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Introduction

During the three years of Ph.D. I have been involved in the modellization of the

light behavior in a Liquid Crystal (LC) cell and relative molecular director config-

uration in particular, complex, geometries. The studied configurations (boundary

condition of light beams and director orientation inside the cells) are related to ac-

tual experimental problems treated in our laboratory.

In order to provide a clear presentation of my work I have divided it in three

different chapter:

• The first one is related to reorientational effects in a NLC cell undergoing

multiple irradiation

• The second one is related to simulation of light propagation in periodic and

non-periodic potentials

• The thirth one concerns the derivation of director configuration in a NLC cell

with multiple interfaces

In all cases, I have studied the interaction between the optical field and the Nematic

Liquid Crystal.
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I Basis of non-linear optical properties of LC

For a microscopic point of view, the Nematic Liquid Crystals (NLCs) are liquid

materials with rod-like (or disk-like) molecules and an angular correlation function

that assumes a value different from zero for a distance ξ ∼ d (d = distance of first

neighbor molecules). This means that the Liquid Crystals show a reorientational

order and some times a positional order that can be described through an order pa-

rameter, which assumes zero value for an isotropic phase and non-zero values for

the liquid crystal phase. Liquid Crystal molecules provide a cooperative response

to an external stress and therefore it is useful to define the molecular director n.

This vector represents the average molecular direction in a volume that is small

enough if compared to the sample volume (several cm) and big enough if compared

to the molecular length (∼ 20 Å). From a macroscopic point of view, a tipical dif-

ference between a high-temperature isotropic liquid and the nematic phase is found

in the determination of all macroscopic tensor properties. A response function like

the dielectric or the magnetic permittivity results to be the best candidate to define

the order parameter. The electric response of the material to an external field is

described by the tensor

εij = ε⊥δij + (ε‖ − ε⊥)ninj (1)

where ni are the components of the molecular director and ε⊥, ε‖ represent the di-

electric response to an electric field respectively perpendicular and parallel to the

molecular director.

In many circumstances, the induced energy variation per molecule is small in

comparison to the intermolecular potential and significant variations of n occur over

distances much larger than the molecular scale. In this framework, we can use the
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Continuum theory and treat the molecular director n as a continuum function of

coordinates in order to derive the macroscopic physical properties as a function of

local molecular director orientation. The continuum theory can describe the liquid

crystal deformation without taking into account the details of the structure and in-

teractions on a molecular scale. In the framework of this macroscopic approach the

equilibrium states of a liquid crystal are found by minimization of an appropriate

thermodynamic potential, the free energy, F defined as [2]

F = U − TS (2)

where U is the internal energy, and S the entropy of the system at the absolute

temperature T . In the continuum theory, the usual form of the bulk elastic free

energy density of a nematic liquid crystal was given by Frank [1]

FK =
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n)2 +

K3

2
(n×∇× n)2 (3)

where K1, K2, K3 are respectively the splay, twist and bend elastic constants, which

are always positive, have dimension of energy/length (i.e., of a force) and their

magnitude has been found to be of the order of 10−12N . When external fields are

introduced, besides FK , it is necessary to take into account also the appropriate free

energy density FE due to the interaction between liquid crystal molecules and the

applied field. In this case, the free energy density becomes the sum of two terms:

the first due to the elastic deformation and the second, due to the field induced

deformation

F (n,∇n) = FK + FE (4)

The energy density due to the interaction with an electrical static field is written as

FE = −
∫

D · dE = −ε0

2

∫
εikEi dEk = −ε0ε⊥

E2

2
− ε0∆ε

2
(n · E)2 (5)
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An electromagnetic (e.m.) wave brings both electric and magnetic field but the

liquid crystal interacts only with the electric field and, in any case, the orientig action

of the magnetic field is negligible if compared to the one of the electric field and

can be neglected. For a high frequency field E = (1/2) [E0e
−iωt + c.c.] the product

EiEk becomes (1/2) E1E
?
k and the free energy density due to the LC interaction

with the optical field becomes

Fe.m. = −ε0ε⊥
4

|E|2 − ε0∆ε

4
(n · E) (n · E?) (6)

The total energy density due to each contribute is therefore

F (n,∇n) = FK + Fe.m. + FE =

=
K1

2
(∇ · n)2 +

K2

2
(n · ∇ × n)2 +

K3

2
(n×∇× n)2+

− ε0ε
hf
⊥

4
|E|2 − ε0∆εhf

4
(n · E) (n · E?) +

− ε0ε
lf
⊥

E2

2
− ε0∆εlf

2
(n · E)2 (7)

When the system is dynamically isolated (zero value of the mechanical work

L i.e. L = 0) and remains at a constant temperature, then, the free energy cannot

increase:

∆F ≤ 0, (8)

If the free energy is in a minimum, the system is in a state of equilibrium; then, the

equilibrium configuration of n (r) is found by applying the methods of variational

calculus, namely, by minimizing F. This procedure leads to the Eulero-Lagrange

equations. Expressing n as a function of Euler angles (θ, φ), which determine the

vector orientation, then the Eulero-Lagrange equation becomes:

∂F

∂qi
−

∑

β

∂

∂xβ

∂F

∂ (∂qi/∂xβ)
= 0 (9)
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where qi are the considered Euler angles and, from a more general point of view,

represent the choosen thermodynamical coordinates, while xβ are the spatial vari-

ables. The former Equation is valid for the equilibrium configuration in steady state

condition. When the transient behavior has to be studied, a dissipative term must be

included on the right:

∂F

∂qi
−

∑

β

∂

∂xβ

∂F

∂ (∂qi/∂xβ)
= −Rij

∂qi

∂t
(10)

where t is the temporal variable and Rij has been introduced to take into account

the energy dissipation.

Equations (9), (10) must be integrated with conditions for the director orienta-

tion at the walls which limit the sample. These conditions are given by the type

of interaction existing between the liquid crystal molecules and the substrate. The

strength of the interfacial interaction is a fundamental feature which must be taken

account, because it affects the result of the application of external fields to the direc-

tor and, as a consequence, it determines the macroscopic response of the medium.

Often, the approximation of strong anchoring is made, which means that the direc-

tor orientationat at the boundary is supposedly fixed and indipendent of the external

exitation. In this case, the boundary conditions are simply given by the values of

nx, ny, nz (or of the correspondent Euler angles θ and φ) at the limiting substrates,

and Equations (9), (10) must be solved under these constraints. There are situations

(in particular, if the thickness of the sample is small) where this approximation fails.

It means that it is not possible to consider an infinite anchoring energy like in the

previous case, but a surface condition contribution must be included in the free en-

ergy. In general this is done [3, 4] by adding a free energy density for unit surface
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area, written as

G =

∫ −d/2

d/2

F (θ, φ, θz, φz) dz + Fs
1 + Fs

2 (11)

In equation (11), the z-axis is normal to the boundary surfaces and the plane z = 0

is chosen at the centre of the cell of thickness d, we have indicated θz = dθ/dz and

φz = dφ/dz. The surface terms Fs
1 and Fs

2 are functions of θ and φ. Minimizing

G we obtain the steady state condition for the Euler angles to the surface d/2 and

−d/2. Therefore the Euler-Lagrange equations (9), (10) must be solved with the

following boundary conditions

∂F

∂θz
− ∂Fs

1

∂θ
= 0 (12)

∂F

∂φz
− ∂Fs

1

∂φ
= 0 (13)

at z = −d/2, and

∂F

∂θz
+

∂Fs
2

∂θ
= 0 (14)

∂F

∂φz
+

∂Fs
2

∂φ
= 0 (15)

at z = d/2. Of course, in order to solve equations (9) together with the bound-

ary conditions (13) and (15) it is necessary to know the explicit form of Fs
1 and

Fs
2. Actually, the correct choice of these functions, with the obvious constraint that

they must have a minimum for the “easy angles” θ0 and φ0 at the surface is a very

important problem. In many cases [4], Fs is chosen as a series expansion in the

form

Fs(θ) =(1/2)Ws1 sin2(θ − θ0) + (1/2)Ws2 sin4(θ − θ0)

+ (1/2)Ws3 sin6(θ − θ0) + . . .
(16)
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and a similar for φ:

Fs(φ) =(1/2)Ws1 sin2(φ− φ0) + (1/2)Ws2 sin4(φ− φ0)

+ (1/2)Ws3 sin6(φ− φ0) + . . .
(17)

Under the Rapini [5] approximation of a small deviation from the easy angle at

the surface, equation (16)reduces to

Fs(θ) = (1/2)Ws1 sin2(θ − θ0)

Fs(φ) = (1/2)Ws1 sin2(φ− φ0)
(18)

where Ws1 is called polar anchoring energy, while the correspondent equation for φ

defines the azimuthal anchoring energy. The energy anchoring has a wide range of

possible values in liquid crystal interfaces going from 1 to 102J/m2; depending on

the neture of the interaction with substrate.

II Basic non-linear optics

The evolution of electric and magnetic fields is described by the Maxwell’s

equations that in a uniform anisotropic medium become:

∇ ·D = ρ (19)

∇× E = −∂B

∂t
(20)

∇ ·B = 0 (21)

∇×H = J +
∂D

∂t
(22)

where ρ is the free charge density, J is the electric current density, D and B are the

electric and magnetic displacement vectors, E and H are the electric and magnetic
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field vectors. The material response to an electromagnetic field is summarized in

the constitutive relations:

D = εE (23)

B = µH (24)

J = σE (25)

where σ is the conductibility, ε, µ are tensors that describe the electric and mag-

netic response of the material to fields; the tensorial character allows us to describe

also anisotropic materials like Liquid Crystals. If ε(r, t) is know, then the Spatial

Maxwell wave equation allows us to describe the evolution of the electric field:

∇2E +
ω2

c2
εrE = 0 (26)

There are several situations where an analytical approach can be used to get

a solution of the Spatial Maxwell wave equation (26). For example, Zel’dovich

and coworkers [6] reported the solution for a wave traveling in a inhomogeneous

an-isotropic medium under the Geometrical Optical Approximation (GOA) for a

linearly polarized wave. In general, however, in the presence of a non linear behav-

ior, the complete solution of equation (26) needs a numerical approach. Different

numerical techniques have been implemented for different problems: The propa-

gation in periodic potential is approached with the Floquet-Bloch technique [9–11]

born in the framework of solid state physics and used also for other kind of periodic

structures (like liquid crystals or polymeric structures).

