuristic, whereby
the definition with the smallest description length after compression is preferred.
After optimization, the definition may cover fewer positive examples; thus IREP*
is called again on the uncovered positive examples, and any additional rules that it
generates are added. This optimization step can be repeated, occasionally result-
ing in further improvements in a rule set.
Some attempts have been done to introduce in RIPPER the usage of external
knowledge, provided by public thesauri. In the next two sections, we will dis-
cuss two different approaches to this problem. In the first, Scott and Matwin [72]
used RIPPER algorithm in union with pre-processing techniques and WordNet
thesaurus, while the second is a true extension on RIPPER build to introduce ex-
ternal knowledge in the learning process.

5.3.2 Using WordNet Thesaurus in RIPPER

An example of exploration of the use of external knowledge in Text Categoriza-
tion is given by [72]. In this work, the authors analyzed the hypothesis that incor-
porating linguistic knowledge into text representation can lead to improvements

Rule Based Approaches 50

in classification accuracy. Specifically, they applied RIPPER algorithm to the
training data, pre-processed by means of linguistic techniques and using part of
speech information from the Brill tagger [12]and the synonymy and hypernymy
relations from WordNet [14]. Trough this pre-processing process the representa-
tion of the text has been changed from bag-of-words to hypernym density, where
synsets (synonyms sets) replace words. The algorithm for computing hypernym
density requires three passes through the corpus:

1. assignment of the part of speech tag to each word in the corpus, through the
Brill tagger.

2. creation of a global list of all synonym and hypernym synsets, made up
by looking up all nouns and verbs in WordNet. In this phase, infrequently
occurring synsets are discarded, and those that remain form the feature set.
(A synset is defined as infrequent if its frequency of occurrence over the
entire corpus is less than 0.05N , where N is the number of documents in
the corpus.)

3. computation of the density of each synset for each example resulting in a
set of numerical feature vectors. The density of a synset is defined as the
number of occurrences of the synset in the WordNet output divided by the
number of words in the document.

The calculations of frequency and density are influenced by the value of a param-
eter h that controls the height of generalization. This parameter can be used to
limit the number of steps upward through the hypernym hierarchy for each word.
At height h = 0 only the synsets that contain the words in the corpus will be
counted. At height h > 0 the same synsets will be counted as well as all the hy-
pernym synsets that appear up to h steps above them in the hypernym hierarchy.
A special value of h = max is defined as the level in which all hypernym synsets
are counted, no matter how far up in the hierarchy they appear. In the new rep-
resentation, each feature represents a set of either nouns or verbs. At h = max,
features corresponding to synsets higher up in the hypernym hierarchy represent
supersets of the nouns or verbs represented by the less general features. At lower
values of h, the nouns and verbs represented by a feature (synset) will be those
that map to synsets up to h steps below it in the hypernym hierarchy. The best
value of h for a given text classification task will depend on characteristics of the
text such as use of terminology, similarity of topics, and breadth of topics. It will
also depend on the characteristics of WordNet itself. In general, if the value for h

Rule Based Approaches 51

is too small, the learner will be unable to generalize effectively. If the value for h

is too large, the learner will suffer from overgeneralization because of the overlap
between the features.
Note that no attempt is made at word sense disambiguation during the compu-
tation of hypernym density. Instead all senses returned by WordNet are judged
equally likely to be correct, and all of them are included in the feature set. The
use of the density measurement is an attempt to capture some measure of rele-
vancy. The learner is aided by the fact that many different but synonymous or
hyponymous words will map to common synsets, thus raising the densities of the
“more relevant” synsets. In other words, a relatively low value for a feature in-
dicates that little evidence was found for the meaningfulness of that synset to the
document.
Some experiments have been carried out, to compare the results obtained by RIP-
PER, using the two different type of text representation. Hypernym density has
been observed to greatly improve classification accuracy in some cases, while in
others the improvements are not particularly evident. Hypernym density repre-
sentation brings a side benefit: induced classification rules are often simpler and
more comprehensible than rules induced using the bag-of-words. The experiments
showed the hypernym density representation can work well for texts that use an
extended or unusual vocabulary, or are written by multiple authors employing dif-
ferent terminologies. It is not likely to work well for text that is guaranteed to be
written concisely and efficiently, such as the text in Reuters-21578. In particular,
hypernym density is more likely to perform well on classification tasks involving
narrowly defined and/or semantically distant classes [72].

5.3.3 TRIPPER

TRIPPER is a rule induction algorithm that extends RIPPER, by using external-
knowledge. The main goal in TRIPPER (i.e. Taxonomical Ripper) is the con-
struction of classifiers at higher levels of abstraction, where rules are generated
on the basis of user-supplied knowledge, available in the form of attribute value
taxonomies. The extensions to RIPPER can be summerized as follow [80]:

Improvement at rule growth phase (TRIPPER G): Introducing the taxonomi-
cal knowledge at the rule-growth phase is a straightforward process called
feature space augmentation. The augmentation process takes all the interior
nodes of the attribute value taxonomy and adds them to the set of candidate
literals used for the growth phase.

Rule Based Approaches 52

Improvement at rule pruning phase (TRIPPER G+P): A more general version
of feature selection than pruning is abstraction: in the case of abstraction,
instead of casting the problem as a matter of preserving or discarding a fea-
ture, TRIPPER chooses from a whole range of levels of specificity for the
feature under consideration.

Some experimental results about TRIPPER have been reported in [80]. The
main goal of the experiments carried out was to compare TRIPPER and RIPPER
performances. Both algorithms have been evaluated on the benchmark dataset
REUTERS-21578, with experimental setting similar to those used in [62]. The
text-specific taxonomies, used for TRIPPER growing and pruning phases, comes
from WordNet [14], using only the hypernimy relation that stands for “is-a” rela-
tion between concepts.

The experiments showed that TRIPPER generally outperforms RIPPER on
the Reuters text classification task in terms of break-even point, while generating
potentially more comprehensible and concise rule sets than RIPPER, thanks to the
improvements in both phases of learning. Further, the additional computation cost
of TRIPPER is small when compared with RIPPER, consisting in an additional
multiplicative factor that represents the height of the largest taxonomy, which in
the average case scales logarithmically with the number of feature values.

Chapter 6

Exploitation of Negative
Information

Machine Learning techniques to Text Categorization generally aim at the con-
struction of classifiers, basing their classification decision of the new document
on the similarity with the positive training documents. In other words, they use
the fact that a test document is “similar” to a training document, representing a
positive instance for a given category, as evidence towards the fact that the test
document belongs to that category. Generally, the similarity to a negative training
instance is not used anyway.
In this chapter, we discuss some approaches, where negative evidence, i.e. evi-
dence provided by negative training instances, is not discarded, but used in the
categorization decision. At first, we discuss a variant of k-NN, based on the use
of negative information, proposed in [35], then we focus our attention some rule-
based approaches aiming at the construction of rules containing negative informa-
tion and, finally, we shortly describe some methods for the extraction of positive
and negative features from the training data.

6.1 A variant of k-NN using negative information

Galavotti et al in [35] proposed a family of variants of Yang’s version of K-NN,
called k-NNp

neg. The original method, discussed in section 4.2, is distance-
weighted algorithm, since the fact that a training document d′z similar to the test
document dj belongs to ci is weighted by the similarity between d′z and dj . Math-
ematically, classifying a document by means of k-NN thus comes down to com-
puting

53

Exploitation of Negative Information 54

CSVi(dj) =
∑

d′i∈Trk(dj)

RSV (dj, d
′
z) · viz (6.1)

where

• CSVi(dj) measures the computed evidence that dj belongs to ci, i.,e. the
categorization status value of document dj with respect to category ci

• RSV (dj, d
′
z) represents some measure of semantic relatedness between dj

and d′z, i.e. the retrieval status value of document d′z with respect to docu-
ment dj

• Trk(dj) is the set of the k training documents d′z for which RSV (dj, d
′
z) is

highest. The number k of training top-ranked documents to be considered
is often determined experimentally.

• viz is the weight of the training document d′z. The value of viz is 1 if d′z is a
positive instance for category ci, 0 otherwise.

The first variant proposed in [35], called k-NN1
neg, is based on the simple in-

tuition of assigning a negative weight to those documents of the training set, that
are negative instances for category ci. This is realized by using, in equation 6.2,
a value of −1 for viz, if d′z is a negative instance for ci. Contrary to the expec-
tations, experiments have shown that the use of negative evidence doesn’t bring
any substantial improvement in k-NN classifiers. In fact, the highest performance
obtained for k-NN1

neg(0.775) is practically the same as that obtained for k-NN
(0.776). An interesting characteristic of k-NN1

neg is that it needs smaller simi-
larity document set than k-NN, in fact it peaks at substantially lower values of k
than k-NN (10 vs 50); even if k-NN1

neg is less robust than k-NN with respect to
the choice of k. In fact, for k-NN1

neg effectiveness degrades somehow for values
of k higher than 10, while the original system is hardly influenced by the value of
k.
The basic intuition of k-NN1

neg is stressed in k-NNp
neg methods. In contrasts

with k-NN, where very dissimilar documents have not much influence, since pos-
itive instances are usually far less than negative ones, in k-NNp

neg they do, since
each of the most k most similar documents, however semantically distant, brings
a little weight to the final sum of which the CSV consists. The k-NNp

neg methods

Exploitation of Negative Information 55

are based on the use of CSV functions that downplay the influence of the similar-
ity value in the case of widely dissimilar documents. This class of functions can
be represented as:

CSVi(dj) =
∑

d′i∈Trk(dj)

RSV (dj, d
′
z)

p · viz (6.2)

where the larger the value of p parameter is, the more the influence of the sim-
ilarity value is played in the case of widely dissimilar documents.
A small group of experiments have been carried out in order to compare k-NN2

neg

with k-NN1
neg and with k-NN. The experiments showed that k-NN2

neg outper-
form both methods: it peaks for higher value of k than k-NN1

neg and it is remark-
ably more stable for higher values of k. This seemingly suggests that negative
evidence provided by very dissimilar documents is indeed useful, provided its im-
portance is de-emphasized. Instead k-NN3

neg slightly underperforms k-NN2
neg,

showing that the level of de-emphasization must be chosen carefully.

6.2 Association Rules with Negation

The association rules mining algorithms described in section 5.2 focus on dis-
covering association rules of the form A ⇒ B, whose support (supp) and confi-
dence (conf) meet some user specified minimum support (minsupp) and minimum
confidence (minconf) thresholds. Association rules from the support-confidence
framework are positive rules.
Different techniques for the classification of structured data and texts, aiming at
improving traditional associative classification models taking advantage of nega-
tive information, have been proposed in the last years. Brin et al. [13] mentioned
for the first time the notion of negative relationships in the literature. Their model
is chisquare based. They use the statistical test to verify the independence between
two variables. To determine the nature (positive or negative) of the relationship, a
correlation metric was used. In [70], the authors present a new idea to mine strong
negative rules. They combine positive frequent itemsets with domain knowledge
in the form of a taxonomy to mine negative associations. However, their algo-
rithm is hard to generalize since it is domain dependant and requires a predefined
taxonomy. In the following, we focus our attention on two approaches proposed
in literature. The first one, described in [86], aims at the construction of classifier

Exploitation of Negative Information 56

composed by positive and negative rule, on the basis of frequent and infrequent
itemsets; the second one, presented in [8] consider another framework that adds
to the support-confidence, for the choice of positive and negative items set, some
measures based on correlation analysis.

6.2.1 Mining Positive and Negative Associative Rules

The Association Rule Mining approach presented in [86] aims at extending the
traditional definition of association rule to support negative rules. Association
rules, traditionally defined as implications of the form A ⇒ B, where A and
B are frequent itemsets in a transactional databases (positive rules), in [86] in-
clude implications of the form A ⇒ ¬B, ¬A ⇒ B and ¬A ⇒ ¬B , generated
from the infrequent itemsets (negative rules). A set of condition, that we discuss
afterwards, are used to state the interest of an itemset, while the confidence of pos-
itive and negative rules is estimated using the increasing degree of the conditional
probability relative to the prior probability.

Frequent and infrequent itemsets

As defined in [17], a frequent itemset is an itemset that meets the user-specified
minimum support. Accordingly, an infrequent itemset is defined as an itemset that
doesn’t meet the user-specified minimum support.
Let I = i1, i2,, iN be a set of N distinct literals called items, and D a database
of variable-length transactions over I . Each transaction contrains a set of items
i1, i2, .., ik ∈ I , called itemset of length k and referred to as k−itemsets. Each
itemset has an associated measure called support, denoted as supp. For an itemset
A ⊆ I , supp(A) = s if the fraction of transactions in D containing A equals to s.
A (positive) association rule in the support-confidence framework is an implica-
tion of the form A ⇒ B, where A,B ⊆ I and A ∩ B = ∅. The support of the
rule A ⇒ B is defined as supp(A ∪ B), while the confidence is defined as the
ratio of the supp(A ∪ B) of itemset A ∪ B over the supp(A) of itemset A. That
is, conf(A ⇒ B) = supp(A ∪B)/supp(A).
Once defined support and confidence for a rule, [86] proceeds to the extraction
of valid positive and negative rules, according to a set of conditions stating the
interest of a rule.
A positive rule X ⇒ Y is of interest if and only if

(1) X ∩ Y = ∅

Exploitation of Negative Information 57

(2) supp(X ∪ Y) ≥ minsupp

(3) supp(X ∪ Y)/supp(X) ≥ minconf

(4) supp(X ∪ Y)− supp(X)× supp(Y) ≥ mininterest

where X ∪ Y is a frequent itemset and mininterest, minconf and minsupp

thresholds are specified by the user. Intuitively, rule X ⇒ Y is of interest if its
support and confidence are greater or equal to the fixed minimum values and the
itemset X ∪ Y is more interesting than the pair of independent itemset X and Y .

Based on the conditions for frequent itemset for mining positive rules, a set of
conditions for a rule of the form X ⇒ ¬Y to be a valid negative rule of interest:

(1) X ∩ Y = ∅

(2) supp(X) ≥ minsupp, supp(Y) ≥ minsupp, supp(X ∪ ¬Y) ≥ minsupp

(3) supp(X ∪ ¬Y)/supp(X) ≥ minconf

(4) supp(X ∪ ¬Y)− supp(X)× supp(¬Y) ≥ mininterest

where A ∪ B and B is an infrequent itemset of interest. In fact, the condition
supp(X ∪¬Y) ≥ minsupp implies that supp(X ∪Y) ≤ minsupp and, when the
minsupp is high, X ∪ Y cannot be generated as frequent itemset. The conditions
for rules of the form ¬X ⇒ Y and ¬X ⇒ ¬Y are defined accordingly. Once
frequent and infrequent itemsets are identified, on the basis of the constraints dis-
cussed above, positive and negative rules are defined. This approach has been
tested on three different datasets and it has been compared with Apriori [5] in the
support-confidence framework proposed in [4]. When mining only positive rules
of interest, the classifiers produced in the compared approaches are identical (if the
same constraints are applied). In the meanwhile, the approach proposed by [86]
is more efficient than Apriori algorithm in discovering positive association rules.
The proposed approach seems promising, even if no experimental result has been
provided in [86] about the introduction of negative information in rule mining.

6.2.2 ARC-PAN Classifier

In this section we introduce ARC-PAN (Associative Rule Classification with Pos-
itive And Negative), so called because the set of rules generated is the union of
PCR (Positive Classification Rules) and NCR (Negative Classification Rules). In

Exploitation of Negative Information 58

this approach, the generation of positive and negative rules is based on correlation
measures, computed by using a correlation coefficient. Given two variables X

and Y , the correlation coefficient measures the strength of the linear relationship
between a pair of two variables, according to the following formula:

ρ =
Cov(X,Y)

σXσY

(6.3)

where Cov(X,Y) represents the covariance of the two variables and σX stands
for the standard deviation. The range of values for ρ is between−1 and +1. Here,
we report the values of interest for correlation coefficient:

ρ =

0 X and Y are independent
+1 X and Y are perfectly positive correlated
+1 X and Y are perfectly negative correlated

A positive correlation is evidence of a general tendency that when the value of
X increases/decreases so does the value of Y . A negative correlation occurs when
for the increase/decrease of X value, we discover a decrease/increase in the value
of Y .

