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Chapter 1

Magnetohydrodynamic
turbulence

1.1 The magnetohydrodynamic description of

plasmas

1.1.1 The descriptions of plasma

Plasmas are gases composed mainly by charged particles, representing the

“fourth state” of the matter. Even if plasmas are very rare on Earth (for

example, the channels electric discharges go through, as in lightenings), about

99% of the matter in the universe is in the state of plasma.

The dynamic of a plasma is rather complex, due to the electromagnetic

nature of the interactions between the charged particles composing the gas.

Nonetheless, it can be described, using sets of equations, at different ap-

proximation levels (Akhiezer et al., 1975). Before introducing the magneto-

hydrodynamic description of a plasma, it is useful to define some quantity

which can characterize the state of the plasma. Let us reduce, for the sake of

semplicity, to two kinds of particles, namely electrons (e) and a single kind of

positive ions (i, mainly protons). Let ne,i be the density of the particles, me,i

their mass, and e the electron charge. Then:

• The typical particle velocity can be represented by their thermal veloc-

ity:

ve,i ≃
√

kBTe,i/me,i ,
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where Te,i are the average temperatures of the particle gases, and kB is

the Boltzmann constant.

• The electron plasma frequency is the typical oscillation frequency of a

plasma seen as an oscillator, and its reciprocal gives the typical sepa-

ration time between charges:

ωpe ≃
√

4πnee2

me

.

The ion plasma frequency can also be defined, using the ion mass,

density and charge.

• The Debye lenght is the ratio between the thermal speed of electrons

and the plasma frequency:

λD ≃ ve

ωpe

≃
√

kBT

4πnee2
,

and is the typical shielding lenght of the charges. In fact, it represents

the balance lenght between thermal and electrostatic effects, so that for

scales larger than λD, the plasma can be seen as electrically neutral.

• The cyclotron frequency of electrons and ions is defined if an external

magnetic field B is present, which is often the case in plasmas. In

that case, the frequency at which electrons and ions turn around the

magnetic field lines is

Ωe,i =
eB

cme,i

c being the speed of light.

• The parameter β = (8πp)/B2, p being the kinetic pressure, is the ratio

between the kinetic and magnetic pressures. It is useful to describe the

state of magnetization of the plasma, and to individuate if magnetic or

kinetic effects are predominant in the dynamic.

All these quantities can be used to describe the conditions of the plasma,

and to use approximations, in order to semplify the equations in the different
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Plasma T (K) ne B (Gauss) λD (cm) ωpe (Hz) Ωi (Hz)

SC 106 106 102 10 108 109

SW 105 10 10−4 103 105 103

MS 108 1 10−3 105 105 104

IS 103 1010 1 10−3 1010 107

IM 104 1 10−5 103 105 102

Table 1.1: Typical values of some parameters for different kinds of astrophysical
plasmas. SC = Solar Corona; SW = Solar Wind at 1 AU; MS = Magnetosphere;
IS = Ionosphere; IM = Interstellar Medium.

regimes. Typical values of the previous quantities in different plasma systems

are displayed in the Table 1.1, revealing the extremely wide range in which

they lay. The Figure 1.1 illustrates different examples of plasmas in a density-

temperature diagram.

1.1.2 The magnetohydrodynamic description

Since plasmas can be seen as gases, a statistical description seems to be the

more appropriate. The presence of electromagnetic interactions is a further

complication of the dynamic of the system. However, it is often possible to

look at the plasma as a non neutral fluid, when the scales involved are large

enough to forget about, for example, the collisions between particles.

At the most detailed level, the evolution of the distribution functions of

the different kind of particles are described by the Liouville equation. Using

some assumption the Vlasov equation can be obtained, and used to describe

the dynamics, together with the Maxwell equations. The particle densities

and their velocities, as well as higher order moments, can then be obtained

by integration of the distribution functions. This kind of approach is useful

when a microscopic description of the system is needed. Collisions between

particles are taken into account at this level.

Very often one is interested in a large scale description of the plasma,

neglecting the effects of particles collisions, and considering the dynamics of

each single kind of particles as a whole. When this is the case, the so called

fluid description can be used. In this picture, the plasma can be seen as
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Figure 1.1: Temperature-density diagram showing different plasma regimes. in-
terstellar gas (IG), gas nebulæ (G), ionosphere (I), solar chromosphere (SA),
arc discharge (AD), solar corona (SC), active galactic nuclei (AGN), magnetic
fusion (MF), X-ray source star (X), inertial fusion (ICF), solar interior (SI),
metal (M), Jupiter interior (J) and white dwarf (WD).
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a superposition of interacting fluids, each one composed of a single kind of

particles, and thus each one obeying to a (non-closed) set of fluid-like equa-

tions. Non-collisionality of the plasma requires termalization, so that the

distribution functions of the particles can be approximated by Maxwellians.

Of course this can be only done if the dynamical time scales are larger than

the typical termalization time. This condition is referred to as local termo-

dynamical equilibrium (LTE). In that case, conservation laws can be written,

by integration of the Vlasov equation, for the moments of the particle dis-

tributions, leading to the set of the moment equations. For each particle

species, these are the conservation laws for mass, moment, energy and so on.

A closure hypothesis, as for example a state equation, is required to close

the hierarchy of the moment equations. Moreover, the Maxwell equations,

together with the Ohm’s law, are needed in order to describe the electromag-

netic interations.

Still, the fluid equations are quite difficult to use, and further approxima-

tions can be made in order to semplify them. This can be done if some as-

sumptions are satisfied, leading to the magnetohydrodynamic (MHD) descrip-

tion of a plasma. First of all, the particle involved are electrons (of mass me)

and protons (of mass mp), or even heavyer ions. Since mp ∼ 2000me, it is

clear that terms containing me/mp can be neglected with respect to unity or

mp/me. This corresponds to ignore the inertia of the electrons in the flow. In

a plasma, electrons and protons can interact through coulomb interactions, so

that particles oscillate at their plasma frequency ωp. We consider now large

time scales, at which we do not “see” the plasma oscillations. The plasma can

then be seen as a proton fluid, described by a fluid-like equation, “followed”

by an electron current obeying the Ohm’s law. The current follow the flow

with a delay of the order of the separation time, which is not detectable, so

that we can neglect it. For time scales larger than the reciprocal of the elec-

tron plasma frequence, and for spatial scales larger than the Debye lenght,

the quasi-neutrality of charge is assured and the plasma can be considered

as electrically neutral. Finally, when nonrelativistic regime is concerned, all

the contributions of order (v/c)2 can be neglected in the equations. The

conservation laws can then be written for the mass density ρ, flow velocity v
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and internal energy per mass unit U of the protons (Akhiezer et al., 1975):

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.1)

ρ

[

∂

∂t
+ (v · ∇)

]

v = f − ∇p+ ∇ · σ (1.2)

ρ

[

∂

∂t
+ (v · ∇)

]

U = −p(∇ · v) − ∇ · q +
∑

i,j

σij
∂vi

∂xj
+Q . (1.3)

In previous equations, f represents the sum of the external forces acting on

the magneto-flow per unit mass. The term σ is the stess tensor excluding the

kinetic pressure p contribution, which is treated separately. The term q is

the heat flux, and Q is the heat produced inside the system. In many cases,

as for the plasmas treated whithin the present work, the only force involved

is the Lorentz force. In fact, other kinds of forces, as the gravitational one,

are negligible with respect to the electromagnetic interactions. In this case,

the force term can be written as:

f =
1

c
J ×B . (1.4)

where the quasi-neutrality has been used to drop the electric field contribu-

tion to the force, that is to use the Laplace force. The same arguments hold

for the heat terms, so that the Joule effect is often the only internal source

of heat. It is worth mentioning again that the previous equations are not

closed. In fact, a closure hypothesis is needed. It is often possible to use a

state equation, so that the number of unknowns is reduced and the system

is closed. For example, if the plasma behaves like a perfect gas, the state

equation p = kBρT/m can be used to eliminate the kinetic pressure from the

equations.

The moments equations must be coupled to the Maxwell equations to in-

clude the electromagnetic properties of the plasma. In case of quasi-neutrality

of charge, and in non-relativistic regime, the Maxwell equations become:

∇ · E = 0 (1.5)

∇ ·B = 0 (1.6)

∇ × E = −1

c

∂B

∂t
(1.7)
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∇ × B =
1

c

∂E

∂t
+

4π

c
J (1.8)

where E and B are the electric and magnetic fields respectively, ρc is the

charge density and J the current density. The Ohm’s law, in the MHD

framework, is rewritten in its generalized form as:

E +
1

c
v ×B = η∇2B . (1.9)

where η is the resistivity of the plasma.

The Laplace force (1.4), the last Maxwell equation (1.8) and the Ohm’s

law (1.9) can be now used to rewrite the conservation laws. The mass con-

servation law (1.1) remains invariate, and so does the energy conservation

law (1.3), as far as we don’t use any state equation. The impulse conserva-

tion law, also called the Newton equation, become

ρ

[

∂

∂t
+ (v · ∇)

]

v =
1

4π
(∇ × B) × B − ∇p+ ∇ · σ (1.10)

The Maxwell equation (1.7) is used to describe the evolution of the magnetic

field. In the MHD framework, it can be rewritten as

∂B

∂t
= ∇ × (v ×B) +

c2η

4π
∇2B (1.11)

and is called the induction equation.

Equations (1.1), (1.10), (1.11) and (1.3) are the full set of the MHD

equations, and together with the remaining Maxwell laws, the Ohm’s law,

and a state equation for the closure, can be used to describe the dynamics of a

plasma in the magnetohydrodynamic approximation. It is worth noting that

the unknowns ρ , p , B , v are seen in a reference frame comoving with the

flow, and represent the fields as average over volumes of space smaller than

the scales we want to study, but larger than the collisional scales (∼ λD),

as required for MHD to be valid. It is clear that the heat terms q and Q,

as well as the stess tensor σ, could introduce new variables in the equations,

and thus need to be modeled in order to solve the equations.

The MHD equations own a similar structure to the Navier-Stokes equa-

tions (NS), which describe the dynamic of a fluid. The main characteristic of
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both sets of equations is the presence of non-linear terms, but the MHD equa-

tions have extra terms describing the coupling between velocity and magnetic

field. As will be discussed in the following, these nonlinearities lead to scaling

of the equations, which is prelude to turbulence.

1.1.3 The incompressible case and the Elsässer varia-
bles

As for the NS equations in the fluid case, the MHD equations are strongly

simplified if the flow is incompressible, that is if the density is a constant, ρ =

constant. The mass conservation law become simply the incompressibility

condition ∇ · v = 0. The energy conservation equation can also be dropped.

Let us introduce the following new variable

b(r, t) =
B√
4πρ

.

In the incompressible case, since ρ is constant the field b is proportional

to the magnetic field B only, but with the dimension of a velocity. Using

incompressibility, replacing the magnetic field with the field b, and intro-

ducing the kinematic viscosity ν and the magnetic diffusivity µ = c2η
4πρ

, the

(incompressible) MHD equations can be written in the simpler form:

∂v

∂t
+ (v · ∇)v = (∇ × b) × b− ∇p+ ν∇2v (1.12)

∂b

∂t
= ∇ × (v × b) + µ∇2b (1.13)

∇ · v = ∇ · b = 0 . (1.14)

The previous equations can be compacted introducing the Elsässer variables

(Elsässer, 1950):

z± = v ± b (1.15)

The Elsässer variables are useful when we want to study, for example, the

correlation between the fluctuations of velocity and magnetic field. Using

these new variables, the MHD equations become

11



∂z±

∂t
+ (z∓

· ∇)z± = −1

ρ
∇

(

p+
B2

8π

)

+
ν + µ

2
∇2z+ +

ν − µ

2
∇2z− (1.16)

∇ · z± = 0 (1.17)

This is a very compact, symmetric set of four equations. It is worth noting

that the nonlinear term is proportional to both variables, so nonlinearities

vanishes if one of the Elsässer fields is zero, that is the solution z∓ = 0 and

z± 6= 0 is a result of the nonlinear equations. In case of vanishing magnetic

field, the two “+” and “–” equations (1.16) become identical, as well as the

two equations (1.17), and the NS equations are recovered.

1.2 Scaling and turbulence

1.2.1 The Reynolds number

The nonlinear structure of the MHD equations lead to turbulence. In the

framework of turbulence phenomenology, it is possible to individuate, within

the MHD equations, different terms whose contribution to the dinamics de-

pends on the particular regime. In particular, nonlinear terms and dissipa-

tive ones are present. In fluid dynamic, the usual way to look at the balance

between these terms is by the so called Reynolds number Re. As a phe-

nomenological approach is required, let us introduce some typical values for

the main variables in the MHD equations. So, let ℓ0 be a typical lenght scale

of the system, v0 and B0 typical (average) velocity and magnetic field. It is

useful to introduce the Alfvèn velocity

cA =
B0√
4πρ

representing the typical propagation velocity for Alfvèn waves (see for ex-

ample Akhiezer et al., 1975). By dimensional analysis, the nonlinear term

(v · ∇)v of the MHD equations (or the NS equations) is then ∼ v2
0/ℓ0. For

the dissipative term in the same equation, ν∇2v ∼ νv0/ℓ0, so that the ratio

12



between the two terms gives the (kinematic) Reynolds number:

Rv =
ℓ0v0

ν
.

In analogy, a magnetic Reynolds number is also defined as

Rm =
ℓ0cA
µ

.

