
 

RIASSUNTO 

 

La presente Tesi di Dottorato affronta lo studio delle tematiche relative al 

Project Management e al Project Scheduling sotto incertezza. 

Il problema affrontato, che riveste un ruolo di notevole importanza sia dal punto 

di vista scientifico che dal punto di vista pratico, consiste nella determinazione 

di un piano temporale delle attività cositituenti un progetto (schedula), che tenga 

nel contempo conto della disponibilità limitata di risorse e della minimizzazione 

del tempo totale di completamento del progetto stesso (makespan). 

La schedula di progetto definita sulla base di dati deterministici può essere 

soggetta a numerosi cambiamenti, in ragione del fatto che molteplici fonti di 

incertezza investono l’intero ciclo di vita del progetto.  

La presente tesi si propone di fornire una serie di strumenti quantitativi, basati 

essenzialmente su framework della programmzaione stocastica, in grado di 

supportare la fase di pianificazione temporale di progetti soggetti ad incertezza. 

Nonostante il notevole interesse pratico ed applicativo della tematica affrontata, 

la letteratura scientifica riguardante il project scheduling sotto incertezza è 

ancora in fase embrionale. In particolare, risulta evidente la mancanza di una 

caratterizzazione probabilistica esplicita dell’incertezza e, come conseguenza, 

non vi è traccia di connesione di tale letteratura con l’ampio spettro di tecniche e 

metodi propri della branca della programmazione matematica sotto incertezza 

nota come programmazione stocastica. 

La presente tesi offre un contributo innovativo in tale direzione, e si colloca 

pertanto nel quadro internazionale come il primo tentativo di affrontare la 

tematica del projet scheduling sotto incertezza con il framework della 

programmazione stocastica.   

 Nell’intraprendere lo studio di questa tematica nel Capitolo 3 si è ipotizzato che 

le risorse fossero comunque disponibili quando richieste, al fine di semplificare 

il problema e concentrare l’attenzione sulla gestione dell’incertezza.  

In particolare il capitolo affronta il problema della caratterizzazione della 

funzione di distribuzione del makespan del progetto che, in condizioni di 

incertezza, può essere rappresentato da una variabile casuale con forma e 

caratteristiche non note. 

Partendo dall’ipotesi che le durate delle attività costituenti il progetto siano 

variabili aleatorie la cui funzione di densità sia nota o possa essere stimata, sono 

stati proposti due metodi esatti per la soluzione del problema descritto.  



L’efficienza dei due metodi propsti è stata poi testata su una batteria di problemi 

test tratti dalla letteratura e opportunamente modificati per tener conto 

dell’incertezza. 

La ricerca svolta ha come caratteristiche distintive il superamento 

dell’approccio basato sul valore atteso su cui ad esempio il noto PERT si basa, 

contestualmente con l’introduzione di un’ottica avversa al rischio che ben si 

adatta alla gestione dei progetti in ambiti fortemente dinamici e competitivi. 

Inoltre, in modo originale rispetto alla letteratura, si è rilassata l’ipotesi di 

indipendenza delle durate delle attività, rappresentate come variabili aleatorie 

dipendenti con funzione di distribuzione discreta. L’originalità e la rilevanza dei 

risultati ottenuti è confermata dalla pubblicazione dei risultati della ricerca su 

rivista internazionale (Evaluating project completion time in project networks 

with discrete random activity durations- Computers & Operations Research 

36(2009) 2716—2722). 

Consolidati i concetti e le tecniche appresi in questa prima fase di studio, si è 

generalizzato il problema aggiungendo i vincoli sulle risorse. 

Il problema in esame, noto in letteratura come Resource Constrained Project 

Scheduling problem –RCPSp- è stato oggetto di numerosi studi, finalizzati sia 

alla risoluzione del problema, nella sua versione deterministica. 

Lo studio del problema in condizioni di incertezza (Robust Project scheduling ) 

ha portato alla definizione di approcci per la determinazione di schedule robuste, 

capaci cioè di assorbire gli effetti di eventuali “disruptions”, ossia di eventi 

capaci di modificare la durata e/o l’assorbimento di risorse delle attività del 

progetto. Con il termine “robustezza della soluzione” o “stabilità della schedula” 

ci si riferisce alla differenza tra la schedula di base e la schedula che si è 

effettivamente realizzata. Tale differenza rappresenta una misura della 

performance dell’algoritmo usato per la definizione della schedula di base: 

l’obiettivo da perseguire è in questo caso non la minimizzazione del makespan 

bensì la generazione di una  soluzione che non venga deteriorata dal verificarsi 

di eventuali “disruptions” o eventi imprevisti.  

Diversamente dai contributi presenti in letteratura, nel Capitolo 4 la robustezza 

della schedula è introdotta nel modello sotto forma di vincolo probabilistico, 

piuttosto che come misura da effettuare a posteriori  con l’ausilio di tecniche di 

simulazione. 

Per la risoluzione di tale problema è stata proposta una metodologia euristica 

che ha quale punto di forza l’uso di un modello che integra le comuni euristiche 

per lo scheduling dei progetti con strumenti propri della programmazione 



stocastic. La metodologia proposta si pone come un’efficiente strumento di 

pianificazione da affiancare alle tradizionali procedure di pianificazione 

temporale dei progetti.  

La validazione del modello proposto è stata operata attraverso un’ampia fase di 

sperimentazione, considerando quale misura di robustezza il “livello di 

confidenza” della schedula reale, cioè la probabilità che il makespan 

programmato rimanga tale almeno in misura pari a tale livello.  

I risultati della ricerca hanno portato alla stesura di un articolo sottoposto a 

revisione internazionale ed attualmente in fase di terza revisione (A heuristic 

approach for resource constrained project scheduling with uncertain activity 

durations-sottomesso a Computers and Operations Research). 

 

Infine, il Capitolo 5 presenta un caso reale di applicazione delle metodologie 

definite per la risoluzione dei problemi prima descritti, un progetto riguardante 

la costruzione di residenze per studenti universitari. L’obiettivo perseguito è 

consistito nella validazione di tale metodologia quale strumento efficace di 

pianificazione e gestione dell’incertezza nei progetti di costruzioni civili ed edili. 

La metodologia quantitativa applicata, è stata definita con l’obiettivo di ottenere 

una schedula quanto meno sensibile alle inevitabili perturbazioni nello 

svolgimento delle attività del progetto. L’applicazione di tale metodologia si è 

avvalsa di un DSS che ha permesso di identificare, analizzare e quantificare 

l'affidabilità della schedula definita e l'impatto su di essa di possibili eventi 

inattesi.   

Siffatta metodologia si è quindi dimostrata più efficiente di quelle 

deterministiche comunemente usate, nello sfruttare le informazioni disponibili 

per fornire una pianificazione delle attività in condizioni di incertezza. Il valore 

aggiunto apportato da tale metodologia consiste nel rappresentare uno strumento 

in grado di supportare i manager nello sviluppo di una pianificazione delle 

attività progettuali efficace e realistica oltre a poter essere utilizzato come linea 

guida per il controllo e il monitoraggio dell’andamento del progetto. La ricerca 

condotta in questo Capitolo, ha portato alla stesura di un articolo accettato con 

revisioni minori in una rivista internazionale (A methodology for dealing with 

uncertainty in constructions projects-Engineering Computations). 
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Chapter 1  

Introduction 

The growing interest in the field of project management is confirmed by 

many new theories, techniques and computer applications designed to 

support project managers in achieving their objectives. Within project 

management, project scheduling aims to generate a feasible baseline 

schedule specifying, for each activity, the precedence and resource 

feasible start times used as a baseline for project execution. Baseline 

schedule helps manager to visualize project evolution, giving a starting 

point for both internal and external planning and communication.  

Careful project scheduling has been shown to be a key factor to improve 

the success rate of the project. A recent study by Maes et al. (2000) has 

found that inferior planning is the third reason of company failure in the 

Belgian construction industry. This struggles researchers to further develop 

new project scheduling methods. 

After the concepts of project management and project scheduling have 

been introduced, in the next section the standard problems in project 

scheduling will be shortly presented followed by a brief introduction of 

concepts of stable project scheduling. 

 

 

 



1.1. The Resource Constrained Project Scheduling 
Problem –RCPSP- 

 

The Resource Constrained Project Scheduling problem aims at minimizing 

the duration of a project subject to precedence and resource constrains in a 

deterministic environment. Precedence constrains are assumed belonging 

to the best-known type of precedence relationships, the finish-start zero-lag 

relationship. Subject to such type of constrains,  each activity is forced to 

start when all its predecessors have been completed. As far as  resources 

are concerned, we limit our dissertation on renewable resource constraints, 

assuming resources available on a period-by-period basis and for which 

only the total resource use in each time period is constrained for each 

resource type.  

Many exact and heuristic algorithms have been described in the literature 

to construct workable baseline schedules that solve the deterministic 

RCPSp, that has been shown to be NP-Hard in a strong sense. For 

extensive overviews we refer to Herroelen et al. (1998), Kolisch & Padman 

(1999), Kolisch & Hartmann (1999), Brucker et al. (1999) and 

Demeulemeester & Herroelen (2002).   

 

 

1.2.  Uncertainty in project scheduling 

In a real life context, project execution is subject to a considerable 

uncertainty. Uncertainty can originate from multiple source: resources can 

become temporarily unavailable (Lambrechts et al. 2007,2008) and Drezet 

2005), activities may have to be inserted or dropped (Artigues & Roubellat 

2000), due dates may change, activities may take longer or less long than 

original expected, etc. As a consequence, although usefulness of baseline 

schedule is unquestionable, project will never execute exactly as it was 

planned due to uncertainty. The common practice of dealing with these 

uncertainties by taking deterministic averages of the estimated parameters 

might lead to serious fallacies (Elmaghraby 2005).  

When duration of activities is assumed stochastic, we move to the field of 

stochastic RCPSp. A solution for the stochastic RCPSP needs to define the 



appropriate reactive action for every possible disruptive event during 

project execution, given the current state of the project and the a priori 

knowledge of future activity distributions. Möhring et al. (1984, 1985) call 

such a reactive way of generating a solution a scheduling policy or 

scheduling strategy: a policy makes dynamic scheduling decisions during 

project execution at stochastic decision points, usually corresponding to the 

completion times of activities. In pure dynamic  scheduling (Stork 2001), the 

use of schedules is even eliminated altogether.  

The absence of a schedule has some consequences from an economic 

point of view. The baseline schedule (pre-schedule, predictive schedule) 

namely serves a number of important functions (Aytug et al. 2005), Mehta 

& Uzsoy 1998), such as facilitating resource allocation, providing a basis for 

planning external activities (i.e. contracts with  subcontractors) and 

visualizing future work for employees. The baseline schedule needs to be 

sought before the beginning of the project as a prediction of how the project 

is expected to unfold. It has been observed, (Yang 1996), that using the 

baseline schedule together with a dispatching rule, i.e. proactive-reactive 

scheduling detailed in the following paragraph, often leads to a lower 

expected makespan than pure dynamic scheduling procedures. The 

following table distinguishes between three basic approaches for the 

development of a baseline schedule (Herroelen & Leus 2005). 

 

Baseline schedule  During project execution 

(i) No baseline schedule  

 

(ii) Baseline scheduling with no 

anticipation of variability 

 

(iii) Baseline scheduling with anticipation 

of variability  

(i) Dynamic scheduling   (scheduling policies) 

 

(ii) Reactive scheduling 

 

 

(iii) Proactive (robust) scheduling 

 

Table 1-1: Different methods for schedule generation under uncertainty 

 

1.3. Proactive VS Reactive project scheduling 

In general, there are two approaches to deal with uncertainty in a 

scheduling environment (Davenport and Beck 2002; Herroelen & Leus 

2005): proactive and reactive scheduling.  



Proactive scheduling constructs a predictive schedule that accounts for 

statistical knowledge of uncertainty. The consideration of uncertainty 

information is used to make the predictive schedule more robust, i.e., 

insensitive to disruptions. Reactive scheduling involves revising or 

reoptimizing a schedule when an unexpected event occurs. At one 

extreme, reactive scheduling may not be based on a predictive schedule at 

all: allocation and scheduling decisions take place dynamically in order to 

account for disruptions as they occur. A less extreme approach is to 

reschedule when schedule breakage occurs, either by completely 

regenerating a new schedule or by repairing an existing predictive schedule 

to take into account the current state of the system. 

It should be observed that a proactive technique will always require a 

reactive component to deal with schedule disruptions that cannot be 

absorbed by the baseline schedule. The number of interventions of the 

reactive component is inversely proportional to the robustness of the 

predictive baseline schedule. Many different types of robustness have been 

identified in the literature.  

In the next chapter, notations and definitions will be provided to formally 

describe the problem that will be tackled in the remaining chapters.



Chapter 2  

Definitions and Problem 
Formulation 

In this chapter, a definition of the proactive project scheduling problem is 

given. Section 2.1 introduces project representations that help us in 

illustrating the procedures that will be proposed in later chapters. 

