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Preface

This Ph.D. thesis contains the result of research undertaken at the ”Mi-
crowave Lab” in the DIMES Department ”Dipartimento di INGEGNERIA
INFORMATICA, MODELISTICA, ELETTRONICA E SISTEMISTICA” of
the UNICAL University of Calabria over a period of three years (2010-2013).
Certainly, I would have never reached the point of finishing my Ph.D. without
the help and support of others.

Starting as the first foreign Ph.D. student at the Microwave Lab, the work
began under the supervision of Prof. Giuseppe Di Massa and Prof. Sandra
Costanzo who gave me all the information and material of the all previous
research done about microstrip reflectarray antennas, that include new syn-
thesis algorithm and new design techniques.

Microstrip antenna design supposes to know the relative permittivity value
of the dielectric substrate provided by the manufacturer, but in microwave
applications a little change in the permittivity value gives some considerable
variation in frequencies bands, then, it was necessary to study and find a sys-
tem to measure the real value of the permittivity in terms of frequency. A
period of lectures and articles arrived.

Some few weeks later, after getting used with the language, the lab and
dielectric measurements techniques, an amazing article title ”Open resonator
powered by a rectangular waveguide”, 1992, written by Bucci and Di Massa,
my Supervisor, arrived in my hands, in original version. Open resonator the-
ory, explained in Chapter 1, with parabolic approximation to the wave equa-
tion was my daily bread to understand how it works and how to make the
coupling between a waveguide and the cavity and at the end to find a simple
equivalent circuit that express all the system.

After some interesting discussions with my tutor, the idea of using the
open resonator to measure the dielectric permittivity got shape and we de-
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signed the system to do that and the theory to get the results getting a new
approach to retrieve the value of the relative permittivity.

The construction of a hemispherical open resonator for K-band was the
next step to validate the theory, firstable through the measurement of the
resonance frequencies in the empty cavity, ”so sensitivity but it works”, and
later, inserting some dielectric substrate and applying the proposed approach
on the measurements to retrieve the value of the permittivity, explained in
Chapter 2. The results obtained were acceptable.

The idea of the new Open Resonator Technique for measurement dielec-
tric parameters, brought a lot of new application ideas out, but, our research
must continue in the next step that was the reflectarray characterization. The
best idea was characterize those type of antenna, but using the open resonator
technique, exposed en chapter 3. We developed the new approach, we designed
some reflecting surface and we characterized the reflection coefficient of vari-
able size reflectarray patch elements using the proposed model with excellent
results.

The idea of using the open resonator theory for new applications contin-
ued in our mind for long time, and because the research subject of the lab
is microwave components and antennas, why not to develop a new theory for
an Fabry Perot antenna?. In the last chapter of this thesis,this new subject
is explained, a simple Fabry Perot cavity, feed by a rectangular waveguide,
where the electromagnetic field cavity can be used to compute equivalent cur-
rents on radiating apertures, obtaining from them the radiated far field. The
approach can be adopted for the analysis as well as for the synthesis of a large
variety of cavity antennas.

In order to validate the approach, a Fabry-Perot antenna was fabricated
for K-band and measured in the Microwave Lab at University of Calabria.

I have been involved in other collaborative works; in particular with Prof.
Sandra Costanzo and Francesco Spadafora, searching for low cost radar sys-
tems for target detection and soil discontinuties detection using SDRadar
systems.

Rende (Cosenza) , Hugo Oswaldo Moreno Aviles
novembre, 2013 .
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1

Microwave Open Resonator

1.1 Introduction

This chapter is dedicated to treat the theory of open resonator. In the sim-
plest case, an open resonator consists of two mirrors facing each other. The
origin of Open Resonator can be dated to the beginning of the twentieth cen-
tury when Charles Fabry and Alfred Perot introduced a new interferometric
device which would eventually bear their name: the Fabry-Perot interferome-
ter [1]. This novel form of interference device was based on multiple reflection
of waves between two closely spaced and highly reflecting mirrors. Fabry and
Perot published a large number of papers on their interferometer, including
15 joint articles between 1896 and 1902.

The subject of laser resonator by the use of a Fabry Perot interferome-
ter has proposed in independently way in ([2]-[4]). The theory for resonators
with spherical mirrors and the approximation of the modes by waves beams
was proposed in [5, 6], but, the concept of electromagnetic wave beams was
introduced in [7, 8] where was investigated the sequence of lens for the guided
transmission of electromagnetic waves. The theories are based on a scalar for-
mulation, which, although it is sufficient for most purposes, ignores the vector
nature of the electromagnetic field.

In [9] an electromagnetic theory of the open resonator was done, where,
the standing wave fields are obtained by the superposing of those fields that
are due to two highly directional beams propagating in opposite directions
along the axis of symmetry of the device.

The use of open resonator either in the microwave region, or at higher
frequencies (optical regions) has taken place over a number of decades. The
related theory and its applications have found a widespread use in several
branches of optical physics and today is incorporated in many scientific in-
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struments [10].

In microwave region open resonators have also been proposed as cavities
for quasi-optical gyrotrons [11]and as an open cavity in a plasma beat wave
accelerator experiment [12].

A vector formulation of electromagnetic Gaussian beam was introduced in
[13], where the beam was constructed from a single components of the electric
and the magnetci vector potentials that are roiented in the propagation direc-
tion of the beam. The use of Open Resonator as microwave Gaussian Beam
Antennas [14, 15]and [16] provides a very interesting solution as they can pro-
vide very low slidelobes level. They are based on the result that the field map
at the mid section of an open resonator shows a gaussian distribution that
can be used to illuminate a metallic grid or a dielectric sheet.

For microwave application a reliable description of the coupling between
the cavity and the feeding waveguide is necessary. Several papers deal with the
coupling through a small hole or a rectangular waveguide taking into account
only for the fundamental cavity and waveguide mode [17, 18, 19]

In [20] a complete analysis of the coupling between a rectangular waveg-
uide and an open cavity has been developed taking into account for all the
relevante eigenfunction in the waveguide and in the cavity.

This chapter reviews the general theory of Open Resonator and proposes
to study the analysis made in [20], where, the coupling between a feeding
coupling aperture given by a rectangular waveguide is treated.

Starting with a general description of the open resonator and treating the
paraxial approximation of the wave equation, we derive the modal expansion
of the field into the cavity taking into account for the proper coordinate sys-
tem. The computational of the modal coefficients take into account for the
characteristics of the mirrors, the ohmic and diffraction losses and coupling.

1.2 Open resonator description

The open cavity resonator consists of two, perfectly conducting, mirrors
facing each other, as showed in Fig. ??, and situated symmetrically about the
xy plane along an axis of symmetry that coincides with the z axis.

The medium bounded by the two perfectly conducting concave mirrors
(M) is free space and the distance between the two mirrors along the axis of
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Fig. 1.1: Schematic diagram of the open-cavity resonator

symmetry is D = 2l. The stability of the open resonator depends of the cur-
vature of the mirrors, non necessary equals but both of them spherical with
radio R.

The phasor electric and magnetic fields in free space and bounded by the
two mirrors have a harmonic time dependence exp(−iwt), where w is the wave
angular frequency.

1.3 Stability of Open resonator

A resonator with spherical mirrors of unequal curvature is representable
as a periodic sequence of lens which can be stable or unstable. The stability
condition assumes the form:

0 <

(
1− 2l

R1

)(
1− 2l

R2

)
< 1 (1.1)

The above expression was previously derived in [6] from geometrical op-
tics approach based on equivalence of the resonator and a periodic sequence
of parallel lens and independently in [7] solving the integral equation for the
field distribution of the resonant modes in the limit of infinite Fresnel numbers.

To show graphically which type of resonator is stable and which is unsta-
ble, it is useful to plot a stability diagram on which each type of resonator type
is represented by a point. This is shown in Fig. 1.2 where parameters d/R1

and d/R2 are drawn as the coordinate axes; unstable systems are represented
by points in the gray area and stable systems are represented by the points
in the blue area.
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Fig. 1.2: Stability diagram of an open resonator

1.4 Wave analysis by Parabolic Approximation

The parabolic equation is an approximation of the wave equation which
models energy propagating in a cone centred on the paraxial direction as show
in Fig. 1.3. A parabolic equation was first introduced into the analysis of elec-
tromagnetic wave propagation in [21] and [22] in the 1940s. Since then, it has
been used in diffraction theory to obtain approximative (asymptotic) solution
when the wavelength is small compared to all characteristic dimensions. As
open resonators usually satisfy this condition, the parabolic equation finds
wide application in developing a theory of open resonators.

A field component of a coherent wave satisfies the scalar wave equation:

52µ+ k2µ = 0 (1.2)

where k = 2π/λ is the propagation constant in the medium.

For a wave travelling in the z direction, assuming an ejwt time dependence,
the field components can be expressed as:

µ = Ψ (x, y, z) e−jkz (1.3)
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Fig. 1.3: Propagation of Energy in paraxial direction

where Ψ is a slowly varying function which represents the deviation from
a plane wave. By inserting 1.2 into 1.3 and assuming that Ψ varies so slowly
with z that its second derivative can be neglected, obtaining the well know
parabolic approximation to the wave equation:

∂2Ψ

∂x2
+
∂2Ψ

∂y2
− 2jk

∂Ψ

∂z
= 0 (1.4)

The differential equation 1.4 for Ψ is similar to the time dependent
Schrodinger equation with solution of the type:

Ψ = e−j(P (z)+ k
2q r

2) (1.5)

where:

r2 = x2 + y2 (1.6)

The parameter P (z) represents a complex phase shift associated to the
propagation of the beam along the z axis, q (z) is the complex parameter
which describe the Gaussian beam intensity with the distance r form the z
axis.

The insertion of 1.5 in 1.4, comparing terms of equal power in r, gives the
relations:

dq

dz
= 1 (1.7)

dP

dz
= − j

q
(1.8)

The integration of 1.8 yields:

q (z2) = q (z1) + z (1.9)
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which relates the intensity of two planes, the planes in z2 and the plane in
z1.