ARC-PAN algorithm is an apriori-like process for the generation of a set of
classification rules of the form set of features ⇒ class label, which will be
used in the subsequent classification stage [8].
It generates first the set of frequent 1-itemsets. Once the 1-frequent itemsets is
generated the candidate sets C2 to Cn are found as a join between Fk−1 and F1.
Those candidates that exceed minimum support threshold are added to the corre-
sponding frequent set. For each candidate, the positive and negative association
rules are generated , using a function based on the item correlation with a class la-
bel. This function takes as input an itemset and the set of class labels and, for each
pair (item, class label) computes the correlation coefficient. If the correlation in
absolute value is greater than the correlation threshold given, than the classifica-
tion rule is of interest. If the correlation is positive, a positive association rule is
discovered. When the correlation is negative, negative rules are generated. Given
two items X and Y , a positive association rule is a rule of the form X ⇒ Y . A
negative association rule is one of the follows: ¬X ⇒ Y or X ⇒ ¬Y . Once
the rules are generated, they are added to PCR or NCR if their confidence exceeds
the minimum confidence threshold. The values for the correlation coefficient are
chosen based on the values discussed before. First, they consider as high correla-
tion threshold, in order to discover strong correlations, if no strong correlation is

Exploitation of Negative Information 59

discovered, the threshold can be lowered to discover moderate correlations.
The algorithm described above has been tested on various dataset, in order to eval-
uate its performance values and comparing it with other learning algorithm, such
as CBA and C4.5, whose results have been taken from [60]. When all types of
rules are used the classification accuracy increases on three datasets when com-
pared with the state-of-the-art classifier C4.5 and with the CBA. In particular, the
experiments showed that the classification accuracy can be improved as well with
only the generation of positive association rules that are strongly correlated, while
generating only the negative rules only, the results decrease.
As noticed in [8], there is a drastic reduction in rule number when the correlation
measure is used to derive interesting rules, without any consequence for the error
rate, which remains in the same range.This demonstrates that a much smaller set
of positive and negative association rules can perform similar or outperform ex-
isting categorization systems.

6.3 Use of Negative Information in Features Selec-
tion

In [92] a different approach for feature set selection has been proposed. A set of
features is constructed for each category by first selecting a set of terms highly
indicative of membership as well as another set of terms highly indicative of non-
membership, then unifying the two sets. The size ratio of the two sets was empir-
ically chosen to obtain optimal performance. This is in contrast with the standard
local feature selection approaches that either (1) only select the terms most indica-
tive of membership; or (2) implicitly but not optimally combine the terms most
indicative of membership with non-membership.
The proposed feature selection method is based the following two key concepts:

• In literature, many statistical function, such as Chi Square, Odds Ratio or
GSS Coefficient, have been successfully used to extract positive features se-
lecting, for each category, a set of terms based on the relevant and irrelevant
documents in this category.

• The same method can be used to extract negative information, simply ex-
tracting for each category the less indicative of membership, too.

Exploitation of Negative Information 60

Given a feature selection function f, which measures the relationship between
a term t and a category ci as f(t, Ci), this can be used in global feature extraction
by computing and comparing the average and maximum of their category-specific
values (for more details, see [90]). Given a vocabulary V and a function f that
maps terms to real values, two subsets of V with size l are defined as Max[V, f, l]

and Min[V, f, l], so that they consist of the l terms tj ∈ V with the highest and
the lowest f(tj) values, respectively.
The feature selection is carried out into three steps:

STEP 1: a positive-feature set F+
i is generated for each category ci.

F+
i = Max[V, f(·, ci, l1)], where l1, 0 < l1 < l is a natural number;

STEP 2: a negative-feature set F−
i is generated for each category ci.

F+
i = Max[V, f(·, ci, l2)], where l2 = l − l1 is a not negative number;

STEP 3: Fi = F+
i

⋃
F−

i

Some improvement in classification performance have been obtained by ex-
perimenting this method on the Reuters-21578 dataset. In particular, in most cases
the results achieved show that the combination of positive and negative features,
by selecting more negative terms than positive ones, outperform the standard ap-
proaches of positive terms selection.

Part III

OLEX: a New Technique for
Learning Text Classifiers

61

62

In this part we propose Olex, a novel approach to the automatic construction
of rule-based text classifiers. Here, a classifier is a set of propositional rules, each
characterized by one positive literal and (zero or) more negative literals. A pos-
itive (resp.negative) literal is of the form T ∈ d (resp. T /∈ d), where T is a
conjunction of terms and d a document. Rule induction relies on an optimization
algorithm whereby a set of discriminating terms is generated for the category be-
ing learned.

In chapter 7, after providing a concise overview of Olex and giving some pre-
liminary definitions and notation, we state the optimization problem of selecting
a best set of discriminating terms (which is the heart of our method) and prove
that this task is computationally difficult. Thus, we propose a heuristic approach
to solve it. Then, we give a description of the learning process.
In chapters 8 and 9 we present the experimental results and provide a comparison
with other learning approaches. The results proposed were obtained using a pro-
totype implementing the machine learning method proposed in chapter 7. Olex
classification performances were evaluated on different data sets:

• First, in order to compare Olex with pre-existing well-known systems, we
carried out a series of experiments on two benchmark data sets, the REUTERS-
21578 and the OHSUMED data collection. In chapter 8, we discuss the
experimental results on these benchmark corpora and eventually compare
them with the ones of other learning approaches like SVM, K-NN, Roc-
chio, etc.

• Then, Olex has been tested on two real use-case corpora, both collections
of reports about road accidents written down by policemen, belonging to
the American FCSI company. On these data sets we carried out different
types of experiment. In a first set of experiments, we followed the gen-
eral methodology used on REUTERS-21578 and OHSUMED corpora; then
we tested different features of the system on FCSI by exploiting external
knowledge and the integration of manual and automatic approaches. A full
description of the experimentation phase on FCSI corpora is given in chap-
ter 9.

Chapter 7

Olex: Effective Rule Learning for
TC

In this chapter, we describe Olex, a novel method for the automatic induction of
rule-based text classifiers. Olex supports a hypothesis language of the form “if T1

or · · · or Tn occurs in document d, and none of Tn+1, · · ·Tn+m occurs in d, then
classify d under c”, where each Ti is a conjunction of terms.
The proposed method is simple and elegant. Despite this, the results of a system-
atic experimentation performed on both the REUTERS-21578 and the OHSUMED

data collections show that Olex is top-performing (see chapters 8 and 9). Further,
it provides classifiers that are very compact and comprehensible.

In this chapter, after providing an overview of Olex (Section 7.1) and giving
some preliminary definitions and notation (Section 7.2), we state the optimization
problem of selecting a best set of discriminating terms (which is the heart of our
method) and prove that this task is computationally difficult (Section 7.3). Thus,
we propose a heuristic approach to solve it (Section 7.5) and give a description of
the whole learning process (Section 7.6).

7.1 Olex Overview

Olex belongs to the category of the inductive rule learning methods. A general
formulation of the induction problem (for text categorization) is as follows. Given

• a background knowledge B as a set of ground logical facts of the form
t ∈ d, meaning that term t appears in document d (other ground predicates
may occur in B as well)

63

Olex: Effective Rule Learning for Text Categorization 64

• a set of positive examples expressed as ground logical facts of the form
d ∈ c, meaning that document d belongs t o category c (ideal classifica-
tion); negative examples are implicitly stated according to the Closed World
Assumption (i.e., if d ∈ c is not a positive example, then it is a negative one)

constructs a hypothetical rule set (the classifier of c) that, combined with the back-
ground knowledge B, agrees all (both positive and negative) examples. It is well
known that this problem is computationally difficult, unless the requirement that
a learning algorithm identifies the target concept exactly is relaxed to allow ap-
proximations. The Valiant’s theory of PAC-learnability (Probably Approximately
Correct) provides a model of ”polynomial learning” for a subset of propositional
logic [78]. In the PAC framework, the polynomially bounded amount of resources
(both number of examples and computational time) is traded-off against the ac-
curacy of the induced hypotheses. In [47, 30, 18, 1] it has been shown that also
specific subclasses of first-order logic are PAC-learnable.
The induced rules from both background knowledge and examples will allow pre-
diction about the belonging of a document to a category on the basis of the pres-
ence or absence of some given terms in that document. However, while in com-
putational learning theory it is assumed that the input sample is consistent with
some hypothesis in the hypothesis space, in text classification this is not necessar-
ily true; indeed, it is not possible, in general, to correctly categorize a document
under a category only on the basis of the terms occurring in it. Thus, the expected
induced hypothesis in such a case is one which maximally satisfies (both positive
and negative) examples.
Within this framework, the Olex’s learning problem is stated as an optimiza-
tion problem relying on the F -measure as the objective function. In particu-
lar, the optimization task is that of determining a best set Xc = {T+

1 , · · · , T+
n ,

T−
n+1, · · ·T−

n+m} of discriminating terms (d-terms) for c. A d-term is of the form
T s, where T is a conjunction t1 ∧ · · · ∧ tk of (simple) terms, taken from a given
vocabulary, and s ∈ {+,−} is the sign. We call T conjunctive term (co-term).
A d-term T s occurs in a document d if T occurs in d, i.e., if the term ti occurs
in d, for each i = 1, k. A positive d-term occurring in a document d is indicative
of membership of d in c, while a negative one is indicative of non-membership.
Thus, a document d containing any positive d-term in Xc and none of the negative
d-terms in Xc, is eligible for classification under c according to Xc. Hence, the
aim of the optimization task is that of finding a set Xc of d-terms such that, by
classifying under c the set E(Xc) of documents of the training set TS eligible for
classification according to Xc, the resulting F -measure is maximum (intuitively,

Olex: Effective Rule Learning for Text Categorization 65

this corresponds to finding Xc such that E(Xc) best ”fits” the examples in TS).
Not surprisingly, the above task is computationally untractable.
Now, given a (best) set Xc = {T+

1 , · · · , T+
n , T−

n+1 · · ·T−
n+m} of d-terms, the cor-

responding hypothesis (the classifier of c) is of the form

c ← T1 ∈ d, Tn+1 /∈ d, · · · , Tn+m /∈ d

. . .

c ← Tn ∈ d, Tn+1 /∈ d, · · · , Tn+m /∈ d

and states the condition “if any of the co-terms T1, · · · , Tn occurs in d and none
of the co-terms Tn+1, · · · , Tn+m occurs in d then classify d under category c”.
That is, the occurrence of a co-term Ti, 1 ≤ i ≤ n, in a document d requires the
contextual absence of the (possibly empty) set of co-terms Tn+1, · · · , Tn+m in
order for d be classified under c1. Notice that there is one rule for each positive
d-term in Xc and, for each rule, one negative literal for each negative d-term in Xc

(thus, all rules share the same negative part Tn+1 /∈ d, · · · , Tn+m /∈ d).
We remark that the Olex’s hypothesis language, essentially Horn clauses extended
by negative conjunctions of terms, is not PAC-learnable.
Since the set Xc which maximizes the objective function depends on the choice
of the vocabulary (i.e., the set of terms selected for rule induction), to pick the
“best” classifier Olex proceeds by repeatedly running the optimization algorithm
with different input vocabularies, and eventually selecting the classifier with the
best performance.
Next is the best classifier induced for category “corn” of the REUTERS-21578
data collection:

corn ← “corn” ∈ d, “offering” /∈ d, “international” ∧ “mln” /∈ d,

“animal” /∈ d, “live” /∈ d, “fuels” /∈ d, “ministry agriculture” /∈ d.

corn ← “maize” ∈ d, “offering” /∈ d, “international” ∧ “mln” /∈ d,

“animal” /∈ d, “live” /∈ d, “fuels” /∈ d, “ministry agriculture” /∈ d.

As we can see, it consists of two rules with the following meaning: classify doc-
ument d under category “corn” if either term “corn” or term “maize” occurs in d

and, further, neither “offering” nor “international” ∧ “mln” nor · · · nor “ministry
agriculture” occur in d. Here, we note that “international” ∧ “mln” is a conjunc-
tion of terms, while “ministry agriculture” is a simple term - notably a bigram.
In the former case, the two words “international” and “mln” may occur in any
order and in any position of the document, whereas the two words composing the

1In general, d may “satisfy” more classifiers, so that it may be assigned to multiple categories

Olex: Effective Rule Learning for Text Categorization 66

bigram must occur consecutively and in the fixed order.

7.2 Preliminary Notation and Definitions

Throughout this and the following chapters, we assume the existence of:

1. a finite set C of categories, called classification scheme;

2. a finite set D of documents (i.e., sequences of words), called corpus; D is
partitioned into a training set TS, a validation set and a test set; the training
set along with the validation set represent the so-called seen data, used to
induce the model, while the test set represents the unseen data, used to asses
performance of the induced model;

3. a relation I ⊆ C × D (ideal classification) which assigns each document
d ∈ D to a number of categories in C. We denote by TSc the subset of the
training set TS whose documents belong to category c according to I (the
training set of c);

4. a set Φ = {φ1, · · · , φk} of scoring functions (or feature selection functions),
such as Information Gain, Chi Square, etc. [90, 31], used for vocabulary
reduction (we will hereafter refer to them simply as ”functions” whenever
no ambiguity arises).

Now, the problem is that of automatically inducing, for each c ∈ C, a set of clas-
sification rules (the classifier of c) by learning the properties of c from both the
documents of the training set (providing the relationship term-document) and the
ideal classification (providing the positive examples). We assume that categories
in C are mutually independent, i.e., the classification results of a category c does
not depend on the classification results of any other category. Thus, the whole
learning task consists of |C| independent sub-tasks (one for each category). For
this reason, in the following we will concentrate on a single category c ∈ C.
Once a classifier for category c has been constructed, its capability to take the
right categorization decision is tested by applying it to the documents of the test
set and then comparing the resulting classification to the ideal one. The effective-
ness of the predicted classification is measured in terms of the classical notions of
Precision, Recall and F-measure [74] defined as follows:

Olex: Effective Rule Learning for Text Categorization 67

Pr =
|TPc|

|TPc|+ |FPc| ; (7.1)

Re =
|TPc|

|TPc|+ |FNc| ; (7.2)

F =
Pr ·Re

(1− α)Pr + αRe
(7.3)

where |TPc| is the number of true positive documents w.r.t. c (i.e., the number
of documents of the test set that have correctly been classified under c), FPc the
number of false positive documents w.r.t. c and FNc the number of false negative
documents w.r.t. c, defined accordingly. Further, the parameter α ∈ [0 · · · 1] in the
definition of the F -measure is the relative degree of importance given to Precision
and Recall; notably, if α = 1 then Fα coincides with Pr, and if α = 0 then Fα

coincides with Re (a value of α = 0.5 attributes the same importance to Pr and
Re)2.

7.3 Selection of Discriminating terms: problem def-
inition and complexity

In this section we provide a description of the optimization problem aimed at
generating a best set of discriminating terms (d-terms, for short) for a category
c ∈ C. In particular, we give a formal statement of the problem and show its
complexity. To this end, a number of preliminary definitions are needed.