Afterwards, we propose a rigorous definition of the concepts of quality and 

solution robustness, which both will be main issues throughout this thesis 

(Section 2.2). 

2.1. Project representations  

A project consists of a number of events and activities or tasks that have to 

be performed in accordance with a set of precedence and resource 

constraints. The deterministic expected duration of activity j will be 

expressed as dj, while in an uncertain scheduling environment, the 

stochastic activity durations will be denoted by dj. The activity-dependent 

weights used in this dissertation represent the marginal cost of starting 

the activity j later or earlier than planned in the baseline schedule. Once a 

project schedule has been negotiated, constructed and announced to all 

stakeholders, modifying this schedule comes at a certain penalty cost. This 

cost corresponds to the importance of on-time performance of a task to 

avoid internal and external stability costs. Internal stability costs for the 



organization may include unforeseen storage costs, extra organizational 

costs or just a cost that expresses the dissatisfaction of employees with 

schedule nervousness. Costs related to (renegotiating) agreements with 

subcontractors, penalty clauses, goodwill damages, etc. are examples of 

stability costs that are external to the organization. 

2.1.1. Project network 

A project network is a graphical representation of the events, activities and 

precedence relations of the project. A network is a directed graph G = (N,A), 

consisting of a set of nodes N={0,..,N} and a set of arcs A. The transitive 

closure of a graph G = (N,A) is a graph TG = (N, TA) which contains an 

edge from i to j whenever there is a directed path from i to j in the original 

graph. The main focus of the project network is the representation of the 

precedence relationships between the activities of the project. 

There are two network notation schemes commonly used in project 

scheduling. The activity-on-arc (AoA) representation uses the set of nodes 

N to represent events and the set of arcs A to represent the activities, while 

in the activity-on-node (AoN) notation scheme, the set N denotes the 

activities and the set A represents the precedence relationships. The arcs 

TA of the transitive closure TG = (N, TA) represent in this case all direct and 

transitive precedence relationships in the original network. Now we 

introduce a project that will be used as our vehicle for definition and 

problem formulation. Let consider a project consisting  of 10 activities 

(activity 0 and activity 9 are dummy activities representing the project start 

and finish) subject to finish-start, zero-lag precedence constraints and a 

single renewable resource constraint. The single renewable resource is 

assumed to have a constant per period availability a of 10 units. Expected 

activity durations dj , activity weights wj  and resource requirements are also 

given. Figure 2.1 denotes the AoN project network for the project described 

in Table 2.1. 

 



 
Figure 2-1: Example Project Network 

 

2.1.2. Project Schedule 

A schedule S is defined in project scheduling as a list S = (s0, s1, . . . , sn) of 

intended start times sj ≥ 0 for all activities j  N. A Gantt chart (introduced by 

H. Gantt in 1910) provides a typical graphical schedule representation by 

drawing the activities on a time axis. 

A schedule is called feasible if the assigned activity start times respect the 

constraints imposed on the problem. In deterministic project scheduling, a 

feasible schedule is a sufficient representation of a solution.  

 

 
Figure 2-2: A minimum duration schedule 

Figure 2.2 depicts a solution schedule for the example network presented.  

 



 

2.1.2.1. Baseline schedule 

A baseline schedule (pre-schedule or predictive schedule) is a list of activity 

start times generated under the assumption of a static and deterministic 

environment that is used as a baseline during actual project execution. 

A baseline schedule is generated before the actual start of the project (time 

0) and will consequently be referred to as S0.  

It serves a number of important functions (Aytug et al. (2005), Mehta & 

Uzsoy (1998), Wu et al. (1993)). One of them is to provide visibility within 

the organization of the time windows that are reserved for executing 

activities in order to reflect the requirements for the key staff, equipment 

and other resources. The baseline schedule is also the starting point for 

communication and coordination with external entities in the company’s 

inbound and outbound supply chain: it constitutes the basis for agreements 

with suppliers and subcontractors (e.g. for planning external activities such 

as material procurement and preventive maintenance), as well as for 

commitments to customers (delivery dates).  

 

2.1.2.2. Realized schedule 

A realized schedule ST  is a list of actually realized activity start times ST that 

is generated once complete information of the project is gained. 

The proactive-reactive scheduling decisions made during project execution 

influence the actually obtained realized schedule ST. In a stochastic 

environment, the realized schedule will thus typically be unknown before 

the project completion time T. We will refer to this stochastic schedule by ST. 

 

 

2.1.3. Resource usage and representations 

In resource-constrained project scheduling, project activities require 

resources to guarantee their execution. Multiple resource categories exist 

(Blazewicz et al. 1986) but in this thesis (as in the RCPSP), we will limit our 

scope to renewable resources that are available on a period-by-period 

basis and for which only the total resource use in each time period is 

constrained for each resource type.  



Every activity j requires an integer per period amount rjk of one or more 

renewable resource types k (k = 1, 2, ...,K) during its execution. The 

renewable resources have a constant per period availability ak. The 

resource constraints can thus be written as: 

  

in which Pt denotes the set of activities that are active at time t. 

The network (see Section 2.1.1) and schedule (see Section 2.1.2) 

representations of the project do not visualize the resource allocation. 

Hence, additional resource-based project representations are introduced in 

this section. 

2.1.3.1. Resource profile 

A resource profile is an extension of a Gantt chart that additionally indicates 

the variation in resource requirement of a single renewable resource type 

over time for each activity. Resource requirements and availability are 

denoted on the Y-axis. Each resource type requires its own resource 

profile. The resource profile for the single renewable resource type 

corresponding to the minimum duration schedule of Figure 2.2 is given in 

Figure 2.3. 

 

 
Figure 2-3: Resource profile for example project 

2.1.3.2. Resource flow network 

Artigues et al. (2003) define resource flow networks (or transportation 

networks) to identify the amount of resources transported from the end of 



one activity to the beginning of another activity after scheduling has taken 

place. fijk denotes the amount of resources of type k, flowing from activity i 

to activity j. The resource flow network is a network with the same nodes N 

as the original project network, but with arcs connecting two nodes if there 

is a resource flow between the corresponding activities, i.e. 

 

We define R as the set of flow carrying arcs in the resource flow network. 

The resource arcs in R may induce extra temporal constraints to the 

project. We remark that a schedule may allow for different ways of 

allocating the resources so that the same schedule may give rise to 

different resource flow networks. Not every feasible resource allocation 

implies an equal amount of stability.  

Relying on the one-pass algorithm of Artigues et al. (2003) to compose a 

resource flow network for the schedule of Figure 2.2, results in the resource 

flow network G = (N,R) presented in Figure 2.4. Activity 8, for example, has 

a per period resource requirement of six units. It uses three resource units 

released by its predecessor activity 5, two units passed on by activity 7 and 

one unit released by activity 6. The arcs (1,3); (3,7); (6,8), (7,6) and (7,8) 

represent extra precedence relations that were not present in the original 

network. The arc (7,9) was present in A, but is not drawn in Figure 2.4 

because there is no resource flow from 7 to 9. 

 
Figure 2-4: Resource flow network for the example project 

 



In the following figure, -Figure 2.5-, the resource profile of Figure 2.3 is 

reported to illustrate the use of the individual resource units along the 

horizontal bands. This project representation includes both the resource 

profile and the resource flow network and will thus become our preferred 

representation in the remainder of this dissertation if there is only one 

resource type, as is the case in the example network.  

 
Figure 2-5: Resource profile with resource allocation 

 

2.2. Robustness types and measures 

In Chapter 1, the concept of schedule robustness was mentioned as a 

schedule’s insensitivity to disruptions that may occur during project 

execution. Many different types of robustness have been identified in the 

literature, calling for rigorous robustness definitions and the use of proper 

robustness measures. Two often used types of single robustness measures 

have been distinguished: solution and quality robustness (Sörensen (2001), 

Herroelen & Leus (2005)). The main difference between quality robustness 

and solution robustness is that in the former case, it is the quality of the 

solution that is not allowed to change. This quality is usually measured in 

terms of makespan or due date performance.  

In the latter case, it is the solution itself that is not allowed to change.  

 



2.2.1. Solution robustness or schedule stability 

Solution robustness or schedule stability refers to the difference between 

the baseline schedule and the realized schedule. The difference or distance 

(S0, ST) between the baseline schedule S0 and the realized schedule ST for a 

given execution scenario can be measured as the number of disrupted 

activities, the difference between the planned and realized activity start 

times, and other different ways. 

For example, the difference can be measured by the weighted sum of the 

absolute deviation between the planned and realized activity start times: 

 

where  denotes the planned starting time of activity j in the baseline 

schedule S0, denotes the actual starting time of activity j in the realized 

schedule ST , and the weights wj represent the disruption cost of activity j 

per time unit, i.e. the non-negative cost per unit time overrun or underrun 

on the start time of activity j. 

In a stochastic environment, the realized activity starting times are 

stochastic variables  for which the actual realized values  for a given 

execution scenario depend on the disruptions and the applied reactive 

policy. The objective of the proactive-reactive scheduling procedure is then 

to minimize:    

with E denoting the expectation operator, i.e. to minimize the weighted sum 

of the expected absolute difference between the planned and the realized 

activity start times. 

2.2.2. Quality robustness 

Quality robustness refers to the insensitivity of some deterministic objective 

value of the baseline schedule to distortions. The goal is to generate a 

solution for which the objective function value does not deteriorate when 

disruptions occur. Contrary to solution robustness, quality robustness is not 

concerned with the solution itself, only with its value on the performance 

metric. It is measured in terms of the value of some objective function z.  

In a project setting, commonly used objective functions are project duration 

(makespan), project earliness and tardiness, project cost, net present 

value,etc. 



When stochastic data are available, quality robustness can be measured by 

considering the expected value of the objective function, such as the 

expected makespan E [Cmax], the classical objective function used in 

stochastic resource-constrained project scheduling (Stork 2001). 

It is logical to use the service level as a quality robustness measure, i.e. to 

maximize P(z ≤ z), the probability that the objective function value of the 

realized schedule stays within a certain threshold z. For the makespan 

objective, we want to maximize the probability that the project completion 

time does not exceed the project due date   n), where  

is a stochastic variable that denotes the starting time of the dummy end 

activity in the realized schedule. We will refer to this measure as the timely 

project completion probability (TPCP). It should be observed that also the 

analytic evaluation of this measure is very troublesome in the presence of 

ample resource availabilities. In the next chapter we introduce a new 

heuristic approach with the aim to evaluate project completion time with 

discrete random activity durations. 

 

 

 

  



 

Chapter 3  

Project Scheduling Under 
Uncertainty Of Networks With 
Discrete Random Activity 
Durations 

In real projects, defining a good schedule on the basis of deterministic 

processing times is usually inadequate, because these times are only 

estimates and are susceptible to unpredictable changes. Deterministic 

models for project scheduling suffer from the fact that they assume 

complete information and neglect random influences, that occur during 

project execution. A typical consequence is the underestimation of the 

project duration as frequently observed in practice, even in the absence of 

resource constraints. 

In this chapter a method for obtaining relevant information about the project 

makespan for scheduling models, with dependent random processing time 

available in the form of scenarios and in the absence of resource 

constraints is presented. 

 

 



3.1. State of the Art 

As previously discussed, real projects are subject to considerable 

uncertainty due to a number of possible sources. Resources may become 

unavailable, activities duration may experience some delay, new activities 

may be incorporated in the project or other activities may be even deleted. 

Amongst the full range of sources of significant uncertainty associated with 

any given project (Atkinson et al. 2006), an obvious aspect of uncertainty 

concerns estimates of potential variability of activity duration. In this 

context, our choice involves modeling processing times of activities as 

random variables. A very traditional issue with respect to stochastic 

networks is the derivation of the distribution or quantiles of the project 

completion time. This issue may be valuable in project management, 

particularly at the time of bidding, and has been the subject of investigation 

within both academia and industry. A great deal of research has been 

carried out on methodologies for estimating project time distributions. Due 

to the inherent difficulty of this task, two main distinct methodologies have 

been applied, that is the simulation approach (Van Slyke (1963), Sullivan & 

Hayya (1980), Herrera (2006), Shih (2005)) and the analytical approach 

(Dodin (1985), Hagstrom, (1990)). 

Other approaches focus on approximating either the expected completion 

time value (Fulkerson 1962) or the probability for completing the project 

within a given deadline (Soroush 1994) as tightly as possible. A 

comprehensive review of most of the earliest references is presented in 

(Elmaghraby 1989). For more recent results the reader is referred to Yao 

and Chu (2007) and references therein. Hagstrom (1988) showed that the 

problem of computing the probability that a project finishes by a given time, 

when activities durations are discrete, independent random variables, is 

NP-complete. 

 

3.2. Model Proposal 

We now present an efficient method to find quantiles of the distribution 

function when activities durations are dependent discrete random variables, 

or when a suitable discretization in the form of scenarios is available for 

continuous dependent random variables. The output can be used by a 



contractor to assess its capabilities to meet the contractual requirement 

before bidding and to quantify the risks involved in the schedule.  