For low Reynolds numbers, it is clear that the (linear) dissipative terms

dominate the dynamics. The nonlinear interactions are small enough for the

equations to be linearized, and thus solved. In fluid dynamics, this is referred

to as “laminar” regime. As the Reynolds numbers reach or overcome unity,

the nonlinear terms become important. The effect of the presence of such

terms is easily seen looking at the frequency representation of the equations

(for example, in the Fourier decomposition). In that case, the nonlinear term

can be represented as

(v · ∇)v → (vk1
· ik2vk2

)

so that interactions (energy exchanges) between the different wave vectors

k1 and k2 are permitted in a triangular way, so that a new wave vector is

involved, k1 + k2 = k (see Dobrowolny et al., 1980).

1.2.2 The turbulent cascade

In fluid dynamics, one of the main features of turbulence is the presence of

singular structures, as for examples vortices (or eddies). At low Reynolds

numbers, as the nonlinear terms begin to be non-negligible, large turbulent

structures are formed at some typical scale ℓ0 (for example the size of an ob-

stacle in a flow, or the mesh size of a grid, or the distance between the walls

in a channel). As the Reynolds number increases, the energy is transferred

from largest vortices to smaller and smaller structures, because of the non-

linear interactions. When the Reynolds number is larger than some critical

value, the flow is said to be in fully developed turbulence regime. In these

conditions, the fields are highly chaotic, with overlapping of different struc-

tures over a whide range of scales. In fully developed turbulence it is possible
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to individuate three different ranges of scales. The large scales, at which the

energy is injected into the system from some external forcing, are called in-

tegral scales. The scales at which the dissipation is dominant belong to the

dissipative range. Between these two ranges, in which the dynamics is linear,

the dominant term in the equations is the non-linear term, so that energy

transfers between different wave-vectors are dominating the dynamics. This

range of scales is usually called “inertial range”1.

This idea has been first visualized in the simple picture of an energy cas-

cade by Richardson (1922). Figure 1.2 is a representation of such cascade.

In this framework, the energy is injected in the sistem at the integral scale

(the large scale ℓ0 in the picture) at some rate ε. Since non-linear interac-

tions are present, such energy “cascades” through a hierarchy of smaller and

smaller structures within the inertial range. In the Richardson picture, the

energy transfer is assumed to have the same rate ε as the energy injection.

At smaller scales the dissipation become dominant so that the cascade is

eventually stopped and the energy is dissipated, always at rate ε.

1.2.3 The field increments

The energy cascade through the scales can be labeled introducing a scale

dependent Reynolds number, simply using a scale ℓ, and the typical fields vℓ

and bℓ associated with such scale:

Rv(ℓ) =
ℓvℓ

ν
Rb(ℓ) =

ℓbℓ
η
.

These numbers allow to estimate the scale at which the dissipative terms of

the equations (MHD or NS) become dominant with respect to the nonlinear

terms, and the cascade is stopped. The usual tool to study the turbulent

cascade is by way of the field increments. Given a field ψ(r) one can define

the following variables:

δψℓ(r) = ψ(r + ℓ) −ψ(r) . (1.18)

1Due to the shape of the nonlinear terms of MHD equations, in MHD this picture is
real only when the correlations between velocity and magnetic field v · b are small.
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Figure 1.2: A schematic picture of the Richardson cascade. The hierarchy of
structures represents the non-linear transfer of energy between different scales.
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Figure 1.3: A schematic image showing how the field differences can be used to
represent the presence of vortical structures. In fact, in correspondence of such
structures, the velocity increment computed at the scale of the structure is high
when, the velocities being directed in opposite directions at the edges of the eddy.

As can be easily understood, these variables can give informations about the

presence of structures in the field at a given scale ℓ (see Figure 1.3), and can

be used as typical field values to compute the Reynolds numbers. The field

increments are stochastic variables, and a statistical approach is needed.

1.2.4 Energy spectra

We will now introduce some well known concepts in order to point out the re-

lationship between the classical tools used for the analysis of turbulent fields.

Given a stochastic field ψ(r), the Fourier transform of its i-th component is

ψi(r) =
∫

ψ̂i(k)eik · r d3r .

If homogeneity and isotropy are assumed, the associated energy spectrum is

E(k) = 4πk2U(k)

where U(k) = |ψ̂(k)|2/2. The energy spectrum is simply related to the

autocorrelation function

1

2
〈ψi(r)ψj(r)〉 =

∫ ∞

0
E(k) dk . (1.19)

Energy spectra are powerful turbulence analysis tools. In fact, they allow

a description which is able to capture the main energy cascade features.
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Figure 1.4: The energy spectra of the streamwise component (white circles) and
lateral component (black circles) of velocity fluctuations in high Reynolds number
jet (from Frisch, 1995).

In particular, it is found that the energy spectrum of a turbulent field has

power-law behavior (Kolmogorov, 1941; see also Frisch, 1995)

E(k) ∼ k−α (1.20)

which defines the inertial range of the energy cascade. Figure 1.4 shows

an example of spectrum for fluid case. The different ranges described by

the Richardson cascade can be easily identified in the spectrum. It is easy

to relate the energy spectra to the field increments variance. Using the

relation (1.19) and recalling that:

1

2
〈ψi(r)ψj(r + ℓ)〉 =

∫ ∞

0
E(k)

sin kℓ

kℓ
dk ,

17



it is straightforward to figure out that

〈|ψi(r + ℓ) − ψi(r)|2〉 = 4
∫ ∞

0
E(k)

(

1 − sin kℓ

kℓ

)

dk . (1.21)

If the spectrum E(k) decreases slowly enough (a power law with exponent

α > 1 ), then the main contribution to the integral (1.21) comes from E(k),

at least for scales smaller than the large scale ℓ0, so that the energy spectrum

is directely related to the second order moment of the field increments.

1.2.5 Probability distribution functions (PDFs)

As we are dealing with stochastic variables, a statistical approach can provide

informations about the physical properties of the system. In particular, it is

interesting to capture the reproducible features of the signal, and this can be

done only through the statistical properties. The main statistical tool is the

Probability Distribution Function (PDF) of the field increments. We present

here some relationship between PDFs and other useful tools as energy spectra

and structure functions.

If the PDF P (x) of a stochastic variable x is known, then it is possible

to compute the infinite set of moments defined as:

〈xn〉 =
∫

xn P (x) dx . (1.22)

Let us introduce the characteristic function of P (x) , (i. e. its Fourier trans-

form)

Φ(k) =
∫

eikx P (x) dx = 〈eikx〉 ;

using the Taylor series to develop the exponential eikx,

Φ(k) =
∫

dxP (x)
∞
∑

m=0

(ik)m

m!
xm =

∞
∑

m=0

(ik)m

m!
〈xm〉 , (1.23)

Transforming backward to the physical space

P (x) =
1

2π

∫

dk
∞
∑

m=0

(ik)m

m!
〈xm〉 e−ikx . (1.24)

so that it is possible to compute the PDF of a stochastic variable if all the

moments 〈xm〉 are known. Note that for experimental purposes, given the

18



stochastic signal provided by some measurements, it is in principle possible

to use the ergodic theorem to compute the moments of the signal without

the knowledge of the PDF, as would be required to apply equation (1.25). In

fact, by deriving n times equation (1.23) and putting k = 0, it is possible to

recompute the moments directely from the data even if the PDF is unknown:

〈xn〉 =
1

in
dnΦ

dkn

∣

∣

∣

∣

∣

k=0

. (1.25)

Gaussian PDFs are a peculiar case. It is a very interesting PDFs class, both

because of its large presence in real systems, and for its statistical properties.

In fact it is very easy to show that a Gaussian PDF needs only the first

two moments to be completely determined. The first order moment is the

average, and is generally used to translate the PDF so that the new PDF is

meanless. The second order moment is the variance σ2 = 〈(x− 〈x〉)2〉. The

gaussian being a even function, the odd order moments are trivially zero. Let

us compute now the even order (2n) moments using the relation (1.25). It is

well known from the Fourier transformation that the characteristic function

of a gaussian is itself gaussian, with standard deviation σ′ = 1/σ:

Φ(k) = e−
1

2
σ2k2

.

The derivative can be computed using the Hermite polinomials Hn(y) of

order n, that is:
dn

dkn
e−y2

= (−1)ne−y2

Hn(y) .

Then, using y = σk/
√

2 the even moments can be written as:

〈x2n〉 = (−1)n(−1)2ne−y2

H2n(y)
d2ny

dk2n

∣

∣

∣

∣

∣

k=0

= (−1)n2−nH2n(0)σ2n (1.26)

that is, all the moments of order larger than two are trivially computed

from the variance, or they are zero. So, the gaussian PDF can be built up

knowing only the average and the variance of the stochastic variables, for

example using the power spectrum. In other words, energy spectra play the

fundamental role in the classical picture of turbulence, where gaussian PDFs

are hypothized.
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Of course for non Gaussian distributions all the infinite set of the moments

is required to build the PDF using equation (1.24), so that the energy spectra

lose their key role.

1.2.6 Structure functions

The spectral analysis does not provide a complete description of the statis-

tical properties of the field, unless this has Gaussian PDF. In fact, we have

seen that spectra are a representation of the second order moment. For non

Gaussian fields, the properties of turbulence can be described using the lon-

gitudinal structure functions to represent the higher order moments of the

field. The structure function are defined as:

Sp(ℓ) = 〈δψp
ℓ 〉 (1.27)

where

δψℓ = [ψ(r + ℓ) −ψ(r)] · ℓ
ℓ
. (1.28)

are the longitudinal field increments.

1.3 Phenomenology of turbulence

1.3.1 Scaling laws of MHD equations

The NS equations own scaling properties (Frisch, 1995), that is there exists

a class of solutions which are invariate under scaling transformations. Let us

write the MHD equations neglecting dissipative terms

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.29)

ρ

[

∂

∂t
+ (v · ∇)

]

v =
1

4π
(∇ ×B) ×B − ∇p (1.30)

∂B

∂t
= ∇ × (v × B) (1.31)

[

∂

∂t
+ (v · ∇)

](

p

ργ

)

= 0 . (1.32)
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Let us now introduce the scaling transformations by defining a typical scale

ℓ, the characteristic time t, the scaling factor λ and the characteristic scaling

exponent for the time α. When the scale is changed of a factor λ, the time

variable itself changes as

ℓ −→ λℓ′ , t −→ λαt′ . (1.33)

The scaling of the fields obeying to the ideal MHD equations can be described

using a scaling exponent for each field, so that when ℓ −→ λℓ′

v −→ λhv′ , B −→ λβB′ , p −→ λνp′ , ρ −→ λµρ′ . (1.34)

Inserting the previous relations (1.33) and (1.34) into the MHD equations,

and recalling that ∇ ∼ 1/ℓ, we obtain

λµ−α∂ρ
′

∂t′
+ λµ+h−1

∇
′
·(ρ′v) = 0 ,

ρ′λµ+h−1

[

∂v′

∂t′
λh + λ2h−1(v′

· ∇
′)v′

]

= −λµ−1
∇

′p′+
1

4π
(∇′

× B′) × B′λ2β−1

so that the same scaling factor is found for the whole equations if α = 1− h,

µ = 2(β − h), and ν = 2β. Under these conditions, that is, if the scaling for

the fields is

ℓ −→ λℓ′ , t −→ λ1−ht′ , v −→ λhv′ ,

B −→ λβB′ , p −→ λ2βp′ , ρ −→ λ2(β−h)ρ′ ,
(1.35)

then the MHD equations remain invariate, for each value of h and β. Note

that in the incompressible case, ρ = const, the scaling exponent is the same

for velocity and magnetic field, β = h.

The scaling relations (1.35) just obtained reveal that a scaling solution

must be expected:

δψℓ

δψ0

∼
(

ℓ

ℓ0

)h

(ψ being v or b). We are thus interested in the scaling relations of the fields

fluctuations, which remain invariate for scaling transformation of the MHD

equations.
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1.3.2 Kolmogorov law and spectrum

As described by the Richardson cascade, the phenomenology of turbulence

involves some fragmentation process of turbulent structures, which trans-

fer energy through different scales. Kolmogorov (1941) for fluids, and then

Kraichnan (1965) for MHD (see also Dobrowolny et al., 1980), did formalize

such picture, giving the bases for the phenomenological analysis of turbu-

lence.