Definition 7.1 (reduced vocabulary)

• A term (or n-gram) is a sequence of one or more words, or variants obtained
by using word stems [], consecutively occurring within a document d ∈ D;

• The local vocabulary Vc of category c over the training set TS is the set of
all terms occurring in the documents of the training set TSc of c. Each term
in Vc is scored by the functions in Φ3;

2As we will see in the next sections, α ∈ [0 · · · 1] is a parameter of our model; for this reason
we find convenient using Fα rather than the equivalent Fβ = (β2+1)Pr·Re

β2Pr+Re , where β ∈ [0 · · ·∞]
has no upper bound

3The choice of the actual scoring functions to be used for local vocabulary creation is or-
thogonal to the learning model; in Section ?? we will specify the ones that have been used for
experimentation

Olex: Effective Rule Learning for Text Categorization 68

Symbol Description
C set of categories (classification scheme)
TS, TSc training set; training set of category c
t term (n-gram)
T co-term (conjunction of terms)
T+, T− positive and negative d-term (discriminating term)
Xc set of discriminating terms for category c
φ, ν, α model parameters: φ is a term scoring function;

ν is the number of terms per category chosen
in the construction of the reduced vocabulary;
α is the Precision/Recall threshold

V (φ, ν) reduced vocabulary;
E(Xc) set of documents eligible for classification

under c according to Xc

Table 7.1: List of the main symbols used in this chapter

• Given a function φ ∈ Φ and a nonnegative integer ν, let Vc(φ, ν) denote the
set consisting of the ν terms of the local vocabulary Vc over TS that score
highest according to function φ. The (reduced) vocabulary V (φ, ν) over
TS, for the given φ and ν, is ∪c∈CVc(φ, ν).

That is, the vocabulary V (φ, ν) is the set consisting of the best ν terms, according
to a given scoring function φ, of each local vocabulary Vc (thus, the size of V (φ, ν)

is ν · |C|, where |C| is the number of categories). As usual, vocabulary reduction is
used to remove non-informative words from documents in order to improve both
computational learning efficiency and classification effectiveness [].

Definition 7.2 (co-terms) Let us fix a vocabulary V (φ, ν). A co-term (conjunc-
tive term) T over V (φ, ν) of degree k is a conjunction of terms t1 ∧ · · · ∧ tk, with
ti ∈ V (φ, ν), 1 ≤ i ≤ k. We say that T occurs in a document d, denoted T ∈ d,
if each term ti occurs in d, 1 ≤ i ≤ k. Let us denote by T {} the set {t1, · · · , tk}
of the terms of T . We say that two co-terms T1 and T2 are independent if neither
T
{}
1 ⊆ T

{}
2 nor T

{}
2 ⊆ T

{}
1 .

For an instance, t1 ∧ t2 and t1 ∧ t3 are independent, while t1 and t1 ∧ t2 are not.

Definition 7.3 (d-terms) Let us fix a vocabulary V (φ, ν). A d-term (discriminat-
ing term) for c over V (φ, ν) is a pair < T, s >, where T is a co-term over V (φ, ν)

and s, the sign of T , an element of {+,−}. We will represent < T, s > as T s. A

Olex: Effective Rule Learning for Text Categorization 69

d-term with sign “+” (resp. “-”) is called positive (resp. negative) d-term. We
say that (1) T s occurs in a document d if T occurs in d, (2) T s has degree k if T

has degree k and (3) T s
1 and T s

2 are independent if T1 and T2 are so.

Intuitively, a positive d-term for c occurring in d is interpreted as indicative of
membership of d in c, while a negative d-term is taken as evidence against mem-
bership. Now, the objective is that of determining a set of d-terms for c which best
discriminate c from the other categories.

Definition 7.4 (eligible documents) Given a set of (independent) d-terms Xc =

{T+
1 , · · · , T+

n , T−
n+1, · · · , T−

n+m} for c, we say that a document d ∈ TS is eligible
for classification under c according to Xc if any of the positive d-terms T+

1 , · · ·T+
n

occurs in d and none of the negative d-terms T−
n+1, · · · , T−

n+m occurs in d. , i.e., if

(T1 ∈ d ∨ · · · ∨ Tn ∈ d) ∧ not (Tn+1 ∈ d ∨ · · · ∨ Tn+m ∈ d).

Notice that, albeit not necessary, the independence between d-terms is a desirable
property of Xc (indeed, the presence of dependent d-terms like, for instance, t+1
and (t1 ∧ t2)

+, would be redundant in Xc, as t1 ∈ d ∨ (t1 ∧ t2) ∈ d is clearly
equivalent to t1 ∈ d).

Example 7.5 (eligible documents) Assume that

Xc = {(t1 ∧ t2)
+, t+3 , (t4 ∧ t5)

−, t−6 }

is the set of d-terms associated with category c. Any document d ∈ TS character-
ized by the presence of either t1 ∧ t2 or t3 and the absence of both t4 ∧ t5 and t6,
is eligible for classification under c.

Following the above definition, the set of documents eligible for classification
under c according to Xc is

E(Xc) =
⋃

T+
i ∈Xc

∆(T+
i) \

⋃

T−j ∈Xc

∆(T−
j) (7.4)

where ∆(T s) ⊆ TS denotes the set of documents in TS where d-term T s occurs.
Now, if we classify all documents in E(Xc) under c, the resulting Precision, Recall
and F-measure are the following:

Pr(Xc) =
|E(Xc) ∩ TSc|
|E(Xc)|

Olex: Effective Rule Learning for Text Categorization 70

Re(Xc) =
|E(Xc) ∩ TSc|

|TSc|

Fα(Xc) =
Pr(Xc) ·Re(Xc)

(1− α)Pr(Xc) + αRe(Xc)

=
|E(Xc) ∩ TSc|

(1− α)|TSc|+ α|E(Xc)| . (7.5)

We are now in a position to state the following optimization problem.

PROBLEM DT-GEN (d-term generation). Given a vocabulary V (φ, ν) and
α ∈ [0 · · · 1], find a set Xc of (independent) d-terms over V (φ, ν) such that, by
classifying under c the set E(Xc) of the documents eligible for classification un-
der c according to Xc, the resulting Fα(Xc) is maximum.

Intuitively, a solution of problem DT-GEN is a set of d-terms Xc such that E(Xc)

best “fits” the training set TSc.
Next we show that DT-GEN is a computationally difficult problem. To this end,
we need the following preliminary result.

Lemma 7.6 Let A be a set of independent co-terms over a given vocabulary
V (φ, ν). Then, the size of A has no polynomial bound on the size of V (φ, ν).

Proof. We first observe that any two (different) co-terms T1 and T2 of degree k are
independent (indeed, having the same degree, neither T

{}
1 ⊆ T

{}
2 nor T

{}
2 ⊆ T

{}
1

can happen). Now, it suffices to show that the number of co-terms of degree k over
V (φ, ν) is not polynomially bound on the number n of such terms. To this end,
we can regard to a co-term t1 ∧ · · · ∧ tk of degree k as a combination (t1 · · · tk) of
k terms, selected from n distinct terms in V (φ, ν) without regard to the order in
which they appear. Now, it is well known that the number of such combinations
is n!

k!(n−k)!
. ¤

Proposition 7.7 Problem DT-GEN requires exponential time in the size of the
vocabulary V (φ, ν).

Proof. Even restricting problem DT-GEN to admit solutions Xc consisting solely
of independent d-terms, Xc has no polynomial bound on the size of V (φ, ν) (this
immediately follows from lemma 7.6). Thus, an exponential amount of time is
needed to generate a solution. ¤

Olex: Effective Rule Learning for Text Categorization 71

Next we show that DT-GEN remains difficult even if we restrict Xc to consists
of d-terms of degree 1.

PROBLEM 1DT-GEN. We are given a vocabulary V (φ, ν) and α ∈ [0 · · · 1].
Then, find a set Xc of (independent) d-terms of degree 1 over V (φ, ν) such that,
by classifying under c the set E(Xc) of the documents eligible for classification
under c according to Xc, the resulting Fα(Xc) is maximum.

Proposition 7.8 Problem 1DT-GEN is NP-hard.

Proof. We next show that the decision version of problem 1DT-GEN is NP-
complete.
Let DT = {τ1, ..., τq} be the set of all d-terms of degree 1 obtainable from
V (φ, ν). Now, problem 1DT-GEN, in its recognition version, can be formulated
as follows:

−V 1 : find a set of d-terms Xc ⊆ DT such that Fα(Xc) ≥ K

where K is a constant. Let us call 1DT-GENDV this decision problem.
Membership. The set DT has cardinality 2 · |V (φ, ν)|, as it is made of all d-terms
t+, t− such that t ∈ V (φ, ν). Hence, any Xc ⊆ DT is polynomially bound on
the size n of V (φ, ν). We can therefore verify a YES answer of problem 1DT-
GENDV , using equation 7.5, in time polynomial in n.
Hardness. Given a generic set Xc ⊆ DT , we denote by S ⊆ {1, · · · , q} the set
of the indices of the elements of DT that are in Xc, and by ∆(τi) the set of the
documents of the training set where τi occurs. The set of documents eligible for
classification under c according to Xc is E(Xc) = E+(Xc) \ E−(Xc) (see equa-
tion 7.4), where E+(Xc) = ∪i∈S∆(τi) such that τi is a positive d-terms (E−(Xc)

is defined accordingly). Further, we define a partition of E(Xc) into the following
subsets:

• Ψ(Xc) = E(Xc)∩TSc, i.e., the set of eligible documents that belong to the
training set TSc (true eligible);

• Ω(Xc) = E(Xc)\TSc, i.e., the set of eligible documents that do not belong
to TSc (false eligible).

Now, it is straightforward to see that the F -measure Fα(Xc), given by equation
7.5, is proportional to the size ψ(Xc) of Ψ(Xc) and is inversely proportional to the

Olex: Effective Rule Learning for Text Categorization 72

size ω(Xc) of Ω(Xc) (just replace in equation 7.5 the quantities |E(Xc) ∩ TSc|
by ψ(Xc) and |E(Xc)| by ψ(Xc) + ω(Xc)). Therefore, problem 1DT-GENDV can
equivalently be stated as follows:

− V 2 : find Xc ⊆ DT such that ψ(Xc) ≥ V and ω(Xc) ≤ C

where V and C are constants. That is, to increase the F -measure as much as
possible we have find a set Xc that makes ψ(Xc) the largest possible, with ω(Xc)

bound to some value C.
Now, let us restrict 1DT-GENDV to the simpler case in which (1) d-terms are only
positive (thus, no negative d-term occurs in DT), and (2) (positive) d-terms are
pairwise disjoint, i.e., ∆(τi) ∩ ∆(τj) = ∅ for all τi, τj ∈ DT (let us call DSJ+

this assumption). Next we show that, under DSJ+, 1DT-GENDV coincides with
the Knapsack problem. To this end, we associate with each τi ∈ DT two con-
stants, vi (the value of τi) and a ci (the cost of τi) as follows:

vi = |∆(τi) ∩ TSc|

ci = |∆(τi) \ TSc|.
That is, the value vi (resp. cost ci) of a (positive) d-term τi is the number of
documents containing τi that are true eligible (resp. false eligible).
Now we prove that, under DSJ+, the equality Σi∈Svi = ψ(Xc) holds, for any
Xc ⊆ DT . Indeed:

Σi∈Svi = Σi∈S|∆(τi) ∩ TSc| =
| ∪i∈S ∆(τi) ∩ TSc| =
|(E+(Xc) ∩ TSc| =

|E(Xc) ∩ TSc| = ψ(Xc).

To get the first line above we apply the definition of vi. For the second, we exploit
point 2 of assumption DSJ+. For the third and the fourth we use the definitions
of E+(Xc) and E(Xc), respectively, (note that, according to point 1 of assumption
DSJ+, E−(Xc) = ∅ holds).
In the same way as for vi, the equality Σi∈Sci = ω(Xc) can be easily shown.
Therefore, by replacing ψ(Xc) and ω(Xc) in version V 2 of our problem, we get
the following formulation of problem 1DT-GENDV , valid under DSJ+:

− V 3 : find Xc ⊆ DT such that Σi∈Svi ≥ V and Σi∈Sci ≤ C.

Olex: Effective Rule Learning for Text Categorization 73

That is, under DSJ+, 1DT-GENDV is the Knapsack problem – a well known
NP-complete problem. Therefore, 1DT-GENDV under DSJ+ is NP-complete. It
turns out that (the general case of) 1DT-GENDV (which is at least as complex as
1DT-GENDV under DSJ+) is NP-hard.
Having proved both membership (in NP) and hardness, we conclude that 1DT-
GENDV is NP-complete. From which the thesis follows. ¤

7.4 Classifier definition

We are now ready to define the classifier of c deriving from a solution Xc of
problem DT-GEN.

Definition 7.9 (Classifier) Let the set Xc = {T+
1 , · · ·T+

n , T−
n+1 , · · · , T−

n+m} of
d-terms over V (φ, ν) be a solution of problem DT-GEN, for given values of φ, ν

and α. Now, the classifier of c, given Xc, is the set of rules CLASSc(φ, ν, α) =

{r1, · · · , rn}, where ri, 1 ≤ i ≤ n, is:

c ← Ti ∈ d, Tn+1 /∈ d, · · · , Tn+m /∈ d.

We call Ti ∈ d the positive literal of ri , while each Tn+j /∈ d a negative literal of
ri .

Example 7.10 (Classifier) Let

Xc = {(t1 ∧ t2)
+, t+3 , (t4 ∧ t5)

−, t−6 }
be a best set of d-terms for category c, for given values of φ, ν and α. Then,
according to Definition 7.9, CLASSc(φ, ν, α) consists of the following rules:

c ← (t1 ∧ t2) ∈ d, (t4 ∧ t5) /∈ d, t6 /∈ d,

c ← t3 ∈ d, (t4 ∧ t5) /∈ d, t6 /∈ d.

We note that there is one rule in CLASSc(φ, ν, α) for each positive d-terms in Xc.

The meaning of a classification rule ri ∈ CLASSc(φ, ν, α) is the following: clas-
sify a document d under c if the conjunction Ti ∈ d, Tn+1 /∈ d, · · · , Tn+m /∈ d

is true w.r.t. d, i.e., if Ti occurs in d and none of Tn+1, · · · , Tn+m occurs in d.
Thus, the meaning of CLASSc(φ, ν, α) is: classify a document d under c if any
Ti, 1 ≤ i ≤ n, occurs in d and none of Tn+1, · · · , Tn+m occurs in d.
We note that CLASSc(φ, ν, α) is not PAC-learnable [].

Olex: Effective Rule Learning for Text Categorization 74

7.5 A Heuristics for dealing with problem DT-GEN

To deal with the complexity of problem DT-GEN, we devised the greedy heuristics
sketched in Figure 7.1. The input consists of the vocabulary V (φ, ν), along with
the parameter α. The do-while-loop of lines 3-8 generates the sequence of sets of

Algorithm DT-GEN

Input: the vocabulary V (φ, ν), for given values of φ and ν; a value of the Preci-
sion/Recall threshold α in Fα.
Output: a suboptimal set Xc of d-terms;
Method: perform the following steps:

p1. function Generate-New-Set(Xi−1)
p2. Xi = Xi−1;
p3. for each t ∈ V (φ, ν) do
p4. termFound = false;
p5. for each T s ∈ Xi−1 ∪ {ε+, ε−}
p6. τ = (T ∧ t)s;
p7. X = Xi−1 \ {T s} ∪ {τ};
p8. if Fα(X) > f opt then
p9. f opt = Fα(X); t opt = t; termFound = true;

oldTerm = T s; newTerm = τ ;
p10. end-for;
p11. if termFound then Xi = Xi−1 \ {oldTerm} ∪ { newTerm};
p12. end-for;
p13. return Xi.