In this case, the specification of a project is assumed to be given in activity-

on-arc (AoA) notation by a connected, directed acyclic graph G(N,A) 

(referred to as project network), in which N is the set of nodes, representing 

network “events”, and A is the set of arcs, representing network activities. 

We assume that there is a single start node 0 and a single terminal node n. 

When the durations of all the activities are constants, project managers 

may easily calculate the project completion time by the well-known critical 

path method. Let denote by 

 

the set of paths from the node 0 to the node n in G(N,A). The project 

makespan can obviously be defined as 

 

where  represents the length of the path from node 0 to node n. 

Suppose now that we want to estimate the project duration that will not be 

exceed with probability at least α, that is, we want to estimate the α-quantile 

of the makespan distribution function. This information can be obtained 

through the solution of the following problem: 

 

      (1) 

             (2) 

                                                            (3) 

 

where  represents the start time of event i and  is the random variable 

associated to the length of the path from the start node 0 to the terminal 

node n. We consider the starting time of node 0 equal to zero. 

The - quantiles of the makespan represents a project duration that, with a 

probability α, will not be exceeded. In fact, the joint probabilistic constraints 

assures that  

 

with probability at least α. 

This definition allows to address the decision-makers risk aversion, 

ensuring that the project’s operations are unaffected by major delays with a 

high level of probability. 



It is well known that the expectation criterion of the classical PERT model 

(Malcolm et al. 1959) is most appropriate for a risk-neutral decision maker. 

We trivially observe that reasoning on the basis of averages always results 

in an underestimate of the expected duration of the project and leads to a 

probability of exceeding the due date of the project near to 50%. Criticism 

against the use of averages has been raised in (Elmaghraby 2005), where 

a demonstration that gross errors can be made using the average as 

optimization criterion is reported. 

In order to account for possible risk averseness we use the joint 

probabilistic constraints (2). Such conservatism should be invoked when 

large potential gains and losses are associated with individual decisions 

(Schuyler 2001). 

It is worth while observing that the use of individual probabilistic constraints 

is not suitable for this problem, since  will normally be dependent even if 

the random arc weights are independent, because of common arcs. 

Therefore, we consider a formulation with joint probabilistic constraints 

involving dependent random right-hand side variables. This probabilistic 

constrained framework is well suited for this kind of problem and it is 

particularly useful when the penalty for the project to be completed late is 

very high or simply is not easily quantifiable. The use of chance constrained 

programming methods to examine some statistical properties of stochastic 

networks, is not completely new. 

Charnes et al. (1964) considered the following chance constrained model 

to characterize the distribution of total project completion time: 

 

      (4) 

             (5) 

                                                   (6) 

 

However we notice that the chance constraints paradigm is used, 

regardless the dependency among activities and paths, and in addition, 

since the stochastic precedence constraints are written in terms of the 

starting time of the preceding events, a dynamic problem is established, for 

which the use of a static stochastic programming problem should be 

prevented. 



The developed model differs from other approaches proposed in the 

literature in several aspects. 

 

• The methodology does not require any hypothesis on the distribution 

function of the activities durations. We only assume that a probability 

density function has been specified for each activity time and that a suitable 

discretization is available. Different distributions can be used to model 

different activity times. 

• Our model overcomes the limitation of stochastic independence among 

activities times. Often activities durations are correlated trough the common 

usage of resources or precedence relations. 

• Our model overcomes the limitation of stochastic independence among 

the paths of the network. Paths are in fact correlated via common activities 

and the correlation is treated explicitly in the use of joint probabilistic 

constraints  

• Unlike sensitivity analysis, we can account for the effects of simultaneous 

changes to multiple activity times. 

•  In the proposed model, by varying the reliability threshold, decision 

makers might acquire information about different alternatives and might 

choose the maximum probability of violating the project due date which is 

allowed to be tolerated. 

Finally, we would like to remark that the probabilistic paradigm is one of the 

most powerful prescriptive methodologies for decision makers, in that 

represents the global probability of violation of the constraints. Clearly, the 

most appropriate paradigm for project scheduling models under uncertainty 

is highly dependent on the specific project at hand. 

 

3.3. Solution Methods 

We consider a finite set of scenarios S = {1, . . . , |S|}, with associated 

probability ps, s = 1, . . . , |S|. Let us suppose that each edge (i, j) 

 (i, j)  has a vector of weights realizations . This 

not only renders the probabilistic problem tractable, but also allows the 

original data to be used without manipulations, since the variability in 

activity durations are indeed most often discrete. 



Relevant information based on past experience may be useful in this  

context. In other words, the actual probability distribution that applies during 

project execution is not known beforehand, and the discrete input scenarios 

form the best approximation available. Discrete scenarios have been used 

with similar motivations in (Herroelen & Leus, 2004 B). 

Problem (1-3) can be reformulated as follows: 

 

      (7) 

             (8) 

                                        (9) 

                                                (10)                                        

                                        (11) 

 

where the notation  stands for the length of the  path from node 0 to 

node n in scenario s and  is an indicator variable, which forces the 

constraints (8) to be satisfied if = 1 and allows the violation if = 0. 

Constraint (9) ensures the fulfillment of the constraints (8) for those 

scenarios, whose cumulative probability is greater than α. 

We observe that, given the particular structure of the problem, it can be 

rewritten as: 

 

      (12) 

             (13) 

                                        (14) 

                                                (15)                                        

                                         (16) 

 

The length of the maximum path can thus be viewed as a one-dimensional 

random variable z, with probability distribution function  

 

for which there is only one α-efficient point defined by 

 

Prékopa (1995). 

In the foregoing, we highlight how this model can be tackled from a 

computational point of view. The algorithm briefly described above, in the 

sequel referred to as Scenario Longest Path Algorithm (SLPA, for short), 



entails two main stages. In the first stage, for each scenario s = 1 . . . |S|, the 

longest path  from node 0 to node n in the project network G(N,A) is 

determined.  

Let  the |S| dimensional set of the longest paths in each 

scenario. Afterwards, the solution vector is arranged in increasing order of 

length. Let  with 

be such ordered set. The optimal solution is  where  is the 

smallest index such that 

. 

From the discussion above, it is easy to verify that the computational 

complexity of the overall procedure is O(|S||N |) + O(|S|log|S|) + O(|S|). 

It can be seen that if we consider edge weights independent random 

variables, the number of scenarios increases exponentially with the number 

of activities in the project network. In real contexts, however, the activities 

durations are often correlated leading to a reduction in the number of 

realizations to be considered. When the number of scenarios is huge, it is 

likely that the procedure would become cumbersome.  

Thus, we present a second algorithm, namely the All Paths Enumeration 

Algorithm (AllPEA, for short), based on the explicit enumeration of all the 

paths in the network. After having determined all the paths in the network, 

the following mixed integer linear programming problem has to be solved: 

 

      (17) 

             (18) 

                                        (19) 

                                                (20)                                        

                                         (21) 

 

The problem (17)-(21) has |S| integer variables and a number of constraints 

equal to the number of paths in the network times the number of scenarios, 

plus one (i.e., the knapsack constraint (19)). 

The path enumeration approach relies on the definition of a search tree. 

In particular, branches refer to the decisions of extending a given partial 

path, whereas nodes refer to partial paths . We denote with T the set of 

partial paths to be further extended. 



At the top of the search tree (level 0) there is only one partial path 

composed by the start node. Thus, nodes at level 1 refer to at most |N|−1 

partial paths, each defined as the extension of the initial partial path with a 

node adjacent to the start node. It is worthwhile noting that as a natural 

consequence of the topological order of project networks the search tree is 

generated in a way to guarantee that partial paths corresponding to nodes 

are all different.  

In the following, the basic scheme of the proposed approach is reported. 

 

Step 0 (Initialization Phase). Set T = {0}, where 0 denotes the start node of 

the network and k = 0. 

Step 1 (Termination Check). Check the list T. If it is empty, STOP. Otherwise, 

extract a partial path , delete it from T and go to Step 2. 

Step 2 (Path Extension Phase). Let  be the last node of the partial path 

. For all nodes , extend the partial path and store it in a 

newly created partial path. Set k := k + 1 and insert  in T. Go to Step 1. 

 

All paths   in a precedence constrained directed acyclic graph can only 

use nodes between 0 and  since nodes are topologically numbered and 

an arc  might exist only if . Therefore, the number of paths 

ending in j, denoted as P[j] is bounded by . At node n, in the 

worst case . 

 

Theorem 3.1 The proposed algorithm finds all the paths in a project 

network in a finite number of iterations, and this number is bounded above 

by . 

Proof. Since the project network is acyclic, the number of paths generated 

and explored in the search tree is finite. 

The number of paths in the considered graph can be computed exactly by 

dynamic programming through the following recursive formula: 

 

 

 

where P[j] is the number of distinct paths, connecting the start node 0 to j 

and P[1] is assumed to be equal to one. 



In a precedence directed acyclic graph, all paths connecting node 0 to node 

j, can only includes nodes between 0 and j, since nodes are topologically 

numbered and an arc  might exist only if i < j. Therefore, the value 

of P[j] is bounded by 

      

At node n, in the worst case 

. 

Exploiting the recursive dependence of each P[i] on nodes which are prior 

to i (in topological order), and with some mathematical manipulations 

(reported in the Appendix A), we come up with the following bound: 

 Clearly, if the network is complete in a topological order 

sense (no arcs are allowed if they destroy the topological order), this bound 

gives the exact number of paths in the network. 

The choice between the two solution methods is likely to depend on the 

number of scenarios considered and on the network complexity. Several 

considerations can be taken into account such as the network density and 

the number of arcs and nodes.  

A trivial observation could be that the path enumeration, required by the 

second solution method, can be overwhelming from a computational point 

of view for medium sized project networks. It is interesting to see that its 

practical performance is indeed very good, and, surprisingly, the most time 

consuming part of the algorithm is the solution of the mixed integer 

programming problem (17)-(21). 

On the contrary, when the number of scenarios becomes huge, the 

evaluation of the longest path in each scenario may result computationally 

cumbersome. 

We will illustrate the practical behavior of both SLPA and AllPEA in the next 

section. 

 



Test Problem N° of Nodes N° of Arcs OS 

j309–7 30 47 0.11 

j306–10 30 47 0.11 

j301–1 30 48 0.11 

j3037–4 30 67 0.15 

j601–1 60 93 0.05 

j607–10 60 93 0.05 

j6048–9 60 131 0.07 

j6030–10 60 112 0.06 

j9047–7 90 138 0.03 

j909–7 90 137 0.03 

j901–1 90 137 0.03 

j9035–9 90 194 0.05 

j1209–8 120 183 0.03 

j12042–10 120 258 0.04 

j1201–1 120 183 0.03 

j12033–9 120 220 0.03 

Table 3-1: Test Problem Characteristics 

 

3.4. Computational Result 

To assess the performance of the proposed solution approaches, described 

in Section 4, computational experiments have been carried out on a set of 

benchmark problems randomly selected from the project scheduling 

problem library PSPLIB (Kolisch & Sprecher 1997) and on two large-size 

instances (N1 : |N | = 200; |A| = 400, N2 : |N | = 300; |A| = 600), randomly 

generated by using the forward network generator recently proposed in 

(Guerriero & Talarico 2007). 

The characteristics of the test problems, taken from PSPLIB, are shown in 

Table 1, in which for each instance the number of nodes, the number of 

arcs and the order strength (i.e., OS) are reported. The order strength 

measures the number of precedence relationships relative to the size of a 

project. According to Cooper (1976) the order strength of a project is 

defined as the number of precedence relationships divided by the 



maximum number of possible precedence relationships in a project (OS = 

2|N |/(|A|(|A| − 1)). 

The set of problems consists of four problem types including 30, 60, 90 and 

120 nodes. Activity durations are chosen as realizations of a discrete 

uniform random variable over the range [1, 10]. The number of scenarios S 

was varied in the set {20, 30, 50, 75, 100, 200, 300, 400, 500, 600, 700, 

800, 900, 1000}. 

Finally, each instance has been solved for different values of the probability 

(i.e., reliability) level: 0.8, 0.85, 0.9, 0.95, 0.975, 0.99. The computational 

experiments have been carried out on a AMD Athlon processor at 1.79 

GHz. 

The algorithms were coded in AIMMS 3.7 (Bisschop & Roelofs 2007) and 

CPLEX 10.1 (Ilog, 2006) was used as ILP solver. 

We have carried out a large number of experiments: about 10000 instances 

of the model have been solved, reaching in all the cases the optimal 

solution in an exact way. A detailed accounting of the numerical results is 

available in (Bruni et al. 2007). 

In what follows, we report only the experiments useful to illustrate the 

validity of the proposed model and the effectiveness of the developed 

solution approaches. 