A wave with a Gaussian intensity profile, as 1.5, is one the most important
solutions of equation 1.4 ans is often called fundamental mode as showed in
Fig. 1.4.

Fig. 1.4: Amplitude distribution of cavity fundamental mode

Two real beam parameter, R and ω, are introduced in relation to the com-
plex parameters q in 1.9 by

1

q
=

1

R
− j λ

πω2
(1.10)

Introducing 1.10 in the solution 1.5, the physical meaning of R(z) is the
curvature radius of the wavefront that intersects the axis at z and w(z) is the
decrease of the field amplitude with the distance r from the axis, as showed
in Fig. 1.4. The result of Ψ is:

Ψ = e
−j
(
P+π

λ
r2

R

)
e−

r2

ω2 (1.11)

The parameter ω is called beam radius and the term 2ω the beam diame-
ter. The Gaussian beam contracts to a minimum diameter 2ω0 at beam waist
where the phase front is plane. The beam parameter q at waist is given by:
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q0 = j
πω2

0

λ
(1.12)

and, using 1.9, at distance z from the waist:

q = q0 + z = j
πω0

λ
+ z (1.13)

Combining 1.13 and 1.11, the real and imaginary part, it gets:

R (z) = z

[
1 +

(zR
z

)2]
(1.14)

and

ω2 (z) = ω2
0

[
1 +

(
z

zR

)2
]

(1.15)

where zR is the Rayleigh distance:

zR =
πω2

0

λ
(1.16)

The beam contour ω(z) is an hyperbola with asymptotes inclined to the
axis at an angle:

Θ =
λ

πω0
(1.17)

and is the far-field diffraction angle of the fundamental mode.

In 1.15 ω is the beam radius, ω0 is the minimum beam radius (called beam
waist) where one has a plane phase front at z = 0 and R is the curvature ra-
dius of the phase front at z. It should be noted that the phase front is not
exactly spherical; therefore, its curvature radius is exactly equal to R only on
the z-axis. The parameter of the Gaussian beam are illustrated in Fig. 1.5

Dividing 1.15 by 1.16, the useful relation is obtained:

λ

πω2
0

=
πω2

λR
(1.18)

The expression 1.16 is used to express ω0 and z in terms of ω and r:
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Fig. 1.5: Parameters of Gaussian Beam

ω2
0 =

ω2

1 +
(
πω2

λR

)2 (1.19)

z =
1

1 +
(
λR
πω2

)2 (1.20)

Inserting 1.12 in 1.8 the complex phase shift at distance z from the waist
is obtained as:

dP

dz
= − j

z + j
πω2

0

λ

(1.21)

Integration of 1.21 yields

jP (z) = lg

[
1− j

(
λz

πω2
0

)]
= lg

√
1 +

(
λz

πω2
0

)2

− jarctang
(
λz

πω2
0

)
(1.22)

The real part of P represent the phase shift difference Φ between the Gaus-
sian beam and an ideal wave, while the imaginary part produces an amplitude
factor ω0

ω which gives the decrease of intensity due to the expansion of the
beam. Then, the fundamental Gaussian beam can be written as:

µ (r, z) =
ω0

ω
e{−j(kz−Φ)−r

2( 1
ω2 + jk

2R )} (1.23)

where

Φ = arctan

(
λz

πω2
0

)
(1.24)
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1.5 Open Resonator Feed by Spherical Mirrors

An Open Resonator feed by two spherical mirrors (Fig. 1.6) is considered
for analysis. In cartesian (x, y, z) coordinates, the separate solution for 1.4 is
[7]:

M M

M

2 l

Y
X

Z

Fig. 1.6: Spherical Open Cavity

Ψ(x,y,z) = φmp (x, y, z) exp

[
j (m+ n+ 1) tan−1

z

zR
− j π

λ

r2

R (z)

]
(1.25)

where to have consistence with the parabolic approximation the condition
| m+ n+ 1 |� (kωo)

2
must be satisfied and φmp (x, y, z) is expressed by:

φmp (x, y, z) =
1

ω (z)

√
2

π2m+pm!p
Hm

(√
2
x

w

)
Hp

(√
2
y

w

)
exp

[
− r2

w2 (z)

]
(1.26)

where Hm,p are the Hermite polynomials of the rectangular mode numbers
m or p.

With the assumption that the mirrors are sufficiently large to permit the
total reflection of the gaussian beams of any relevant order, Ψ can be expressed
as:
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Ψmpq = u+mpq + u−mpq (1.27)

Where u+mpq and u−mpq represent Hermite Gauss beams propagating from
left to right and from right to left, respectively.

Resonance conditions depend on the mode numbers and occurs when the
phase shift from one mirror to the other is a multiple of π. Using 1.3, 1.5 and
1.10 this conditions leads to :

kmpq2l − 2 (m+ p+ 1) tan−1
(
l

zR

)
= π (q + 1) (1.28)

where q is the number of nodes of the axial standing wave pattern and
2l� zR the distance between the mirrors as showed in Fig. 1.6.

The fundamental beat frequency ∆f0 is given by:

∆f0 =
c

4l
(1.29)

where c is the velocity of light. From 1.11 the resonant frequency f of a
mode can be expressed as:

fmpq
∆f0

= q + 1 +
1

π
(m+ p+ 1) cos−1

(
1− 2l

R

)
(1.30)

1.5.1 Electromagnetic Field in the cavity

In the cavity, the expressions for the solution of scalar equation 1.4 with the
boundary condition Φ = 0 on the mirrors is given by:

Ψ(x,y,z) = φmp (x, y, z) cos

[
kmpqz − (m+ p+ 1) tan−1

z

zR
+
π

λ

r2

R (z)
+
qπ

2

]
(1.31)

The electromagnetic field inside the cavity can be expressed in terms of
(quasi) transverse electromagnetic modes (TEM):

E =
∑
n

Vnen (1.32)

H =
∑
n

Inhn (1.33)
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Where the index n summarizes the indexes (mpq). According to the results
reported in the previous section, the expressions for the ŷ polarized modes are:

en = φmp (x, y, z) cos

[
kmpqz − (m+ p+ 1) tan−1

z

zR
+
π

λ

r2

R (z)
+
qπ

2

]
ŷ

(1.34)

hn = φmp (x, y, z) sin

[
kmpqz − (m+ p+ 1) tan−1

z

zR
+
π

λ

r2

R (z)
+
qπ

2

]
ŷ

(1.35)
and similarly for the x̂ ones

From Maxwell equations we get for the mode vectors [23]:

knhn = ∇× en (1.36)

and for the coefficients In, Vn

In =
jωε0
k2 − k2n

1

l

∫ ∫
S

n̂×E · h∗n dS (1.37)

Vn =
kn

k2 − k2n
1

l

∫ ∫
S

n̂×E · h∗n dS = −j ζ0ωn
ω

In (1.38)

where S is the cavity surface and ζ0 is the free space impedance. Note
explicity that the tangential electric field appearing in expression 1.37, which,
at variance with expression 1.38, does not provide a representation for the
tangential components uniformly valid up to the cavity boundaries. The sur-
face S can be divided into three parts: the coupling aperture A, the mirrors M
and the (ideal) cavity boundary external to the mirrors. M̂ (see Fig. ). Hence:

In =
jωε0
k2 − k2n

1

l
·
{∫ ∫

A

n̂×E · h∗n dS +

∫ ∫
M

n̂×E · h∗n dS
∫ ∫

M̂

n̂×E · h∗n dS
}

(1.39)
Strictly speaking, in one of the integrals over the mirrors surfaces the cou-

pling aperture should be deleted. However, the error introduced is negligible
provided that the waveguide dimension is much smaller than that of the mir-
rors.
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1.6 Open Resonator Feed by Rectangular Mirrors

An Open Resonator feed by two parallel metallic rectangular mirrors (Fig.
1.7) is considered for a modal analysis.

Fig. 1.7: Rectangular Open Resonator

The solution of 1.4, assuming an ejωt time dependance, can be written as

u = Ψ(x, y, z)e−jkz − (−1)qΨ(x, y,−z)ejkz (1.40)

where q is the longitudinal mode number. With the boundary condition
u = 0 in the mirrors:

{
Ψ (x, y,−l) = 0, for |x| > a or |y| > b;
Ψ (x, y,−l) = ej(2kl−πq)W (x, y, l) , for |x| < a or |y| < b;

(1.41)

Ψ = Ψa (x, z)Ψb (y, z) (1.42)

where the functions Ψa and Ψb satisfy the equations:

∂2Ψa
∂x2

− 2jk
∂Ψa
∂z

= 0 (1.43)

∂2Ψb
∂x2

− 2jk
∂Ψb
∂z

= 0 (1.44)

with the proper boundary conditions
Ψa (x,−l) = 0, for |x| > a;
Ψb (y,−l) = 0, for |y| > b;
Ψa (x,−l) = e−j2πpaΨa (x, l) , for |x| < a;
Ψb (y,−l) = e−j2πpbΨb (y, l) , for |y| < b;

(1.45)

The eigenfrequency of the resulting mode is then given by
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kl = π
(q

2
+ p
)
, p = pa + pb (1.46)

where

pa =
πm2

4 (Ma + β + jβ)
2 , m = 1, 2, ... (1.47)

pb =
πn2

4 (Mb + β + jβ)
2 , n = 1, 2, ... (1.48)

Ma =

√
2ka2

l
, Mb =

√
2kb2

l
(1.49)

and

γ = −
ζR
(
1
2

)
√
π

= 0.824 (1.50)

In (1.50) ζR is the Rieman’s Zeta function.

