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A B S T R A C T

The present thesis treats Computational Fluid Dynamics based on parti-
cle methods. The fully Lagrangian approach Smoothed Particle Hydrody-
namics (SPH) is developed for two-phase flows. The model is extended to
research fields of environmental hydraulic and open-channel flows. SPH is
a Lagrangian, meshless and particle model. It was born about 30 years ago
to solve gas-dynamics problems in open space (Lucy, 1977 [1]; Gingold and
Monaghan, 1977 [2]). For many years, the SPH method has been applied
to problems in the astrophysical field, as documented in the review paper
by Benz (1990) [3]. During the last decades, the SPH method has been in-
creasingly modified and extended to provide approximations to the partial
difference equations (PDEs) in a wide range of scientific and engineering
applications particularly in the hydrodynamic field. Monaghan (1994) [4]
was the first to apply the SPH scheme to fluid-dynamics problems. After
that, the SPH approach has been successfully extended to multiphase flows
(see e.g. Grenier et al., 2009 [5]) and fluid-structure interaction problems
(see e.g. Colagrossi and Landrini, 2003 [6]). Following the SPH method,
the motion of a continuum medium is described using an interpolation
technique which allows to approximate functions and differential opera-
tors on an irregular distribution of points. In the standard SPH, where
a weakly compressible fluid is considered, the discretized continuity and
momentum equations are linked via a state equation.

Firstly, an algorithm is developed to treat upstream/downstream boun-
dary conditions for 2D open-channel flows in SPH context. For this pur-
pose two suitable sets of particles (in/out-flow particles) are defined allo-
wing the enforcement of different upstream and downstream flow condi-
tions. In particular this permits to avoid generation of unphysical pressure
shock waves due to a direct creation/deletion of fluid particles. As first
test case, the proposed algorithm is validated for a viscous laminar flow
in open channel considering Reynolds numbers of order O(102). The ob-
tained results are compared with analytical ones in order to heuristically
check the convergence of the numerical scheme. The simulations are per-
formed for a time interval long enough to reach steady state conditions.
The suitability of the in/out-flow algorithm has been highlighted compa-
ring the velocity field with the analytical Poiseuille solution. The second
test case deals with a hydraulic jump for which different upstream and
downstream conditions are needed. Several types of jumps, obtained va-
rying the flow Froude number, are investigated with particular reference
to the location of the jump and the velocity field. Comparisons between
the numerical results and the classical theory of the hydraulic jump are
provided, showing good agreements.

In the second part of the thesis, the SPH model is applied to evaluate
the concentration field of pollutants in water. A Lagrangian formalism is
formulated to solve the fickian diffusion equation considering pollutants
with the same density as the water. Furthermore, a SPH form of the advec-
tive diffusion equation is also developed for pollutant-water, taking into
account the effects of molecular diffusion and natural advection induced
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by differences between the fluid densities. These equations are coupled
with the fluid mechanics equations. Attention is paid to the numerical
aspects involved in the solution procedure and to the optimization of the
model parameters. Environmental engineering problems concerning diffu-
sion and natural advection phenomena occur in the presence of a pollutant
in still water. Numerical tests referring to a strip and a bubble of conta-
minant in a water tank with different initial concentration laws have been
carried out. The results obtained by the proposed SPH models are com-
pared with other available SPH formulations, showing an overall better
agreement with standard analytical solutions in terms of spatial evolution
of the concentration values. Capabilities and limits of the proposed SPH
models to simulate advective diffusion phenomena for a wide range of
density ratios are discussed.

As future perspectives, coupling the two aspects considered in this the-
sis, it will be developed a numerical code for the simulation of the concen-
tration field along a water stream by an intake of pollutants.
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S O M M A R I O

La presente tesi si occupa di Fluidodinamica Computazionale, basata su
metodi particellari. L’approccio lagrangiano Smoothed Particle Hydrody-
namics (SPH) è stato sviluppato per flussi bifase. Il modello è stato esteso
al campo di ricerca dell’idraulica ambientale e ai flussi in canali a superfi-
cie libera. SPH è un modello particellare di tipo lagrangiano e meshless. E’
stato ideato circa 30 anni fa per problemi di gas-dinamica in spazi aperti
(Lucy, 1977 [1]; Gingold e Monaghan, 1977 [2]). Per molti anni, è stato
applicato a problemi di astrofisica, come documentato nel lavoro di Benz
(1990) [3]. Negli ultimi decenni, il metodo SPH è stato modificato ed esteso
in modo da fornire approssimazioni delle equazioni alle derivate parziali
in un vasto campo scientifico e per differenti applicazioni ingegneristiche.
Monaghan (1994) [4] fu il primo ad applicare il modello SPH a problemi
di fluidodinamica. In seguito, tale approccio è stato esteso con successo
a flussi multifase (Grenier et al., 2009 [5]) e a casi di interazione fluido-
struttura (Colagrossi e Landrini, 2003 [6]). Attraverso lo schema SPH, il
movimento di un mezzo continuo è descritto mediante una tecnica di inter-
polazione che permette di approssimare funzioni e operatori differenziali
con una distribuzione irregolare di punti. Nel modello SPH standard, in
cui il fluido è considerato debolmente comprimibile, l’equazioni del moto
e di continuità, espresse in forma discreta, sono relazionate a un’equazione
di stato.

Nella tesi, è stato sviluppato, inizialmente, un algoritmo, nel contesto
SPH, che consente di trattare condizioni al contorno di monte e di valle in
canali bidimensionali a pelo libero. A questo scopo, sono state definiti due
appropriati set di particelle (particelle inflow e outflow) che permettono
l’imposizione di differenti condizioni del flusso di monte e di valle. Ciò
permette di evitare la generazione di shock di pressione non fisici attra-
verso un meccanismo di diretta creazione e cancellazione delle particelle.
Come primo caso, l’algoritmo proposto è stato validato a flussi viscosi
laminari in canali a superficie libera, considerando numeri di Reynolds
dell’ordine di O(102). I risultati ottenuti sono stati confrontati con solu-
zioni analitiche al fine di controllare euristicamente la convergenza dello
schema. Le simulazioni sono state realizzate per lunghi intervalli di tempo
al fine di raggiungere lo stato di stazionarietà. L’efficienza dell’algoritmo
in/out-flow è stata evidenziata confrontando il campo di velocità valu-
tato numericamente con la soluzione analitica di Poiseuille. Il secondo
test studiato riguarda casi di risalti idraulici, dove, inevitabilmente, sono
necessarie condizioni al contorno di monte e di valle differenti tra loro. Va-
riando il numero di Froude, diversi casi di risalto sono stati indagati con
particolare riferimento alla posizione del suo fronte e al campo di velocità.
Sono forniti confronti tra i risultati numerici e la classica teoria del risalto
idraulico, mostrando buoni accordi.

Nella seconda parte della tesi, il modello SPH è stato applicato a casi di
valutazione del campo di concentrazione di contaminati in acqua. E’ stato
proposto un nuovo formalismo lagrangiano per la risoluzione dell’equazione
di diffusione fickiana, considerando inquinanti con densità simile a quella
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dell’acqua. Inoltre, una forma discreta e particellare dell’equazione di ad-
vezione diffusione è stata sviluppata per casi di interazione tra contami-
nanti e acqua, considerando gli effetti di diffusione molecolare e di adve-
zione naturale indotti dalla differenza di densità tra le diverse fasi fluide.
Tali equazioni sono state accoppiate alle equazioni della meccanica dei
fluidi. Particolare attenzione è stata rivolta agli aspetti numerici coinvolti
nella procedura di risoluzione e all’ottimizzazione dei parametri del mo-
dello. Nei test considerati, i fenomeni di diffusione e advezione naturale
avvengono in presenza di contaminante in acqua ferma. Sono stati simu-
lati casi di strisce e bolle di contaminante in un serbatoio d’acqua con
differenti leggi di concentrazione iniziali. I risultati ottenuti attraverso il
modello SPH proposto hanno mostrato, in termini di evoluzione spaziale
dei valori di concentrazione, un accordo globale con le soluzioni analiti-
che di riferimento migliore rispetto ad altre formulazioni SPH presenti in
letteratura. Sono state discusse, infine, le capacità e i limiti dei modelli
SPH proposti nel simulare processi di diffusione advettiva, considerando
un ampio range di variazione dei rapporti di densità.

Come prospettive future, integrando i due aspetti studiati nella tesi, si
vuole sviluppare un codice numerico, in linguaggio parallelo, in grado di
simulare tratti di canali a pelo libero con immissioni di contaminante e va-
lutarne il campo di concentrazione considerando i fenomeni di dispersione
e diffusione turbolenta.
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1 I N T R O D U C T I O N

contents
1.1 Background and motivations 1
1.2 An overview on Particle and Meshless Methods 3

1.2.1 Eulerian vs. Lagrangian approach 3

1.2.2 Some methods 3

1.3 Smoothed Particle Hydrodynamics: the state-of-art 5
1.4 Structure of the thesis 12

In this chapter, the background, the motivations and the aim of present
thesis are defined. After a first overview on the meshless methods, at-
tention will be focused on the Smoothed Particle Hydrodynamics model,
considering its main features organized by topics. Finally, the structure of
the thesis is illustrated.

1.1 background and motivations
This thesis is rooted to Environmental Fluid Mechanics (EFM) back-

ground.
EFM is the scientific study of naturally occurring fluid flows of air and

water on our planet Earth, especially of those flows that affect the environ-
mental quality of air and water. Scales of relevance range from millimeters
to kilometers, and from seconds to years.

The preceding definition also distinguishes EFM from classical fluid me-
chanics, the latter being chiefly concerned with artificial (engineered) fluid
motions: flows in pipes and around airfoils, in pumps, turbines, heat ex-
changers and other machinery that utilizes fluids.

By contrast, EFM is exclusively concerned with only two fluids, air (or
pollutant) and water, and moreover under a relatively narrow range of am-
bient temperatures and pressures. The objective of EFM also differs from
that of classical hydraulics, which deals exclusively with free-surface wa-
ter flow (Chow, 1959 [7]). Anyway, the development of classical hydraulics
aspects, as open-channel flows, is necessary in order to deal with many
EFM fields. For this reason in this work free-surface channel flows and
environmental hydraulic problems are treated: the first ones considering
uniform and non-uniform steady flows, the second ones referring to diffu-
sion phenomena.

There are two primary modes of fluid transport that fall under the scope
of EFM are:

• advection, which is the transport by the flow of the fluid itself;

• diffusion, which is the transport associated with random motions
within the fluid. These random motions occur at the molecular scale
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2 introduction

producing molecular diffusion or are caused by turbulence, causing
turbulent diffusion. Molecular diffusion tends to be important in the
close vicinity of interfaces, regulating for example the passage of a
soluble gas between air and water, while turbulent diffusion tends to
act mostly within the body of the system.

In EFM, main environmental interfaces need be considered, for exam-
ple: air (or pollutant)-water and water-sediment. They are affected by the
following processes:

• The air (or pollutant)-water interface is subjected to momentum, heat
and mass transfer. the main actor in momentum transfer is the shear
stress exerted as the result of a difference between wind speed and
direction in the air and the surface velocity in the water. The shear
stress generates a wave field, part of which goes to creating surface
drift currents. The accompanying surface heat transfer represents a
relevant source or sink of heat in producing the thermal structure of
a water body. Finally, several chemicals are transferred upward to
the air or downward to the water depending on the substances invol-
ved and departure from equilibrium (Henry’s Law). This process is
termed gas transfer. Hence, gas transfer of a volatile or semi-volatile
chemical is a two-way process involving both dissolution by the wa-
ter and volatilization into the air across an air-water interface. Finally,
air-entrainment is the entrapment of undissolved air bubbles and air
pockets by the flowing water.

• The water-sediment interface, which is very difficult to define preci-
sely, is subjected to several complicated physical and chemical pro-
cesses responsible for exchange of solids and solutes between the wa-
ter column and the sediment bed. The physical processes involving
the solids are settling, sedimentation and resuspension. settling is
the downward movement of sediment particles due to their negative
buoyancy. Sedimentation occurs once the settled particles reach the
bottom and join the sediment bed, while resuspension is the process
by which particles of the bed are entrained upward into the water
column, usually by shear flow. Furthermore, diffusive exchanges,
either molecular or turbulent and including adsorption/desorption,
can occur between the water column and the sediment bed. Also, the
bed solutes can be subjected to advection and diffusion. Bioturbation
is the mixing of sediment by small organisms, usually worms, living
in the upper layers of the sediment;

In this thesis, only topics referred to pollutant-water and air-water inte-
raction are developed. Water-sediment interfaces will be studied in future.

The idea to adopt a Lagrangian particle model as Smoothed Particle Hy-
drodynamics (SPH) to simulate pollutant evolutions and environmental
processes starts from the definition of Lagrangian point of view: the fluid
motion is described following the evolution of a particle, evaluating its variables in
space and time. To better clarify this definition, we can refer to the motion
of a pollutant that determines the trajectory. Moreover, by the association
of this concept with the fundamental similarity between the molecular dy-
namics and the Lagrangian methods, it was born the idea to deal with
pollutant transport using Lagrangian models.



1.2 an overview on particle and meshless methods 3

1.2 an overview on particle and meshless
methods

1.2.1 Eulerian vs. Lagrangian approach

Fluid mechanics has two basic ideas for the description of fluid flows:
the Lagrangian and Eulerian approaches. In Lagrangian concept, the obser-
vation point moves with the fluid element, that is the observer moving with
a velocity identical to the fluid element, while in the Eulerian concept, the
observer keeps a fixed position without moving, with all the flow quanti-
ties as functions of positions and time. Analogously, Computational Fluid
Dynamics (CFD) implementations are also classified as the Lagrangian me-
thod and Eulerian method. The latter has been well studied for more than
fifty years and is broadly applied in many aspects of flow simulations. The
Eulerian based approaches are the finite volume method (FVM), the finite
difference method (FDM) and the finite element method (FEM). Several
commercial software packages, such as STAR-CCM+, FLUENT, FLOW3D,
ABAQUS, for instance, are providing solutions for engineering and hydro-
dynamic problems.

The Lagrangian approach has not been as widely used as the Eulerian
one but it is becoming common in research. However, it offers a diffe-
rent possibility over the Eulerian approach. In practical applications, Eu-
lerian based models are not suitable for problems involving large defor-
mation and fragmentation of fluids. In Eulerian formulations it is very
difficult and computationally expensive to accurately resolve free surfaces
and track moving interfaces and boundaries as the problem evolves over
the fixed mesh. Moreover, Lagrangian methods can better prescribe the
physical phenomena due to the fundamental similarity with the molecular
dynamics ([8], [9]).

Meshless numerical methods are those which attempt to solve these long
standing problems of traditional mesh based approaches by providing a
framework in which general Partial Differential Equations (PDEs) can be
solved without the need for any underlying regular mesh or nodal connec-
tivity. With no explicit mesh to generate the initial preprocessing time is
reduced and the need for subsequent re-meshing is totally eliminated since
mesh entanglement no longer occurs. In grid based schemes mesh adapti-
vity has been used to improve numerical results and reduce computation
times. In this respect meshless methods show a great deal of promise.
Adaptivity is easily implemented since nodes can be added or removed
at will without the implications of mesh regeneration. Over the last thirty
years research into the next generation of meshless numerical methods
has gained considerable momentum and several different approaches have
been developed. A number of good review papers, thesis and books are
currently available which cover many of the recent developments in this
field (see e.g. [10], [11], [12], [13], [14], [15]).

1.2.2 Some methods

The first particle models are the Marker And Cell (MAC) and Particle In
Cell (PIC) which were developed in 1960’s by Harlow (see [16], [17], [18]).
Although these formulations still use a Eulerian mesh and the finite diffe-
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rence method for the solution of the Navier-Stokes equations they were the
first to incorporate a set of Lagrangian ’marker’ particles which move with
the fluid. The main disadvantage of both these methods is the continual
mapping of variables between the particles and the Eulerian mesh which
introduces large amounts of dissipation.

The MAC method was originally developed to model confined, viscous,
incompressible fluid flows ([17], [18]). In later applications to low viscosity
flows the MAC method was found to be unstable and poorly capture free
surfaces [19]. This was caused by both the simplified implementation of
the boundary conditions and the method used to extrapolate the particle
velocities from the Eulerian mesh. Later variations of the MAC method
([20], [19]) improved its accuracy and extended the boundary conditions
to include curved and moving boundaries [21]. Similarly, the PIC method
models the fluid as a set of Lagrangian particles moving through a fixed
grid of cells ([22],[16]). In the original PIC formulation each particle is de-
fined only by its position and mass. All other cell properties are calculated
and updated by the transition of particles moving from one cell to ano-
ther. It was found later that numerical dissipation could be reduced if the
particles were assigned all fluid properties such as momentum and energy.
With these improvements the PIC method has been successfully adapted
to solve a variety of solid mechanics problems ([23], [24], [25]).

The Material Point Method (MPM) (see e.g. [26]), is an extension from
the Particle-in-cell (PIC) Method in computational fluid dynamics to com-
putational solid dynamics, and is a Finite element method (FEM)-based
particle method. It is primarily used for multiphase simulations, because
of the ease of detecting contact without inter-penetration. It can also be
used as an alternative to dynamic FEM methods to simulate large material
deformations, because there is no re-meshing required by the MPM.

In 1968, Shepard [27] presented a meshless interpolation for irregularly
spaced data points. After introducing the Moving Least Square method
by Lancaster and Salkauskas in 1981 [28], Nayroles et. al. [29], employed
a local form of this approximation for numerical solution of some PDE’s
using nonsingular weight functions with compact support. In spite of di-
sadvantage of having to find complete derivatives of their basis functions,
they obtained acceptable results and named their method Diffuse Element
Method (DEM). The DEM has the following properties: (1) locality of the
finite element method; (2) increases degree of smoothing in the approxima-
tion; (3) avoids using time-consuming mesh generation process; (4) the ba-
sis function derivatives are not complete; (5) essential boundary conditions
cannot be satisfied exactly and need another methods; (6) approximation
is based on an irregular distribution of nodes; (7) smoothing degree of the
approximation is directly depend on the smoothing degree of the weights.

In 1994, Belytschko et. al. [30] generalized the DEM and introduced Ele-
ment Free Galerkin (EFG) method. Some of properties of the EFG method
are: (1) high accuracy; (2) use of complete derivatives; and (3) relative to
the DEM, the EFG method is computationally more expensive.