A first set of experiments has been carried out with the aim of assessing  

the variation of the project makespan with respect to the 

probability/reliability level. In particular, in Figure 3.1, we report the 

makespan values of four test problems (i.e., j309 − 7, j601 − 1, j901 − 1 and 

j1209 − 8) with 20 scenarios, versus the probability level. We observe that 

the makespan increases when α increases.  

This is an expected behaviour because with increasing values of α we 

adopt a more conservative point of view hedging against more disruptions 

scenarios. 

We notice that the worst case makespan can be worked out by considering 

a reliability level α=1. In practice, risk-averse project managers may 

consider to limit the probability of the project of being late to a small value 

allowing a risk probability around 1 − α= 20%. 

 



 
Figure 3-1: Makespan-Reliability Trade-Off 

 

We observe that, very often, little variations in project completion date 

correspond to relevant gains in terms of reliability. For instance, for the test 

problem j901 − 1 considering a project due date of 97 rather than 94 would 

ensure an increase in the reliability level from 0.8 to 0.95. That is, the due 

date could be delayed with a probability at most equal to 0.05. Similar 

trends have been observed for all other test problems. As evident, the 

proposed approach may assist project managers in searching for 

schedules with acceptable makespan performance experimenting the most 

appropriate α value. 

 
Figure 3-2: Running time (in sec.) of AllPEA for the test problem j306 −10 as a function of the number of 

scenarios  



 
Figure 3-3: Running time (in sec.) of SLPA for the test problem j306 −10 as a function of the number of 

scenarios 

 

As far as the computational effort is concerned, we have investigated the 

running time sensibility to various parameters, considered in the 

experimental phase. 

In particular, in Figure 3.2, we report the execution time (in seconds) of All-

PEA when solving the test problem j306 − 10 as a function of the number of 

scenarios for different reliability levels. Similarly, Figure 3.3 shows the 

computational time required by SLPA on solving the same instance. 

It is worth noting that the path enumeration phase requires a constant 

amount of time, for all the considered scenario cardinalities. Thus, the 

exponential behaviour of the running time of AllPEA (see Figure 3.2) is 

mainly due to the computational effort required to solve the mixed integer 

problem (17)- (21). As far as the running overhead of SLPA is concerned, 

the computational results indicate also in this case an exponential trend, 

but with less variability amongst different reliability levels (see Figure 3.3). 

In order to assess the influence of the network OS on the running time of 

the proposed algorithms, we have compared the execution time for the test 

problems j301 − 1,OS = 0.11 and j3037 − 4,OS = 0.15, both with 30 nodes, 

for a reliability level of   α= 0.8. 

Figures 3.4 and 3.5 highlight the related results for AllPEA and SLPA, 

respectively. From these two figures, it is evident that lower OS levels make 

the problems more difficult to solve, especially for increasing number of 

scenarios. 

We would like to remark that this trend is more evident for AllPEA. Indeed, 

a project with a lower order strength has more precedence restrictions 



among its activities and therefore, the number of paths to be enumerated is 

larger. 

 
Figure 3-4: Influence of the order strength on AllPEA running time 

 

 
Figure 3-5: Influence of the order strength on SLPA running time 

 

 
Figure 3-6: Computational time of AllPEA on different test problems 

Clearly, the network size (i.e., the number of nodes) plays also a crucial 

role in the practical efficiency of the proposed solution approaches. In order 



to illustrate this aspect, in Figure 3.6 we report the running time of AllPEA, 

for a probability level of 0.9 and a number of scenarios less than 200, when 

solving the test problems j306 − 10, j6030 − 10, j901 − 1 and j12042 − 10. 

The computational results of Figure 3.6 underline that the execution time of 

the algorithm increases with the number of nodes of the project network, as 

expected. However, we notice that the time needed to solve all but one of 

the instances are comparable. This may indicate that a threshold size for 

the problem to become substantially more difficult is 120 nodes. We would 

like to remark that even for this instance, the solution time does not exceed 

12 seconds. This leaves room for application on even larger instances. 

 
Figure 3-7: Computational time of SLPA on different test problems 

 

Figure 3.7 shows the SLPA computational time for the same test problems. 

Interestingly, this procedure seems to be less sensitive to the project 

network dimension. As already observed, a relevant part of the 

computational time spent by AllPEA is required by the search of all paths of 

the network, which is exponential in the number of nodes. Finally, we 

observe that, depending on the project network characteristics, one method 

may outperform the other. The choice of the most efficient solution 

approach depends on several factors. To have an idea, let us to consider 

the two test problems j9047−4 and j909−7. Even though the number of 

nodes is fixed to 90, and the arcs cardinalities are comparable, the number 

of paths in the two networks is very different (321 versus 58). Hence, as 

expected in this case the procedure AllPEA will be computationally more 

demanding when solving j9047−4. In order to conclude which is the most 

efficient algorithm, we should compare AllPEA and SLPA over a significant 

range of complexity measures. Unfortunately, complexity measures are not 

always useful to explain and predict the time to solve the problem optimally. 

To support this observation, we remark that the number of paths actually 



present in a network drastically affect the solution time. This is evident 

considering that AllPEA running times for the biggest networks N1 and N2 

(with 260 and 380 paths, respectively) are comparable with those of test 

problems j9047−4 and j9035−9 (with 321 and 381 paths, respectively). 

Despite these warnings, some conclusions can be drawn on the basis of 

the numerical results collected. With respect to the comparison between 

the two solution methods, there is some evidence on the superiority of 

SLPA over AllPEA at least when the number of scenarios is limited. Indeed, 

when the number of scenarios is low enough, SLPA outperforms AllPEA; 

the opposite situation is observed when the scenario cardinality exceeds a 

certain threshold. This threshold depends on the problem at hand.  

For instance, Figure 3.8 shows the trade-off between the two procedures 

for the test problem j1201−1 for α = 0.9. We observe that for a scenario 

cardinality below 100, SLPA is more efficient than AllPEA. When the 

number of scenarios rises above 100, an opposite behaviour emerges, as 

AllPEA becomes more efficient than SLPA. 

 
Figure 3-8: Computational time trade-off between AllPEA and SLPA for test problem j1201 − 1 

 

Figure 3.9 is constructed in a similar way as Figure 3.8 for a different test 

with 60 nodes (i.e., test problem j601−1), but now the threshold scenario 

cardinality is around 600. Thus, it seems that for smaller networks SLPA 

performs better notwithstanding the quite high number of scenarios. 

Nonetheless, it is worth noting that the solution time for the two procedures 

is quite similar, at least for a scenarios cardinality below the threshold level. 



 
Figure 3-9: Computational time trade-off between AllPEA and SLPA for test problem j601 – 1 

 

 
Figure 3-10: Computational time trade-off between AllPEA and SLPA for test problem N2, α = 0.99. 

 

We observe that also for the network N2 with a substantially larger number 

of nodes, the threshold on the number of scenarios is around 650, similarly 

to the network with 60 nodes (see 3.10). We may regard this indicator as 

somewhat misleading. However, we should note that this problem instance 

has a very limited number of paths, which makes the path enumeration 

phase very efficient in practice. It is worth noting that for some of the 

instances examined, it is not evident a superiority of one solution method 

against the other, at least for the number of scenarios considered. For the 

largest size instances, we report the computational results in Fig. 3.11-3.14. 

It is worthwhile to remark that these problem instances can be considered 

quite suitable in order to simulate a real world situation and validate the 



behaviour of the proposed model. In fact, a cardinality of 600 for project 

activities is meaningful related to the typical dimension of a medium term 

project. Our experiments showed that AllPEA is robust in relation to the 

number of activities, but, conversely, is highly dependent on the number of 

paths in the networks. We notice, in fact, that AllPEA running times are 

higher for the test N1 which has less activities, but more paths than N2. It is 

worth observing that the computational efforts of the proposed solution 

methods are not very high, solution times varying over the range [0−400] 

seconds. Henceforth, the computational results indicate that the procedures 

are effective even for networks with hundred of activities. On the other 

hand, the running times drastically increase with the number of scenarios. 

In this respect, it is worth noting that our model is robust in relation to the 

number of scenarios used. In fact, in almost all the cases, the makespan 

found using only 20 scenarios is only a bit different (2% on average) from 

the makespan evaluated over 1000 scenarios. Nevertheless, we observe 

that in the case of considering thousand of scenarios, parallel computing 

could play a crucial role, and this represents the main goal for future 

development.  

 

 

 

 

 

  



Chapter 4  

Resource Constrained 
Project Scheduling Under 
Uncertainty 

In this chapter, we study the resource constrained project scheduling  

problem under uncertainty. Project activities are assumed to have known 

deterministic renewable resource requirements and uncertain durations, 

described by random variables with a known probability distribution 

function. We propose a joint chance constraints programming approach to 

tackle the problem under study, presenting a heuristic algorithm in which 

the buffering mechanism is guided by probabilistic information. 

4.1. Overview of the problem 

The resource constrained project scheduling problem (RCPSP) consists in 

minimizing the duration of a project, subject to zero-lag finish-start 

precedence and resource constraints. In its deterministic version, the 

RCPSP assumes complete information on the resource usage and 

activities duration, and determines a feasible baseline schedule, i.e. a list of 

activity starting times, minimizing the makespan value. A solution for this 

problem is a baseline schedule which specifies, for each activity, the 

planned starting times. Notwithstanding  its importance, the planned 

baseline schedule may have little, if some value, in real contexts since 



project execution may be subject to severe uncertainty and then may 

undergo several types of disruptions as described in the previous 

paragraphs. Extensions of the RCPSP, involving the minimization of the 

expected makespan of a project with stochastic activity durations, have 

been investigated within the stochastic project scheduling literature. The 

methodologies for stochastic project scheduling basically view the project 

scheduling problem as a multi-stage decision process, in which the 

objective is to minimize the expected project duration subject to zero-lag 

finish-start precedence and renewable resource constraints. Since the 

problem is rather involved and an optimal solution is unlikely to be found, 

scheduling policies (Igelmund & Radermacher (1983), Mohring & Stork 

(2000), Stork (2000)) and heuristic procedures (Ballestin (2007), Golenko-

Ginzburg & Gonik (1998), Golenko-Ginzburg & Gonik (1997), Tsai & 

Gemmil (1998)) have been used for defining which activities to start at 

random decision points through time, based on the observed past and the 

a-priori knowledge about the processing time distributions. 

Beside this important research area, the field of proactive (robust) project 

scheduling literature has received outstanding attention in the last years. It 

entails to incorporate some knowledge of the uncertainty in the decision-

making stage, with the aim to generate predictive schedules that are in 

some sense robust (i.e. insensitive) to future adverse events. 

Van De Vonder et al. (2005), (2006) propose the so-called resource flow-

dependent float factor heuristic (RFDFF) to obtain a precedence and 

resource feasible schedule, using information coming from the resource 

flow network (Artigues et al., 2003) in the calculation of the so called activity 

dependent float factor (Leus (2003)). In Van de Vonder et al. (2007), 

several predictive reactive resource constrained project scheduling 

procedures are evaluated under the composite objective of maximizing 

both the schedule stability and the timely project completion probability. For 

an extensive review of research in this field, the reader is referred to 

Herroelen and Leus (2004b), (2005). Within this research stream, and 

when abstraction of resource usage is made, we mention the works 

Herroelen and Leus (2004a), Rabbani et al. (2007), Tavares et al. (1998). 

When resource availability constraints are considered, Leus and Herroelen 

(2004), Deblaere et al. (2007) and Lambrechts et al.(2007) and (2008) 

assuming the availability of a feasible baseline schedule, proposed exact 

and approximate formulations of the robust resource allocation problem. 



Within the stochastic programming context, a two-stage integer linear 

stochastic model has been proposed in Zhu et al. (2007). Target times are 

determined in the first stage followed by the development of a detailed 

project schedule in the second stage. The two-stage stochastic model aims 

at minimizing the cost of project completion and expected penalty incurred 

by deviating from the specified values. Only one non-renewable resource 

(the budget) is constrained in the model. A path based two-stage integer 

programming approach together with a tailored solution methodology based 

on decomposition has been recently proposed by Klerides & 

Hadjiconstantinou (2010) for the stochastic discrete time-cost trade-off 

problem. 

The more difficult case involving multiple renewable resources has not 

been investigated yet in the stochastic programming setting. 

This chapter addresses the case of RCPSP with renewable resources and 

uncertain activities durations represented by independent random variables 

with known cumulative probability distribution function. The objective is to 

build a precedence and resource feasible baseline schedule with minimum 

makespan able to tolerate a certain degree of uncertainty during execution 

and to absorb dynamic variations in activities durations (we shall refer in 

the following to this capability as stability or robustness). Our ultimate aim is 

to develop a project scheduling procedure capable of combining schedule 

stability and makespan performance. There are a number of different 

metrics for assessing robustness and stability of a schedule in literature. 

