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Summary

The field of real-time fleet management has considerably grown during the last years,

mainly due to recent developments in the economic and technologic sectors, allowing

companies to focus on aspects not considered before, in order to be competitive on

the market. Given these aspects, developing systems whereby goods are delivered

to customers on time becomes crucial. Under this setting the key aspect is the avail-

ability of real-time information, like, for instance, vehicles location, road congestion,

current fleet status, etc. For this purpose, advances in information technology and

telecommunications, together with continually growing amount of data, offer oppor-

tunities for transportation companies to obtain this information with a relatively

low effort. One of the most important tools available to companies is the ability to

equip drivers with modern tools such as Global Positioning System (GPS) devices,

eventually embedded into palmtop computers, in order to exactly know where the

vehicles are and also to provide the drivers real-time directions.

In this thesis various issues concerning real-time fleet management are studied.

The conventional vehicle routing problem (VRP) consists of determining a set of

vehicle routes so that each customer of a set is visited exactly once and the total

cost is minimized. Although dynamic VRPs represent important applications in

many distribution systems, past research has focused mainly on static aspects of

the VRPs. However, in the recent years, because of the rapid development in the

telecommunications and computer hardware sectors, together with an increased fo-

cus on just-in-time logistics, a lot of efforts are being devoted to research on the

more complex dynamic version of the VRP. The thesis begins by introducing the

static VRP along with its dynamic counterpart (DVRP) and gives a discussion of

the differences between the conventional static VRP and the dynamic VRP. Next,

the main features of real-time vehicle routing problems are illustrated and a survey

of the existing literature dealing with the dynamic vehicle routing problem as well
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as with a priori route design is presented.

The Dynamic and Stochastic Traveling Salesman Problem is introduced and an

optimal policy through a Markov decision process is proposed as well as lower and

upper bounds on the optimal policy cost are developed.

Then, an interesting question to answer in dynamic routing is whether or not it

is worthwhile using complex procedures in order to design a priori routes. For this

purpose, we consider several approaches for determining the a priori route for our

dynamic routing problem and we determine under which circumstances the use of a

priori routing can offer some value.

Next, we present the Dynamic and Stochastic Vehicle Dispatching Problem with

Pickups and Deliveries, a real-time problem faced by local area (e.g., intra-city)

courier companies serving same-day pickup and delivery requests for the transport

of letters and small parcels. We develop anticipatory algorithms that evaluate al-

ternative solutions through a short-term demand sampling and a fully sequential

procedure for indifference zone selection.

Moreover, we introduce the same-day Courier Shift Scheduling Problem, a tac-

tical problem faced by same-day courier companies, which amounts to minimize the

staffing cost subject to probabilistic service level requirements.

Finally, we give our conclusions, as well as provide some directions for further

research on real-time VRPs.
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Riassunto (In Italian)

Il settore della gestione di flotte in tempo reale ha visto un crescente aumento di

interesse nel corso degli ultimi anni, principalmente grazie ai recenti sviluppi di

natura tecnologica ed economica, che hanno consentito alle aziende del settore di

spostare il proprio focus su aspetti fino a quel momento trascurati, con l’obiettivo di

acquisire una maggiore competitività sul mercato. A questo proposito, un aspetto

di cruciale importanza è la progettazione e lo sviluppo di sistemi di gestione di

flotte in tempo reale in cui i beni sono consegnati ai clienti secondo modalità e

tempi da loro richiesti. In questo contesto, un ruolo chiave è rappresentato dalla

disponibilit in tempo reale di informazioni, quali, ad esempio, la posizione dei veicoli,

la situazione di congestione stradale o lo stato corrente della flotta di veicoli. In

questo senso, i grandi progressi effettuati nella tecnologia dell’informazione e delle

telecomunicazioni, insieme alla sempre maggiore disponibilità di dati storici, offrono

la possibilità alle aziende di trasporti di ottenere le informazioni volute con uno

sforzo relativamente basso. Uno degli strumenti più importanti a disposizione delle

aziende la possibilità di fornire ai dipendenti dispositivi moderni quali, ad esempio,

i GPS, eventualmente integrati in dispositivi palmari, con l’obiettivo di conoscere in

ogni istante la posizione dei veicoli e di fornire indicazioni in tempo reale.

Obiettivo della presente tesi è analizzare diversi aspetti legati alla gestione di

flotte in tempo reale. Il classico problema di instradamento dei veicoli (VRP) con-

siste nel determinare un insieme di rotte in modo tale che il costo complessivo sia

minimizzato e che ciascun cliente sia visitato esattamente una volta. Benché il VRP

abbia applicazioni importanti in una grande varietà di contesti di logistica distribu-

tiva, buona parte degli sforzi di ricerca degli ultimi decenni è stata indirizzata allo

studio della versione statica del VRP. Occorre dire, comunque, che, nel corso degli

ultimi anni, il crescente interesse nella logistica just-in-time e il rapido sviluppo tec-

nologico, hanno contribuito ad incrementare l’interesse nei confronti della versione
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dinamica (peraltro molto più complessa) del VRP. Nel presente lavoro di tesi si

descrive il VRP statico, insieme alla sua controparte dinamica (DVRP), e si analiz-

zano le differenze principali tra queste due varianti del problema. In seguito viene

presentata una rassegna della letteratura esistente relativa a questa classe di prob-

lemi, con una particolare enfasi sul problema della determinazione di rotte a priori

e sull’ottimizzazione in tempo reale.

Successivamente si introduce il problema del commesso viaggiatore dinamico e

stocastico (Dynamic and Stochastic Traveling Salesman Problem) e, per mezzo di un

processo decisionale markoviano, si individua una politica ottimale, oltre a fornire

dei limiti inferiore e superiore al costo di tale politica.

Nel seguito si prova a rispondere ad un quesito molto attuale nei problemi di-

namici di instradamento dei veicoli, relativo alla possibilità di utilizzare procedure

più o meno complesse per la determinazione di rotte a priori per i veicoli. A tale

scopo, vengono considerate diverse strategie a priori e si individuano le strategie

che offrono le migliori prestazioni con riferimento al particolare problema di routing

analizzato.

Nella sezione successiva si introduce il problema di assegnamento di richieste

ai veicoli dinamico e stocastico con prelievo e consegna (Dynamic and Stochastic

Vehicle Dispatching Problem with Pickups and Deliveries). Tale problema è af-

frontato in tempo reale dalle aziende di corrieri urbani che forniscono un servizio

di prelievo e consegna di lettere o piccoli imballaggi nel corso della stessa giornata.

Relativamente a tale problema, sono proposti degli algoritmi anticipativi che valu-

tano diverse soluzioni alternative tramite un campionamento a breve termine della

domanda futura ed una procedura completamente sequenziale per la selezione della

zona di indifferenza.

In aggiunta, si introduce il problema di schedulazione dei turni per un’azienda

di corrieri urbani (Same-day Courier Shift Scheduling Problem), un problema di

natura tattica per questo tipo di aziende, che consiste nel minimizzare i costi del

personale, dovendo rispettare dei vincoli di natura probabilistica sulla qualità del

servizio.

Infine, si riportano le conclusioni e si individuano le possibile direzioni di ricerca

futura.
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Chapter 1

Introduction

Gutta cavat lapidem; non vi, sed saepe cadendo.

Huic addiscit homo: non vi, sed saepe legendo.

Anonymous

Vehicle Routing Problems (VRPs) are central to logistics management both in the

private and public sectors. They consist of determining optimal vehicle routes

through a set of users, subject to side constraints. The most common operational

constraints impose that the total demand carried by a vehicle at any time does

not exceed a given capacity, the total duration of any route is not greater than a

prescribed bound, and service time windows set by customers are respected. In long-

haul routing, vehicles are typically assigned one task at a time while in short-haul

routing, tasks are of short duration (much shorter than a work shift) and a tour is

to be built through a sequence of tasks. For a survey on the most relevant modeling

and algorithmic issues on VRPs, see the recent book by Toth and Vigo (2002).

There exist several important problems that must be solved in real time. In what

follows, we review the main applications that motivate the research in the field of

the real-time VRPs.

Dynamic fleet management. Several large scale trucking operations require real-

time dispatching of vehicles for the purpose of collecting or delivering shipments. Im-

portant savings can be achieved by optimizing these operations (Brown and Graves,
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1 – Introduction

1981, Brown et al., 1987, Powell, 1986, 1990, Goetschalckx, 1988, Rego and Rou-

cairol, 1995, Savelsbergh and Sol, 1998).

Vendor-managed distribution systems. In vendor-managed systems, distri-

bution companies estimate customer inventory level as to replenish the customers

before they run out of stock. Hence, demands are known beforehand in principle

and all customers are static. However, because demand has always a random com-

ponent, some customers (usually a small percentage) may run out of stock and have

to be serviced urgently (Campbell et al., 1998, Larsen, 2000).

Couriers. Long-distance couriers need to collect locally outbound parcels before

sending them to a remote terminal to consolidate loads. Also, loads coming from

remote terminals have to be distributed locally. Most pick-up requests are dynamic

and have to be serviced the same day if possible (Gendreau et al., 1999, 2006,

Cordeau et al., 2002).

Rescue and repair service companies. There are several companies providing

rescue or repair services (broken car rescue, appliance repair, etc.) (Madsen et al.,

1995b, Weintraub et al., 1999, Brotcorne et al., 2003).

Dial-A-Ride Systems. Dial-a-ride systems provide transportation services to peo-

ple between given origin-destination pairs. Customers can book a trip one day in

advance (static customers) (Cordeau and Laporte, 2003) or make a request at short

notice (dynamic customers) (Roy et al., 1984, Madsen et al., 1995a).

Emergency Services. Emergency services comprise police, fire fighting and am-

bulance services. By definition, all customers are dynamic. Moreover, the demand

rate is usually low so that vehicles become idle from time to time. In this context,

relocating idle vehicles in order to anticipate future demands or to escape from down-

town rush hour traffic jam is an important consideration (Psaraftis, 1980, Gendreau

et al., 1997, 2001).

Taxi Cab Services. In taxi cab services, almost every customer is dynamic. As

in emergency services, relocating temporary idle vehicles is a consideration.

Due to recent advances in information and communication technologies, vehicle

fleets can now be managed in real-time. When jointly used, devices like Geographic

Information Systems (GIS), Global Positioning Systems (GPS), traffic flow sensors,

and cellular telephones are able to provide relevant real-time data, such as current

vehicle locations, new customer requests and periodic estimates of road travel times

(Brotcorne et al., 2003). If suitably processed, this large amount of data can be
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1 – Introduction

used to reduce cost and improve service level. To this end, revised routes have to

be generated as soon as new events occur.

In recent years, three main developments have contributed to the acceleration

and quality of algorithms relevant in a real-time context. The first is the increase

in computing power due to better hardware. The second is the development of

powerful metaheuristics whose main impact has been mostly on solution accuracy

even if this gain has sometimes been achieved at the expense of computing time. The

third development has arisen in the field of parallel computing. The combination of

these three features has yielded a new generation of powerful algorithms that can

effectively be used to provide real-time solutions in dynamic contexts.

1.1 Outline of the thesis

This thesis discusses various issues concerning real-time fleet management. In the

present chapter, we introduce the vehicle routing problem (VRP) along with its

dynamic counterpart (DVRP), and we give a discussion of the differences between

the conventional static VRP and the dynamic VRP. Next, we illustrate the main

features of real-time vehicle routing problems. Moreover, we present the notion of

degree of dynamism, first introduced by Lund et al. (1996) and then extended by

Larsen (2000). We list the different objectives that are to be achieved in dynamic

problems. In addition, we present the different hypothesis on the spacial distribution

of demands together with different possibilities for comparing routing and dispatch-

ing policies. The chapter closes with a survey of the existing literature dealing with

dynamic routing problems. The emphasis of the section is on both a priori and

real-time optimization methods.

In chapter 2, we introduce the Dynamic and Stochastic Traveling Salesman Prob-

lem and propose an optimal policy through a Markov Decision Process as well as

develop lower and upper bounds on the optimal policy cost.

In chapter 3, we present several strategies for implementing a priori routes within

a dynamic routing context, and we identify situations in which the use of more

involved a priori strategies can give some benefit.

In chapter 4, we consider the Dynamic and Stochastic Vehicle Dispatching Prob-

lem with Pickups and Deliveries, a real-time problem faced by local area (e.g.,

intra-city) courier companies serving same-day pickup and delivery requests for the

3



1 – Introduction

transport of letters and small parcels. We develop anticipatory algorithms that

evaluate alternative solutions through a short-term demand sampling and a fully

sequential procedure for indifference zone selection. A peculiar feature of this pro-

cedures is that they allow the elimination, at an early stage of experimentation,

those solutions that are clearly inferior, thus reducing the overall effort to select the

best.

In chapter 5, we consider the same-day Courier Shift Scheduling Problem, a

tactical problem faced by same-day courier companies, which amounts to minimizing

the staffing cost subject to probabilistic service level requirements.

Then, in chapter 6, we give our conclusions in a brief summary of the discussions

of this thesis as well as provide some directions for further research on real-time

VRPs.

1.2 Static vs Dynamic Vehicle Routing Problems

A vehicle routing problem is said to be static if its input data (for example, travel

times and demands) do not depend explicitly on time, otherwise it is dynamic.

Moreover, a VRP is deterministic if all input data are known when designing vehicle

routes, otherwise it is stochastic.

Static VRPs. A static problem can be either deterministic or stochastic. In

deterministic and static VRPs (like the classical Capacitated VRP surveyed in Toth

and Vigo (2002)) all data are known in advance and time is not taken into account

explicitly. In stochastic and static VRPs (Laporte and Louveaux, 1998), vehicle

routes are designed at the beginning of the planning horizon, before uncertain data

become known. Uncertainty may affect which service requests are present, user

demands, user service times or travel times. If input data are uncertain, it is usually

impossible to satisfy the constraints for all realizations of the random variables.

If uncertainty affects the constraints but the objective function is deterministic,

it can be required that constraints be satisfied with a given probability (Chance

Constrained Programming, CCP). In a more general approach, a first phase solution

is constructed before uncertain data are available and corrective (or recourse) actions

are taken at a second stage once all the realisations of the random variables become

known. The objective to be minimized is the first stage cost plus the expected

recourse cost (Stochastic Programming with Recourse, SPR).

4



1 – Introduction

Dynamic VRPs. A dynamic problem can also be deterministic or stochastic (Pow-

ell et al., 1995). In deterministic and dynamic problems, all data are known in

advance and some elements of information depend on time. For instance, the VRP

with time windows reviewed in Cordeau et al. (2001) belongs to this class of prob-

lems. Similarly, the Traveling Salesman Problem (TSP) with time-dependent travel

times (Malandraki and Daskin, 1992) is deterministic and dynamic. In this prob-

lem, a traveling salesperson has to find the shortest closed tour among several cities

passing through all cities exactly once, and travel times may vary throughout the

day. Finally, in stochastic and dynamic problems (also known as real-time routing

and dispatching problems) uncertain data are represented by stochastic processes.

For instance, user requests can behave as a Poisson process (as in Bertsimas and

Van Ryzin (1991)). Since uncertain data are gradually revealed during the oper-

ational interval, routes are not constructed beforehand. Instead, user requests are

dispatched to vehicles in an on-going fashion as new data arrive (Psaraftis, 1988).

The events that lead to a plan modification can be: (i) the arrival of new user re-

quests, (ii) the arrival of a vehicle at a destination, (iii) the update of travel times.

Every event must be processed according to the policies set by the vehicle fleet

operator. As a rule, when a new request is received, one must decide whether it

can be serviced on the same day, or whether it must be delayed or rejected. If the

request is accepted, it is temporarily assigned to a position in a vehicle route. The

request is effectively serviced as planned if no other event occurs in the meantime.

Otherwise, it can be assigned to a different position in the same vehicle route, or

even dispatched to a different vehicle. It is worth noting that at any time each

driver just needs to know his next stop. Hence, when a vehicle reaches a destination

it has to be assigned a new destination. Because of the difficulty of estimating the

current position of a moving vehicle, reassignments could not easily made until quite

recently. Due to advances in communication technologies, however, route diversions

and reassignments are now a feasible option and can result in a cost saving or in

an improved service level (Gendreau and Potvin, 1998, Ichoua et al., 2000). Finally,

if an improved estimation of vehicle travel times is available, it may be useful to

modify the current routes or even the decision of accepting a request or not. For

example, if an unexpected traffic jam occurs, some user services can be deferred. It

is worth noting that when the demand rate is low, it is useful to relocate idle vehicles

in order to anticipate future demands or to escape a forecasted traffic congestion.

5



1 – Introduction

1.3 Characterization of Dynamic Vehicle Routing

Problems

As pointed out by Psaraftis (1988, 1995) dynamic VRPs possess a number of peculiar

features, some of which have just been described. In this section, we more fully

characterize the dynamic VRP.

1.3.1 The degree of dynamism of a problem

Designing a real-time routing algorithm depends to a large extent on how dynamic

the problem is. To quantify this concept, Lund et al. (1996) and Larsen (2000) have

defined the degree of dynamism of a problem.