We introduce the dimensionless coordinates:

ξ =

√
k

2l
x, η =

√
k

2l
y, ζ =

z

2l
(1.51)

In that coordinate system ξ and η assume the value

ξ = ±Ma

2
, η = ±Mb

2
(1.52)

at the end of the mirror x = ±a; y = ±b. The parameter Ma,b is related
to the Fresnel number N

M =
√

8πN (1.53)

In the coordinates (ξ, η, ζ) we have

Ψ = fa (ξ) fb (η) e2πp(ζ+
1
2 ) (1.54)

where
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fa (ξ) = cos
πmξ

(Ma + γ + jγ)
, (m = 1, 3...)

fa (ξ) = sin
πmξ

(Ma + γ + jγ)
, (m = 2, 4...)

fb (η) = cos
πnη

(Mb + γ + jγ)
, (n = 1, 3...)

fb (η) = sin
πnη

(Mb + γ + jγ)
, (n = 2, 4...) (1.55)

and

u (ξ, η, ζ) = 2e−jπpfa (ξ) fb (η) cos (πqζ) , (q even) (1.56)

u (ξ, η, ζ) = 2e−jπpfa (ξ) fb (η) sin (πqζ) , (q odd) (1.57)

1.6.1 Electromagnetic field in the cavity

The electromagnetic field inside the cavity can be expressed in terms of (quasi)
transverse electromagnetic modes

E =
∑
mn

Vmnemn (1.58)

H =
∑
mn

Imnhmn (1.59)

The relation of u = u (x, y, z) to the electromagnetic field can be estab-
lished with the aid of Hertz vector Πe which determines the electromagnetic
field through

e = ∇∇ ·Π2 + k2Πe (1.60)

h = j
k

Zw
∇×Πe (1.61)

where k = w
√
ωε and Zw =

√
ω
ε . In 1.60 and 1.61 we set:

Πe
x = u Πe

y = Πe
z = 0 (1.62)

neglecting the losses and considering the mode (111), we obtain the modal
solution for the y component of magnetic field

Hy = −j k

Zw

π

l
e−jπpcos

(
πξ

Ma + γ

)
cos

(
πη

Mb + γ

)
sin(πζ) (1.63)

and the x component of electric field
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Ex =

[
k2 − k

2l

π2

(Ma + γ)
2

]2
2e−jπpcos

(
πξ

Ma + γ

)
cos

(
πη

Mb + γ

)
cos(πζ)

(1.64)
From 1.63 and 1.64 we obtain the equivalent surface impedance at the

ascisse z

Zs = jZw
2l

π

[
k − 1

2l

π2

(Ma + γ)
2

]
cot
( π

2l
z
)

(1.65)

1.7 Cavity feed by a rectangular waveguide

A complete analysis of the coupling between the cavity and the waveguide
has been done in [20] where the electromagnetic fields inside the cavity and in
the waveguide are analysed and taken into account for the continuity analysis
in the feeding of the cavity.

b A

M M

M

2 l

Y
X

Z

Fig. 1.8: Spherical Open Cavity feed by a rectangular waveguide

A metallic waveguide is assumed to feed the cavity. The waveguide field
on the coupling aperture A is represented as:

Eg =
∑
n

V gn egn (1.66)
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Hg =
∑
n

Ignhgn (1.67)

where eg andhg are TE electromagnetic modes of the waveguide.

Assuming that the mirror curvature can be neglected over the extension
of the coupling aperture, fields 1.66 1.67 verify the following orthonormality
relation:

∫ ∫
A

egn × hgm · ẑ dS = δnm (1.68)

Expressing the field over the coupling aperture A by means of expression
1.67 we obtain from 1.2:

In + 2Fn

′∑
m

αnmIm =
Fn
ζ0

∑
m

βnmV
g
m (1.69)

where:

Fn =
j kl(

k2 − k2n + kkn
Qrn

)
− j kknQrn

(1.70)

and:

βnm =

∫ ∫
A

egm × h∗n · n̂ dS = −
∫ ∫

A

h∗n · h
g
m dS (1.71)

By introducing the matrices A and B, whose elements are:

anm =

{
1
Fn

n = m

2αnm n 6= m
(1.72)

and βnm respectively and the vectors I ≡ {In} and V g ≡ {V gn }, relation
1.2 can be written in a compact form as:

ζ0A · I = B · V g = B ·
(
V + + V −

)
(1.73)

wherein V + and V − aare the vectors of the incident and reflected waveg-
uide mode amplitudes respectively. By enforcing the continuity of the mag-
netic field tangential component over the coupling aperture, we get:
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−B+ · I = Ig =
1

ζ0
ζ−1 ·

(
V + + V −

)
(1.74)

wherein B+ is the adjoint of B and ζ is the diagonal matrix whose elements

are the modes characteristic impedances normalized to ζ0. From ?? and ??
we immediately obtain:

(
I − A−1 · B · ζ · B+

)
· I =

2

ζ0
A−1 · B · V + (1.75)

(
I − ζ · B+ · A−1 · B

)
· V − =

(
I + ζ · B+ · A−1 · B

)
· V + (1.76)

wherein I is the unit matrix and A−1 the inverse of the matrix A.

Solution of eq.1.75 and 1.76 provides the answer of the problem. In partic-
ular, from 1.76 the (formal) expression for the feeding waveguide scattering
matrix S becomes:

S =
(
I − ζ · B+ · A−1 · B

)−1
·
(
I + ζ · B+ · A−1 · B

)
(1.77)

1.7.1 Field on the coupling aperture

In order to solve the system (1.75 -1.76)a suitable description of the field
on the aperture A is necessary. Any device, able to support electromagnetic
field matching the cavity field on the mirror (1.32 - 1.33), can be used to feed
the cavity.

A rectangular metallic waveguide, with transverse a×b, is assumed to feed
the cavity. The waveguide TE electromagnetic modes of the metallic rectan-
gular waveguide, on the coupling aperture A, is represented as:

hn = hpq =
1

ktpq

√
4εpεq
ab
·{

pπ

a
sin

pπ

a

(
x+

a

2

)
cos

qπ

b

(
y +

b

2

)
x̂ +

qπ

b
cos

pπ

a

(
x+

a

2

)
sin

qπ

b

(
y +

b

2

)
ŷ

}
(1.78)

epq = hpq × ẑ (1.79)
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εp = {1, p 6= 0;
1

2
, p = 0 (1.80)

k2tpq =
(pπ
a

)2
+
(qπ
b

)2
(1.81)

and the TM electromagnetic modes:

en = epq = − 1

ktpq

√
4εpεq
ab
·{

pπ

a
cos

pπ

a

(
x+

a

2

)
sin

qπ

b

(
y +

b

2

)
x̂ +

qπ

b
sin

pπ

a

(
x+

a

2

)
cos

qπ

b

(
y +

b

2

)
ŷ

}
(1.82)

hpq = ẑ× epq (1.83)

Note explicitly that in expressions (1.78 - ??) the index n summarizes the
indexes (pq).

1.7.2 Equivalent Circuit

Let us to consider systems 1.75 and 1.76 under the following assumption:

1. Negligible intercoupling between cavity modes, i.e. :

(
A
)
pq

=
1

Fp
δpq⇐⇒

(
A−1

)
pq

+ Fpδpq (1.84)

2. Single cavity mode approximation, i.e.:

Fp = δp0F0 (1.85)

3. Beam diameter at the mirror much larger than the waveguide dimension,
i.e.:

ω = ω (l)� a (1.86)

Putting
V gn = V +

1 δ1n + V −n (1.87)

and taking(1.84 -1.86) into account, equation (1.75 -1.76) became

−ζ0ζnβ0nI0 = V +
1 δ0n − V −n (1.88)
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(
1− F0

∑
k

β2
0kζk

)
I0 = 2

F0

ζ0
β01V

+
1 (1.89)

From 1.88 and 1.89 Vn is expressed as:

V −n =

δ1n +
2F0ζn

β0n

β01

1− F0

∑
k

β2
0kζk

V +
1 (1.90)

Hence

Γ =
V −1
V +
1

=

1 + F0ζ1β
2
01 − F0

∑
k 6=1

β2
0kζk

1− F0

∑
k

β2
0kζk

(1.91)

From 1.91 the equivalent terminal impedance relative to the fundamental
mode is:

Z = β0β1
1 + Γ

1− Γ
= − ζ0

β2
01F0

+ ζ0
∑
k 6=1

β0k
β01

2

ζk (1.92)

Taking into account for the expression 1.70 for F0, Fig. 1.8 shows the
equivalent circuit.

Zg

Le

1: 01
L′

Lo C

R′
β

Fig. 1.9: Equivalent circuit of open cavity coupled to a feeding waveguide.

where the explicit expression for its elements are collected under Table 1.1.

The value of Le depends on the feeding waveguide and is reported in the
following subsection for rectangular waveguide.
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Table 1.1: Expression for the Equivalent Circuit Elements of Fig. 1.8

Lo µol(H) C εl
(κol)

2 (F )

L′ µoδ(H) R′ 2
σδ

(Ω)

The cavity is assumed to be excited by the incident fundamental TE10

mode. From expressions 1.66, 1.67 and 1.78 follows than the cavity are ex-
cited only the (0, 0, q) mode, in the feeding waveguide are excited the modes
TEn0

When the cavity is fed by a rectangular waveguide under the approxima-
tion 3), the expression 1.71 for β0k can be explicitly evaluated, leading to:

β0n =
4

pi

1

n

√
ab

ω2
n = 1, 3, · · · (1.93)

Hence, for the sum at the right hand side of 1.92:

ζ0
∑

k=3,5,···

(
β0k
β01

)2

ζk = jζ0

∞∑
k=0

1

(2k + 3)
2

1√(
2k+3
2a λ

)2 − 1
'

jζ0

(
2a

λ

) ∞∑
k=0

1

(2k + 3)
2 = jωµa

1

pi

[(
1− 1

8

)
ζ {3} − 1

]
= jωLe

(1.94)

wherein ζ· denotes the Rieman zeta function. From equation 1.94, the value
of Le is:

Le = 16.510−3µ0a [henry] (1.95)
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Extraction of Equivalent Electrical Model for
Measuring of Permittivity of Dielectric
Material

2.1 Introduction

Low loss dielectric materials are widely used for the design of microwave
and millimetre-wave circuits components and antennas. With the increasing
demand for improved system performances and the adoption of new dielectric
materials [24], the electromagnetic characterization of dielectric substrates
([25]-[28]) has become a fundamental task.

