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Abstract

Wireless Sensor Networks (WSNs) have grown in popularity in the last years
by proving to be a beneficial technology for a wide range of application do-
mains, including but not limited to health-care, environment and infrastruc-
ture monitoring, smart home automation, industrial control, intelligent agri-
culture, and emergency management.

However, developing applications on such systems requires many efforts
due to the lack of proper software abstractions and the difficulties in man-
aging resource-constrained embedded environments. Moreover, these appli-
cations have to meet a combination of conflicting requirements. Achieving
accuracy, efficiency, correctness, fault-tolerance, adaptability and reliability
on WSN is a major issue because these features have to be provided beyond
the design/implementation phase, notably at execution time.

This thesis explores the viability and convenience of Autonomic Comput-
ing in the context of WSNs by providing a novel paradigm to support the
development of autonomic WSN applications as well as specific self-adaptive
protocols at networking levels. In particular, this thesis provides three main
contributions. The first is the design and realization of a novel framework
for the development of efficient distributed signal processing applications on
heterogeneous WSNs, called SPINE2. It provides a programming abstraction
based on the task-oriented paradigm for abstracting away low-level details
and has a platform-independent architecture enabling code reusability and
portability, application interoperability and platform heterogeneity. The sec-
ond contribution is the development of SPINE-* which is an enhancement
of SPINE2 by means of an autonomic plane, a way for separating out the
provision of self-* techniques from the WSN application logic. Such a separa-
tion of concerns leads to an ease of deployment and run-time management of
new applications. We find that this enhancement brings not only considerable
functional improvements but also measurable performance benefits. Third,
since we advocate that the agent-oriented paradigm is a well-suited approach
in the context of autonomic computing, we propose MAPS, an agent-based
programming framework for WSNs. Specifically designed for supporting Java-
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based sensor platforms, MAPS allows the development of general-purpose
mobile multi-agent applications by adopting a multi-plane state machine for-
malism for defining agents’ behavior. Finally, the fourth contribution regards
the design, analysis, and simulations of a self-adaptive AODV routing protocol
enhancement, CG-AODV, and a novel contention-based MAC protocol, QL-
MAC. CG-AODV adopts a “node concentration-driven gossiping” approach
for limiting the flooding of control packets, whereas QL-MAC, based on a
Q-learning approach, aims to find an efficient radio wake-up/sleep scheduling
strategy to reduce energy consumption on the basis of the actual network
load of the neighborhood. Simulation results show that CG-AODV outper-
forms AODV, whereas QL-MAC provides better performance over standard
MAC protocols.
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Riassunto

Le Wireless Sensor Networks (WSNs) sono cresciute in popolaritá negli ultimi
anni, avendo dimostrato di essere una tecnologia vantaggiosa per una vasta
gamma di domini applicativi, inclusi, ma non limitati a, health-care, moni-
toraggio ambientale e delle infrastrutture, smart home, controllo industriale,
agricoltura intelligente, e gestione delle emergenze.

Tuttavia, lo sviluppo di applicazioni per tali sistemi richiede molti sforzi
a causa della mancanza di appropriate astrazioni software e delle difficoltá
nel gestire ambienti embedded aventi risorse limitate. Inoltre, queste appli-
cazioni devono soddisfare una serie di requisiti tra loro contrastanti. Rag-
giungere accuratezza, efficienza, correttezza, tolleranza ai guasti, adattabilitá
e affidabilitá in una WSN è un importante problema poiché tali caratteris-
tiche devono essere fornite ben oltre la fase di progettazione/implementazione,
specialmente in fase di esecuzione.

Questa tesi esplora la fattibilitá e la convenienza dell’Autonomic Comput-
ing nel contesto delle WSN, fornendo sia un nuovo paradigma per supportare
lo sviluppo di applicazioni autonomiche, che specifici protocolli di rete autoa-
dattativi. In particolare, questa tesi fornisce tre contributi principali. Il primo
riguarda la progettazione e la realizzazione di un innovativo framework per
lo sviluppo di efficienti applicazioni per signal processing distribuito su WSN
eterogenee, chiamato SPINE2. Esso fornisce un’astrazione di programmazione
basato sul paradigma task-oriented per astrarre quelli che sono i dettagli di
basso livello ed è caratterizzato da un’architettura platform-independent per
consentire la riusabilitá e portabilitá del codice, nonché l’interoperabilitá delle
applicazioni e l’eterogeneitá delle piattaforme impiegabili. Il secondo contrib-
uto riguarda lo sviluppo di SPINE-*, il quale rappresenta un’evoluzione di
SPINE2 in seguito all’aggiunta di un piano autonomico, un modo per sepa-
rare la fornitura di tecniche self-* dalla logica dell’applicazione. Tale sepa-
razione logica porta ad un facile deployment e gestione a run-time di nuove
applicazioni, garantendo non solo notevoli miglioramenti funzionali, ma anche
vantaggi prestazionali. Terzo, poiché sosteniamo che il paradigma orientato ad
agenti è un approccio che ben si adatta al contesto dell’autonomic computing,
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proponiamo MAPS, un framework di programmazione basato ad agenti per
WSN. Specificamente progettato per supportare piattaforme di sensori basate
su Java, MAPS consente lo sviluppo di applicazioni general-purpose multi-
agente utilizzando una macchina a stati finiti multi-piano come formalismo
per la definizione del comportamento degli agenti. Infine, il quarto contributo
riguarda la progettazione, l’analisi e la simulazione di un’evoluzione del proto-
collo di routing AODV, CG-AODV, e di un protocolo MAC contention-based,
QL-MAC. CG-AODV adotta un approccio “node concentration-driven gossip-
ing” per limitare il flooding dei pacchetti di controllo, mentre QL-MAC, basato
su un approccio di Q-Learning, mira ad individuare una strategia efficiente
di schedulazione del wake-up e sleep per la radio, in modo da ridurre il con-
sumo energetico sulla base dell’effettivo carico di rete del vicinato. I risultati
di simulazione mostrano che CG-AODV supera in prestazioni AODV, mentre
QL-MAC fornisce migliori performance rispetto protocolli MAC standard.
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1

Motivation, Objectives and Organization of the
Thesis

1.1 Motivation

Wireless Sensor Networks (WSNs) [1] are collections of tiny, low-cost, and
low-power devices (sensor nodes) having sensing, computing, storing, commu-
nicating and possibly actuating capabilities. Every sensor node is programmed
to interact with the other ones and with its environment, constituting a unique
distributed and cooperative system aiming at a global behavior and result.
WSNs are a powerful technology for supporting a lot of different real-world
applications such as health-care, environment and infrastructure monitoring,
smart home automation, emergency management. By showing also great po-
tentialities for numerous other different domains [2], they will become in the
imminent future a fundamental part of our life, with profound impact on our
daily activities.

Unfortunately, many issues still need to be addressed in this field. In this
thesis, we focus on the following.

First of all, developing WSN-based applications is a hard work because it
implies dealing with many different programming aspects, ranging from low-
level management of the sensor nodes hardware and the radio communication
to high-level concepts concerning final user applications. Another limiting fac-
tor is represented by the difficulties in implementing efficient applications on
scarce hardware resources in terms of power supply, computational capability,
and memory. Also, without a specific programming supporting tool, develop-
ers have to translate the global distributed application into local behavior
and functions to be coded into every node-level environment, which may be a
very long and error-prone task. Furthermore, with the ever increasing applica-
tion complexity in terms of functionalities and services provided to the users,
the need for integrating different sensor architectures, each of which provid-
ing specific capabilities, will lead to further challenges in terms of platforms
interoperability in such a heterogeneous environment.

Second, not only the development phase but also the post-deployment one
should be been taken into the necessary consideration. In fact, the global qual-
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ity of an application not only depends on how well it has been designed and
implemented but also on how well it can deal with problems at runtime as well
as how well it can configure itself, depending on the interaction with the exter-
nal environment and other interconnected networks. Moreover, since sensing
faults and unforeseen events may happen during the application execution, it
is not reasonable for a WSN to be manually and constantly maintained and
supervised after deployment. For such reasons, the system itself needs to own
specific self-management capabilities. In particular, autonomic characteristics
[3] may be incorporated into a WSN so to ensure fundamental properties such
as fault tolerance, adaptability, reliability, and maintainability [4].

Third, we are not only concerned with the application logic of a sensor
network. In order for a WSN to better adapt to the network status or chang-
ing network conditions (and thus preserving good network performance) or
to better manage the sensor node resources (e.g. reducing the battery con-
sumption for extending the system lifetime), the underlying communication
protocols should also provide some kind of self-adaptive behavior, possibly
with very little computational and communication overhead.

1.2 Objectives and contributions

The purpose of this thesis is to present programming frameworks, techniques
and protocols conceived for dealing with the above discussed issues, i.e. aiming
at supporting rapid development of WSN applications as well as enabling self-
management behaviors at runtime.

In particular, the following objectives have been achieved:

• The need for a powerful yet simple software development tool for better
exploiting the current and the future WSNs has led to the development
of a novel programming framework, named SPINE2 (Signal Processing In
Node Environment, version 2), which inherits from its predecessor just
its philosophy-of-use and the purposes, but offering a completely differ-
ent programming abstractions and software architecture (see Section 3.2.8
for a comparison). Intended to be used for a rapid development of effec-
tive yet efficient WSN signal-processing applications, it aims at providing
developers an intuitive and straightforward design model based on simple
graphical constructs. Specifically, a task-oriented approach has been chosen
as high-level modeling paradigm for defining distributed applications on
heterogeneous embedded environments by abstracting away any low-level
details concerning specific platforms and communication protocols, for the
benefit of code reusability and portability. Since a WSN system usually
demands very strict requirements in term of efficiency and stability, the
SPINE2 middleware, running on the sensor nodes, has been carefully de-
signed and implemented so to guarantee high-performance execution of the
task-based applications on such resource-constrained embedded systems.
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Moreover, its platform-independent architecture has been also conceived
to allow for an easy and fast porting procedure to support new sensor
platforms and thus enabling application interoperability and platform het-
erogeneity.

• The second contribution refers to a novel autonomic architecture, named
SPINE-*, that aims at easily and explicitly defining the autonomic proper-
ties without affecting the WSN application behavior and logic. Conceived
as an enhancement of SPINE2, SPINE-* inherits all its previously dis-
cussed characteristics such as code reusability, application portability and
interoperability, and platform heterogeneity. In addition, it extends the
conventional developing framework by means of an autonomic plane, a
way for separating out the provision of self-* properties from the WSN
application logic. This is enabled by the task-oriented paradigm which is
well suited for allowing the necessary separation of concerns for indepen-
dently dealing with both the application plane and the autonomic plane.
This separation of concerns leads to an ease of deployment and run-time
management of new applications. We find that this enhancement brings
not only considerable functional improvements but also measurable perfor-
mance benefits, as shown in a case study where a specific WSN application
has been improved by means of proper self-healing tasks aiming at miti-
gating erroneous behaviors at runtime, and thus improving the quality of
an application, due to the effects of sensor data faults.

• Designing and implementing autonomic behaviors in a computing system
do not require a certain approach or a specific programming language.
However, many researchers in the Autonomic Computing community have
recognized that many ideas developed in the MAS (Multi-Agent Systems)
community may likely be fruitfully adopted for enabling the various self-*
properties. The employment of decentralized, autonomous but interact-
ing and collaborating entities, defined as a result of the decomposition of
complex problems and tasks, clearly prove to be of some benefits also for
the autonomic computing. Motivated by this consideration, an innovative
agent-oriented programming framework for WSN, namely MAPS (Mobile
Agent Platform for Sun SPOT) is proposed. MAPS has been designed
for the development of Java-based applications running on WSN based
on the Sun SPOT sensor platforms. Specifically, MAPS agents’ behav-
ior is modeled by means of a multi-plane state machine formalism driven
by ECA (Event-Condition-Action) rules. Performance evaluation of MAPS
has been carried out as well as a comparison with other current Java-based
MASs for WSNs.

• The fourth contribution regards the definition, implementation and simu-
lation of specific MAC and routing protocols showing self-adaptive capa-
bilities. In particular, a novel contention-based MAC protocol for WSNs,

5



Chapter 1. Motivation, Objectives and Organization of the Thesis

named QL-MAC and based on a Q-learning approach, is proposed. The
protocol aims to find an efficient wake-up strategy to reduce energy con-
sumption on the basis of the actual network load of the neighborhood.
Moreover, it benefits from a cross-layer interaction with the network layer,
so to better understand the communication patterns and then to sig-
nificantly reduce the energy consumption due to both idle listening and
overhearing. The proposed protocol is inherently distributed and has the
benefits of simplicity, low computation and overheads. As for the routing
protocol, an enhancement of AODV, called CG-AODV, is proposed. In
particular, a “node concentration-driven gossiping” approach is adopted
for limiting the flooding of control packets in the standard protocol defi-
nition and improving the network performance in terms of packet delivery
ratio and path discovery delay. The “node concentration” is introduced
as a new measurable quantity and, in contrast to the standard network
density, not only take into consideration the spatial distribution of nodes
but also their transmission range.

1.3 Organization of the Thesis

This thesis is organized as follows:

• Chapter 2 illustrates an overview on Autonomic Computing by introduc-
ing its history, its main characteristics and the research contributions over
the last years. Moreover, some applications of the Autonomic Computing
principles to the WSN domain are presented, as well as the use of Ma-
chine Learning techniques as effective instruments for enabling autonomic
behavior in WSN.

• Chapter 3 presents our proposals for enabling the development of auto-
nomic applications on WSNs by means of proper frameworks. It first dis-
cusses about the need for proper programming tools for better dealing
with the development of effective and efficient WSN applications. Then, it
illustrates the SPINE2 programming framework by describing in details its
characteristics and comparing it with some related work. Afterward, the
autonomic programming framework SPINE-* is presented and its features
and architecture described. Moreover, some case studies involving both
SPINE2 and SPINE-* are shown. Finally, the use of mobile agents in the
WSN domain is discussed and the characteristics of MAPS, its architecture
and its agent programming model are delineated.

• Chapter 4 presents specific self-adaptive networking-level protocols for
WSNs. In particular, an enhancement of the AODV routing protocol,
called CG-AODV, and a novel contention-based MAC protocol, called QL-
MAC, are described in details. Moreover, simulation results are shown to
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validate their ability to adapt to the network status and guarantee better
network performance with respect to other standard protocols.

• Finally, Chapter 5 presents a summary of the main results of this thesis,
along with some concluding remarks. Afterward, possible future research
works that can derive from the work here presented and a list of the
publications related to the thesis are shown.
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2

Towards Autonomic WSN

Wireless Sensor Networks (WSNs)[1] have gained attention in the last years
thanks to the potentialities offered by the use of small, low-cost, and low-
power devices (sensor nodes) providing data acquisition, processing and wire-
less communication capabilities. The application domains that may benefit
from the use of wireless sensor networks (WSNs) have grown rapidly [2]:
health-care, infrastructure monitoring, smart home automation, environment
surveillance, emergency management, industrial control, precision agriculture
and many others.

Specifically, when applied to the human body, such sensor networks are
called Body Sensor Networks (BSNs) [5, 6]. BSNs are currently having a
significantly increasing research interest thanks to their abilities in enabling
continuous and real-time human monitoring at low cost by guaranteeing ease
of deployment, fault tolerance, and non-invasive operations. Most of the cur-
rent systems based on BSNs are related to the health-care domain [7, 8, 9].
Examples of health-care applications include early detection or prevention
of diseases, elderly person assistance at home, rehabilitation after surgeries,
cognitive and emotional recognition, medical assistance in disaster events.
However, wearable systems have great capabilities for different other applica-
tion domains, which are gaining more and more attention in the last years:
e-Social [10], e-Sport and e-Fitness [11, 12], e-Entertainment and interactive
computer games [13, 14], and e-Factory [15].

As the cost and the dimension of wireless sensors diminish we should ex-
pect in few years to see a large number of heterogeneous WSNs/BSNs deployed
to become very important building blocks for supporting the upcoming “In-
ternet of Things” (IoT) [16, 17, 18]. In such a vision, the everyday objects
surrounding us will become intelligent and proactive components connected
to Internet (Smart Objects) for generating and consuming information and
providing better solutions in any kind of sector. Thus, next WSN applications
will not only have to be conceived as a stand-alone solution but as piece of a
big puzzle where the intelligent interaction and synergy with the environment
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along with the Internet connectivity represent the key points for providing
the next generation innovative value-added services.

The benefits of connecting both WSN and other IoT elements go beyond
the simple data remote access and the potential of such an integration have
already been foreseen by several international companies. A notable example,
which extends the concepts to generic WSNs, is the “Smarter Planet”1 by
IBM. This projects a strategic vision for building a smarter planet by instru-
menting, interconnecting and building intelligence into systems and consider-
ing sensors as fundamental pillars in intelligent cities management. Another
example is the CeNSE2 project by HP Labs, focused on the deployment of a
worldwide sensor network in order to create a “central nervous system for the
Earth”.

The importance of WSNs in such complex environments has led to the
need for proper techniques and tools capable of effectively WSN applications
managing so to guarantee their correctness and efficiency at execution time
as well as fault tolerance, adaptability, and reliability. And the Autonomic
Computing paradigm with its self-* properties can perfectly meet these critical
requirements.

2.1 Autonomic Computing

The Autonomic Computing (AC) paradigm [3] has been conceived as a re-
sponse to the rapidly growing complexity of computing systems characterized
by an increasing heterogeneity, distribution, dynamism and pervasiveness. In
a scenario where plethora of technologies are tightly connected to each oth-
ers, operators and administrators are facing more and more complex failures
and configuration problems that are becoming hard to be manage except
by highly skilled human experts. But manual control is time-consuming, ex-
pensive, and error-prone; and since nowadays the cost for IT personnel is
exceeding equipment costs, there is an increasing economic need to automate
systems maintenance.

As the name may suggest, the autonomic computing vision takes inspira-
tion from the autonomic nervous system which is in charge of managing and
regulate all the non-conscious activities of the body such as heartbeat rate,
breathing rate, and body temperature. In a similar way, an autonomic system
should be able to autonomously take charge of certain system functions so to
avoid an active human intervention for managing those activities concerning
low-level details and let users to combine their efforts on higher level con-
cerns. As a consequence, the human operator has a new role: defining general
policies that guide the self-management process without any need for him to
directly control the system.

1 http://www.ibm.com/smarterplanet/
2 http://www.hpl.hp.com/research/intelligent infrastructure/
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Several research disciplines have studied many of the issues related to AC
for many years. For instance, fault tolerant computing and the need for ro-
bust systems are not new, as well as all the researches in the field of Artificial
Intelligence and Software Engineering trying to satisfy desired system prop-
erties such as reliability, maintainability, adaptability and security. What is
new with the AC approach is its way to bring all the relevant research ares
together towards an unique research direction aiming to achieve long-standing
dependability of complex systems [19].

2.1.1 A brief history

The term Autonomic Computing was first coined by Paul Horn of IBM in
2001, who compared complex computing systems to the human body [20]. In
his manifesto, he also advised the need for a management component acting
in a similar fashion as the autonomic nervous system. AC was then conceived
as a model for computer systems having self-management capabilities, i.e.
able to autonomously take care of the regular maintenance and thus reduc-
ing the system administrators’ workload. Moreover, four different properties
were identified for characterizing an autonomic system: self-configuration, self-
optimization, self-healing, and self-protecting.

However, the concepts behind self-management has been already investi-
gated few years earlier in a military project.

In the late 1990s, the Defense Advanced Research Projects Agency (DARPA)
was involved in a project called Small Unit Operations-Situational Awareness
System (SUO-SAS). Its aim was to provide soldiers with a robust, ad-hoc
self-forming, and self-managing network to support them in tactical military
operations in difficult environmental conditions, where it is impossible to rely
on a fixed infrastructure. Once a soldier has turned the radio device on, its
software system was able to automatically acquire the correct channel and
start exchanging and collecting the status reports with the other devices de-
ployed over the battlefield, as well as getting information from ground sensors
and unmanned aerial vehicles, so to be aware of the global situation of the
war theater. Radio devices were able to transmit in a wide range of possi-
ble frequencies and bandwidth, in order to adapt each communication to the
current conditions. For instance, if a soldier was many miles away from the
closest one, the radio automatically would switch to low frequencies and, be-
cause of the corresponding lower bandwidth, would exchange only the proper
and most relevant information. And all this operations would occur without
any direct intervention by the soldier.

Another project funded by DARPA, namely Dynamic Assembly for Sys-
tems Adaptability, Dependability and Assurance (DASADA), started in 2000.
It looked for effective means to monitor large software system performance
and feasible adaptation engines capable of dynamically reassemble, removed
and replaced software components at runtime with no system outages. Sim-
ilarly to the IBMs autonomic computing initiative, such technologies were
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conceived for dealing with the complexity of distributed software systems and
enabling mission critical applications to meet high reliability and adaptability
requirements.

In 2004, the DARPA Self-Regenerative Systems program aimed to develop
techniques for military computing system capable of critical functionality at
all time, despite unintentional errors or deliberated attacks. One of these tech-
nique was to generate different versions of a software having similar functional
behavior but different implementations, such that a potential attack was un-
likely to be able to affect all of them at the same time. Also, by directly mod-
ifying the binary code, e.g. by pushing randomly sized block onto memory
stack, would be harder for a hacker to exploit vulnerabilities on it. Moreover,
a scalable intrusion-tolerant architecture and a technique to prevent malicious
system operator from initiating an attack were developed.

It is worth to mention here, the strong interest of NASA in autonomic
computing which could make possible for a deep-space probe to autonomously
and quickly adapt its behavior to extraordinary situations. This is very im-
portant when the round-trip delay of communication between the probe and
the mission control on Earth is so long that it would be impossible to rapidly
send new commands from Earth related to some critical decisions. One of the
most interesting space program related to autonomic computing is the Au-
tonomous NanoTechnology Swarm (ANTS), started in 2005, which consists in
using hundreds of miniaturized, autonomous spacecrafts to explore Solar Sys-
tem bodies like the asteroids in the asteroid belt. Inspired by insect colonies,
they should form small coordinated groups, each of them having specific role
in the mission but capable to reconfigure in case of loss of spacecrafts.

2.1.2 The self-* properties

As discussed by Horn in his manifest [20], the main properties of an autonomic
computing system are the following [3]:

• Self-configuration. The system must be able to configure itself based on
specific high-level policies and objectives and to effectively adapt itself on
the needs of the user and the platform by dynamically adding, replacing
or removing its components with no system outages.

• Self-healing. The system must be able to autonomously prevent, detect,
and possibly remedy its possible malfunctions to ensure adequate levels of
reliability. The nature of possible problems that can be detected is quite
broad, ranging from low-level hardware failures to high-level erroneous
software configuration. However, it is important that the operations related
to the self-healing process do not affect other vital components in the
system.

• Self-optimization. The system must be able to make better use of the
available resources and to plane its activities to constantly pursue the
maximization of its performance (proactive behavior).
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• Self-protection. The system must have the ability to provide specific levels
of security by preventing, detecting and remedying any intrusion and ma-
licious attack aimed at its sabotage. Moreover, it should also protect itself
from user inputs that may be inconsistent, implausible, or dangerous.

The above listed properties are usually known as self-CHOP properties.
However, others specific “self-*” properties can exist too. Terms like self-
organization, self-inspection, self-repairing, self-monitoring, self-testing and
many others have all been used both in academic and industrial research.

2.1.3 The MAPE-K loop

Along with the definition of Autonomic Computing and its fundamental prop-
erties, IBM also suggested an architecture as a reference model for an auto-
nomic element [21]. It is usually known as MAPE-K loop, an acronym derived
from the initials of the main components/activities constituting the model (see
Figure 2.1): Monitor, Analyze, Plan, Execute, Knowledge. At some extent,
this model is similar to a generic agent model that perceives its environment
through sensors and uses these pieces of information to define the actions to
be execute.

Fig. 2.1. The MAPE-K loop reference model.

The managed resource represents any kind of hardware or software system
component which is coupled with its specific autonomic manager such that
it can exhibit an autonomic behavior. It can be, for instance, an operating
systems, a database, a web service, a server, a router, a CPU, a network and
so on.

The Monitor component is in charge of collecting details and properties of
the managed resource by means of proper sensors, probes, and gauges. All in-
formation that are of significance for the self-* properties are then aggregated,
correlated and filtered so to provide a proper state representation of the re-
source to be analyzed. The Analyze phase involves data analysis and reasoning

13



Chapter 2. Towards Autonomic WSN

on the information provided by the monitor. Such analysis is also influenced
by the data stored in a knowledge-base. Analysis results are then passed to
the Plan function, which defines and selects a series of actions that produce
the required changes needed to achieve specific objectives and goals. Finally,
the selected actions are put in place in the Execute phase and, by means of
specific effectors, the managed resource behavior changes accordingly. The
Knowledge component simply represents a generic data storage, containing
basic and aggregated information as well as analysis results, shared among all
the functions in the loop.

2.1.4 State-of-the-art

A first example of implementation of the MAPE-K loop can be found in
the IBM Autonomic Computing Toolkit3. It was developed as a reference
framework for incorporating autonomic functionalities into software systems
but it was not designed to be a complete autonomic manager. It was meant to
be used in all the context where the autonomic manager could be implemented
at application level and not at more lower levels like the operating system or
even the hardware ones. It is implemented in Java but is able to communicate
with other applications via XML data exchange. In [22] the Toolkit was used
and extended to implement an autonomic network service configuration, where
the servers act as autonomic managers whereas the other network devices are
modeled as managed resources.

Another well known IBM toolkit is ABLE [23]. Every autonomic manager
can be modeled and implemented as an agent or a set of agents (i.e. each
single autonomic task can be represented and coded into a specific agent).
Thus, the system implemented through this toolkit appears as a multiagent
software architecture, whereas the adopted programming language is Java.

Another implementation of a complete autonomic loop, called Kinesthet-
ics eXtreme, can be found in [24]. They tried to address the problem of in-
tegrating autonomic properties into legacy systems, i.e. system not originally
designed for including autonomic behaviors. Since it is not possible to mod-
ify such systems, they propose a way for monitoring their status by means
of software “sensor” placed on top of the existing APIs. On the basis of the
monitored information, proper adaptation and repair functions can be issued
to the system. Specifically, these planned actions are executed by means of
a Workflow engine (Workflakes [25]): the autonomic manager deploys proper
Worklets (mobile agents) to the controlled legacy system on which a Worklet
Virtual Machine is running. Such a virtual machine interprets and executes
the agents whose actions are translated into specific commands/actions for
the legacy system thanks to proper host-specific adaptors.

With respect to the aforementioned tools, a different approach is to develop
specific autonomic middlewares providing self-management functionalities to

3 http://www.ibm.com/developerworks/autonomic/r3/probdet1.html
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the applications implemented on top of them. An example of this approach
can be found in [26]. Since the self-* properties are provided to applications
running on top of the middleware, differently from the Kinesthetics eXtreme
autonomic tool, it is not possible to apply this approach to legacy systems.

Along with the proposals of real implemented autonomic frameworks
and tools for building autonomic systems, other research activities provide
methodologies for modeling autonomic systems such as in [27], [28], [29], and
[30].

When AC is specifically applied to computer networks, research commu-
nity usually refers to it also as Autonomic Network. Many past and current
research works have been conducted for exploiting the basic autonomic prin-
ciples into traditional networks by following different directions and reaching
different levels of success. A rather extensive survey on Autonomic Network
Management can be found in [31]. The interest in this research field is proved
by several international projects that started in the last few years.

BISON4 (Biology-Inspired techniques for Self-Organization in dynamic
Networks) aimed to develop techniques and tools for building self-organizing,
self-repairing and adaptive Network Information Systems by taking inspira-
tion from biological processes.

The ANA5 project has developed a novel Autonomic Network Architecture
able to adapt and re-organize on the basis the users’ needs in terms of working,
economical, and social requirements.

Haggle6 is an autonomic networking architecture specifically designed and
developed for exploiting opportunistic contacts between mobile users, i.e.
guarantee communication even under intermittent network connectivity. con-
ditions.

CASCADAS7, abbreviation of “Component-ware for Autonomic Situation-
aware Communications, and Dynamically Adaptable Services”, had as an ob-
jective the development and the experimentation of an autonomic framework
for enabling composition and deployment of an ecosystem of services capable
to self-adapt to unpredictable situations.

The EFIPSANS8 project aims at exploring the ways how appropriate IPv6
protocol and architectural extensions can be exploited for building new auto-
nomic networks and services.

2.2 Autonomic WSN

The autonomic computing is an effective paradigm conceived for facing with
the arising needs of managing the growing complexity of computing systems.

4 http://www.cs.unibo.it/bison/
5 http://www.ana-project.org/
6 http://www.haggleproject.org/
7 http://acetoolkit.sourceforge.net/cascadas/
8 http://www.efipsans.org/
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All the desired properties of an autonomic system perfectly meet the basic
requirements of self-managing of an embedded, distributed and highly dy-
namic computing environment like a WSN: tolerance to faults; adaptation
to the loss or the addition of nodes by preserving the application function-
ality; support for cooperative management of critical resources (energy and
computational ones); optimization of sensor node resources; impracticality of
recharging or replacing the battery and in general impracticality of mainte-
nance by technicians.

However, by contrast to the more traditional networks, the features of
WSNs make the design and the implementation of such management archi-
tecture rather challenging. And thus, the autonomic-related branch of research
of the sensor networks domain has not been fully investigated yet.

Among the technical challenges that needs to be addressed, one of the
biggest ones is the design of an effective network management architecture for
continuously supporting WSN applications at runtime.

2.2.1 State-of-the-art

As previously mentioned, unlike research on AC for the traditional and most
common networks, research on autonomic architectures specifically conceived
for WSNs is not well established yet.

Few examples of system architectures for WSN management can be found
in literature: MANNA [32], BOSS [33], WinMS [34], and Starfish [35].

MANNA is a general management architecture for WSN that considers
three different abstraction planes in the definition of each management func-
tion: functional areas (fault, configuration, maintenance, performance, secu-
rity, accounting), management levels (business, service, network), and WSN
functionalities (sensing, processing, communication). Each function represents
the lowest granularity of a management action, whereas set of functions are
composed to form high-level management services. Furthermore, the MANNA
architecture defines WSN models that represent aspects of the network, i.e.
abstract visions of the system and its low-level details, and serve as informa-
tion for the execution of the management functions.

The BOSS architecture is based on the standard UPnP protocol, which
allows devices to be automatically discovered, configured and controlled over
a traditional network, without the need for manual configuration. To allow
tiny sensor devices with limited resources to use UPnP, a software bridge
running over the basestation acts as a mediator and provides sensor network
management services, which are required to manage the WSN. Its architec-
ture is composed of different functional components: control manager, event
manager, service manager, and a set of sensor network management services.

WinMS is an adaptive policy-based sensor network management system al-
lowing dynamic nodes adaptation to changing network conditions. It provides
both local and decentralised management schemes and a global management
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scheme, the former according to neighborhood network states, the latter ac-
cording to global knowledge of the network. Communication is based on a
lightweight TDMA protocol, FlexiMAC, that collects network state data and
disseminates management information through a gathering tree.

Starfish is a policy-driven framework for self-adaptive sensor networks. It is
based on an embedded node-side policy management system, called Finger2,
and a desktop client that facilitates definition of strategies for dealing with
sensor errors, component failures and reconfiguration requirements. A module
library is included for simplifying the programming of motes by providing a
high-level definition language for defining both policies and user applications
behavior.

