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Tunable Guided Wave Components using 

POLICRYPS Holographic Gratings 
 
 
 
Introduction 
 
 
 
                 Optical tuneable filters are essential components in the next generation 

Fiber-To-The-Home wavelength division multiplexing optical communication systems 

and in optical sensor systems. Such devices continue to stimulate an extensive 

research activity. The main goal of this is the realization of novel structures, 

characterized by compactness, low cost, high performance and low power 

consumption. Currently also the mature waveguide technology based on LiNbO3, 

characterized by highly efficient electro-optic effect24 and acousto-optic effect25, do 

not allow to overcome problems of too high insertion losses, high fabrication costs, 

and crosstalk. The ideal material able to include efficient externally controlled light 

effects to perform optical modulation, optical switching and other processing functions 

especially in low loss channel waveguides has not realized yet. Silica on silicon is an 

excellent material for passive low loss integrated optic devices, whose fabrication is 

complex and quite expensive. Much attention has been devoted to liquid crystals (LC) 

and composite materials made of liquid crystal and polymers as efficient materials for 

photonic devices.  
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In general LC and composites can be considered as active materials to be combined 

with low loss and reliable passive waveguide technology. Main advantages in using 

LC are their transparency in the near infrared spectrum for any data formats, their 

high birefringence, with refractive index ranging between 1.4 and 1.6 as silica optical 

fibers and low loss optical waveguides. Furthermore mechanical integrity is relatively 

easy to reach because LC do not have moving parts. 

 
 
 
 
3.1 Tuneable Optical Filters  
 
 
 
            Tunable optical filters (TOF) are now key components for wavelength or 

channel selection not only in optical communication systems using wavelength 

division multiplexing (WDM) techniques, but also in fiber optic video broadcast and 

select networks, fiber optic sensing systems, as well as optical spectrometers. 

However, different applications usually require different TOF characteristics, including 

bandwidth, tuning range, tuning speed, insertion loss, polarization dependence, stop 

band rejection ratio, scalability, cost, repeatability and stability.  

In the past decades, a great number of different tunable filter techniques have been 

proposed and developed. Some of them have been extensively studied and have 

achieved great success, at least in WDM telecommunication networks. These tunable 

techniques can be categorized according to the core device being used, into Fabry-

Perot TOF, mode coupling TOF, diffraction grating TOF, and other tunable filters 

including Mach-Zehnder interferometers, ring or disl resonators, waveguide arrays, 

and photonic bandgap (PBG) filters. One of the most important system is the tunable 

filter based on mode coupling. Coupled mode theory is a method that can be used to 

describe the wave behaviour in a perturbed waveguide system by means of the know 

normal modes of the unperturbed system.  
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Based on the mode coupling theory, tunable filters can be constructed using acousto-

optic, electro-optic or magneto-optic effects. The principle diagram of a typical 

structure of a mode coupling tunable filter is shown in fig. 3.1 

 

 

 

 

 

 

 

 

 
Figure 3.1: Tunable filter based on mode coupling 
 
 

Acousto-optic tunable filters (AOTFs)26,27 are the most important mode coupling 

tunable filters. An AOTF consists of an imput polarizer an appropriate acoustic 

transducer, such an x-cut LiNbO3 substrate, and an output polarizer. By changing the 

frequency of the acoustic waves, a corresponding optical wavelength can be selected. 

A typical AOTF has a bandwidth less than 1 nm, a tuning range over 100nm, and a 

tuning speed on the order of microseconds. The distinguished characteristics of 

AOFT are capability of selecting multiple arbitrary wavelength simultaneously if 

multiple frequency acoustic waves are applied, low operation voltage and 

compatibility with integrated optics. The multiple wavelength selection capability is 

very useful in an optical add/drop (OAD) device of WDM networks. Major 

disadvantages in AOTF are: expensive technology, low reliability for large area 

fabrication, high polarization dependence, sensitivity to temperature change and high 

power consumption.   
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3.2 Bragg Grating Filter  
 
 
 