The use of open resonators either in the microwave region or at higher fre-
quencies (optical region) has taken place over a number of decades. The related
theory and its applications has found a widespread use in several branches of
optical physics and today is incorporated in many scientific instruments [29].

In the microwave region, open resonators have also been proposed as cav-
ities for quasi-optical gyrotrons [11] and adopted as open cavities in a plasma
beat wave accelerator experiment [12]. For microwave applications, a reliable
description of the coupling between the cavity and the feeding waveguide is
strictly necessary.

Several papers deal with the coupling through a small hole or a rectangular
waveguide by taking into account only the fundamental cavity and waveguide
modes ([17]-[19]).

In [20], a complete analysis of the coupling between a rectangular waveg-
uide and an open cavity has been developed by taking into account all the
relevant eigenfunctions into the waveguide as well as into the cavity.

Starting from the theoretical foundation of the open resonator method for
dielectric characterization [[30]-[32]], several papers have been written con-
cerning the use of open resonator as a convenient tool for measuring the
complex permittivity of a dielectric material [[33]-[40]].
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They all start from the expression derived from Yu and Cullen [30], assuming
an ideal open cavity.

In this chapter, an improved open resonator technique for dielectric char-
acterization is proposed. An open cavity fed by a rectangular waveguide is
adopted, with a transition specifically designed to optimize the coupling on
the basis of a complete modal expansion analysis as developed in [20]. The
equivalent circuit of the open resonator system originally proposed in [20] is
extended in this work to include the inserted dielectric sample. Starting from
the results in [20], where the coupling between an empty cavity and a rectan-
gular waveguide is accurately characterized in terms of a full modal expansion
in both devices, the equivalent circuit proposed in [20] is properly extended
to include the planar grounded dielectric sample, so providing a simple and
eficient tool to retrieve the unknown complex permittivity from a single re-
turn loss measurement. As a matter of fact, the traditional open resonator
method generally requires measurement data on more samples with different
thickness’s, as the unknown permittivity value must be retrieved from a tran-
scendental equation having multiple roots [40]. As a further accuracy feature
of the proposed method, a proper characterization of the gaussian beam im-
pinging on the unknown dielectric sheet is performed to derive an accurate
formulation of the waveguide input impedance as a function of the complex
dielectric permittivity, which is accurately retrieved from return loss mea-
surements. When compared to the approach proposed in [30], the following
significant improvements are introduced:

• losses due to the non ideal mirror conductivity are properly taken into
account;

• the frequency shift due to the cavity enlargement which is caused by the
electromagnetic field penetration into the cavity walls is specially mod-
elled;

• additional reactances are introduced in the equivalent circuit to model the
coupling between the cavity and the higher order modes of the feeding
waveguide.

The proposed method is successfully tested on thin grounded dielectric
substrates usually adopted in the design of microwave planar circuits and an-
tennas.



2.2 Open Resonator Technique 25

2.2 Open Resonator Technique

The case of a rectangular waveguide coupled with an open cavity has been
studied in details [20], confirming that the coupling between cavity modes
is negligible and that the single resonant mode approximation gives a good
description of the cavity field as only this last mode is practically excited. At
the same time, the analysis of the solutions has also demonstrated that the
excitation of higher order waveguide modes TEn0 is important for the accu-
rate coupling description.

The equivalent circuit adopted in [20] to accurately model a cavity coupled
to a feeding waveguide is illustrated under 2.1. The explicit expressions of the
circuit elements as a function of the cavity and the waveguide parameters are
reported under Table 2.1. In particular, the component R′ models the losses
due to the finite conductivity of the mirrors, while L′ represents the effect
of the skin depth δ. It sums to the inductive circuit part Lo o modelling the
cavity, thus producing a shift in the resonant frequency, which is equivalent
to a cavity enlargement.

Here, 2l gives the cavity length, a is the major waveguide dimension,
σ represents the conductivity, while κo = 2πfo

c is the wave number of free
space, c being the velocity of light and fo the resonant frequency of the empty
resonator. The circuit element Zg appearing into 2.1 represents the character-
istic impedance of the transmission line equivalent to the excited fundamental
mode of the feeding waveguide.

Zg

Le

1: 01
L′

Lo C

R′
β

Fig. 2.1: Equivalent circuit of open cavity coupled to a feeding waveguide.

From the circuit reported under 2.1 is straightforward to deduce the waveg-
uide input impedance Zi and the reflection coefficient Γ , respectively given as:

Zi = jωLe +
ZR

β01
2 (2.1)
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Table 2.1: Expression for the Equivalent Circuit Elements under 2.1

Lo µol(H) C εl
(κol)

2 (F )

L′ µoδ(H) R′ 2
σδ

(Ω)

Le 16.5 × 10−3µoa(H)

Γ =
Zcci − Z10

Zcci + Z10
(2.2)

Where:

ZR = jωLT +R′ +
1

jωC
(2.3)

LT = Lo + L′ (2.4)

while β01 is the waveguide cavity factor as reported in [12].

In order to test the validity of the proposed approach, the results of a com-
plete modal analysis, as developed in [20], which assumes a relevant number
of modes both in the feeding waveguide and into the cavity, are compared
with those obtained from the adopted equivalent circuit. No significant differ-
ence is observed from the comparison, thus implying the possibility to use a
simple circuit analysis tool, instead of the complete modal approach, in many
practical cases.

2.3 Design and Optimization Based on the Equivalent
Circuit Model

The insertion of the unknown planar sample into the open cavity gives
the system depicted under 2.2, with the equivalent circuit modified as in 2.4
through the addition of the impedance Zε due to the grounded dielectric ma-
terial:

Zε = jZd tan [κdh− ΦG] (2.5)

The terms Zd and κd into 2.5 give the characteristic impedance and the
propagation constant of the unknown dielectric, respectively, while the phase
shift ΦG takes into account for the Gaussian nature of the beam, and is given
as [17]:
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ΦG = arctan
h

ZR
(2.6)

where ZR =
√
Rl − l2 is the Rayleigh distance.

Due to the negligible contribution of the Gaussian amplitude variation,
a uniform wave has been assumed, leading to use an equivalent circuit ap-
proach, while the phase term ΦG introduced by the Gaussian wave is properly
considered to model the associated resonant frequency shift.

When assuming a complex dielectric constant ε = ε′−jε′′ = ε {1− j tan δ}
for the unknown sample, it is easy to obtain:

Zε = j
Zo

aε (1− jbε)
tan {κo [aε (1− jbε)h]− ΦG} (2.7)

where aε =
√
ε′ and bε = 1

2 tan δ
It is useful to express the impedance Zε in terms of its real and imaginary

parts, namely:

Re [Zε] =
Zo

aε
(
bε

2 + 1
) sinh (2aεbεhκo)− bε sin

[
2
(
aεhκo + arctan λh

πωo2

)]
cosh (2aεbεhκo) + cos

[
2
(
aεhκo + arctan λh

πωo2

)]
(2.8)

Im [Zε] =
Zo

aε
(
bε

2 + 1
) bε sinh (2aεbεhκo) + sin

[
2
(
aεhκo + arctan λh

πωo2

)]
cosh (2aεbεhκo) + cos

[
2
(
aεhκo + arctan λh

πωo2

)]
(2.9)

Equations 2.8 and 2.9 can be easily applied to obtain the waveguide input
impedance, given as:

Zi =
R′ +Re [Zε]

β2
01

+ jωLe +
jωLT + 1

jωC + jIm [Zε]

β2
01

(2.10)

The imaginary part of the impedance Zε gives a shift in the resonant fre-
quency of the cavity, while its real part produces an amplitude reduction of
the reflection coefficient at the cavity input. The measurement of the above
shift and amplitude can be in principle combined to retrieve the unknown
complex permittivity ε′ − jε′′. However, due to the high quality factor Q of
the cavity, that means a very narrow resonant bandwidth, it is very difficult
to measure the exact value of the reflection coefficient and consequently the
dielectric loss. A high Q value gives, in principle, an advantageous feature,
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however it implies a reduced frequency range and so a strong sensitivity of
the measurement accuracy to slight changes of the test setup, due also to the
finite resolution of the network analyser.

In alternative way, we can use the information relative to the resonant
frequencies of the empty and dielectric loaded cavity, respectively equal to fo
and fR , to determine the imaginary part of Zε . As a second step, we can use
the information relative to the loaded dielectric quality factor QL , which is
inversely proportional to the difference between the 3 dB frequencies f1 , f2
at each side of the resonance minimum, namely:

QL =
fo

f2 − f1
(2.11)

The knowledge of the term QL leads to retrieve the dissipation factor into
the open resonator, from which the real part of expression 2.10, and con-
sequently the real part of impedance Zε can be obtained. Finally, from the
conjuncted knowledge of Re [Zε] and Im [Zε], the terms aε and bε can be re-
trieved, which are related to the real and imaginary parts of the unknown
complex permittivity.

The numerical implementation of the method described above is performed
by a two step procedure. First, the imaginary part ε′′ of the permittivity is
neglected and 2.9 is solved with respect to the variable aε, directly related to
the real part ε′ . This computed value is then inserted into 2.8 to obtain the
term bε , which is in turns related to the unknown dielectric loss tangent.

2.4 Experimental Results

In order to test the validity of the proposed approach, a K − band open
resonator fed by a WR62 rectangular waveguide is designed and realized (Fig.
2.5).