Apart from few generic system architectures for self-managing sensor net-
works, as the ones previously discussed, most of the research efforts that have
been carried out so far on autonomic WSN are mainly concerning self-healing
and fault management techniques and systems [36, 37, 38, 39, 40] and in par-
ticular on the effect of node failures in the network [41, 42, 43, 44]. Although
very important in the WSN domain, few works have been devoted to sensor
data faults. In [45] a distributed fault detection algorithm is proposed, through
which a faulty sensor can diagnose itself through comparing its own sensed
data with the average of neighbors data. In [46], an algorithm for faulty sensor
identification, based on neighboring coordination is proposed. If the difference
of a reading of a sensor is larger than the neighbors median readings, the sen-
sor is likely to be faulty. The authors in [47] discuss the impact of sensor faults
in two case studies of body sensor deployment and describe mechanisms that
will allow detection of those faults during systems operation.

2.2.2 Introducing intelligence in WSN

Research on autonomic WSN is in its early stage for what concerning effective
management architecture devoted to satisfy the self-* properties on the WSN
and on the user applications. However, in the last years many researchers have
focused their attention to specific aspect of these networks. In particular, in
order to address rather challenging issues in such complex and dynamic en-
vironments, Machine Learning (ML) approaches and techniques have been
successfully employed [48]. Although not explicitly reported in their research
papers, such research results can be considered as approaches for satisfying
specific self-* properties by combining elements of learning and adaptation.
Examples of tasks successfully addressed by ML are data aggregation and
fusion, energy aware routing, radio scheduling and MAC, security, optimal
deployment and localization. The wireless ad-hoc nature of WSNs, their phys-
ical distribution, mobility and topology changes and energy limitations make
them so challenging for being addressed by conventional and not “intelligent”
algorithms.

The application of various ML techniques to all these specific aspects have
been extensively surveyed in [48]. Specifically, the main computational intel-
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ligence paradigms taken into consideration by this survey are: Reinforcement
Learning, Neural Networks, Swarm Intelligence, Evolutionary Algorithm, and
Fuzzy logic.

This survey shows in details which specific algorithm has been mainly em-
ployed for each of the aforementioned issues in the literature. Moreover, it
also presents authors’ personal evaluation on the applicability and suitabil-
ity of these methods depending on their specific characteristics. For instance,
although several papers have been devoted to the adoption of swarm intel-
ligence in routing problems, this is not actually a wise choice. In fact, this
ML paradigm requires high communication overhead for sending ants sepa-
rately for managing the routes and this is not a feasible approach in the WSN
domain where the energy waste due to excessive communications should be
taken seriously into consideration. On the contrary, reinforcement learning
is considered the best option when dealing with distributed and dynamic
problems like routing and clustering for WSNs as well as radio scheduling
and MAC. From this analysis, it also emerges that neural networks has been
rarely used in WSNs though it is a well studied paradigms and there exist
already many different models. Finally, one of the authors’ main concerns is
the lack of proper comparison with conventional protocols representing the
state-of-the-art in WNSs in order to better highlight the advantages of using
ML approaches. Furthermore, authors also suggest to improve and refine al-
ready existing solutions with adapting techniques based on ML so that they
can be easily tested in real-world contexts besides simulations.
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3

Application-level approaches: middlewares for
autonomic WSN

One of the main open challenges in the WSN context is represented by a lim-
ited support for application development, since the gap between sensor plat-
forms (both hardware and OS) and final desired user applications is hard to
fill and a standard approach has not been defined yet. Designing and program-
ming WSNs are complex tasks, not only due to the challenge of implementing
complex applications on heterogeneous devices having very constrained re-
sources (computational, storage and energy), but also due to the need for
guaranteeing their correctness even in case of problems at runtime [49, 50].

Thus, it is clear the importance of development tools integrating proper
features for both abstracting away low-level programming details and defining
self-management capabilities at application level.

In this chapter, WSN programming approaches are first briefly discussed.
Then, novel frameworks aiming at supporting rapid development of WSN ap-
plications as well as enabling self-management behaviors at runtime, SPINE2
and SPINE-*, are described in details. Both conceived for the development of
distributed signal processing applications, their main characteristics are the
use of task-oriented paradigm as a programming abstraction and a platform-
independent architecture which enable code reusability and portability, ap-
plication interoperability, and platform heterogeneity. SPINE-* also allows to
define specific self-* behavior without affecting the original application logic.
Moreover, an agent-based programming framework, namely MAPS, and its
modified lightweight version, TinyMAPS, are described. Specifically conceived
for Java-based sensor platforms, the their agents behavior is modeled by means
of a multi-plane state machine formalism driven by ECA (Event-Condition-
Action) rules.

Some case studies related to these frameworks are also presented for
demonstrating their validity and effectiveness.
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3.1 Developing WSN applications

A WSN application can be basically built accordingly to one of the fol-
lowing development approaches [51]: (i) platform-specific programming, (ii)
framework-aided programming, and (iii) automatic code generation.

Platform-specific programming involves the use of a certain API (Applica-
tion Programming Interface) provided by a specific sensor platform (e.g. by
its operating system) and resulting in complex, low-level programs that spec-
ify the behavior of individual sensor nodes. Thus, applications are expressly
developed to be tailored for a specific purpose and optimized for achieving
high performance. Developing applications directly on top of the operating
system primitives does not allow for a rapid and effective application devel-
opment, since programming individual node’s behavior in a distributed con-
text through a low-level programming language is an error-prone and time-
consuming task. In fact, developers need to directly interface to the network
and node resources and have to explicitly deal with messages transmission
and parsing, sensor readings, events and interrupts handling. In general, sen-
sor network operating systems, like other embedded systems, tend to leave
more hardware control to developers than any other computational system.
Thus, they have to cope with device drivers, scheduling problems, code opti-
mizations and others low-level matters. A comparison among different sensor
platforms (specifically, TinyOS1 [52], MANTIS2 [53], and the Ember ZigBee
implementation3) when considering them from the application developers per-
spective, can be found in [54]. For small and simple applications these are not
relevant problems, but as application complexity arises they become a strong
limiting factor. And this is particularly true in the light of the fact that many
recent application domains demand for using multiple interconnected sensor
networks that need complex multi-platform applications to be managed. Fur-
thermore, in the future we will see more and more growing claims for the so
called “Internet of Things” which is a large vision of a human being’s life
daily supported by pervasive computing systems [55]. On the basis of the
previous considerations, there is a strong interest in using powerful software
instruments that simplify application development on WSNs.

Framework-aided programming makes use of specific tools in order to sim-
plify and speed up the application development process. Usually, a program-
ming framework comes with both some kind of programming abstractions
provided to developers and a proper software (its middleware) able to support
the actual “execution” of such abstractions. In particular, such a middleware
is a software layer usually residing on top of the sensor platform architecture
(both hardware and OS) and in charge of “translating” the high-level con-
structs used by developers into the actual running distributed application.

1 http://www.tinyos.net
2 http://mantisos.org
3 http://www.ember.com
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The middleware is properly designed to take care of all the necessary low-
level management routines so supporting the abstractions by controlling the
node resources, covering up constraints and providing the necessary high-level
services to application developers. In few words, a framework is conceived to
provide new capabilities for an effective and efficient sensor data extraction,
manipulation, and transport, so that it could be possible for a programmer
accessing to a more intuitive programming interface for high-level WSN oper-
ations such as data collection and aggregation, signal processing and event no-
tification. The actual problems with such a high-level programming approach
are that (i) it is very difficult to provide a unique application development tool
capable of effectively supporting all potential applications for WSN, as WSNs
are application-specific networks, and also (ii) user applications can suffer
from poor performances at runtime if the middleware is not well optimized.

For such reasons, domain-specific frameworks are starting to obtain an in-
creasing interest. By combining the best characteristics of application-specific
programming and framework-aided programming, they not only include li-
braries and tools that can be easily reused for different applications of a cer-
tain domain but also they can be optimized for achieving the best performance
over such a domain. BSNs represent a good example of a more specific domain
inside the WSN one, in which the primary requirements for a framework is to
provide signal processing intensive tasks on wearable nodes.

The automatic code generation approach consists in making use of tools
capable of generating low-level code for a specific target platform starting
from a well-defined application model. So, similarly to other programming
frameworks, these tools allow developers to specify an application by means
of proper high-level abstractions. The only difference relies on the actual code
running on each node, since they do not come with a common middleware
running on the sensor nodes. In fact, the high-level model is directly trans-
lated, by means of a proper code generator, into a source code ready to be
installed on a certain sensor platform. Thus, for each supporting platform a
specific “translator” needs to be provided. While this approach, also known
as model-based design, represents a standard approach for several domains,
such as automotive electronics, its application in the WSN one has not been
widely investigated yet and a very few tools have been actually proposed and
tested.

3.1.1 Development approaches comparison

Table 3.1 summarizes the main characteristics of the above described ap-
proaches. It is quite obvious how the use of a programming framework can
increase the development effectiveness if compared to building application
through low-level programming languages and platform-specific APIs. The
code efficiency remains the best characteristic of a custom application, but at
the cost of long development and debugging time, which can be highly reduced
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by means of dedicated tools offering a rapid prototyping process through high-
level constructs and application modeling languages.

Table 3.1. Comparison among different WSN programming approaches.

Platform-specific

programming

General purpose

framework

Domain-specific

framework

Automatic code

generation

High-level application

modeling
X X X

Rapid prototyping X X X

Ease of debugging X X X

Quick application

deployment
X X

Application reconfiguration

at runtime
X X

Code efficiency X X X

System interoperability X X

Support to specific

application needs
X

If a fast application deployment and a runtime reconfiguration features are
some of the desired requirements, then the best choice is to rely on the frame-
works providing a distributed middleware running all over the sensor network.
Usually, once the middleware has been installed on the nodes constituting the
WSN, developers do not have to physically access them anymore, since their
applications (which, we remind, are properly described by a specific abstract
model) are simply loaded over the network in a distributed way by means of
proper radio messages. Thus, the middleware is in charge of managing the
reconfiguration and the upgrade of the user applications. As a consequence,
the WSN maintenance time is also greatly reduced. On the contrary, both
the low-level programming method and the code generator-based one do not
provide such features, since they produce a firmware that needs to be manu-
ally uploaded on each single node, unless the physical sensor platform itself
provides an over-the-air (OTA) programming functionality (nowadays, very
few platforms come with such a feature).

Another important feature is represented by the system interoperability,
i.e. the possibility for different applications, even if running on different sen-
sor platforms, to easily collaborate. Programming frameworks can straightfor-
wardly provide inter-operation among applications because they are able to
communicate by means of the same set of proper high-level messages. Anyway,
in order to allow applications to operate in a heterogeneous environment, it
is quite obvious that the different sensor platforms need to employ the same
low-level communication protocol. Developers relying on platform-specific or
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code-generation programming approaches, instead, have to put much more
efforts and time in order to achieve similar results.

In few words, such a comparison points out that, among the described
approaches, the domain-specific one can offer a wide range of benefits: while
guaranteeing high efficiency, it allows for a more effective development of cus-
tomized applications. And this is provided with little or no additional hard-
ware configuration by means of high-level programming abstractions specifi-
cally tailored for a specific reference application domain.

3.1.2 Brief frameworks overview

As previously discussed, for addressing WSN programming issues and sup-
porting developers in a fast and effective application development, in the last
decade many frameworks and tools have been proposed, each of which differing
on the programming constructs and the abstract application model.

In the following, the existing programming abstractions and related refer-
ence frameworks are reported and described.

Database model: (TinyDB [56], Cougar [57], SINA [58]). The database
model lets users view the whole sensor network as a virtual relational dis-
tributed database system allowing a simple and easy communication scheme
between users and network. Through the adoption of easy-to-use languages,
the users have the ability to make intuitive queries for extracting the data
of interest from the sensors. The most common way for querying networks is
making use of a SQL-like language, a simple semi-declarative style language.
This model is mainly designed to collect data streams, with the limitation that
it provides only approximate results. Also, it is not able to support real-time
applications because it lacks time-space relations between events.

Agent-based model: (MAPS [59], AFME [60], Agilla [61], SensorWare [62],
actorNet [63]). The agent-based programming model is associated with the
notion of multiples, desirable lightweight, agents migrating from node to node
performing part of a given task, and collaborating each other to implement
a global distributed application. An agent could read sensor values, actuate
devices, and send radio packets. The users do not have to define any per-node
behaviors, but only an arbitrary number of agents with their logics, specify-
ing how they have to collaborate for accomplishing the tasks needed to form
the global application on the network. Middleware according to this model
provides users with high-level constructs of a formal language for defining
agents characteristics, hiding how collaboration and mobility are actually im-
plemented. The reasons in adopting such a model is mainly due to the need
for building applications that can be reconfigured and relocated. Moreover,
the key of this approach is that applications are as modular as possible to
facilitate their distribution through the network using mobile code.

Domain-specific approach: (SPINE [51, 64], Titan [65], RehabSPOT [66],
BMF [67], CodeBlue [68]). Domain-specific frameworks are in the middle be-
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tween application-specific code and general-purpose middleware approaches.
They specifically address and standardize the core challenges of WSN design
within a particular application domain. While maintaining high efficiency,
such frameworks allow for a more effective development of customized ap-
plications with little or no additional hardware configuration and with the
provision of high-level programming abstractions tailored for the reference ap-
plication domain. In particular, SPINE is a lightweight and flexible framework
providing specific libraries and tools that can be easily reused for developing
signal processing intensive applications on BSN, whereas Titan is specifically
designed to perform context recognition in dynamic sensor networks by rep-
resenting data processing through reconfigurable data flow from sensors to
recognition results.

Macroprogramming model: (ATaG [69], Logical Neighborhoods [70], Kairos
[71], Regiment [72]). Another approach for developing complex and large ap-
plications is macroprogramming, which considers a global behavior for a wire-
less sensor network, rather than single actions related to individual nodes.
The need for this approach arises when developers have to deal with WSNs
constituted by a large number of nodes, such that the complexity in coor-
dinating their actions makes applications quite difficult to be designed in
an effective way. Macroprogramming generally has some language constructs
for abstracting embedded system’s details, communication protocols, nodes
collaboration, resource allocation. Moreover, it provides mechanisms through
which sensors can be divided into logical groups on the basis of their locations,
functionalities, or roles. Then, programming task decreases in complexity be-
cause programmers have only to specify what kind of collaborations exist
between groups, whereas the underlaying execution environment is in charge
of translating these high-level conceptual descriptions into actual node-level
actions. Thanks to these high-level concepts, any domain expert not skilled
in programming can develop its own application by simply defining the whole
system behavior through concepts and terms they are familiar with.

Model-based approach: ([73]). It allows developers to define proper models
representing the desired behavior of an application. Usually, such an approach
consists in making use of a well-defined modeling language (finite state ma-
chine, flow charts, etc) and a tool capable of generating low-level code for
a specific target platform starting from the model. Although it represents a
standard methodology for several domains, such as automotive electronics, its
employment in the WSN one has not been widely investigated yet. Then, very
few tools have been actually proposed and tested.

Application-driven model: (MiLAN [74]). Middlewares belonging to this
model aim to provide services to applications according to their needs and
requirements, especially for QoS and reliability of the collected data. They
allow programmers to directly access the communication protocol stack for
adjusting network functions to support and satisfy requested requirements.

Virtual machine: (Maté [75], DAViM [76], DVM [77]). Virtual machines
(VM) have been generally adopted for software emulating a guest system run-
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ning on top of a real host. In the WSN context, VMs are used for allowing
a broad range of applications to run on different platforms without worrying
about the actual architecture characteristics. User applications are coded with
a simple set of instructions that are interpreted by the VM execution envi-
ronment. Unfortunately, this approach suffers from the performance overhead
that the instructions interpretation introduces.

In Table 3.2, the previously described frameworks are summarized.

Table 3.2. Frameworks classification.

Frameworks

Database model TinyDB [56], Cougar [57], SINA [58]

Agent-based model MAPS [59], AFME [60]

Agilla [61], SensorWare [62], actorNet [63]

Domain-specific approach SPINE [51, 64], Titan [65]

RehabSPOT [66], BMF [67], CodeBlue [68]

Macroprogramming model ATaG [69], Logical Neighborhoods [70]

Kairos [71], Regiment [72]

Model-based approach Hilac [73]

Application-driven model MiLAN [74]

Virtual machine Maté [75], DAViM [76], DVM [77]

On the basis of what we have reported, it emerges that none of the pro-
posed application development methodologies can be considered the predomi-
nant one. Depending on specific tasks and/or contexts, a certain solution may
result a better choice than others.

Most of them has peculiar features specifically conceived for particular ap-
plication contexts but lacks in characteristics useful for more general-purpose
uses. For instance, the frameworks based on a data centric approach provide
high-level services just for data aggregation and querying but not for defin-
ing a more general-purpose computation. Thus, the data-centric model is not
suitable for several domains requiring more sophisticated collaborative sensor
data processing over the network.

For some specific context, e.g. the BSN-based wearable systems, most of
these frameworks do not allow an explicit data flow processing over specific
wearable nodes. This could be an important missing characteristic for many
applications which are becoming crucial for the next future, such as context
recognition, health monitoring, and medical assistance. In particular, gesture
and activity recognition is a key operation for enabling a deep integration
between persons and the spreading ubiquitous computing systems. In the
BSN context, the physical locations of sensor nodes are very important and a
well-defined framework should allow to compose a distributed data processing
application by directly specifying a certain node, either because it is equipped
with a particular sensor, or because it is close to the physical phenomenon
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under observation, or simply because it just embodies specific computing ca-
pabilities. For instance, in an activity recognition application, it is important
to know whether a specific sensing data flow comes from the sensor placed on
the chest or on the leg, so to apply the proper processing task on it.

Further requirements for a software system providing high-level program-
ming are fast application reconfiguration and platform independence. Repro-
gramming a network is a desirable features for supporting rapid and efficient
changes of sensor nodes behavior. Systems like Deluge [78] and TinyCubus [79]
provide code updates by directly loading them over the radio, but they require
the use of a homogeneous platform (sw and hw) and also code transmission is
a time and energy consuming operation. Virtual machines represent a typical
approach for achieving a platform independent behavior. They allow to de-
velop an application by using appropriate instructions that are interpreted by
the VM running on sensor nodes. Unfortunately, this approach requires high
computational and memory resources and can cause performance penalties
because of the overhead in the code interpretation operation. Furthermore,
writing an application with the provided instructions (e.g. Maté has more
than a hundred instructions) is not fast and intuitive, especially if the appli-
cation needs continuous changes.

3.2 SPINE2

In the light of what discussed in Section 3.1, the proposed SPINE2 framework
has been specifically conceived as the ideal solution for enabling intensive
distributed signal processing applications on such embedded systems. By pro-
viding a high-level visual programming language and a well-designed node-side
architecture, SPINE2 is able to support heterogeneous sensor networks in a
transparent way for the developer (it abstracts away any detail related to the
underlying specific hardware) with negligible performance penalties. More-
over, it allows for an easy integration of new sensor drivers and processing
functionalities as well as a fast porting procedure for supporting new sensor
platforms. To the best of our knowledge, none of the research works proposed
so far encloses all these characteristics in a unique programming framework
for wearable sensor networks.

Intended to be used for a rapid development of effective yet efficient
signal-processing applications, SPINE2 aims at providing developers an intu-
itive and straightforward design model based on simple graphical constructs.
Specifically, a task-oriented approach has been chosen as high-level modeling
paradigm for defining distributed applications on heterogeneous embedded
environments. Also, since a WSN system usually demands very strict require-
ments in term of efficiency and stability, the SPINE2 middleware running
on the nodes has been carefully designed and implemented so to guarantee
high-performance execution of the task-based applications on the resource-
constrained sensor embedded systems. Along with the efficiency aspect of the
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node-side part of the framework, it is also very important to consider the
reusability of the software components. To address such point, the underlying
architecture has been also conceived to allow for an easy and fast porting
procedure to support new sensor platforms.

In summary, SPINE2 has been designed to fulfill the following important
requirements for a BSN programming framework:

- High-level programming : the use of programming methods based on high-
level models can greatly improve productivity. By abstracting away any
details related to the platform specific hardware or to the low-level com-
munication protocol, a high-level programming layer is key for an effective
and rapid application development.

- Heterogeneity : SPINE2 is able to deploy the same applications over differ-
ent sensor platforms in a transparent way for the developer. This would
allow the use of a unique development tool capable of managing heteroge-
neous sensor networks built up with different sensor node types.

- Portability : the node-side architecture has been designed to provide an
easy and rapid portability toward new sensor platforms or any other C-
like embedded system.

- Extensibility : the well-designed modular architecture allows for a very easy
integration of new physical sensor drivers as well as new processing func-
tionalities or communication capabilities, by minimizing time and efforts.

- Efficiency : the middleware running on the underlaying sensor platforms is
lightweight and optimized so that the use of the framework in real world
scenarios does not suffer from poor runtime performance.

3.2.1 Design and implementation

The SPINE2 framework has been designed as a powerful tool for a simple
yet effective development of distributed signal processing application atop
WSNs. In particular, its effectiveness derives from the adoption of a task-
oriented paradigm providing simple constructs through which developers can
specify the global behavior of the applications and easily manage application
reconfiguration and reusability.

SPINE2 is composed of two main components: one runs on the coordinator
of the WSN (tipically a PC or a smartphone) whereas the other is executed
on the sensor nodes. The coordinator-side component, developed in Java, pro-
vides users with a very intuitive interface to the WSN. Specifically, it offers
well-defined API through which the user-defined applications can easily man-
age the sensor network and quickly define, deploy, and run the task-oriented
application. Moreover, it allows to gather the pre-processed data coming from
the nodes and passes it to the user applications for more complex data pro-
cessing and visualization. The node-side middleware, which runs on top of
the sensor node operating system, has two main functions: (i) handling the
messages coming from the coordinator and from other sensor nodes; (ii) in-
terpretation and execution of the task specifications.
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In the following, the main aspects characterizing the framework are de-
scribed.

Platform independence and quick portability : SPINE2 has been designed
for guaranteeing a rapid and simple portability process for supporting dif-
ferent sensor platforms. In particular, the node-side software architecture is
conceived for decoupling the task runtime logic from services and features
provided by the operating system of a specific platform. To this purpose, the
software layering approach has been adopted (see Figure 3.1).

Fig. 3.1. The Software Layering approach for developing the framework.

According to such an approach, the node-side framework is designed so
that a set of “core modules”, developed in C and representing the main run-
time system, constitutes the part of the software compatible with every C-
like sensor platform. Along with these modules, other components constitute
the platform-dependent part of the architecture and represent the adaptation
interfaces between the core runtime system and the services and resources
(sensors, timers, communication) provided by the operating system of a par-
ticular target sensor platform (such as TinyOS4, and Z-Stack5). When doing
a porting of the framework for a new sensor platform, the latter components
are the only portion of software that a developer needs to implement.

Extensibility : the task-oriented design methodology allows to easily add
new functionalities. This can be done by simply defining new tasks represent-
ing further computing capabilities without any need of changing the under-
lying runtime logic or the other task definitions. Moreover, supporting new
hardware resources, such as sensors or actuators, can be also done straight-
forwardly.

Modularity : the framework architecture, composed of several and inde-
pendent functional modules, allows for a more rapid development time and
a more effective software maintenance and upgrading. For example, it may

4 http://www.tinyos.net
5 http://www.ti.com/tool/z-stack
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be possible that future requirements need a different way for managing the
memory or the task execution. Thanks to its modularity, the changes made
by the developers affect only the correspondent modules without the risk of
causing damages to the rest of the architecture.

3.2.2 The task-oriented approach

The SPINE2 task-oriented approach provides a set of programming abstrac-
tions for developing distributed signal processing applications by defining
data-flow-oriented task chains. Such an approach is likely to be more intu-
itive and less error prone than explicitly writing code. In fact, an application
can be simply specified as a set of interconnected tasks, which are chosen from
the available task library, on the basis of the application requirements. Thus,
the basic components constituting the high-level application model are tasks
and task-connections. A task represents a well defined activity which can con-
sist, for example, in a processing operation rather than a data transmission
or a sensor reading. They are defined as atomic units of “work” that can not
be subdivided. The atomicity of a task is only with respect to other tasks,
as the event-reactive nature of the sensor nodes implies the need for a fast
response to asynchronous events (a radio message reception or a timer expira-
tion). A task-connection represents a relationship between tasks and generally
has some kind of dependency, such as temporal and data dependency.

A typical sensor data processing application supported by the framework
(see Figure 3.2) consists in (1) accomplishing the sensor readings, (2) passing
the sensed data to processing functions which carry out some signal processing
operations and (3) sending results to other nodes of the network (possibly for
further elaboration).

Fig. 3.2. Example of a task-oriented application with tasks instantiated on different
nodes.

As the framework supports distributed data processing, developers can
decide on which particular node each single task has to be performed, so that
the execution of the whole application can be maintained well balanced. In
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fact, depending on the different features of the nodes constituting the net-
work, developers can allocate, for instance, the tasks requiring more resources
to nodes providing more computational capabilities. The task-oriented rep-
resentation, which captures both data and control flow, allows for a better
application definition that will lead to effective scheduling activities and to a
more efficient system implementation. Designing an application as a compo-
sition of basic blocks with fixed interfaces enables a rapid reconfiguration by
the developer and then a more simple maintenance.

The defined library of tasks constituting the high-level application model
are categorized in: functional tasks (Figure 3.3(a)) and data-routing tasks
(Figure 3.3(b)). The former performs data processing/manipulation or ex-
ecution control, whereas the latter provides data forwarding or replication.

(a) (b)

Fig. 3.3. Functional Task Description (a) and Data-Routing Task Description (b).

A task is defined through the following attributes: INPUT, OUTPUT,
and PARAMETERS. In particular, the pair (par=val) represents a parameter
setting of a task and, on the basis of the specific task (i.e. the TaskType), there
may be zero or more parameters. The input and output attributes can have
one of the following values:

- “in” or “out”: represents generic input and output. The user does not
have to care about how data are formatted, and the actual data structure
depends on the middleware that implements the language specifications.
The symbol “+” in the data-routing description indicates the presence of
multiple input/output connections.

- “<>”: indicates an empty input/output, i.e. it exists but does not con-
tain any useful information. It can be intended like a simple “execution
complete” notification that a task can issue to the next task.

- “no input” or “no output”: declares the absence of input/output. No tasks
without both input and output are currently defined in the task library.

In the following, the tasks defined in the SPINE2 library are described.

- TimingTask : allows to define timers for timing other tasks. It does not
have to elaborate any input data so it has no input link. Its function
is to signal a notification in output when its inner timer expires. Task
settings include the timer parameters: the periodicity (i.e. periodic timing
or one-shot expiration), the period of expiration and the corresponding
time scale/unit.
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- SensingTask : performs a reading from a specific on-board sensor. Like
the TimingTask, its configuration includes settings for the inner timer
necessary for timing the sensing operation. It has no input whereas the
provided output depends on the specific type of physical sensor it has
associated. Since real sensors can provide more than a single sensed value,
the output of a sensor can be seen as a set of “channels”, each of which
representing a sensed value (for instance, a triaxial accelerometer provides
three different samples, i.e. acc-x, acc-y, and acc-z).

- ProcessingTask : performs data processing functions and algorithms, and
constitutes the actual computing capabilities of the framework; typical
functions are the so called “feature extractors” which are mathematical
function applied to data series, such as Mean, Variance, etc.

- TransmissionTask : allows an explicit transmission of data coming from
other tasks to a specific addressee. It is commonly used for sending pre-
processed data or other information to the coordinator of the WSN. It is
worth noting that, in case of connected tasks located on different nodes,
the SPINE2 middleware will be in charge of the data transmission, without
the need to explicitly make use of a TransmissionTask.

- StoringTask and LoadingTask : allow to store into or retrieve data from
the flash memory placed on-board (if available) of the sensor node.

- SplitTask : is in charge of duplicating the data coming from its input to n
outputs, so to make the same data available to a set of other tasks.

- MergeTask : merges data coming from its n inputs and provides the prop-
erly formatted collected data to a single output.

- HistoricalMergeTask : performs m merging operations over the time and
maintain the collected data before making it available to the output.

3.2.3 The node-side software architecture

The node-side part of the SPINE2 framework represents the runtime system
able to “interpret” and “execute” the high-level task-oriented application. Its
architecture (shown in Figure 3.4) is well-structured and, by following a mod-
ularity approach, it comes with a set of independent but interacting modules,
each of which has been intended to accomplish well defined operations.

The components in lighter color correspond to the core framework of
SPINE2 (see also Figure 3.1). They are implemented in the C language, so
that they can be easily compiled for practically every “C-like” compatible
sensor platform, without the need for changing the code. Anyway, the very
high portability of the framework does not only depend on the use of such a
common language, but mainly on a strong software decoupling between the
runtime execution logic (it encloses the unchangeable middleware layer logic,
i.e. task and memory management, application-level message handling, ab-
stract access to on-board sensors) and the components needed for accessing
the specific services provided by the sensor platform on which the middleware
is running. The grey blocks represent the architeture-dependent part of the
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Fig. 3.4. Software architecture of the node-side part of the framework.

framework, i.e. software components needed to manage the node resources
and thus tailored for a specific platform. They are adaptation components (or
drivers) bridging the core with specific sensor platforms and guaranteeing the
access to resources through well-defined interfaces.

The central architecture component is the SPINE2Manager. Its main func-
tionalities are: (i) initializing the whole system at startup, (ii) regulating the
access to the modules managing the node resources (radio, sensors, actuators,
and flash memory) and (iii) handling the bidirectional high-level communica-
tion with both the user application on the coordinator and the other nodes,
by means of the SPINE2 application-level protocol (see Section 3.2.5). On the
basis of the incoming messages, the SPINE2Manager dispatches proper com-
mands to the other components so to accomplish specific requested operations
(e.g. a discovery phase or a task creation). It also takes care of the formatting
of the SPINE2 outgoing messages, before delegating their encapsulation into
low-level packets to the Comm-Module.

In the following, a description of the other modules depicted in Figure 3.4
is provided.

- Comm-Module: it manages the SPINE2 communication protocol by pro-
viding services for sending/receiving messages to/from the other sen-
sor nodes and the WSN coordinator. In particular, it is in charge of
encapsulating the SPINE2 application-level messages coming from the
SPINE2Manager into well-formatted packets, as well as handling the re-
verse operation. It also provides (de)fragmentation operations, depending
on the message length and on the maximum payload supported by the
actual radio communication protocol adopted by a specific platform (see
Section 3.2.5).
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- Tasks-Module: it represents the “execution engine” of the SPINE2 mid-
dleware as it deals with the actual execution of the task-based user appli-
cations. In particular, it manages the set of SPINE2 tasks instantiated on
the node, schedules them on the basis of their interaction relationship and
properly supervises their execution.

- Memory-Module: it is responsible for managing the memory system both
for supporting the SPINE2 internal mechanisms and for storing all the
needed structures related to the user-defined application. Moreover, it is
in charge of allocating the buffers used for data exchange among tasks
or for supporting inner operations inside tasks (the user application may
require a variable number of buffers each of which having an arbitrary size).
Due to robustness motivations, most of the current operating systems for
sensors do not allow dynamic memory allocation, so that a developer has
to implement ad-hoc solutions. Such component has been conceived for
supporting this capability. Thus, its main function is to provide other
components a simple interface for allocating memory blocks on-demand at
runtime.

- Timers-Module: it provides a common interface for dynamic allocation of
timers, which are managed through a service based on the publish/sub-
scribe paradigm. When an internal SPINE2 component (the subscriber)
needs a timer, it makes a request to this module. If a timer resource is
available, the subscriber is given its identification code through which it
can be properly accessed for the subscriber’s purposes. Similarly to sen-
sors and actuators, timers depend on the hardware architecture: for each
different sensor platform, proper timer drivers have to be provided in a
well-defined interface so to be bound to the timer management module.

