
Classification Models and Algorithms in

Application of Multi–Sensor Systems to

Detection and Identification of Gases

Walaa Khalaf

2006–2007

To my family, and

the woman who gave me

the patience and the courage

to finish this work, my wife.

Acknowledgement

It seems that the long way is coming to its end and it is time to say
”Thanks” to all of you who walked along with me and shared ”the good
and the bad”. I thank you a lot my dearest friend professor Alfredo
Eisenberg, for all the assistance that you offered me to finish my study
and my dream to get the Ph.D. degree, also to my great supervisor pro-
fessor Manlio Gaudioso, really I do not have enough words to appreciate
what they offered me, but I am sure they know my feelings toward them.

I would like to present my thanks to my brother Dr. Falah Alwaely,
without him I could not get this chance to study here, also to my wife
Noor Hashim, for all her support. Big kiss to my dear friend Mohammed
Issa and I am thanking him for not complaining about many destroyed
weekends, helping me in translations and grammar corrections.

Coming to the ”professional” part, that was much more than just pro-
fessional, one big ”Thank” to professor Giuseppe Cocorullo and professor
Calogero Pace, whom I learned a lot from them. ”Regards and thanks”
to everybody at the Department of D.E.I.S. (Dipartimento di Elettron-
ica, Informatica e Sistemistica)–University of Calabria, especially my col-
leagues Giuseppe Fedele, Annabella Astorino, Enrico Gorgone, Antonio
Fuduli, Marcello Sammarra, Luigi Moccia, Giovanni Giallombardo, Gre-
gorio Sorrentino, Flavia Monaco, Giuseppina Bonavita, and Giovanna
Miglionico. Finally, I should thank the people who accommodated me
here, at the University of Calabria, and made me feel at home.

Abstract

The objective of the thesis is to adopt advanced machine learning tech-
niques in the analysis of the output of sensor systems. In particular we
have focused on the SVM (Support Vector Machine) approach to classi-
fication and regression, and we have tailored such approach for the area
of sensor systems of the ”electronic nose” type.

We designed an Electronic Nose (ENose), containing 8 sensors, 5 of
them being gas sensors, and the other 3 being a Temperature, a Humidity,
and a Pressure sensor, respectively. Our system (Electronic Nose) has the
ability to identify the type of gas, and then to estimate its concentration.

To identify the type of gas we used as classification and regression
technique the so called Support Vector Machine (SVM) approach, which
is based on statistical learning theory and has been proposed in the broad
learning field. The Kernel methods are applied in the context of SVM, to
improve the classification quality. Classification means finding the best
divider (separator) between two or more different classes without or with
minimum number of errors. Many methods for pattern recognition or
classification are based on neural network or other complex mathematical
models.

In this thesis we describe the hardware equipment which has been
designed and implemented. We survey the SVM approach for machine
learning and report on our experimentation.

I

Contents

Notation IX

Introduction XI

1 Machine Learning and Classification 1

1.1 Machine Learning . 2

1.1.1 Input and Output Functions 3

1.2 Density Estimation . 4

1.2.1 Nonparametric Density Estimation 5

1.3 Clustering . 6

1.4 Classification . 7

1.4.1 Multi–Class Classification 9

1.5 Regression . 10

1.5.1 Linear Least Squares Regression 11

1.5.2 Multiple Linear Regression 13

1.6 Novelty Detection . 13

2 SVM and Kernel Methods 15

2.1 Support Vector Machines 15

2.1.1 VC–Dimension 16

2.1.2 Empirical Risk Minimization 17

2.1.3 Structural Risk Minimization 18

2.1.4 The Optimal Separating Hyperplane 20

2.2 Support Vector Classification 23

2.2.1 Linear Classifier and Linearly Separable Problem 24

III

2.2.2 The Soft Margin Hyperplane: Linearly Nonsepara-
ble Problem (C–SVM) 28

2.3 Kernel Functions and Nonlinear SVM 32
2.3.1 Kernel Feature Space 33
2.3.2 Non Linear Classifier and Non Separable Problem

(C–SVM) . 36
2.4 Support Vector Regression 38
2.5 New SVM Algorithms 40

2.5.1 v–SVM . 40
2.5.2 SVM light . 42

3 Application of SVM in the Design of Multi–Sensors Sys-
tems 45
3.1 Applications of ENose 46
3.2 ENose Using SVM as Classification Tool 54

4 The SVM ENose 61
4.1 The Gas Test Box . 63

4.1.1 Gas Sensors . 65
4.1.2 Auxiliary Sensors 69

4.2 Interfacing Card . 72
4.3 The Software . 73
4.4 Experiments and Results 75

4.4.1 Classification Process 78
4.4.2 Concentration Estimation Process 80

4.5 Conclusions . 82

Bibliography 83

List of Tables

4.1 Gas concentration vs. gas volume 63
4.2 Methanol concentration vs. methanol quantity 64
4.3 Concentrations vs. Ethanol, Acetone, and Benzene quan-

tities . 65
4.4 Multiple C values vs. classification rate with linear kernel 78
4.5 Multiple C values vs. classification rate for different values

of sigma with 3rd degree polynomial kernel 79
4.6 Multiple C values vs. classification rate for different values

of σ with RBF kernel . 79
4.7 Multiple C values in the case of linear kernel 80
4.8 Multiple C and σ values with polynomial kernel of 3rd

degree . 81
4.9 Multiple C and σ values with RBF kernel 81

V

List of Figures

1.1 An input–output function 3

1.2 Different Shapes and Sizes of Clusters 7

2.1 VC–Dimension Illustration 16

2.2 Structure of a nested Hypothesis spaces 19

2.3 Separating hyperplanes in a two–dimensional space. An
optimal hyperplane with a maximum margin. The dashed
lines are not optimal hyperplanes 20

2.4 Optimal separating hyperplane in a two–dimensional space
and the distance between it and any sample 22

2.5 Constraining the Canonical Hyperplanes 24

2.6 The optimal hyperplane is orthogonal to the shortest line
connecting the convex hulls of the two classes (dotted) . 25

2.7 Nonseparable case, slack variables are defined that corre-
spond to the deviation from the margin borders. 29

2.8 A feature map can simplify the classification task. 33

2.9 Mapping the input space into a high dimensional feature
space. 36

2.10 The insensitive band for a one dimensional linear regres-
sion problem . 39

2.11 The insensitive band for a one dimensional non–linear re-
gression problem . 39

4.1 Block diagram of the system 62

4.2 Sensitivity characteristic for the sensor type TGS 813 . . 66

4.3 Sensitivity characteristic for the sensor type TGS 822 . . 68

VII

4.4 Sensitivity characteristic for the sensor type TGS 2600 . 69
4.5 Output voltage vs. relative humidity at 0 ◦C, 25 ◦C, 85 ◦C 70
4.6 Temperature vs. Temperature Error Multiplier 72
4.7 First two principal components for the experimental data

set . 75
4.8 Signals are coming from the system 77

List of Symbols

n Number of samples
d Number of input variables
Rd Euclidean Space d-dimensional
G Finite set of classes
Ω Set of parameters, as in w ∈ Ω
F (x) Cumulative probability distribution function (cdf)
p(x) Probability density function (pdf)
L Loss function
P (x, y) Joint probability density function
p(x|y) Conditional density
R Risk function
Λ Set of abstract parameters
H Hypothesis space
h VC–dimension
‖.‖ Norm
γ Margin
d Signed distance
F Feature space
α Lagrange multipliers
L Primal Lagrangian
W Dual Lagrangian

IX

C Regularization parameter
ξi Slack variable
〈x.z〉 Inner (dot) product between x and z
φ : X → F Mapping to feature space
K(x, z) Kernel 〈φ(x).φ(z)〉
ppm Parts per million
cc Cubic centimeter
MW Molecular weight of gas in gram/mol
ρ Liquid density in gram/cm3

d Gas density in gram/liter
r Correlation coefficient

Introduction

We present an Electronic Nose (ENose) which is aimed both at identifying
the type of gas and at estimating its concentration. Our system contains
8 sensors, 5 of them being gas sensors, whose sensing element is a tin
dioxide (SnO2) semiconductor, the remaining being a temperature sensor,
a humidity sensor, and a pressure sensor. Our integrated hardware-
software system uses some machine learning principles to identify at first
a new gas sample, and then to estimate its concentration.

In particular we adopt a training model using the Support Vector
Machine (SVM) approach to teach the system how to discriminate among
different gases, this mean working as classifier, then we apply another
training model using also the SVM approach, but here working as an
estimator, for each type of gas, to predict its concentration.

We deal with the problems of gases detection and recognition as
well as with the estimation of their concentrations. In fact, detection
and recognition can be seen as a two–class and a multi–class classifica-
tion problem, respectively. The detection of volatile organic compounds
(VOCs) has become a serious task in many fields, because the fast evapo-
ration rate and toxic nature of VOCs could be dangerous at high concen-
tration levels in air and working ambient for the health of human beings.
In fact, the VOCs are also considered as the main reason for allergic
pathologies, skin and lung diseases.

To identify the type of gas we use the support vector machine (SVM)
approach which was introduced by Vapnik as a classification tool. The
SVM method strongly relies on statistical learning theory. Classification
is based on the idea of finding the best separating hyperplane (in terms
of classification error and separation margin) of two point–sets in the

XI

sample space (which in our case is the Euclidean eight–dimension vector
space). Our classification approach includes the possibility of adopting
Kernel transformations within the SVM context.

We adopt a multi–sensor scheme and useful information is gathered
by combining the outputs of the different sensors. The use of just one
sensor does not allow in general to identify the gas. In fact the same
sensor output may correspond to different concentrations of many dif-
ferent gases. On the other hand by combining the information coming
from several sensors of diverse types we identify the gas and estimate its
concentration. We will present the description of our system, producing
the details of its construction.

The results of our experiments on four different types of gases (Methanol,
Ethanol, Acetone, and Benzene) have been particularly encouraging both
in terms of classification errors and concentration prediction.

1

Chapter 1

Machine Learning and
Classification

This chapter introduces the principles and importance of learning method-
ology which is the approach of using examples to synthesize knowledge.
The learning problems can be subdivided into four classes:

• Density Estimation: Let f be an unknown density function in Rd,
and X1, . . . , XN a random sample with distribution f : provide an
estimator f̂N based on the data.

• Clustering: The process of organizing objects into groups whose
members are similar. A cluster is therefore a collection of objects
which are similar between themselves and are dissimilar to the ob-
jects belonging to the other clusters.

• Classification: Given a training set (x1, y1), . . . , (xN , yN), consid-
ered as a sample of pairs of random variables (X,Y) with xk ∈ Rd

and yk in a finite set G of classes, find a function f̂n : Rd → G which
is the best prediction of the true class.

• Regression: Given a training set (x1, y1), . . . , (xN , yN), considered
as a sample of pairs of random variables (X, Y) with xk ∈ Rd and
yk ∈ Rq, find a function f̂n : Rd → Rq to approximate E(Y |X).

1

2 Chapter 1. Machine Learning and Classification

We can easily understand the importance of machine learning in many
computer–based real world applications. In the sequel we give a survey
of the above mentioned classes of problems.

1.1 Machine Learning

Learning is the process of estimating an unknown function or structure
of a system using a limited number of observations. There are two major
settings of learning, the first one called supervised learning which is deriv-
ing the required output from a set of inputs. Curve–fitting is a simple ex-
ample of supervised learning of a function, the examples of input/output
functionality are referred to as the training data [18, 25, 35]. The sec-
ond type is called unsupervised learning, which is the case when having
a training set of vectors without function (output) values for them, the
learning task is to gain some understanding of the process that generated
the data. This type of learning includes density estimation, clustering,
learning the support of a distribution, and so on [8, 14, 18].

There are several ways in which the training set can be used to pro-
duce a hypothesis function. The batch learning when the training set is
available and used all at once to compute the hypothesis function. The
entire training set is possibly used to modify a current hypothesis iter-
atively until an acceptable hypothesis is obtained. The online learning
uses only one example at a time, and updates the current hypothesis
depending on the response to each new example [11].

The learning problem is divided into two parts: specification and esti-
mation. Specification consists in determining the parametric form of the
unknown distributions, while estimation is the process of determining
parameters that characterize the specified distributions. The two induc-
tive principles that are most commonly used in the learning process are
the Empirical Risk Minimization (ERM) and the Maximum Likelihood
(ML).

Machine learning is not just a data base management problem; it
is also a part of artificial intelligence. To be intelligent, a system that
is in a changing environment should have the ability to learn. If the

1.1. Machine Learning 3

system can learn and adapt to such changes, the system designer need not
predict and provide solutions for all possible situations. Machine learning
requires design of computer programs to optimize a performance criterion
using example data or past experience. We have a model defined up to
some parameters, and learning is the execution of a computer program to
optimize such parameters using the training data or past experience. The
model may be predictive to make predictions in the future, or descriptive
to gain knowledge from data, or both. Machine learning also helps us
to find solutions to many problems in vision, speech recognition, and
robotics [35].

1.1.1 Input and Output Functions

The situation sketched in Figure 1.1, is when there exists a function
f , and the learner job is to guess what it is . We denote by h the
hypothesis of the function to be learned. Both f and h are functions of a
vector–valued input X = (x1, x2, . . . , xi, . . . , xd) which has d components.
Function h is being implemented by a device that has X as input and
h(X) as output. Both f and h themselves may be vector–valued.

xi

x1

xd

Training Set:

Ξ = X1, X2, . . . Xi, . . . , Xm

X =

h ∈ H

h(X)
h

Figure 1.1: An input–output function

4 Chapter 1. Machine Learning and Classification

We assume a priori that the hypothesized function h is selected from
a class of functions H. Sometimes we know that f also belongs to this
class or to a subset of this class. We select h based on a training set, Ξ,
of m input vector examples.

The input vector is called by a variety of names, some of these are in-
put vector, pattern vector, feature vector, sample, example, and instance.
The components, xi, of the input vector are variously called features,
attributes, input variables, and components. The output may be a real
number, in which case the process embodying the function, h, is called a
function estimator, and the output is called an output value or estimate.
Alternatively, the output may be a categorical value, in which case the
process embodying h is variously called a classifier,a recognizer, or a cat-
egorizer, and the output itself is called a label, a class, a category, or a
decision.

1.2 Density Estimation

A classical unsupervised learning task is density estimation. We assume
that f(x,w),w ∈ Ω is a set of densities where w is an M-dimensional
vector. Let us assume that the unknown density f(x,w0) belongs to this
class. Assuming that the unlabeled observations (training data)
X = [x1, . . . ,xn] were generated independently and identically distributed
(i.i.d.) according to some unknown distribution, the task of density esti-
mation is to learn the definition of this probability density function [36].
The likelihood function is the probability of seeing X as a function of w

P(X|w) =
n∏

i=1

f(xi,w), (1.1)

the maximum likelihood inductive principle states that we should choose
the parameters w which maximize the likelihood function [8, 35]. Max-
imizing the log likelihood function makes the problem more tractable.
This is equivalent to minimizing the ML risk functional

RML(w) = −
n∑

i=1

ln f(xi,w), (1.2)

1.2. Density Estimation 5

empirically estimating the risk function by using the training data de-
pending on the empirical risk minimization inductive principle which is
the average risk for the training data. This estimate, called the empirical
risk, is then minimized by choosing the appropriate parameters [14]. The
expected risk for density estimation is

R(w) =

∫
L(f(x,w)) p(x) dx, (1.3)

where L(f(x,w)) is the loss function. Taking an average of the risk over
the training data:

Remp(w) =
1

n

n∑
i=1

L(f(xi,w)) (1.4)

minimizing the empirical risk (1.4) with respect to w we can find the
optimum parameter values w∗.