Table 2.2: Nominal parameters of tested dielectric substrates

n Material Thickness ε′ tan δ
(mm) (10 GHz) (10 (GHz)

1 AR600L03111 0,762 6,00 0.0030

2 Diclad527B0301155 0,762 2,55 0.0018

3 Diclad25FR030011 0,762 3,58 0,0035
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Fig. 2.5: Photograph of realized K-band open resonator system

The theory outlined in the previous section is applied to accurately deter-
mine the dimension of the waveguide to cavity transition on the basis of the
coupling optimization. At this purpose, a parametric analysis of the reflec-
tion coefficient at the waveguide input is performed in terms of the waveguide
height b, for a fixed design frequency fo = 24GHz, thus deriving the curve
reported in Fig. 2.6. Due to the mechanical tolerances of the available ma-
chine, a value equal to 0.7 mm, slightly larger than that giving the minimum
reflection coefficient, is adopted for the smaller height of the transition, start-
ing from the standard WR62 value b = 4.3mm.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.2

0.4

0.6

0.8

1

Waveguide height [mm]

M
ag

ni
tu

de

Fig. 2.6: Reflection Coefficient at the waveguide input versus waveguide height

The open resonator is designed on aluminium material, by assuming a
radius R0 = 517mm and a distance l = 490mm between the mirrors, this
latter giving the excitation of a TEM0,0,76 mode inside the cavity. The open
resonator radius, the longitudinal mode number and the relative length l are
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derived from a compromise choice on the basis of the following parameters:
(i) the fixed working frequency;
(ii) the resonator stability;
(iii) a proper waist on the mirror which avoids diffraction losses;
(iv) a waist value on the sample greater than a wavelength in order to measure
the diffraction features of resonant objects.

In order to test the proposed approach, three different dielectric substrates,
usually adopted for the realization of microwave planar circuits, are consid-
ered. The nominal parameters of the tested dielectrics as available from the
producer are reported in Table 2.2.
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Fig. 2.7: Measured return loss for test material n. 1 (Comparison between
empty and loaded cavity cases)

The measured return loss curves obtained in the presence of empty and
loaded cavity of Fig. 2.5 are compared in Figs. 2.7-2.9 for the three tested
dielectrics of Table 2.2. In all cases, a frequency shift together with an ampli-
tude reduction of the return loss can be observed when inserting the dielectric
sample.

In order to retrieve the unknown complex permittivity for the dielectric
samples, the theory outlined in the previous section is properly applied by
measuring the frequency shift ∆f = fR − f0 and the 3 dB frequencies f1 , f2
at each side of the resonant frequency fL, which give the quality factor QL .
These measured quantities are reported in Table 2.3, where the values of ε′

and tan δ as retrieved from expressions 2.8 and 2.9 are also indicated.
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Fig. 2.8: Measured return loss for test material n. 2 (Comparison between
empty and loaded cavity cases)

24 24.01 24.02 24.03 24.04 24.05
−8

−7

−6

−5

−4

−3

−2

Frequency [GHz]

[d
B

]

 

 

Empty resonator
Dielectric loaded resonator

Fig. 2.9: Measured return loss for test material n. 3 (Comparison between
empty and loaded cavity cases)

The effectiveness of the approach is further demonstrated by reporting the
behaviour of the resonant frequency as a function of the dielectric thickness
for the three dielectric samples (Figs. 2.10-2.12). In particular, an excellent
agreement between the measured data and the theoretical curve for the loaded
cavity can be observed, thus demonstrating that the measured frequency shift
properly corresponds to the correct dielectric thickness for all tested cases.
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Fig. 2.10: Resonant frequency as a function of dielectric thickness for test
material n.1.
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Fig. 2.11: Resonant frequency as a function of dielectric thickness for test
material n.2.

Table 2.3: Measured parameters and retrieved permittivity values.

n fL[GHz] f1[GHz] f2[GHz] ∆f [MHz] QL ε′ tan δ

1 24.003 24.0018 24.0045 2.7 8890 6.00 0.00324

2 24.00965 24.00918 24.00995 0.77 31181 2.535 0.002

3 24.00752 24.00698 24.0084 1.42 16907 3.54 0.004
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Fig. 2.12: Resonant frequency as a function of dielectric thickness for test
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Microstrip reflectarray elements
characterization by an Open Resonator

3.1 Introduction

A microstrip reflectarray antenna consists of an array of microstrip patch
elements and its concept is based on the scattering properties of these patches,
traditionally passive with low-profile reflector [42]-[47]. Reflectarray antennas
are designed for discrete phase manipulation at each individual antenna ele-
ment making up the array and appeal all the microstrip technology features,
such as less weight, easy manufacturing, and low cost, so revealing useful in
many application fields such a remote sensing, millimetre wave [48], and in-
frared frequencies [49] .

Many different phase tuning methods have been introduced for microstrip
reflectarray antennas as variable size microstrip patches [50], variable size
dipoles and identical patches elements having variable length phase delay
lines with or without angular rotations [[51], [52]]. Recently, new methods
have been modelled where the phase-tunable elements have been considered
to give reflectarray with a steerable main beam [53]-[55] and combined with
dedicated electronic control system [56], [57].

Several methods have been used to design reflectarray antennas based on
the use of a design curve relating the phase of re-radiated field. The analy-
sis referred to the field scattered by a periodic array of identical elements on
which transverse electromagnetic wave is normally incident is the method of
primary importance. As a matter of fact, the behaviour of the reflected phase
versus frequency and/or tuning element variation is used as design curve in
the synthesis algorithm [58] to properly choose those elements that are able
to give the prescribed reflectarray beam features.

A well-established technique for the measurement of phased-array antenna
is through waveguide technology [59], where, an equivalent waveguide ap-
proach is proposed for reflectarray of variable size patches, with the unit cell
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enclosed in a rectangular waveguide having perfect electric and magnetics
walls [60], [61].

In [62], [63], an equivalent electrical circuit is adopted for the reflectarray,
in order to derive the input reflection coefficient. In [62], the reflected phase is
directly computed form the input reflection coefficient assuming a wave plane
at the interface between the substrate and the air transmission layers. The
equivalent circuit is the parallel circuit between the patch impedance and a
transmission line ended in a short circuit. In [63], a resonant LC parallel circuit
is adopted to model the reflectarray unit cell. Losses are taken into account
by placing a resistor in series with the capacitor. In [64] the equivalent circuit
is extended to two resonant LC series circuits that consider two resonant and
two antiresonance frequencies

In this section, an open resonator system [1] with an optimized design of
the waveguide-to-cavity transition [20] is proposed to characterize the reflec-
tion coefficient response of variable size reflectarray patch elements. The open
resonators theory is explained in the first chapter.

3.2 Microstrip reflectarray elements characterization

Synthesis procedures for the reflectarray design [56] require the accurate
phase characterization of the field reflected by the single radiating element, to
properly choice the dimensions and distributions of the grid radiators giving a
radiated field with prescribed featured. An array grid with identical radiating
elements showed in Fig. 3.1 is analysed to characterize the single radiating
element in the reflectarray antenna.

The printed reflectarray antenna can be modelled and analysed as a
grounded reflecting surface by the equivalent electrical circuit of Fig. 3.2 where
the relative parameters L1, C1 representing the grid depend on the variable
length d of the reflectarray patches as well as on the grid spacing between
adjacent elements, the dielectric slab is modelled as a simple transmission
line with length equal to the dielectric thickness ended in a short circuit that
represents the ground plane effect.

The input impedance Zε of the transmission line that express the ground
plane and the dielectric effect is written as:

Zε = jZd tan (βdh) (3.1)

Where,
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Fig. 3.1: Reflectarray Antenna (a) Side view, (b) Frontal view
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Fig. 3.2: Equivalent Circuit for a Printed Reflectarray Antenna
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Where κo is the propagation constant, ε′ is the relative permittivity of the
dielectric and Zo is the impedance in the free space.

To obtain the values of the component L1 and C1 is necessary to un-
derstand how the antenna works in terms of resonance frequencies and the
phase of the reflection coefficient. There are necessary to consider two analysis:

• The input impedance is infinite (Reflection coefficient is 1) and it occurs
in the reflectarray resonance frequency.

• The input impedance becomes zero (Reflection coefficient is −1).

The first analysis, when the reflection coefficient module is 1 but the angle
is 0◦, occurs when:

1

jωL1 + 1
jωC1

+ Yε = 0, |Γ | = 1, ΦΓ = 0◦ (3.2)

When L1C1 circuit becomes a short circuit, the reflection coefficient mod-
ule is 1, but the angle is 180◦, and it happens when:

jωL1 +
1

jωC1
= 0, |Γ | = 1, ΦΓ = 0◦(π rad) (3.3)

One simulation at 24 GHz has been done with this approach and the results
were compared with MoM analysis using ANSOFT DESIGNER software. The
results are showed in Fig. 3.3. The resonance frequencies were assumed known
based in the relation between the resonance frequencies and the dimensions
of the single element and the dielectric properties.

3.2.1 Reflectarray Antenna Equivalent Circuit Without Losses

Due to the small thickness h of the usually adopted substrates (typically
less than a quarter wavelength), and assuming neglecting losses in the dielec-
tric support, an equivalent inductance Lµ can be considered to model the slab
ended with the ground plane. The input impedance Zε can be written as:

Zε = jZdβdh (3.4)

but, because β = ωo
√
µoεoε′ and Zd =

√
µo
εoε′

, then:

Zε = jωoµoh (3.5)

Then, the inductance can be written as Lu = µoh and replaces the trans-
mission line ended in a short circuit. The final circuit is showed in Fig. 3.4 and
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the input impedance is purely reactive that represent no losses and a circuit
that changes the resonance frequency through the variations of its compo-
nents.