- Sensing-Module: designed for a simple management of the heterogeneous
physical sensors placed on the sensor nodes by providing a standard inter-
face for accessing them in a homogeneous and transparent way. Thus, each
physical sensor driver has to be properly designed for being compliant to
the Sensing module interface.

- Actuating-Module: similarly to the Sensing-Module, it guarantees an ho-
mogeneous use of the actuators installed on a sensor node, so that not only
it is possible to sense from the environment but also to interact with it.

- Flash-Module: most of the microcontrollers that equip the common sensor
platforms comes with a flash memory to permanently store information.
This module provide the software logic required to access such a memory
by means of a simple interface for data storing and loading.

At the moment, the node-side part of the framework has been implemented
and tested on sensor platforms running TinyOS and on a custom mote based
on Z-Stack, which is the ZigBee-compliant implementation provided by Texas
Instruments.
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3.2.4 The coordinator-side architecture

The SPINE2 Coordinator represents the access point to the WSN for a
user/developer by providing a well-defined software interface. In particular,
in order to manage a SPINE2-based network, users can develop their own ap-
plications on top of the SPINE2 Coordinator by easily exploiting the offered
simple and intuitive API. Such an API allows for (i) controlling the remote
nodes, (ii) defining, deploying, and controlling the task-oriented application,
and (iii) gathering pre-processed data coming from the sensor nodes. When
the application is “registered” with the SPINE2 Coordinator, it is enabled
to get notified by the high-level events generated by the WSN: discovery of
new nodes, errors coming from the network, new sensor data transmission,
etc. Such a user-defined application is usually in charge of performing further
computation on the pre-processed sensor data coming from the WSN.

To enhance portability, Java has been adopted for implementing the
coordinator-side architecture of SPINE2. Moreover, it is worth noting that,
since none of the existing computer or mobile devices have a native wireless
interface for communicating with the 802.15.4-based radio equipping the com-
mon sensor platforms, a portion of the implementation is strictly dependent
on the specific base-station module (providing proper radio communication
capabilities) connected to the coordinator.

A simplified Package Diagram of the SPINE2 Coordinator is depicted in
Figure 3.5.

Fig. 3.5. Software architecture of the SPINE2 Coordinator.

The Communication Package includes all classes needed for interacting
with the coordinators and the sensor nodes of the WSN. In particular the
CommManager is the class responsible for managing the lower level of the
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two-layer stack communication protocol supported by the framework (see Sec-
tion 3.2.5). It provides the service for encapsulating application level messages
into the SPINE2 Packet defined in Section 3.2.5 (the Packet class represents
this data transmission unit). To this purpose, it is in charge of performing the
necessary fragmentation if the message length exceeds the maximum payload
supported by the low-level protocol of a specific sensor platform. The Com-
mManager does not have to care about the actual way to communicate with
a specific platform as it can rely on a set of packages (one for each supported
platform), each of which encloses specific platform-dependent class definitions.
These classes are uniformly accessed through a unique and standard interface,
i.e. the CommAdapter.

The WSN Package is responsible for managing information about the net-
work. In particular, the WSNManager contains an internal representation of
the nodes constituting the network whereas node characteristics, such as plat-
form, physical address, and the list of supported on-board sensors and tasks
are described in the WSNNode class. The WSNManager is also responsible for
managing the application-level communication protocol, i.e. the upper layer
of the two-layer stack communication protocol supported by the framework.
Hence, it handles the SPINE2 messages (see Section 3.2.5). The WSNMan-
ager allows deploying the user defined task-based application over the network.
By interacting with the TaskGraph, it gets information about tasks and con-
nections to be instantiated on each node. Then, after having created proper
messages (i.e. the CreateTask Message and CreateConnections Message, see
Section 3.2.5), it sends them by means of the transmission service provided
by the CommManager.

The Task Package includes class definitions used to maintain a consistent
representation of the user defined task-oriented application. In particular, the
TaskGraph actually encapsulates the task-graph description of the final ap-
plication. The task list package represents the library of tasks currently sup-
ported by the framework, all based on a common representation, the Task
component.

Finally, the Message Package encloses the list of all the defined application-
level messages as well as the MessageHandler, which is in charge of handling
the messages coming from the sensor nodes.

To better support the developers, the SPINE2 Console (see Figure 3.6) is
also provided. It is a ready-to-use and user-friendly tool through which it is
possible to exploit the SPINE2 functionalities without an explicit use of its
Java API: the task-based application can be quickly modeled and deployed
through an intuitive graphical interface and information about the nodes can
be easily displayed. In particular, the GUI allows developers to easily manage
the following operations: (1) discovery of the nodes constituting the WSN,
along with their capabilities in terms of supported tasks and physical sensors;
(2) management of the task-graph application, i.e. definition (including task
parameter setting), deployment, file saving/loading; (3) log of all events com-
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ing from the WSN including the data pre-processing results of the application
and error messages.

Fig. 3.6. SPINE2 Console.

3.2.5 SPINE2 communication protocol

The interaction between the SPINE2 Coordinator and the sensor nodes relies
on a two-layer communication stack built atop the actual platform-dependent
low-level communication protocol provided by the on-board radio of the sensor
devices (see Figure 3.7(a)).

The lowest platform-independent layer provides a simple point-to-point
communication. It notably handles the fragmentation of the high-level mes-
sages into multiple packets, so that the maximum payload length supported by
the radio protocol is not a limitation for the amount of data to be transmitted.
The packet format handled on this layer is shown in Figure 3.7(b).

The highest communication layer manages a set of pre-defined application-
level messages, which encapsulate the commands and information for defining
and interacting with the WSN and, more specifically, with the task-oriented
application built and deployed by the user. In particular, the SPINE2Manager
depicted in Figure 3.4 is the component handling these messages on the node-
side part of the framework.

The defined application-level messages are summarized in Table 3.3 along
with their source-destination direction and, if any, further information and
parameter carried in the message payload.
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(a) (b)

Fig. 3.7. The framework protocol stack layers (a) and Packet definition (b).

Table 3.3. List of SPINE2 messages.

Message Type Source Destination Payload

Discovery Nodes Coordinator Node -

Create Task Coordinator Node task configuration

Create Connections Coordinator Node connection configuration

Init Application Coordinator Node -

Start Application Coordinator Node -

Reset Application Coordinator Node -

Node Advertisement Node Coordinator node info,sensors list,tasks list

Node Application Ready Node Coordinator -

Sensor Data Node Coordinator formatted data

Error Node Coordinator error code, error info

Status Info Node Coordinator status code, status info

Sensor to Sensor Data Node Node formatted data

Most of the messages are self-explanatory, like the ones adopted for con-
trolling the execution of the deployed task-based application, i.e. the Init Ap-
plication, Start Application and Reset Application Message, which do carry
any information as payload.

The Discovery Nodes Message is usually the first message for initiating the
communication scheme between the coordinator and the sensor nodes and is
issued for requesting general information about the nodes (e.g. their sensor
platform type) along with the list of physical onboard sensors and the list of
task types that they are actually capable to instantiate. Such an information
is sent by each node of the WSN through the Node Advertisement Message.

The Discovery/Advertisement phase takes place before the application de-
ployment, so that each task can be associated to a node belonging to the
current WSN. After this phase and after the user has finished modeling its
application, the deployment phase can start and consists in mapping the task-
graph over the network. The Create Task Message is sent by the coordinator
for instantiating a task, along with its parameters, to a specific node. Simi-
larly, the Create Connections Message is sent for creating a connection, or a
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set of connections, among tasks. Thus, such a message also encloses informa-
tion related to the destination task of a specific connection; it is either local
(i.e. instantiated on the same node) or remote. Furthermore, it includes infor-
mation for configuring the buffers to be allocated on the node corresponding
to the instantiated connection.

Once the application has been deployed, the coordinator broadcasts the
Init Application Message for initializing all task instances over the network.
Once the initialization has been correctly accomplished, each node replies with
a Node Application Ready Message, indicating that the application is ready
to start. A Start Application Message can be then broadcast so causing the
application to run.

The Sensor Data Message is used by the node when properly formatted
sensor data (raw or pre-processed) have to be sent to the coordinator. The
Sensor to Sensor Data Message is, instead, necessary when interconnected
tasks are distributed on different nodes: it encapsulates data produced by a
task that needs to be sent to a remote destination task.

Finally, the Error and Status Info messages can be issued by a node in
case of unexpected errors during initialization or application runtime (e.g.
when it is not possible to allocate further blocks in the dynamic memory) or
for periodic node status advertisement (e.g. remaining node battery level).

3.2.6 Developing applications

After having described the main elements constituting the SPINE2 framework
(i.e. the node-side and coordinator-side components, and the communication
protocol), in Figure 3.8, a high-level view of the whole SPINE2 environment
is shown, along with its relationship with the Java-based application defined
by the user.

Fig. 3.8. Interaction between user applications and the SPINE2 components.
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As it can be seen, the user applications can be interfaced to the SPINE2
framework in two different ways. In a first example (Application 1 ), it is sup-
posed that the developer makes use of the SPINE2 Console for managing
both the WSN and the task-based application. In this case, the application
just needs to be registered to the Console and does not have to be implemented
any extra code rather than the one related to possible further processing/-
management/display functionalities on the data coming from the nodes (new
available sensor data is directly notified by the Console). On the contrary, in
the second example (Application 2 ), the application directly interacts with
the SPINE2 API and then needs to take control of all the aspects related to
both node management and task-based application development by means of
Java code. As a consequence, it requires a little more efforts and time from
the developer.

In Figure 3.9, the typical phases involved in the development and deploy-
ment of a task-based application on the sensor nodes are shown. In particular,
the messages exchanged between the SPINE2 Coordinator and a generic node,
as well as the interactions among some of the inner modules composing the
node-side architecture are depicted. For the sake of clarity, in the diagram,
the developer directly interacts with the SPINE2 Coordinator but, actually,
either the SPINE2 Console or a user-defined application stands in between.
Anyway, in both cases, the commands issued to the SPINE2 Coordinator
represent calls to the SPINE2 API.

The communication scheme between the Coordinator and the network is
usually initiated with a node discovery phase, in which the Coordinator broad-
casts a discovery request (by means of the Discovery message) and waits for
the advertisements from the active nodes within range. Such a request, which
can also be sent on a periodical basis to keep the network information updated,
is handled by the SPINE2Manager, which replies with a Node Advertisement
message. This message contains all the necessary information about the node,
such as, among the others, its sensing capabilities and the type of tasks sup-
ported. Once the developer (or his Java-based application) has a complete
knowledge of the network, he/she can start building the distributed task-
based application by means of a series of API calls for creating and setting
the desired tasks and their interconnections. The application definition phase
only involves the SPINE2 Coordinator, and the application model is locally
managed and stored on the coordinator device until the developer issues a
Deploy command. As a consequence, the SPINE2 Coordinator first performs
a final check to be sure that the application model has been correctly defined,
i.e. all task are correctly connected, configured and assigned to a specific sensor
node. If the correctness check fails, a local warning is triggered and the deploy-
ment phase cannot go further. Otherwise, the Coordinator generates a series
of Create Task and Create Connection messages, which are sent to the proper
nodes. On each node, the SPINE2Manager takes care of these requests and,
consequently, interacts with the TaskGraphManager for instantiating tasks
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Fig. 3.9. Sequence diagram for the SPINE2 application development process.

and connections, which are stored in a properly defined data structure. Once
the deployment phase is over, the distributed task-based application needs to
be initialized by means of a Init App message, which is broadcast over the
network. The TaskGraphManager makes sure that all the task instances on
each specific node are initialized. The initialization phase is important because
some tasks may have the need to use specific data structures, which have to
be correctly instantiated. Once all tasks have been correctly initialized, the
SPINE2Manager can send a Node App Ready message to the Coordinator,
notifying that the node is ready for the execution of the task-based appli-
cation. Anyway, the developer is allowed to run the remote application only
when all nodes in the network have successfully sent such a message. Upon
the reception of a Start App message on each node, the application is eventu-
ally started, and the SPINE2Manager simply delegates the TaskScheduler for
the actual execution of the task-based application. On the basis of the struc-
ture of the application instantiated on the node, the TaskScheduler selects
the first task to be executed and waits for its termination. When its execution
is completed, the scheduler chooses the next one and the process goes on as
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long as there is at least a task to be executed. It is worth reminding that,
although the sequence diagram of Figure 3.9 depicts the mechanisms between
the Coordinator and a single generic node, SPINE2 is able to manage the exe-
cution of interconnected tasks residing on different sensor nodes. This is done
by transmitting the data produced by the source task to a remote node, on
which the TaskScheduler is in charge of passing the received data to the speci-
fied destination task and, consequently, triggering its execution. In particular,
the SPINE2Manager on the source node is in charge of arranging data in a
well-defined format and encapsulating it into a Sensor to Sensor Data mes-
sage (not shown in the diagram). Similarly, when data produced by a task
needs to be transmitted to the Coordinator (only the TransmissionTask is
currently used for that purpose), the SPINE2Manager encapsulates it into a
Sensor Data message.

To demonstrate how effortlessly a developer can make use of the SPINE2
API, in Listing 3.1, a Java application example is shown. In particular, its
purpose is to get information from a sensor network and define a simple task-
based application, which is deployed on a single node. It is worth noting
that, for the sake of clarity and simplicity, the example is provided as simple
as possible, without considering complex logics or the handling of possible
exceptions.

The central class of the SPINE2 Java library is the SPINE2Manager, which
represents the main entity interfacing the user-defined application with the
WSN. In order to get notified of the SPINE2 events, the application needs
to (i) implement the SPINE2Listener interface and (ii) register itself as one
of the listener of the SPINE2Manager, whose instance is first generated by a
“factory-class” on the basis of the specific properties set in the file passed as
parameter (see lines 6-7). Afterwards, it is possible to issue a node discovery
phase (line 8). As a consequence, as soon as a node replies, the application is
notified, i.e. the nodeDiscovered method is called. Thus, the developer is able
to get all the information about that node, such as its platforms, its address,
the list of sensors it is equipped with, and the list of available tasks it is pos-
sible to instantiate on it (see lines 10-17). Moreover, after a certain timeout
period, the SPINE2Manager also notifies the application of the end of the
discovery phase by calling the discoveryCompleted method (lines 18-24). In
this specific example, the nodes are just stored in a local data structure for
future use and the createApp method is called. The logic inside this method
consists in defining a simple task-based application constituted of three tasks
(Sensing, Processing and Transmission) to be instantiated on the first of the
nodes that have replied during the discovery phase. Each task is first instan-
tiated and configured with proper settings and then added to a TaskGraph
instance, which is in charge of storing the whole application structure. Specif-
ically, the SensingTask is bound to the accelerometer sensor, which is read
on all the axes (see line 34), periodically every 50ms. Moreover, the task is
set to notify its following task (the processing one) after having collected 10
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samples (see the “outputBuffering” parameter in line 35). The Processing-
Task performs the mean function every 10 samples (the shift parameter) on a
window readings of 20 samples and forward the results to the next task after
having collected 5 mean values (line 43). Finally, the TransmissionTask is set
to transmit the received 5 mean values to the base station device (i.e. the
SPINE2 Coordinator). After having instantiated, configured and added the
tasks to the taskgraph, the connections are eventually created by specifying
both the source and the destination tasks (lines 50-51).

The code displayed in lines 54-56, consists in defining methods performing
calls to other important SPINE2 API functions, i.e. the ones for deploying,
starting, and resetting the previously built task-based application. Specifi-
cally, the second parameter of the deployApplication specifies if the appli-
cation has to be automatically started as soon as the deployment phase is
finished (i.e. every nodes replies with a Node App Ready message to the Co-
ordinator) or if it is required an explicit call to startApplication. The lat-
ter one is the case of the example, since the parameter is set to “MANU-
ALLY START APPLICATION”.

Finally, the method messageReceived(Message msg) (lines 58-62), is auto-
matically called by the SPINE2Manager when a new message from a node
is received by the Coordinator. Since there exist different types of SPINE2
messages (see Section 3.2.5), the developer can distinguish them by simply
check which class the specific message instance belongs to. Moreover, further
SPINE2 API functions can be used to get and manage all the information
encapsulated into a certain message, such as the sensor data coming with a
“SensorDataMessage”.

3.2.7 Performance evaluation

In this section an evaluation of the framework is provided for motivating its
use as an effective and easy supporting tool for rapid development of WSN
applications. SPINE2 has been developed for providing a lightweight applica-
tion execution engine. Thanks to an accurate integration of the task-oriented
application modeling and the software layering architecture, it is ensured that
no significant overhead can lead to performance penalties.

In the following, specific measures related to processing and memory per-
formances of the node-side part of the framework are carried out to demon-
strate how SPINE2 is suitable for embedded resource-constrained environ-
ments such as the sensor nodes. Specifically, the results are obtained both for
TelosB motes running TinyOS and for a custom platform based on Z-Stack. A
summary of the main characteristics of these two sensor platforms are shown
in Table 3.4.

3.2.7.1 Computational performance

As SPINE2 has been mainly designed for the development of distributed sig-
nal processing applications on embedded systems like the WSNs, the core of
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Listing 3.1. Example of use of the SPINE2 API

2 public class SPINE2Test implements SPINE2Listener{
3 private SPINE2Manager manager; private TaskGraph tg; WSNNode motes[]= null;

5 public SPINE2Test(){
6 manager = SPINE2Factory.createSPINE2Manager("file.properties");
7 manager.addListener(this);
8 manager.discoveryWSN();
9 }

10 public void nodeDiscovered(WSNNode node){
11 //get some info from the node and...
12 String address = node.getAddress();
13 String platform = node.getPlatform();
14 Vector sensorsList = node.getSensors();
15 vector tasksList = node.getTasks();
16 // ... somehow display its characteristics
17 }
18 public void discoveryCompleted(LinkedList nodes){
19 motes= new WSNNode[nodes.size()];
20 Iterator it = nodes.iterator(); int i=0;
21 while(it.hasNext())
22 motes[i++]= (WSNNode)it.next();
23 createApp();
24 }
25 private void createApp(){
26 tg= new TaskGraph();
27 // SENSING TASK
28 SensingTask st= new SensingTask(motes[0]);
29 st.setLogicalName("Sensing");
30 st.setPeriodicity(SensingTask.TIMER_PERIODIC);
31 st.setPeriod(50);
32 st.setTimeScale(SensingTask.TS_MILLISEC);
33 st.setSensorType(Sensor.ACCELEROMETER);
34 st.setDataSelection(SensingTask.DATA_ALL);
35 st.setOutputBuffering(10);
36 tg.addTask(st);
37 // PROCESSING TASK
38 ProcessingTask ptMean= new ProcessingTask(motes[0]);
39 ptMean.setLogicalName("P_Mean");
40 ptMean.setFunctionType(FunctionConstants.F_MEAN);
41 ptMean.setWindowSize(20);
42 ptMean.setShiftSize(10);
43 ptMean.setOutputBuffering(5);
44 tg.addTask(ptMean);
45 // TRANSMISSION TASK
46 TransmissionTask transmT= new TransmissionTask(motes[0]);
47 transmT.setLogicalName("Transmission");
48 transmT.setDestinationAddr(CommConstants.SPINE_BASE_STATION_ADDR);
49 tg.addTask(transmT);
50 tg.addConnection(st, ptMean);
51 tg.addConnection(ptMean, transmT);
52 }

54 void deployApplication(){manager.deployApplication(tg,WSN.MANUALLY_START_APPLICATION);}
55 void startApplication(){ manager.startApplication(); }
56 void resetApplication(){ manager.resetApplication(); }

58 public void messageReceived(Message msg){
59 if(msg instanceof SensorDataMessage){
60 //manage the sensor data encapsulated in the message
61 }
62 }
63 public static void main(String[] args){ new SPINETest(); }
64 }
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Table 3.4. Main characteristics of TelosB and Z-Stack-based sensor platforms.

CPU RAM (KB) Program Memory (KB) OS

TelosB TI MSP430 - 8MHz, 16bit 10 48 TinyOS

Z-Stack platform CC2430 - 32MHz, 8bit 8 128 Z-Stack

the functionalities provided to developers is constituted by a set of process-
ing functions. They are all made available through a unique abstraction, the
ProcessingTask, which can be configured on the basis of the actual needs.

Specific functions, called feature extractors, are commonly used for exe-
cuting in-node aggregated math computation (e.g., max, min, standard de-
viation) on sensed data before transmitting them to a more powerful device.
Since many of the WSN applications include real-time operations, such as
activity recognition or human body monitoring, they require an efficient ex-
ecution performance to be successfully employed for managing data coming
from sensors with high sampling rates. To satisfy this requirement, the task
execution model of SPINE2 has been designed and implemented to be light-
weight so guaranteeing high efficiency.

In Table 3.5, the average execution times of different types of Processing-
Task over different data windows are shown. Such tests have been executed on
a simple application deployed on a node that involves a SensingTask connected
to the ProcessingTask. In particular, processing involves the min, mean, stan-
dard deviation, vector magnitude and pitch and roll functions computed on a
triaxial accelerometer data stream.

Table 3.5. ProcessingTask execution time over a 3-channel sensor data [ms].

TelosB Z-Stack custom platform

window size: 10 50 100 150 200 10 50 100 150 200

Min 0.67 1.06 1.55 2.04 2.53 0.37 0.57 0.81 1.04 1.25

Mean 0.94 1.68 2.17 2.78 3.30 0.52 0.91 1.14 1.42 1.61

Standard Deviation 3.99 8.19 15.68 21.78 27.53 2.12 4.43 8.2 11.12 13.63

Vector Magnitude 2.09 4.64 8.18 12.33 15.81 1.16 2.51 4.28 6.29 7.83

Pitch and Roll 17.81 18.14 18.70 19.31 19.82 9.80 9.88 9.97 10.04 10.11

3.2.7.2 Memory usage

In this section an evaluation of the program and RAM memory usage is pro-
vided. In particular, Table 3.6 shows the memory amount related to both
the “core framework” and the platform-dependent code. The latter includes
the SPINE2 adaptation modules adapting the “core” to the specific sensor
architecture as well as the sensor drivers equipping both platforms.
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Table 3.6. ROM (Program) and RAM Memory usage [Bytes].

TelosB-TinyOS (ROM/RAM) Z-Stack (ROM/RAM)

SPINE2 Core

framework

Managing components 9875 / 3403

Library of tasks 4956 / 566

SPINE2 platform-specific code 2567 / 196 2891 / 107

Operating System 24572 / 1879 69681 / 3465

Total 41970 / 6044 87403 / 7541

It is worth noting that the RAM usage related to the core framework can
be variable as developers can easily configure SPINE2 at compile-time with
the proper amount of dynamic memory (they can specify both the buffer space
used for data exchange among tasks and the memory space used for storing
the task-based application). Specifically, the data shown in Table 3.6 includes
800-bytes space of memory used for storing the task-based application and
1600-bytes space for dynamic buffer allocation. Such an amount of memory is
usually sufficient for instantiating quite complex user applications including
tens of tasks on each single sensor node. In fact, the RAM needed for allocat-
ing an instance of task is relatively small, ranging from 13 bytes (SplitTask,
MergeTask, and HystoricalMergeTask) to 28 bytes (ProcessingTask); 21 bytes
are required for a SensingTask, whereas a single Connection needs 13 bytes.

For a more detailed view on how the program memory is used by SPINE2,
the chart in Figure 3.10(a) shows how the ROM usage is distributed among
the main functional components of the SPINE2 core. In particular, the set of
tasks and the library of mathematical functions represent almost half of the
entire required memory. The remaining memory usage is distributed among
the modules devoted to managing different architectural aspects (e.g. task-
execution, memory, timers, communication, sensors).

(a) (b)

Fig. 3.10. ROM usage by SPINE2 core components (a) and tasks (b).

Moreover, as shown in Figure 3.10(b), the ProcessingTask is the one that
requires the most amount of memory. This is because it has to implement the
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logic devoted to executing the various signal-processing functions, including
managing input stream and processing results. All other tasks require a lesser
amount of memory, since they implement a lesser complex logic. Table 3.6
provides an indirect information about the amount of code of the platform-
independent and -dependent parts of SPINE2 under the memory usage point
of view. However, to better understand the actual benefits offered by the
SPINE2 architecture, the percentage of code lines can be considered. In par-
ticular, for both sensor platforms, only roughly one-fourth of the total code
of SPINE2 is represented by the platform-specific one (specifically, 23% for
TinyOS and 26% for Z-Stack). It is worth noting that this comparison takes
into account the currently supported sensors (accelerometer, gyroscope, tem-
perature, voltage) and not all possible physical sensor drivers. Nevertheless,
since all “core functionalities” (e.g. signal processing functions and data-flow
management) are already defined, the effort developers need to put for a
complete framework porting is much lesser than if they have to deal with a
software architecture designed for a specific sensor platform.

3.2.8 Related work and comparison

Among the programming frameworks for WSN/BSN, Titan [65] and ATaG
[69], similarly to SPINE2, provide a task-oriented approach.

Titan [65] is a framework specifically designed to support context recogni-
tion on WSNs. A processing application is defined by a set of interconnected
tasks which are executed by the runtime as a whole over the network. Each
single task is actually mapped and executed by a specific sensor node, accord-
ing to its resources, and represents a specific operation: an algorithm for data
processing like a classifier, a mathematical function or an operation to access
the sensor node hardware. Titan requires the presence of a node which has to
guarantee enough resources in terms of performance execution and memory.
This is because such a node is in charge of managing the distributed applica-
tion over the sensor network. First of all, it discovers the actual capabilities
of sensors and the list of their available tasks and then, on the basis of the
entire task network defined by the user, it determines which subset of tasks
has to be assigned to each node. Titan has been implemented atop TinyOS
and has been tested only on the Tmote Sky sensor platform.

The Abstract Task Graph (ATaG) [69, 80] represents both a method and
a programming language for developing WSN applications through a macro-
programming approach. This means that developers have to specify a global
behavior for the application and the framework translates it into node-level
specifications. An ATaG application is defined as a set of “abstract tasks” rep-
resenting computational operations and a set of “abstract data items” to be
exchanged between abstract tasks. Every task has well-defined input/output
interfaces (named “channels”) which declare the data items the task con-
sumes in input and the ones it produces as output. The “abstract” adjec-
tive indicates that the number and the placement of the user-defined tasks
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are determined at compile-time depending on the actual target network. The
task runtime abstraction consists in a sort of data-driven control flow mech-
anism, since tasks do not directly interact with each other but, on the con-
trary, they interact with the only data items, which are stored in a data pool,
through their input/output channels. Thus, a task is scheduled for execution
only when appropriate input data is available. The framework provides a hy-
brid imperative-declarative programming style for defining user applications,
which allows to separate definitions of “when” tasks fire and “where” tasks
have to be deployed on a sensor network from “what” each single task has
to do when in execution. The former is provided by a high-level declarative
approach, while the latter is provided by imperative code implementing the
actual processing operation on input data. The declarative part of an ATaG
program consists in a graphical approach providing a set of abstract elements
(i.e. tasks, data items and channels) which have to be properly defined and
interconnected. Starting from the above tasks description, the ATaG compiler
produces a skeleton code which needs to be completed with low-level imper-
ative code implementing the actual processing job for each defined abstract
task. This code completion is up to the developer. ATaG currently supports
only the Java-based Sun SPOT6 sensors.

SPINE [51, 64] is an open-source, programming frameworks specifically tai-
lored for developing signal-processing applications on BSNs. While providing
an effective programming by means of high-level abstractions, it guarantees
high efficiency thanks to its architecture specifically designed for operating in
the BSN domain. The BSN architecture supported by SPINE is a star topol-
ogy constituted by one coordinator and multiple sensor nodes. The support
to a wide set of pre-defined physical sensors and signal-processing utilities
ensures rapid prototyping by minimizing design time and efforts. Its libraries
include most of the common signal processing algorithms used in BSNs; for
instance, SPINE supports distributed classification where feature extraction
functions are computed on the sensor nodes and the results are sent to the
BSN coordinator. SPINE currently supports the most diffused sensor plat-
forms based on TinyOS such as TelosB/Tmote Sky, MicaZ, and Shimmer I
and II, as well as the Z-Stack and the Java-based Sun SPOT. The sensor-
node side of the framework includes several utilities for signal processing such
as data storage buffers, mathematical function libraries and common feature
extractors used in signal processing. The coordinator component (running on
PCs or smartphones) consists of a Java-based interface in charge of enabling
the communication between the user PC and the sensor nodes through a spe-
cific SPINE protocol. It also acts as a gateway for remote data access and
provides proper APIs for managing and setting the sensor nodes and issuing
service requests. On top of the coordinator-side component, developers can
build their own applications for collecting sensor data and making further
analysis on it. The modular architecture of SPINE allows for an easy inte-

6 http://www.sunspotworld.com
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gration of new custom-designed sensor drivers as well as processing functions
so to guarantee a straightforward easy framework extensibility over time to
meet the particular needs of specific applications.

HILAC [73] is a model-based framework for modeling, simulation and au-
tomatic code generation for multiple sensor platforms. It is built on top of
the Math-Works tool chain and allows developers to model applications us-
ing Stateflow/Simulink7 having no detailed knowledge of the target hw/sw
platform. Once the application model has been defined, behavioral simulation
and functional verification can be performed, as well as HIL (Hardware-In-
the-Loop) simulation by interacting with real sensor nodes. The framework is
also able to generate ANSI C code from the Stateflow representation, whereas
proper Target Language Compiler (TLC) scripts extract sections of the code
and add platform-specific source code for different sensor platforms. HILAC
currently supports TinyOS-based platforms, MANTIS-based nodes, and the
ZigBee stack provided by Ember.

In Table 3.7, a comparison between SPINE2 and the aforementioned frame-
works with respect to several characteristics is provided.

Table 3.7. Comparison between SPINE2 and other programming frameworks.

SPINE2 SPINE Titan ATaG HILAC

WBSN-specific framework X X X

Specific support to in-node signal processing X X X

Task-oriented abstraction X X X

Multi-platform support X X X

Common platform-independent architecture X

Platform interoperability X X

Easy extensibility X X

Quick porting X

Application reconfiguration at runtime X X X X

SPINE2 shares most of the listed features with SPINE, although the pro-
posed framework inherits from its predecessor just its philosophy-of-use and
the purposes. In fact, the programming abstractions are completely differ-
ent whereas the node-side architecture has been deeply reengineered both for
managing the task-based approach and for embracing a platform-independent
modeling. The notion of “core framework” is not present in SPINE in which
the multi-platform support can be enabled only by means of specific portings
made available for different sensor platforms.

Titan has been conceived for developing BSN applications, by specifically
supporting signal processing functions on the nodes. It also exploits a similar

7 http://www.mathworks.com
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high-level task-oriented paradigm but, since no GUI is provided and the de-
velopers need to use a text file for configuring the network of tasks, complex
applications composed of many tasks are hard to define and manage. Dif-
ferently from SPINE2, its node-side runtime architecture is not designed for
platforms different from the TinyOS ones, and also a porting process seems
to be quite difficult since TinyOS-specific constructs are deeply coupled to its
features and services.

Also ATaG makes use of a task-oriented approach for WSN applications. In
particular, in the offered approach, an explicit way for defining data items used
in the applications is adopted. On the contrary, in SPINE2 this is not necessary
because the presence of data is implicit into the definition and implementation
of the tasks. Thus, the user does not have to worry about it as data is implicitly
managed by composing the workflow. Moreover, the ATaG system demands
the actual implementation of each defined task to the users, by means of a
low-level programming language. Specifically, ATaG is currently available only
for Sun SPOTs.