The Finite Volume Particle Method (FVPM) was first introduced by Hie-
tel et al. [31]. Recent developments have been performed by Keck and
Hietel ([32], [33]), Nestor et al. [34] and Teleaga [35]. In FVPMs, the fluid
is represented by a set of particles, which in turn are associated with nor-
malized, overlapping, compactly supported kernel functions. A test func-
tion is defined related to the particle volume. The particles are viewed as
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discrete volumes to which the integral form of the governing equations
applies. The interaction between particles is calculated from the flux rate
between neighbouring particles. The conservation law is ensured.

In the Finite Pointset Method (FPM) (see e.g. [36], [37], [38], [39]), all the
points in the computing domain are only interpolation bases, without any
relation to the physical properties of the fluid, such as density and volume.
The first or second derivative of a hydrodynamic variable is obtained by
minimizing the quadratic form of the error function which is built up from
the Taylor expansion of the computing point value from the neighbouring
points.

The Moving Particle Semi-implicit (MPS) method was developed by Ko-
shizuka et al. [40] to simulate incompressible free-surface viscous flows
particularly those with fluid fragmentation. The main feature of MPS me-
thod lies in the simplicity of its formulations and satisfaction of the fluid
incompressibility. MPS deploys the original form of the weight function
to approximate spatial derivatives of the Lagrangian Navier-Stokes by a
deterministic particle interaction model. In MPS, incompressibility is pre-
sented by keeping the density of particles constant during computation
time. The pressure term in momentum equations is determined by a Pois-
son equation.

In Vortex Methods (see e.g. [41]), the Navier-Stokes equations are expres-
sed in vorticity formulation and the vorticity field becomes the principal
variable for computation. The fluid velocity field is obtained from an in-
tegral of the vorticity, and the pressure is not explicitly solved for, as it is
eliminated by the curl operator. Since vortex methods are characterized
by a Lagrangian approach, fluid particles convect with the local fluid ve-
locity at each time step. Vortex method are, obviously, very efficient for
investigation of problems characterized by high vorticity zone.

1.3 smoothed particle hydrodynamics: the
state-of-art

Smoothed Particle Hydrodynamics (SPH) was born about 30 years ago to
solve gas-dynamics problems in open space, in particular polytropes (Lucy,
1977 [1]; Gingold and Monaghan, 1977 [2]). In astrophysics, a polytrope
refers to a solution of the Lane-Emden equation in which the pressure is re-
lated to density via a constant known as polytropic index. For many years,
the SPH method has been applied to problems in the astrophysical field,
as documented in the review paper by Benz (1990) [3]. Hence, relevant
improvements of the solver were achieved within that research area. Du-
ring the last decades, the SPH method has been increasingly modified and
extended to provide approximations to the PDEs in a wide range of scien-
tific and engineering applications particularly in the hydrodynamic field.
Monaghan [4] was the first to apply the SPH scheme to fluid-dynamics
problems. The main steps leading to the current state-of-art of the SPH
method are summarized here.

improvements about efficiency, robustness, accuracy and stabi-
lity of sph. Firstly, the efficiency of SPH was significantly improved by
Hernquist and Katz (1989) [42] introducing a hierarchical algorithm to ap-
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proximate the interactions between the particles located relatively far away
from each other. As a result, in case of spatially persisting forces such as
gravitational attractions among bodies, the cost of a computational step re-
duced. In their paper, Hernquist and Katz also provided a generalization
of SPH method allowing a local refinement of the computational domain
that could be performed where it was needed for example in areas where
large gradients were expected. In 1994 Nelson and Papaloizou [43] discus-
sed the SPH method with variable smoothing length and expressed the
need for additional terms that had been neglected in the work by Hern-
quist and Katz [42], showing that such additional terms are essential for
the conservation of energy especially during impact problems. Martel et
al. (1994) [44] showed that an isotropic smoothing algorithm with spherical
kernel would lead to poor results where considerable anisotropic volume
changes are present. To handle this difficulty, they proposed a new version
of SPH method, namely, the Adaptive SPH (ASPH) method. In the ASPH
method, the isotropic kernel is replaced by an anisotropic kernel whose
axes evolves automatically to follow the mean particle spacing as it varies
in time and space. Although ASPH method may have better performance
than the SPH method for the simulation of problems with anisotropic vo-
lume changes, its mathematical formulations are more complicated than
those of the SPH method. In addition, more research is required to study
the convergence, consistency, conservation and stability of ASPH formula-
tions.

Stability is one of the most important aspects in all numerical compu-
tations. One of the most critical instabilities of the SPH method is the
so-called tensile instability that mainly occurs in the situation where parti-
cles are under a certain tensile stress state. The tensile instability manifests
itself as a clustering of the particles which may lead to unphysical results
or even breakdown of calculation. By performing a Von Neumann stabi-
lity analysis, Swegle et al. ([45] and [46]) concluded that tensile instabi-
lity results from an effective stress emerging from a non-physical negative
modulus being produced by the constitutive relation and the kernel inter-
polation. In other words, the kernel interpolation employed for spatial
discretization changes the nature of original PDE. Starting from Swegle et
al. ([45] and [46]) stability analysis criterion based on the second deriva-
tive of the kernel and the stress, it can be seen that such kind of instability
can also occur in compression, not only tension. However, because of the
characteristics of general kernel functions applied in SPH calculations, the
instability is generally observed in tension and hence referred as tensile
instability. Several remedies have been proposed to avoid such tensile in-
stability. To remove the instability, Dyka et al. (1995) [47] proposed a
so-called stress point method. The main idea of this approach is to add
additional points when evaluating stresses of other state variables. Rand-
les and Libersky (1996) [48] suggested certain dissipative terms which they
call conservative smoothing. However, such approach is not always promi-
sing (Mandell et al., 1996) [49]. Monaghan (2000) [50] proposed an artificial
pressure to provide a relatively small repulsive force in order to stabilize
the computation.

Espanol and Revenga (2003) [51] presented a fluid particle model that
was both a thermodynamically consistent version of smoothed particle hy-
drodynamics (SPH) and a version of dissipative particle dynamics (DPD),
capturing the best of both methods. The model is a discrete version of
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Navier-Stokes equations, like SPH, and includes thermal fluctuations, like
DPD. This model solves some problems with the physical interpretation of
the original DPD model.

Colagrossi et al. (2009) [52] provided an in-depth analysis of the theo-
retical structure of SPH for an inviscid, weakly compressible, and baro-
tropic flow in the presence of a free surface. A detailed description of the
free-surface influence on the smoothed differential operators was supplied.
New and existing forms was analyzed in detail, in terms of convergence
and conservation properties. The analysis was based on the principle of
virtual works, which permits to exhibit the link with the enforcement of the
dynamic free-surface boundary condition. Finally, possible SPH formula-
tions resulting from this analysis was investigated, in terms of consistency,
conservation, and dynamic free-surface boundary condition.

Vila (1999) [53] introduced a SPH model in Arbitrary Lagrangian Eule-
rian (ALE) formalism with Riemann solvers rewriting the SPH formalism
in a way inspired by the Finite Volumes Formalism. Following this process,
interaction between two particles can be seen as the result of a flux acting
at the middle of the distance between the two particles.

A diffusive weakly-compressible SPH scheme was introduced by An-
tuono et al. (2010) [54] and subsequently called δ-SPH [55] [56]. It is cha-
racterized by a novel system of equations which contains diffusive terms
in both the continuity and energy equations and, at the leading order, coin-
cides with a standard weakly-compressible SPH scheme with artificial vi-
scosity. A proper state equation is used to associate the internal energy
variation to the pressure field and to increase the speed of sound when
strong deformations/compressions of the fluid occur. The model has been
tested using different free surface flows and it was clearly robust, efficient
and accurate than standard SPH.

sph for incompressible inviscid flows. Monaghan (1994) [4] was
the first who applied the SPH method to simulate incompressible free-
surface fluid flows. In his work, the fluid was considered as weakly
(slightly) compressible so that the pressure field could be explicitly ob-
tained from the density field by an appropriate equation of state. Weakly
Compressible SPH (WCSPH) simulations are usually performed at a low
Mach number leading to small fluctuations in density. The WCSPH me-
thod has been applied to simulate numerous free-surface fluid flows such
as run-up and run-down of waves on beaches (Monaghan and Kos, 1999)
[57], wave breaking (Landrini et al., 2007 [58]; Monaghan et al., 2004 [59])
and wave breaking and post-breaking on beaches (Dalrymple and Rogers,
2006 [60]). An alternative and favored approach to enforce the incompres-
sibility in the SPH method is to apply a two-step projection method similar
to that in the Moving Particle Semi-Implicit (MPS) method (Koshizuka et
al., 1995 [40]). Based on this approach, Cummins and Rudman (1999)[61]
proposed an Incompressible SPH (ISPH) method in which an intermediate
velocity field is projected onto a divergence free space by solving a Poisson
pressure equation derived from an approximate projection. Analogous to
this SPH projection method, Shao and Lo (2003) [62] developed an ISPH
method for the simulation of free surface hydrodynamic flows and suc-
cessfully simulated several free-surface fluid flow problems such as wave
overtopping (Shao et al., 2006 [63]), wave-structure interaction (Gotoh et
al., 2004 [64]; Shao and Gotoh, 2004 [65]).
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In order to solve the Poisson pressure equation, the ISPH needs the en-
forcement of explicit dynamics conditions at free surface. This requires an
algorithm to detect the free surface both in two and three dimensions (see
Marrone et al., 2010 [66]; Dilts, 1999 [67]). Furthermore, this enforcement
represents an disadvantage of ISPH with respect to WCSPH, in particular
for 3D free surface. Conversely, to satisfying the fluid incompressibility,
an advantage of ISPH to WCSPH is its independency from the speed of
sound; thus, according to the required stability conditions (such as Cou-
rant condition) a larger computational time step would be allowed in ISPH
calculations.

Ellero et al. (2007) [68] presented a smoothed particle hydrodynamic
model for incompressible fluids where the incompressibility is achieved by
requiring as a kinematic constraint that the volume of the fluid particles
is constant. They used Lagrangian multipliers to enforce this restriction.
These Lagrange multipliers play the role of non-thermodynamic pressu-
res whose actual values are fixed through the kinematic restriction. The
studied cases don’t refer to free-surface problems.

sph for viscous laminar flows. The majority of SPH implementa-
tions employ an artificial viscosity initially introduced allowing to simulate
strong shocks (Monaghan, 1992) [69]. The first introduction of a realistic
viscosity term in a SPH-based calculation of Navier-Stokes equation was
given by Takeda et al. (1994) [70]. The method was successfully applied to
the 2D Poiseuille flow, to the 3D Hagen-Poiseuille flow, and to flow around
a cylinder for Reynolds number ranging between 6 and 55. Still in the con-
text of low Reynolds number flows, Morris et al. (1997) [71] calculated
viscous stresses by a hybrid viscosity term that combines a standard SPH
first derivative with a finite different approximation of first derivative. The
authors verified their method by calculating Couette and Poiseuille flows
and the flow passed through a regular lattice of cylinders.

Fang et al. (2009) [72] introduced improvements for the numerical si-
mulation of free surface flows of viscous fluids. These are achieved by
deriving a new set of general discrete SPH-like equations under an energy-
based framework and applying a corrected (high-order) or coupled particle
approximation scheme for function derivatives.

Nestor at al. (2009) [73] extended FVPM to viscous flows using a con-
sistency - corrected smoothed particle hydrodynamics approximation to
evaluate velocity gradients. The accuracy of the viscous FVPM is impro-
ved by a higher-order discretization of the inviscid flux combined with a
second-order temporal discretization.

Colagrossi et al. (2010) [74] carried out a theoretical analysis on the per-
formance, close to a free surface, of the most used SPH formulations for
Newtonian viscous terms. Using a Taylor expansion, a reformulation of
the SPH expressions for the viscous term in the momentum equation was
undertaken which allows to characterize the behavior of the viscous term
close to the free surface. Under specific flow conditions, the authors sho-
wed local singularity arise close to the free surface when spatial resolution
is increased.

sph for viscous turbulent flows. Welton (1998) [75] applied the
SPH method within a Monte-Carlo probability density formulation to si-
mulate turbulent flows. Wagner and Liu (2000) [76] applied the Repro-
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ducing Kernel Particle Method (RKPM) as a filter in their Large Eddy
Simulation (LES) of turbulent flows. By applying the same concept of
Sub-Grid-Scale turbulence modeling in grid-based methods to particle me-
thods, Gotoh et al. (2001) [77] developed a Sub-Particle-Scale turbulence
model for particle-based simulations of turbulent flows. By employing the
SPS turbulence model, Gotoh et al. (2004) [64] performed an ISPH-LES
simulation to study wave transmission and reflection by a half-immersed
curtain breakwater. Good agreement was achieved in terms of both free-
surface profile and turbulent eddy viscosity near the curtain wall.

In 2002, Monaghan [78] proposed a SPH version of the alpha turbulence
model for compressible flow with a resolution that varies in space and time.
The alpha model involves two velocity fields. One velocity field is obtained
from the momentum equation, the other by averaging this velocity field as
in the version of SPH called XSPH. Furthermore, Monaghan (2009) [79]
presented a model similar to the Lagrangian averaged Navier Stokes alpha
(LANS-alpha) turbulence model that satisfied different scaling laws while
conserving energy, angular and linear momentum and circulation, though
the latter is only conserved approximately.

Violeau and Issa (2007) [80] presented a review of developed turbulence
models adapted to the SPH method, from the simplistic point of view
of a one-equation model involving mixing length to more sophisticated
(and thus realistic) models like explicit algebraic Reynolds stress models
(EARSM) or large eddy simulation (LES).

sph for multiphase flows. Monaghan and Kocharyan (1995) [81] pro-
posed a general SPH formulation for the simulation of multi-phase flows.
The SPH capability to simulate weakly compressible multi-phase flows
with small density differences is shown by Monaghan et al. (1999) [82].
However, when their approach is applied to simulate a multi-phase flow
with large density differences as in case of air-water, severe instabilities
develop along the interface. Colagrossi and Landrini (2003) [6] modified
the spatial derivative approximation to diminish the effect of large density
difference across the interface. As another remedy, Hu and Adams propo-
sed a particle-averaged spatial derivative approximation and applied their
multi-phase SPH method to simulate both weakly compressible (Hu and
Adams, 2006) [83] and incompressible (Hu and Adams, 2007) [84] flows.
Furthermore, a constant-density approach, which corrects intermediate
density errors by adjusting the half-time-step velocity with exact projec-
tion, is proposed by Hu and Adams (2009) [85].

Tartakosky and Meakin (2005) [86] simulated unsaturated (multiphase)
flow through fracture junctions. A combination of standard SPH equations
with pair wise fluid-fluid and fluid-solid particle-particle interactions allo-
wed surface tension and three-phase contact dynamics to be simulated.

Grenier et al. (2009) [5] proposed a formulation that is an extension
of the one discussed in Colagrossi and Landrini (2003) [6] and is related
to the one proposed by Hu and Adams (2006) [83] to study multi-fluid
flows. The SPH scheme allows an accurate treatment of the discontinuity
of quantities at the interface (such as the density), and permits to model
flows where both interfaces and a free surface are present. The governing
equations are derived following a Lagrangian variational principle leading
to an Hamiltonian system of particles.
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Adami et al. (2010) [87] introduced a novel surface-tension method for
multi-phase SPH. With a new reproducing divergence approximation, the
authors proposed a new formulation for the surface curvature and modify
the color gradient summation with a density weighting.

sph for diffusion phenomena. The modeling of diffusion processes
by the SPH technique was first investigated by Cleary and Monaghan [88]
referring to heat conduction problems. Other SPH modellings have been
formulated to simulate diffusion phenomena in a spatially periodic po-
rous media [89] [90], for miscible flow in fractures [91], and coupled with
reactive transport and precipitation of a solute [92]. The use of the SPH
method in the analysis of two-phase flows for advective diffusion proces-
ses has not been investigated. More recently a SPH diffusion modeling in
the presence of a velocity field has been addressed to the simulation of the
interaction between water and non-cohesive bed sediments [93].

Adami et al. (2010) [94] developed a method for simulating incompres-
sible interfacial flows with surfactant dynamics. The surfactant transport
model accounts for exchange between the bulk phase and the interface
(adsorption, desorption, squeeze-out) as well as advection and diffusion
on the interface and within the bulk phase. In the numerical scheme, the
different transportation phenomena are considered simultaneously or se-
parately, depending on the problem statement.

free-surface boundary conditions in sph context. Considering
free-surface flows, the major advantage of the SPH method with respect to
other numerical solvers is that it is not necessary to enforce explicitly the
free-surface boundary conditions [52]. The kinematic condition is intrinsi-
cally incorporated in Lagrangian flow description. The dynamic condition
is also automatically satisfied: due to one of the properties of the kernel
function, the form of the discretized fluid momentum equation is such that
the pressure is forced to vanish when approaching the free surface.

Within the SPH strategy it is also possible to model the surface tension
at the free surface. Examples are given in Morris (2000) [95] and Nugent
and Posch (2000) [96]. In the latter case, the surface tension is introduced
by modifying the state equation. This approach is much easier than the
technique by Morris (2000) and provide also a simple mechanism to control
the numerical fragmentation of the interface. In the last decade, surface
tension modellings was introduced by Colagrossi and Landrini (2003) [6],
Hu and Adams (2006) [83], Grenier et al. (2009) [5], Adami et al. (2010)
[87]; for further details see the section sph for multiphase flows in this
paragraph.

Marrone et al. (2010) [66] defined a novel algorithm to detect the free-
surface both in two and three dimensions. It is composed of two stages.
The first stage consists in detecting the particles composing the free-surface.
From this information, it is possible to define a level-set function throu-
ghout the domain in a second stage. This function can be used to interpo-
late flow quantities on a Cartesian grid, which makes possible the visuali-
zation and analysis of flow features using standard visualization tools.

solid boundary conditions in sph context. As counterpart with re-
spect to the free-surface conditions, the SPH has difficulties in handling the
presence of solid boundaries. The first attempt to deal with solid walls was
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presented by Monaghan (1994) [4] modeling the body through boundary
particles exerting forces on the fluid. This idea is based on the fact that,
at micro scale, also body appears made of particles, i.e. atoms or molecu-
les. The main drawbacks of such technique are: (i) it causes pressure-wave
disturbances at the beginning of the numerical simulation and (ii) is not
suitable to calculate accurately the local hydrodynamics loads induced on
the structures.