Lu

Za C1

L1

Fig. 3.4: Simplified Equivalent Circuit for a Printed Reflectarray Antenna
without losses

The input impedance Za is:

Za = j
ωLu

(
1− ω2L1C1

)
(1− ω2(L1 + Lu)C1)

(3.6)

3.2.2 Reflectarray Antenna Equivalent Circuit considering Losses

In the previous part, a simple analysis was done where the losses weren’t
considered. In this part, a complete analysis is done, then, the printed reflec-
tarray antenna showed in Fig. 3.5 considers in plus: the dielectric losses and
the dispersion losses in the propagation.

The dielectric slab introduce a complex input impedance of the transmis-
sion line written as:

Zε = jZd tan (βdh) (3.7)

Where β and Zd are complex and expressed as:

βd = κo
√
ε′ − jε′′, Zd =

Zo√
ε′ − jε′′

(3.8)
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Fig. 3.5: Equivalent Circuit for a Printed Reflect array Antenna

Where κo and Zo are the wave number and impedance of the free space
and (ε′ − jε′′) is complex permittivity of the dielectric sample. The real and
imaginary parts after some reductions are then given by:

Rε = Re [Zε] =
Zo

aε
(
bε

2 + 1
) sinh (2aεbεhκo)− bε sin [2 (aεhκo)]

cosh (2aεbεhκo) + cos [2 (aεhκo)]
(3.9)

Xε = Im [Zε] =
Zo

aε
(
bε

2 + 1
) bε sinh (2aεbεhκo) + sin [2 (aεhκo)]

cosh (2aεbεhκo) + cos [2 (aεhκo)]
(3.10)

Where a =
√
ε′ and b = 1

2 tan δ

The reflectarray antenna is not a hundred percent directive antenna and
produce dispersion on the reflection wave in the air that depends of the dis-
tance between the antenna and the receiver and the frequency. This dispersion
can be modelled with a resistor RLossant in series with the resonance circuit
L1 C1 as showed in Fig. ??. This resistor introduce losses in the system and
represents the quantity of radiation power that is dispersed in the free space.
The impedance than model the dispersion and the resonance circuit is ex-
pressed by Zl in real and imaginary part as:

Rl = Rlossant (3.11)

Xl =
ω2L1C1 − 1

ωC1
(3.12)
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The input impedance Za has real and imaginary part. The real part repre-
sent losses in the Reflectarray antenna. Za is expressed in real and imaginary
part as:

Ra =
RεR

2
l +

(
R2
ε +X2

ε

)
Rl +RεX

2
l

(Rε +Rl)
2

+ (Xε +Xl)
2 (3.13)

Xa =
XεX

2
l +

(
R2
ε +X2

ε

)
Xl +R2

lXε

(Rε +Rl)
2

+ (Xε +Xl)
2 (3.14)

All the variables are known, expect Rlossant, that must be solve by numer-
ical methods. In the next section there is explained the way to recover this
value by experimental way.

3.3 Open Resonator Technique to characterize the
Reflectarray Antenna

The reflecting response of microstrip reflectarray surface can be character-
ized by inserting a periodic array of identical radiators in the center of the
open cavity, as illustrated in Fig. 3.6(a), where Ro gives the radius of the
spherical mirror, W is the radius of the Gaussian beam and l is the distance
over which the microstrip array grid is fixed. This technique was described and
implemented in chapter 2 for dielectric characterization. As a consequence of
this, the equivalent circuit of Fig. 2.1 results to be modified as in Fig.3.6(b),
with the addition of the impedance Za taking into account the presence of
the reflecting surface.

It must be observed that, due to the presence of the metallic plane at the
center of the cavity, only odd modes are admissible. Each mode has a reso-
nance frequency that is expressed by the equivalent circuit with the elements
Lo and C in Fig. 3.6(b), but, by the insertion of the grounded reflecting sur-
face another resonance circuit appears expressed by L1 and C1 in Fig. 3.2.
Then, two frequencies f1,2 are generated for the system for each mode.

The resonant frequencies f1,2 are directly obtained from the return loss
measurement at the feeding waveguide input of the open resonator. This is
loaded with a reflecting surface made of identical square patches having size
L and spaced of a distance D. In order to best simulate the infinite array
situation, a sufficient large array grid, typically greater than 7X7, must be
considered.

From the circuit reported in 3.6(b), it is straightforward to the deduce the
waveguide input impedance Zi and the reflection coefficient ρ, respectively,
given as:
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Zi = jωLe +
ZR
β2
01

(3.15)

Γ =
Zi − Z10

Zi + Z10
(3.16)

where

ZR = jωLT +R′ +
1

jωC
+ Za, (3.17)

with

LT = Lo + L′

Za = Ra + jXa

The resonant frequencies f1,2 appear when the input impedance Zi in the
equation 3.15 turns to zero. Then the impedance Za of the reflecting sur-
face can be retrieved once the resonant frequencies are measured in the open
resonator system for each mode.
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3.3.1 Reflectarray Antenna Reflection characterization considering
no losses

The analysis of a reflecting microstrip surface, considering no losses, was
treated in section 3.2.1. A equivalent circuit was analysed, but, in this section,
the value of the inductance Lu showed in Fig. 3.4 must be adjusted taking
into account the Gaussian nature of the beam inside of the cavity [27, 28].
The impedance Zε from equation 3.4 changes to:

Zε = jZd (βdh− ΦG) (3.18)

where ΦG is the phase shift produced by the Gaussian beam and is given as:

ΦG = arctan
h

ZR
(3.19)

The term ZR =
√
Rl − l2 into 3.19 represents the Rayleigh distance.

When inserting the equivalent circuit of Fig. 3.4 into that of Fig. 3.2, the
resonator will show two resonant frequencies f{1,2}, relevant of the circuit of
Fig. 3.7, which are given as

Lu

C1

L1

LoC

Fig. 3.7: Resonance Equivalent Circuit

f{1,2} =
1

2π

√
b±

√
(b2 − 4a

2a
(3.20)

Where
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a = LoC(L1 + Lu)C1 + C(L1Lu)C1

b = LoC + (L1 + Lu)C1 + LuC (3.21)

From expresions 3.21, the unknown circuit parameters L1, C1 can be easily
derived as:

L1 =
C1A1 +B1

C1E1
(3.22)

C1 =
B2E1 −B1E2

A1E2 −A2E1
(3.23)

Where

An = (2πfn)
2
Lu − (2πfn)

4
LuLoC

Bn = (2πfn)
2
(Lu + Lo)C − 1

En = (2πfn)
4
(Lu + Lo)C − (2πfn)

2

With n=1,2

3.3.2 Reflectarray Antenna Reflection characterization considering
losses

The characterization of the reflectarray element response in both amplitude
and phase can be done by the open resonator technique considering the losses
in the reflecting surface.In section 3.2.2 two types of losses where included, the
losses in the dielectric substrate that can be found using the open resonator
technique proposed in the previous chapter and the dispersion losses that are
explained in this section. The equivalent circuit of the open resonator with
the reflectarray antenna considering the losses is showed in Fig. 3.8.

The analysis of the equivalent circuit is done when the resonance frequen-
cies appear, and it happens when the imaginary part of the circuit is zero.
Then, the value of the input impedance (Zi) of the circuit is purely real and
deduce the reflection coefficient (Γ ) with a real value. Combining Equations
3.15 and 3.16 an expression for ZR is retrieved as:

ZR =
(1 + Γ )β2

01Zg
(1− Γ )

− jωLeβ2
01 (3.24)

Inserting 3.24 into 3.17, we obtain two new equations that let to find the
values of Ra and Za as:
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Fig. 3.8: Equivalent Circuit for a Printed Reflect array Antenna

Ra =
(1 + Γ )β2

01Zg
(1− Γ )

−R
′

(3.25)

Xa =
1

ωC
− ω

(
Leβ

2
01 + LT

)
(3.26)

Once the value of Ra and Xa are known, is necessary to solve the equation
3.13 and 3.14 to find the values of the unknown parameters Rl, L1 and C1. As
we explained in the previous sections, the resonance circuit L1, C1 generate
two resonance frequencies in the open resonator system. Then is necessary to
solve the equation 3.14 for these two resonance frequencies. Considering the
fact that Rl has a very low value, it can be depreciated in the resolution of
equation 3.14 that changes to a simple second grade equation expressed as:

(Xa −Xε)X
2
l +

(
2XaXε − |Zε|2

)
Xl + |Zε|2Xa = 0 (3.27)

Then, the value of L1 and C1 can be easily retrieved as

L1 =
1

2π

f1Xl1 − f2Xl2

f1
2 − f22

(3.28)

C1 =
1

2πf1 (2πf1L1 −Xl1)
(3.29)

where Xl1,l2 are the values of Xl retrieved in equation 3.28 for each
resonacef1,2 measured in the open resonator.

The value of Rl for each resonance frequency is found solving the equation
3.29, and can be rewritten as:
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(Ra −Rε)R2
l +

(
2RaRε − |Zε|2

)
Xl +

(
|Zε|2 +X2

l

)
Ra −RεX2

l = 0 (3.30)

To solve all the equation is necessary to consider a small change in the
input impedance Zε of the transmission line, that considers a complex per-
mittivity and a Gaussian beam and change from equations 3.9 and 3.10 to:

Re [Zε] =
Zo

aε
(
bε

2 + 1
) sinh (2aεbεhκo)− bε sin [2 (aεhκo − φG)]

cosh (2aεbεhκo) + cos [2 (aεhκo − φG)]
(3.31)

Im [Zε] =
Zo

aε
(
bε

2 + 1
) bε sinh (2aεbεhκo) + sin [2 (aεhκo − φG)]

cosh (2aεbεhκo) + cos [2 (aεhκoφG)]
(3.32)

3.3.3 Experimental Validations

In order to experimentally validate the reflectarray elements characteriza-
tion method outlined in the previous section, a K-band open resonator system
of Fig. () is adopted. Reflectarray grids of 16 x 16 identical square patches
with a spacing D = 0.65λo are considered for three different patch lengths
L (3.2 mm, 3.5 mm and 3.7 mm) as test surfaces. A dielectric substrate of
thickness h = 0.762mm and relative permitivity εr = 2.33 is considered as
support. A photograph showing the open resonator system loaded with the
test reflecting surface is reported in Fig. () with a particular illustrating grid
in Fig. 3.9.