1. begin {main}
2. i = 0; f opt = 0; Xi = ∅;
3. do
4. i = i + 1;
5. Xi = Generate-New-Set(Xi−1);
6. if Xi 6= Xi−1

7. V (φ, ν) = V (φ, ν) \ {t opt};
8. while (V (φ, ν) 6= ∅ ∧ Xi 6= Xi−1);
9. Xc = Xi;
10. return Xc.

Figure 7.1: Algorithm DT-GEN

d-terms

X0 = ∅ , · · · , Xi = GNS(Xi−1), · · · , Xm = GNS(Xm−1)

Olex: Effective Rule Learning for Text Categorization 75

by invoking, at each round, the function Generate-New-Set (lines p1-p12). The
i-th call to this procedure ”extends” the current solution Xi−i by picking (lines
p3-p12) the term t ∈ V (φ, ν) (if any) which, conjuncted to a d-term T s ∈ Xi−1

(line p6), yields the greatest increase of the objective function Fα (notice that
the current value of Fα is stored into f opt, a global variable which is modified
by Generate-New-Set at line p9). The symbol ε at line p5 represents the logical
constant true (taken both positively and negatively). This formal device is needed
in order for the algorithm to capture also d-terms of degree 1. The evaluation of
Fα is based on equation 7.5 above. Once the best term t has been selected, it is
returned to the main program through the global variable t opt (which is modified
at line p9) and then removed from V (φ, ν) (line 7). The do-while-loop iterates as
long as the vocabulary V (φ, ν) is not empty and a new d-term is generated.
It is straightforward to realize that the size of Xc (i.e., the number of generated d-
terms) is less or equal to the number m of calls to Generate-New-Set (in particular,
|Xc| = m if all d-terms have degree 1 and, in general, |Xc| is equal to m divided
by the average degree of the d-terms in Xc). Further, each Xi (1 ≤ i ≤ m) (1)
contains at least one positive d-term (the first generated in X1) and (2) consists of
independent d-terms; more precisely, for each T s

1 , T s
2 ∈ Xi, the condition T

{}
1 ∩

T
{}
2 = ∅ holds, i.e., T1 and T2 have no term in common. This is because, by

discarding at line 7 the selected term t opt from the current vocabulary V (φ, ν),
t opt cannot occur in two different d-terms.

Proposition 7.11 Algorithm DT-GEN computes a suboptimal set Xc of d-terms
in time O(n3p), where n = |V (φ, ν)| and p = |TS|.

Proof. Preliminarily we observe that both E(Xc) and TSc are bound by p, where
p = |TS| is the number of training documents, so that the evaluation of Fα(Xc)

by equation 7.5 requires time O(p). Further, we note that n << p holds.
Now let us analyze algorithm DT-GEN. The do-while-loop of lines 3-8 iterates (at
most) up to V (φ, ν) = ∅; since at each step one term is removed from V (φ, ν)

(line 7), the while-loop takes time O(n), where n = |V (φ, ν|. At each round of
this loop, the procedure Generate-New-Set is invoked. For each element t in the
current V (φ, ν), Generate-New-Set tries to conjunct t with each co-term of the
current set Xi−1 (lines p5-p10). Since each term t may occur within (at most) one
co-term of Xi−1, the size of Xi−1 is bound by the size of V (φ, ν), i.e., |Xi−1| ∈
O(n). Thus, function Fα at line p8 is evaluated (by equation 7.5) O(n2) times,
each time requiring O(p) time. It turns out that Generate-New-Set takes time
O(n2p) and, hence, algorithm DT-GEN takes time O(n3p). ¤

Olex: Effective Rule Learning for Text Categorization 76

Remark. Note that, in practice, the efficiency of algorithm DT-GEN strongly
depends on the number |Xc| of d-terms that are generated; in fact, both the do-
while-loop of lines 3-8 and the inner loop of procedure Generate-New-Set depends
on |Xc| (whose upper bound is the size n of V (φ, ν)). In particular, as we have
seen, the do-while-loop iterates m times, with m given by the size of Xc times the
average degree of the d-terms in Xc, while the inner loop of Generate-New-Set
iterates at most |Xc| times. Thus, we may say that Algorithm DT-GEN computes
a suboptimal set Xc of d-terms in time O(|Xc|2 ·n · p). It turns out that, whenever
|Xc| is negligible w.r.t. n (as it is usually the case), DT-GEN tends to be O(nkp),
with k ≤ 2.

7.6 The Learning Process

In the previous sections we have seen how the classifier CLASSc(φ, ν, α) of c is
learned, for given values of the model parameters φ, ν and α. To induce the ”best”
classifier CLASSc of c, essentially Olex repeatedly runs Algorithm DT-GEN with
different values of the model parameters, as shown in Figure 7.2. Here, the input
consists of the set Φ of scoring function symbols and a set N of nonnegative in-
tegers, along with the local vocabulary of each category c ∈ C (whereby creating
the vocabulary V (φ, ν)). Further, a value of the parameter α is provided (depend-
ing on the needs of the application at hand; usually, α = 0.5).
As we can see, the learning process is a simple spanning of the search space
defined by Φ and N ; indeed, the steps described in the previous sections (see
lines 4-7) are iterated for each φ ∈ Φ and each ν ∈ N . Whenever a classifier
CLASSc(φ, ν, α) is generated, it is validated over the validation set (line 9). Fi-
nally, the best classifier (i.e., the one with the maximum value of the F -measure)
is output (line 12).
Notice that, of the three model parameters φ, ν and α, only the former two are
actually used for ”driving” the search of CLASSc (for this reason we will often
refer to them as ”tuning parameters”).
Next we provide a time complexity analysis of the learning process.

Proposition 7.12 The time complexity of the learning process of Figure 7.2 is
O(n3p), where n = max{ν : ν ∈ N} · |C| is the maximal input vocabulary size
and p = |TS| is the training set size.

Proof. By neglecting issues related to vocabulary generation and classifier con-
struction, the time required to generate CLASS(φ, ν, α) (for given values of φ, ν

Olex: Effective Rule Learning for Text Categorization 77

Learning Process for a category c

Input: the set Φ of function symbols; a set N of nonnegative integers; a value for the
Precision/Recall threshold α; the local vocabulary Vc, for each c ∈ C.
Output: the ”best” classifier CLASSc of c;
Method: perform the following steps:

1. begin
2. for each φ ∈ Φ do
3. for each ν ∈ N do
4. – create the vocabulary V (φ, ν) = ∪c∈CVc(φ, ν);
5. – % INDUCTION
6. – run Algorithm DT-GEN passing V (φ, ν) and α;
7. – construct the classifier CLASSc(φ, ν, α) for c;
8. – % VALIDATION
9. – validate CLASSc(φ, ν, α) over the validation set and generate

the F -measure for c;
10. end-for;
11. end-for;
12. output the best classifier generated for category c;
13. end.

Figure 7.2: Learning Process for a category c

and α - see lines 4-7) is the one required by algorithm DT-GEN, i.e., O(n3p)

(see Proposition 7.11), where n = ν · |C| is the size of the current vocabulary
V (φ, ν) (see line 4). In turn, the validation phase (line 9), i.e., the execution of
CLASSc(φ, ν, α) over the test set, is done in time O(q), where q is the number
of terms occurring in the documents of the test set (here, we reasonably assume
that the dimension of CLASSc(φ, ν, α) is negligible w.r.t. to q). Hence, the time
needed for lines 4-9 is O(n3p + q) ∈ O(n3p) (q is indeed negligible w.r.t. n3p).
Now, lines 4-9 are iterated |N | times with different values of ν (see line 3). Since
|N | << n, where n = max{ν : ν ∈ N} · |C| (i.e., |N | is negligible w.r.t. the
maximal vocabulary size), the time required to execute the for-loop of line 3 is
O(n3p). Finally, the for-loop of line 3 is iterated |Φ| times (see line 2), for differ-
ent scoring functions. Again, |Φ| is negligible w.r.t. n, so that the overall learning
time for a category is O(n3p), with n = max{ν : ν ∈ N} · |C|. ¤

Chapter 8

Benchmark Experimentation and
Comparison

To provide an objective basis for comparisons of Olex with other approaches,
we have experimentally evaluated our algorithm using two standard benchmark
corpora: the REUTERS-21578 [55] and the OHSUMED [40] collections, already
described in section 3.
In this chapter, after having described the experimental phase and defined the
applied methodology, we show the results obtained on both benchmark corpora.
These are eventually compared with the results of other learning approaches like
SVM, K-NN, Rocchio, etc.

8.1 Benchmark Corpora

The fiest data set we used is REUTERS-21578. This corpus consists of 21,578
news stories appeared on the Reuters newswire in 1987. The Reuters-21578 doc-
uments actually used in text classification experiments are only 12,902, since the
other 8,676 documents have not been manually assigned to categories. The TOP-
ICS group of categories contains 135 categories. In our experiments, we consid-
ered the subset of the 90 categories with at least one positive training example and
one test example (we will refer to it as R90).
The second data set we considered is OHSUMED, in particular, the collection con-
sisting of the first 20,000 documents from the 50,216 medical abstracts of the
year 1991. The task considered was to assign those documents to one or more
categories of the 23 MeSH diseases.

78

Benchmark Experimentation and Comparison 79

8.2 Document Pre-processing

Preliminarily, documents were subjected to the following pre-processing steps:

• First, we removed all words occurring in a list of common stopwords, as
well as punctuation marks and numbers.

• Then, we extracted all n-grams, defined as sequences of maximum three
words consecutively occurring within a document (after stopword removal).

• At this point we have partitioned each corpus into a training corpus (seen
data), to build the model, and a test set (unseen data), to measure perfor-
mance of the induced model. In particular:

– REUTERS-21578 : we have applied the ModApté split in which 9603
documents are used to form the training corpus and 3299 to form the
test set.

– OHSUMED : of the 20,000 documents of the corpus, the first 10,000
were used for training and the second 10,000 for testing.

In both cases we further split the training corpus into a training set (70%
of the initial training corpus), on which to carry out the induction process,
and a validation set, on which tuning the model parameters. We performed
the split in such a way that each category was proportionally represented in
both sets (stratified holdout).

• Finally, we created the local vocabulary Vc of each category c (see Section
7.3) by scoring all n-grams occurring in the documents of the training set
TSc of c. To this end, we used three functions, namely, Information Gain
(IG), Chi Square (CHI) and Odds Ratio (OR), defined as follows [15, 90]:

Function Notation Mathematical form
Information IG(t, c) A

N
× log N ·A

(A+C)(A+B)
+ C

N
× log N ·C

(A+C)(C+D)

Gain
Chi-square CHI(t, c) N(AD−CB)2

(A+C)(B+D)(A+B)(C+D)

Odds Ratio OR(t, c) A(N−B)
B(N−A)

Table 8.1: Term scoring functions used for vocabulary reduction.

Benchmark Experimentation and Comparison 80

where A, B, C and D, according to the two-way contingency table of a
term t and a category c (shown in table 2.1). Here, we recall their meaning:
A is the number of documents in TSc where t occurs; B the number of
documents not in TSc where t occurs; C the number of documents in TSc

where t does not occur, and D the number of documents not in TSc where t

does not occur. Further, N is the total number of documents. All the above
functions are frequently used to assess term-goodness in the area of machine
learning. Function CHI measures the lack of independence between a term
t and a category c; its value is zero if t and c are independent. In turn, IG
measures the increase of information obtained for category prediction by
knowing that term t is present or absent in a document. Yang and Pederson
[90] reported IG and CHI performed best in their benchmarks. Function OR
measures the odds of term t occurring in the positive class c normalized by
that of the negative class. It has been used by Mladenic for selecting terms
in text categorization [49].

8.3 Experiments

We have conducted a number of experiments for the induction of the best classi-
fiers on both corpora according to the learning process described in Section 7.6
(an experiment is the sequence of steps 4-9 of Figure 7.2). To this end, we used
the set Φ = {CHI, IG,OR} of scoring functions.
Once selected the “best” classifier for a category (i.e., the one with the maximum
value of the F-measure on the validation set), we have measured its performance
on the test set (unseen data).
We have further investigated the sensitivity of the system to model parameters.
We remark that, concerning the REUTERS-21578 corpus, we used all 9603 doc-
uments of the training set for the training phase, and performed the test using all
3299 documents of the test set (including those not belonging to any category in
R90).
We carried out all the experiments by using the value 0.5 for the Precision/Recall
threshold α (which attributes equal importance to Precision and Recall).

Benchmark Experimentation and Comparison 81

8.4 Performance Metrics

Classification effectiveness was measured in terms of the classical notions of Pre-
cision, Recall and F -measure, as defined in Section 7.2. To obtain global es-
timates relative to experiments performed over a set of categories, the standard
definition of micro-averaged Precision and Recall was used:

µPr =
Σc∈CTPc

Σc∈C(TPc + FPc)

µRe =
Σc∈CTPc

Σc∈C(TPc + FNc)
.

Based on the above formulas, both the micro-averaged F -measure and break-even
point (BEP) were consistently calculated (the latter as the arithmetic average of
micro-averaged Precision and Recall).

8.5 Results with Reuters

The first data set we considered is the REUTERS-21578 and the task was to assign
documents to one or more categories of R90.

Best Classifiers

Table 8.2 reports the best performance obtained for the ten most frequent cate-
gories in R90 (in the following we will refer to them as R10), and the micro-
averaged performance over all R90 categories.

The columns labeled “Model Parameters” show the values of φ and ν yielding
the best classifiers. The columns named ”Training” show the size of the training
set of each category along with the F-measure predicted by algorithm DT-GEN
(corresponding to the F -measure evaluated over the training set). The column
labeled “Validation” (rep. ”Test”) reports the size of the validation (resp. test)
set of each category and the respective F-measure and Break Even Point (BEP)
values.
Finally, table 8.3 reports the characteristics of the best classifiers for R10, namely,
the number of rules and the number of negative literals occurring in each rule of
a classifier (notice that the sum of those two values is equal to the number of the
induced d-terms).
The results shown in Table 8.2 and 8.3 indicate that Olex is sensitive to both φ

Benchmark Experimentation and Comparison 82

Category Model Training Validation Test
Param.

name φ ν #D F #D F BEP #D F BEP
earn CHI 70 2014 93.73 863 92.61 92.62 1087 95.74 95.74
acq CHI 80 1155 87.69 495 82.64 82.64 719 88.78 88.78
money-fx CHI 70 377 87.52 161 78.64 78.64 179 70.45 70.48
grain CHI 5 303 95.27 130 91.25 91.27 149 92.62 92.62
crude OR 40 272 90.77 117 77.57 78.25 189 82.41 83.07
trade IG 10 258 84.95 111 66.91 69.49 117 66.67 66.91
interest CHI 60 243 79.65 104 72.64 72.67 131 62.76 63.35
wheat OR 20 148 94.93 64 89.71 90.02 71 90.91 91.46
ship OR 70 138 91.47 59 77.06 77.59 89 78.26 79.14
corn IG 30 127 94.86 54 94.64 94.76 50 93.22 93.46
µF (R10) 90.08 82.37 82.79 82.18 82.50
µF (R90) 83.78 83.78 85.36 85.36

Table 8.2: Best performance for categories in R10 and micro-averaged perfor-
mance over R90.

Category Classifier
#rules # neg. lit.

earn 30 14
acq 34 34
money-fx 21 32
grain 9 7
crude 34 19
trade 5 24
interest 17 10
wheat 3 0
ship 20 3
corn 2 6
avg 17.5 14.9

Table 8.3: Classifiers for REUTERS-21578 top ten categories.

and µ. As we can see, each category has indeed its own optimal parameter values,
which means that the performance of Olex substantially depend on appropriate
parameter tuning. More specifically, these results can be summarized as follows:

• Olex achieves micro-averaged F -measure and BEP over the test set (unseen
data) both equal to 85.36; as we will see in the next section, this is a very

Benchmark Experimentation and Comparison 83

remarkable performance result;

• by comparing the above value with the F-measure=BEP=83.78 obtained on
the validation set, it comes out an excellent generalization capability; also
the predicted F-measure is quite reliable - the difference between predicted
and test values being on average around 12%. All this shows that the the
induced classifiers only slightly overfit the training data1;

• the size of a classifier ranges between a minimum of 2 rules (for category
”corn”) to a maximum of 34 rules (for category ”acquisition”), with 17.5
rules per classifier on average (thus, the induced classification models are
very compact);

• the best classifiers for the categories in R10 are all induced starting from vo-
cabularies V (φ, ν) with ν ranging between 5 and 80 (terms/category); that
is, Olex can learn from rather small vocabularies (450-7200 terms). Further,
the number of the induced d-terms for a category is negligible w.r.t. the vo-
cabulary size (the maximum number of d-terms is 68 for ”money-fx” - 34
positive and 34 negative, while the average is 32.4 per category); the com-
bination of these two factors entails a great benefit in terms of efficiency, as
confirmed by the run time results reported in Table 8.11 (see also the remark
of Section 7.5).