Boundary conditions defined using ghost particles (Colagrossi and Lan-
drini, 2003) [6] reproduce part of the computational fluid domain, which
is close to the boundary at hand, symmetrically in a thin layer. Ghost parti-
cles present density, pressure and velocity deduced from the fluid particles.
With this technique the local loads on the body can be calculated adequa-
tely. Attention has to be paid when dealing with the complex geometries
structures.

Successively, Marrone et al. (2009) [97] proposed an enhanced treatment
of the solid boundaries within two-dimensional SPH schemes. The solid
boundary is modeled through fixed ghost particles firstly proposed for a
simple flat profile by Fang et al. [98] and extended by Marrone et al. for
a generic solid profile. Differently from the ghost particles that are instan-
taneous mirrors of the fluid particles with respect to the body surface, the
position of the fixed ghost particles is fixed in the frame of reference of the
body. The main advantage of using the fixed ghost particles instead of the
ghost ones is that their distribution is always uniform and does not depend
on the fluid particle positions. This allows a simple modeling of complex
2D geometries. Further, the use of an MLS interpolator [99] ensures an
accurate mirroring procedure of the flow quantities.

De Leffe et al. (2009) [100] proposed a new boundary treatment for the
SPH model in ALE formalism with Riemann solvers. The new technique
has the capability to handle different kinds of boundary conditions (inflow,
outflow, non-reflecting, free slip, etc.).

Ferrand et al. [101] presented a method analogous to Bonet et al.’s ap-
proach [102] that it is based on a geometrical parameter measuring the
missing area in the kernel support when a particle is in the vicinity of a
solid boundary, but improve accuracy for linear fields.

upstream/downstream boundary conditions in sph context. The
enforcement of upstream/downstream boundary conditions in SPH con-
text is not trivial for particle methods. Conversely, in Lagrangian numeri-
cal approach, periodic conditions can be easily treated. With these, a par-
ticle that leaves the computational domain through an outflow boundary,
re-enters the domain immediately through the inflow boundary. However,
this method is useful just for academic problems.

Lastiwka et al. (2008) [103] presented a boundary condition implemen-
tation that enables the simulation of flow through permeable boundaries.
Each permeable boundary is associated with an inflow or outflow zone
outside the domain, in which particles are created or removed as required.
The analytic boundary condition is applied by prescribing the appropriate
variables for particles in an inflow or outflow zone, and extrapolating other
variables from within the domain.



1.4 structure of the thesis
After the overview here presented on the meshless methods and SPH

model, the thesis is structured as follows.
In Chapter 2, 3 and 4 theoretical aspects referring to the SPH interpo-

lation technique, the discretized fluid mechanics equations and the new
SPH formalism to model diffusion processes are introduced. The chapter
5 describes the main techniques for modeling solid boundaries. Further-
more, a novel algorithm for the enforcement of upstream and downstream
boundary conditions based on inflow and outflow particles is presented.
Chapter 6 and 7 refer to the simulations of dam breaks on sills and uni-
form and non-uniform steady open-channel flows. Chapter 8 and 9 deal
with the simulations of two-phase pollutant (air)-water interaction and ad-
vective reactive diffusion phenomena. The conclusions are summarized
in Chapter 10 and some research guide-lines for further developments are
given.
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In this chapter, some significant meshless tools applied in the SPH com-
putations are discussed. After the description of the integral interpolation
techniques used to evaluate a physical variable, the types of kernel func-
tions and the algorithm to search the neighbor particles are introduced.

2.1 integral interpolation techniques
A nonlinear fluid problem is governed by Partial Differential Equation

(PDE) system. On the basis of the Lagrangian meshless approach there
is the idea that the fluid can be modeled as a finite number N of parti-
cles, each one with its local mass and other physical properties. Following
the evolution of those particles, the PDEs are solved considering the in-
formation they carry to reconstruct the fluid properties everywhere in the
domain.

Being f a generic variable, the equations of fluid dynamics have the form

Df

Dt
= F (f,∇f, r) (2.1)

where

D

Dt
=
∂

∂t
+ u · ∇ (2.2)

is the Lagrangian derivative, or the derivative following the motion,
being u the velocity vector. It is worth noting that the characteristics of
this differential operator are the particle trajectories.

In the equations of fluid dynamics, the rates of change of physical quan-
tities require spatial derivatives of physical quantities. The key step in any
computational fluid dynamics algorithm is to approximate these derivati-
ves using information from a finite number of points. In finite difference
methods, the points are the vertices of a mesh. In the SPH method, the in-
terpolating points are particles which move with the flow, and the interpo-
lation of any quantity, at any point in space, is based on kernel estimation.

15



16 meshless operators in lagrangian methods

SPH interpolation of the variable f, which is a function of the spatial
coordinates, is based on the integral interpolant

〈f(r)〉 =

∫
Ω
f(r′)W

(
r − r′; ε

)
dV ′ (2.3)

where r is the position where f is evaluated by interpolating its known
values in r′ over the domain Ω. In Equation (2.3), W (r − r′; ε) is a weight
function and ε is a measure of the support of W, i.e. where W differs from
zero. Physically, ε is also representative of the domain of influence Ωr′ of
r′. In the SPH framework, W (r − r′) is called smoothing function or kernel,
and has the following properties:

• W (r − r′) > 0 for r ∈ Ωr′ ⊂ Ω and zero otherwise.

•
∫
ΩW (r − r′; ε)dV ′ = 1.

• W (r − r′; ε) decrease monotonously as ‖ r − r′ ‖ increases.

• ∇rW (r − r′; ε) = −∇r′W (r − r′; ε) symmetric property, W is an
even function.

A sketch of the kernel function is reported in Figure 1.
For ε → 0, the kernel function W becomes a Dirac delta function, and

therefore

lim
ε→0

∫
Ω
f(r′)W

(
r − r′; ε

)
dV ′ ≡ f(r).

The approximations of the derivatives of the field f can be deduced by

∇f(r) ' 〈∇f(r′)〉 =

∫
Ω
∇f(r′)W

(
r − r′; ε

)
dV ′. (2.4)

Figure 1: Sketch of the kernel function.
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The integration by parts of (2.4) gives:

〈∇f(r′)〉 =

∫
∂Ω

f(r′)W
(
r − r′; ε

)
ndS′+

−

∫
Ω
f(r′)∇r′W

(
r − r′; ε

)
dV ′. (2.5)

The surface contribution in (2.5) is negligible inside the domain. There-
fore, ignoring this term, the approximations for any derivative of the field
f can be expressed only by the derivatives of the kernel W:

〈∇f(r′)〉 = −

∫
Ω
f(r′)∇r′W

(
r − r′; ε

)
dV ′

=

∫
Ω
f(r′)∇rW

(
r − r′; ε

)
dV ′. (2.6)

In the last integral, the symmetric property of the kernel W has been
used. The choice of the smoothing function affects both the CPU require-
ments and stability properties of the scheme in the computations.

To apply this interpolation to a fluid, we divide it into a set of small mass
elements. The element a will have a mass ma, density ρa and position ra.
The value of f at particle a is denoted by fa. The interpolation integral can
be written as

∫
Ω

f(r′)

ρ(r′)
ρ(r′)dV ′ (2.7)

where an element of mass is ρdV ′. The integral can then be approxima-
ted by a summation over the mass elements. This gives the summation
interpolant

〈fa〉 =
∑
b

fb

ρb
mbWb(ra) (2.8)

where Wb(ra) = W (ra − rb; ε). The summation is over all the particles
but, in practice, it is only over near neighbours because W falls off rapidly
with distance. In practice, we choose kernels which have compact support,
i.e. they vanish at a finite distance.

The SPH formulation allows derivatives to be estimated easily. If W is a
differentiable function (2.8) can be differentiated exactly to give

〈∇f(ra)〉 =
∑
b

mb
fb

ρb
∇Wb(ra) (2.9)

In SPH the derivative is, therefore, found by an exact derivative of an ap-
proximate function. However, this form of the derivative does not vanish
if f is constant. A simple way to ensure that it does vanish if f is constant
is to write
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〈∇f〉 =
1

Φ
(∇(Φf) − f∇Φ) (2.10)

where Φ is any differentiable function. The SPH form of (2.10) is

〈∇f(ra)〉 =
1

Φa

∑
b

mb
Φb

ρb
(fb − fa)∇Wb(ra) (2.11)

which vanishes if f is constant. Changing Φ it is possible to derive
different formulation of the derivatives. For example, choosing Φ = 1

gives

〈∇f(ra)〉 =
∑
b

(fb − fa)∇Wb(ra)∆Vb (2.12)

being ∆Vb = mb/ρb. Choosing Φ = ρ

〈∇f(ra)〉 =
1

ρa

∑
b

mb (fb − fa)∇Wb(ra) (2.13)

The Equations (2.12) and (2.13) will be used in Chapter 3 in order to
discretize the Fluid Mechanics Equations.

As in the case of first derivatives, second derivatives can be estimated by
differentiating an SPH interpolant twice. For example, the second deriva-
tive of the variable f at the position of particle a can be estimated by

〈∇2f(ra)〉 =
∑
b

mbfb∇2Wb(ra) (2.14)

This equation will be applied and developed in Chapter 4 in order to
discretize the diffusion equation.

2.2 types of kernel functions
A first class of kernel is given by Gaussian functions such as:

W(s, ε) =
σ

ελ
e−(s/ε)2 (2.15)

where λ indicates the dimensions number of the treated problem and

σ is the normalization factor, σ =
[
1
π ; 1
π
√
π

]
in 2D and 3D simulations

respectively. This function has the advantage to be infinitely differentiable
and therefore has good stability properties [104]. Furthermore, a cut-off
radius δ with relating renormalized coefficient is introduced in order to
reduce computing costs. This leads to the "modified" Gaussian kernel

W(s, ε, δ) =
e(s/h)2 − e(δ/h)2

2π
∫δ
0 s
(
e(s/h)2 − e(δ/h)2

)
ds

. (2.16)
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This kernel has the compact support of size 3ε. It is used in the simula-
tions in Chapter 8.

Another function, introduced by Johnson et al. [105], has the general
formulation written as follows:

W(s, ε) =
σ

ελ

(
3

8
s2 −

3

2
s+

3

2

)
if 0 6 s 6 2 (2.17)

with normalization factor, σ =
[
1
π ; 1564π

]
in 2D and 3D simulations re-

spectively.
One of the most used kernel is the cubic spline proposed by Monaghan

and Lattanzio [106], which has a low CPU time. This kernel can be appro-
ximated by:

W(s, ε) =
σ

ελ


4− 6s2 + 3s3 for 0 6 s 6 1(
2− s2

)3
for 1 < s 6 2

0 otherwise

(2.18)

with normalization factor, σ =
[
10
7π ; 1π

]
in 2D and 3D simulations respec-

tively. This kernel has a compact support of size 2ε. This kernel is used in
the simulations in Chapter 6 and 7.

By increasing the smoothing length to 3ε it is possible to define another
kernel that is the quintic spline:

W(s, ε) =
σ

ελ


(3− s)5 − 6(2− s)5 + 15(1− s)5 for 0 6 s 6 1

(3− s)5 − 6(2− s)5 for 1 < s 6 2

(3− s)5 for 2 < s 6 3

0 otherwise

(2.19)

with normalization factor σ =
[
7

478π ; 1
120π

]
in 2D and 3D simulations

respectively [109]. This kernel gives the same results of the renormalized
Gaussian Kernel (2.16) but needs more CPU time.

Another class of positive, definite and compactly supported radial func-
tions was introduced by Wendland [107], that are defined as:

W(s, ε) =
σ

ελ
(1− s)λ+1(λ+ 1)(s+ 1) if 0 6 s 6 3 (2.20)

with s = r/3ε and normalization factor σ =
[
5
9π , 7

18π

]
in 2D and 3D

dimensions respectively. The Wendland radial basis functions in 2D and
3D are quartic and quintic spline weight functions respectively.

The comparisons between the considered kernel functions have been
identified the form (2.16) as the one leading to the best stability properties
[109]. The choice of kernel has been motivated by the fact that from a nu-
merical point of view the behavior of the renormalized Gaussian kernel is
almost identical to the classical Gaussian kernel (the maximum error bet-
ween the two kernels is less than 4 · 10−4) [113]. For what concerns the
latter one the following properties are well established: (i) among ten te-
sted kernel shapes, the Gaussian kernel appears to give the best numerical
accuracy in the stable field [108]; (ii) it presents also a lower computatio-
nal cost with respect to evolved forms of spline kernels [11]; finally, (iii) its
gradient can be straightforwardly obtained from the evaluation of W itself.
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2.3 neighbours search strategy
Because of the neighbour particles searching at every time step, SPH

numerical model needs great computational time. In order to reduce this
computational time, several numerical techniques have been proposed to
optimize the definition of the interacting neighbors of each particle of the
fluid domain: Figure 2 shows the neighbors (black particles) of the particle
at hand. In the followings two of the most successful SPH optimizing
techniques will be introduced.

2.3.1 Linked list

The principal idea of linked list, or Verlet list, methods is to reduce the
neighbor search algorithm by setting the particles in an ordered grid, cha-
racterized by a grid cell size equal to the size of the kernel support, as
sketched in Figure 3 where a 2ε kernel support is considered as example.
In this way, it is clear that each particle interacts at least with particles of

Figure 2: Particle interaction in the SPH model: neighbors particles of a given par-
ticle.

Figure 3: Particle grid cells in the fluid domain (on the left) and linked list through
neighbors grid cells (on the right).
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the same grid cell, and at most with particles placed in the eight adjacent
grid cells, as it is shown in the left panel of Figure 3. So that, a linked
list algorithm consists of searching neighbors particles looking at the eight
grid cells around the cell at hand: the right panel of Figure 4 shows one of
the possible way to look at the neighbors cells.

An optimization of this method is obtained by employing the action-
reaction principle, according to which each interaction value A between a
couple of particles a and b could be defined as fab = −fba, as the value
of the kernel W is a function only of the distance between particles. So,
the basic idea is to compute only once Wab between two particles. This
can be attained taking into account grid cells by a main direction over the
grid. In this optic it is sufficient to look only at five of the grid cells of the
previously defined linked list, as it is shown in Figure 4, while all interac-
tion values have to be stored in dedicated vectors, with a small wasting of
memory. In this example, the five neighbors cells are placed around the
right upper corner of the cell at hand, so the main direction according to
which grid cells have to be considered starts from the left bottom corner of
the computational domain, going to the right upper corner.

Figure 4: Reduced linked list algorithm over five grid cells.





3 F L U I D M E C H A N I C H S E Q U A T I O N S
I N S P H C O N T E X T

contents
3.1 Governing equations in Fluid Mechanics 23
3.2 SPH discrete formalism of Fluid Mechanics Equations 24

3.2.1 Continuity Equation 24

3.2.2 Momentum Equation 25

3.2.3 State Equation 26

3.2.4 Numerical recipes for the code effectiveness 27

3.3 Two-phase SPH discrete formalism (Grenier et al., 2009) 29
3.4 Summarizing continuity and momentum equations used for the si-

mulations 31
3.5 Time integration for Fluid Mechanics Equations 32

The chapter describes the governing equations of the Fluid Mechanics
field, presenting different discrete Lagrangian forms derived by the inter-
polations techniques introduced in Chapter 2.

3.1 governing equations in fluid mecha-
nics

The equations governing the studied phenomena are the continuity and
the momentum equations. Considering a weakly compressible medium
these equations are coupled to the state equation.

The continuity equation defines the rate of change of the density related
to the divergence of the velocity:

Dρ

Dt
= −ρ∇ ·u (3.1)

where u and ρ are the velocity of a generic material point and its density.
This equation can be written also as follows [109]:

Dρ

Dt
= −ρ

[
∇ · (ρu) − u · ∇ρ

ρ

]
(3.2)

The momentum conservation equation for a inviscid fluid (Euler equa-
tion) is:

Du

Dt
= −

1

ρ
∇p+ g (3.3)

23
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where p is pressure of a generic material point and g represents the
mass force acting on the fluid.

The equation (3.3) can be rewritten considering the pressure gradient as
function of density:

Du

Dt
= −

[
∇
(
p

ρ

)
+
p

ρ2
∇ρ
]

+ g (3.4)

For a viscous fluid the momentum equation is:

Du

Dt
= −

1

ρ
∇p+ g +

1

ρ
∇ ·V (3.5)

where V is the viscous stress tensor.

3.2 sph discrete formalism of fluid me-
chanics equations

Here, we introduce different SPH discrete forms of Fluid Mechanics
Equations based on the interpolations equations (2.12) and (2.13) expressed
in Chapter 2.

3.2.1 Continuity Equation

Several expressions can be used to model the continuity equation. Star-
ting from the interpolation relation (2.12), we can have the following equa-
tion:

Dρa

Dt
= −ρa

N∑
b

(ub − ua) · ∇Wb(ra)∆Vb (3.6)

where the sub-indexes indicate the quantities associated with the a-th
and b-th particles. The symbol ∆Vb is the b-th particle volume that is
∆Vb = mb/ρb and mb is the b-th particle mass (constant during the flow
evolution). Furthermore,Wb(ra) represents the kernel centered at the b-th
particle position and evaluated at the a-th particle position and ∇ denotes
the gradient taken with respect to the coordinates of particle a.

Considering the interpolation relation (2.13), the continuity equation is:

Dρa

Dt
= −

N∑
b

mb (ub − ua) · ∇Wb(ra) . (3.7)

If (3.6) is compared with (3.7) it will be seen that the former involves ρ
explicitly in the summation, whereas the latter does not. Both expressions
vanish, as they should, when the velocity is constant. However, when the
system involves two or more fluids with large density ratios in contact, the
expression (3.6) with ρ in the summation is more accurate (see Colagrossi
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and Landrini, 2003 [6]). The reason is that near an interface the summation
for ∇ ·u for one type of fluid SPH particle involves contributions from the
other fluid. If we imagine the other fluid being changed for a fluid with
exactly the same velocity field, and exactly the same particle positions but
different density, we would still want the same estimate of ∇ ·u. However,
with (3.7) the mass elements will be changed and the estimate will be
different, but if (3.6) is used the ratio of mass to density will be constant
and ∇ ·u will not change. In practice, it turns out that either (3.6) or ((3.6)
can be used for density ratios 6 2, but for larger density ratios it is better
to use (3.6). The Lagrangian approach, which we consider later, requires
that these equations for the rate of change of density with time be included
as constraints. As a result, the form of the pressure forces changes with
the form chosen for the density convergence equation.