Without loss of generality, we assume that the planning horizon is a given interval

[0,T ], possibly divided into a finite number of smaller intervals. Let ns and nd be

the number of static and dynamic requests, respectively. Moreover, let ti ∈ [0,T ] be

the occurrence time of service request i. Static requests are such that ti = 0 while

dynamic ones have ti ∈ (0,T ]. Lund et al. (1996) define the degree of dynamism δ

as:

δ =
nd

ns + nd

,

which may vary between 0 and 1. Its meaning is straightforward. For instance, if δ is

equal to 0.3, then 3 customers out of 10 are dynamic. In his doctoral thesis, Larsen

(2000) generalizes the definition proposed by Lund et al. (1996) in order to take

into account both dynamic request occurrence times and possible time windows. He

observes that, for a given δ value, a problem is more dynamic if immediate requests

occur at the end of the operational interval [0, T ]. As a result he introduces a new

measure of dynamism:

δ′ =

ns+nd∑
i=1

ti/T

ns + nd

.

It is worth noting that δ′ ranges between 0 and 1. It is equal to 0 if all user requests

are known in advance while it is equal to 1 if all user requests occur at time T .

Finally, Larsen (2000) extends the definition of δ′ to take into account possible time

windows on user service time. Let ai and bi be the ready time and deadline of client

6



1 – Introduction

i (ti ≤ ai ≤ bi), respectively. Then,

δ′′ =

ns+nd∑
i=1

[T − (bi − ti)]/T

ns + nd

.

It can be shown that δ′′ also varies between 0 and 1. Moreover, if no time windows

are imposed (i.e., ai = ti and bi = T ), then δ′′ = δ′. As a rule, vendor-based

distribution systems (such as those distributing heating oil) are weakly dynamic.

Problems faced by long-distance couriers and appliance repair service companies

are moderately dynamic (Larsen et al., 2002). Finally, emergency services, taxi cab

services or same-day urban couriers exhibit a strong dynamic behavior.

1.3.2 Objectives

In real-time routing problems the objective to be optimized is often a combination

of different measures. Larsen (2000) observes that in weakly dynamic systems the

focus is on minimizing routing cost. On the other hand, when operating a strongly

dynamic system, minimizing the expected response time (i.e., the expected time lag

between the instant a user service begins and its occurrence time) becomes a key

issue. Another meaningful criterion which is often considered (alone or combined

with other measures) is throughput optimization, the maximization of the expected

number of requests serviced within a given period of time (Psaraftis, 1988). A

completely different approach is followed in Potvin et al. (1992, 1993). In particular,

the former paper is based on the assumption that in most real-time routing problems

the objective is fuzzy. Hence, a suitably trained neural network is used to reproduce

automatically the dispatching decisions of skilled personnel.

1.3.3 Spatial distribution and time pattern of user requests

As explained later in this section, better real-time dispatching and routing decisions

can be made if uncertain data estimations (derived from historical data) are used. In

several papers (see, Bertsimas and Van Ryzin, 1991, 1993, Swihart and Papastavrou,

1999, Papastvrou, 1996), it is supposed that user requests are uniformly distributed

in a convex bounded Euclidean region, and occur according to a Poisson process

with arrival rate λ. In problems with pick-ups and deliveries (see, e.g., Swihart and

7
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Papastavrou (1999)), it is also assumed that the delivery locations are independent

of the pick-up locations.

1.3.4 Comparing different dispatching and routing proce-

dures

Evaluating a dispatching and routing algorithm can be done analytically if specific

assumptions are satisfied (see, Bertsimas and Van Ryzin (1991) where demands

are modeled as a Poisson process). If these hypotheses do not hold, algorithmic

performances have to be evaluated empirically through discrete-time simulation, as

in Gendreau et al. (1999). Another way to assess the performance of a heuristic for a

dynamic routing problem is to run it independently on the corresponding static data

assuming all information is available when planning takes place. By comparing the

static and dynamic solution one can compute the value of information as is typically

done in decision trees. Such an approach was used by Mitrović-Minić et al. (2004).

1.4 Literature review

The aim of this section is to survey the existing literature on dynamic vehicle rout-

ing problem and related problems. In recent years, we observe a growing number

of papers treating stochastic and/or dynamic vehicle routing problems. The liter-

ature on dynamic vehicle routing problems covers many different applications and

methodological approaches. Naturally, this section cannot cover all aspects of vehi-

cle routing problems with dynamic or stochastic elements. The goal of this section

is rather to provide a brief survey of the literature related to these problems, with a

particular emphasis for the topics covered in this thesis. More specifically, we focus

on a priori and real-time optimization methods. The study of the literature ended

October 31st 2007 and work published after this date is not treated in this thesis.

This section is organized as follows. In subsection 1.4.1, we discuss the literature re-

lated to a priori routing problems, whereas in subsection 1.4.2, we turn to problems

using real-time optimization.
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1.4.1 A Priori Optimization Based Methods

Perhaps the best known a priori routing problem is the probabilistic traveling sales-

man problem (PTSP). In the PTSP, a set of customers with known probabilities

of needing service on a given day are routed with the objective of minimizing the

expected travel distance. On a given day, customers who do not require service are

skipped in the tour. Thus, while customer demand is essentially revealed dynami-

cally over time, the problem is a static one. The problem was formally introduced by

Jaillet (1988) with Bertsimas (1988) adding further foundational work. Because ex-

act approaches have a limited ability to solve PTSP problems (Laporte et al., 1994),

much of the work in this area focuses on heuristic solution approaches. An overview

of the current state of PTSP research can be found in Campbell and Thomas (2007

forthcoming). Campbell and Thomas (2007a,b) discuss an extension of the PTSP

which includes delivery deadlines.

Early work on dynamic and stochastic routing routing problems focuses on the

dynamic routing and dispatching problem (DRDP). In DRDPs, stochastic infor-

mation about future requests is typically ignored and the dynamic nature of the

problem is not acknowledged in the solution approach. Rather, the research pre-

sented in these papers can be considered reactive in that requests for service are

considered only when they occur and no effort is made to anticipate that future

requests will occur. In this thesis, the a priori routing strategy discussed in Section

3.4.1 is similar to those found in the DRDP in that it ignores any information about

future requests. However, our handling of dynamic requests over the course of the

problem does anticipate the late-request customers. Overviews of the DRDP and

related literature can be found in Powell et al. (1995) and Psaraftis (1988, 1995). A

more modern approach to the DRDP can be found in Gendreau et al. (1999) and

Ichoua et al. (2000) in which a parallel implementation of a tabu search is used to

continuously update vehicle routes as new requests occur.

More recent work attempts to account for potential future requests through the

use of dynamic heuristic strategies coupled with a priori tours. Often, the approaches

form a priori tours of any static customers and then insert dynamic requests as they

occur. In contrast to the DRDP, strategies, notably waiting in various locations

on the tours, are used to account for the likelihood of future requests. In the

current literature, however, most a priori tours are constructed without regard to
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the locations or likely locations of future requests. Instead, the static customers are

typically routed via some non-dynamic procedure for the vehicle routing problem.

Kilby et al. (1998) use such an a priori procedure to produce routes which are

then coupled with a sampling procedure to create an dynamic routing heuristic.

Larsen et al. (2002, 2004) consider a problem in which some service requests are

known in advance of the start of service. They route these advance-requests using

algorithms for the traveling salesman problem with time windows, again ignoring the

possibility of future requests in the creation of these routes. The authors then couple

these routes with various heuristics that account for dynamic requests. Likewise,

Branke et al. (2005) routes advance-request customers using methodologies for the

vehicle routing problem in order to construct a priori routes which are then used in

conjunction with waiting strategies and insertion techniques.

As we do in Chapter 3, Thomas (2007) consider the case where the locations of

both static and dynamic customers are known in advance. The author builds the a

priori route for the static customers by constructing the shortest path through them.

Moreover, Thomas extrapolates the structure for the optimal policy for one dynamic

customer to develop a real-time heuristic that performs well when the percentage of

dynamic customer is 25% or less. The author shows that a strategy that distributes

waiting time across static customer locations works well as the percentage of dynamic

customers increases. In chapter 3, we use the second dynamic strategy in order to

anticipate then serve dynamic customers.

The use of information about future requests in the construction of a priori routes

for dynamic problems can be found in Secomandi (2000) and Secomandi (2001). In

these works, an priori route is constructed for the traditional stochastic vehicle

routing problem. This a priori route is then used as an initial heuristic policy for

neuro-dynamic programming algorithms. The algorithms are applied to a version of

the stochastic vehicle routing problem with stochastic demand for which the original

a priori route is dynamically updated based on realized demand. In Section 3.4.4, we

also consider the construction of the a priori routes using probabilistic information

about future requests.

Particularly relevant to the work in this thesis are the articles by Mitrović-

Minić et al. (2004) and Mitrović-Minić and Laporte (2004). Mitrović-Minić and

Laporte (2004) consider a dynamic pick-up and delivery problem. Analogous to the

discussed vehicle routing problems, they construct initial a priori tours into which
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dynamically occurring customers are inserted. They examine four waiting strategies

for the dynamic Pickup and Delivery Problem with Time Windows (PDPTW). In

the dynamic PDPTW, the presence of time windows allows the vehicles to wait at

various locations along their routes. The authors show that an adequate distribution

of the waiting time may affect the planner’s ability to make good decisions at a later

stage. Mitrović-Minić et al. (2004) propose double-horizon based heuristics. These

procedures make use of two different planning horizons (short term and long term) to

which different goals are applied. The idea is that in the short term, it is important

to concentrate on minimizing total route length, whereas in the long term, it is more

crucial to preserve a certain amount of flexibility in order to better accommodate

future requests.

1.4.2 Real-time Optimization Methods

In this section, we review literature for real-time fleet management problems, a

broad category in which vehicle routes are built in an on-going fashion as customer

requests, vehicle locations and travel times are revealed over the planning horizon.

Overviews of these problems can be found in Psaraftis (1995), Gendreau and Potvin

(1998), Ghiani et al. (2003), and Larsen et al. (2007, forthcoming).

Reactive procedures are, for instance, those described by Gendreau et al. (2006).

The authors propose adaptive descent and tabu search heuristics that utilize a neigh-

borhood structure based on ejection chains. Numerical results show that when

enough computing power is available, they produce improved results over simpler

heuristics (even if the optimization takes place over known requests only, with no

consideration for the future).

Assuming that some probabilistic knowledge is available, two different ways of

exploiting this information are reported in the literature: analytical studies and

anticipatory algorithms. The former approach examines dispatching and routing

policies whose performance can be determined analytically if specific assumptions are

satisfied. Along this line of research, Bertsimas and Van Ryzin (1991, 1993) identify

optimal policies both in light and heavy traffic, whereas demands are distributed

in a bounded area in the plane and arrivals are modelled as a Poisson process.

Papastvrou (1996) describes a routing policy that performs well both in light and

heavy traffic, while Swihart and Papastavrou (1999) examine a dynamic pickup and
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delivery extension. We refer the reader to Larsen et al. (2007, forthcoming) for an

in-depth description of these articles.

The latter approach aims at developing heuristic anticipatory algorithms that in-

corporate explicitly currently available information about future events. A seminal

contribution in this research area is Powell et al. (1988), whose work was motivated

by long-haul truckload trucking applications. These results have been subsequently

extended in Godfrey and Powell (2002), Powell and Topaloglu (2003) and Spivey

and Powell (2004). Other related contributions are Larsen (2000) and Larsen et al.

(2002), Bent and Van Hentenryck (2004), van Hemert and La Poutré (2004), Thomas

and White III (2004), Ichoua et al. (2006), Hvattum et al. (2006), and Ghiani et al.

(2007). Larsen (2000) and Larsen et al. (2002) describe some policies for relocating

idle vehicles in anticipation of future demands. Bent and Van Hentenryck (2004)

consider a vehicle routing problem with hard time windows where customer loca-

tions and service times are random variables which are realized dynamically during

plan execution. They develop a multiple scenario approach which continuously gen-

erates plans consistent with past decisions and anticipating future requests. The

current solution (or distinguished plan) is selected by a consensus function (Ste-

fik, 1981) that chooses the solution most similar to a continuously updated pool of

routings. No detail has been provided on the number of samples to be taken for

each alternative solution. To exploit probabilistic information about future service

requests, van Hemert and La Poutré (2004) introduce the concept of fruitful regions

in a dynamic routing context. Fruitful regions are regions that have a high potential

of generating loads to be transported. The authors define potential schedules by

sampling fruitful regions and have provided an evolutionary algorithm for deciding

whether to move or not towards one of such regions in anticipation of future de-

mand. Waiting strategies have not been addressed explicitly. Thomas and White

III (2004) introduce a problem in which the objective is to maximize rewards being

received for serving customers minus costs incurred for traveling along arcs. They

model the problem as a finite-horizon Markov decision process and perform numeri-

cal experiments in order to compare the optimal policy with a reactive strategy that

ignores potential customer requests. Ichoua et al. (2006) develop a parallel tabu

search heuristic that allows a vehicle to wait in its current zone if the probability of

a future request reaches a particular threshold. Idle vehicle relocation is not dealt

with. Hvattum et al. (2006) introduce a hedging heuristic that uses sampling and
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common features of deterministic routes constructed for the sampled customers to

build a plan for each time interval in the time horizon. According to the authors,

this approach requires some computation and is not necessarily implementable in

a real-time setting which requires quick decisions. Ghiani et al. (2007) develop an

anticipatory mechanism that evaluates alternative solutions through a short-term

demand sampling and a fully sequential procedure for indifference zone selection.

The authors address a number of issues involved in real-time fleet management, like

assigning requests to vehicles, routing the vehicles, scheduling the routes and relo-

cating idle vehicles. Computational results show that the anticipatory mechanism

allows to yield consistently better solutions than a purely reactive procedure.
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Chapter 2

The Dynamic and Stochastic

Traveling Salesman Problem

2.1 Introduction

The purpose of this chapter is to introduce the Dynamic and Stochastic Traveling

Salesman Problem (DSTSP) as well as to study exact and heuristic waiting policies

for it. The DSTSP is defined on a graph G = (V,A), where V is a vertex set and A is

an arc set. A vehicle based at a depot i0 has to service a number of pick-up requests,

or delivery requests, but not both. Request ik ∈ V ′ ⊆ V (k = 1, . . . ,n) may arise

at time instant Tk with probability pk. A customer ik may not require service if

pk < 1. Time instants Tk (k = 0, . . . ,n), with T0 = 0, are assumed to be integer

and the requests are supposed to be statistically independent. The vehicle may wait

at any vertex (both a customer or a non-customer vertex) in order to anticipate

future demand. It is worth noting that, unlike what happens in the classical (static)

Traveling Salesman Problem, in which the vehicle follows a shortest path between

two consecutive customers, in the DSTSP the vehicle may wait for some time at some

vertices outside the current route. This may be useful, for example, to promptly

collect enough demand in an area before moving in another part of the service

territory. Let tij be the shortest travel time from vertex i ∈ V to vertex j ∈ V .

As is common in dynamic vehicle routing problems, the aim is to maximize overall

customer service level rather than minimize the total traveled distance. Let τk be

the service time of a customer ik requiring service. To each customer is associated
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a non-decreasing and convex function fk(τk) expressing the penalty associated with

customer ik. This definition includes the case in which fk(τk) represents customer

waiting time (i.e., fk(τk) = τk − Tk,τk ≥ Tk) or a more involved penalty function

(e.g., fk(τk) = 0 if Tk ≤ τk ≤ Dk and fk(τk) = τk − Dk if τk ≥ Dk, where Dk is a

soft deadline associated with customer ik). Decision epochs occur at time instants

Tk (k = 1, . . . ,n). The DSTSP consists of determining a policy such that at any

epoch a decision is made: a) on the order in which pending customers have to be

visited; b) on how to reposition the vehicle in anticipation of future demand. The

latter issue includes deciding how long the vehicle has to wait at various locations

along its route as well as whether to relocate the vehicle to some vertices outside the

current route. The objective function to be minimized is the expected total penalty:

(2.1) z =
n∑

k=1

E[fk(τk)|k]pk

where E[fk(τk)|k] is the expected penalty associated to customer ik requiring service.

Assume that the order in which customers are serviced is given (i1 ≤ i2 ≤ . . . ≤ in

without any loss of generality) and we develop exact and heuristic waiting policies

for the DSTSP.

2.2 A lower bound on the optimal policy expected

penalty

In this section a lower bound on the expected penalty of the optimal policy is com-

puted under the hypothesis of perfect information, i.e., when all occurring requests

are known at the beginning of the planning horizon. Let σ(r) be the r-th occurring

request (r = 1, . . . ,m ≤ n) and σ(0) = 0. Under perfect information an optimal

policy can be devised straightforwardly. Indeed the vehicle should drive immedi-

ately to the first occurring customer, then if tiσ(0)iσ(1)
< Tσ(1) wait until Tσ(1), service

iσ(1), then drive to isigma(2), etc. Let τ ′k be the service time of customer ik under an

optimal policy in case of perfect information. For every realization of the demand

(such that request ik occurs), the following inequalities are valid:

(2.2) τk ≥ τ ′k ≥
∑

j=0,...,m−1: σ(j+1)≤k

tiσ(j)iσ(j+1)
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This relationship holds since τ ′k is the right-hand side of (2.1), plus the waiting

times at the occurring customers iσ(j) (σ(j) ≤ k). Consequently, assuming request

ik is issued, the expected value of the right-hand side of (2.2) is a lower bound

on the expected value E[τk]. The probability associated with tiσ(j)iσ(j+1)
in this

expected value computation is the probability that both tiσ(j)
and tiσ(j+1)

occur and

no intermediate customers issue an order:

pσ(j)σ(j+1)(1− pσ(j+1))(1− pσ(j+2)) . . . (1− pσ(j+1)−1), σ(j + 1) < k

pσ(j)σ(j+1)(1− pσ(j+1))(1− pσ(j+2)) . . . (1− pσ(j+1)−1), σ(j + 1) = k

where we have assumed pσ(0) = p0 = 1. Hence,

(2.3) E[τk] ≥
k−2∑
r=0

k−1∑
s=r+1

[
trsprps

s−1∏
u=r+1

(1− pu)

]
+

k−1∑
r=0

[
trkpr

k−1∏
u=r+1

(1− pu)

]

Let Lk be the right-hand side of 2.3. Based on the Jensen inequalities (Birge and

Louveaux, 1997) and the monotonicity of penalty functions fk(), we can write:

E[fk(τk)] ≥ fk(E[τk]) ≥ fk(Lk)

We then obtain the required lower bound:

(2.4) LB =
n∑

k=1

fk(Lk)pk

It is worth noting that this lower bound requires O(n3) computations provided that

functions fk() (k = 1, . . . ,n) can be evaluated in constant time.