Effect of Category Size on Performance

In Table 8.4 we summarize the accuracy, in terms of BEP, of the best classifiers
of the categories in R90 with at least 5 positive examples in the training set (there
are 63 such categories). As we can see, there is a broad range of category sizes
(from 5 documents up to 2015), that we have partitioned into four subranges (see
column 1). Column 2 gives the number of categories falling in each subrange,
while column 3 reports the respective average BEP. The experimental results, as
shown in Table 8.4, indicate that performance are substantially constant on the
various subsets, i.e., there is no correlation between category size and accuracy
measures (this is not the case of other machine learning techniques, e.g., decision
tree induction classifiers, which are biased towards frequent classes [42]).

1Overfitting is a phenomenon which makes a classifier very good at classifying the training
data, but poor at classifying other data [74]

Benchmark Experimentation and Comparison 84

cat size (#docs) #cat avg BEP
≥ 127 and < 2015 10 82.50
≥ 50 and < 127 12 80.00
≥ 20 and < 50 16 82.76
≥ 5 and < 20 15 78.86

Table 8.4: Effect of category size on performance

Sensitivity to Model Parameter Settings

Table 8.5 summarizes the micro-averaged F-measure over R90 obtained by using
different values of the tuning parameters φ and ν. Notably, we tested all scoring
functions with ν varying from 5 up to 200 (terms per category). As we can see,
the three functions perform likewise; indeed, the (micro-averaged) performance
of the induced classifiers in all cases achieve a maximum value (highlighted in
bold), thus starting decreasing. That is, a reduction of the vocabulary size provides
a benefit in terms of performance (as noted by several authors - e.g. [90]).
We have also analyzed the tradeoff between Precision and Recall as a function

ν φ = CHI φ = IG φ = OR

5 75.78 74.69 55.91
10 77.34 76,47 61.51
20 79.13 77.86 66.97
40 79.93 79.62 71.34
60 80.59 80.29 74.61
80 80.63 80.36 75.04

100 81.14 81.11 76.39
150 80.74 81.03 78.46
200 80.02 80.04 78.06

Table 8.5: Effect of varying φ and ν on the micro-averaged F-measure over R90.

of the parameter α in the objective function Fα. As already mentioned, α can be
adjusted to increase the Precision (at the cost of a decreased Recall), or the Recall
(at the detriment of Precision). Figure 8.1 shows a Precision/Recall curve for the
categories in R90, drawn by micro-averaging over all 90 categories the values of
Precision and Recall obtained (on the validation set) by setting φ = CHI and
ν = 20 and letting α vary from 0 to 1. This curve exhibits a ”good” shape,
showing the capability of the Olex classifiers to support high levels of one of the

Benchmark Experimentation and Comparison 85

Figure 8.1: Micro-averaged Precision/Recall curve over R90

two performance parameters, without paying to much in terms of the other one.
Finally, it may worth noticing the equality of micro-averaged F -measure BEP
in the experiments of Table 8.2, meaning that Precision and Recall are perfectly
balance. This according to the precision-recall threshold α set to 0.5.

Effect of Conjunctions

To investigate the effect of conjunctive literals on the Olex performance we in-
duced the best classifiers consisting of just simple rules (i.e., rules where no con-
junctive literals were allowed). Then, we compared their performance with those
reported in Table 8.2. Results are summarized in Table 8.6. Here we reported
the best performance for R10 and micro-averaged performance for R90 obtained
over the test set by using simple rules and conjunctive rules separately. As we
can see (1) the performance of each classifier in R10 in case of simple rules is
less than that obtained by using conjunctive rules in nine out then categories (only
for ”wheat” they tie), and (2) the micro-averaged BEP=80.47 over R90 in case of
simple rules is well under the BEP=85.36 obtained by conjunctive rules (thus, the
rise in performance due to conjunctive terms is around 6%).

We also analyzed the effect of conjunctions on the relationship between cate-
gory frequency and performance. This can be easily seen by comparing the results
reported in Table 8.4 with those in Table 8.7, the latter obtained by using simple
rules. As we can see, Table 8.7 shows a quicker degrade of performance for rare
categories.

Benchmark Experimentation and Comparison 86

Simple Rules Conj. Rules
Cat. F -meas BEP F -meas BEP
earn 93.00 93.13 95.74 95.74
acq 83.51 84.32 88.78 88.78
money-fx 67.48 68.01 70.45 70.48
grain 91.28 91.28 92.62 92.62
crude 80.71 80.84 82.41 83.07
trade 64.23 64.28 66.67 66.91
interest 51.23 55.96 62.76 63.35
wheat 90.91 91.46 90.91 91.46
ship 77.50 78.49 78.26 79.14
corn 89.08 89.38 93.22 93.46
avg (R10) 78.89 79.71 82.18 82.50
µF (R90) 80.44 80.47 85.36 85.36

Table 8.6: Performance comparison between simple and conjunctive rules on R10
and R90

cat size (#docs) #cat avg BEP
≥ 127 and < 2015 10 79.73
≥ 50 and < 127 12 70.02
≥ 20 and < 50 16 74.33
≥ 5 and < 20 15 62.20

Table 8.7: Effect of category size on performance in case of simple rules

8.6 Results with Ohsumed

The second data set we considered is OHSUMED and the task was to assign docu-
ments to one or more categories of the 23 MeSH diseases.
In Table 8.8 we provide the best performance for the ten most frequent categories
and micro-averaged performance over all 23. As we can see, the micro-averaged
F -measure and BEP are 61.52 and 61.57, respectively, over the test set, around
3% less than the corresponding values over the validation set (63.16 and 63.19,
respectively). Again, we notice the good balancing of Precision and Recall. How-
ever, unlike in the case of the REUTERS-21578, the predicted values for the F -
measure are on average around 18% larger than the test results, which is indicative
of a certain overfitting over the training data.
Other relevant aspects coming out from Tables 8.8 and 8.9 and confirming the

Benchmark Experimentation and Comparison 87

behavior of Olex are: first, the ability to learn from small vocabularies (ν indeed
ranges between 30 and 100 terms/category); second, the capability to induce small
classifiers (their size ranges between 17 rules, for category C08, and 103 rules, for
category C23 – on average around 36 rules/category). Also the absence of a cor-
relation between training set size and performance was observed.
Finally, by comparing the above performance with the ones obtained by using
simple rules (i.e., by limiting Olex to induce only co-terms of degree 1), we again
observe a large improvement of the micro-averaged F -measure (61.52 against
59.35, around 4% more - see Table 8.10).

Category Model Training Validation Test
Param.

name φ ν #D F #D F BEP #D F BEP
C23 CHI 60 1259 65.79 540 48.60 48.64 1087 48.09 48.12
C14 IG 60 874 83.40 375 77.79 77.80 719 75.46 75.48
C04 CHI 30 814 81.29 349 77.44 77.5 179 78.70 78.74
C10 CHI 60 435 71.13 186 54.46 55.05 149 55.11 55.29
C06 CHI 70 412 77.35 176 68.32 68.92 189 65.51 66.18
C21 OR 100 382 78.24 164 65.81 65.97 117 60.32 60.47
C20 CHI 80 368 84.22 157 73.03 73.11 131 71.96 71.97
C12 OR 100 344 84.97 147 69.63 70.18 71 71.23 71.28
C08 CHI 50 331 75.50 142 61.45 62.76 89 64.98 65.75
C01 CHI 60 296 79.34 127 59.57 59.97 50 57.88 58.39
µF (top 10) 78.12 65.61 65.99 64.92 65.17
µF (all 23) 63.16 63.19 61.52 61.57

Table 8.8: Best classifiers for the ten most frequent MeSH “diseases” categories
of Ohsumed and micro-averaged performance over all 23.

8.7 Time Efficiency

Next we report the execution times of the various steps for the REUTERS-21578
experimentation.
The pre-processing phase (stopwords and numbers removal, n-gram extraction,
training set creation and local vocabularies creation) took around ??? seconds.
The run times of algorithm DT-GEN on R10 and R90, for input vocabularies
V (φ, ν) with φ = CHI and values of ν ranging from 5 to 100, are reported in
Table 8.11. These results show that Algorithm DT-GEN is substantially quadratic

Benchmark Experimentation and Comparison 88

Category Classifier
#rules # neg. lit.

C23 103 86
C14 27 35
C04 31 13
C10 30 42
C06 37 29
C21 25 10
C20 18 10
C12 45 9
C08 17 21
C01 30 22
avg 36.3 27.7

Table 8.9: Classifiers on OHSUMED top ten categories.

Simple Rules Conj. Rules
Cat. F -meas BEP F -meas BEP
C23 47.00 47.32 48.09 48.12
C14 73.67 74.52 75.46 75.48
C04 77.63 77.78 78.70 78.74
C10 54.39 54.72 55.11 55.29
C06 63.17 63.25 65.51 66.18
C21 60.98 61.62 60.32 60.47
C20 67.58 67.81 71.96 71.97
C12 67.80 67.82 71.23 71.28
C08 61.43 61.57 64.98 65.75
C01 53.71 55.59 57.88 58.39
avg (top 10) 62.73 63.20 64.92 65.17
µF (all 23) 59.35 59.38 61.52 61.57

Table 8.10: Performance comparison between simple and conjunctive rules on
Ohsumed

(in the vocabulary size) for some classes, linear for some others. As remarked in
Section 7.5, this essentially stems from the relatively low number of d-terms w.r.t.
the vocabulary size (see comments on experimental results in Subsection 8.5).
Finally, the execution time of the best classifiers over the test set took 65 seconds.

All experiments were conducted on a 2 GHz Pentium 2 Gb RAM.

Benchmark Experimentation and Comparison 89

Category 5 10 20 40 60 80 100
earn 1 3 6 12 33 65 132
acq 1 3 7 21 45 74 145
money-fx 1 4 10 28 51 58 100
grain 1 2 5 10 17 29 38
crude 1 2 5 18 35 54 80
trade 1 5 11 28 54 75 92
interest 1 1 3 7 14 15 30
wheat 1 1 1 2 4 5 4
ship 1 1 2 6 9 10 14
corn 1 1 2 2 4 6 8
tot secs (R10) 10 23 52 133 266 349 643
tot secs (R90) 11 28 63 170 327 420 733

Table 8.11: DT-GEN run times (in secs) over R10 and R90 with input vocabulary
V (φ, ν), with φ = CHI and 5 ≤ ν ≤ 100

8.8 Performance Comparison

Although many results on both the REUTERS-21578 and the OHSUMED data
collections are available in the literature (e.g. [9,45]), a direct comparison with our
results is impossible, as different training sets and/or experimental settings (e.g.,
different methods to pre-process and partition the data) have been used. Thus,
we used the Weka library of machine learning algorithms, version 3.5.6 [85], to
compare Olex to five learning algorithms: SVM, Ripper, k-NN, C4.5 and Bayes.
The documents of the training set were preliminarily pre-processed as described
in subsection 8.2.

8.8.1 Reuters

All five methods were run after selecting the 500 best, 1000 best, 2000 best, 5000
best, (10000 best,) or all features (see section ??). As in [43], at each number of
features, the values k ∈ {1, 15, 30, 45, 60} for the k-NN classifier were tried. The
best performance obtained on the test set are reported in Table 8.13. As we can
see, on average, Olex (85.3) greatly surpasses Bayes (72.0), Rocchio (79.9), C4.5
(79.4) and k-NN (82.3), but performs slightly worse than both the SVM appro-
aches (86.0 the polynomial SVM, and 86.4 the rbf SVM).
Table 8.13 contrasts the results on R10 of Olex with those of two well known rule-

Benchmark Experimentation and Comparison 90

Classifier size Bayes Rocchio C4.5 k-NN SVM(poly) SVM(rbf) Olex
earn 2877 95.9 96.1 96.1 97.3 98.5 98.5 95.74
acq 165 91.5 92.1 85.3 92.0 95.2 95.4 88.78
money 538 62.9 67.6 69.4 78.2 76.2 76.3 70.48
grain 433 72.5 79.5 89.1 82.2 92.4 93.1 92.62
crude 389 81.0 81.5 75.5 85.7 88.9 88.9 83.07
trade 369 50.0 77.4 59.2 77.4 77.1 77.8 66.91
interest 347 58.0 72.5 49.1 74.0 76.2 76.2 63.35
wheat 212 78.7 83.1 80.9 79.2 86.5 85.4 91.46
ship 197 60.6 79.4 85.5 76.6 85.9 85.2 79.14
corn 181 47.3 62.2 87.7 77.9 85.7 85.1 93.46

µF (R90) 72.0 79.9 79.4 82.3 86.0 86.4 85.36

Table 8.12: Recall/Precision breakeven points on R10 and R90

based learning techniques, namely, RIPPER and TRIPPER (their performance
values are reported as given in [81]). The results show that Olex outperforms (in
terms of BEP) RIPPER in a vast majority of categories (nine out of ten) and both
RIPPER and TRIPPER in eight out of ten categories.
Finally, in Table 8.14 we compare Olex with the NeW associative algorithm [10];

Classifier earn acq money grain crude trade interest wheat ship corn
Tripper 95.1 86.3 70.4 87.9 82.5 58.9 71.5 84.5 80.9 85.7
Ripper 94.0 85.3 65.3 90.6 79.3 68.3 58.7 83.0 73.0 83.9
Olex 96.3 89.2 70.9 92.6 85.0 64.7 62.8 91.5 81.3 92.1

Table 8.13: Recall/Precision breakeven points on R10

in particular, we consider the break even performance along with the character-
istics of the induced classifiers (number of rules). As we can see, besides giving
BEP values on average higher than those provided by NeW (85.3 against 82.7),
Olex generates classifiers that are much more compact than those generated by
NeW (on average, 11 rules per classifier on R90, against 471 of NeW).

8.8.2 Ohsumed

In [43] Joachims categorizes the same test collection we used in our experimenta-
tion to compare the performance of SVMs with four classifiers. Again, Olex (BEP
= 63.3) performs better than Naive Bayes (57.0), Rocchio (56.6), k-NN (59.1) and

Benchmark Experimentation and Comparison 91

NeW Olex NeW Olex
Name #Rules #Rules BEP BEP
earn 1364 13 96.5 96,3
acq 538 34 88.7 89,2
money-fx 541 17 70.4 70.9
grain 223 9 86.6 92,6
crude 446 14 85.7 85.0
trade 574 5 76.1 64,7
interest 461 8 69.5 62,8
wheat 202 4 87.3 91.5
ship 177 4 81.2 81.8
corn 79 2 85.7 92,1
avg #rules (R10) 471.0 11.0
µF (R90) 82.7 85.3

Table 8.14: Comparison with the association rule classifier NeW on R10 and R90

C4.5 (50.0), while is less effective than SVMs (65.9 the polynomial SVM and 66.0
the rbf SVM).

Chapter 9

Experimentation on real use-case
corpora

A set of experiments has been carried out on two real use-case corpora, which
were provided to us by an American company, the Full Capture Solutions, Inc
(FCSI). Both data sets contain documents, concerning insurance agencies; these
are called FROI (First Report of Injury) and represent reports about road accidents
written down by policemen. Insurance agencies are interested in finding, among
the whole set of FROI, the so called “subrogation” cases. A small percentage of
the whole set of accidents, in fact, is caused by third parties with respect to the in-
sured ones which have to recover a part or the whole damage. In these situations,
the insurance agency, after having recovered the damage to the insured parties,
may claim for damages the actual responsible one. Up to now, the search for
“subrogation” cases has been carried out by manually analyzing all reports. This
type of investigation obviously requires a lot of human effort. Furthermore, rapid-
ity is an essential factor, since proofs of third party responsibility may suddenly
disappear. For these reasons, FCSI is interested in using automatically induced
classifiers to make search faster.
In the following sections, we will show the results obtained by Olex on both data
sets.