The phenomenological approach to turbulence is mainly based on dimen-

sional analysis and physical considerations. The equations (NS or MHD)

are not directely involved. The basic ingredients are thus typical values of

the variables involved in the system. First of all, as we look for scaling, we

need to introduce a typical lenght ℓ; the typical values of the fields (say ψ)

corresponding to such scale can be represented for example by the field incre-

ments δψℓ; a characteristic time tℓ, associated to the scale ℓ, is also needed,

as well as a local (in scale) Reynolds number Rℓ = ℓδψℓ/ν and the mean

energy transfer rate εℓ. The latter can be defined for fluids:

εℓ =
1

2

∂

∂t
〈v(r) · v(r + ℓ)〉

and for plasmas:

ε =
1

2

(

ε± + ε∓
)

where the pseudo-energy transfer rates are defined as:

ε± =
1

2

∂

∂t
〈Z±(r) ·Z±(r + ℓ)〉

and take into account both magnetic and kinetic contributions to energy

transfer. In the framework of the Kolmogorov theory (K41) for fluids (ψ =

v), in fully developed turbulence, and whithin the inertial range, all the

statistical properties of the fields depend only on the scale ℓ, on the mean

energy dissipation rate ε, and on the viscosity ν (first Kolmogorov similarity

hypothesis). Also, ε is supposed to be the common value of the injection,

transfer and dissipation rates. Moreover, the dependence on the viscosity

only arises at small scales, near the bottom of the inertial range. Under such

assumptions, it is possible to compute, by dimensional analysis, the typical
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energy transfer (or dissipation) rate (for unit mass) as ε ∼ δv2
ℓ/tℓ. The

time tℓ associated to the scale ℓ is the typical time needed for the energy to

be transfered on a smaller scale. By dimensional analysis, tℓ ∼ ℓ/δvℓ , so that

a scaling law for the field increments can be obtained (Kolmogorov’s law):

δvℓ ∼ ε
1

3 ℓ
1

3 (1.36)

It turns out, when applying the Kolmogorov law to the integral scale ℓ0, that

v0 ∼ ε
1

3 ℓ
1

3

0 . This relation can be used to eliminate the energy transfer rate

from (1.36), so leading to the following scaling law for velocity:

δvℓ ∼ v0

(

ℓ

ℓ0

)
1

3

. (1.37)

Recalling the scaling law for the velocity arising from scaling analisys of NS

equations (or MHD as in our case), the similarity hypothesis lead to h = 1/3.

Note that, since from dimensional considerations the scaling of the energy

transfer rate should be ε −→ λ1−3hε′, h = 1/3 is the only possible choice to

guarantee the scaling invariance of ε, required by the similarity hypothesis.

At small scales, dissipation (viscosity) is involved. The typical time as-

sociated to dissipative effects can be obtained by dimensional analysis as:

t
(ν)
ℓ ∼ ℓ2/ν . The scale at which the dissipation terms are comparable with

the nonlinear trasfer terms is called Kolmogorov scale η, and can be simply

obtained putting t
(ν)
ℓ = tℓ, so that

η ∼
(

ν3

ε

)
1

4

(1.38)

It is straightforward to translate the dimensional analysis results to spectra.

In fact, using the wave vector k ∼ 1/ℓ, the previous scaling laws can be

written in the wave vector space. In particular, it is possible to introduce

the power spectrum E(k) ∼ δv2
ℓ/k, so that from the similarity hypothesis

the spectrum has a power-law behavior within the inertial range

E(k) ∼ ε
2

3k−
5

3 . (1.39)

The power law spectrum (1.39) is whidely observed in experimental data,

and is called the Kolmogorov spectrum (see Figure 1.4). Note that in terms
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of the generic scaling exponent h, the spectral index is α = 1 − 2h, so that

the choice h = 1/3 leads to the Kolmogorov spectrum.

1.3.3 Alfvén effect: the Kraichnan spectrum

When performing dimensional analysis of plasma turbulence, it turns out

that the Alfvén effect, that is the presence of small scales fluctuations leaving

apart along the large-scale magnetic field, modify the interactions between

structures. Under the same assumptions as for fluid turbulence, we can

compute by dimensional analysis the typical energy flux between scales:

Π±
ℓ ∼ |δz±(ℓ)|2

t±ℓ
tℓ being the typical duration of the energy transfer. Now, as can be seen

looking at equations (1.16), the Alfvénic fluctuations propagate in opposite

direction along the magnetic field lines, so that the interacting structures are

set apart in a time tA ∼ ℓ/cA, so modifying the actual interaction time. If

the (non linear) eddy turnover time is t±NL ∼ ℓ/δz∓ℓ , then the interaction time

results

t±ℓ ∼ (t±NL)2

t±A
∼ ℓcA
δv2

(1.40)

obtained by considering the number of non linear interactions occurring dur-

ing a Alfvén time, t±NL/t
±
A, and considering similar scaling behavior between

the Elsässer fields and the velocity, δz+ ∼ δz− ∼ δv. The energy flux,

corresponding to the energy transfer rate ε±, can thus be written as:

Π±
ℓ ∼ ε± ∼ δv4

ℓcA
(1.41)

so that the scaling law for the velocity (or magnetic field, or Elsässer fields)

is modified by the Alfvén effect

δvℓ ∼ v0

(

ℓ

ℓ0

)
1

4

. (1.42)

that is h = 1/4. The spectrum is then also modifyed,

E(k) ∼ c
1

2

Aε
1

2k−
3

2 . (1.43)

The power law spectrum with Alfvénic effect has spectral index α = −3/2

and is called Kraichnan spectrum.
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1.3.4 The structure functions scaling laws

Given the Kolmogorov and Kraichnan scaling laws for fields increments (1.37)

and (1.42), it is straightforward to compute the scaling law for the longitu-

dinal structure functions from (1.28):

S
(p)
ℓ = 〈δψp

ℓ 〉 ∼ ℓ
p

m , (1.44)

where m = 4 if Alfvén effect decorrelates the interacting structures, and m =

3 if this effect is negligible. The scaling exponent of the structure functions

is then a linear function of the order p, that is ζp = p/m .

The scaling (1.44) implies the power law scaling of the second order mo-

ment, i. e. the standard deviation: σ ∼ ℓ
2

m . If the field differences δψℓ have

Gaussian distribution, from the expression (1.26) the linear scaling of the

structure functions is then obtained:

〈δψ2p
ℓ 〉 ∼ ℓ

2p

m .

In other words, the Kolmogorov and Kraichnan scalings for the field incre-

ments require Gaussian PDFs.

1.4 Intermittency

1.4.1 The problem of intermittency in turbulence

Except for the −5/3 spectrum which is observed everywhere in turbulence,

the linear behavior of the structure functions scaling exponent with the mo-

ment order, and the gaussianity of the PDFs of increments, representing

the Kolmogorov scaling, are not observed in experimental data. The K41

theory is thus just the base for turbulence studies, and includes the main

fundaments, which however need further developement in the approach to

turbulence (Frisch, 1995). As far as the experimental analysis was dealing

with spectral analysis, the K41 theory worked well, because only the second

order moment behavior was investigated. But when the more and more accu-

rate experimental techniques permitted the investigation of higher moments,

the need for a different interpretation arised. The most discussed point, has
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Figure 1.5: The PDFs of fields increments change shape with the scale.

been the uniform distribution of the energy transfer rate along the cascade,

supposed by the K41 model (Landau & Lifshitz, 1987). Experimental results

show that for fully developed turbulence, in most of the cases the shape of

the field increments PDFs changes with the scale. The large scale PDFs

are generally nearly Gaussians, but as the scale decreases the tails of the

PDFs become higher and higher (see Figure 1.5). As a consequence, the

moments, represented by the structure functions, scale in a different way,

and this is visible by looking at their scaling exponents, which differ from

the K41 prediction ζp = p/3. This peculiar behavior is due to the fact that

large values of the fields increments are present, and with higher probability

than in a Gaussian statistics. In other words, the signal is characterised by

the presence of strong eddies in some regions of space. This is why the field

fluctuations are a intermittent signal. In general, this kind of signals are not

purely self-similar.
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In Figure 1.6 an example of self-similar signal is presented. This kind of

signal displays the same statistical properties independently on the scale at

which is observed. Moreover, it is similar for each region we observe. The

K41 theory would lead to such a signal, for which the PDF shape would not

change with the scale. On the contrary, Figure 1.7 shows a simple example

of intermittent signal: the devil staircase, characterised by “active” zones

alternated with flat regions. That is, the self-similarity of the signal in this

last case depends on the position. To understand the concept of intermit-

tency in turbulent fields, the picture of the Richardson cascade, presented

to introduce turbulence, can be modified. One of the main points on which

the Kolmogorov K41 theory was based is that the non linear cascade is con-

trolled by the mean energy transfer rate ε. The actual spatial distribution of

ε does not come into play at that level, the idea of universality implied by the

model suggesting a uniform distribution. In the intermittent case, however,

we should restate that only the global mean value of the energy transfer rate

is constant through the cascade, while its local value can be a (stochastic)

fluctuating function, presenting bursty and quite zones alteratively. More-

over, the presence of strong activity regions is scale-dependent, as can be

visualized in Figure 1.8. This modified Richardson cascade picture shows

the concentration of active structures on definite positions of the space, and

such concentration become more and more evident as the scale decreases.

Figure 1.9 shows an example of real intermittent data. The four panels rep-

resent the longitudinal velocity differences computed from solar wind data

for four different values of the scale. The bottom panel is the large scale

case, and the signal appears self similar. As the scale decreases, that is for

the upper panels, the signal is more and more intermittent, with localization

of active regions which is stronger as the scale decreases.
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Figure 1.6: An example of self-similar signal: the brownian motion. The signal
shows the same statistical properties everywhere and at all scales. The zoomed seg-
ments of signal repeat the large scale behavior in all positions (from Frisch, 1995).
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Figure 1.7: The devil staircase: an intermittent signal. The statistical properties
of the signal change when we look at different scales, in different positions. The
zoomed fragments of signal can be active or flat, depending on the position, and
are in general different from the large scale (whole signal), which inculdes both
(from Frisch, 1995).
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Figure 1.8: A schematic picture of the intermittent Richardson cascade. The
local differences of transfer of energy are represented by concentration of active
structures ir regions of the space. At the dissipative scales, the dissipation field is
bursty and intermittent.
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Figure 1.9: The longitudinal velocity increments in the solar wind for four different
values of the scale (bottom, large scale; top, small scale).
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Chapter 2

Description of the data

2.1 The solar wind data

2.1.1 The solar wind

Solar wind is a continuous flow of charged particles, mainily electrons and

protons, departing from the sun into the heliosphere. Since the 50’s, the solar

wind origin has been located in the atmospheric regions of the sun, where it

is accelerated, because of the high temperature, toward the external space

in order to get hydrostatic equilibrium (Figure 2.1). The plasma particle are

expelled in radial direction, their velocity increasing up to a saturation far

away from the sun. Because of such acceleration, the solar wind becomes

supersonic very close to the sun (i. e. near some solar radii), and then su-

peralfvénic. Typical values of the solar wind speed near 1 AU are in fact

about 500 Km/sec, while the Alfvén speed at the same distance from the

sun is about 30 Km/sec. The solar wind plasma has β ∼ 1, so that the

magnetic and kinetic pressure effects are of the same order. The solar mag-

netic field is carried out into the heliosphere by the solar wind, because of its

frozen in condition (see for example Akhiezer, 1975). The solar rotation is

then responsible for the large scale structure of the Interplanetary Magnetic

Field (IMF), which is a sort of Archimede’s spyral (Hundhausen, 1972; see

Figure 2.2 for a representation). Because of this peculiar shape, the large

scale IMF near the earth orbit (1 AU) forms with the sun-earth direction an

angle of about 45◦.
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Figure 2.1: The sun during the solar eclypse occurred in 1991. The solar corona
is visible and the origin of the solar wind is clearly evidenced.
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Figure 2.2: A picture of the Archimede’s spyral of the interplanetary magnetic
field, centered on the sun. The orbits of inner planets and Jupiter are also shown.
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Figure 2.3: The Earth magnetosphere and the location of some of the spacecrafts
currently involved in measurement campaigns.

2.1.2 Large scale properties of solar wind

The solar wind is the most important plasma laboratory present in nature.

Since the beginning of the space exploration, some spacecraft have been used

to collect in situ measurements of solar wind fields and parameters (see for

example Hundhausen, 1972; Tu & Marsch, 1995). Figure 2.3 shows some

of the missions currently at work. Table 1.1 reports typical values of main

plasma parameters in the solar wind. Figure 2.4 shows measurements of

many parameters of the solar wind between 0.3AU and 1AU , as collected

by the spacecraft Helios II. The upper plot represents the velocity of the

wind. It is possible to distinguish portions of wind which are alternatively

fast and slow. This is a peculiar situation in the solar wind as seen on the

ecliptic plane, and it is related to the presence of two types of wind, namely

fast solar wind and slow solar wind. The existence of two types of wind

could be due to the different topology of the solar atmosphere from which

they are emitted. In fact, fast wind seems to blow mainly from regions of

the solar surface in correspondence with the coronal holes. In that zones,
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Figure 2.4: Velocity, mass density, temperature and magnetic field of solar wind,
as measured by Helios II at heliocentric distance from 0.3AU e 1AU , as shown in
the bottom plot.
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the magnetic field lines are “open” and the plasma is emitted with higher

velocity. In corrispondence with active regions of the solar surface where

magnetic loops are present, the solar wind is emitted with slower velocity,

and is thus slow wind. The spatial distribution of the coronal holes is quite

stable, but is tuned by the solar activity. In corrispondence with the polar

regions of the sun, large and stable coronal holes are present, due to the

dipolar form of the solar magnetic field. As the latitude decreases, more and

more closed mgnetic lines regions are present, even if smaller coronal holes

are distributed on all the solar surface. During the low solar activity periods

the number of closed magnetic structures decreases, so that a large portion

of the sun is covered by coronal holes. In these conditions, most of the wind

is fast. As the activity increases, the closed structures occupy regions which

extends more and more toward the high latitudes, so reducing the fast wind

origin zones. Figure 2.5 schematically shows such behavior. The large scale

structure of high latitude solar wind is quite regular, with rather stationary

velocity and magnetic field, the latter describing the Parker spyral. At lower

latitude the solar wind structure is more complicate. Because of the presence

of coronal holes, both fast and slow winds are alternatively emitted from the

solar corona. Moreover, near the equatorial plane the polarity of the solar

magnetic field changes, so that at interface between positive and negative

magnetic sectors a thin neutral current sheet is estabilished. Because of

solar rotation, the current sheet is ondulated, like a “ballerina skirt” , so

that the equatorial plane is crossed again and again by the current sheet,

revealing alternate positive and negative magnetic field regions, as well as

fast and slow speed streams. The solar wind is a turbulent system. Both the

high velocity (supersonic and superalfvénic, with shocks and waves, and with

very high Reynolds number, approximatively of the order Re ∼ 109) and the

turbulence of the emetting regions (solar surface and corona) are responsible

for higly developed turbulence in the solar wind.
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Figure 2.5: A composed picture showing the X-ray emission of the sun, and the
latitude dependence of velocity and magnetic field. In the left panel (low solar
activity) It is evident that wind velocity is high at high latitudes, where coronal
holes are visible.
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2.2 Exploring the heliosphere

2.2.1 Space missions

Since the beginning of the space age, several tens of spacecraft (see Fig. 2.6)

have explored the heliosphere at virtually all latitudes up to the outskirts of

the solar system, and returned a host of data. Most space probes lie close

to the ecliptic plane that is the plane of the Earth’s orbit around the Sun.