The open resonator system used is designed with a mirror radius Ro =
529mm and the distance l = 421mm between the spherical and the flat mir-
rors. The resonator is tuned to work at a design frequency fo = 24GHz (The
center operating frequency of the reflectarray to be tested), which corresponds
to the excitation of TEM0,0,131 mode inside the cavity.

The optimization of the waveguide-to-cavity transition is performed by fol-
lowing the approach outlined in [], thus reducing the standard WR62 waveg-
uide height b = 4.33mm to a value of b1 = 0.7mm.

The test setup is mounted into the Microwave Laboratory at University of
Calabria, equipped with the complete facilities for both near-field and far-field
measurements.

To derive the reflectarray element behaviour, the return loss magnitude
at the waveguide input is measured for the three different values of the patch
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(a) Side View (b) Frontal View

Fig. 3.9: Photograph of (a) Open Resonator System, (b) Realized Reflecting
Surface

side L. For all cases, as illustrated in Fig. (3.10-3.12) several resonances cou-
ples are visible, corresponding to the various modes excited into the cavity.
However, the only couple to be considered is that the equivalent circuit of Fig.
3.6(b) modelled, corresponding to the TEM0,0,131 mode, which is associated
to an empty cavity resonance fo = 24GHz.

In the presence of each reflecting surface, two resonant frequencies f1,2 are
produced, as highlighted in the previous section. They can be easily identified
in the return loss measurements (Figs. 3.10 -3.12) as follows:

• For a patchside dimension L less than that providing the resonance con-
dition, frequency f1 is chosen as the nearest one (at the left side) to the
resonance frequency fo of the empty cavity, while the frequency f2 corre-
sponds to the resonance of the reflectarray grid, easily computed on the
basis of the patch dimension L. This is the case corresponding to Fig. 3.10.

• For a patch side dimension L equal to that providing the resonance con-
dition, frequencies f1,2 are chosen as those which are equally far form the
resonace frequency fo of the empty cavity. This is the case corresponding
to Fig. 3.11.

• For a patch side dimensions L greater than that providing the resonance
condition, frequency f1 is chosen as the nearest one(at the right side) to
the resonance frequency fo of the empty cavity, while the frequency f2 cor-
responds to the resonance of the reflectarray grid, again computed on the
basis of the patch dimension L. This is the case corresponding to Fig. 3.12.
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Fig. 3.10: Measured return loss for the case L=3.2mm

Fig. 3.11: Measured return loss for the case L=3.5mm

The relevant resonances are highlighted in Fig.3.10-3.12 and summarized
in Table 3.2.

The measured resonance frequencies f1,2 are used to retrieved the values of
parameters L1 and C1 (See Table 3.2), which are applied into the equivalent
circuit of Figure 3.4 to compute the impedance Za, subsequently adopted in
the circuit of Figure 3.6(b) to obtain the phase of the reflection coefficient
relative to the reflectarray grid. Results are reported in Figures as a function
of frequency for the three different dimensions of the patch side L. When
performing the synthesis of microstrip reflectarray, the reflection phase be-
havior of the single radiating element is of primary importance, as providing
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Fig. 3.12: Measured return loss for the case L=3.7mm

Table 3.1: Resonant frequencies f1,2 and relatives value of the parameters L1

C1.

Patch Length L (mm) f1 (Ghz) f2 (Ghz) L1 (nH) C1 (fF)

3.2 23.95 25.88 4.06 7.55

3.5 23.78 24.22 4.24 8.44

3.7 22.95 24.02 4.54 8.70

Fig. 3.13: Reflection Phase versus frequency for the case L=3.2mm
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the proper dimensions of the tuning parameter (e.g., the patch side L) which
are able to guarantee the phase distribution on the array grid assuming the
prescribed-field pattern. To validate the results provided by the proposed ap-
proach, the reflection phase computed by Ansoft Designer Software (infinite
array approach) is also reported in Figures 3.13 - 3.15, and a successful agree-
ment can be observed.

Fig. 3.14: Reflection Phase versus frequency for the case L=3.5mm

Fig. 3.15: Reflection Phase versus frequency for the case L=3.7mm
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Finally, the information retrieved from the three different measurement are
combined to obtain the reflection phase design curve versus the patch length L.
Again, the effectiveness of the approach is successfully demonstrated in Figure
3.16 by comparison with the results coming from Ansoft Designer Simulations.

Fig. 3.16: Reflection Phase versus patch length L

The measured resonance frequencies f1,2 for each mode are used to re-
trieved the value of Rl from equation 3.15. Results for the case of L = 3.5mm
is reported in Fig. 3.17. To validate the result provided by our proposed ap-
proach, the reflection module computed by Ansoft Designer Software (infinite
array approach) is also reported and a successful agreement can be observed
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Fig. 3.17: Reflection Module versus frequency for the case of L=3.5mm





Part II

Fabry Perot Antenna Design
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Fabry Perot Anenna

4.1 Introduction

Sensors, radar, focused power and personal communications highlight grow-
ing applications at millimeter wave frequencies, that implies a large amount
of transmitting data. However, the adoption of millimeter waves gives some
drawback in the antenna design, which cannot be afforded by conventional
procedures. In fact, many original solutions like printed antennas on mem-
brane structures [24], reflectarray [54], [55] and many kind of lens antennas
have been proposed. Fabry-Perot antennas are a very interesting solution, as
providing a high agility in the design-synthesis.

The use of Open Resonators with spherical mirrors as microwave Gaus-
sian Beam Antennas [65], [15] provides a very interesting solution as they can
provide very low sidelobes level. They are based on the result that the field
map at the mid section of an open resonator shows a gaussian distribution
that can be used to illuminate a metallic grid or a dielectric sheet.

Planar Fabry-Perot [1] antennas [15] give a promising solution, as they
can provide a high agility in the design-synthesis. The use of a Fabry-Perot
interferometric as radiating antenna has been reported in several papers. In
[64] the interferometric nature of the double grid operated in long wavelength
radiation are discussed using a multiple scattering approach to determine
the optimal design parameters. The paper does not report the use of the
interferometer as an antenna, but this use is implicitly suggested by the type
of structure. The use of metallic planar Fabry-Perot directive antenna, excited
by a patch, is proposed in [67]. The structure is simulated by a code based on
the method of moment. Other example of at Fabry-Perot antennas are given
in [68] and [69]. All these papers demonstrate that this type of antenna has a
little operating frequency bandwidth.

In this chapter, a Fabry-Perot antenna, based on an open resonator with
rectangular plane mirrors, is presented. A modal solution is used to represent
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the electromagnetic field in the cavity. The field is used to compute the cou-
pling with the transition to the feeding waveguide and to the radiating grid.

4.2 The Metallic Fabry Perot Antenna

The antenna is a parallelepiped-al flat structure with a square at metallic
base that is coupled by a slot to a rectangular waveguide and a radiating face
composed by a metallic sheet were the radiating slots are cut (Fig. 4.1).

Fig. 4.1: Metallic Fabry-Perot Antenna

The theory analysed in Chapter 1 is used for the cavity feeding by the
rectangular waveguide, where a LC electrical circuit represents the resonance
frequency in the cavity, but is necessary to add one more analysis to couple
the cavity to free space.

4.2.1 Coupling cavity to free space

In the Bethe’s original theory [70], the incident field is considered in the
absence of the aperture.The magnetic dipole moment is related to incident
field as follows:

M = −αmHt (4.1)
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where Ht is the tangential magnetic field at the center of the aperture and
the magnetic polarizability, for small rectangular aperture, is given by ([17]):

αm =
0.132

lg
(
1 + 0.66W

L

)W 3 (4.2)

where W and L are the dimensions of aperture with L�W .

The radiated field are calculated as the product of the field of a single
element, considered as a simple magnetic dipole, and the array factor:

Et = Esingleelement ×AF (θ, φ) (4.3)

with Esingleelement as the field of a single rectangular aperture in the ori-
gin with length W and AF (θ, φ) is the array factor, that consider uniform
spacing but different amplitude. The array factor is expressed as:

AF (θ, φ) =

M∑
g=1

N∑
h=1

Im(g, h)ejkr̂·
−→rgh (4.4)

where Im(g, h) is the amplitude for each point-source (g, h) that is equal to
the magnetic dipole moment M evaluated in the point (x, y) =

(
g − M−1

2

)
dx,(

h− N−1
2

)
dy, while r̂ = x̂ sin θ cosφ + ŷ sin θ sinφ + ẑ cos θ and −→rgh =(

g − M−1
2

)
dxx̂ +

(
h− N−1

2

)
dyŷ with M and N as the number of elements

in x̂ and ŷ

To find the field of single element is necessary to determine the potential
function F for a magnetic dipole where W < λ:

F (x, y, z) =
ε

4π

∫
C

Im

(
x

′
, y

′
, z

′
) e(−jkR)

R
dl

′
(4.5)

where (x, y, z) represent the observation point coordinates,
(
x

′
, y

′
, z

′
)

rep-

resent the coordinates of the source, R is the distance from any point on the
source to the observation point, and path C is along the length of the source.