           A Bragg grating can be loosely defined as a periodic structure that scatters 

radiation in a way that generates constructive interference. The concept of 

constructive interference and wave propagation in periodic structures arises in a 

variety of physical situations including periodic antenna arrays, crystal diffraction, and 

even the quantum mechanical interaction of electrons with semiconductor crystal. In 

this work we consider a very simple Bragg grating structures in which light is confined 

to propagate in only one dimension. The one dimensional Bragg grating is a periodic 

structure which coherently reflects light travelling in one direction into the opposite 

direction. The principle of Bragg reflection can also apply to guided wave devices. If a 

periodic perturbation is introduced in the dielectric medium, a portion of the incident 

light can be reflected into the opposite propagation direction. As with other forms of 

Bragg reflection the path difference between reflected light from subsequent grating 

periods must be an integral number of wavelengths. Strongest reflection occurs when 

the path difference is precisely one wavelength, meaning the grating period must be 

one half of the wavelength 

 

                                                              0

2 effn
λ

Λ =                                                         (1) 

 

Here Λ is the grating period, λ0 is the free space wavelength, and λ0/neff is the 

wavelength of light inside of the dielectric material (neff is the effective index of 

refraction of the guiding dielectric structure).  
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The principle of reflection from a Bragg grating in a waveguide structure is illustrated 

in Fig. 3.2. 

 
 
Figure 3.2: A Bragg grating constructed on the surface of an optical waveguide. 
 
 
 
 
 
 
 
3.2.1   Coupled Mode Equations 
 
 
 
           The response of a grating can be calculated by treating the grating as a small 

perturbation of a otherwise normal waveguide. Rather than analyzing the reflection 

from each tooth of the grating separately, we instead treat the grating as a distributed 

reflector, parameterized by a grating strength, κ, which describes the rate at which 

energy is transferred between the otherwise decoupled forward and backward modes. 

In the absence of a grating, the propagation of light in a waveguide can be described 

in terms of the following equations:  
 

                                                          
+ +

- -

d a (z)= + iβa (z)
dz
d a (z)= iβa (z)
dz

−
                                                    (2) 

 
where a+(z) and a-(z) represent the mode amplitudes of the forward and backward travelling 

waves respectively, and β is the propagation constant of the waveguide at a certain 

wavelength.  

z
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The Cartesian coordinate axes have been oriented such that the waveguide points in the z 

direction, and an implicit time dependence of e-iωt has been factored out of all quantities. 

Notice that in the absence of a grating structure, the equations of motion for forward and 

backward travelling waves are completely decoupled. The solution to equations 2 is a pair of 

independent travelling waves in the +z and –z directions. When a grating is added to the 

guiding structure the equations of motion for a+(z) and a-(z) are no longer decoupled. The 

modified coupled mode equations are:    

 

                                                    

+iqz
+ + -

* -iqz
- - +

d a (z)= + iβa (z)+ κe a (z)
dz
d a (z)= - iβa (z)+ κ e a (z)
dz

                                      (3) 

 
The first terms in these equations are identical to those of equations 2, but the second term 

represent the effect of the grating. In the equation 3, κ is a quantity known as the grating 

strength, which is a measure of how much reflection is generated per unit length along the 

grating and q is wave vector of the grating.  
 
 
 
 
3.2.2   Solution of Coupled Mode Equations 
 
 
 
             In solving the coupled mode equations, it is useful to factor out the rapidly 

oscillating components from the mode amplitudes a+(z) and a-(z). The rapid oscillations 

are removed by making the following change of variables:  

 

                                                        + +

- -

i- z2

i+ z2

q
A (z)=a (z)e

q
A (z)=a (z)e

                                                  (4) 

 

A+(z) and A-(z) represent slowly varyng mode envelope functions, after the rapid 

optical oscillations have been factored out.  
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After making this substitution, the coupled mode equations 3  simplify to:  

 

                                                
+ + -

*
- - +

d A (z)=+iδA (z)+κA (z)
dz
d A (z)=-iδA (z)+κ A (z)
dz

                                                  (5) 

 
where δ is a measure of the deviation from the Bragg condition, given by  
 

                                                        
1
2

q πδ β β= − = −
Λ

                                                      (6) 

 

The coupled mode equations for A+(z) and A-(z) can be written in the convenient 

matrix form: 
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A z A zid
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δ κ
κ δ
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                                         (7) 

 

Notice that after changing variables to A+(z) and A-(z), the resulting equations of 

motion comprise a system of coupled linear differential equations. Equation 7 is a 

linear vector differential equation which can be solved in the conventional way by 

computing the eigenvectors and eigenvalues of the system of equations. Using this 

method of eigenvector decomposition, the solution is:  
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where v1 and v2 are the eigenvectors of the system and λ1 and λ2 are the 

corresponding eigenvalues.  
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The eigenvalues and associated eigenvectors are given by:  
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where we have defined the quantity γ as:  
 