3.2.2 Momentum Equation

Considering the interpolation relation (2.12) the momentum equation in
Euler form (3.3) can be assume the following discrete fashion:

Dua

Dt
= −

1

ρa

N∑
b

(pa + pb)∇Wb(ra)∆Vb + ga (3.8)

while adopting the interpolation relation (2.13), the momentum equation
is:

Dua

Dt
= −

N∑
b

mb

(
pa

ρ2a
+
pb

ρ2b

)
∇Wb(ra) + ga . (3.9)

As regard as the Navier-Stokes momentum equation (3.5), the discrete
form of the viscous term is:

∇ ·V = µ
∑
b

8 (ub − ua) · rba
‖rab‖2

∇aWb(ra)∆Vb (3.10)

where rab = −rba = ra − rb and µ is the dynamic viscosity.
In many simulations the real viscosity term ∇ ·V is replaced by an arti-

ficial one ∇ ·Vα tuned by the dimensionless parameter α. The use of the
artificial viscosity is needed for reasons of stability (see e.g. [110]).

This artificial viscosity term is proposed by Monaghan [4] and it is:

∇ ·Vα = mb
∏
ab

∇aWb(ra) (3.11)

where:

∏
ab

=

{
−αc̄abξab+βξ2ab

ρ̄ab
if (ua − ub) · rab < 0

0 otherwise
(3.12)
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where ξab =
ε(ua−ub)·rab

r2ab+η2
, ρ̄ab = ρa+ρb

2 , c̄ab = ca+cb
2 , ca and cb

are, respectively, the sound speed of particles a and b, η2 = 0.01ε2, and
α and β are constants dependent on the type of simulation performed. In
hydraulic applications, α assumes values in the range [0.01− 0.1] and β is
set equal to 0 [4]. For ε → 0 the viscosity vanishes and the Euler equation
is recovered.

A variant form of viscosity term is adopted by Antuono et al. [54]:

∇ ·Vα = αεc0ρ0
∑
b

(ub − ua) · rba
‖rab‖2

∇aWb(ra)∆Vb (3.13)

where α > 0.01. In free-surface context, the use of this term instead
(3.11) gives a less CPU cost and an easily direct calculation of numerical
Reynolds number Re = 0.125αεc0ρ0.

3.2.3 State Equation

In the present SPH modeling, the fluid flow is considered weakly com-
pressible in order to avoid solving the Poisson equation for incompressible
fluids at each time step. A state equation is adopted to evaluate the pres-
sure, pi, as a function of density. In particular the Tait’s equation is often
used [111]:

pa = B

[(
ρa

ρ0

)γ
− 1

]
(3.14)

where γ is the polytropic index of fluid, ρ0 is the initial density and B

is a constant chosen to make sure the Mach number Ma = u/c is small
enough to avoid fast sound waves which would require small time steps.
B is defined considering that the Mach number has to be Ma < 0.2. In
the simulations of the present work, the Mach number was set Ma = 0.1.
According to the definition of the sound speed under constant entropy, it
is possible to write:

c2a =
∂p

∂ρ
=
γB

ρ0

(
ρa

ρ0

)γ−1

(3.15)

and, in initial conditions, the constant B = c20ρ0/γ.
The value of the initial sound speed c0 is evaluated as a function of a

representative depth of the case to be simulated [4].
SPH computations has two constraints to impose c0. As discussed by

[112], the value of the initial sound speed c0 can be evaluated as represen-
tative depth h of the case to be simulated [4] c0 > 10

√
gh and also as a

function of maximum velocity c0 = 10Umax.
Another kind of state equation permits a direct link between pressure

and density

pa = c20 (ρa − ρ0) (3.16)
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This equation is a linearization of (3.14) [54] that gives good results for
hydrodynamics problems and reduces computing costs. The use of the
equation (3.14) instead the equation (3.16) induces generally a very weak
influence on the results (see e.g. [113]).

3.2.4 Numerical recipes for the code effectiveness

To improve the stability properties and, in general, the performances of
the code, the following numerical recipes have been used.

XSPH velocity correction

To regularize the velocity field and the weakly - compressible treatment
of liquids, the motion equation (see §3.2.2) has been replaced in the imple-
mentation by:

Dra

Dt
' ua +∆ua = 〈ua〉. (3.17)

The so-called XSPH velocity correction ∆ua was introduced firstly by
Monaghan [4], and takes into account the neighbor velocities through a
mean velocity evaluated within the particle support, i.e.

∆ua =
εX

2

∑
b

mb

ρab
(ub − ua)Wb(ra) ρab =

ρa + ρb
2

(3.18)

In problems investigated, the (3.18) can be simplified as [97]:

∆ua =
εX

2

∑
b

(ub − ua)Wb(ra)∆Vb (3.19)

The corrected velocity 〈ua〉 is used only in the density and position
evolution equations, not in the momentum equation. Typical value used
for εX is 0.5.

Density re-initialization

In the SPH method, each particle has a fixed massmb and, if the number
of particles is constant, mass conservation is intrinsically satisfied. On the
other hand, by using the continuity equation (see §3.2.1), we cannot enforce
exactly the consistence between mass, density and occupied area (see [3],
[69] and [71]) as it would be possible by using

ρa =
∑
b

mbWb(ra). (3.20)

To alleviate this problem, the density field is periodically re-initialized
by applying equation (3.20). In this procedure, special attention has to be
paid to the used kernel. In fact, if

∑
bWab 6= 1 at point xa, the use of

3.20 would introduce additional errors. In particular, this happens when
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approaching any boundary of the fluid domain (free surface, interfaces bet-
ween phases) [5]. In these cases, indeed, the number of particle neighbors
seen by a boundary particle is lower, consequently the density computed
is smaller than the original value. The equation of state would therefore
predict a wrong pressure value and the entire field would be progressively
corrupted [4]. Here such numerical errors have been overcome by using
a more precise interpolation technique to re-initialize the density field, i.e.
ρa ' 〈ρa〉, as

〈ρa〉 =
∑
b

mbW
MLS
b (ra) (3.21)

In particular, the moving-least-square kernel WMLSb is computed by
adopting the first-order accurate interpolation scheme on irregularly - scat-
tered points proposed by Belytschko et al. [114].

Introducing a linear operator β(ra) [67], the modified KernelWMLSb (ra)
is expressed as

WMLSb (ra) =

[β0(ra) +β1(ra)(xb − xa) +β2(ra)(yb − ya)]Wb(ra) (3.22)

The evaluation of β0(ra), β1(ra) and β2(ra) needs the solution of 3× 3
linear algebraic problem for each particle:

Aab :=
∑
b

ΘWb(ra)∆Vb

where

Θ =

 1 xb − xa yb − ya
. . . (xb − xa)2 (xb − xa)(yb − ya)

symm . . . (yb − ya)2


and

Aab

β0(ra)
β1(ra)
β2(ra)

 =

10
0

 (3.23)

During the simulations the density re-initialization procedure is applied
every, say, υ time-steps and increases slightly the computing time, mainly
because of the inversion of the symmetric 3× 3 (in 2D) matrix A for each
a-th fluid particle; A is a symmetric 5× 5 matrix in 3D. On the other hand,
not only the consistency between mass, density and occupied area is re-
stored, but (i) a more regular pressure distribution can be obtained, and
(ii) the total energy is better conserved when artificial viscosity is used in
the computations. Test cases showed that a good compromise between effi-
ciency and effectiveness is achieved by enforcing the re-initialization every
υ = 20 time-steps [6].
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3.3 two-phase sph discrete formalism (gre-
nier et al. , 2009)

Here the Grenier et al. [5] model for two-phase flows is illustrated. It is
an extension of the formulation discussed in Colagrossi and Landrini [6]
and it is based on the Lagrangian variational approach introduced by Bo-
net and Lok [115]. In this context the motion equation can be characterized
by a surface tension term.

The density is evaluated using a Shepard Kernel [114]:


ρa =

∑
b∈X

mbW
S
b(ra);

WSb(ra) =
Wb(ra)∑

k∈XWk(ra)∆Vk
; ∀r ∈ X

(3.24)

The summation in the second equation of the system (3.24) is extended
only to the particles belonging to the fluid X containing the particle a.

The continuous momentum equation is

Du

Dt
= −

1

ρ
∇p+ g +

1

ρ
∇ ·V +

1

ρ
FS (3.25)

where Fs represents the surface tension forces.
Being Γa =

∑
aWa(rb)∆Va and Γb =

∑
bWb(ra)∆Vb, a new discrete

formula for the smoothed pressure gradient Grenier et al. [5] is introduced:

∇pa =

N∑
b

(
pa

Γa
+
pb

Γb

)
∇Wb(ra)∆Vb. (3.26)

Following Flekkøy et al. ([116], [83]) the inter-particle averaged shear
tensor TVab whose compressible part is neglected can be approximated as

TVab =
2µaµb

µa + µb

1

r2ab

[(ra − rb)⊗ (ua − ub) + (ua − ub)⊗ (ra − rb)] (3.27)

The viscous force acting on the generic particle a can be evaluated th-
rough the discrete formula

∇ ·V =
1

2

N∑
b

(
1

Γa
+
1

Γb

)
TVab∇Wb(ra)∆Vb (3.28)

Neglecting the compressibility effects, this formula can be rewritten as
(for details see [116])
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∇ ·V =

N∑
b

2µaµb

µa + µb

(
1

Γa
+
1

Γb

)
(xa − xb) · ∇Wb(ra)

‖rab‖2
(ua − ub)∆Vb (3.29)

which resembles a mixing of the formulæ adopted by Morris et al. [109]
and Monaghan [104] with the presence of the corrective term [1/Γa + 1/Γa].
Anyway, differently from the equation proposed by Monaghan [[104] (3.29),
does not preserve the angular momentum. A possible adaptation of the
Monaghan formula to the present formulation is

∇ ·V =

N∑
b

8µaµb

µa + µb

(
1

Γa
+
1

Γb

)
(xa − xb) · (ua − ub)

‖rab‖2
∇Wb(ra)∆Vb (3.30)

The expression (3.30) still preserves linear and angular momenta. Note
that without the corrective term [1/Γa + 1/Γa] in formulae (3.29 and (3.30),
the viscous force unphysically decreases close to the free surface as shown
in [117].

To model the surface tension, a continuous surface force (CSF) model
[118] can be adopted. To simplify the notation we consider only two fluids
(X,Y) here. The surface tension FXY

Sa acting on the generic a-th particle
belonging to the fluid X due to the presence of Y, can be evaluated by


FXY
Sa = ∇ ·TXY

Sa ∀a ∈ X

TXY
Sa = σXY 1

|∇c|

(
1

λ
|∇ca|2 −∇ca ⊗∇ca

) (3.31)

where TXY
Sa is the surface stress tensor and σXY is the surface tension

coefficient between the fluids X and Y; λ is the spatial dimension of the
problem. The tensor TXY

Sa can be evaluated through the spatial gradient of
a color index c which has a unit jump across the interface between X and
Y

cY
a =

{
0 a ∈ X
1 a ∈ Y (3.32)

In the present formulation this gradient ∇cXYa can be evaluated as

∇cXYa =
∑
b∈Y

(
cY
a

Γa
+
cY
b

Γb

)
∇aWb(ra)∆Vb , ∀a ∈ X (3.33)

where cY
a = 0 by definition since particle a belongs to fluid X. Note

that this formulation provides surface tension effects between two different



3.4 summarizing continuity and momentum equations used for the simulations 31

fluids but it does not produce any surface tension on a free surface (where
∇c becomes zero). Finally, the divergence of the surface stress tensor TXY

Sa
is evaluated through a discrete operator similar to the one used for the
pressure gradient (see Equation (3.26))

FXY
Sa = ∇ ·TXY

Sa =
∑
b

(
TXY
Sa

Γa
+

TXY
Sb

Γb

)
∇aWb(ra)∆Vb (3.34)

For interface flows where surface tension effects are negligible a spu-
rious fragmentation of the interface can take place. To prevent this, a small
repulsive force is introduced in the pressure gradient having the following
momentum equation:

Dua

Dt
= −

1

ρa

∑
b

(
pa

Γa
+
pb

Γb

)
∇aWb(ra)∆Vb+

+ χ
∑
b∈Xζ

(∣∣∣∣paΓa
∣∣∣∣+ ∣∣∣∣pbΓb

∣∣∣∣)∇aWb(ra)∆Vb (3.35)

where χ ranges between 0.01 and 0.1, and the second summation applies
to all the particles which do not belong to the fluid of the a-th particle; the
latter set of particles is noted by Xζ.

3.4 summarizing continuity and momentum
equations used for the simulations

Different systems of continuity and momentum equations are adopted
in this thesis in order to perform several simulations. Here there is a sum-
mary (see the systems below).

system 1

Dρa

Dt
= −

N∑
b

mb (ub − ua) · ∇Wb(ra)

Dua

Dt
= −

N∑
b

mb

(
pa

ρ2a
+
pb

ρ2b

)
∇Wb(ra) + ga + mb

∏
ab

∇aWb(ra)

This formulation is adopted by many authors (see e.g.Monaghan [4]).

system 2

Dρa

Dt
= − ρa

N∑
b

(ub − ua) · ∇Wb(ra)∆Vb

Dua

Dt
= −

1

ρa

N∑
b

(pa + pb)∇Wb(ra)∆Vb + ga+

+
αεc0ρ0

ρa

∑
b

(ub − ua) · rba
‖rab‖2

∇aWb(ra)∆Vb
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This formulation is adopted in particular by Colagrossi (see e.g. [6], [54]).

system 3

Dρa

Dt
= − ρa

N∑
b

(ub − ua) · ∇Wb(ra)∆Vb

Dua

Dt
= −

1

ρa

N∑
b

(pa + pb)∇Wb(ra)∆Vb + ga+

+ µ
∑
b

8 (ub − ua) · rba
‖rab‖2

∇aWb(ra)∆Vb

This formulation is the same of the previous one but it is based on real
viscosity (see e.g. [52]).

system 4

ρa =
∑
b∈X

mb
Wb(ra)∑

k∈XWk(ra)∆Vk

Dua

Dt
= −

1

ρa

∑
b

(
pa

Γa
+
pb

Γb

)
∇aWb(ra)∆Vb + ga+

+ χ
∑
b∈Xζ

(∣∣∣∣paΓa
∣∣∣∣+ ∣∣∣∣pbΓb

∣∣∣∣)∇aWb(ra)∆Vb

This formulation has been introduced by Grenier et al. [5]).

3.5 time integration for fluid mechanics
equations

The time stepping defines the time integration used to update particle
positions. Different time integration schemes have been employed in SPH.
Because the SPH algorithm reduces the original continuum partial diffe-
rential equations to sets of ordinary differential equations, any stable time
stepping algorithm for ordinary differential equations can be used [104].
The present numerical simulations have been performed using the modi-
fied Verlet time stepping scheme (see e.g. [113]).

First step:

rj+1/2 = rj + 0.5∆tuj

ρj+1/2 = ρj + 0.5∆t
(
Dρ

Dt

)j
(3.36)

Second step:
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uj+1 = uj +∆t

(
Du
Dt

)j+1/2
rj+1 = rj+1/2 + 0.5∆tvj+1 (3.37)

ρj+1 = ρj+1/2 + 0.5∆t
(
Dρ

Dt

)j+1/2
where the indices j, j + 1/2 and j + 1 denote the values at the start, hal-
fway and at the end of a step, respectively. The rate of change of density,
Dρ/Dt, and the particle acceleration, Du/Dt, are calculated from conti-
nuity (§3.2.1) and momentum equation (§3.2.2), respectively.

The time step ∆t is evaluated considering the Courant-Friedrichs-Levy
(CFL) condition:

∆t = CFL
ε

maxj
(
cj +

∥∥uj∥∥) (3.38)

where 0 < CFL < 1.2 is the Courant number.
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In this Chapter, a novel SPH fashion for discretizing the diffusion equa-
tion in Environmental Hydraulics context is introduced. The Lagrangian
formalism is extended to advective diffusion and reactive diffusion equa-
tions.

4.1 governing equations in environmental
hydraulics

Pollutant transport in still water is generally dominated by the effect of
diffusion and advection processes. For pollutants having densities close to
the water and initial velocity equal to zero, the evaluation of the concen-
tration field is induced by diffusion. This phenomenon is characterized by
the scattering of particles by random molecular motions. If the contami-
nant density is quite different from the water, the phenomena of natural
advection become relevant. The transport process is consequently asso-
ciated to the induced kinematics. In rivers a host of processes lead to a
non-uniform velocity field, which allows mixing to occur much faster than
by molecular diffusion alone (see e.g. [119]). In this case the turbulent dif-
fusion processes assume a fundamental role in modeling the concentration
field.

Diffusion phenomena of pollutants are described by Fick’s law [120].
Fick extended the Fourier heat transfer equation to the analysis of diffu-
sion processes. This law states the proportionality between the mass flux
diffusion, DC/Dt, and the concentration gradient, ∇C. In the absence of
advective phenomena, this hypothesis coupled with the mass conservation
leads to the classical diffusion equation:

DC

Dt
= D∇2C (4.1)

where D is the diffusion coefficient and C is the tracer concentration.

35
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Transport occurs in fluids through the combination of advection and
diffusion. When the ratio density between the two fluids (for example
ρ2/ρ1 = 0.1, being ρ1 the water density and ρ2 the pollutant one), the
evolution of the concentration field of pollutant in still water is influenced
by the velocities of the particles. This phenomenon can be modeled by the
advective diffusion equation, including the fickian diffusion term and the
advective transport (see e.g. [121]):

DC

Dt
= D∇2C−∇ · (uC) (4.2)

4.2 a novel sph discrete formalism of en-
vironmental hydraulic equations

In this paragraph, a SPH formalism for diffusion, advective diffusion
and reactive diffusion equations is proposed, starting from the approach
of Monaghan and Cleary [88] in heat transfer field.