2.3 Heuristic policies

In this section we assess the expected penalty of two heuristic policies, called Wait-

First (WF) and Drive-First (DF), introduced by Mitrović-Minić and Laporte (2004)

in a purely dynamic setting. The WF strategy requires an idle vehicle to wait at its

current location until a new customer request arrives, while the DF strategy requires

an idle vehicle to drive to its next potential customer. Under a WF policy, the time

between the service of customers ir and is (s > r) is equal to

Ars(τr) = max{Ts − τr,0}+ tiris
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provided that customer ir is serviced at time τr and no intermediate request is issued.

Indeed, max{Ts − τr,0} represents the waiting time at vertex ir whereas tiris is the

travel time between the two vertices. The probability that the service time τk is

equal to t under a WF policy can be computed through the iterative formula:

(2.5) Pr(τk = t|k) =
∑

l<k

∑

t′<t−tlk

[
Pr(τl = t− Alk(t

′)|l)
k−1∏

r=l+1

(1− pr)

]

with the initialization Pr(τ0 = 0) = 1. Once these probabilities have been computed

we can calculate the expected value of the total penalty associated to the WF policy

by applying the definition:

(2.6) zWF =
n∑

k=1

pk

∑
t

fk(t)Pr(τk = t|k)

Under a DF policy, the previous procedure still applies, except that the computation

of Akm(τk) is more elaborate. If the vehicle services customer ik at time τk, then it

moves along a shortest path from ik to ik+1. Let i′r be the vertex where the vehicle

is located at time instant Tr (r = 1, . . . ,n). If τk + tikik+1
≤ Tk+1, then i′k+1 = ik+1,

where the vehicle waits for max{Tk+1− τk− tikik+1
,0} time instants. Otherwise, i′k+1

is a vertex along a shortest path from ik to ik+1, where the vehicle is diverted to

ik+2. In any case the vehicle then follows a shortest path from i′k+1 to ik+2. By

iteratively applying these procedures, vertices i′k+1, . . . ,i
′
m are identified and Ars(τr)

is computed as

(2.7)

Ars(τr) = tiri′r+1+max{Tr+1−τr−tirir+1 ,0}+
s∑

j=r+2

(
ti′ji′j+1

+max{Tj−Tj−1−ti′j−1ij ,0}
)

Formula (2.7) can be used to compute the expected penalty associated with the DF

policy through relations (2.5) and (2.6).

2.4 A Markov Decision Process

We now determine the optimal policy through a Markov Decision Process (MDP)

which is a well-known approach for modeling and solving dynamic and stochastic

decision problems. Much has been written about dynamic programming. Some

recent books in this area are Puterman (1994), Bertsekas (1995), and Sennot (1999).
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In our MDP, decisions are made at time instants Tk (k = 1, . . . ,n) (decision

epochs) at which it becomes known whether or not customers need service. In par-

ticular, at time Tk we have to decide, in case the vehicle becomes idle before Tk+1,

to which vertex the vehicle should be repositioned at time Tk+1.

A fundamental concept in MDPs is that of a state, denoted by s. The set S of all

possible states is called the state space. The decision problem is often described as a

controlled stochastic process that occupies a state at each point in time. The state

should be a sufficient and efficient summary of the available information affecting

the future of the stochastic process. In our problem, at every time instant Tk (stage)

the state is represented by the triple (Tk,i
∗
k,t

∗
k), where i∗k and t∗k are respectively the

vertex and time where the vehicle will become idle (i.e., with no pending requests)

at the next epoch. Let Sk be the set of possible states at stage Tk. Obviously,

S =
⋃

k=0,...,n Sk. The set S0 contains a single state s = (T0,i0,T0) since the vehicle

is idle at the depot at time T0 = 0. At any stage Tk, we first know whether cus-

tomer ik requires service, and we may then decide how to reposition the vehicle. Let

s = (Tk,i
′
k,t

′
k) ∈ Sk be the state before information about ik becomes known (chance

state). If this request occurs, ik is appended to the route so that the state becomes

(Tk,i
′′
k,t

′′
k) with i′′k = i′k and t′′k = t′k + ti′kik . Otherwise, the state remains unchanged

(i′′k = i′k and t′′k = t′k). These two states (Tk,i
′′
k,t

′′
k) are called the decision states asso-

ciated with chance state s. Let V +(i,∆t) be the set of vertices that can be reached

from i ∈ V within no more than ∆t(> 0) time units, and let V +(i,∆t) = {i} if

∆t ≤ 0. Hence, once it is known whether request ik has occurred, we can reposition

the vehicle to a vertex i′k+1 ∈ V +(i′′k,Tk+1 − t′′k) where the vehicle will arrive at time

t′k+1 = t′′k + ti′′k i′k+1
. Consequently, at stage Tk+1, the state may be chosen from the

subset {(Tk+1,i
′
k+1,t

′
k+1) : i′k+1 ∈ V +(i′′k,Tk+1 − t′′k),t

′
k+1 = t′′k + ti′′k i′k+1

} ⊆ Sk+1. It is

worth noting that, if the k-th request ik occurs, the service time τk of customer ik is

then equal to t′′k = t′k + ti′kik . Let zs be the expected penalty pkfk(τk) associated with

the service of customer ik if the vehicle is in state s ∈ Sk and let Zs be the total ex-

pected penalty associated to an optimal policy servicing customers {ik,ik+1, . . . ,in}
starting from state s ∈ Sk. Moreover, let Σ(s) be the set of successors of a state s,

i.e., those states s reachable through a single transition from s. We can now outline

our Markov Decision Process.

Step 0. (Initialization)
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S0 = {(T0,i0,T0)}. zs = 0 for s ∈ S0.

Step 1. (Forward Computation)

for k = 1 to n

Determine the set of feasible states Sk.

for any state s = (Tk,i
′
k,t

′
k) ∈ Sk do begin

Determine the state transition associated with the occurrence of customer ik

and compute the associated i′′k and t′′k.

If the k-th request ik occurs, compute τk.

Compute zs = pkfk(τk).

end

end

Set Zs = zs for any state s ∈ Sn.

Step 2. (Backward Computation)

for k = n− 1 to 0

for any state s = (Tk,i
′′
k,t

′′
k) ∈ Sk do begin

Determine the decision associated to state s as the transition from s to state:

s′(∗) = argmins′∈Σ(s)Zs′ .

Then, set Zs = Zs′(∗) .

end

for any state s = (Tk,i
′
k,t

′
k) ∈ Sk do begin

Determine Zs = zs +pkZs′ +(1−pk)Zs′′ , where s′ and s′′ are the two decision

states associated to the occurrence or non-occurrence of the k-th request

provided the vehicle is in state s;

end

end

Z(T0,i0,T0) represents the expected cost of an optimal waiting policy.

The number of states is bounded above by O(n|V |T̄ ), where T̄ is an upper bound

on the service time of customer in in an optimal policy (e.g., T̄ =
∑n−1

r=0 tirir+1).

Hence, the above MDP requires O(n|V |T̄ 2) time since O(T̄ ) operations are required

for every state.
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2.5 A numerical example

We now illustrate the above procedures on a numerical example. Let G(V,A) be the

graph represented in Figure 2.1, where V ′ = {1,2,3} and V = {0}∪V ′ ∪{a,b,c,d,e}.
With each vertex in V ′ are associated the corresponding arrival time and probability,

and with each arc is associated its traversal time. Penalties fk(τk) (k = 1,2,3) are

constituted by customers’ waiting times, i.e., fk(τk) = τk − Tk, τk ≥ Tk.
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Figure 2.1. Sample network.

Firstly, we compute a lower bound on the expected penalty of an optimal policy.

The right-hand side of inequalities (2.3) are:

L1 = t01p0 = 2

L2 = t02(1− p1) + (t01 + t12)p1 = 1.8 + 3.6 = 5.4

L3 = (t01+t12+t23)p1p2+(t01+t13)p1(1−p2)+(t02+t23)(1−p1)p2+t03(1−p1)(1−p2) =

4.32 + 0.12 + 3.24 + 0.18 = 7.86

Hence, formula (2.4) provides a lower bound equal to:

LB = 0+ f1(2)0.4+ f2(5.4)0.9+ f3(7.86)0.7 = 0+0 ·0.4+2.4 · 0.9+2.86 ·0.7 = 4.16

Secondly, we determine an optimal policy through a Markov Decision Process. In

Figure 2.2 are reported, for each stage, the associated chance and decision states

20



2 – The Dynamic and Stochastic TSP

d
,2

b
,2

1
,2

0
,0

a
,2

1
,7

a
,2

1
,3

d
,2

1
,6

b
,2

1
,2

0
.4

0
.6

0
.4

0
.6

0
.4

0
.6 1

t=
0

t=
2

t=
2

t=
3

1
,7

a
,3

1
,3

1
,5

2
,3

3
,3

0
,3

0
,2

0
,2

0
.4 0
.6

b
,3

d
,3

c
,3

t=
3

2
,1
4

1
,7

2
,6

a
,3

2
,1
0

1
,3

2
,5

d
,3

2
,3

b
,3

1
,5

2
,1
2

3
,3

c
,3

0
,3

0
.9

0
.9 0
.9 0
.9

0
.9

0
.9

1

0
.9

0
.9 0
.9

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1 0
.1

0
.1

0
.1

2
,1
4

t=
5

1
,7

2
,6

a
,5

2
,1
0

3
,5

c
,5

1
,5

2
,5 b
,5

d
,5

2
,1
2

0
,5

t=
5

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

1

0
.7

0
.3

0
.7 0
.3

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

0
.3

0
.7

1
,4

1
,4

2
,1
1

1
,4

0
.9 0
.1

2
,4

2
,1
1

0
.7

0
.3

e
,3

2
,9 e
,3

0
.9

0
.1

2
,9e
,5

0
.7

0
.3

0
.3

0
.7

3
,1
7

2
,1
4

3
,8

1
,7

3
,9

2
,6

3
,1
1

a
,5

3
,1
3

2
,1
0

3
,5

e
,5

3
,1
2

2
,9

3
,7

0
,5

d
,5

2
,1
1

3
,1
4

b
,5

2
,1
2

3
,1
5

2
,5

1
,5

3
,6

c
,5

d
,2

b
,2

1
,2

0
,0

a
,2

1
,7

a
,2

1
,3

d
,2

1
,6

b
,2

1
,2

0
.4

0
.6

0
.4

0
.6

0
.4

0
.6 1

t=
0

t=
2

t=
2

t=
3

1
,7

a
,3

1
,3

1
,5

2
,3

3
,3

0
,3

0
,2

0
,2

0
.4 0
.6

b
,3

d
,3

c
,3

t=
3

2
,1
4

1
,7

2
,6

a
,3

2
,1
0

1
,3

2
,5

d
,3

2
,3

b
,3

1
,5

2
,1
2

3
,3

c
,3

0
,3

0
.9

0
.9 0
.9 0
.9

0
.9

0
.9

1

0
.9

0
.9 0
.9

0
.1

0
.1

0
.1

0
.1

0
.1

0
.1 0
.1

0
.1

0
.1

2
,1
4

t=
5

1
,7

2
,6

a
,5

2
,1
0

3
,5

c
,5

1
,5

2
,5 b
,5

d
,5

2
,1
2

0
,5

t=
5

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

1

0
.7

0
.3

0
.7 0
.3

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

0
.7

0
.3

0
.3

0
.7

1
,4

1
,4

2
,1
1

1
,4

0
.9 0
.1

2
,4

2
,1
1

0
.7

0
.3

e
,3

2
,9 e
,3

0
.9

0
.1

2
,9e
,5

0
.7

0
.3

0
.3

0
.7

3
,1
7

2
,1
4

3
,8

1
,7

3
,9

2
,6

3
,1
1

a
,5

3
,1
3

2
,1
0

3
,5

e
,5

3
,1
2

2
,9

3
,7

0
,5

d
,5

2
,1
1

3
,1
4

b
,5

2
,1
2

3
,1
5

2
,5

1
,5

3
,6

c
,5

 

Figure 2.2. State space of the sample problem.

(represented by circles and squares, respectively). Labels zs and Zs are shown in

Figure 2.3 separated by a semi-colon. The expected cost of an optimal policy is
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Figure 2.3. Expected penalties in the sample problem.
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Figure 2.4. Optimal policy for the sample problem.
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equal to Z(T0,i0,T0) = 6.32. Figure 2.4 illustrates the optimal policy which can be

described as follows.

At time 0, go empty to vertex d. Wait until 2.

if customer 1 requires service then

go to customer 1 (which is then serviced at time 3); no spare time is left;

if customer 2 requires service then

go to customer 2 (which is then serviced at time 10); no spare time is left;

if customer 3 requires service then

go to customer 3 (which is then serviced at time 13);

else

end of service

end

else

reposition the vehicle to vertex 2 (which it arrives at time 5);

if customer 3 requires service then

service this customer (at time 5);

else

end of service;

end

end

else

reposition the vehicle to vertex d (where it arrives at time 3);

if customer 2 requires service then

go to customer 2 (which is then serviced at time 4);

reposition the vehicle in vertex c (where it arrives at time 5);

if customer 3 requires service then

go to customer 3 (which is then serviced at time 7);

else

end of service

end

else

reposition the vehicle to vertex c (where it arrives at time 5);

if customer 3 requires service then
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service this customer (at time 7);

else

end of service;

end

end

end

Figures 2.5 and 2.6 depict the Wait-First and Drive-First policies which yield a

total expected penalty equal to 9.23 and 9.95, respectively.

2.6 Computational Results

In addition, we have solved a number of randomly generated instances on a PC

with a Pentium IV processor clocked at 2.8 GHz. Two sets of 50 instances were

generated as follows. First, a graph G(V,A) was generated by randomly choosing

points in a 100 × 100 square. Then n(⊆ |V |) customers were chosen at random

and an order of visit was determined in a random fashion. In our experiments, we

choose |V | = 50 and n = 20,25,30,35,40. Hence, request occurrence times were

chosen as realizations of a Poisson process with λ = 1 in the first set and λ = 2 in

the second set. Request probabilities were chosen as uniform random numbers in

[0,1]. Computational results reported in Table 2.1 indicate that the average lower

bound gap is 12.33% for λ = 1 and 2.42% for λ = 2. The Markov Decision Process

was able to determine the optimal policy always within 1500 seconds for the first set

and within 3000 seconds for the second set, while the number of states was always

less than 40000 and 60000 for λ = 1 and λ = 2, respectively.

The average performance ratio (solution value divided by optimal policy) of

the WF heuristic was 1.22 for λ = 1 and 1.13 for λ = 2. Similarly, the average

performance ratio of the DF heuristic was 1.02 for λ = 1 and 1.01 for λ = 2.

Results reported in Table 2.1 show that the instances with λ = 1 were more

difficult to solve, resulting in larger gaps for both the lower and upper bounding

techniques and in larger computing times. This can be explained by the fact that

larger arrival rates give rise to a busier vehicle. For every test set, the DF policy

outperformed the WF policy both in terms of solution quality and computing time.
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Figure 2.5. Drive-First policy for the sample problem.
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Figure 2.6. Wait-First policy for the sample problem.

2.7 Conclusions

In this chapter we have examined exact and heuristic waiting policies for the Dy-

namic and Stochastic Traveling Salesman Problem under the hypothesis that a prob-

abilistic characterization of the customer requests is available. We have developed a

Markov Decision Process as well as a lower bound based on the availability of perfect

information. We have assessed the value of two waiting strategies against this lower

bound. Our results are based on a number of assumptions that should gradually

be removed: a) the hypothesis that request occurrence times T1 ≤ T2 ≤ . . . ≤ Tn
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Table 2.1. Computational results

λ n
LB gap MDP MDP time WF gap WF time DF gap DF time

(%) States (sec) (%) (sec) (%) (sec)

1

20 13.12 8923 120.7 27.41 61.8 2.01 13.5
25 19.80 12527 193.4 26.48 156.8 2.41 77
30 7.62 28267 753 20.13 463.8 0.95 169
35 2.88 33524 1075.5 15.04 807.8 1.19 457.6
40 18.22 38901 1383 21.47 1135.6 2.07 858.9

2

20 1.67 9430 118.5 14.90 58.4 0.39 17.9
25 1.17 14740 222.8 13.11 171.4 0.29 78.7
30 3.96 22930 431 12.34 337.4 0.28 189.9
35 3.83 30211 777.5 15.97 741.5 1.50 543.4
40 1.47 58968 2361.1 10.18 2262.3 0.51 1910.1

are sorted in non-increasing order; b) the assumption that the order of service is

given; c) the hypothesis that a customer request may arise at a single time instant.