                                                             2 2| |γ κ δ= −                                                            (11) 
 
Substituting the eigenvalues and eigenvectors from 9 and 10 into the vector solution in 

equation 3.8, the following simplified solution for the mode amplitudes is obtained:  
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This solution can then written in terms of the original mode amplitude quantities, a+(z) 

and a-(z) by using the relationships given in equations 4 
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3.2.3   Reflection Spectral Response of Bragg Grating 
 
 
 
             Equation 12 is a closed form solution to the coupled mode equations, which 

gives the mode amplitudes at any point z, given the initial forward and backward 

mode amplitudes at z=0. Often, the boundary conditions on a+(z) and a-(z). at z=0 are 

not simultaneously known. Consider a grating extending from z=0 to L, with some 

signal incident from the left. The two boundary conditions for this problem are that no 

signal is incident from the right hand side of the grating (a–(L) = 0), and that some 

known signal is incident from the left (a+(0) = 1.) From these two boundary conditions 

we wish to derive the transmission and reflection coefficients for the grating segment. 

Substituting these boundary conditions into the matrix equation 13 gives: 
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          (14) 

 

where r and t represent the amplitude reflection and transmission coefficients of the 

grating, respectively. Equation 14 represents two linear equations with two unknown 

quantities, r an t. It is straightforward to solve for r(δ) from second equation.  
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The quantities γ and δ are defined in equations 6 and 11. The case δ=0 corresponds 

to an incident signal whose wavelength meets the Bragg condition. When δ=0, the 

magnitude of the reflection coefficient simplifies to:  
 

                                                         |r(δ=0|2 = tanh2(|κ|L)                                                       (16) 
 

Figure 3.3 plots the reflection spectrum |r(δ=0)|2 of a Bragg grating for several κL 

values. 

 
Figure 3.3: Reflection spectra from Bragg gratings with different κL values. 
 
 
As we can see, for small κL values, where κL represented the deviation from the 

Bragg condition, the spectral response has a sinc-shaped response while for large κL 

the response has a plateau shape.  
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3.2.4  General Properties of Waveguides 
 
 
 
           The propagation of light in a waveguide is described by Maxwell’s equations, 

which govern all electromagnetic phenomena. When describing electromagnetic 

propagation in lossless dielectric media, it is convenient to express Maxwell’s 

equations in the following form:  

 

                                                              ( )
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ik

                                                (17) 

 

where E and H are the electric and magnetic fields respectively, and n(r) is the 

dimensionless index of refraction which for a waveguide is a function of position. In 

lossless materials n(r) is a positive real quantity, ε0 and μ0 are the permittivity and 

permeability of free space. We will consider only non-magnetic materials, for which 

μ=μ0. The form of Maxwell’s equations given in equation 4.1 applies only in source 

free regions of space, where there is no free current or charge (J=0 and σ=0).  

A dielectric waveguide structure is completely specified by the refractive index profile 

n(r). Typically, the Cartesian axes are chosen such that the waveguide points along 

the z direction, meaning that n(r) depends only on the Cartesian coordinates x and y, 

but not on z 

 

                                                          n(r)= n(x,y)                                                      (18) 

 

The geometry of a uniform waveguide is described completely by the two dimensional 

index profile n(x,y). 
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Figure 3.4 illustrates one example of an optical waveguide structure: 
 
 

 
Figure 3.4: Optical waveguide structure 
 
 
 

The waveguide is composed of a core region with index of refraction ncore surrounded 

by a cladding region with index nclad. In solving the electric and magnetic fields in a 

waveguide structure, we first assume solutions which represent travelling waves in 

the z direction:  
 

                                                            E(x, y, z)=e(x, y)eiβz 

                                                                                                                                                                                                                         (19) 

                                                            H(x, y, z)=h(x, y)eiβz 

 

Where β describes the propagation constant in the z direction. Positive values of β 

correspond to light propagating in the positive z direction, while negative values of β 

correspond to light travelling in the reverse direction. When these equations are 

substituted into  
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Maxwell’s equations (17), the following vector wave equations are obtained after 

some algebra28,29,30:  
 

))ln()(ˆ()( 22222 nikn ⊥⊥⊥ ∇⋅+∇−=−+∇ eze ββ  
                                                                                                                                                (20) 

))ln(())ˆ(()( 22222 nikn ⊥⊥⊥ ∇××+∇=−+∇ hzh ββ                       
 

Equation 20 is the vector wave equation for light propagation in a guiding dielectric 

structure. The six field components of e and h in this equation are not independent. 