4.2.1 Diffusion Equation

The Lagrangian SPH formalism of the diffusion equation has some dra-
wbacks. First, it is very sensitive to particle disorder. Moreover the transfer
of concentration between the particles may be positive or negative, depen-
ding on their separation because the second derivative of the kernel can
change sign. This behaviour can lead to less accuracy, especially at low
resolution [71].

Following the approach used by Cleary and Monaghan [88] for determi-
ning a correct SPH formalism of heat conduction equation, Equation (4.1)
is here rewritten as follows:

DC

Dt
=

Dρ

ρ
∇2C =

1

ρ
∇ · (Dρ∇C) (4.3)

The spatial derivatives can be calculated using an integral approxima-
tion [122] [88] in order to define a better SPH form of diffusion equation:

∇ · (Dρ∇C) =

∫
S

[
D(r′)ρ(r′) + D(r)ρ(r)

]
[
C(r) +C(r′)

] (r − r′) · ∇rW (r − r′, ε)

(r − r′)2 + η2
dr′ (4.4)

Expanding D(r′)ρ(r′) and C(r′) in Taylor series about r, and keeping up
to second order terms, this integral differs from the actual diffusion term
∇ · (Dρ∇C) by O(ε2) errors. In this case the SPH formalism of Equation
(4.3) takes the form:

DCa

Dt
=

N∑
b

mb

ρaρb
(Da + Db)(ρa + ρb)

rab · ∇aWb(ra)

r2ab + η2
Cab (4.5)
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where Cab = Ca −Cb.
Because the term

rab · ∇aWb(ra)

r2 + η2
Cab

is less or equal to zero, Equation (4.5) has the property that if Ca >
Cb, then the diffusion process will propagate from a to b, resulting in
the molecularly dispersed contaminant tending to move from a volume
element with a higher concentration toward any neighboring element with
a lower concentration. As observed by Cleary and Monaghan [88] for
heat conduction problems, the SPH formalism of Equation (4.5) does not
guarantee that the diffusion will be continuous when D is discontinuous,
as for example along the interface between two phases. This drawback can
be avoided by replacing the summation Da + Db with the term:

4DaDb

Da + Db
(4.6)

Consequently, the proposed SPH diffusion equation takes the form:

DCa

Dt
=

N∑
b

mb

ρaρb

4DaDb

Da + Db
(ρa + ρb)

rab · ∇aWb(ra)

r2ab + η2
Cab (4.7)

Equation (4.7) represents a suitable SPH diffusion form for determining
the concentration field of pollutants in water. This form makes it possible
to obtain a continuity of the diffusion phenomena even with large jumps
in D, while also avoiding the particle disorder during the evolution of
the concentration field. Moreover diffusion problems with discontinuous
D are accurately integrated and the total mass of pollutant and water is
conserved by Equation (4.7).

Different SPH diffusion models have been proposed in other fields. In
particular these formulations have been referred to different combinations
of the terms involving diffusion coefficients and densities. Zhu and Fox
[89] [90] suggested the following SPH form of the diffusion equation ap-
plied to spatially periodic porous media:

DCa

Dt
=

N∑
b

ma

ρaρb
(Daρa + Dbρb)

rab · ∇aWb(ra)

r2ab + η2
Cab (4.8)

A similar SPH form of the diffusion equation was developed by Tarta-
kovsky and Meakin [91] and Tartakovsky et al. [92] to simulate a two-
dimensional Rayleigh-Taylor instability, three-dimensional miscible flows
in fractures, and reactive transport and precipitation in fractured and po-
rous materials:

DCa

Dt
=

N∑
b

(mbρaDa +maρbDb)

ρaρb

rab · ∇aWb(ra)

r2ab + η2
Cab (4.9)
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Finally Monaghan [104] formulated a SPH diffusion equation to evaluate
the salt concentration with an analogous form of the SPH heat conduction
equation [88], by replacing the thermal conductivity coefficient with the
diffusion coefficient, and the absolute temperature with the concentration,
as follows:

DCa

Dt
=

N∑
b

mb

ρaρb

4DaDb

Da + Db

rab · ∇aWb(ra)

r2ab + η2
Cab (4.10)

In Chapter 7 the proposed SPH diffusion formulation (Equation 4.7)
and the other lagrangian diffusion models (Equation 4.8, 4.9 and 4.10)
are compared to evaluate the concentration field induced by a two-phase
contaminant-water flow.

4.2.2 Advective Diffusion Equation

The advective diffusion equation (4.2) can be rewritten in the following
fashion in order to get better numerical results:

DC

Dt
=
1

ρ
∇ · (Dρ∇C) −

1

ρ
[∇ · (ρuC) − uC · ∇ρ] (4.11)

The SPH form of Equation (4.11) becomes:

DCa

Dt
=

N∑
b

mb

ρaρb

4DaDb

Da + Db
(ρa + ρb)

rab · ∇aWb(ra)

r2ab + η2
Cab+

−

N∑
b

mb
Ca

ρa
uab · ∇aWb(ra) (4.12)

It is worth noting that the contribution of the advective term in Equation
(4.12) produces numerical instabilities at the interface for low density ratios
(ρ2/ρ1 < 0.1), such as the case of air-water. In this case the problem can be
avoided by replacing mb/ρa with mb/ρb in the SPH advective formalism.
This change gives a smoother density gradient at the contact surface of the
fluids, preventing anomalous high values of the concentration and leading
to a decay in the transport process.

4.2.3 Reactive Diffusion Equation

The kinetics reaction is the study of the rate of formation of products
from reactants in a transformation reaction.

Here a reactive diffusion equation is introduced:

DCa

Dt
=

N∑
b

mb

ρaρb

4DaDb

Da + Db
(ρa + ρb)

rab · ∇aWb(ra)

r2ab + η2
Cab+

± R (Ca −Ceq) (4.13)
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where R is the local reaction rate constant and Ceq is the pollutant con-
centration in equilibrium with the water. This equation can be also used
for reaeration phenomena at interface between water and air (see e.g. [123],
[124]).

The equation (4.13) refers to a first-order kinetics reaction, but can be
extended to n-order one.

The simplest type of model to evaluate R is the Lewis-Whitman model
[125], which says that the mixing layer is a constant thickness, δ, which
leads to R given by

R =
D

δ
(4.14)

Note that for this model R is linearly proportional to D, as compared to
the square-root dependence derived in the stagnant case. Also, the mixing
depth δ is a pure function of the hydrodynamic condition. Thus, once one
has an expression for δ, the transfer velocity for different substances can
be computed using the various respective molecular diffusivities D. The
weakness of this model is that is does not provide any physical insight into
how to predict δ; hence, δ must be determined empirically. In this work
the mixing layer has the length of the compact support of kernel, δ = 2ε.

The Equation (4.13) can be particularized adding the advective term:

DCa

Dt
=

N∑
b

mb

ρaρb

4DaDb

Da + Db
(ρa + ρb)

rab · ∇aWb(ra)

r2ab + η2
Cab+

−

N∑
b

mb
Ca

ρa
uab · ∇aWb(ra) ± R (Ca −Ceq) (4.15)

obtaining a reactive advective diffusion equation in SPH form.

4.3 time integration coupling diffusion equa-
tion to fluid mechanics equations

In this section the time integration of diffusion equation coupled to the
fluid mechanics equation (see Chapter 3) is defined. The two steps are the
following.

First step:

rj+1/2 = rj + 0.5∆tuj

Cj+1/2 = Cj + 0.5∆t
(
DC

Dt

)j
(4.16)

ρj+1/2 = ρj + 0.5∆t
(
Dρ

Dt

)j
(4.17)

Second step:
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uj+1 = uj +∆t

(
Du
Dt

)j+1/2
rj+1 = rj+1/2 + 0.5∆tvj+1 (4.18)

Cj+1 = Cj+1/2 + 0.5∆t
(
DC

Dt

)j+1/2
ρj+1 = ρj+1/2 + 0.5∆t

(
Dρ

Dt

)j+1/2
where the indices j, j+ 1/2 and j+ 1 denote the values at the start, hal-

fway and at the end of a step, respectively. The rate of change of density,
Dρ/Dt, and the particle acceleration, Du/Dt, are calculated from conti-
nuity (§3.2.1) and momentum equation (§3.2.2), respectively. The rate of
change of concentration, DC/Dt, is evaluated for diffusion phenomena
from Equations (4.7), (4.8), (4.9) or (4.10), for the cases of advective dif-
fusion using Equation (4.12), for the cases of reactive advective diffusion
using (4.13) and for the cases of reactive advective diffusion using (4.15).

The time step ∆t is evaluated considering the minimum value between
the Courant-Friedrichs-Levy (CFL) condition and a diffusion condition de-
rived from the viscous diffusion [71]:

∆t = min

(
CFL

ε

maxj
(
cj +

∥∥uj∥∥) ; 0.125
ε2

D

)
(4.19)

where 0 < CFL < 1.2 is the Courant number.
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The Chapter describes the main techniques for modeling solid bounda-
ries highlighting capabilities and drawbacks for each one. Furthermore, a
novel algorithm for the enforcement of upstream and downstream boun-
dary conditions based on inflow and outflow particles is presented.

5.1 free-surface boundary conditions
The free-surface boundary conditions can be easily handled by the SPH

method. Due to the Lagrangian character of the solver, the kinematic con-
dition is intrinsically satisfied. For the dynamic boundary condition, the
enforcement of null-pressure along the free-surface is satisfied implicitly
by the discrete SPH equations since these can be derived through a Lagran-
gian Variational Principle where the work done by the external pressure
field on the free surface is forced to be zero even at the discrete level (see
for more details [115], [52]). The implicit enforcement of the free-surface
dynamic boundary is one of the main advantages of the weakly compressi-
ble SPH method in comparison to other field solvers where this boundary
condition has to be forced directly.

5.2 solid boundary conditions
The boundary becomes an issue in SPH when dealing with solid boun-

daries. The enforcement of solid boundary conditions is a drawback for
the SPH while its features are an advantage in the cases of free boundary
conditions.

While the free surface does not require any specific treatment with SPH
(the particles move freely at the free surface), the solid-boundary treatment

41
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is a crucial point and exact free-slip/no-slip boundary conditions are diffi-
cult to obtain. This is because there are no specific fluid particles that stay
close to the boundaries. The physical values of the magnitudes to be for-
ced on them should come from interpolation with the neighbor particles
but this approach is unpractical.

Here some method to enforce solid boundary conditions are illustrated.

5.2.1 Repulsive Forces

Microscopically, solid structures are constituted by atoms which exert
forces on fluid. Inspired by this physical principle, wall can be modeled in
SPH theory by solid particles which exert repulsive forces on fluid particles
([69], [4]), ensuring thus wall impermeability. These solid particles are not
involved in the pressure gradient term of the momentum equation. Howe-
ver, if zero velocity at the wall is required, they contribute to the viscous
term in order to mimic no-slip conditions. The solid particles are immobile
or can define a mobile wall. In this last case, their velocity is equal to the
wall velocity: for instance, Monaghan [126] considered a moving lock gate
modeled by a set of moving wall particles.

Three types of forces among several are presented in this part: purely
repulsive forces, similar Lennard-Jones forces and normal forces. These
forces are added in right hand side of the momentum equation as external
forces

Purely repulsive forces

One of the most employed method to set boundary conditions in hy-
drodynamic simulations was introduced by Monaghan [4]. The method
was conceived as an inter-molecular repulsive force. Considering a boun-
dary and a fluid particle at the given distance r, the force between them is
defined as:

F1(r) = A1

[(r0
r

)P1
−
(r0
r

)P2] r

r2
(5.1)

The considered force F1(r) is set to zero for r > r0, and so is central
purely repulsive. In the same paper, Monaghan [4] suggest to use the
values P1 = 12 and P2 = 6 for the constants in (5.1) (the most important
features is P1 > p2). Moreover, while r0 is the scaling initial particle
distance in the repulsive force, A1 is a coefficient to be set for each different
problem. For a flow driven by the gravity, if H defines a characteristic
vertical length scale of the problem, a value of A1 around gH is suitable
[4].

Lennard-Jones forces

Another central solid force, inspired by Lennard-Jones interatomic force,
is presented. Contrary to the previous one, this force has an attractive core:
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F2(r) =


A2

[(
l
r

)m
−
(
l
r

)n]
if 0 < r < rc

A3 (R− r)2 +A4 (R− r) if rc < r < R

0 if r > R

(5.2)

where rc represents the distance which separates the attractive part from
the repulsive one of the force. Values of different parameters of Equation
(5.2) are defined by Monaghan [126]. One problem associated to central
forces is that they produce unphysical perturbations in the flow.

Normal repulsive forces

Monaghan faced the problem of the irregular force distribution over a
smooth plane given by the repulsive force expressed by Equation (5.1). The
new form of the repulsive force is defined by Monaghan and Kos [57] as:

F3

(
r//, r⊥

)
= n · R (r⊥) · P

(
r//

)
(5.3)

where F3 is the force per unit mass on a fluid particle, and it is evaluated
considering two different contributions. Considering the upper sketch in
Figure 5, the former is defined as a function of the normal distance r⊥
of the fluid particle from the boundary at hand; the latter is defined as a
function of the distance r// between the fluid and the boundary particles,
taken along the tangent. R (r⊥) is defined as:

Figure 5: Repulsive forces boundary conditions. On the top, distances between a
fluid particle (blue particle) and a boundary particle (red particles). On
the bottom, repulsive contributions of two boundary particles.
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R (r⊥) =

{
A5

1√
q (1− q) for r⊥ < dx

0 for r⊥ > dx
(5.4)

where q = r⊥
dx , A5 = 1

ε

(
β1c

2
0 +β2c0 uab ·na

)
. On the other hand,

P
(
r//

)
is a function set to balance the repulsive contributions from neigh-

bor boundary particles, in order to ensure that the repulsive force presents
a constant value at each point of the boundary line. The role of the P
function is explained by the lower sketch of Figure 5, and it is defined as:

P
(
r//

)
=

{
1
2

[
1+ cos

(
πr//
dx

)]
for r⊥ < dx

0 for r⊥ > dx
(5.5)

This kind of boundary conditions are easy to implement, fast in the
SPH computational time, and allow to model arbitrary shaped boundaries.
However, due to the constant value of the repulsive force along a boundary
line, particles in proximity of a boundary are induced to arrange along a
layer parallel to the boundary at hand.

One of the limit of this approach is represented by the calibration of
parameters which can cause particles disorder at the wall and unphysical
effects.

5.2.2 Bounce back

The bounce back boundary implementation is conceptually the simplest
method used to enforce boundary conditions within the SPH framework.
Particles that are identified as having come into contact with a solid boun-
dary are simply reflected back into the computational domain according
to Newton’s law of restitution (see Figure 6).

If the interaction between the boundary and the particle is assumed to
be perfectly elastic (corresponding to a coefficient of restitution equal to
one) then the linear momentum of the system will be conserved.

Figure 6: Bounce back method.
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The bounce back and repulsive force methods have the limit to induce
a missing kernel support area near the solid wall defining an inaccurate
gradient operator which provides non-consistent behaviour. It is necessary
a near-boundary kernel-corrected version [100] [101] to simulate long-time
simulations ideally suited for channel flow with accurate boundary condi-
tions.

5.2.3 Dummy Particles

Dummy particles are regularly distributed at the initial state and have
zero velocity through the whole simulation, while several layers of dummy
particles [62] are built as an extension of the particles surrounding the
solid boundaries to ensure the same order of discretization (in terms of
kernel compact support) for particles located close to those boundaries,
as for particles located in the core of the domain. This also makes the
coding simpler (e.g. for parallelisation) as the same scheme is used for all
particles with the only difference that wall particles fix their initial position
every time step. The number of dummy particle layers is decided from the
radius of the compact support (such that the kernel is not truncated for the
near-wall particles).

This approach has the drawback of use zero velocity particles and con-
sequently problems to enforce free-slip conditions.

5.2.4 Ghost Particles

Boundary conditions defined using ghost particles (successively used
by Colagrossi and Landrini [6]) reproduce part of the computational fluid
domain, which is close to the boundary at hand, symmetrically in a thin
layer with dimensions of the order O (ε), as sketched in Figure 7. Ghost
particles present density, pressure and velocity deduced from the fluid
particles. The mirroring rules are the followings:

rGa = 2rB − ra

uG⊥,a = 2UB − u⊥,a

uG//,a = u//,a (5.6)

pGa = pa − ρagz

where the sub-index a is referred to a generic fluid particle, the super-
index G is referred to the corresponding ghost particle, ⊥ and // are the
normal and the tangential velocity components to the boundary, which is
placed at the position rB. Figure 7 presents a simple reference sketch with
a boundary wall parallel to the y axis. For arbitrary shaped boundaries,
the particles mirroring has to be performed considering local normal and
tangent, making particular attention to particles mass balance between ou-
tside and inside the computational domain. As discussed in Colagrossi
and Landrini [6], Equations (5.6) permit to model free-slip boundary con-
ditions for plane boundaries allowing the enforcement of the Neumann
boundary condition, that is, ∂p/∂n = ρg · n where n is the normal unit
vector to the solid profile. Boundaries with curvatures need an extension
of the ghost particles technique [127] considering the local tangent plane.
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Instead, the tangential velocity component is

uG//,a = −u//,a (5.7)

for no-slip boundary conditions.
Enforcing uG//,a = 0 for linear and quadratic velocity, a singularity with

the inverse of the smoothing length in the viscous term arises [128].
We can summarize that the free-slip and no-slip (5.7) conditions give

good results as further discussed by Takeda et al. (1994) [70] and Morris et
al. (1999) [129].

5.2.5 Coupling of Repulsive Forces and Ghost Particles

Some authors (see e.g. [130], [131]) adopted the coupling of the normal
repulsive forces with the ghost particles. In particular the tangential velo-
city component of the ghost particles is evaluated through the relationship:

uG//,a = ψu//,a (5.8)

where ψ [0÷ 1] is a parameter to calibrate the bottom roughness. This
represents the main drawback of this technique and it can generate unphy-
sical effects.

Figure 7: Example of use of ghost particles to enforce no-penetration boundary
condition.
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5.2.6 Fixed Ghost Particles

In the present section, the enhanced treatment of the solid boundaries
within two-dimensional SPH schemes proposed by Marrone et al. [97] is
illustrated.