9.1 Data sets

FCSI prepared two distinct and independent collections of documents:

FSCI 6024 which contains 6024 documents.

92

Experimentation on real use-case corpora 93

FSCI 2984 which contains 2984 documents.

Each of them is a collection of FROI, manually classified under two categories:
“subrogation yes” (in the following SUBRO YES) and “subrogration no” (SU-
BRO NO). The distribution of the documents on FCSI 6024 and FCSI 2984 train-
ing corpora is shown in Tables 9.1 and 9.2.

Category Documents
SUBRO YES 1625
SUBRO NO 4399

Table 9.1: Documents distribution with respect to the categories on FSCI 6024 data set

Category Documents
SUBRO YES 1779
SUBRO NO 1205

Table 9.2: Documents distribution with respect to the categories on FSCI 2984 data set

9.2 Document Pre-processing

Linguistic Pre-processing

The documents belonging to FCSI corpora are, for their nature, linguistically dif-
ferent from the ones of the training corpora analyzed in chapter 8. The reports
contain some information about the interested parties and a more or less detailed
description about the accident; the latter, in particular, is written in the natural lan-
guage and often contains a lot of expressions belonging to the local slang. Periods
are short and concisely describe the situation of the accident (“Fainted after inhal-
ing methane”, “Car was rear-ended by another vehicle at a stoplight”, “Poked his
finger in his eye”, “Cut finger while chopping cabbage”, “Foreman putting air in
tire when rim sprung up and hit him in the head causing a bone fracture”). Fre-
quent are words contractions and abbreviations.
The following is an example of document belonging to FCSI 2984 training cor-
pus:

Experimentation on real use-case corpora 94

tree fell on iv and camper INSD WAS CAMPING AND

A STORM CAME THROUGH AND LIGHTNING HIT TREE AND

THE coverages loss st-va contri neg 1% bar

eff 012402-012403 veh 02 1994 wildress camp veh

03 2000 f250 cmp 50 rr 20/600 priors 0 Rcvd both

est for iv, cv fwd to adj for pymt...kfc

As it can be easily noticed, it is impossible to remove any word or expression
from a document like this, because this could imply a loss of information. For this
reason, FCSI documents where pre-processed without performing any Stop word
removal and Stemming step; while n-grams with length n ≤ 3 were extracted
according to the definition provided in section 7.2.

Semantic Pre-processing

In order to exploit the available external knowledge provided by the domain spe-
cific thesaurus, a semantic pre-processing step has been performed. In general,
this step requires:

• a n−gram representation of documents. One can decide whether to use
the available linguistic pre-processing or do it again, choosing a different
type of n−gram (for instance, long n−gram are often useful only to extract
concepts).

• a lexicon for the thesaurus, providing the correspondences between terms
in the documents and concepts in the thesaurus. This is given through a set
of binary associations between n−grams and concepts.

After semantic pre-processing, each document in the training corpus is repre-
sented as the collection of concepts “discovered” in it.

For FCSI training corpora, we used a thesaurus specially defined by FCSI knowl-
edge engineers to represent the key concepts in the classification of FROI reports.
The FCSI thesaurus has a very simple structure: it is a collection of concepts with
their representative terms. More in details, each concept is related by a binary
relation to a set of terms; the presence of a such term in a document provide evi-
dence towards the fact that the document “deals with” a particular concept. There
are about 455.000 pairs of this kind. The following are examples of concept:

Experimentation on real use-case corpora 95

SUBRO YES: it is expressed by terms like “subro potential” or “subro claim” that the
compiler of the reports appositely adds to indicate that the case described is a can-
didate for subrogration.

OPL (Other Part Liability): found by means of expressions like “has accepted liabil-
ity” added by the compiler to indicate that the other driver is responsible. Like the
first one, it is indicative of a potential subrogation case, but it is less strong.

INSURED AT FAULT: it is expressed by terms like “insd was cited” “and hit clmt”,
representative of the fact that the insured party is probably responsible and, thus,
the case is not a subrogation one.

9.3 Experimental Methodology

In both data set, the classification task was that of assigning documents to SU-
BRO YES and SUBRO NO categories. According to the semantic of the FCSI
domain, a document is classified under SUBRO NO if it can’t be proved it is SU-
BRO YES (negation by failure). The manually defined classifier for SUBRO NO
is the following:

classify(d, “SUBRO NO”) : − onegram(d,X),

not classify(d, “SUBRO Y ES”).

Hence, the automatic classifier induction was carried out only for SUBRO YES;
once the best classifier has been find out, it was used, in conjunction with the
SUBRO NO one, to classify the test set documents with respect to both categories.

On both FCSI 6024 and FCSI 2984 training data, we carried out three types of
experiments, described below.

1. Experiments with only linguistically pre-processed documents. The first
group of experiments was based on the unique use of n-grams. In this case,
FCSI documents were preprocessed according to the linguistic preprocess-
ing step described in section 9.2, so that documents are represented as col-
lection of n-grams with a maximum length 3.

2. Experiments with semantically pre-processed documents. The second type
of experiments was carried out after having performed a semantic analysis
task, whereby documents were represented as collection of n-grams and
concepts. Both n-grams and concept were, thus, used by Olex to infers
classification rules.

Experimentation on real use-case corpora 96

3. Experiments exploiting the combination of manual and automatic appro-
aches. The last group of experiments aimed at exploring the possibility
of gaining accuracy through a cooperation of humans efforts and machine
learning capability. These experiments, based on the combination of the
automatic and manual approaches, exploit the special feature of Olex for
the automatic completion of manual classifiers, which allows the user to
enhance the accuracy of a manually defined set of rules, by performing a
subsequent automatic learning process.

9.4 Experimental Results on FCSI 6024

Experiments with only linguistically pre-processed documents

The set of experiments illustrated in Table 9.3 has been carried out for the au-
tomatic induction of the best classifier of SUBRO YES. In particular, for each
scoring function (Odds Ratio, Information Gain and Chi Square), we considered
reduced vocabularies containing a number of terms ranging between 100 e 300 for
each category. Here, the best results were obtained by using Odds Ratio as scoring
function. Olex showed to be very effective using the plain n-grams representation
of documents: precision and recall values were very balanced and the F-measure
was high for both categories (see Table 9.4).

Experiments with the exploitation of external knowledge
For this type of experiments, we used a representation of the training data deriving
from the semantic analysis process described in section 9.2. Thus, each document
was represented as a set of n-grams and concepts. Consequently, the automatically
induced classifiers were expressed in form of both concepts and n-grams. Here,
we report a fragment of classifier obtained for SUBRO YES using this technique:

positive(d, “SUBRO Y ES”) : − concept(d, “subro open”).
positive(d, “SUBRO Y ES”) : − onegram(d, “pip5”).
positive(d, “SUBRO Y ES”) : − onegram(d, “srs”).

...

negative(d, “SUBRO Y ES”) : − threegram(d, “advpaysubro”).
negative(d, “SUBRO Y ES”) : − threegram(d, “advpaidsubro”).
classify(d, “SUBRO Y ES”) : − positive(d, “SUBRO Y ES”),

not negative(d, “SUBRO Y ES”).

Experimentation on real use-case corpora 97

Scoring function Terms/cat category Pr Re F
Odds Ratio 100 SUBRO YES 97,38 89,19 93,1
Odds Ratio 150 SUBRO YES 97,11 90,69 93,79
Odds Ratio 200 SUBRO YES 96,56 92,79 94,64
Odds Ratio 250 SUBRO YES 95,71 93,69 94,69
Odds Ratio 300 SUBRO YES 95,68 93,09 94,37
Information Gain 100 SUBRO YES 90,21 91,29 90,75
Information Gain 150 SUBRO YES 93,52 90,99 92,24
Information Gain 200 SUBRO YES 93,87 91,89 92,87
Information Gain 250 SUBRO YES 94,43 91,59 92,99
Information Gain 300 SUBRO YES 94,67 90,69 92,64
Chi Square 100 SUBRO YES 91,37 92,19 91,78
Chi Square 150 SUBRO YES 91,29 91,29 91,29
Chi Square 200 SUBRO YES 89,88 93,39 91,61
Chi Square 250 SUBRO YES 94,65 90,39 92,47
Chi Square 300 SUBRO YES 94,69 90,99 92,8

Table 9.3: Experiments on FCSI 6024 training corpus, using linguistically pre-
processed documents.

category Pr Re F
SUBRO YES 95,71 93,69 94,69
SUBRO NO 97,29 98,74 98,01
µF 96,86 97,34 97,10

Table 9.4: Micro average values on FCSI 6024 obtained using only linguistically
pre-processed documents.

The experiments carried out using concepts representation of documents are sum-
marized in Table 9.5.
The role played by concepts in the learning phase depends on the scoring func-

tion used to create the reduced vocabularies. In fact, Odds Ratio prefers n-grams
to concepts, while Information Gain and Chi Square are more inclined to select
concepts. So, in the first case, the use of concepts has almost no influence and the
produced classifiers often coincide with the ones induced by using only n-grams.
Nevertheless, the performance results obtained with Information Gain and Chi
Square are quite similar to those obtained using only n-grams.

Experimentation on real use-case corpora 98

Scoring function Terms/cat category Pr Re F
Odds Ratio 150 SUBRO YES 97,42 90,69 93,93
Odds Ratio 200 SUBRO YES 96,87 92,79 94,79
Odds Ratio 250 SUBRO YES 95,71 93,69 94,69
Odds Ratio 300 SUBRO YES 94,58 94,29 94,44
Information Gain 150 SUBRO YES 91,92 92,19 92,05
Information Gain 200 SUBRO YES 91,72 93,09 92,4
Information Gain 250 SUBRO YES 91,47 93,39 92,42
Information Gain 300 SUBRO YES 90,67 93,39 92,01
Chi Square 150 SUBRO YES 91,34 91,89 91,62
Chi Square 200 SUBRO YES 91,69 89,49 90,58
Chi Square 250 SUBRO YES 91,39 92,49 91,94
Chi Square 300 SUBRO YES 91,57 91,29 91,43

Table 9.5: Experiments on FCSI 6024 training corpus exploiting external knowl-
edge

Combination of manual and automatic approaches
The third type of experiments carried out on this training corpus aimed at explor-
ing the possibility of combining classifiers written down by knowledge engineers
with the ones automatically learned by Olex . To this end, a manual classifier was
defined on the basis of FCSI thesaurus concepts. We decided to use concepts,
rather than simple n-grams, since they allow an higher level of abstraction. Note
that the manual definition of such a classifier requires a depth knowledge about
the semantic concepts and their relations. So, we proceeded at defining a set of
positive and negative concepts for SUBRO YES and used a classifier that simply
associates a document to SUBRO YES if it contains any positive concept and no
negative one:

neg concept(d, “SUBRO Y ES”) : − concept(d, “insured at fault”).
neg concept(d, “SUBRO Y ES”) : − concept(d, “subro no”).
neg concept(d, “SUBRO Y ES”) : − concept(d, “adverse”).
neg concept(d, “SUBRO Y ES”) : − concept(d, “no id”).
neg concept(d, “SUBRO Y ES”) : − concept(d, “hit run”).

classify(d, “SUBRO Y ES”) : − concept(d, “subro yes”),
not neg concept(d, “SUBRO Y ES”).

classify(d, “SUBRO Y ES”) : − concept(d, “opl”),
not neg concept(d, “SUBRO Y ES”).

Experimentation on real use-case corpora 99

The performance values obtained by this classifier are:

Pr = 95, 59 Re = 39, 04 F = 55, 44

which are heavily unbalanced: the classifier is highly precise but has a very low
recall. Thus, we used the appropriate Olex feature of the automatic completion to
automatically complete the manually defined classifier. The automatically gener-
ated component of the final classifier, induced by using Odds Ratio scoring func-
tion, achieves the following performance values:

Pr = 96, 33 Re = 94, 59 F = 95, 45

It is worth noticing that the automatic completion helps to improve not only recall
but precision too, with a clear increase of the F-measure.
The best performance results obtained with this method are provided in Table 9.6;
we point out that this is the overall best classifier.

category Pr Re F
SUBRO YES 96,33 94,59 95,45
SUBRO NO 97,95 98,62 98,29
µF 97,51 97,51 97,51

Table 9.6: Micro average values on FCSI 6024 obtained combining manual and auto-
matic approaches

9.5 Experimental Results on FCSI 2984

Experiments using linguistically pre-processed documents

The experiments carried out on this training corpus confirmed the results obtained
on FCSI 6024. In order to discover the best classifier for SUBRO YES we carried
out the experiments reported in Table 9.7.

Note that, as for FCSI 6024 training corpus, the best results are obtained us-
ing Odds Ratio to extract the input vocabularies. In particular, the best classifier
found for SUBRO YES is that induced by using a vocabulary with 150 terms
for category (Pr = 93, 04, Re = 87, 11 and F = 89, 98). Performance val-
ues for category SUBRO NO (using the classifier by negation) are the following:
Pr = 93, 04, Re = 87, 11 and F = 88, 98. The micro averaged values are shown

Experimentation on real use-case corpora 100

Scoring function Terms/cat category Pr Re F
Odds Ratio 100 SUBRO YES 93,26 86,26 89,62
Odds Ratio 150 SUBRO YES 93,04 87,11 89,98
Odds Ratio 200 SUBRO YES 89,51 88,24 88,87
Odds Ratio 250 SUBRO YES 91,57 87,68 89,58
Chi Square 100 SUBRO YES 91,06 85,13 87,99
Chi Square 150 SUBRO YES 87,52 88,39 87,95
Chi Square 200 SUBRO YES 87,35 90,93 89,1
Chi Square 250 SUBRO YES 86,64 92,78 89,6
Information Gain 100 SUBRO YES 85,71 89,24 87,44
Information Gain 150 SUBRO YES 86,98 88,95 87,96
Information Gain 200 SUBRO YES 84,36 93,2 88,56
Information Gain 250 SUBRO YES 86,51 92,63 89,47

Table 9.7: Experiments on FCSI 2984 training corpus

in Table 9.8.

category Pr Re F
SUBRO YES 93,04 87,11 88,98
SUBRO NO 83,56 90,38 86,97
µF 88,88 88,43 88,65

Table 9.8: Micro average values on FCSI 2984 obtained using only n-grams

Experiments with the exploitation of external knowledge

A set of experiments on FCSI 2984 was carried out to evaluate whether the gen-
eration of classifiers based on external knowledge gives a contribution in terms of
performance values. Results are shown in Table 9.9.

Unlike the other cases, here the best value of the F-measure for SUBRO YES
is achieved using a reduced vocabulary of 150 terms for category selected using
Chi Square as scoring function (Pr = 88, 41, Re = 92, 92, F = 90, 61).

Table 9.10 reports the micro averaged performance values, which are slightly
better than those obtained using only n-grams.

Experimentation on real use-case corpora 101

Scoring function Terms/cat category Pr Re F
Odds Ratio 100 SUBRO YES 93,26 86,26 89,62
Odds Ratio 150 SUBRO YES 92,83 87,96 90,33
Odds Ratio 200 SUBRO YES 90,26 89,24 89,74
Odds Ratio 250 SUBRO YES 90,86 90,08 90,47
Chi Square 100 SUBRO YES 88,05 92,92 90,42
Chi Square 150 SUBRO YES 88,41 92,92 90,61
Chi Square 200 SUBRO YES 86,19 91,08 88,57
Chi Square 250 SUBRO YES 86,64 90,93 88,74
Information Gain 100 SUBRO YES 88,54 91,93 90,2
Information Gain 150 SUBRO YES 88,18 89,8 88,98
Information Gain 200 SUBRO YES 83,4 93,2 88,03
Information Gain 250 SUBRO YES 91,47 88,1 89,75

Table 9.9: Experiments on FCSI 2984 using concepts

category Pr Re F
SUBRO YES 88,41 92,92 90,61
SUBRO NO 88,91 82,01 85,78
µF 88,96 88,51 88,74

Table 9.10: Micro average values on FCSI 2984 obtained using n-grams and concepts

Combination of manual and automatic approaches

The automatic completion feature was evaluated on this corpus, using the man-
ual classifier designed for SUBRO YES in corpus FCSI 6024. This was possible
since the manual classifier was based only on the concepts defined in FCSI the-
saurus (which is the same for both training corpora). Here, the starting perfor-
mance values of the manual classifier were:

Pr = 54, 69 Re = 54, 37 F = 54, 33

The usefulness of automatic completion feature was confirmed by its evalu-
ation on this training corpus. In fact, the performance achieved by adding the
automatically learned component are:

Pr = 88, 41 Re = 92, 92 F = 90, 61

which are the same of the ones obtained by using the automatic approaches on
vocabularies containing n-grams and concepts.