These extensions are left as a future research. In addition, when removing the over

mentioned hypothesis, the MDP will not be handle to handle instances with many

customers. Thus, a heuristic will be needed to account for this aspect.
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Chapter 3

A Priori Routes for the Dynamic

Traveling Salesman Problem

3.1 Introduction

Advances in information technology and telecommunications, together with contin-

ually growing amount of data, offer opportunities for transportation companies to

improve both their service offerings and the quality of the service that they provide

their customers. One of the most important tools available to companies is the abil-

ity to equip drivers with modern tools such as GPS devices, eventually embedded

into palmtop computers, in order to exactly know where they are and also to provide

them real-time directions. Another key is the ability to communicate in real-time,

particularly the ability to communicate new customer requests as they happen. In

addition, using the vast of amounts of data that they have stored, transportation

companies have detailed statistics about their customers, including their locations

and probability distributions on the time of the day that they request service.

Perhaps benefitting most from these advances in technology are delivery com-

panies who emphasize same-day pick-up service. Such companies are often utilized

by customers who request service with little or no notice, almost eliminating or, at

least, reducing the possibility to construct the entire route in advance. To most

efficiently serve these late-requesting customers, delivery companies must develop

strategies which account for the late-requesting customers.

In this chapter, we study a dynamic and stochastic routing problem in which we
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consider a single, uncapacitated vehicle serving a set of known customers locations.

The choice to use an uncapacitated vehicle reflects the situation in the courier and

package-express industries, where the size of parcels is small enough so that vehicle

capacity is not a crucial aspect of the problem. The vehicle begins its route from

a known starting point and must complete its journey at a given goal or end node

(not necessarily the starting point) by a known time horizon. At the beginning of

the time horizon, the driver of the vehicle is aware of a set of customers, called

advance-request customers, who have already requested service. These customers

may represent packages which are on the vehicle for delivery by the end of the day.

In addition to the advance-request customers, there is another subset of customers,

called late-request customers, such that, at the beginning of the service horizon, it

is unknown whether or not they will require service.

We assume the sets of both advance- and late-request customers as well as their

locations are known in advance. We also assume that we know a probability dis-

tribution on the likelihood that late-request customers will request service. Our

objective is to maximize the expected number of late-request customers who are

served. This objective can be seen as equivalent to maximizing customers’ Quality

of Service (QoS). The impact of customers’ QoS on companies is quite important,

as low QoS can result in customer reimbursement or lost sales.

In trying to achieve a high-quality QoS, delivery companies face a trade-off.

With any realistically-sized number of customers, exact solutions to the problem

are impossible. The obvious alternative is to treat the problem entirely dynamically

and to, at each decision point, decide which customer to visit next from the pool of

advance-request and newly requesting late-request customers. However, this entirely

dynamic approach has managerial implications in that it increases the overhead

required in driver management as well as affects customer relationships associated

with a driver visiting a customer at relatively the same time everyday (Campbell

and Thomas, 2007 forthcoming). The alternative is to give drivers an a priori

tour of advance-request customers and to insert late-request customers into this

a priori tour as they request service. In this chapter, we explore the performance

of various a priori routing schemes for use in the dynamic environment previously

described. In the remainder of the chapter, we first describe a formal dynamic

programming formulation and present the preliminary results. Then, we discuss

strategies for implementing a priori routes within this dynamic routing problem as
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well as our strategies for handling dynamic aspects of the problem. We next outline

the experimental design and discuss the results of the computational experiments.

Finally, we conclude the chapter and discuss areas for future work.

3.2 Model Formulation

In this section, we present a formal dynamic programming formulation for the

described dynamic routing problem. The model mirrors the model presented in

Thomas (2007), but is repeated here for completeness.

Let G = (N,E) represent the underlying network where N is the set of customers

and E = N × N is the set of arcs connecting customers. For every n,n′ ∈ N , we

assume that there exists an arc (n,n′) ∈ E, including the arc (n,n). That is, the

network G is complete. Further, let tij be the amount of time required to traverse arc

(i,j) ∈ E. We can think of the time tij as deterministic or as the mean travel time

on arc (i,j). We assume 1 time unit is required to traverse a self arc. Let NJ ⊆ N

be the set of advance-request customers, customers for whom, at the beginning of

the time horizon, it is known that service is required. Let NI ⊆ N be the set of late-

request customers, customers such that, at the beginning of the time horizon, it is

not known whether or not n ∈ NI will require service. We assume that NI∪NJ = N

and NI ∩NJ = ∅. The vehicle begins its route at node s ∈ NJ , the start node, and

must complete its journey at a node γ ∈ NJ , the goal or end node. We note that

s 6= γ necessarily.

A decision epoch occurs when the vehicle arrives at a node. Let tk be a positive

integer representing the time of the kth decision epoch, and let nk ∈ N be the

position of the vehicle at time tk. Let U = {0,1, . . . ,T} be the set of possible times

when decisions are made, where T is the time after which no more decisions can be

made. We can think of T as the time at which the vehicle must have returned to the

depot γ. Let the random variable K represent the total number of decisions and be

such that, for a possible realization K of K, tK < T . Our assumptions imply that

t0 = 0,n0 = s, and K ≤ T for every possible realization of K of K.

The random variable Zn(t) represent the status of customer n ∈ N at time t.
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We let

Zn(t) =





0 if customer n has not yet requested service at time t

1 if customer n has requested service, but no decision has been made
as to whether or not to service the customer by time t

2 if customer n has requested service, has been approved for service,
but has not been visited by time t

3 if customer n has been visited
or if customer n requested service and was rejected by time t

for n = 1, . . . ,|N |, where |N | is the cardinality of N . The mechanism used to de-

termine approval for service will be discussed subsequently. Let Z(t) = {Z1(t), . . . ,

Z |N |(t)}, and denote a realization of Z(t) by z. Thus, z ∈ H = {0,1,2,3}|N |. Further,

a realization of Zn(t), zn, is not equal to 0 for any n ∈ NJ for any time t, and at

time t = 0, zn = 0 for all n ∈ NI .

For z, a realization of Z(t) for some t, define M(z) = {n : n ∈ N,zn = 2}.
Then, M(z) is the set of customers who have requested service and been approved

by time t. We assume that the customers mi ∈ M(z),i = 1, . . . ,|M(z(t))|, for any t

and where |M(z(t))| is the cardinality of M(z), are ordered according to some rule

or algorithm. In other words, the sequence of customers in M(z) defines a route of

approved customers at time t. For a realization z of Z(t = 0), we assume that all

customers m ∈ M(z) can be visited and the end node reached by time T .

For a realization z of Z(t) for some t, let Q(z) = {n : zn = 1}. Thus, Q(z)

is the set of late-request customers who have requested service, but who have not

yet been routed by time t. We denote the power set of Q(z) as 2Q(z). Then, let

X(q,z),q ∈ 2Q(z), be a function such that:

X(q,z) =

{
0 if q cannot be feasibly inserted into the route M(z)

1 if q can be feasibly inserted into the route M(z).

We say that q ∈ 2Q(z) can be feasibly inserted somewhere into the current route

M(z) if every customer i ∈ q can be inserted into M(z) without the total length of

the route exceeding T . Finally, define 2̄Q(z) = {q : q ∈ 2Q(z),X(q,z) = 1}. That is,

2̄Q(z) is the set of subsets of newly arrived customer requests that can feasibly be

inserted into the current route M(z). We assume ∅ ∈ 2̄Q(z).

Define the state space of our problem as Ω = {(n,t,z) : n ∈ N,t ∈ U,z ∈ H}. For

each (n,t,z) ∈ Ω, there exists a set of actions A(n,t,z), which are available to the
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decision maker. At each decision epoch, the decision maker chooses an action from

this set. For the problem described here, the decision maker simultaneously controls

both insertion and movement with action selection. The insertion actions control

which customers are selected for service and thus routed. At any decision epoch

and state (n,t,z), n 6= γ, any set of customers q ∈ 2̄Q(z) can be chosen for insertion.

Our assumption that M(z) can be completed before time T for z a realization of

Z(t = 0) and the construction of 2̄Q(z) imply the vehicle must always reach the end

node by time T . A movement action controls the motion of the vehicle. For each

state (n,t,z), n 6= γ, the movement actions are to wait at the current location n or to

move onto the next node mi+1 ∈ M(z), where n = mi. We assume that, if a subset

of customers q is chosen for service, then M(z) is instantaneously augmented and

thus mi+1 may be such that mi+1 ∈ q. Formally, A(n,t,z) = {n = mi,mi+1} × 2̄Q(z).

We assume that the selection of movement action γ requires the selection of insertion

action ∅. Further, we assume that, for any t and z, the only action available in state

(γ,t,z) is the movement action γ and the insertion action ∅. Subsequent discussion

will outline the transitions resulting from action selection.

A decision rule at time t is a function δ(·,t,·) that selects an available action.

Thus, δ(n,t,z) ∈ A(n,t,z). A policy is a sequence of decision rules π = {δ(n,t,z) :

(n,t,z) ∈ Ω}. We remark that δ(·,t,·) is implemented only if t is a decision epoch.

For any n ∈ N , t < T , and customer status zn > 0, the state dynamics are

determined by the selected action. For n such that zn = 2, the selection of the

action that includes movement to mi+1, where mi+1 = n ∈ M(z), changes the

status of customer n from 2 to 3. If the action selected is to wait at the current

customer n, then the status of customer n remains unchanged. If we choose to insert

some number of service requesting customers into the current route, then the status

of each i ∈ q, where q ∈ 2̄Q(t), transitions from status 1 to status 2. We assume that

this transition is instantaneous.

We assume that {Zi(t),t = 0,1, . . . ,T} and {Zj(t),t = 0,1, . . . ,T} are independent

Markov chains for i 6= j. Accordingly, for each n ∈ NI , we assume that the state

dynamics for zn(t) = 0 are described by the one-step transition matrix:

R(t,t+1)
n =

[
1− αt

n αt
n

0 1

]
,

where αt
n is the probability that, between time t and t + 1, customer n transitions
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from zn(t) = 0 to zn(t+1) = 1. We note that, no decisions are made while a vehicle

is in transit. A customer requesting service during transit cannot be inserted until

the next decision epoch occurs.

Let P (z′ | t,z,t′) be the probability of a transition occurring from z at time t to

z′ at time t′ > t. By our assumptions,

P (z′ | t,z,t′) = P (Z(t′) = z′ | Z(t) = z)

=

|NI |∏
n=1

P (zn(t′) = (zn)′ | zn(t) = zn),

where each term in the product satisfies an extension of Kolmogorov’s equations for

the non-stationary case [see Kim, Lewis, and White (2005)] such that

R(t,t′)
n =

[
1− αt

n αt
n

0 1

]
×

[
1− αt+1

n αt+1
n

0 1

]
× · · · ×

[
1− αt′−1

n αt′−1
n

0 1

]
.

Our reward structure is described by the function c(a),a ∈ A(n,t,z), whose value

is the number of previously unrouted customers who have requested service and

are chosen to have their service request fulfilled. Thus, for an action a ∈ A(n,t,z),

c(a) = |q|, where |q| is the cardinality of the set q ∈ 2̄Q(z) identified by the insertion

portion of the action. No cost is incurred as the result of travel time or waiting.

Let

vπ(s,0,z) = Eπ

[
K∑

k=0

c(δ(nk,tk,zk))

]
.

be the problem criterion for a policy π. The problem objective is to find a policy

π?, called an optimal policy, such that vπ?
(s,0,z) ≥ vπ(s,0,z) for all policies π and

for all z ∈ {0,1,2,3}|N |.

3.3 Preliminary Results and Optimality Equations

All of the results in this section can be found in (Puterman, 1994, Section 4.3). The

optimality equation for t < T is

v(n,t,z) = max{c(a) +
∑

z′
P (z′ | t,z,t′)v(n′,t′,z′)) : a ∈ A(n,t,k)},
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where t′ = t+ tn,n′ and n′ is the node chosen by the movement portion of the action.

The boundary condition is such that v(γ,t,z) = 0 for all t and z. The solution of

the optimality equation is unique, and v(n,t,z) = maxπ vπ(n,t,z), for all n,t, and z.

A necessary and sufficient condition for π? to be optimal is that it is composed of

decision rules that cause the maximum in the optimality equation to hold. We refer

to v(n,t,z) as the reward or cost-to-go function.

3.4 A priori route design

An interesting question to answer is whether or not it is worthwhile to use complex

procedures in order to design the a priori route for the advance-request customers.

For this purpose, we consider the following approaches for determining the a priori

route for our dynamic routing problem. For the computational experiments that fol-

low, we embed these a priori route construction procedures within waiting-strategies

approaches for dynamic vehicle routing.

3.4.1 Heuristic 1: Shortest Path through Advance-Request

Customers (SP Adv)

In our first implementation we construct the route for the advance-request customers

in a manner similar to Thomas (2007). More precisely, we set the first advance-

request customer as the start node, whereas the last advance-request customer is

set as the goal node. We then route the remaining advance-request customers using

shortest path through the set of customers. The path is determined through a greedy

randomized adaptive search procedure (GRASP) with a savings insertion criterion

with a candidate list of size three (Feo and Resende, 1995) and a post-construction

greedy local improvement scheme using a 1-shift neighborhood. We then choose τ ∗

as the best tour returned after five runs of GRASP.

3.4.2 Heuristic 2: Shortest Path through both Advance-

and Late-Request Customers (SP All)

This heuristic method builds the a priori route by generating the shortest path

through both the advance- and late-request customers. More precisely, we set the
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first advance-request customer as the start node, whereas the last advance-request

customer is set as the goal node. We then route the remaining advance-request

customers, along with the late-request customers, using shortest path through the

set of customers. The path is determined through a greedy randomized adaptive

search procedure (GRASP) with a savings insertion criterion and a post-construction

variable neighborhood search improvement scheme using 1-shift and 2-opt as neigh-

borhoods (Mladenović and Hansen, 1997). Let τ ∗ be the best found tour after five

runs of GRASP. Thus, in order to obtain the a priori route, we simply delete from

τ ∗ all customers i such that i ∈ NI .

3.4.3 Heuristic 3: Center-of-Gravity Procedure (COG)

Alternatively, we can generate a path through the advance-request customers that

maximizes the departure time among all advance-request customers such that the

vehicle can finish the remaining advance-request customers and service the center-

of-gravity of the late-request customers. This strategy is motivated by the results in

Thomas (2007) in which, for a single late-request customer n and a given route τ of

advance-request customers, it is optimal to wait at the location that allows for the

latest allowable departure time. Specifically, for a single late-request customer n, let

‖n‖j
γ be the minimum amount of time required to travel from j to γ via n where n

is ordered according to some a priori tour of the advance-request customers. That

is, ‖n‖j
γ = tj,n + tn,j+1 +

∑γ−1
k∈τ,k=j+1 tk,k+1. Moreover, let t̄j = T − ‖n‖j

γ. We define

tj =
∑j−1

i=0 ti,i+1, for each j ∈ NJ , where the index of customers is given by the initial

route to serve the advance-request customers. In other words, tj is the earliest time

that we can reach customer j given an ordering of advance-request customers.

As shown in Thomas (2007), the result holds for only a single late-request cus-

tomer, but a heuristic in which the late-request customers are treated as a single

aggregated point performs well. Yet, despite its good performance, the heuristic

described in Thomas (2007) uses an arbitrary route to order the advance-request

customers. Here, we seek a tour τ ? such that maxi∈τ?{t̄i} ≥ maxi∈τ{t̄i} for every

tour of the advance-request customers τ . In the computation of ti and t̄i, we replace

the single late-request customer used in the computations above with the center-of-

gravity of all of the late-request customers. See Thomas (2007) for discussion of the

aggregation procedure.
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To find the tour τ ?, we use a best-improving local search heuristic using a 1-shift

neighborhood.

We initialize our search with the tour τ which is the shortest path from the start

s to the goal γ which includes all advance-request customers.

This procedure is embedded into a GRASP, and we choose τ ∗ as the best tour

returned after five runs of GRASP.

3.4.4 Heuristic 4: Probabilistic Traveling Salesman Prob-

lem Shortest Path (SP PTSP)

This strategy for constructing the route for the advance-request customers relates

our problem to a Probabilistic Traveling Salesman Problem (PTSP) (see, Jaillet,

1985). For each customer i ∈ NI we are given a (stationary) probability of a call

per unit of time, denoted by αi. Then, for each customer i we compute the T -step

probability αT
i , that is, the probability that customer i ever calls. Thus we construct

a PTSP tour τ ′ through all customers in N , where pi = 1 if i ∈ NJ , while pi = αT
i

for i ∈ NI . Hence, the a priori route τ ∗ is obtained as the best tour after five runs

of GRASP by removing from τ ′ all customers i such that i ∈ NI .

3.4.5 Heuristic 5: A Priori Routing with Sampling and Con-

sensus (SC)

In recent years, sampling procedures combined with consensus have been shown to

be a successful in dynamic routing environments (Bent and Van Hentenryck, 2004).

In this a priori route construction method, we borrow from these ideas in order to

construct an a priori route for the advance-request customers in our dynamic routing

problem. In essence, we construct objective maximizing routes for a set of samples

and then use a consensus function to determine the best route from the constructed

set.

Let ω represent a set of couples (i,t), i ∈ NI and 0 ≤ t ≤ T resulting from a

Monte Carlo sample of the set NI . Each couple represents a late-request customer

requesting service and the time at which the customer makes the request.