Empirical risk minimization (ERM) does not specify the particular
form of the loss function, therefore; it is a more general inductive principle
than maximum likelihood (ML) principle [14]. If the loss function is

L(f(x,w)) = − ln f(x,w). (1.5)

This mean the ERM inductive principle is equivalent to the ML induc-
tive principle for density estimation.

1.2.1 Nonparametric Density Estimation

Defining the density by solving the integral equation is the general prin-
ciple behind nonparametric density estimation

∫ x

−∞
p(u) du = F (x), (1.6)

where F (x) is the cumulative distribution function (cdf). F (x) is approx-
imated by the empirical cdf estimated from the training data, because
F (x) is unknown, therefore;

Fn(x) =
n∑

i=1

I(x ≥ xi) (1.7)

6 Chapter 1. Machine Learning and Classification

where I() is the indicator function that takes the value 1 if its argument
is true and 0 otherwise. As the number of samples tends to infinity, the
empirical cdf uniformly converges to the true cdf . All nonparametric
density estimators depend on this asymptotic assumption to give an es-
timate, since they solve the integral, equation (1.6), using the empirical
cdf. One of the major drawbacks of nonparametric estimators for density
is their poor scaling properties for high–dimensional data [8].

The most widely used method of nonparametric density estimation
is the K–nearest neighbors (KNN), this method is a simple algorithm,
often performs very well and is an important benchmark method. But
one drawback of KNN is that all the training data must be stored, and
a large amount of processing is needed to evaluate the density for a new
input pattern [3, 24, 25, 35].

1.3 Clustering

Clustering is an unsupervised learning process, searching for spatial re-
lationships or similarities among data samples, which might be hard to
distinguish in high–dimensional feature space [18]. The three basic steps
of clustering process are:

1. Defining a dissimilarity measure between examples: typically the
Euclidean distance is used.

2. Defining a clustering criterion to be optimized, typically based on
within–and between–cluster structure (e.g., elongated, compact or
topologically–ordered clusters).

3. Defining a search algorithm to find a ”good” assignment of exam-
ples to clusters.

Clustering or unsupervised classification is a very difficult problem
because data could form clusters with different shapes and sizes as shown
in Figure 1.2. Cluster analysis is a very important and useful technique.
The speed, reliability, and consistency of a clustering algorithm applied to
a large amounts of data constitute strong reasons to use it in applications

1.4. Classification 7

such as data mining, information retrieval, image segmentation, signal
compression and coding, and machine learning [12].

Figure 1.2: Different Shapes and Sizes of Clusters

There are hundreds of clustering algorithms and new clustering al-
gorithms continue to appear. Most of these algorithms are based on
the following two popular clustering techniques: iterative square-error
partitional clustering and agglomerative hierarchical clustering [25]. Hi-
erarchical techniques organize data in a nested sequence of groups which
can be displayed in the form of a tree. Square-error partitional algorithms
try to find the partition which either minimizes the within–cluster scatter
or maximizes the between–cluster scatter [27].

1.4 Classification

The task of classification is finding the best divider (separator) between
two or more different classes, without or with minimum number of errors.
In the simplest case there are only two different classes. Estimating a
function f : Rd → {0, 1}, is one possible formalization of this task, using

8 Chapter 1. Machine Learning and Classification

input-output training data pairs which are assumed to be generated in-
dependently and identically distributed (i.i.d.), according to an unknown
probability distribution P (x, y), where

(x1, y1), . . . , (xn, yn) ∈ Rd × Y, Y = {0, 1}.

The objective is to define f which will correctly classify unseen examples
(x, y). An example is assigned to the class 1 if f(x) ≥ 0 and to the class
0 otherwise. The test examples are assumed to be generated from the
same probability distribution P (x, y) as the training data. A commonly
used loss function measures the classification error is [8]

L(y, f(x)) =

{
0 if y = f(x)
1 if y 6= f(x)

(1.8)

The best function f is the one that minimizing the expected error (risk)

R(f) =

∫
L(y, f(x)) P (x, y) dx dy. (1.9)

Learning then becomes the problem of finding the indicator function
f(x) (classifier) which minimizes the probability of misclassification,
equation (1.9), using only the training data. While the underlying prob-
ability distribution P (x, y) is unknown, the risk cannot be minimized
directly. So, users try to estimate a function that is close to the optimal
one based on the available information.

The conditional densities for each class p(x|y = 0) and p(x|y = 1)
are estimated via parametric density estimation and the ML inductive
principle. These estimates will be denoted as p0(x, α∗) and p1(x, β∗), re-
spectively, to indicate that they are parametric functions with parameters
chosen via ML. Prior probabilities are the probability of occurrence of
each class, P (y = 0) and P (y = 1) are assumed to be known or estimated.
Using Bayes theorem, it is possible to determine for a given observation
x the probability that the observation belongs to each class, which is
called posterior probabilities, that can be used to construct a discrimi-
nant rule. This rule chooses the output class which has the maximum

1.4. Classification 9

posterior probability [14, 25]. Calculating the posterior probabilities for
each class by using Bayes rule [8, 35]:

P (y = 0|x) =
p0(x, α∗)P (y = 0)

p(x)

P (y = 1|x) =
p1(x, β∗)P (y = 1)

p(x)

(1.10)

After calculating the posterior probabilities, x can be classified by using
the following rule:

f(x) =

0 if p0(x, α∗)P (y = 0) > p1(x, β∗)P (y = 1)

1 otherwise
(1.11)

Equivalently, the rule can be written as

f(x) = I

(
ln p1(x, β∗)− ln p0(x, α∗) + ln

P (y = 1)

P (y = 0)
> 0

)
, (1.12)

where I() is the indicator function that takes the value 1 if its argu-
ment is true and 0 otherwise. The class labels are denoted by {0 , 1}.
Sometimes, for notational convenience, the class labels {–1 , +1} are
used.

1.4.1 Multi–Class Classification

Multi–class classification is a central problem in machine learning. In
this case a discrimination among several classes is required. The multi–
class classification problem refers to assign each of the observations into
one of k classes [11].

The most common approach to multi–class classification, the ”One
versus All” (OvA) approach, makes direct use of ”standard” binary clas-
sifiers to train the output labels. The OvA scheme assumes that for each
class there exists a single (simple) separator between this class and all
the other classes [1]. Another common approach, ”All versus All” (AvA),
that assumes the existence of a separator between any two classes.

10 Chapter 1. Machine Learning and Classification

”One versus All” classifiers are usually implemented using a Winner-
Take-All (WTA) strategy that associates a real–valued function with each
class in order to determine class membership. Specifically, an example
belongs to the class which assigns it the highest value (i.e., the ”winner”)
among all classes. While it is known that WTA is an expressive classi-
fier, it has limited expressivity when trained using the OvA assumption
since OvA assumes that each class can be easily separated from the rest
[18, 33]. An alternative interpretation of WTA is that each example pro-
vides an order for the classes (sorted in descending order by the assigned
values), where the ”winner” is the first class in this ordering. Therefore
it’s natural to specify the ordering of the classes for an example directly,
instead of implicitly through WTA.

1.5 Regression

Regression is the process of guessing or estimating a function from some
example input–output pairs with little or no knowledge about the form
of the function [11, 20, 25]. This means finding the best prediction of
a random variable Y ∈ Rq (the output) by another random variable
X ∈ Rd (the input). Assume q = 1, that will simplify the notation. In
this framework, a predictor is a function f : Rd → R.

A common loss function for regression is the squared error (L2),

L(y, f(x)) = (y − f(x))2. (1.13)

Learning then becomes the problem of finding the function f(x) (regres-
sor) that minimizes the risk function

R =

∫
(y − f(x))2 p(x, y) dx dy, (1.14)

using only the training data. This risk functional measures the accuracy
of the learning machine’s predictions of the system output [8, 11].

1.5. Regression 11

1.5.1 Linear Least Squares Regression

Linear least squares regression is so far the most widely used modeling
method. The terms ”regression”, ”linear regression” or ”least squares”
are synonymous of linear least square regression. For the input vector
x = (x1, x2, . . . , xp) we want to predict a real–valued output Y .

Linear least squares regression can be used to fit the data with any
function of the form

f(x) = w0 +

p∑
j=1

wjxj, (1.15)

in which:

1. Each explanatory variable (input value xi) in the function is mul-
tiplied by an unknown parameter (wi).

2. There is at most one unknown parameter with no corresponding
explanatory variable.

3. All the individual terms are summed to produce the final function
value.

Since the unknown parameters (wi) are considered to be variables and
the explanatory variables (xi) are considered to be known coefficients
corresponding to those ”variables”, then the problem becomes a system
(usually overdetermined) of linear equations that can be solved in the
least squares sense for the values of the unknown parameters [12, 20].
Linear least squares regression also takes its name from the way the
estimates of the unknown parameters are computed, The word ”linear”
here describes the linearity of the model in terms of the wi not in terms
of the explanatory variables xi. The ”method of least squares” that is
used to obtain parameter estimates was independently developed in the
late 1700’s and the early 1800’s by the mathematicians Karl Friedrich
Gauss and Adrien Marie Legendre.

In the least squares method the unknown parameters are estimated by
minimizing the sum of the squared deviations between the data and the
model. If we have a set of training data (x1, y1) . . . (xn, yn) and we want

12 Chapter 1. Machine Learning and Classification

to estimate the parameters w. Each xi = (xi1, xi2, . . . , xip)
T is a vector of

feature measurements for the ith case. Least squares estimation method
picks the coefficients w = (w0, w1, . . . , wp)

T that minimize the residual
sum of squares [25].

RSS(w) =
n∑

i=1

(yi − f(xi))
2

=
n∑

i=1

(yi − w0 −
p∑

j=1

xijwj)
2.

(1.16)

For minimizing equation (1.16), we denote by X the n × (p + 1)
matrix with each row an input vector (with a 1 in the first position), and
similarly let y be the n–vector of outputs in the training set. Now we
can rewrite the residual sum–of–squares as

RSS(w) = (y −Xw)T (y −Xw). (1.17)

This is a quadratic function in the p+1 parameters. Differentiating with
respect to w we obtain

∂RSS

∂w
= −2XT (y −Xw)

∂2RSS

∂w∂wT
= −2XTX.

(1.18)

Assuming that X is nonsingular and hence XTX is positive definite, we
set the first derivative to zero

XT (y −Xw) = 0, (1.19)

to obtain the unique solution

ŵ = (XTX)−1XTy. (1.20)

The fitted values at the training inputs are

ŷ = Xŵ = XT (XTX)−1XTy, (1.21)

where ŷi = f̂(xi). The matrix H = XT (XTX)−1X appearing in equation
(1.21) is sometimes called the ”hat” matrix because it puts the hat on y.

1.6. Novelty Detection 13

1.5.2 Multiple Linear Regression

The linear model, equation (1.15), with p > 1 inputs is called the multiple
linear regression model. Multiple linear regression attempts to model
the relationship between two or more explanatory variables (X) and a
response variable by fitting a linear equation to observed data [25]. Each
value of the independent variable X is associated with a value of the
dependent variable y. Instead of fitting a line to data, we are now fitting a
plane (for 2 independent variables), a space (for 3 independent variables),
etc.

1.6 Novelty Detection

An important ability of any signal classification scheme is detecting novel
events. Several applications require the classifier to act as a detector
rather than to be used as a classifier, that is, the requirement is to detect
whether an input is part of the data that the classifier was trained on or it
is in fact unknown. There are several important issues related to novelty
detection; we can summarize them in terms of the following principles
[34].

• Principle of robustness and trade–off: A novelty detection method
must be capable of robust performance on test data that maximizes
the exclusion of novel samples while minimizing the exclusion of
known samples. This trade-off should be predictable and under
experimental control.

• Principle of uniform data scaling: In order to assist novelty detec-
tion, it should be possible that all test data and training data after
normalization lie within the same range.

• Principle of parameter minimization: A novelty detection method
should aim to minimize the number of parameters that are in user
set.

• Principle of generalization: The system should be able to generalize
without confusing the generalized information as novel.

14 Chapter 1. Machine Learning and Classification

• Principle of adaptability: A system that recognizes novel samples
during test should be able to use this information for retraining.

• Principle of computational complexity: A number of novelty detec-
tion applications are online and therefore the computational com-
plexity of a novelty detection mechanism should be as low as pos-
sible.

Statistical approaches are mostly based on modeling data on the basis
of their statistical properties and using these information to estimate
whether a test sample come from the same distribution or not. The
simplest approach can be based on constructing a density function for
data of a known class, and then assuming that data is computing the
probability of a test sample belongs to that class. Another simple model
is to find the distance of the sample from a class mean and threshold
on the basis of how many standard deviations away the sample is. The
distance measure itself can be Mahalanobis or some other probabilistic
distance [12].

Two main approaches exist in the estimation of the probability den-
sity function, parametric and non-parametric methods. The parametric
approach assumes that the data comes from a family of known distribu-
tions, such as the normal distribution and certain parameters are cal-
culated to fit this distribution. In non-parametric methods the overall
form of the density function is derived from the data as well as the pa-
rameters of the model. As a result non-parametric methods give greater
flexibility in general systems. Parametric methods for estimating the
probability density function have sometimes limited use because they
require extensive a priori knowledge of the problem. Non–parametric
statistical approaches make no assumption on the form of data distribu-
tion and therefore they are more flexible (though more computationally
expensive) [20].

There are many applications where novelty detection is very impor-
tant including signal processing, computer vision, pattern recognition,
data mining, and robotics.

15

Chapter 2

Support Vector Machine and
Kernel Methods

In this chapter we introduce the Support Vector Machine (SVM) classifi-
cation technique, and show how it leads to the formulation of a Quadratic
Programming (QP) problem in a number of variables that is equal to the
number of data points. We will start by reviewing the classical Empiri-
cal Risk Minimization (ERM) approach, and by showing how it naturally
leads, through the theory of VC bounds, to the idea of Structural Risk
Minimization (SRM), which is a better induction principle, and how SRM
is implemented by SVM. Also we discuss the principles of kernel trans-
formations, which provide the main building blocks of Support Vector
Machine.

2.1 Support Vector Machines

Support vector machines (SVM) are a set of related supervised learning
methods used for classification and regression. They belong to a family of
generalized linear classifiers. This family of classifiers has both abilities:
to minimize the empirical classification error and to maximize the
geometric margin. Hence it is also known as maximum margin classifier
approach [1].

An important feature of the SVM approach is that the related op-

15

16 Chapter 2. SVM and Kernel Methods

timization problems are convex because of Mercer’s conditions on the
kernels [12]. Consequently, they haven’t local minima. The reduced
number of non–zero parameters gives the ability to distinguish between
these system and other pattern recognition algorithms, such as neural
networks [11].

2.1.1 VC–Dimension

The Vapnik–Chernovenkis (VC) dimension is a scalar value that measures
the capacity of a hypothesis space. Capacity is a measure of complexity
and the expressive power, richness or flexibility of a set of functions.

Figure 2.1: VC–Dimension Illustration

To give a simple VC–dimension example as shown in Figure 2.1, there
are 23 = 8 ways of assigning 3 points to two classes. For the displayed
points in R2, all 8 possibilities can be realized using one separating hy-
perplane, in other words, the function class can shatter 3 points, where
shattering is ”if n samples can be separated by a set of indicator func-
tions in all 2n possible ways, then this set of samples is said to be shattered

2.1. Support Vector Machines 17

by the set of functions”. This would not work if we were given 4 points,
no matter how we placed them. Therefore, the VC–dimension of the
class of separating hyperplanes in R2 is 3. In general, the set of linear
indicator functions in n dimensional space has a VC–dimension equal to
n + 1 [18, 25, 35].