The HILAC programming framework has not been specifically conceived
for BSN applications development, but it is capable of supporting different
sensor platforms. Unfortunately, the major drawback is that its code-generator
approach produces source code that needs to be manually uploaded on each
physical node (unless an OTA programming functionality is available). For
this reason, reconfiguring an application at runtime is not possible.

In the following, some performance evaluations on SPINE2, SPINE and
Titan are also presented. In particular, measurements of the memory usage
of the frameworks, energy consumption and bandwidth under a given appli-
cation profile is provided. The benchmark consists in reading from a triaxial
accelerometer at a sampling rate of 20Hz and transmitting a sequence of 20
sensor samples to the coordinator without any in-node pre-processing (i.e. a
data message is generated every second). Results are shown in Table 3.8.

Table 3.8. Performance comparison between SPINE2, SPINE, and Titan.

Memory req. (used/av.) Energy consumption Bandwidth

[bytes/s]RAM [KB] ROM [KB] Avg. power [mW/s] Lifetime [h]

SPINE2 on TelosB 5.9 / 10 41 / 48 7.5 87 166

SPINE on TelosB 3.7 / 10 33.5 / 48 6.6 101 160

Titan on TelosB 9.0 / 10 38.7 / 48 18.7 36 158

SPINE2 on Z-Stack 7.3 / 8 85.3 / 128 12.7 51 182

SPINE on Z-Stack 3.9 / 8 95.9 / 128 11.2 60 176

The memory required by each framework has been analyzed by consider-
ing both the framework itself and the underlying operating system, as well as
the drivers of a custom sensor board equipped with the accelerometer. The
amount of ROM needed by SPINE2 on the TinyOS platform is greater than
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the one required by SPINE (7.5KB more) and Titan (just a little more than
2KB). This is mainly due to the need for a more complex management logic
in charge of controlling the task-execution engine and to the additional code
necessary for coupling the generic C-based architecture to the specific TinyOS
components. Nevertheless, the SPINE2 ROM footprint guarantees enough free
memory (roughly 7KB) for further framework updates/extensions. Also, if it
may be necessary to provide extensions such that the resulting binary code is
greater than the available ROM, the modular and reconfigurable architecture
of SPINE2 allows for a possible exclusion of some modules at compile-time
such as unused sensor drivers or task definitions. On the contrary, on the Z-
Stack platform, SPINE2 offers a greater amount of free ROM with respect to
SPINE (roughly 10.5KB). Regarding the RAM usage, SPINE2 requires more
memory than SPINE on both platforms, but lesser than Titan. It is worth not-
ing that SPINE2 allows developers to allocate at compile-time proper amount
of dynamic memory used for instantiating both the task-based application
and the buffers necessary for data exchange among tasks. In particular, the
amount of RAM shown in Table 3.8 and related to SPINE2 includes a 800-
bytes memory space for storing the user-defined applications and a 1600-bytes
memory space for dynamic buffer allocation (i.e., in total, more than 2KB of
dynamic memory reserved at compile-time).

The energy consumption results have been obtained by running the appli-
cation benchmark, and adopting a 650mAh Li-ion battery for both sensor plat-
forms. Specifically, the node lifetimes have been experimentally obtained and
the related average power consumption has been calculated. SPINE2 shows
a little more average power consumption with respect to SPINE due to the
more complex runtime engine and to some more information in the SPINE2
messages header which is directly related to the complexity of the distributed
task applications.However, these results are acceptable if we consider its more
powerful programming abstractions. Notably, SPINE2 shows better results
than Titan.

Concerning the bandwidth usage, we have considered not only the appli-
cation data payload to be transmitted (120 bytes/s, i.e. 20 samples per axis,
each of two bytes length) but also both the header of the framework high-level
messages and the header of the low-level sensor platform protocol. SPINE2
and SPINE support message fragmentation (see Section 3.2.5 for SPINE2),
whereas Titan does not have such a capability. So, we had to redefine the orig-
inal benchmark application by manually limiting the data buffering to only
10 samples for each data accelerometer axis.

3.3 Using SPINE2

3.3.1 A case study

To demonstrate the effectiveness of SPINE2, in the following section we de-
scribe how the SPINE2 task-oriented approach has been adopted for imple-
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menting a distributed action recognition system which aims at detecting ac-
tions made by individuals, such as walking, kneeling, jumping and so on.
Specifically, in Section 3.3.1.1 we first describe the system as reported in [81].
In particular, the authors validate it through Matlab, by delegating the BSN
just for data acquisition and transmission to the coordinator, on which all
the signal processing tasks are actually performed by means of Matlab. Then,
in Section 3.3.1.2 and 3.3.1.3 we provide a real SPINE2 implementation of
the same system by moving most of the computation on the sensor nodes, by
showing how it is a really straightforward process.

3.3.1.1 The distributed action recognition system

The system, described in [81], makes use of a template matching technique
to perform weak classifications from a set of body-worn sensors, whereas an
ensemble learning methodology is adopted for achieving the final recognition
results.

The functional blocks of the whole system are illustrated in Figure 3.11.
The template matching technique uses the Normalized Cross Correlation
(NCC) function to compute the similarity of the incoming signals acquired
by the sensor nodes (each of which equipped with triaxial accelerometer and
biaxial gyroscope) with previously calculated templates of interest (obtained
with a supervised learning approach).

The NCC measures the correlation (the range of the results varies from -1
if uncorrelated to +1 if correlated) between a sensor signal time series (S[x])
and the template time series (T [x]):

NCCS,T =
∆S ·∆T

σS · σT
, |NCCS,T | ≤ 1 (3.1)

where

∆S =

|S|∑
k=1

(S[k]− S̄) , σS =

√√√√ |S|∑
k=1

(S[k]− S̄)2 (3.2)

and ∆T and σT are computed similarly to Equation 3.2.
The resulting similarity scores are compared with specific thresholds to

weakly classify the incoming signals as true or false, where true indicates
that the current body movement generating the signal is classified as a target
action (this happens when the signal is similar to the specific template related
to the action) while false indicates a non-target action. The previous formulas
assume that both the incoming signal and the templates have the same length.
If not, a normalization process between S and T is computed as follows:

newS(k) = S(b |S|
|T |
c × k) ∀k ∈ {1, 2, ..., |T |} (3.3)
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Fig. 3.11. The action recognition diagram blocks.

where T is the longer signal and newS is the transformation of the shorter
one.

It is worth noting that, since the approach is based on supervised learning,
the templates (a template is related to a specific accelerometer or gyroscope
axis of a certain sensor node) are generated during a training phase in which
the sensor readings are collected while a person is performing the actions and
then manually segmented and labeled. Different template instances related to
a same action are extracted so to choose the one that is most similar to the
others (comparison are made by calculating the NCC), and thus much more
robust to variabilities. Once all the nodes provide the results of these weak
classifications, they are aggregated and transmitted to another sensor node
(or to the coordinator) which is in charge of weighing and combining them
together so to provide a significantly better classification result.

3.3.1.2 SPINE2-based application definition

In the following, the model of the system described in the previous subsec-
tion is defined through the SPINE2 modeling language. By focusing on the
activities executing on the sensor nodes, it is possible to define the SPINE2
application with the chain of tasks depicted in Figure 3.12. The proper pa-
rameter setting for each task, apart from the MergeTask which does not need
any specific settings, are also reported.

52



3.3. Using SPINE2

Fig. 3.12. The SPINE2 task chain application instantiated on the sensor nodes.

In particular, the application consists of the following tasks: two Sensing-
Task, for accessing to the on-board accelerometer and gyroscope sensors; a
MergeTask which merges the raw sensor streams into a single data stream to
be forwarded to the next tasks; two ProcessingTask, for computing the NCC
and for comparing results with the threshold values. The sampling time for
sensor acquisition is set to 20 ms whereas the ProcessingTask performs a new
computation every 40 samples on a data window of 80 samples (i.e. a time
window of 1600 ms). These settings have been experimentally determined to
be the best trade-off between computational performance and final recognition
results related to each of the individual actions taken into consideration.

After defining the per-node application, the implementation of the last
stage of the action recognition system, represented by the Weighted Com-
biner component of Figure 3.11, needs to be performed. One option is to
build the Weighted Combiner component into one of the sensor nodes of the
network. In this case, further SPINE2 tasks, as shown in Figure 3.13, need to
be instantiated on it. In particular, the MergeTask is in charge of collecting
all the weak classification results coming from the sensor nodes running the
task-based application defined in Figure 3.12, whereas the ProcessingTask is
configured for carrying out the final recognition process through a weighted
combiner task. Anyway, the node in charge of computing such a weighted
combiner may not be necessarily a sensor platform. Thanks to the availability
of the BSN coordinator, which is generally a more powerful node, it is possible
to perform the last recognition task on it, without any further computational
load on the sensor nodes. This has been actually our choice for developing
the system, where the Weighted Combiner has been implemented as a Java
application running on a PC interfaced to the sensor nodes by means of a
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base-station device.

Fig. 3.13. The SPINE2 task chain related to the final recognition phase.

3.3.1.3 From the SPINE2 application model to the real running
system

The per-node application shown in Figure 3.12 represents a general applica-
tion definition implementing a single weak classifier of the action recognition
approach depicted in Figure 3.11. Since none of the movements we are inter-
ested in needs all the sensor data streams (i.e. data from all sensor channels)
for being recognized, a preliminary step is necessary for identifying the actual
information aiming at a good final recognition process. Specifically, the needed
sensor streams along with their related templates are obtained during such a
step and, as described in details in [81], involve the use of four wearable sensor
nodes worn on the waist and right calf, thigh, and wrist. Thus, acceleration
and angular velocity (three axes of accelerometer and two axes of gyroscope)
data are collected from different subjects performing a set of 12 movements
(see Table 3.9) several times. Although this raw data comes from real sensors,
the steps involved in determining the necessary sensor streams and related
templates have been carried out on a PC by means of Matlab. It is worth
noting that the actual aim of this preliminary setup phase is to identify the
minimum set of weak classifiers that achieve a given recognition sensitivity (or
recall) and precision values. As a result, Table 3.9 shows the number of the
weak classifiers for recognizing each movement, given three different level of
accuracy. To achieve higher accuracy, a larger number of classifiers need to be
instantiate over the four sensor nodes. By considering a specific accuracy (i.e.
P=90%, R=80%), Table 3.10 shows also the actual sensor streams needed for
each movement recognition. The number n in each data stream Acc*-n speci-
fies a particular sensor node, i.e. the one on the wrist (1), waist (2), thigh (3),
or calf (4). For the sake of brevity, the sensors involved in detecting move-
ments #6, #8, #9, #11, and #12 are not displayed. To be noted that, by
excluding these movements, the remaining ones can be easily recognized by
means of the analysis of the only accelerometer data.
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Table 3.9. Number of weak classifiers needed for detecting movements by consid-
ering a precision P and a recall R.

Movement
N. of classifiers

(P=80%, R=70%)

N. of classifiers

(P=85%, R=75%)

N. of classifiers

(P=90%, R=80%)

#1 Stand to sit 1 1 1

#2 Sit to stand 1 1 1

#3 Sit to lie 1 1 3

#4 Lie to Sit 1 3 3

#5 Bend and Grasp 3 3 5

#6 Kneeling, right leg first 15 15 15

#7 Kneeling, left leg first 3 3 3

#8 Turn clockwise 90 degrees 14 14 17

#9 Turn counterclockwise 90 degrees 5 5 10

#10 Move forward (1 step) 3 3 3

#11 Move backward (1 step) 10 10 10

#12 Jump 14 14 14

TOT Classifiers 69 71 83

Table 3.10. Number of templates needed for movements detection (with preci-
sion=90% and recall=80%).

Movement Sensor stream needed N. weak classifier

#1 Stand to sit AccZ-3 1

#2 Sit to stand AccZ-3 1

#3 Sit to lie AccZ-1, AccY-2, AccZ-4 3

#4 Lie to Sit AccY-2, AccZ-3, AccY-4 3

#5 Bend and Grasp AccX-1, AccY-1, AccY-2 AccZ-2, AccZ-3 5

#6 Kneeling, right leg first - 15

#7 Kneeling, left leg first AccX-1, AccZ-1, AccY-4 3

#8 Turn clockwise 90 degrees - 17

#9 Turn counterclockwise 90 deg. - 10

#10 Move forward (1 step) AccZ-1, AccZ-2, AccY-3 3

#11 Move backward (1 step) - 10

#12 Jump - 14

3.3.1.4 Performance analysis

In this subsection, some performance tests are shown to understand if the
computing and memory capabilities of the sensor nodes can guarantee an
effective and efficient real-time data processing. In particular, the memory
usage analysis of the application and the execution time of the ProcessingTask
related to the NCC function (the one having the highest computational cost)
have been carried out on both TelosB motes running TinyOS and the custom
platform based on Z-Stack.

3.3.1.4.1 Memory usage analysis

As previously described, in the template matching method, each signal ac-
quired by the on-board sensors has to be compared with a set of pre-calculated
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templates, each of them related to a specific movement. Such templates are
required to be stored on the sensor nodes and specifically in the RAM as
the slow access time of the flash memory may represent a bottleneck during
the real-time processing. Thus, the amount of free available memory for stor-
ing templates is a key limiting factor determining the maximum number of
movements the system is able to recognize at the same time.

The RAM memory usage of the SPINE2 application on the TinyOS and
Z-Stack sensor platforms (i.e. the implementation of the weak classifier) is,
respectively, 4280 KB and 6289 KB, whereas the free available one is, respec-
tively, 5960 KB and 1903 KB. In particular, the RAM usage includes the
platform operating system (i.e. TinyOS or Z-Stack), the SPINE2 middleware
and the task instances of Figure 3.12. Moreover, the differences with respect to
the Table 3.6 are because of a different amount of RAM reserved at compile-
time as dynamic memory space. Moreover, the smaller amount of free memory
in the custom sensor node is due to the lesser total RAM available (see Table
3.4) and to the more memory required by Z-Stack compared to TinyOS.

On the basis of the free memory, in Table 3.11, the maximum number
of templates that can be stored on the sensor nodes are shown. A sampling
time ST = 20ms for data acquisition has been considered whereas a fixed
length for all the pre-calculated templates is assumed. This is reasonable be-
cause the template matching approach includes the normalization process (see
Equation 3.3) in case of different length between incoming signal and template.

Table 3.11. Maximum number of templates (at a sampling time of 20ms) and NCC
ProcessingTask average execution time.

Template length

[samples]

Template duration

[ms]

Max number of

templates

NCC average exec.

time [ms]

TelosB 40 800 74 5.32

60 1200 49 7.00

80 1600 37 8.57

100 2000 29 9.38

Z-Stack-based node 40 800 23 2.96

60 1200 15 3.75

80 1600 11 4.50

100 2000 9 4.91

For our tests, we obtained templates of 1.6s length (i.e. 80 samples) be-
cause of two main reasons. First, most of the movements have an average
duration between 1s and 1.5s. Thus, we set the NCC to compute the correla-
tion result on a window size of 80 samples (see Figure 3.12). Secondly, this is
the best trade-off between storage and processing capabilities. In fact, if we
used smaller templates describing all the movements, each nodes would have
performed a normalization process for each weak classifier before computing
the NCC, with a significant increase in the computation load.

56



3.3. Using SPINE2

3.3.1.4.2 Processing execution

The analysis of the completion time for the ProcessingTask performing the
NCC is shown in the following. This is an important performance index for
understanding the feasibility of the system to obtain an efficient real-time
movement recognition. In Table 3.11 the NCC-task execution time is shown
by varying the length of the signals in terms of samples (or window size W ).

For evaluating the actual performance of the system in managing the recog-
nition of all the movements defined in Table 3.9, we have to consider that the
computation of the m weak classifiers on each node has to be performed on
every new S data samples (S is the shift parameter of the ProcessingTask usu-
ally set to W/2, see Figure 3.12). The adopted sampling time is ST = 20ms,
so the total amount of time taken to execute m classifiers should be less than
the time for acquiring S new samples:

m · TNCC(W ) ≤ ST · S (3.4)

where TNCC(W ) denotes the execution time of Table 3.11.
By considering the node of the BSN in charge of managing the greatest

number of weak classifiers (m = 24), Table 3.12 reports the total amount of
execution time by varying the W parameter. On the basis of the provided
results, it is rather clear that the ProcessingTask implementing the NCC per-
forms very well on both sensor platforms.

Table 3.12. Total execution time for computing m=24 weak classifiers [ms].

W and S=W/2

[samples]

TelosB

m · TNCC(W )

Z-Stack Custom-platform

m · TNCC(W )
ST · S

40 - 20 127.68 71.04 400

50 - 25 147.84 79.68 500

60 - 30 168.00 90.00 600

70 - 35 184.80 96.96 700

80 - 40 205.68 108.00 800

100 - 50 225.12 117.84 1000

3.3.2 SPINE2 for implementing “Virtual Sensor”

Signal processing for WSNs usually comprises of multiple levels of data ab-
straction, from raw sensor data to data calculated from processing steps such
as feature extraction and classification.

In this section, a multi-layer task model based on the concept of Virtual
Sensors to improve architecture modularity and design reusability. Virtual
Sensors are abstractions of components of WSN systems that include sensor
sampling and processing tasks and provide data upon external requests. The
Virtual Sensor model implementation relies on SPINE2. The proposed model
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is applied in the context of gait analysis through wearable sensors. A gait
analysis system is developed according to a SPINE2-based Virtual Sensor
architecture and experimentally evaluated.

3.3.2.1 The WSN-oriented Virtual Sensor Architecture

Physical sensors map an observed physical quantity, such as temperature, ac-
celeration, or sound, onto a data value and produce an output. The output is
generated when inputs change, as the result of an event, or in response to a
(timed) request. Physical sensors are transducers converting values from one
form to another using physical processes. Signal processing algorithms convert
values using digital processes. This observed similarity is the motivation be-
hind the virtual sensor abstraction. Every processing task can be represented
as a virtual sensor. Therefore, if we consider a complete WSN system, we can
model its data processing part as a multi-level hierarchy of virtual sensors as
shown in Figure 3.14. Moreover, virtual sensors may be implemented directly
in a programming language, or as networks of already existing virtual sensors.

Raw Data

Levels of Data

Abstraction
Computational

Components

Fig. 3.14. Multi-layer Signal Processing

Figure 3.15 shows the defined WSN-oriented virtual sensor system archi-
tecture. A user requests certain outputs given specified inputs. This request is
handled by the Virtual Sensor Manager, which configures a set of virtual sen-
sors to handle the computational task. Virtual sensors use the Buffer Manager
to setup communication through the use of efficient buffers. Once configured,
the system is activated, and virtual sensors cooperate to produce the final
outputs.

3.3.2.1.1 Virtual Sensor Definition

Software frameworks are usually introduced to provide programmers with
abstractions to isolate them from low-level implementation details. Virtual
sensors provide a new level of abstraction at the software level by allowing
signal processing tasks to be defined and composed easily. Furthermore, VS
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Fig. 3.15. BVS Architecture.

abstractions allow signal processing tasks to be modified or changed at design
or runtime without affecting the rest of the system. In Figure 3.14 every
component represents a processing task applied to a stream of data originated
from physical sensors and can be modeled as a virtual sensor. The output of
each virtual sensor is defined by a set of inputs and its configuration. More
formally, a virtual sensor i, denoted as V Si, is defined as:

V Si = {Ii, Oi, Ci} (3.5)

where Ii denotes the set of inputs, Oi denotes the set of outputs, and Ci de-
notes the configuration of V Si. The configuration of each virtual sensor defines
the type of its inputs and outputs, the particular implementation used for a
given computational task, and a set of parameters required for a particular
implementation. In particular, Ci is defined as:

Ci = {tin, tout, d, p} (3.6)

where tin is a vector that describes the types of inputs Ii, tout is defined
similarly for the outputs Oi, d represents the specific VS implementation, and
p denotes the VS configuration parameters. In particular, if the user does
not specify d, the Virtual Sensor Manager (described below) will select the
implementation.

This definition provides high modularity for application design. In fact,
different configurations of the same virtual sensor can be easily substituted
without requiring changes in the rest of the design. This property therefore
enables a component-based approach for application development in which
an application is assembled out of well defined components appositely inter-
connected. Moreover, it can be used when environmental changes require a
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new implementation of a particular signal processing component for a given
application. Alternative implementations do not need to be loaded into main
memory at all times. They can be stored in flash memory, or transferred over
the air upon request.

VS can be further composed to create higher-level VS. This allows to
define multiple abstraction levels that capture the successive processing and
interpretation of sensor data and system components that perform data fusion.
High-level VS identify abstractions that are useful to support code modularity
and reusability. In fact, if an implementation of a VS is replaced with another
one, where one or more VS components are changed but the interface is the
same, there is no need to change the rest of the system.

More formally, the composition of n Virtual Sensors to form an higher-level
VS can be defined as follows:

V S∗ =< V S1, V S2, ...V Sn >= {I∗, O∗, C∗, L} (3.7)

where I∗ ⊆ I1 ∪ I2... ∪ In, O∗ ⊆ O1 ∪O2... ∪On, C∗ = {C1, C2, ...Cn}, and L
is the set of links connecting outputs and inputs of {V S1,...,V Sn}

3.3.2.1.2 Virtual Sensor Manager

Once all virtual sensors are configured, no additional control is required dur-
ing execution. However, configuration requires significant support from the
Virtual Sensor Manager (VSM). The VSM is responsible for creating and
configuring virtual sensors and connections among virtual sensors. The fol-
lowing subsections will describe the main functionalities of the VSM (virtual
sensor configuration and overall system configuration).

Virtual Sensor Configuration: the current configuration of a virtual sensor
may be invalidated by changes in its inputs or connections with other virtual
sensors, therefore reinitialization could happen at any time. For example, Fig-
ure 3.16(a) describes a system that takes a temperature reading in Fahrenheit,
and a heart rate in beats per minute. In Figure 3.16(b) a new thermometer,
that produces output in Celsius, is introduced. V S1 has to be reconfigured
to handle such change. To be able to configure/reconfigure the system at run
time, the VSM manages a table that maps each available combination of pos-
sible inputs and outputs to the appropriate virtual sensor implementation.
This can be represented by the set A. Each entry a ∈ A is defined as:

a = {tin, tout, ψ} (3.8)

where ψ is a particular virtual sensor implementation. If the modification is
not drastic enough to require changing the virtual sensor implementation,
reconfiguration can alter parameters of a given implementation. During the
configuration of a virtual sensor, VSM includes the address of the selected
virtual sensor implementation and the required configuration parameters.
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Fig. 3.16. Example of Input Modification in Virtual Sensors.

Overall System Configuration: while individual virtual sensors do not hold
any information about other virtual sensors, the overall system relies on their
cooperation. At the beginning of the system execution, the VSM receives the
VS topology configuration graph. Based on the requirements of the topology
configuration, the VSM initializes the appropriate VSs and connects them as
required. Input and output types are a property of each virtual sensor. An
output of one of the virtual sensors can also be an input of another virtual
sensor. For example, in Figure 3.17, configuration of V S3 and V S4 depends
on the input they receive from V S1. To simplify the configuration and recon-
figuration process, the VSM initializes VSs in a specific order, to meet the
requirement that each virtual sensor cannot be created until all inputs are
configured. This ordering can be determined with a topographical sort of the
topology configuration graph.

VS5

VS3 VS4

VS2 VS1

Fig. 3.17. Example of Input/Output Dependency in Virtual Sensors.

Buffer Manager : signal processing for WSNs often relies on combining
data from multiple sources and locations. As a result, virtual sensors can
have multiple inputs from different sensor nodes. To avoid synchronization
issues, virtual sensors implicitly use buffers for communication. The Buffer
Manager (BM) controls dynamic buffer allocation and manages data flow in
the system.
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When a virtual sensor is created and configured, it initiates a data buffer
for its output. The virtual sensor contacts the BM and requests the creation
of a buffer sufficient to hold its output. The BM allocates a circular buffer of
the required size and returns the bufferID. This bufferID is propagated by
the VSM to other virtual sensors that are interested in data of this particular
buffer. To read from a buffer, a virtual sensor must register with the buffer as
a reader, specifying the number of samples it can consume at a time. Every
time the producer writes to the buffer, the BM checks if the buffer has enough
information for any of the readers, and signals them when they can access
the data. Figure 3.18 shows an overview of the BM operation. In particular,
it shows that BM keeps track of buffers by ID, tracking the point where the
producer (e.g. W) is writing to, and where each individual reader (e.g. R1, R2)
is reading from. If the producer VS is reconfigured, and its output is changed,
the BM removes the buffer that is associated with the previous output and
initiates a new buffer, based on the new configuration information.

Buffer

Manager

Buffer1

Bufferm

.

.

.

WR1R2

Fig. 3.18. Buffer Manager Overview.

3.3.2.2 Implementing Virtual Sensors in SPINE2

The Virtual Sensor architecture described in Section 3.3.2.1 is straightfor-
wardly implemented through the SPINE2 framework. In Figure 3.19 basic
conversion schemas for the translation of Virtual Sensors into SPINE2 task-
oriented applications are shown. In particular, only simple (flat) virtual sen-
sors have been taken into consideration as it is quite intuitive to translate a
virtual sensor defined as composition of flat virtual sensors.

In the most simple case, a virtual sensor defined as a basic functional block
incorporating some kind of operation on its single input can be translated into
a SPINE2 data-processing task (see Figure 3.19(a)). In fact, a generic SPINE2
data-processing task (such as dpTask) is defined as a functional component
having a single input and a single output, differently from the data-routing
task. Obviously, the operations that have to be performed by the task (spec-
ified by its configuration) depend on the actual functionalities of the virtual
sensor. If the virtual sensor does not have a generic input but raw data (such
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Fig. 3.19. Translation of Virtual Sensors into SPINE2 task-oriented models.

as data coming form an hardware sensor on a wireless node), the correspond-
ing translation includes the introduction of a SensingTask, specifically con-
figured for representing the digital data source (see Figure 3.19(b)). Finally,
Figure 3.19(c) shows the translation of a simple virtual sensor having multiple
inputs and outputs. In this case, the corresponding SPINE2 tasks can be con-
figured in several ways on the basis of the actual definition of the virtual sensor
and of the type description of its inputs/outputs. In particular, two different
translations are shown. In the first one, we have a single data-processing task
for each input. These tasks, along with the not-specified Task Graph, carry
out the overall computational operation performed by the virtual sensor. Con-
versely, in the other translation, inputs are merged by a single data-routing
task (namely, the MergeTask) and provided to a generic task graph. In ei-
ther case, the more complex the function defined for the virtual sensor gets,
the more complex the set of actual interconnected tasks would be. Of course,
there could exist a more generic SPINE2 translation in which some of the in-
puts merge on an MergeTask, the other ones become inputs of data-processing
tasks.

It is worth noting that the two application modeling abstractions, vir-
tual sensors and tasks, have strong similarities. In fact, both of them enables
creation of applications in a modular and easily reconfigurable way by using
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elementary functional blocks (virtual sensors or tasks) which do not have any
functional couplings with each others. This is due to the fact that they have
no knowledge of the provenance of their inputs nor the destination of their
outputs.

3.3.2.2.1 A Gait Virtual Sensor

As a test application for virtual sensors in SPINE2, we implemented a virtual
sensor-based system for automatic event annotation based on a left-right Hid-
den Markov Model (HMM) [82]. The HMM associates each data sample with a
state. States typically consist of multiple data samples and the transition from
one state to another starts with an event which consists of a single sample.
By training the model, we can identify these key events within a movement.
Walking being a cyclical activity, events and states repeat over a period of
time.

The HMM annotation system consists of four parts:

1. Sampling of acceleration data from physical sensors. We used LIS3LV02DQ
MEMS based accelerometer from ST Microelectronics for the data collec-
tion. The data is collected at a sampling frequency of 20 Hz which is
sufficient for slow movements like walking. The data is copied into the
buffer pool allocated by the Buffer Manager as it gets collected.

2. Pre-filtering of sampled data. The main purpose of pre-filtering is to re-
move any noise from the original data. The first stage of pre-filtering in-
volves calculating the 5-point moving average for removing high frequency
noise. This data is then normalized by subtracting 100-point mean and
dividing by 100-point standard deviation to get the final pre-filtered data.

3. Extraction of features from filtered data. The pre-filtered data stream is
processed by the feature extractor and the first derivative, second deriva-
tive and the existence of any peaks is calculated [82]. These three features,
along with the prefiltered data sample is passed on to the next virtual sen-
sor.

4. HMM-based annotation of events from the extracted features. The an-
notation is done based on the probability of occurrence of a state. This
requires training of the model to create the tables for mapping the fea-
tures to the probability of observing a state. In addition, we also consider
the probability of a state transition. These two tables are generated based
on training which was done in MATLAB.

The system uses a single sensor node, and only one implementation was cre-
ated for each virtual sensor.

The Gait Virtual Sensor is defined as a linear interconnection of four vir-
tual sensors as described in Figure 3.20. Arrows connecting virtual sensors
denote the data flow from the producer to the consumer. The initial request
is generated by the SPINE coordinator running on a PC. This request initi-
ates the configuration of each of the four virtual sensors. Once all the virtual
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sensors have been initialized, the HMM virtual sensor starts producing out-
put every sample. The sampling interval is defined for the Accelerometer VS,
which acts as the data source for the whole system.

Preprocessing
Virtual Sensor

Feature Extract
Virtual Sensor

HMM
Virtual Sensor

SensingTask
(Accelerometer)

ProcessingTask
(Moving average)

ProcessingTask
(HMM)Split

ProcessingTask
(Normalization)

ProcessingTask
(First derivative)

ProcessingTask
(Second derivative)

ProcessingTask
(Peaks existence)

Merge

preprocessing

feature extraction

Accelerometer
Virtual Sensor

Fig. 3.20. GAIT analysis Application.

As described in Section 3.3.2.2, each Virtual Sensor can be implemented
through one or more SPINE2 tasks, on the basis of its actual complexity.
First of all, the presence of a Data Raw source, namely the accelerometer,
requires the use of a SensingTask configured to acquire data from a real on-
board sensor with proper settings (like the sampling rate). The Preprocessing
VS, which performs preliminary computational functions can be translated
into two ProcessingTasks sequentially interconnected with each of them in
charge of carrying out a specific elementary operation. In a similar way, the
Feature Extract VS can be decomposed into three further ProcessingTasks,
individually devoted to compute a specific feature extraction function on the
data coming from the previous preprocessing step. Since all these tasks require
the same data, a Split data-routing task has to be used. As soon as all the
features are computed, they have to be made available to the HMM Process-
ingTask. This task, representing the actual implementation of the HMM VS,
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receives its input data from the Merge data-routing task, which is in charge
of collecting the feature extraction results.

In the following subsections, we first describe some implementation details
about GVS and other software modules implementing the same gait analysis
functionality but developed in C and Matlab; we then analyze the obtained
results and compare them with the results obtained with the C and Matab
software modules.

3.3.2.2.2 Implementation

Figure 3.20 shows the schemas of the GVS according to the higher level model
and its translation based on SPINE2. In particular, each Virtual Sensor can
be implemented using one or more SPINE2 tasks, on the basis of its actual
complexity.

We started with a MATLAB model described in [82]. The code was simpli-
fied to match sensor node capabilities, e.g. using fixed-point math with limited
precision. Based on this code, a version of the code was developed in C, and
the outputs were compared. The model was retrained based on the updated
code. After making changes to assure matching output between the C and
MATLAB code, the C code was adapted to SPINE2 and ported to nesC for
an ad-hoc implementation on the sensor nodes. This allowed us to compare
the effectiveness of using SPINE2 in the development of the virtual sensor
with respect to the use of a lower level programming language like nesC.