We adopt as a measure of stability the probability that schedule decisions 

do not change during execution. In particular, through the use of joint 

probabilistic constraints, we try to find a schedule that is expected to be 

respected with a high level of probability. The use of joint probabilistic 

constraints within the stochastic scheduling problem represents an 

innovative element of our approach. In effect, at the best of our knowledge, 

none of the methods proposed in the literature considers joint probabilistic 

constraints. Indeed, very few research papers explicitly consider 

probabilistic information in solution methods. We should mention here, the 

work of Van de Vonder et al. (2008) where the virtual activity duration 

extension (VADE) heuristic and the starting time criticality (STC) heuristic 

are introduced to include time buffers in a given schedule while a 

predefined project due date remains respected. While VADE heuristic relies 

on the standard deviation of the duration of an activity in order to compute a 



modified duration, STC heuristic tries to combine information on activity 

weights and on the probability that activity cannot be started at its 

scheduled starting time. 

Our work differs from the cited paper in some important aspects. First of all, 

we consider the stochastic programming framework and, in particular, the 

probabilistic paradigm in the form of joint probabilistic constraints. This 

powerful tool allows us to relax the assumption, common in the literature, 

that only one activity at a time disturbs the starting time of a successor 

activity, rather limiting the joint probability of disruption of the preceding 

activities to a given probability level. In addition, we do not start from an 

initial deterministic unbuffered schedule in which to insert time buffers, 

although starting from an unbuffered schedule is a very common practice 

amongst practitioners and researchers. Last, but not least, our point of view 

is rather new in the literature on predictive stable scheduling procedures 

where the objective function commonly used (see for instance Leus, 2003) 

is the so called stability cost function, defined as the weighted sum of the 

expected absolute deviation between the actually realized activity start 

times and the planned activity start times. We observe that this objective 

function is not known a priori, unless a range of execution scenarios 

(referred to as the training set) are simulated by drawing different actual 

activities durations from the described distribution functions. In addition, it is 

not difficult to see that the exact quantification of the deviation between 

planned and actual starting times heavily depends on the reactive 

procedure adopted. 

The remainder of the chapter is organized as follows. In paragraph 4.2 we 

describe our scheduling methodology for generating robust baseline 

schedules. 

Paragraph 4.3 is devoted to the presentation of computational experiments 

and conclusions are given in paragraph 4.4. 

4.2. Stochastic project scheduling with robustness 
constraints 

4.2.1. Notation and problem description 

We assume that the activity network of a resource-constrained project in 

activity-on-node representation is given by a directed acyclic graph G =(N, 



A ). Each node in the set N = {0, . . . , n + 1} corresponds to a single project 

activity and each arc in the set A corresponds to a precedence relation 

between each pair of activities (Wiest & Levy, 1977). The activities 0 and 

n+1 are the dummy start and the dummy end activity, respectively. 

For each activity  denotes the set of successor activities of j 

 and  indicate the latest starting time and the latest finish time of j, 

respectively. 

We assume the presence of a set of K renewable resources with a per-

period availability . Each activity has to be processed without 

interruptions, requiring a constant amount of resource  for each 

renewable resource type k, k = 1 . . . ,K. We assume that the duration of an 

activity is represented by a stochastic variable and that the vector of 

durations  is distributed according to a joint probability distribution that 

follows a known distribution defined on a given probability space   

equipped with an algebra F and with a probability measure . Then, the 

random vector of starting times can be denoted with 

and the associated random vector of 

completion times with . In uncertain 

environments, especially from a practical point of view, project managers 

are mainly interested in the generation of a proactive schedule (i.e a vector 

of proactive starting times  and finish times  

with a quality that does not degrade during execution with respect to future 

perturbations. The vector  can be interpreted as the mapping of random 

activity durations into a vector of resource and precedence feasible starting 

times performed according to a function  referred as policy. If 

we introduce an additional variable  

 

representing deviation between the actual and the planned starting time for 

activity j, a natural question is how to construct an anticipative project 

execution policy and a vector of predictive starting and completion times 

that attempt to limit the risk of such deviation. Two classical approaches are 

used in stochastic programming to deal with deviations. Unit penalty costs 

can be assigned for each individual deviation, and the resulting expected 

penalty cost can be minimized, or alternatively, one may specify a model in 

which we accept deviations with a certain probability. 



In project scheduling problems, when it is not easy to quantify the penalty 

associated with a schedule disruption, a risk based perspective could be 

preferred. Therefore, in this chapter, we adopt this point of view.  

From a mathematical standpoint risk, averse constraints can be formulated 

using the theory of joint probabilistic constraints. More formally, in our 

setting a schedule is deemed robust if it fulfills the following constraint:  

 = with a low value of the risk parameter . 

Stating it differently, a schedule is robust if it exhibits a low probability of 

disruption. It is easy to recognize that the topic addressed in this chapter is 

closely related to the topic of solution stability addressed in Van de Vonder 

et al. (2005), also refereed as solution robustness. Whilst robustness has 

been considered in the literature mainly as an objective function to be 

minimized, in our work we introduce a robustness constraint, in the form of 

probabilistic constraints. 

The stochastic RCPSP, as investigated in the present chapter, can be 

formally stated as follows: for a given resource-constrained project, with 

known activity duration distributions, construct a proactive schedule, with 

predictive starting times  satisfying (1), that attempts to minimize the 

project makespan  

It is worth noting that the model tries to handle what is called the 

stability/makespan trade-off, by accounting for solution stability through the 

use of joint probabilistic constraints, whereas the objective function 

mathematically translates the makespan minimization. In order to tackle 

this complex combinatorial stochastic problem, we develop a heuristic 

procedure that we shall present hereafter. 

4.2.2. The heuristic procedure 

As mentioned before, we are interested in determining a policy  and a 

vector of predictive starting times  such that the makespan of the schedule 

is minimized and the risk of disruption is limited from above in probability by 

the parameter . 

A scheduling policy under uncertainty may be seen as a stochastic dynamic 

decision process that defines which activities to start at certain decision 

points t, based on the knowledge of the observed past up to t and the 

statistical distributions of activities durations. A decision point occurs either 



at the beginning of the project, or when at least one of the running activities 

is completed, until the last activity is scheduled. 

Our heuristic approach is based on a stage-wise approximation of the full 

complex stochastic dynamic problem relying on the decoupling of the 

dynamic from the stochastic aspect of the problem. 

In particular, the dynamicity of the problem is treated at a higher level, 

viewing the project as a sequence of decisions on resources allocation 

whereas the probabilistic aspect is tackled at decision points. At each 

decision point, a resource feasible partial schedule is built and suitable 

proactive starting and completion times are set by means of an anticipative 

stochastic model that accounts for future uncertainty. Since the policy we 

use can be viewed as a stochastic dynamic version of the parallel schedule 

generation scheme, it is easy to verify that the partial schedule constructed 

is feasible with respect to precedence and resource constraints. 

A detailed description of the proposed stochastic dynamic generation 

scheme (SDGS) heuristic is given in what follows. Let denote with: g the 

iteration counter; 

o  the decision time associated to the iteration g; 

o the set of activities which are active at ; 

o  the set of activities whose predecessors at time  have been 

completed; 

o  a subset of  comprising activities that will start at time ; 

o ) the residual resource availability at time ; 

o  a priority rule. 

An algorithmic description of the SDGS heuristic is given below. 

---------------------------------------------------------------------------------------------------- 

Scheme of the SDGS heuristic 

Initialization 

Set g := 0,  := {0},  := { },  := { },  := 0, ) := , k = 1, . . . ,K 

Choice a priority rule  

Repeat until all the activities have been scheduled: 

• Compute  Repeat until it is not possible to select activities: 

Step 1. Use the priority rule  to select a new activity  to be 

scheduled 

 



Step 2. If j is such that  _ 0 then 

  

  

) :=  

 

Determine the proactive completion times  

 

taking into account constraint (1) 

Else 

Go to Step 1. 

End If 

End Repeat 

• Set the next decision point as follows: 

 

g := g + 1 

End Repeat 

---------------------------------------------------------------------------------------------------- 

4.2.3. Generating activities completion times 

While the dynamic aspect of the problem is tackled at decision points by 

the scheduling policy presented above, the stochasticity should be taken 

into account in the determination of proactive starting and completion times. 

In our problem, predictive starting and completion times should fulfill at 

each decision point the stability constraint (1). 

We recall that at each decision point , our decisions concern the 

appropriate proactive completion times of activities in Sg since the starting 

times of activities are set as , where  represents a 

completion time of one previously scheduled activity. As a reminder we 

note that these decisions should ensure the satisfaction of the stability 

constraint (1). We now observe that potentially any activity in  could 

cause a disruption among its successor, as far as its completion time 

represents the new decision point at which an unscheduled activity j should 

set its starting time . 



We further notice that at the time we take decisions we do not know which 

activities would be scheduled in the next stage, nor what will be the next 

decision point. 

Therefore, at a generic instant  the probability of not causing 

a disruption in the schedule in the future is the probability that for any 

activity  currently under execution the condition  is 

verified. 

Now, we may conclude that the problem boils down in appropriately setting 

completion times by solving at each decision point  the following problem 

with joint chance constraints: 

 

 (3) 

 (4) 

Where Mpar represents the makespan of the partial schedule built 

considering activities  and . Here joint 

chance constraints are imposed to set the completion time of the activities, 

at each decision point, in such a way that the probability of not disrupting 

the schedule in the future is at least (1 − ) (i.e. the risk of disruption is at 

most ). We emphasize that completion times of the activities in   \  

have been set appropriately at a previous decision point. 

In order to show how the heuristic works, we consider the toy example 

reported in Figure 4.1, with only five activities plus the two dummy activities 

0 and 6. It is assumed that only one resource is required to execute the 

activities (i.e., k = 1) and the resource consumptions are: 

. In addition, activities durations follow a Poisson 

distribution with mean 1 for activities 1, 2, 3 and 0.5 for activities 4 and 5. 

The activities have been ordered by the rule  as follows: < 1, 2, 3, 4, 5 >.  

 

 

0 

1 

2 

3 

4 

5 6 

Figure 4-1: Toy example 



 

 

 

 

 

After the dummy activity 0 has been scheduled activities 1, 2, 3 can be 

scheduled at time  since they do not cause any resource 

conflict. Therefore . Problem (2)-(4) is then invoked and 

completion times and  are appropriately set. The next decision 

point . At that time, activity 4 is an eligible activity and there are 

sufficient resources units available, so it is started at time . For activity 5 

no sufficient resource units are available. Therefore  and problem 

(2)-(4) reduces to a problem with a single chance constraint. The next 

decision point . At this time activity 5 is started. 

The resulting feasible schedule is depicted in Figure 4.2.  

 

 
Figure 4-2: Resulting schedule 

disruption probability of activity 4 depends on the disruption probability of 

activities 1 and 2, whereas it is not influenced by the completion time of 

activity 3. By imposing a threshold risk parameter of  our heuristic 

set completion times of activities 1, 2, 3 in such a way that: 

 

thus limiting the disruption probability of activity 4. We should point out that 

if, at least in principle, separate chance constraints can be used to deal with 

uncertain durations, the solution provided by the corresponding model may 

in some context be considered inappropriate. In fact, imposing a small 



probability of disruption for each activity  does not assure a small 

joint probability for all . 

In our example, the probability that activity 4 cannot be started at its  

scheduled starting time  depends on the probability of the event that 

predecessors activities 1 and 2 disturb its planned starting time. 

If chance constraints would have been used with  = 0.2, the probability of 

disrupting activity 4 would have been 1−(1−0.2)*(1−0.2)=0.36, 

notwithstanding the fact that the probability of having each activity disrupted 

is less than 0.2. 

It is worth observing that, although at each decision point we accept the risk 

of a disruption with probability , we cannot impose a limit on the probability 

of not completing the whole project on time. However, we may express the 

timely project completion probability as a function of the number of decision 

points performed by the algorithm. A crude lower bound for the probability 

of project to be completed on time is  where G is an upper bound on 

the number of iterations. 

4.2.4.  Solving the joint probabilistically constrained problem 

The SDGS heuristic involves the repeated solution of model (2)-(4). In the 

following, we show how to derive a deterministic equivalent formulation, in 

the case of independent random variables. Under the independence 

assumption among the random variables , the probabilistic constraints 

(4) can be rewritten as  

                                             (5). 

Denoting with ) the marginal probability distribution function of the 

random variable , and with a variable substitution , 

constraints (5) can be stated equivalently as 

 

and by taking logarithms: 

 

 (Jagannathan, 1974; Miller & Wagner, 1965). Since the logarithm is an 

increasing function and , this transformation is legitimate. 

Furthermore, for log–concave distribution functions, convexity of the 

constraints is preserved. The class of log–concave random variables 



includes several commonly used probability distributions as for example the 

Uniform, Normal, Exponential and many others (see Prékopa, 1995, 

Dentcheva et al. 1998). We observe that also in the case of discrete 

distributions, problems with joint probabilistic constraints can be reduced to 

deterministic equivalent problems. For more details, the interested readers 

are referred to Dentcheva et al. (1998) (In Appendix B the transformation is 

detailed for illustrative purposes). 