2.1.2 Empirical Risk Minimization

The task of learning from examples can be formulated in the following
way:
Given a set of decision functions

{fλ(x) : λ ∈ Λ}, fλ : Rd → {−1, +1}
where Λ is a set of abstract parameters, and a set of examples

(x1, y1), . . . , (xl, yl), xi ∈ Rd, yi ∈ {−1, +1}
drawn from an unknown distribution P (x, y), we want to find a function
fλ∗ which provides the smallest possible value for the expected risk:

R(λ) =

∫
|fλ(x)− y|P (x, y) dx dy (2.1)

the function fλ are usually called hypothesis, and the set {fλ(x) : λ ∈ Λ}
is called hypothesis space and denoted by H. Therefore the measure of
how ”good” the hypothesis in predicting the correct label y for a point
x is called or known as the expected risk.

It is not possible in general to compute and then to minimize the
expected risk R(λ), because the probability distribution P (x, y) is un-
known. However, since P (x, y) is sampled, it’s possible to compute the
stochastic approximation of R(λ), and this is called empirical risk:

Remp(λ) =
1

n

n∑
i=1

|fλ(xi)− yi| (2.2)

The empirical risk minimization principle is ”if Remp converges to R,
the minimum of Remp may converge to the minimum of R”. If conver-
gence of the minimum of Remp to the minimum of R does not hold, the

18 Chapter 2. SVM and Kernel Methods

Empirical Risk Minimization principle does not allow us to make any in-
ference based on the data set, and it is therefore said to be not consistent
[11].

A typical uniform Vapnik and Chervonenkis bound, which holds with
probability 1− η has the following form:

R(λ) ≤ Remp(λ) +

√
h(ln 2n

h
+ 1)− ln η

4

n
∀λ ∈ Λ (2.3)

where h is the VC–dimension of fλ. From this bound it is clear that, in
order to achieve small expected risk, that is good generalization perfor-
mances, both the empirical risk and the ratio between the VC–dimension
and the number of data points has to be small. Since the empirical risk
is usually a decreasing function of h, it turns out that, for a given num-
ber of data points, there is an optimal value of the VC–dimension. The
bound of Vapnik and Chervonenkis (equation 2.3) suggests that the Em-
pirical Risk Minimization principle can be replaced by a better induction
principle.

2.1.3 Structural Risk Minimization

The technique of Structural Risk Minimization (SRM) has been devel-
oped by Vapnik to overcome the problem of choosing an appropriate
VC–dimension. It is clear from equation (2.3) that a small value of the
empirical risk does not necessarily gives a small value of the expected
risk [49]. The principle of Structural Risk Minimization is based on the
observation that, in order to make the expected risk small, both sides in
equation (2.3) should be small, therefore; both the VC–dimension and
the empirical risk should be minimized at the same time [2, 25, 46].

In order to implement the SRM principle we need a nested structure
of hypothesis spaces as shown in Figure 2.2

H1 ⊂ H2 ⊂ . . . ⊂ Hn ⊂ . . .

with the property that h(l) ≤ h(l + 1) where h(l) is the VC–dimension
of the set Hl [5].

2.1. Support Vector Machines 19

H1 H2 Hn

Figure 2.2: Structure of a nested Hypothesis spaces

The SRM principle is clearly well founded mathematically, but it can
be difficult to implement for the following two reasons [8]:

1. It is often difficult to find the VC–dimension for a hypothesis space
Hl, since not for all models and machines it is known how to cal-
culate this.

2. Even if it is possible to compute hl (or a bound on it) of Hl it is not
trivial to solve the optimization problem that is given by equation
(2.3).

In most cases SRM has to be done by simply training a series of ma-
chines, one for each subset, and then choosing Hl that gives the lowest
risk bound. Therefore the implementation of this principle is not easy,
because it is important to control the VC–dimension of a learning tech-
nique during the training phase. The SVM algorithm achieves this goal,
minimizing a bound on the VC–dimension and the number of training
errors at the same time [2].

20 Chapter 2. SVM and Kernel Methods

2.1.4 The Optimal Separating Hyperplane

A separating hyperplane is a linear function that has the ability of sep-
arating the training data without error as shown in Figure 2.3. Suppose
that the training data consists of n samples (x1, y1), . . . , (xn, yn), x ∈
Rd, y ∈ {+1,−1} that can be separated by a hyperplane decision func-
tion

D(x) = 〈w .x〉+ b, (2.4)

with appropriate coefficients w and b [8, 11, 25, 50]. Notice that the
problem is ill-posed because the solution may be not unique and then
some constraint has to be imposed to the solution to make the problem
well-posed [13].

hyperplane

hyperplane

maximum margin

optimal hyperplane

Figure 2.3: Separating hyperplanes in a two–dimensional space. An op-
timal hyperplane with a maximum margin. The dashed lines are not
optimal hyperplanes

2.1. Support Vector Machines 21

A separating hyperplane satisfies the constraints that define the sep-
aration of the data samples:

〈w . xi〉+ b ≥ +1 if yi = +1

〈w . xi〉+ b ≤ −1 if yi = −1, i = 1, 2, . . . , n.
(2.5)

Or in more compact form (notation)

yi[〈w . xi〉+ b] ≥ 1, i = 1, 2, . . . , n. (2.6)

For a given separable training data set, all possible separating hy-
perplanes can be represented in the form (2.6). The formulation of the
separating hyperplanes allows us to solve the classification problem di-
rectly. It does not require estimation of density as an intermediate step
[1]. When D(x) is equal to 0, this hyperplane is called separating hyper-
plane as shown in Figure 2.4.

Let di be the signed distance of the point xi from the separating
hyperplane

di =
〈w . xi〉+ b

‖w‖ (2.7)

where the symbol ‖w‖ denotes the norm of w. From this equation
follows that

di‖w‖ = 〈w . xi〉+ b

and using the constraints (2.6), we have

yidi‖w‖ ≥ 1.

So for all xi the following inequality holds:

1

‖w‖ ≤ yidi. (2.8)

Notice that yidi is always positive quantity. Moreover, 1/‖w‖ is the lower
bound on the distance between the points xi and the separating hyper-
plane (w, b). The purpose of the ”1” in the righthand side of inequality
(2.6) for establishing a one–to–one correspondence between separating

22 Chapter 2. SVM and Kernel Methods

D(x) = +1

xi

D(x) > +1

D(x) = 0

D(x) = −1

D(x) < −1

di

1/‖w‖

Figure 2.4: Optimal separating hyperplane in a two–dimensional space
and the distance between it and any sample

hyperplanes and their parametric representation. This is done through
the notion of canonical representation of a separating hyperplane [44].

The optimal hyperplane is given by maximizing the margin, γ, subject
to the constraints (2.6). The margin is given by [11, 51],

γ(w, b) = min
i:yi=−1

di + min
i:yi=+1

di

= min
i:yi=−1

〈w . xi〉+ b

‖w‖ + min
i:yi=+1

〈w . xi〉+ b

‖w‖

=
1

‖w‖
(

min
i:yi=−1

(〈w . xi〉+ b) + min
i:yi=+1

(〈w . xi〉+ b)

)

=
2

‖w‖ .

(2.9)

2.2. Support Vector Classification 23

Thus the optimal hyperplane is the one that minimizes

Φ(w) =
1

2
‖w‖2. (2.10)

Because Φ(w) is independent of b, changing b moves it in the normal
direction to itself, and hence the margin remains unchanged but the
hyperplane is no longer optimal in that it will be nearer to one class than
the other.

Now we discuss why minimizing (2.10) is equivalent to implementing
the SRM principle. Suppose that the following bound holds,

‖w‖ ≤ A, (2.11)

then from (2.8)

d ≥ 1

A
, (2.12)

this is equivalent to placing spheres of radius
1

A
around each data points

and consider only the hyperplanes that do not intersect any of the spheres,
and intuitively it can be seen in Figure 2.5 how this reduces the possible
hyperplanes, and hence the capacity [37].

The VC–dimension, h, of the set of canonical hyperplanes in d–
dimensional space is bounded by,

h ≤ min{dR2A2e, d}+ 1, (2.13)

where R is the radius of the hypersphere enclosing all the data points.
Hence minimizing (2.10) is equivalent to minimizing an upper bound on
the VC–dimension [8, 44, 50].

2.2 Support Vector Classification

In this section we describe the mathematical derivation of the Support
Vector Machine (SVM) developed by Vapnik. The Support Vector Ma-
chine (SVM) implements the idea of mapping the input vectors x into
the high–dimensional feature space F through some nonlinear mapping,

24 Chapter 2. SVM and Kernel Methods

1/A

Figure 2.5: Constraining the Canonical Hyperplanes

chosen a priori. In this space, an optimal separating hyperplane is con-
structed [50].

The technique is introduced by steps: at first consider the simplest
case, i.e. a linear classifier and a linearly separable problem; then a linear
classifier and a nonseparable problem, and the last one which is the most
interesting and useful, nonlinear classifier and nonseparable problem.

2.2.1 Linear Classifier and Linearly Separable
Problem

In this section we consider the case where the data set is linearly sep-
arable, and we want to find the ”best” hyperplane that separates the
data. In other words finding the pair (w, b) satisfying the constraints in
equation (2.6). The hypothesis space in this case is the set of functions

2.2. Support Vector Classification 25

given by

fw,b = sgn(〈w . x〉+ b). (2.14)

Because the set of examples are linearly separable, the goal of the SVM
is to find, among the Canonical Hyperplanes that correctly classify the
data, the one at minimum norm. Minimizing ‖w‖2 (in this case of linear
separability) is equivalent to finding the separating hyperplane that max-
imizes the distance between the two convex hulls (of the two classes of
training data), measured along the line perpendicular to the hyperplane,
as shown in Figure 2.6.

yi = −1

yi = +1

{x:(w.x)+b=+1}

{x:(w.x)+b=0}

{x:(w.x)+b=-1}

Figure 2.6: The optimal hyperplane is orthogonal to the shortest line
connecting the convex hulls of the two classes (dotted)

26 Chapter 2. SVM and Kernel Methods

The solution to the optimization problem of equation (2.10) under
the constraints of equation (2.6) consists of (d+1) parameters. For data
of moderate dimension d, this problem can be solved using Quadratic
Programming (QP) [1].

For very high–dimensional spaces it is not practical to solve the prob-
lem in the present form

min
w,b

Φ(w) =
1

2
‖w‖2

subject to
yi[〈w . xi〉+ b] ≥ 1, i = 1, 2, . . . , n.

(2.15)

However, this problem can be translated into a dual form that can be
better tackled. In case of convexity (as in our problem) solving the dual
problem is equivalent to solving the original. For the optimal hyperplane
problem it turns out that the size of dual optimization problem scales
with the number of samples n and not the dimensionality d. The solution
to this problem is given by the saddle point of the Lagrange function
(Lagrangian),

L(w, b, α) =
1

2
‖w‖2 −

n∑
i=1

αi{ yi[〈w . xi〉+ b]− 1 }, (2.16)

where αi are the Lagrange multipliers. The function should be minimized
with respect to w, b and maximized with respect to αi ≥ 0. Classical
Lagrangian duality enables the primal problem, equation (2.16), to be
transformed to its dual problem, which is easier to solve. The dual prob-
lem is given by,

max
α

W(α) = max
α

(
min
w,b

L(w, b, α)

)
. (2.17)

The Karush–Kuhn–Tucker (KKT) conditions play a central role in
both the theory and practice of constrained optimization. For the primal

2.2. Support Vector Classification 27

problem above, the KKT conditions may be stated [11, 15, 49, 50]:

∂L
∂b

= 0 ⇒
n∑

i=1

αiyi = 0

∂L
∂w

= 0 ⇒ w =
n∑

i=1

αiyixi,

(2.18)

which are satisfied at the minimum of Lagrangian L. The KKT condi-
tions are satisfied at the solution of any constrained optimization problem
(convex or not), with any kind of constraints, provided that the intersec-
tion of the set of feasible directions with the set of descent directions co-
incides with the intersection of the set of feasible directions for linearized
constraints with the set of descent directions. Furthermore, the problem
for SVM is convex (a convex objective function, with constraints which
give a convex feasible region), the KKT conditions are necessary and suf-
ficient for w, b, and α to be a solution. Thus solving the SVM problem is
equivalent to finding a solution to the KKT conditions [1, 5, 25]. Hence
from (2.16), (2.17) and (2.18), the dual problem is

max
α

W(α) = max
α

(
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi . xj〉
)

, (2.19)

and hence the solution to the problem is given by,

α∗ = arg min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi . xj〉 −
n∑

i=1

αi, (2.20)

subject to the constraints

n∑
i=1

yiαi = 0,

αi ≥ 0, i = 1, 2, . . . , n.

(2.21)

Solving (2.20) with the constraints of (2.21) determines the Lagrange

28 Chapter 2. SVM and Kernel Methods

multipliers, and the optimal separating hyperplane is given by,

w∗ =
n∑

i=1

αiyixi (2.22)

b∗ = −1

2
〈w∗ . (xr + xs)〉, (2.23)

where xr and xs are any support vector (points have α > 0) from each
class satisfying,

αr, αs > 0, yr = −1, ys = +1. (2.24)

By linearity of the dot product and (2.21), the decision function (hard
classifier), as shown in (2.14) can then be written as:

f(x) = sgn

(
n∑

i=1

yiα
∗
i 〈x . xi〉+ b∗

)
. (2.25)

2.2.2 The Soft Margin Hyperplane: Linearly Non-
separable Problem (C–SVM)

So far the discussion has been restricted to the case of linearly separable
training data. But for the data that can not be separated without error,
it would be better to separate the data with a minimal number of errors.
This means finding an optimal hyperplane (i.e., with maximal margin)
for the training data points that are accurately separated, while it is
not possible to satisfy all the constraints in problem (equation 2.15).
This corresponds to some data points that fall within the margin or on
the wrong side of the decision boundary [8]. Note that the definition
of nonseparable differs from misclassification, which occurs when a data
point only falls on the wrong side of the decision boundary as shown in
Figure 2.7.

Non negative slack variables ξi, i = 1, . . . , n, can be introduced to
quantify the nonseparable data in the defining condition of the hyper-
plane [25]. The optimization problem is now posed so as to minimize the
classification error as well as minimizing the bound on the VC–dimension

2.2. Support Vector Classification 29

D(x) = +1

D(x) = 0

D(x) = −1

x3

ξ2 = 1−D(x2)

x1

ξ1 = 1−D(x1)

x2

ξ3 = 1 + D(x3)

Figure 2.7: Nonseparable case, slack variables are defined that correspond
to the deviation from the margin borders.

of the classifier. The constraints of equation (2.6) are modified for the
nonseparable case as follows,

yi[〈w . xi〉+ b] ≥ 1− ξi, i = 1, 2, . . . , n. (2.26)

For training sample xi, the slack variable ξi is the deviation from
the margin border corresponding to the class of yi (i.e., the margin bor-
der defined by D(xi) = yi); as shown in Figure 2.7. According to the
definition, slack variables greater than zero correspond to nonseparable
points, while slack variables greater than one correspond to misclassified
samples [41]. Minimizing the number of nonseparated points is a difficult
combinatorial optimization problem. Hence we resort to the minimiza-

30 Chapter 2. SVM and Kernel Methods

tion of

Q(ξ) =
n∑

i=1

ξi, (2.27)

The function (2.27) only approximates the number of nonseparable sam-
ples. The hyperplane that minimizes (2.27) subject to the constraint
(2.26) and using the structure

Sk = {〈w . x〉+ b : ‖w‖2 ≤ ck}, (2.28)

is called the soft margin hyperplane. The optimization problem that
finds the soft margin hyperplane is convex, this means that each (local)
minimum is also a global minimum [36].