The main challenge of adapting MATLAB models to SPINE and C imple-
mentation was the lack of hardware floating point multipliers in the microcon-
trollers of the wearable units, particularly MSP430 in our platform. Floating
point operations are handled in software and are computationally expensive.
Hence, we chose to approximate floating point operations in the original model
with integer operations for our implementation. This technique appeared to
be effective while from time to time generated inconsistencies due to the con-
version error. Furthermore, when the range of floating point numbers were
large, this technique would be less effective as it has to represent numbers
with a large number of integer bits. To reduce the occurrence of these cases,
we had to perform further optimization on the signal processing algorithm
to reduce the ranges or reduce the effect of error due to conversion on the
outcome of the algorithm.

Although the layered model of the defined virtual sensors allowed us to
develop and verify one component at a time, one of the major limitation that
we faced during the development was debugging. The development platforms
available for TinyOS offer limited support for debugging. Due to this reason,
the functionality testing and debugging was done using the C version. How-
ever, problems that we faced after porting the code on to the mote were much
more serious and hard to debug. Problems like stack overflow due to excessive
memory usage were extremely difficult to detect. We also faced issues due to
high packet loss hindering the basestation-mote communication. Another ma-
jor problem was the freezing of system due to higher processing overhead of
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one component over the others. This also caused interruptions in the communi-
cation. Another problem was the occurrence of “impossible” state transitions
in the HMM. The root cause of the problem was determined as overflows.
The HMM involved a large number of summations which periodically over-
flowed, leading to unpredictable results. Figuring out these problems required
in-depth analysis of the code and careful optimizations and corrections on
appropriate components. Reducing the memory footprint of the application
was one of the major challenges that we faced during the whole development.

3.3.2.2.3 Analysis of Results

For our test case, we used this system to extract heel-down and heel-lift events
from a walking subject. The sensor node contained a single tri-axial accelerom-
eter sampling at 20 Hz (the highest sampling rate achievable while perform-
ing the processing steps). The event annotation was initially quite sensitive
to sensor node misplacement, so we trained it with data from one subject
with ten different trials. Each trial contained approximately 50 steps and had
a slightly different sensor placement. This significantly increased the accu-
racy. The sensor node performed annotation and broadcast the raw samples
so results between different implementations could be compared.
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Fig. 3.21. Comparison of Matlab, C, and SPINE2 implementations of the Gait
Virtual Sensor.

As can be seen in Figure 3.21, the versions produce similar results. Most of
the events were accurately predicted by our implementation barring the slight
offsets occurring at times. There is a drastic difference observed between the
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sensor node output and the others on the far right side of Figure 3.21. Also,
the state transitions were not completely synchronized. For example, in the
actual MATLAB implementation, state marked 6 is always momentary where
as this does not happen in the other implementations. This is due to the fact
that the model tries to catch up after a wrong state calculation. Consequently,
the total time taken for a complete sequence of transitions remained almost
the same for the whole experiment (on average, the difference is less than
10 ms). This time, which can also be defined as the time taken to reach the
same state in the next cycle is termed as the stride time. Table 3.14 shows
the average stride time measured for the three implementations.

Table 3.13. Event Annotation Results for Different Implementations.

Implementation Stride Time (Smpl) Stride Time (s)
MATLAB 28.21 1.41

C (PC) 28.04 1.40
SPINE2 28.04 1.40

3.4 SPINE-*

Introducing autonomic properties into a sensor network software can be made
in many different ways and with different levels of details. Nevertheless, we
believe that the best practice is to clearly separate the business logic of the
application from the specific autonomic management operations. Such a sep-
aration of concerns can lead to a significant benefit: application programmers
can concentrate their efforts on defining the purposes and the characteristics
of an application without taking care of anything else, whereas the autonomic
behavior can be easily added later without affecting the previously defined
application logic.

The benefit from using the SPINE2 architecture is that its task-oriented
abstraction perfectly matches with the need for a mechanism assuring the
isolation and composition properties. Moreover, the addition of the autonomic
features into SPINE2 did not involve any deep changes in the node-side part
of the SPINE2 architecture depicted in Figure 3.4, since it was sufficient to
define a set of new tasks specifically conceived for providing the necessary
autonomic functionalities to the task-based applications.

In this section, the autonomic architecture of the SPINE-* framework is
described.

3.4.1 Architecture

The basic abstraction of the proposed autonomic architecture is depicted in
Figure 3.22. Specifically, it is composed of two distinctive planes, one for the
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user application and one for providing the autonomic operations. Each plane
is constituted by a set of SPINE2 tasks, each of which providing a specific
activity and defined independently from all other tasks. This means that a
task is only aware of its input data but it does not care about which particular
task has provided such a data. This implies that a same type of task may be
used both in the application plane and in the autonomic plane (i.e. there exist
two different task instances of a same task type), on the basis of specific needs.

Application Plane

Autonomic Plane

Application Task Autonomic Task

AT1 AT2

T3

T2T1

T5

T4

AT5

AT3

T6

AT4

Fig. 3.22. The autonomic architecture with the two interacting planes.

When the autonomic plane needs to execute on the basis of the data flowing
inside the user application or to perform a reconfiguration on the application
tasks, a kind of interaction between the two planes is established. Despite
this interaction, the separation of concerns property still holds. In fact, the
application continues to have the same behavior with no awareness of the
presence of the autonomic plane, whose post-addition allows to introduce
self-* behavior.

For example, supposing that the autonomic tasks AT1 and AT2 are con-
ceived to perform some kind of operation on the output data of T1 prior to
redirecting them to task T2, the direct connection T1-T2 has been substituted
by the interposed tasks AT1 and AT2. In this case, T2 continues its execution
independently from the actual input data provenience. When the interaction
consists of some kind of reconfiguration action, the application structure re-
mains substantially the same. For example, depending on data coming from
T2, the remaining part of the autonomic plane may trigger some operations
aimed at changing the execution parameters of tasks T3 and T4 (the dot-
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ted arrows are for differentiating the configuration connection from the data
connection).

The proposed autonomic architecture is able to address the common situ-
ations for satisfying the main self-* properties, as discussed in the following.

Self-configuration. A useful property for a WSN application is to reconfig-
ure task parameters at runtime on the basis of some dynamic system changes.
Two examples are depicted in Figure 3.23. In Figure 3.23(a), depending on the
output data of the Processing task (which performs some kind of processing
on the raw sensed data), the AutoSensReconfig task, belonging to the auto-
nomic plane, may change the application behavior by acting on the Sensing
task parameters, i.e. by changing its sampling rate or even by disabling/en-
abling its execution. Similarly, as shown in Figure 3.23(b), the ReconfigTask
task may perform some changes in either the sensing or the processing task
parameters (or both together) as a consequence of an external request. In
particular, the component triggering the reconfiguration is not the task-based
application itself but the basestation-side application which, as part of the
autonomic WSN, may require a different sensor data processing on the basis
of dynamic changing conditions.

ProcessingSensing

AutoSens
Reconfig

Split

(a)

ProcessingSensing

Reconfig
Task

message from
the basestation

(b)

Fig. 3.23. Self-configuration examples.

Self-healing. If we consider a sensor network applied to the human body
for health-care applications the requirement of recovering from faults and er-
rors become an important and actually critical issue. Then, self-healing may
be considered an essential characteristic a sensor network should incorporate
for assuring its reliability and correctness. In Figure 3.24 an autonomic plane
is interposed between the Sensing and the Processing so to guarantee the
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quality of raw data and then to avoid that a data corruption could affect the
entire application correctness. In particular, the DataFaultsDetection task is
in charge of detecting possible sensor reading faults and deciding if a data
filtering operation (performed by the Filtering task) is required before pro-
cessing them. Solutions for correctly recognizing some common specific data
faults can be found in [47].

ProcessingSensing DataFaults
Detection

Filtering

Fig. 3.24. Self-healing examples.

Self-optimization. In order to extend the operating lifetime of a WSN appli-
cation, the energy consumption has to be specifically taken into consideration.
Data transmission (the most energy consuming operation) should be therefore
avoided when it is not strictly necessary for the purposes of the application
or when a processing activity has encountered an error so that its results are
incorrect and have to be discarded. As shown in Figure 3.25, a possible solu-
tion consists in defining a specific ResultsVariability autonomic task that is
capable of recognizing the variability of processing results over the time. Only
in case such a variability exceed a certain threshold, results have to be sent
to destination, otherwise they are discarded.

Processing

Sensing

Results
Variability Transmission

Fig. 3.25. Self-optimization example.

Self-protection. The security problem in the context of WSN is becoming an
increasingly important issue as the spread of real and information-critical so-
lutions are becoming relevant. In particular, the privacy of information trans-
mitted in a sensor network is one of the most priority goal. In Figure 3.26, the
Encrypting task is conceived to encrypt data coming from the Processing task
when outdoor activities are recognized. This allows to adapt the application
on the basis of its execution context and at the same time avoiding that the
intensive-computing encrypting task is executed when not necessary, i.e. when
the WSN system is running at home.
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Processing

Sensing

Encrypting Transmission

Fig. 3.26. Self-protection example.

3.4.2 A use case: autonomic activity recognition

The proposed SPINE-* approach has been put at test by turning an existing
SPINE2 activity recognition application (as described in [83]) into an auto-
nomic one.

The system consists of a desktop application, implemented in Java on
the coordinator, and two node-side applications designed by following the
programming abstraction approaches provided by SPINE2. The desktop ap-
plication is responsible for gathering pre-elaborated data taken from the ac-
celerometer sensors of two nodes, placed on the waist and on a leg of a person,
and relies on a K-Nearest Neighbor classifier for recognizing postures (i.e. ly-
ing, sitting or standing still) and a movement (walking) defined in a training
phase. The computation on each node-side application consists in processing
specific features (mean, max and min functions) on the acquired accelerometer
raw data, and merging and transmitting results to the coordinator.

The implementations developed by using SPINE2 is effective for the final
results of the system but, unfortunately, it does not provide some important
key features required by a WSN application. For instance, such solution is
not, in fact, aware of the quality of data coming from sensor readings. What
is worse, it is not possible to modify the application behavior on the basis
of changes in the environmental context. Thus, no adaptation or correctness
checking operations can be assured during node-side application execution.

The addition of an autonomic plane can overcome all these limitations by
allowing to transparently define the necessary operations for effectively sup-
porting self-* application management. In particular, the resulting autonomic
task-graph with the two different planes is shown in Figure 3.27.

The DataFaultsDetection autonomic task is able to recognize possible cor-
rupted data. If no corruption is detected, data are directly forwarded to the
Split task. If data corruption is detected and no recovering operation can be
performed, data are discarded because they are not useful for the application
purposes and further computation is avoided. Finally, if the detected data
faults can be solved, data are forwarded to the Filtering task for recovering
data before further computation. The ReconfigTask logic has been conceived
for listening possible request from the desktop application requiring a differ-
ent parameters setting for the Sensing task aiming to disable the sampling
operations for a certain amount of time or to decrease its sampling rate. This
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Fig. 3.27. Autonomic Activity Recognition.

is useful when the desktop application recognizes that the monitored person
is not moving or is slowly moving, and a very frequently data processing and
transmission is not necessary. The ResultsVariability task can analyze fea-
tures results and recognize if they exhibit a certain level of invariability, or
smooth variability. In this case the task discards them because it is useless
to transmit unchangeable processing results to the basestation. Finally, the
Encrypting task encrypts the computed data before their transmission to the
coordinator.

In Table 3.14 the application accuracy related to four activities is shown.
As it can be noted, the results are quite good demonstrating that the ap-
plication is not affected by the computational overhead introduced by the
autonomic plane.

Table 3.14. Activity recognition classification accuracy.

Walking Sitting Standing Lying
SPINE-∗ 98.5% 97.3% 97.8% 98.3%

3.5 Embedded self-healing layer for detecting and
recovering sensor fault

Avoiding erroneous behavior of WSN-based systems is an issue of fundamen-
tal importance, especially for critical health-care applications. In this regard,
proper self-healing techniques should be able to fulfill requirements such as
fault tolerance and reliability by detecting, and possibly recovering, faults and
errors at runtime.
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If we consider a sensor network applied to the human body for health-care
applications the requirement of detecting and possibly recovering from faults
and errors become an important and actually critical issue. Thus, the global
quality of an application not only depends on how well it has been designed
and implemented to accomplish its specific purposes but also on how well
it can deal with problems at runtime. Since it is not reasonable for a WSN
to be manually and constantly maintained and supervised after deployment,
the system itself needs to incorporate specific self-managing capabilities. For
such reasons, autonomic characteristics may be incorporated into a WSN [4]
and, in particular, self-healing techniques may be considered as an essential
characteristic a sensor network should incorporate for assuring its reliability
and correctness.

In particular, we first analyze how faults in the sensing readings can af-
fect the quality of a WSN application (i.e. a human activity recognition one),
and then we show how a self-healing layer, capable of detecting and possi-
bly recovering such faults, can improve the recognition accuracy. Specifically,
the self-healing layer is part of SPINE-*, which aims at easily and explicitly
defining the autonomic behavior by reusing the same high-level task-oriented
paradigm adopted for the application logic definition. We demonstrate by ex-
perimental results that SPINE-* can greatly improve the effectiveness of an
application, and we find that the defined autonomic elements provided can
mitigate faults affecting the sensor data so empowering system behavior cor-
rectness. We conclude that the use of self-healing capabilities in WBSNs is
a critical requirements for improving the reliability of applications, especially
the ones more sensitive to the quality of data.

3.5.1 The testbed: activity recognition application

Since in this section we concentrate on faults that can potentially affect the
raw data acquired by sensors, we need a proper reference application on which
performing some data quality tests. The BSN application taken into consid-
eration for our analysis is a human body activity recognition system able to
recognize some postures (e.g. lying, sitting or standing still) and a movement
(e.g. walking) of a person [64, 84].

The system consists of a Java-based application running on the coordinator-
side (i.e. a PC to which a sensor node is connected by acting as a base-station
bridge), and two wearable nodes (one placed on the waist and the other on
the thigh of the right leg) based on the Tmote Sky platform8 equipped with a
custom sensor board having a 3-axis accelerometer. The activity recognition
system relies on a K-Nearest Neighbor (KNN)-based classifier, executing on
the coordinator, that takes the most significant features performed on the ac-
celerometer data and recognizes the movements defined in a training phase.
In particular, the nodes run two different applications, both designed through

8 http://www.snm.ethz.ch/Projects/TmoteSky
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the task-based programming abstraction approach provided by SPINE2, each
of which performing specific features extraction on different accelerometer
channels, as illustrated in Figure 3.28.
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Fig. 3.28. The SPINE2-based node-side application on the waist node (a) and on
the thigh one (b).

For evaluating the impact of data faults on the previously described appli-
cation, we have carried out a testbed by considering a pre-defined sequence of
postures/movements represented by the state machine reported in Figure 3.29.
In particular, each activity state lasts roughly 30 seconds, with a sensor sam-
pling time of 25ms, whereas the features (Min, Max and Mean) are computed
on a windows of 40 sampled data every new 20 samples (shift) acquired by the
sensors. The training phase uses a KNN-based classifier parameterized with
K=1 and the Manhattan distance which performs quite well as classes (lying
down, sitting, standing still and walking) are rather separate. Accordingly
to such settings and considering the correctness of the sensor raw data, the
obtained classification accuracy over the whole activities transition pattern is
99.75%.

In the following subsections, we analyze the variation in the classification
accuracy when the original accelerometer data streams (whose traces are de-
picted in Figure 3.30) are affected by specific faults. It is worth noting that
from now on we will consider only the accelerometer streams actually in-
volved in the computation, i.e. the X, Y, Z channels of the waist node and
the X channel of the thigh node (see Figure 3.28).

Thus, for evaluating the effects of faults with respect to the original ex-
periment we have carried out several tests after having altered the original
data traces by artificially injecting faults corresponding to each of the models
identified in [47]:
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Fig. 3.29. The state transitions for the adopted testbed.

Fig. 3.30. Original accelerometer raw-data streams.

• Short faults are random spikes in the data trace, representing random
irregularities in the sensor readings.

• Noise is an increased variance in a continuous region of a data streams.
• Constant faults can be represented either by a arbitrary and fixed value

not correlated to the real phenomenon under observation or by a region
in the data trace whose values are biased by a certain value.

• Accumulative faults, i.e. drift behavior in the sensor readings, which is
commonly represented by a monotonic distancing from the actual values.

3.5.1.1 Short faults

The short faults are modeled as spikes disseminated on the P percentage of
the data trace and whose single value is determined by the original sensor
reading multiplied by a factor C, representing the fault intensity parameter.

An example of data traces affected by short faults, with parameters P=5%
and C=3, is depicted in Figure 3.31. As it can be noted, faults are uniformly
and randomly injected over all the trace of each accelerometer channel, and
this represents the worst case with respect to the same previously defined
parameters.
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Fig. 3.31. Raw-data streams affected by short faults (P=5%, C=3 ).

In Table 3.15 the results of the classification accuracy are reported by
considering short faults affecting all channels and by varying the percentage
of the faults. As shown, the presence of just 1% of samples affected by faults
get the accuracy to greatly decrease at less than the 80%. Much worse accuracy
results are obtained if we consider more frequent faults over the traces.

Table 3.15. Accuracy results with short faults over all channels and with C=3.

Channel P Accuracy

All 1% 79.90%

All 5% 55.09%

All 10% 51.86%

All 25% 48.14%

All 50% 46.65%

In Table 3.16, accuracy results are displayed by taking into consideration
only one channel affected by faults. It is rather clear that the accuracy is much
more affected by the presence of short faults on the X channel of the waist
node and especially the X channel of the thigh node.

Table 3.16. Accuracy results with short faults on a single channel and with C=3.

Channel P Accuracy

Waist X 1% 98.25%

Waist Y 1% 99.75%

Waist Z 1% 99.75%

Thigh X 1% 81.63%

Waist X 5% 96.26%

Waist Y 5% 99.75%

Waist Z 5% 99.75%

Thigh X 5% 44.91%
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3.5.1.2 Noise faults

Since noise faults are represented by prolonged increasing variance in the
readings of a sensor, a Gaussian distribution can be adopted for deliberately
injecting such kind of faults. In particular, we consider a normal random
generator having as mean the original specific samples value to be replaced,
and a parameter σ as its standard deviation. Moreover, with the parameter
N we identify the number of random regions to affect on a single data trace,
whereas K represents the length of such regions, measured in samples number.

An example of all channels affected by noise faults, with parameters
σ=300, N=1 and K=1000, is depicted in Figure 3.32.

Fig. 3.32. Raw-data streams affected by noise faults (σ=300, N=1, K=1000 ).

In Table 3.17 the results of the classification accuracy are reported by
considering noise faults affecting all channels and by varying the σ parame-
ters. As it can be noted, although the considered noisy region is rather wide
(1000 samples, i.e. 25 seconds) in all channels, the activity recognition sys-
tem continues to yield a good classification accuracy, even when the standard
deviation has very high values.

Table 3.17. Accuracy results with noise faults over all channels by varying the σ
parameter (N=1, K=1000 ).

Channel σ Accuracy

All 100 98.64%

All 300 91.77%

All 500 89.54%

All 1000 88.29%

All 1500 84.85%
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All the previous considerations are confirmed by the results shown in Ta-
ble 3.18, where at a fixed standard deviation, the accuracy results are above
the 90% unless the region length is greater than 1000 samples.

Table 3.18. Accuracy results with noise faults over all channels by varying the
noise region length (σ=500, N=1 ).

Channel K Accuracy

All 100 98.54%

All 200 96.88%

All 500 94.14%

All 1000 91.17%

All 2000 81.00%

3.5.1.3 Constant faults

As already described, constant faults can be represented either by an in-
variant repetition of an arbitrary value that is uncorrelated to the observed
phenomenon or by a region in the trace biased by a certain constant value. In
the following we will consider only the second kind of constant faults, since it
is more general. In particular, our model includes three parameters: C, rep-
resenting the bias constant affecting the sensor readings, N, representing the
number of random regions to affect on a single data trace, and K, that is the
length of such regions, measured in samples number.

An example of data streams affected by constant faults, with parameters
C=500, N=3 and K=600, is depicted in Figure 3.33.

Fig. 3.33. Raw-data streams affected by constant faults (C=500, N=3, K=600 ).

In Table 3.19 and Table 3.20 the results of the classification accuracy under
constant faults, by varying the regions length and the bias value, are reported.
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In the first case, the accuracy remains above 90% with faults affecting regions
having no more than 500 samples (i.e. 12.5 seconds), whereas in the second
table the accuracy remains above 80% despite the bias value can be more than
the maximum variation (roughly 1000) of the original data traces.

Table 3.19. Accuracy results with constant faults over all channels by varying the
region length (C=500, N=3 ).

Channel K Accuracy

All 100 98.51%

All 200 95.24%

All 500 91.06%

All 1000 82.08%

All 2000 56.65%

Table 3.20. Accuracy results with constant faults over all channels by varying the
bias value (N=3, K=500 ).

Channel C Accuracy

All 100 99.75%

All 300 95.87%

All 600 84.41%

All 1000 81.97%

All 1500 80.49%

3.5.1.4 Accumulative faults

As anticipated earlier, the accumulative fault manifest itself as a drift behavior
in the sensor readings, and can be modeled as a monotonic distancing from
the actual data values. This is the worst case of data faults, since, in real
situations, it is mostly due as a consequence of a permanent fault in the
sensor hardware.

An example of a single data stream (Y channel of the waist node) affected
by accumulative faults is depicted in Figure 3.34.

The results of the classification accuracy under accumulative faults affect-
ing different accelerometer channel are shown in Table 3.21. Similarly to the
results obtained with short faults (see Table 3.16), the accuracy is much more
affected by the presence of accumulative faults on the X channel of both nodes.
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Fig. 3.34. Accumulative faults on the Y data stream of the waist node.

Table 3.21. Accuracy results with accumulative faults affecting different accelerom-
eter channels.

Channel Accuracy

Waist X 38.46%

Waist Y 99.00%

Waist Z 99.25%

Thigh X 55.83%

All 20.34%

3.5.2 The self-healing plane: empowering fault tolerance of
activity recognition through SPINE-*

Although SPINE-* is able to address the common situations for satisfying the
main self-* properties (i.e. self-configuration, self-healing, self-optimization,
and self-protection), we are now interested in its self-healing capabilities. In
particular, for enhancing our activity recognition application, the autonomic
tasks layer depicted in Figure 3.35 have been developed and tested. Such an
autonomic plane is interposed between the Sensing and the Processing tasks
so to improve the quality of sensor data and then to mitigate data corruption
that could affect the application correctness. The DataFaultsDetection task
is in charge of detecting possible sensor reading faults and deciding if a data
filtering operation (performed by the Filtering task) is required (if possible)
before processing them.

ProcessingSensing
DataFaults
Detection

Filtering

Fig. 3.35. Self-healing tasks in SPINE-*.
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For the sake of space, in the following we will only describe the approach
for detecting and recovering the short faults by showing the obtained results.

3.5.2.1 Short faults detection and recovery results

Since short-faults are represented by irregular spikes over part or whole of the
data traces, the idea under the detection and recovery procedures is to analyze
the variability of the sensor readings along each of the accelerometer data
streams before passing them to the processing tasks in charge of performing
the necessary features extraction.

By considering a consecutive region of samples, the mean and the stan-
dard deviation are computed over such a data window. Afterward, for each
single sensor reading inside this region, its value is compared to the previously
computed standard deviation. If it is much greater, then it is likely to be a
fault. Once a data fault is detected, the recovery approach adopted in our ex-
periments consists in replacing its original value with the one of the previous
sampled data.

Thus, the main parameters of this detection approach are the data window
length W, on which mean and standard deviation (sd) are computed, and the
threshold T, multiple of the standard deviation, to which the sample values
are compared.

The cleaned accelerometer data traces as a result of executing the pre-
viously described approach on the corrupted data streams of Figure 3.31
are shown in Figure 3.36. The obtained result is very similar to the original
data streams (see Figure 3.30). Specifically, a window W=40 and a threshold
T=3*sd have been adopted.

Fig. 3.36. Raw-data streams recovered from short-faults generated with P=5%,
C=3.

A comparison of the classification accuracies before and after faults detec-
tion/recovery are reported in Table 3.22. The adopted approach for recovering
the accelerometer data streams is really effective in case the frequency of short
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faults is less then 25% for each channels. Much lower accuracy improvements
are obtained in the other cases. This is due to the fact that if faults are very
frequent, they cannot be well distinguished from the correct data trend, i.e. it
is impossible to determine whether a specific value corresponds to a behavior
derived by correct sensing operations of the sensor or it should be identified
as a fault.

Table 3.22. Accuracy improvements with short-faults over all channels and with
C=3.

P Accuracy (affected data) Accuracy (recovered data)

1% 79.90% 99.75%

5% 55.09% 99.75%

10% 51.86% 98.51%

25% 48.14% 59.55%

50% 46.65% 47.64%

3.6 MAPS: an agent-based programming framework for
WSNs

In this section, an innovative programming framework, MAPS, for developing
agent-based applications on WSNs is presented. MAPS (Mobile Agent Plat-
form for Sun SPOT) has been specifically designed for WSNs based on the
Java-based sensor platform Sun SPOT9 and allows to model mobile agents
by means of a multi-plane state machines driven by ECA (Event-Condition-
Action) rules. Its architecture is based on component interacting through
events and supporting agents with a minimal set of services including mes-
sage transmission, agent creation, agent cloning, agent migration, timer han-
dling and easy access to the sensor node resources (sensors, actuators, input
switches, flash memory and battery).

A modified lightweight version of MAPS, called TinyMAPS, is also briefly
described. While MAPS is specifically conceived for higher processing-capable
sensor devices, Sun SPOTs, TinyMAPS is its adaptation tailored for more
constrained platforms such as Sentilla JCreate10.

In the following, we first discuss on the use of agents in WSNs and the re-
quirements for developing efficient Multi-Agent Systems (MASs) on resource-
constrained platforms. Afterward, the design, implementation and experimen-
tation of MAPS and TinyMAPS are described. Finally, a comparison with

9 http://www.sunspotworld.com
10 http://sentilla.tomcoh.com/developers/perkpage
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other agent-based programming frameworks and a case study for realtime
human monitoring are also illustrated.

3.6.1 Requirements for MAS development on WSNs

Since the mobile agent-based paradigm has fully demonstrated its effectiveness
in conventional distributed systems as well as in highly dynamic distributed
environments, there are good motivation to prove that they can also effectively
deal with the programming and management issues that WSNs have posed. As
a confirmation, in the last years agent technology has been successfully used
in WSNs at different levels (application, middleware, network) [85]. In par-
ticular, the main agent-oriented research efforts have been to date devoted to
the following WSN research themes: network routing, data dissemination and
fusion, in-network coordination, programming frameworks, high-level system
architectures and applications.

Although several research efforts have demonstrated that mobile agents are
a suitable computing paradigm for supporting the development of distributed
applications, services, and protocols on WSNs, the development of flexible
and efficient MASs remains a challenging and very complex task due to the
currently available resource-constrained sensor nodes. In the following, we
first discuss the use of agents in the context of WSN on the basis of the
Lange and Oshima research work [86], which delineates seven good reasons
for using agents in traditional networks. We then provide an outline on the
requirements for MAS development over WSNs.

3.6.1.1 On the use of mobile agents for WSN applications

In their seminal paper [86], Lange and Oshima advertised at least seven good
reasons for using mobile agents in generic distributed systems. In the following
we describe them with reference to the WSN context.

1. Network load reduction. Mobile agents are able to access remote resources,
as well as communicate with any remote entity, by directly moving to their
physical locations and interacting with them locally to save bandwidth
resources. A mobile agent incorporating data processing capabilities can
migrate to a sensor node, perform the needed operations on the sensed
data and transmit the results to a sink node. This is more desirable, rather
than a periodic transmission of raw sensed data from the sensor node to
the sink node and the computation of data processing on the latter.

2. Network latency overcoming. An agent provided with proper control logic
may move to a sensor/actuator node to locally perform the required con-
trol tasks. This overcomes the network latency that will not affect the
real-time control operations also in case of lack of network connectivity
with the base station.
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3. Protocol encapsulation. If a specific routing protocol supporting multi-hop
paths should be deployed in a given zone of a WSN, a set of cooperating
mobile agents encapsulating this protocol can be dynamically created and
distributed into the proper sensor nodes without any regard for standard-
ization matter. Also in case of protocol upgrading, a new set of mobile
agents can easily replace the old one at run-time.

4. Asynchronous and autonomous execution. These distinctive properties of
mobile agents are very important in dynamic environments like WSNs
where connections may not be stable and network topology may change
rapidly. A mobile agent, upon a request, can autonomously travel across
the network to gather needed information “node by node” or to carry out
the programmed tasks and, finally, can asynchronously report the results
to the requester.

5. Dynamic adaptation. Mobile agents can perceive their execution environ-
ment and react autonomously to changes. This behavioral dynamic adap-
tation is well suited for operating on long-running systems like WSNs
where environment conditions are very likely to change over time.

6. Orientation to heterogeneity. Mobile agents can act as wrappers among
systems based on different hardware and software. This ability can well fit
the need for integrating heterogeneous WSNs supporting different sensor
platforms or connecting WSNs to other networks (like IP-based networks).
An agent may be able to translate requests coming from a system into
specific suitable requests to submit to another different system.

7. Robustness and fault-tolerance. The ability of mobile agents to dynami-
cally react to unfavorable situations and events (e.g. low battery level)
can lead to a better robust and fault tolerant distributed systems; e.g.
the reaction to the low battery level event can trigger a migration of all
executing agents to an equivalent sensor node to continue their activity.

An interesting taxonomy about WSNs and their relationships with multi-
agent systems can be found in [87]. In particular, the major motivation of
using agents over such networks is that many WSNs properties are shared
with and can be actually supported by agents and multi-agent systems: phys-
ical distribution, resource boundedness, information uncertainty, large scale,
decentralized control and adaptiveness. Moreover, as sensors in a WSN must
typically coordinate their actions to achieve system-wide goals, coordination
among dynamic entities (or agents) is one of the main features of multi-agent
systems. In the following, the aforementioned common properties are dis-
cussed:

• Physical distribution implies that sensors are situated in an environment
from which they can receive stimuli and act accordingly, also through
control actions aiming at changing their environment. Situatedness is a
main property of an agent and several well-known agent architectures were
defined to support such important property.
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• Boundedness of resources (computing power, communication and energy)
is a typical property both of sensor nodes as single units and of the WSN
as a whole. Agents and related infrastructures can support such limitation
through intelligent resource-aware, single and cooperative behaviors.

• Information uncertainty is typical in large-scale WSNs in which both the
status of the network and the data gathered to observe the monitored/con-
trolled phenomena could be incomplete. In this case, intelligent (mobile)
agents could recover inconsistent states and data through cooperation and
mobility.

• Large scale is a property of WSNs either sparsely deployed on a wide area
or densely deployed on a restricted area. Agents in multi-agent systems
usually cooperate in a decentralized way through highly scalable interac-
tion protocols and/or time- and space-decoupled coordination infrastruc-
tures.

• In large-scale WSNs, centralized control is not feasible as nodes can have
intermittent connections and also can suddenly disappear due to energy
lack. Thus, decentralized control should be exploited. The multi-agent ap-
proach is usually based on control decentralization transferred either to
multiple agents dynamically elected among the available set of agents or
to the whole ensemble of agents coordinating as peers.