The reason is that a spacecraft leaving the Earth starts with a velocity vector

equal to the Earth’s orbital velocity plus that provided by the launcher; since

the Earths velocity is about 30 km/s and lies in the ecliptic plane, one must

give to the spacecraft a velocity perpendicular to the ecliptic of at least this

amount to put it into an orbit angled far from this plane; this is outside

the capabilities of existing rocket technology (Fig. 2.7). As a result, there

tens of space probes exploring the solar wind near the ecliptic. Particles and

fields are intimately coupled in solar wind plasma, so that in order to explore

them, space probes carry at least a particle detector, a magnetometer and an

electric antenna measuring waves, in addition to power and communication

resources and to the necessary software; most spacecraft generally carry many

other instruments.

2.2.2 The spacecraft Ulysses

When the idea of an out-of-ecliptic mission arose, nobody knew how to re-

alise it, and only in the 1970s did the idea appear technically feasible. The

American and European Space Agencies then proposed a joint package of

two spacecraft that were to be launched in 1983. But in the early 1980s, the

National Aeronautical and Space Administration (NASA) decided to cancel

the US spacecraft because of financial and technical difficulties. The project

was reduced to a single spacecraft, to be built by the European Space Agency

(ESA), launched by NASA with the Space Shuttle, and equipped with Eu-

ropean and American instruments. This spascecraft was named Ulysses (a

picture is shown in Figure 2.8) because its mission, to explore the heliospe-

here at high latitudes where no probe had been ever sent, was reminiscent of
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Figure 2.6: Some spacecraft that have explored the solar wind (Images by ESA
and NASA)

Figure 2.7: The difficulty of sending a spacecraft outside the ecliptic: because the
Earth speed VE is much greater than the launch speed VL , the spacecraft velocity
VL + VE in the solar frame makes a very small angle to the ecliptic (adapted from
Meyer-Vernet, 2007).

40



Figure 2.8: The spacecraft Ulysses in the ESA laborartory.

the journey of the mythical Greek warrior. The launch of Ulysses took place

at last in October 1990 close to solar activity maximum. In 1991 the probe

travelled in the ecliptic towards Jupiter. In February 1992 it swung around

Jupiter - using the gravity assist of that planet - into an elliptic orbit inclined

by 80◦ to the ecliptic (Fig. 2.9). It then travelled into the Sun’s southern

hemisphere, passed over the south polar region in late 1994, crossed the eclip-

tic plane at 1.3 AU from the Sun, and passed over the north polar region in

1995 near solar activity minimum. The second orbit took it over the polar

regions once more in 2000 2001, this time near solar activity maximum. A

third orbit tooke it again over the polar regions in 2007 (near solar activity

minimum) and after 18.6 years in space, defying several earlier expectations

of its demise, Ulysses finally switched off its transmitter on 30 June 2009.

41



Figure 2.9: Sketch of Ulysses trajectory. The dates of the first two passages over
the solar poles are indicated on the left, along with solar activity. The orbital
period is such that the fast pole-to-pole transits, covered in less than a year on
the perihelion side, take place alternatively near sunspot minimum and maximum
(adapted from Meyer-Vernet, 2007).
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2.2.3 The Ulysses dataset

The Ulysses’s orbit is especially suitable for studying the heliosphere. The

orbital period is nearly half a solar activity cycle, and the pole-to-pole transit

near perihelion takes less than a year a time-span during which solar activity

and distance do not change much (see Fig 2.10). Hence at each passage

along this part of the orbit, which take place alternately near solar activity

minimum and maximum, Ulysses measures how the solar wind varies with

heliocentric latitude, other parameters being roughly constant. On the other

hand, the distance, latitude and solar activity vary simultaneously during

the aphelion phase, when the spacecraft is moving less rapidly.

As clearly visible from Figure 2.10, the Ulysses data include regions of

both fast and slow wind. In this work we analyse solar wind velocity, mag-

netic and density field measured during the first passage of the spacecraft over

the north solar pole. All the measurements are referred to a RTN reference

frame (Fig. 2.11), where R (radial) indicates the sun-spacecraft direction,

centered on the spacecraft and pointing out of the sun, N (normal) lies in

the plane containing the radial direction and the sun rotation axis, while

T (tangential) completes the right-handed reference frame. The velocity and

density measurements have been performed using a top-hat electrostatic an-

alyzer, while the magnetic field has been measured using a flux gate triaxial

magnetometer. This two instruments recording data at very different time

resolutions. The sampling time of the plasma data (i.e. velocity, Temperature

and density), provided by INAF (”Istituto di Fisica dello Spazio Interplane-

tario, Roma-Italy), is around 8 minute whereas the one of magnetic field data

is of 0.1 seconds (sampling frequency ∼ 10 Hz). In order to have uniform

time series we reduced the temporal resolution of the magnetic field data in

order to obtain a unique sampling time ∆T = 482 seconds (∼ 8 minutes).

This operation implies the averaging of the magnetic field components and a

resynchronization of all fields involved in our study. We also made a careful

treatment of the bad data that was present in almost the 10% of the whole

signals. This preliminary work on data had been necessary because we per-

formed high order statistical analysis that are very sensitive to the “quality”
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Figure 2.10: Velocity, mass density and temperature as measured by Ulysses
during its three orbits around the Sun from 1990 to 2008.
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Figure 2.11: The RTN reference frame shown in the configuration used for Ulysses
velocity and magnetic field data

of data input. In Figures 2.12 and 2.13 we can observe some samples of the

data for both velocity and magnetic field in fast and slow streams.
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2.3 The Taylor hypothesis

The experimental data, as for example fields measured with probes, are usu-

ally recorded in the time domain, as time series. Conversely, the numerical

data can be spatial representation of the fields, often evolving with time,

so that the measurements are in the spatial domain. Moreover, turbulence

theories very often deal with spatial distribution of structures, assuming sta-

tionarity. In turbulence, the Taylor hypothesis provides a way to use time

series to describe spatial systems (Taylor, 1938). Consider a (unidimensional)

flow, moving with velocity v(x, t), measured in the laboratory frame, and let

U = 〈v(x, t)〉t be its average velocity. If u(x, t) is the velocity measured in

the reference frame comoving with the flow (with velocity U), then

v(x, t) = u(x− Ut, t) + U (2.1)

We can define the turbulence intensity as IT = 〈u2〉1/2/U , the numerator of

previous equation being the variance of the velocity in the comoving frame.

Given a position x = x0, when IT ≪ 1, then in the right hand side of

equation (2.1) the time vatiation of u(t, x0−Ut) is mainly due to the evolution

of x0 −Ut. In fact, the time variations of u with t are negligible with respect

to that term, because the variance of u is small compared to U .

In other words, the time variations of v are determined by the spatial

structure of the flow. In experimental measurements, this simply means that

the flow bulk velocity is higher than the temporal evolution of the flow itself,

so that the probe is recording, in the time domain, a “picture” of the flow,

thus capturing its spatial structure. If the sampling time of the probe is ∆T ,

then the picture of the flow has a spatial resolution ∆X = U∆T . When

the Taylor hypothesis is verified, it is so possible to switch from the time

domain to the spatial domain, and to compare analyses of different kind of

data. The Taylor hypothesis have been tested to be valid in all the time

series we analyse (for example, in the fast solar wind IT = 0.11), so that in

the following we will use both time and spatial domains, without any further

comments.
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Figure 2.12: The radial component of the velocity vx for three fast streams (upper

panels) and three slow streams (bottom panels).
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presented in Figure 2.12.
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Chapter 3

The inertial energy cascade in
solar wind turbulence

3.1 Turbulence in solar wind

3.1.1 Spectral properties

First evidences of the presence of turbulent fluctuations in the solar wind

were showed by Coleman (1968) who, using Mariner 2 magnetic and plasma

observations, investigated the statistics of interplanetary fluctuations during

the period August 27 – October 31, 1962, when the spacecraft orbited from

1.0 to 0.87 AU. By analyzing spectral densities, Coleman concluded that the

solar wind flow is often turbulent, energy being distributed over an extraor-

dinarily wide frequency range, from one cycle per solar rotation(∼ 28 days)

to 0.1 Hz. The frequency spectrum, in a range of intermediate frequencies,

was found to behave roughly as f−1.2. The magnetic spectrum obtained by

Coleman is shown in Figure 3.1.

Spectral properties of the interplanetary medium have been summarized

by Russel (1972), who published a composite spectrum of the radial compo-

nent of magnetic fluctuations as observed by Mariner 2, Mariner 4 and OGO

5 (see Figure 3.2). The frequency spectrum so obtained was divided into

three main ranges: up to about 10−4 Hz the spectral slope was about f−1; at

intermediate frequencies 10−4 ≤ f ≤ 10−1 Hz a spectral slope of about f−3/2

was found; finally, the high-frequency part of the spectrum, up to 1 Hz, was
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Figure 3.1: The magnetic energy spectrum as obtained by Coleman (1968).
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characterized by a f−2 dependence. The intermediate range of frequencies

recalls spectral properties similar to those introduced by Kraichnan (1965) in

the framework of MHD turbulence. It is worth reporting that scatter plots

of the values of the spectral index of the intermediate region do not allow

to distinguish between a Kolmogorov spectrum f−5/3 and a Kraichnan spec-

trum f−3/2 (Veltri, 1980). To be precise, it is worth remarking that there are

no convincing arguments to identify as inertial range the intermediate range

of frequencies where the observed spectral properties are typical of fully de-

veloped turbulence. From a theoretical point of view, here the association

“intermediate range” ≃ “inertial range” is somewhat arbitrary as we will

see later. Then, as far as the solar wind turbulence is concerned it is not

so useful to discuss whether or not solar wind developed turbulence can be

represented by ∼ f−5/3 or f−3/2, since observations showed that the slope is

usually around f−1.6 ( Bavassano, 1982a; Tu and Marsh, 1995a) which, irony

of fate, is just between the two cited values. The Helios 2 spacecraft gave for

the first time the unique opportunity to study the radial evolution of turbu-

lent fluctuations in the solar wind within the inner heliosphere. Most of the

theoretical studies which aim to understand the physical mechanism at the

base of this evolution originate from these observations (Bavassano, 1982b;

Denskat and Neubauer, 1983). In Figure 3.3 are re-proposed similar observa-

tions taken by Helios 2 during its primary mission to the Sun. These power

density spectra were obtained from the trace of the spectral matrix of mag-

netic field fluctuations, and belong to the same solar wind stream observed

by Helios 2 on day 49, at a heliocentric distance of 0.9 AU, on day 75 at

0.7 AU and, finally, on day 104 at 0.3 AU. All the spectra are characterized

by two distinct spectral slopes: about −1 within low frequencies and about

a Kolmogorov like spectrum at higher frequencies. These two regimes are

clearly separated by a knee in the spectrum often referred to as “frequency

break”. As the wind expands, the frequency break moves to lower and lower

frequencies so that larger and larger scales become part of the Kolmogorov-

like turbulence spectrum, i.e., of what we will indicate as “inertial range” .

Thus, the power spectrum of solar wind fluctuations is not solely function of

frequency f but it also depends on heliocentric distance r.
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Figure 3.2: A composite figure of the magnetic spectrum obtained by Russel
(1972)
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Figure 3.3: Power density spectra of magnetic field fluctuations observed by Helios
2 between 0.3 and 1 AU during the first mission to the Sun in 1976. The spectral
break (blue dot) shown by each spectrum, moves to lower and lower frequency as
the heliocentric distance increases.

52



Figure 3.4: Alfvénic correlation in fast solar wind. Left panel: large scale Alfvénic
fluctuations found by Bruno (1985). Right panel: small scale Alfvénic fluctuations
found for the first time by Belcher (1975).

3.1.2 Alfvénic correlation

In a famous paper, Belcher and Davis Jr. (1971) showed that a strong cor-

relation exists between velocity and magnetic field fluctuations, in the form

δv ≃ ± δB√
4πρ

, (3.1)

where the sign of the correlation is given by the sign[−k · B0], being k the

wave vector and B0 the background magnetic field vector. These authors

showed that in about 25 d of data from Mariner 5, out of the 160 d of the

whole mission, fluctuations were described by Equation (3.1), and the sign

of the correlation was such to indicate always an outward sense of propaga-

tion of the Alfvén waves with respect to the Sun. Authors also noted that

these periods mainly occur within the trailing edges of high-speed streams.