For each sample ω, we construct a route τ(ω) which serves each customer j ∈ NJ

as well as as many customers i such that (i,t) ∈ ω for some t as is possible. We
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note that, because each i is associated with a request time, visits to the sampled

late-request customers are constrained by a time window [t,T−tiγ] for each (i,t) ∈ ω.

We use T − tiγ instead of T in the time window, because if we leave after T − tiγ,

we can’t possibly have a feasible tour. Hence, this is a mechanism for tightening

the time window. If with each i such that (i,t) ∈ ω for some t, we associate a

reward ri, the problem of maximizing the number of i such that (i,t) ∈ ω for some

t is then equivalent to a Selective Traveling Salesman Problem (STSP) with time

windows and required visits and the closely related Orienteering Problem with Time

Windows (OPTW) with required customers (see Laporte and Martello (1990) for

a description of the STSP and Kantor and Rosenwein (1992) for a description of

the OPTW). However, the constraint requiring visits to all j ∈ NJ does not appear

in the literature. Yet, because our model assumes that there exists a feasible tour

which can accommodate all j ∈ Nj, we can essentially relax the constraint into the

objective by associating with each j ∈ NJ a reward rj = |ω| + 1, where |ω| is the

cardinality of the set ω, whereas we associate with each i such that (i,t) ∈ ω for

some t a reward ri = 1,. Thus, there is never an optimal tour τ(ω) which would

include i such that (i,t) ∈ ω for some t at the expense of j ∈ NJ . Letting the time

window for each j ∈ NJ be [0,T ], we can then apply techniques for the OPTW. In

particular, we use the Tree heuristic proposed in Kantor and Rosenwein (1992) to

construct τ(ω) for each ω. For the sake of completeness, in the following we report

verbatim the description given in Kantor and Rosenwein (1992).

Let

• N = {1,2, . . . ,n} the set of nodes;

• A = {(i,j)|i,j ∈ N} the set of arcs;

• Tmax the time allotted to complete the path;

• [ej,dj] the time window associated with node j;

• tij the travel time from i to j;

• rj the score (reward) of node j;

• yj = 1 if node j is visited, 0 otherwise;

• xij = 1 if arc (i,j) is traversed, 0 otherwise;
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• P a path;

• S(P ) the total score of path P ;

• S∗ the best known total score;

• k the depth of the tree;

• p(k) the k-th element in the path;

• ī the last node added to the path;

• bj = max{bi + tij,ej} the time at which node j is serviced, where bi is the time

at which node i (the predecessor of node j in the path) is serviced;

• wj = max{ej − bi − tij,0} the waiting time at node j;

• 0 < α, β < 1 parameters used in order to eliminate seemingly unattractive

partial paths.

In order to augment a partial path P with node j̄ the following rules need to be

satisfied:

R1: j̄ /∈ P (a node may exist only once in a path).

R2: bj̄ ≤ Tmax (path duration constraint).

R3: bj̄ ≤ dj̄ (time window constraint).

R4: t̄ij̄ ≤ Vmax (maximum allowable travel time between two nodes).

R5: wj̄ ≤ Wmax (maximum allowable waiting time at a node).

R6: if bj̄ > αTmax then
∑

j∈P rjyj must be ≥ βS∗. We require that P shows suf-

ficient promise of yielding an improved total score over the incumbent best known

total score, otherwise it is abandoned.

This heuristic is based upon a depth-first search which is initialized with a par-

tial path P = {1} and adds nodes to P until either a complete path is generated

or until rules R1-R6 suggest that the current partial path may be abandoned. The

best score is updated if a complete path is generated and its total score exceeds the

best known score. The formal statement of the algorithm is as follows.

Step 0. Initialize P = {1}, ī = 1, k = 1 and S(P ) = r1 = S∗.
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Step 1. Compose a list J̄k ⊆ N −n of all nodes that satisfy rules R1-R5. All nodes

j̄ ∈ J̄k are initially unmarked.

Step 2. Get the next unmarked element j̄ ∈ J̄k. If none exists, go to Step 4.

Step 3. P ← (P,j̄). Mark j̄. Update the total score of P (i.e., S(P ) = S(P ) + rj),

the last node added to P (i.e., ī = j̄) and the depth of the tree (i.e., k = k + 1). If

R6 is satisfied go to Step 1. Else, go to Step 5.

Step 4. P may not be augmented with a node j̄ ∈ J̄k. If P may be augmented with

node n and if S(P ) + rn > S∗, update S∗ = S(P ) + rn (i.e., a new path is found

that yields an improved total score).

Step 5. Backtrack to the previous level of the tree. Update the tree-depth index

(i.e., k = k − 1), adjust the total score (i.e., S(P ) = S(P ) − rj̄) and update the

index to the last node in P (i.e., ī = p(k)).

Step 6. Termination test. If k = 0, STOP. Else go to Step 2.

Because of the huge computing effort required by such an heuristic in order to

find the best path, in order to speed-up the search we modified Step 6 into Step 6’

as follows.

Step 6’: Termination test. If k = 0 OR P contains both the advance-request cus-

tomers and the late-request customers belonging to the sample OR P contains all

the advance-request customers, STOP. Else go to Step 2.

Having taken ϕ samples (in our implementation, ϕ = 50) of NI and constructing a

tour from each, we have a set Ψ of tours. Hence, we simply delete from each τ ∈ Ψ all

customers i such that i ∈ NI . We call the resulting set of advance-request customer

tours Ψ̄ . We then select our a priori tour from this set through a consensus func-

tion. Our choice of function is inspired by the consensus function of Bent and Van

Hentenryck (2004), and like that of Bent and Van Hentenryck, represents a least-

commitment strategy (see Stefik (1981) for additional examples of least-commitment

strategies). Before presenting our consensus function, we first introduce the vector

Y (τ,τ ′), where τ,τ ′ ∈ Ψ̄ , for which the i-th component Yi(τ,τ
′) = 1 if τi = τ ′i and

Yi(τ,τ
′) = 0 otherwise. Then, for each τ ∈ Ψ̄ , we define our consensus function as:

f(τ) =
∑

τ ′∈Ψ̄ ,τ 6=τ ′

|NJ |∑
i=1

Yi(τ,τ
′)
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We then choose as our a priori tour τ ∗ ∈ Ψ̄ such that f(τ ∗) ≥ f(τ ′) for every τ ′ ∈ Ψ̄ .

3.5 Empirical Results

In this section, we test the effectiveness of each of the proposed a priori routing

strategy. To handle the dynamic nature of the problem, we embed the strategies

in the dynamic routing framework proposed in Thomas (2007). As discussed in the

literature review, waiting strategies are strategies for anticipating dynamic requests.

Waiting strategies implicitly or explicitly recognize new service requests will occur

and thus choose to have the vehicle wait in anticipation of these new requests.

Explicit waiting strategies, as is the strategy used here, choose when and where to

wait by exploiting information about both the advance- and late-request customers.

In these waiting strategies, newly arriving request for service are accommodated

through insertion in an a priori route.

3.5.1 Implementation and Data Set Generation

The heuristics discussed in section 3.4 were implemented in C++ using BOOST

Graph Library objects (Siek et al., 2001).

As the basis for testing we utilize the eight datasets used in Thomas (2007). The

datasets are constructed as follows. Three of the datasets are generated starting

from Solomon’s 50-customers instances C101, C201, and RC101 datasets (set 1, 2

and 3 in the following) (Solomon, 1987). The other five sets are the 40-customers

sets proposed in Dumas et al. (1995) (set 4, 5, 6, 7, 8 in the following). For all eight

sets, the time windows are ignored. For each set of customers, we then consider in-

stances having 25% of the customers as late-request and instances having 50% of the

customers as late-request. Larsen et al. (2002) note that 25% and 50% percentages

for late-request customers correspond to the degrees of dynamism typically found

in LTL and package-express problems.

The probabilities that a late-request customer would request service, α, are cho-

sen randomly such that the probability that a customer would call over the time

horizon of the problem ranged from 0.10 to 0.75. Then, in order to allow for some

waiting time along the route, we set the maximum total route time for each instance

according to the values used by Thomas (2007). For each dataset, we then consider
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two values for the horizon. In the manner of Thomas (2007), we refer to these hori-

zons as the 33% and 66% cases. The two cases represent increasing amounts of time

available for waiting relative to the time required to service the advance-request

customers.

To handle the dynamic part of the problem, we use the LW heuristic as described

in Thomas (2007). We use this heuristic as the routing methodology because Thomas

(2007) shows that it performs well across a range of parameters. We did not imple-

ment other heuristics because the purpose of this chapter is on a priori route design

rather than dynamic waiting strategies.

3.5.2 Results

This section presents the results of our computational experiments. We compare

the performance of the different a priori strategies through simulation. For each

dataset and for each a priori strategy, we run the LW heuristic 1,000 times. The

average values returned by the heuristics are labeled as SP Adv, SP All, COG, SP

PTSP, and CS, for the SP Adv, SP All, COG, SP PTSP, and CS a priori strategies,

respectively. Each of the tables presents a series of comparisons. Each comparison

compares one of the heuristics to the SP Adv heuristic. This comparison is pre-

sented as the percentage less than the mean of the SP Adv solution value returned

by the heuristic, or formally, (100 × avg. SP Adv solution - avg. heuristic solution
avg. SP Adv solution

). These

percentage less than the average value in SP Adv are labeled ∆SP All, ∆COG, ∆SP

PTSP, and ∆CS for the SP Adv, COG, SP PTSP, and CS heuristics, respectively.

We also compare the heuristics using paired-t confidence interval for the differ-

ence of means using the SP Adv heuristic as a standard. For further discussion of

the details of this comparison, see Law and Kelton (2000). The comparison between

the SP Adv and the SP All heuristics is labeled SP Adv - SP All CI, the compar-

ison between the SP Adv and COG heuristics is labeled SP Adv - COG CI, the

comparison between the SP Adv and SP PTSP heuristics is labeled SP Adv - SP

PTSP CI, and the comparison between the SP Adv and SC heuristics is labeled

SP Adv - SC CI. A confidence interval containing 0 indicates that the performance

of the two heuristics is not different at the 95% confidence level. An interval for

which the upper and lower confidence limits are positive indicates that the SP Adv
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heuristic outperformed the alternate heuristic at a 95% confidence level. An inter-

val for which the upper and lower confidence limits are negative indicates that the

alternate heuristic outperforms the SP Adv heuristic at the 95% confidence level.

We note that, despite the modified stopping criterion in the SC strategy (which

allows shortening the computing times), we are not able to obtain any result for

instances 1, 2 and 3 when 50% of the customers are late request. This behavior is

the result of the Tree heuristic inability to handle large problem sizes (n = 50) and

wide time windows (all the planning horizon [0,T ]).

Table 3.1 shows the results for runs on datasets in which 25% of the customers are

late-request and with 33% waiting time. As the data indicate, the SP All strategy

heuristic outperforms the SP Adv heuristic in 4 cases out 8, while in other 2 cases

the two strategies are equivalent in terms of average values. With respect to the

confidence intervals, however, the two heuristics are statistically equivalent in 6 cases

out 8.

The performance of the COG heuristic in comparison to SP Adv shows that, by

using the COG a priori route, we are able to insert more late-request customers in

5 cases out 8 at the confidence level of 95%, whereas the average result is equivalent

for 1 instance.

The performance of the SP PTSP and SP Adv heuristics are indistinguishable

at the 95% confidence level in 6 out of 8 cases. Moreover, instance 2 shows better

performance of SP PTSP, whereas in the remaining case SP Adv outperforms SP

PTSP.

Finally, the SC heuristic performs particularly poorly. The results show the SC

heuristics on average 23% to 119% worse than the SP Adv heuristic. We speculate

that this poor performance is in part due to the heuristic used to solve the OPTW.

To maintain reasonable computation times, the heuristic was often prematurely

terminated and thus returning poor solutions.

For the case of 25% of late-request customers and with 33% waiting time, it

is instructive to consider an example of the a priori tours returned by each of the

heuristics. Figure 3.1 presents graphical representation of the a priori routes ob-

tained with each heuristic for dataset 4. What is evident from the observation of

the figures is that COG heuristic (Figure 3.1(c)) produces essentially the same route

as SP Adv heuristic (Figure 3.1(a)). This result occurs because COG seeks to max-

imize the departure time. It is reasonable that the maximization of departure time
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is given by the tour that is shortest, in our case the tour of SP Adv. At the same

time, SP All heuristic (Figure 3.1(b)) shows the same behavior as SP PTSP strat-

egy (Figure 3.1(d)), mainly because the placement of the late-request customers and

the fact that the advance-request customers occur with certainty leads to identical

tours. The SC tour differs from the other tours. However, the fact that the tour

crosses itself is not completely unexpected, as TSPTW tours as well as Probabilistic

Traveling Salesman Problem with Deadlines (PTSPD) tours tend to do that.

Table 3.2 shows the results for runs on datasets in which 25% of the customers

are late-request and with 66% waiting time. The results are analogous to those in

Table 3.1; no strategy clearly outperforms all others.

Table 3.3 shows the results for runs on datasets in which 50% of the customers

are late-request and with 33% waiting time. As the data indicate, when the number

of late-request customers grows, the SP Adv strategy heuristic performs quite poorly

if compared to the other strategies.

With respect to the comparison between SP Adv and SP All, the second strategy

outperforms the first at the 95% confidence level in all cases but one, with average

improvements ranging between 1% and 12%.

In comparison to the SP Adv heuristic, the COG heuristic provides improved

results in 5 cases out 8, whereas the average result is statistically equivalent for 1

instance.

The SP PTSP heuristic also outperforms the SP Adv strategy, with better results

in 6 cases out 8 at a confidence level of 95%.

The SC strategy is still not competitive, although it does outperform the SP

Adv heuristic in 2 of 5 instances at the 95% confidence level. The SP Adv heuristic

outperforms the SC in 2 cases with the same confidence level.

In order to identify a best strategy, we conduct a pairwise comparison of the SP

All, COG, and SP PTSP strategies. This comparison is reported in Table 3.4. We

compare the percentage less than the mean of each strategy solution value returned

by each other heuristic, or formally, (100×avg. Heuristic x solution - avg. Heuristic y solution
avg. Heuristic x solution

).

These percentage less than the average value are labeled ∆SP All - COG, ∆SP All -

SP PTSP, and ∆COG - SP PTSP for the SP All and COG, SP ALL and SP PTSP,

and COG and SP PTSP, respectively.

We also compare the heuristics using paired-t confidence interval for the differ-

ence of means using the SP Adv heuristic as a standard. The comparison between
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the SP All and the COG heuristics is labeled SP All - COG CI, the comparison

between the SP All and SP PTSP heuristics is labeled SP All - SP PTSP CI, and

the comparison between the COG and SP PTSP heuristics is labeled COG - SP

PTSP CI.

The comparison between SP All and COG points out that the former strategy

is better than the latter in 4 cases out 8, whereas in all the other cases the two

heuristics perform approximately the same at the 95% confidence level.

Moreover, if we compare the SP All and the SP PTSP heuristics, the former

strategy outperforms the latter in 2 cases out of 8. The heuristics are statistically

indistinguishable in the other instances.

Comparing the COG and the SP PTSP strategies there is not a clear evidence of

a strategy outperforming the other, given that the SP PTSP is better in 2 cases, the

COG is better in only 1 case, whereas the other cases do not allow any statistically

significant conclusion.

To better understand the results of the 50% of late-request customers and with

33% waiting time case, Figure 3.2 presents a graphical representation of the a priori

routes obtained with each heuristic on dataset 4. From the figure, we can clearly

see that the structure of the tours diverges as the the percentage of late-request

customers has increased. We note that the SP All tour cuts across the middle of the

(x,y) plane accounting for the late-request customers in that middle region, whereas

the SP Adv tour ignores this area of the region. The advantage of the COG and

PTSP heuristics follows similar reasoning.

3.6 Conclusions

In this chapter we have studied a dynamic and stochastic routing problem in which

a single, uncapacitated vehicle has to serve a set of known customers locations but

in which some customers request service while the vehicle is en route.

We have devised a set of a priori routing schemes for use in such a dynamic

environment. We have first described a formal dynamic programming formulation

and presented the preliminary results. Then, we have discussed strategies for imple-

menting a priori routes within this dynamic routing problem. We have next outlined

the experimental design and discussed the results of the computational experiments.

Results reported in Tables 3.1 and 3.2 indicate that there is no value in devising
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involved strategies for the construction of the a priori routes when the percentage

of late-request customers is low. Indeed, a simple strategy like SP Adv performs

comparable to more involved heuristics. On the other hand, Table 3.3 shows that,

when the number of late-request customers increases to 50%, more involved proce-

dures offer improvement. In this case, a good choice for an a priori tour construction

heuristic is the SP All heuristic. It performs comparably to the other heuristics, in

some cases better, and offers a straightforward implementation.

In future work, we are interested in whether or not it is possible to construct

good a priori routes such that, using waiting strategies, we are able to benefit from

the ease of managing a priori routes without sacrificing the cost savings available in

purely dynamic strategies.