The finite-difference beam-propagation method (FD-BPM) and the finite - dif-

ference time-domain method (FD-TDM) are powerful numerical techniques for an-

alyzing optical waveguide devices. In this framework, since the FD-BPM takes into
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account only traveling waves, reflected waves generated at longitudinal discontinu-

ities are neglected. For cases where the reflection cannot be neglected, the bidirec-

tional BPM has been proposed [7, 8]. On the other hand, the FD-TDM introduces

no approximation with respect to propagating beam directions, although it requires

great computation time and RAM memorie for the simulation of large structures.

From this viewpoint, a hybrid simulation started to attract attention. From a general

point of view, a good numerical approach has to fulfill the requirement of a good

accordance with experimental results and low computation time and Ram memorie

needed for the simulation of the structures under analisys. For this reason, the best

code for a particular system is the one that can be built around the system, taking

into account only the real boundary conditions and the approximation that the sys-

tem allows to consider. In this three years, my work has been aimed to realize a

theoretical support to experimental problem of our Laboratory.

III General Equations

For the three arguments I have investigated, I have I used the same reference

system reported in Figure 1. In this system, the molecular director is written (like

in (27)) as

n̂ = (sin θ, cos θ cos φ, cos θ sin φ) (27)
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z

y

x

n

θ

φ

Figure 1: Reference system used in order to study all the following analyzed systems

while the dielectric permittivity tensor of eq (1), written as

ε =




εxx εxy εxz

εyx εyy εyz

εzx εzy εzz




, (28)

becomes

ε =




ε⊥ + ∆ε sin2 θ ∆ε sin θ cos θ cos φ ∆ε sin θ cos θ sin φ

∆ε sin θ cos θ cos φ ε⊥ + ∆ε cos2 θ cos2 φ ∆ε cos2 θ sin φ cos φ

∆ε sin θ cos θ sin φ ∆ε cos2 θ sin φ cos φ ∆ε cos2 θ sin2 φ




(29)

where ∆ε = ε‖ − ε⊥.

Applying the Euler-Lagrange equations (10) to total energy density (7) we obtain

the Frank’s equations for the two angles θ, φ that in the most general and compact
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case assume the following form (30) and (31)

γ
∂θ

∂τ
= K∇2θ + K sin θ cos θ ∇φ · ∇φ

− ε0∆ε

4

[(
∂n̂

∂θ
· E

)
(n̂ · E?)− (n̂ · E)

(
∂n̂

∂θ
· E?

)]
(30)

γ
∂φ

∂τ
= K cos2 θ∇2φ−K sin 2θ ∇θ · ∇φ

− ε0∆ε

4

[(
∂n̂

∂φ
· E

)
(n̂ · E?) + (n̂ · E?)

(
∂n̂

∂φ
· E?

)]
(31)

For normal incidence of the electric field E = E(r)e−ikz, the Maxwell Equation

(26) with the SVEA approximation that means slow varing envelope approximation

|∂2E/∂z2| ¿ |k∂E/∂z| becomes (32)

∇2
⊥E(r)− 2ikiniz

∂E(r)

∂z
+

ω2

c2
(ε̂− ε̂inizr )E(r) = 0 (32)

where kiniz = kniniz or k2
iniz = k2εiniz.

For a generic α-algle of incicence the field E = E(r)e−i(kxx+kzz), the Maxwell

Equation (26) with the SVEA approximation |∂2E/∂z2| ¿ |k∂E/∂z| becomes

(33)
∂2E(r)

∂x2
− 2ikx

∂E(r)

∂x
− 2ikz

∂E(r)

∂z
+

ω2

c2
(ε̂− ε̂inizr )E(r) = 0 (33)
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IV Modellization of optical radiation-liquid crystal
interaction in complex geometries

In the following section are reported a short introduction to the three argument

reported in the chapter below.

The first problem has been numerically described with a serial code and regard

the problem of multiple irradiation. The second and the third one born to approach

the same experimental problem: the optical studies of light propagation in a NLC

cell planar aligned with multiple interface and lead to study of light propagation

in periodic and non-periodic potentials and derivation of director configuration in a

cell with multiple interfaces. In this kind of cell we can observe the formation of

spatial solitons, i.e. a self-confined beam whose transverse intensity profile remains

unchanged during the propagation. This complex studie requires the realizzation of

a big code which optimizzation need the parallelization. In order to learn the paral-

lel thecniques that have allowed me to parallelize my codes during this three year I

spent two month in HLRS (High Performance Computing Center) in Stuttgart (Ger-

many) and in the IWM Fraunhofer institute for Mechanics of Materials Freiburg

(Germany).

IV.1 Multiple irradiation

The first argument I treated during my doctorate is reported in the first chapter

and has produced the publication of two articles .

It treats the reorientational effect in a Nematic Liquid Crystal cell homeotropi-

cally aligned which undergoes multiple light interaction. The work has been stim-

ulated by the necessity of studying and characterizing some phenomena observed
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Z

X

nα

α1

2

E0,1

E 0,2

Figure 2: Nematic Liquid Crystal cell Homeotropic aligned with two beams irradi-
ation

in our laboratory when two linearly polarized laser beams with a gaussian intensity

profile, (plane see Figure. 2) act on a homeotropically aligned NLC cell. We have

called these phenomena

• CAW, or Competingly Acting Waves,

• LIFT II, or Light Induced Fréedericksz Transition II,

• Light Charges.

The whole system is described by Maxwell’s wave equations for light propaga-

tion and by Frank equation for the elastic deformation of the molecular director. The

study started from the observations shown in the Figure. 3: Figure. 3(a) corresponds

to the well know effect of Self Phase Modulation (SPM) due to birefringence and

to the director reorientation induced by the beam. In fact, the laser beam induces

a torque on the molecular director and produces a reorientation towards the light

polarization direction. The reorientation has the same gaussian profile of the light

intensity and yields gaussian refractive index profile (due to birefringence) that pro-

duces, at far field, the tipical rings of Self Phase Modulation. Figure. 3(b) and (c)

(CAW and LIFT II) are due to the action of two beams impinging on the sample
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(a) Self phase modulation (b) Competingly Acting Waves

(c) Light Induced Fréedericksz Transition II (d) Light Charges

Figure 3: (a) the far field effect due to action of a laser gaussian beam on a NLC
cell homeotropic aligned (b), (c), (d) the far field effect due to action of two beams
(b) low light intensity and great angles between the beams (c) high light intensity
and great angles between the beams (d) small angles between the beams.

with great angles (α1, α2) (see the Figure. 2). The torque action of the two beams

produces two different light behavoirs:

• at low intensity, are in competition and the torque action due to the first one

is balanced by the opposit action due to second beam, thus producing a can-

cellation of the rings;

• at high intensity, torque action due to the second beam amplifies the action

due to first one, thus producing an increasing of the rings number.
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Figure. 3(d) (Light Charges) corresponds to the action of two beams with small

impinging angles (α1, α2). In this case, the interfence of the light plays an important

role on the effect. The on axis intensity shows an interesting behavior during the

ring formation (SPM) and the ring cancellation (CAW) (see Figure 4).

80 20040
Time (s)

0

A
xi

s 
In

te
ns

ity
 (

a.
u.

)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0
120 160

Figure 4: The axis intensity in arbitrary units versus time during the transient of
the ring formation and ring cancellation: during the formation the figure shows
a decreasing on axis light intensity; during the cancellation the figure shows an
increasing of the light intensity.

In order to study this kind of phenomena, we observe that the light is linealy

polarized in the x − z plane and the NLC is homeotropically aligned; this in-

duces a planar reorientation that can be described with only one θ angle. In gen-

eral, the electric field E = E(x, z)e−i(kxx+kzz) propagates along the η-direction

k = k(sin α, cos α) = (kx, kz) (see Figure 5)
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d
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0

E
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x
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α

α

Figure 5: a rappresentation of the cell and the beam propagation direction

If only 2 beams act on the sample the equation system which describes the phys-

ical system is

γ
∂θ

∂t
= K∇2θ +

∆εε0

4

[
N∑

i,j=1

EiE
∗
j sin(2θ − αi − αj)

]

∂E1

∂z
= − i

2k cos α

[
∂2E1

∂x2
− 2ik sin α

∂E1

∂x
+ k2(n2(θ)− 1)E1

]
(34)

∂E2

∂z
= − i

2k cos α

[
∂2E2

∂x2
− 2ik sin α

∂E2

∂x
+ k2(n2(θ)− 1)E2

]

N = 2

It is simple to extend the stuck to the case of N-general gaussian beams; in normal-

d

0 L

0

E1

E2

E3

N−2E

EN−1

EN

z

x

Figure 6: Rappresentation of the NLC cell acted on by N-gaussian beams



CHAPTER 0. INTRODUCTION 19

ized coordinates we obtain like in (35)

∂θ

∂τ
= ∇2θ +

[
N∑

i,j=1

eie
∗
j sin(2θ − αi − αj)

]

∂e1

∂ζ
= − i

Ξ cos α

[
∂2e1

∂ξ2
− iΞ sin α

∂e1

∂ξ
+ Ξ2η(θ)e1

]

∂e2

∂ζ
= − i

Ξ cos α

[
∂2e2

∂ξ2
− iΞ sin α

∂e2

∂ξ
+ Ξ2η(θ)e2

]
(35)

...

∂eN
∂ζ

= − i

Ξ cos α

[
∂2eN
∂ξ2

− iΞ sin α
∂eN
∂ξ

+ Ξ2η(θ)eN

]

where

ξ = x/L; ζ = z/L;

τ = t/τr; τr = K/L2γ;

ei =
√

∆εε0Ei/2; Ξ = 2Lk;

η(θ) = (n2(θ)− 1)/4 i = 1, . . . , N

System (35) has been solved by using a numerica approach. Since in order to

study the effect of CAW or LIFT II the interference term in Frank’s equation (30)

can be neglected; therefore to decrease the computational time, we have utilized

only the gaussian beams propagating in the cell. On the contrary for Light charges

and other non-local phenomena, was necessary to include the interference term and

then the computational time increase.

Boundary conditions are:

• the cell is homeotropically aligned that means θ(ξ, ζ, 0) = 0 ∀ξ, ζ;

• there are strong anchoring conditiosn that means θ(ξ, 0, τ) = θ(ξ, 1, τ) =

0 ∀ξ, τ ;
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• impinging beams ei(ξ, 0, τ), e2(ξ, 0, τ), . . . , eN(ξ, 0, τ) have a gaussian pro-

file.