Moreover, in the regions where Equation (3.1) is verified to a high degree,

the magnetic field magnitude is almost constant (B2 ∼ const.).

53



Today we know that Alfvénic correlations are ubiquitous in the fast solar

wind and that these correlations are much stronger and are found at lower

and lower frequencies, as we look at shorter and shorter heliocentric dis-

tances. In the right panel of Figure 3.4 are shown the results from Belcher

(1975) obtained on the basis of 5 min averages of velocity and magnetic field

recorded by Mariner 5 in 1967, during its mission to Venus. On the left panel

of Figure 3.4 are shown results from a similar analysis performed by Bruno

et al. (1985) obtained on the basis of 1 h averages of velocity and magnetic

field recorded by Helios 2 in 1976, when the s/c was at 0.29 AU from the Sun.

These last authors found that, in their case, Alfvénic correlations extended

to time periods as low as 15 h in the s/c frame at 0.29 AU, and to periods

a factor of two smaller near the Earth’s orbit. Now, if we think that this

long period of the fluctuations at 0.29 AU was larger than the transit time

from the Sun to the s/c, this results might be the first evidence for a possible

solar origin for these fluctuations, probably caused by the shuffling of the

foot-points of the solar surface magnetic field.

Alfvén modes are not the only low frequency plasma fluctuations allowed

by the MHD equations but they certainly are the most frequent fluctuations

observed in the solar wind. The reason why other possible propagating modes

like the slow sonic mode and the fast magnetosonic mode cannot easily be

found, depends on the fact that these compressive modes are strongly damped

in the solar wind shortly after they are generated. On the contrary, Alfvénic

fluctuations, which are difficult to be damped because of their uncompressive

nature, survive much longer and dominate solar wind turbulence. Neverthe-

less, there are regions where Alfvénic correlations are much stronger like the

trailing edge of fast streams, and regions where these correlations are weak

like intervals of slow wind (Belcher 1971 and 1975). However, the degree

of Alfvénic correlations unavoidably fades away with increasing heliocentric

distance, although it must be reported that there are cases when the absence

of strong velocity shears and compressive phenomena favor a high Alfvénic

correlation up to very large distances from the Sun.

Just to give a qualitative quick example about Alfvénic correlations in

fast and slow wind, we show in Figure 3.5 the speed profile for about 100 d
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Figure 3.5: Alfvénic correlation in fast and slow wind. Notice the different degree
of correlation between these two types of wind.

of 1976 as observed by Helios 2, and the traces of velocity and magnetic field

Z components VZ and BZ (this last one expressed in Alfvén units) for two

different time intervals, which have been enlarged in the two inserted small

panels. The high velocity interval shows a remarkable anti-correlation which,

since the mean magnetic field B0 is oriented away from the Sun, suggests a

clear presence of outward oriented Alfvénic fluctuations given that the sign

of the correlation is the sign[−k · B0]. At odds with the previous interval,

the slow wind shows that the two traces are rather uncorrelated. For sake of

brevity, here is omitted the plot which shows the very similar behavior for

the other two components, within both fast and slow wind.
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3.1.3 The Alfvénic turbulence: an apparent paradox

The discovery of Alfvénic correlations in the solar wind stimulated fundamen-

tal remarks by Kraichnan (1974) who, following previous theoretical works

(Kraichnan, 1965 ; Iroshnikov, 1963), showed that the presence of a strong

correlation between velocity and magnetic fluctuations renders non-linear

transfer to small scales less efficient than for the Navier–Stokes equations,

leading to a turbulent behavior which is different from that described by

Kolmogorov (1941). In particular, when Equation (3.1) is exactly satisfied,

non-linear interactions in MHD turbulent flows cannot exist . This fact in-

troduces a problem in understanding the evolution of MHD turbulence as

observed in the interplanetary space. Both a strong correlation between

velocity and magnetic fluctuations and a well defined turbulence spectrum

(Figures 3.3, 3.5) are observed, and the existence of the correlations is in

contrast with the existence of a spectrum which in turbulence is due to a

non-linear energy cascade. The contradiction between these observations can

be immediately seen by introducing the Elsässer variables (see also section

1.1.3)

z±(x, t) = v ± B√
4πρ

where vi and Bi represent the velocity and magnetic field respectively,

while ρ is the mass density. These quantities represent Alfvénic fluctua-

tions propagating along the background magnetic field, in opposite directions.

MHD equations can be immediately written in terms of these variables as

∂tz
±
i +

(

z∓α ∂α

)

z±i = −∂iπ + λ±∂2
αz

+
i + λ∓∂2

αz
−
i (3.2)

where π = P/ρ (P being the the total pressure), ∂t represents time deriva-

tive while ∂i represents derivative with respect to the spatial variable xi.
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The kinematic viscosity ν and the magnetic diffusivity µ form the dissipa-

tive coefficients λ± = (ν ± µ)/2. The second term in equations (3.2) shows

that nonlinear interactions only occur between opposite sign fluctuations.

Since high correlations between velocity and magnetic fluctuations imply ei-

ther z∓i = 0 or z±i = 0, a turbulent energy cascade should be incompatible

with the disappearence of one of the alfvénic fluctuations. In a seminal pa-

per, Dobrowolny, Mangeney and Veltri (1980), started to solve the puzzle

on the existence of this apparent paradox. In presence of a strong magnetic

field, nonlinear interactions are slowed down by the transport of fluctuations

(Alfvén effect). The usual Kolmogorov’s phenomenlogy must then be modi-

fied in favor of the Iroshnikov-Kraichnan (IK). For Dobrowolny et al. (1980)

this yields to the fact that the energy transfer rates per unit mass for both

pseudo-energies associated to alfvénic fluctuations must be of the same order,

ǫ+ ∼ ǫ−. More precisely, they must have the same scaling laws in the IK

phenomenology (Carbone, 1993). Thus, an initial small unbalance between

alfvénic fluctuations is maintained during the cascade, eventually leading to

both a turbulent spectrum, and high correlations (Dobrowolny et al., 1980).

This framework is referred to in the literature as Alfvénic turbulence. The

above arguments have been criticized (Matthaeus et. Al 1982 , Grappin et

Al. 1983) on the basis of the fact that, at variance with the conjecture in

Dobrowolny et al. (1980), in numerical simulations the energy transfer rates

are never the same.
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3.2 The Yaglom law for the MHD

3.2.1 Exact relations in fluid and MHD turbulence

In a fluid system is possible to put rigorously in evidece the presence of a fully

developed turbulent state , verifying the validity of a relation, obtained by

A.N. Kolmogorov, between the third-order longitudinal structure function of

the velocity and the energy dissipation transfer rate, namely the Kolmogorov

4/5-law. Being obtained directly from the Navier-Stokes equations this law

represents “...one of the most important result in fully developed turbulence

because it is both exact and non-trivial” (Frisch, 1995). The 4/5-law states

that under the hypothesis of global homogeneity and isotropy, in the limit of

infinite Reynolds number (but assuming that the turbulent flow has a finite

nonzero mean dissipation energy rate ε), the third-order velocity structure

function behaves linearly with ℓ

S(3)
r = 〈(vr)

3〉 = −4

5
ǫr (3.3)

The similarities of the MHD equations with the Navier-Stokes equations and

the equation for the transport of the passive quantitiy by an advecting fluid,

namely Yaglom law (Monin and Yaglom, 1975), suggested to derive an exact

relation for the mixed third order moment of the Elsassër variables which

can be considered a Yaglom law for the MHD

Y ±
r = 〈∆z∓r |∆z±i |2〉 = −4

3
ǫ±r (3.4)

Both Equations (3.3, 3.4) are theorems of the turbulence theory and can

be used, or better, in a certain sense they should be used instead of the

Kolmogorov or Kraichnan energy spectrum, to enstablish unambiguosly the

presence of fully developed (fluid or plasma) turbulence in the system under

study and define in the most rigorous way the corresponding inertial range
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energy cascade. Since they are exact relationships derived from Navier-Stokes

and MHD equations under usual hypotheses, they represent a kind of “zeroth-

order” conditions on experimental and theoretical analysis of the inertial

range properties of turbulence.

3.2.2 Derivation of the Yaglom law for the MHD

We derived the Yaglom law for the MHD by using an approach similar to

the one used by Danaila et. al. (2001) to obtain the Kolmogorov 4/5-law for

the neutral fluid case. Consider the anisotropic MHD equations (3.2) written

twice for Elsässer variable z±i (xi) at the point xi, and for z±i (xi + ri) at the

independent point x′i = xi+ri. By substraction, we obtain an equation for the

differences ∆z±i = (z±i )′−z±i (here and in the following “primed” variables are

intended as calculated on the point x′i). Using the hypothesis of independence

of points x′i and xi with respect to derivatives, namely ∂i(z
±
j )′ = ∂′iz

±
j = 0

(where ∂′i represents derivative with respect to x′i), we get

∂t∆z
±
i + z∓′

α ∂
′
α∆z±i = −(∂′i + ∂i)∆P + (∂2′

α + ∂2
α)
[

λ±∆z+
i + λ∓∆z−i

]

(3.5)

(∆P = π′ − π). By adding and substracting the term z∓α ∂
′
α∆z±i to (3.5) we

obtain

∂t∆z
±
i + ∆z∓α ∂

′
α∆z±i + z∓α (∂′α + ∂α)∆z±i = −(∂′i + ∂i)∆P +

+ (∂2′
α + ∂2

α)
[

λ±∆z+
i + λ∓∆z−i

]

(3.6)

We are seeking for an equation for the second-order correlation tensor 〈∆z±i ∆z±j 〉
related to pseudo-energies. In fact, in a more general approach one should

look at a mixed tensor, namely 〈∆z±i ∆z∓j 〉, taking into account not only both

pseudo-energies but also cross-helicity 〈z+
i z

−
j 〉 and 〈z−i z+

j 〉. However, using

the DIA closure by Kraichnan, it is possible to show that these elements are
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in general poorly correlated. Since we are interested in the energy cascade,

we limit ourself to the most interesting equation that describes correlations

about Alfvénic fluctuations of the same sign. To obtain the equations for

pseudo-energies we multiply equations (3.6) by ∆z±j , then by averaging we

get

∂t〈∆z±i ∆z±j 〉 + 〈∆z∓α ∂′α(∆z±i ∆z±j )〉 + 〈z∓α (∂′α + ∂α)(∆z±i ∆z±j )〉 =

= − 〈∆z±j (∂′i + ∂i)∆P + ∆z±i (∂′j + ∂j)∆P 〉 +

+ λ±〈∆z±j (∂2′
α + ∂2

α)∆z+
i 〉 + λ±〈∆z±i (∂2′

α + ∂2
α)∆z+

j 〉 +

+ λ∓〈∆z±j (∂2′
α + ∂2

α)∆z−i 〉 + λ∓〈∆z±i (∂2′
α + ∂2

α)∆z−j 〉 (3.7)

If we consider local homogeneity we have

∂′α ≡ ∂

∂(xα + rα)
≃ ∂

∂rα

∂α ≡ ∂

∂(x′α − rα)
≃ − ∂

∂rα

when applied to difference quantities, so that the nonlinear term, using in-

compressibility, becomes

〈∆z∓α ∂′α(∆z±i ∆z±j )〉 =
∂

∂rα

〈∆z∓α (∆z±i ∆z±j )〉

Note that in eq. (3.2) kinematic viscosity are not assumed equal to magnetic

diffusivity, and this generates a coupling between z±i and z∓i not only in the

nonlinear term but also in the dissipative term. We exclude these couplings

by making here the usual symplifying assumption, that kinematic viscosity is

equal to magnetic diffusivity, λ± = λ∓ = ν. Then, by using the independence

of derivatives with respect to both points and using the local homogeneity

hypothesis, the dissipative term becomes
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ν〈(∂2′
α + ∂2

α)(∆z±i ∆z±j )〉 = 2ν
∂2

∂rα
〈∆z±i ∆z±j 〉 −

4

3

∂

∂rα
(ǫ±ijrα)

where we defined the average dissipation tensor

ǫ±ij = ν〈(∂αz
±
i )(∂αz

±
j )〉 (3.8)

Using these equations in (3.7), we finally obtain the equation

∂t〈∆z±i ∆z±j 〉 +
∂

∂rα

〈∆z∓α (∆z±i ∆z±j )〉 =

= −Λij − Πij + 2ν
∂2

∂r2
α

〈∆z±i ∆z±j 〉 −
4

3

∂

∂rα
(ǫ±ijrα) (3.9)

The first and second term on the r.h.s. of the last equation represent re-

spectively a tensor related to large-scale inhomogeneities Λij = 〈z∓α (∂′α +

∂α)(∆z±i ∆z±j )〉, and the tensor related to the pressure term Πij = 〈∆z±j (∂′i +

∂i)∆P+∆z±i (∂′j+∂j)∆P 〉. Equation (3.9) is an exact equation for anisotropic

MHD equations that links the second-order complete tensor to the third-order

mixed tensor through the average dissipation rate tensor. Using incompress-

ibility and independence of derivatives with respect to both points, the first

term on the r.h.s. can be written as Λij = (∂′α + ∂α)〈z∓α (∆z±i ∆z±j )〉 which

vanishes for a globally homogeneous situation, because in this case ∂i〈〉 ≡ 0.