We are also interested in finding an efficient heuristic for the OPTW. The SC

heuristic is intuitively appealing, but requires an improved solution approach to

truly assess its value.
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Figure 3.1. Initial routes for the five a priori heuristics for set 4 in the case with
25% Late-Request Customers and 33% Waiting Time. Squared points represent

the late-request customers.
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Figure 3.2. Initial routes for the five a priori heuristics for set 4 in the case with
50% Late-Request Customers and 33% Waiting Time. Squared points represent

the late-request customers.
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Chapter 4

The Dynamic and Stochastic

Vehicle Dispatching Problem with

Pickups and Deliveries

4.1 Introduction

Same-day couriers are utilized by clients who require maximum speed and security

for deliveries of letters and small parcels in urban areas. Customers usually request

couriers with little or no notice, all but eliminating the ability to construct routes

and schedules in advance. The traditional model of same-day courier service utilizes

human controllers who communicate with bicycle, motorcycle, car and van couriers

via radio or mobile phone. Controllers ask couriers to relay their location informa-

tion and then assign jobs to the most appropriate vehicle. This model is not only

inefficient, but also suffers from errors inherent with the involvement of a human el-

ement. Indeed, the recent advances in communication and information technologies,

that now allow data on courier locations and customers requests to be obtained and

processed in real-time, have stimulated research on algorithms for dynamic vehicle

routing and dispatching problems. Unlike their static counterparts, these problems

are characterized by data which are disclosed in a dynamic fashion over a planning

horizon. In this context, decisions made at an early stage of the planning horizon

might affect the ability to make good decisions at a later stage. Nonetheless, large

part of the current literature is focused on algorithms reacting to new requests only

51



4 – The Dynamic and Stochastic VDPPD

once they have occurred, while neglecting available stochastic information. As a

result, these algorithms are not able to take advantage of recurrent patterns in cus-

tomer demands and vehicle travel times, which usually constitutes an easy task for

human controllers.

The purpose of this chapter is to describe and assess anticipatory heuristics for

the dynamic and stochastic Vehicle Dispatching Problem with Pickups and Deliveries

that anticipate future demands through a Monte Carlo sampling procedure. The

insight gained by simulating near-future demand is used in order to manage in an

unified way several kinds of decisions, including vehicle dispatching, route scheduling

and idle vehicle relocation.

4.2 Problem Statement

The dynamic and stochastic Vehicle Dispatching Problem with Pickups and Deliv-

eries (VDPPD) is defined on a graph G = (V,A), where V is a vertex set and A is

an arc set. A fleet of m vehicles, located at a depot i0 ∈ V at time t = 0, has to

service a number of pick-up and delivery requests {(i+k ,i−k ,Tk) : k = 1,2,...}, where

i+k ∈ V , i−k ∈ V , Tk ≥ 0 are respectively, the pickup point, the delivery point and

the occurrence time of the k-th request. Vertices may represent individual customer

locations or the zones in which the service territory is divided. For an extensive

treatment of diversion issues in real-time vehicle dispatching the reader is referred

to Regan et al. (1994, 1995) and Ichoua et al. (2000). Let tij be the shortest travel

time from vertex i ∈ V to vertex j ∈ V . As is common in the same-day courier

industry, the aim is to maximize the overall customer service level rather than min-

imize the total traveled distance. Let τk be the delivery time of the k-th request.

To each customer is associated a non-decreasing and convex penalty function fk(τk)

expressing the inconvenience associated with customer ik. This definition includes

the case in which fk(τk) represents the customer waiting time (i.e., fk(τk) = τk−Tk,

τk ≥ Tk) or a more involved penalty function (e.g., fk(τk) = 0, Tk ≤ τk ≤ Dk and

fk(τk) = τk − Dk, τk ≥ Dk, where Dk is a soft deadline associated with the k-th

request).

The static version of the VDPPD amounts to determining an ordered sequence

of locations on each vehicle route such that:
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1. each route starts at the depot;

2. a pickup and its associated delivery are satisfied by the same vehicle;

3. a pickup is always made before its associated delivery;

4. the total penalty incurred by the vehicles z =
∑

k fk(τk) is minimized.

In the dynamic variant, we also have to adequately distribute waiting time along

the routes, since this may affect the overall solution quality, as well as reposition

idle vehicles to anticipate future demand. In this chapter we assume that the re-

quests arrive according to a known stochastic process. The objective function to be

minimized is the expected customer inconvenience over the planning horizon:

z =
∑

k

E[fk(τk)]

where E[fk(τk)] is the expected penalty associated to the delivery of the k-th re-

quest. Moreover, we assume that a vehicle cannot be diverted away from its current

destination to service a new request in the vicinity of its current position. Such an

opportunity can be exploited when communication between the dispatch office and

the couriers can take place at any time, which is usually not the case of bike and

motorbike drivers which is the focus of this chapter.

In this chapter we develop a mechanism in which, any time a new request ar-

rives, the short-term arrival process is sampled and alternative solutions are com-

pared through a fully sequential procedure for indifference zone selection (Kim and

Nelson, 2001). This approach allows determining the number of samples required

for each alternative solution in order to select the best insertion with a given level

of confidence.

4.3 The anticipatory algorithms

We have devised the following anticipatory mechanism which we have then embed-

ded in both an insertion and a local search procedure.

Let Pk ⊆ {1, . . . ,k} be the set of pending requests (i.e., the requests occurred but

not yet serviced) at time Tk, when request (i+k ,i−k ,Tk) arrives. A reactive algorithm
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generates a new solution incorporating i+k and i−k with the aim to minimize the total

inconvenience associated to requests Pk:

zk =
∑
r∈Pk

fr(τr).

On the contrary, our anticipatory algorithms aim at minimizing the sum of zk plus

the expected value (under perfect information) of the total penalty ξ[tk,tk+∆tk] asso-

ciated to the requests arriving in the short term future [tk,tk + ∆tk]:

(4.1) z′k =
∑
r∈Pk

fr(τr) + E[ξ[tk,tk+∆tk]],

where ∆tk is the short term duration. Of course, our procedures become reactive if

∆tk = 0 (k = 1,2, . . .).

We now provide an in-depth description of the main ingredients of the two an-

ticipatory algorithms.

4.3.1 Approximation of the near-future inconvenience

In order to estimate E[ξ[tk,tk+∆tk]](s) for any given solution s, we generate ns sam-

ples of the near-future demand and compute the corresponding total penalties

under perfect information: ξ[tk,tk+∆tk](s) (j = 1, . . . ,ns). Then, we approximate

E[ξ[tk,tk+∆tk]](s) through its sample mean:

ξ[tk,tk+∆tk](s) =

∑ns

j=1 ξ
[tk,tk+∆tk]
j (s)

ns

as well as compute confidence intervals on E[ξ[tk,tk+∆tk]](s).

For every solution s and for every sample j (j = 1, . . . ,ns), we approximate the

penalties under perfect information ξ[tk,tk+∆tk](s) by means of a cheapest insertion

heuristic.

4.3.2 Determination of the number of samples

In a simulation-based optimization setting, the evaluation of the objective function

z′ via discrete event simulation sets up a dichotomy not present in deterministic
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optimization: that of the search process versus the evaluation process (Fu, 2002).

Indeed, most of the computation is spent estimating the objective function for given

values of the decision variables, a reversal of the deterministic setting, where the

search is the primary computational burden. Our approach is based on the observa-

tion that there is no reason a priori to assume that the number of samples ns should

be the same for all solutions s. Indeed, our procedure compares the alternative so-

lutions by using a fully sequential Indifference Zone Selection (IZS) procedure (Kim

and Nelson, 2001). Such a procedure requires that the user specifies two parameters:

• an indifference zone width δ;

• a confidence level 1− α.

The goal of the IZS procedure is to select a solution with expected penalty that is

within δ units of the optimal performance with a given level of confidence 1 − α.

In practice, parameter δ is set equal to the smallest relevant absolute difference

in the expected penalty. An objective function gap less than δ units is considered

negligible. The procedure takes only a single basic output from each alternative still

in contention at each stage. Also, if there exists clear evidence that a solution is

inferior, then it will be immediately eliminated from consideration. We now illustrate

this concept through an example (Figure 4.1). For each of the five alternative

1 2 3 4 5 solutions

z’

 

Figure 4.1. Boxplot representation of five alternative solutions.

solutions, 10 samples are initially taken and 99% confidence intervals are computed.
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On the basis of this results, we can discard solutions 1 and 5. We then take one

more sample for each of the three remaining solutions and compare the updated

confidence intervals. Such a procedure is iterated until all solutions but one are

eliminated.

As customary in simulation-based optimization, we make use of common random

numbers (CRNs) in order to reduce variance (Kim and Nelson, 2006). A more for-

mal description of the screening and selection procedure is as follows.

Step 1. (Initialization.) Select a confidence level 1−α, an indifference zone param-

eter δ and a first stage sample size n0 ≥ 2. Let S = {1, . . . ,p} be the set of solutions

still in contention. Set

η =
1

2

[(
2α

p− 1

)−2/(n0−1)

− 1

]
.

Obtain n0 independent outputs ξ
[tk,tk+∆tk]
l (s) (l = 1, . . . ,n0) from each solution s ∈ S.

Set r = n0.

Step 2. (Screening.) Let ξs(r) =
∑r

l=1 ξ
[tk,tk+∆tk]

l (s)

r
denote the sample mean of

the first r outputs from solution s. For all s′ 6= s compute σ̂2
ss′(r), the sample

variance of the difference between solutions s and s′:

σ̂2
ss′(r) =

∑r
l=1

(
ξ

[tk,tk+∆tk]
l (s)− ξ

[tk,tk+∆tk]
l (s′)−

[
ξs(r)− ξs′(r)

])2

r − 1
.

Set Sold = S. Let

S = {s : s ∈ Sold and ξs(r) ≤ ξs′(r) + Wss′(r),s
′ ∈ Sold,s′ 6= s}

where

Wss′(r) = max

{
0,

δ

2r

(
h2σ̂2

ss′(r)

δ2
− r

)}
,

and h2 = 2η(r − 1). Wss′(r) denotes how far the sample mean from solution s can

drop below the sample means of the other solutions without being eliminated.
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Step 3. (Stopping Rule.) If |S| = 1, then stop and select the solution whose

index is in S as the best. Otherwise, take one additional output ξ
[tk,tk+∆tk]
r+1 (s) from

each solution s ∈ S, set r = r + 1 and go to Step 2.

4.3.3 Generation of alternative solutions

In the anticipatory insertion procedure, we generate alternative solutions as fol-

lows. At any time, the current solution can be seen as a set of routes Rj =

{(i0,j,i1,j, . . . ,inj ,j,inj+1,j),τ0,j,τ1,j, . . . ,τnj ,j} (j = 1, . . . ,m), where i0,j is the current

position of vehicle j, i1,j, . . . ,inj ,j are pickup and delivery points to be visited by

vehicle j, inj+1,j is a parking position, and τ0,j,τ1,j, . . . ,τnj ,j are the waiting times of

vehicle j at i0,j,i1,j, . . . ,inj ,j, respectively. In order to keep the computational effort

within reasonable limits, it is worth selecting a reduced number κ of promising so-

lutions to be assessed through near-future simulation. When a request (i+k ,i−k ,Tk)

occurs, we generate every feasible insertion. Then, for each of the best κ inser-

tions with respect to zk, we enumerate all the feasible solutions associated to those

insertions (by suitably inserting waiting times along the individual route receiving

request k as well as repositioning the corresponding vehicle when it becomes idle).

In order to make the solutions feasible in the real-world, we impose that the total

waiting time along a route does not exceed a maximum amount MWT as well as we

require the waiting time at any node to be a multiple of a quantum WQ. Moreover,

we assume that idle vehicles may be relocated only at a restricted number of home

positions H ⊆ V (which is what happens in real world). For instance, if MWT = 20

minutes, WQ = 10 minutes and H = {iq,iq′}, a customer sequencing (i−1 ,i+3 ,i−2 ,i−3 )

gives rise to the route schedules reported in Table 4.1. It is worth noting that two

distinct route schedules, which coincide during the short term future [tk,tk + ∆tk],

incur the same expected penalty (4.1) and require a single simulation experiment.

4.3.4 Anticipatory local search

In our local search scheme, the neighbors of a given solution are obtained by remov-

ing in turn each pending request from its current route and reinserting it feasibly

through the anticipatory insertion procedure described before. In order to keep the

computational effort into reasonable limits, at each iteration we remove only the
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pending requests currently allocated to the routes modified in the previous itera-

tion. Of course, if the pickup of a request has been already visited or a courier is

currently moving towards it, then this request cannot be reinserted into another

route.

Table 4.1. Feasible route schedules associated to customer sequencing
(i−1 ,i+3 ,i−2 ,i−3 ).

Total waiting Waiting Waiting Waiting Waiting
Home positionstime along time time time time

the route at i−1 at i+3 at i−2 at i−3
0 - - - - iq,iq′

10

10
-
-
-

-
10
-
-

-
-

10
-

-
-
-

10

iq,iq′

20

20
-
-
-
10
10
10
-
-
-

-
20
-
-
10
-
-
10
10
-

-
-

20
-
-

10
-

10
-

10

-
-
-

20
-
-

10
-

10
10

iq,iq′

4.4 Experimental Results

Our computational experiments aim at assessing the effectiveness of our anticipatory

algorithms versus a purely reactive procedure. Both heuristics have been coded in

C++ and run on a PC with a Pentium IV processor clocked at 2.8 GHz. We have

utilized two sets of randomly generated instances, resembling standard and premium

service, respectively. In the former instances (“S” instances, in the following), a

courier may consolidate an unlimited number of deliveries. In the latter instances

(“P” instances, in the following), consolidation is not allowed, so that vehicles may

be assumed to have capacity equal to one. In both cases, the service territory is
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modelled as a grid with 25 zones, giving rise to 600 origin-destination pairs. Travel

times between adjacent zones have been set equal to 15 minutes. Demands are

spatially independent and uniformly distributed over Q = {(o,d) ∈ {1, . . . ,25}2 :

o 6= d}. For each origin-destination pair, their arrival times constitute a Poisson

process with rate λo,d over a planning horizon [0,480] minutes. The arrival rates

λo,d are set equal to a constant c for 20 randomly chosen origin-destination pairs

(o,d) ∈ Q1 ⊆ Q and to c/k for the remaining 580 pairs, where c and k are determined

in such a way that the expected overall number of requests µ is 200 and the expected

number of requests µ1 between pairs in Q1 is given the following values: 0, 50, 100,

150, 200. Moreover, we assume that the inconvenience associated to each request

is represented by its waiting time. In both sets, the number of vehicles is equal

to 35. For each set and for each value of µ1, we generated as many instances as

are required to keep the variation coefficient of the sample mean (σ/
√

n)/|x| of the

objective function less than 0.1, where σ denotes the sample standard deviation, n

the number of instances and x the sample mean. Moreover, algorithm parameters

have been set as follows: κ = 5, δ = 20 minutes, α = 0.1, n0 = 10, MWT = 20

minutes, WQ = 10 minutes. Finally, we allow idle vehicles to be relocated to any

of the three stochastic medians of the graph (|H| = 3).

The first aim of our computational experiments is to correlate empirically the

duration ∆tk of the short-term horizon to the problem data. Intuitively, as ∆tk

increases, we expect that the procedure becomes less and less myopic while the

computational effort turns out to be heavier. On the other hand, very large ∆tk

values do not provide any relevant additional objective function improvement. Ta-

bles 4.2 and 4.3, as well as Figures 4.2 and 4.3, provide an account of the results

whereas µ1 = 200, in which case the expected service time is around 40 minutes.

The column headings are as follows:

• n: number of instances generated;

• zR: average objective function value for the reactive procedure (
∑n

i=1 zR,i

n
, where

zR,i is the objective function value provided by the reactive procedure for

instance i);

• zA: average objective function value for the anticipatory insertion procedure

(
∑n

i=1 zA,i

n
, where zA,i is the objective function value provided by the anticipa-

tory insertion procedure for instance i);

59



4 – The Dynamic and Stochastic VDPPD

• TIMER: average CPU time (in seconds) for the reactive procedure;

• TIMEA: average CPU time (in seconds) for the anticipatory insertion proce-

dure;

• SERV TIMER: average CPU time per request (in seconds) for the reactive

procedure;

• SERV TIMEA: average CPU time per request (in seconds) for the anticipa-

tory insertion procedure;

• ρR: average utilization rate of a vehicle for the reactive procedure;

• ρA: average utilization rate of a vehicle for the anticipatory insertion proce-

dure;

• OBJDEV : average deviation of the objective function values for the reactive

and anticipatory insertion procedures, i.e. zA−zR

zR
;

• OBJSSD : sample standard deviation of the objective function values for the

reactive and anticipatory insertion procedures, i.e.
√∑n

i=1(zR,i−zA,i)2

n−1
;

• CIW : width of the 0.9 confidence interval for the difference of the objective

function values provided by the reactive and anticipatory insertion procedures.

These results, along with more extensive computational experiments on both “S”

and “P” instances (which we do not report for the sake of brevity), show that a

good trade-off between computation time and solution quality can be achieved for

∆tk values close to the expected service time at tk.

The second part of our experimental study aims at comparing the anticipatory

insertion algorithm with its reactive counterpart. Tables 4.4 and 4.5 show the results

for the “S” and “P” instances, respectively. The column heading which has not been

explained yet is as follows:

• SAMPLES : average number of samples generated for each instance.

The results show that the anticipatory insertion procedure provides consistently

better solutions than a purely reactive procedure on all generated instances. More
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Figure 4.2. Average deviation of the objective function values for the reactive and
anticipatory procedures as a function of ∆tk (“S” instances).
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Figure 4.3. Average deviation of the objective function values for the reactive and
anticipatory procedures as a function of ∆tk (“P” instances).

precisely, the anticipatory algorithm allows achieving an average improvement of

the objective function value ranging between 11% and 25% for the “S” instances,

whereas for the “P” instances our procedure reduces the objective function value by

38% to 59%. It is worth noting that the use of the anticipatory algorithm leads to an

average utilization rate which is around 19% lower than its reactive counterpart. In

conclusion, the experiments show that the anticipatory procedure is very effective,

leading to a reduction in the customer inconvenience and to an evener distribution

of the requests among the vehicles.