Often the index profile n(x,y) is a piecewise constant function, meaning that when 

viewed in cross section, the waveguide is comprised of a finite number of regions, 

each of which has a uniform index of refraction. It is a good approximation to treat the 

index of refraction profile as a series of piecewise constant regions. For cases where 

the index of refraction can be expressed as a piecewise constant function of x and y, 

the complicated equation 20 is zero everywhere excepted on the boundary between 

regions. Within a given region i, it is possible to simpler the equations 20:  
 

( ) 02222 =−+∇ eβknixy  

                                                       ( ) 02222 =−+∇ hβknixy                                                (21) 
 

where ni is the index of refraction of the ith region. These equations have well know 

solutions, which can be written in terms of sine’s, cosine’s, or other harmonic 

functions. Once the form of the solutions in each region are known, the entire 

electromagnetic field profile can be found by piecing together the solutions in each 

region in such a way that the electromagnetic boundary conditions are satisfied at the 

interface between regions.  
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The electromagnetic boundary conditions at the interface between two dielectrics can 

be derived from Maxwell’s equations31: 

 

( ) 0ˆ =×− nee 12  
( ) 0ˆ =×− nhh 12  

 ( ) 0ˆ2
1

2
2 =⋅− nee 12 nn  (22) 
( ) 0ˆ =⋅− nhh 12  

 

The first two equations state that the components of the electric and magnetic field 

which are parallel to the boundary surface must be continuous. The last two 

equations state that the normal component of the magnetic field must be continuous 

across the interface. We can classify the solutions to equation 21 in a given region as 

either oscillatory or exponential in nature, depending on the value of the propagation 

constant β. When β<kni, the fields will be oscillatory in nature, expressed for example 

in terms of sine’s, cosine’s, etc. When β> kni, the fields will be growing or decaying in 

nature, expressed for example in terms of exponential functions, hyperbolic functions, 

etc. Generally, the fields in waveguide structures are oscillatory over a finite region 

near the center (or core) of the waveguide and decay to zero outside of this region 

where the surrounding index of refraction is lower. For this reason, all practical 

waveguide structures consist of a core region surrounded by a cladding region which 

has a lower index of refraction. In order for the light to be confined or bound in the 

guiding structure, the propagation constant β must satisfy:  

 

                                                              ncladk<β<ncorek                                                           (23) 

 

where ncore and nclad represent the minimum and maximum values of the index 

refraction profile n(x, y). It can be shown that the modes of a waveguide can be 

divided into two classes: TE modes, in which ez=0, and TM modes in which hz=0.   
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There are different kinds of optical waveguide. The optical fiber is used for long 

distance communication which is engineered so that the structure supports only one 

bound optical mode for each polarization. The core and cladding regions are both 

constructed of glass materials and the index change is achieved by modifying the 

impurities in the glass. Single mode optical fibers typically have core diameters 

ranging from 3-10 μm, and cladding diameters ranging from 50-125 μm. It is important 

to recognize that because the circular symmetry of the optical fiber, there is no 

preferred polarization direction for the fundamental mode. Integrated waveguides 

differ from fiber-optic cables in that the integrated waveguide is fabricated on a planar 

substrate using lithographic techniques. This geometry has some advantages over 

the fiber configuration, the greatest potential advantage being that the optical 

waveguide could in principle be integrated with other electronic or optical components 

in the communications system. In addition the planar geometry allows for good control 

of the waveguide dimensions.  However the optical attenuation per unit length of even 

the best integrated waveguides is still an order magnitude higher than that of optical 

fiber. One of the simplest waveguide geometries is the channel waveguide, which 

consists os a rectangular core region, surrounded on all sides by a cladding region. 

Glass is often used as the raw material for fabricating passive optical waveguides. 