• Adaptiveness is the main shared property between sensors and agents.
An agent is by definition adaptive in the environment in which is situated.
Thus, modeling the sensor activity as an agent or a multi-agent system and,
consequently, the whole WSN as a multi-agent system, could facilitate the
implementation of the adaptiveness properties.

3.6.1.2 Requirements and issues

Although the agent paradigm has great potential to help the development of
WSN applications, as demonstrated by all the previously discussed motiva-
tions, it is quite clear that the development of MASs for WSNs requires not
only the same efforts required by conventional distributed systems but also
the fulfillment of additional requirements specific to WSNs [88].

A direct exploitation of generic software agents into sensors is not so triv-
ial, since research in traditional multiagent systems domain does not take
into consideration the presence of severe resource constraints that typically
arise on sensor nodes. In fact, the management of poor computational and
energy resources, leading to many technical limits in designing a practical
WSN mobile-agent middleware system, represent the most critical challenge
in such a network. Moreover, research often does not opportunely consider
that communication might be slow and intermittent and that nodes might be
unreliable and failure prone.

Since software agents generally exhibit intelligent behaviors for autonomously
coordinate their actions to achieve specific system-wide goals, the complex-
ity of a middleware infrastructure for managing and supporting such agents’
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properties must be carefully considered with respect to the available resources.
This is an extremely important issue because a fundamental requirement is
to achieve a good execution performance on each single node for guaranteeing
global efficiency and scalability.

Based on our experiences and on the results in literature, we truly believe
that for facing with the resource-constrained problem, an agent-based system
has to be defined following some design requirements:

• The MAS architecture server must be as lightweight as possible, which
implies the avoidance of heavy concurrency models and, therefore, the
exploitation of cooperative concurrency control mechanism to run agents.

• A plug-in-like components organization is recommended, in order to dy-
namically and selectively activate services that are needed while deacti-
vating the useless ones for improving the overall system performance.

• The agent structure must be also lightweight so that agents can be effi-
ciently executed and migrated. This not necessarily implies that agents
cannot show complex and intelligent behaviors, but simply that the mech-
anisms for defining and encoding their behavioral models have to be simple
so that the architecture devoted to agent control and execution is not so
resource-hungry.

• Mobile agents must be natively characterized on the basis of the functional
layer to which they belong: application, middleware and network layer.
They must be also able to locally interact to enable cross-layering.

Despite the actual effectiveness of the aforementioned guidelines, the ef-
forts required for developing efficient MASs may fairly vary on the basis of
the features that each single sensor platform provides to the developers.

When possible, the limited resources problem can be overcome by execut-
ing heavy software agents, encapsulating computational-intensive functions,
into external devices, e.g. components with higher processing capabilities re-
siding outside the WSN. This makes it necessary to properly design and im-
plement MASs by providing the necessary capabilities for allowing a closer
interaction between WSNs and traditional networks and distributed systems.
If it is not possible to rely on components with much more computational
resources, MAS developers have to consider that the execution of advanced
agent-based applications is limited by the use of low-overhead techniques and
algorithms which necessary have to sacrifice optimality and accuracy, so that
agents have to behave as best as possible given the available node resources.

Platform features heterogeneity also brings to an incomparable computing
capabilities leading to difficulties in designing a common MAS architecture
that could be suitable and efficient for execution on different sensor types.
In particular, the need to address such a challenge will occur very soon since
WSNs are expected to be deployed into a growing ubiquitous environment,
so it is not unlikely to suppose that interaction among different typologies of
networks will be a common situation. Although MAS research for WSN has
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traditionally considered homogeneous sensor node architectures, this assump-
tion is too restrictive if we think about next generation WSN applications.

Another important issue in developing MAS concerns their architecture
design approach and related agent definition primitives, so to opportunely
satisfy WSN application developers requirements. Most of the research efforts
conducted so far are based on a bottom-up approach. On the basis of the
sensor nodes hardware, research focuses on how to provide proper software
abstractions to assist application agent designers in defining common or ad-
vanced tasks, without requiring to deal with low-level details for hardware and
networking management. Making the control part of the agents more expres-
sive is the way for achieving a simplification of the agent design while keeping
a rapid WSN application re-programming. This approach can also guarantee a
reduction of the agent code size (and consequently a general better migration
performance), because most of the macro-functionalities are already imple-
mented into the MAS middleware and are directly accessible to agents on each
WSN node running the middleware. A problem of such a solution is that often
the available high-level abstractions may not be suitable for many applications
that necessitate of a more fine-grained control of the node resources, which is
generally needed for defining much more efficient tasks. However, although a
fine-grained task control is ideal for reaching a more program execution flexi-
bility, it can lead to a potentially bigger, and consequently error-prone, agent
code. The alternative, i.e. the top-down approach, is basically based on a first
deep understanding of what the primary application requirements are, which
become the main driver for the design of the agent-based middleware. In this
case, the provided agent programming constructs may not be so straightfor-
ward to use, and even may be very application-specific oriented so that a more
general use is not possible.

3.6.2 State-of-the-art and Related Work

Generally speaking, MASs support mobile agents by basically providing an
agent server, an API for mobile agent programming and, sometimes, by sup-
porting programming and administration tools. In particular, the agent server
is able to execute agents by providing them with basic services such as mi-
gration, communication and resource access. In the last decade, a significant
number of MASs for IP-based distributed computing systems have been de-
veloped. The majority of them are Java based (e.g. Aglets, Voyager, Ajanta,
JADE etc.) and few others rely on other languages (DAgents, ARA etc.). In
the context of WSNs it is challenging to develop MASs for supporting mo-
bile agent-based programming [89], due to the currently available resource-
constrained sensor nodes, and very few real systems have been to date pro-
posed and concretely implemented. In the following, we first describe the most
significant available research prototypes based on TinyOS operating system,
and then, we introduce the Java-based agent programming frameworks.
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Agilla [90] is an agent-based middleware developed on TinyOS and sup-
porting multiple agents on each node. Agilla provides two fundamental re-
sources on each node: a tuplespace and a neighbor list. The tuplespace rep-
resents a shared memory space where structured data (tuples) can be stored
and retrieved, allowing agents to exchange information through spatial and
temporal decoupling. A tuplespace can be also accessed remotely. The neigh-
bor list contains the address of all one-hop nodes needed when an agent has
to migrate. Agents can migrate carrying their code and state, but they can-
not carry their tuples locally stored on a tuplespace. Packets used for node
communication (e.g. for agent migration/cloning, remote tuple accessing) are
very small to minimize messages losses, whereas retransmission techniques are
also adopted.

In [91] the authors propose an extension of Agilla to support direct commu-
nication based on messages. In particular, to establish direct communications,
agents are mediated by a middle component (named landmark) that interacts
with agents through zone-based registration and discovery protocols.

ActorNet [63] is an agent-based platform based on the Actor model. To
overcome the difficulties in allowing code migration and interoperability due
to the strict coupling between applications and sensor node architectures,
actorNet exposes services like virtual memory, context switching, and multi-
tasking. Thanks to these features, it effectively supports agent programming
by providing a uniform computing environment for all agents, regardless of
hardware or operating system differences. The actorNet language used for
high-level agent programming has syntax and semantics similar to those of
Scheme with proper instruction extension.

In [92] another mobile agent framework is proposed. The framework is im-
plemented on Crossbow MICA2DOT motes. In particular, it provides agent
migration and agent interaction based both on local shared memory and net-
work messages.

The above described MASs for WSNs [90, 91, 63, 92] are all implemented
for TinyOS-based sensor platforms and use ad-hoc languages for agent pro-
gramming (e.g. Agilla uses a micro-programming language, whereas actorNet
employs a functional-oriented language). Although some supported opera-
tions (e.g. migration) are very efficient, programming complex tasks is not so
straightforward and, moreover, developers need to learn another very specific
language. The Java language, through which Sun SPOT and Sentilla JCre-
ate sensors can be programmed, due to its object-oriented features, could
provide more flexibility and extendibility for an effective implementation of
agent-based platforms. Currently, the only available Java-based mobile agent
platforms for WSNs (apart from MAPS and TinyMAPS presented in this
thesis) are AFME [60] and MASPOT [93].

The AFME framework, a lightweight version of the agent factory frame-
work purposely designed for wireless pervasive systems and implemented in
J2ME, has been recently ported onto Sun SPOT and used for exemplifying
agent communication and migration in WSNs. AFME is strongly based on

89



Chapter 3. Application-level approaches: middlewares for autonomic WSN

the Belief-Desire-Intention (BDI) paradigm, in which agents follow a sense-
deliberate-act cycle. In AFME, agents are defined through a mixed declar-
ative/imperative programming model. The declarative Agent Factory Agent
Programming Language (AFAPL), based on a logical formalism of beliefs and
commitments, is used to encode an agent’s behavior by specifying rules that
define the conditions under which commitments are adopted. The impera-
tive Java code is instead used to encode perceptors and actuators. However,
AFME was not specifically designed for WSNs and, particularly, for Java Sun
SPOT.

MASPOT is a mobile agent system natively designed for Sun SPOTs that,
differently from the other Java-based MAS, is able to provide agent’s code mi-
gration, since it does not rely on the Isolate-based mechanism. In particular,
both weak and strong migration are supported. The type of migration is de-
fined for each agent at creation time and cannot change during the agent life
cycle. The MASPOT inter-agent communication is based on the tuple spaces
model, similar to the one adopted by Agilla. Communication between the
base station and the mobile agents requires support for agent mobility. Such
a communication is basically established by means of a chain of references
from the base station to the node where an agent currently is. When an agent
moves to a new node, it leaves behind a marker indicating the next node to
which it has migrated. Furthermore, a specific procedure exists to eliminate
circular chains of references that will no longer be used.

3.6.3 MAPS Architecture and Programming Model

MAPS is a novel Java-based framework for wireless sensor networks based
on Sun SPOT technology which enables agent-oriented programming of WSN
applications. The Sun SPOT sensor platform (currently supported by Oracle)
is based on the IEEE 802.15.4 communication standard and on the Squawk
VM which is fully Java compliant and CLDC1.1-compatible. MAPS has been
appositely defined for resource-constrained sensor nodes according to the fol-
lowing requirements:

− Component-based lightweight agent server architecture to avoid heavy con-
currency models and, therefore, exploit cooperative concurrency to execute
agents.

− Lightweight agent architecture to efficiently execute and migrate agents.
− Minimal and pluggable core services involving agent migration, agent nam-

ing, agent communication, activity timing, sensor resource capability ac-
cess (actuators, input signalers, flash memory, and battery).

− Plug-in-based architecture extensions through which any other service
should be defined in terms of one or more dynamically installable compo-
nents implemented as single or cooperating (mobile) agent/s.

− Java as programming language for the agent system and (mobile) agents.
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In the following subsections we focus on the system architecture and the
agent programming model.

3.6.3.1 System architecture

The MAPS architecture (see Figure 3.37) is based on components that interact
through events and offer a set of services to mobile agents including message
transmission, agent creation, agent cloning, agent migration, timer handling,
and easy access to the sensor node resources.

Fig. 3.37. MAPS architecture.

In particular, the main components are:

− Mobile Agent (MA), which is the basic high-level component defined by
user for constituting agent-based applications.

− Mobile Agent Execution Engine (MAEE), which manages the execution of
MAs by means of an event-based scheduler enabling lightweight concur-
rency. MAEE also interacts with the other service-provider components to
fulfill service requests (message transmission, sensor reading, timer setting,
etc) issued by MAs.

− Mobile Agent Migration Manager (MAMM), which supports agents migra-
tion through the Isolate hibernation/dehibernation feature provided by the
Sun SPOT environment. The MAs hibernation and serialization involve
data and execution state whereas the code should already reside at the
destination node (this is a current limitation of the Sun SPOTs which do
not support dynamic class loading and code migration).
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− Mobile Agent Communication Channel (MACC), which enables inter-
agent communications based on asynchronous messages (unicast or broad-
cast) supported by the radiogram protocol.

− Mobile Agent Naming (MAN), which provides agent naming based on
proxies for supporting MAMM and MACC in their operations. MAN also
manages the (dynamic) list of the neighbor sensor nodes that is updated
through a beaconing mechanism based on broadcast messages.

− Timer Manager (TM), which manages the timer service for timing MA
operations.

− Resource Manager (RM), which enables access to the resources of the Sun
SPOT node: sensors (3-axial accelerometer, temperature, light), switches,
leds, battery, and flash memory.

3.6.3.2 Agent programming model

In Figure 3.38 the Mobile Agent model is depicted. In particular, the dy-
namic behavior of MA is modeled as a multi-plane state machine (MPSM).
The GV component represents the global variables, namely, the data inside
an MA whereas the GF is a set of global supporting functions. Each plane
may represent the behavior of the MA in a specific role, so enabling role-based
programming, and is composed of local variables (LV), local functions (LF),
and an ECA-based automaton (ECAA). This automaton is composed of states
and mutually exclusive transitions among states. Transitions are labeled by
Event-Condition-Action (E[C]/A) rules, where E is the event name, [C] is a
boolean expression based on global and local variables, and A is an atomic
action. MAs interact through events that are asynchronously delivered by the
MAEE and dispatched, through the Event Dispatcher component, to one or
more planes according to the events the planes are able to handle. It is worth
noting that the MPSM-based agent behavior programming allows exploit-
ing the benefits deriving from three main paradigms for WSN programming:
event-driven programming, state-based programming and mobile agent-based
programming.

3.6.4 TinyMAPS

The architecture and the agent programming model of TinyMAPS have been
directly derived from MAPS, with proper adaptation to be actually imple-
mented atop the Java-based Sentilla JCreate platform.

Its architecture is depicted in Figure 3.39 and, similarly to MAPS, is based
on components interacting through events but offering a more limited set of
core-services (agent creation, migration, communication and sensor resource
access) to mobile agents. Agent cloning and timer handling are not provided.
In particular, the main components are:
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Fig. 3.38. MAPS agent model.

− Mobile Agent (Agent), which is the basic component defined by user. It is
designed as a simple class that encloses within the behavior (is possible to
define only single-plane agents).

− Mobile Agent Execution Engine (MAEE), which manages the execution of
MAs by means of a thread that schedules local or remote events according
to a FIFO policy. The MAEE also encapsulates others functions:
– it uses serialization for sending remote events through the inner com-

ponent Mobile Agent Event Sender (MAES);
– it implements a system of naming (Mobile Agent Naming component,

MAN ) which keeps the WSN nodes along with the active agents run-
ning on them;

– it interacts with the MAER through the Mobile Agent Migration Man-
ager (MAMM) for providing a mechanism of migration for mobile
agents.

− Mobile Agent Event Receiver (MAER), which is developed as an indepen-
dent thread that waits for receiving events from remote MAs. After event
reception, it delegates the delivering of event to the MAEE.

− Resource Manager (RM), which allows accessing to the resources of the
Sentilla node, i.e. a 3-axial accelerometer and LEDs.

The TinyMAPS mobile agents are defined by following the same multi-
plane state machine (MPSM) model previously discussed and depicted in
Figure 3.38.

3.6.5 A comparison among Java-based MAS

In the following section we first describe the main characteristics of the Java-
based MAS for WSNs and then comparative results of MAPS with both
TinyMAPS and AFME are provided.
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Fig. 3.39. TinyMAPS architecture.

Java-based MASs’ characteristics comparison
In Table 3.23, MAPS, TinyMAPS, AFME, and MASPOT are compared

with respect to seven characteristics: agent behavior model, intentional agent
support, agent behavior definition language, migration type, migration mech-
anism, agent communication model, and dynamic agent creation.

Table 3.23. Main features offered by the current Java-based MASs for WSNs.

MAPS TinyMAPS AFME [60] MASPOT [93]

Agent Behavior
Model

Finite State
Machine

Finite State
Machine

Belief/Desire/
Intension

No specific
model

Intentional Agent
Support

No No Yes No

Agent Behavior
Definition Language

Java Java Java/AFAPL Java

Migration Type
Strong
(but no code)

Weak Weak
Weak or
Strong

Migration Mechanism
Sun SPOT
Isolate

Agent descriptor
transmission

Agent descriptor
transmission

Sun SPOT
Isolate +
Suite transfer

Agent Communication
Model

Message
passing

Message
passing

Message
passing

Tuple spaces

Runtime Agent
Creation

Yes Yes No Yes

Both TinyMAPS and MAPS offer similar services for developing WSN
agent-based applications. They use finite state machines (FSMs) to model the
agent behavior and directly the Java language to program guards and actions,
so no translator and/or interpreter need to be developed and no new language
has to be learnt. Moreover, differently from TinyMAPS, MAPS is more power-
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ful and fully exploits the Sun SPOT library to provide advanced functionality
of communication, migration, sensing/actuation, timing, and flash memory
storage. Although AFME is based on the same basic programming language,
its agent model is different from a finite state machine, since it employs a
more complex BDI-like model, which offers support to intentional agents. In
particular, it is centered on perceptors, actuators, modules, and services which
are developed in Java but have to be strictly correlated to declarative rules
provided for modeling the agent behavior. Both approaches are effective for
developing agent-based applications even though MAPS is more straightfor-
ward as it relies on a programming style based on state machines widely known
by programmers of embedded systems. Differently from the previous systems,
MASPOT does not provide any specific model to facilitate developers, which
have to design and implement the agents’ behavior without the support of a
well defined high-level formalism.

For what concerning the migration support, MAPS offers a “limited”
strong migration, since the execution state of the agent is transferred dur-
ing migration along with the agent data state, but no code migration is sup-
ported. In particular, the implementation of mobile agents is based on the
Isolate components defined by the Sun SPOT library. Each Isolate represents
“process-like” unit of computation isolated from other instances of Isolate
and their migration mechanism is directly offered by the SPOT SquawkVM
through their hibernation and serialization. TinyMAPS, instead, supports mi-
gration by simply sending an event that contains agent status information and
data, which are encapsulated inside the event. Thus, the agent needs to restart
its execution on the remote node. In any case, both MAPS and TinyMAPS
suffer from the current limitation of the Sun SPOT and the Sentilla JCreate
that, as CLDC-compliant devices do not allow dynamic class loading, so pre-
venting from the possibility to support code migration (i.e. any class required
by the agent must be already present at the destination node). Similarly to
TinyMAPS, AMFE uses a proprietary agent descriptor to capture and trans-
mit agent data and state. At the contrary, MASPOT supports both strong
and weak migration and the type of migration is defined for each agent at
creation time and cannot change during the agent life cycle. In particular,
along with the migration mechanism based on Isolates, the transmission of
Suites (containing a collection of packaged classes and libraries) is employed
for migrating the agent code from a central code library situated on the user
station (the coordinator computer of the WSN) to a specific Sun SPOT node.

The agent communication model adopted by MAPS, TinyMAPS, and
AFME for exchanging information among agents is based on message passing
(unicast and broadcast) which is the communication paradigm mostly used in
agent-oriented frameworks. The MASPOT inter-agent communication is in-
stead based on the tuple spaces model, similar to the one adopted by Agilla.

The ability to create an agent at runtime could be an important feature for
application in which the number of necessary agents cannot be determined “a
priori” and simply fixed at compile-time. MAPS, TinyMAPS, and MASPOT
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allow for such capability, so providing more flexibility for the creation of dy-
namic distributed applications, whereas AFME needs agents to be created
only in a static way.

3.6.5.1 Performance test comparison between MAPS and
TinyMAPS

To evaluate and compare the performance of MAPS and TinyMAPS, two
benchmarks have been defined according to [94] for the following mechanisms:

− Agent communication. The agent communication time is computed for two
agents running onto different nodes and communicating in a client/server
fashion (request/reply). Two different request/reply schemes are used: (i)
data Back and Forward (B&F), in which both request and reply contain
the same amount of data; (ii) data B, in which only the reply contains
data.

− Agent migration. The agent migration time is calculated for agent ping-
pong among two single-hop-distant sensor nodes. Migration times are com-
puted by varying the data cargo of the ping-pong agent.

In Figure 3.40 the finite state machines of the agents involved in the
two different benchmarks are shown. They are related to both MAPS and
TinyMAPS system, since they rely on the same agent modeling formalism.

Fig. 3.40. Planes of the agents employed in the benchmarks.

In the Sender agent plane, after the agent creation the AGN START event
is automatically signaled bringing the agent to the IDLE state and executing
the A0 action for some initialization code. From the IDLE state, the tran-
sition to the WAIT MSG state is immediately triggered whenever the guard
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[msgCount < MSG NUMBER] holds and, consequently, the A1 action is exe-
cuted, consisting in sending a message to the Receiver agent. The Sender then
waits until the reply message is received. If so, the MSG event is triggered, the
action A2 is executed (the messages exchange time is evaluated and stored),
and the plane returns to the IDLE state. If the number of messages exchange
reaches MSG NUMBER, before the termination of the Sender agent, the op-
erations included in A3 are performed (i.e. the communication time average
is calculated and a last message is sent to the Receiver for its termination).
The Receiver agent’s behavior is very simple. It waits for a message coming
from the Sender and on the basis of the value of its reply parameter, it will
send a message reply (A1 ) or terminate itself.

For the agent migration benchmark, a single Ping-Pong agent is employed.
Upon agent creation and starting, a request for migration is executed (action
A1 ) and the plane transits to the WAIT MIGRATION state, waiting for
migration completion, which is signaled with the MGR EXECUTED event.
After having moved to the remote node, the agent immediately requests for
a new migration for coming back to the origin node (action A2 ). Once the
agent is came back to the origin node, the elapsed time is stored and a new
round-trip migration starst, unless MIGR NUMBER migrations have been
completed. Under such a condition, before terminating, the agent computes
the migration time average (action A4 ).

The implementation of the agent planes depicted in Figure 3.40 is rather
fast, since the basic structure of a generic finite state machine (FSM) is very
simple and the main effort for developers is just to insert the code correspond-
ing to the actions of the FSMs, by also making use of the MAPS/TinyMAPS
API for accessing to the basic agent management supporting services. An ex-
cerpt of the Sender agent’s plane implementation is shown in Listing 3.2. In
particular, the eventHandler method is where the FSM and related actions are
encode. For more specific technical details on the design and implementation
of MAPS/TinyMAPS agents, readers can refer to [95, 96].

In Figure 3.41, the comparison results of the agent communication time,
with different message payload, are shown, with MAPS performing better
than TinyMAPS. Moreover, as message data payload increases, communica-
tion time for MAPS is not affected. The tests have been executed by taking
into consideration that the Sentilla JCreate platform imposes a maximum
message payload size of 78 bytes.

For what concerning the migration benchmark, Figure 3.42 shows the ob-
tained results. In particular, the migration times are high due to both the
slowness of the JVM operations supporting the migration process and the
communication time between two nodes. For agents with low data payload
TinyMAPS performs better than MAPS; however, when agent data payload is
greater than 58 bytes, MAPS migration mechanism starts performing better.
Since TinyMAPS relies on messages for transmitting the agent description,
the limitation of 78 bytes still holds. At the contrary, MAPS does not have
any agent data payload limitations.
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Listing 3.2. Excerpt of the Sender agent’s plane implementation in MAPS

1 .....
2 public SenderPlane(Agent agent){
3 super(agent); this.currentState = CREATED;
4 }
5 .....
6 public void eventHandler(Event event){
7 try {
8 switch(this.currentState){
9 case CREATED:

10 if (event.getName() == Event.AGN_START){ //action A0
11 while(agents.size() == 0){
12 Thread.sleep(200);
13 agents= this.agent.getRemoteAgentsID();
14 }
15 remoteAgentID= (String)(agents.elementAt(0));
16 this.msgCount= 0;
17 this.currentState = IDLE;
18 }
19 break;
20 case IDLE:
21 if(this.msgCount < MSG_NUMBER){ //action A1
22 Event msg = new Event(this.agent.getId(), remoteAgentID,
23 Event.MSG, Event.NOW);
24 msg.setParam("msgPayload", msgPayload);
25 msg.setParam("reply", true);
26 this.startTime= System.currentTimeMillis();
27 this.agent.send(this.agent.getId(), remoteAgentID,
28 msg, false);
29 this.currentState = WAIT_MSG;
30 }else{ //action A3
31 compute&printMean(this.commTime);
32 Event msg = new Event(this.agent.getId(), remoteAgentID,
33 Event.MSG, Event.NOW);
34 msg.setParam("reply", false);
35 this.agent.send(this.agent.getId(), remoteAgentID,
36 msg, false);
37 this.agent.terminateAgent();
38 }
39 break;
40 case WAIT_MSG:
41 if (event.getName() == Event.MSG ) { //action A2
42 this.commTime[this.msgCount]=
43 System.currentTimeMillis()-this.startTime;
44 this.msgCount++;
45 this.currentState = IDLE;
46 }
47 }
48 }
49 catch(Exception e){LedsManager.error(); e.printStackTrace();}
50 }
51 ....
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Fig. 3.41. MAPS vs. TinyMAPS: Agent communication time comparison.

Fig. 3.42. MAPS vs. TinyMAPS: Agent migration time comparison.

3.6.5.2 Performance test comparison between MAPS and AFME

The same benchmarks discussed in Section 3.6.5.1 have been performed for
AFME, and the obtained communication/migration performance results are
compared with MAPS.

Differently from MAPS and TinyMAPS, AFME agents’ behavior is defined
through AFAPL declarative rules. In Listing 3.3, the rules of the two agents
defined for testing the agent communication time are reported and described.

The first rule of the Sender agent checks if less than MSG NUMBER mes-
sages have been sent. When the numMsgSent belief is adopted, it returns the
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Listing 3.3. Sender and Receiver agents’ rules in AFME

1 Sender Agent rules:
2 1. numMsgSent(?msgCount), #?msgCount<MSG_NUMBER > storeStartTime,
3 inform(agentID(receiverAgent),
4 addresses("radiogram://"+receiverNodeAddr));

6 2. message(inform, sender(receiverAgent, address(?addr))) >
7 compute&storeCommTime, increaseMsgCount;

9 3. numMsgSent(?msgCount), #?msgCount==MSG_NUMBER > compute&printTimeAverage;

11 Receiver Agent rule:
12 1. message(inform, sender(senderAgent, address(?addr))) >
13 inform(agentID(senderAgent), addresses("radiogram://"+senserNodeAddr));

number of messages sent into the ?nSamples variable, whose value is tested for
confirming that a new message has to be sent. If so, the starting time is also
acquired (it is in charge of the storeStartTime actuator). The second rule com-
putes and stores the elapsed time for the communication upon the reception
of the reply message coming from the receiverAgent (see the message belief),
whereas the messages count is incremented (compute&storeCommTime and
increaseMsgCount are the two actuators in charge of performing such opera-
tions). Finally, the third rule fires when the number of messages sent so far is
equal to MSG NUMBER, so that the final communication time average can
be computed and displayed (i.e. the compute&printTimeAverage actuators is
executed).

The Receiver agent has one rule, which simply consists in sending a mes-
sage reply whenever a message coming from the Sender agent is received.

For what concerning the migration benchmark performed, the needed rules
for the correct execution of the Ping-Pong agent are shown in Listing 3.4:

The rules defined above are much more complicated with respect to the
ones previously defined for the agent communication benchmark, and also
much more difficult to read and understand if compared to the simple and clear
finite state machine formalism adopted by MAPS/TinyMAPS and depicted in
Figure 3.40. In particular, two set of rules are needed for a correct execution
of the Ping-Pong agent: the rules associated to the agent and representing
its running behavior, and a startup rule which is necessary for creating a
set of beliefs (destAddr, time, and ieeeAddr along with related values) after
the agent creation, but before the agent start, and representing a kind of
knowledge initialization. In particular, the ieeeAddr belief represents the node
address on which the agent is currently running, whereas the destAddr belief
represents the destination node to which the agent has to migrate.

Upon the agent start, since the aforementioned starting beliefs hold, the
first rule fires and the migrate actuator is performed for requesting to the
AFME middleware the migration of the agent to the destination node, whose
address has been previously stored in the ?destaddr variable by the startup
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Listing 3.4. Ping-Pong agent’s rules in AFME

1 Startup rule:

3 1. always(ieeeAddr(com.sun.spot.peripheral.Spot.getInstance()
4 .getRadioPolicyManager().getIEEEAddress()+":45")),
5 always(destAddr("0014.4F01.0000.07DB:46")),
6 always(init);

8 Ping-Pong Agent rules:

10 1. init, destAddr(?destaddr), ieeeAddr(?addr) >
11 par(
12 migrate(?destaddr,null), retractBelief(always(destAddr(?destaddr))),
13 retractBelief(always(ieeeAddr(?addr))), retractBelief(always(init)),
14 adoptBelief(always(couple(?time,?addr))),
15 adoptBelief(always(migrated)),
16 adoptBelief(always(ieeeAddr(?destaddr))),
17 adoptBelief(always(destAddr(?addr))),
18 time(?time)
19 );

21 2. migrated, destAddr(?destaddr), ieeeAddr(?addr) >
22 par(
23 migrate(?destaddr,null), retractBelief(always(destAddr(?destaddr))),
24 retractBelief(always(ieeeAddr(?addr))),
25 retractBelief(always(migrated)), adoptBelief(always(terminated)),
26 adoptBelief(always(ieeeAddr(?destaddr))),
27 adoptBelief(always(destAddr(?addr)))
28 );

30 3. terminated, couple(?time, ?addr) > par(printTime(?time, ?addr),
31 retractBelief(always(terminated)));

rule. At the same time (the par keyword indicate the parallel execution of
commitments/actuators), the ieeeAddr and destAddr need to be retracted
and readopted by swapping their related values. Moreover, the time of start-
ing migration is stored and the migrated belief is generated so that the agent,
on resume, knows that the migration is completed. The second rule is rather
similar to the previous one and is in charge of performing the returning mi-
gration to the origin node. Once the agent terminates its ping-pong trip, the
third rule fires (i.e. the couple and the terminated beliefs hold) and the elapsed
time is finally computed and displayed.

Along with the AFAPL rules, AFME requires also the implementation of
proper Java classes, each of which is related to a specific belief and actuator
and represents the actual code that is executed on the Sun SPOT nodes. For
more specific technical details on the design and implementation of AFME
agents, readers can refer to [95, 96].

The results obtained by the two performed benchmarks are described in
the following.

Comparison results for the communication time are shown in Figure 3.43.
For messages with light data payload, AFME performs better than MAPS;
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however, when the message data payload overtakes 700 bytes, MAPS starts
performing better in the case data BF.

Fig. 3.43. MAPS vs. AFME: Agent communication time comparison.

Comparison results for the migration times are shown in Figure 3.44.
AFME retains a higher performance migration mechanism, as it is not based
on the heavy isolate hibernation/serialization mechanisms of the SquawkVM.

Fig. 3.44. MAPS vs. AFME: Agent migration time comparison.
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3.6.6 A case study: agent-based human activity monitoring

In this section we present an agent-oriented signal processing in-node environ-
ment specialized for real-time human activity monitoring based on WBSNs.
In particular, it is able to recognize postures (e.g. lying down, sitting and
standing still) and movements (e.g. walking) of assisted livings. The system is
designed and implemented with MAPS at the sensor node side and through
Java and JADE at the coordinator side.

3.6.6.1 Design and implementation

The architecture of the system, shown in Figure 3.45, is organized into a
coordinator and two sensor nodes.