Then we have used the Runge-Kutta method for solving the temporal derivative and

the central difference method for the spatial derivative. The flow chart reported in

Figure 7 rappresents the detail of computational steps:

Frank equation:

θ(tn,x,z)

t ,x,z)

0

0E(

tn,x,z)E(

Ε( ,x,z)t

n,x,z)tn(

tE( n,x,0) Ε( ,x,z)t

tn,x,z)E(

n

tE( n,x,0)

,x,z)tn(

,x,z)n( t0

n

0

initial condition

Maxwell equation:

director reorientation

optical field

Gaussian beams:

Figure 7: Flow chart of the numerical code: solid lines rappresent the code solving
the system (35), dashed line rappresent the case if we want to neglect the interfer-
ence term

In the chapter 1 numerical results of the code and comparisons with experimen-

tal measures are reported. Investigation about light charges is work in progress.

This argument are reported in papers [12] and [13].
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IV.2 Molecular director reorientation and light propagation in
liquid crystal cells with multiple interfaces

Spatial solitary waves or solitons have been widely investigated in recent years

both for basic research interest and for their potentials in signal processing, optical

switching and all-optical readdressing [14–19]. In particular scientists have been

searching for suitable optical materials that could support this kind of nonlinear

effects. In general, in order to induce nonlinear effects in usual optical materi-

als, pulsed laser sources are needed to comply with high peak power requirements.

From this point of view, liquid crystals represent a promising alternative, because of

their reorientational optical nonlinearities which can be excited at very low optical

intensities, about 100 times lower than in conventional nonlinear materials [20,21].

In an uniaxial crystal like a nematic liquid crystal (NLC), a spatial soliton can be ob-

served due to the reorientational response that causes a dependence of the refractive

index on the optical intensity. When a light beam propagates in such a medium, the

refractive index increases in the central, and most intense, region of the beam thus

causing a self-focusing effect which can balance linear diffraction [22]. In this case,

the beam spot size does not change during propagation and the field distribution

represents a particular eigen-solution of the corresponding nonlinear propagation

equation. In this scenario, NLCs provide an ideal workbench for investigation of

spatial solitons, not only because of the large nonlinearity [20, 21] and high nonlo-

cality [23, 24], but also because of an electro-optic response, which enables a fine

control of birefringence and walk-off [25]. While spatial nonlocality allows both

propagation of stable solitons in two transverse dimensions and their long-range

interactions [24–26], the high orientational birefringence of the medium allows to
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create a broadly tunable walk-off as well as redirection of solitons by using an ap-

plied voltage bias [25].

All these phenomena have been observed and characterized in suitable NLC

cells which have been designed and fabricated ad hoc, in order to control many of

the parameters which are responsible of the exploited nonlinear effects.

Indeed, when light propagates in waveguide regime in standard NLC cells, some

interface problem arise: the focused Gaussian laser beam inside the cell sees the

meniscus to the interface (where the director configuration is unknown) that acts as

a lens and diffracts the input beam causing divergence and losses. In order to solve

Laser Beam

Air−Nematic phase

      Meniscus

? ?

GlassesPolyimide Film

Alignment induced
By rubbing process

Figure 8: The unknown configuration of director at the interface produces the scat-
tering of light.

this problem, the Warenghem group suggested to put inside the cell an optical fibre

that crosses the region of unknown configuration as show in Figure 9. This approach

eliminates the problem, but gives up to investigate the effect of the interface. Fur-

themore, as a matter of fact, the study of optical solitons, two wave formation and

light filaments steering in liquid crystals requires the utilization of particular cells

designed for top view investigation. These are realized with a lateral input interface
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that enables to control the molecular director reorientation and prevents light scat-

tering. in this sense, our solution was to put an additional interafce which imposes

Laser

Optical fibre

NLC

Scattered Light

Figure 9: The Warenghem group suggested to put inside the cell an optical fibre that
crosses the region of unknown director orientation and solves the problem due to
light scattering

an easy direction to the molecular director, as show in Figure 10. The laser light

Laser

Microscope

Filter

CCD Camera

NLC

Scattered Light

Glasses

Figure 10: Our solution was to put an additional interafce imposing an easy direc-
tion to the molecular director. The laser light propagates in waveguide regime and
the light scattered from the top is collected by a microscope and then elaborated
through a CCD camera. The properties of formation, steering and routing of soli-
tons inside this cell depends on the particular rubbing imposed at the additional
interface as shown in chapter 3

propagates in waveguide regime and the light scattered from the top is collected by

a microscope and then elaborated through a CCD camera. The formation, steering

and routing of solitons inside this cell depend on the particular rubbing imposed at
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the additional interface as shown later (chapter 3). The final cell configuration is

shown in Figure 11 and details of cell fabrication are reported by De Luca et all

in [27]. The thickness of the cell is 75 µm while the total lenght is several cm.

Figure 11: Sketch of a thin cell with two additional (input and output) optical glass
interfaces.

The self-confinement behavior of a linearly-polarized Gaussian beam is obtained

applying an external ac voltage (f = 1Khz, VRMS = 2.3V ).

In order to investigate this cell and the relative fenomena, I have studied and

rewritten the equations that describe the system in the most general case, including

the energy ancoring at the interface due to the rubbing; in this cese, a numerical

approach is needed the reference system the one of Figure 1 but, for computational

memory limits the numerical analisys is concetrated in the x− z plane. I have con-

sidered both Frank’s equations for θ(x, z, t) and φ(x, z, t) and two more equations

for the two optical field components Ex(x, z, t) and Ey(x, z, t). The variational

calculus predicts that, if an additional surface term is added to the energy density,

an additional equation is necessary to find the minumum energy, or steady state,
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configuration. Then the total equation system is:

∂θ

∂τ
= ∇2θ + sin θ cos θ ∇φ · ∇φ +

(
sin 2θ|Eξ|2 − sin 2θ cos2 φ|Eζ |2+

+ cos 2θ cos φ
(
EξE

∗
ζ + E∗ξEζ

) )
+ sin 2θE2

LF

∂φ

∂τ
= cos2 θ∇2φ− sin 2θ ∇θ · ∇φ−

(
cos2 θ sin 2φ|Eζ |2+

+ sin θ cos θ sin φ
(
EξE

∗
ζ + E∗ξEζ

) )

∂
−→
E

∂ζ
= A

∂2
−→
E

∂ξ2
+ B(ε̂− ε̂init)

−→
E

taking into account eq. (1) in our reference system

∂Eξ

∂ζ
= A

∂2Eξ

∂ξ2
+ B∆ε

[
(sin θ − sin θi)Eξ

+ (sin θ cos θ cos φ− sin θi cos θi cos φi)Eψ

]

∂Eψ

∂ζ
= A

∂2Eψ

∂ξ2
+ B∆ε

[
(sin θ cos θ cos φ− sin θi cos θi cos φi)Eξ

+ (cos2 θ cos2 φ− cos2 θi cos2 φi)Eψ

]

where the normalized variables are:

ξ = x/D; ζ = z/D; τ = t/τr; τr = K/D2γ;

−→
E =

√
D2ε0∆ε

4K

−→
E ; ELF =

√
D2ε0∆εLF

2K
ELF ; A =

1

2ikD
; B =

k0D

2ik

k = k0neff ; ∆ε = ε‖ − ε⊥
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The additional equations to be solved at the three surfaces where the rubbing

treatment has been made are reported in the following system. The surfuces with

rubbing are defined at the planes x = 0, x = d, z = 0, which in normalized

variables, become ξ = 0, ξ = 1, ζ = 0:

ξ = 0 →





∂θ
∂ξ

= DW θ

K
sin(θ − θi) cos(θ − θi)− cos2 θ cos φ∂φ

∂ζ

∂φ
∂ξ

= DWφ

K cos2 θ
sin(φ− φi) cos(φ− φi) + cos φ∂θ

∂ζ

ξ = 1 →





∂θ
∂ξ

= −DW θ

K
sin(θ − θi) cos(θ − θi)− cos2 θ cos φ∂φ

∂ζ

∂φ
∂ξ

= − DWφ

K cos2 θ
sin(φ− φi) cos(φ− φi) + cos φ∂θ

∂ζ

ζ = 0 →





∂θ
∂ζ

= DW θ

K
sin(θ − θi) cos(θ − θi) + cos2 θ cos φ∂φ

∂ξ

∂φ
∂ζ

= DWφ

K cos2 θ
sin(φ− φi) cos(φ− φi)− cos φ∂θ

∂ξ

In order to numerically solve this complex equation system I had to implement

a code flow chart more complex then the previous one. In this case, indeed, there

are two intial conditions: the first one is the director orientation at t = 0 (we have

to know θ(ξ, ζ, 0) and φ(ξ, ζ, 0) in each point of the x − z plane); the second one

is the input profile of beam, (we send a gaussian beam). When these two initial

configurations are know, two subroutines elaborate the field value and the angle

values in each point of the x− z plane, at each time instant.

In order to realize this code, I have realized and tested separatly the two codes

that constitute the two subroutines.
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Initial condition

Frank’s equations
+ interaction with field

Maxwell’s Wave equations
+ dielctric tensor 

Initial condition

ε=ε(θ, φ)

ϕ(τ=0, ξ, ζ) 

Cell configuration

Gaussian Beam
Ε(ξ, ζ=0)   ⇒   τ=0 

Ε  (ξ, ζ)   ⇒   ∀ τ
Ε  (ξ, ζ)   ⇒   ∀ τζ

ξ

θ(τ=0, ξ, ζ)

ϕ(τ, ξ, ζ)

θ(τ, ξ, ζ)

Figure 12: Code flow chart: there are two initial conditions (one for the cell config-
uration θ(ξ, ζ, 0), φ(ξ, ζ, 0), one for the beam gaussian profile) and two subroutine
that elaborate the field value E(ξ, ζ) the new angle values at each time instant.