In the third part of our experimental study, we have compared the anticipatory

insertion and local search algorithms. For the sake of brevity, we report only the

results on the “S” instances. (Table 4.6). The column headings which have not been

explained yet are as follows:
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• zL: average objective function value for the anticipatory local search procedure

(
∑n

i=1 zL,i

n
, where zL,i is the objective function value provided by the anticipa-

tory local search procedure for instance i);

• TIMEL: average CPU time (in seconds) for the anticipatory local search

procedure;

• SERV TIMEL: average CPU time per request (in seconds) for the anticipa-

tory local search procedure;

• ρL: average utilization rate of a vehicle for the anticipatory local search pro-

cedure;

The experiments show that in a typical same-day courier setting, the anticipatory

local search allows to yield only very slight improvements (if any) on the simpler

anticipatory insertion policy. This behavior can be explained as follows: since nowa-

days the service level provided by same-day couriers is quite high, at any time each

vehicle is usually assigned a small number of pending requests which limits the

number of feasible solutions.

4.5 Conclusions

The dynamic Vehicle Dispatching Problem with Pickups and Deliveries is faced by

local area courier companies serving same-day pickup and delivery requests for the

transport of letters and small parcels. For this problem we have proposed an antic-

ipatory mechanism which we have then embedded in both an insertion and a local

search algorithm. A major challenge we had to face when solving large instances was

to keep the computational effort low. This was achieved through two main features:

firstly, the number of demand samples was determined through an IZS procedure

that allows to eliminate, at an early stage of experimentation, those solutions that

are clearly inferior; secondly, we limited the computational effort by applying the

sampling procedure to a short-term horizon whose duration was empirically corre-

lated to the problem data. Another advantage of our approach is that it addresses in

an unified and integrated way all the main issues involved in real-time fleet manage-

ment (a similar approach was proposed by Bent and Van Hentenryck (2007) almost
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simultaneously to our thesis). Computational results have shown that the antici-

patory insertion algorithm provides consistently better solutions than its reactive

counterpart. They have also proved that, in a typical same-day courier setting, an

anticipatory local search procedure allows to yield only very slight improvements on

a simpler anticipatory insertion policy.

In this chapter we have assumed that the requests arrive according to a known

stochastic process. Future work should be aimed at verifying how robust our ap-

proach is whereas demand sampling is based on an approximation of the arrival

process.
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Chapter 5

The Shift Scheduling Problem in

the Same-day Courier Industry

5.1 Introduction

The courier industry is an integral part of the industrialized countries’ economy,

providing transportation of documents, packages, machine parts, medical supplies

and other time-sensitive goods among companies and other organizations. Numer-

ous businesses rely heavily on couriers: financial institutions that must transfer

documents between branches and processing centers, law firms that need to deliver

confidential documents on very strict deadlines, pharmaceutical distributors willing

to transport high valued medications to hospitals, etc.

The courier market can be divided into two components: companies with their

main focus being national and international overnight deliveries, and local messenger

companies, whose main focus is to provide same-day deliveries in smaller well-defined

geographical areas (e.g., a large metropolitan area or a state). A few figures can

be used to illustrate the economic relevance of this sector. In the US there are

approximately seven thousand courier companies that generate a multi-billion dollar

revenue (Messenger Courier Association of the Americas, 2006). In Canada the

courier industry is estimated to be worth 5.4 billion dollars in sales, and is expected

to grow at 2.6 per cent in volume and 5.9 per cent in revenue during next few

years (Statistics Canada, 2004, Canadian Courier & Messenger Association, 2004).

Same-day courier companies generate 15-20 per cent of the industry revenue in most
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5 – The SSP in the Same-day Courier Industry

industrialized countries (see, e.g., Transport Canada, 2003). While the national and

international overnight market is dominated by a few multinational corporations

(including DHL, UPS, FedEx and USPS) and by national-wide companies (like

Purolator in Canada and Bartolini in Italy), the local messenger sector consists

almost entirely of small, locally owned and operated businesses. Moreover, it is

worth noting that the former market is organized rationally and efficiently (couriers

usually make between 15 and 25 deliveries per hour), whereas in the latter market

couriers may only make 15-20 deliveries in a day that are often spread out over a

large urban area.

Same-day clients usually request couriers with little or no notice, all but elimi-

nating the ability to construct routes or schedules in advance. Once a courier has

been assigned a job, he/she proceeds directly to the pickup location, collects the

appropriate conveyance, and moves on to the delivery where in return, a signature

is obtained. The traditional model of same-day courier service utilizes human con-

trollers who communicate with bicycle, motorcycle, car and van couriers via radio

or mobile phone. Controllers ask couriers to relay their location information and

then assign jobs to the closest and most appropriate courier. This model is not only

inefficient, but also suffers from errors inherent with the involvement of a human

element. As the number of couriers increases to several hundreds or thousands, in-

formational complexity grows to levels which push the limits of human analysis. At

this stage several controllers may be used, increasing costs and requiring constant

coordination between controllers in addition to communication with couriers on the

street. Human controllers can generally manage a maximum of thirty couriers in

a specific area of the city and make job allocation decisions based on incomplete

or inaccurate information. This has contributed to the fact that no courier com-

pany can gain a very large market share, due to the informational complexity of

the allocation problem. For instance, in London (UK) the industry (which is worth

about 450 million pounds) is split among about 600 suppliers (Marketing Research

for Industry, 2006).

Automated information-based job allocation systems (Attanasio et al., 2007) are

based on dispatching algorithms able to assign each job to the most appropriate

courier on the basis of the current fleet location and status. Courier location in-

formation is provided by GPS devices (Cathey and Dailey, 2003) embedded into
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palmtop computers which are also used to provide directions to couriers. Advan-

tages of such systems include an improvement of the courier efficiency, a reduction of

the requirements of human supervisors as well as the possibility to provide customers

some sort of quality of service (QoS) guarantee.

In this chapter we deal with the same-day Courier Shift Scheduling Problem

(CSSP), a tactical problem which amounts to minimize the staffing cost subject to

probabilistic service level requirements. In what follows we assume that couriers

are independent contractors paid by the hour, thus creating economic incentives for

companies to hire the least amount of labour possible. Since the demand is random

in nature, this problem is intrinsically different from crew scheduling problems en-

countered in other transportation areas such as the railway (Caprara et al., 2006)

and airline (Gopalakrishnan and Johnson, 2005) industries. Moreover, the CSSP

differs from other shift scheduling problems (like those found in the call center in-

dustry, Gans et al., 2003) for several reasons, including the duration of jobs which

tipically spans several hours. As explained subsequently, this feature of the CSSP

forbids to exploit most results obtained so far in other settings.

5.2 Problem Formulation

At an operational level, same day couriers have to solve a Dynamic Vehicle Dis-

patching Problem with Pickups and Deliveries (Gendreau et al., 2006, Ghiani et al.,

2007) which amounts to allocate each request to a vehicle as well as to schedule the

requests assigned to each vehicle route. A pickup and its associated delivery must be

satisfied by the same vehicle and a pickup must always be made before its associated

delivery. The objective is to minimize the total expected customer inconvenience.

For this problem, Gendreau et al. (2006) describe a reactive Tabu Search procedure

while Ghiani et al. (2007) present an anticipatory mechanism based on near-future

simulation and ranking & selection procedures.

Given any dispatching policy P, at a tactical level courier companies have to

decide how many couriers should be allocated to each shift pattern subject to QoS

constraints (Courier Shift Scheduling Problem, CSSP). The CSSP is usually solved

on a weekly or quarterly basis (the demand is usually characterized by significant

yearly/weekly/daily seasonal effects) with the aim to minimize the staffing cost. In

what follows, we assume that a QoS guarantee is provided to those requests arriving
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into a planning horizon H (e.g., Monday to Friday, 6.00 am to 10.00 pm) and that

the QoS is assessed with respect to a subset J of time intervals (QoS intervals) in

which H is partitioned (Figure 5.1).

 

Figure 5.1. A sample planning horizon H and its partitioning into 15 QoS inter-
vals.

In particular, we require that the expected service time of a request arriving

during time interval j (j = 1, . . . ,|J |) must be less than a given threshold Tj. In

a real-world setting, thresholds may also depend on the customer class (e.g., they

can be tighter for customers having stipulated a Service Level Agreement (SLA) and

looser for spot customers). In addition, they may depend on both the pickup and

delivery locations (e.g., tighter thresholds may be assigned to shipments inside a

central urban zone). In the remainder of the chapter, we neglect these dependencies

for the sake of simplicity, although the subsequent algorithms can be easily adapted

mutatis mutandis to the more general case.

In this chapter we assume that the feasible shifts (i.e., shift satisfying rest regula-

tions) can be enumerated. This assumption is quite realistic since only few patterns

are acceptable in real world (e.g., shifts covering 4 days a week for 10 hours per

day or 5 days a week for 8 hours per day (Attanasio et al., 2007). Let Q be the

set of feasible shift patterns and let cq be the wage of a courier covering pattern q

(q = 1, . . . ,|Q|). The CSSP amounts to determine the optimal number xq of drivers

covering shift pattern q (q = 1, . . . ,|Q|):

Minimize
∑|Q|

q=1 cqxq(5.1)

s.t. gj(x1, . . . ,xQ,ξ) ≤ Tj j = 1, . . . ,|J |(5.2)

xq ≥ 0, integer q = 1, . . . ,|Q|(5.3)

where ξ is a vector denoting the random demands across the planning horizon and

gk(x,ξ) is the expected service (or system) time of a request arising during QoS
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interval j (j = 1, . . . ,|J |). The complexity of the model lies in the gj(·,·) functions,

which are non linear and not known explicitly.

Formulation (5.1)-(5.3) is similar to models employed in call center (CC) shift

scheduling modelling (Gans et al., 2003), except that in our application the QoS is

measured as an expected service time while in call center applications it is assessed

by means of expected number of reneging customers (no customer usually drops in

a courier application). Apart for this minor issue, the two shift scheduling problems

differ for the order of magnitude of service times, which is approximately hundreds

of minutes in the courier industry and around a few minutes in the call center

sector. This characteristic has a profound impact on the solution strategies. Indeed,

except for Avramidis et al. (2007), the call center shift problem is decomposed into

a staffing problem, which amounts to determine the number of employees needed

at any time (e.g., between 10 am and 11 am) and a set covering problem (Caprara

et al., 2000). The staffing problem is solved, depending on the number of customer

classes and the specialization of agents, by reversing steady state queuing formulae

or through simulation-based cutting plane algorithms. See Avramidis and L’Ecuyer

(2005), Atlason et al. (2004a,b) for recent contributions in this area of research.

5.3 Approximate Neighborhood Evaluation Pro-

cedure

Because of the magnitude of service times, the CSSP cannot be decomposed into

simpler subproblems as its call center counterpart. This observation has motivated

us to deal with the CSSP as a whole. The main computational difficulty when

devising a neighborhood search procedure for the CSSP is the peculiar nature of the

QoS functions gj(·,·) that are not known explicitly and can only be estimated through

simulation for any given vector x = (x1, . . . ,xQ). Since simulating courier operations

is very time consuming even for simple dispatching policies P (Ghiani et al., 2007),

our effort has been devoted to explore the search space efficiently. Let x(k) be the

current solution at iteration k of a neighborhood search procedure and let N(x(k))

be its neighborhood. In principle, we could select x(k+1) as the least cost feasible

solution in N(x(k)). This approach could be implemented by checking the feasibility

(e.g., the satisfaction of QoS constraints (5.2) through simulation) of the least cost
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solution. If this check succeeds, we are done. Otherwise, we should check the second

least cost solutions, etc. Since the best solutions in the neighborhood are likely to

be infeasible, this approach might result in the examination of a large number of

solutions, thus requiring many time consuming simulation experiments. On the

other hand, a procedure picking up x(k+1) at random in N(x(k)) would perform

poorly in practice, as shown in Section 5.4. Trading off between these two extremes,

we propose a procedure that collects some statistics when simulating x(k) at iteration

(k−1). Then we use these statistics into an Approximated Neighborhood Evaluation

(ANE) procedure that approximates the QoS functions gj(·,·) with deterministic

linear functions of the x variables. We divide the planning horizon into m micro-

intervals Ih of duration ∆t (for instance, ∆t = 30 minutes or 1 hour) and assume

that the arrival rate λh during micro-interval Ih (h = 1, . . . ,m) is constant. Let

a and d be the arrival time and the delivery time of a request. When selecting

x(k) as the new current solution at iteration (k − 1), we compute an estimation

ŝhl of the conditional expected value of the service time of the requests arriving in

micro-interval Ih and serviced in Il (l ≥ h):

shl = E[s|a ∈ Ih,d ∈ Il,x
(k)].

It is worth noting that such an estimate comes at no cost since the QoS provided

by x(k) has to be evaluated (through simulations runs) before this solution can be

declared feasible.

Let Hj be the set of micro-intervals which made up QoS interval j (j = 1, . . . ,|J |).
By using the well known total probability theorem, constraints (5.2) can be refor-

mulated as follows:

∑

h∈Hj

(
λh∑

i∈Hj
λi

∑

l=h,h+1,...

λhl

λh

ŝhl

)
≤ Tj, j = 1, . . . ,|J |

where λhl is the part of λh delivered during micro-interval l (l ≥ h) for any neighbor

x ∈ N(x(k)). It is worth noting that we are assuming implicitly that conditional

expected values shl do not vary significantly in N(x(k)), which is quite reasonable

if the size |N(x(k))| of the neighborhood is “small enough”. If no data have been

collected for some h−l pairs, we can assume uniformity. For example, if the duration

of micro-intervals is one hour and time is measured in hours, we can set:

ŝhl = 0.5 + h− l
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We can now formulate the ANE model:

Minimize
∑|Q|

q=1 cqxq(5.4)

s.t.
∑

h∈Hj

(
1∑

i∈Hj
λi

∑
l=h,h+1,... λhlŝhl

)
≤ Tj, j = 1, . . . ,|J |(5.5)

∑
l=h,h+1,... λhl = λh, h = 1, . . . ,m(5.6)

∑l
h=1 λhl ≤ ηl

∑
q∈Al

xq, l = 1, . . . ,m(5.7)

d(x,x(k)) ≤ |N(x(k)|(5.8)

λhl ≥ 0, h = 1, . . . ,m; l = h,h + 1, . . . ,m(5.9)

xq ≥ 0, integer, q = 1, . . . ,|Q|(5.10)

where the objective function (5.4) is the same as in formulation (5.1)-(5.3), (5.5) are

the previously introduced QoS linearly approximated constraints, (5.6) are the flow

conservation constraints, (5.7) are capacity constraints, while (5.8) imposes that

the distance d(x,x(k)) between x and the current solution x(k) does not exceed the

neighborhood size |N(x(k))|. In particular, constraints (5.7) state that the expected

demand serviced in Il does not exceed the number of couriers working in Il mul-

tiplied by courier productivity ηl. Productivity may vary significantly during the

day since higher demand rates usually give couriers the opportunity to consolidate

more deliveries without deteriorating the QoS level (see Genta and Muñoz (2007)

for an account of some related issues). Parameters ηl are not well defined because:

(a) vehicles may transport more that a single load at a time; (b) a request may span

two or more micro-intervals. In subsections 5.3.1 and 5.3.2 we describe two methods

for estimating these parameters: the first approach is based on an intuitive load

assignment procedure while the second solves a fitting problem in x(k). We define

the distance d(x,x(k)) between x and the current solution x(k) in a quite natural way

as

d(x,x(k)
q ) =

|Q|∑
q=1

|xq − x(k)
q |

Hence constraints (5.8) can be casted in a linear form by expressing each xq variable

as the sum of x
(k)
q and a linear combination of a set of binary variables yrq and wrq,
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weighted by both positive and negative powers of 2:

xq − x(k)
q +

∑
r=0,1,...

2ryrq −
∑

r=0,1,...

2rwrq, q = 1, . . . ,|Q|(5.11)

yrq,xrq ∈ (0,1), q = 1, . . . ,|Q|; r = 0,1, . . .(5.12)

Thus xq nonnegativity constraints become
∑

r=0,1,...

2rwrq ≤ x(k)
q q = 1, . . . ,|Q|(5.13)

while (5.8) are casted as
∑
q∈Q

∑
r=0,1,...

2ryrq +
∑
q∈Q

∑
r=0,1,...

2rwrq ≤ |N(x(k)|(5.14)

The ANE formulation (5.4)-(5.7), (5.9)-(5.14) is then solved by means of an off-the-

shelf general purpose Integer Linear Programming solver as in the spirit of Fischetti

and Lodi (2004).

5.3.1 Näıve load assignment procedure

The first approach for estimating productivity ηl is based on an intuitive procedure

in which, for each sample taken at x(k), it is computed the contribution given by

micro-interval Il to the service of each request. The contributions associated to the

various requests are then summed up and are averaged over all samples taken at

x(k). In this procedure the computation of the productivity in micro-interval Il for

a single sample is:

ηl =
∑

j

ηlj

where j are all the requests whose service starts or is completed within micro-interval

Il. The quantities ηlj are computed as follows:

ηlj =
amount of time of Il spent in serving request j

whole time needed to serve j

For the sake of clarity, in Figures 5.2 and 5.3 we report two typical situations. More

specifically, Figure 5.2 describes a situation in which a single request k is present

during all the micro-interval Il. In this case the computation of ηl would be:

ηl = ηlk =
60

40
= 1.5[requests/h]
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It is not surprising that, although Il contains a single request, the productivity is

greater than 1. The vehicle is idle for a certain amount of time, which allows it to

potentially serve other requests.