The pressure term is more complicated to be managed. Using independence

of derivatives and local homogeneity we get

〈∆z±i ∂j∆P 〉 = 〈∂j [∆z
±
i ∆P ] − (∂jz

±
i )∆P 〉 = (3.10)

= −〈∂′j [∆z±i ∆P ]〉 − 〈(∂jz
±
i )∆P 〉
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from which

Πij = 〈
[

∂′j(z
±
i )′ − ∂jz

±
i

]

∆P 〉 + 〈
[

∂′i(z
±
j )′ − ∂iz

±
j

]

∆P 〉 (3.11)

Then the diagonal terms of the tensor containing the pressure vanish. In

fact summing over indices eq. (3.11) yields [∂′i(z
±
i )′ − ∂iz

±
i ] which is zero for

local homogeneity and incompressibility. This means that, assuming global

homogeneity and incompressibility, the equation for the trace of tensor can

be written as

∂t〈|∆z±i |2〉 +
∂

∂rα

〈∆z∓α |∆z±i |2〉 = 2ν
∂2

∂rα

〈|∆z±i |2〉 −
4

3

∂

∂rα

(ǫ±iirα) (3.12)

This expression is valid even in the anisotropic case, that is fields depends

on the vector rα. Moreover by considering only the trace, we ruled out

the possibility to investigate anisotropies related to different orientations of

vectors within the second-order moment. It is worthwhile to remark here

that only the diagonal elements of the dissipation rate tensor, namely ǫ±ii

are positive defined, while in general the off-diagonal elements ǫ±ij can be

in principle also negative. For a stationary state the equation (3.12) can be

written as the divergenceless condition of a quantity involving the third-order

correlations and the dissipation rates

∂

∂rα

[

〈∆z∓α |∆z±i |2〉 − 2ν
∂

∂rα
〈|∆z±i |2〉 −

4

3
(ǫ±iirα)

]

= 0 (3.13)

from which we can obtain the Yaglom’s relation by projecting equation (3.13)

along the longitudinal rα = rer direction. This operation involves the as-

sumption that the flow is locally isotropic, that is fields depends locally only

on the separation r, so that

(

2

r
+

∂

∂r

)[

〈∆z∓r |∆z±i |2〉 − 2ν
∂

∂r
〈|∆z±i |2〉 +

4

3
ǫ±iir

]

= 0 (3.14)
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The only solution that is compatible with the absence of singularity in the

limit r → 0 is

〈∆z∓r |∆z±i |2〉 = 2ν
∂

∂r
〈|∆z±i |2〉 −

4

3
ǫ±iir (3.15)

which reduces to the Yaglom’s law for MHD turbulence in the inertial range

(Carbone et al., 2009b) when ν → 0

Y ±
r = 〈∆z∓r |∆z±i |2〉 = −4

3
ǫ±iir (3.16)

An alternative derivation of this result using correlators instead of structure

functions had been first obtained by Politano and Pouquet (1998). The

Yaglom law (3.16) can be expressed through the sum of six terms, each

coupling in different way magentic field and velocity fluctuations:

Y ±
r =

〈

|∆vi|2 ∆vr

〉

+
〈

|∆bi|2 ∆vr

〉

±2 〈(∆vi∆bi)∆vr〉 ∓
〈

|∆vi|2 ∆br
〉

∓
〈

|∆bi|2 ∆br
〉

− 2 〈(∆vi∆bi)∆br〉 (3.17)

The first three terms represent the energy (and cross-helicity) transported by

the longitudinal velocity fluctuations ∆vr, while the last three terms give the

magnetic field contribution to the pseudo-energy transfer rate. The MHD

scaling law (3.16) holds for the sum of all its terms.
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Chapter 4

The Yaglom law in solar wind

4.1 Observation of turbulent cascade in fast

polar wind

In this thesis, we show that relation (3.16) is indeed satisfied in some periods

within solar wind. In order to avoid variations of the solar activity and

ecliptic disturbances (like slow wind sources, Coronal Mass Ejections, ecliptic

current sheet, and so on), we use high speed polar wind data measured by the

Ulysses spacecraft (Smith et al. 1995, Balog et al. 1995). In particular, we

analyse here the first seven months of 1996, when the heliocentric distance

slowly increased from 3 AU to 4 AU, while the heliolatitude decreased from

about 55◦ to 30◦ (see Fig. 4.1). The fields components are given in the

RTN reference frame (Fig. 2.11). Note that, since the wind speed in the

spacecraft frame is much larger than the typical velocity fluctuations, and

is nearly aligned with the R radial direction, time fluctuations are in fact

spatial fluctuations with time and space scales (τ and r respectively) related

through the Taylor hypothesis (section 2.3), so that r = −〈vR〉τ (note the

reversed sign).

From the 8 minutes averaged time series z±(t) (section 2.2.3), we compute

the time increments ∆z±(τ ; t) = z±(t + τ) − z±(t), and obtain the mixed

third order structure function

Y ±(−〈vR〉t τ) =
〈

|∆z±(τ ; t)|2 ∆z∓R(τ ; t)
〉

t
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Figure 4.1: Velocity of the Solar Wind as measured by Ulysses during the years
1995 and 1996. The highlighted period has been analysed in this section.

using moving averages 〈•〉t on the time t over periods spanning around 11 days,

during which the fields can be considered stationary. A linear scaling Y ±(τ) =

4/3 ǫ± 〈vR〉t τ is indeed observed in a significant fraction of the periods we

examined, with an inertial range spanning as much as two decades, indicat-

ing the existence of a well defined inertial energy cascade range in plasma

turbulence (Sorriso-Valvo et al., 2007). In fact, solar wind inertial ranges can

even be larger than the ones reported for laboratory fluid flows (Danaila et.

al, 2001), showing the robustness of this result. This is the first experimental

validation of the turbulence MHD theorem discussed in the section 3.2.2..

Figure 4.2 shows some example of scaling and the extension of the inertial

range, for both Y ±(τ).

The linear scaling law generally extends from a few minutes to one day

or more. This happens in about 20 periods of a few days in the 7 months

considered. Several other periods are found in which the scaling range is

considerably reduced. In particular, the sign of Y ±(τ) is observed to be ei-
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Figure 4.2: The scaling behaviour of Y ±(τ) as a function of the time scale τ for
two periods we examined. Different colours of the curves refer to positive and
negative values of the mixed structure functions Y ±(τ) and thus of ǫ±. The full
black line correspond to a linear scaling law to guide the eye.
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ther positive or negative. Since pseudo-energies dissipation rates are positive

defined, a positive sign for Y ±(τ) (negative for Y ±(r)) indicates a (standard)

forward cascade with pseudo-energies flowing towards the small scales to be

dissipated. On the contrary, a negative Y ±(τ) is the signature of an inverse

cascade where the energy flux is being transferred on average toward larger

scales.

It is worth noting that, in a large fraction of cases, both Y ±(τ) switch

from positive to negative linear scaling (or viceversa) within the same time

period when going from small to large scales (see Figure 4.3). The occur-

rence of both kind of cascades within the same flow is not so uncommon

within hydrodynamic turbulence. This phenomenon has been attributed to

some large scale instability, as observed for example in geophysical flows or

when the flow is affected by a strong rotation. In the case of solar wind

plasma a possible explanation for the inverse cascade could be the enhanced

intensity of the background magnetic field. This would make the turbulence

mainly bidimensional allowing for an inverse cascade as observed in numeri-

cal simulations (Baroud et Al. 2002). It should also be noticed that in most

of the cases the time scale at which the cascade reverses its sign is of the

order of 1 day. This scale roughly indicates where the small scale Alfvénic

correlations between velocity and magnetic field are lost. This could mean

that the nature of the fluctuations changes across the break. However, these

particular aspects still deserve to be adequately considered within the solar

wind context. The most evident scalings (positive and negative) are shown

in the Figures 4.5 ÷ 4.19 while the correposding informations are collected

in the tab 4.1.
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day interval (time index) (ǫ− ± δǫ−) ( J
kg m

) (〈V 〉 ± δ〈V 〉) km
s

inertial range

24 ÷ 35 (4370) 176 ± 13 709 ± 114 3 h÷ 2 g
74 ÷ 85 (13470) 154 ± 32 699 ± 102 1 h÷ 4 g

178 ÷ 189 (32200) 66 ± 24 678 ± 95 5 h÷ 4 g

day interval (time index) (ǫ+ ± δǫ+) ( J
kg m

) (〈V 〉 ± δ〈V 〉) km
s

inertial range

11 ÷ 22 (2000) −167 ± 13 701 ± 105 1 h÷ 3 g
21 ÷ 32 (3950) 436 ± 32 694 ± 112 30 m÷ 2 g
56 ÷ 67 (10150) 174 ± 24 707 ± 131 1 h÷ 3 g
68 ÷ 79 (12360) 115 ± 19 675 ± 96 2 h÷ 4 g
69 ÷ 80 (12550) 113 ± 12 674 ± 102 2 h÷ 4 g
81 ÷ 92 (14700) 185 ± 25 690 ± 90 3 h÷ 4 g

103 ÷ 114 (18695) 194 ± 22 690 ± 85 5 h÷ 4 g
117 ÷ 128 (21111) −121 ± 13 696 ± 94 2 h÷ 4 g
135 ÷ 146 (24400) 218 ± 28 707 ± 110 3 h÷ 2 g
172 ÷ 183 (31060) −126 ± 15 678 ± 103 10 h÷ 4 g
184 ÷ 195 (33240) 216 ± 25 696 ± 88 30 m÷ 4 g
192 ÷ 203 (34680) −91 ± 11 690 ± 94 4 h÷ 4 g

Table 4.1: The tab collects the energy tranfer rates ǫ+ and ǫ− estimated through
fits of the Yaglom scaling law. In the first column we have the exrtemes (in terms of
days of 1996) of the 11-days windows in which the scalings were observed together
with an index that identify the windows. The last column shows the extension of
the inerntial range in the time domain.
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Figure 4.5: The Yaglom scaling Y ± in the window 2000
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Figure 4.6: The Yaglom scaling Y ± in the window 3950.
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Figure 4.7: The Yaglom scaling Y ± in the window 10150
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Figure 4.8: The Yaglom scaling Y ± in the window 12360
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Figure 4.9: The Yaglom scaling Y ± in the window 12550
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Figure 4.10: The Yaglom scaling Y ± in the window 14700
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Figure 4.11: The Yaglom scaling Y ± in the window 18695
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Figure 4.12: The Yaglom scaling Y ± in the window 21111
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Figure 4.13: The Yaglom scaling Y ± in the window 24400
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Figure 4.14: The Yaglom scaling Y ± in the window 31060
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Figure 4.15: The Yaglom scaling Y ± in the window 33240
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Figure 4.16: The Yaglom scaling Y ± in the window 34680
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Figure 4.17: The Yaglom scaling Y ± in the window 4370
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Figure 4.18: The Yaglom scaling Y ± in the window 13470
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Figure 4.19: The Yaglom scaling Y ± in the window 32200
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Figure 4.22 shows the location of the most evident scaling intervals, to-

gether with the values of the flux rate ǫ± estimated through a fit of the scaling

law (3.16), typically of the order of a few hundreds in J kg−1 s−1. For compar-

ison, values found for ordinary turbulent fluids are 1÷ 50 J kg−1 s−1 (Cerutti

and Meneveau 2000).

At this point, the question is why the scaling is not observed all the time

within the solar wind. As already stated, equation (3.16) is verified only

when local homogeneity, incompressiblity and isotropy conditions are satis-

fied. In general, solar wind inhomogeneities play a major role at large scales

so that local homogeneity is generally fulfilled within the range of interest.

Regarding incompressibility, it has been shown that compressive phenomena

mainly affect shocked regions and dynamical interaction regions like stream-

stream interface. However, the time interval we analyse, because of Ulysses

high latitude location, is not affected by these compressive phenomena. On

the other hand, it has also been shown that magnetic field compressibility

increases mainly at very small scales within the fast wind regime. It follows

that the incompressibility assumption can be considered valid to a large ex-

tent for the analyzed interval and at intermediate scales. The large scale

anisotropy, mainly due to the average magnetic field, is only partially lost

at smaller scales, and a residual anisotropy is always present (Sorriso-Valvo

2006), generally breaking the local isotropy assumption. Thus, while inho-

mogeneity, compressibility and anisotropy could all be responsible for the

loss of linear scaling, anisotropy probably is the main candidate within high

latitude regions of the solar wind. It is important to note that the pres-

ence of a Yaglom-like law that involves the third order mixed moment, is

more general than the phenomenology usually involving the second order

moment. Indeed, while the Yaglom MHD relation (3.16) involves only differ-

ences along the parallel direction, that are in fact the only quantities accessi-

ble from single satellite measurements, phenomenological arguments involve

the full spatial dependence of vector fields that cannot be directly measured

yet. This means that our result is compatible with both Kolmogorov and

Iroshnikov-Kraichnan type cascade (Dobrowolny et al., 1980), and does not

help in discriminating between these phenomenologies.
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4.2 Turbulence in the ecliptic wind

The results presented in previous section refer to the steady, fast polar wind,

where the ecliptic disturbances of solar origin are reduced. Other authors

have studied the Yaglom law in ecliptic wind at 1AU, obtaining good results

and values of the energy transfer rate higher than the ones reported in the

previous section. Figure 4.20 shows examples of fast and slow wind ecliptic

scaling of the mixed third order moment as in Yaglom law, for both Y + and

Y −. Figure 4.21 shows the locations of the scaling regions (top panel) in

the alternate fast and slow ecliptic stream, and the corresponding values of

the pseudo-energy transfer rates (bottom panel). A clear difference between

the fast and slow wind appears. First of all, the pseudo-energy transfers

in the fast wind streams are comparable with the ones obtained in polar

wind, where only fast wind is present. This confirm that the results are

consistent and that the energy transfer rate depends on the bulk velocity

of the wind. The slow streams, on the contrary, are characterized by larger

values of ǫ±, so that a clear separation between the two species is visible in

figure 4.21 (Marino et al., 2009). This is in agreement with the observation

of larger intermittency in the slow streams (Sorriso-Valvo 1999). Moreover,

in the fast streams only one of the modes (Y + or Y −) is prevalently observed

to satisfy the Yaglom law in a given location. In the slow streams, the

two modes have often simultaneous scaling, which allows the estimation of

the total energy ǫtot = (ǫ+ + ǫ−)/2. This difference suggests that in the

fast ecliptic wind the Alfvénic correlations kill the turbulence in one of the

modes, suggesting the presence of purely alfvénic turbulence (Marino et al,

2009). Both observations are evidences that fast and slow wind own different

properties and, therefore, should always be analysed separately. In slow

streams, the scaling samples are interestingly found in correspondence with

the stream interfaces (figure 4.21). This suggests that the turbulent cascade

observed through the Yalgom law could be activated by the energy injection

due to the shears of velocity and magnetic field, that characterize the interface

regions.