Therefore, depending on the nature continuous or discrete of the random 

variables involved in the problem at hand, the deterministic equivalent 

problem takes the form of a nonlinear continuous problem or a linear 

integer problem. 

4.3.  Computational Experiments 

This section is devoted to the presentation and the discussion of the 

computational experiments carried out with the SDGS heuristic. The 

numerical tests have been designed to evaluate the performance of the 

SDGS heuristic in comparison with a set of benchmark heuristics that we 

shall present in the next paragraph. 

4.3.1.  Benchmark approaches 

In order to assess the performance of the proposed SDGS heuristic, we 

have considered for comparison a set of scheduling procedures based on 

the use of separate chance constraints. More specifically, both parallel 

schedule generation schemes (PSGS) and serial schedule generation 

schemes (SSGS) have been designed by replacing deterministic durations 

by their -quantile counterparts . We should remark 

that this is equivalent of using separate chance constraints within classical 

schedule generation heuristics for the deterministic RCPSP. The following 

static priority rules for generating the priority list have been tested. 

• (MaxC): The MaxC rule orders the activities  by decreasing value of 

their total resource requirement . 

• (MinC): The MinC rule orders the activities  by increasing value of 

their total resource requirement . 



• (MaxD*C) The MaxD*C rule orders the activities by decreasing value of 

 with  defined as above. 

• (MinD) The MinD rule orders the activities by increasing value of 

 

• (LST) The LST rule orders the activities by increasing value of their latest 

starting time  as described in Kolisch & Hartmann (1999). 

• (LFT) The LFT orders the activities by increasing value of their latest finish 

time   as described in Davis & Patterson (1975).  

• (MTS) The MTS orders the activities by decreasing value of the number of 

their successors, that is | | as described in Alvarez-Valdes & Tamarit 

(1989). 

Whilst the last three rules have been taken from the literature (Kolisch & 

Hartmann, 1999), the other rules have been proposed by the authors. 

Moreover, we have considered the STC (Van de Vonder et al., 2008) and 

the RFDFF heuristic (Van de Vonder et al., 2006).  

4.3.2. Computational results 

The computational experiments have been performed on a PC Pentium III, 

667 MHz, 256 MB of RAM. All procedures were coded in AIMMS language 

(Bisschop & Roelofs, 2007) and the subproblems solved with Cplex 10.1 

(ILOG CPLEX 6.5: Users Manual, 1999) and Conopt (Drud, 1996). 

Algorithms 1-4 are the PSGS with the first four priority rules, algorithms 5-8 

are the SSGS with the same priority rules, algorithms from 9 to 11 are 

PSGS with the rules LST, LFT and MTS, respectively. The SDGS heuristic 

procedure has been executed considering the four priority rules MaxC, 

MinC, MaxD*C and MinD (algorithms A-D) since they behave the best. The 

STC and RFDFF heuristics algorithms consider a deterministic project due 

date and start from a minimum makespan schedule in which time buffers 

are inserted in order to protect against anticipated disruptions. The 

unbuffered baseline schedule required by the STC and RFDFF heuristics 

has been obtained by applying procedure 4 (PSGS heuristic with MinD 

rule) with different ǫ values (this choice has been motivated by the fact that 

SDGS heuristic is a stochastic version of the PSGS) whereas the project 

due date has been set equal to the average makespan obtained by 



procedures A-D. With this setting, the comparison turns out to be fair in 

terms of resulting makespan. 

The instability weights  have been considered equal to one for all the 

activities, except for the final one for which the weight has been set equal to 

as suggested in Van de Vonder et al., 2008. This particular setting reflects 

the fact that in our heuristic the probabilistic constraints are imposed on all 

the activities with the same value for the risk parameter  which, in turn  

implies that all the activities are considered equally important. Furthermore, 

since the objective of our heuristic is the makespan minimization, the 

weight of the last activity has been set to 10 in order to give more emphasis 

on the project makespan (in this respect it could be beneficial to recall that 

the weight of the dummy end activity denotes the cost of delaying the 

project completion beyond a predefined deterministic project due date). For 

the STC heuristic the stability cost improvement has been evaluated on a 

training set of 100 scenarios. 

All the scheduling procedures have been executed for 5 values of  namely 

{0.2, 0.15, 0.1, 0.05, 0.01}. 

The computational experiments have been carried out on a set of 

benchmark problems selected from the project scheduling problem library 

PSPLIB (Kolisch and Sprecher, 1997), available at http 

://129.187.106.231/psplib/,including 30, 60 and 90 nodes, leading to a total 

of 2550 runs. 

For all the instances, two types of distribution have been tested in order to 

assess the effectiveness of the proposed approach with both continuous 

and discrete distributions. 

In particular, for the continuous case, we have assumed that real activity 

duration is a uniform random variable U(0.75d, 2.85d), where d has been 

set equal to the deterministic duration and for the discrete case, we have 

considered a Poisson distribution with mean d. Activity durations are 

assumed to be independent. 

Extensive simulation has been used to evaluate all procedures on 

robustness measures and computational efficiency. For every network 

instance, 1000 scenarios have been simulated by drawing different actual 

activity durations from the described distribution functions. Using these 

simulated activity durations, the realized schedule is constructed by 

applying the following reactive procedure. An activity list is obtained by 



ordering the activities in increasing order of their starting times in the 

proactive schedule. 

Ties are broken by increasing activity number. Relying on this activity list, a 

parallel schedule generation scheme builds a schedule based on the actual 

activity durations. We opted for the railway execution mode (Deblaere et 

al., 2007) never starting activities earlier than their prescheduled start time 

in the baseline schedule. Actually, this type of constraint is inherent to 

course scheduling, sports timetabling, railway and airline scheduling, or 

when activity execution cannot start before the necessary resources have 

been delivered. 

4.3.3. Analysis of results 

Rather than showing the complete set of the numerical results, fully 

reported in Beraldi et al. 2007, we give in Tables 4.1-4.6, for each 

procedure, the average results calculated over all networks and executions. 

The quality has been evaluated by the following a posteriori measures of 

stability: average tardiness (Tavg), average timely project completion 

probability (TPCP), average disruption probability over all networks and 

executions (Davg). Also the predictive makespan (Mak) has been reported 

enabling a fair comparison amongst the different algorithms. 

In the next subsection we will present our results for the discrete and 

the continuous case. Here we shall briefly comment on the computational 

times since they are rather low and do not constitute a bottleneck for the 

algorithms execution. In particular, the CPU time is very limited for 

algorithms 1-11, given the simple schedule construction procedures based 

on the parallel and serial schedule generation scheme. Also procedures A-

D are competitive in terms of timely performance, with CPU times varying 

from 0 to a couple of seconds. The execution times of procedures A-D, is 

slightly higher than the computational time of STC and RFDFF only for 90 

nodes networks and discrete distribution. This is due to the extra effort 

required for solving, at each decision point, the integer linear deterministic 

equivalent of the probabilistic model. For the continuous case, the 

computational requirements for SDGS and the STC and RFDFF heuristics 

are roughly similar, although the model to be solved within the SDGS 

heuristic is a nonlinear continuous model. 



In order to give an idea of the size of the probabilistic problems solved 

within the SDGS heuristic, Table 7 reports the average, minimum and maxi- 

mum number of variables and constraints involved in the solution of 

problem (2)-(4) at each iteration of the SDGS heuristic for both the discrete 

and the continuous case. For the sake of completeness also the average 

number of iterations performed is reported. As evident a higher number of 

variables and constraints characterizes the integer deterministic equivalent 

problems related to discrete random variables. 

 

4.3.3.1. Discrete distribution 

In this section, we comment on computational results obtained for the 

discrete case. A detailed accounting of the numerical results is reported in 

Tables 4.1-4.3. 

A first set of numerical experiments has been carried out with the aim of 

assessing the variation of the performance measures of our SDGS 

algorithm as a function of the risk level (measured by ). 

We report in Figures 4.3 and 4.4 the Tavg and the TPCP for different 

values, for the 30 nodes test problems. As we can observe in Figure 1, 

the average tardiness decreases with . This is an expected result since for 

decreasing value of  we impose a more prudent project manager’s position 

imposing a higher risk aversion level. Mathematically speaking, as the 

value of  decreases, probabilistic constraints are somehow more binding 

and the schedule is more robust, since it is less exposed to disruptions. 

The opposite trend can be observed in Figure 4.4 for the TPCP which 

increases for decreasing  values. 



 

 Figure 4-3:  values versus Tavg trade-off 

A second set of experiment has been carried out to compare the 

performance of the SDGS with respect to the benchmark approaches 

presented in Section 4.3.1. In particular, we shall present hereafter a 

graphical comparison on the basis of the expected makespan EXPMAK, 

(obtained as the sum of the predictive makespan Mak plus the expected 

tardiness Tavg) and the average probability of disruption Davg. 

Figures 4.5, 4.6 and 4.7 show the EXPMAK for the 30, 60 and 90 nodes 

networks respectively. Average values have been reported for the 

procedures A-D (named SDGS) and 1-11 (named OTHERS). The STC 

heuristic has been included in the graph whereas the RFDFF heuristic has 

been excluded from the comparison since it is always largely outperformed, 

as evident from Tables 4.1-4.3. 

 

Figure 4-4:  values versus TPCP trade-off 



The reader may notice a seemingly strange trend in the results. In effect, 

the expected makespan seems to have a non-monotone behaviour, with a 

decreasing slope up to the minimum and an increasing or constant slope 

afterwards. This behaviour is more evident for the 30 nodes networks, and 

in general it is relevant for algorithms from 1 to 11 and for the STC in the 

case with 90 nodes. This unforeseen descendant behaviour of the 

expected makespan is due to the influence of two opposing forces that are 

in effect. As depicted in Figure 4.8, on the one hand there is a predictive 

makespan (Mak) whose value increases as  decreases, and on the other 

hand the expected tardiness (Tavg) that drastically reduces as long as the 

risk we are willing to bear decreases. 

 

Figure 4-5: Expected makespan for varying  values-30 nodes-Discrete case 

 
 Figure 4-6: Expected makespan for varying  values-60 nodes-Discrete case 

It is immediately clear from Figures 4.5, 4.6 and 4.7 that the expected 

makespan of SDGS is in general smaller than that of STC, but the same is 

not thoroughly true for procedures 1-11. It is worth observing, in fact, that 

there is an intersection between the continuous line of procedures 1-11 and 

the dashed line of SDGS for between 0.05 and 0.1. Therefore, for relevant 



risk levels (   between [0.05, 0.2]) SDGS should be preferred in terms of 

EXPMAK. 

An opposite behaviour emerges for lower risk levels. In practice, risk-

averse project managers, for budget restrictions, may accept to bear some 

risk to avoid unnecessary extra costs. Therefore, the range [0.05, 0.2] 

constitutes a meaningful choice for moderately risk averse project 

managers. 

 

Figure 4-7: Expected makespan for varying  values-90 nodes-Discrete case 

Figures 4.9, 4.10 and 4.11 investigate the comparative performance of the 

algorithms in terms of Davg. We may observe that SDGS exhibits the best 

performance with very low Davg, especially for large networks, as evident 

in Figure 9. This claim is supported by the consideration that the Davg gap 

between SDGS and STC algorithms increases with the dimension of the 

network. With respect to the comparison between this two algorithms, there 

is some evidence on the superiority of SDGS over STC for the stability 

measures considered up to this point. This superiority is also supported by 

the Tavg values which can be unacceptably high for both the STC heuristic 

and the others benchmark heuristics considered. For instance in Table 4.3 

we can observe that the Tavg of the benchmark heuristics is on average 

more than one order of magnitude higher than the Tavg of SDGS. 



 

Figure 4.8: Expected makespan components for varying  values-30 nodes- 
Discrete case 

In effect, an apposite behaviour can be observed for the TPCP for which 

it is evident the superiority of the STC over all the algorithms considered. 

We would like to remark that in the worst case, the TPCP of the STC 

heuristic doubles the TPCP of the SDGS. 

  
Figure 4.9: Davg for varying   values-30 nodes-Discrete case 

 

Nonetheless, we observe that there is no unitary evidence on the 

superiority of STC over procedures 1-11. In fact, we observe that for  

values higher than 0.075 (which represents approximately the intersection 

point in Figures 4.9 and 4.10) STC behaves worse than procedures 1-11, 

whereas the opposite is true for  values below 0.075. This suggests that 

there is a golden value for the risk parameter that could guide the manager 

in the choice of the appropriate heuristic to use. 



 
Figure 4.10: Davg for varying   values-60 nodes-Discrete case 

If solution stability is deemed of utmost importance, the best choice seems 

to be the SDGS heuristic. This heuristic guarantees very good stability 

performance in terms of disruption probability. If, on the contrary, the 

sensitivity of the schedule performance in terms of the objective value is the 

criterion to pursuit, we observe that nice results are obtained for  ≥ 0.01 by 

the STC heuristic with high TPCP and also acceptable stability indicators. 