The generalized optimal separating hyperplane for the case of linearly
nonseparable classes can be seen as the solution of the following problem:

min
w,b,ξ

Φ(w, ξ) =
1

2
‖w‖2 + C

n∑
i=1

ξi

subject to

yi[〈w . xi〉+ b] ≥ 1− ξi, i = 1, 2, . . . , n
ξi ≥ 0, i = 1, 2, . . . , n

(2.29)

where C is a positive constant number which can be regarded as a reg-
ularization parameter, which determines the trade off between accuracy
on the training set (i.e. small

∑
i ξi) and margin width (i.e. small ‖w‖2).

Increasing C means giving more importance to the errors on the train-
ing set when the optimal hyperplane is determined. The solution to the
optimization problem (2.26) is given by the saddle point (the point that
minimizes the functional with respect to w and b and maximizes it with
respect to α) of the Lagrangian

L(w, b, α, ξ, β) =
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑

i=1

αi{ yi[〈w . xi〉+ b]

−1 + ξi} −
n∑

i=1

βiξi,

(2.30)

2.2. Support Vector Classification 31

where α and β are the Lagrange multipliers. The Lagrangian has to be
minimized with respect to w, b, and ξi, and maximized with respect to
αi ≥ 0 and βi ≥ 0.

Classical Lagrangian duality enables the primal problem (equation
2.30) to be transformed into its dual form. The dual problem is given by
[1, 11, 25, 50],

max
α

W(α, β) = max
α, β

(
min
w,b,ξ

L(w, b, α, ξ, β)

)
, (2.31)

the minimum with respect to w, b and ξ of the Lagrangian, L, is given
by,

∂L
∂b

= 0 ⇒
n∑

i=1

αiyi = 0

∂L
∂w

= 0 ⇒ w =
n∑

i=1

αiyixi

∂L
∂ξ

= 0 ⇒ αi + βi = C.

(2.32)

Hence from equations (2.30), (2.31) and (2.32), the dual problem is,

max
α

W(α) = max
α

(
n∑

i=1

αi − 1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi . xj〉
)

, (2.33)

and hence the solution to the problem is given by,

α∗ = arg min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyj〈xi . xj〉 −
n∑

i=1

αi, (2.34)

subject to the constraints

0 ≤ αi ≤ C, i = 1, 2, . . . , n

n∑
i=1

yiαi = 0.
(2.35)

32 Chapter 2. SVM and Kernel Methods

This optimization problem differs from the optimization problem for
the separable case only with the inclusion of a bound C in the constraint
(2.35). This parameter introduces additional capacity control within the
classifier. C can be directly related to a regularization parameter, but
ultimately C must be chosen to reflect the knowledge of the noise on the
data [21].

Similarly to the separable case, the points xi for which αi > 0 are
termed support vectors. The main difference is that we must distin-
guish between the support vectors for which αi < C and those for which
αi = C. In the first case, when ξi = 0 the support vectors lie at a distance
1/‖w‖ from the Optimal Separating Hyperplane (OSH). These support
vectors are termed margin vectors as we know before. The support vec-
tors for which αi = C, instead, are misclassified points (if ξi > 1), points
correctly classified but closer than 1/‖w‖ from the OSH (if 0 < ξi ≤ 1),
or, in some degenerate cases, even points lying on the margin (if ξi = 0)
[8, 44].

An example of generalized OSH with the relative margin vectors and
errors is shown in Figure 2.7. All the points that are not support vectors
are correctly classified and lie outside the margin strip.

2.3 Kernel Functions and Nonlinear SVM

Kernel representations offer an alternative solution by projecting the data
into a high dimensional feature space to increase the computational power
of the linear learning machines. The use of linear machines in the dual
representation makes it possible to perform this step explicitly. The
advantage of using the machines in the dual representation derives from
the fact that in this representation the number of tunable parameters
does not depend on the number of attributes being used. By replacing
the inner product with an appropriately chosen ’kernel’ function, one
can implicitly perform a nonlinear mapping to a high dimensional feature
space without increasing the number of tunable parameters, provided the
kernel computes the inner product of the feature vectors corresponding
to the two inputs [11].

2.3. Kernel Functions and Nonlinear SVM 33

2.3.1 Kernel Feature Space

The quantities introduced to describe the data are usually called at-
tributes. The task of choosing the most suitable representation is known
as feature selection. The space X is referred to as the input space, while
F = {φ(x) : x ∈ X} is called the feature space [12]. Feature mapping
from a two dimensional input space to a two dimensional feature space,
is shown in Figure 2.8, where the data cannot be separated by a linear
function in the input space, but can be in the feature space [35].

feature spaceinput space

φ

Figure 2.8: A feature map can simplify the classification task.

There are different approaches for feature selection, one of them tries
to identify the smallest set of features that still has the important infor-
mation contained in the original attributes. This is known as dimension-
ality reduction,

x = (x1, . . . , xn) 7→ φ(x) = (φ1(x), . . . , φd(x)), d < n,

and can be very beneficial as both computational and generalization per-
formance can degrade as the number of features grows, a phenomenon
sometimes referred to as the curse of dimensionality. Dimensionality re-
duction can sometimes be performed by simply removing features corre-
sponding to directions in which the data have low variance, though there

34 Chapter 2. SVM and Kernel Methods

is no guarantee that these features are not important for performing the
target classification [11].

Feature selection should be viewed as a part of the learning process
itself, and should be automated as much as possible. Therefore for learn-
ing nonlinear relations with a linear machine, it’s very important to select
a set of nonlinear features and rewrite the data in the new representa-
tion. This is equivalent to apply a fixed nonlinear mapping of the data
to a feature space, in which the linear machine can be used. Hence, the
decision function (2.14) becomes

f(x) =
m∑

i=1

wiφi(x) + b,

where φ : X → F is a nonlinear map from the input space to some
feature space, and the number of terms in the summation (m) depends
on the dimensionality of the feature space. This mean building non–linear
machines consist of two steps:

• STEP 1: Transforming the data into a feature space F by using
a fixed nonlinear mapping.

• STEP 2: Using a linear machine to classify the data in the feature
space.

The important property of linear learning machines is that they can
be expressed in a dual form. Therefore the hypothesis can be expressed
as a linear combination of the training points, so that the decision rule
can be evaluated using just inner products between the test point and
the training points:

f(x) =
n∑

i=1

αiyi〈φ(xi) . φ(x)〉+ b. (2.36)

If there is a way to compute the inner product αiyi〈φ(xi) . φ(x)〉 in
feature space directly as a function of the original input points, it becomes
possible to combine the two steps needed to build a nonlinear learning
machine, and this direct computation method is called kernel function

2.3. Kernel Functions and Nonlinear SVM 35

[12]. Through this kernel technique, the value of the kernel function can
be computed over a sample set instead of the dot product in a high–
dimensional feature space [47]. The kernel function will take the symbol
K, such that K(x, z) = 〈φ(x).φ(z)〉, and hence, equation (2.36) can be
rewritten in this form

f(x) =
n∑

i=1

αiyiK(xi,x) + b. (2.37)

The expansion of the inner product (2.36) in the dual representation
allows the construction of decision functions that are nonlinear in the
input space. It also makes computationally possible the creation of very
high–dimensional feature space, since no direct manipulation is required.

Common classes of basis functions used for learning machines cor-
respond to different choices of kernel functions for computing the inner
product. Below are several common classes of multivariate approximat-
ing functions and their inner product Kernels:

Polynomials of degree q have inner product kernel

K(x, z) = (〈x . z〉+ 1)q, (2.38)

which is a popular mapping method for nonlinear modeling

Gaussian Radial Basis Functions of the form,

K(x, z) = exp(−‖x− z‖2

2σ2
), (2.39)

where σ defines the width.

Exponential Radial Basis Function of the form

K(x, z) = exp(−‖x− z‖
2σ2

), (2.40)

produces a piecewise linear solution which can be attractive when dis-
continuities are acceptable.

36 Chapter 2. SVM and Kernel Methods

Multi–Layer Perceptron (Sigmoid) has a kernel representation

K(x, z) = tanh (v〈x . z〉+ a), (2.41)

for parameter values scale, v, and offset, a, selected so that the kernel
satisfies Mercer’s conditions. Here the Support Vectors (SV) correspond
to the first layer and the Lagrange multipliers to the weights.

2.3.2 Non Linear Classifier and Non Separable
Problem (C–SVM)

In the case where a linear boundary is unsuitable, the SVM can map the
input vector, x, into a high dimensional feature space, z. By choosing
a nonlinear mapping a priori, the SVM constructs an optimal separat-
ing hyperplane in this higher dimensional space, Figure 2.9 shows the
mapping process.

Output Space

Feature Space

Input Space

Figure 2.9: Mapping the input space into a high dimensional feature
space.

There are some restrictions on the nonlinear mapping that can be
employed, but it turns out, surprisingly, that most commonly employed

2.3. Kernel Functions and Nonlinear SVM 37

functions are acceptable. Among acceptable mappings are polynomials,
radial basis functions and certain sigmoid functions as explained in the
last section. The optimization problem of equation (2.20) becomes,

α∗ = arg min
α

1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi,xj)−
n∑

i=1

αi, (2.42)

where K(xi,xj) is the kernel function performing the nonlinear mapping
into feature space , and the constraints are unchanged,

n∑
i=1

yiαi = 0.

0 ≤ αi ≤ C, i = 1, 2, . . . , n.

(2.43)

Solving equation (2.42) with constraints equation (2.43) determines the
Lagrange multipliers, and a hard classifier implementing the optimal sep-
arating hyperplane in the feature space is given by,

f(x) = sgn

(∑
i∈SVs

yiαiK(xi,x) + b

)
, (2.44)

where

(w∗.x) =
n∑

i=1

yiαiK(xi,x).

In addition, to compute the threshold b, we consider that for the support
vectors {xi, i ∈ SV }, where SV is the set of index of support vectors, the
corresponding {ξi, i ∈ SV } are all zeros due to the Kuhn–Tucker dual
condition in a dual optimization problem. As a result, we have

∑
i∈SV

yiαiK(xi,xj) + b = yj, j ∈ SV. (2.45)

In order to have robust performance and reduce the effect of computa-
tional errors and noises, we can sum (2.45) over all support vectors and

38 Chapter 2. SVM and Kernel Methods

solve for the threshold

b =
1

NSV

[
∑
j∈SV

yj −
∑

i,j∈SV

yiαiK(xi,xj)], (2.46)

where NSV is the number of support vectors. All the results on the
linear case can also be directly applied to nonlinear cases through using
an appropriate kernel K in place of the Euclidean dot product in feature
space. By use of this technique, we can easily compute the dot product
in the feature space from the input space [47].

2.4 Support Vector Regression

The SVM approach can be fruitfully applied to regression problems. In
this case we suppose that a training set of couples (yi,xi), i = 1, 2, . . . , n, xi ∈
Rd, yi ∈ R is given, corresponding to an unknown function f : Rd → R.
i.e. yi = f(xi).

Then the SVM approach consists basically in solving

min ‖w‖2 + C

n∑
i=1

(ξ2
i + ξ̂2

i)

subject to

(〈w.xi〉+ b)− yi ≤ ε + ξi, i = 1, 2, . . . , n,

yi − (〈w.xi〉+ b) ≤ ε + ξ̂i, i = 1, 2, . . . , n,

ξi, ξ̂i ≥ 0, i = 1, 2, . . . , n

(2.47)

where we have introduced two slack variables, one for exceeding the target
value by more than ε, and the other for being more than ε below the
target.

Figure 2.10 shows an example of a one dimensional linear regression
function with an ε–insensitive band. The variables ξ measure the cost of
the errors on the training points, which have the value equal to zero for
all the points inside the band. Figure 2.11 shows a similar situation for
a non–linear regression function [11].

2.4. Support Vector Regression 39

Figure 2.10: The insensitive band for a one dimensional linear regression
problem

Figure 2.11: The insensitive band for a one dimensional non–linear re-
gression problem

40 Chapter 2. SVM and Kernel Methods

2.5 New Support Vector Machines

Algorithms

2.5.1 v–SVM

A new class of support vector algorithms for regression and classifica-
tion was proposed by Schölkopf. In this class, a parameter v lets one
effectively control the number of support vectors. Schölkopf et al. [45]
proposed v-SVM by incorporating a change from C in the original SVM
algorithm with v, where the parameter v ∈ [0, 1] is an upper bound on the
fraction of training errors and a lower bound of the fraction of support
vectors [9, 23].

The optimization problem is:

min
w,b,ξ

Φ(w, ξ, ρ) =
1

2
‖w‖2 − vρ +

1

n

n∑
i=1

ξi

subject to

yi[〈w . xi〉+ b] ≥ ρ− ξi, i = 1, . . . , n
ξi ≥ 0, i = 1, . . . , n
ρ ≥ 0.

(2.48)

This changes the width of the margin from 2/‖w‖ as in C–SVM to
2ρ/‖w‖, which is to be maximized while minimizing the margin errors,
and ρ is the position of the margin.

The primal Lagrangian formulation is:

L(w, b, α, ξ, β, δ, ρ) =
1

2
‖w‖2 − vρ +

1

n

n∑
i=1

ξi

−
n∑

i=1

αi{ yi[〈w . xi〉+ b]− ρ + ξi}

−
n∑

i=1

βiξi − δρ,

(2.49)

with Lagrange multipliers αi, βi, δ ≥ 0. This function has to be mini-
mized with respect to the primal variables w, ξ, b, ρ and maximized with

2.5. New SVM Algorithms 41

respect to the dual variables α, β, and δ. At the optimal solution, one
has the following saddle point equations,

∂L
∂w

= 0 ⇒ w =
n∑

i=1

αiyixi. (2.50)

∂L
∂b

= 0 ⇒
n∑

i=1

αiyi = 0. (2.51)

∂L
∂ξi

= 0 ⇒ 1

n
− αi − βi = 0. (2.52)

∂L
∂ρ

= 0 ⇒
n∑

i=1

αi − δ = v. (2.53)

The following dual optimal problem is obtained by substituting equa-
tions (2.50 – 2.53) into equation (2.49), using αi, βi, δ ≥ 0, and incor-
porating Kernels (K(., .)) for dot products leaves us with the following
quadratic optimization problem:

maxW(α) = −1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi, xj) (2.54)

subject to

0 ≤ αi ≤ 1/n. (2.55)
n∑

i=1

αiyi = 0. (2.56)

n∑
i=1

αi ≥ v. (2.57)

With a trained SVM, support vectors (SVs) are data vectors with αi > 0,
and bounded support vectors (BSVs) are support vectors with αi = 1/n
and ξi > 0 [9]. The resulting decision function is

f(x) = sgn

(
n∑

i=1

αiyiK(xi, x) + b

)
. (2.58)

42 Chapter 2. SVM and Kernel Methods

Compared to the original dual of Vapnik [50], there are two differ-
ences. First, there is an additional constraint, equation (2.57). Second,
the linear term

∑n
i=1 αi no longer appears in the objective function (2.54),

this has an interesting consequence equation (2.54) is now quadratically
homogeneous in α.