87



10
2

10
3

10
4

10
5

10
3

10
4

10
5

Y
+
(τ

) 
(k

m
3
/s

3
)

τ (sec)

1997, days 1-9 (fast)

10
2

10
3

10
4

10
5

10
6

10
3

10
4

10
5

10
6

Y
± (τ

) 
(k

m
3
/s

3
)

τ (sec)

1996, days 354-363 (slow)

Y
+

Y
-

Figure 4.20: Top panel: scaling behaviour of Y + in the fast ecliptic wind. Bottom
panel: scaling behaviour of both Y ± in a slow wind stream. The solid line shows
a linear scaling law to guide the eye. 88



 300

 600

 900

V
S

W
 [

k
m

/s
]

Ulysses data, from 1996 day 220

P

 0

 1

 2

 3

 4

 200  240  280  320  360  400  440

ε±   
 [

k
J 

/ 
k

g
 s

ec
]

t [days]

ε−
s

ε+
s

ε−
f

ε+
f

Figure 4.21: Top panel: the solar wind bulk speed and the starting points of each
11 days windows where scaling was observed (crosses). Bottom panel: the values
of the estimated pseudo-energy transfer rates ǫ± in the ecliptic wind measured by
Ulysses starting from day 220 of 1996 (in kJ kg−1 s−1), for both fast (circles) and
slow (triangles) wind. The values of the total energy ǫtot = (ǫ+ + ǫ−)/2 are also
shown (stars) where both pseudo-energy fluxes were available.

89



4.3 Heating the solar wind by the MHD tur-

bulent cascade

The first models of solar wind proposed an adiabatic expansion of the plasma

from the outer corona throughout the heliosphere. For such a model, the

proton temperature T should decrease with the heliocentric distance r as

T (r) ∝ r−4/3. Spacecraft measurements have shown that the temperature

decay is in fact considerably slower than expected. Fits of the radial tempera-

ture profile gave an effective decrease T ∼ T0(r0/r)
ξ in the ecliptic plane, with

the exponent ξ ∈ [0.7 ÷ 1], much smaller than the adiabatic case (Schwenn

1983, Goldstein 1996). This observation implies that some heating mecha-

nism must be at work within the wind plasma to supply the energy required

to slow down the decay.

The nature of the heating process is an open problem. Among the heating

sources, the dissipation of energy occurring at the end of a turbulent MHD

cascade towards the dissipative scales could play an important role. This pos-

sibility has been explored in recent works, giving consistent results (Verma

1995, Vasquez 2007). However, the presence of an MHD turbulent cascade

had not been proven so far, but only suggested by the well established obser-

vation of a Kolmogorov-like power-law spectrum of both kinetic and magnetic

energy.

In this thesis, we compare the first reliable estimates of the MHD tur-

bulent energy transfer rate with the heating rate necessary to reproduce the

temperature radial decrease. As it has been explained in the previous sec-

tion, we obtained the values of the turbulent energy transfer rate through

a fit of the Yaglom law (3.16), using the mean velocity of the wind 〈vr〉t
through Taylor hypothesis. Observed values are collected in Table 4.24 and

in Figure 4.23, and should now be compared to the heat flux estimated from

temperature measurements. The physical processes involved in the cases in

which we observed the scaling of −Y ±(τ) are not understood yet, so we chose

to not consider them in this study. It should be noted that the flux contribut-

ing to the heating is in fact the total energy flux ǫtot = ǫ+ +ǫ−. However, it is

very rare to observe simultaneous scaling for both Elsässer variables. In the
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Figure 4.22: The radial proton temperature profile as measured by the spacecraft
Voyager (black line) together with the adibatic trend (blue line).
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few cases where it happens, we found that one of the fluxes ǫ± is completely

dominating the other. We thus used each measured value of ǫ± as a surro-

gate for the energy flux ǫtot to increase the statistics on the dissipation, but

the relation between the Elsässer pseudo-fluxes ǫ± and the energy ǫtot and

cross-helicity ǫC = ǫ+ − ǫ− fluxes is a very delicate and intriguing question

that deserves further study through numerical simulations. We need now

to obtain an estimate of the solar wind heating rate to compare it with the

turbulent energy transfer rate. Verma et al. (1995) derived an expression

for the radial temperature profile which includes, besides the adiabatic ex-

pansion heat loss, a correction due to the turbulent heating by dissipation

processes occurring at the bottom of the energy cascade. Introducing the ob-

served power-law temperature decrease T ∼ T0(r0/r)
ξ, Vasquez (2007) used

that relation to retrieve the heating rate ǫT at a given distance from the sun r

ǫT (r) =
3

2

(

4

3
− ξ

)

VSW (r) kB T (r)

rmp

, (4.1)

with VSW (r) being the radial profile of the bulk wind speed (which weakly

fluctuates around 750 km/sec, see Table 4.24), kB the Boltzmann constant

and mp the proton mass. This relation is obtained considering a polytropic

index γ = 5/3 for the adiabatic expansion of the solar wind plasma, the

protons being the only particle heated in the process. Such assumption are

only partially correct, since the electrons could play a relevant role in the

heat exchange. Heating rates obtained using (4.1) should thus be only seen

as a first approximation that could be improved with better models of the

heating processes. The Ulysses database provides two different estimates for

the temperature, T1, indicated as Tlarge in literature, and T2, known as Tsmall.

In general, T1 and T2 are known to give sometimes an overestimate and

an underestimate of the true temperature, respectively. So, we performed

the whole analysis using both temperatures. From these, we estimated the

heating rate at the same positions for which the energy cascade was observed,

as indicated in Table 4.24. The bulk speed and temperature in equation (4.1)
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are computed as moving averages within the same 11 days windows used

for the turbulent cascade analysis. Scaling exponents of the temperature

profiles ξ are evaluated independently by performing a power-law fit of the

data over an extended dataset, from 1995 April 10th to 1996 August 10th.

Since the relation between sampling times and heliocentric distance r is not

linear, we first re-sampled the Ulysses temperature time series by averaging

the data using a regular distance spacing, with step δr = 0.01AU, so that the

resampled temperature profile consists of 225 data points. This procedure

is important to give every point the same weight for the fit, avoiding the

effects of point clustering due to the spacecraft trajectory. Also, it has the

advantage of filtering out small scale structures in the temperature, and

provides an error bar estimate for each data point, evaluated as the standard

deviation of the original data within each δr bin. Figure 4.23 shows the

fit of the radial temperature profile for both T1 and T2, measured scaling

exponents being ξ1 = 0.49 ± 0.06 and ξ2 = 1.10 ± 0.08 respectively. Values

of ǫ1 and ǫ2 obtained from (4.1) are then plotted in Figure 4.25 and reported

in Table 4.24, together with the corresponding turbulent transfer rates when

the positive scaling law (3.16) is observed. It is worth mentioning that, from

the assumed temperature profile and from equation (4.1), the radial decrease

of the estimated heating will be trivially ǫT (r) ∝ r−1−ξ.

We can now compare the estimated local heating rate of the solar wind

plasma with the dissipation rate (equal to the transfer rate) of the turbulent

cascade, as measured directly from the data. This makes a difference with

previous works, where the values of the turbulent energy transfer rate were in

fact inferred from the spectral properties of the wind (Verma 1995, Vasquez

2007). Figure 4.25 indicates that turbulent transfer rate represents a signif-

icant amount of the expected heating. Looking at Table 4.24, our results

show that the MHD turbulent cascade contributes to the in situ heating of

the wind from 8 % (T1) to 50 % (T2) on average, and up to 100 % in some

cases (Marino et al., 2008). It should be thus considered as an important

ingredient of the heating. However, the turbulent cascade alone seems unable

to provide all the heating needed to explain the observed slowdown of the

temperature decrease, in the framework of the model profile (4.1). Note that
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turbulent dissipation and heating rates are much closer when the lower tem-

perature measure T2 is considered. The bottom panel of Figure 4.25 shows

profiles of the observed turbulent dissipation, together with the correspond-

ing temperature and estimated heating, computed at the same locations.

The three signals present evident correlations, so that when the turbulent

energy transfer rate increases, both temperature and the estimated heating

also increase (Marino et al., 2008). Such correlations could be attributed to

the leading role of the kinetic energy to the turbulent transport, since in po-

lar, fast, hot wind the velocity is quite correlated with the temperature. On

the other hand, the MHD scaling law (3.16) is not observed at all times in

the solar wind. As we said, this could be due to many reasons: the presence

of compressive effects, or the enhancement of local anisotropies or large scale

inhomogeneities. All those effects have to be considered as possible sources

of disturbance, inhibiting the full development of the measurable nonlinear

turbulent cascade. They could also lead to underestimate the observed con-

tributions from the turbulent cascade to the heating of the expanding wind.

However, the indication that turbulent heating is present, and well correlated

with the wind temperature, is already of great physical interest. In partic-

ular, we have evidenced that the energy contained at large scales, up to a

few days, that can be introduced by the solar coronal structures, or by large

scale structure of the solar wind, can be transported through the nonlinear

interactions in a MHD turbulent cascade towards smaller scales, where con-

version into heat can take place. However, the results presented here do not

give any information about the dissipation mechanism itself.
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Figure 4.23: Top panel: the radial decrease of the temperatures T1 and T2 as
measured by Ulysses during the first half of 1996 (2 days averages). Superimposed
are the power law fits T (r) ∝ r−ξ, with ξ1 = 0.49 ± 0.06 and ξ2 = 1.10 ± 0.08.
Bottom panel: the values of the turbulent pseudo-energy transfer rates, as obtained
from the fit of the scaling law (3.16), in J kg−1 s−1. Squares refer to ǫ+, circles to
ǫ−.
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Figure 4.24: The values of the measured turbulent energy transfer rates ǫ± (in
J kg−1 s−1) at different distances from the sun r (AU), along with the expected
values of the heating rates ǫ1,2 (same units) as computed using the parameters
VSW (km s−1), ξ1,2, and the two values of the temperature T1 and T2 measured
by the Ulysses spacecraft (in 103K). All wind parameters were computed as mean
values over 11 days windows, along with their standard deviations. In the case of
the distance r, the variation within each 11 days window is roughly 0.05AU. The
heating rates ǫ1,2 are estimated from the parameters in equation (4.1), using the
two different values of the temperature. The first column indicates the initial time
t0 of the 11 days window in the time series (in day of the year 1996).
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Figure 4.25: Top panel: the values of ǫ± and ǫ1,2. Bottom panel: we compare the
behaviour of the measured ǫ± with the estimated ǫ1,2, after removing the r−1−ξ
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where the r−ξ trend has been removed and arbitrary rescaling and offset have been
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to evidence the high correlation between the signals.
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Chapter 5

The compressive turbulent
cascade

5.1 Phenomenology in fluid and MHD tur-

bulence

A first attempt to include density fluctuations in the framework of fluid

turbulence was due to Lighthill (1955). He pointed out that in a compressible

energy cascade, the mean energy transfer rate per unit volume ǫV ∼ ρv3/ℓ

should be constant in a statistical sense (v being the characteristic velocity

fluctuations at the scale ℓ), obtaining v ∼ (ℓ/ρ)1/3. Fluctuations of a density-

weighted velocity field u ≡ ρ1/3v should thus follow the usual Kolmogorov

scaling u3 ∼ ℓ. We introduce now the same phenomenological conjecture can

be in MHD turbulence by considering the pseudo-energy dissipation rates

per unit volume ǫ±V ≡ ρǫ±, and introducing density-weighted Elsässer fields,

defined as w± ≡ ρ1/3z±. The equivalent of the Yaglom-type relation

W±(ℓ) ≡ 〈|∆w±|2∆w∓
‖ 〉 〈ρ〉−1 = − 4

3
ǫ± ℓ (5.1)

should then hold for the density-weighted increments ∆w±(ℓ). Note that we

have defined the fluxW±(ℓ) so that it reduces to Y ±(ℓ) in the case of constant

density, allowing for comparisons between the compressible scaling (5.1) and
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the purely incompressible one (3.16). Despite its simple phenomenological

derivation, the introduction of the density fluctuations in the Yaglom-type

scaling (5.1) seems to describe correctly the turbulent cascade for compress-

ible fluid (or magnetofluid) turbulence. The law for the velocity field has

been observed in recent numerical simulations (Kritsuk et al.,2007; Kowal et

al., 2007).