When the project manager is very conservative and risk averse (  ≤ 0.05) 

an attractive alternative especially for large instances can be constituted by 

procedures 1-11 that offer a good comprise between computational time 

and solution quality. However, above this risk level they fall inevitably in 

solutions of substantially lower quality. 

 

Figure 4.11: Davg for varying   values-90 nodes-Discrete case 

 

As a marginal note, we point out that the performances of the algorithms 1-

11 are barely indistinguishable and depend on the ordering criterion 



adopted. Unfortunately, there is no unitary evidence of one criterion over 

the others. 

As far as the RFDFF is concerned, we observe that notwithstanding the 

unbuffered schedule fed into RFDFF depends on the  value considered, 

the results obtained are almost the same whatever the risk aversion of the 

decision maker is. This behaviour can be due to the right-justification 

mechanism, which insert buffers in front of the activities in order to make 

the schedule solution robust. 

4.3.3.2. Continuous distribution 

Tables 4.4, 4.5, and 4.6 summarise the results for the continuous  

distribution function. Some conclusions can be drawn on the basis of the 

numerical results collected.  

 

Figure 4.12: Expected makespan for varying    values-30 nodes-Continuous case 

 

 
Figure 4.13: Expected makespan for varying    values-60 nodes-Continuous case 

 

As before, we show in Figures 4.12, 4.13 and 4.14 the EXPMAK for the 30, 

60 and 90 nodes networks respectively. We observe that the general trend 

is similar to the one observed for the discrete case, albeit with some 



differences. We notice that the performance in terms of EXPMAK of the 

benchmark heuristics (excluding as before the RFDFF) is now comparable 

to the performance of the SDGS, at least for the 30 and 60 nodes networks. 

 

Figure 4.14: Expected makespan for varying    values-90 nodes-Continuous case 

 

As already observed in the discrete case, also in this case procedures 1-11 

outperforms SDGS and STC in the expected makespan for  values 

between 0.1 and 0.15. 

We further observe that in this case, STC outperforms SDGS for values 

above 0.1 for the 30 nodes network and above 0.15 for the 60 nodes 

network. 

The EXPMAK of the STC for the network with 90 nodes is on the contrary 

quite high. This worsening in the EXPMAK is compensated by an higher 

TPCP for the SDGS, as evident from Figure 4.15. Indeed, also in the others 

test problems considered, the SDGS heuristic shows TPCP value closer to 

the STC values than in the discrete case (see Tables 4.4, 4.5 and 4.6). 

 

Figure 4.15: TPCP for varying  values-60 nodes-Continuous case 

 



 
Figure 4.16: Davg for varying  values-30 nodes-Continuous case 

 

 

Figure 4.17: Davg for varying  values-60 nodes-Continuous case 

 

Figure 4.18: Davg for varying  values-90 nodes-Continuous case 

 

As a byproduct, we observe that the STC heuristic seems to be less 

sensible to the variation of the risk value, with Davg quite high, especially if 

compared with the SDGS values. This behaviour can be observed in 

Figures 4.16, 4.17 and 4.18. It is also worth noting that the Davg of the 

SDGS heuristic is very low, falling down to zero for small  values. 

 



4.4. Conclusions 

We proposed a joint chance constrained model for project scheduling 

problem with robustness constraints and developed a heuristic procedure 

for its solution. The heuristic exploits probabilistic information on random 

activities duration within the framework of joint probabilistic constraints.  

  

Table 4-1: Results on 30 nodes test problems with discrete duration variability 

In the proposed algorithm, the temporal aspect of the problem is treated at 

a higher level, whereas the probabilistic aspect is tackled at decision points, 

when activities are supplied by available resources. The scheduling 

approach can be tailored to reflect the level of risk that an individual 

decision maker is willing to bear in uncertain environments. 

We illustrated the favorable performance of the model and demonstrated 

that a rigorous treatment of uncertainty might lead to better uncertainty 

hedging. 

 

  



 
Table 4-2: Results on 60 nodes test problems with discrete duration variability 



 Table 4-3: Results on 90 nodes test problems with discrete duration variability 

 Table 4-4: Results on 30 nodes test problems with continuous duration variability 

 

 



 
Table 4-5: Results on 60 nodes test problems with continuous duration variability 

 

 
Table 4-6: Results on 90 nodes test problems with continuous duration variability 

 

 



 
Table 4-7: Average, minimum and maximum number of variables and constraints per iteration 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Chapter 5   

A real application: Robust 
Project Scheduling in 
Construction Industry 

This chapter addresses the problem of scheduling under uncertainty in 

construction projects. The existing methods for determining a project 

schedule are based on assumption of complete knowledge  of project 

parameters. But in reality there is  uncertainty in construction projects, 

deriving from a multitude of context-dependent sources and often provided 

as outcome of a risk analysis process. Thus classical deterministic analysis 

might provide a schedule which is not sufficiently protected against possible 

disruptions. A quantitative methodology is developed for planning 

construction projects under uncertainty aimed at determining a reliable 

resource feasible project schedule by taking into account the available 

probabilistic information to produce solutions that are less sensitive to 

perturbations that occur on line. To provide evidence on the potential of the 

developed approach, a validation phase on a real construction project is 

carried out. The project behavior under several scenarios is evaluated by 

using a simulation approach. 

 



5.1. Introduction 

Construction projects are usually characterized by high complexity. Several 

factors determine this feature: a great number of activities has to be 

performed in order to achieve project completion, a variety of resources, 

both material and human, are necessary to perform activities, and therefore 

great capital investments have to be managed. An efficient scheduling 

phase is crucial in order to ensure that the project is completed on time and 

within budget. In this respect, a detailed baseline project schedule plays a 

crucial role: as widely recognized in (Metha & Uzsoy 1998)  and in (Möhring 

& Stork 2000) it supports project managers in monitoring the work 

progress, facilitating resource allocation and providing a basis for managing 

external activities, such as relations with contractors. 

In construction industry, baseline schedule generation is usually performed 

by using different scheduling techniques, like, for instance, PERT (Malcolm 

et al. 1959) and CPM (Wiest & Levy 1977), embedded in most computer 

software packages developed for construction project management. The 

main drawback of these time-oriented scheduling techniques is the 

assumption of unlimited availability of resources for each project activity 

(Nkasu 1994). 

In real construction projects, many problems arise when activities require 

resources that are available only in limited quantities making resource 

allocation indispensable in the generation of realistic baseline project 

schedules (Kim & Garza 2005). As a matter of fact, ignoring resource 

considerations in the scheduling phase of the project will lead to extremely 

poor schedule performance (Just & Murphy 1994). Woodworth and 

Shanahan in (Woodworth &  Shanahan 1998) have shown that schedules 

based on time-oriented networks are exceeded by an average of around 

38%. 

Moreover,  the complex dynamic and uncertain environment in which 

construction projects have to be performed highlights the need for effective 

planning and scheduling tools.  Since the early sixties  better tools and 

techniques to asses project risks were developed to assist project 

managers. ((Camps 1996), (Chapman & Ward 1997), (Guildford 1998), 

(Simister 1994)).  

After a proper risk assessment program has quantified the impact of 

potential risks involved in the project at hand on individual activities 



duration a risk response method must be set (Zhu et al. 2005). We can 

distinguish among different approaches to deal with uncertainty in a 

scheduling environment.  Hayes et al. (1986) and Marshall (1988) provide 

good introductions to the subject. Here we mention the work of Vaziri et al. 

(2007) that propose a dynamic control policies in the form of planned 

resource allocation to project activities exploiting also  the impact of 

resource allocation on uncertain  durations. Park & Mora (2004), use a 

simulation-based buffering strategy to generate a robust construction plan 

that protects against uncertainties. Schatteman et al. (2008) develop an 

integrated methodology that consists into two phases. First,  individual 

project activities uncertainty is estimated identifying and quantifying the risk 

by grouping activities with similar risk profiles. Then, in the second phase,  

this input is used for generating a robust baseline schedule by introducing 

time buffers in a precedence and resource feasible project schedule. 

 

The underlying assumption in most of these risk management techniques is 

that the uncertainty can be quantified using statistical analysis, given that  

past information is available regarding both the probability of undesired 

events and the effect of such events on the project. 

Regrettably, this assumption may also be violated and therefore in that 

case we cannot resume to  probability theory. 

When the type of uncertainty encountered in construction projects does not 

fit the axiomatic basis of probability theory, fuzzy set-based methods (Zeng 

et  al. 2007) or possibility theory (Mohamed & McCowan, 2001)  may be 

used.  

 Another non-statistical approach for analyzing the risk associated with 

highly uncertain project scheduling based on the info-gap theory is reported 

in Ben-Haim (2006) and Regev et al. (2006).  

Our work takes place in the former group of models, where probabilistic 

uncertainty is assumed.  

We describe a methodology for planning resource constrained construction 

projects in real contexts using uncertainty estimation of project activities to 

generate a baseline schedule which is protected against disruptions .   

In particular, under the assumption that activities durations may be 

represented by random variables, we present an iterative algorithm based 

on the theory of joint chance constraints embedded within a friendly user 



interface to generate a reliable schedule that is protected against uncertain 

events with a certain probability. 

The remainder of the chapter is organized as follows. The following 

paragraph introduces  problem assumptions and notations and presents 

the scheduling methodology for generating baseline schedules in uncertain 

environments. Paragraph 5.3 is devoted to the presentation of the 

application of the methodology to a real case study. Results are analyzed in 

paragraph 5.4 and conclusions are given in paragraph 5.5.  

 

5.2.  Dealing with uncertainty in construction projects 

After having identified the risks and their potential impact on activities 

duration, it is possible to define a suitable strategy to face the risk. The 

project scheduling system we propose try to cope with uncertainty by taking 

into account the available probabilistic information to produce solutions that 

are less sensitive to perturbations that occur on line and relies on the 

generation of a robust project baseline schedule that is sufficiently 

protected against distortions that may occur during actual project execution. 

Hereafter, robustness will be referred as  the capability to hedge against 

uncertain events, by starting activities as originally planned, avoiding extra 

cost and time overrun. 

 In order to be self-contained and for the sake of clarity, we briefly introduce 

some notation  for the resource-constrained project scheduling problem 

(RCPSp), consisting in minimizing the duration of a project, subject to the 

finish-start, zero-lag precedence constraints and the resource constraints. 

A detailed notation list is reported in the appendix C. 

Let us consider a project represented by a directed acyclic graph  G = (N,A) 

characterized by an activities set N = (1..n) and a precedence relations set 

A  where    if and only if activity j can start only 

after activity i is finished. Let 0 be the dummy activity representing the 

project start, n be the dummy activity corresponding to the project 

conclusion and  be the deterministic duration associated with each 

activity i. Uncertain activities duration are represented by random variables 

 ,  with known cumulative probability distribution functions   . 

Let us denote by K  the set of renewable resources and let  be the 

constant per period availability of resource type k, k = 1..., K. We assume 



that each activity  has to be processed without interruptions requiring 

a constant amount of resource , for each renewable resource. 

 The classic optimization problem in project networks is finding a feasible 

schedule such that the project completion time is minimized.  

The resource constraints make the problem substantially more difficult and 

usually require, to be expressed, the use of binary variables (Pritsker, 

1969).  A conceptual decision model (Christofides et al., 1987) may be 

used instead.  

The scheduling procedure we propose (in the sequel referred as Resource 

Allocation Heuristic-RAH for short-) constructs a robust baseline schedule 

through a stepwise increase of a partial schedule in which a proper 

resource allocation is performed by solving a joint chance constrained 

problem.  More specifically, at each iteration g of the algorithm is associated 

a decision point   in which scheduling decisions are made by means of an 

anticipative stochastic model setting proactive starting and completion 

times. In this way a resource feasible schedule is built incrementally by 

successive decision points until all the activities have been scheduled.  

Let us define for each time point    as the set of activities that can start 

at time point and as the set containing all activities which can be 

precedence feasibly started at  (we call these activities eligible). If 

contains more than one element a competition has to be arranged to 

choose the optimal subset of activities that can be supplied by the residual 

resource availability at time  namely . The most competitive 

activities are then chosen to start at  and therefore included in the set .  

Since none of the eligible activities can still be started without violating the 

resource constraints, a new decision point is set at the earliest completion 

time of the activities that are in progress.  

An algorithmic description of  RAH is given in Figure 5.1.   

 

 

 



 

Figure 5.1. Typical RAH iteration 

 

At each decision point decisions concerning which activities, belonging to 

 , can start are made on the basis of the solution of the following 

stochastic problem. 

 

 

     (1)  

    (2) 

  (3) 

    (4) 

      (5) 

 

 

 

 NO 
 

 NO 
 

STOP: the baseline project schedule has 
been generated 

YES 

Check: Are there activities to be scheduled? 