2.5.2 SVM light

SVMlight is an implementation of an SVM learner which addresses the
problem of large datasets. The decomposition technique breaks the large
Quadratic Program (QP) problem into smaller QP sub-problems. Osuna
et al. [38] published an improved algorithm for training SVM classifiers.
The problem, they state, is that previous algorithms assumed small num-
bers of support vectors.

They present a decomposition algorithm that guarantees global op-
timality, and can be used to train SVMs over very large data sets. The
main idea behind the decomposition is the iterative solution of sub–
problems and the evaluation of optimality conditions which are used
both to generate improved iterative values, and also establish the stop-
ping criteria for the algorithm [38]. By defining

W(α) =

(
−

n∑
i=1

αi +
1

2

n∑
i=1

n∑
j=1

αiαjyiyjK(xi , xj)

)
, (2.59)

the problem may be written in matrix notation, incorporating non–
negativity of ααα and constraint equation (2.42), as follows:

min
ααα

W(ααα) = −ααα.1 +
1

2
αααT Dααα

subject to

ααα . y = 0 (µ)

ααα− C1 ≤ 0 (ΥΥΥ)

−ααα ≤ 0 (ΠΠΠ)

(2.60)

2.5. New SVM Algorithms 43

where y = (y1, . . . , yn), ααα = (α1, . . . , αn), and D is a symmetric, positive
semi–definite n × n matrix with elements Dij = yiyjK(xi , xj), while
µ,ΥΥΥ = (v1, . . . , vn), and ΠΠΠ = (π1, . . . , πn) are the associated Kuhn–Tuker
multipliers. Since D is a positive semi–definite matrix and the constraints
(2.60) are linear, the Kuhn–Tuker conditions are necessary and sufficient
for optimality, and they are:

∇W(ααα) + ΥΥΥ−ΠΠΠ + µy = 0
ΥΥΥ.(ααα− C1) = 0
Π . αΠ . αΠ . α = 0

ΥΥΥ ≥ 0
ΠΠΠ ≥ 0
ααα . y = 0
ααα− C1 ≤ 0
−ααα ≤ 0.

(2.61)

The Decomposition Algorithm proposed by Osuna et al. [38] defined
a fixed–size working set called B , such that |B | ≤ n, and it is big enough
to contain all support vectors (αi > 0), but small enough such that the
computer can handle it and optimize it using some solver. Then the
decomposition algorithm can be stated as follows:

1. Arbitrary choose |B | points from the data set.

2. Solve the subproblem defined by the variables in B .

3. If an appropriate stopping condition is not satisfied, exchange one
index between B and B −N , where N , {1, 2, . . . , n}, and return
to step 2.

The main advantage of this decomposition is that it suggests algo-
rithms with memory requirements linear in the number of training ex-
amples and linear in the number of SVs. One potential disadvantage is
that these algorithms may need a long training time [28]. Modifications
and improvements of the standard SVMlight approach are in [39].

45

Chapter 3

Application of SVM in the
Design of Multi–Sensors
Systems

The fundamental part of any sensor array system is data analysis and
pattern recognition. Several supervised pattern recognition techniques
have been explored for the analysis of sensor array data, for example,
parametric methods (linear or quadratic), nearest neighbors, and neural
networks (multilayer perceptrons and radial basis functions) [24]. In
the last decade, a new classification (and regression) technique, called
support vector machine (SVM), has been successfully applied to a number
of problems ranging from face identification and text categorization to
bioinformatics and data mining.

An array of gas sensors constitutes what is called an Electronic Nose
whose responses establish the odor pattern. A single sensor in the array
should not be highly specific in its responses but should respond to a
broad range of compounds, such that different patterns are expected to
be related to different odors. To achieve higher recognition rate, several
sensors with different selectivity patterns are used and pattern recogni-
tion techniques must be coupled with the sensor array [19, 31].

In this chapter a survey on the applications of Multi-Sensor arrays
using SVM as a classifier or pattern recognition tool will be presented.

45

46 Chapter 3. Application of SVM in the Design of Multi–Sensors Systems

3.1 Applications of Electronic Nose

The main idea of electronic nose is to use many sensors of different types
and process data in a way that resembles data processing by living brains.
Electronic noses, or ENoses, are less a sensor or instrument and more a
measurement strategy [19]. Electronic noses have become popular and
combine advanced sensors and sensor array strategies with chemometrics
techniques to produce a broad range of intermediate instruments and
analyzers [16].

Early ENoses tried to duplicate the behavior and capability of hu-
man odor sensing. They combined different sensor types to represent the
different cell tissues in the nasal cavity and they took the approach of de-
tecting an odor as a collection of individual chemicals. Its functions using
an array of broadly tuned chemical sensors, i.e. sensors that interact with
a broad range of chemicals with varying strengths. Consequently, an in-
coming analyte stimulates many of the sensors in the array, and elicits a
characteristic response pattern, these patterns are then further analyzed
for the benefit of the specific application [6]. The name ”odor sensor” is
used instead of ”gas sensor” whenever its sensitivity approaches that of
a human. Odor and fragrance sensors find applications in forensic sci-
ence, quality assurance in the cosmetic and food industry, environmental
control, and so forth [19].

Polikar et al. (2001) described a gas sensing system for detecting
and identifying volatile organic compounds (VOCs), and they discussed
the unique problems associated with the separability of signal patterns
obtained by using such a system. Also they presented solutions for en-
hancing the separability of VOC patterns to enable classification. They
introduced a new incremental learning algorithm that allowed new odor-
ants to be learned [43]. ENose systems for detection and identification of
volatile organic compounds (VOCs), an important class of chemicals that
can readily evaporated at room temperature, have gained considerable
attention, since VOCs are encountered in many gas sensing applications.
A major problem in VOC identification is the substantial similarity of
patterns obtained for different VOCs, a phenomenon attributed to low

3.1. Applications of ENose 47

selectivity of the sensing system.

They used an array of six 9 MHz QCMs (Quartz Crystal Microbal-
ances) in this study. The QCMs were first coated with chromium/gold,
which served as electrodes. Each QCM was then coated with a differ-
ent polymer to sorb the VOCs of interest. The QCMs were mounted
in a sealed test fixture and exposed to VOC vapors. The vapor gener-
ation system consisted of calibrated mass flow controllers, conventional
gas bubblers containing the VOCs, and a pair of three–way switchable
valves leading into the test fixture. The vapor at various concentrations
was generated by flowing a carrier gas, typically dry nitrogen, through
the bubbler and further diluting the vapor with nitrogen to obtain the
desired concentration. The switchable valves were computer controlled
to automatically expose the sensor array to various concentrations of
VOCs.

The classification technique they used was LEARN++ which is based
on generating a number of classifiers using different distributions of the
training data, then was combining the outputs of these classifiers using
a weighted majority voting scheme. The algorithm kept track of the
performance of each classifier on each training instance, and generated
a new training subset based on the performances of all previous classi-
fiers. In particular, a weight was given to each instance, and this weight
was increased if the instance was misclassified. A new classifier was then
trained with the new training set, added to the pool of classifiers gener-
ated earlier, and the combined classification performance of all classifiers
was then used to determine the next training set. Multiple classifiers
were generated for any given database, and as new databases became
available, new classifiers were added. The final classification for each in-
stance was then based on the weighted majority voting of all classifiers.
In particular, nonlinear cluster translation was introduced for increas-
ing pattern separability, and LEARN++ for incremental learning. They
noted that both algorithms were also tested for identification of a larger
number of VOCs, individual components of mixtures of VOCs, as well as
non gas–sensing applications, and very promising results were obtained
[43].

48 Chapter 3. Application of SVM in the Design of Multi–Sensors Systems

Penza et al. (2002) have developed a surface acoustic wave (SAW)
multisensor array with five acoustic sensing elements configured as two–
port resonator 433.92 MHz oscillators and a reference SAW element to
recognize different individual components and determine their concentra-
tions in a binary mixture of volatile organic compounds (VOCs) such as
methanol and acetone, in the ranges 15-130 and 50-250 ppm, respectively.
They used the relative frequency change as the output signal of the SAW
multisensor array with an artificial neural network (ANN), a recogni-
tion system has been realized for the identification and quantification of
tested VOCs. The features of the SAW multisensor array exposed to a
binary component organic mixture of methanol and acetone have been
extracted from the output signals of five SAW sensors by pattern recog-
nition (PARC) techniques, such as principal component analysis (PCA).
An ANN classifier identification performance of 70 and 80% for methanol
and acetone was achieved by using the normalized responses of four se-
lected SAW sensors or the first three principal components scores from
the normalized responses of four selected SAW sensors, respectively, and
the first two principal components scores from the same set of normal-
ized responses of the four selected SAW sensors. This recognition rate
has been obtained because the eigenvectors (principal components) of the
original data set are uncorrelated and the latter principal components are
found to be noisy in the classification process by the ANN classifier [42].

The prediction of the individual vapor concentrations has been tack-
led with PCA for features extraction and by using the first two principal
components scores as inputs to a feed–forward MLP consisting of a gating
network, which decides which of the three specific subnets should be used
to determine the output concentration: the first subnet for methanol only,
the second subnet for acetone only and the third subnet for methanol and
acetone in the binary mixture. They achieved 0.941 and 0.932 correlation
coefficients for the predicted versus real concentrations of methanol and
acetone, respectively, as individual components in a binary mixture.

Pardo and Sberveglieri (2002) presented the Pico–1 electronic nose
which is based on thin–film semiconductor sensors and an application
to the analysis of two groups of seven coffees each. Cups of coffee were

3.1. Applications of ENose 49

also analyzed by two panels of trained judges who assessed quantitative
descriptors and a global index (called Hedonic Index, HI) characterizing
the sensorial appeal of the coffee.

Two tasks were performed by Pico–1 [40]. First, for each group,
they performed the classification of the seven different coffee types us-
ing PCA and multilayer perceptrons for the data analysis. Classification
rates were above 90%. Secondly, the panel test descriptors were predicted
starting from the measurements performed with Pico–1, which was an
electronic nose consisting of five SnO2–based thin–films sensors. Two of
them were pure SnO2 sensors; one was catalyzed with gold, one with
palladium, and one with platinum. A thin layer of noble metals was de-
posited as catalyst on three sensors to improve sensitivity and selectivity.

Carmel et al. (2003) proposed an algorithm that was able to identify
chemicals independently of their concentrations, as well as to quantify
their concentrations, even if the particular concentration in question was
not present during the training phase. The algorithm was distinct for its
intuitive approach, and utilized in a very straightforward way the special
properties of a multisensor system. Besides its concentration prediction
capabilities, the algorithm was equipped with a reject option, and was
thus able to tell when a sample was not one of the chemicals upon which
it was trained. The algorithm was inspired by the work of Hopfield, who
proposed a similar one to explain how olfactory data analysis was carried
out in the brain.

They assumed their ENose consisted of m different sensors, and sup-
posed that it could be exposed to any of n different analytes, where
the concentration of the ith analyte ci could be anywhere in the range
cmin
i ≤ ci ≤ cmax

i (where cmin
i and cmax

i were odor specific predetermined
constants). They constructed the functions fij(cj) using the data col-
lected in the training data set. Each candidate j was measured in six
different concentrations that were denoted by c1

j , . . . , c
6
j . The correspond-

ing responses of the ith sensor, denoted r1
ij, . . . , r

6
ij, were calculated as the

average of the repetitions. The six values (c1
j , r

1
ij), . . . , (c

6
j , r

6
ij) were the

data from which they had to evaluate fij(cj). They did this by using
the piecewise cubic spline interpolation of Matlab. In some cases, the

50 Chapter 3. Application of SVM in the Design of Multi–Sensors Systems

concentration dependency of the response was very close to linear. In
such cases, fij(cj) could be well approximated by linear regression on the
data.

As they claimed, their algorithm was not limited to ENose systems; it
could, in fact, be applied to any multisensor system in which the sensors
respond monotonically to the stimuli. Their experiments demonstrated
that 16 sensors were enough for obtaining good results. As the number of
sensors in the system grows, performance was expected to be improved.
The robustness of the algorithm was also expected to improve with the
increase in the number of sensors [6].

From our point of view, the corresponding responses of the ith sensor
were calculated as the average of the repetitions do not give a good result.

Lozano et al. (2006) presented an application of an ENose for the
identification of typical aromatic compounds in white and red wines. The
descriptors of these compounds were fruity, floral, herbaceous, vegetative,
spicy, smoky, and microbiological, and they were responsible for the usual
aromas in wines. Some of the measured aromas were pear, apple, peach,
coconut, rose, geranium, cut green grass, mint, vanilla, clove, almond,
toast, wood, and butter. Principal component analysis (PCA) and linear
discriminant analysis (LDA) showed that datasets of these groups of
compounds were clearly separated, and a comparison among several types
of artificial neural networks (ANN) had been also performed. The results
confirmed that the system had good performance in the classification
of typical red and white wine aromas. The multivariate response of
the sensors with broad and partially overlapping selectivities could be
utilized as an electronic fingerprint to characterize a wide range of odors
or volatile compounds by means of pattern recognition techniques [32].

A total of 16 aromas have been analyzed: eight in white wine and
eight in red wine. The measured aromas were the most common ones
in white and red wines. The chemical compounds responsible of these
aromas were dissolved in the same wine at concentrations from 2-8×
the threshold concentration that humans can smell. An ENose based
on a tin oxide-array has been used for measuring wine samples using
headspace analysis. The sensor array was prepared by RF (radio fre-

3.1. Applications of ENose 51

quency) sputtering onto alumina substrate. The array was formed by
16 thin film sensors with thicknesses between 200 and 800 nm. Some
sensors were doped with chromium and indium either as surface or inter-
mediate layer. The operating temperature of the sensors is controlled at
250 ◦C with a PID regulator (Proportional-Integral-Derivative regulator,
is a generic control loop feedback mechanism widely used in industrial
control systems. A PID controller attempts to correct the error between
a measured process variable and a desired setpoint by calculating and
then outputting a corrective action that can adjust the process accord-
ingly). The array was placed in a stainless–steel cell with a heater and a
thermocouple.

The data collected were analyzed by means of pattern recognition
techniques using a commercial software package (Matlab 6.1) for linear
methods, such as principal component analysis (PCA), which is a sig-
nal representation technique that applies a linear transformation to the
data and results in a new space of variables called principal components,
PCA reduces the dimensionality of feature space by restricting attention
to those directions along which the scatter of the cloud data points is
greatest [14]. Usually, the first two components carry most of the in-
formation of the old variables. Linear discriminant analysis (LDA), is a
signal–classification technique that directly maximizes the class separat-
ibility, and generating projections where the examples of each class form
a compact clusters [14].

The perceptron network consists of a single layer of nine perceptron
neurons connected to the inputs through a set of weights. The perceptron
learning rule is capable of training only a single layer. This restriction
imposes limitations on the computation a perceptron can perform. The
weights of the neurons can be adapted on an iteration–by–iteration ba-
sis. For the adaptation, they used an error–correction rule known as the
perceptron convergence algorithm. The backpropagation network archi-
tecture was formed by three layers: the input layer had 16 neurons cor-
responding to the 16 sensors, a variable number in the hidden layer, and
nine neurons in the output layer, the same number of existing classes. A
probabilistic neural network PNN composed of three layers, with radial
basis transfer functions in the hidden layer and a competitive one in the

52 Chapter 3. Application of SVM in the Design of Multi–Sensors Systems

output, was used for classification purposes [24].