Chapter 10

Discussion and Conclusion

10.1 Discussion

The experimental results reported in the previous chapters show that Olex can
induce classifiers that are highly accurate (compared to other state-of-the-art sys-
tems) and compact (which entails faster classification and human readability).
Those experiments also suggest a good capacity to learn from low-frequency cat-
egories. Interestingly, those properties have consistently been observed on both
benchmark corpora and FCSI data sets, on which Olex shows a uniform behavior.
Given the very different application domains the corpora refer to, this is a clear
proof of robustness. We think that the observed behavior is general, not corpus-
dependent.
How can we explain all that?

The hypothesis language

Quite obviously, the above properties are consequence of a very expressive hy-
pothesis language. Basically, what is effective, and original, in our approach is
the combination of negative and conjunctive literals within the general framework
“one positive literal, more negative literals”. Intuitively, it seems that positive lit-
erals allow rules to catch most of the right documents, while negative ones help
them not to make “too many” mistakes. In other words, negative literals allow
Olex to achieve high precision values while retaining the high recall coming from
positive literals (a similar effect has been observed in [86, 10, 8]).
Conjunctions of terms, like negative literals, specialize rules to be more precise.
The presence of conjunctions is pretty frequent in the Olex rules, albeit they are

102

Discussion and Conclusion 103

usually limited to just two terms (three-term conjunctions are indeed very rare).
For instance, in the best classifier for “earn”, there are 11 two-term positive liter-
als (over 30 rules) and 3 two-term negative literals (in each rule). No three-term
literal occurs. We note that higher co-term degree might cause overfitting (which
might indeed be important if conjunctions were ”too long”). Also, the low degree
of co-terms represents a good compromise between the need of specializing rules
to get better precisions and their capability to “cover” (positive) examples. In
general, the presence of “short” conjunctions tends to make rules more reliable,
and this may also explain why conjunctive rules can learn well even from low-
frequency categories (contrary to simple rules). All this results in a remarkable
increase in performance, as shown in Subsection 8.5. On both benchmark cor-
pora, indeed, the rise in performance due to conjunctions is relevant (around 6%
for the REUTERS-21578 and 4% for OHSUMED). To the best of our knowledge,
no other rule-based classifiers allow conjunctive literals.

Optimization heuristics

Effective rules are the consequence of a quite strong optimization technique in
finding discriminating terms. As we have seen, it is based on a greedy heuristics
which efficiently induces accurate classifiers. In Section 8.8, we have examined
a number of other machine learning techniques for document classification, from
which it clearly appears that Olex is more than competitive. Can we enhance
our optimization heuristics to get even better results than those reported in this
thesis? Although we cannot say a priori how much those results are improvable
(we do not know indeed what is the performance upper bound) we suspect that
there is still room for enhancement. This is because there are some restrictions
on the d-terms generated by the proposed heuristics which may actually limit rule
effectiveness. One of the major drawbacks is that a term can appear in at most one
conjunctive term, so that the positive literals occurring in the rules of a classifier
cannot have terms in common. As an instance, a classifier like the following

Discussion and Conclusion 104

(see [82])

wheat ← “wheat” ∈ d, “farm” ∈ d.

wheat ← “wheat” ∈ d, “commodity” ∈ d.

wheat ← “wheat” ∈ d, “agriculture” ∈ d.

wheat ← “wheat” ∈ d, “tonnes” ∈ d.

· · ·
where the word “wheat” occurs positively in more rules, could not be gener-

ated by Olex. This may seriously limit the effectiveness of the induced classifiers.
We point out that this is a restriction of the chosen heuristics, not of the proposed
model. We are currently investigating alternative heuristics for our optimization
task, e.g., genetic algorithms.

Relation to other inductive rule learners

Because of the computational complexity of the learning problem, real systems
employ heuristic search strategies which prunes vast parts of the hypothesis space.
Conventional inductive rule learners (such as, FOIL [20], RIPPER [24], Swap-
1 [82]) usually adopt, as their general search method, a covering approach based
on a divide-and-conquer strategy. Starting from an empty rule set S, a training set
TS and a background knowledge B, they learn a set of rules, one by one. The
learning of a single rule r, from TS and B, starts with a clause with an empty
body which is specialized by repeatedly adding a body literal to the clause built
so far. Then, r is added to S and all the examples explained by r are removed
from TS. This process is reiterated until TS is empty or S satisfies all positive
examples. Different learners essentially differ in how they find a single rule. In
RIPPER, for instance, the construction of a single rule is a two-stage process: a
greedy heuristics constructs an initial ruleset (IREP*) and, then, an optimization
phase improves compactness and accuracy of the ruleset. In the first stage, to
build a rule, the uncovered examples are randomly partitioned into two subsets:
a growing set and a pruning set. That is, after growing a rule, it is simplified by
another greedy technique.
Also decision tree techniques, e.g., C4.5 [66], rely on a two-stage process. After
the decision tree has been transformed into a rule set, C4.5 implements a pruning
stage which requires more steps to produce the final rule set - a rather complex
and time consuming task.

Discussion and Conclusion 105

As we have seen, Olex does not follows the aforementioned scheme. Rather, it
relies on a simple, yet effective, optimization algorithm for the computation of
discriminating terms. Unlike both RIPPER and C4.5, which requires lengthy op-
timization processes, it is a single-step process which does not need any post-
induction optimization. The implementation, although at a prototypical level,
showed to be very efficient on large data sets.

10.2 Concluding Remarks

In this thesis, we have presented Olex, a novel approach to the automatic induction
of rule-based text classifiers. We provided a formal description of the method. In
particular, we described the problem of determining a best set of discriminating
terms for a category and proved its intractability. Then, we showed how rules are
derived from a given set of discriminating terms.
The Olex’s hypothesis language consists of rules with one positive conjunction of
terms and (zero or) more negative ones. Thus, Olex predictions require testing the
simultaneous presence of several terms (forming the positive conjunction) along
with the simultaneous absence of several sets of terms (each forming a negative
conjunction).
While there is in the literature a wide range of rule learning algorithms, one con-
tribution of our approach is the form of the hypothesis language.
We performed experiments on two standard data collections: REUTERS-21578
and OHSUMED . We found that Olex consistently achieves high performance re-
sults, significantly outperforming most of the traditional approaches.Further, it
provides very compact and comprehensible classifiers.
Olex enjoys a number of further desirable properties:

1. it is accurate even for relatively small categories (i.e., it is not biased towards
majority classes);

2. it is robust, i.e., shows a similar behavior on both data sets we have experi-
mented.

Further, thanks to its rule-based approach, Olex allows an immediate and
sound integration of background knowledge, in order to enhance the accuracy
of the induced classifiers with features generated on the basis of domain-specific
and common-sense knowledge. Experiments have been carried out the evalu-
ate usefulness of external knowledge on FCSI corpora, by performing a Semantic

Discussion and Conclusion 106

Analysis task, whereby documents have been represented in terms of the extracted
concepts. This first empirical evaluation, provided in chapter 9, showed that
knowledge-based feature generation gives a small contribution in the improve-
ment of classification performances. This is a partial result; further investigation
have to be carried out, in order to state whether this result can be generalized for
our learning approach or some improvement is obtained when using more struc-
turally complex or more appropriate thesauri.

Lastly, the system supports the integration of a manual approach into the au-
tomatic categorization. Thanks to the interpretability of the produced classifiers,
indeed, the Knowledge Engineer can participate in the construction of a classifier,
by manually specifying a set of rules to be used in conjunction with those auto-
matically learned. Experimental results showed that this cooperation may bring
Text Categorization to an higher performance level.

All this makes Olex an interesting approach for learning text classifiers from
training sets.

Bibliography

[1]

[2] MeSH. Medical Subject Headings. MD: National Library of Medicine,
Bethesda, US, 2004.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining asso-
ciation rules between sets of items in large databases. In Peter Buneman
and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, pages 207–216, Washington,
D.C., 26–28 1993.

[4] Rakesh Agrawal, Tomasz Imielinski, and Arun N. Swami. Mining asso-
ciation rules between sets of items in large databases. In Peter Buneman
and Sushil Jajodia, editors, Proceedings of the 1993 ACM SIGMOD Inter-
national Conference on Management of Data, pages 207–216, Washington,
D.C., 26–28 1993.

[5] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules. In Jorge B. Bocca, Matthias Jarke, and Carlo Zaniolo, ed-
itors, Proc. 20th Int. Conf. Very Large Data Bases, VLDB, pages 487–499.
Morgan Kaufmann, 12–15 1994.

[6] Ion Androutsopoulos, John Koutsias, Konstandinos V. Chandrinos, and Con-
stantine D. Spyropoulos. An experimental comparison of naive bayesian
and keyword-based anti-spam filtering with personal e-mail messages. In
Nicholas J. Belkin, Peter Ingwersen, and Mun-Kew Leong, editors, Pro-
ceedings of SIGIR-00, 23rd ACM International Conference on Research and
Development in Information Retrieval, pages 160–167, Athens, GR, 2000.
ACM Press, New York, US.

107

BIBLIOGRAPHY 108

[7] Maria-Luiza Antonie and Osmar R. Zaı̈ane. Text document categorization by
term association. In ICDM ’02: Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM’02), page 19, Washington, DC, USA,
2002. IEEE Computer Society.

[8] Maria-Luiza Antonie and Osmar R. Zaı̈ane. An associative classifier based
on positive and negative rules. In DMKD ’04: Proceedings of the 9th ACM
SIGMOD workshop on Research issues in data mining and knowledge dis-
covery, pages 64–69, New York, NY, USA, 2004. ACM Press.

[9] Chidanand Apté, Fred J. Damerau, and Sholom M. Weiss. Automated learn-
ing of decision rules for text categorization. ACM Transactions on Informa-
tion Systems, 12(3):233–251, 1994.

[10] E. Baralis and P. Garza. Associative text categorization exploiting negated
words. In Proceedings of the 2006 ACM symposium on Applied computing,
pages 530 – 535, 2006.

[11] Nicholas J. Belkin and W. Bruce Croft. Information filtering and information
retrieval: two sides of the same coin? Commun. ACM, 35(12):29–38, 1992.

[12] Eric Brill. A simple rule-based part-of-speech tagger. In Proceedings of
ANLP-92, 3rd Conference on Applied Natural Language Processing, pages
152–155, Trento, IT, 1992.

[13] Sergey Brin, Rajeev Motwani, and Craig Silverstein. Beyond market bas-
kets: Generalizing association rules to correlations. In Joan Peckham, edi-
tor, SIGMOD 1997, Proceedings ACM SIGMOD International Conference
on Management of Data, May 13-15, 1997, Tucson, Arizona, USA, pages
265–276. ACM Press, 1997.

[14] Fellbaum C. Wordnet: An Electronic Lexical Database. The MIT Press,
1998.

[15] Maria Fernanda Caropreso, Stan Matwin, and Fabrizio Sebastiani. A learner-
independent evaluation of the usefulness of statistical phrases for automated
text categorization. In Amita G. Chin, editor, Text Databases and Document
Management: Theory and Practice, pages 78–102. Idea Group Publishing,
Hershey, US, 2001.

BIBLIOGRAPHY 109

[16] William B. Cavnar and John M. Trenkle. N-gram-based text categorization.
In Proceedings of SDAIR-94, 3rd Annual Symposium on Document Analysis
and Information Retrieval, pages 161–175, Las Vegas, US, 1994.

[17] Ming-Syan Chen, Jiawei Han, and Philip S. Yu. Data mining: an overview
from a database perspective. Ieee Trans. On Knowledge And Data Engineer-
ing, 8:866–883, 1996.

[18] W. Cohen. PAC-learning recursive logic programs: Negative result. Journal
of Artificial Intelligence Research, 2:541–573, 1995.

[19] William W. Cohen. Learning to classify english text with ilp methods. In Luc
De Raedt, editor, Advances in inductive logic programming, pages 124–143.
IOS Press, Amsterdam, NL, 1995.

[20] William W. Cohen. Text categorization and relational learning. In Armand
Prieditis and Stuart J. Russell, editors, Proceedings of ICML-95, 12th In-
ternational Conference on Machine Learning, pages 124–132, Lake Tahoe,
US, 1995. Morgan Kaufmann Publishers, San Francisco, US.

[21] William W. Cohen. Learning rules that classify E-mail. In Papers from the
AAAI Spring Symposium on Machine Learning in Information Access, pages
18–25. AAAI Press, 1996.

[22] William W. Cohen and Haym Hirsh. Joins that generalize: text classification
using WHIRL. In Rakesh Agrawal, Paul E. Stolorz, and Gregory Piatetsky-
Shapiro, editors, Proceedings of KDD-98, 4th International Conference on
Knowledge Discovery and Data Mining, pages 169–173, New York, US,
1998. AAAI Press, Menlo Park, US.

[23] William W. Cohen and Yoram Singer. Context-sensitive learning methods
for text categorization. In Hans-Peter Frei, Donna Harman, Peter Schäuble,
and Ross Wilkinson, editors, Proceedings of SIGIR-96, 19th ACM Interna-
tional Conference on Research and Development in Information Retrieval,
pages 307–315, Zürich, CH, 1996. ACM Press, New York, US. An extended
version appears as [24].

[24] William W. Cohen and Yoram Singer. Context-sensitive learning meth-
ods for text categorization. ACM Transactions on Information Systems,
17(2):141–173, 1999.

BIBLIOGRAPHY 110

[25] Koby Crammer and Yoram Singer. A new family of online algorithms for
category ranking. In Micheline Beaulieu, Ricardo Baeza-Yates, Sung Hyon
Myaeng, and Kalervo Järvelin, editors, Proceedings of SIGIR-02, 25th ACM
International Conference on Research and Development in Information Re-
trieval, pages 151–158, Tampere, FI, 2002. ACM Press, New York, US.

[26] Franca Debole and Fabrizio Sebastiani. An analysis of the relative dif-
ficulty of reuters-21578 subsets. In Proceedings of LREC-04, 4th Inter-
national Conference on Language Resources and Evaluation, Lisbon, PT,
2004. Forthcoming.

[27] Harris Drucker, Vladimir Vapnik, and Dongui Wu. Support vector ma-
chines for spam categorization. IEEE Transactions on Neural Networks,
10(5):1048–1054, 1999.

[28] Susan T. Dumais and Hao Chen. Hierarchical classification of web content.
In Nicholas J. Belkin, Peter Ingwersen, and Mun-Kew Leong, editors, Pro-
ceedings of SIGIR-00, 23rd ACM International Conference on Research and
Development in Information Retrieval, pages 256–263, Athens, GR, 2000.
ACM Press, New York, US.

[29] Susan T. Dumais, John Platt, David Heckerman, and Mehran Sahami.
Inductive learning algorithms and representations for text categorization.
In Georges Gardarin, James C. French, Niki Pissinou, Kia Makki, and
Luc Bouganim, editors, Proceedings of CIKM-98, 7th ACM International
Conference on Information and Knowledge Management, pages 148–155,
Bethesda, US, 1998. ACM Press, New York, US.

[30] Saso Dzeroski, Stephen Muggleton, and Stuart J. Russell. PAC-learnability
of determinate logic programs. In Proceedings of the Fifth Annual ACM
Workshop on Computational Learning Theory (COLT-92), Pittsburgh, Penn-
sylvania, 1992. ACM Press.