IV.2.1 Periodic and non periodic potential

The subroutine for the beam propagation is quite similar to the one of the previ-

ous code; the best form is:

∂E

∂ζ
+

i

2k̃z

∂2E

∂ξ2
+

k̃x

k̃z

∂E

∂ξ
+

ik̃2
0

2k̃z

[
n2(ξ)− 1

]
E = 0

where the normalized variables are:

D = 100µm (normalization lenght)

k̃x = Dk sin α; k̃z = Dk cos α;

k̃0 =
2πD

λ
k =

2πn[ξ]

λ

ξ = x/D; ζ = z/D;

n(ξ) = refractive index

I have tested the subroutine for periodic and non periodic potentials, obtaining the

new results reported in chapter 2.
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IV.2.2 Cell configuration

The subroutine for the cell configuration requires an initial condition that cor-

responds to the steady state with the particular rubbing that we want to take into

account. Therefore, we have to solve in advance the steady state Frank equations:

∇2θ + sin θ cos θ ∇φ · ∇φ = 0

cos2 θ∇2φ− sin 2θ ∇θ · ∇φ = 0

where the normalized variables are:

D = 75µm (normalization lenght)

ξ = x/D;

ζ = z/D;

τ = t/τr;

τr = K/D2γ;

K1 = K2 = K3 = K

Results related to the three particular configuration that have been experimentally

investigated are in good agreement with experimental results and are reported in

chapter 3.
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Chapter 1

Reorientational effects undergoing
multiple irradiation

We present a numerical approach to the nemato-elasticity differential equation

in a nematic liquid crystal cell when irradiated with multiple gaussian beams. Solu-

tions have been carried out on a configuration with two coplanar beams illuminating

the sample in order to compare it with particular nonlinear phenomena experimen-

tally studied in the past. A new set of experimental measures were realized con-

firming the validity of the numerical model. Solutions for an instable case showing

nonlocal effects are also presented as an example of the broader class of systems

this approach can describe.

32
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1.1 Introduction

Light propagation in nematic liquid crystals (NLC) and the consequent self-

induced effects are, by definition, the basics of nonlinear optics in such materials.

In this perspective, orientational interaction phenomena have been widely studied

during last two decades, providing a great number of fundamental and applied re-

sults [1–3]. In recent years, other nonlinear media have been deeply investigated

to time domain phenomena [4, 5], spatial effects in photorefractive materials [6, 7]

and spatial optical solitons, intended as non-diffracting light beams that are self-

confined by the nonlinearity. Because of their possible applications (related to the

exploitation of the wave-guiding character [8]), spatial optical solitons have been in-

tensely investigated also in a new scenario, which describes these effects in a smooth

transition from the purely local to the entirely nonlocal response [9]. In that case,

the physical system was again a nematic liquid crystal in a planar cell exhibiting a

nonlocal nonlinearity of orientational molecular origin [2], which had already been

used for the observation of (2 + 1)D spatial solitons [10]. Furthermore, it has been

shown that different solitons created in the same sample by different light beams can

interact each other giving rise to a series of interesting effects and leading to intrigu-

ing applications like the realization of logic gates [10]. Recently [12], it has been

found that the possibility of a nonlinear interaction between different light beams

is not limited to the case of spatial solitons, but can take place also in different ex-

perimental conditions, giving rise to a series of intriguing effects. In particular, it

has been found that the nonlinear response induced by one beam can be partially

or totally cancelled by a second beam, with interesting perspectives for possible ap-

plications. In this perspective, however, further investigations and availability of a
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general and complete theoretical description for the interpretation of these effects

are mandatory if their application oriented utilization is desired. We present a gen-

eral model which describes the behavior of a highly nonlinear system like a liquid

crystal sample when undergoing multiple irradiation; furthermore, we show that,

under particular experimental conditions, also nonlocality plays an important role.

1.2 Experiment

The Giant Optical Nonlinearity (GON) of Nematic Liquid Crystals (NLCs) de-

termines important and useful optical properties of these materials [2, 3]. This

nonlinearity is due to the reorientation of the molecular director n, which is the

unit vector that describes the mean orientation of the axis of the elongated NLC

molecules [1]. As this vector explicitly appears in the terms that describe the inter-

action with an external electric field, it happens that the reorientation can be also

induced by the optical field of the same radiation that experiences the nonlinear

propagation. This phenomenon is called Optical Fredericksz Transition (OFT), and

its most spectacular consequence is the self-phase modulation (SPM) effect, which

yields the appearance of concentric bright and dark rings [13] in the far-field zone.

The effect, which has been extensively studied and characterized [16,17], is of con-

tinuing interest because of its appealing applications, both in pure NLC [11, 19]

and in liquid-crystalline composite materials [20]. In a previous paper [12] the ob-

servation of a new kind of OFT induced in a NLC cell by two pulsed laser beams

has been reported. It has been predicted that the director reorientation induced by

one electromagnetic wave can be canceled by a second, competing, wave of suit-

able intensity and angle of incidence [21, 22]. The effect can be achieved only in
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a limited range of incidence angle and intensity: above a given intensity threshold,

cancellation becomes unstable and a second, Light-Induced, Fredericksz Transition

(LIFT II) takes place. Investigation of the whole phenomenon is quite interesting,

mainly for those applications in which the GON that is due to the OFT is exploited

to create spatial solitons in NLCs [11, 19]. In that case both cancellation and LIFT

II effect can play crucial roles when multiple spatial solitary waves are allowed to

interact with one another and produce all-optical switching and logic gating in NLC

cells [10]. We report a new set of experimental observations as well as a theoretical

model which describes this phenomenon.

Figure 1.1: (a) Setup: W, λ/2 plate; Ps polarizers; Ms, mirrors; B.S., 50% beam
splitter; CC, corner-cube retroreflector; Ls, lenses; S, sample; SC, screen. (b) Ex-
perimental geometry.

The experimental geometry is illustrated in Fig.1.1. We exploit a particular set

of cancellation conditions [16]:The average intensities of the two impinging beams

are the same, and the two angles of incidence are equal. The setup is shown in Fig.

1.1(a). The continuous source is a diode-pumped solid-state laser (DPSS Ventus
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532, by Laser Quantum) which emits light at λ = 532 nm. The radiation is split into

two beams of equal intensity by a beam splitter. Before reaching the sample, each

beam crosses a half-wave plate followed by a polarizer, whose combined action

enables varying the total power on the sample; then each beam crosses a spherical

lens (f = 150 mm), mounted on a translation stage, needed to have two equal spot

sizes ( 130 µm in diameter) on the sample. The NLC (E7, by Merck) is sandwiched

between two glass slabs and is homeotropically aligned. Suitable Mylar spacers

ensure a uniform thickness (L = 75 µm) of the cell, which is placed on a rotating

xyz stage, needed to adjust two equal and opposite angles of incidence. Images

after the sample are projected onto a white screen which enables observation of Self

Phase Modulation (SPM) rings in the far-field zone, an effect widely investigated in

the past [15, 17], which can be used to monitor the director reorientation.

Using an angle of 50o between the beams, we can obtain a well-balanced com-

petition of the two extraordinary waves. Indeed, when their intensity is the same and

the total average intensity on the sample remains below the LIFT II threshold, we

obtain an unperturbed orientational state of the director, which we refer to as spatial

cancellation of the reorientation. The situation is shown in Fig. 1.2(a), where no

SPM rings are observed in the far field zone. If we stop one beam, the action of the

other one gives rise to the formation of four SPM rings [Fig. 1.2(b)].
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(a)

(b)

Figure 1.2: (a) Cancellation effect. The presence of two dotlike spots shows that
there is no nonlinear phase shift. (b) Starting from the previous cancellation state,
typical self-phase-modulation rings (which are due to director reorientation) are
observed in the far-field zone of the first beam when the second beam is stopped.
The impinging intensity of the first beam is the same as in (a).

When the total impinging intensity reaches the threshold value, a LIFT II effect

takes place. The formation of more than 15 SPM rings in the far-field zone of one of

the two beams (Fig. 1.3) emphasizes that we are in the presence of a new reorienta-

tion of the director in the (x, z) plane. Furthermore, if we stop the beam that exhibits

the smallest divergence (first beam), we observe a decrease in the divergence of the

second beam. However, if we stop the second beam, we observe a decrease in the

divergence of the first beam, followed by the formation of a new ring pattern.



CHAPTER 1. MULTIPLE IRRADIATION 38

Figure 1.3: Self-phase-modulation rings that appear in the far-field zone of both
beams when the total impinging intensity exceeds the threshold value of the LIFT II
effect.

1.3 Theoretical model

The physical quantities playing the main roles are the re-orientation angle θ of

the NLC molecular director n̂ (the unit vector which describes the mean orientation

of molecular axes) with respect to the initial (or steady state) direction and the po-

larization of the impinging light beams. The system we want to study is, in fact the

one presented in fig 1.4: a NLC cell of thickness L, and width d, crossed by N laser

beams with electric field Ej (j = 1, . . . , N) and wavelength λ, linearly polarized

in the xz-plane, each of them impinging on the sample with an incidence angle αj .

As for system coordinates, we chose the x-axis along the cell width and the z-axis

along the cell length. In fact, even if gaussian beams are three-dimensional, the uti-

lization of beams that are linearly polarized in the xz-plane allow to describe all the

physics by considering only two dimensions. For sake of generality, we start from

the master equation for the angle θ in the case of N reorienting light beams [13]:

γ
∂θ

∂t
= K∇2θ +

ε0∆ε

4

N∑
i,j=1

EiE
∗
j sin(2θ − αi − αj), (1.1)
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Figure 1.4: Here we represent the system under study that is an NLC cell of tickness
L, and width d, crossed by Ej (j = 1, . . . , N ) gaussian light beams, each of them
impinging on the sample with angle αj . The director orientation is identified by the
angle θ formed by the director n̂ and the z-axis

where t is the time, γ the viscosity constant and K the elastic constant of the

medium in a “one constant” approximation [13]; ∆ε = n2
e − n2

o indicates the op-

tical anisotropy, ne and no being the extraordinary and ordinary refractive index

respectively; ε0 is the electric permittivity of vacuum.

Where light propagation is concerned, considering that investigated phenomena

occur in a small fraction of a thin cell, we use the fundamental gaussian beam solu-

tion of Maxwell equations [14] instead of solving a new light propagation equation,

taking into account that the j-th beam crosses the sample with an angle αj; this cor-

responds to apply the following transformation on the solution propagating along

z:

x → x cos αj − z sin αj

z → x sin αj + z cos αj

(1.2)

While crossing the medium the j-th beam experiences a refractive index n(αj, θ)

given by [2]:

n(αj, θ) =
none√

n2
e cos2(αj − θ) + n2

o sin2(αj − θ)
. (1.3)
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Where θ is obtained from the solution of equation (1.1). We introduce normalized

coordinates ξ = x/L, ζ = z/L and normalized time τ = t/τR, where τR = γL2/K

is the tipical reorientation time of the NLC director [2]. We also introduce param-

eters Λ = λ/L, which is the normalized wavelength and w0 = W0/L which is a

normalized minimum spot size (W0 being the minimum spot size), and a normal-

ized expression for the electric field: ej = Ej

√
L2ε0∆ε/4K.