5.2 Compressive turbulent cascade in solar

wind

In this section we study the cascade properties of compressive MHD turbu-

lence from solar wind data. In order to avoid as far as possible variations

due to solar activity, or other ecliptic disturbances such as slow wind sources,

coronal mass ejection, current sheets, we concentrate our analysis on pure

Alfvénic state turbulence observed in high speed polar wind. In particular

we use the same dataset and approach of the incompressive case, so we an-

alyze the solar wind measured by Ulysses spacecraft in the first six months

of 1996. Again we use the Taylor hypothesis, 8 minutes averaged time series

of both Elsässer variables z±(t) and density ρ(t) = np + 4nHe (obtained as

the sum of proton density and 4 times He density) to compute the density-

weighted time series w±(t). From this time series we calculate the increments

∆w±(τ) = w±(t + τ) − w±(t) for different time lags τ , and the third-order

mixed structure functions W±(τ) = 〈|∆w±(τ)|2∆w∓
R(τ)〉t by time averaging

〈•〉t over windows of fixed duration t. In order to eliminate instationari-

ties, heliolatitude and heliocentric distance changes, and to explore the wind

properties locally, averages are computed over a moving window of about

11 days, consisting of 2048 data points. We found that the third-order struc-

ture functions W±(τ) computed from the Ulysses data show a linear scaling

W±(τ) ∼ 4

3
ǫ± 〈vR〉 τ (5.2)
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Figure 5.1: One example of the mixed third order compressible pseudo-energy
flux W+(τ) as computed from the Ulysses data during days 23 to 32 of 1996. The
incompressible flux Y +(τ) in the same time window and a linear fit are also indi-
cated. In this case, both compressible and incompressible fluxes obey a Yaglom-like
law.

during a considerable fraction of the period under study (Carbone et al.,

2009a). In particular, we observed linear scaling of W+(τ) in about half of

the signal, while W−(τ) displays scaling on about a quarter of the sample.

As comparison, the corresponding incompressive scaling law for Y ±(τ) was

only observed in a third of the whole period, considerably smaller than the

compressible case. The portions of wind where the scaling is present are

distributed in the whole period, and their extensions span from 6 hours up

to 10 days. The linear scaling law generally extends on about 2 decades,

from a few minutes to one day or more. For the compressible scaling, the

two fluxes W±(τ) coexist in a large number of cases. This does not hold for

the incompressive scaling, where in general the scaling periods for the two

fluxes Y ±(τ) are disjoint.
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Figure 5.2: Top panel: an example of the third order compressible pseudo-energy
flux W+(τ) during days 1 to 10 of 1996. Bottom panel: W−(τ) for days 66 to 75
of the same year. In both panels, the corresponding incompressible fluxes Y ±(τ)
(no scaling present) and a linear fit are displayed.
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Figure 5.3: The top panel shows an example of the mixed third order pseudo-
energy flux −W−(τ) during days 9 to 18 from 1996. In this example, the scaling
observed is negative defined. The origin of such signed scaling is not clear. Corre-
spondingly, scaling of the incompressible flux Y ±(τ) in the same time window is
not present. On the bottom panel, W−(τ) presents two reduced scaling regions of
opposite sign in a window starting on day 61 of 1996. As in the previous case, no
scaling range is observed on the corresponding Y ±(τ).
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Figure 5.1 shows one example of both mixed third-order structure func-

tions W+(τ) and Y +(τ) computed in the same 11 days windows where the

scaling was observed. Figure 5.2 shows two more examples of scaling, ob-

served both for W+(τ) and W−(τ), in two different time windows. The

W+(τ) scaling extends over 2 decades, while W−(τ) behaves linearly on the

whole range of scales considered here (3 decades). In the last example, the

scaling is not present for the incompressible fluxes Y ±(τ). This evidence

shows that the inclusion of compressible effect through the density-weigthed

fluctuations improves the scaling (3.16) and modify the energy cascade. In

Figure 5.3 we report two cases in which W−(τ) appears with the negative

sign or shows both positive and negative. Also in the case of a compres-

sive cascade is not clear if the sign of the mixed third order moment of the

Elsässer variables is somehow related to the direction of the energy cascade.

The scaling relation 5.1, as for the incompressive case, allows a direct esti-

mate of the pseudo-energy transfer rates in the compressible case. A fit of

the linear law 5.2 provides the local values of the amount of pseudo-energy

transferred from large to small scales by the turbulent MHD cascade. This

was already measured in the incompressive case (chapter 4), so that it is

possible to compare the transfer rates in the two cascades. The mean values,

computed over the 46 observed scaling cases at different radial distances from

the sun, (± their dispersion, in [J kg−1 sec−1]) for the compressible cascade

are ǫ+ = 3668±1900 (29 cases) and ǫ− = 3536±2500 (17 cases). Both values

are considerably larger than the corresponding values for the incompressive

case: ǫ+I = 182 ± 73, 24 cases, and ǫ−I = 156 ± 50, 11 cases (Marino et al.,

2008). This result shows again that the cascade in the solar wind is strongly

enhanced by density fluctuations, despite their small amplitude. Note that

the new variables are built by coupling the Elsässer fields with the density,

before computing the scale dependent increments. Moreover, the third order

moments are very sensitive to intense field fluctuations (intermittency), that

could arise when density fluctuations are correlated with velocity and mag-

netic field. Similar results, but with considerably smaller effect, were found

in numerical simulations of compressive MHD (Mac Low, 1999).
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Figure 5.4: Radial profile of the pseudo-energy transfer rates obtained from the
turbulent cascade rate through the Yaglom relation, for both the compressive and
incompressive case. The solid lines represent the radial profiles of the heating rate
required to obtain the observed temperature profile.

5.3 The role of density fluctuations in solar

wind heating

As remarked previously, an interesting open question is the problem of the

solar wind heating. We showed in the section 4.3 that the incompressible

dissipation rate of pseudo-energies, measured through the equation (3.16),

can only account for up to 50% of the solar wind heating (Marino et al,

2008).

Figure 5.4 shows the radial profiles of the pseudo-energy transfer rates

for both the compressive and incompressive cascades. In the same figure,

we show the profiles of the heating rates needed to obtain the observed tem-

peratures, as estimated from heating models (Verma,1995; Vasquez, 2007;

Marino et al., 2008) and from the measured temperatures (the two differ-

ent values refer to the different estimates of the temperature obtained from
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Ulysses instruments). It is evident that, while the incompressive cascade can-

not provide all the energy needed to heat the wind, the density fluctuations

coupled with magnetohydrodynamic turbulence can supply the amount of en-

ergy required (Carbone et al., 2009a). This evidence shows the importance

of the density fluctuations in polar, fast solar wind turbulence, confirming

that it should be considered as an example of compressive fully developed

MHD turbulence. Note that, since in a few samples we measured both ǫ+

and ǫ− in the same period, the values of the energy ǫ = (ǫ+ + ǫ−)/2 and

cross-helicity ǫH = (ǫ+ − ǫ−)/2 transfer rates can be disentangled. From the

values obtained, it is clear that the cross-helicity contribution, indicating the

importance of the Alfvénic state of turbulence, can vary from a negligible

fraction (less than 1%) to a considerable 25% of the energy contribution.

Since its amplitude does not appear to be correlated with the observation

of the cascade, Alfvénicity seems not to play a crucial role in the cascade

at the observed scales. This would be in agreement with previous analysis

of solar wind turbulence anisotropy, where the Alfvénic contribution to the

field fluctuations is small (Bieber, 1996; Horbury, 2005).
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CONCLUSIONS

The whole heliosphere is permeated by the solar wind, a supersonic and su-

per Alfvénic plasma flow of solar origin which continuously expands into the

space. This medium offers the best opportunity to study directly collisionless

plasma phenomena, mainly at low frequencies where high-amplitude fluctu-

ations have been observed. During its expansion, the solar wind develops a

strong turbulent character, which evolves towards a state that resembles the

well known hydrodynamic turbulence described by Kolmogorov. Because of

the presence of a strong magnetic field carried by the wind, low-frequency

fluctuations in the solar wind are usually described within a magnetohydro-

dynamic benchmark. Turbulence in the solar heliosphere plays a relevant

role in several aspects of plasma behavior in space, such as solar wind gen-

eration, high-energy particles acceleration, plasma heating, and cosmic rays

propagation. In the 1970s and 80s, impressive advances have been made in

the knowledge of turbulent phenomena in the solar wind. However, at that

time, spacecraft observations were limited by a small latitudinal excursion

around the solar equator and, in practice, only a thin slice above and below

the equatorial plane was accessible, i.e., a sort of 2D heliosphere.

In the 1990s, with the launch of the Ulysses spacecraft, investigations

have been extended to the high-latitude regions of the heliosphere, allowing

the characterization study of turbulence evolution in the polar regions. The

polar wind is a flow in which the effects of large scale inhomogeneities are

considerably less important than in low-latitude wind and, consequently, the

turbulent evolution of its fluctuations results to be much slower. A specific

property of turbulence is the scale invariance which manifests itself in the

form of a power law spectrum. This viewpoint was first introduces in the
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solar wind by Coleman (1968). On the other hand Belcher and Davis (1971)

observed that during a substantial portion of the time, the velocity and the

magnetic field fluctuation, not only are of the same magnitude, but are almost

completely correlated. When this happens non-linear interactions in MHD

turbulent flows cannot exist (as it’s evident looking at the MHD equation

written in terms of the Elsässer variables). This fact introduces a problem

in understanding the evolution of MHD turbulence as observed in the inter-

planetary space. Both a strong correlation between velocity and magnetic

fluctuations and a well defined turbulence spectrum are observed, and the

existence of the correlations is in contrast with the existence of a spectrum

which in turbulence is due to a non-linear energy cascade. Dobrowolny et

al. (1980) started to solve the puzzle on the existence of Alfvénic turbu-

lence, say the presence of predominately outward propagation and the fact

that MHD turbulence with the presence of both Alfvénic modes present will

evolve towards a state where one of the mode disappears.

In this thesis we rederive the Yaglom law for the MHD, a proportionality

relation between the mixed third-order moment of the longitudinal incre-

ments of the Elsassër fields and the increment scale that is the equivalent

of the Kolmogorov’s law, the only exact and nontrivial theoretical result on

turbulence. Using Ulysses spacecraft measurements, we observed for the first

time the existence of such relation in solar wind which firmly enstablish the

presence of a local energy cascade and the turbulent character of the field

fluctuations. The scaling holds in a number of relatively long periods of

about 11 days. Although our data might not fully satisfy requirements of

homogeneity, incompressibility and isotropy everywhere, the observed linear

scaling extends on a wide range of scales and appears very robust. This

result estabilishes a firm point within solar wind phenomenology, and, more

generally, provides a better knowledge of plasma turbulence, carrying along

a wide range of practical implications on both laboratory fusion plasmas and

space physics. The observation of the Yaglom law for MHD provided to ob-

tain the first direct estimation of the pseudo-energy dissipation rate in solar

wind hydrodynamic turbulence.

At this point we explored the possibility that the dissipation of energy
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occurring at the end of a turbulent MHD cascade can be responsible for the

solar wind heating. As a matter of fact spacecraft measurements show that

the solar wind temperature decays slower than the adiabatic case as suggested

by the first models of solar wind expansion. This discrepancy implies that

some heating mechanism must be at work within the wind plasma to supply

the energy required to slow down the cooling. We compared the energy

dissipation rate measured from the Ulysses data with the local heating rate

estimated through a model for the prediction of the turbulent heating rate

values nedeed to justify the observed proton temperature profile. We found

that incopressive turbulent cascade can contribute to the solar wind in situ

heating from 8% to 50% on average, and up to 100% in some cases. The

ecliptic wind measured by Ulysses has been also studied in this thesis using

the same analysis performed in the polar wind. This has been done by

separating fast and slow streams, in order to avoid mixing of different physical

conditions. Our results show that while the fast ecliptic streams have similar

properties as the polar fast wind, the slow streams show an highly enhanced

energy transport, and a non negligible contribution from the cross-helicity

terms of the Yaglom law. This evidence further support the need for separate

analysis of the two types of wind.

The last part of this thesis project has been dedicated to the study of

the role of large scale solar wind density fluctuations in the framework of

the MHD turbulece. Using density-weighted Elsässer fields we showed that a

phenomenological compressive Yaglom-like relation is verified to a large ex-

tent within the solar wind turbulence. This implies that low amplitude den-

sity fluctuations play a crucial role for scaling laws of solar wind turbulence.

This observation also confirm the results for the Kolmogorov 4/5-law from

numerical simulations of compressible turbulence (Mac Low, 1999), while no

experimental evidences from real fluids had been found so far. This could be

attributed to the incompressible nature of flows in ordinary fluids accessible

to laboratory experiments. Here in fact, we presented the first experimen-

tal observation of relation 5.1 in real systems. Using solar wind data, we

have had access to a sample of weakly compressible MHD turbulence in na-

ture. Scaling law is found to be quite common and extends on a large range of
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scales, indicating not only that a nonlinear MHD cascade for pseudo-energies

is active in the solar wind turbulence, but also that compressible effects are

an important ingredient of the cascade. Finally we pointed out that, if com-

pared to the incompressive cascade, the compressive one is responsible for the

transfer of a considerably larger amount of energy toward the small scales,

where it can be dissipated to heat the plasma and seems to be sufficent to

slow down the radial cooling of the wind as observed in interplanetary space.
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