The solid boundary is modeled through fixed ghost particles firstly pro-
posed for a simple flat profile by Fang et al. [98] and extended by Mar-
rone et al. [97] for a generic solid profile. Differently from the classical
ghost particles that are instantaneous mirrors of the fluid particles with
respect to the body surface [6], the fixed ghost particles are associated to
interpolation points internal to the fluid through which they take the flow
properties. In this way, it is possible to enforce both Dirichlet and Neu-
mann conditions. In this approach the channel bottom is approximated
by points and normal and tangent unit vectors along the body are also
assigned. The normal vectors are assumed to be oriented out of the fluid
domain and the body points are equispaced with a prescribed interparticle
distance dx. Then, using the normal vector, the body points are reprodu-
ced out of the fluid at a distance dx/2 from the solid profile. These points
are the fixed ghost particles. In the same way but using a vector oppo-
site to the normal, each fixed ghost particle is mirrored inside the fluid.
These are the associated interpolation points of the fixed ghost particles
(see Figure 8). The procedure is repeated to cover the interaction radius of
the fluid particles. The main advantage of using the fixed ghost particles
instead of the classical ghost technique is that their distribution is always
uniform and does not depend on the fluid particle positions. Furthermore,
the use of a Moving Least Square interpolation technique [99] ensures an
accurate mirroring procedure of the flow quantities. Both free-slip and no-
slip conditions can be implemented along solid boundaries. In the former
case, the tangential component of velocity is maintained unaltered during
the mirroring procedure while, in the latter case, its direction is reversed.
In both the cases, the normal component of the fluid velocity is reversed
to avoid particles going across the solid profile. For what concerns the
assignment of the pressure field along the solid boundaries, the Neumann
boundary condition is enforced, that is, ∂p/∂n = ρg · n where n is the
normal unit vector to the solid profile.

Figure 8: Sketch of fixed ghost particles for the channel bottom.
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5.3 in/out-flow boundary conditions
The enforcement of in/out-flow boundary conditions in SPH context is

not trivial for particle methods. These kinds of conditions allow mode-
ling cases as open-channel flow where the imposition of upstream and
downstream velocity/pressure fields is necessary. Here, an algorithm for
simulating it is introduced.

5.3.1 A novel algorithm for simulating open-channel flows

In the present section the proposed algorithm for the enforcement of
in/out-flow boundary conditions is illustrated. In order to assign different
upstream and downstream flow conditions two new sets of boundary par-
ticles are defined. Four sets of particles are used: fluid (f), fixed ghost (s),
inflow (i) and outflow (o) particles. Similarly to the fixed ghost particles,
the in/out-flow particles affect the fluid particles but not vice versa. The
region covered by these particles is at least as wide as the kernel radius.

Figure 9 shows the initial sketch of the computational domain: different
colours are associated to different sets of particles. The flow extends along
the x-axis and is limited by an inlet and an outlet boundary. An inflow and
an outflow threshold are defined, the particles that cross these thresholds
change the set they belongs to.

The use of in/out-flow particles permits the imposition of different ve-
locity and pressure fields both upstream and downstream in the compu-
tational domain. As regards the water levels the upstream condition is
assigned while the downstream one is determined by the flow evolution.

The particles belonging to each set have been listed subsequently in only
one array. In this way all the particles interactions can be computed in just
one loop over the array elements. Figure 10a displays a generic configura-

Figure 9: Initial sketch of the computational domain: different colours are associa-
ted to different sets of particles.



tion of the whole particles array whereNi,Nf,No andNs are, respectively,
the number of inflow, fluid, outflow and fixed ghost particles. Figure 10b
shows how the algorithm works. Note that the algorithm is based on the
assumption that the fluid particles cannot enter the inflow region.

At each time step a loop over the whole particles array is performed in
order to find out the particles that exit from their belonging region. In
Figure 10b the symbols Ni,inflow, Nf,outflow and No,outlet are, respecti-
vely, the number of inflow particles that have crossed the inflow threshold,
the number of fluid particles that have crossed the outflow threshold and
the number of outflow particles that have crossed the outlet. For the sake
of simplicity these particles are represented in unique blocks even if in me-
mory they are actually spread over the array (these blocks are named i2,
f2 and o2 in Figure 10b). After the determination of the blocks (top panel
in Figure 10b), these change the set they belong to. In particular:

• The block i2 is moved to the fluid particles set and a new inflow
particles block of the same size (i0 in bottom panel in Figure 10b)
is created at the beginning of the array. The particles of this new
block have the x-coordinate equal to the inlet one and their velocity
and pressure are consistent with the enforced upstream boundary
conditions.

• The block f2 is moved from the fluid particles set to the outflow
particles set.

• The block o2 is deleted.

Since some particles are created and others are removed, the algorithm
procedure is performed at the end of each time step. This procedure allows
several hydraulic problems to be treated due to the possibility to enforcing
a wide range of different boundary conditions. The CPU time cost of the
present algorithm is approximately 1/10 respect to the computation of a
whole time iteration.

Figure 10: Configuration of the whole particles array (a). Array sketch showing
how the in/out-flow algorithm works at each step (b).
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In this Chapter the boundary conditions of coupling repulsive forces
and ghost particles discussed in §5.2.5 are tested for three dam-breaks on
sill generated by an instantaneous gate opening (less than 0.05s). The
SPH results are compared with experimental data [132]. In the experiment
smooth conditions were considered with a Manning’s roughness coeffi-
cient n = 0.01.

6.1 test case: dam-breaks on trapezoidal
sills

In SPH computations (see the three test cases above) the parameter ψ in
the Equation (5.8) is imposed 0.4 and the parameter A5 in (5.4) is:

A5 =
1

ε

(
0.01c20 + c0 uab ·na

)
(6.1)

Using these parameters the simulations are performed for a long time
of t = 15s, without any unphysical effect near the boundaries.

The simulations are performed adopting the flow equations of system
1 in §3.4 and imposing the following parameters: α = 0.03, εX = 0.3 and
c0 = 10

√
gH, where H is the initial depth of the water tank.

6.1.1 Test case 1

The first test is characterized by the presence trapezoidal sill located
downstream the channel. The horizontal channel configuration is reported
in Figure 11 and the geometrical lengths in Table 1.

For different times the particle configuration is reported in Figure 12.
The time evolution of the water depth compared with experimental results
for the gauges xg1, xg2 and xg3 is shown in Figure 13.

For the gauge xg1, it is note to worth a good agreement until to t =
10 s between numerical and experimental results. After that, the water
depth increase calculated by SPH has a time shifting with respect to the

53
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h1 = 0.35m x1 = 2.25m

x2 = 3.85m x3 = 0.40m

x4 = 0.10m x5 = 0.40m

z2 = 0.21m xg1 = 1.40m

xg2 = 2.25m xg3 = 3.40m

Table 1: Test case 1: characteristic lengths of the experimental set-up.

experimental values. As regard as the peak values of the water level, a
good agreement between numerical and experimental data is shown.

For the gauge xg2, in the first time stage, the decay of depth reaches a
lower value for the experimental results compared to the numerical ones.
After t = 11 s, the water depth increase evaluated through SPH has a time
shifting with respect to the experimental values. The peak value of the
water level at t = 7 s calculated by SPH underestimates the experimental
one.

For the gauge xg3, it is evident a good agreement between numerical
and experimental results. The two water depth increases (at t = 5 s and
t = 14 s approximately) calculated by SPH have a time shifting with respect
to the experimental values.

6.1.2 Test case 2

The second test is characterized by the presence of two trapezoidal sills,
one located downstream water block and the other downstream the chan-
nel. The horizontal channel configuration is reported in Figure 14 and the
geometrical lengths in Table 2.

For different times the particle configuration is reported in Figure 15.
The time evolution of the water depth compared with experimental results
for the gauges xg1, xg2 and xg3 is shown in Figure 16.

For the gauge xg1, it is note to worth a good agreement until between
numerical and experimental results. The two water depth increases (at
t = 8.5 s and t = 11 s approximately) measured by experiments are not
highlighted in SPH simulations.

For the gauge xg2, in the first time stage, the decay of depth reaches a
lower value for the experimental results compared to the numerical ones.

Figure 11: Test case 1: sketch of the experimental set-up.
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After that, it is evident a good agreement between numerical and experi-
mental data.

For the gauge xg3, the peak value of the water level at t = 5 s calculated
by SPH slightly overestimates the experimental one. After t = 9 s, the
water depth increase calculated by SPH has a time shifting with respect to
the experimental value.

6.1.3 Test case 3

The last test is characterized by the presence of a trapezoidal sill located
downstream the channel. The channel has a slope s0 and its configuration
is reported in Figure 17 and the geometrical lengths in Table 3.

For different times the particle configuration is reported in Figure 18.
The time evolution of the water depth compared with experimental results
for the gauges xg1, xg2 and xg3 is shown in Figure 19.

For the gauge xg1, it is note to worth a good agreement until between
numerical and experimental results.

Figure 12: Test case 1: SPH configurations for t = 0 s, 3 s, 6 s, 10 s and 15 s.
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For the gauge xg2, in the first time stage, the decay of depth reaches a
lower value for the experimental results compared to the numerical ones.

For the gauge xg3, it is evident a good agreement between numerical
and experimental results. The water depth increase at t = 8.5 s calculated
by SPH has a time shifting with respect to the experimental values.

Figure 13: Test case 1: comparisons between numerical results and experimental
data at three different gauges.

Figure 14: Test case 2: sketch of the experimental set-up.
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h1 = 0.34m x1 = 2.00m

x2 = 0.20m x3 = 0.10m

x4 = 0.20m x5 = 3.60m

x6 = 0.40m x7 = 0.10m

x8 = 0.40m z1 = 0.11m

z2 = 0.21m xg1 = 1.40m

xg2 = 2.25m xg3 = 4.50m

Table 2: Test case 2: characteristic lengths of the experimental set-up.

Figure 15: Test case 2: SPH configurations for t = 0 s, 2 s, 4 s, 10 s and 15 s.

h1 = 0.35m x1 = 2.25m

x2 = 3.85m x3 = 0.40m

x4 = 0.10m x5 = 0.40m

z2 = 0.21m xg1 = 1.40m

xg2 = 2.35m xg3 = 3.40m

s0 = 3.3 %

Table 3: Test case 3: characteristic lengths of the experimental set-up.
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Figure 16: Test case 2: comparisons between numerical results and experimental
data at three different gauges.

Figure 17: Test case 3: sketch of the experimental set-up.
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Figure 18: Test case 3: SPH configurations for t = 0 s, 2 s, 4 s, 10 s and 15 s.
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Figure 19: Test case 3: comparisons between numerical results and experimental
data at three different gauges.
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In this chapter the novel algorithm for the enforcement of upstream /
downstream boundary conditions presented in §5.3 is tested to two ca-
ses. Firstly, the model is applied to viscous free-surface channel flows
at low Reynolds numbers. The suitability of the in/out-flow algorithm
is shown comparing the obtained velocity field against the analytical Poi-
seuille solution in uniform flow (see e.g. [134]). Then the capabilities of
the algorithm are tested in non uniform flow through different upstream
and downstream conditions. A typical phenomenon is the hydraulic jump,
that is characterized by sharp discontinuities at the water level and strong
dissipative effects. Varying the Froude number, different types of jumps
are obtained: undular, breaking undular and weak jump. The results are
validated with the classical hydraulic jump theory (see e.g. [7]) based on
the balance of the upstream and downstream pressure forces. The nu-
merical water depths are compared with the theoretical ones. Numerical
simulations are performed for a time interval long enough to reach steady
state conditions in order to check the stability and the convergence of the
model.

7.1 viscous free-surface channel flows in
laminar regime

In this section all the simulations are performed using the equations of
system 3 in §3.4.

Uniform, steady and laminar flow in a free-surface channel is a special
case of the Poiseuille flow (see e.g. [134]). The distribution of velocity u(z)
for two-dimensional channel flow is given by a second order equation:

u(z) =
ρgs0

2µ

(
2hz− z2

)
(7.1)

where g is the gravity acceleration, h is the free surface depth, s0 is the
bottom slope and z is the vertical abscissa whose origin is located at the
channel bottom.
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Figure 20: Sketch of the elementary fluid domain

The Reynolds number Re = ρUh/µ is evaluated with reference to the

average horizontal velocity U = 1
h

∫h
0 u (z)dz.

An elementary fluid domain h deep and 2h long with s0 = 0.001 is used
to perform simulations at different Re (see Figure 20). The fluid particles
are initialized with the analytical solution (7.1) and the value of c0 is set
equal to 10u (z = h). At each time step a consistent velocity profile (7.1) is
imposed on the in/out-flow particles. The initial and boundary conditions
are reported as follows:

uf (z, t = 0) = ui (z, t) = uo (z, t) =
ρgs0

2µ

(
2hz− z2

)
(7.2)

At the channel bottom no-slip conditions are imposed through the fixed
ghost particles where the velocity vectors of the fluid particles are reversed
for both normal and tangential components.

The simulations are carried out for a long enough time to let the fluid
particles of the initial configuration (t = 0) cross the whole fluid domain
at least once. The initial spatial resolutions of the simulations are dx1 =
h/125, dx2 = 2dx and dx3 = 4dx.

In Figure 21 the particles distributions at t (g/h)1/2 = 50 and100 for
Re = 10 are reported. The initial interparticle distance is dx3. The flow
occurs in almost parallel layers with a quite ordered particles distribution,
as expected for a viscous laminar regime.

The in/out-flow boundary conditions allow simulations to be carried
out in laminar regime up to Re of order O(102). It is shown in Figure 22

where at t (g/h)1/2 = 100 the streamline flow and the parabolic velocity
field are preserved for Re = 100 (Figure 22a) and Re = 200 (Figure 22b).

The comparison between the analytical solution (7.1) and the numerical
results is reported in Figure 23 at the middle of the domain (x = h) at
t (g/h)1/2 = 100 for Re equal to 10, 100 and 200. A good agreement bet-
ween the analytical and numerical velocity profile for dx1 can be observed.

In order to check the convergence of the numerical scheme of the propo-
sed in/out-flow algorithm heuristically, a mean square error

MSEP =
100

N

N∑
j=1

(
uaj − unj

uaj

)2
(7.3)
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Figure 21: Particles distributions and velocity field at t(g/h)1/2 = 50 (a) and
t(g/h)1/2 = 100 (b) for a free-surface channel flow in laminar regime.
The Reynolds number is Re = 10.

Figure 22: Particles distribution and velocity field at t(g/h)1/2 = 100 for Re = 100

(a) and Re = 200 (b).

Figure 23: Comparisons between analytical solution and numerical results at
t(g/h)1/2 = 100 and x = h for Re = 10, 100 and 200.
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Figure 24: Time variation of MSEP for dx1, dx2 and dx3 (Re = 10).

for the three spatial resolutions is evaluated, comparing the numerical ve-
locity profile at x = h with the analytical solution (7.1) for Re = 10. In
particular, ua and un are the analytical and numerical horizontal velocity,
respectively, and N is the number of velocity values at a given time.

Figure 24 shows an enlarged view of the convergence of the scheme.
Reducing the initial interparticle distance, the mean square errors decrease
and the order of convergence is 1.52. The errors are less than 3.5% for the
three spatial resolutions.

7.2 hydraulic jump
In this section all the simulations are performed using the equations of

system 2 in §3.4.
The hydraulic jump is a well known phenomenon in hydraulic engi-

neering generally exploited for the dissipation of energy below structures
such as spillways and outlets. Such structures are subjected to considerable
pressure fluctuations due to the dynamics of turbulence and the air entra-
pment inside the hydraulic jump. It occurs in channels whenever the flow
changes from supercritical (Fr > 1) to subcritical (Fr < 1) regime, being the
Froude number Fr = U/ (gh)1/2. The literature on the macroscopic featu-
res of the hydraulic jump is quite extensive (see e.g. [135] [136]). However,
many characteristics of the internal flow behaviour remain unanswered
since there are several difficulties in experiments caused by the intense
bubbly flow in the jump which does not permit efficient measurements
with recent techniques as LDV and PIV [137].

A hydraulic jump in a horizontal rectangular channel with frictionless
bottom has been considered. Figure 25 shows a sketch of a hydraulic jump
is displayed. The symbols Fr1 and Fr2 are the upstream and downstream
Froude numbers, h1 and h2 the conjugate water depths of the jump, U1
and U2 the mean horizontal velocity, and S1 and S2 the pressure forces.

In the literature (see e.g. [7] [138] [139] [137]), the hydraulic jump for
Fr1 < 2.5 is generally classified in different types: undular, breaking un-
dular and weak. The undular jump is formed by low supercritical in-
flow Froude number (1 < Fr1 < 1.2), and is characterized by undula-
tions of the water surface without vortex dynamics on the crests. For
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Figure 25: Sketch of a hydraulic jump with control volume.

1.2 < Fr1 < 1.6 − 1.7, the jump is breaking undular: small wave brea-
kings occur at the toe of the jump associated to vorticity generation. For
1.6− 1.7 < Fr1 < 2.5, a weak jump is formed: a series of rollers develop on
the surface of the jump even if the downstream water surface remains es-
sentially smooth. It should be noted that the ranges of the Froude number
given above for the various types of jump are not clear-cut but overlap to a
certain extent depending on local conditions. In the present work several
simulations of hydraulic jumps are performed varying Fr1 in the above
mentioned ranges.

As regards the experimental set up in horizontal channels, the hydraulic
jump is typically generated by a sluice gate. Moreover, in order to confine
the jump, a weir is generally placed in the channel downstream . However,
the simulation of these devices is not an efficient solution in the numerical
context. Indeed, particular care has to be taken to model the sluice gate
and the weir. If the weir is not present, a large computational domain is
needed (in SPH context see e.g. [140]). The use of the proposed in/out-
flow boundary conditions allows the sluice gate and the weir modeling to
be avoided.

SPH computations are performed using the following values: dx =
0.02h1, c0 = 10U1 and α = 0.02.