Thus, the normalized electric field of the j-th gaussian beam is written as:

ej =
e0w0

wj

exp

{
−i

[
k(ξ sin αj + ζ cos αj)− ηj

]

− (ξ cos αj − ζ sin αj)
2

[
1

w2
j

+
ik

2rj

] }

j = 1, ...N

Here e0 = E0

√
L2ε0∆ε/4K (where E0 is the field amplitude), ηj = η(ζ, αj),

wj = W (ζ, αj, w0) and rj = R(ζ, αj), where W (z) = W0

√
1 + z2/z2

0 is the

spot size, z0 = πn(θ)W 2
0 /λ the confocal parameter, η(z) = arctan(z/z0) and

R(z) = z+z2
0/z is the radius of curvature of a generic gaussian beam. In normalized

coordinates, equation (1.1) becomes:

∂θ

∂τ
= ∇2θ +

N∑
i,j=1

eie
∗
j sin(2θ − αi − αj), (1.4)

where ∇2 indicates now (∂2/∂ξ2 + ∂2/∂ζ2).
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1.4 Numerical solutions and results

Equation 1.4 can be used to study a large number of experimental configurations,

but it is highly nonlinear and, in general, cannot be solved by analytical methods.

We have chosen a numerical approach by developing a c++ code compiled under

Linux using the open source GNU compiler gcc 3.3.5. In particular we have used a

second order Runge Kutta time scheme and a central difference scheme for spatial

derivatives. We have created a lattice of computational grid points (i, j) in the x-z

plane, where lattice steps ∆x and ∆z allow to go from i to i + 1 and from j to

j + 1 respectively. Evolution of the optical field in the z direction is then simulated

by determining the value of the field at the (i, j + 1) point by means of the field

values at previous points. The lattice also evolve in time with ∆t steps, taking

into account the time-dependent molecular director reorentation. In order to test

our model a number of simulations have been carried out reproducing experimental

configuration presented in [12] that is: utilizing no = 1.5216 and ne = 1.7462,

corresponding to values of the E7 commercial NLC, λ = 532 nm, considering

two beams of equal intensity, and using θ(ξ, ζ, 0) = 0 as the initial condition in

time and θ(ξ, 0, τ) = θ(ξ, 1, τ) = 0 as boundary conditions in space; this accounts

for strong anchoring in a homeotropic cell, were the molecular director is oriented

perpendicularly to the cell plates. As in [12], at first only one beam crosses the

sample, so that a director reorientation is induced. The system proceeds this way

until ∂θc/∂τ ≤ 0.01, where θc indicates the reorientation angle in the center of

the sample; then the second beam is switched on at the symmetric incident angle

(α1 = −α2), again until ∂θc/∂τ ≤ 0.01. After that, two different behaviors can

be observed (in agreement with experimental results presented in [12]), depending

both on light intensity and incidence angle:
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1. CAW (Competingly Acting Waves): The second beam competes with the first

one and the final effect is a reorganization of the NLC director in such a way

that the reorientation effect produced by the first beam is almost completely

cancelled by the second one, as presented in fig. 1.5; a plot of simulated
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Figure 1.5: Simulation carried out for an angle of incidence α = 1 rad and a
normalized field amplitude e0 = 3. The first and second frames show the orientation
of the molecular director in the sample at τ = 0.25, and τ = 0.56; the third is the
temporal behavior of the reorientation angle θc in the center of the sample. This
case represents a complete cancellation effect induced by the competition of the two
beams.

refractive index profile is reported in the following Fig. 1.6.
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in CAW condition with α = 0.1 rad, e0 = 3 at τ = 0.56



CHAPTER 1. MULTIPLE IRRADIATION 43

2. LIFT II (Second Light Induced Fréedericksz Transition): above a given in-

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1

ξ

ζ

τ = 0.34

 0

 5

 10

 15

 20

 0  0.2  0.4  0.6  0.8  1
ζ

τ = 0.76

 0.2
 0.4
 0.6
 0.8

 1
 1.2
 1.4

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

R
eo

re
nt

at
io

n 
an

gl
e 

θ c

τ

Figure 1.7: Simulation carried out for α = 0.2 rad, e0 = 3. The first and second
frames show the orientation of the molecular director in the sample at τ = 0.34,
and τ = 0.76; the third is the temporal behavior of the reorientation angle θc in the
center of the sample. This case represents a critical reorientation effect due to the
second light-induced Fréedericksz transition (LIFT II)

tensity threshold, the second beam adds its reorientational effect to the first

one, thus causing a critical director reorientation (fig. 1.7); a plot of simulated

refractive index profile is reported in the following Fig. 1.8.
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In order to characterize effects of the field amplitude e0 and incidence angle αj ,

we have evaluated the L2-Norm of θ(ξ, 1/2), defined as

L2[θ(ξ, 1/2)] = [

∫
(θ(ξ, 1/2))2dξ]1/2 (1.5)

This quantity is∼ 0 if cancellation occurs, while it is different from zero in the case

of critical reorientation. Results of this characterization are presented in fig.1.9:
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Figure 1.9: The L2-Norm of a cut in ξ of θ(ξ, ζ) at the center of the sample (ζ =
1/2), as a function of the control parameters e0 and α, is presented as a measure of
the director reorientation. The dark zone corresponds to a critical reorientation, the
white one to a cancellation effect. The map refers to the case in which the second
beam is switched on the sample well after the reorientation process induced by the
first one has been completed.

The critical reorientation occurs only for angles of incidence smaller than the

critical value αth ' 0.8 rad, which is independent of the used liquid crystal, and is

specific of the system geometry only. For equal intensities of the two beams, two

equilibrium states exist, as shown in fig. 1.10:
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Figure 1.10: Equilibrium states in the case of equal impinging intensities; vectors
e1,2 represent the electric fields of light beams, n is the molecular director. (a) initial
homeotropic state, or consequence of a complete cancellation effect. (b) complete
planar reorientation.

At great incidence angles (α > 0.78 rad, corresponding to small angles between

field vectors e1 and e2, calculated as 2(π − α)) the cancellation effect is favored;

on the contrary, for small incidence angles (α < 0.78 rad) a critical reorientation

occurs. Furthermore, for values e0 < 2, the reorienting effect is well balanced by the

elastic force; the maximum reorientation angle is small enough and the cancellation

effect is in any case favored.
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1.5 Experimental comparison

Theoretical predictions have been confirmed by experimental results obtained

in the geometry illustrated in fig. 1.1(b), which exploits a particular set of condi-

tions: Average intensities of the two impinging beams are the same, whereas the

two angles of incidence are equal and opposite. The scheme of the experimental

setup is shown in fig. 1.1(a). The continuous source is a diode-pumped solid-state

laser (DPSS Ventus 532, by Laser Quantum), which emits light at λ = 532 nm.

The radiation is split into two beams of equal intensity by a beam splitter. Before

reaching the sample, each beam crosses a half-wave plate followed by a polarizer,

whose combined action enables varying the total power impinging on the sample;

then each beam crosses a spherical lens (f = 150 mm) mounted on a translation

stage, which allows production of two equal spot sizes (∼ 130 µm in diameter) on

the sample. In this way, two equal light intensities impinge on it. The NLC (E7,

by Merck) is sandwiched between two glass slabs and is homeotropically aligned.

Suitable Mylar spacers ensure a uniform thickness (L = 75 µm) of the cell, which

is placed on a rotating xyz stage, needed to adjust two equal and opposite angles of

incidence. Images after the sample are projected onto a white screen which enables

observation of Self Phase Modulation (SPM) rings in the far-field zone, an effect

widely investigated in the past [15, 17, 18], which can be used to monitor the direc-

tor reorientation. By varying the incidence angle between 20◦ and 70◦, with steps

of 10◦, we have characterized the dependence of the ring interference pattern on the

impinging power. For angles smaller than 45◦ (0.78 rad) it is possible to obtain a

well-balanced competition of the effects of the two beams. Indeed, when their in-

tensities are equal and the total average intensity remains below a given threshold,
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SPM rings disappear, indicating an unperturbed orientational state of the director,

which we refer to as “spatial cancellation of reorientation”.
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Figure 1.11: (a) Experimental results obtained for different values of impinging
power and angles of incidence. Black dots indicate that, at the end of the process,
reorientation due to a LIFT II effect has taken place. Gray dots indicate that a
a complete cancellation has occurred. (b) Theoretical map of L2[θ(ξ, 1/2)] in the
corresponding zone of the α - e2

0 plane

The situation is shown in fig. 1.11(a), where we have used gray dots to refer to

the case of no SPM rings observed in the far field zone (45 cm from the sample),

while with black dots we have indicated the case of a LIFT II effect. We have chosen

to use a field intensity representation for the L2-Norm values in order to maintain

a proportionality with the impinging laser power; normalization relations indicate

that the [0 : 21.6] range for e2
0 corresponds to the [0 : 160 mW] range for the laser

power.

In fig. 1.11(b) theoretical predictions are reported for the same cases. Also in



CHAPTER 1. MULTIPLE IRRADIATION 48

this figure the gray zone refers to the case in which a cancellation of reorientational

effects is obtained, while the black zone refers to a critical reorientational effect.

Comparison with 1.11(a) demonstrates the validity of our model.