The coordinator side is based on a JADE agent that incorporates two mod-
ules of the Java-based SPINE coordinator[64], developed in the context of the
SPINE project11, which are the SPINE Manager and the SPINE Listener. In
particular, the SPINE Manager is used by end-user applications (e.g. real-time
activity monitoring application) for sending commands to the sensor nodes.
Moreover, the SPINE Manager is responsible of capturing low-level messages
and events sent from the nodes through the SPINE Listener, which integrates
several sensor platform-specific SPINE communication modules (e.g. TinyOS,
Z-Stack, etc), to notify registered applications with higher-level events and
message content. A SPINE communication module is composed of a send/re-
ceive interface and some components that implement such interface according
to the specific sensor platform and that formalize the high-level SPINE mes-
sages in sensor platform-specific messages. In this work, the SPINE Listener
has been enhanced with a new MAPS/Sun SPOT communication module
to configure and communicate with MAPS-based sensor nodes. Such module
translates high-level SPINE messages formatted according to the SPINE OTA
(Over-The-Air) protocol into lower-level MAPS/Sun SPOT messages through
its transmitter component and vice versa through its receiver component. The
JADE agent coordinator also integrates an application-specific logic for the
synchronization of the two sensors. The SPINE-based real-time activity moni-
toring application was thus completely reused as well as the SPINE Manager,
only the SPINE Listener was modified to account for such enhancement.

The sensor node side (see Figure 3.45) is based on two Java Sun SPOTs
sensors respectively positioned on the waist and the thigh of the monitored
person. In particular, MAPS is resident on the sensor nodes and supports the
execution of the WaistSensorAgent and the ThighSensorAgent. WaistSensor-
Agent and the ThighSensorAgent have the following similar step-wise cyclic
behavior:

1. Sensing the 3-axial accelerometer sensor according to a given sampling
time (ST);

11 http://spine.deis.unical.it/
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Fig. 3.45. Architecture of the real-time activity monitoring system.

2. Computation of specific features on the acquired raw data according to
the window (W) and shift (S) parameters. In particular, W is the sample
size on which features are computed whereas S is the percentage of sliding
on W (usually S is set to 50%);

3. Features aggregation and transmission to the coordinator;
4. Goto 1.

The agents differ in the specific computed features even though the W
and S parameters are equally set. In particular, while the WaistSensorAgent
computes the mean values for the accelerometer data sensed on the XYZ axes,
the min and max values for data sensed on the X axis, the ThighSensorAgent
calculates the min value for data sensed on the X axis.

The interaction diagram depicted in Figure 3.46 shows the interaction
among the three agents costituting the real-time system: CoordinatorAgent,
WaistSensorAgent and ThighSensorAgent. In particular, the CoordinatorA-
gent first sends one AGN START event for each sensor agent to configure
them with the sensing parameters (W, S and ST); then, it broadcasts the
START event to start the sensing activity of the sensor agents. Sensor agents
sends the DATA event to the CoordinatorAgent as soon as features are com-
puted. If the CoordinatorAgent detects that the agents are not synchronized
anymore, it sends the RESYNCH event to resynchronize them.
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Fig. 3.46. Agents interaction of the real-time activity monitoring system.

The behavior of the WaistSensorAgent is specified through the 1-plane
shown in Figure 3.47 and the corresponding code in Listing 3.5 (the behavior
of the ThighSensorAgent has the same structure but the computed features
are different as discussed above). In particular, after an initialization action
(A0) driven by the occurrence of the AGN START event, the sensing plane
goes into the WAIT4SENSING state. The MSG.START event allows starting
the sensing process by the execution of action A1, which in particular performs
the following steps:

1. sensing parameters (W, S, ST), data acquisition buffers for XYZ chan-
nels of the accelerometer sensor (windowX, windowY, windowZ), and
data buffers for feature calculation (windowFE4X, windowFE4Y, win-
dowFE4Z) are initialized (see initSensingParamsAndBuffers function);

2. the timer is set for timing the data acquisition according to the ST param-
eter (see timerSetForSensing function and in particular the highly precise
Sun SPOT timer is used);

3. a data acquisition is requested by submitting the ACC CURRENT ALL AXES
event through the sense primitive (see doSensing function).

Once the data sample is acquired, the ACC CURRENT ALL AXES event
is sent back with the acquired data and the action A2 is executed; in particular:
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1. the buffers are circularly filled with the proper values (see bufferFilling
function);

2. the sampleCounter is incremented and the nextSampleIndex is incre-
mented module W for the next data acquisition;

3. if S samples have been acquired, features are to be calculated, thus sam-
pleCounter is reset, samples in the buffers are copied into the buffers for
computing features, calculation of the features is carried out through the
meanMaxMin function, and the aggregated results are sent to the base
station by means of the MSG TO BASESTATION event appropriately
constructed;

4. the timer is reset;
5. data acquisition is finally requested.

In the ACC SENSED&FEAT COMPUTED state the MSG.RESYNCH
might be received for resynchronization purposes (see Section 5.2); it brings
the sensing plane into the WAIT4SENSING state. The MSG.RESTART
brings the sensing plane back into the ACC SENSED&FEAT COMPUTED
state for (reconfiguring and) continuing the sensing process. The MSG.STOP
eventually terminates the sensing process.

Fig. 3.47. 1-plane behavior of the WaistSensorAgent.

Listing 3.5. Excerpt of the WaistSensorAgent’s code in MAPS

2 \textbf{GV}
3 byte timestamp;
4 double [] windowX4FE, windowY4FE, windowZ4FE;
5 String basestationAddress;
6 \textbf{LV}
7 int W, S, ST;
8 byte sampleCounter;
9 int nextSampleIndex;

10 IAT91_TC timer;
11 double [] windowX, windowY, windowZ;
12 double [] resultsX, resultsY, resultsZ;
13 \textbf{Actions}
14 A0: initVars();
15 A1: initSensingParamsAndBuffers(event);
16 timerSetForSensing();
17 doSensing();
18 A2: bufferFilling(event);
19 sampleCounter++;
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20 nextSampleIndex=(nextSampleIndex+1)%W;
21 if (sampleCounter==S){
22 sampleCounter==0;
23 copySensingBuffersIntoBuffersForComputingFeatures();
24 computeFeatures();
25 transmitFeaturesComputed();
26 }
27 timerReset();
28 doSensing();
29 A3: timerDisabling();
30 initVars(); A1;
31 A4: timerDisabling();
32 \textbf{LF}
33 initVars():
34 sampleCounter=0; nextSampleIndex=0; agent.timestamp=0;
35 initSensingParamsAndBuffers(Event event):
36 (WaistSensorAgent)agent.basestationAddress=event.getParam(
37 "BASESTATION_ADDRESS");
38 W=Integer.parseInt(event.getParam("WINDOW_SIZE"));
39 S=Integer.parseInt(event.getParam("SHIFT_SIZE"));
40 ST=Integer.parseInt(event.getParam("SAMPLE_RATE_MS"));
41 windowX = new double[W]; windowY = new double[W]; windowZ= new double[W];
42 (WaistSensorAgent)agent.windowX4FE = new double[W];
43 (WaistSensorAgent)agent.windowY4FE = new double[W];
44 (WaistSensorAgent)agent.windowZ4FE = new double[W];

46 timerSetForSensing():
47 timer = Spot.getInstance().getAT91_TC(0);
48 int cnt = (int)(ST * 1000 / 2.1368);
49 timer.configure(TimerCounterBits.TC_CAPT | TimerCounterBits.TC_CPCTRG |
50 TimerCounterBits.TC_CLKS_MCK128);
51 timer.setRegC(cnt);
52 timer.enableAndReset(); timerReset();

54 doSensing():
55 Event accel = new Event(agent.getId(),agent.getId(),
56 Event.ACC_CURRENT_ALL_AXES,Event.NOW);
57 agent.sense(accel);

59 bufferFilling(Event event):
60 windowX[nextSampleIndex]=Double.parseDouble(
61 event.getParam(ParamsLabel.ACC_ACCEL_X_VALUE));
62 windowY[nextSampleIndex]=Double.parseDouble(
63 event.getParam(ParamsLabel.ACC_ACCEL_Y_VALUE));
64 windowZ[nextSampleIndex]=Double.parseDouble(
65 event.getParam(ParamsLabel.ACC_ACCEL_Z_VALUE));

67 timerReset():
68 timer.enableIrq(TimerCounterBits.TC_CPCS);
69 timer.waitForIrq(); timer.status();

71 timerDisabling():
72 timer.disable(); timer.shutDown();

74 computeFeatures():
75 resultsX = meanMaxMin((WaistSensorAgent)agent.windowX4FE);
76 resultsY = meanMaxMin((WaistSensorAgent)agent.windowY4FE);
77 resultsZ = meanMaxMin((WaistSensorAgent)agent.windowZ4FE);

79 trasmitFeaturesComputed():
80 Event msgToServer = new Event(this.agent.getId(),
81 Constants.MSG_TO_BASESTATION, Event.MSG_TO_BASESTATION, Event.NOW);
82 msgToServer.setParam(ParamsLabel.AGT_BASESTATION_ADDRESS,
83 (WaistSensorAgent)agent.basestationAddress);
84 msgToServer.setParam("MeanX","" + resultsX[0]);
85 msgToServer.setParam("MeanY","" + resultsY[0]);
86 msgToServer.setParam("MeanZ","" + resultsZ[0]);
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87 msgToServer.setParam("MaxY", "" + resultsY[1]);
88 msgToServer.setParam("MinY", "" + resultsX[2]);
89 (WaistSensorAgent)agent.timestamp=(
90 (WaistSensorAgent)agent.timestamp+1)%128;
91 msgToServer.setParam("Timestamp", "" +
92 (WaistSensorAgent)agent.timestamp);
93 agent.send(agent.getId(), Constants.MSG_TO_BASESTATION,
94 msgToServer, false);
95 double [] meanMaxMin(double []): //omissis

3.6.6.2 Recognition accuracy

The activity monitoring system integrates a classifier based on the K-Nearest
Neighbor algorithm [97] that is capable of recognizing postures and movements
defined in a training phase. The classifier was setup through a training phase
and tested considering the following parameter setting: ST=100ms, W=20
(S=10), P=25%. Accordingly, the features (Min, Max and Mean) are com-
puted on 20 sampled data every new 10 samples acquired by the sensors. The
training phase used a KNN-based classifier parameterized with K=1 and the
Manhattan distance which performs quite well as classes (lying down, sitting,
standing still and walking) are rather separate and scarcely affected by noise.
The test phase is carried out by considering the pre-defined sequence of pos-
tures/movements represented by the state machine reported in Figure 3.48.
Accordingly, the obtained classification accuracy results are reported in Fig-
ure 3.49. As can be noted after a transitory period of 5 s from one state to
another, all the postures/movements are recognized with an accuracy of 100%.
The state transitions more difficult to recognize are STA→SIT, WLK→STA,
and SIT→LYG, whereas the transition STA→WLK is recognized as soon as
it occurs. The obtained results are good and encouraging if compared with
other works in the literature which use more than two sensors on the human
body to recognize activities [98].
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Fig. 3.48. State machine of the pre-defined sequence of postures/movements.

Fig. 3.49. Percentage of mismatches vs. transitory time computed with ST=100
ms, W=20, P=25%.
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4

Networking-level protocols

Due to the inherent distributed nature of a WSN, along with proper program-
ming tools for the development of applications with autonomic capabilities,
the underlying communication protocols should also provide some kind of self-
adaptive property to better support the global behavior of the applications to
the network status or changing network conditions as well as to better man-
age the sensor node resources. And these protocols should possibly show very
little computational and communication overhead.

At this purpose, this chapter presents specific networking-level protocols
for WSNs having self-adaptive capabilities.

In particular, an enhancement of the AODV routing protocol, called CG-
AODV, and a novel contention-based MAC protocol, called QL- MAC, are
described in details. CG-AODV adopts a node concentration-driven gossiping
approach for limiting the flooding of control packets and improving the net-
work performance in terms of packet delivery ratio and path discovery delay,
whereas QL-MAC, based on a Q-learning approach, aims to find an efficient
wake-up strategy to reduce energy consumption on the basis of the actual
network load of the neighborhood.

For both protocols, simulation results are shown to validate their ability to
adapt to the network status and guarantee better network performance with
respect to other standard protocols.

4.1 CG-AODV: node concentration-driven gossiping
routing protocol

Since many of these applications require sensor nodes to be deployed over a
certain geographical area, the scarce wireless communication range implies the
use of a multi-hop network organization with no fixed infrastructure. Thus, a
routing protocol is necessary to support the high-level distributed applications
by ensuring that sensor nodes correctly communicate and cooperate with each
others.
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Differently from traditional distributed systems, the challenges of routing
over a WSN derive from the limited intrinsic characteristics of these networks
such as energy and communication bandwidth constraints, scarce node capa-
bilities, absence of IP-based addressing scheme. Moreover, the routing process
is also influenced by several other factors that strictly depend on the specific
application context and the environmental conditions: node deployment, data
delivery models, node/link heterogeneity, connectivity, and coverage. Rout-
ing protocols for WSNs have been well studied by the research community.
A quite extensive number of routing techniques proposed in the literature as
well as their classification can be found in the surveys [99, 100, 101, 102].

The present work does not aim at defining a completely new routing proto-
col. It is intended to provide an enhancement of a well known reactive protocol
on the basis of the results obtained by analyzing how the control traffic im-
pacts the network performance with respect to a new defined quantity, the
“node concentration”.

In particular, we provides a two-fold contribution. First, we introduce the
concept of “node concentration” which considers the average number of neigh-
bors connected to each node, given a specific transmission power (or transmis-
sion range). We are interested in investigating how the control traffic generated
by a reactive routing protocol impacts the network performance with respect
to different values of node concentration. Specifically, we have chosen AODV
(Ad-hoc On-demand Distance Vector) [103, 104] as the reference protocol for
our analysis, because this is one of the most popular reactive routing protocols
and it has been widely adopted by the wireless network research communities.
As a second contribution, we propose an enhancement of AODV, by introduc-
ing a “node concentration-driven gossiping” approach for limiting the flooding
of the route request packets, which we show to be the main reason affecting
the network performance. All the experimental analysis have been carried out
by means of Castalia/OMNET++1 simulation platform.

4.1.1 Related work

4.1.1.1 Node density

Node density in WSNs has been investigated in several research works. In
[105], the authors analyze the lifetime problem of a WSN from the node den-
sity point of view, by considering a periodically data delivery scenario to a
sink node. Based on such analysis, a sensor’s deployment method aiming at
increasing the node density near the sink, is proposed, so that the lifetime of
the network is maximized. Another approach for incrementing the lifetime of
the network is proposed in [106], where a neighborhood-aware density con-
trol is described to reduce the undesired effect of unnecessary overhearing
along routing paths. In [107] a new energy distribution model is proposed

1 http://castalia.research.nicta.com.au
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and the relation between wireless sensor network lifetime and wireless sensor
node number for both regular and random deployments is investigated. Cov-
erage issues are instead analyzed in [108], where a new notion of “information
coverage” is presented. Moreover, the density requirements for complete in-
formation coverage of a field are analyzed and simulated for a random sensor
deployment. Other works proposing density control approaches for increasing
the network lifetime or for coverage purposes can be found in [109, 110, 111].

Although node density in WSNs is a network characteristic that has been
investigated in the literature, such works mainly focus on network lifetime
or coverage issues, rather than on network performance metrics like the ones
more related to the routing problem. Usually, node density is defined as the
number of sensors per unit area. By contrast, we consider the average number
of neighbors connected to each node, given a specific transmission power (or
transmission range).

4.1.1.2 Routing protocols

In recent years, several routing protocols have been specifically proposed
for WSNs [99, 100, 101, 102], whereas some others, originally conceived for
MANETs, have been tested and adopted in the WSN domain showing good
performance results [112, 113].

As we discuss in Section 4.1.3.1, we are interested in reactive routing
protocols and specifically in AODV (Ad-hoc On-demand Distance Vector)
[103, 104]. Since it has been conceived for MANETs, most of the research
works are focused on the study of AODV on such networks, whereas a few
works have been devoted to WSNs. Specifically, performance evaluations of
AODV on WSNs can be found in [114, 115, 116]. Moreover, improvements of
the original AODV protocol have been proposed in [117, 118, 119].

Our study looks specifically at a suitable method to analyse AODV in
WSNs and proposes improvements mainly in the path-discovery process. We
are also interested in networks featuring node stability, which is a deployment
characteristic required by many real-world applications focused on environ-
ment monitoring. Moreover, no performance analysis of AODV has been con-
ducted with respect to “node concentration” or “network density” and, to the
best of our knowledge, an AODV enhanced with a gossiping technique applied
to the WSN domain has not been proposed yet.

4.1.1.3 A brief overview of AODV

AODV belongs to the reactive on-demand routing protocol family [120]. It is
based on three different mechanisms: route discovery, route maintenance, and
route revocation. When a certain node needs to send a packet to a specific
destination, and no valid routing information is already available, a route
discovery procedure is initiated by first broadcasting a Route Request (RREQ)
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control packet. Such a packet propagates in a flooding way throughout the
network. At the same time, the source node sets a timer interval and waits
for some responses in the form of Route Reply (RREP) packets. The RREP
packet is first generated by the destination node as soon as it receives the
RREQ. The RREP packet is in charge of creating a reverse path from the
destination to the source node: any intermediate node that receives a RREP
appends its own node id information to the reverse path stored in the packet
and forwards it to the node from which the RREQ was initially received. In
such a way, as soon as the source node originating the discovery phase receives
a RREP packet, it is able to forward the data packets to the destination,
thanks to the route information stored in the RREP.

Once a route has been established, all nodes that are part of it periodically
exchange each others the Hello packets for connectivity management (route
maintenance phase). If a node does not receive a packet within a specific time
interval, it means that the direct link has broken up. As a consequence, a
Route Error (RRER) is propagated to the source node so to inform it that
the path is no longer available for that specific destination and thus revoking
the routing information about the path. Then, if the source node still needs
to send further packets, it has to restart a new route discovery phase in order
to build a new path.

One of the main problem with the original AODV formulation is that
RREQ packets are broadcast throughout the network through flooding, thus
wasting substantial bandwidth and energy resources and reducing the net-
work lifetime. Moreover, if a neighborhood is highly dense, all these RREQ
exchanges may cause several collisions due to the sharing of the radio chan-
nel. Consequently, as a result of frequent necessary retransmissions, network
overhead and energy consumption on the nodes increase whereas the whole
network performance degrades.

4.1.2 Node concentration

Instead of using the classical definition of node density, which needs to refer
to some absolute spatial information, we exploit the local concept of node
concentration, Ki, which, with respect to a certain node i, is defined as:

Ki = Ni/Ri (4.1)

where Ni is the number of neighboring nodes at a 1-hop distance from
node i, and Ri represents the transmission range of node i.

The node concentration somehow includes useful information for under-
standing how a network, or a part of it, behaves with respect to a certain
communication pattern among sensor nodes. In fact, if we consider a specific
zone of the network, some important communication issues that may affect
the quality of service, such as high traffic load, collisions, and congestion, are
mostly influenced by the concentration of a neighborhood (and related nodes’
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interaction) in that zone rather than the global geographical (or topological)
density measured over the same spatial area (which may also include areas
without any node). A neighborhood is defined as the subset of nodes able to
directly communicate with each others and then sharing the same wireless
channel, which is a very limited resource. Thus, node concentration has more
meaningful information than the density of a network (or a part of it) intended
as the number of nodes per square meter.

Moreover, the node concentration can be locally calculated by each node,
contrary to network density, which requires some extra information about the
spatial distribution of the nodes (to get such information is not trivial, unless
every node is equipped with a GPS receiver). Then, it does not only represent
a feature characterizing the network, but also can be a useful information
thanks to which each single node may be able to better manage the shared
channel resources, by means of specific policies.

4.1.3 Reference scenario and simulation setup

In the following subsections, we first discuss about the WSN scenario we
want to focus on and consequently the reasons for having chosen AODV as a
reference routing protocol. Afterward, simulation setup is described in details.

4.1.3.1 Reference scenario

The development of a routing protocol is in general based on the application
needs and/or the architecture of the network.

Although the existing routing protocols for WSNs may be classified under
different points of view [99, 101], most of them are conceived for gathering
and forwarding sensor data to a sink node. In fact, differently from traditional
networks, WSNs are usually employed in data-collection applications that
exhibit an asymmetric traffic patter: sensor nodes persistently send acquired
data to a data-collector node (base station or sink) which only occasionally
may send back some kind of control messages. In such a context, the network
efficiency may benefit from the use of a subset of nodes having the function
of relay/aggregator and in charge of collecting and possibly processing data
before forwarding it to the base station. Such specialized nodes, usually called
cluster heads, oversee and coordinate a specific group of nodes (a cluster) so
that the network exhibits a hierarchical organization.

We are not interested in data-collection oriented routing protocols but in
protocols enabling point-to-point communication among pair of nodes, use-
ful for building a higher communication layer involving only the subset of
cluster-head nodes. One of the possible classifications for point-to-point rout-
ing protocols divides them into proactive protocols (also known as table-driven
protocols) and reactive ones (also known as source-initiated or on-demand
protocols).
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Research on routing protocols shows that reactive routing is generally
preferred to proactive solutions in different aspects, such as network lifetime,
self-organizing network model and the load of the network [121, 122]. It is
also well-known that under frequent network topology changes, reactive pro-
tocols may suffer from large volume of messaging overhead due to the many
necessary route discoveries. But, differently from the MANETs (Mobile Ad-
hoc Networks), where routing information may change frequently due to node
mobility, in most application scenarios the nodes constituting a WSN are
mostly stationary after their deployment which results in predictable and
non-frequent topological changes. In such cases, a proactive protocol would
represent the most adequate solution for packets routing, as it does not need
continuous routing information updates; also path discovery requests are not
so frequent as long as routes caching is adopted. However, even with stationary
nodes, reactive protocols may be equally subject to some kind of dynamism in
the selection of node-pair for communication. It is the case in which clustering
is not a fixed process and the cluster-heads election dynamically changes over
the time to satisfy applications’ requirements. Among the existing point-to-
point reactive protocols, we have chosen AODV (Ad-hoc On-demand Distance
Vector) [103, 104] as the reference protocol for our analysis, because this is
one of the most popular reactive routing protocols and it has been widely
adopted by the wireless network research communities.

Moreover, since sensor nodes may need to be densely deployed over a
certain area, a reactive protocol may be influenced by the network density.
Network density is usually measured as the number of nodes per unit area,
and sometimes it is also referred to as just the number of nodes constituting
the network over a certain deployment area. However, such a measure in not
always sufficient to properly characterize a network, because the actual trans-
mission range of the nodes is not explicitly taken into consideration. In fact,
collisions and packet overheads in a specific zone of the network are mostly
influenced by the concentration of a neighborhood (i.e. the subset of nodes
able to directly communicate with each others) rather than the geographical
density of the network intended as the number of nodes per square meter.

4.1.3.2 Simulation setup

All the set of simulations we will discuss in Section 4.1.4 and 4.1.6 have been
carried out on the popular Castalia/OMNET++ platform. In particular, as
summarized in Table 4.1, the simulations are performed on two scenarios
having most of the parameters in common.

First of all, both a regular grid topology and a random one have been em-
ployed. A grid topology (the nodes are uniformly placed over the simulation
area) is suitable for showing how the network performance is influenced if a
homogeneous node concentration all over the network is considered. In both
cases, all nodes are statically deployed, i.e. do not move over the simulation
time. As for the low-level details, all nodes have been configured with the
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same radio equipment, the CC2420, having the same parameters, such as a
transmission power level of 0dBm, which roughly corresponds to a 46 meters
transmission range. The MAC layer simply adopts a CSMA/CA channel ac-
cess method, without relying on the RTS/CTS (Request To Send / Clear To
Send) packet exchanges.

Concerning the differences, in “Scenario 1” the squared simulation area
has been maintained fixed (i.e. 200 meters per side), whereas the number
of nodes has been varied from 25 (grid of 5x5) to 144 (grid of 12x12). In
“Scenario 2”, a fixed amount of nodes (i.e. 100) have been deployed on different
areas ranging from 25x25 meters to 400x400 meters. As a consequence of such
deployments, each specific configuration corresponds to a certain value of the
node concentration.

In the following, the communication pattern is explained. The aim of these
simulations is to analyse the behavior of AODV on a network organized in
a hierarchical way, where only few nodes (representing the upper layer ones,
i.e. cluster heads) communicate with each others. More specifically, the whole
network has been divided into four to twelve sub-areas (representing the clus-
ters) and for each of them a node (the cluster-head) is chosen as the one in
charge of sending/receiving the data packets. Since we are not interested in
the clustering phase (we assume that the clustered network has already been
formed), the remaining nodes are only in charge of forwarding packets among
cluster heads. On a variable time interval, so that the rate is roughly 2 or 8
pkt/sec, each of the cluster-heads randomly chooses one of the remaining ones
and sets it as the destination node for the next data packet to be delivered.
Then, the mechanisms inside the AODV protocol take place to establish (if
not already done) the proper route and, finally, the data packet is properly
sent throughout the network.

Although such scenarios may appear simple both in the network and in the
communication pattern configuration, this is sufficient to show how the routing
performance is significantly affected by an increase in node concentration, due
to the increasing chance of collisions among routing control packets (RREQ,
RREP) and data packets.

It is worth noting that, for each specific configuration the performance
metrics have always been averaged over 50 independent runs.

4.1.4 Analysis of AODV with respect to ”node concentration”

As a first contribution, in the following section, we present some simulation
results carried out on the standard AODV protocol. In particular, we are
interested in analyzing the AODV behavior under different node density con-
ditions of the network. To this extent, we are not interested in measuring the
network density simply as the number of nodes per unit area, but we use the
“node concentration”.

In order to understand the impact of the control traffic on network perfor-
mance, the Packet Delivery Ratio (PDR) represents an effective performance
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Table 4.1. Parameters used in the simulations.

Scenario 1 Scenario 2

# of nodes: 25, 36, ..., 144 100

Sim. Area [mxm]: 200x200 25x25, 50x50, ..., 400x400

Node deployment: “Regular grid” and “Random” topologies,

with static nodes

Communication pattern: 4/8/12 cluster-heads

communicating with each others

Packet rate: ≈ 2 and 8 pkt/sec

Data packet payload: 32 bytes

MAC Layer: CSMA/CA-based

Radio device: CC2420

Transmission power: 0dBm

Simulation runs: 50 for each specific configuration

metric capable of highlighting the efficiency of the routing protocol under
specific conditions.

All the simulations graphs reported in the following section have been
carried out on networks deployed in regular grid topologies, divided into four
clusters and with an application traffic of 2 pkt/sec. In particular, as shown in
Figure 4.1, two different plots have been obtained. The Castalia simulator of-
fers the user the opportunity to opt for different interference/collision models.
In a first case, the simpler model is used, which means that collisions are not
handled and two overlapping transmissions at the same time do not interfere
each other. Thus, independently from the actual node concentration, the PDR
remains practically the same. But, in a real environment, collisions play an
important role in the network performance. This is demonstrated by setting
the simulator so to use an additive interference model, through which trans-
missions from other nodes are calculated as interference by linearly adding
their effect at the receiver. As a consequence, we obtain a more realistic re-
sult, i.e. the PDR decreases with an increase in the node concentration, since
collisions are more likely to happen.

It is worth noting that, the plots in Figure 4.1 include results coming from
both the simulation scenarios of Table 4.1. This is the reason why several
points are overlapping with each other. In fact, configurations with nodes
deployment having different densities (nodes per unit area), have actually the
same node concentration.

In Figure 4.2, the packet transmission failure rate, under a realistic collision
model, is depicted. As expected, failures increase with an increase in node
concentration.

4.1.5 CG-AODV: a node concentration-driven gossiping approach

On the basis of the results shown in Section 4.1.4, it is quite clear that the
problems affecting AODV are due to the large number of collisions occurring
during data packet transmission. Since we have opted for a not so high data
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Fig. 4.2. Transmission Failures on grid topologies, 2 pkt/sec, and packet collisions.

packet rate, it is obvious that such collisions are mainly due to the AODV
routing control packets and, in particular, to the RREQ ones which are prop-
agated in a flooding way throughout the network.

In the following, we describe an enhancement of AODV (called CG-AODV)
which introduces a mechanism to limit flooding, and then reduce the protocol
overhead, through the use of a gossip-based filtering/propagation decision. In
particular, a node concentration-driven gossiping approach is employed so that
the gossiping mechanism is not fixed but shows a kind of adaptive behavior
on the basis of the nodes’ neighborhood concentration.

Similarly to the standard AODV, only the nodes initiating a new route
discovery (i.e. the source nodes) are allowed to send the route request to all
their neighbors. The concentration-driven gossiping phase takes place on the
nodes that receive a RREQ packet from one of their neighbors. The diagram
depicted in Figure 4.3 represents the decision process made on each node for
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deciding whether forwarding a received RREQ packet or not. First of all, a
preliminary check of the packet is done on the basis of a “blacklist”. When
a RREQ related to the request for a specific path is dropped because of the
gossiping mechanism, it is inserted in the blacklist. When a RREQ packet
for the same path is received within a certain (relatively short) amount of
time, the node immediately drop it, without reprocessing it with the gossiping
mechanism.

Differently from other gossiping approach, the probability p adopted for
deciding whether discarding a packet is not fixed, but it depends on the node
concentration locally measured by each node (which needs to know only about
its neighbours). In such a way, the gossiping approach adapts itself on the basis
of the local conditions of the network. The larger is the number of neighbors,
the greater is the probability p of discarding the RREQ to avoid its flooding
propagation.

Fig. 4.3. Gossiping mechanism in CG-AODV.

4.1.6 Simulations and results

A set of simulations have been carried out both on regular grid topologies and
on random ones. All parameters are the same as the ones previously described
in Section 4.1.3.2 and summarized in Table 4.1.

4.1.6.1 Grid topology

In Figure 4.4 and Figure 4.5, the PDR and the Path Discovery Delay (PDD)
of CG-AODV compared to the original AODV are shown. In particular, sim-
ulation results of AODV with both ideal and realistic collision models are
illustrated, whereas CG-AODV has been directly simulated by adopting the
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realistic collision model. Moreover, four cluster-heads have been considered
and the packet rate set to 2 pkt/sec. As it can be seen, the proposed AODV
enhancement guarantees a much greater PDR with respect to the AODV
with a realistic collision model and its performance is even very close to the
one shown by the theoretical best AODV (i.e. without collisions). As for the
PDD, the CG-AODV, in average, requires a little more time to establish a
path because of the use of a gossiping RREQ propagation. Anyway, even in
the worst case (high node concentration), the resulted delay is no greater than
1.4 seconds.
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4.1.6.2 Random topology

After having tested CG-AODV on a grid topology so to directly compare
the results with the ones coming from the preliminary analysis of the stan-
dard AODV (see Section 4.1.4), in the following simulations we consider more
generic random topology networks. It is worth noting that, since the network
does not have a regular topology, the values for the node concentration have
been calculated offline by averaging the node concentration measured on each
single node.

In Figure 4.6 and Figure 4.7, simulation results related to PDR and PDD
are shown. CG-AODV and the standard AODV have been simulated by taking
into account only the realistic collision model, four cluster-heads, and a packet
rate of 2 pkt/sec. In this case, the CG-AODV behaves better than AODV by
showing higher performances in both network metrics.
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Fig. 4.6. Comparison of Packet Delivery Ratio on random topology, 4 cluster-heads,
2 pkt/sec.

If we compare the above CG-AODV results with the ones related to grid
topologies (see Figure 4.4 and Figure 4.5), it can be seen that the proposed
protocol has similar performances for PDR on both topologies, whereas the
PDD get improved on randomized networks.

All previous simulations have been carried out by maintaining both the
number of cluster-heads and the packet rates to a fixed value, i.e. 4 and
2pkt/sec respectively. In the following, further simulation results have been
carried out on network scenarios having a greater number of clusters as well
as a heavier application packet traffic.