Figure 5.3, instead, reports a slightly more complicated route, in which three

requests, namely s, k and j, whose service starts or ends during micro-interval Il.

Thus, ηl is computed as:

ηl = ηls + ηlk + ηlj =
20′

40′ + 20′
+

50′

50′ + 20′
+

40′

40′ + 30′
= 1.61[requests/h]

Tk

Il

i-k

40’

60’

i+k

 

Figure 5.2. A sample route in which a single request is served during Il.

i+j

Tk

Il

Tj

i+k i-ji-k

20’50’

40’ 30’

ik

i-s

20’40’

i+s

Ts

ij

is

 

Figure 5.3. A sample route in which more requests are served during Il.
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5.3.2 Fitting Procedure

As observed, the choices made by the load assignment procedure described in the

previous subsection are quite arbitrary and this may impact on the solution of the

ANE approach. Hence, we have devised an alternative approach which fits the ANE

model in x(k). Let λ̂hl be the estimated flows in x(k) and let λhl be their values

predicted by the ANE approach. We determine the values of the ηl parameters

in such a way that the absolute error
∑

h=1,2,...

∑
l=h,h+1,... |λhl − λ̂hl| of the ANE

approach in x(k) is minimized

Minimize
∑

h=1,2,...

∑
l=h,h+1,... |λhl − λ̂hl|(5.15)

s.t.
∑

l=h,h+1,...
λhl

λh
ŝhl = ŝh, h = 1,2 . . .(5.16)

∑
l=h,h+1,... λhl = λh, h = 1,2 . . .(5.17)

∑l
h=1 λhl ≤ ηl

∑
q∈Al

xq, l = 1,2 . . . ,(5.18)

λhl ≥ 0, h = 1, . . . ; l = h,h + 1, . . .(5.19)

ηl ≥ 0 l = 1,2 . . .(5.20)

In this problem, constraints (5.16) and (5.17) impose that predicted flow in x(k) sat-

isfy the total probability theorem (wrt expected service times) and flow conservation.

Constraints (5.18) are obtained by imposing (5.7) in x(k) while considering ηl as non-

negative variables. It is easy to cast problem (5.15)-(5.20) as a linear program by

using a simple transformation of the objective function (see, e.g., Hillier and Lieber-

man, 2004). Moreover, it is worth noting that the fitting problem (5.15)-(5.20) is

always feasible. Indeed, for ηl →∞ (l = 1,2, . . .), the remaining constraints express

each expected value ŝh as a convex combination of conditional expected values ŝhl

(l = h,h + 1, . . .):

∑

l=h,h+1,...

λhl

λh

ŝhl = ŝh,
∑

l=h,h+1,...

λhl

λh

= 1,
λhl

λh

≥ 0.

These constraints are always satisfied since ŝhh ≤ ŝhh+1 ≤ ŝhh+2 ≤ . . . for every

h = 1,2, . . ..
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5.4 Computational Results

In this section we describe the computational experiments performed in order to

assess the effectiveness of the ANE mechanism.

Because the problem in this chapter has not been previously addressed in the

literature with reference to the courier industry, data set generation is required.

For this purpose we consider a number of randomly generated instances, resembling

standard courier service, in which a courier may consolidate an unlimited number

of deliveries. The service territory is modelled as a grid with 25 zones, giving rise to

600 origin-destination pairs. Travel times between adjacent zones are set equal to 15

minutes. The planning horizon H is made up of five days, from Monday to Friday,

8.00 am to 8.00 pm. Each day is partitioned into 3 QoS intervals (8.00 am to 12.00

pm, 12.00 pm to 4.00 pm, 4.00 pm to 8.00 pm), so that the overall number of QoS

intervals is 15 (|J | = 15). For each QoS interval j, the threshold for the expected

service time, exceeded which the solution is considered infeasible, is constant and

equal to 120 minutes. Moreover each QoS interval is divided into 4 micro-intervals

made up of 60 minutes, in such a way that the overall number of micro-intervals is

m = 60.

We consider |Q| = 52 feasible shift patterns. Each shift results in a working

week for a courier made up of: 5 days per week for 8 hours per day, 4 days per week

for 10 hours per day, or 3 days per week for 6 hours per day. The duration of each

shift pattern determines its cost. For instance, shifts covering 40 hours per week are

assigned a cost of 40, whereas the 18 hours shifts are assigned a cost of 18.

Demands are spatially independent and uniformly distributed over Q = {(o,d) ∈
{1, . . . ,25}2 : o 6= d}. For each origin-destination pair, their arrival times constitute

a Poisson process with rate λo,d over the planning horizon H. The arrival rates λo,d

are set in such a way that the expected overall number of daily requests µ is 120

(or, equivalently, 600 weekly requests). Moreover, we assume that the inconvenience

associated to each request is represented by its waiting time.

The number of vehicles in the initial solution is determined so to keep the average

utilization factor ρ of a vehicle lower than a given threshold α. In our implementation

α = 0.8. The details of this procedure are as follows. We first randomly generate a

number of shift patterns q ∈ Q spanning all the planning horizon H, so that each

micro-interval is covered by at least one shift. We refer to this set of randomly
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generated shift patterns as Q′. Then, we initially set xq = 1 for each q ∈ Q′. Hence,

in order to determine the minimum number of vehicles needed to have ρ ≤ α, we

use the following formula for each micro-interval h:

(5.21) ρh =
λh × 60′

vh

≤ α

where 60′ is the average service time estimated with reference to the service territory

we are using for our experiments, λh is the arrival rate of requests during micro-

interval h, and vh is the minimum number of vehicles we are seeking. Thus, reversing

equation (5.21) we obtain:

vh ≥ λh × 60′

α

Finally, we distribute these vh vehicles among all q ∈ Q′ such that q covers micro-

interval Ih.

Once obtained an initial solution, in order to assess the benefits that can be

achieved using the ANE approximation, we use three different procedures. Anyway,

before presenting them, we describe a method to recover feasibility for an infeasible

solution, because it is used within the procedures described in the following subsec-

tions. We refer to this procedure as “Make Feasible” (MF in the following), and

report the pseudo-code.

Procedure MF

Input: x

while(∃j′ : gj′(x,ξ) > Tj′) do begin

Determine q∗ = arg minq∈Ωj′
cq∑

j∈Sq
max(0,gj(x,ξ)−Tj)

where Ωj′ is the set of shift

patterns covering at least partially QoS interval j′, and Sq is the set of QoS

intervals covered at least partially by q;

Set xq′ = xq′ + 1;

Update gj(x,ξ) through simulation;

end

Output: x

Now, we describe the procedures used to test the effectiveness of the ANE approach.
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5.4.1 Careless GRASP

Our first GRASP implementation chooses the neighbor of the current solution x(k) by

randomly sampling the neighborhood (without constructing it explicitly). Let this

neighbor be x(k+1). Then, we simulate it until we can declare it feasible/infeasible

with a confidence level of 95%. Thus, if x(k+1) is feasible and improves the best

known solution, we update the current solution, and iterate. On the other hand, if

x(k+1) is an improving solution, but it is infeasible, we recover feasibility by means

of the MF procedure. Then, we set the new feasible solution as the current solution,

and iterate. If, finally, x(k+1) is worse than the best known solution, we discard it

and re-initialize the GRASP with a new initial solution determined as described in

Section 5.4.

5.4.2 Careful GRASP

In the Careful GRASP implementation, given the current solution x(k), we explicitly

determine all the neighbors. After constructing the neighborhood, we sort the solu-

tions in N(x(k)) according to their objective function value. Then, we simulate each

solution starting from the more attractive in terms of objective function until we

find a solution x′(k) which is feasible. Hence, if such a solution is better than the best

known solution, we choose it as the new current solution, build the corresponding

neighborhood and iterate. On the other hand, if x′(k) is worse than the best known

solution, we discard it and randomly generate a new initial solution.

5.4.3 ANE GRASP

The ANE GRASP procedure uses the ANE approach to explore the search space

efficiently. More specifically, we start from a randomly generated initial solution and

find the best neighbor by solving the ANE model. Then, we simulate such a solution

until it can be considered feasible or not at 95% confidence level. If it is infeasible,

we recover feasibility by using the MF procedure, set the new feasible solution as

the current solution, and iterate. Alternatively, if the simulated solution is declared

feasible and improves the best known solution, we set it as the current solution and

continue the search. On the other hand, if the solution is not better than the best

known solution, we discard it and re-initialize the GRASP. We consider two variants
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of the ANE GRASP. A first variant computes the productivity using the näıve load

assignment procedure, whereas the second variant determines such quantities using

the fitting procedure.

5.4.4 Results

All the procedures were coded in C++ and use ILOG CPLEX 8.1 to solve the

mathematical models underlying the ANE approach.

Our computational experiments consist of a dataset of 20 randomly generated

instances. For all of the procedures we impose a time limit of 50,000 seconds.

We do not report any result for the Careful GRASP, because this procedure is

extremely slow and uses the whole time in order to find the initial solution, build the

neighborhood, and sort the solutions. Thus, it never improves the initial solution.

Table 5.1 reports results for the Careless GRASP in which the distance between

the current solution x(k) and the solutions of the neighborhood is 5, so that, according

with the description of section 5.3, we set |N(x(k))| = 5. The column headings are

as follows:

• INSTANCE: progressive number of the randomly generated instance;

• V IS SOL: number of solutions visited throughout the GRASP;

• RESTART : number of local search restarts;

• SAMPLES: average number of samples needed to declare the feasibility or

infeasibility of a solution at the 95% confidence level;

• MF : number of MF runs;

• FEASIBLESOLS: number of solutions which are declared feasible through

simulation;

• z: objective function value of the first initial solution;

• TSIM : average time (in seconds) needed to simulate a solution;

• z∗: best found solution.
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Then, Table 5.2 summarize the results for the ANE GRASP with |N(x(k))| = 5 and

productivity computed through the näıve load assignment procedure. The column

heading which has not been explained yet is as follows:

• OBJDEV : average deviation of the objective function taking the Careless

GRASP as benchmark.

As data indicate, the ANE approximation, when combined with an intuitive proce-

dure for the computation of a courier productivity, performs poorly. This results in

solutions which, on the average, are 2% worse than a procedure which chooses the

neighbor completely randomly.

Table 5.3 reports a similar comparison between the Careless GRASP and the

ANE GRASP in which we use the fitting procedure to obtain the productivity. As

a result, we obtain an average 7% improvement over the Careless GRASP. This

behavior is explained with the better accuracy of the fitting procedure in the es-

timation of the productivity. Moreover, the fitting procedure produces estimates

at no cost, because it takes only milliseconds to obtain the optimal solution of the

corresponding model.

Our last computational experiment aims at verifying whether we can obtain a

further improvement with a larger neighborhood size. Table 5.3 contains data for the

comparison between the Careless GRASP and the ANE GRASP with |N(x(k))| =

10 and the fitting procedure. The table shows that, when the neighborhood size

increases, the ANE GRASP with the fitting procedure still outperforms the Careless

GRASP, but its results worsen if compared to the ANE GRASP with a smaller

neighborhood size.

5.5 Conclusions

In this chapter we have studied the same-day Courier Shift Scheduling Problem,

a tactical problem which amounts to minimize the staffing cost subject to proba-

bilistic service level requirements. We have devised an Approximate Neighborhood

Evaluation mechanism in order to explore the search space efficiently. This model

relies on the estimation (via simulation) of a reduced number of parameters, among

which the productivity of a courier. With reference to this parameter we have also

developed two different approaches for its estimation. The first approach is based
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5 – The SSP in the Same-day Courier Industry

on a näıve load assignment scheme, whereas the other procedure fits the ANE model

in the current solution.

Results reported in Table 3.2 indicate that, in a typical same-day courier setting,

the ANE approach combined with a simple load assignment procedure to determine

the productivity performs poorly when compared to a random procedure for the

choice of the neighbor.

On the other hand, as reported in Table 5.3, when using a fitting procedure to

calculate the productivity, the ANE procedure outperforms a random procedure,

resulting in an average cost reduction of 7%, which, in a multi-billion dollars market

like that of couriers, can lead to millions-dollars of savings.

Finally, Table 5.4 shows that the benefits obtained through the ANE model

decrease as the neighborhood size increases.
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Chapter 6

Conclusions and Future Work

In this thesis we discussed various aspects related to real-time fleet management.

In this final chapter we give a short summary of the scientific contributions we

believe have been provided in this thesis. Furthermore, we provide some directions

for future work needed in order to extend the results in this thesis.

6.1 Conclusions

In this thesis we have first studied the Dynamic and Stochastic Traveling Salesman

Problem and devised exact and heuristic waiting policies under the hypothesis that

a probabilistic characterization of the customer requests is available. We have devel-

oped a Markov Decision Process as well as a lower bound based on the availability

of perfect information. We have assessed the value of two waiting strategies against

this lower bound.

In Chapter 3, we have devised a set of a priori routing schemes for use in a

Dynamic Traveling Salesman environment. We have first described a formal dynamic

programming formulation and presented the preliminary results. Then, we have

discussed strategies for implementing a priori routes within this dynamic routing

problem, with the aim to determine whether there is some value in devising involved

strategies for the construction of the a priori routes. Results show that, when the

number if late-request (dynamic) customers is 25% this effort is not worthwhile. On

the other hand, when the number of late-request customers increases to 50%, more

involved procedures offer improvement. In this case, a good choice for an a priori
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6 – Conclusions and Future Work

tour construction heuristic is a strategy which builds the a priori tour as a shortest

path through both the advance- (static) and late-request customers.

In Chapter 4 we have considered the Dynamic and Stochastic Vehicle Dispatch-

ing Problem with Pickups and Deliveries, a problem faced by local area courier

companies serving same-day pickup and delivery requests for the transport of let-

ters and small parcels. We have proposed an anticipatory mechanism which we have

then embedded in both an insertion and a local search algorithm. We tried to keep

the computational effort low through two main features: firstly, the number of de-

mand samples was determined through an IZS procedure that allows to eliminate,

at an early stage of experimentation, those solutions that are clearly inferior; sec-

ondly, we limited the computational effort by applying the sampling procedure to a

short-term horizon whose duration was empirically correlated to the problem data.

Computational results have shown that the anticipatory insertion algorithm provides

consistently better solutions than its reactive counterpart. They have also proved

that, in a typical same-day courier setting, an anticipatory local search procedure

allows to yield only very slight improvements on a simpler anticipatory insertion

policy.

Finally, Chapter 5 introduced the same-day Courier Shift Scheduling Problem, a

tactical problem which amounts to minimize the staffing cost subject to probabilistic

service level requirements. We have devised an Approximate Neighborhood Evalu-

ation (ANE) mechanism in order to explore the search space efficiently. This model

relies on the estimation (via simulation) of a reduced number of parameters, among

which the productivity of a courier. With reference to this parameter we have also

developed two different approaches for its estimation. The first approach is based

on an intuitive load assignment scheme, whereas the other procedure fits the ANE

model in the current solution. Results indicated that, in a typical same-day courier

setting, the ANE approach combined with a simple load assignment procedure to

determine the productivity performs poorly when compared to a random procedure

for the choice of the neighbor. On the other hand, when combining ANE with the

fitting procedure, the ANE procedure outperforms a random procedure and we have

also showed that the benefits decrease as the neighborhood size increases.
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6 – Conclusions and Future Work

6.2 Future work

With respect to the DSTSP, the results we have obtained are based on a number of

assumptions that should gradually be removed. Thus, future work should be aimed

at removing: a) the hypothesis that request occurrence times T1 ≤ T2 ≤ . . . Tn

are sorted in non-increasing order; b) the assumption that the order of service is

given; c) the hypothesis that a customer request may arise at a single time instant.

Moreover, in order to manage real-life instances, it would be interesting to develop

a heuristic to handle as many customers as possible.

Chapter 3 evidenced that, when the number of dynamic customer is high, devis-

ing more involved a priori strategies can offer some value. Thus, in future work, we

are interested in whether or not it is possible to construct good a priori routes such

that, using waiting strategies, we are able to benefit from the ease of managing a

priori routes without sacrificing the cost savings available in purely dynamic strate-

gies. We are also interested in finding an efficient heuristic for the OPTW. The SC

heuristic proposed in Section 3.4 is intuitively appealing, but requires an improved

solution approach to truly assess its value.

In Chapter 4 an anticipatory mechanism for the dynamic and stochastic VDPPD

was proposed. We have based our results on the hypothesis that the requests arrive

according to a known stochastic process. Future work should be aimed at verifying

how robust our approach is whereas demand sampling is based on an approximation

of the arrival process.

Finally, in Chapter 5 we have introduced the same-day CSSP. Future work related

to this problem should extend our approach to consider the case of multiple customer

classes and multiple vehicle types.
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J.I. van Hemert and J.A. La Poutré. Dynamic routing with fruitful regions: Models

and evolutionary computation. In X. Yao, E. Burke, J.A. Lozano, J. Smith, J.J.

Merelo-Guervós, J.A. Bullinaria, J. Rowe, P. Tino, A. Kabáan, and H.-P. Schwe-
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