Starting from evidences of fig. 1.11, for a deeper investigation of the obtained

results, an analysis of the optical divergence of one beam as a function of the im-

pinging laser power has been realized for α = 0.35, α = 0.55 and α = 0.65

corresponding to the appearing of the LIFT II effect. In fact, L2[θ(ξ, 1/2)] is a mea-
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Figure 1.12: (a) Experimental behavior of the optical divergence as a function of
the laser power for different α values that correspond to geometries in which a
threshold in the field amplitude exists for the reorientation effect. (b) L2[θ(ξ, 1/2)]
as a function of e2

0 (in the corresponding range of values of the field intensity) for
the same α values.

sure of the reorientational effect; on the other hand, the optical divergence of one

beam is a direct evidence of the director reorientation [13]. In fig. 1.12(a) the optical

divergence as a function of the laser power is reported, while fig. 1.12(b) represents
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the theoretical behavior of the L2-Norm obtained for the same α values in the corre-

sponding range of field intensity. Also in this case, the excellent agreement between

the two figures confirms the validity of our model.
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1.6 Non local solutions

Effects discussed up to now are concerned with a local responce of the medium

and they can be explained by considering the local equilibrium states presented in

fig 1.10; there is however a particular case in which nonlocality plays a role. In

particular, if both laser beams are switched on the sample simultaneously, an appar-

ently stable situation is realized. On the contrary, theoretical simulations show that

a different kind of critical reorientation is observed, due to a nonlocal response of

the medium. Indeed, characterization of the L2-Norm presented in fig. 1.13 shows

that also in this case there is a threshold in e0 and α above which a critical reorien-
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Figure 1.13: The L2-Norm of a cut in ξ of θ at the center of the sample
(L2[θ(ξ, 1/2)]), as a function of control parameters e0 and α. The dark zone cor-
responds to critical reorientation, the white one to a cancellation effect. The map
refers to the case in which the two beams are switched on the sample simultaneously

tation occurs. In our opinion, this effect can be explained by assuming that, from
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the boundary of the irradiated zone where the two gaussian beams are not perfectly

superimposed, nonlocality extends the reorientation towards the center of the spot.

If elastic forces are relatively small (high e0), molecules can receive enough energy

to evolve from the homeotropic equilibrium state (a in fig. 1.10) to the planar one

(b in fig. 1.10). We have called this effect “De-localized Freèderiksz Transition of

Second Order” (DELFTII) , which gives evidence of a nonlocal response of the

medium. These results show that the interplay between nonlinear and nonlocal ef-

fects is an intrinsic feature of the investigated system and open new perspectives

for its study not only from a fundamental point of view, but also for applications.

In fact, cancellation effects could be utilized in the fields of “optical switching”

and “all optical addressing”, while the angular dependence of this effect could be

exploited in high resolution “optical goniometer” devices.

1.7 Conclusions

In conclusion we have carried out numerical solutions of a general model for the

interaction of N gaussian light beams with a physical system which is a NLC cell

with strong anchoring conditions. The model has been experimentally checked for

the case of two beams in an opposite incidence angle geometry; in good agreement

with theoretical predictions, in the framework of a local response of the medium,

it has been found that a series of effects can occur. Furthermore, under particular

experimental conditions, nonlocality plays an important role.
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Chapter 2

Light propagation in periodic and
non-periodic potentials

We present a simple model which enables the derivation of light propagation in a

generic dielectric structure starting from Maxwell’s equations. Discrete diffraction

and soliton solutions for a periodic profile of the refractive index are numerically

derived in a waveguide array without assumption of discrete eigenmodes or Bloch

functions. For a sinusoidal periodic profile, results are in good agreement with

theoretical data and experimental results already reported in literature. Furthermore,

the direct derivation performed by means of a general approach allows to extend the

analysis to a generic structure with no periodic conditions. As particular cases, light

propagation in a double gaussian profile and in an alternated, non-periodic refractive

index profile are reported.

55
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2.1 Introduction

In the last few years, non-linear optical effects in waveguide arrays have been

intensively studied, both experimentally [1–4] and theoretically [1, 3–8] by exploit-

ing models that refer to the “Fermi-Pasta-Ulam” approach to one-dimensional dy-

namical systems [9]. This approach analyzes an interaction between neighbors that

contains nonlinear terms. Numerical models have been implemented by exploiting

the Coupled-Mode Theory (CMT) [5]: By considering only nearest-neighbor in-

teractions, it has been shown that the optical electric field propagating in the nth

waveguide obeys a nonlinear difference-differential equation; each waveguide is

coupled only to the adjacent channels and can be described via a ‘coupling con-

stant’, which is proportional to an overlap integral of two adjacent modes [2, 5]. In

the continuum (or long-wavelength) approximation, this discrete process can be de-

scribed by the non-linear Schrödinger equation [5,10,11]. This approach has played

an important role in understanding the observed effects, providing, in particular,

fundamental relations between those parameters (like array period and beam inci-

dence angle) that enable to manage the discrete diffraction phenomenon [1,6,10]. In

fact, by combining these relations with the diffraction equation, it is possible to pre-

dict whether the light beam experiences normal diffraction (the beam spreads while

propagating), anomalous diffraction (the beam spreads while propagating, but some

anomaly is observed) or if diffraction disappears [1–3, 12]. The limit of this theory

is represented by the sharp discreteness that has to be hypothesized for the nonlin-

ear periodic system, according to which the dielectric structure exists only in the

waveguides with a high refractive index. Besides the CMT approach, the Floquet-

Bloch (FB) analysis, which is applicable also to lossy waveguides [4, 13–15], has
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been used to extend concepts introduced in the CMT, by making a preliminary anal-

ysis of the modes which can propagate in the array. In the framework of this model,

it is necessary to make use of the Bloch theorem (born in the field of solid state

physics), which states that eigenfunctions of the Schrödinger equation for the case

of a periodic potential structure exhibit the same periodicity of the potential struc-

ture [16]; therefore, wave equation solutions result to have the same periodicity of

the refractive index modulation ∆n. In this way, the FB approach, while well en-

abling investigation of light propagation in periodic structures, prevents extending

the study to those cases in which the physical system does not exhibit any periodic-

ity. In investigating discrete diffraction, also another approach has been exploited,

which is able to predict the beam evolution in non-periodic systems too: It is the

(non-linear) beam propagator method (BPM), a simulation technique used to study

the propagation of electromagnetic waves in inhomogeneous media [17,18]. Avail-

ability of solutions depends on the possibility of dividing light propagation over a

very small distance ∆z into two actions: the first one is concerned with the diver-

gence of the beam in a medium without index variation, while the second one is

related to the modification of the phase front due to the index modulation [19]. In

principle, this approach is not necessarily restricted to beams that propagate at small

angles with respect to the optical axis of the system, as explicitely required, instead,

by the CMT and FB theory (in whose frameworks, however, the technique can be

used). Unfortunately, the BPM is valid only for small spatial variation ∆n of the

refractive index.
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2.2 Theoretical model

We present a simple model that enables to investigate propagation of light in

a medium with a modulated transverse profile of the refractive index. The nov-

elty and interest of our approach is in showing that, under suitable conditions,

discrete diffraction and discrete solitons can be obtained by simply coupling the

Maxwell equations with this “index modulated” medium, without any necessity

of an “a priori” discretization of the equations and any necessity of all the dif-

ferent kind of approximations that have to be necessarily used in all the papers

cited in our references. Our model is very simple, general ed elegant, but im-

plies that obtained equation can be solved only by using a numerical approach.

The propagation of the optical field E(x, z) is analyzed in the xz-plane while the

beam impinges on a sample whose refractive index n(x) varies along the x-direction

only. We analyze the problem by directly starting from Maxwell’s equations, with-

out supposing any discreteness of the medium neither a periodicity of the solu-

tions; we want to stress, indeed, that we perform a numerical analysis of Maxwell’s

equations which makes use “only” of the Slowly Varying Envelope Approxima-

tion (SVEA) on the optical electric field. We hypothesizes a solution of the kind:

E(ξ, ζ, t) = e(ξ, ζ) exp[−i(k̃ · r̃− ωt)] where e = E/E0 is the normalized electric

field, E0 being the field amplitude, ξ and ζ are the normalized coordinates ξ = x/D,

ζ = z/D, D being the sample thickness, r̃ = (ξ, ζ), k̃ = (kξ, kζ) is the normalized

light propagation constant with modulus |k̃| = 2nπD/λ, λ indicates the wavelength

of the optical field and n is the refractive index of the medium where light is coming

from. Under these conditions, the Maxwell’s wave equation becomes:

∂e

∂ζ
+

i

2kζ

∂2e

∂ξ2
+

kξ
kζ

∂e

∂ξ
+

ik̃2
0

2kζ

[
n2(ξ)− n2

]
e = 0, (2.1)
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where k̃0 = 2πD/λ and n(ξ) indicates the transverse profile of the refractive in-

dex. In order to solve equation 2.1 we utilize a numerical technique based on a

finite-differences scheme for both spatial derivatives (with respect to ξ, ζ spatial di-

rections). We create a lattice of computational grid points (i, j) in the ξ-ζ plane,

where lattice steps ∆ξ and ∆ζ allow to go from i to i + 1 and from j to j + 1

respectively. Evolution of the optical field in the ζ direction is then simulated by

determining the value of the field at the (i, j + 1) point by means of the field values

at previous points. All simulations have been carried out by putting D = 100µm,

λ = 532nm and n = 1, while ∆ζ and ∆ξ are chosen case by case in such a way

that numerical stability of solutions is ensured.

Reliability of the model has been checked by comparing obtained numerical

results with both experimental and theoretical data already reported in literature.

In fact, from literature [1] it is well known that, indicating by kx the transverse

component of the impinging light wavevector and by Λ the transverse periodicity of

the refractive index of the medium, by choosing discrete values of Λ (Λ = [2m +

1]λ/2, m integer) in the interval π/2 < |kxΛ| 5 π the light beam experiences

anomalous discrete diffraction. In fact, light distribution tends to broaden while

propagating (like in normal diffraction) but most of the light concentrates in two

distinct outermost lobes. Moreover, diffraction completely disappears around the

two values kx = ±π/2Λ. We have applied our model to the case of a sinusoidal

transverse modulation of the refractive index: ∆n = ∆nmax sin(2πξ/Λ̃) where Λ̃

indicates a normalized periodicity (Λ̃ = Λ/D).
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2.3 Numerical solution and Results

Results for the case ∆nmax = 0.04 and Λ̃ = 0.02926 (m = 5) are reported in

Fig. 2.2 and 2.1 where the beam intensity is represented in the (ξ, ζ) plane. It is

Figure 2.1: (a) Top view of the normal discrete diffraction of light in a waveguide
array; (b) and (c) are the refractive index and the intensity profile at the cell input
and output respectively. All values are reported in normalized units (n.u.). Also
intensity is normalized to 1.

well evident that, if only one waveguide is excited, most of the light is concentrated

into two distinct outermost lobes, reproducing the solution obtained with CMT in

the discrete diffraction problem (Green’s function) [3, 4]. The simulation well re-

produces results reported in [3, 4] but, besides these results, our model predicts

also normal discrete diffraction and discrete soliton: An initially localized excita-
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tion (more than one waveguide is excited simultaneously), tends to spread over the

whole array, as in continuous systems (Fig. 2.2 and Fig. 2.1) [3].