One advantage of glass is that it is identical to the materials used construct common 

optical fibers. Due to the match in index of refraction, it is possible to couple efficiently 

from a fiber into a glass waveguide. When used for constructing integrated Bragg 

grating filters, another advantage of using glass waveguides is that they places less of 

a demand on the nanolithography technology, 
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3.2.5  Coupling of Modes with a Grating 

 
 
 
           Now, we consider the problem of a periodic waveguide structure. The modal 

analysis of waveguides presented in this assumes that the dielectric waveguide is 

described by an index profile n(x,y) that is independent of z. However, for a grating 

structure the index of refraction is a periodic function of z. Often, the grating can be 

treated as a small perturbation on top of an otherwise z-independent waveguide, in 

which case the effect of the grating is to couple the otherwise independent forward 

and backwards travelling waves of the waveguide32. Coupled mode theory describes 

how this coupling occurs, and relates the coupling parameters to the geometry of the 

waveguide and grating. The grating in the surface of a waveguide can be treated as a 

perturbation of an otherwise uniform waveguide. The unperturbed index of refraction 

is denoted n(x,y).  Generally, the unperturbed waveguide specified by n(x,y) has a 

series of forward and backward travelling modes.  

 

                                         zieyxzieyxyxn mm ββ ),(,),(),(2
mm he→                                 (24) 

 

The perturbed waveguide is described by a modified index of refraction 

n2(x,y)+δε(x,y,z), where δε(x,y,z) is a perturbation of the waveguide structure. The field 

solutions for the perturbed waveguide are denoted E and H. 

 

                                                        HE,→+ ),,(),(2 zyxyxn δε                                    (3.25) 
 

In coupled mode theory, we treat E and H. as a linear superposition of the 

unperturbed waveguide modes.  
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The summation index n extends over all of the forward and backward travelling bound 

modes of the system. For this analysis, we shall take n be a non-zero integer which 

numbers the bound modes of the waveguide. Negative values of n correspond to 

backward travelling modes, and positive values of n correspond to forward travelling 

modes. Coupled mode theory seeks to replace Maxwell’s equations with a set of 

coupled ordinary differential equations describing the coefficients an(z). Consider the 

vector quantity F, defined as 

 

                                                      ( ) zmie β−∗∗ ×+×= HehEF mm                                      (27) 

 

em and hm are the modal fields of the mth eigenmode of the unperturbed waveguide. 

These eigenmodes are solutions to Maxwell’s equations with the unperturbed index 

profile n(x,y). Similarly, E and H are the electromagnetic fields of the perturbed 

waveguide. If we apply the divergence theorem to the vector F over an infinitesimally 

thin slab which spans the x-y plane at a location z, we arrive at the identity: 

 

                                                       ∫∫ ∫∫ ⋅∇=⋅
∂
∂ dAdA
z

FzF ˆ                                                (28) 

 

The divergence term F⋅∇  in the left-hand side of equation 28 can be calculated 

using equation 3.27, noting that the fields satisfy Maxwell’s equations 17: 
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Equation 28 then becomes: 
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The coupled mode equations are found by substituting the mode expansion 26 into 

equation 30, making use of the orthogonality relationship. This yields: 
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where the upper sign is used when m represents a forward travelling mode and the 

lower sign is used when m is negative. Equation 30 describes a system of coupled 

first order ordinary differential equations which govern the expansion coefficients 

am(z). Coupled mode theory effectively replaces Maxwell’s equations which describe 

the electromagnetic fields with a series of coupled differential equations which 

describe how the expansion coefficients evolve. If we let δε = 0 in equation 30, the 

right-hand side vanishes and the equations of motion become: 
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Thus, in the absence of a perturbation, the expansion coefficients are decoupled, and 

the solution for am(z) is a travelling wave in the z-direction, as expected. For a 

waveguide that supports only one bound mode, equation 30 reduces to a pair of 

coupled differential equations which relate the forward and backward travelling mode 

amplitudes, denoted a+(z) and a–(z): 
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where β is the propagation constant of the forward travelling mode and g(z) is a real-

valued, periodic function of z, given by: 
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For a Bragg grating, the perturbation δε(x,y,z) is a periodic function of z. The function 

g(z) in equation 33 can be expressed as: 
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where the quantity K is defined as: 
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The integral in equation 35 is carried out only over the cross sectional region of the 

waveguide where the grating is located. Outside of this region, the function δε(x,y,z) is 

zero. To simplify the coupled mode equations, it is useful to expand the coupling 

coefficient g(z) in terms of its Fourier components: 
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Evaluating the Fourier coefficients in equation 37 gives: 
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Substituting the Fourier expansion of equation 35 into the coupled mode equations 32 

gives: 