7.2.1 Hydraulic jump with initial condition no. 1

In this section two types of jump involving a 2D channel of length
L = 40h1 are simulated. The first case is an undular jump characterized
by Fr1 = 1.15, Fr2 = 0.87 and h2/h1 = 1.2. The second one is a weak jump
characterized by Fr1 = 1.88, Fr2 = 0.57 and h2/h1 = 2.2. The upstream
boundary conditions are assigned to velocity components, ui(t) = U1 and
wi(t) = 0, and water depth, zi(t) = h1, while the downstream ones are
imposed solely on velocity, uo(t) = U2 and wo(t) = 0. The initial condi-
tions are zf(t = 0) = h1, uf(t = 0) = U2 and wf(t = 0) = 0 where the
latter imposes subcritical regime (see Figure 26). The sub-indexes i, f and
o refer respectively to inflow, fluid and outflow particles.

When the steady state is reached the conservation of momentum requi-
res that upstream and downstream pressure forces, S1 and S2, applied at
the sections of the conjugate depths are equal. This implies the following
relation between h2, h1 and Fr1 (see e.g. [7]):
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Figure 26: Sketch of in/out-flow boundary conditions and initial condition no. 1.

Figure 27: SPH configuration for the undular jump (Fr1 = 1.15, Fr2 = 0.87 and
h2/h1 = 1.2) at t(g/h1)1/2 = 150. The colours represent the horizontal
component of the velocity field.

h2 =
h1

2

(
−1+

√
1 + 8Fr21

)
. (7.4)

With reference to the undular jump with h2/h1 = 1.2, as clearly shown
in Figure 27, the simulated jump at the steady state is a non-breaking
undular bore, as expected. The velocity field is uniform and smooth.

In Figure 28 the generation and propagation of the weak jump (h2/h1 =
2.2) up until reaching the steady state is shown. The dashed line repre-
sents the theoretical downstream water depth h2 evaluated through (7.4).
Figure 28a displays the generation of a "shock wave" upstream of the fluid
domain at t (g/h1)

1/2 = 1. It is caused by the sharp discontinuity between
the inflow velocity that is in supercritical regime and the initialized velo-
city of fluid domain that is in subcritical regime. Successively, the shock
wave propagates downstream generating other waves and raising the do-
wnstream water level as shown in Figure 28b at t (g/h1)

1/2 = 50. As soon
as the downstream pressure force equals and prevails on the upstream
one, the wave starts to propagate in the opposite direction (Figure 28c at
t (g/h1)

1/2 = 100). After approximately t (g/h1)
1/2 = 500, the hydrau-

lic jump reaches a steady state and the front position remains constant in
x-direction (Figure 28d).

In Figure 29 the time variation of the non-dimensional upstream and do-
wnstream pressure forces S1/

(
ρgh21

)
and S2/

(
ρgh21

)
for the weak jump

(h2/h1 = 2.2) is displayed. In Figure 30 the sketch for the determination
of the pressure forces is shown. The balance of S1 and S2 is evaluated con-
sidering two elementary volumes ∆x long upstream and downstream the
region within the jump is developed. This fluid region has a length 2∆xh
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Figure 28: SPH configurations for the weak jump (Fr1 = 1.88, Fr2 = 0.57 and
h2/h1 = 2.2) at t(g/h1)1/2 = 1, t(g/h1)1/2 = 50, t(g/h1)1/2 = 100

and t(g/h1)1/2 = 500. The colours represent the horizontal component
of the velocity.

Figure 29: Time variation of the upstream and downstream pressure forces adop-
ting the initial condition no. 1.
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Figure 30: Sketch for the determination of the pressure forces.

with ∆xh = 3(h2 − h1) (see e.g. [134]). The hydraulic jump front xh is de-
fined at each time as the x-abscissa where the water level is approximately
h1 + 0.8(h2 − h1) [58]. The upstream and downstream pressure forces are
evaluated by:

Sk =
1

2
g ρ̄k h

2
k + ρ̄k Ū

2
k hk

where the parameters are defined as:

ρ̄k =
1

N∆x

∑
a∈∆x

ρa Ūk =
1

N∆x

∑
a∈∆x

ua

with N∆x being the number of particles within each elementary volume.
The sub-index k is equal to 1 or 2 depending if it refers to the upstream or
downstream pressure force respectively.

7.2.2 Hydraulic jump with initial condition no. 2

Here a different initial condition is adopted with respect to §3.2.1 in or-
der to confine the hydraulic jump in a limited fluid domain and reduce
the computational cost. It is characterized by a discontinuity on water
depth and velocity. Figure 31 illustrates the initial and boundary condi-
tions, where h2 is the theoretical water level evaluated by (9). The channel
length is L = 20h1 and x1 = 7h1. In this way, the hydraulic jump quickly
reaches a steady state confined in the control volume, after a first transient
stage. This initial condition allows simulating different cases of jump at
increasing Fr1 without increasing the length of the fluid domain, which is
necessary when the initial condition no.1 is adopted.

Six types of jumps are studied varying the Froude numbers. The values
of Fr1, Fr2 and h2/h1 are reported in Table 4.

Due to the initial condition no. 2, all the six simulations start with a wa-
ter collapse caused by the discontinuity at the free surface. The generated
wave front starts to move downstream for a short time interval. After that
the front propagates in the opposite direction for the remaining time evo-
lution. After approximately t (g/h1)

1/2 = 100, the front position remains
constant along the x-direction and the hydraulic jump reaches a steady
state condition.
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Figure 31: Sketch of in/out-flow boundary conditions and initial condition no. 2.

h2/h1 Fr1 Fr2

1.5 1.37 0.75

1.7 1.51 0.68

1.8 1.59 0.66

1.9 1.66 0.63

2.1 1.80 0.59

2.2 1.88 0.57

Table 4: Upstream and downstream Froude numbers for the six hydraulic jumps
varying h2/h1.

In Figure 32 the horizontal velocity field of the considered cases are re-
ported for t (g/h1)

1/2 = 150. The simulated free-surface level downstream
of the hydraulic jump is compared with the analytical one (dashed line).

The six jumps cases are characterized by intense breakings at the free
surface with the generation of several vortical structures. In particular, in
the cases at h2/h1 = 2.1 and h2/h1 = 2.2, that simulate a weak jump,
a more violent dynamics and a non-smooth velocity field is observed, as
expected. A similar behaviour is observed both in laboratory experiments
(see e.g. [141]) as well as in numerical simulations (see e.g. [58]).

In Figure 33 the time variation of the non-dimensional pressure forces
using the initial condition n. 2 for the weak jump (Fr2/Fr1 = 0.31) is di-
splayed. As clearly shown, the value of S2/(ρ0gh21) is close to S1/(ρ0gh21)
already from the first stage allowing a balance between the two pressure
forces. Adopting this condition the steady state is reached significantly
before that using the initial condition no. 1.

In Figures 34-35, the time evolution of non-dimensional SPH water dep-
ths, z/h1, evaluated at two gauges are compared with the non-dimensional
theoretical downstream ones, h2/h1. The data are filtered eliminating the
high frequency oscillations due to the multi-splash cycles. This make it
easier to see the global behaviour of the free surface. In Figure 34 the plots
represent the water levels measured at the abscissa x1 = 7.0h1, where the
discontinuity of the initial conditions is located. At this position the free
surface elevation recovers the theoretical downstream water depth after a
first transient stage. Conversely, in Figure 35 the plots representing the
water levels measured at the outflow threshold, L = 20.0h1, remain close
to the analytical value h2/h1 for the whole simulation. This is also clear
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Figure 32: SPH configurations at t (g/h1)
1/2 = 150 for the considered hydraulic

jumps. The colours represent the horizontal component of the velocity.
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Figure 33: Time variation of the upstream and downstream pressure forces adop-
ting the initial condition no. 2.

in Figure 32 where the dashed line set at h2 overlaps with the free surface
at t (g/h1)

1/2 = 150.

7.3 concluding remarks
The algorithm for the enforcement of different upstream/downstream

boundary conditions presented in §5.3 has been successfully validated th-
rough the simulations of viscous free-surface channel flows in laminar re-
gime and hydraulic jumps. For the laminar viscous case the suitability
of the in/out-flow algorithm has been highlighted comparing the velocity
field with the analytical Poiseuille solution.

In the second cases, different types of jump have been simulated vary-
ing the Froude numbers. The numerical downstream water depths have
been compared to the theoretical ones. A particular initial conditions has
been adopted that permits to maintain the jump close to its initial posi-
tion without the use of any weir downstream. In this way it is possible to
set a suitable computational domain to study the details of the flow field
downstream the hydraulic jump.
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Figure 34: Comparisons between non-dimensional numerical water depths and
theoretical ones at x1 = 7.0h1.

Figure 35: Comparisons between non-dimensional numerical water depths and
theoretical ones at L/h1 = 20.0h1.



8 S I M U L A T I O N S O F T W O - P H A S E F L O W S

contents
8.1 Evolution of pollutant in water 73
8.2 Evolution of air in water 74

In this Chapter, the simulations refer to a circle bubble of pollutant and
air in still water. In the last years, this test has become a benchmark case.
It has been simulated by different authors (see e.g. [6], [130], [133], [5]) in
order to validate two-phase model.

Here, the simulations are performed for defining the effectiveness of the
implemented code. The studies in this Chapter are preparatory for the
computations of the next one where the implemented two-phase model
will be coupled to the proposed diffusion equations (see §4.2).

8.1 evolution of pollutant in water

A bubble of pollutant having density ρ2 = 500 kg/m3 in still water
(ρ1 = 1000 kg/m3) is considered. In the following the sub-indexes 1 and
2 are always refer to water and pollutant (or air in the next paragraph),
respectively.

The circle bubble has the centre at x0 = 0.72m and z0 = 0.48m, and
radius R = 0.24m. The measurements of the tank are B = 1.44m and
H = 2.4m (see Figure 36).

The adopted discrete equations are reported in §3.4 (system 1). Fur-
thermore, it is used the Tait’s equation (3.14) as state equation assuming
polytropic index γ = 7 both for pollutant and water. The initial sound
speed for water is evaluated through c0,1 = 14

√
gR as suggested by [5].

Being B = c20ρ0/γ the parameter in state equation (3.14) and imposing
B1 = B2, the pollutant sound speed assumes value c0,2 = 19.8

√
gR.

The other parameters are: α = 0.01, εX = 0.3 and dx = 0.01m. The walls
and the bottom of the tank are modeled through the enforcement of the
ghost particles (see §5.2.4).

The configuration of the bubble for t = 0 s, t = 0.5 s, t = 1.0 s and
t = 1.5 s is shown in Figure 37. Specifically, it notes the rising of pollutant
bubble in time evolution caused by the different densities between the
fluids. A gradual deformation of the circular shape is evident accompanied
by a progressive flattening of the upper face until the bubble is shaped like
an umbrella.

The numerical results are validated through a comparison with the ana-
lytical solution by Batchelor [111] that define the upper position of the
bubble:
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z(t) = zs +
1

2

√
g
ρ1 − ρ2
ρ1

R t (8.1)

where zs = 0.72m is the maximum z-coordinate of the bubble at t = 0 s.
The comparison between SPH and analytical results is reported in Figure
38. A underestimate of the upper face can be observed in the first stage.
Then, a progressive agreement between SPH results and Batchelor solution
is evident.

8.2 evolution of air in water

Here, it is considered an air bubble having density ρ2 = 1 kg/m3 in
still water. The geometries of the bubble and the tank are the same of the
previous case (see Figure 36).

In this case, the Grenier et al. [5] SPH discrete formulations is adopted
(see system 4 in §3.4). Furthermore, it is used the Tait’s equation (3.14)
assuming polytropic index γ = 7 for water and γ = 1.4 for air. The initial
sound speed for water is evaluated through c0,1 = 14

√
gR (see [5]). Being

B = c20ρ0/γ the parameter in state equation (3.14) and imposing B1 = B2,
the air sound speed assumes value c0,2 = 198

√
gR.

The other parameters are: χ = 0.08, εX = 0.3 and dx = 0.01m. The walls
and the bottom of the tank are modeled through the enforcement of the
ghost particles (see §5.2.4).

The configuration of the bubble for t = 0 s, t = 0.2 s, t = 0.5 s and
t = 0.7 s is shown in Figure 39. Specifically, the rising of bubble occurs
faster than the previous case. The bubble shows a strong deformation to
take a horseshoe shape, and at t = 0.7 s splits into three main parts. Also in
this case the numerical results are validated through a comparison with the

Figure 36: Sketch of the bubble in tank and adopted nomenclature.
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analytical solution by Batchelor (8.1). The comparison between SPH and
analytical results is reported in Figure 40. After a first slight underestimate
of the bubble upper face, it notes a good agreement between SPH and
analytical results.

Figure 37: 2D evolution of pollutant circular bubble in still water at t = 0.0s, t =

0.5s, t = 1.0s and t = 1.5s.

Figure 38: Time evolution of upper face for pollutant bubble: comparison between
numerical results and analytical solution.
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Figure 39: 2D evolution of air circular bubble in still water at t = 0.0s, t = 0.2s,
t = 0.5s and t = 0.7s.

Figure 40: Time evolution of upper face for air bubble: comparison between nume-
rical results and analytical solution.
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In this Chapter, several test cases of diffusion, advective diffusion and
reactive diffusion processes are simulated in order to validated the equa-
tions derived in Chapter 4. The tests refer to strips and bubbles of pollutant
with different density in still water. Numerical simulations using the pro-
posed SPH diffusion model are compared with the lagrangian models of
Zhu and Fox [89] [90] and Monaghan [104], and with analytical solutions

9.1 diffusion of pollutant in water
The present section reports some two-phase SPH numerical simulations

applied to molecular diffusion phenomena. The proposed SPH diffusion
model (Equation 4.7) is compared with diffusion models of Zhu and Fox
[89] [90] and Monaghan [104], and with analytical solutions derived by
the classical diffusion equation as a function of the adopted geometry and
the initial concentration law of the pollutant. When the contaminant has
the same initial density as the water (ρ0 = 1000 kg/m3) and the diffusion
coefficient is assumed constant during the evolution of the concentration
field, SPH diffusion forms proposed by Zhu and Fox [89] [90] and Tartako-
vsky and Meakin [91] furnish coincident results. These two SPH models
expressed by Equations (4.8) and (4.9) give different values of concentra-
tion when the pollutant density is significantly different and the diffusion
coefficient is variable along the computational domain.

The numerical simulations are addressed to evaluate the spatial evolu-
tion of the concentration field in still water conditions. The process is cha-
racterized by fickian diffusion for a two-phase pollutant-water flow. Three
numerical tests in a water tank have been performed:

• A vertical strip of pollutant with initial constant concentration and
limited length;

• A vertical strip of pollutant with initial exponential concentration law
along the whole depth of the water tank;
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Figure 41: Geometry of the computation domains and initial concentrations for the
three diffusion test cases.

• A circular bubble of contaminant with initial exponential concentra-
tion law.

Figure 41 shows a sketch of the geometries of the water tanks and the
pollutants, and the shape of the assumed initial concentration laws. More
detailed information on the adopted domains and the characteristics of
the pollutants and the concentrations can be found in the following sub-
sections.

The SPH fluid mechanics equations used in these simulations are repor-
ted in §3.4 (system 1). In order to optimize the numerical simulations a
sensitivity analysis has been performed. On this basis the model para-
meters have been selected as follows. The parameter α involved in the
artificial viscosity is equal to 0.01. In order to reduce the fluctuations of
the velocity field the XSPH parameter εX is assumed equal to 0.1. The
initial sound speed c0 is taken as equal to 10

√
gh, where h is the depth

of the water tank. The time step ∆t is computed by setting the Courant
number CFL equal to 1.2. The periodic re-initialization of the density is
applied every 25 time steps to give a smoother pressure field.

9.1.1 Strip of pollutant with initial uniform concentration.

The first numerical simulation refers to a finite vertical strip of tracer
within a rectangular water tank (see Figure 41a). The width of the strip is
equal to the size of the pollutant particles. The tank is b = 0.4 m and h = 1

m and the length of the strip is equal to 0.11 m, located at x0 = 0.2 m and
ranging from z1 = 0.44 m to z2 = 0.55 m (see Figure 41a). The pollutant
has an initial constant concentration C0 = 1 kg/m3 and the initial water
concentration is set equal to 0. The diffusion coefficient D is equal to 10−4

m2/s. Numerical simulations are carried out using water and pollutant
particles of size dx = 0.01 m.

Referring to the x-position of the pollutant, the time evolution of the con-
centration field along z coordinate using SPH models (Equations 4.7, 4.8
and 4.10) is compared with the following analytical solution derived from
the classical diffusion equation (Equation 4.1) as a function of the length
and the initial constant distribution of the contaminant concentration:



9.1 diffusion of pollutant in water 79

Figure 42: Comparisons between SPH diffusion models and analytical solution of
the concentration field for a strip of pollutant with initial constant law
(t = 1.00 s and 2.00 s).

C (z, t) =
C0

2
erfc

(
z1 − z√
4Dt

)
for z 6 z0 (9.1)

C (z, t) =
C0

2
erfc

(
z− z2√
4Dt

)
for z > z0 (9.2)

where z0 = 0.495 m.
Figure 42 shows the comparisons of the proposed SPH diffusion formu-

lation (red dots), the SPH diffusion models developed by Zhu and Fox [89]
[90] (blue triangles), the results by Monaghan [104] (green squares), and
the analytical solution expressed by Equations (9.1) and (9.2) (black line).
The concentration field induced by an initial uniform distribution of pollu-
tant in water for t = 1.00 s (Figure 42a) and 2.00 s (Figure 42b) is plotted.
Starting from an initial concentration field having a rectangular shape the
process shows a progressive reduction in the values of the concentration
and a consequent symmetrical diffusion along the z-direction. SPH simu-
lations using the present Lagrangian formulation of the diffusion equation
and the solution by Zhu and Fox [89] [90] are in better agreement with
the analytical solution. In this test the proposed model highlights a small
underestimate of the concentration for the observed time window with
respect to the model proposed by Zhu and Fox [89] [90], which however
shows a small time shift for smaller values of C. A less refined estimate
of the concentration values is given by the SPH formulation proposed by
Monaghan [104]. This behaviour derives from a formulation characteri-
zed by a very small rate of change in the concentration with a consequent
negligible decay of diffusion.
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9.1.2 Strip of pollutant with initial exponential concentration.