Figure 2.2: (a) Top view of the anomalous discrete diffraction of light in a waveguide
array; (b) and (c) are the refractive index and the intensity profile at the cell input
and output respectively. All values are reported in normalized units (n.u.). Also
intensity is normalized to 1.

Appearance of discrete diffraction also depends on the propagation direction

and on the incidence angle [3]; in particular cases, diffraction can be completely

suppressed and a discrete soliton appears, which moves across the array. As shown

in Fig. 2.3, also this particular case, numerically solved by using our approach,

confirms the validity of the model which proves suitable to predict all kind of results

available in literature.

Our approach becomes irreplaceable when we try to understand what happens
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if the physical system does not exhibit any periodicity and variations of the refrac-

tive index values are not small. Let us consider, first, the particular case in which

Figure 2.3: (a) Top view of the propagation of light in a sinusoidal lattice for the
case of a non zero incidence angle; (b) and (c) represent the refractive index and
the intensity profile at the cell input and output respectively.

the waveguide array is formed only by two waveguides, which exhibit a gaussian

transverse profile of the refractive index. We consider the behavior of a focused

gaussian beam injected in a single guide (right guide of Fig. 2.4): upon propaga-

tion, the optical power is periodically exchanged between the two guides; this result

is also reported in [3, 20], where, however, the approach can take into account only

the values of the refractive index in the waveguides, without allowing to manage

a more realistic transverse modulation of this material parameter. The theoretical
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“switch-like” behavior simulated by our model is confirmed by plotting, along the

ζ direction, the intensity profile in the central part of every guide (inset of Fig.2.4).

Figure 2.4: (a) Top view of the “switch-like” behavior of light in a non-periodic
structure made of two waveguides with a gaussian refractive index profile. (b) and
(c) are the refractive index and the gaussian intensity profile at the cell input and
output respectively. The inset represent the intensity profile along the ζ direction, in
the central part of every guide.

Obtained functional curves behave like cos2(ζ) and sin2(ζ) and a total energy

transfer between the two waveguides is observed.

Very interesting is also the case of the field evolution of a gaussian beam in an

alternated, but non-periodic structure. In particular, we have designed a refractive

index profile in which the spacing between the different gaussian waveguides lin-

early increases by starting from the center of the sample. We have obtained the
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formation of anomalous discrete diffraction until this space becomes so large that

there is no coupling between transverse modes; the optical field is reflected by the

structure and a sort of multi-guide “discrete beats” behavior starts, as shown in Fig.

2.5.

Figure 2.5: (a) Top view of the “discrete beats” behavior of light in a non-periodic
structure made of waveguides spaced by a distance that linearly increases by start-
ing from the center of the sample; (b) and (c) are the refractive index and the gaus-
sian intensity profile at the cell input and output respectively.

We stress that, at our knowledge, only our model is able to reproduce this case in

which no periodicity is imposed and ∆n can reach values as high as 0.56, a case that

is not reported in this letter, but has been used in one of our numerical simulations.
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2.4 Conclusions

In conclusion we have presented a simple model which, starting directly from

Maxwell’s equations, is able to predict all the kind of known discrete phenomena,

like normal, anomalous discrete diffraction and discrete solitons, related to light

propagation in an optical wavegide array. The approach exhibit several advantages

in comparison with models used up to now: It is directly derived from Maxwell’s

equations written in the medium of interest, with the only limitation of the “Slowly

Varying Envelope Approximations”; it is not necessary to introduce any “coupling

constant” which determines the transverse propagation of the optical field “cancel-

ing” the existence of a different medium between two waveguides (CMT model);

it is not limited to small modulations of the transverse profile of the refractive in-

dex (BPM approach). Finally it is not necessary to hypothesize any periodicity in

the transverse profile of the refractive index of the medium (FB model) and, in fact

our approach enables to predict also the propagation of light in non-periodic sys-

tems. Two examples have been reported: the first one is related to the “switch-like”

behavior obtained in a structure made of two adjacent waveguides, each of them

exhibiting a gaussian transverse profile of the refractive index; the second one is

related to an alternated, but non-periodic system in which the structure is made of

(gaussian) waveguides spaced by a distance that linearly increases by starting from

the center of the sample. In both cases, new and interesting light propagation be-

haviors have been predicted.
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Chapter 3

Director configuration in a NLC cell
with multiple interfaces

The study of optical solitons and light filaments steering in liquid crystal requires

the utilization of particular cells designed for top view investigation and realized

with an input interface which enables to control the molecular director configura-

tion and to prevent light scattering. Actually, the director orientation imposed by

this additional interface is estimated only by experimental observations. We report

a simple model describing the distribution of the director orientation inside a liq-

uid crystal sample under the anchoring action of multiple interfaces. The model is

based on the elastic continuum theory and strong anchoring is taken into account

for boundary conditions. Results are in good agreement with experimental observa-

tions.

68
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3.1 Introduction

In order to investigate the interaction between light waves and liquid crystalline

materials, the latter are confined into cells made of glass plates or quartz slabs, sep-

arated by Mylar spacers or silicon balls. The obtained liquid crystal (LC) film is

usually acted on by a focused laser beam that impinges normally to the plates, in

this way, the maximum film thickness that can be involved in the interaction with

light is about 100 µm. In the last years, optical phenomena that occur over propaga-

tion distances of some millimiters have required a different design of LC cells. The

waveguide regime imposed, for example, by solitary wave propagation [1–5] led to

utilize suitable cell configurations, all adopting a further glass slab for the input of

the light beam [1–8] (Fig. 3.1). The interface of this slab, suitably treated by the

same anchoring processes used for top and bottom surfaces, represents both a way

to prevent light scattering and a mean to control the director configuration from the

input to the bulk, the supposed director distribution being based, however, on es-

timations deduced from experimental observations. Simulation of director orienta-

tion in different configurations has been reported in numerous articles during the last

decades also in case of general elastic coefficient [9], hybrid alignment [10] and also

cylindrically [11] and spherically [12, 13] confined nematic. Anyway these models

were developed in order to solve problems of major importance in liquid crystal dis-

plays, optical fibers and polymer dispersed liquid crystal confinements and appear

to be less useful when discussing interface effects in liquid crystal cells realized for

the study of optical solitons. In this paper we present a detailed theoretical study

of the director configuration in samples with particular boundary conditions. This

is fundamental to understand why optical phenomena like the contemporary forma-
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tion of both extraordinary and ordinary waves (or the propagation of light filaments),

have been observed only in some particular cell configurations [5–8].

3.2 Experiments

In Fig. 3.1 we present our system, that is a NLC cell with glass plates behaving

as optical interfaces at the input as well as at the output of the cell. The main role

Figure 3.1: Image of the cell realized with input and output interfaces

of these interfaces is to prevent a possible random director orientation due to the

presence of a meniscus at the cell input (thus fixing the exact value of refractive

index in that point). Furthermore, it has been recently found that new interesting

phenomena can be observed controlling the interface anchoring [14]. In Fig. 3.2 we

report different effects observed in light filaments which are achievable only in par-

ticular cell configurations. The cases taken into account refer to three configurations

of the nematic director inside the cell, realized by using different surface anchoring

conditions. We indicate these configurations by [σα/σβ], where σα represents the

angle between the x-axis and the anchoring direction at the input interface, while

σβ represents the angle between the z-axis (propagation direction) and the anchor-
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ing direction of both upper and lower interfaces. In particular, we have considered

[0◦/0◦] or standard configuration, [0◦/45◦] and [45◦/45◦] In the case of standard

(a)

x [0°/0°]

(b)

(c)

(d)

(e)

(f )

[0°/45°]

[45°/45°]

z

y
x

z

y
x

z

y

Figure 3.2: Sketches on the left represent the three particular cell configuration:
[0◦/0◦], [0◦/45◦] and [45◦/45◦]. Inverted grayscale images on the right are ac-
quired from the top of the relative liquid crystal cell: (a) and (b) represent the
linear diffraction and nematicon formation, in the case of standard configuration
[0◦/0◦], respectively. The formation of the e- and o-waves is presented in (c) while
(d) shows the soliton formation by starting from these two waves in the case of
[0◦/45◦] cell configuration. In (e) and (f) the e-wave only is created by using the
[45◦/45◦] cell configuration. The steering of this light filament over angles larger
than 7◦ is obtained by applying an external AC voltage.

configuration [0◦/0◦] we obtain linear diffraction without application of an exter-

nal electric field, and optical spatial soliton (nematicons [1]) formation by applying

an external quasi-static electric field (Figs.3.2(a) and 3.2(b)). The formation of the

e and o-waves in the case of [0◦/45◦] cell configuration is reported in Fig. 3.2(c),

while Fig. 3.2(d) shows the nematicon formation by starting from these two waves.
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In Fig. 3.2(e) the e-wave only is created by using the [45◦/45◦] cell configuration;

the steering of this light filament over angles larger than 7◦ is obtained by applying

an external AC voltage (Fig. 3.2(f)).

3.3 Three interfaces model

We analyze the steady state solutions of our system, starting from Frank’s equa-

tions [15, 16] and imposing three boundary conditions at the glass interfaces. In

details, the sample is represented in the sketch of Fig. 3.3(b), where α is the input

interface, while β1 and β2 are the top and bottom ones. The molecular director (~n)

configuration is described by angles θ and ϕ represented in figure 3.3(a).

y

x

zθ
ϕ

n
r

E0

k0 LCα

x

z

(a) (b)

β1

β2

Figure 3.3: (a) 3D sketch of the axes orientation and θ and ϕ angles used to describe
the orientation of the director ~n in the sample. (b) Side view of a LC cell with an
input interface used to prevent random director orientation. α, β1 and β2 are the
three anchoring interfaces.