Im is the current distribution for a thin dipole and can be written as:

Im

(
x

′
= 0, y

′
, z

′
= 0
)

=


ŷ sin

[
k
(
W
2 − y

′
)]
, 0 < y

′
< W/2

ŷ sin
[
k
(
W
2 + y

′
)]
, −W/2 < y

′
< 0

(4.6)
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The transformation between rectangular and spherical components is
given, in matrix form:FrFθ

Fφ

 =

sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0

FxFy
Fz

 (4.7)

Because the potential function F exists only in ŷ direction implies that
Er = 0 and Eθ and Eφ are expressed as:

Eθ = −j e
−jkR

2πR

[
1 +

1

jkr

]
cosφ

1− sin2 θ sin2 φ

[
cos

(
kW

2
sin θsinφ

)
− cos

(
kW

2

)]
(4.8)

Eφ = −j ke
−jkR

2πR

[
1 +

1

jkr

]
cos θ sinφ

1− sin2 θ sin2 φ

[
cos

(
kW

2
sin θsinφ

)
− cos

(
kW

2

)]
(4.9)

4.2.2 Modeling and Results

Following the reasoning of previous paragraphs, the antenna depicted un-
der (Fig. 4.1) is considered. Two array are considered: An array of 8x8 el-
ements,with dimensions h=9.8mm; dx=dy=12.5mm; W=6.35mm; L=2mm
and an array of 16x16 elements, with dimensions h = 9.8mm; dx = 13mm; dy
= 13mm;W = 6.35mm; L = 2mm.

The analysis of coupling between a rectangular cavity feeding waveguide
and the planar open cavity is performed by taking into account the theory
explained in chapter 1. The result is reported in Fig. 4.2 and the best coupling
is when the waveguide height has a value around 1.7 mm. Then, the feeding
was done with a transition in the waveguide from an aperture with dimensions
a = 15.8; b = 7.8mm, into an aperture of a = 15.8; b = 1.7mm.

Fig. 4.2: Return loss vs. waveguide height
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A first preliminary result of the radiation diagram at 15 GHz using the
simplified analysis of the proposed antenna and HFSS simulation are reported
in Fig. 4.3 and 4.4.

Fig. 4.3: Radiated Field Eφ, with φ = 90, at 15 GHz considering an array 8x8
elements

Fig. 4.4: Radiated Field Eφ, with φ = 90, at 15 GHz considering an array of
16x16 elements

4.3 The improved Bandwidth Fabry-Perot Antenna

In this section we consider a dielectric partially filled rectangular Fabry-Perot
antenna as depicted under Fig. 4.5.

4.3.1 Field in the partially filled cavity

The solution for the field computed in an empty cavity, are still valid for
−l ≤ z ≤ h1 − l. When we consider a partially filled cavity, the quasi trans-
verse electromagnetic field in the dielectric, for h1− l ≤ z ≤ h1 + h2− l, is:

H2y = −jAε
k

Zw

π

l
e−jπpcos

(
πξ

Ma + γ

)
cos

(
πη

Mb + γ

)
sin(

πz

2l2
) (4.10)
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Fig. 4.5: Rectangular Open resonator partiallly filled with dielectric substrate

and the x component of electric field

E2x = Bε

[
εk2 −

√
εk

2l

π2

(Ma + γ)
2

]2
2e−jπpcos

(
πξ

Ma + γ

)
cos

(
πη

Mb + γ

)
cos(

πz

2l2
)

(4.11)

E2x = Zs2H2y (4.12)

where l2 = h1 +h2− l. For z = h1− l the field in the empty part, (25,26),
and the field in dielectric filled part must be equal, so we can find A and
B.From the continuity of tangential fields on interface air dielectric

Aε =
1

ε

sin
[
π
2l (h1− l)

]
sin
[
π
2l2

(h1− l)
] (4.13)

Bε =
Zs2
Zs

Aε (4.14)

4.3.2 Modelling and Results

In the following results the radiation fields are reported for an antenna
where a dielectric sheet of dielectric load the cavity. With reference to Fig. 4.6
an array of 8x8 elements and the dimensions considered are: h1 = 8:637mm;
h2 = 0:762; ” = 2:33;W = 6:35mm; L = 2mm; dx = 12:5mm; dy = 12:5mm;
b = 1:7mm
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Fig. 4.6: Partially filled cavity circuit

Fig. 4.7: Radiated Field Eφ (Array of 8x8 elements)

In Fig. 4.7 the radiation diagram for several frequencies is reported.

From previous results arise that the introduction of a dielectric sheet in
the cavity improve the frequency working bandwidth of the antenna.

4.4 Experimental Validations

In order to experimentally validate the method outlines in the previous
section, with reference to Fig. 4.10, an array antenna of 8x8 elements for
a K-band frequency is designed where the dimensions considered are: h1 =
8.637mm; h2 = 0.762mm; ε = 2.33; W = 6.35mm; L = 2mm; dx = 12:5mm;
dy = 12:5mm; b = 1:7mm.

The optimization of the waveguide-to-cavity transition is performed by
following the approach outlined in [26], thus reducing the standard WR62
waveguide height b = 4.33mm to a value of b = 2mm. The antenna imple-
mented is showed in Figure 4.8.
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Fig. 4.8: Photograph of the antenna

The test setup is mounted into the Microwave Laboratory at University
of Calabria, equipped with complete facilities for both nearfield and far-field
measurements.The dimensions of the anechoic chamber are 8.0 m (long), 6.0
m (wide) and 4.0 m (high).

The far-field measurement was done under the scheme showed in Fig.4.9,.The
radiation patterns has been measured at a distance of 1.20 [m], largest than the
minimum distance required to considered far field radiation 2D2/λ = 0.99[m],
where D is the largest physical linear dimension of the antenna, that is 100
[mm] and λ is equal to 20.20 [mm] at 14.85 [GHz].

Fig. 4.9: Far-Field Scheme Measurement

In Fig. 4.10, some photographs show the Fabry-Perot antenna mounted in
the anechoic chamber for the far field measurement considering vertical and
horizontal polarization. The receiver antenna is a horn antenna working in K



4.4 Experimental Validations 65

band. The transmitter and receiver antenna are aligned to get accurate results.

(a) Fabry-Perot Antenna to
be tested (Transmitter)

(b) Horn Antenna (Receiver)

(c) Vertical Polarization Test (d) Horizontal Polarization
Test

Fig. 4.10: Photograph of the Fabry-Perot Antenna prototype into the anechoic
chamber

The comparison of gain versus frequency between empty cavity and the
partially filled cavity is reported under Fig. 4.11 where the bandwidth at -
3 dB of the antenna with an empty cavity is around 0.27 GHz while the
measured bandwidth at -3 dB of the antenna with a partially filled cavity
is around 0.40 GHz. These results give a bandwidth improvement more than
40% when a dielectric sample is inserted in the antenna. The measurement
gain result is showed too.

The radiating patterns for Eφ at θ = 90 for two different frequencies, 14.6
[GHz] and 14.85 [GHz] are shown in Fig. 4.12. A qualitative agreement is
obtained in the behaviour of the antenna, where the measurement results are
compared with the proposed approach.

The nearfield measurement was done under the scheme showed in Fig.4.13,
considering a planar test setup, where the antenna under test was mounted
in a stationary fashion (fixed), 180 [mm] far from the measurement system.
A waveguide WR62 is used as a field probe, that performs a flat rectangular
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Fig. 4.11: Return loss vs. waveguide height

(a) 14.6GHz

(b) 14.85 GHz

Fig. 4.12: Radiation Field at φ = 90

surface, with measurements in a grid of 63X63 points with a step of 10 [mm]
along the planar surface in both horizontal (X) and vertical (Y) directions at
14.85GHz.

In Fig. 4.14, the Fabry-Perot antenna under test in nearfield configuration
is presented. The side view shows the waveguide as a field probe and the back
view show how all the system is isolated to get the best results in the mea-
surement procedure.
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Fig. 4.13: NearField Scheme Measurement

(a) Side View (b) Back View

Fig. 4.14: Photograph of the Near Field Measurement

Fig. 4.15 presents the near field measurement,a grid of 3969 points that as
showed in the figure, represents a planar surface from −15λ to −15λ in both
X and Y directions, that combined generated the near field result, where is
clear the good performance of the antenna.

These result complements the far field measurement and confirm the the-
ory proposed in these chapter. New models can be proposed from these results
taking into account that the dielectric sample help to increase the bandwidth.
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Fig. 4.15: NearField Measurement



Conclusions

1. An improved open resonator technique for the retrieval of dielectric com-
plex permittivity has been proposed in this paper. An explicit equivalent
circuit description has been obtained, which provides a simple and accu-
rate prediction of the cavity behaviour, thus avoiding the use of a cum-
bersome numerical analysis for the design of the structure.

2. By exploiting a simple equivalent circuit, the proposed approach takes
properly into account the coupling with the feeding waveguide, as well as
the ohmic and the diffraction losses of the cavity. Three different grounded
dielectric sheets, usually adopted for microwave planar circuits, have been
successfully used for K-band experimental validations of the proposed
technique.

3. The use of an open cavity has been proposed in this work to characterize
variable patches microstrip reflectarray. An equivalent circuit including
both the open resonator and the reflecting surface has been adopted to
recover the reflection phase versus the patch length from return loss mea-
surements at the feeding waveguide input. Experimental validations have
been successfully discussed on K-band reflectarray prototypes.

4. The proposed characterization method is particularly suitable for millimeter-
wave applications, where the reduced dimensions make impractical the
adoption of standard techniques.

5. An open planar cavity antenna has been presented in this work, by pro-
viding an equivalent simplified circuit and obtaining both input charac-
teristics and radiation diagrams of the antenna. A solution to the problem
of bandwidth enlargement has been provided. The experimental charac-
terization of the antenna has been reported.

6. For future developments, the following comments are in order:
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• The coupling of an open spherical cavity through a circular hole has
been frequently used, but no adequate study exists. It can be dealt
by using a modal expansion in terms of Laguerre polynomials for the
cavity and considering only one azimuthal mode index, which gives a
simple representation of the problem;

• The open resonator method can be applied to any quasiplanar com-
posite scattering object to measure the amplitude and phase of the
scattered electromagnetic field. Grounded metallic strips, patches or
frequency selective surfaces can be usefully characterized in this way.

• The development of a synthesis procedure using in the Fabry-Perot
design by the use of the positions and size of the radiating slots will
be considered;

• Several types of radiating elements and feeding structures can be con-
sidered;
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