This numerical test refers to the evolution of the concentration field in-
duced by a vertical strip with a length equal to the depth of the water tank
and a width equal to the size of the contaminant particles (see Figure 41b).
As in the previous case, SPH simulations have been performed with parti-
cles having dx = 0.01 m. Using an initial exponential distribution of the
concentration field of the pollutant:

C (z, t = 0) = exp

[
−

(z− z0)
2

4Dt0

]
(9.3)

the analytical solution of this diffusion problem is expressed as follows:

C (z, t) =
c0√
t+ t0

exp

[
−

(z− z0)
2

4D(t+ t0)

]
(9.4)

where t0 = 1 s, c0 = 1 kgs1/2/m3 and D = 10−4 m2/s.
Figure 43 shows the plots of the concentration field of a two-phase

pollutant-water flow at t = 1.00 s (Figure 43a) and 2.00 s (Figure 43b) ob-
tained by SPH diffusion models versus the analytical solution expressed
by Equation 9.4. The plots refer to the vertical middle section of the tank.
The concentration has initially a gaussian shape and its evolution shows
a progressive decay of all the values. As in the case of the initial uniform
concentration (see Figure 42) the symmetry with the respect to the peak
value of the concentration is time preserved. With reference to the analyti-
cal solution the use of the proposed SPH diffusion model furnishes in this
case better results than the different Lagrangian diffusion formulations. In
particular the SPH diffusion form proposed by Zhu and Fox [89] [90] ove-
restimates the maximum values of concentration and underestimates the
lower values. The rate of change of the concentration obtained by this
formulation proves to be twice the value furnished by the proposed SPH
model. As observed for the strip with initial uniform concentration, SPH
diffusion modelling by Monaghan [104] exhibits a very small decrease in
the diffusion process.

9.1.3 Bubble of pollutant with initial exponential concentration.

In this test the concentration field of a circular bubble of pollutant in a
square water tank, having the centre at x0 = 1.2 m and z0 = 1.2 m and
radius r = 0.2 m, is simulated. The measurements of the tank are B = 2.4
m and H = 2.4 m. The fluid particles have an initial interparticle distance
equal to 0.03 m. The diffusion coefficient is equal to 10−3 m2/s. The ini-
tial concentration follows the exponential law expressed by Equation (9.3)
along the radius of the bubble, exhibiting an axial symmetric reduction
from the centre to the boundary (see Figure 41c).

The comparison of the evolution of the concentration between the SPH
diffusion models and the analytical relationship expressed by Equation 9.4
are plotted along z in Figure 44a and b for t = 1.00 s and 2.00 s, respectively.
Also in this case the symmetry of the phenomenon and a gradual decay of
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Figure 43: Comparisons between SPH diffusion models and analytical solution of
the concentration field for a strip of pollutant with initial exponential
law (t = 1.00 s and 2.00 s).

the concentration is observed. The present numerical results show the bet-
ter performance of the proposed SPH diffusion model in comparison with
the other diffusion models. In this case the behaviour of the model propo-
sed by Zhu and Fox [89] [90] appears to be more accurate with respect to
the case of the strip (see Figure 43). Monaghan’s model [104] shows the
same limitations as the previous numerical tests.

Finally, a comparison based on the maximum value of concentration
(Cmax) between the proposed diffusion model and the analytical solution
is shown (see Figure 45) varying the diffusion coefficient D in the range
10−3 ÷ 10−4m2/s.

It notes that in a first stage a slight overestimate occurs. After that, a
good agreement between numerical and analytical results is clearly shown.

9.2 reactive diffusion of pollutant in wa-
ter

9.2.1 Bubble of pollutant with initial exponential concentration.

Another case based on kinetics reaction is performed considering a pol-
lutant bubble in a still water tank having the same features of the previous
one (see Figure 41c).

Here, the reactive diffusion SPH equation introduced in §4.2.3 is com-
pared with the analytical relationship derived by the classical diffusion
equation (Equation 4.1) and adding a first-order kinetics reaction:

C (z, t) =
c0√
t+ t0

exp

[
−

(z− z0)
2

4D(t+ t0)

]
exp[−RC] (9.5)

where the reaction coefficient is evaluated through the Lewis-Whitman
theory [123]: R = D/δ, being δ = 2ε the mixing layer and ε the length
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Figure 44: Comparisons between SPH diffusion models and analytical solution of
the concentration field for a bubble of pollutant with initial exponential
law (t = 1.00 s and 2.00 s).

Figure 45: Maximum concentration curves Cmax: comparison between SPH and
analytical results varying the diffusion coefficient.



9.3 advective diffusion of pollutant in water 83

of the compact support of kernel (see §4.2.3). A sketch representing the
mixing layer for the bubble of pollutant is shown in Figure 46.

Figure 46: Sketch of the mixing layer for the bubble of pollutant.

Also in this case the comparison is based on the maximum value of
concentration (Cmax). The simulations referred to D = 10−3m2/s are re-
ported in Figure 47, where the reactive diffusion SPH results (named "SPH
RD Eq." in Figure 47) are compared with the analytical one ("Analytical so-
lution RD Eq." in Figure 47). Also in this case after a first stage, it notes a
good agreement between numerical and analytical solutions. Furthermore,
it is evident a decay caused by the negative reaction that reduce the maxi-
mum values of concentration in comparison with the maximum diffusion
curves (named "Analytical solution D Eq." and "SPH D Eq." in Figure 47).

9.3 advective diffusion of pollutant in wa-
ter

Numerical modelings dealing with advective diffusion phenomena of
two-phase flows using a wide range of pollutant densities less than the
water are reported here. The tests refer to the problem of a circular bubble
of pollutant in a square water tank. SPH results obtained by the proposed
SPH model in the solution of the advective diffusive equation expressed
by Equation (4.12) are compared with available analytical relationships.
For the following simulations the water tank, the radius of the bubble,
the diffusion coefficient and the interparticle distance are the same as the
previous diffusion test case.

SPH simulations of advective diffusion tests have been carried using the
following model parameters: α = 0.01, ε = 0.1, CFL = 1.2 and τ = 25.

Adopting again the initial exponential concentration field along the ra-
dius, the analytical solution of the advective diffusion equation problem is
expressed as follows [119]:
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Figure 47: Maximum concentration curves Cmax: comparison between SPH and
analytical results considering diffusion and reactive diffusion processes.

C (x, z, t) =
c0√
t+ t0

exp

[
−

(x− x0)
2

4D(t+ t0)
−

(z− z0 − Vt)2

4D(t+ t0)

]
(9.6)

where t0 = 1 s, c0 = 1 kgs1/2/m3 and V is the vertical mean velocity of
the pollutant, evaluated analytically by the following relationship [111]:

V =
1

2

√
g
ρ1 − ρ2
ρ1

r (9.7)

This analytical solution of V has been verified with a numerical solution
based on a two-phase SPH modeling carried out in Chapter 6.

As observed above, if the density ratio between pollutant and water is
not close to 1, the evolution of the concentration in still water conditions
is characterized by the phenomenon of fickian diffusion and the contribu-
tion of natural advection has to be added. This process requires that the
kinematic field be taken into account for a correct modeling of advective
diffusion phenomena. The use of the simple SPH diffusion model (see
Equation 4.7), like the other diffusion formulations, does not perform well
in the evaluation of the contribution of the velocity field induced by diffe-
rences between the fluid densities. The SPH diffusion formulation allows
only a part of the general phenomenon of advection diffusion to be consi-
dered. For t = 0.00 s (black dots), 0.20 s (red triangles) and 0.50 s (blue
squares), Figure 48 highlights the limitations of a SPH diffusion modeling
to simulate accurately the evolution of the concentration field induced by
a two-phase contaminant-water flow having low density ratios. In particu-
lar SPH simulations using Equation (4.7) are compared with the analytical
solution expressed by Equation (9.6) (black, red and blue line) for a den-
sity ratio ρ2/ρ1 = 0.3. The values of the simulated concentration are time
shifted and a poor evaluation of the maximum values with respect to the
analytical relationship is found.
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Figure 48: Comparisons between the proposed SPH diffusion model and analytical
solution of the concentration field for a bubble of pollutant with initial
exponential law and ρ2/ρ1 = 0.3 (t = 0.00 s, 0.20 s and 0.50 s).

An improvement in the evaluation of the concentration field for a wide
range of density ratios can be performed using the proposed SPH model
for the solution of the advective diffusion equation (see Equation 4.12). Fi-
gure 49 shows the comparison between SPH advective diffusion model
and the analytical solution expressed by Equation (9.6). SPH simulations
prove to be now in better agreement with the analytical equation with re-
spect to the simple SPH diffusion model, exhibiting a reduced time shift
and determining the peak values accurately. The movement of the pollu-
tant mass is dependent on the natural advection phenomenon induced by
low density ratio between the fluids. In order to check the capabilities of
the present SPH advective diffusion model, another comparison between
the model and the analytical solution is reported in Figure 50 for t = 0.00
s, 0.20 s and 0.50 s, and ρ2/ρ1 = 0.5.

For a bubble of pollutant in water with an initial exponential concentra-
tion, Figure 51 a and b show in the 2D domain the initial spatial arran-
gement of the fluid particles and the concentration field simulated by the
proposed SPH advective diffusion model for t = 0.00 s and ρ2/ρ1 = 0.5.
Figure 52 a and b and Figure 53 a and b report the spatial distribution of
the particle with the associated velocity vectors, and the concentration field
for successive times equal to 0.20 s and 0.50 s. In Figures 51, 52 and 53,
blue dots and arrows are referred to the water particles and their velocity
magnitude, red dots and arrows to the pollutant. SPH numerical simula-
tions describe the arising and the deformation of the bubble in the water
tank induced by the different density between pollutant and water. The
kinematic field shows a progressive increase, emphasizing the importance
of taking into account the velocity to model an advective diffusion process.
The concentration field evolves following the movement of the bubble, re-
sulting in a progressive asymmetric shape along the depth. A gradual
deformation of the boundary of the concentration field and a temporal de-
cay of all values can be observed. A consequent growth in the pollutant
concentration for the particles having an initial concentration close to 0 is
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Figure 49: Comparisons between SPH advective diffusion model and analytical
solution of the concentration field for a bubble of pollutant with initial
exponential law and ρ2/ρ1 = 0.3 (t = 0.00 s, 0.20 s and 0.50 s).

Figure 50: Comparisons between SPH advective diffusion model and analytical
solution of the concentration field for a bubble of pollutant with initial
exponential law and ρ2/ρ1 = 0.5 (t = 0.00 s, 0.20 s and 0.50 s).
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Figure 51: Two-dimensional spatial distribution of particle velocities and concen-
tration field of a bubble of pollutant with initial exponential concentra-
tion for ρ2/ρ1 = 0.5 (t = 0.00 s).

Figure 52: Two-dimensional spatial distribution of particle velocities and concen-
tration field of a bubble of pollutant with initial exponential concentra-
tion for ρ2/ρ1 = 0.5 (t = 0.20 s).

also produced. For the analyzed time intervals the water particles are not
influenced by the advective diffusion process but they play an important
role in the transport of the contaminant mass.

Figure 54 shows at t = 0.00 s, 0.20 s and 0.50 s a three-dimensional view
of the evolution of the concentration field having an initial exponential
concentration for ρ2/ρ1 = 0.5. The concentration tends to propagate follo-
wing the movement of the pollutant. The decrease in the concentration is
associated to a radial expansion within the water tank.

The performances of the proposed SPH diffusion model (Equation 4.7)
and the advective diffusion model (Equation 4.12) in simulating an advec-
tive diffusion phenomenon are investigated for density ratios between pol-
lutant and water ranging from 0.1 and 1. These SPH models are compared
with the analytical solution of the advective diffusion equation (Equation
9.6) on the basis of the root mean square error:
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Figure 53: Two-dimensional spatial distribution of particle velocities and concen-
tration field of a bubble of pollutant with initial exponential concentra-
tion for ρ2/ρ1 = 0.5 (t = 0.50 s).

Figure 54: Three-dimensional view of the evolution of the concentration field of a
bubble of pollutant with initial exponential concentration for ρ2/ρ1 =

0.5 (t = 0.00 s, 0.20 s and 0.50 s).



9.4 concluding remarks 89

Figure 55: Root mean square errors vs. density ratios between pollutant and water
(t = 0.20 s and 0.50 s).

eRMS =

√√√√ 1

(N− 1)

N∑
j=1

(
Caj −Cnj

)2 (9.8)

where Ca and Cn are the analytical and numerical concentrations, respec-
tively, and N is the number of the concentration values at a given time
instant.

Figure 55 a and b show the percentage values of eRMS as a function
of the density ratio between pollutant and water for t = 0.20 s and 0.50 s,
respectively. It is worth noting that the simple SPH diffusion model ma-
kes comparable errors with respect to the SPH advection diffusion model
until about ρ2/ρ1 = 0.50 for t = 0.20 s, and ρ2/ρ1 = 0.8 for t = 0.50 s. The
reduction in the density ratio is directly related to an increase in the velo-
city field and, consequently, the SPH diffusion model gives a progressive
poorer evaluation of the concentration field. The use of the SPH advective
diffusion modeling furnishes lower values of eRMS. Thus, the contribu-
tion of the advective term plays a relevant role in the modeling of natural
advective cases. For the cases of advective diffusion in still water, the pre-
sent analysis shows that a simple SPH diffusion model is able to evaluate
only the first evolution of the process, in the presence of high values of the
density ratio.

9.4 concluding remarks
This Chapter is concerned with numerical models for the analysis of

diffusion and advective diffusion phenomena. The proposed SPH diffu-
sion formulation (see Chapter 4) has been coupled to the fluid dynamic
equations (see Chapter 3) with a description of diffusion, reactive diffu-
sion and advective diffusion processes, within the framework of the SPH
formalism. In this context a numerical meshless model has been develo-
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ped which allows the approximate description of molecular diffusion and
natural advection.

Environmental engineering problems, concerning diffusion and natural
advection of a pollutant in still water, have been studied. In particular,
the numerical simulations have been used to evaluate the evolution of the
concentration field of a strip and a bubble of pollutant in a water tank
starting from initial concentration distributions.

Numerical simulations of the concentration field induced by a two-phase
flow with the same density show that the proposed SPH diffusion model
is more accurate than other Lagrangian diffusion models. For relevant
differences between the fluid densities, the spatial evolution of the concen-
tration due to the coupled effect of fickian diffusion and natural advection
has been modeled with a SPH advective diffusion model which takes into
account the presence of a velocity field. The results obtained by this mo-
del show a good agreement with analytical solutions. The comparison of
the capabilities of the proposed SPH diffusion and advective diffusion mo-
dels in simulating an advective diffusion phenomenon for a wide range of
density ratios shows that a simple SPH diffusion formulation gives a sati-
sfactory modeling of the concentration field only for high density ratios.

The proposed SPH models could be extended to the turbulent diffusion
and dispersion processes for applications to large scale hydrodynamic pro-
blems.



10 C O N C L U S I O N S A N D F U T U R E
P E R S P E C T I V E S

The thesis treated Computational Fluid Dynamics based on particle me-
thods. The fully Lagrangian approach Smoothed Particle Hydrodynamics
(SPH) has been developed for two-phase flows and open-channel flows.
The model has been extended to research fields of environmental and ri-
ver hydraulic.

Firstly, an algorithm has been developed to treat upstream/downstream
boundary conditions for 2D open-channel flows in SPH context. For this
purpose two suitable sets of particles (in/out-flow particles) have been
defined allowing the enforcement of different upstream and downstream
flow conditions. As first test case, the proposed algorithm has been vali-
dated for a viscous laminar flow in open channel. The obtained results
have been compared with analytical ones in order to heuristically check
the convergence of the numerical scheme. The suitability of the in/out-
flow algorithm has been highlighted comparing the velocity field with the
analytical Poiseuille solution. The second test case has been dealt with a
hydraulic jump for which different upstream and downstream conditions
are needed. Several types of jumps, obtained varying the flow Froude
number, have been investigated with particular reference to the location
of the jump and the velocity field. Comparisons between the numerical
results and the classical theory of the hydraulic jump have been provided,
showing good agreements.

In the second part, the SPH model has been applied to evaluate the con-
centration field of pollutants in water. A Lagrangian formalism has been
formulated to solve the fickian diffusion equation considering pollutants
with the same density as the water. Furthermore, a SPH form of the advec-
tive diffusion equation has been also developed for pollutant-water, taking
into account the effects of molecular diffusion and natural advection indu-
ced by differences between the fluid densities. Numerical tests referring
to a strip and a bubble of contaminant in a water tank with different ini-
tial concentration laws have been carried out. The results obtained by the
proposed SPH models have been compared with other available SPH for-
mulations, showing an overall better agreement with standard analytical
solutions in terms of spatial evolution of the concentration values. Capa-
bilities and limits of the proposed SPH models to simulate advective dif-
fusion phenomena for a wide range of density ratios have been discussed.
The proposed SPH models could be extended to the turbulent diffusion
and dispersion processes for applications to large scale hydrodynamic pro-
blems.

As future perspectives, the capabilities of SPH model will be considered
in simulations of long 3D open channels. These kinds of simulations mean
an increase of computing costs that will be avoided through the extension
of SPH code from serial language to OpenMP parallel one. This will allow
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running code using millions of particles. Futhermore, the SPH method
will be applied to the Graphics Processing Unit (GPU) instead the Central
Processing Unit (CPU) in order to reduce considerably the running costs.
These computational improvements will be exploit for hydraulic simula-
tions of complex geometry channels and different upstream/downstream
boundary conditions. The first aim is to test the model for hydraulic jumps
in 3D open channels varying Froude number. Laboratory experiments
will be carried out in order to provide comparisons with numerical results.
Other comparisons will be provided adopting Eulerian CFD solvers.

Then, the model will be extended to several environmental hydraulic
cases. It will be simulated pollutant jets in free-surface channels in order
to evaluate the evolution dynamics that will be compared to experimen-
tal investigastions. Furthermore, the concentration field will determined
through the implementation of diffusion, advective diffusion and reactive
diffusion equations. Moreover, SPH results will be compared with other
CFD methods based on VOF (Volume-Of-Fluid) approach.

A further purpose will be the development of two-phase SPH model
for water-sediments interaction cases, taking into account stress tensor ef-
fects. Local scouring phenomena will be simulated for open channels in
uniform and non-uniform steady flows. Laboratory experiments will be
also performed in order to show comparisons with numerical scour depth.

Finally, the two-phase sediment-water model will be extended to fluvial
geomorphology problems. Plane large scale cases of river networks gene-
ration will be treated considering straight, meandering or braided paths.
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