Leave–one–out (LOO) cross validation was applied to check the per-
formance of the network. A nonlinear pattern–recognition system based
on perceptron, backpropagation, and radial–basis neural networks had
been trained for the identification of aromatic compounds added to wine.
The best classification was obtained by backpropagation with 100% clas-
sification success followed by probabilistic neural networks with 99%,
although the time of training was much lower than in that of the proba-
bilistic network. The worse behavior of the perceptron network was due
to the limitation of being a one–layer network [32].

Zhou et al. (2006) described a modified nonlinear least–squares based
algorithm developed to analyze data taken by the ENose, and its perfor-
mance for the identification and quantification of single gases and binary
mixtures of twelve target analytes in clean air. The sensor array in the
ENose, which was recently built at JPL (Jet Propulsion Laboratory) and
demonstrated aboard NASAs space shuttle flight STS–95, consists of 32
conductometric sensors made from insulating polymer films loaded with
carbon. In its current design, it has the capability to detect 10 common
contaminants which may be released into the recirculated breathing air of
the space shuttle or space station from a spill or a leak. The device could
be detected changes in humidity and a marker analyte. The ENose was
intended to fill the gap between an alarm which sounds at the presence
of chemical compounds but with little or no ability to distinguish among
them, and an analytical instrument which can distinguish all compounds
present but with no real–time or continuous event monitoring ability [53].

The response pattern requires software analysis to identify the com-
pounds and concentrations causing the response. The primary goal in
analysis software development was to identify events of single or mixed
gases from the 10 target compounds plus humidity changes and marker
analyte with at least 80% accuracy (fewer than 20% false positives and
false negatives) in both identification and quantification, where accu-
rate quantification is defined as being ±50% of the known concentration.
Correct identification of the compound causing a test event with quan-
tification outside the ±50% range is considered to be a false positive.

3.1. Applications of ENose 53

Failure to detect an event is a false negative.
They suggested that the linear algebra (LA) based method requires

that the sensors follow linearity and additive linearity (superposition)
properties, i.e. the response to a mixture of compounds is a linear combi-
nation of the response to the individual compounds. They Compared the
methods that use concentration–normalized sensor response to identify
unknown gas(es) first, by using PCA, for example, and then determine
concentration(s) from previously calibrated data by a second analysis,
the LA based method effectively has combined the two steps of identifi-
cation and quantification into one. This combination helped to facilitate
the automation of data analysis without human intervention.

A modified nonlinear least–squares based algorithm was developed as
part of the JPL ENose program to identify and quantify single gases and
mixtures of common air contaminants. The development of the nonlin-
ear least squares (NLS) based method followed their early success with
a linear algebra based method and later understanding of its limitation
in nonlinear cases. It enabled them to find a good solution instead of an
exact one from noisy sensor response patterns. For lab–controlled test-
ing, the algorithm achieved a success rate of about 85% for single gases
in air and a moderate 60% success rate for mixtures of two compounds.
Improvement of the NLS algorithm analysis speed was also desirable, not
only for the purpose of realtime analysis, but also to accommodate the
expanded target compound list and polymer set expected for the future
generation of the ENose. Since the NLS algorithm is heavy with matrix
operations, which largely determines the entire data analysis speed, in-
creased size of the system characteristic matrix will slow analysis speed
exponentially. One way to increase speed is to reduce the size of the
matrix dynamically by incorporating sensors characteristic response in-
formation, such as known negative or no responses of particular sensor
to certain gas compound.

From our point of view, suggesting that the response of the sensors
to a mixture of compounds is a linear combination of the response to the
individual compounds is far away from the real response.

54 Chapter 3. Application of SVM in the Design of Multi–Sensors Systems

Huang and Leung (2007) developed a polynomial–based optimization
method to perform classification and estimation simultaneously to im-
prove the intelligence of an ENose. The proposed method employs a
parametric polynomial with user–defined order to describe sensor char-
acteristics. Classification and concentration estimation was formulated
as a standard convex optimization problem. They solved the convex op-
timization either by a typical gradient descent method (Gauss-Newton
optimization) for an unconstrained case or a nonlinear least square (NLS)
trust–region method for a constrained case [26].

They proposed a gradient descent method to simultaneously detect
and estimate the vapor concentrations, and could reach a well balance
between computational complexity and accuracy. Therefore, they con-
sidered that it practically improves the intelligence of the ENose since
continuous monitoring with high accuracy becomes feasible. They for-
mulated the detection and estimation problem as a convex optimization
problem. It should be noted that the solution to this convex optimization
problem will assure the global minimum. The main advantages of their
proposed method are the flexibility and significant reduced computation
cost as well as simple implementation; moreover, the global minimum of
the optimization is readily achieved.

3.2 Electronic Nose Using SVM as Classi-

fication Tool

Over the past few years, the artificial neural networks (ANNs), one of the
branches in artificial intelligence technology, have been used to signals
recognition of electronic nose and some encouraging results have been
achieved [40]. Multilayer perceptrons (MLPs; back propagation ANNs)
and radial basis function (RBF) artificial neural networks are most com-
monly used in signals recognition of electronic nose. Although the MLPs
are developed in signals recognition of electronic nose, some inherent
drawbacks, e.g., the multiple local minima problem, the choice of the
number of hidden units and the danger of over fitting, etc., would make
it difficult to put the networks into practice. In the RBF ANNs, the

3.2. ENose Using SVM as Classification Tool 55

choice of appropriate set of RBF centers and of the number of hidden
units for effective learning, still remains as a problem.

Recently, a new tool from the artificial intelligence field called Sup-
port Vector Machine [50] has gained popularity in the machine learning
community. It has been applied successfully to classification tasks such
as pattern recognition, optical character recognition (OCR) and more
recently also to regression and time series prediction. Mathematically,
SVMs are a range of classification and regression algorithms that have
been formulated from the principles of statistical learning theory. Com-
pared with traditional ANNs, training in SVMs is very robust due to
their quadratic objective functions. It is useful to explore this new tech-
nology in gas identification area, with the hope that it could overcome
some of the problems in ANN and may perform much better than the
traditional linear models.

Distante et al. (2003) have adopted the SVM classifier for odor recog-
nition with complex patterns. The objective of this classifier was to find
optimal hyperplanes for separating clusters in the non–linearly separable
context. The leave–one–out procedure has been used for all classifiers, in
order to find the near–optimal SVM parameter and both to reduce the
generalization error and to avoid outliers.

They used an SVM having a second degree polynomial kernel func-
tion. Moreover, the optimal regularization parameter C of the SVM was
found out experimentally by minimizing the leave–one–out error over
the training set, which provided an estimate of the generalization per-
formances of the final classifier. Each machine had been trained to solve
a two–class problem, in order to find experimentally the regularization
parameter C. The multi–class problem for a two–class trained machine
(SVM) was carried out with leave–one–out procedure and they got an
evaluation of the winning machine for each test data point [13].

As a comparison, they made two further feed–forward neural net-
works had been trained with error back propagation and radial basis
function. Comparing the prediction error, they found that back propa-
gation method gave poorer results with more than 40% error, followed
by the RBF network with 15%, then SVM with 4.5%.

56 Chapter 3. Application of SVM in the Design of Multi–Sensors Systems

Uluyol et al. (2003) presented a new smellprint derived from Cyranose
320 electronic nose. The new smellprint was based on the initial reactions
of the chemoresistance rather than the bulk relative resistance change.
Various combinations of the two smellprints including their projections
to a small number of principal components were analyzed. Cyranose 320
uses polymer composite sensors that swell or contract when exposed to
a vapor–phase analyte. The response from the chemoresistance was then
measured as a bulk relative resistance change (Rmax/Rbaseline), and
was used to form a smellprint. This 32–element vector was then used for
detecting chemicals. The chemical signatures formed based on the initial
sensor responses were unique and consistent. The results showed that the
classification performance achieved using only the initial response signa-
tures was comparable to or better than the one obtained with the original
smell print. When the two sets are combined, significant improvements
in classification performance were noted. For classification, the method
of support vector machine was employed. This kernel–based technique,
was shown to be more powerful and robust than the ones included with
the Cyranose 320 system [48].

The binary Support Vector Machine classification results were altered
through two different mechanisms: set threshold on the total vote, and
winner–take–all method. Because of the small number of exposures are
used (8 for each of the 5 compounds), the classification accuracy was
determined through the leave–one–out procedure. The best results were
obtained when the binary support vector machine method was applied
on a small set of features obtained through principal component analysis
and the outcome was determined through the winner–take–all approach.
From our point of view the results will not be good when the set of fea-
tures are big.

Wang et al. (2005) used the SVM as a classifier to recognize the
gas category. The method could classify the complicated patterns and
achieved higher recognition rate at reasonably small size of training sam-
ple set and could overcome the disadvantages of the artificial neural net-
works (ANN). In their implementation three different gases were consid-
ered, ethanol, gasoline and acetone, three sensors and two SVMs were

3.2. ENose Using SVM as Classification Tool 57

used for classification. First, one class was ethanol and the other class
is not ethanol (gasoline or acetone). Then, when the gas was known not
to be ethanol a second SVM was used to differentiate between gasoline
and acetone. For the SVM, there are two parameters while using RBF
kernels: γ and C. Good parameter selection is crucial to the SVM suc-
cess, but the parameter settings are difficult to select. It is not known
beforehand which γ and C are the best for one problem [52]. Conse-
quently it is common practice to estimate a range of potential settings
and to try several parameter values. Also, selecting parameters can also
be regarded in a similar way as choosing the number of hidden nodes in
the ANNs, which use cross–validation over the training set to find the
best. The results indicated that the method could classify complicated
patterns and achieved higher recognition rate at reasonably small size of
training sample set. This means the proposed method was effective for
signals recognition of electronic nose.

Our comment is, if we have more than three gas types how will work
the system, and how many SVMs we must use?

Pardo and Sberveglieri (2005) applied the SVM to the classification
of ENose data. They analyzed the test error of SVM as a function of (a)
the number of principal components (on which the data are projected),
(b) the kernel parameter value, for both the polynomial and the RBF
kernel, and (c) the regularization parameter. This permitted to explore
the insurgence of underfitting and overfitting effects, which are the prin-
cipal limitations of non–parametric learning techniques. In particular,
they found out that the regularization parameter C, often set a priori
to C = 1, strongly influences SVM performance. SVM were trained on
two electronic nose dataset of different hardness, collected with the Pico
electronic nose which were developed at the Brescia University [41].

They studied two binary classification problems of different hardness
with SVM, also investigated the performance of SVM with regard to:

a- The number of principal components, which were given as inputs
to the SVM. These range from two to five, five being the number
of sensors used in the ENose. By varying the number of PC they
wanted to see if also PCs with very small variance (∼ 1%) had an

58 Chapter 3. Application of SVM in the Design of Multi–Sensors Systems

influence on the classification performance as in the MLP [40].

b- The type of kernel, they tried both polynomial and RBF kernels.
For the polynomial, they scanned the polynomial order from 1 (lin-
ear machine) to 8, for the RBF they scanned the standard deviation
parameter from 0.1 to 10 (at unequal steps, concentrating on small
values).

c- The regularization parameter C, which controls the trade off be-
tween low training error and large margin [8, 11, 50].

They also showed that, for the easy classification problem, princi-
pal components carrying small variance have an impact on SVM perfor-
mance, just as they observed for multilayer perceptrons in the past [40].
Further, the parameter controlling the trade–off between big margin and
low error (in the criterion function) plays a major role in the test error.
In their case a value of C ≈ 300 gave optimal result for the difficult
classification problem [41].

Brudzewski et al. (2006) used the electronic nose measurement sys-
tem in cooperation with the Support Vector Machine (SVM) to the clas-
sification of the gasoline with the supplement of bio–products, such as
ethanol, methyl tertiary butyl ether (MTBE), ethyl tertiary butyl ether
(ETBE), tertiary amyl methyl (TAME) and benzene. The array of semi-
conductor sensors forming the heart of the electronic nose, responds
with a signal pattern characteristic for each gasoline blend type. The
sensor array used in all numerical experiments of gasoline recognition
was composed of seven tin oxide–based gas sensors (TGS815, TGS821,
TGS822, TGS825, TGS824, TGS842, TGS822–modificated) from Figaro
Engineering Inc., mounted into an optimized test chamber. The SVM
network working in the classification mode, processed these signals and
associates them with an appropriate class [4].

Two kinds of experiments had been performed. In the first case they
have aimed at discovering the kind of supplement without taking into
account its concentration. So they have distinguished only three classes
(ethanol, MTBE+ETBE and benzene supplements). In the second ex-
periments they have tried to recognize not only the supplement but also

3.2. ENose Using SVM as Classification Tool 59

its concentration (12 classes of blends). The problem of 12–class recog-
nition (recognition of the supplement and its concentration) was more
difficult. The main task was to find the SVM network structures of the
smallest possible number of support vectors at application of different
kernel functions in order to achieve 100% accuracy of classification for
the testing data. The experiments applying the validation set had been
performed to discover the optimal value of the regularization coefficient
C and constant γ corresponding to different kernel functions, the linear
one, the polynomial and Gaussian. In all cases they have obtained 100%
accuracy of the recognition of the samples. Linear kernel SVM networks
were sufficient to obtain such good recognition rate.

61

Chapter 4

The SVM Electronic Nose

We adopted a multi-sensor scheme and useful information is gathered
by combining the outputs of the different sensors, because the use of
just one sensor does not allow in general to identify the gas. In fact the
same sensor output may correspond to different concentrations of many
different gases. On the other hand by combining the information coming
from several sensors of diverse types we identify the gas and estimate its
concentration.

In this chapter we present a detailed description of our system, in-
cluding block diagram as shown in Figure 4.1, design process, electronic
parts, the software used, the training and testing phases. We show also
the results of classifying the different types of gases used in our experi-
ments and their concentration estimation.

Our system consists of three major parts, the gas test BOX that con-
tains the array of sensors, the interfacing part which is from the National
Instrument company (NI DAQPad–6015), and the personal computer
(PC) that saves the data and makes all the training and testing phases
including the classification and estimation jobs.

61

62 Chapter 4. The SVM ENose

F
ig

u
re

4.
1:

B
lo

ck
d
ia

gr
am

of
th

e
sy

st
em

4.1. The Gas Test Box 63

4.1 The Gas Test Box

This BOX contains the PCB (Printed Circuit Board) where we fixed two
different types of sensors i.e. gas sensors and auxiliary sensors. It also
contains a fan for circulating the gas inside during the test. There exists
one input for inlet compressed air, coming from an air compressor. It
has been used to clean the BOX and the gas sensors after each test. One
output is used for the exhaust air. The outer dimensions for the gas
test BOX are 22cm length, 14.5cm width, and 10cm height, the effective
volume is 3000cc.