[31] George Forman. An extensive empirical study of feature selection metrics
for text classification. Journal of Machine Learning Research, 3:1289–1305,
March 2003.

[32] Richard S. Forsyth. New directions in text categorization. In Alex Gammer-
man, editor, Causal models and intelligent data management, pages 151–
185. Springer Verlag, Heidelberg, DE, 1999.

BIBLIOGRAPHY 111

[33] Norbert Fuhr, Stephan Hartmann, Gerhard Knorz, Gerhard Lustig, Michael
Schwantner, and Konstadinos Tzeras. AIR/X – a rule-based multistage
indexing system for large subject fields. In André Lichnerowicz, edi-
tor, Proceedings of RIAO-91, 3rd International Conference “Recherche
d’Information Assistee par Ordinateur”, pages 606–623, Barcelona, ES,
1991. Elsevier Science Publishers, Amsterdam, NL.

[34] Norbert Fuhr and Gerhard Knorz. Retrieval test evaluation of a rule-based
automated indexing (AIR/PHYS). In Cornelis J. Van Rijsbergen, editor,
Proceedings of SIGIR-84, 7th ACM International Conference on Research
and Development in Information Retrieval, pages 391–408, Cambridge, UK,
1984. Cambridge University Press.

[35] Luigi Galavotti, Fabrizio Sebastiani, and Maria Simi. Experiments on the use
of feature selection and negative evidence in automated text categorization.
In José L. Borbinha and Thomas Baker, editors, Proceedings of ECDL-00,
4th European Conference on Research and Advanced Technology for Digital
Libraries, pages 59–68, Lisbon, PT, 2000. Springer Verlag, Heidelberg, DE.
Published in the “Lecture Notes in Computer Science” series, number 1923.

[36] William A. Gale, Kenneth W. Church, and David Yarowsky. A method for
disambiguating word senses in a large corpus. Computers and the Humani-
ties, 26(5):415–439, 1993.

[37] Bart Goethals and Mohammed Javeed Zaki, editors. FIMI ’03, Frequent
Itemset Mining Implementations, Proceedings of the ICDM 2003 Work-
shop on Frequent Itemset Mining Implementations, 19 December 2003, Mel-
bourne, Florida, USA, volume 90 of CEUR Workshop Proceedings. CEUR-
WS.org, 2003.

[38] Philip J. Hayes and Steven P. Weinstein. CONSTRUE/TIS: a system for
content-based indexing of a database of news stories. In Alain Rappaport
and Reid Smith, editors, Proceedings of IAAI-90, 2nd Conference on In-
novative Applications of Artificial Intelligence, pages 49–66, Boston, US,
1990. AAAI Press, Menlo Park, US.

[39] Marti A. Hearst. Noun homograph disambiguation using local context in
large corpora. In Proceedings of the 7th Annual Conference of the Univer-
sity of Waterloo Centre for the New Oxford English Dictionary, pages 1–22,
Oxford, UK, 1991.

BIBLIOGRAPHY 112

[40] William Hersh, Christopher Buckley, T.J. Leone, and David Hickman.
OHSUMED: an interactive retrieval evaluation and new large text collection
for research. In W. Bruce Croft and Cornelis J. Van Rijsbergen, editors, Pro-
ceedings of SIGIR-94, 17th ACM International Conference on Research and
Development in Information Retrieval, pages 192–201, Dublin, IE, 1994.
Springer Verlag, Heidelberg, DE.

[41] Makoto Iwayama and Takenobu Tokunaga. Cluster-based text categoriza-
tion: a comparison of category search strategies. In Edward A. Fox, Peter
Ingwersen, and Raya Fidel, editors, Proceedings of SIGIR-95, 18th ACM
International Conference on Research and Development in Information Re-
trieval, pages 273–281, Seattle, US, 1995. ACM Press, New York, US.

[42] N. Japkowicz and S. Stephen. The class imbalance problem: a systematic
study. Intelligent Data Analysis Journal, 6(5):429–449, 2002.

[43] Thorsten Joachims. Text categorization with support vector machines: learn-
ing with many relevant features. In Claire Nédellec and Céline Rouveirol,
editors, Proceedings of ECML-98, 10th European Conference on Machine
Learning, pages 137–142, Chemnitz, DE, 1998. Springer Verlag, Heidel-
berg, DE. Published in the “Lecture Notes in Computer Science” series,
number 1398.

[44] Thorsten Joachims. Transductive inference for text classification using sup-
port vector machines. In Ivan Bratko and Saso Dzeroski, editors, Pro-
ceedings of ICML-99, 16th International Conference on Machine Learning,
pages 200–209, Bled, SL, 1999. Morgan Kaufmann Publishers, San Fran-
cisco, US.

[45] David E. Johnson, Frank J. Oles, Tong Zhang, and Thilo Goetz. A decision-
tree-based symbolic rule induction system for text categorization. IBM Sys-
tems Journal, 41(3):428–437, 2002.

[46] Brett Kessler, Geoff Nunberg, and Hinrich Schütze. Automatic detection of
text genre. In Philip R. Cohen and Wolfgang Wahlster, editors, Proceed-
ings of ACL-97, 35th Annual Meeting of the Association for Computational
Linguistics, pages 32–38, Madrid, ES, 1997. Morgan Kaufmann Publishers,
San Francisco, US.

BIBLIOGRAPHY 113

[47] Jörg-Uwe Kietz and Sašo Džeroski. Inductive logic programming and learn-
ability. SIGART Bull., 5(1):22–32, 1994.

[48] Ralf Klinkenberg and Thorsten Joachims. Detecting concept drift with sup-
port vector machines. In Pat Langley, editor, Proceedings of ICML-00, 17th
International Conference on Machine Learning, pages 487–494, Stanford,
US, 2000. Morgan Kaufmann Publishers, San Francisco, US.

[49] W. Kloesgen. Explora: A multipattern and multistrategy discovery assistant,
1996.

[50] Daphne Koller and Mehran Sahami. Hierarchically classifying documents
using very few words. In Douglas H. Fisher, editor, Proceedings of ICML-
97, 14th International Conference on Machine Learning, pages 170–178,
Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco, US.

[51] Leah S. Larkey. Automatic essay grading using text categorization tech-
niques. In W. Bruce Croft, Alistair Moffat, Cornelis J. Van Rijsbergen, Ross
Wilkinson, and Justin Zobel, editors, Proceedings of SIGIR-98, 21st ACM
International Conference on Research and Development in Information Re-
trieval, pages 90–95, Melbourne, AU, 1998. ACM Press, New York, US.

[52] Leah S. Larkey and W. Bruce Croft. Combining classifiers in text cate-
gorization. In Hans-Peter Frei, Donna Harman, Peter Schäuble, and Ross
Wilkinson, editors, Proceedings of SIGIR-96, 19th ACM International Con-
ference on Research and Development in Information Retrieval, pages 289–
297, Zürich, CH, 1996. ACM Press, New York, US.

[53] David D. Lewis. An evaluation of phrasal and clustered representations on
a text categorization task. In Nicholas J. Belkin, Peter Ingwersen, and An-
nelise Mark Pejtersen, editors, Proceedings of SIGIR-92, 15th ACM Interna-
tional Conference on Research and Development in Information Retrieval,
pages 37–50, Kobenhavn, DK, 1992. ACM Press, New York, US.

[54] David D. Lewis. Evaluating and optmizing autonomous text classification
systems. In Edward A. Fox, Peter Ingwersen, and Raya Fidel, editors, Pro-
ceedings of SIGIR-95, 18th ACM International Conference on Research and
Development in Information Retrieval, pages 246–254, Seattle, US, 1995.
ACM Press, New York, US.

BIBLIOGRAPHY 114

[55] David D. Lewis. Reuters-21578 text categorization
test collection. Distribution 1.0, 1997. Available as
http://www.daviddlewis.com/resources/testcollection

s/reuters21578/readme.txt.

[56] David D. Lewis and Jason Catlett. Heterogeneous uncertainty sampling for
supervised learning. In William W. Cohen and Haym Hirsh, editors, Pro-
ceedings of ICML-94, 11th International Conference on Machine Learning,
pages 148–156, New Brunswick, US, 1994. Morgan Kaufmann Publishers,
San Francisco, US.

[57] David D. Lewis and Marc Ringuette. A comparison of two learning al-
gorithms for text categorization. In Proceedings of SDAIR-94, 3rd Annual
Symposium on Document Analysis and Information Retrieval, pages 81–93,
Las Vegas, US, 1994.

[58] W. Li, J. Han, and J. Pei. Cmar: Accurate and efficient classification based
on multiple-class association rule. In ICDM’01, San Jose, CA.

[59] Yong H. Li and Anil K. Jain. Classification of text documents. The Computer
Journal, 41(8):537–546, 1998.

[60] B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule
mining. In Proc. of the KDD, New York, NY.

[61] Briji Masand, Gordon Linoff, and David Waltz. Classifying news stories
using memory-based reasoning. In Nicholas J. Belkin, Peter Ingwersen, and
Annelise Mark Pejtersen, editors, Proceedings of SIGIR-92, 15th ACM Inter-
national Conference on Research and Development in Information Retrieval,
pages 59–65, Kobenhavn, DK, 1992. ACM Press, New York, US.

[62] Andrew McCallum and K. Nigam. A comparison of event models for naive
bayes text classification. In Proceedings of AAAI-98, Workshop on Learning
for Text Categorization, 1998.

[63] T. Mitchell. Machine learning. New York, US, 1996.

[64] Kary Myers, Michael Kearns, Satinder Singh, and Marilyn A. Walker. A
boosting approach to topic spotting on subdialogues. In Pat Langley, editor,

BIBLIOGRAPHY 115

Proceedings of ICML-00, 17th International Conference on Machine Learn-
ing, pages 655–662, Stanford, US, 2000. Morgan Kaufmann Publishers, San
Francisco, US.

[65] Christoph Schommer Qin Sun and Alexander Lang.

[66] J. R. Quinlan. Generating production rules from decision trees. In Proc. of
IJCAI-87, 304–307, 1987.

[67] J. Ross Quinlan. C4.5: programs for machine learning. Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA, 1993.

[68] Stephen E. Robertson and P. Harding. Probabilistic automatic indexing by
learning from human indexers. Journal of Documentation, 40(4):264–270,
1984.

[69] Carl L. Sable and Vasileios Hatzivassiloglou. Text-based approaches for
non-topical image categorization. International Journal of Digital Libraries,
3(3):261–275, 2000.

[70] Ashoka Savasere, Edward Omiecinski, and Shamkant B. Navathe. Mining
for strong negative associations in a large database of customer transactions.
In ICDE, pages 494–502, 1998.

[71] Robert E. Schapire and Yoram Singer. BOOSTEXTER: a boosting-based
system for text categorization. Machine Learning, 39(2/3):135–168, 2000.

[72] Sam Scott and Stan Matwin. Text classification using WordNet hypernyms.
In Sanda Harabagiu, editor, Use of WordNet in Natural Language Process-
ing Systems: Proceedings of the Conference, pages 38–44. Association for
Computational Linguistics, Somerset, New Jersey, 1998.

[73] Fabrizio Sebastiani. A tutorial on automated text categorisation. In Analia
Amandi and Ricardo Zunino, editors, Proceedings of ASAI-99, 1st Argen-
tinian Symposium on Artificial Intelligence, pages 7–35, Buenos Aires, AR,
1999. An extended version appears as [74].

[74] Fabrizio Sebastiani. Machine learning in automated text categorization.
ACM Computing Surveys, 34(1):1–47, 2002.

BIBLIOGRAPHY 116

[75] Qin Sun, Christoph Schommer, and Alexander Lang. Integration of manual
and automatic text categorization. a categorization workbench for text-based
email and spam. In KI, pages 156–167, 2004.

[76] Hirotoshi Taira and Masahiko Haruno. Feature selection in svm text cate-
gorization. In Proceedings of AAAI-99, 16th Conference of the American
Association for Artificial Intelligence, pages 480–486, Orlando, US, 1999.
AAAI Press, Menlo Park, US.

[77] Konstadinos Tzeras and Stephan Hartmann. Automatic indexing based on
bayesian inference networks. In Robert Korfhage, Edie Rasmussen, and Pe-
ter Willett, editors, Proceedings of SIGIR-93, 16th ACM International Con-
ference on Research and Development in Information Retrieval, pages 22–
34, Pittsburgh, US, 1993. ACM Press, New York, US.

[78] L. G. Valiant. A theory of the learnable. In STOC ’84: Proceedings of the
sixteenth annual ACM symposium on Theory of computing, pages 436–445,
New York, NY, USA, 1984. ACM.

[79] Vladimir N. Vapnik. The nature of statistical learning theory. Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[80] Flavian Vasile, Adrian Silvescu, Dae-Ki Kang, and Vasant Honavar. Tripper:
Rule learning using taxonomies. In PAKDD, pages 55–59, 2006.

[81] Flavian Vasile, Adrian Silvescu, Dae-Ki Kang, and Vasant Honavar. Trip-
per: Rule learning using taxonomies. In 10th Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD 2006), Lecture Notes in
Artificial Intelligence, Singapore, April 2006. Springer Verlag. to appear.

[82] S. Weiss and N. Indurkhya. Optimized rule induction. IEEE EXPERT,
8(6):61–69, 1993.

[83] Sholom M. Weiss, Chidanand Apté, Fred J. Damerau, David E. Johnson,
Frank J. Oles, Thilo Goetz, and Thomas Hampp. Maximizing text-mining
performance. IEEE Intelligent Systems, 14(4):63–69, 1999.

[84] Erik D. Wiener, Jan O. Pedersen, and Andreas S. Weigend. A neural network
approach to topic spotting. In Proceedings of SDAIR-95, 4th Annual Sympo-
sium on Document Analysis and Information Retrieval, pages 317–332, Las
Vegas, US, 1995.

BIBLIOGRAPHY 117

[85] Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning
Tools and Techniques. Morgan Kaufmann, San Francisco, 2 edition, 2005.

[86] X. Wu, C. Zhang, and S. Zhang. Mining both positive and negative asso-
ciation rules. In Proceedings of 19th International Conference on Machine
Learning, pages 658–665, Sydney, Australia, 2002.

[87] Yiming Yang. Expert network: effective and efficient learning from human
decisions in text categorisation and retrieval. In W. Bruce Croft and Cor-
nelis J. Van Rijsbergen, editors, Proceedings of SIGIR-94, 17th ACM Inter-
national Conference on Research and Development in Information Retrieval,
pages 13–22, Dublin, IE, 1994. Springer Verlag, Heidelberg, DE.

[88] Yiming Yang and Christopher G. Chute. An example-based mapping method
for text categorization and retrieval. ACM Transactions on Information Sys-
tems, 12(3):252–277, 1994.

[89] Yiming Yang and Xin Liu. A re-examination of text categorization methods.
In Marti A. Hearst, Fredric Gey, and Richard Tong, editors, Proceedings
of SIGIR-99, 22nd ACM International Conference on Research and Devel-
opment in Information Retrieval, pages 42–49, Berkeley, US, 1999. ACM
Press, New York, US.

[90] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection
in text categorization. In Douglas H. Fisher, editor, Proceedings of ICML-
97, 14th International Conference on Machine Learning, pages 412–420,
Nashville, US, 1997. Morgan Kaufmann Publishers, San Francisco, US.

[91] Osmar R. Zaı̈ane and Maria-Luiza Antonie. Classifying text documents
by associating terms with text categories. In Proceedings of the 13th Aus-
tralasian Conference on Database Technologies, volume 5, pages 215–222,
Melbourne, AU, 2002. ACM Press, New York, US. This paper has also been
published in Australian Computer Science Communications, 24(2), 2002.

[92] Z. Zheng and R. Srihari. Optimally combining positive and negative features
for text categorization. In Proceedings of the ICML, Workshop on Learning
from Imbalanced Datasets II, Washington DC, 2003.