 

                              
...)()()(

...)()()(

2

10

2

10

+−−=⎟
⎠
⎞

⎜
⎝
⎛ +

+++=⎟
⎠
⎞

⎜
⎝
⎛ −

Λ
−

+−−−

Λ
+

−++

zi

z
i

ezaigzaigzai
dz
d

ezaigzaigzai
dz
d

π

π

β

β
                                  (39) 

 

In the above equation, only the significant Fourier terms have been included in each 

of the coupled mode equations. The effect of the g0 terms in equation 39 is to slightly 

modify the propagation constant of the waveguide, so that the perturbed waveguide 

behaves as if it had a propagation constant βnew given by: 

 

                                                         βnew = βold + g0                                                                                                 (40) 

 

Often the unperturbed waveguide geometry is deliberately chosen so that the 0th 

Fourier coefficient is zero, in which case there is no first-order change in the 

propagation constant of the waveguides. In either case, equation 39 reduces to the 

form: 
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In the absence of a grating, the solution for a+(z) is e+iβz  and the solution for a-(z) is  

e-iβz . If the grating period is selected so that π/Λ≈β, the grating can cause coupling 

between the forward and backward modes. The condition π/Λ≈β is know as the Bragg 

condition. To complete the analysis, we define the coupling κ in the following way:  
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Substituting equation 41 into 40 gives: 
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The phase of the coupling constant κ in equation 42 depends upon how the grating is 

placed relative to the z=0 origin. If we consider a guiding structures the bound modes 

can be sufficiently described with a single scalar quantity Φ(x,y), representing one of 

the transverse field components of the mode. Then, the bound power P of the mode 

is given by: 
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By substituting the above equation into equation 42 we obtain the following 

expression for the grating strength κ in terms of the scalar field Φ(x,y): 
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where the quantity Г  is a dimensionless overlap integral given by: 
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The factor Г defined in equation 46 is a measure of how much the optical mode 

overlaps with the grating region. The integral in the numerator of equation 46 is 

carried out only over the grating region whereas the integral in the denominator 

extends over the entire cross-sectional plane. 

 

 
 
 
 
 
3.3  Ion-Exchanged Glass Waveguide 
 
 
 
           Ion exchange has been considered one of the most important techniques for 

glass waveguide fabrication33 for integrated optical devices, such as wavelength 

division multiplexer/demultiplexer, the power splitter/combiner, and the optical filter. A 

two-step K+-Na+ and Ag+-Na+ ion-exchange technique is introduced to fabricate 

single-mode channel waveguides in BK7 glass for the telecom-wavelength region. 

During the first ion-exchange step, bare glass wafers are dipped into a pure KNO3 

melt to conduct the K+-Na+ ion exchange. The Na+ ions in the surface region of the 

glass will be interchanged by the K+ ions from the KNO3 melt through thermal 

diffusion. The K+ ions will cause a higher refractive index than the Na+ ions. The ion-

exchange temperature and the time of this step must be chosen to make sure that the 

depth and the refractive-index increase in the K+ ionic layer are not large enough to 

support any waveguide mode. After the first ion-exchange step, a standard 

photolithography process is applied to constructing masking patterns on the glass 

wafers. 
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Then we immerse these glass wafers into an AgNO3 melt to perform the Ag+-Na+ ion 

exchange. In fact, during the first step, the K+-Na+ ion exchange is not complete; a 

small percentage of the Na+ ions is left in the K+ layer. Therefore the Ag+ ions can 

diffuse into the glass in the unmasked regions through the K+ layer. Usually the 

temperature during the second step is much lower than that of the first step, at which 

the diffusivity of the K+ ions is very low; thus the K+ ionic layer does not change during 

this step. Because the Ag+ ions cause a much higher refractive index increase than 

the K+ ions, the index peak is actually below the K+ ionic layer. As a result, buried 

waveguides are obtained. 
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3.4 A Waveguided Tunable Bragg Grating Using Composite 
Materials 

 
 
 
           A novel, compact and low cost tuneable and switchable guided wave optical 

filter using a holographic Bragg grating as the optic field perturbation element has 

been realized. The grating is made by alternate μ-slices of cured UV polymers and 

electrically controlled nematic liquid crystals, known as POLICRYPS9 (POlymer LIquid 

CRYstal Polymer Slices) and it is used as overlayer of a double ion-exchanged glass 

single mode channel optical waveguide. We use a K+-Na+/Ag+-Na+ double ion-

exchanged process in BK7 glass to obtain low losses (< 1 dB/cm) and high index-

contrast (Δn ≅ 0.04) optical waveguides 

. 