The amount of volatile compounds needed to create the desired con-
centration in the sensor chamber (our BOX) was introduced in the liquid
phase using high–precision liquid chromatography syringe. Since temper-
ature, pressure and volume were known, the liquid needed to create the
desired concentration of volatile species inside the test chamber (BOX)
could be calculated using the ideal gas theory, as we explain below [22].
The gas concentration versus gas volume injected is shown in Table 4.1:

Table 4.1: Gas concentration vs. gas volume

Gas Concentration (ppm) Volume of Pure Gas (cc)
10 0.03
50 0.15
100 0.3
200 0.6
400 1.2
800 2.4
1000 3.0
2000 6.0

A syringe of 10µl is used for injecting the test volatile compounds.
In the experiments we used four different types of volatile compounds,
methanol, ethanol, acetone and benzene. We take methanol as an ex-
ample for calculating the ppm (parts–per–million) for each compound.
Methanol has molecular weight MW = 32.04g/mol and density ρ =

64 Chapter 4. The SVM ENose

0.7918g/cm3. The volume of the BOX is 3000cm3; therefore, for exam-
ple, to get 100ppm inside the BOX, from Table 4.1, we used 0.3cm3 of
methanol, or equivalently 0.3ml.
The density of methanol is

d =
P×MW

R× T
, (4.1)

where:
d = the density of the gas of methanol in g/l,
P = The Standard Atmospheric Pressure (in atm) is used as a reference
for gas densities and volumes (equal 1 atm),
MW = Molecular Weight in g/mol,
R = universal gas constant in atm/mol.K (equal 0.0821 atm/mol.K),
T = temperature in Kelvin (TK = TC+273.15).
As a result we get d = 1.33 g/l.

Table 4.2: Methanol concentration vs. methanol quantity

Methanol Methanol
Concentration (ppm) quantity (µl)

40 0.2
100 0.5
200 1.0
400 2.0
800 4.0
1000 5.0
1400 7.0
2000 10.0

Methanol has the same mass however if it is gas or liquid:

mass = vgas × d = vliq × ρ. (4.2)

where vgas is the volume occupied by the gas of methanol which is equal
to 0.3∗10−3l, d is the density of the gas of methanol as calculated before,

4.1. The Gas Test Box 65

ρ is the constant density of methanol, therefore;

vliq =
vgas × d

ρ
⇒ vliq =

0.3 ∗ 10−3 × 1.33

0.7918
(4.3)

the volume (vliq) is 0.503 ∗ 10−6l which provides 100ppm of methanol.
This means that if we want to get 100ppm of methanol we must put
0.503µl of methanol as liquid in the BOX by using the syringe. Table 4.2
shows different concentrations of methanol (in ppm) versus its quantities
(in µl).

Following the same procedures we can calculate the concentration
versus quantities, for ethanol, acetone, and benzene. The results are
shown in Table 4.3.

Table 4.3: Concentrations vs. Ethanol, Acetone, and Benzene quantities

Concentration Ethanol Benzene Acetone
(ppm) quantity (µl) quantity (µl) quantity (µl)

25 0.181 0.278 0.228
100 0.727 1.114 0.915
200 1.454 2.228 1.83
400 2.908 4.456 3.66
800 5.816 8.912 7.32
1000 7.27 11.14 9.15
1400 10.178 15.596 12.81
2000 14.54 22.28 18.3

4.1.1 Gas Sensors

In this section we give the technical information for each type of gas
sensors used in our system.

TGS 813

This type of sensors from FIGARO are considered as a general purpose
sensor with a good sensitivity to a wide range of combustible gases like

66 Chapter 4. The SVM ENose

methane, propane, and butane. Other important properties of this type
of sensor are long life, low cost and simplicity of the electric circuit. TGS
813 has a wide variety of applications, like, domestic gas leak detectors
and alarms, and portable gas detectors.

Figure 4.2: Sensitivity characteristic for the sensor type TGS 813

The sensing element of TGS 813 is a tin dioxide (SnO2) semicon-
ductor which has low conductivity in clean air. In the presence of a
detectable gas, the sensor’s conductivity increases depending on the gas
concentration in the air as shown in Figure 4.2. When a metal oxide
crystal (such as SnO2) is heated at a certain high temperature in air,
oxygen is adsorbed on the crystal surface with a negative charge. Then
donor electrons in the crystal surface are transferred to the adsorbed oxy-
gen, resulting in leaving positive charges in a space charge layer. Thus,
surface potential is formed to serve as a potential barrier against electron

4.1. The Gas Test Box 67

flow.
A simple electrical circuit can convert the change in conductivity to

an output signal which corresponds to the gas concentration. The sensor
resistance (Rs) is calculated by the following formula:

Rs = (
Vc

VRL

− 1)× RL (4.4)

where Vc is the source voltage (5 volts), VRL is the output voltage, and
RL is the load resistance (5000 Ohm in our system).

TGS 822

The sensing element of FIGARO gas sensors is also a tin dioxide (SnO2)
semiconductor which has low conductivity in clean air. In the presence
of a detectable gas, the sensor’s conductivity increases depending on the
gas concentration in the air, the sensor concentrations versus resistances
variations are shown in Figure 4.3 for the gases used in the tests.

A simple electrical circuit can convert the change in conductivity to
an output signal which corresponds to the gas concentration. This type
has high sensitivity to the vapors of organic solvents as well as other
volatile vapors. It also has sensitivity to a variety of combustible gases
such as carbon monoxide, making it a good general purpose sensor. TGS
822 has many good features like, high stability and reliability over a long
period, as well as long life and low cost.

This type of sensor has a wide range of applications in breath alcohol
detectors, gas leak detectors/alarms, and solvent detectors for factories,
dry cleaners, and semiconductor industries. The sensor resistance can be
calculated by using equation 4.4

68 Chapter 4. The SVM ENose

Figure 4.3: Sensitivity characteristic for the sensor type TGS 822

TGS 2600

The sensing element is comprised of a metal oxide semiconductor layer
formed on an alumina substrate of a sensing chip together with an inte-
grated heater. In the presence of a detectable gas, the sensor’s conduc-
tivity increases depending on the gas concentration in the air as shown
in Figure 4.4.

A simple electrical circuit can convert the change in conductivity to an
output signal which corresponds to the gas concentration. The TGS 2600
has high sensitivity to low concentrations of gaseous air contaminants
such as hydrogen and carbon monoxide which exist in cigarette smoke.
The sensor can detect hydrogen at a level of several ppm. This type
has many fields of application in air cleaners, ventilation control, and air
quality monitors.

4.1. The Gas Test Box 69

Figure 4.4: Sensitivity characteristic for the sensor type TGS 2600

4.1.2 Auxiliary Sensors

In this section we describe the Auxiliary sensors which are used in our
system. They are humidity sensor (HIH–3610 from Honeywell), pressure
sensor (XFAM from Fujikura Ltd.), and temperature sensor (LM35 from
National Semiconductor Corporation).

Humidity Sensor HIH–3610

The HIH–3610 Series humidity sensor is designed specifically for high
volume OEM (Original Equipment Manufacturer) users. Direct input
to a controller or other device is made possible by this sensors linear
voltage output. With a typical current draw of only 200µA, the HIH–
3610 Series is ideally suited for low drain, battery operated systems.

70 Chapter 4. The SVM ENose

Tight sensor interchangeability reduces or eliminates OEM production
calibration costs.

The HIH–3610 Series delivers instrumentation–quality RH (Relative
Humidity) sensing performance in a low cost, solderable SIP (Single In–
line Package). Available in two lead spacing configurations, the RH sen-
sor is a laser trimmed thermoset polymer capacitive sensing element with
on–chip integrated signal conditioning. The sensing element’s multilayer
construction provides excellent resistance to application hazards such as
wetting, dust, dirt, oils, and common environmental chemicals.

Figure 4.5: Output voltage vs. relative humidity at 0 ◦C, 25 ◦C, 85 ◦C

HIH–3610 sensor has many good features like it’s linear voltage out-
put versus relative humidity as shown in Figure 4.5, laser trimmed in-
terchangeability, low power design, high accuracy, fast response time,

4.1. The Gas Test Box 71

stable low drift performance, and chemically resistant. Because of these
features it has many typical applications, for example, refrigeration, dry-
ing, metrology, battery–powered systems, and OEM assemblies.

Pressure Sensor XFAM

Fujikura silicon piezoresistive pressure sensors are designed and manufac-
tured incorporating the best semiconductor technology available to meet
today’s demanding requirements of high accuracy, low cost and high re-
liability. In order to meet the customer’s diverse needs, Fujikura Ltd.
provides sensors at many performance levels from low cost, unamplified
pressure sensors to fully integrated transducers with all circuitry on–chip.
Based on the piezoresistance effect, Fujikura’s silicon pressure sensors are
piezoresistive sensors. A diffusion strain gauge on the surface of a silicon
wafer is formed using the same manufacturing technology used in the in-
tegrated circuit industry. The silicon itself is then thinned by an etching
process and formed into diaphragms which differ in size and thickness
depending on the intended pressure range.

This sensor has many applications areas, in industrial instrumenta-
tion, medical device, barometer, altimeter, and altitude compensation.
The transfer function for XFAM is

Vout = Vs × (P × µ + λ)± (Pressure Error
×Temperature Error Multiplier× µ× Vs),

(4.5)

where Vs = 5.0volts, P the input pressure (KPa), µ = 0.009, λ = −0.095,
Pressure Error=2.5KPa, and the pressure range 15∼115KPa. The Tem-
perature Error Multiplier can be calculated from the curve shown in
Figure 4.6.

Temperature Sensor LM35

The LM35 series are precision integrated–circuit temperature sensors,
whose output voltage is linearly proportional to the Celsius (Centigrade)
temperature. The LM35 thus has an advantage over linear temperature
sensors calibrated in ◦ Kelvin, as the user is not required to subtract a
large constant voltage from its output to obtain convenient Centigrade

72 Chapter 4. The SVM ENose

Figure 4.6: Temperature vs. Temperature Error Multiplier

scaling. The LM35 does not require any external calibration or trimming
to provide typical accuracies of±1/4◦C at room temperature and±3/4◦C
over a full -55◦ to +150◦C temperature range.

Low cost is assured by trimming and calibration at the wafer level.
The LM35’s low output impedance, linear output, and precise inherent
calibration make interfacing to readout or control circuitry especially
easy. It can be used with single power supplies, or with plus and minus
supplies. As it draws only 60 µA from its supply, it has very low self–
heating, less than 0.1◦C in still air. The LM35 is rated to operate over a
-55◦ to +150◦C temperature range.

4.2 Interfacing Card

Multifunction NI DAQPad–6015 for USB is used in our system as an
interfacing between the BOX and the PC, the National Instruments
DAQPad-6015 multifunction data acquisition (DAQ) device provide plug–
and–play connectivity via USB for acquiring, generating, and logging
data. With DAQPad–6015 mass termination, we can cable to external

4.3. The Software 73

accessories and signal conditioning devices such as NI SCC devices. It
give 16–bit accuracy at up to 200 kS/s, also has 16 analog inputs, 8
digital I/O, 2 analog outputs, and 2 counter/timers.

NI DAQPad–6015 includes NI–DAQmx measurement services soft-
ware with which we can quickly configure and begin taking measure-
ments with our DAQ device. NI–DAQmx provides an interface to our
LabWindows/CVI that we used inside the PC.

4.3 The Software

We used the LabWindows package as a programming tool running on
a PC Pentium 4 type. The integrated LabWindows/CVI environment
features code generation tools and prototyping utilities for fast and easy
C code development. It offers a unique, interactive ANSI C approach
that delivers access to the full power of C with the ease of use of Vi-
sual Basic. Because LabWindows/CVI is a programming environment
for developing measurement applications, it includes a large set of run–
time libraries for instrument control, data acquisition, analysis, and user
interface. LabWindows/CVI also contains many features that make de-
veloping measurement applications much easier than in traditional C
language environments.

For support vector machine(SVM) training and testing in both multi–
class classification and regression we used LIBSVM–2.82 package [7].
LIBSVM–2.82 uses the one–against–one approach [29] in which k(k –
1)/2 binary classifiers are constructed and each one trains data from two
different classes. The first use of this strategy on SVM was in [17, 30].
In classification it uses a voting strategy: each binary classification is
considered to be a voting where votes can be cast for all data points; in
the end a point is designated to be in the class with maximum number
of votes. In case two classes have identical votes, though it may not be
a good strategy, it simply select the one with the smallest index.

LIBSVM provides a parameter selection tool using the RBF kernel:
cross validation via parallel grid search. It can be easily modified for
other kernels such as linear and polynomial. For median–sized problems,

74 Chapter 4. The SVM ENose

cross validation might be the most reliable way for parameter selection.
First, the training data is separated to several folds. Sequentially a fold
is considered as the validation set and the rest are for training. The av-
erage of accuracy on predicting the validation sets is the cross validation
accuracy [18].

For measuring the regression quality we used Correlation Coefficient,
which is a concept from statistics measures of how well trends in the
predicted values follow trends in past actual values. It is a measure of
how well the predicted values from a forecast model ”fit” with the real–
life data [42].

The correlation coefficient is a number between 0.0 and 1.0. If there
is no relationship between the predicted values and the actual values
the correlation coefficient is 0.0 or very low (the predicted values are
no better than random numbers). As the strength of the relationship
between the predicted values and actual values increases so does the
correlation coefficient. A perfect fit gives a coefficient of 1.0. Thus the
higher correlation coefficient (near to 1.0) the better is the regressor [10].
Correlation coefficient is calculated as follows:

r =

N∑
i=1

XiX̂i −
∑N

i=1 Xi

∑N
i=1 X̂i

N
√√√√(

N∑
i=1

X2
i −

(
∑N

i=1 Xi)
2

N
)(

N∑
i=1

X̂i
2 − (

∑N
i=1 X̂i)

2

N
)

, (4.6)

where r is the correlation coefficient, X are the actual values, X̂ are the
predicted values, and N is the number of data points.

4.4. Experiments and Results 75

4.4 Experiments and Results

In our experiments we used four different types of gases, they are methanol,
ethanol, acetone, and benzene, with different concentrations range from
low concentration (up to 18ppm) to high concentration (up to 2000ppm),
We used 26 gas samples for methanol, 26 gas samples for ethanol, 26
gas samples for acetone, and 18 gas samples for benzene. Each experi-
ment was repeated twice with each concentration. The data set for these
solvents (gases) is made up of samples in R8 space where each sample
correspond to the outputs of the sensors for a given couple (gas, concen-
tration) as shown in Figure 4.7.

Figure 4.7: First two principal components for the experimental data set

We put the desired quantity of solvent (in ppm) previously calculated
inside the BOX, switching ON the fan which is inside the box to let the

76 Chapter 4. The SVM ENose

solvent drops evaporate easily. The program starts reading the data that
are coming from the eight sensors which form our system as shown in
Figure 4.8.

After few seconds, when the signals start to be stable, we switch OFF
the fan and then we save the data in a file that indicates also the class
label of the current sample. After that we must clear the BOX and the
sensors by supplying a compressed air coming from an Air Compressor.
We repeat twice this procedure for each gas type and for each concentra-
tion.

4.4. Experiments and Results 77

F
ig

u
re

4.
8:

S
ig

n
al

s
ar

e
co

m
in

g
fr

om
th

e
sy

st
em

78 Chapter 4. The SVM ENose

4.4.1 Classification Process

When all the data are saved in the file, which are 96 samples (26 samples
for methanol, 26 samples for ethanol, 26 sample for acetone, and 18
samples for benzene), we start the training phase by applying the SVM
approach to find the best classifier that divides the multiple classes of
data with minimum number of misclassified point and maximum margin.
This means finding the parameters that give the highest classification
rate. In particular for each configuration of the parameters we have run
96 times our SVM program, in a leave–one–out cross–validation fashion
obtaining the classification rate which is the ratio between the number
of successful classifications of the left out point, and 96, the number of
runs. These parameters are kernel type (linear, polynomial, radial basis
function (RBF), degree of kernel polynomial function), the value of sigma
(σ) in the cases of polynomial, or radial basis function type, the tolerance
of termination, and the regularization parameter value (cost C). We
used the linear kernel function with many values of C and measured the
classification rates as shown in Table 4.4, we got the best classification
rate 94.74% when C = 400.