 

Compute the residual resource availability 
at tg , rk(tg); Compute Eg  

Decide which activities belonging to Eg 
should start at tg  
Include these activities into the set Sg  
 Iteration counter g := g+1 
Set the new decision point tg as the 
minimum completion times of activities in 
progress 
 

 

Initialization 
Iteration counter g :=0 
Time counter tg:=0 
Sg  := {0}     

 

 



where the decision variables are completion times  and  binary 

variables   which take value one if activity i can be feasibly 

scheduled and zero otherwise.  Only the most competitive activities in term 

of the objective function are actually scheduled and their associated β 

variables take value one. We point out that the formulation set the 

completion time of an activity i only if the activity is included in the set 

  through a Big-M formulation with parameter  M.  

The objective function tries to balance two conflicting objectives weighted 

through the parameter , the resource and the time allocation decisions. 

Therefore, whilst the first term of the objective function tries to maximize the 

resource consumption at each decision point, the second term aims at 

reducing the makespan of the partial schedule built up to moment . The 

parameter ,  is adjusted dynamically in order to find a good balance 

between the two conflicting objectives. We should notice that our model 

assumes, as common in the scheduling literature, that resources will be 

wasted if not used. We should point out that the subset of activities 

included in  minimizes the waste of resources tanks to the first term of 

the objective function. 

Constraints (2) set the makespan of the sub-schedule built at  as the 

maximum of the completion times of actually scheduled activities. The 

completion times of the scheduled activities is set by means of constraints 

(3) in such a way that the joint probability of not delaying subsequent 

activities is at least . The use of joint probabilistic constraints (Miller and 

Wagner, 1965)  is rather original in the literature. 

 Constraints (4) ensure that the subset of activities to start concurrently at 

time   respects  the residual resources availability at time .   

Problem (1)–(5) has to be solved at each decision point, when at least 

more than one activity is ready to be operated and the residual available 

amount of resources is not zero.  

 

The proposed RAH can be viewed as a particular parallel schedule 

generation scheme (SGS) (Kolisch and  Hartmann, 2006) in which, rather 

than using a priority rule for deciding the set of activities to be included in 

the partial schedule, the solution of a stochastic problem is used.  



The RAH has been then embedded in a user friendly tool for project 

scheduling under uncertainty. In practical terms, the only action required to 

managers is to define the project breakdown structure and store project 

data such as activity number, ID and resource requirement, precedence 

relations among activities, resource availability. Once the data are 

uploaded on the system, the baseline schedule is automatically generated, 

and if desired, the simulation phase performed. A screenshot of the 

graphical interface developed for our tool is reported in Figure 4.3. 

 

5.3. Empirical illustration of RAH: a real case study 

 In this section, we document the application of our approach on a real 

project for construction of students’ apartments at the University of 

Calabria, Italy. Such project consists of 43 activities; the first and the last 

one are dummy activities representing the starting and the ending time of 

the project respectively. The project network is reported in Figure 5.2, while 

id, number, expected duration and  labour requirement of activities are 

reported in Table 5.1. 

 

 

 



Figura 5.2. Project network 
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Activities 
ID 

Activities 
number 

Activities description 

Expected  
activities 
duration 

(days) 

Resource 
requirement 

 per day 

START 1 DUMMY START 0 0 

A1 2 Building yard delimitation 10 7 

A2 3 
Building yard resource 

preparation 
20 7 

B1 4 Excavation works 16 5 

B2 5 Grading 16 5 

B3 6 Site preparation 18 5 

C1 7 Basement foundations 16 6 

C2 8 Footings 16 6 

C3 9 Foundation walls 18 6 

D 10 Crawl space 50 6 

E 11 First floor 100 6 

F 12 Second floor 75 6 

G 13 Third floor 75 6 

H 14 Fourth floor 50 6 

I 15 Fifth floor 50 6 

J 16 Roofing 45 23 

K1 17 Exterior wall 90 6 

K2 18 Exterior wall 30 6 

L1 19 Interior wall 70 6 

Table 5-1: Activities ID, number, details, duration and resource requirement 

We used the initial project network developed by the project team and their 

activity time estimates as input. Afterwards the project managers 

considered two risks to be important: errors in execution and  poor weather 

conditions. Estimates of an optimistic, a pessimistic and a most likely 

estimate of activities duration were obtained from the project management 

team during an interview session and compared with the historical data of 

similar construction projects completed at the University of Calabria. A 

triangular distribution has then been used for characterizing the 

randomness of activities duration. 

 



5.4. Analysis of Results 

In a first experiment we have  analyzed the effectiveness of the proposed 

scheduling procedure in hedging against uncertainty. In particular, we 

generated two different schedules. 

A protected schedule for the UNICAL project constructed by using the 

scheduling mechanism implemented in the RAH in which the probability 

level α  was set to 0.95, that is, we expect with a probability at least 0.95 

that the project delivery date will met (we expect a so called timely project 

completion probability- TPCP for short-of 0.95) and  an unprotected 

deterministic schedule generated by the project managers on the basis of 

their own experience and with the support of a quantitative tools for the 

solution of resource constrained project scheduling problems.  

Then, managers estimated project completion time taking into account 

external/internal critical factors such as weather conditions, manpower and 

resources availability, most-likely durations of activities. 

In order to perform an a posteriori analysis we tested the two schedules in 

a simulation phase, in which a number of possible project realizations, 

called scenarios, were simulated and a reactive scheduling procedure was 

applied for each scenario, opting for never starting activities earlier than 

their prescheduled start time in the baseline schedule.  

The schedule generated by managers  sets a completely unrealistic 

planned project delivery date of about 1250 days, with a probability around 

50% to be exceeded. Having a TPCP=0.5 can be very unsatisfactory 

especially for construction projects for which very high penalties are usually 

associated to heavy due date violations and schedule breakages. Such 

observation underlines the crucial value of an accurate planning phase and, 

as a byproduct, the inadequacy of traditional scheduling procedures in 

facing uncertainty.  

The schedule generated by the proposed approach imposing in the RAH a 

reliability level of 0.95 results in a planned project delivery date of 1517 with 

a  TPCP equal to 0.96.  A second analysis has been carried out with the 

aim of comparing the methodology against a total of 14 scheduling 

procedures. To assess the performance of RAH we used as benchmark 

heuristics the above mentioned SGSs considering, instead of the 

deterministic durations, the α-fractiles of activities duration. We shall refer to 

these heuristics in the following as parallel separate chance-constraints 



based heuristic (PSCCBH) and serial separate chance-constraints based 

heuristic (SSCCBH). Regardless the schedule generation scheme applied, 

the resulting schedule depends on the ordering criterion adopted. 

In order to generate the priority list, we used several static priority rules 

taken from the literature. We tested the ‘LST’ rule (Kolisch et al. 1995) 

(activities are ordered by increasing value of their latest starting time), the 

‘LFT’ rule (David and Patterson, 1975)  (activities are ordered by increasing 

value of their latest finish time) and the ‘MTS’ rule (Alvarez-Valdes and 

Tamarit, 1989) (activities are ordered by decreasing value of the number of 

their successors).  

Furthermore, we have proposed some new rules for the problem at hand.  

In particular the ‘MinC’ rule orders activities by increasing value of their 

resource requirement; the ‘MinD’ rule sorts activities by increasing value of 

their α-fractile, the ‘MaxC’ rule orders activities by decreasing value of their 

resource requirement and, the last one, ‘MaxD*C’ rule orders activities by 

decreasing value of their α-duration*resource requirement. 

We have also compared our algorithm with the approaches present in the 

scientific literature closer to our work; that is the starting time criticality 

(STC) (Van de Vonder et al. 2008) and the resource flow dependent float 

factor (RFDFF) heuristics (Van De Vonder et al. 2006). 

We have tested all the algorithms, but the RFDFF and the STC heuristics, 

for the following  values {0.8; 0.85; 0.9; 0.95; 0.99}. For the sake of clarity, 

although RFDFF and STC heuristics construct exactly the same schedule 

whatever the risk averseness of the decision maker (i.e. for all the α 

values), we have reported the related results for all the probability levels 

tested. The following measures were used to assess the performance of 

the baseline schedules obtained: average tardiness (TAVG), average 

timely project completion probability (TPCP), average number of jobs 

whose starting time in the actual schedule differs from the baseline 

schedule (#del) and CPU time in seconds (time) on a PC Pentium III, 667 

MHz, 256 MB RAM.  

The tardiness of activity i represents the difference between its actual 

completion time and the planned one in the baseline schedule. It is evident 

that if a penalty is due for each extra period required to execute an activity, 

tardiness represents an important measure of performance for scheduling 

in construction project.  

Table 5.2 shows the results collected for each approach.  



As evident RAH ranks best among the heuristics. The performances of the 

PSCCBH and the SSCCBH are clearly indistinguishable, and depend on 

the ordering criterion adopted. 

Unfortunately, there is no unitary evidence of one criterion over the others. 

For these heuristics, the number of activities whose actual starting time 

exceeds the planned starting time (reported in the column #del) is quite 

satisfactory, especially for increasing  values.  

With the aim of assessing the variation of the performances of the various 

heuristics tested with respect to the probability level , we show in Figure 

5.4 the tardiness, and in Figure 5.5 the TPCP for different  values. In both 

cases, the average performance over PSCCBHs  has been considered for 

comparison. The tardiness of the STC and RFDFF heuristics has not been 

reported in Figure 5.4, since it is very high. As evident, the schedule 

performances get worse with decreasing  values. This result is expected, 

since there is clearly a correlation between the schedule robustness and 

the values of .  

As far as the computational effort is concerned, we observe that PSCCBH 

and SSCCBH are very efficient. This is due to the simple schedule 

construction procedures, based on the parallel and serial schedule 

generation schemes. On the contrary, the computational time of RAH is 

quite huge. This is due to the extra effort required for solving, at each 

decision point, the probabilistic model.  

 

5.5. Conclusions 

This chapter presents an approach for efficient scheduling of construction 

project problem under uncertainty. We provide a tool equipped with a 

simulation module for an a posteriori assessment of the schedule 

performance able to support managers in developing a workable and 

realistic project schedule. The generated baseline schedule serves in this 

phase as a guideline for project control and monitoring.  

Managers have been provided with a tool with a graphical interface and 

very easy to use, capable to quantify the risk associated to a baseline 

schedule and to support their experience in the planning phase of the 

project.  Furthermore, managers  can consider a more realistic delivery 

date when take part in a call in which it is preferable that the starting time of 



activities and the ending time of the project will be kept fixed in time as 

much as possible. 

 

 

 

 

 

  



Appendix A 

Proof of Theorem 3.1.  

 

 

 

 

 

 

 

 

 

  

 

  



Appendix B 

Let us consider the following probabilistic constraints to be solved at a 

generic decision point : 

 

Since the values  have to satisfy the above constraint, it is evident that 

 where represents the  quantile of the marginal 

distribution , that is the smallest integer value such that 

. In the case of log–concave marginal distribution, it is possible to 

rewrite  in a 0 − 1 formulation. If  is a known upper bound,  can 

be written as . 

where  are binary variables. Therefore, the probabilistic constraints can 

be rewritten as: 

 

where   and 

. Let us consider, for instance, a problem of the type (2)-(4) with 

joint probabilistic constraint involving two activities, namely 1 and 2. Let 

us suppose that  and  follow a Poisson distribution with mean 2 

and 1, respectively, and . Let also introduce two integer vectors  

 

and 
 
 

 

 

where  

 s the quantile of the distribution function of the random variable 

, is an upper bound on the value of  (i.e. 1-quantile of the 

distribution function of the random variable ). Analogue meanings have  

and . 



Therefore, the joint probabilistic constraints can be transformed in the 

following mixed integer problem. 

 

 

  

 

-  

 

 

 

 
 

where, for instance –  

If we instead suppose that  and  follow a Uniform distribution 

, respectively, and  the joint probabilistic 

constraints in problem can be transformed in the following nonlinear 

problem. 

 

 

 

 

 +   

  



Appendix C 

Notation list 

 

SET AND INDEXES: 

N= (1..n)  set of activities  indexed by i,j. 

A= {(i, j) : i, j  N}  set of precedence relations. 

G = (N,A) compound set representing the project network as a directed acyclic graph. 

K       set of renewable resources indexed by k.  

t       time index.   

     set of activities scheduled at decision point tg. 

      set of all eligible activities which can be precedence feasibly started at   

PARAMETERS 

     decision point. 

     deterministic duration associated to the activity i.  

id̂     random variable representing  uncertain duration of activity i. 

idF ˆ
 
 cumulative probability distribution function of the random variable id̂ . 

rik     constant amount of resource k  required by activity i. 

rk(tg)  residual resource availability at time tg   for resource k. 

M        positive big value. 

γ         parameter adjusted dynamically. 

VARIABLES 

ci      completion time of the activity i.   

βi         binary variable taking  value one if activity i  can be feasibly scheduled and zero 

otherwise. 

C     makespan of the partial schedule built at tg. 
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