Being D the cell thickness, it is useful to introduce normalized coordinates ξ =

x/D and ζ = z/D. The steady state Frank’s elastic equations for θ and ϕ reduce
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therfore to:

∂2θ

∂ξ2
+

∂2θ

∂ζ2
+ sin θ cos θ

[(
∂ϕ

∂ξ

)2

+

(
∂ϕ

∂ζ

)2
]

= 0 (3.1)

cos2 θ

(
∂2ϕ

∂ξ2
+

∂2ϕ

∂ζ2

)
sin 2θ

(
∂θ

∂ξ

∂ϕ

∂ξ
+

∂θ

∂ζ

∂ϕ

∂ζ

)
= 0. (3.2)

Equations (3.1) and (3.2) are coupled, highly non linear and do not admit analytical

solutions; therefore, in order to avoid further approximations, we have used a nu-

merical approach. We have introduced on the right hand the time dependent terms:

∂θ/∂τ in eq. 3.1 and ∂ϕ/∂τ in eq. 3.2, where τ = t/τR is a normalized time and

τR is the tipical relaxation time for LC: τR = γD2/K (where γ is the viscosity and

K the elastic constant in the one constant approximation K1 = K2 = K3 ≡ K).

Starting from the configuration needed to match the boundary conditions, we let

the system evolve until the steady state is reached. We have used a second order

Runge-Kutta scheme for temporal derivatives with a step ∆τ = 10−5 normalized

units (n.u.), which matches the need for stability of solutions with a reasonable com-

putational time. For spatial derivatives, a central derivative scheme is used, where

∆ξ = 6 · 10−2 n.u. and ∆ζ = 5 · 10−3 n.u. ensure stability of solutions.

3.4 Results

Solutions have been carried out for three different boundary conditions, corre-

sponding to the configuration of our three particular cells used to investigate light

propagation in LC [14]. In all cases taken into account, interfaces have been treated

with a rubbing process that imposes a planar alignment of the LC director, with a

pretilt angle of about 4◦, while the distinguishing feature of the different configura-

tions is the rubbing direction on the anchoring interfaces. The first case refers to the
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3D sketch of figure 3.4 and represents the simplest and more typical configuration:
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Figure 3.4: Standard configuration [0◦/0◦]: a) Numerical solution for θ and ϕ be-
haviour at ξ = 0.5, presented as a function of ζ; b) Grayscale maps of θ and ϕ
configuration in the cell c) 3D sketch representing the molecular director distribu-
tion in the center of the cell (ξ = 0.5); d) Top view of the 3D sketch; e) Side view of
the 3D sketch.

in this case the rubbing direction is along the x axis at the α-interface and along the

z axis at the β1,2-interfaces. This case is also indicated as standard or [0◦/0◦] con-

figuration [14]. According to figure 3.3 and taking into account the pretilt angle, this

configuration corresponds to the boundary conditions: ϕ(ξ, 0) = 90◦, θ(ξ, 0) = 86◦,
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θ(0, ζ) = 4◦, ϕ(0, ζ) = 90◦, θ(1, ζ) = 4◦, ϕ(1, ζ) = 90◦. Simulations have been

carried out for a time interval necessary for the system to reach the steady state con-

dition (∂θ/∂τ ≤ 10−10). In Fig. 3.4a the behavior of θ and ϕ in the center of the

cell is presented as a function of ζ , while Fig. 3.4b shows bidimensional maps of

θ and ϕ in the whole sample. It is evident that the ϕ-distribution remains constant
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Figure 3.5: [0◦/45◦] configuration: a) Numerical solution for θ and ϕ behaviour at
ξ = 0.5 presented as a function of ζ; b) Grayscale maps of θ and ϕ configuration in
the cell; c) 3D sketch representing the molecular director distribution in the center
of the cell (ξ = 0.5); d) Top view of the 3D sketch; e) Side view of the 3D sketch.

in the whole sample and the effect of the anchoring at the input interface propa-
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gates into the bulk for about 0.5 normalized unit, in accordance with the predicted

theoretical coherence length [15, 16]. This result is also in good agreement with

the behavior estimated from experimental observations [14]. The second case of

interest refers to the 3D sketch of figure 3.5 and represents a more complex con-

figuration, referred to as [0◦/45◦]: in this case the rubbing direction is along the

x direction on α but it forms an angle of 45◦ with the z-direction on β1,2. In our

formalism, tacking into account the pretilt angle, this configuration corresponds to

the boundary conditions: θ(ξ, 0) = 86◦, ϕ(ξ, 0) = 90◦, θ(0, ζ) = 4◦, ϕ(0, ζ) = 45◦,

θ(1, ζ) = 4◦, ϕ(1, ζ) = 45◦. Also in this case, simulations have been carried out

until the temporal steady state is reached. Results are shown in Fig. 3.5(a), where

the behavior of θ and ϕ in the center of the sample is presented as a function of

the normalized coordinate ζ , and in Fig. 3.5(b), where the bidimensional maps of θ

and ϕ in the whole sample are reported. Also in this case, the predicted coherence

length is about 0.5 n.u. and the ϕ distribution seems to be modulated in order to

match the imposed boundary conditions. Results are again in good agreement with

the behavior estimated from experimental observations [14].

The last considered case refers to the 3D sketch of Fig. 3.6 and represents the

particular cell configuration referred to as [45◦/45◦]: in this case, the rubbing direc-

tion forms an angle of 45◦ with the x direction on α and an angle of 45◦ with the

z-direction on β1,2. The peculiarity of this cell is that it allows the formation of ne-

maticons propagating inside, without any need of acting on the impinging light po-

larization [6,14]. This configuration corresponds, in our formalism, to the boundary

conditions: θ(ξ, 0) = 45◦, ϕ(ξ, 0) = 4◦, θ(0, ζ) = 4◦, ϕ(0, ζ) = 45◦, θ(1, ζ) = 4◦,

ϕ(1, ζ) = 45◦. Also in this case, simulations have been carried out until the tempo-

ral steady state condition has been reached. Fig. 3.6(a) shows the behavior of θ and
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ϕ in the center of the sample as a function of ζ . Fig. 3.6(b) represents the bidimen-

sional maps of θ and ϕ in the whole sample. The coherence length is about 0.5 n.u.,

and both ϕ and θ distributions seems to be modulated in order to match the imposed

border conditions. This result represents a further good agreement with estimations

carried out from experimental observations [14].
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Figure 3.6: [45◦/45◦] configuration: a) Numerical solution for θ and ϕ behaviour at
ξ = 0.5 presented as a function of ζ; b) Grayscale maps of θ and ϕ configuration in
the cell; c) 3D sketch representing the molecular director distribution in the center
of the cell (ξ = 0.5); d) Top view of the 3D sketch; e) Side view of the 3D sketch.
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3.5 Conclusions

In conclusion, we have implemented a numerical model to characterize the in-

put interface effects in NLC cells utilized to study optical spatial soliton (nematicon)

propagation. We have investigated three particular configurations, experimentally

used to observe the behavior of linearly polarized, focused, light beams propagating

through the cell. These solutions are in good agreement with experimental ob-

servations. Furthermore, our model gives a reference for design, fabrication and

characterization of particular liquid crystal cells that are needed to study formation

and propagation of nematicons. Furthermore, this model, coupled to codes able to

describe light propagation in anisotropic media (under development), will allow to

advance in understanding light phenomena attributed to interface effects.
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Conclusions

In conclusion, my work has been oriented to the analysis of three different top-

ics:

• In the first one, I realized both a theoretical and an experimental work, numer-

ical solutions of a general model for the interaction of N gaussian light beams

with a physical system which is a NLC cell with strong anchoring conditions

has been carried out. The model has been experimentally checked for the

case of two beams in an opposite incidence angle geometry obtaining a good

agreement with theoretical predictions. Local response was extensively ana-

lyzed and, under particular experimental conditions, it has been also shown

that nonlocality plays an important role. Results give a new light on these

kind of nonlinear media, stimulating the investigation of phenomena that can

take place.

• In the second one, by realizing the theoretical analisys and numerical sim-

ulation code, I have presented a simple model able to predict all kinds of

known discrete phenomena. Normal, anomalous discrete diffraction and dis-

crete solitons, related to light propagation in an optical waveguide array was

analyzed in detail. The approach exhibits several advantages in comparison

with models used up to now: It is directly derived from Maxwell’s equations

81



BIBLIOGRAPHY 82

written in the medium of interest, with the only limitation of “Slowly Varying

Envelope Approximations” (SVEA). In fact, this approach does not require

the introduction of any “coupling constant” which determines the transverse

propagation of the optical field “erasing” the existence of a different medium

between two waveguides (CMT model); it is also not limited to small modula-

tions of the transverse profile of the refractive index (BPM approach). Finally

it is not necessary to assume any periodicity in the transverse profile of the

refractive index of the medium (FB model) so, it was possible to dimonstrate

that our approach enables to predict how light propagates in non-periodic sys-

tems. To enlight this feature, two examples have been reported: one related

to the “switch-like” behavior obtained in a structure made of two adjacent

waveguides, each of them exhibiting a gaussian transverse profile of the re-

fractive index; the other related to an alternated, non-periodic system in which

the structure is made of (gaussian) waveguides spaced by a distance that lin-

early increases by starting from the center of the sample. Both cases, have

shown new and interesting light propagation behaviors have been predicted.

Design of experiments devoted to check our approach in detail is under de-

velopment.

• In the third one, a numerical model whas been implemented to characterize

the input interface effects in NLC cells utilized to study optical spatial soli-

ton propagation. Three particular configurations, experimentally utilized to

observe the behavior of light beams propagating through the cell, has been

theoretical investigated providing solutions in good agreement with experi-

mental observations. Our model gives also a reference for design, fabrication
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and characterization of liquid crystal cells usefull for studing formation and

propagation of nematicons. Furthermore, this model, coupled to codes able to

describe light propagation in anisotropic media (under development), will al-

low contribute to the understanding of light phenomena attributed to interface

effects.

In conclusion, during my doctorate in the LICRYL laboratory of ‘ ottica ve-

loce’ in the University of Calabria I realized both experimental and numerical work.

In particular, during the three years of Ph.D I have reenphatized my theoretical

skills. For this purpose I attended a school in CINECA (Bologna, Italy) for learn-

ing parallel computing. In the framework of HPC-Europe program (High Perfor-

mance computing), I also visited the high performance computing center HLRS in

Stuttgart (Germany) and the IWM Fraunhofer institute for Mechanics of Materials

in Freiburg (Germany). In that occasion I improved my skills by learning new par-

allel thecniques and realized my code for light propagation in a cell with multiple

interfaces.
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Non posso poi dimenticare gli amici e quasi colleghi Luca Guzzardi e Francesco

Principe il cui piccolo apporto al mio lavoro è stato comunque importante per
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