 
 
Figure 3.5: Tridimensional view of a waveguided optical filter using POLICRYPS grating as a cladding 
of an ion-exchanged optical waveguide. 
 

 

The structure of the device, sketched in Figure 3.5, includes coplanar electrodes 

deposited above an optical buffer, consisting of a spin-on-glass material, which has a 

refractive index of 1.4. The optical buffer is assumed thick enough so that the effects 

of the electrodes on the propagation of light can be neglected.  
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The polymer used for the POLICRYPS is NOA 61, whose refractive index at λ0= 1550 

nm is nP= 1.5419, and the NLC is 5CB, whose ordinary and extraordinary refractive 

indices are respectively 1.5108 and 1.6807 at 20°C. The waveguide is monomode at 

λ0= 1550 for refractive index of the NLC near to the one of the polymer. The boundary 

conditions imposed by the confining walls of the polymers in the POLICRYPS ensures 

that the LC alignment is along the z-axis as illustrated in figure 3.6  

 

 
 
Figure 3.6: Top view of the filter showing the polymer-liquid crystal interface both without and with 
applied voltage. 
 
 

In fact in the absence of external electrical field, the director of the LC molecules is 

aligned orthogonally to the Polymer/LC interface (homeotropic alignment). A TE 

optical field propagating along (Oz) will see the ordinary index no of the NLC. 

Applying an external electrical field (see right-hand side of Figure 3.6), the molecules 

rotate in the plane (yz) and the TE optical field will see a refractive index n between 

no and ne. 
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The index mismatch between the polymer and liquid crystal slices can be varied by 

varying the external electrical field, letting the Bragg grating appear and opening a 

photonic band gap in the transmission curve. The index mismatch influences the 

optical path length therefore the position of the gap given by the Bragg relation, 

mλ=2nΛ, m being the grating order, n being an average refractive index and Λ being 

the grating period, the gap width and the transmission minimum. Figure 3.7 shows the 

optical setup used to investigate the optical propagation through the filter and in 

particular to evaluate the reflection optical response.  

 

 
 
Figure 3.7:. Set-up for the reflection optical response of the filter 
 

A broadband source based on spontaneous emission of an erbium doped fiber 

amplifier was connected to a pigtailed polarization controller in order to characterize 

the optical response of the filter in the 1530-1565 nm band. The polarization controller 

consists in a series of three waveplates, a half wave plate sandwiched between two 

quarter wave plates, which allow to linearly polarize the broadband source light signal 

and to rotate the polarization without power variation.  
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The optical signal coming from the second port of the circulator was connected to a 

single mode optical fiber, terminated with a cleaved face to couple light into the 

guided wave optical filter. The signal reflected by the filter, is routed to an optical 

spectrum analyzer by the circulator through its third port. The transmission spectrum 

was obtained by coupling both the filter input and output to two cleaved fibers without 

using the circulator. Before coupling the cleaved fiber with the optical filter, the state 

of light polarization injected into the sample was measured by means of a polarizer.  

 

 
 
Figure 3.8: Typical filter optical transmittance measured response. by means of an optical spectrum 
analyzer. 
 

 

Figure 3.8 shows a typical transmission spectral response of this novel tuneable 

optical filter with a 20 dB suppressed signal at the designed Bragg wavelength of 

1549 nm with a band at –17 dB of about 1 nm. By applying a square wave voltage of 

1 kHz to the filter electrodes, tuning of the optical response was observed.  
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Figure 3.9 shows the reflection optical response of the filter for different driving 

voltages.  

 

 
Figure 3.9: Tuning of the filter reflection response 
 

A tuning range of ≅ 4 nm was obtained by applying a square wave of about 40V of 

amplitude. The resulting device is the demostration of  a simple and inexpensive 

technology to make integrated optic functional components on glass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