In particular, in figure Figure 4.8 and Figure 4.9 the PDR has been evalu-
ated with 2 or 8 pkt/sec and by varying the number of cluster-heads, i.e. 4, 8
and 12. Both graphs clearly show the benefits provided by CG-AODV which
guarantees better performances in all cases, independently from the network
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Fig. 4.7. Comparison of Path Discovery Delay on random topology, 4 cluster-heads,
2 pkt/sec.

configuration. In particular, in the standard AODV protocol the PDR never
exceed 20% in most of the simulations, thus demonstrating how it suffers
in performance under heavy traffic load conditions due to a greater network
congestion that increases chance of packet collisions.
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Differently from the PDR results, the comparisons on the PDD metric
show that at low packet traffic load both protocols have a similar perfor-
mance, independently on how many communicating cluster heads are in the
network (see Figure 4.10). With a higher packet rate (Figure 4.11), AODV

123



Chapter 4. Networking-level protocols

 0

 10

 20

 30

 40

 50

 60

 70

 0.1  0.15  0.2  0.25  0.3  0.35

P
ac

ke
t D

el
iv

er
y 

R
at

io
 [%

]

Node Concentration

Packet rate: 8 pkt/sec

CG-AODV, CH=4

CG-AODV, CH=8

CG-AODV, CH=12

AODV, CH=4

AODV, CH=8

AODV, CH=12

Fig. 4.9. Comparison of Packet Delivery Ratio on random topology, 8 pkt/sec, by
varying the number of cluster-heads.

and CG-AODV have similar results when node concentration is low. At higher
concentration, the PDD related to AODV shows better results with 4 and 8
cluster heads, but CG-AODV outperforms AODV when the number of cluster
heads is increased to 12.
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4.2 QL-MAC: a Q-Learning based MAC for WSN

The aim of the proposed protocol is to allow nodes to infer each other’s behav-
iors in order to adopt a good sleep/active scheduling policy that dynamically
learn over the time to better adapts to the network traffic conditions. Specif-
ically, each node, not only takes into consideration its own packet traffic due
to the application layer, but also considers its neighborhood’s state.

The basic underlying behavior of the QL-MAC is similar to most of other
MAC protocols: a simple asynchronous CSMA-CA approach is employed over
a frame-based structure. It basically divides the time into discrete time units,
the frames, which are further divided into smaller time units, the slots. Both
frame length and slot number are parameters of the algorithm and remain
unchanged at execution time.

By means of a Q-Learning based algorithm, each node independently de-
termines an efficient wake-up schedule in order to limit as much as possible
the number of slots in which the radio is turned on. Such a non-fixed and
adaptive duty-cycle reduces the energy consumption over the time without
affecting the other network performances, as shown by the simulations results
discussed in Sect. 4.2.4.

4.2.1 Related work

Some of the simplest MAC protocols for wireless networks rely on the time
division multiple access (TDMA) [123], which is a “contention-free” approach,
where a pre-defined time slot is reserved for each node in each frame. Although
such a fixed duty cycling does not suffer from packet collisions, it needs an
extremely exact timing in order to avoid critical behaviors.
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S-MAC [124] is a contention-based MAC protocol aiming at reducing en-
ergy consumption and collisions. It divides time into large frames, and each
frame into two time portions (a sleeping phase and an active phase). Com-
pared to the TDMA approach, S-MAC requires much looser synchronization
among neighbouring nodes. However, due to a fixed duty cycle it is not capable
of adapting to network traffic condition.

The Timeout-MAC (TMAC) protocol [125] is an improvement of S-MAC
as it uses an adaptive duty cycle. In particular, by means of a time-out mecha-
nism it detects possible activities in its vicinity. If no activity is detected during
the time-out interval, the node goes to sleep for a certain period of time. Such
a mechanism occurs every time a communication between two nodes is over.
Although T-MAC outperforms S-MAC, its performance degrades under high
traffic loads.

In the P-MAC [126] protocol the sleep-wakeup schedules of the sensor
nodes are adaptively determined on the basis of a node’s own traffic and
that of its neighbours. The idle listening periods, which are source of energy
wastage, are minimized by means of some kind of matching algorithm among
patterns of schedules in the neighbouring.

Other adaptive MAC protocols have been proposed in the literature and
few of them employ online machine learning approaches such as reinforcement
learning [127, 128] and Q-learning [129].

4.2.2 Reinforcement Learning and Q-Learning

Reinforcement Learning (RL) [130] is a sub-area of machine learning con-
cerned with how an agent take actions so as to maximize some kind of long-
term reward. In particular, the agent explores its environment by selecting
at each step a specific action and receiving a corresponding reward from the
environment. Since the best action is never known a-priori, the agent has to
learn from its experience, by means of the execution of a sequence of different
actions and deducing what should be the best behavior from the obtained
corresponding rewards.

One of the most popular and powerful algorithm based on RL is Q-
Learning, which does not need the environment to be modelled and whose
actions depend on a so called Q-function, which indicates the quality of a spe-
cific action at a specific agent’s state. Specifically, the Q-values are updated
as follows:

Q(st+1, at) = Q(st, at) + λ[rt+1 + φmax
a

Q(st+1, a)−Q(st, at)] (4.2)

where Q(st, at) is the current value at state st, when action at is selected.

At some state st, the agent selects an action at. It finds the maximum
possible Q-value in the next state st+1, given that at is taken, and updates
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the current Q-value. The discounting factor 0 < φ < 1 gives preference either
to immediate rewards (if φ << 1 ) or to rewards in the future (if φ >> 0),
whereas the learning rate 0 < λ < 1 is used to tune the speed of learning.

4.2.3 Protocol details

The actions available to each agent/node consist in deciding whether it should
stay in active or in sleep mode during each single time slot. Thus, the action
space of a node is determined by the number of slots within a frame.

Every node stores a set of Q-value, each of which is coupled to a specific
slot within the frame. The Q-value represents an indication of the benefits
that a node has when is awake during the related time slot. The Q-value is
updated over the time on the basis of some specific events occurring during
the same slot at each frame. Moreover, it is also dependent on some state
information coming from the node’s neighbours.

Specifically, every Q-value related to a specific node i is updated as follows:

Qis(f + 1) = (1− λ)Qis(f) + λRis(f) (4.3)

where Qis(f) ∈ [0, 1] is the current Q-value associated to the slot s on the
frame f , Qis(f + 1) is the updated Q-value, which will be associated to the
same slot s but on the next frame, λ is the learning rate and Ris is the earned
reward. Differently from the update rule shown in Equation 4.2, the future
reward is not considered and the discount factor φ is set to 0.

In such a decentralized approach, it is important to define a suitable re-
ward function that consider both the condition of the node and the one of
its neighborhood. Specifically, the events that the protocol takes into consid-
erations are related to the packet traffic load, so that the reward function
calculated on node i and related to a specific slot s is modelled as follow:

Ris = α

(
RP −OH

RP

)
+ βSi + γ

(∑|Ni|
j=1 Pj

|Ni|

)
(4.4)

where:

− OH is the number of over-heard packets, i.e. the packets received but
actually not intended for node i;

− RP is the total amount of packets received by node i during the slot s of
frame f . It includes also over-heard packets;

− Si has a value of +1 if node i has at least one packet to broadcast during
slot s, 0 otherwise;

− Pj has a value of +1 if the neighbouring node j has sent at least one packet
to node i during slot s, 0 otherwise;

− Ni is the set of neighbours of node i;
− the constants α, β, and γ weigh the different terms of the function accord-

ingly.
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It is worth noting that, at the beginning, all the Q-values on every node are
set to 1, meaning that all nodes have their radio transceiver ON on every slot
(i.e. for the entire frame). During the learning process, the Q-values changes
over the time accordingly to the variation of the reward function. In order to
properly set the state for the radio transceiver on the basis of the Q-values,
we employ a further parameter TON , which represents a threshold value:

Radio[slot s] =

{
On if Qis(f) ≥ TON
Off otherwise

In case the MAC packet exchange takes place always in broadcast mode,
so that a node is not able to figure out whether each single received packet is
actually destined for itself or not, it is necessary to get some extra information
from the upper layers. In particular, our MAC protocol employs a simple cross-
layer communication: every received packet are decapsulated and delivered to
the network layer, which in turns checks whether the packet is intended for
the node. In case the packet is discarded, the network layer signals the MAC
protocol about the reception of a overheard packet, and the reward function
is updated accordingly to Equation 4.4.

If the radio is turned off at a specific slot but at some point, during the
same time window, the node needs to send a packet, we prefer to buffer it and
postpone its transmission on the next available slot (i.e. the first one with the
radio “on”).

The last term of Equation 4.4 is an aggregated information about the state
of the node neighborhood and, in particular, it represents the packet traffic
activity during a specific time slot. This is the only information exchanged by
the protocol. This is fundamental when the node is in sleep mode at a specific
slot, so to figure out that it should be better to turn on the radio because of
the presence of packets destined for it.

4.2.4 Simulations and evaluation

QL-MAC is simulated and evaluated in Castalia2. In the following, the simu-
lation scenarios are first described and then the obtained results are discussed.
In particular, the performance evaluation considers two metrics: the average
energy consumption of nodes and the Packet Delivery Ratio (PDR). Under
these metrics, QL-MAC is compared to two well known MAC protocols for
WSNs, SMAC and TMAC, as well as to a simple asynchronous CSMA-CA.

4.2.4.1 Scenario and traffic model

The protocol has been tested on two different scenarios, one with a regular grid
topology (nodes have been uniformly placed) and the other with a random
one. For both scenarios, the parameters setting summarized in Table 4.2 have

2 http://castalia.research.nicta.com.au
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been adopted. All nodes have been set with the same radio transceiver, the
CC2420 with a transmission power level of 0dBm (which allows roughly 46
meters transmission range).

Table 4.2. Parameters used in the simulations.

Scenario Parameter Value QL-MAC Parameter Value

# of nodes: 16 Frame length 1 sec

Sim. Area [mxm]: 100x100 Slot number 4

Radio device: CC2420 λ 0.05

Transmission power: 0dBm alpha 0.33

Collision model: real β 0.33

Packet rate: ≈ 1 pkt/sec γ 0.33

Data packet payload: 32 bytes TON 0.40

Routing protocol Multipath Rings Routing

Initial energy 10000 J

In the following, the communication pattern is detailed. The application
we consider in our simulations employ a nodes-to-sink communication pattern,
since data-collection applications are one of the most typical use cases of a
WSN in real contexts. The sensor data acquired by all the nodes are sent to
a sink node centered in the middle of the simulation area. Since the sink is
not in the transmission range of every node, a simple multipaths ring routing
has been used as a network layer protocol. During an initial setup phase, the
sink broadcasts a specific packet with a counter set to 0. Once the packet
is received by a node, it sets its own level/ring number to 0, increments the
counter and rebroadcasts the packet. This process goes further on until all
nodes get their ring level.

After this initial setup phase, every node has a ring number representing
the hop distance to the sink. When a node has data to send, it broadcasts a
data packet by attaching its ring number. Only the neighbours with a smaller
ring number process the packet (i.e. attach its own ring number) and rebroad-
cast it. This process goes further on until the data packet gets to the sink.

4.2.4.2 Results

In order to understand the impact of the dynamic radio schedule adopted by
QL-MAC on the network performance, the PDR has been first analysed, as
shown in Figure 4.12. As it can be seen, both on grid and random topology,
QL-MAC outperforms all other MAC protocols with the exception of the
CDMA-CA with a 100% duty cycle. In this case, both protocols have almost
the same performance because of the underlying QL-MAC channel access,
which is essentially the same.

Although both QL-MAC and CSMA-CA (with a 100% duty cycle) share
the same PDR performance, their comparison result changes if we consider the
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Fig. 4.12. Packet Delivery Ratio on grid (a) and random (b) topologies.

node energy expenditure. In fact, as shown in Fig. 4.13, QL-MAC allows nodes
to spend much less energy, as a result of the sleep/wake-up radio schedule.
Moreover, it performs better even if compared to a CSMA-CA having a duty
cycle of 60%. Both S-MAC and T-MAC show lesser energy consumption but,
because of their limited capabilities, they are not able to adapt well to the
network traffic pattern.
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Fig. 4.13. The average energy consumption per node on grid (a) and random (b)
topologies.

QL-MAC has been also evaluated by varying the number of slots constitut-
ing the frame. In Figure 4.14, the simulation results of both PDR and average
energy consumption per node are depicted. In general, as the number of slots
decreases, QL-MAC shows better performance with respect to the PDR but,
as a consequence, the energy spent by node tends to increase. Actually, with
the use of 8 slots, the protocol exhibits the better trade-off, i.e. the PDR is
similar to the case with 4 slots, but the energy spent is less.
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Fig. 4.14. QL-MAC: Packet Delivery Ratio and average energy consumption per
node by varying the slots number.

The results shown in Figure 4.15 are obtained by varying the packet rate of
the application layer, from 2 pkt/sec to 8 pkt/sec. As it can be seen, the PDR
plots are similar over the time, demonstrating that QL-MAC behaves well
under different traffic loads. But, since different amount of packets per time
unit are transmitted and delivered, the energy expenditure increases with the
increase of the packet rate.
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node by varying the application packet rate.
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5

Conclusions, Future Directions and
Publications

5.1 Conclusions

Throughout this thesis, several contributions have been made to the Wireless
Sensor Networks research community.

In particular, this thesis has proposed novel frameworks aiming at sup-
porting rapid development of WSN applications as well as enabling self-
management behaviors at runtime, and specific networking-level protocols
showing self-adaptive capabilities.

As first contributions, we have proposed the SPINE2 framework, which
has been specifically conceived for supporting developers in a rapid and ef-
fective prototyping of signal-processing applications for WSNs. By providing
an intuitive and straightforward task-based modeling paradigm, it allows to
define efficient distributed applications on heterogeneous embedded environ-
ments with very few efforts. In order to address the very strict requirements in
terms of efficiency and robustness, SPINE2 comes with a node-side middleware
carefully designed for achieving high-performance execution of the task-based
applications. Moreover, its well-designed underlying architecture is prone to
be easily extended with new functionalities and capabilities (i.e. definitions of
further tasks or integration of new physical sensor drivers) or even extended
to support new sensor platforms through a quick porting procedure, thanks to
its platform-independent architecture. The runtime performances of SPINE2
have been evaluated in terms of task execution time and memory usage, so to
demonstrate its practical use and efficiency in resource-constrained embedded
environments. To further show the feasibility and the effectiveness of using
the proposed framework, a real case study in the BSN context has been taken
into consideration. In particular, a distributed human action recognition sys-
tem, relying on wearable sensor nodes, has been developed by means of the
SPINE2 task-oriented approach. The resulting application definition and de-
ployment phases have demonstrated how simple and fast is the use of SPINE2
in building complex distributed BSN applications, without which it would be
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necessary much more efforts in terms of programming and debugging time.
The performance analysis have also shown that such benefits in supporting
intensive sensing and data processing applications come with negligible per-
formance penalties.

On the basis of the experience gained in the context of the SPINE2
project1, we can state that, apart from efficient and robust wearable sen-
sors and low-power standard communication protocols, the need for software
abstractions, frameworks, and tools to support an effective development of
WSN systems represents one of the main requirements for determining the
success of this technology. Furthermore, the availability of specific APIs on
the coordinator-side and also a graphical tool for application definition, can
improve the productivity in a significant way, since developers do not have to
waste time in using low-level programming languages or dealing with hard-
ware management and configuration. Not less important for a framework is
its extendibility, which can determine the constant framework evolution and
then its practical use over the time. Thus, along with the characteristics of
runtime efficiency and programming effectiveness, a framework should have a
well-designed inner architecture (at node-side and coordinator-side) suitable
for adding new features in an easy way.

To the best of our knowledge, SPINE2 is currently the only framework
that encompasses, in a single integrated tool, distinctive characteristics able
to fully address the requirements for an effective programming of BSN appli-
cations: (1) specific support for in-node signal processing tasks; (2) high-level
programming abstraction; (3) heterogeneity and multi-platform interoperabil-
ity; (4) easy and fast functionality extensibility; (5) quick porting procedure
towards new C-like sensor platforms; (6) efficiency in resource-constrained
embedded environments.

As second contribution, we have presented SPINE-*, a framework for rapid
prototyping of WSN applications with autonomic characteristics. The SPINE-
* architecture has been obtained as enhancement of SPINE2 by adding an
autonomic plane including autonomic tasks. This implies that the original
framework logic has been maintained unchanged, i.e. the autonomic plane
can be designed by using the same task-oriented paradigm. An important
advantage of such an architecture is that the autonomic capabilities can be
easily added by guaranteeing the necessary separation of concerns between
the business application logic and the autonomic plane. This characteristic
facilitates the development as well as maintenance of complex applications,
focusing on their high-level logic rather than having to cater for management
and control functionality. This can be incorporated as an “add-on”, during or
even after the development of the main application. To validate our approach
we have, in fact, added a number of autonomic tasks directly on top of the
existing framework SPINE2. In this way we have been able to assess the ease
of execution of our approach in a practical setting. In particular, a human

1 http://spine.deis.unical.it
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activity recognition application has been enhanced by inserting some auto-
nomic elements providing the necessary operations for satisfying important
self-* properties: data corruption detection, application reconfiguration, and
context-aware privacy. Moreover, we have studied the impact of data faults on
this BSN system, analyzed in which measure its recognition accuracy decreases
under different kinds of data-fault models affecting the original raw-data ac-
celerometer readings and then applied proper autonomic elements providing
the necessary self-healing operations through which it has been possible to
improve the accuracy of the original application.

As third contribution, the motivations and the benefits of using mobile
agents in the WSN domain have been first introduced. Then, an innovative
agent-oriented programming framework specifically designed for Java-based
WSN, MAPS, has been presented. Moreover, a modified lightweight version
of MAPS, TinyMAPS, for supporting the Sentilla JCreate sensor platform,
has been also briefly described. MAPS allows developers to easily build WSN
applications as a set of interacting stationary and mobile agents distributed
on the sensor nodes (specifically Sun SPOTs). Such agents are supported by
the MAPS agent execution engine which provides all the basic services in-
cluding message transmission, agent creation, agent cloning, agent migration,
timer handling, and easy access to the sensor node resources. In particular, the
agent programming model adopted by MAPS is based on a multi-plane state
machine (MPSM) whose state transition is controlled by Event-Condition-
Action (ECA) rules, wheres the mobile agents interact through events that
are asynchronously delivered by a dedicated component of MAPS. Such a
MPSM-based agent behavior programming allows exploiting the benefits de-
riving from three main paradigms for WSN programming: event-driven pro-
gramming, state-based programming and mobile agent-based programming.
MAPS programming approach has been exemplified through a simple yet ef-
fective example conceived for carrying out some performance evaluations and
a more specific case study involving agents in a human activity monitoring
system. These examples clearly show how simple and rapid is the development
of applications in MAPS and, in particular, the definition of agents’ behavior
by means of the state machine formalism and the Java-based MAPS API. And
this demonstrates the effectiveness and suitability of MAPS to deal with the
programming of complex applications, also with respect to other agent-based
frameworks for WSNs, like AFME. The performance evaluation carried out on
both the presented platform shows some performance penalties of MAPS with
respect to AFME, and TinyMAPS with respect to MAPS. This is mainly due
to the very time-consuming operations (Isolate hibernation/serialization and
radiostream based communications) provided by the Sun SPOT SquawkVM,
on which MAPS relies, and the very resource-constrained platform (Sentilla
JCreate), on which TinyMAPS runs.

As fourth contribution, specific self-adapting protocols have been pro-
posed. The CG-AODV routing protocol has been conceived as an enhancement
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of AODV by introducing a novel “node concentration-driven gossiping” mech-
anism. A new measurable quantity for characterizing a WSN, called “node
concentration” has been first introduced as a new measurable quantity for
characterizing a WSN. It considers the density of a neighborhood by taking
into account also the communication capabilities of nodes. Then, some simu-
lations have been carried out for analyzing how the control traffic generated
by a reactive routing protocol (i.e. AODV) impacts the network performance
with respect to different values of node concentration. On the basis of the
obtained results, a specific approach which introduces a mechanism to limit
flooding, and then reduce the protocol overhead, through the use of a gossip-
based filtering/propagation decision has been proposed and experimentally
evaluated. Simulations results have shown that CG-AODV provides signifi-
cant improvements in terms of packet delivery ratio and path discovery delay.
The QL-MAC protocol, based on Q-Learning, has been designed such that
each node independently determines an efficient wake-up schedule in order to
limit as much as possible the number of slots in which the radio is turned on.
Such a non-fixed and adaptive duty-cycle reduces the energy consumption over
the time without affecting the other network performances. In particular, the
simulation results show that, compared to other standard MAC protocols for
WSNs, the adaptive behavior of QL-MAC guarantees better network perfor-
mances with respect to both the packet delivery ratio and the average energy
consumption. Moreover, the learning approach requires minimal overhead and
very low computational complexity which are fundamental requirements in a
resource-constrained embedded platforms like the ones constituting a WSN.

5.2 Future Directions

In the development of this thesis several issues emerged which deserve further
examination in the future.

With regards to the SPINE2 framework, future work aims at improving it
by broadening the current supported set of tasks with new ones, so as to in-
crease the framework capabilities by providing new functions and algorithms
to the developers so to better support the development of more complex data
analysis applications and customized features. Similarly, SPINE-* will be ex-
tended to support developers in defining autonomic behaviors in their WSN
applications by means of further tasks implementing specific self-* capabili-
ties.

The current implementation of the task-oriented paradigm needs develop-
ers to specify on which specific WSN node each task has to be instantiated.
Thus, an important improvement will be the introduction of particular high-
level constructs able to manage a subset of nodes as a whole, so as to avoid
the annoying work of assigning each task-node pair in large scale networks.
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Moreover, since both framework are based on the same platform-independent
middleware architecture, work is underway to port SPINE2/SPINE-* onto
new sensor platforms so as to support a more heterogeneous WSN ecosystem.

As for the MAPS framework, further efforts will be devoted for optimizing
its communication and migration mechanisms whose performance penalties
emerged during the analysis. Moreover, further research will aim to explore
the viability and the benefits of integrating the agent-oriented paradigm with
the task-based approach provided by SPINE2/SPINE-*.

Future research will also focus on the definition of both high-level (e.g.
application gateways) and low-level (IEEE 802.15.4 layer) solutions for agent
communication interoperability between MAPS and AFME that would enable
the development of heterogeneous agent-based WSN applications.

With respect to the specific self-adapting protocols proposed in this thesis,
other simulations will be carried out for analyzing their behavior in further
network scenarios and obtained results will be compared with other state-of-
the-art protocols. In particular, it would be interesting to investigate to what
extent node mobility and other different packet traffic patterns influence their
performance.

Moreover, further reward functions will be defined and tested in the Q-
Learning algorithm adopted by the QL-MAC protocol, by taking into consid-
eration other network information, e.g. the nodes link quality.

Furthermore, by simulating WSNs adopting at the same time CG-AODV
as routing protocol and QL-MAC as MAC layer, their reciprocal influence
will be analyzed for figuring out how they can be modified so as to be able to
directly collaborate. In such a way, it may be possible to test to what extent a
cross-layering approach for self-adapting protocols is beneficial to global WSN
networking performance.

Finally, an integrated approach among the contributions provided in this
thesis will be investigated. Specifically, a generic autonomic WSN architec-
ture is under consideration by integrating the high-level approaches for defin-
ing autonomic behavior in WSN applications and the low-level self-adapting
protocols for supporting nodes’ communication. The final aim is to provide a
general-purpose framework for developing applications in generic WSNs sup-
ported by autonomic capabilities, where (i) the programming constructs al-
low developers to define both the application business logic and the high-level
policies enabling the self-* properties according to the application’s character-
istics, whereas (ii) the low-level networking protocols are able to self-adapting
their behavior on the basis of the application’s communication needs.
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5.3 Publications related with this Thesis

The research work related to this thesis has resulted in 1 co-authored book
and 17 publications. Among them, there are 6 journal articles, 9 conference
papers, and 2 book chapters.

5.3.1 Co-Authored book

− Wearable Systems and Body Sensor Networks: from modeling to
implementation:
G. Fortino, S. Galzarano, R. Gravina. “Wearable Systems and Body Sensor Networks: from

modeling to implementation”, Wiley, USA, 2014, to appear.

5.3.2 Journal Articles

− A task-oriented portable embedded framework for networked
wearable computing:
S. Galzarano and G. Fortino. A task-oriented portable embedded framework for networked

wearable computing. Submitted to ACM Transactions on Embedded Computing Systems

(TECS). [Related to Chap. 3, Section 3.2 and 3.3]

− A Framework for Collaborative Computing and Multi-Sensor
Data Fusion in Body Sensor Networks:
G. Fortino, S. Galzarano, R. Gravina, W. Li. A Framework for Collaborative Computing

and Multi-Sensor Data Fusion in Body Sensor Networks. Journal of Information Fusion,

Elsevier. Minor revision.

− From Modeling to Implementation of Virtual Sensors in Body
Sensor Networks [131]:
N. Raveendranathan, S. Galzarano, V. Loseu, R. Gravina, R. Giannantonio, M. Sgroi, R.

Jafari, and G. Fortino. From modeling to implementation of virtual sensors in body sensor

networks. IEEE Sensors Journal, 12(3):583-593, March 2012. [Related to Chap. 3, Section

3.3.2]

− A Task-based Architecture for Autonomic Body Sensor Net-
works [132]:
S. Galzarano, G. Fortino, and A. Liotta. A task-based architecture for autonomic body sensor

networks. International Transactions on Systems Science and Applications, 7(1/2):140-151,

November 2011. [Related to Chap. 3, Section 3.4]
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− An agent-based signal processing in-node environment for real-
time human activity monitoring based on wireless body sensor
networks [96]:
F. Aiello, F.L. Bellifemine, G. Fortino, S. Galzarano, and R. Gravina. An agent-based signal

processing in-node environment for real-time human activity monitoring based on wireless

body sensor networks. Engineering Applications of Artificial Intelligence, 24(7):1147-1161,

October 2011. [Related to Chap. 3, Section 3.6]

− An analysis of java-based mobile agent platforms for wireless
sensor networks [95]:
F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. An analysis of java-based

mobile agent platforms for wireless sensor networks. Multiagent and Grid Systems, 7(6):243-

267, January 2011. [Related to Chap. 3, Section 3.6]

5.3.3 Conference Papers

− QL-MAC: a Q-Learning based MAC for Wireless Sensor Net-
works [133]:
S. Galzarano, A. Liotta, and G. Fortino. QL-MAC: a Q-Learning based MAC for Wireless

Sensor Networks. In Giancarlo Fortino, Rocco Aversa, Joanna Kolodziej, Jun Zhang, and

Flora Amato, editors, Advances of Parallel and Distributed Computing, Springer, LNCS se-

ries, Proceedings of the 13th International Conference on Algorithms and Architectures for

Parallel Processing (ICA3PP-2013), Lecture Notes on Computer Science (LNCS), Springer,

Vietri sul Mare, Italy, 2013. Springer Berlin Heidelberg. [Related to Chap. 4, Section 4.2]

− Gossiping-based AODV for Wireless Sensor Networks [134]:
S. Galzarano, C. Savaglio, A. Liotta, and G. Fortino. Gossiping-based AODV for Wireless

Sensor Networks. In Proceedings of the 2013 IEEE International Conference on Systems,

Man, and Cybernetics (SMC), Manchester, UK, 2013. [Related to Chap. 4, Section 4.1]

− An autonomic plane for Wireless Body Sensor Networks [135]:
G. Fortino, S. Galzarano, and A. Liotta. An autonomic plane for Wireless Body Sensor

Networks. In International Conference on Computing, Networking and Communications

(ICNC), 2012, pages 94-98, Maui, Hawaii, February 2012. [Related to Chap. 3, Section 3.4]

− Embedded self-healing layer for detecting and recovering sensor
faults in body sensor networks [136]:
S. Galzarano, G. Fortino, and A. Liotta. Embedded self-healing layer for de- tecting and

recovering sensor faults in body sensor networks. In Proceedings of the 2012 IEEE Inter-

national Conference on Systems, Man, and Cybernetics (SMC), pages 2377-2382, 2012.

[Related to Chap. 3, Section 3.5]

139



Chapter 5. Conclusions, Future Directions and Publications

− Integrating Jade and MAPS for the development of Agent-based
WSN applications [137]:
M. Mesjasz, D. Cimadoro, S. Galzarano, M. Ganzha, G. Fortino, and M. Paprzycki. Inte-

grating jade and MAPS for the development of agent-based WSN applications. In Intelligent

Distributed Computing VI, Springer, SCI se- ries, Proceedings of the 6th International

Symposium on Intelligent Distributed Computing (IDC 2012), volume 446 of Studies in

Computational Intelligence, pages 211-220, Rende, Italy, 2013. Springer Berlin / Heidelberg.

[Related to Chap. 3, Section 3.6]

− Human Postures Recognition Based on D-S Evidence Theory
and Multi-sensor Data Fusion [138]:
W. Li, J. Bao, X. Fu, G. Fortino, and S. Galzarano. Human Postures Recognition Based

on D-S Evidence Theory and Multi-sensor Data Fusion. In IEEE International Symposium

on Cluster Computing and the Grid, pages 912-917, Los Alamitos, CA, USA, 2012. IEEE

Computer Society.

− TinyMAPS: A Lightweight Java-Based Mobile Agent System for
Wireless Sensor Networks [139]:
F. Aiello, G. Fortino, S. Galzarano, and A. Vittorioso. TinyMAPS: a light- weight Java-Based

Mobile Agent System for Wireless Sensor Networks. In F. Brazier, Kees Nieuwenhuis, Gre-

gor Pavlin, Martijn Warnier, and Costin Badica, editors, Intelligent Distributed Computing

V, Springer, SCI series, Proceedings of the 5th International Symposium on Intelligent

Distributed Computing (IDC 2011), volume 382 of Studies in Computational Intelligence,

pages 161-170, Delft, The Netherlands, 2012. Springer Berlin / Heidelberg. [Related to Chap.

3, Section 3.6]

− Collaborative Body Sensor Networks [140]:
A. Augimeri, G. Fortino, S. Galzarano, and R. Gravina. Collaborative body sensor networks.

In Proceedings of the 2011 IEEE International Conference on Systems, Man, and Cyber-

netics (SMC), pages 3427-3432, Anchorage, Alaska, October 2011.

− Agent-based Development of Wireless Sensor Network Applica-
tions [141]:
G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Agent-based Development of Wire-

less Sensor Network Applications. In Proceedings of 12th Workshop on Objects and Agents

(WOA 2011), Rende (CS), July 2011. [Related to Chap. 3, Section 3.6]

5.3.4 Book Chapters

− On the development of mobile agent systems for wireless sensor
networks: issues and solutions [142]:
G. Fortino and S. Galzarano. On the development of mobile agent systems for wireless sen-

sor networks: issues and solutions. In Maria Ganzha and Lakhmi Jain, editors, Multiagent
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Systems and Applications: Practice and Experience, number 45 in Intelligent Systems Ref-

erence Library, pages 185-215. Springer- Verlag Berlin Heidelberg, 2013. [Related to Chap.

3, Section 3.6]

− Signal processing in-node frameworks for Wireless Body Sensor
Networks: from low-level to high-level approaches [143]:
F. Aiello, G. Fortino, S. Galzarano, R. Gravina, and A. Guerrieri. Signal processing in-node

frameworks for Wireless Body Sensor Networks: from low- level to high-level approaches. In

Mehmet R. Yuce and Jamil Y. Khan, editors, Wireless Body Area Networks: Technology,

Implementation and Applications, pages 107-135. Pan Stanford Publishing, 2011. [Related

to Chap. 3, Section 3.6]
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