Table 4.4: Multiple C values vs. classification rate with linear kernel

C value Classification rate %
1 56.84
10 80.00
100 90.53
200 91.58
300 92.63
400 94.74
500 93.68
700 92.63
900 93.68
1000 93.68

4.4. Experiments and Results 79

Table 4.5: Multiple C values vs. classification rate for different values of
sigma with 3rd degree polynomial kernel

C Classification rate%
value σ = 0.5 σ = 0.1 σ = 0.01 σ = 0.007 σ = 0.001
10 95.79 94.74 92.63 90.53 80.00
50 95.79 94.74 94.74 94.74 88.42
80 95.79 94.74 94.74 93.68 90.53
100 95.79 94.74 94.74 93.68 90.53
500 95.79 94.74 94.74 93.68 93.68
1000 95.79 94.74 94.74 93.68 94.74
5000 95.79 94.74 94.74 93.68 93.68
10000 95.79 94.74 94.74 93.68 93.68

We used also the polynomial kernel of 3rd degree with different values
of σ and different values of C. The results in Table 4.5 show that the
best classification rate was 95.79%, when σ = 0.5, and C with any value
between 10 and 10000.

Also we applied the RBF kernel type with many different σ values
and costs (C), as shown in Table 4.6. We got the best classification rate
96.84%, when σ = 0.007 and C = 10000.

Table 4.6: Multiple C values vs. classification rate for different values of
σ with RBF kernel

C Classification rate%
value σ = 0.5 σ = 0.1 σ = 0.01 σ = 0.007 σ = 0.001
10 70.53 55.79 0.00 0.00 0.00
50 89.47 87.37 42.10 35.79 0.00
80 90.53 88.42 67.37 48.42 0.00
100 91.58 90.53 73.68 62.10 0.00
500 93.68 92.63 89.47 86.31 52.63
1000 93.68 93.68 92.63 90.52 69.47
5000 93.68 94.74 95.79 94.74 85.26
10000 93.68 94.74 95.79 96.84 88.42

80 Chapter 4. The SVM ENose

4.4.2 Concentration Estimation Process

At the end of the training phase (for classification), our system is able to
classify new gas samples. Then we started the training phase for regres-
sion (concentration estimation). We applied also the linear, polynomial,
and radial basis function (RBF) kernels, with many parameter values
which are the cost value (regularization parameter C), the degree of the
polynomial, σ value, and the tolerance of termination.

Table 4.7: Multiple C values in the case of linear kernel

C Mean Squared
value Squared Error Correlation Coefficient
10 52529.9 0.755
50 38145.8 0.711
100 32899.2 0.741
500 26397.0 0.813
2000 18855.4 0.870
3000 9390.5 0.929
5000 9707.5 0.924
10000 17469.1 0.860

As the measure of regression quality we have used the cross–validation
Squared Correlation Coefficient as a regression quality measurement. Re-
gression is good when the value of cross-validation Squared Correlation
Coefficient are nearer to the value 1.0.

We show the results of regression of acetone type. When we applied
linear kernel with different values of regularization parameter (C), we
got the results shown in Table 4.7. When we used a polynomial kernel
of 3rd degree with different values of C and σ, we got the result which
are shown in Table 4.8.

Table 4.9 shows the regression results when RBF kernel with different
values of C and σ are applied.

At the end of classification and estimation process our system has
the ability to recognize type of gas and its concentration. The highest

4.4. Experiments and Results 81

Table 4.8: Multiple C and σ values with polynomial kernel of 3rd degree

C Correlation Coefficient
value σ = 1.0 σ = 0.5 σ = 0.1
0.1 0.967 0.955 0.632
0.5 0.982 0.963 0.946
1.0 0.985 0.970 0.939
5.0 0.974 0.982 0.967
10.0 0.967 0.985 0.955
100.0 0.922 0.963 0.967

classification rate was 96.84% when RBF kernel applied with C = 1000
and σ = 0.007 as shown in Table 4.6, the best regression result with
respect to highest correlation coefficient (0.985) when we used kernel
function of 3rd degree polynomial with C = 10.0 and σ = 0.5 as shown
in Table 4.8.

Table 4.9: Multiple C and σ values with RBF kernel

C Correlation Coefficient
value σ = 1.0 σ = 0.5 σ = 0.1
100 0.736 0.741 0.797
200 0.868 0.842 0.780
500 0.869 0.917 0.874
1000 0.909 0.955 0.909
5000 0.953 0.968 0.971
10000 0.953 0.979 0.978

82 Chapter 4. The SVM ENose

4.5 Conclusions

We have implemented our electronic nose based on the use of different
types of sensors, combined with a recognition and estimation system
based on SVM. The results appear encouraging in terms of classification
and estimation quality.

Further research would be devoted to test the effectiveness of more
complex sensor networks as well as of new classification techniques such
as semi–supervised learning (which falls between supervised learning and
unsupervised learning) that make use of both labeled and unlabeled data
for training a typically small amount of labeled data with a large amount
of unlabeled data. The problem of testing the method on other types of
gases, as well as that of analyzing mixtures of gases definitely deserve
future attention.

Bibliography 83

Bibliography

[1] S. Abe, Support Vector Machines for Pattern Classification.
Springer–Verlag, 2005.

[2] E. Alpaydin, Introduction to Machine Learning. MIT Press, 2004.

[3] S. Brahim-Belhouari, A. Bermak, M. Shi, and C. Chan, “Fast and
robust gas identification system using an integrated gas sensor tech-
nology and gaussian mixture models,” IEEE Sensors Journal, vol. 5,
no. 6, pp. 1433–1444, December 2005.

[4] K. Brudzewski, S. Osowski, T. Markiewicz, and J. Ulaczyk, “Classi-
fication of gasoline with supplement of bio–products by meansof an
electronic nose and svm neural network,” Sensors and Actuators B:
Chemical, vol. 113, no. 1, pp. 135–141, 17 January 2006.

[5] C. Burges, “A tutorial on support vector machines for pattern recog-
nition,” Data Mining and Knowledge Discovery, vol. 2, no. 2, pp.
121–167, 1998.

[6] L. Carmel, N. Sever, D. Lancet, and D. Harel, “An enose algorithm
for identifying chemicals and determining their concentration,” Sen-
sors and Actuators B: Chemical, vol. 93, no. 1–3, pp. 77–83, 1 Au-
gust 2003.

[7] C. C. Chang and C. J. Lin, “Libsvm: A library
for support vector machines,” [Online]. Available:
http://www.csie.ntu.edu.tw/ cjlin/libsvm, 2001.

83

84 Bibliography

[8] V. Cherkassky and F. Mulier, Learning From Data, Concepts, The-
ory, and Methods. John Wiley and Sons, 1998.

[9] H. Chew, R. Bogner, and C. Lim, “Dual v–support vector machine
with error rate and training size biasing,” Proceedings of 2001 IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, Salt Lake
City, USA, vol. 2, 7–11 May 2001.

[10] J. Cohen, P. Cohen, S. G. West, and L. S. Aiken, Applied Multiple
Regression/Correlation Analysis for the Behavioral Sciences, 3rd ed.
Hillsdale, NJ: Lawrence Erlbaum Associates, 2003.

[11] N. Cristianini and J. Shawe-Taylor, An Introduction to Support Vec-
tor Machines and other kernel–based learning methods. Cambridge
University Press, 2000.

[12] ——, Kernel Methods for Pattern Analysis. Cambridge University
Press, 2004.

[13] C. Distante, N. Ancona, and P. Siciliano, “Support vector machines
for olfactory signals recognition,” Sensors and Actuators B: Chem-
ical, vol. 88, no. 1, pp. 30–39, 1 January 2003.

[14] R. O. Duda, P. E. Hart, and D. G. Stork, Pattern Classification,
2nd ed. NewYork: Wiley, 2000.

[15] R. Fletcher, Practical Methods of Optimization, 2nd ed. John Wiley
and Sons Inc., 1987.

[16] J. Fraden, Handbook of modern sensors: physics, design, and appli-
cations. Springer, 3rd edition 2003.

[17] J. Friedman, “Another approach to polychotomous classification,”
Department of Statistics, Stanford University, Technical report,
1996.

[18] S. I. Gallant, Neural Network Learning and Expert Systems. MIT
press, 1993.

Bibliography 85

[19] J. W. Gardner and P. N. Bartlett, Electronic Noses: Principles and
Applications. Oxford University Press, 1999.

[20] J. E. Gentle, W. Härdle, and Y. Mori, Handbook of Computational
Statistics:Concepts and Methods. Springer, 2004.

[21] F. Girosi, “An equivalence between sparse approximation and sup-
port vector machines,” Neural Computation, vol. 10, no. 6, pp. 1455–
1480, August 1998.

[22] O. Gualdrón, E. Llobet, J. Brezmes, X. Vilanova, and X. Correig,
“Coupling fast variable selection methods to neural network–based
classifiers: Application to multisensor system.” Sensors and Actua-
tors B: Chemical, vol. 114, no. 1, pp. 522–529, 30 March 2006.

[23] L. Guangli and P. Bo, “v–support vector classification with un-
certainty based on expert advices,” Proceedings of 2005 IEEE Int.
Conf. on Granular Computing, vol. 2, pp. 451–453, 25–27 July 2005.

[24] R. Gutierrez-Osuna, “Pattern analysis for machine olfaction: A re-
view,” IEEE Sensors Journal, vol. 2, no. 3, pp. 189–202, June 2002.

[25] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statis-
tical Learning, Data Mining, Inference, and Prediction. Springer–
Verlag New York, 2001.

[26] D. Huang and H. Leung, “Simultaneous classification and concentra-
tion estimation for electronic nose,” IEEE Sensors Journal, vol. 7,
no. 5, pp. 825–834, May 2007.

[27] A. Jain, R. Duin, and J. Mao, “Statistical pattern recognition: A
review,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 22, no. 1, pp. 4–37, January 2000.

[28] T. Joachims, “Making large–scale svm learning practical,” in Ad-
vances in Kernel Methods-Support Vector Learning, B. Schölkopf,
C. J. C. Burges, and A. J. Smola, Eds. MIT Press, 1999, pp.
169–184.

86 Bibliography

[29] S. Knerr, L. Personnaz, and G. Dreyfus, “Single–layer learning re-
visited: a stepwise procedure for building and training a neural net-
work,” in Neurocomputing: Algorithms, Architectures and Applica-
tions, J. Fogelman, Ed. Springer–Verlag, 1990, pp. 169–184.

[30] U. Kreßel, “Making large–scale svm learning practical,” in Advances
in Kernel Methods-Support Vector Learning, B. Schölkopf, C. J. C.
Burges, and A. J. Smola, Eds. MIT Press, 1999, pp. 255–268.

[31] W. Land, O. Sadik, J. Embrechts, D. Leibensperger, A. Wanekayab,
L. Wong, and M. Uematsu, “New results using multi array sensors
and support vector machines for the detection and classification of
organophosphate nerve agents,” IEEE International Conference on
Systems, Man. and Cybernetics, vol. 3, pp. 2883–2888, 5–8 October
2003.

[32] J. Lozano, J. Santos, M. Aleixandre, I. Sayago, J. Gutirrez, and
M. Horrillo, “Identification of typical wine aromas by means of an
electronic nose,” IEEE Sensors Journal, vol. 6, no. 1, pp. 173–178,
February 2006.

[33] W. Maass, “On the computational power of winner–take–all,” Neu-
ral Computation, vol. 11, no. 12, pp. 2519–2536, November 2000.

[34] M. Markou and S. Singh, “Novelty detection: A review–part 1: Sta-
tistical approaches,” Signal processing, vol. 83, no. 12, pp. 2481–
2497, December 2003.

[35] T. Mitchell, Machine Learning. McGraw–Hill, 1997.

[36] K. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf, “An
introduction to kernel-based learning algorithms,” IEEE Trans. on
Neural Networks, vol. 12, no. 2, pp. 181–201, March 2001.

[37] E. Osuna, R. Freund, and F. Girosi, “Support vector machines:
Training and applications,” Massachusetts Institute of Technology,
Cambridge, MA, USA, Technical Report 144, March 1997.

Bibliography 87

[38] ——, “Training support vector machines: An application to face
detection,” Proceedings of 1997 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 130–136, 1997.

[39] L. Palagi and M. Sciandrone, “On the convergence of a modified
version of svm light algorithm,” Optimization Methods and Software,
vol. 20, pp. 311–328, 2005.

[40] M. Pardo and G. Sberveglieri, “Coffee analysis with an electronic
nose,” IEEE Trans. on Instrumentation and Measurement, vol. 51,
no. 6, pp. 1334–1339, December 2002.

[41] ——, “Classification of electronic nose data with support vector ma-
chines,” Sensors and Actuators B: Chemical, vol. 107, no. 2, pp.
730–737, 29 June 2005.

[42] M. Penza, G. Cassano, and F. Tortorella, “Identification and quan-
tification of individual volatile organic compounds in a binary mix-
ture by saw multisensor array and pattern recognition analysis,”
Measurement Science and Technology, vol. 13, pp. 846–858, 2002.

[43] R. Polikar, R. Shinar, V. Honavar, L. Udpa, and M. Porter, “Detec-
tion and identification of odorants using an electronic nose,” IEEE
International Conference on Acoustics, Speech, and Signal Process-
ing, vol. 5, pp. 3137–3140, 7–11 May 2001.

[44] M. Pontil and A. Verri, “Properties of support vector machines,”
Neural Computation, vol. 10, no. 4, pp. 955–974, May 1998.

[45] B. Schölkopf, A. J. Smola, and P. L. Bartlett, “New support vector
algorithms,” Neural Computation, vol. 12, no. 5, pp. 1207–1245,
2000.

[46] J. Shawe-Taylor, P. L. Bartlett, R. C. Williamson, and M. An-
thony, “Structural risk minimization over data-dependent hierar-
chies,” IEEE Trans. on Information Theory, vol. 44, no. 5, pp.
1926–1940, September 1998.

88 Bibliography

[47] Y. Tan and J. Wang, “A support vector machine with a hybrid
kernel and minimal vapnik–chervonenkis dimension,” IEEE Trans.
on Knowledge and Data Engineering, vol. 16, no. 4, pp. 385–395,
April 2004.

[48] O. Uluyol, A. Wood, M. Kaiser, and K. Arnold, “Improved e–nose
detection using initial reaction smellprint and advanced classifiers,”
Sensors, Proceedings of IEEE, vol. 2, pp. 1214–1218, 22–24 October
2003.

[49] V. Vapnik, Estimation of Dependences Based on Empirical Data.
Springer–Verlag, 1982.

[50] ——, The Nature of Statistical Learning Theory. Springer–Verlag,
New York, 1996.

[51] V. Vapnik and O. Chapelle, “Bounds on error expectation for sup-
port vector machines,” Neural Computation, vol. 12, no. 9, pp. 2013–
2036, September 2000.

[52] X. Wang, H. Zhang, and C. Zhang, “Signals recognition of elec-
tronic nose based on support vector machines,” Proceedings of the
Fourth International Conference on Machine Learning and Cyber-
netics, Guangzhou, pp. 3394–3398, 18–21 August 2005.

[53] H. Zhou, M. L. Homer, A. V. Shevade, and M. A. Ryan, “Nonlinear
least–squares based method for identifying and quantifying single
and mixed contaminants in air with an electronic nose,” Sensors,
vol. 6, no. 1, pp. 1–18, January 2006.

